

XEROX
Xerox GLOBAL VIEW

Document Interfaces Toolkit Software Reference

VP Series Applications
VP Series Reference Library, Version 3.0

Xerox Corporation
Product Education and Documentation (ESCN-215)
701 South Aviation Boulevard
EI Segundo, California 90245

@1986, 1988, 1990 by Xerox Corporation. All rights reserved.
Published August 1990.

Copyright protection claimed includes all forms arid matters of copyrightable
material and information now allowed by statutory or judicial law or hereinafter
granted, including without limitation, material generated from the software
programs which are displayed on the screen such as icons, screen displays, looks,
and so forth.

Publication number: 610E22840

Printed in the United States of America

Xerox@, GLOBALVIEW®, V~, and all Xerox product names mentioned in this
publication are trademarks of Xerox Corporation.
Sun@, SunOS@, SunVieW®, SunWindows@, and SunWorkstation@ are trademarks of
Sun Microsystems, Incorporated.
UNIX@ is a trademark of AT&T.

Changes are periodically made to this document. Changes, technical inaccuracies,
and typographic errors will be corrected in subsequent editions.

This book was created using the Xerox 6085 Professional Computer System.

Table of Contents

1. Document Ie Library 1-1

1-1

Document Creation 1-1

Document Enumeration 1-2

Data types 1-2

Table of DociC Interfaces 1-3

1-5

1-6

1-9

1-10

1-11

1-13

1-14

1-16

1-18

1-20

1-22

1-24

di_aptotxtlnk 1-25

1-27

di_cleartxtlnk 1-28

1-29

1-30

1-34

1-35

di_enumtxtlnk 1-37

1-38

di~etfieldfromname 1-40

di~etfnprops 1-41

1-43

1-45

1-47

1-49

DOCUMENT INTERFACES TOOLKIT SOFlWARE REFERENCE iii

TABLE OF CONTENTS

1-50

1-52

1-55

1-57

di_textforaframe 1-58

2. Document IC Property Library 2-1

2-1

Break Properties 2-1

Field Properties 2-1

Font Runs 2-2

Footnote Numbering Properties 2-3

Font Properties 2-5

2-5

Other fields in dp_fontprops 2-6

Frame Properties 2-7

Index Properties 2-9

Page Properties 2-9

Paragraph Properties 2-12

Basic Property Records 2-13

Tabs 2-14

Document Mode Properties 2-15

Font Style Properties 2-15

Paragraph Style Properties 2-16

T extFrame Properties 2-17

Color Properties 2-18

dp_*col* 2-20

2-22

dp~et*def 2-24

3. Graphics IC Library 3-1

3-1

Creating Graphics 3-1

Reading Graphics 3-2

Cross References 3-2

3-5

3-11

3-16

3-21

3-25

3-28

iv DOCUMENT INTERFACES TOOLKIT SOFlWARE REFERENCE

TABLE OF CONTENTS

3-30

3-33

3-35

3-38

gi_adrectangle 3-40

3-43

3-45

gi_adtriangle 3-47

3-50

gi_btnforaframe 3-52

gi_enumbtnprog 3-53

3-55

3-59

gi_getgframeprops 3-61

3-62

3-68

gi_setgframeprops 3-69

3-71

gi_startcluster 3-73

gi_startgframe 3-75

3-79

3-80

4. Table Ie Library 4-1

4-1

Table Building 4-1

Table Reading 4-2

Properties 4-2

Table Properties 4-2

Column Properties 4-4

Column Header Properties 4-5

Other Column Properties 4-8

Row Content 4-8

4-10

4-11

4-12

ti_finishtable 4-14

ti~et*def 4-15

ti~ettableprops 4-17

4-18

DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE v

TABLE OF CONTENTS

ti_startextable 4-19

4-21

5. Desktop Library 5-1

5-1

dsktp_checkuser 5-2

dsktp_copydoc 5-3

dsktp_deletedoc 5-5

dsktp_enumerate 5-6

dsktp_getaccess 5-8

dsktp~etdocprops 5-9

dsktp_getdocref 5-11

dsktp_makefolder, dsktp_deletefolder 5-13

dsktp_movedoc 5-15

6. XString Library 6-1

XString_intro 6-1

XCharset, XCharcode, XCharmake 6-3

XStrcat, XStrncat 6-5

XStrcmp, XStrncmp, XStrcasecmp, XStrncasecmp 6-6

XStrcpy, XStrncpy, XStrdup 6-8

XStrien 6-9

XStrlexcmp, XStrnlexcmp, XStrcaselexcmp, XStrncaselexcmp 6-10

XStrchr, XStrrchr, XStrpbrk 6-12

XStrsch 6-13

XStrsep 6-14

XStrfromASC, XStrtoASC 6-15

XStrfromXCC8, XStrtoXCC8 6-16

7. Signals 7-1

getsigno 7-1

8. XNS LIbrary 8-1

8-1

_Connection 8-1

_BDTprocptr 8-2

Error Handling 8-3

Header Files 8-4

Authentication2_ChangeStrongKey, _ChangeSimpleKey 8-5

Authentication2_ CheckSimpleCredentials 8-7

Authentication2_CreateStrongKey, _CreateSimpleKey 8-8

vi DOCUMENT INTERFACES TOOLKIT SOFlWARE REFERENCE

TABLE OF CONTENTS

Authentication2_DeleteStrongKey, _DeleteSimpleKey 8-10

Authentication2_GetStrongCredentials 8-11

Clearinghouse2_AddGroupProperty 8-13

Clearinghouse2_AddltemProperty 8-15

Clearinghouse 2_AddMember, _AddSelf 8-17

Clearinghouse2_Changeltem 8-19

Clearinghouse2_CreateAlias, _DeleteAlias, _ListAliases 8-20

Clearinghouse2_CreateObject 8-22

Clearinghouse 2_DeleteMember, _DeleteSelf 8-23

Clearinghouse 2_DeleteObject 8-25

Clearinghouse2_DeleteProperty 8-26

Clearinghouse2_lsMember 8-27

Clearinghouse2_ListAliasesOf 8-29

Clearinghouse 2_ListDomain 8-30

Clearinghouse 2_ListDomainServed 8-31

Clearinghouse2_ListObjects 8-32

Clearinghouse2_ListOrganizations 8-33

Clearinghouse2_ListProperties 8-34

Clearinghouse2_LookupObject 8-35

Clearinghouse 2_RetrieveAddresses 8-36

Clearinghouse2_Retrieveltem 8-37

Cleringhouse2_RetrieveMembers 8-38

8-39

Filing6_ Continue 8-40

8-41

Filing6_Create 8-42

Filing6_Delete 8-44

8-45

Filing6_GetAttributes, _ChangeAttributes 8-47

Filing6_GetControls, _ChangeControls 8-49

8-50

8-52

8-53

8-54

8-55

Filing6_Replace 8-57

Filing6_Retrieve 8-58

Filing6_RetrieveBytes, _ReplaceBytes 8-59

Filing6_Serialize, _Deserialize 8-61

8-63

DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE vii

TABLE OF CONTENTS

Filing6_UnifyAccessLists 8-64

8-65

Inbasket2_ChangeBodyPartsStatus 8-67

Inbasket2_ChangeMessageStatus 8-68

Inbasket2_Delete 8-69

Inbasket2_GetSize 8-70

Inbasket2_Logon, _Logoff 8-71

Inbasket2_MailCheck 8-73

Inbasket2_MailPoII 8-74

Inbasket2_RetrieveBodyParts 8-75

Inbasket2_RetrieveEnvelopes 8-76

MailTransportS_AbortRetrieval 8-78

MailTransportS_BeginPost 8-79

MailTransportS_BeginRetrieval 8-81

MailTransportS_EndPost 8-82

MailTransportS_EndRetrieval 8-83

MailTransport5_MailPoII 8-84

MailTransportS_PostOneBodyPart 8-85

MailT ransport5_RetrieveContent 8-86

MailTransport5_RetrieveEnvelope 8-87

MailTransport5_ServerPoII 8-88

Printing3_GetPrinterProperties 8-89

Printing3_GetPrinterStatus 8-90

Printing3_GetPrintRequestStatus 8-92

Printing3_Print 8-93

Index INDEX-1

viii DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE

1. Document Ie Library

di_intro

NAME

di_intro - introductory explanation of document interchange functions

DESCRIPTION

The DodC interface is a C-based programming tool that allows a person to create a new VP document or
read an existing one. Also, new data may be added directly to the end of an existing VP document. The
contents of an existing VP document may not be changed or deleted. But, through the use of an
intermediary file, the contents of an existing VP file may be read up to a certain point and inserted within
the intermediary file, the new data inserted, and the remainder of the VP document read. The same basic
approach may be used to delete select data from a document: An existing VP document may be read up to a
certain point and the information placed in an intermediary file. The undesired data may be skipped, and
the remaining data is read and placed in the intermediary file.

The DodC interface provides functions that may be used to create or read any of the basic VP document
structures, such as text; fields; headings and footings; or frames of varying types.

Data is placed in a frame by the calling the DoclC interface functions that correspond to that particular
type of frame. Currently, there are only two IC interfaces available that may be used to manipulate the
contents of a frame. They are GraphicslC and TablelC. GraphicslC functions are used to create or read
graphics frames and button frames. TablelC functions are used to create or read tables.

Document Creation

A VP document is initially created by calling either di start() or di startapO. Both of these two functions
set up data structures for the document being created and return a handle to the newly created document.
This handle is an identifier that is passed as an argument to other DoclC interchange functions as the
means of identifying the document being manipulated.

The next step in creating a document is to add information to the document by calls to various di ap*O
functions. These functions are di apaframe(), di apbreakO. di apcharO, di apfieldO, di apmtileO.
di apindexO. di apnewparaO.dI appfcO, di aptextO, di aptat.llinO, di aP'fstyleO,di appstyleO, and
di= aptotxtlnk{).- - - - - -

With regards to di apaframeO, the function used to anchor a frame to an object in a document, the user
typically calls various GraphicslC or TablelC functions to create the contents of a frame, and then calls
di apaframeO to append that frame and its contents to the document. With regards to di starttext{), the
user calls di apaframeO first and then calls di starttextO to obtain a text handle. The handle returned by
a call to di_apaframeO is then passed as an argument to di_starttextO.

di apfieldO, di apindexO and di appfcO all have return values. This allows the user to recursively call
di= ap*O functiOns to add text and fOrmatting information to fields, index, or PFC headers.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-1

DOCUMENT IC LIBRARY

When all the desired data has been added to a document, call di finishO to obtain a temporary reference,
or handle. Then call the Desktop Library function dsktp moven so that the resulting file may be placed
on the VP desktop. -

Document Enumeration

To enumerate the contents of an existing VP document, the first step is a call to dsktp getdocrefO.
dsktp getdocrefO will return a handle for the specified document. Once the handle has been obtained, the
contents may be manipulated. Next call di openO. This function opens the specified document and
returns doc, a handle for the document. Next, pass the handle and a di enumprocs structure as
arguments in a call to di enumerateO. The di enumprocs structure conSIsts of a set of call-back
procedures, where there is one call-back procedure for each of the corresponding object types that exist in
the document. Objects, in this case, are defined as anchored frames, break characters, field, footnotes,
indexes, new paragraphs, page format characters, or text.

The di enumerateO function inspects a document from beginning to end. As different types of objects are
encountered, this function calls the appropriate call-back procedure to process each particular type of
object. Each call-back procedure returns a Boolean value. A value of TRUE terminates the enumeration. If
TRUE is never returned, the enumeration continues to the end of the document.

Enumeration proceeds according to the "main flow" of text within a document. Main flow is considered to
be the sequence of text that contains page format characters and frame anchor characters. This means
that the call-back procedure, di aframeprocO, will be called not when the frame itself is reached, but
rather when the frame's anchor character is reached.

When the enumeration is complete, di closeO should be called to free all associated data structures and
close any open file handles to the document.

Note that document creation and enumeration are totally separate activities and the functions and
handles associated with one should not be used with the other. Enumeration is a read-only operation; no
editing should be attempted while it is in progress. Likewise, enumeration should not be attempted when
creating a document.

Data types

1-2

The basic data structure of the Docie interface is di tcont (text container). di tcont may be defined as any
object that can contain text. A di tcont can bea caption, document, field, footing, heading, index,
numbering, or text. -

di tcont is defined in DocIC.h as follows:

typedef struct {
di tcont type type;
urilon { -

di caption
di-doc
di-field
di-footing
di-heading
di-index
di-numbering
di-text
}h;

}di tcont;
. -

caption;
doc;
field;
footing;
heading;
index;
numbering;
text;

where, all elements inside the union h are unsigned integers.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di tcont must contain at least one new paragraph character, since the paragraph properties of text are
inherited from the preceding new paragraph character. The implementation of the DoclC interface
automatically inserts the initial new paragraph characters as required. Therefore, it is always safe to
assume they already exist. (You are free to append new paragraph characters, regardless. The
implementation ensures that duplicate new paragraph characters do not appear in the document. The new
paragraph characters inserted by the user have precedence over those inserted by the system.)

di ins is a handle to specific instances of objects within a document. Many objects in a document may be
uniquely identified and accessed via di ins. In general, instances form the bridge between DoclC interfaces
and the interfaces that are used specifically to manipulate the contents of frames, such as GraphicslC and
TablelC: DoclC interfaces provide an instance which may be passed to other Interchange interfaces. No
object in any document may be accessed via di_insnil.

Table of DocIe Interfaces

The following table summarizes DoclC interfaces.

Object
Creating Reading

Function Page Function Page

Common di enumerate
-

Document di start di open

di finish di close -
di abort

Text di aptext di textproc

di apchar di reltext -
di reltext

Anchored di starttext di aframeproc

Text Frame di apaframe di textforaframe
-

di relcap

Anchored di setfnprops di aframeproc

Footnote di apaframe di fnpropsproc

di fntile di getfnprops

di relcap di fntileproc

Other Anchored di apaframe di aframeproc -
Frame di relcap -
break di apbreak di breakproc - -

Field di field di fieldproc

di relfield di getfieldfromname -
dp enumfrun -

Index di apindex di indexproc -di relindex
-

Newpara di apnewpara di newparaproc -
di set para

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-3

DOCUMENT IC LIBRARY

Object
Creatinq Readinq

Function Page Function Page

Page di appfc di pfcproc

(Footing/Heading/ di relhead di docproc -
Numbering) di relfoot

di relnum

Soft Page Break di sfbrkproc

Fill-In Order di aptofillin di fillinproc

di clearfillin di enumfillin

Style di start di enumstyle

di styleproc di fstyleproc

di apfstyleproc di pstyleproc -
di appstyleproc

di apfstyle

di appstyle

Text Link di aptotxtlnk di txtlnkproc

di cleartxtl nk di enumtxtlnk

Mode di setmode di getmode -

1-4 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di_abort

NAME

di_abort - abort document creation

SYNOPSIS

#include "DoclC.h"

int
di abort(doc)

-di doc *doc;

DESCRIPTION

The di abort() function is used to terminate the document generation process and deallocate the storage
resources allocated to the document being terminated. This function's one argument is di doc, the file
handle returned by an earlier call to di_start() or di_startap(). -

RETURN VALUE

If the call is successful, 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di_ abort() will fail if one or more of the following is true:

Doc BadParm

Doc_,lIegaIHandle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-5

DOCUMENT IC LIBRARY

NAME

di~apaframe - append anchored frame

SYNOPSIS

#include "OoclC.h"
#include "OoclCProps.h"

int
di apaframe(to, type, frame, cont, wtcap, wbcap, wlcap, wrcap, font, trustsize, ret}

-di tcont *to;
di-aframetype type;
dp frameprops *frame;
di I'nscont;
dp boo I wtcap;
dp -bool wbcap;
dp -boo I wlcap;
dp -boo I wrcap;
dp -fontprops *font;
dp -bool trustsize;
ret_ apaframe *ret;

/* di insnil */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* NULL */
/* FALSE */
/* Returned */

DESCRIPTION

1-6

The di apaframeO function is used to append an anchored frame to the text container specified by
di _ tcollt. The resulting frame will be of a specific type and it will have specific format properties.

to is a pointer of the type di tcont. It is a structure that defines the type of object contained within it and a
handle to the object itself. di tcont consists of a union of two members, type and h. The object type is
defined by the member type. type is of the type di tcont type. It is an enumerated variable that may be
set to one of the following values: --

TC CAPTION
TC-OOC
TC-FIELO
TC-FOOTING
TC-HEAOING
TC-INOEX
TC-NUMBERING
TC-TEXT

The h member of di tcont is an opaque variable that is to contain a handle returned by a previous call to a
related handle generating function. It may contain one the following types:

di caption
di-doc
di-field
di-footing
di-heading
di-index
di-numbering
di-text

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

The user specifies the handle type and its contents. In the case of di apaframe(), the type is to be set to
TC DOC and the handle is to contain the return value of either di start(}ordi startap(). Appending an
anChored frame to a caption, text, heading, footing, or numbering container isnot allowed.

The type argument is of the type di aframetype. It is an enumerated variable that specifies the type of
anchored frame to be appended to the document container. It may be set to one of the following values:

AF CUSP
AF-GRAPH
AF-TABLE
AF-TEXT
AF-FNOTE
AF-OTHER

Cusp Button
Graphics
Table
Text
Footnote
Other type

The frame argument is a pointer of the type dp frameprops, a structure containing variables that control
the appearance, dimensions, and page numbering ofthe frame in question.

The cont argument is the contents to be inserted in the frame. Currently, only interfaces that support the
creation of graphic, table, text, and button frames are available.

The w*cap argument specifies the captions the frame should have.

font specifies the font properties of the frame anchor. Changing the font properties of the anchor does not
affect the appearance of the anchor, but it does affect the default properties that succeeding characters will
inherit.

trustsize is a Boolean value that controls the dimensions of the frame. If trustsize is set to TRUE, the frame
size specified in frame will be used without modification. If set to FALSE, the frame size specified in frame
will be ignored and the frame will be adjusted to fit the existing frame. This argument may only be set to
TRUE when manipulating anchored table frames.

The return information is set into the structure ret_ apaframe. It contains the following members:

di ins frame;
di-caption tcap;
di-caption bcap;
di-caption leap;
di: caption rcap;

The return information contains handles to the frame and its captions. The caption handles will be non
NULL only if the user specifies TRUE for the corresponding w*cap parameter. The user must later release
each valid caption handle with calls to di_releap().

frame is a pointer of type ret apaframe. The handle contained in ret apaframe is passed as an argument
in calls to di starttext(} and gi setgframepropsO. It is not mandatory to call di starttext(} after calling
di apaframen. Failure to call dI starttextO will only result in an empty text frame, except for the presence
of one new paragraph character that has default paragraph and font properties.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-7

DOCUMENT IC LIBRARY

ERRORS

di_apaframe() will fail ifone or more of the following is true:

Doc ContainerFuli No more room to append to this container.

Doc DocumentFuli No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc_ ObjlllegalinCont Attempted to add an object of an unsupported type to a container.

Doc BadParm One ofthe specified arguments is invalid.

Doc_,lIegaIHandle The specified handle is illegal.

Doc TimeOut

Doc_Unimpl

Inter-process communication has exceeded the maximum allowed time.

This function is not supported.

SEE ALSO

di_relcap(), di_starttext(), gi setgframeprops()

1-8 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di apbreak

NAME

di_apbreak - append break character

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di apbreak(to. brprops. foprops)

-di tcont *to;
dp breakprops *brprops;
dp fontprops *foprops;

DESCRIPTION

/* NUll */

The di_ apbreakO function is used to append a page break character to the container specified by di_ tcont.

Refer to di apaframe() for a description of di tcont. Note that heading, footing and numbering containers
may not beused. -

brprops are the properties of the break character. Refer to the DoclCProps section of this manual and the
VP reference manuals for more information regarding text frame properties.

foprops are the font properties of the break character. The addition of these properties will not affect the
appearance of the character itself, but will affect the properties that succeeding characters will inherit.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di_apbreakO will fail ifone or more of the following is true:

Doc ContainerFull There is no more room to append to this container.

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc_ ObjlllegalinCont Attempted to add an object of an unsupported type to a container.

Doc BadParm One of the specified arguments is invalid.

Doc_lIIegalHandle

Doc TimeOut

Doc_Unimpl

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

This function is not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-9

DOCUMENT IC LIBRARY

di apchar

NAME

di_apchar - append character

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"
#include "XString.h"

int
di apchar(to. c. foprops. num)

-di tcont *to;
XCharc;
dp fontprops *foprops;
unSigned num;

/* NULL */
/* 1 */

DESCRIPTION

The di apcharO function is used to append one or more instances of the text character c to the specified
di_ tcont. Refer to di_ apaframeO for a description ofdi_ tcont.

The num argument specifies the number of times the character specified in c will be appended to the text
container. The foprops argument specifies the font properties of the character(s}.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

1-10

di_ apcharO will fail if one or more of the following is true:

Doc ContainerFull There is no more room to append to this container.

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc_ ObjlllegaUnCont Attempted to add an object of an unsupported type to a container.

Doc BadParm

Doc_,lIegaIHandle

Doc TimeOut

Doc_Unimpl

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

This function is not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di_apfield

NAME

di_apfield - append field

SYNOPSIS

#include "OoclC.h"
#i ncl ude "OoclCProps. h"

int
di apfield(to. fiprops. foprops. ret)

-di tcont *to;
dp fldprops *fiprops;
dp -fontprops *foprops; /* NULL */
di field *ret; /* Returned */

DESCRIPTION

The di_apfield() function is used to append a document field to the text container indicated by di_ tcont.

Refer to di apaframeO for a description of di tcont. Note that a field may not be appended to a heading,
footing or numbering container. -

di apfieldO returns a handle of type di field. This handle is passed as an argument to other di ap*O
functions in order to add data to the newly appended field. It cannot be specified as the di tcont in another
call to di_ apfieldO. After appending data to a field, the field must be released by a call todi_relfieldO.

The fiprops and foprops arguments specify field and font properties, respectively. Refer to the dp_*props
section of this manual and the VP reference manuals for more information regarding font and field
properties.

The fill-in order of a fields cannot be set when they are appended to a document. To specify the fill-in order
offields, use the di_ aptofiII inO function.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1·11

DOCUMENT IC LIBRARY

ERRORS

di _ apfieldO will fail if one or more of the following is true:

Doc ContainerFu" There is no more room to append to this container.

Doc DocumentFu" No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

00(_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc_ Objl"egalinCont Attempted to add an object of an unsupported type to a container.

Doc BadParm

Doc_IIIegalHandle

Doc TimeOut

Doc_Unimpl

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

This function is not supported.

SEE ALSO

di relfieldO. di_ aptofiliinO

1-12 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di apfntile

NAME

di_apfntile - append footnote reference tile

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di apfntile(to, foprops)

-di text to;
dp fontprops *foprops;

DESCRIPTION

/* NULL */

The di apfntile() function is used to append a Footnote Reference Tile to the text container specified in the
di_ text. argument.

The foprops argument specifies the font properties of the newly generated Footnote Reference Tile.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di_apfntile() will fail ifone or more of the following is true:

Doc ContainerFull There is no more room to append to this container.

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc _ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc_ ObjlllegallnCont Attempted to add an object of an unsupported type to a container.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

Doc_Unimpl

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

This function is not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-13

DOCUMENT IC LIBRARY

di_apfstyle, di_appstyle

NAME

di_apfstyle, di_appstyle - append font and paragraph style

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di apfstyle(doc. props)

-di doc doc;
dp fstyleprops *props;

int
di appstyle(doc. props)

-di doc doc;
dp _pstyleprops *props;

DESCRIPTION

The di apfstyleO and di appstyleO functions are used to append respective font and paragraph style
properties to the styles in a document. Refer to the Document Editor: Basics User Guide for more
information on document styles.

There are two ways to append styles. The first way is via the styledat argument to di startO. It is used to
define the style of first the new paragraph and page format characters. The second way is via calls to
di apfstyleO and di appstyleO. These two functions are used to define subsequent style definitions.
di-apfstyleO and di appstyle() cannot be used to set the style of the first new paragraph and page format
characters. -

The doc argument is a document handle that was returned by an earlier call to either di startO or
di_startapO. -

The props argument is a pointer of the type dp fstyleprops or dp _pstyleprops. It specifies the properties
desired by the user. -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

1-14

di appstyleO and di_apfstyle() will fail ifone or more of the following is true:

Doc BadParm

Doc_lllegalHandle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

SEE ALSO

di_ enumstyleO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-15

DOCUMENT IC LIBRARY

NAME

di_apindex - append index character

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di apindex(to. ixprops. foprops. ret)

-di tcont *to;
dp indexprops *ixprops;
dp -fontprops *foprops; /* NULL */
di Index *ret; /* Returned */

DESCRIPTION

The di_ apindexO function is used to append an index character to the text container specified in di_ tcont.

Refer to di apaframeO for a description of di tcont. Note that heading, footing and numbering containers
may not bespecified. -

The ixprops and foprops arguments specify the respective index and font properties to be assigned to the
index.

di apindexO returns di index, a handle that may be used by other di ap*O calls to add data to the index
character. The di_indeihandle must be released via relindexO.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

1-16

di_ apindexO will fail ifone or more of the following is true:

Doc ContainerFull There is no more room to append to this container.

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc_ ObjlllegalinCont Attempted to add an object of an unsupported type to a container.

Doc BadParm

Doc_JIIegalHandle

Doc TimeOut

Doc_Unimpl

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

This function is not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

SEE ALSO

relindexO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

1-17

DOCUMENT IC LIBRARY

di apnewpara

NAME

di_apnewpara - append new paragraph characters

SYNOPSIS

#include "OoclC.h"
#include "OoclCProps.h"

int
di apnewpara(to,prprops,foprops,nurn)

-di tcont *to;
dp paraprops *prprops;
dp -fontprops *foprops;
unSIgned nurn;

/* NULL */
/* NULL */
/* 1 */

DESCRIPTION

The di apnewpara() function is used to append one or more new paragraph characters to the text
container specified in the di_ tcont argument. Refer to di_ apafrarne() for a description of di _ tcont.

The prprops and foprops arguments specify the respective paragraph and font properties of the new
paragraph. Ifprprops is NULL, the new paragraph inherits the props of the previous paragraph. Iffoprops
is NULL, the new paragraph inherits the paragraph properties of the previous paragraph.

The nurn argument is a cardinal number that indicates the number of paragraph characters to be
appended.

The di tcont argument must contain at least one new paragraph character. The current implementation
of this C interface automatically supplies the initial new paragraph character to the beginning of a new
document. Additional new paragraph characters may be added. If the user adds a new paragraph
character to the beginning of the document, only the user-supplied new paragraph character will be
present.

RETURN VALUE

1-18

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

ERRORS

di_ apnewpara() will fail if one or more of the following is true:

Doc ContainerFull There is no more room to append to this container.

Doc OocumentFull No more room in the document.

Ooc_ ReadonlyOoc Document opened in ReadOnly mode.

Ooc_ OutOfOiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Ooc_ ObjlliegalinCont Attempted to add an object of an unsupported type to a container.

Doc BadParm One of the specified arguments is invalid.

Ooc_lIlegalHandle The specified handle is illegal.

Doc TimeOut

Ooc_Unimpl

Inter-process communication has exceeded the maximum allowed time.

This function is not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-19

DOCUMENT IC LIBRARY

di_appfc

NAME

di_appfc - append page format character

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di appfc(to, pgprops, foprops, whead, wfoot, wnum, ret}

- di tcont *to;
dp pageprops *pgprops;
dp -fontprops *foprops;
dp -bool whead;
dp -bool wfoot;
dp -bool wnum;
ret appfc *ret;

/* NULL */
/* FALSE */
/* FALSE */
/* FALSE */
/* Returned */

DESCRIPTION

1-20

The di appfc(} function is used to append a page format character to the text container specified in the
di tcont argument. Only document, field and index containers may be used. Refer to di apaframe(} for a
description of di_ tcont. -

The pgprops argument specifies the format characteristics of the resulting page character. When
specifying page margin properties for the pgprops argument, the margins must be set so that at least one
inch is available for text. An inch is equivalent to 72 points. For example, (left margin + right margin + 72
< = page width), and (top margin + bottom margin + 72 < = page height).

The foprops argument specifies the font properties ofthe page format character.

The whead, wfoot and wnum arguments are Boolean variables that are used to specify whether or not the
resulting page format character will contain heading, footing, and/or numbering properties.

di_ appfc(} returns ret_ appfc, a structure containing the following members:

di heading Ihead;
di-heading rhead;
di-footing Ifoot;
di-footing rfoot;
di: numbering num;

The heading, footing and/or numbering handles will be NUll unless the user sets whead, wfoot and/or
wnum to TRUE.

If the heading, footing and/or numbering handles are valid, the user can then apply them as text
containers in calls to other di ap*O functions. If the headers are to be the same on both left and right
pages, only Ihead should contam the heading. rhead should be left NUll. The same rule applies to Ifoot and
rfoot.

When specifying heading, footing or numbering, note that there are no automatic positioning parameters
for information in headers and footers. The user must call the appropriate di_ ap*() function to add the

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

desired text and to position it with standard text formatting, such as spaces, paragraph alignment,
leading, line height, and tabs.

Page number patterns are not recognized. To specify a page number in heading, footing, or numbering
format parameters, insert a special character at the location in which a page number is desired. Note that
the function dp _getpagedel() returns this special character.

When finished with heading, footing, and/or numbering parameters, every non-NULL parameter must be
terminated by a call to di_relhead() , di_relfootO or di_relnumO, respectively.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di _ appfcO will fail if one or more ofthe following is true:

Doc ContainerFuli There is no more room to append to this container.

Doc DocumentFuli No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc_ ObjlllegallnCont Attempted to add an object of an unsupported type to a container.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

Doc_Unimpl

SEE ALSO

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

This function is not supported.

dp _getpagedeIO, di_relheadO , di_relfootO, di_relnum()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-21

DOCUMENT IC LIBRARY

di_aptext

NAME

di_aptext - append text

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"
#include "XString.h"

int
di aptext(to, text, foprops)

-di tcont *to;
XStri ng text;
dp _fontprops *foprops; /* NULL */

DESCRIPTION

The di aptextO function is used to append the text string specified in the text argument to the text
container specified in the di_ tcont argument. Refer to di_ apaframeO for a description of di_ tcont.

The resulting text will have the font properties specified in the foprops argument. Iffoprops is left NULL
then text will inherit the font properties of the previous paragraph.

The text argument may not contain new paragraph characters (i.e., [set: 0, code: 35B]).

Use the di_apnewparaO function to append new paragraph characters.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

1-22

di_ aptext() will fail if one or more of the following is true:

Doc ContainerFull There is no more room to append to this container.

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc_ ObjlllegalinCont Attempted to add an object of an unsupported type to a container.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

Doc_Unimpl

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

This function is not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

SEE ALSO

di_ apnewpara()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-23

DOCUMENT IC LIBRARY

NAME

di_aptofillin - append item to fill-in order

SYNOPSIS

#include "DoclC.h"
#include "XString.h"

int
di aptofillin(doc, name, type)

-di doc doc;
XString name;
d i_filii ntype type;

DESCRIPTION

The di aptofillin() function is used to append to the fill-in order of fields and tables. Refer to the Document
Editor:Basics User Guide for more information on fill-in orders of fields and tables. The fill-in order of
fields cannot be set once they have been appended to a document, except by calling di_ aptofillin().

The doc argument is a document handle that was returned by an earlier call to either di start() or
di startap(). It contains the field or table in question. The name argument identifies the object to be added
to the fill-in order. The type argument specifies the type of object to be added to the fill-in order. The value
of type may be one of the following:

FI FIELD

FI TABLE

/* field */

/* table */

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di_ aptofiiii n() will fail if one or more of the following is true:

Doc BadParm One of the specified arguments is invalid.

Doc_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di_ enumfillin(), di_ clearfillin()

1-24 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

di_aptotxtlnk

NAME

di_aptotxtlnk - append item to text link

SYNOPSIS

#include "DoclC.h"

int
di aptotxtlnk(doc. item)

-di doc doc;
di-textlink "'item;

DESCRIPTION

DOCUMENT IC LIBRARY

The di aptotxtlnkO function is used to append an item to the end of the text frame link order. It may be
either an existing text frame link order or one that had been cleared via di cleartxtlnkO. Refer to the
Document Editor: Basics User Guide for information on text frame link order. -

The doc argument is a document handle that was returned by an earlier call to either di startO or
di_startapO. It must contain the text frame handle and may, optionally, contain the text frameTInk order

The item argument is a pointer of the type di textlink. It specifies a structure whose members define the
item to be appended and the text format parameters to be assigned that item. It contains the following
members:

XString name;
int partab;
dp boo I newpara;
dp -bool newline;
dp :bool paratab;

The name argument is a string that identifies the text frame in question. The remaining arguments
are internal data for special case use, such as when appending data to a newly created VP document.

The recommended usage is:

1) EnablePO COMPRESS upon invoking di_sta rtO ordi_startapO. (Thiswillcausep aginatetofill
the text in linked text frames.)

2) Append all of the text in the linked-text frame to the first link-order text frame. Internal data
may be set to :

partab
newpara
newline
pa rata b

= 1;
= FALSE;
= FALSE;
= FALSE;

3) Append the text-link to the document via a call to di_ aptotxtlinkO.
4) Call di finishO.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-25

DOCUMENT IC LIBRARY

ERRORS

di_ aptotxtlnkO will fail if one or more ofthe following is true:

Doc BadParm

Doc_,lIegaIHandle

Doc TimeOut

SEE ALSO

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

di_ enumtxtlnkO, di_ cleartxtlnkO

1-26 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

di_clearfillin

NAME

di_clearfillin - clear fill-in order

SYNOPSIS

#include "DoclC.h"

int
di clearfillin(doc)

-di doc doc;

DESCRIPTION

DOCUMENT IC LIBRARY

The di clearfiliinO function is used to cancel the previously specified fill-in order of an entire document.
The di clearfillinO function cancels the fill-in order previously specified. The doc argument is a
document handle that was returned by an earlier call to either di_startO or di_startap().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

di_ clearfiliinO will fail ifone or more of the following is true:

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

SEE ALSO

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

di_aptofillinO, di_ enumfiliinO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-27

DOCUMENT IC LIBRARY

di_cleartxtlnk

NAME

di_cleartxtlnk - clear text link

SYNOPSIS

#include "DoclC.h"

int
di cleartxtlnk{doc)

-di doc doc;

DESCRIPTION

The di cleartxtlnk{) function is used to clear the text frame link order of a document. This function is
usually called in preparation of setting the text link order via di _ aptotxtlink{).

The doc argument is a document handle that was returned by an earlier call to either di startO or
di_startap{). -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno{) is used to get the
reason for the failure.

ERRORS

di_ cleartxtlnk{) will fail if one or more of the following is true:

Doc BadParm One of the specified arguments is invalid.

Doc_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di_ aptotxtlink{)

1-28 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

di_close

NAME

di_close - close a document

SYNOPSIS

#include "DoclC.h"

int
di close(docptr)
-di_ doc *docptr;

DESCRIPTION

DOCUMENT IC LIBRARY

The di close() function is used to release the document handle of an enumerated document. Releasing the
document handle frees the storage space originally allocated to it and sets the handle to NULL. The doc
argument is the document handle to be terminated.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di_ close() will fail if one or more of the following is true:

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

SEE ALSO

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-29

DOCUMENT IC LIBRARY

di_enumerate

NAME
di_enumerate - parse contents of a document

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di enumerate(to. procs. cd at. mrgnum.ret)

-di tcont *to;
di-enumprocs *procs;
vo"ia *cdat;
dp bool mrgnum;
dp :bool *ret;

CALLBACK PROCEDURE

dp bool

/* NULL */
/* FALSE */
/* Returned */

di aocproc(cdat. foprops. prprops. pgprops. Ihead. rhead. Ifoot. rfoot. num)

1-30

-void *cdat;
dp fontprops *foprops;
dp - paraprops *prprops;
dp - pageprops *pgprops;
di heading Ihead;
di-heading rhead;
di-footing Ifoot;
di-footing rfoot;
di: numbering num;

dp bool
di aframeproc(cdat. type. font. frame. props. cont. tcap. bcap. leap. rcap)

-void *cdat;
di aframetype type;
dp fontprops *font;
di 'ns frame;
dp frameprops *props;
di 'nscont;
di-caption tcap;
di-caption bcap;
di-caption leap;
di: caption rcap;

dp boo I
di Dreakproc(cdat. foprops. brprops)

-void *cdat;
dp fontprops *foprops;
dp :breakprops *brprops;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

dp bool
di fieldproc(cdat, foprops, fiprops, field)

-void *cdat;
dp fontprops *foprops;
dp -fldprops *fiprops;
di field field;

dp bool
di fntileproc(cdat. foprops)

-void *cdat;
dp _fontprops *foprops;

dp bool
di Indexproc(cdat. foprops. ixprops. index)

-void *cdat;
dp fontprops *foprops;
dp -indexprops *ixprops;
di Index index;

dp bool
di newparaproc(cdat, foprops, prprops)

-void *cdat;
dp fontprops *foprops;
dp :paraprops *prprops;

dp bool
di pfcproc(cdat. foprops. pgprops.lhead. rhead.lfoot. rfoot. num)

-void *cdat;
dp fontprops *foprops;
dp - pageprops *pgprops;
di neading Ihead;
di-heading rhead;
di-footing Ifoot;
di-footing rfoot;
di: numbering num;

dp boo I
di sfbrkproc(cdat. num}

-void *cdat;
dp _pagenumber num;

dp bool
di textproc(cdat, foprops, text}

-void *cdat;
dp fontprops *foprops;
XString text;

DESCRIPTION

The di_ enumerate(} function is used to parse the contents of a document.

DOCUMENT IC LIBRARY

The di tcont argument is to contain the file handle returned by an earlier call to di open(}. Refer to
di_ apMrame(} for a description of di_ tcont. -

The cd at argument is a pointer to any user-defined data that is passed to the call-back procedure(s)
specified in thedi_ enumprocsargument.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-31

DOCUMENT IC LIBRARY

The mrgnum argument is short for "merge numbering". It is a Boolean value that, when set to TRUE,
indicates that a page numbering pattern will be included in the heading or footing during enumeration.
Setting this value to TRUE will result in thecorrespondingdi numberingindi pfcproc anddi docproc to
be set to NULL. - - -

The di enumprocs argument is a structure that contains user-defined call-back procedures for
enumerating objects in the specified file. The members of di _ enumprocs are:

di docproc *doc;
di-aframeproc *aframe;
di-breakproc *break;
di-fieldproc *field;
di-fntileproc *fntile;
di-indexproc *index;
di-newparaproc *newpara;
di-pfcproc *pfc;
di-sfbrkproc *sfbrk;
di textproc *text;

Each call-back procedure specified in di enumprocs uses the properties and contents of the structure as
parameters when invoked. The storage resources allocated to the properties passed to these functions is
temporary; the user must explicitly copy any properties he or she may wish to save.

If doc is not NULL, di docprocO will be called first with the first foprops, prprops, and pgprops present in
the document. If doc is NULL, di newparaproc() will be called and then di pfcproc will be called with the
first foprops, prprops, and pgprops present in the document. -

When calling di pfcprocO, if the headers are identical on the left and right pages, only Ihead will contain
the heading; rhead must remain NULL. The same rule applies to Ifoot and rfoot.

Each call-back procedure returns a Boolean value. Enumeration stops when a return value is TRUE.

Some of the call-back procedures require a text container handle as a parameter. The text container
handle may be specified recursively in calls to di enumerate() in order to extract the contents of that same
text container. For example, di fieldproc may can di enumerateO with field as the text container in order
to extract the contents of the field. di enumerateO requires a text container of type di tcont. di cont
contains a union of two members: type and h. type is to be set to TC FIELD and h is to be set to thefield
that was passed by a call to di_fieldproc. -

Any handle returned by a call-back procedure is read only, and is valid only during the invocation of the
call-back procedure. The handle returned is automatically released after execution of the call-back
procedure. When a NU LL handle is returned, it means the corresponding object does not contain text.

The initial paragraph and page format characters in a text container are also enumerated. Thus, when
copying an existing document into a new document, avoid copying the initial paragraph and page format
characters of the existing document as you copy the remainder of its contents.

RETURN VALUE

1-32

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

ERRORS

di_ enumerateO will fail if one or more of the following is true:

Doc BadParm One of the specified arguments is invalid.

The specified handle is illegal. Doc_lIIegalHandle

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di_ open(), di_ textforaframe(), di closeO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-33

DOCUMENT IC LIBRARY

NAME

di_enumfillin - enumerate fill-in order

SYNOPSIS

#include "Docle.h"

int
di enumfillin(doc. proc. cdat)

-di doc doc;
di-fillinproc *proc;
vold *cdat; /* NULL */

CALLBACK PROCEDURE

dp boo I
di fillinproc(cdat. name. type)

-void *cdat;
XString name;
di_fillintype type;

DESCRIPTION

The di_ enumfillin() function is used to enumerate the fill-in order of fields and tables.

The doc argument is a document handle that was returned by an earlier call to di _ open() or di _ startapO.

The proc argument is a pointer of the type di fillinproc(). It specifies a call-back procedure to be invoked
once for each object in the fill-in order. The arguments passed to proc specify user-defined data, the name
of the enumerated object and its type. di_fillinproc may return TRUE to halt the enumeration.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di_ enumfillin() will fail ifone or more of the following is true:

Doc BadParm One of the specified arguments is invalid.

Doc_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

1-34 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

di_enumstyle

NAME

di_enumstyle - enumerate style

SYNOPSIS

#incJude "DoclC.h"
#incJude "DoclCProps.h"

int
di enumstyle(doc. fstyleproc. pstyleproc. cdat)

-di doc doc;
di-fstyleproc *fstyleproc;
di-pstyleproc *pstyleproc;
void *cdat; 1* NULL */

CALLBACK PROCEDURE

dp bool
di fstyleproc(cdat. props)

-void *cdat;
dp _fstyleprops *props;

dp boor
di -pstyleproc(cdat. props)

-void *cdat;
dp _pstyleprops *props;

DESCRIPTION

DOCUMENT IC LIBRARY

The di enumstyle() function is used to enumerate all the font and paragraph style properties of a
document, such as mode, fill-in order,and text-link.

The doc argument is a document handle that was returned by an earlier call to di_ openO or di_startapO.

The fstyleproc and pstyleproc arguments are pointers to di fstyleproc and di pstyleproc, respectively.
These call-back procedures are invoked once for each objectln the style. They are invoked at the onset of
di enumstyleO's execution, and, if either call-back procedure returns TRUE, the document enumeration
process is aborted. If FALSE is returned, the process continues until completed.

The cdat argument is user-defined data that is passed to fstyleproc and pstyleproc.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-35

DOCUMENT IC LIBRARY

ERRORS

di _ enumstyleO will fail if one or more of the following is true:

Doc BadParm One of the specified arguments is invalid.

Doc_Illegal Handle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di_ apfstyleO, di_ appstyleO

1-36 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

di_enumtxtlnk

NAME

di_enumtxtlnk - enumerate text link

SYNOPSIS

#include "DoclC.h"

int
di enumtxtlnk{doc, proc, cdat)

-di doc doc;
di-txtlnkproc *proc;
vola *cdat; /* NULL */

CALLBACK PROCEDURE

dp bool
di txtlnkproc{item, cd at)

-di textlink *item;
vola *cdat;

DESCRIPTION

The di enumtxtlnkO function is used to enumerate the link order of a text frame.

DOCUMENT IC LIBRARY

The doc argument is a document handle that was returned by an earlier call to di openO or di sta rta pO.
It contains the text link order and text frame in question. If the text-link order is notlncluded,
di_ txtlnkproc will not be called.

The proc argument is a pointer of the type di txtlnkproc. It contains a call-back procedure that is invoked
at the onset of di enumtxtlnkO's execution,and, if it returns TRUE, the enumeration process is aborted. If
FALSE is returned, the process continues until completed.

The cdat argument is user-defined data that is passed to proc.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

di_ enumtxtlnkO will fail if one or more of the following is true:

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

SEE ALSO

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

di_aptotxtlnkO, di_ cleartxtlnkO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-37

DOCUMENT IC LIBRARY

di_finish

NAME
di_finish - finalize the document

SYNOPSIS

#include "Docle.h"

int
di finish(doe. proe. edat. ret)

-di doc *doe;
di-ekabortproe *proe;
vola *edat;
ret fe *ret;

/* NULL */
/* NULL */
/* Returned */

CALLBACK PROCEDURE

dp bool
di ckabortproe(edat)

-void *edat;

DESCRIPTION

1-38

The di_finishO function is used to finalize the document and to release the document handle, doc.

The doc argument is the file handle that was returned by an earlier call to either di_startO or di_startapO.

The proe argument is a pointer of the type di ekabortproe. It is a user-defined call-back procedure which
can be used to abort the document generation process. It is invoked at the onset of di finishO's execution,
and, ifdi ekabortproe returns TRUE, the document generation process is aborted. If FALSE is returned, the
process cOntinues until completed.

The edat argument is user-defined data that is passed to di_ ekabortproe.

di_finishO returns ret_fe, a structure comprised of the following members:

dsktp doeref ref;
di festat stat;

The first member, dsktop doeref, is the reference handle of the newly created document. This handle
may be passed as an argument to dsktp movedoe() to place the document on the desktop or in a folder.
The second member, status, indicates the success or failure of the operation. status may one of the
following values:

Fe OK No errors were encountered.

Fe ABORT Was unable to complete the document.

Fe DSKSP. Fe VM. Fe UNKNOWN The document is finished but left unpaginated.

The resulting document file is temporary. To make the file permanent, call the dsktp movedoeO function.
It will place the document on the desktop or in a folder. The document that di finislil) provides will be in
paginated form if the appropriate pagination parameters were specified in the initial call di start() or
di_startap(). -

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

di_finishO will fail if one or more of the following is true:

Doc BadParm

Doc_Illegal Handle

Doc TimeOut

SEE ALSO

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-processcommunication has exceeded the maximum allowed time.

di_startO. di_startapO. dsktp movedocO

DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE 1-39

DOCUMENT IC LIBRARY

di_getfieldfromname

NAME

di_getfieldfromname - extract the properties of a named field

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"
#include "XString.h"

int
di getfieldfromname(doc, name, props)

-di doc doc;
XString name;
dp _fldprops *props;

DESCRIPTION

The di_getfieldfromnameO function is used to search for a named field and list the properties of that field,

The di doc argument contains a document handle that was returned by an earlier call to di openO,
di_startO or di_startap(). -

The name argument is a string that specifies the name of the field from which to extract properties.

The props argument is a pointer of the type dp fldprops. It specifies a list of the field properties to be
extracted from the named field. -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

1-40

di_getfieldfromnameO will fail if one or more ofthe following is true:

Doc BadParm

Doc_Illegal Handle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di_getfnprops

NAME

di_getfnprops - get footnote properties

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di getfnprops(doe, proes, edat)

-di doc doc;
di-fnpropsproe *proes;
void *edat; /* NULL */

CALLBACK PROCEDURE

int
di fnpropsproe(edat, nmprops, frprops, tfprops, foprops, pattern)

-void *edat;
dp fnnumprops *nmprops;
dp -frameprops *frprops;
dp -tframeprops *tfprops;
dp -fontprops *foprops;
di text pattern;

DESCRIPTION

The di_getfnpropsO function is used to obtain the footnote properties of the document.

The doc argument is a document handle that was returned by an earlier call to di openO or di_startapO.

The proes argument is a pointer of the type di fnpropsproe. It is a call-back procedure that is invoked
with all the footnote properties in the specified document. di fnpropsproe does not need to call di reltextO
to release the text handle. - -

The cd at argument is a pointer to user-defined data.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di_getfnpropsO will fail if one or more of the following is true:

Doc BadParm One ofthe specified arguments is invalid.

Doe_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-41

DOCUMENT Ie LIBRARY

SEE ALSO

di_setfnpropsO

1-42 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di_open

NAME

di_open - open a document

SYNOPSIS

#include "OoclC.h"
#include "Oesktop.h"

int
di open(ref. ret}

-dsktp doc ref ref;
ret_ ciPen *ret;

DESCRIPTION

/* Returned */

The di openO function is used to obtain the handle of a specific file. The returned file handle may then be
passed as an argument to di_ enumerateO, a function used to extract the contents of a file.

The ref argument is the handle of the document to be opened and is of the type dsktp docref. ref is the
document reference handle returned by an earlier call to dsktp getdocref(}, dsktp copydoc(} or
dsktp _ enumerateO. --

di_ openO returns ret_open, a structure that contains the following members:

di doc doc;
di_ opstat status;

doc is a document handle that may be passed to di enumerateO. status is a code whose value indicates
the success of the operation. The returned status cOde may be one oTthe following:

OP OK No errors were encountered.

OP MALFORM The Document is inconsistent internally.

OP INCOMP The version of the Document Editor used to open a document is different than
the version used to create it.

OP NOTLOCAL The document is not on the local workstation, so it cannot be opened.

OP OSKSP A vailable disk space is insufficient to open the document.

OP VM Available contiguous virtual memory is insufficient to open the document.

OP BUSY Another process is using the file (e.g. background pagination).

OP PASSWO The user has invalid or incorrect credentials for opening the document.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno(} is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-43

DOCUMENT IC LIBRARY

ERRORS

di_ openO will fail if one or more of the following is true:

Doc BadParm

Doc_lIlegalHandle

Doc TimeOut

SEE ALSO

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

di_ enumerateO, di_ closeO

1-44 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

NAME

di_relcap, di_relfield, di_relfoot, di_relhead, di_relnum, di_relindex, di_reltext - release storage

SYNOPSIS

#include "DoclC.h"

int
di relcap(cap)

-di_ caption *cap;

int
di relfield(field)

-di field *field;

int
di relfoot(foot)

-di_footing *foot;

int
di relhead(head)

-di_ heading *head;

int
di relnum(num)
di_ numbering *num;

int
di relindex(index)

-di index *index;

int
di reltext(text)

-di text *text;

DESCRIPTION

These functions are used to terminate handles, thus releasing the resources assigned to the respective
handle. The user must call di relcap(),di relfield(),di relfoot(),di relheadO,di relnumO,di relindex(),
or di reltext() to release the resources associated with a non-NULL handle obtained from any di ap*O
function. -

Mter calling di rel*(), the respective handle will be invalid. To help prevent the use of an invalid handle,
each di_rel*() routine removes the pointer to the respective handle and then sets the handle itself to NULL.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-45

DOCUMENT IC LIBRARY

ERRORS

di_rel*() will fail if one or more of the following is true:

1-46

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di_setfnprops

NAME

di_setfnprops - set footnote properties

SYNOPSIS

#include "Docle.h"
#include "Docleprops.h"

int
di setfnprops(doc, nuprops, frprops, tfprops, foprops, ret)

-di doc doc;
dp- fnnumprops *nuprops;
dp -frameprops *frprops;
dp -tframeprops *tfprops;
dp -fontprops *foprops;
di text *ret;

DESCRIPTION

/* NULL */
/* NULL */
/* NULL */
/* NULL */
/* Retu rned * /

The di_ setfnpropsO function is used to set the footnote properties of a document.

The doc argument is a document handle that was returned by an earlier call to either di start() or
di_sta rta pO. -

The nuprops argument is a pointer of the type dp fnnumprops. It is a structure containing data used to
control the numbering of footnotes across documents during pagination of a book or a shared book.

The frprops argument is a pointer of the type dp frameprops. It is a structure containing data that
specifies the values of footnote frame properties, such as border thickness, number of columns to span, and
margin control.

The tfprops argument is a pointer of the type dp tframeprops. It is a structure that specifies the text
frame properties, such as orientation and name.

The foprops argument is a pointer of the type dp fontprops. It is a structure that specifies the font
properties to be used in the footnotes, such as font type, placement, and offset.

This function returns di text, a handle that may be passed to other di ap*O functions. The di text handle
must be released via di_reltextO. --

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-47

DOCUMENT IC LIBRARY

ERRORS

di _ setfnpropsO will fail if one or more of the following is true:

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

SEE ALSO

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

di_getfnpropsO, di_reltextO

1-48 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

di_setmode, di_getmode

NAME

di_setmode, di_getmode, - set or get the mode of properties for the document

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di getmode(doc, props)

-di doc doc;
dp _ mode props *props;

int
di setmode(doc, props, select)

-di doc doc;
dp modeprops *props;
dp = modesel select;

DESCRIPTION

These two functions are used, either, to get or to set the mode properties of a document. Mode properties
are Boolean variables that, when set to TRUE, display the structure, non-printing characters, cover sheet,
and prompt fields in a document. These functions may be called at any time during the document
generation process.

The di doc argument is the document handle that was returned by an earlier call to di start{) or
di_startap(). -

dp modeprops is an argument that points to a structure containing four Boolean fields that indicates the
diffe"rent display characteristics of the document in question.

The dp modesel argument is an array that is used to specify those display characteristics to be affected.
When setting mode properties, only those properties designated by TRUE selections will be changed.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

di_setmodeO and di_getmode() will fail ifone or more of the following is true:

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE '1-49

DOCUMENT IC LIBRARY

di_setpara

NAME

di_setpara - set current paragraph properties

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di setpara(to, prprops)

- di tcont "'to;
dp _paraprops *prprops;

DESCRIPTION

The di setpara(} function is used to modify the paragraph properties of paragraphs in a specific text
container. This function may be called at any time. If it is called repeatedly in the same paragraph, only
the most recent call will remain in effect.

The di tcont argument is the handle to the text container whose paragraph properties are to be modified.
The text container may be any di_ tcont or document. Refer to di _ apaframe(} for a description of di_ tcont.

The di para props argument points to a structure containing the set of paragraph properties to be
modified.

di setpara(} affects the entire current paragraph, including portions not yet appended at the time
di-setpara(} is called. The property changes are also applied to all subsequent paragraphs unless the user
overrides the properties with new ones passed to di_ apnewparaO, or by another call to di_setparaO.

Setting text container paragraph properties will result in an error if the text container in question does
not contain at least one paragraph character. Although paragraph characters are added (as necessary)
duringcallstodi ap*(},callingdi setpara(} before calling any di ap*() function will result in an error. To
avoid this situatIon, the user maysimply call di apnewpara() to ensure that the di tcont does have a
paragraph character. di ap*(} functions will adeTa new paragraph character only iftnere is none already
present, thus avoiding any duplication.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno(} is used to get the
reason for the failure.

ERRORS

1-50

di_setpara() will fail if one or more of the following is true:

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

SEE ALSO

di_apnewpara()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

1-51

DOCUMENT IC LIBRARY

di start

NAME
di_start - begin creation of a new document

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di start(pagiops, whead, wfoot, wnum, ifoprops, iprprops. ipgprops, styledat, ret)

-di pagiops pagiops; /* PO COMPRESS */
dp bool whead; /* FALSE */
dp -boo I wfoot; /* FALSE */
dp -bool wnum; /* FALSE */
dp -fontprops *ifoprops; /* NULL */
dp - paraprops *iprprops; /* NULL */
dp - pageprops *ipgprops; /* NULL */
di styledata *styledat; /* NULL */
ret sc *ret; /* Returned */

CALLBACK PROCEDURE

int
di styleproc(style,cdat, fstyleproc, pstyleproc)

-di style style;
vola *cdat;

int

di apfstyleproc *fstyleproc;
di appstyleproc *pstyleproc;

di apfstyleproc(style,styleprops)
-di style style;

dp fstyleprops *styleprops;

int
di appstyleproc(style,styleprops)

-di style style;
dp _pstyleprops *styleprops;

DESCRIPTION

1-52

The di startO function is called to initiate the document generation process. It is used to create an empty
document with specific format attributes, such as pagination and margin size. It then returns a file handle
that needs to be passed as an argument to related di ap*O functions. di finishO is called to terminate the
document generation process initiated by di_start(r. -

The pagiops argument specifies the type of pagination the finished document is to have. It may have one
of three possible values: PO_COMPRESS, PO_SIMPLE, and PO _NONE.

PO COMPRESS pagination provides all the outward signs of pagination, such as page format
properties, and leaves the structure of the document in an optimized form. An optimized document
occupies less disk and buffer space than an unoptimized document.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

PO_SIMPLE pagination provides the outward signs of pagination but does not leave the document in an
optimized form. Therefore, subsequent editing may be slower than it would be for documents
paginated with PO COMPRESS. The advantage of this option over PO COMPRESS is that this option
completes the pagiMtion process slightly faster than does PO_COMPRESS.

PO NONE skips the pagination process entirely, thus leaving the document in a raw form. Raw form
means that the document is neither paginated nor optimized. This may result in slow editing and
potential loss of data. This option is recommended for only very small documents. If the document is to
be more than a few pages in length, the user must specify a pagiops value other than PO _NONE to
avoid losing data.

The whead, wfoot and wnum arguments are Boolean values that,when set to TRUE, insert heading,
footing, and numbering properties into the first page format character (PFC) ofthe document.

The ifoprops. iprprops, and ipgprops arguments specify the initial font, paragraph, and page properties of
the document, respectively. If these arguments are left NULL, di start() will use a default set of properties.
Refer to dp _ *props for more information regarding properties""'ind their default values.

When specifying the field properties for the ipgprops argument, page margins must be set so that at least
one inch is left for text. An inch is the equivalent of 72 points. For example, (left margin + right
margin + 72 < = page width), and (top margin + bottom margin + 72 < = page height).

The styledat argument is a pointer of type di styledata. It is a structure used to call the call-back
procedure, di styleproc. The call-back procedure specifies the font and paragraph style properties of the
new documenlThe styled at argument applies only to the first new paragraph and page format characters
in the document. di_styledata contains the following members:

di styleproc *styleproc;
void *cdat;

If styledat is a non-NULL value, the user-defined call-back procedure will be called before a document
handle is returned.

Another way to add font and paragraph style properties is by calls to di apfstyleO and di appstyle(),
Their full names are AppendFontStyle and AppendParagraphStyle, respectively. Note that properties for
the first new paragraph character and the page format character can be set only by the styled at
argument, not by the di _ apfstyle() or the di _ appstyle() functions.

di_start() sets the return information into the structure ret_sc, which contains the following members:

di doc doc;
di-heading Ihead;
di-heading rhead;
di-footing Ifoot;
di-footing rfoot;
di-numbering num;
di-scstat stat;

The di doc handle returned represents the new document. The user should pass this handle to
di ap*O functions to add information to the document. The handle is later released by a call to
difinishO.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-53

DOCUMENT IC LIBRARY

If the user releases the handle without calling a di ap*O function, the resulting file will be a I-page
document containing a single new paragraph and page format character, with the initial font,
paragraph, and page props as specified in ifoprops, iprprops, and ipgprops, respectively.

di heading,di footing,anddi numbering are heading, footing and numbering handles, respectively.
They will be NUll unless the use; specified whead, wfoot or wnum = TRUE. If the headings, footings
or numbering are valid, the user should call various di ap*O routines to add text and formatting
information, and then later release each handle with a call to di_relheadO, di_relfootO or di_relnumO.

stat is a status code, which can have any ofthe following values:

SC OK

SC DSKSP

SC VM

No errors were encountered.

There is not enough disk space to perform the operation.

There is not enough contiguous virtual memory to create.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

di_startO will fail if one or more of the following is true:

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di finishO, di_ ap*{), di_relheadO, di_relfootO, di_relnumO

1-54 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

NAME

di_startap - start appending

SYNOPSIS

#include "DoclC.h"
#include "Desktop.h"

int
di startap(ref, pagiops, ret)

-dsktp docref ref;
di pagiops pagiops;
ret_startap *ret;

DESCRIPTION

/* PO COMPRESS * /
/* Returned * /

The di startapO function is called to acquire a file handle that may be used by other di ap*O procedures
to append data to the end of an existing document. -

The ref argument specifies the file that is to be opened. The pagiops argument specifies the type of
pagination the appended data is to have. See di startO for information regarding the construction of the
pagiops argument. -

ret_startap is returned and it contains the following members:

di doc doc;
di-scstat status;

doc is a file handle for the document that is to have data appended.

status indicates the success of the di_startapO call. It may have any of the following values:

SC OK

SC DSKSP

SC VM

SC BUSY

No errors were encountered.

There is not enough disk space to perform the operation.

There is not enough contiguous virtual memory to create.

Another process is accessing the file.

When appending is complete, di finishO must be called to release the doc handle. If the status returned is
not SC _ OK, then the doc handle will be NUll and di finishO should not be called.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-55

DOCUMENT IC LIBRARY

ERRORS

di _ startap() will fail if one or more of the following is true:

Doc BadParm One of the specified arguments is invalid.

Doc_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

1-56 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

di_starttext

NAME

di_starttext - begin appending text

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di starttext{doc, frame, props, ret)

-di doc doc;
di-ins frame;
dp tframeprops *props;
di text *ret;

DESCRIPTION

DOCUMENT IC LIBRARY

The di starttextO function is used to initiate the process of appending text to the body of an anchored text
frame.di starttextO readies an anchored text frame to accept new text, then returns an object handle
which may be passed to any other di ap*O operation. Once the data has been appended to the frame, the
user should call di_reltextO with thetext handle returned by di_starttextO.

The doc argument is the document handle returned by an earlier call to either di startO or di startapO.
The frame argument is the frame handle returned by an earlier call to di apaframeO. The props
argument describes the text frame properties. Refer to DocICProps for more information regarding text
frame properties.

It is not mandatory to call di starttextO after calling di apaframeO. Failure to call di starttextO will only
result in an empty text frame. The frame will be entirely empty except for the presence of one new
paragraph character that has default paragraph and font properties.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno{) is used to get the
reason for the failure.

ERRORS

di_starttextO will fail if one or more of the following is true:

Doc BadParm

Doc_,"egaIHandle

Doc TimeOut

SEE ALSO

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-57

DOCUMENT IC LIBRARY

di_textforaframe

NAME

di_textforaframe - retrieve text from an anchored frame

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"

int
di textforaframe{ cont. props. ret}

-di ins cont;
dp tframeprops *props;
di text *ret; /* Returned */

DESCRIPTION

The di textforaframe{) function is used to extract text from an anchored frame during enumeration. The
contents of the text handle returned by this function may be enumerated by supplying the text handle as
an argument to di_ enumerate{). After enumeration, call di_reltext{) to release the text handle.

The cont argument is an instance of an anchored frame. This instance is supplied as an argument to the
di_ aframeproc call-back procedure.

The props argument is a pointer of the type dp tframeprops. It is a structure that specifies a set of text
frame properties. Text frame properties, such as name and description, are used to identify the frame in
question. Since the text container passed from di aframeproc is not unique for each enumeration, the
instance handle alone cannot be used to identify theframe in question.

The frame to be enumerated cannot be in a document to which any object has been appended.This means
that the frame instance that is returned by a call to di aframeproc cannot be used be passed as the
container to di textforaframeO. To append an Object to the frame that is returned by
di_ enumerate{di aframeproc{)):

1) Enumerate the source text frame via a call to di textforaframeO.
2) Initialize the frame to which the text is to be appended via a call to di starttext{).
3) Enumerate the source text and append it to the target frame via a calTIo di textproc{call-back}.
4) Release the text handles returned via calls to di reltextO. -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno{) is used to get the
reason for the failure.

ERRORS

1-58

di_ textforaframe{) will fail if one or more of the following is true:

Doc BadParm

Doc_lllegalHandle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC LIBRARY

SEE ALSO

di enumerateO, di reltextO - -

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 1-59

DOCUMENT IC LIBRARY

1-60 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

2. Document Ie Property Library

dp_intro

NAME

dp_intro - introductory explanation of Document Ie properties

DESCRIPTION

This library contains functions and data types used to describe document-related properties. The
properties described below contain information that applies to all *IC interfaces.

Break Properties

The chief type in this section is dp breakprops. It describes the properties of the page break character.
dp _ breakprops contains the following member:

dp _ breaktype type;

dp _ breaktype may have one of the following values:

BR NPAGE
BR-NLPAGE
BR-NRPAGE
BR-NCOL

Field Properties

/* new page *1
/* new left page */
/* new right page */
/* new column */

The chief field property is dp fldprops. It describes the properties of a field character. dp fldprops
contains the following memberS:' -

dp lang lang;
uniTgned length;
dp bool req;
dp -skpchoice skpif;
dp -bool stpskp;
dp -fldchoice type;
xstring fillin;
XString dIsc;
XString format;
XString name;
XString range;
XStrlng skpiffld;
dp fantruns *fillinruns; -
lang is the value ofdp lang, an enumerated type used to specify the alphabet that will be used, based
upon nationality, to generate text in the date and amount fields.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-1

DOCUMENT IC PROPERTY LIBRARY

length specifies the maximum number oflogical characters the field may contain.

req specifies whether the user is required to fill in the field being generated. If req is TRUE, the user will
not be able to use NEXT or SKIP to advance to the next field until this field has been given a value.

skpif specifies the conditions under which the user may press either the NEXT or SKIP button to skip
the field. stpskp specifies the conditions under which the NEXT or SKIP buttons will be disabled. skpif
may have one of the following values:

SKP EMPTY
SKP-NOTEMPTY
SKP-NEVER
SKP-ALWAYS

/* skip if the field is empty */
/* skip if the field is not empty */
/* never */
/* always */

type is the value of dp fldchoice, an enumerated type that specifies the kind of data to be placed in the
field. It may have one O1'the following values:

FLO ANY
FLO-TEXT
FLO-AMOUNT
FLO-DATE

/* any */
/* text */
/* amount */
/* date */

FLO ANY indicates that the field may contain any characters, including frames (but not other
fields}. FLO TEXT indicates that the field may contain only letters, digits, and symbols entered
from the keYboard. FLO AMOUNT indicates that the field may contain only numbers, spaces, and
the following symbols: + _ * $, . O. FLO DATE specifies that entries in the field may contain only a
date. -

fillin defines the fill-in rule for this field.

Ifthe document is set to prompt for data to go in fields upon pressing the NEXT key, desc specifies the
message that is to be displayed as the prompt.

format controls the format in which information is presented. It is affected by the value of type. For a
type of FLO TEXT, this property defines a required pattern that must be matched. For a type of
FLO AMOUNT or FLO DATE, this field controls the form in which the contents of the field will be
presented, regardless ofhow the user enters it. For a type of FLO ANY, the format property will not be
used. -

name is the text name to be assigned to the field. If no name is provided, the field will automatically be
named Fieldn, as in Fieldl, Field2, and so on.

range defines a specific range of acceptable entries. For example, if A ctnl C is specified, where ctnl is
the control character, the D field may not be set and is skipped. Refer to the Document Editor: Basics
User Guide for more information on range.

skpiffld contains the name of the field that will appear in the Field Properties sheet, Skip iffield.

fillinruns is an auxiliary data structure that the user may attach to the XString that describes the fill
in rule for the field. A font run describes the subsequence of characters within an XString that share
the same font attributes.

Font Runs

2-2

fillinruns is a pointer to dp fontruns, a structure that permits the user to associate font properties with
text. XString provides no faCilities for associating font properties with text, therefore OoclCProps has been
designed to permit the user to create various font information structures that point into XString

DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

structures. It is also possible to enumerate the font runs in a given XString body of text by a call to
dp enumfrun, but doing so requires that you know where the font runs are located or declare them
yourself.

The data structures described here are used to mark font runs. A font run is defined as consecutive text
characters sharing the same font. The members of dp fontruns describe an array of font runs and an
integer value that specifies the length of the array. dp .3ontruns contains the following members:

unsigned short length;
dp _run *runs;

dp fontruns points to dp run, which is a structure containing an array of runs. dp run is called to
specify the beginning of a font run. dp _run contains the following members: -

dp fontprops props;
unSIgned index;

props is the field describing the font used in the font run. index is the offset, specified in bytes, of
the desired text within an array. A run is specified as the byte offset from the beginning of the byte
array, as defined by index, to the byte after the byte run. For example:

XString = "ABCDEFGH"

fontprops of ABC is fontI

fontprops of DE is font2

fontprops ofFGH is font3

thus:

length will be 3

runs[O].props will be fontI

runs[O].index will be 6

runs[I].props will be font2

runs[I].index will be 10

runs[2].props will be font3

runs[2].index will be 16

Footnote Numbering Properties

(2 * 8 = 16 bytes)

-- 3 characters (from 1 to 6)

-- 2 characters (from 7 to 10)

-- 3 characters (from 11 to 16)

The chief type in this section is the dp fnnumprops, which describes the properties that affect numbering
within a footnote. dp _fnnumprops cOntains the following members:

dp numctrl numctrl;
dp -bool resteachpage;
dp -boo I deferframes;
dp -bool rulingline;
dp -bool split;
dp - rulelen rulelen;
dp -indexrep indexrep;
dp -lang letters;
dp -replesent digits;
unSIgned int otherrule ;
XString continuation;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-3

DOCUMENT IC PROPERTY LIBRARY

2-4

XString continued;

numctrl is the value of dp numctrl, an enumerated type that controls footnote numbering across
documents during pagination of a book or shared book. dp numctrl may have one of the following
values: -

/* resta rt * /
/* conti nue * /

resteachpage is a Boolean value that determines whether the numbering of footnotes is to be set back
to 1 for each new page or if footnote numbering is to continue in numeric sequence for all the pages in
the document.

deferframes specifies whether the the body of text accompanying each footnote is to be placed on the
same page as the corresponding footnote, or deferred so that all the footnote text bodies are placed at
the end of the document.

rulingline specifies whether a ruling line is to be created.

split specifies whether split footnotes are to be created.

rulelen specifies the length of the ruling line. This option is enabled when the value of of rulingline is
set to TRUE.

indexrep specifies the type of reference symbol to be used. It contains the following members and may
have the corresponding values:

IR INTEGER
IR-UPLETTER
IR-LOWLETTER
IR-OAGGERS

/* integer */
/* upper case letter */
/* lower case letter */
/* daggers * /

letters specifies the alphabet to be used, based upon nationality. It may have one of the following
values:

LANG USE
LANG-UKE
LANG-FRN
LANG-GMN
LANG-SWO
LANG-ITA
LANG-OUT
LANG-DAN
LANG-NOft
LANG-FIN
LANG-SPN
LANG-POR
LANG-JPN
LANG-FReAN
LANG-ENCAN

/* USEnglish */
/* UKEnglish */
/* French */
/* German */
/* Swedish */
/* Italian */
/* Dutch */
/* Danish */
/* Norwegian */
/* Finnish */
/* Spanish */
/* Portuguese */
/* Japanese */
/* FrenchCanadian */
/* EnglishCanadian */

digits specifies the manner in which numbers are displayed, based upon the respective numbering
system. It may have the following value:

RP ASCII /* ASCII */

DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

Font Properties

dp fontprops is the chief type with respect to fonts. dp _fontprops contains the following members:

dp fontdesc fontdesc;
unSIgned udlines;
dp bool stkout;
dp -place place;
dp -bool tobedel;
dp -bool revised;
dp -width width;
XSmng stylename;
dp fontelmarr ntrelm;
dp -bool tranpare;
dp -color txtcol;
dp :color hlcol;

The section titled dp-Iontdesc describes the fontdesc field; the section titled dp---props describes the
other fields in a dp _fontprops.

dp_fontdesc

dp _ fontdesc contains the following members:

dp family family;
dp - dvariant dvariant;
dp - weight weight;
unSIgned short size;

family specifies the font that is to be used. It may have one ofthe following values:

FMY CENT
FMY-FRUT
FMY-TITAN
FMY-PICA
FMY-TROJAN
FMY-VINTAGE
FMY-ELITE
FMY-LETIER
FMY-MASTER
FMY-CUBIC
FMY-ROMAN
FMY-SCIENT
FMY-GOTHIC
FMY-BOLD
FMY-OCRB
FMY-SPOKES
FMY-XEROX
FMY-CENTIHIN
FMY-SCIENTIHIN
FMY-HELV
FMY-HELVCOND
FMY-OPTIMA
FMY-TIMES
FMY-BASK
FMY-SPARTAN
FMY-BODONI

/* century (also, classic)*/
/* frutiger (also, modern) */
/* titan */
/* pica */
/* trojan */
/* vintage */
/* elite */
/* letter gothic */
/* master */
/* cubic */
/* roman */
/* scientific */
/* gothic */
/* bold */
/*ocrB*/
/* spokesman * /
/* xerox logo */
1* century thin */
/* scientific thin */
/* helvetica */
/* helvetica condensed */
/* optima */
/* times */
/* baskerville */
/* spartan */
/* bodoni */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-5

DOCUMENT IC PROPERTY LIBRARY

2-6

FMY PALATINO
FMY-CALEDONIA
FMY-MEMPHIS
FMY-EXCELSIOR
FMY-OLYMPIAN
FMY-UNIVERS
FMY-UNIVERSCOND
FMY-TREND
FMY-BOXPS
FMY-TERMINAL
FMY-OCRA
FMY-LOG01
FMY-LOG02
FMY-LOG03
FMY-GENEVA2
FMY-TIMES2
FMY-SQUARE3
FMY-COURIER
FMY-FUTURA
FMY-PRESTIGE
FMY-ALLGOTHIC
FMY-SCHBOOK

/* palatino */
/* caledonia */
/* memphis */
/* excelsior */
/* olympian */
/* univers */
/* univers condensed */
/* trend */
/* boxPS */
/* terminal */
/* oerA */
/* log01 */
/* log02 */
/* log03 */
/* geneva2 */
/* times2 */
/* square3 */
/* courier */
/* futura */
/* prestige */
/* alLetterGothic */
/* centu ry school book * /

dvariant specifies the manner in which numeric characters are displayed, such as roman or italic.
It may have one of the following values:

DV ROMAN
DV-I TALI C

/* roman */
/* italic */

weight specifies the intensity at which characters are displayed. It may have one of the following
values:

WT MEDIUM
WT-BOLD

/* medium */
/* bold */

size is the size ofthe font. This value may be anywhere within the range of 0 to 1023, inclusive.

Other fields in dp _fontprops

udlines specifies the number of times that the character is to be underlined. Acceptable values range
between 0 to 2, inclusive.

stkout specifies whether or not the character is to be struck horizontally through the middle.

place specifies the position of the character relative to the line. It may have one of the following
values:

PL NULL
PL-SUB
PL-SUBSUB
PL-SUBSUP
PL-SUP
PL-SUPSUB
PL-SUPSUP

/* null */
/* subscript */
/* sub subscript */
/* sub superscript */
/* superscript */
/* super subscript */
/* super superscript */

tobedel indicates that text has been marked for deletion in the Redlining mode.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

revised indicates text that was typed while Redlining was enabled but was left unfinalized.

width specifies the spacing between characters in the Japanese character set. It may have one of the
following values:

WD PROP
WD-QUARTER
WD-THIRD
WD-HALF
WD-THREEQUART
WD-FULL

/* proportional */
/* quarter */
/* third */
/* half */
/* three quarter */
/* full */

Normal spacing is achieved by specifying WD _PROP.

stylename is a text string that specifies the name of the style sheet.

ntrelm specifies the neutral elements of a style property.

dp fontelmarr controls subtle aspects ofthe text appearance. dp _fontelmarr is an array of dp _ bool
and"may contain the following elements:

FE FAMILY
FE-DSGNVAR
FE-WEIGHT
FE-PSIZE
FE-UDLINES
FE-STKOUT
F PLACE
FE TOBEDEL
FE-REVISED
FE-WIDTH
FE-TXTCOL
FE-HLCOL

/* family */
/* design variant */
/* weight */
/* point size */
/* n underlines */
/* stri keout * /
/* placement */
1* to be deleted */
/* revised */
/* width */
/* text color */
/* highlight color */

An example of an array declaration is:

typedef dp _ bool dp _fontelmarr[FE _ HLCOL + 1);

The size of the preceding array is 12 ((FE_HLCOL = 11) + 1), where FE _FAMIL Y is the first
element and has a value ofO.

tranpare is a Boolean value that specifies whether the text will be displayed as a solid object or, if the
text is placed over another object, the object in the background will show through the text.

txtcol and hlcol specify the color attributes of a text string. txtcol indicates the color of text which isn't
highlighted. hlcol indicates the color of text which is highlighted. Any valid color may be specified.

Frame Properties

The chieftype in this section is dp frameprops. It specifies the properties to be attributed to an anchored
frame. dp _frameprops contains the following members:

dp borderstyle bdstyle;
unSIgned bdthick;
dp framedims frdims;
dp -bool fxw;
dpboolfxh;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-7

DOCUMENT IC PROPERTY LIBRARY

2-8

dp span span;
dp - valignment valign;
dp -halignment halign;
unSIgned short tmgn;
unsigned short bmgn;
unsigned short Imgn;
unsigned short rmgn;
dp pagenumber pnum;
dp -bool tranpare;
dp -color bdcol;
dp color bgcol;

bdstyle specifies the display characteristics of the lines comprising the frame border. It may have one
of the following values:

BDS INVISIBLE
BDS-SOLID
BDS-DASHED
BDS-BROKEN
BDS-DOTIED
BDS-DOUBLE

1* invisible *1
1* solid *1
1* dashed *1
1* broken *1
1* dotted *1
1* double *1

bdthick specifies the thickness of the frame border. This value is specified as an integer in units of
points. A point is 1172 inch.

bdthick is affected by the value of bdstyle. If bdstyle is set to BDS DOUBLE, then bdthick may range
from between 3 to 18, inclusive, in multiples of 3 points. The remaining values of bdstyles may have a
bdthick value ranging from 1 to 6 points, inclusive.

frdims specifies the height and width of the frame. These dimensions are also in units of points, where
one point is equivalent to 1/72 inch. dp _framedims contains the following members:

unsigned w;
unsigned h;

w is the width of the frame along the x axis. y is the height of the frame along the y axis.

fxw and fxh are Boolean values that, when set to TRUE, indicate whether the frame will expand when
necessary and the direction of expansion. fxw permits expansion in a horizontal direction along the x
axis. fxh permits expansion in a vertical direction along the yaxis.

span specifies the amount of space the frame may occupy with respect to the page. dp span may have
one ofthe following values: -

SP FULCOLUMN
SP-FULPAGE

1* full column */
/* full page */

valign and halign are the values ofdp valignment and dp halignment, respectively. They are used to
control the alignment of the frame relative to the top and bottom edges of the page.

dp _ valignment may have one of the following values:

VA TOP
VA-BOTIOM
VA-FLOATING

/*top*/
/* bottom */
/* floating */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

dp _ halignment can have any of the following values:

HA LEFT
HA -CENTERED
HA-RIGHT

/* left */
/* centered */
/*right*1

DOCUMENT IC PROPERTY LIBRARY

tmgn, bmgn, Imgn, and rmgn are the margins of the frame, expressed as points. One point is the
equivalent of 1172 inch.

pnum indicates the page number where the corresponding anchored frame resides. dp _pagenumber
contains the following members:

unsigned relpn;
unsigned dispn;

relpn is the page number ofthe document, relative to the first page which resides at the start of the
document. dispn is the property of the page format character which controls the display of page
numbers.

Index Properties

The chief type in this section is dp indexprops. It describes the properties of the Index option.
dp _indexprops contains the following members:

dp indexhdl sphdl;
dp -boo I useclass;
dp -bool usealter;
XSmng class;
XString alter;

sphdl is the value of dp indexhdl, an enumerated type that specifies the special handling that the
index is to receive. This has the same effect as the Special Handling field in the Index Object Property
Sheet. sphdl may have one of the following values:

lOX UNIT
lOX-IGNORE
lOX-CLASSIFY

/* index as a unit */
/* ignore */
/* classify alike */

useclass is a Boolean value that indicates whether or not a classification is to be used. This has the
same effect as the Use Classification field in the Index Object Property Sheet. A value of TRUE
indicates that a classification is desired.

usealter is a Boolean value that specifies whether or not an alternate is to be used. This has the same
effect as the Use Alternate Term field in the Index Object Property Sheet.

Page Properties

The chief type in this section is dp pageprops, a structure that describes the various properties to be
associated with a VP document page~dp _pageprops contains the following members:

1* layout properties */
dp pagedims dims;
unSIgned short tmgn;
unsigned short bmgn;
unsigned short Imgn;
unsigned short rmgn;
dp _pagesidestpagside;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-9

DOCUMENT IC PROPERTY LIBRARY

2-10

unsigned bindwidth;
1* column structure properties *1

unsigned ncol;
dp boo I bleol;
dp --boo I uneqcol;
unSIgned short colsp;
dp colwidths *colwidths;
dp -coldirct coldirct;

1* headTrig & footing properties *1
dp hdfttype hdfttype;
dp -boo I hdthispage;
dp -boo I hdsamepage;
dp -bool ftthispage;
dp -bool ftsamepage;
dp -horpos hdpos;
dp -horpos ftpos;

1* page numbering properties *1
dp pntype pagnumtype;
dp - verpos vnum;
dp -horpos hnum;
unSIgned stpagnum;

dims is the value ofdp pagedims, a structure that specifies the width and height ofa document page
in units of 1/72 inch. dp _pagedi ms contains the following members:

unsigned short w;
unsigned short h;

tmgn, bmgn, Imgn, and rmgn are integers that specify the page margins in units of 1172 inch.

stpagside is the value of dp pageside, an enumerated type that specifies whether or not the first, or
starting, page of the document should be on the left-hand side or the right-hand side. dp pageside
may have one of the following values: -

PS NIL
PS-LEFT
PS-RIGHT

l*nil*1
1* left */
1* right *

PS _NIL indicates that there is no difference between the left- and right-hand sides of a document.

bindwidth is the additional amount of space to remain on the left edge of the completed document to
account for the space necessary during book binding.

ncol, bleol, uneqcol, and colsp determine column structure. ncol is an integer that specifies the
number of columns per page. A maximum of 50 columns may be specified. bleol is a Boolean value that
specifies whether the length ofthe column will be equal to the length of the page. uneqcol is a Boolean
value that specifies whether the columns may have varying widths. colsp is the amount of space
between columns, specified in units of 1172 inch.

colwidths is a pointer to dp colwidths, a structure that specifies the width of each column in a
document. It contains the follOWing members:

unsigned length;
dp _ colwidth *widths;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

length is an integer that specifies the number of columns. widths is a pointer to dp colwidth, an
integer that specifies the width of each column. The value of widths is specified iii"" units of 1172
inch. dp _ colwidth contains the following member:

unsigned short w;

coldirct is the value of dp coldirct, an enumerated type that specifies the direction of each column. It
may have one of the following values:

1* left to right */
1* right to left *1

hdfttype is the value of dp hdfttype, an enumerated type that specifies how headings and footings in
the PFC are to be propagated across pages. It may have one of the following values:

HFT NONE
HFT-CONT
HFT-RESET

1* none *1
1* continue *1
1* reset */

The preceding are the same as those shown for Page Numbering in the Page Format Property
Sheet and they accept the same values.

hdthispage is a Boolean value that determines whether the header is to be displayed on the current
page or on the succeeding page. Page headers are enabled when a numbering pattern has been toggled
in the PFC so that it is active and it's set to appear in the top margin. When the numbering pattern is
active but set to appear on the bottom margin, hdthispage will have no effect.

ftthispage acts like hdthispage with respect to footers. See the previous paragraph.

hdsamepage is a Boolean value that determines whether the headers used on both the left and right
pages will be identical.

ftsamepage acts like hdsamepage with respect to footers. See the previous paragraph.

hdpos and ftposcontrol the horizontal positioning of headers and footers, respectively. They may have
one ofthe following values:

HP lEFT
HP-RIGHT
HP-CENTERED
HP-OUTER

1* left *1
1* right *1
1* centered *1
1* outer of page *1

pagnumtype is the value of dp pntype, an enumerated type that specifies the the type of
PageNumbering to be used. It may have one of the following values:

PNT NONE
PNT-CONTNUM
PNT-CONTNUMANDPAT
PNT-RESTART

1* none *1
1* continue only page number *1
1* continue number and pattern *1
1* restart *1

vnum and hnum are the values of dp verpos and dp horpos, respectively. They control the vertical
and horizontal positioning of PageNumbering in the document. vnum may have one of the following
values:

VP TOP
VP-BOnOM

1* top edge *1
1* bottom edge *1

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-11

DOCUMENT IC PROPERlY LIBRARY

hnum may have one ofthe following values:

HP LEFT
HP-RIGHT
HP-CENTEREO
HP-OUTER

1* left edge*1
1* right edge*1
1* center ofpage*1
1* left edge on left pages and right edge on right pages*1

stpagnum is an integer value that specifies the page number to be assigned the starting page. All
succeeding pages will incremented accordingly.

Informat, and Inloc are currently not implemented.

Paragraph Properties

2-12

The chief type in this section is dp paraprops. It is a structure that specifies the properties of paragraphs
in the document It contains the following members:

dp basprops basprops;
dp -tabstops tabstops;
XStnng stylename;
dp _paraelmarr ntrelm;

basprops is the value of dp basprops, a structure that specifies the standard properties associated
with every paragraph, such as justification, indentation, and language. These are the same properties
that appear on the Paragraph property sheet. Refer to the section titled dp *intro for more
information on dp _ basprops. -

tabstops is the value of dp tabstops, a structure that specifies the tab stops associated with
paragraphs. These are the same properties that appear on the Tab Settings property sheet. Refer to
sections titled Basic Property Records and Tabs for more information on dp _ tabstops.

stylename is a text string that specifies the style name of paragraph property.

ntrelm is the value ofdp paraelmarr, an array ofdp bool that describes basic, or default, paragraph
style properties. It is declared as follows: -

typedef dp _ bool dp _paraelmarr[PE _ TABSTOPS + 1];

Individual elements may be assigned the following values:

PE PRELEAO
PE-POSLEAO
PE-LiNOENT
PE-RINOENT
PE-LNH
PE-PARALIGN
PE-JUST
PE-HVPH
PE-KPNEXT
PE-LANG
PE-STRSUC
PE-OEFTABLEAO
PE-OEFT ABJUST
PE-OEFT ABOFFSET
PE-OEFT ABALIGN
PE-TABSTOPS

1* pre leading *1
/* post leading */
/* left indent */
/* right indent */
/* line height */
/* para alignment */
/* justified */
/* hyphenated * /
/* keep with next para */
/* language */
/* streak succession */
/* default tab stop dot leader */
/* default tab stop justified */
/* default tab stop offset */
/* default tab stop alignment */
/* tab stops*/

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Basic Property Records

dp _ bas props contains the following members:

unsigned short prelead;
unsigned short poslead;
unsigned short lindent;
unsigned short rindent;
unsigned short Inh;
dp paralign paralign;
dp -bool just;
dp -boo I hyph;
dp -bool kpnext;
dp -lang lang;
dp - strsuc strsuc;
dp - deftabsp deftabsp;
dp tabalign deftabal;

DOCUMENT IC PROPERTY LIBRARY

prelead and postlead are integers that specify the amount of space that is to precede and follow
the paragraph, respectively. These values are specified in units of points, where 1 point is the
equivalent to 1172 inch.

lindent and rindent are integers that specify the amount of space that is to comprise the margins
on the left and right sides of the paragraph, respectively. These values are specified in units of
points, where 1 point is the equivalent to 1172 inch.

Inh is an integer that specifies the height of lines comprising a paragraph. These values are
specified in units of points, where 1 point is the equivalent to 1172 inch.

paralign is the value ofdp paralign, an enumerated type that specifies how the paragraph is to be
aligned relative to the containing text column or text block. It may have one of the following
values:

PA LEFT
PA-CENTER
PA-RIGHT

/* left */
/* center */
/* right */

just is a Boolean value that specifies whether the lines of text in paragraphs will be stretched to
make the left and right edges consistently even. That is, the line will be justified. A value of FALSE
will result in a ragged right edge.

hyph is a Boolean value that specifies whether words on the right side of a line that are too long to
fit entirely on the one line should be hyphenated to facilitate justification. If justification is not
enabled, this property will be ignored.

kpnext is a Boolean value that specifies whether, during pagination, the current paragraph is to
be kept on the same page as the following paragraph.

lang is the value of dp lang, an enumerated type that specifies the type of text characters that
will be used in the paragraphs. The specified language is used in formatting decimal tabs,
hyphenation, spell checking, and so. It may have one of the following values:

LANG USE
LANG-UKE
LANG-FRN
LANG-GMN
LANG-SWD

/* USEnglish */
/* UKEnglish */
/* French */
/* German */
/* Swedish */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-13

DOCUMENT IC PROPERTY LIBRARY

2-14

Tabs

LANG ITA
LANG-OUT
LANG-DAN
LANG-NOR
LANG-FIN
LANG-SPN
LANG-POR
LANG-JPN
LANG-FRCAN
LANG-ENCAN

/* Italian */
/* Dutch */
/* Danish */
/* Norwegian */
/* Finnish */
/* Spanish */
/* Portuguese */
/* Japanese */
/* FrenchCanadian */
/* EnglishCanadian */

strsuc is the value of of the type dp strsuc, an enumerated type that specifies whether text
characters should be generated within paragraphs from left to right (e.g. English) or right to left
(e.g. Hebrew). dp _strsuc may have one of the following values:

/* leftto right */
/* right to left */

deftabsp is the value of of the type dp deftabsp, an unsigned number that specifies the default
number of spaces between tab stops. Thevalue is specified in units of points, where there 1 point is
equal to 1172 of an inch.

deftabal is the value of of the type dp tabalign, an enumerated type that specifies the manner in
which tabs are aligned relative to the left paragraph margin, the center of the paragraph, the right
paragraph margin, or points. A point is the equivalent of 1172 of an inch. dp tabalign may have
one of the following values: -

TSA LEFT
TSA-CENTER
TSA-RIGHT
TSA -DECIMAL

/* left */
/* center */
/* right */
/* decimal */

dp tabstop is an array of structures whose members specify the tab settings of the current paragraph.
It contains the following members:

dp bool dotld;
dp -bool eqsp;
dp -taboffset offset;
dp tabalign align;

dotld is a Boolean value that specifies whether the tab will have leader dots.

eqsp is a Boolean value that specifies whether tabs will be equally spaced.

offset is the value of of the type dp taboffset, an unsigned number that specifies the location of
each tab stop, relative to the margin-:-

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

align is the value of the type dp tabalign, an enumerated type that specifies the manner in which
tabs are aligned relative to theleft paragraph margin, the center of the paragraph, the right
paragraph margin, or points. A point is the equivalent of 1172 of an inch. dp tabalign may have
one of the following values: -

TSA LEFT
TSA-CENTER
TSA-RIGHT
TSA -DECIMAL

/* left */
/* center */
/* right */
/* decimal */

An array of tabs tops used to create or modify an object in a document must be sorted by increasing
order of offsets. An offset that is equal to the previous one is ignored. During enumeration,
tabstop arrays passed to the user will always be sorted in this manner. The maximum number of
tabstops that may be set in a paragraph is 100.

Document Mode Properties

Mode properties affect the auxiliary menus of a VP document. The key mode property is dp modeprops. It
contains the following members: -

dp boo I strct;
dp -bool nonprint;
dp -boo I cover;
dp :bool prompt;

strct, nonprint, cover, and prompt are Boolean values that specify the manner in which the document
will be displayed. If set to TRUE, the document will display structure and non-printing characters, the
cover sheet, and prompt fields, respectively.

dp modesel specifies the dp modeelm of a document to be manipulated. dp modesel is an array of
dp -bool and is declared as follOws: -

typedef dp _ bool dp _ modesel[ME _PROMPT + 1];

dp _ modeelm is an enumerated type that may have one of the following values:

ME STRCT
ME-NONPRINT
ME-COVE
ME-PROMPT

Font Style Properties

/* structure showing */
/* non printing showing */
/* cover sheet showi ng * /
/* prompt fields */

The chief type in this section is dp fstyleprops, a structure that specifies font style properties.
dp _fstyleprops contains the following members:

dp fontprops props;
XSmngdesc;
unsigned short softpos;
unsigned short stylepos;

props and desc are the properties of the font style.

softpos is the position of the SoftKey used to invoke the sty Ie sheet. stylepos is the position at which
the style sheet propertysheet is to appear on the Style Softkey Assignment Sheet. Please refer to the
figure on the following page for more information on Style Sheet and Style SoftKey.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-15

DOCUMENT IC PROPERlY LIBRARY

Paragraph Style Properties

2-16

The chief type in this section is dp pstyleprops, a structure whose members specify the paragraph style
properties. dp _pstyleprops contains the following members:

dp paraprops props;
XString desc;
unsigned short softpos;
unsigned short stylepos;

props and desc are the properties of the paragraph style.

softpos is the position of the Soft Key used to invoke the Style Sheet. stylepos is the position of the
propertysheet of stylesheet. Please refer to the figure on the following page for more information on
Style Sheet and Style SoftKey.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

RULE TYPE RULE NAME DESCRIPTION

CHARACTER Font 3 Description of Font 3

Font 2 Description of Font 2

Font 1 Description of Font 1

Font 0 Description of Font 0

P,u.RAGP,APH Para I) Description of Para I)

Para 2 Description of Para 2

Para 1 Description of Para 1

Style Sheet position from up to down corresponds to 0,1,2, ..
For example. Both the stylepos of Font 3 and Para 0 are O.
Both the stylepos of Font 1 and Para 1 are 2.

Style SoftKey position from left to right oflst row corresponds to 1, 2 ... 6, 7.
2nd row corresponds to 8, 9 ... 13, 14. 3rd row ...
For example. softpos of Font 1 is 9. softpoofFont 2 is 17. softpos of Para 0 is 33.

Position of Style Sheet and Style SoftKey

TextFrame Properties

The chief type in this section is dp tframeprops, a structure whose members specify the text frame
properties. dp _ tframeprops contains the following members:

XString name;
unsigned innermargin;
dp orient orientation;
dp-boollastlinejust;
dp :bool autohyphen;

DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE 2-17

DOCUMENT IC PROPERTY LIBRARY

name is a text string that specifies the name of the text frame. innermargin is an unsigned number
that specifies the amount of space to be allocated for the inner margin of all four edges of the frame.
innermargin is specified in units of micas.

orientation is the value of dp_orient, an enumerated type that specifies the manner in which text is
placed in the frame. Text may flow either horizontally (e.g., English) or vertically (e.g., Japanese).
dp _ orient can have any ofthe following values:

/* horizontal */
/* vertical */

Only Japanese text may flow vertically.

lastlinejust is a Boolean value that, when set to TRUE, is used to specify whether the last line of text in
linked text frames is to be justified.

autohyphen is a Boolean value that, when set to TRUE, is used to specify whether the last line of text
in linked text frames is to be automatically hyphenated.

Color Properties

2-18

The chief type in this section is the dp _color, which describes the color properties. dp _color contains the
following members:

inty;
inte;
ints;

/* 0 < = y < = 1 0000 * /
/* -10000 < = e < = 10000 */
/* -10000 < = s < = 10000 */

The color is specified the combination ofy, e and 5, for example, black is specified as {O, 0, O} and white
is specified as {lOOOO, 0, O}. Refer to the Xerox Color Encoding Standard for more details.

dp _ colorname is the name of the well known color which may have one of the following values:

CL WHITE
CL-BLACK
CL-PINK
CL-REO
CL-LGREEN
CL-GREEN
CL-LBLUE
CL-BLUE
CL-YELLOW
CL-GOLO
CL-LORANGE
CL-ORANGE
CL-VIOLET
CL-PURPLE
CL-TAN
CL-BROWN
CL-LGRAY
CL-MGRAY
CL-OGRAY
CL -PGYELLOW
CL -LBYELLOW
CL-MYELLOW
CL-SYELLOW
CL-PVELLOW

/* white */
/* black */
/* pink */
/* red *
/* light green */
/* green */
/* light blue */
/* blue */
/* yellow */
/* gold */
/* light orange */
/* orange */
/* violet */
/* purple */
/* tan */
/* brown */
/* light gray */
/* medium gray */
/* dark gray */
/* pale green yellow */
1* light brilliant yellow */
/* moderate yellow */
/* strong yellow */
/* pale yellow */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

CL BYELLOW
CL -MOYELLOW
CL -SOYELLOW
CL -LOYELLOW
CL -OOYELLOW
CL -LGYELLOW
CL-GYELLOW
CL -POYELLOW
CL-SORANGE
CL-MORANGE
CL -SRORANGE
CL -MRORANGE
CL -ORORANGE
CL_VSREO
CL_BREO
CL-MREO
CL-OAPREO
CL-SREO
CL-MPREO
CL-SPREO
CL-OREO
CL_OEPREO
CL_VPREO
CL_LYELLOW
CL-MYPINK
CL_PPPINK
CL-OAPPINK
CL-LPPINK
CL-OEPPINK
CL-MPPINK
CL-GPPINK
CL-PPINK
CL -LRPURPLE
CL _VRPURPLE
CL-MRPURPLE
CL -SRPURPLE
CL-OVIOLET
CL-MVIOLET
CL-SVIOLET
CL-OAPBLUE
CL-VPPBLUE
CL-LPBLUE
CL-SBLUE
CL-OEBLUE
CL-OEPBLUE
CL-VLBLUE
CL-BBLUE
CL-OSBLUE
CL-OABLUE
CL-VPBLUE
CL-VBLUE
CL-OVBLUE
CL-MBLUE
CL_vLGBLUE
CL-BGBLUE
CL-SGBLUE
CL-VGBLUE

/* brilliant yellow */
/* moderate orange yellow */
/* strong orange yellow */
/* light orange yellow */
/* deep orange yellow */
/* light greenish yellow */
/* grayish ye,uow */
/* pale orange yellow */
/* strong orange */
/* moderate orange */
/* strong reddish orange */
/* moderate reddish orange */
/* dark reddish orange */
/* very strong red * /
/* brilliant red */
/* moderate red */
/* dark purplish red */
/* strong red * /
/* moderate purplish red */
/* strong purplish red */
/* dark red * /
/* deep purplish red */
/* vivid purplish red */
/* light yellow */
/* moderate yellow pink */
/* pale purplish pink */
/* dark purplish pink */
/* light purplish pink */
/* deep purplish pink */
/* moderate purplish pink */
/* grayish purplish pink */
/* pale pink */
/* light reddish purple */
/* vivid reddish purple */
/* moderate reddish purple */
/* strong reddish purple */
/* deep violet */
/* moderate violet */
/* strong violet */
/* dark purplish blue */
/* very pale purplish blue */
/* light purplish blue */
/* strong blue */
/* deep blue */
/* deep purplish blue */
/* very light blue */
/* brilliant blue */
/* deep strong blue */
/* dark blue */
/* very pale blue */
/* vivid blue */
/* deep vivid blue */
/* moderate blue */
/* very light greenish blue */
/* brilliant greenish blue */
/* strong greenish blue */
/* vivid greenish blue */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

2-19

DOCUMENT IC PROPERTY LIBRARY

2-20

CL OGBLUE
CL-VLGREEN
CL-MBGREEN
CL-SBGREEN
CL -OEBGREEN
CL -OABGREEN
CL -VPVGREEN
CL-MGREEN
CL-OGREEN
CL-BVGREEN
CL-VVGREEN
CL-SVGREEN
CL-OVGREEN
CL-VPGREEN
CL-PVGREEN
CL-MBROWN
CL-MRBROWN
CL-VWHITE
CL-VGRAV
CL-PWHITE
CL-BWHITE
CL-LBGRAV
CL-BGRAV
CL-OBGRAV
CL-BBLACK
CL-VLGRAV
CL-VOGRAV

/* deep greenish blue */
/* very light green */
/* moderate bluish green */
/* strong bluish green */
/* deep bluish green */
/* dark bluish green */
/* very pale yellow green */
/* moderate green */
/* deep green */
/* brilliant yellow green */
/* vivid yellow green */
/* strong yellow green */
/* deep yellow green */
/* very pale green */
/* pale yellow green */
/* moderate brown */
/* moderate reddish brown */
/* yellowish white */
/* yellowish gray */
/* purplish white */
/* bluish white */
/* light bluish gray */
/* bluish gray */
/* dark blueish gray */
/* bluish black */
/* very light gray */
/* very dark gray */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

dp_*col*

NAME

dp_colfromname, dp_namefromcol, dp_ wkcolfromcol- color property

SYNOPSIS

#include "DoclCProps.h"

int
dp colfromname(name, ret)

dp colorname name;
ret-wkcolfromname *ret;

int
dp namefromcol(color, ret)

dp color *color;
ret- namefromwkcol *ret;

int
dp wkcolfromcol(color, ret)

dp color *color;
ret-wkcolfromcol *ret;

DESCRIPTION

/* Returned */

/* Retu rned * /

/* Returned */

The dp colfromnameO function is used to retrieve the integer equivalent of a well known color. The name
argument is an integer value that specifies the name of the color. This function returns ret, a structure
whose one member, dp color, is an array of three integers that specifies the desired color. ret may then
be passed as an argument to those functions that require color information.

The dp namefromcolO function is used to retrieve the name of a color by supplying the data that defines
the welTInown color. The color argument is a pointer to a structure whose three members define the color
in question. This function returns ret, a structure containing the name of the color.

The dp wkcolfromcolO function is used to retrieve a well known color from color. The color argument is a
pointer to dp color, a structure whose three members define that color. This function returns ret, a
structure whose one member, dp _color, contains the integer data defining the well known color.

dp _ color contains the following members:

int y; /* 0 < = y < = 10000 */
inte; /* -10000 < = e < = 10000 */
int s; /* -10000 < = s < = 10000 */

color is specified as a combination ofy, e and s. The number to color relationship is defined by the BWS
framework. It is recommended that the user does not set the y, e, and s values directly. For example,
black is specified as {O, 0, O} and white is specified as {10000, 0, O}. Note that dp color may also be
aliased by using dp _yes. -

Refer to dp _intro at the beginning of this section for more information regarding colors.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-21

DOCUMENT IC PROPERTY LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno(} is used to get the
reason for the failure.

ERRORS

dp _ *col(} will fail if one or more of the following are true:

Doc BadParm One of the arguments specified is invalid.

Doc_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

2-22 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

dp_enumfrun

NAME

dp_enumfrun - enumerate font run

SYNOPSIS

#include "DoclCProps.h"
#include "XString.h"

int
dp enumfrun(r, runs, proc, cdat,ret}

XString r;
dp fontruns *runs;
dp -frunproc *proc;
voi'd*cdat; /* NULL */
dp _ bool *ret; /* Returned */

CALLBACK PROCEDURE

dp boo I
dp -frunproc(r, props, cdat}

XString r;
dp fontprops *props;
voi'd*cdat;

DESCRIPTION

DOCUMENT IC PROPERTY LIBRARY

A font run is a way in which to associate font properties with text. The dp enumfrun(} function is used to
enumerate user-defined fill-in runs, as defined in dp fldprops. ThiS-is achieved by creating font
information structures that point into associated XStringstructures.

The r argument is the text string to be enumerated. It is the value of the fillin argument to dp _fldprops.

The runs argument is a pointer to dp fontruns, a structure whose members contain font properties and an
index. It is the value of the fillinruns argument to dp _fldprops.

The proc argument is a pointer to dp frunproc, a user-defined callback procedure. Its usage is defined by
the user. -

The cdat argument is user-defined data that is supplied to, and used by, dp frunproc. Its usage is also
defined by the user. -

Ifdp _frunproc(} returns TRUE, the enumeration stops and ret returns TRUE.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno(} is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-23

DOCUMENT IC PROPERTY LIBRARY

ERRORS

dp _ enumfrunO will fail if one or more of the following are true:

2-24

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

dp_get*def

NAME

dp_get*def - get default values of properties

SYNOPSIS

#include "DoclCProps.h"

int
dp getbreakdef(props)

dp _ breakprops *props;

int
dp getfielddef(props)

dp _fldprops *props;

int
dp getfnnumdef(props)

dp _fnnumprops *props;

int
dp getfontdef(props)

dp _fontprops *props;

int
dp getfontdescdef(desc}

dp _fontdesc *desc;

int
dp getrundef(run}

dp _run *run;

int
dp getframedef(props)

dp _frameprops *props;

int
dp getindexdef(props)

dp _indexprops *props;

int
dp getpagedef(props}

dp _page props *props;

int
dp getcolwidthdef(width)

dp _ colwidth *width;

int
dp getparadef(props)

dp _para props *props;

int
dp _getbaspropsdef(props)

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

/* Returned */

/* Returned */

/* Returned */

/* Retu rned * /

/* Returned */

/* Retu rned * /

/* Returned */

/* Returned */

/* Retu rned * /

/* Returned */

/* Returned */

DOCUMENT IC PROPERTY LIBRARY

2-25

DOCUMENT IC PROPERTY LIBRARY

dp _ basprops *props;

int
dp gettabstopdef(stop)

ap _ tabstop *stop;

int
dp getmodedef(props)

ap _ modeprops *props;

int
dp getfontstyledef(props)

ap _fstyleprops *props;

int
dp getparastyledef(props)

ap _pstyleprops *props;

int
dp gettframedef(props)

ap _ tframeprops *props;

int
dp getfontel marralltrue(ret)

ap _fontelmarr ret;

int
dp getparaelmarralltrue(ret)

ap _paraelmarr ret;

int
dp getpagedel (ret)

ret_getpagedel *ret;

int
dp gettoc(ret)

ret_gettoc *ret;

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Retu rned * /

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

DESCRIPTION

2-26

The dp get*def() functions are used to obtain declared constants so that property structures may be
initialized with neutral property values. A part of the information is obtained from the system defined
data.

Before calling one of these functions, the user must declare a structure of the appropriate type and pass its
address to the dp _get*def() function.

dp _getbreakdef() gets the following default values for page break properties:

dp _ breaktype type; /* BR _ NPAGE (new page) * /

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

dp _getfielddefO gets the following default values for field properties:

dp lang lang;
unSIgned length;
dp bool req;
dp - skpchoice skpif;
dp -boo I stpskp;
dp -fldchoice type;
XString fill-in;
XString desc;
XString format;
XString name;
XString range;
XString skpiffld;
dp _fontruns *fillinruns;

/* LANG USE (USEnglish) */
/* 0 */ -
/* FALSE */
/* SKP NEVER */
/* FALSE */
/* FLO ANY */
/* NULT*/
/* NULL */
/* NULL */
/* NULL */
/* NULL */
/* NULL */
/* NULL */

DOCUMENT IC PROPERTY LIBRARY

dp _getfnnumdefO gets the following default values for footnote numbering properties:

dp numctrl numctrl;
dp -bool resteachpage;
dp -bool deferframes;
dp -boo I rulingline;
dp -boo I split;
dp -rulelen rulelen;
dp -indexrep indexrep;
dp -lang letters;
dp - replesent digits;
unSIgned int otherrule ;
XString continuation;
XString continued;

/* NC REST (restart) */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* RL ONETHIRO */
/* IR INTEGER */
/* LANG USE (USEnglish) */
/* RP ASCII * /
/* 144*/
/* NULL */
/* NULL */

dp getfontdefO gets the following default values for font properties: --
dp fontdesc fontdesc;
unSIgned udlines;
dp bool stkout;
dp -place place;
dp -boo I tobedel;
dp -bool revised;
dp -width width;
XString stylename;
dp fontelmarr ntrelm;
dp -boo I tranpare;
dp -colortxtcol;
dp color hlcol;

/* 0 */
/* FALSE */
/* PL NULL */
/* FALSE */
/* FALSE */
/* WO PROP (proportional) */
/* NULT*/
/* all TRUE */
/* TRUE */
/*0,0,0*/
/* 10000,0,0 */

dp _getfontdescdefO gets the following default values for font description:

dp family family;
dp - dvariant dvariant;
dp -weight weight;
unSIgned short size;

/* FMY FRUT (modern) */
/* OV ROMAN * /
/* WT-MEDIUM */
/* 12 *7

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-27

DOCUMENT IC PROPERTY LIBRARY

2-28

dp _getrundefO gets the following default values for font run:

dp fontprops props;
unSIgned index; 1* 0 */

dp _getframedefO gets the following default values anchored frame properties:

dp borderstyle bdstyle;
unSIgned bdthick;
dp framedims frdims;
dp -bool fxw;
dp -bool fxh;
dp -span span;
dp - valignment valign;
dp -halignment halign;
unSIgned short tmgn;
unsigned short bmgn;
unsigned short Imgn;
unsigned short rmgn;
dp pagenumber pnum;
dp -bool tranpare;
dp -color bdcol;
dP: color bgcol;

/* 80S SOLID */
/* 2 */
/* 72, 72 */
1* TRUE */
/* TRUE */
/* SP FULCOLUMN (full column) */
1* VA- FLOATING */
/* HA-CENTERED */
1* 18 *T
/* 18 */
/* 0 */
/* 0 */
1*1,1*/
1* FALSE */
/* 0, 0, 0 */
/* 10000,0,0 */

dp _getindexdefO gets the following default values for index properties:

dp indexhdl sphdl;
dp -bool useclass;
dp -bool usealter;
XSmng class;
XString alter;

1* lOX UNIT (index as a unit) */
1* FALSE */
1* FALSE */
/* NULL */
1* NULL */

dp _getpagedefO gets the following default values for page properties:

dp pagedims dims;
unSIgned short tmgn;
unsigned short bmgn;
unsigned short Imgn;
unsigned short rmgn;
dp pageside stpagside;
unSIgned bindwidth;
unsigned ncol;
dp boor bleol;
dp -bool uneqcol;
unSIgned short colsp;
dp colwidths *colwidths;
dp -coldirct coldirct;
dp -hdfttype hdfttype;
dp -bool hdthispage;
dp -bool hdsamepage;
dp -boo I ftthispage;
dp -bool ftsamepage;
dp -horpos hdpos;
dp -horpos ftpos;
dp - pntype pagnumtype;
dp - verpos vnum;
dp :horpos hnum;

/* 842, 595 * /
/* 72 */
/* 72 */
/* 72 */
/* 72 */
/* PS LEFT */
/*o*T
/* 1 */
/* FALSE */
/* FALSE */
/* 18 */
/* NULL */
/* CD LR (left to right) */
/* HFT CONT (continue) */
/* TRUE*/
/* TRUE */
/* TRUE */
/* TRUE */
1* HP CENTERED * /
/* HP-CENTERED */
/* PNT NONE */
/* VP TOP*/
/* HP-RIGHT*/

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC PROPERTY LIBRARY

unsigned stpagnum; /* 1 */

dp _getcolwidthdef() gets the following default value of column width property:

unsigned short w; 1* 0 */

dp _getparadefO gets the following default values for paragraph properties:

dp basprops basprops;
dp -tabstops tabstops;
XString stylename;
dp _paraelmarr ntrelm;

/* 0, NULL */
/* NULL */

dp _getbaspropsdefO gets the following default values for basic properties:

unsigned short prelead;
unsigned short poslead;
unsigned short lindent;
unsigned short rindent;
unsigned short Inh;
dp paralign paralign;
dp -bool just;
dp -bool hyph;
dp -bool kpnext;
dp -lang lang;
dp - strsuc strsuc;
dp - deftabsp deftabsp;
dp _ tabalign deftabal;

/* 0 */
/* 0 */
/* 0 */
/* 0 */
/* 12 */
/* PA LEFT */
/* FALSE */
/* FALSE */
/* FALSE */
1* LANG USE (USEnglish) */
/* SS LR(leftto right) */
/* 1S*I
1* TSA LEFT */

dp _gettabstopdefO gets the following default values for tab stop:

dp bool dotld;
dp -bool eqsp;
dp -taboffset offset;
dp tabalign align;

/* FALSE */
/* FALSE */
/* 0 */
/* TSA LEFT * /

dp _getmodedefO gets the following default values for mode properties:

dp bool strct;
dp -bool nonprint;
dp -bool cover;
dp =bool prompt;

/* FALSE */
1* FALSE */
/* FALSE */
/* FALSE */

dp _getfontstyledef() gets the following default values for font style properties:

dp fontprops props;
XString desc;
unsigned short softpos;
unsigned short stylepos;

/* NULL */
/* 0 */
/* 0 */

dp _getparastyledefO gets the following default values for paragraph style properties:

dp paraprops props;
XString desc;
unsigned short softpos;
unsigned short stylepos;

/* NULL */
/* 0 */
/* 0 */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 2-29

DOCUMENT IC PROPERTY LIBRARY

dp _gettframedefO gets the following default values for text frame properties:

XString name;
XString description;
unsigned innermargin;
dp orient orientation;
dp -boollastlinejust;
dp::boolautohyphen;

/* NULL */
/* NULL */
/* 141 */
/* OR HOR (horizontal) */
/* FALSE */
/* FALSE */

dp _getfontelmarralitrueO initializes all font elements properties to TRUE.

dp _getparaelmarralltrue() initializes all paragraph elements properties to TRUE.

dp _getpagedelO gets the XCCS code of the page number delimiter.

dp _gettoc() gets the XCCS code of the table of contents characters.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

dp _get*def{) will fail if one or more ofthe following are true:

Doc BadParm One ofthe arguments specified is invalid.

Doc_lIIegalHandle The specified handle is illegal..

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

2-30 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

3. Graphics Ie Library

gi_intro

NAME

gi_intro - introductory explanation of graphics functions

DESCRIPTION

The functions in this section provide utilities for the creation and enumeration of anchored graphics,
nested graphics, and CUSP button frames. The majority of these functions use Document IC Definitions
and Document IC Property Definitions. Therefore, in addition to a familiarity with the Document Editor,
you should also be familiar with these two sections of this manual before proceeding to use Graphics IC
functions.

Creating Graphics

Graphics creation is initiated by a call to gi startgr(). This function creates a frame in a document and
returns an object called a handle. The resulting frame is a container in which may be placed graphics data,
thus it is called a graphics container. A graphics container is defined as an object that can contain graphic
objects and may be one of three basic types: an anchored graphics frame, a nested graphics frame, or a
CUSP button within a graphics frame. The type of container it becomes is dependent upon the gi start*()
function that is called next, such as gi startnbtn() or gi startciusterO. Once a specific type ofgraphics
container has been created, various gi ad*O functions may be called to add graphic objects, such as curves,
rectangles, bitmap graphics, and text frames

The handle is an opaque type that identifies the graphics frame in which will be placed graphics data and
is, therefore, passed as an argument to the gi_ ad*() functions.

A nested frame is a frame that is placed within a larger frame. Nested frames may be one of several types,
such as non-anchored graphics frames, CUSP buttons, or graphics clusters. gi startgframe(),
gi startnbtn(), or gi startciusterO are called to create the corresponding nested frami'""Each procedure
takes a graphics container as an argument, and returns another graphics handle. The resulting handle is
then passed as an argument to other gi_ad*O functions.

When everything has been added to a graphics container, the final step is a call to the respective
gi finish*() routine. These routines are gi finishgr(), gi finishnbtn(), gi finishgframe(), or
gi finishcluster(). gi_finishgr() returns a graphics instance whlcli. can then be passed to di_ apaframeO.

The typical scenario for creating a document with a floating graphics frame nested within an anchored
graphics frame is as follows:

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-1

GRAPHICS IC LIBRARY

1. Call di_ create() to obtain a document handle (doc).

2. Call gi_startgr{doc) to get an anchored frame handle (h).

3. Call gi_ ad*{h) to add graphics to the anchored frame.

4. Call gi_startgframe(h) to get a handle for a nested graphics frame (gfh).

5. Call gi_ ad(gfh) to add graphics to the nested frame.

6. Call gi_finishgframe(gfh) to finish the nested frame.

7. Call gi_finishgr(h) to complete the anchored frame and obtain an object oftype di_ins.

8. Call di_apaframe(h).

9. Call di_finish(&doc).

Reading Graphics

There are also GraphicsIC functions that read the contents and properties of a graphics frame. The
gi enumerate() function is called to retrieve the contents or properties of a frame. It requires a graphics
container and a set of user-defined call-back procedures as arguments. There is one call-back procedure
for each type of object. Object types are defined as bar chart, bitmap frame, CUSP button, cluster, curve,
ellipse, form field, graphics frame, line, line chart, pie chart, pie slice, point, rectangle, text, and triangle.

gi enumerate() reads the contents of the graphics container, calling the appropriate procedure for each
object type encountered. If a call-back procedure is not supplied for a particular type of object and that type
of object is encountered during enumeration, that object will be ignored. Since call-back procedures are
user-defined, they may be used to stop enumeration based upon a user-specified set of conditions.

Similarly, gi enumbtnprog() accepts a set of user-defined call-back procedures to enumerate the contents
of a CUSP button.

Cross References

3-2

The following pages contain charts that should be used to facilitate the selection and application of gi *()
functions. The charts are organized by category, or type of frame. When applicable, each category shows
the types of objects that may be placed within the corresponding frame. The columns to the right of the
categories list the functions that may be called to create an object or enumerate it.

Page numbers for each function may be found in either the table of contents or index.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

Category of Anchored Graphics and Anchored Button Frames

Category Creating Reading

Function Name: Function Name:

Common di apaframe di enumerate - -
di aframeproc -

Anchored Graphics gi _startgr gi getgframeprops -
Frame

gi finishgr -
gi _setgframeprops

Anchored Button gi startbtn gi btnforaframe - -
Frame

gi finishbtn gi enumbtnprog - -
gi relbtnprog -

gi apchartobtnprog -
gi apnparatobtnprog -
gi a ptexttobtnprog -

Category of Graphic Objects and Related Functions

Category Creating Reading
Objects

Function Name: Function Name:

Common gi enumerate -
Point gi_adpoint gi pointproc -
Line gi adline gi lineproc - -

Curve gi adcurve gi curveproc - -
Primitive

Objects
Ellipse gi - adellipse gi - ell i pseproc

Rectangle gi_ adrectangle gi - rectangleproc

Triangle gi_adtriangle gi_ triangleproc

Pie Slice gi_pislce gi pislceprQc -

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-3

GRAPHICS IC LIBRARY

Category of Graphic Objects and Related Functions

Category Creating Reading
Objects

Function Name: Function Name:

Bitmap Frame gi adbm gi bmproc - -
Text Frame gi adtframe gi _ tframeproc

Frame -
Form Field gi adffield gi ffieldproc --

Nested gi startgframe gi frameproc --
Graphics Frame

gi finishgframe -
Nested Table gi adtable gi _tableproc

-
Nested Button gi startnbtn gi buttonproc

Frame - -
gi finishnbtn gi - enumbtnprog

gi relbtnprog -
gi _ apchartobtnprog

gi _ apnparatobtnprog

gi _ aptexttobtnprog

Bar Chart gi adbacht gi bachtproc --
Chart

Line Chart gi adlncht gi Inchtproc - -
Pie Chart gi ad picht gi pichtproc - -

gi finishcht -
gi startcl uster gi _ cI usterproc

-
Others Cluster

gi fi nishcl uster -

3-4 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi_adbacht

NAME

gi_adbacht - add bar chart

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"
#include "GraphicsIC.h"

int
gi adbacht(h. box. props. data. wchild. ret)

-gi handle h;
gi-box *box;
gi-bachtprops *props;
gi-chtdat *data;
dp boo I wchild;
gi handle *ret;

DESCRIPTION

/* NULL */
/* NULL */

/* FALSE */
/* Returned */

GRAPHICS IC LIBRARY

The gi adbachtO function is used to add a bar chart to a graphics container. This function draws a bar
chart based on the properties specified by gi_ bachtprops.

The h argument is the graphics container handle returned by an earlier call to gi_startgrO,
gi_startgframeO, gi_startbtnO, gi_startnbtnO, or gi_startciusterO.

The box argument is a pointer of the type gi box. It's two members, place and dims specify the origin of
the bar chart and its size, relative to the graphics container.

gi place place;
gi dims dims;

gi place contains two integer variables x and y. These two variables indicate the grid location of the box
origin. gi dims contains two integer variables wand h. These two variables indicate the width and height
of the frame with respect to the box origin. Both place and dims are specified in units of micas.

A {O, O} grid location indicates the upper-left corner of the frame. Increasing the value of x causes the
placement location to shift towards the right. Increasing the value of y causes the placement location to
shift downwards. It is illegal to specify negative wand h values

box.dims defines the size of the bar chart. Increasing the value ofw causes the frame to grow towards the
right. Increasing the value ofh causes the frame to grow in a downward direction.

The props argument is a pointer of the type gi bachtprops. It is a structure whose members specify the
properties the resulting bar chart is to have. gi bachtprops contains the following members:

double units;
unsigned div;
gi barscale scale;
dp color sclcol;
gi "Dalayout layout;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-5

GRAPHICS IC LIBRARY

3-6

gi baspacing spacing;
gi-baorient orient;
dp boor key;
dp -bool bafloat;
dp -bool mirror;
gi chtapps *apps;
dp _ boo I joined;

units, div, scale, sclcol, layout, spacing, orient, key, bafloat and mirror control some aspect of the bar
chart's appearance. These members accept the same values as their counterparts in the bar chart
property sheet.

units is a positive real number value that specifies the interval at which numeric indicators are placed
on the scale. For example, a value of 2.5 means that all the numbers accompanying the scale will be
divisible by 2.5. Therefore, only the numbers 2.5,5.0,7.5, etc. will be displayed.

div is a whole number between 0 and 65,535 that specifies the number of hash marks, or divisions,
that are to occur between each numeric indicator on the scale.

scale is of the type gi barscale. It is an enumerated variable that specifies the gauge to be used when
displaying the bar chart. It may have one of the following values:

BS STICK
BS-DTICK
BS-DGRID
BS-OGRID

1* single tick */
1* double tick */
/* double grid */
1* open grid */

sci col is a structure of the type dp _color. It specifies the color to be used in drawing the bar chart scale.

layout is of the type gi balayout. It is an enumerated variable that defines how the components
comprising each bar in the chart is to be placed with respect to the other components. layout may have
one of the following values:

BL STACKED
BL-GROUPED

/* place each component on top of the other component(s) */
/* place components next to each other */

spacing is of the type gi baspacing It is an enumerated variable that defines the separation between
bar chart elements. It may have one of the following values:

BSP MERGED
BSP-JOINED
BSP-QUARTER
BSP-HALF
BSP-THREEQUART
BSP-BRIDGED

/* merged */
/* joined */
1* quarter spacing */
/* half spacing */
/", three-quarter spacing */
/* bridged */

orient is ofthe type gi baorient. It is an enumerated variable that defines the direction in which the
bar chart data is to be arawn. The data may be drawn from the bottom ofthe frame to the top, or from
the left edge of the frame to the right, orient may have one of the following values:

BO VER
BO-HOR

/", vertical */
/* horizontal */

key is a l3oo1ean value that, when set to TRUE, displays the explanatory notes in the bar chart.

bafloat is currently not supported.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

mirror is currently not supported.

apps is a pointer ofthe type gi chtapps. It is a structure that specifies the visual properties ofthe bars
in the bar chart. It is used to define the color of the lines, the fill patterns, the color of the filled bars,
etc. It contains the following members:

unsigned length;
gi_ chtapp *values;

where, gi_ chtapp contains the following members:

gi gray gray;
gi-textures txrs;
dp color txrcol;
dp -color shdcol;
dp = color Incol;

gray is of the type gi gray an enumerate type that specifies the amount of black, or saturation,
to make varying shades ofthe color gray. It may have one of the following values:

GRY NONE
GRY-GRAY25
GRY-GRAYSO
GRY-GRAY75
GRY-BLACK

The number following the respective GRY _ GRAY* indicates the percentage of saturation.
For example,

GRY NONE
GRY-GRAY25
GRY-GRAY50
GRY-GRAY75
G RY-S LACK

txrs is of the type gi textures. It is a structure that defines the direction in which the fill
patterns are drawn in"1he resulting bars. It may have one of the following values:

dp bool vertical
dp -boo I horizontal
dp-bool nwse
dp -bool swne
dp =bool polkadot

txrcol, shdcol, and Incol are the respective colors ofthe fill pattern, the shading, and the lines
used to draw each bar in the bar chart. shdcol is only available when gray is set to
GRY BLACK.

joined is a Boolean value that specifies whether the elements of the bar chart are to be merged as one
with the bar chart, or if they are to remain separate graphic elements. If joined is FALSE, each

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-7

GRAPHICS IC LIBRARY

3-8

graphics element, such as rectangles and lines, will be independent of the bar chart and may be
manipulated accordingly.

data is a pointer of the type gi chtdat. It is a structure whose members define the common data of the
chart. It contains the following members:

XString title;
gi dataset datset;
dp lang lang;
gi datsource datsou;
gi-'abe's *collabl;
gi-'abe's *rowlabl;
gi= datvalues *values;

title is of the type XString and is used to specify the name ofthe bar chart.

dataset is of the type gi dataset. It is a structure that specifies the axis at which bar titles are to be
drawn. It may have one O'fthe following values:

DAS COLUMN
DAS-ROW

/* column */
/* row */

lang is of the type dp lang, an enumerated variable that defines the language to be used in writing
bar chart text. It may have one of fifteen values, such as LANG USE or LANG JPN. Refer to the section
in Document Ie Property Definitions, titled Basic Property Records. under the heading of lang for a
description of acceptable values.

datsou is of the type gi datsource, a structure that specifies the source that is to supply the data used
to draw the individual bars ofthe bar chart. It contains the following members:

enum{
DTS PS.
DTS-DOC

}type;-
union {

gi tblfillin fillin;
gi- tblcont doc;
} u;

/* data in chart property */
/* data in document */

/* effective when type is DTS PS */
/* effective when type is DTS=DOC */

fillin is of the type gi_ tblfillin and may have one ofthe following values:

TFO BYROW
TFO-BYCOL

/* by row */
/* by column */

gi_ tblcont contains the following members:

XString name;
gi_sousubset subset;

gi_sousubset contains the following members:

gi elmrange colrange;
gi=elmrange rowrange;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi_ elmrange contains the following members:

unsigned first;
unsigned last;

The Document Editor may use two types of data from two different sources. One type and source of
data is that from the chart property. The other is data from within a document. DTS PS specifies
that the source data for drawing bar charts is in the chart. DTS DOC specifies that that the source
data for drawing the bars is in a table frame in the same document. If DTS DOC is specified, name
must also be specified. When data is supplied from a chart property, gi datsource should be set as
follows: -

gi_ datsource datasource;

datasource.type = DTS PS;
datasource.u.fillin = TFO BYROW (or TFO BYCOL);

When table data in a document is used as the source, gi_ datsource should be set as follows:

gi_ datsource datasource;

datasource.type = DTS DOC;
datasource.u.doc.name= (XString)tablename;
datasource.u.doc.subset.colrange.first = 0;
datasource.u.doc.subset.colrange.last = 0;
datasource.u.doc.subset.rowrange.first = 0;
datasource.u.doc.su bset.rowrange.last = 0;

collabl and rowlabl are both pointers to gi labels, a structure that specifies respective column and row
bar titles. gi_labels contains the following members:

unsigned length;
XString (*values); /* array of XString */

values is a pointer of the type gi datvalues, a structure that specifies the values of text strings and
numbers in the bar chart. It contains the following members:

enum{
RS STRING,
RS-NUMERIC

}Tormat;
union {

gi strowcont string; /* effective when format is RS STRING */
gi- numrowcont numeric;/* effective when format is RS-NUMERIC */
}~ -

gi_strowcont contains the following members:

unsigned length;
gi_strow *strow; /* array of gi_strow */

gi_ numrowcont contains the following members:

unsigned length;
gi_ numrow *numrow; /* array of gi_ numrow */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-9

GRAPHICS IC LIBRARY

strow is a pointer of the type gi strow, a structure that contains an array ofXString and its
length.It represents the string data that is to be filled in the row. It contains the following
members:

unsigned length;
XString *values; /* array of XString */

numrow is a pointer of the type gi numrow. It is a structure that contains an array of double
and its length. It represents the numeric data to be filled in the row. It contains the following
members:

unsigned length;
double *values; /* array of double */

The data types RS STRING or RS _ NUMERIC are used as switches to select the elements of types, string
or numeric.

wchild is a Boolean that, when set to TRUE, will cause a handle to the graphics elements in the bar chart to
be returned in ret. After which, graphic elements may be added to the handle. When set to FALSE, ret will
contain a NULL value and the Document Editor will rebuild the bar chart from the information contained in
gi_ chtdat. If a handle is returned, gi_finishchtO must be called to release it when done.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno(} is used to get the
reason for the failure.

ERRORS

gi_ adbacht(} will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc _ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_finishchtO

3-10 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi_adbm

NAME

gi_adbm - add bitmap

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"
#include "GraphicsIC.h"

int
gi adbm(h. box. bmprops. frprops. wtcap. wbcap. wlcap. wrcap. ret)

-gi handle h;
gi-box *box;
gi-bmprops *bmprops;
gi-frameprops *frprops;
dp bool wtcap;
dp -boo I wbcap;
dp -boo I wlcap;
dp -boo I wrcap;
ret-adbm *ret;

DESCRIPTION

/* NULL */
/* NULL */
/* NULL */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* Returned */

The gi_ adbmO function is used to add a bitmap graphic to the graphics container.

GRAPHICS IC LIBRARY

The h argument is the graphics container handle returned by an earlier call to gi_startgrO,
gi_startgframe(), gi_startbtn(), gi_startnbtn(), or gi_startciusterO.

The box argument is a pointer 9fthe type gi box. Its two members, place and dims. specify the origin of
the area in which the bit map will be placed and its size, relative to the graphics container (including
caption area). Refer to gi_ adffield() for a description of gi_ box.

The bmprops argument is a pointer of the type gi bmprops. It is a structure whose members control
visual aspects of the bit map graphic. It contains the fullowing members:

int xoffset;
int yoffset;
XString prntfile;
gi bmdisp dispsou;
gi-bmscalprops scalprops;
dp bool remotefile;
dP: color bitcol;

xoffset and yoffset have no affect on the outcome of a call to gi_ adbmO.

prntfile is the full path name, or source, of the bitmap object to be printed. It is the means by which a
different bitmap file may be accessed during the printing of the finished document than that being
accessed when displaying the document. The value of this parameter is usually the same as the
display source.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-11

GRAPHICS IC LIBRARY

3-12

The source for the bitmap object to be placed in a document may be in one of two locations: either
internal to the file (e.g., the bits are copied into the document), or in a file on the desktop (e.g., a
pointer to the bits is inserted into the document). dispsou is of the type gi bmdisp. It is a structure
that specifies the display source of the bitmap object and whether the bitmap object is to be inserted or
pointed to. gi_ bmdisp contains the following members:

enum{
BM INTERNAL,
BM-FILE
} type;

union {
gi bmdat *bm;
XString name;
} u;

/* effective when type is BM INTERNAL */
/* effective when type is BM:FILE */

The physical aspects of the actual bitmap object is described by the structure gi_ bmdat. gi_ bmdat
contains the following members:

gi rational xscl;
gi-rational yscl;
uriS'igned xdims;
unsigned ydirns;
unsigned bpi;
char *bitdata;

/* # of bits wide */
/* # of bits tall */
/* Bits Per Line = «xdim + 15) / 16) * 16 */

xscl and yscl are of the type gi rational. It is a structure that specifies the scale at which to
display the bitmap object in both x and y axis direction. gi rational contains the following
members: -

int nurn;
unsigned den;

num and den are abbreviations of numerator and denominator, respectively. These two
values are used to perform unit conversions from points to meters by specifying the
resolution of the bitmap data. The base conversion involves converting dots per inch (dpi)
into units of meters. For example, the desktop has a resolution of 72 dpi, therefore, for
bitmap data created on the desktop, as one inch is equal to 0.0254 meters and there are
720,000 points in 254 meters, xscl and yscl should be set to {254, 720000}. If the bitmap
data is created by a scanner, the resolution should be set to correspond to the resolution of
the scanner. For example, if the scanner has a resolution of 200 dpi, then set xscl and yscl
to {250, 200000}. If the resolution of the scanner is 300 dpi, then the correct values would
be {254, 300000}.

xdirns and ydims are unsigned integers that specify the x and y axis dimensions of the bitmap
object in units of bits.

bpi is the real bitmap data per line. bpI must have a word boundary. For example:

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

24 bits ..
10101010101010101010101000000000
01010101010101010101010100000000
101010101010 10 10 10 10 10 1000000000
01010101010101010101010100000000
1010 1010 10 10 10 1010 10 10 1000000000
01010101010101010101010100000000
10101010101010101010101000000000
01010101010101010101010100000000
10101010101010101010101000000000
01010101010101010101010100000000
10101010101010101010101000000000
01010101010101010101010100000000
1010 10 1 0 10 10 10 1010 10 10 1000000000
1010 1010 10 10 10 1010 10 10 1 000000000
01010101010101010101010100000000
10101010101010101010101000000000
01010101010101010101010100000000
10101010101010101010101000000000
01010101010101010101010100000000
10101010101010101010101000000000
01010101010101010101010100000000
01010101010101010101010100000000
10101010101010101010101000000000
01010101010101010101010100000000

..
32 bits

xdims
ydims
bpi
bitdata

= 24
= 24
= 32
= [

AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,
AAAAH, AAOOH, 5555H, 5500H,

GRAPHICS IC LIBRARY

AAAAH, AAOOH,
5555H, 5500H,
AAAAH, AAOOH,
5555H, 5500H,
AAAAH, AAOOH,
5555H, 5500H,
AAAAH, AAOOH,
5555H, 5500H,
AAAAH, AAOOH,
5555H, 5500H,
AAAAH, AAOOH,
5555H, 5500H,
AAAAH, AAOOH.
5555H, 5500H,
AAAAH, AAOOH,
5555H, 5500H,
AAAAH, AAOOH,
5555H, 5500H,
AAAAH, AAOOH,
5555H, 5500H,
AAAAH, AAOOH,
5555H, 5500H,
AAAAH, AAOOH,
5555H, 5500H,

bitdata is a pointer to to the bitmap data. The size of the bitmap data is to be equal to (xdims
* bpi).

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-13

GRAPHICS IC LIBRARY

3-14

scalprops is a structure of the type gi bmscalprops. It is used to specify the manner in which the
bitmap is displayed. gi_ bmscalprops cOntains the following members:

enum{
BMS PRNTRES.
BMS-FIXED.
BMS-AUTOMATIC
} type;

union {
unsigned res;
gi scalfix fixed;
enum{

} u;

SHP SIMILAR.
SHP-FILLUP
} shape;

/* effective when type is BMS PRNTRES*/
/* effective when type is BMS-FIXED */
/* effective when type is BMS AUTOMATIC */

gi_scalfix contains the following members:

enum{
HAL CENTER.
HAL-RIGHT.
HAL-LEFT
} harlgn;

enum{
VAL CENTER.
VAL-BOTTOM.
VAL-TOP
} varlgn;

unsigned percent;

scalprops permits the user to specify one of three bitmap scaling modes: BMS PRNTRES, BMS FIXED or
BMS AUTOMATIC. -

BMS PRNTRES causes the bitmap object to be printed at the resolution specified in the res
argument.

BMS FIXED requires the user to control the bitmap's alignment (via halign and valign parameters)
and scaling (via xscl and yscl). The printing of the bitmap object is also affected by the value of the
percent argument. (See percent below.)

BMS AUTOMATIC, with shape = SHP SIMILAR, results in the bitmap object being enlarged or
reduced to fit just inside the bitmap frame until either the vertical or horizontal edge of the bitmap
object touches the graphic frame's edge. The aspect ratio of the bitmap object is maintained. This is
usually the default mode. BMS AUTOMATIC, with shape = SHP FILLUP, results in the bitmap
object being scaled to fit the entire graphic frame. The aspect ratio is not maintained.

If BMS _PRNTRES or BMS _FIXED is selected, SHP _ SIMILAR and SHP _FILLUP will be ignored.

The percent parameter allows the user to shrink or magnify the bitmap object, while maintaining its
aspect ratio. A percent value of 100 means that the bitmap should be displayed and printed the same
size as the original. A value of 50 means that the bitmap is shrunk to one-half both vertically and
horizontally. percent must be an integer ranging from 1 to 1000, inclusive. This parameter is only
available when the value of type is set to BMS _PRINTRES.

The value of res specifies the resolution to be used in printing the bitmap object. It is usually set to the
same resolution as the printer on which the bitmap object is to be printed. Standard values are 72, 75,

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

150,200, and 300. Other values may be specified. Values are specified in units of dots-per-inch (dpi).
This parameter is only available when the value of type is set to BMS _PRINTRES.

The remotefile parameter is used to specify whether the prntfile is in a file or on the desktop.

The bitcol parameter is a structure of the type dp color. Its members describe the color of the dots.
Refer to dp _ col* for more information. -

The frprops argument is a pointer of the type gi frameprops. It is a structure that defines the common
properties of the graphics frame. Refer to the description of frprops in gi_startgframe() for more
information.

w*cap arguments are Boolean values that specify whether or not the frame is to have captions. If a value
of TRUE is specified for a w*cap argument. the respective *cap return value will be non-NULL. These
caption arguments are used to set the top, bottom, left, and right captions, respectively. Related DoclC
functions may then be used to add text to each caption. Note that each caption must eventually be freed by
a call to di_relcap().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_ adbm() will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

SEE ALSO

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

dp _ namefromcol(), dp _ wkcolfromcol(), gi startgframe()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-15

GRAPHICS IC LIBRARY

gi_adcurve

NAME

gi_adcurve - add curve

SYNOPSIS

#include "GraphicsIC.h"

int
gi adcurve(h, box, props)

-gi handle h;
gi-box *box;
gi: curveprops *props;

/* NULL */
/* NULL */

DESCRIPTION

3-16

The gi_ adcurveO function is used to add a curve of a specific size and shape to a graphics frame.

The h argument is the graphics frame handle returned by an earlier call to gi startgframe(), gi startbtn(),
gi_startnbtn. gi_startgr(), or gi_startcluster(). --

The box argument is a pointer of the type gi box. It's two members, place and di ms specify the origin
of the object and its size, relative to the frame.-

gi place place;
gi: dims dims;

gi place contains two integer variables x and y. These two variables indicate the grid location of the box
origin. gi dims contains two integer variables wand h. These two variables indicate the width and height
ofthe boxwith respect to the box origin. Both place and dims are specified in units of micas.

A {O, O} grid location indicates the upper left corner of a frame. Increasing the value of x causes the
placement location to shift towards the right. Increasing the value of y causes the placement location to
shift downwards. It is illegal to specify negative wand h values, therefore an object's dims.place must
always correspond to the upper left corner of a box. It is legal to specify negative x and y values.

box.dims defines the area in which may be placed graphic objects. Increasing the value of w causes the
frame to grow towards the right. Increasing the value of h causes the frame to grow in a downward
direction.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

Frame

y

NW

h

.................... ~

.~ : " :

x

Peak

(-'" ;

• w

SE

The props argument is a pointer of the type gi curveprops. It is a structure that defines the the
appearance and shape ofthe curve. gi_ curvepropscontains the following members:

gi brush brsh;
gi-Inend Inenw;
gi-Inend Inese;
gi-Inedhd Inhnw;
gi-Inedhd Inhse;
gi-place plnw;
gi-place plapx;
gi-place plse;
gi-place plpek;
dp bool eccentric;
unSIgned eccentricity;
dp _ boo I fixangle;

brsh is of the type gi brush. It specifies the type of line used to draw the brush, such as solid or dashed,
and the brush color.Refer to the description of gi startgframe() for general information regarding
brsh. The exception to the description of brsh in gT startgframe() is with regards to the stylebrush
member. The two parameters that may not be specTI'ied are STB INVISIBLE and STB DOUBLE. The
remaining parameters will result in curves having the appearances as shown below: -

Not
Allowed

INVISIBLE SOLID

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

-, ..

DASHED

...

DOTTED

Not
Allowed

DOUBLE

r ...
\

BROKEN

3-17

GRAPHICS IC LIBRARY

3-18

Inenw and Inese are enumerated variables that describe the appearance of the end points of the curve.
Each end point may have one of the following values:

LE FLUSH
LE-SQUARE
LE-ROUND
LE-ARROW

/* flush */
/* square */
/* round */
/* arrowhead*/

Inenw defines the end that is painted first and Inese defines the end that is painted last. The curve is
always traced in a clockwise direction, as shown in the figure below}.

~E SE NW

'----NW),- SE

SE

s~W ~
NW SE

Defining Line Curves

If either Inenw or Inese is assigned a value of LE ARROW, then the value of Inhnw and/or Inhse
specifies the type of arrowhead to be placed at the endpoint(s} of the curve. Note that Inhnw specifies
the type of arrowhead for I nenw and In hse specifies the type of arrowhead for I nese.

Inhnwand/or Inhse may have one of the following values:

LEH NONE
LEH-H1
LEH-H2
LEH-H3

/* none */
/* hl */
/* h2 */
/* h3 */

LEH H1 is the finest point;LEH H3 is the most blunt, as shown in the figure below. Iflnenw and/or
Ineseis not assigned a value ofLE_ ARROW, then Inhnw and/or Inhse should be left LEH _NONE.

The pl* parameters define the curve by specifying its end points, apex, and peak. These points are
relative to the frame defined by the box argument, not the frame itself. Curves are traced in a
clockwise direction, therefore, be sure that the NW endpoint appears before the SE endpoint when
tracing a curve. The figure below illustrates the four pl* points used to define two different curves; the
triangle marks the apex, the square marks the peak, and the circles mark the endpoints.

Another way to define a curve is by specifying the curve's endpoints, apex and eccentricity.
eccentricity is a fraction used to specify the swell of a curve, as shown below.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

--~.~ h1

--..... h2

--... h3

Types of Arrowheads

'.
" "::

.'
" .

. '

:~:
" '.

Defining Curves

The fraction is derived by the following equation:

apex

a
NW

~--....

SE

Defining Eccentricity

eccentricity = b/(a + b) * 65535

GRAPHICS IC LIBRARY

The eccentricity argument is a Boolean value that, when set to TRUE, indicates that eccentricity is to
be used rather than pl* points.

The fixangle parameter is a Boolean value that, when set to TRUE, indicates that the curve is to
maintain its shape when grown or shrunk.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-19

GRAPHICS IC LIBRARY

ERRORS
gi_ adcurveO will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_startgframeO

3-20 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi_adellipse

NAME

gi_adellipse - add ellipse

SYNOPSIS

#include "GraphicsIC.h"

int
gi adellipse(h, box, props)

-gi handle h;
gi-box *box;
gi= ell ipseprops *props;

DESCRIPTION

/* NULL */
/* NULL */

The gi_ adellipseO function is used to add an ellipse to a graphics container.

GRAPHICS IC LIBRARY

The h argument is the graphics container handle returned by an earlier call to gi_startgframeO,
gi_startgrO, gi_startbtnO, gi_ startnbtnO, or gi_startcluster().

The box argument is a pointer of the type gi box. It's two members, place and dims. specify the origin of
the box in which the ellipse will be placed and the area of the ellipse, relative to the graphics frame. Refer
to gi_adcurveO for a description ofgi_ box.

The ellipse will be placed in the resulting box such that the extreme edges of the ellipse touch the
respective edge ofthe box, therefore, the size ofthe box determines the size of the ellipse. For example,

Frame

x

w

The props argument is a pointer of the type gi ellipseprops. It is a structure whose members define the
appearance of the ellipse. Its members are: -

gi brush brsh;
gi-shading shade;
dp _ boor fixshape;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-21

GRAPHICS IC LIBRARY

3-22

brsh is a structure that defines the visual qualities of the lines used in tracing the border of the ellipse.
It contains the following members:

unsigned wth;
gi stlbrush stylebrush;
dp _ color brushcolor;

wth is the width of lines, specified in units of micas. The standard brush widths may have one of
the following value:

GSLW1
GSLW2
GSLW3
GSLW4
GSLW5
GSLW6

/* 1 width for Graphics Single Line */
1* 2 width for Graphics Single Line */
1* 3 width for Graphics Single Line */
/* 4width for GraphicsSingle Line */
/* 5 width for Graphics Single Line */
/* 6 width for Graphics Single Line */

Each value corresponds to 35, 71, 106, 141, 176, and 212 micas, respectively. Non-standard
brush widths will result in an error.

stylebrush defines how the lines are to be drawn, such as solid or dashed. It may have one of the
following values:

STB INVISIBLE
STB-SOLIO
STB-OASHED
STB-DOTIED
STB-DOUBLE
STB-BROKEN

/* invisible */
/* solid */
/* dashed */
/* dotted */
1* double */
/* broken */

The wth of STB DOUBLE borders is 3 times the usual width because it consists of two lines
separated by a gap equal to the width ofthe line. In this case, the brush widths may have one of the
following values:

GDLW1
GDLW2
GDLW3
GDLW4
GDLW5
GDLW6

/* 1 width for Graphics Double Line */
/* 2 width for Graphics Double Line */
/* 3 width for Graphics Double Line */
/* 4 width for Graphics Double Line */
/* 5 width for Graphics Double Line */
/* 6 width for Graphics Double Line */

Each value corresponds to 106, 212, 318,423, 529, and 635 micas, respectively. The following
are examples of brush styles:

D
INVISIBLE SOLID

r--,
I I L.. __ ..J

DASHED

....... -
D r·_·,

....... - L._ . .J
DOTTED DOUBLE BROKEN

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

brushcolor specifies the color to be used to display the lines that make up the edges of the graphic
object. The value of color may be any color that is a member of dp _color.

shade is a structure of type gi shading. It is used to define the appearance of the ellipse's interior. Its
members are: -

gi gray gray;
gi-textures txrs;
dp color txrcol;
dp = color shdcol;

gray is of the type gi gray, an enumerated variable that specifies the percentage of black, or
saturation, to be used in making varying shades of the color gray. Refer to gi adbachtO for a chart
illustrating the available shades. -

txrs is a structure of type gi textures. It specifies the direction in which the texture is drawn in the
ellipse or the type of texture that is to be placed in the ellipse. For example, textures may be placed in
an ellipse with a horizontal, vertical, or diagonal orientation. Also, a type of texture that may be
placed in the ellipse is a polka dot pattern. gi_ textures has the following members:

dp bool vertical;
dp -boo I horizontal;
dp -bool nwse;
dp -bool swne;
dp =bool polkadot;

Each variable is a Boolean value. The resulting texture will be the AND of the variables. That is,
each variable that is set to TRUE will be placed as a texture in the graphic object.

txrcol is a structure of type dp color. Its members define the color that is to be used in drawing the
texture, or foreground, of the ellipse's interior.

shdcol is a structure of type dp color. Its members define the color to be used when drawing the
background in the ellipse's interior. This parameter is enabled only when the value of gray is
GRY _BLACK. If the value of gray is any other value, shdcol is set to GRY _BLACK.

fixshape is a Boolean value that, when set to TRUE, indicates that the aspect ratio of a graphic object will
remain intact when the user grows or shrinks the ellipse. A value of FALSE indicates that the aspect ratio
ofthe ellipse will change freely.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-23

GRAPHICS IC LIBRARY

ERRORS
gi_adellipseO will fail if one or more of the following are true:

Ooc DocumentFull No more room in the document.

Ooc_ ReadonlyDoc Document opened in ReadOnly mode.

Ooc_ OutOfOiskSpace Not enough disk space for the operation.

Doc OutOfVM

Doc BadParm

Doc_Illegal Handle

Doc TimeOut

Not enough virtual memory for the operation.

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_ adbachtO

3-24 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi_adffield

NAME

gi_adffield - add form field

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"
#include "GraphicsIC.h"

int

GRAPHICS IC LIBRARY

gi adffield(h, box, fiprops, frprops, tfprops, paprops, foprops, wfield, wtcap, wbcap, wlcap, wrcap, ret)
-gi handle h;

gi-box *box;
dp fldprops *fldprops;
gi trameprops *frprops;
gi-tframeprops *tfprops;
dp paraprops *paprops;
dp -fontprops *foprops;
dp -boo I wfield;
dp -bool wtcap;
dp -boo I wbcap;
dp -bool wlcap;
dp -bool wrcap;
ret-adffield *ret;

DESCRIPTION

/* NULL */
/* NULL */
/* NULL */
/* NULL */
/* NULL */
/* NULL */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* Retu rned * /

The gi_ adffield() function is used to add a form field to a graphics frame.

The h argument is the graphics container handle returned by an earlier call to gi startgframe(),
gi_startgr(), gi_startbtnO, gi_startnbtn(), or gi_startcluster(). -

The box argument is a pointer of the type gi box. It's two members, place and dims. specify the origin of
the frame and its size, relative to the graphicScontainer.

gi place place;
gi dims dims;

gi place contains two integer variables x and y. These two variables indicate the grid location of the
box origin (including the caption). gi dims contains two integer variables wand h. These two
variables indicate the width and height of the frame with respect to the box origin. Both place and
dims are specified in units of micas.

A {O, O} grid location indicates the upper-left corner of the graphics container. Increasing the value ofx
causes the placement location to shift towards the right. Increasing the value of y causes the
placement location to shift downwards. It is illegal to specify negative wand h values

box.dims defines the size of the frame. Increasing the value ofw causes the frame to grow towards the
right. Increasing the value ofh causes the frame to grow in a downward direction.

Refer to gi_startgframe() for a description of the box, *frprops, and w*cap arguments.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-25

GRAPHICS IC LIBRARY

3-26

The fldprops argument is a pointer of the type dp fldprops. It is a structure whose members define the
properties to be attributed to the resulting field. The members specify font properties, language, format,
and so on. dp _ fldprops has the following members:

dp lang lang;
unSIgned length;
dp boo I req;
dp - skpchoice skpif;
dp -bool stpskp;
dp -fldchoice type;
XString fill-in;
XStri ng desc;
XString format;
XString name;
XString range;
XString skpiffld;
dp _fontruns *fillinruns;

Refer to Field Properties in the section dp_intro for a description of each parameter.

The tfprops argument is a pointer of the type gi tframeprops. It is a structure whose members describe
the properties of the text field and contains the following members:

dp boot expr;
dp -bool expb;
dp tframeprops props;

expr and expb are abbreviations for expand right and expand bottom, respectively. They are Boolean
values. When both expr and expb are TRUE, the width and height can be changed according to the size of
the text included.

The props argument is a pointer of the type dp tframeprops. It is a structure whose members define the
inner margin and orientation of the text within the frame, as well as the type of line justification and auto
hyphenation options. It contains the following members:

XString name;
XString description;
unsigned innerMargin;
dp orient orientation;
dp -boollastLineJustify;
dp :bool autoHyphenate;

Refer to Text Properties in dp _intro for a more thorough description.

The paprops and foprops arguments are pointers to dp paraprops and dp fontprops, respectively. They
define the paragraph and font properties to be attributed to the resulting text field. See Paragraph
Properties and Font Properties in the section dp_intro for a more complete description.

The wfield argument is a Boolean value that, when set to TRUE, causes di adfield to return a handle to a
field. The handle may then be passed as an argument to other text fiekl manipulation functions. The
w*cap arguments are Boolean values that specify if captions are desired along the top, bottom, left, or
right edges ofthe text field.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

This function sets the return information into the structure ret_ adffield, which contains the following
members:

di field field;
di-caption tcap;
di-caption bcap;
di-caption leap;
di: caption rcap;

When wfield is set to TRUE, gi adffieldO will return di field, a handle that may be used by other text field
manipulation functions. Thisfleld handle must eventually be freed by a call to di relfieldO. Information
may be added to this field by making calls to the respective gi_ ad*O functions. -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

gi_ adffieldO will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

SEE ALSO

di relfieldO

One ofthe arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-27

GRAPHICS IC LIBRARY

gi_adline

NAME

gi_adline - add line

SYNOPSIS

#include "GraphicsIC.h"

int
gi adline(h, box, props)

-gi handle h;
gi-box *box;
gi:lineprops *props;

/* NULL */
/* NULL */

DESCRIPTION

The gi_ adlineO function is used to add a line to a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi startgframeO,
gi_startgr(), gi_startbtnO, gi_startnbtnO, gi_startciusterO, gi_adpicht(), gi_ adlncht(f. or gi_adbachtO.

The box argument is a pointer of the type gi box. Refer to gi adcurveO for a description of gi box. - - -
The props argument is a pointer of the type gi lineprops. It is a structure whose members define the
appearance and direction of the line. It contains the following members:

gi brush brsh;
gi-Inend Inenw;
gi-Inend Inese;
gi-Inedhd Inhnw;
gi-Inedhd Inhse;
gi-Indirct dirct;
dp _ bool fixangle;

Refer to gi_adcurveO for a description of the members of gi_lineprops.

RETURN VALUE

3-28

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

ERRORS

gi_ adlineO will fail if one or more ofthe following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

One of the arguments specified is invalid.

The specified handle is illegal.

GRAPHICS IC LIBRARY

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_adcurveO, gi_ adellipseO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-29

GRAPHICS IC LIBRARY

NAME

gi_adlncht - add line chart

SYNOPSIS

#include "DoclCProps.h"
#include "GraphicsIC.h"

int
gi adlncht(h, box, props, data, wchild, ret)

-gi handle h;
gi-box *box;
gi-Inchtprops *props;
gi-chtdat *data;
dp boo I wchild;
giyandle *ret;

/* NULL */
/* NULL */

/* FALSE */
/* Returned */

DESCRIPTION

3-30

The gi_adlnchtO function is used to add a line chart to a specified graphics container.

Refer to gi_ adbacht() for a description of the h and box arguments.

The props argument is a pointer of the type gi Inchtprops. It is a structure whose members specify the
properties of the resulting line chart. gi_lnchtprops contains the following members:

double xunits;
double yunits;
double xmax;
double xmin;
double ymax;
double ymin;
unsigned xdiv;
unsigned ydiv;
gi axtype xaxtype;
gi-axtype yaxtype;
gi-rotation axorient;
dp boolkey;
dp -color scalcol; .
gi Inchtapps *apps;
dp _ bool joined;

xunits, yunits, xmax, xmin, ymax, ymin, xdiv, ydiv, axorient, key and scaleol have the same range of
values as their counterparts in the line chart property sheet.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

xaxtype and yaxtype are of the type gi axtype, an enumerated variable that specifies the gauge, or
grid increments, to be used in generating the line chart. It may have one ofthe following values:

AXT NONE
AXT-SPLAIN
AXT-STICK
AXT-OPLAIN
AXT-OTICK
AXT-OFULL

/* none */
/* single plane */
/* single tick */
/* double plane */
/* double tick */
/* double full */

axorient is of the type gi rotation, an enumerated variable that specifies the orientation with which
the chart and all its elements are to be inserted within the document. It may have one of the following
values:

RT NORMAL
RT-90
RT-'80
RT-270

1* normal */
/* rotate 90 * /
/* rotate 180 * /
/* rotate 270 */

key is a Boolean value that, when set to TRUE, displays the explanatory notes in the line chart

sci col is of the type dp color. It is a structure that specifies the color to be used in drawing the line
chart scale. -

apps is ofthe type gi Inchtapps. It is a structure that specifies the visual attributes of the lines used to
draw the elements oTthe line chart itself, such as point size, fill pattern and brush. It contains the
following members:

unsigned length;
gi_lnchtapp *values;

values is a pointer to an array of gi Inchtapp. It is a structure that contains the following
members: -

unsigned psize;
gi ptfill pfill;
gi-ptstyle pstyle;
dp color pcolor;
gi curvetype ctype;
gi:brush cbrush;

ctype is a structure ofthe type, gi_ curvetype. It may have one of the following values:

CUT STRAIGHT
CUT-SPLINE
CUT-BESTFIT
CUT-EXP

/* straight */
/* spline */
/* best fit straight * /
/* exponential * /

pfill and pstyle are of the type gi ptfill and gi ptstyle, respectively. They are described in
gi_ adpointO. --

joined is a Boolean value that specifies whether the elements of the line chart are to merged as one
with the line chart, or if they are to remain separate graphic elements. If joined is FALSE, each
graphics element, such as rectangles and lines, will be independent of the line chart and may be
manipulated accordingly.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-31

GRAPHICS IC LIBRARY

data is a pointer of the type gi_ chtdat. See gi_ adbachtO for a description ofgi_ chtdat.

wchild is a Boolean that, when set to TRUE, will cause a handle to the line chart to be returned in ret. After
which, graphic elements may be added to the handle. When set to FALSE, ret will contain a NULL value and
the document editor will build the line chart from the information contained in gi chtdat. If a handle is
returned, gi_finishchtO must be called to release it when done. -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_ adlncht() will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

Not enough virtual memory for the operation.

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi adpoint(), gi_ adbacht(), gi_finishchtO

3-32 DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE

NAME
gi_adpicht - add pie chart

SYNOPSIS

;,include "DoclCProps.h"
#include "GraphicsIC.h"

int
gi adpicht(h, box, props, data, wchild, ret)

-gi handle h;
gi-box *box;
gi-pichtprops *props;
gi-chtdat *data;
dp bool wchild;
gi "handle *ret;

DESCRIPTION

/* NULL */
/* NULL */

/* FALSE */
1* Returned */

The gi_ adpichtO function is used to add a pie chart to a specified graphics container.

See gi_ adbachtO for a description of the h and box arguments.

GRAPHICS IC LIBRARY

The props argument is a pointer of the type gi pichtprops. It is a structure whose members specify the
properties of the resulting pie chart. gi_pichtprops contains the following members:

unsigned wth;
gi piestyle style;
gi-chtapps *apps;
dp _ boo I joined;

wth is the width of lines, specified in units of micas. The standard brush widths may have one of the
following value:

GSLW1
GSLW2
GSLW3
GSLW4
GSLWS
GSLW6

/* 1 width for Graphics Single Line */
/* 2 width for Graphics Single Line */
/* 3 width for Graphics Single Line */
/* 4 width for Graphics Single Line */
/* 5 width for Graphics Single Line */
/* 6 width for Graphics Single Line */

Each value corresponds to 35, 71,106,141,176, and 212 micas, respectively. Non-standard brush
widths will result in an error.

style is a structure of the type gi piestyle. Its members define how the pieces of the pie chart are to be
placed with respect to the other pieces. It has the following members:

PIS ADJOIN
PIS-SEPARAT

/* adjoining */
/* separated */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-33

GRAPHICS IC LIBRARY

apps is of the type gi chtapps. It is a structure that specifies the visual attributes of the lines used to
draw the elements or the pie chart itself, such as fill pattern and shading color. It contains the
following members:

unsigned length;
gi_ chtapp *values;

values is a pointer to an array of gi_ chtapp. It is a structure that contains the following members:

gi gray gray;
gi-textures txrs;
dp color txrcol;
dp -color shdcol;
dp -bool tranpare;
dp :color Incol;

joined is a Boolean value that specifies whether the elements of the pie chart (e.g., pie slices and text
frames) are to merged as one with the pie chart, or if they are to remain separate graphic elements. If
joined is FALSE, each graphics element will remain independent of the line chart and may be
manipulated accordingly.

data is a pointer of the type gi_ chtdat. Refer to gi_adbachtO for details.

wchild is a Boolean that, when set to TRUE, will cause a handle to the pie chart to be returned in ret. After
which, graphic elements may be added to the handle. When set to FALSE, ret will contain a NULL value and
the document editor will build the pie chart from the information contained in gi chtdat. If a handle is
returned, gi_finishchtO must be called to release it when done. -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

gi_ adpichtO will fail if one or more of the following are true:

Doc DocumentFuil No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc BadParm

Doc_lllegalHandle

Doc TimeOut

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_ adbachtO, gi_finishchtO

3-34 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi_adpislce

NAME

gi_adpislce - add pie slice

SYNOPSIS

#include "GraphicsIC.h"

int
gi adpislce(h. box. props)

-gi handle h;
gi-box *box;
gi=pislceprops *props;

DESCRIPTION

/* NULL */
/* NUll */

The gi_ adpislceO function is used to place a pie slice in a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi_startgframeO,
gi_startgr(), gi_startbtn(), gi_startnbtn(), gi_startcluster(), or gi_adpicht().

The box argument is a pointer of the type gi_ box. Refer to gi_adcurve() for a description ofgi_ box.

The props argument is a pointer to gi pislceprops. It is a structure whose members define the appearance
of the pie slice. gi_pislceprops contains the following members:

gi brush brsh;
gi-shading shade;
gi-place center;
gi-place start;
gi-place stop;
dp _ bool fixshape;

brsh is of the type gi brush. It specifies the visual qualities of the lines used to draw the pie slice, such
as solid or dashed lines, and their color. Refer to the description of gi startgframe() for general
information regarding brsh. The exception to the description of brsh ingi startgframeO is with
regards to the stylebrush member. The only two parameters that may be specIfied are STB INVISIBLE
and STB SOLID. -

shade is a structure of type gi shading. It is used to define the appearance of the pie slice's interior. Its
members are: -

gi gray gray;
gi-textures txrs;
dp color txrcol;
dp = color shdcol;

gray is of the type gi gray, an enumerated variable that specifies the percentage of black, or
saturation, to be used in making varying shades of the color gray. Refer to gi adbachtO for a chart
illustrating the available shades. -

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-35

GRAPHICS IC LIBRARY

txrs is a structure of type gi textures. It specifies the direction in which the texture is drawn in the pie
slice or the type of texture that is to be placed in the pie slice. For example, textures may be drawn in a
pie slice with a horizontal, vertical, or diagonal orientation. Also, a type of texture that may be placed
in the pie slice is a polka dot pattern. gi_ textures has the following members:

dp bool vertical;
dp -bool horizontal;
dp -bool nwse;
dp -bool swne;
dp :bool polkadot;

Each variable is a Boolean value. The resulting texture will be the AND of the variables. That is,
each variable that is set to TRUE will be placed as a texture in the graphic object.

txrcol is a structure of type dp color. Its members define the color that is to be used in drawing the
texture, or foreground, of the pie slice's interior.

shdcol is a structure of type dp color. Its members define the color to be used when drawing the
background of the pie slice's interior.

center, start, and stop are values of the structure, gi place. These values define the placement of the pie
slice in box. The members ofgi_place are: -

int x;
int y;

x and yare integers that define an x and y axis location in box. Therefore, all grid locations are
relative to box. place. center is the tip of the pie slice, or, if the pie were whole it could be considered
the center of the pie. start and stop are the beginning and ending points on the edge, or circumference,
of the pie slice. The arc of a pie slice goes from start to stop in a clockwise direction. center, start, and
stop are all specified in units of micas. As shown below:

stop
center

~
start

fixshape is a Boolean value that, when set to TRUE, indicates that the aspect ratio of a pie slice will remain
intact when the user grows or shrinks it. A value of FALSE indicates that the aspect ratio of the pie slice
will change freely. The value of this argument is always to be set to TRUE when adding pie slices.

RETURN VALUE

3-36

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno{) is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

ERRORS

gi_ adpislceO will fail if one or more of the following are true:

Doc DocumentFu/l No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

One of the arguments specified is invalid.

The specified handle is illegal.

GRAPHICS IC LIBRARY

Doc BadParm

Doc_IfIegalHandle

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_ adcurveO, gi_ adbachtO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-37

GRAPHICS IC LIBRARY

gi_adpoint

NAME

gi_adpoint - add point

SYNOPSIS

#include "GraphicslC.h"

int
gi adpoint(h. box. props)

-gi handle h;
gi-box *box;
gi:pointprops *props;

/* NULL */
/* NULL */

DESCRIPTION

3-38

The gi_ adpoint() function is used to add a point of a specific size and shape to a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi startgframe(),
gi_startgrO, gi_startbtnO, gi_startnbtn(), gi_ sta rtcl uste r() , or gi_ adlncht(). -

The box argument is a pointer of the type gi box. Refer to gi adcurveO for a general description of gi box.
Note that the value of box.dims may be arbitrary because a point does not have dimensions, and"So the
value entered will be ignored.

The props argument is a pointer to gi pointprops. It is a structure whose members define the appearance
ofthe point. gi_pointprops contains the following members:

unsigned wth;
gi ptstyle style;
gi-ptfill fill;
dp _ color color;

wth is the width of lines, specified in units of micas. The standard brush widths may have one of the
following value:

GSLW1
GSLW2
GSLW3
GSLW4
GSLW5
GSLW6

/* 1 width for Graphics Single Line */
/* 2 width for Graphics Single Line */
/* 3 width for Graphics Single Line */
/* 4 width for Graphics Single Line */
/* 5 width for Graphics Single Line */
/* 6 width for Graphics Single Line */

Each value corresponds to 35, 71, 106, 141, 176, and 212 micas, respectively. Non-standard brush
widths will result in an error.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

style is of the type gi ptstyle. It is an enumerated variable that specifies the shape of the point. It may
have one of the following values:

PTS ROUND
PTS-SQUARE
PTS-TRIANGLE
PTS-CROSS
PTS-INVISIBLE

!* round */
!* square */
/* triangle */
/* cross */
!* invisible */

PTS INVISIBLE may only be specified when placing a point in a line chart. This value is illegal in
every other type of container.

fill is a structure of type gi ptfill. It specifies if the point is to be drawn as a solid fill object or as an
outline object with no fill. One oftwo values may be specified:PTF _SOLID or PTF _HOLLOW.

color is a structure of type dp color. Its members are integers that specify a color that was obtained by
a color extraction function, suCh as dp _ colfromnameO.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

gi_ adpointO will fail if one or more of the following are true:

Doc DocumentFuli No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

SEE ALSO

Not enough virtual memory for the operation.

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

dp _ colfromnameO. gi_adcurveO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-39

GRAPHICS IC LIBRARY

gi_adrectangle

NAME

gi_adrectangle - add rectangle

SYNOPSIS

#include "GraphicsIC.h"

int
gi adrectangle(h, box, props)

-gi handle h;
gi-box *box;
gi:rectangleprops *props;

/* NUll */
/* NUll */

DESCRIPTION

3-40

The gi_ adrectangleO function is used to add a rectangle of a specific size and shape to a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi startgr(),
gi_startgframeO, gi_ c1usterO, gi_startnbtnO, gi_startbtn(), gi_ adbachtO, or gi_ adlnchtO-:-

The box argument is a pointer of type gi box. It defines the size of the rectangle. Refer to gi adcurveO for
a description of gi_ box. - -

The props argument is a pointer of the type gi rectangleprops. It is a structure whose members define the
appearance of the rectangle. Its members are:-

gi brush brsh;
gi-shading shade;
dp _ bool fixshape;

brsh is a structure that defines the visual qualities of the lines used in tracing the border of the
rectangle. It contains the following members:

unsigned wth;
gi stlbrush stylebrush;
dp _ color brushcolor;

wth is the width of lines, specified in units of micas. The standard brush widths may have one of
the following value:

GSlW1
GSlW2
GSlW3
GSlW4
GSlW5
GSlW6

/* 1 width for Graphics Single Line */
/* 2 width for Graphics Single Line */
/* 3 width for Graphics Single Line */
/* 4 width for Graphics Single Line */
/* 5 width for Graphics Single Line */
/* 6width for Graphics Single Line */

Each value corresponds to 35, 71, 106, 141, 176, and 212 micas, respectively. Non-standard
brush widths will result in an error.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

stylebrush defines how the lines are drawn, such as solid or dashed. It may have one of the
following values:

STB INVISIBLE
STB-SOLID
STB-DASHED
STB-DOTTED
STB-DOUBLE
STB-BROKEN

/* invisible */
/* solid */
/* dashed */
/* dotted */
/* double */
/* broken */

The value of wth is affected by the stylebrush specified. For example, the wth of STB DOUBLE
borders is 3 times the usual width because it consists of two lines separated by a gap equal to the
width of the line.

brushcolor specifies the color to be used to display the lines that make up the edges of the graphic
object. The value of color may be any color that is a member of dp _ color.

shade is a structure of type gi shading. It is used to define the appearance of the rectangle's interior.
Its members are: -

gi gray gray;
gi-textures txrs;
dp color txrcol;
dp = color shdcol;

gray is of the type gi gray, an enumerated variable that specifies the percentage of black, or
saturation, to be usedin making varying shades of the color gray. If stylebrush is set to
STB INVISIBLE, then gray may not be set to GRY NONE, otherwise the rectangle will become
invisible. Refer to gi _ adbachtO for a chart illustrating the available shades.

txrs is a structure of type gi textures. It specifies the direction in which the texture is drawn in the
rectangle or the type of texture that is to be placed in the rectangle. For example, textures may be
placed in an rectangle with a horizontal, vertical, or diagonal orientation. Also, a type of texture
that may be placed in the rectangle is a polka dot pattern. gi _textures has the following members:

dp bool vertical;
dp -bool horizontal;
dp -bool nwse;
dp -bool swne;
dp =bool polkadot;

Each variable is a Boolean value. The resulting texture will be the AND of the variables.
That is, each variable that is set to TRUE will be placed as a texture in the graphic object.

txrcol is a structure of type dp color. Its members define the color that is to be used in drawing the
texture, or foreground, ofthe rectangle's interior.

shdcol is a structure of type dp color. Its members define the color to be used when drawing the
background in the rectangle's interior. This parameter is enabled only when the value of gray is
GRY _GRAY. Ifthe value of gray is any other value, shdcol is set to black{O, 0, O}.

fixshape is a Boolean value that, when set to TRUE, indicates that the aspect ratio of the rectangle will
remain intact when the user grows or shrinks it. A value of FALSE indicates that the aspect ratio of the
rectangle will change freely.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-41

GRAPHICS IC LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

gi _ adrectangleO will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_ adcurve(), gi_adbachtO

3-42 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi_adtable

NAME

gi_adtable - add table

SYNOPSIS

#include "DoclCProps.h"
#include "GraphicsIC.h"

int

GRAPHICS IC LIBRARY

gi adtable(h, box, table, frprops, fixwidth, fixheight, wtcap, wbcap, wleap, wrcap, ret)
-gi handle h;

gi-box *box;
di-ins table;
gi-frameprops *frprops;
dp bool fixwidth;
dp -boo I fixheight;
dp -bool wtcap;
dp -bool wbcap;
dp -bool wleap;
dp -bool wrcap;
ret-adtable *ret;

DESCRIPTION

/* NUll */
/* NUll */
/* NUll */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* Returned */

The gi_adtable() function is used to add a table frame into a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi_startgrO,
gi_startgframe(), gi_startbtn(), gi_startnbtn(), or gi_startcluster().

Refer to the description of box in gi adffield() for more information on box. Refer to gi_startgframe() for a
description of the *frprops, and w*cap arguments.

The table argument is of the type di ins. It is an opaque variable that contains the table handle that was
returned by an earlier call to ti_fini'Sntable().

fixwidth and fixheight are Boolean values that indicate whether the width and/or height of a table frame
is to remain static.

The gi adtable() function sets the return information into the structure ret_ adtable, which contains the
following members:

di caption tcap;
di-caption bcap;
di-caption leap;
di caption rcap;

The *cap arguments are each of the type di caption, an opaque variable that contains a caption
handle for the top, bottom, left, and right edges of the table frame, respectively. These handles may
then be passed to various di_ ap*() functions to append captions to the table.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-43

GRAPHICS IC LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_ adtable() will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM

Doc BadParm

Doc_Illegal Handle

Doc TimeOut

Not enough virtual memory for the operation.

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

ti finishtable(), gi_ adffieldO, gi_startgframeO

3-44 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi_adtframe

NAME

gi_adtframe - add text frame

SYNOPSIS

#include "DoclCProps.h"
#include "GraphicsIC.h"

int
gi adtframe{h, box, frprops, tfprops, wtext, wtcap, wbcap, wlcap, wrcap, ret)

-gi handle h;
gi-box *box;
gi-frameprops *frprops;
gi-tframeprops *tfprops;
dp bool wtext;
dp -boo I wtcap;
dp -bool wbcap;
dp -bool wlcap;
dp -bool wrcap;
ret-adtframe *ret;

DESCRIPTION

/* NUll */
/* NULL */
/* NULL */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* Retu rned * /

The gi_ adtframeO function is used to add a text frame to a specified graphics container.

GRAPHICS IC LIBRARY

The h argument is the graphics container handle returned by an earlier call to gi startgr{),
gi_startgframeO, gi_startbtn{), gi_startnbtnO, gi_startcluster(), gi_adbachtO, gi_ adlnchiU, gi_ adpichtO.

Refer to the description of box in gi adffield for more information on box. Refer to gi startgframeO for a
description of the *frprops and w*cap arguments. Refer to gi_adffieldO for a description oftfprops.

The wtext argument is a Boolean value that specifies whether or not the frame is to have text. If a value of
TRUE is specified, the text variable in the return value will be non-NUll. Docie functions may then be used
to add the text. Note the text must eventually be freed by a call to di_reltextO.

The gi adtframeO function sets the return information into the structure ret adtframe, which contains
the following members: -

di text text;
di-caption tcap;
di-caption bcap;
di-caption Icap;
di=caption rcap;

Refer to gi_adffieldO for a description of*cap.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-45

GRAPHICS IC LIBRARY

ERRORS

gi_ adtframe() will fail if one or more ofthe following are true:

Doc DocumentFuli No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc BadParm

Doc_,lIegaIHandle

Doc TimeOut

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_adffieldO, gi_startgframeO, di reltext()

3-46 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi_adtriangJe

NAME

gi_adtriangle - add triangle

SYNOPSIS

#include "GraphicsIC.h"

int
gi adtriangle(h, box, props)

-gi handle h;
gi-box *box;
gi triangleprops *props;

DESCRIPTION

/* NULL */
/* NULL */

GRAPHICS IC LIBRARY

The gi_ adtriangle() function is used to add a triangle of a specific size to a graphics container.

The h argument is the graphics container handle returned by an earlier call to gi_startgr(),
gi_ startgframe(), gi_ startbtnO, gi_startnbtnO, or gi_ startclusterO.

The box argument is a pointer of the type gi box. Its two members, place and dims. specify the origin of
the area in which the triangle will be placed and its size, relative to the graphics container. Refer to
gi_ adcurve() for a description of gi_ box.

The props argument is a pointer to gi triangleprops, a structure whose members define the appearance
of the triangle. It contains the following members:

gi brush brsh;
gi-shading shade;
gi-place p1;
gi-place p2;
gi-place p3;
dp _ boo I fixshape;

brsh is a structure that defines the visual qualities of the lines used in tracing the border of the
triangle. It contains the following members:

unsigned wth;
gi stlbrush stylebrush;
dp _ color brushcolor;

wth is the width of lines, specified in units of micas. The standard brush widths may have one of
the following value:

GSLW1
GSa:. W2
GSLW3
GSLW4
GSLW5
GSLW6

/* 1 width for Graphics Single Line */
/* 2 width for Graphics Single Line */
/* 3 width for Graphics Single Line */
/* 4 width for Graphics Single Line */
/* 5 width for Graphics Single Line */
/* 6 width for Graphics Single Line */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-47

GRAPHICS IC LIBRARY

3-48

Each value corresponds to 35, 71, 106, 141, 176, and 212 micas, respectively. Non-standard
brush widths will result in an error.

stylebrush defines how the lines are drawn, such as solid or dashed. It may have one of the
following values:

STB INVISIBLE
STB-SOLIO
STB-OASHED
STB-DOTTED
STB-DOUBLE
STB-BROKEN

/ * invisible */
/ * solid */
/ * dashed */
/ * dotted */
/ * double */
/ * broken */

The value of wth is affected by the stylebrush specified. For example, the wth of STB DOUBLE
borders is 3 times the usual width because it consists of two lines separated by a gap equal to the
width of the line.

brushcolor specifies the color to be used to display the lines that make up the edges of the graphic
object. The value of color may be any color that is a member of dp _ color.

shade is a structure of type gi shading. It is used to define the appearance of the triangle's interior. Its
members are: -

gi gray gray;
gi-textures txrs;
dp color txrcol;
dp color shdcol;

gray is of the type gi gray, an enumerated variable that specifies the percentage of black, or
saturation, to be used in making varying shades of the color gray. If stylebrush is set
STB INVISIBLE, then gray may not be set to GRY NONE, otherwise the triangle will become
invisible. Refer to gi_ adbachtO for a chart illustrating the available shades.

txrs is a structure of type gi textures. It specifies the direction in which the texture is drawn in the
triangle or the type of texture that is to be placed in the triangle. For example, textures may be
placed in an triangle with a horizontal, vertical, or diagonal orientation. Also, a type of texture
that may be placed in the triangle is a polka dot pattern. gi_ textures has the following members:

dp boo I vertical;
dp -boo I horizontal;
dp-bool nwse;
dp-bool swne;
dP:bool polkadot;

Each variable is a Boolean value. The resulting texture will be the AND of the variables.
That is, each variable that is set to TRUE will be placed as a texture in the graphic object.

txrcol is a structure of type dp color. Its members define the color that is to be used in drawing the
texture, or foreground, of the triangle's interior.

shdcol is a structure of type dp color. Its members define the color to be used when drawing the
background in the triangle's interior. This parameter is enabled only when the value of gray is
GRY _ BLACK. If the value of gray is any other value, shdcol is set to black {O, 0, O}.

p1, p2, and p3 are of the type gi place. As mentioned in the description of box, gi place is a structure
that contains two integer members, x and y. When adding a triangle, these three members specify the

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

the x and y grid location for each of the three points of the triangle. p1, p2, and p3 are specified in
units of micas.

fixshape is a Boolean value that, when set to TRUE, indicates that the aspect ratio of a triangle will remain
intact when the user grows or shrinks it. A value of FALSE indicates that the aspect ratio of the triangle
will change freely.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

gi_ adtriangle() will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM

Doc BadParm

Doc_lllegalHandle

Doc TimeOut

SEE ALSO

Not enough virtual memory for the operation.

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

gi_ adcurveO. gi _ adbachtO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-49

GRAPHICS IC LIBRARY

gi_ap*btnprog

NAME

gi_apchartobtnprog, gi_apnparatobtnprog, gi_aptexttobtnprog - add to a CUSP button

SYNOPSIS

#include "DoclCProps.h"
#include "GraphicsIC.h"
#include "XString.h"

int
gi apchartobtnprog(to, char, foprops, nurn}

-gi buttonprogto;
XCharchar;
dp fontprops *foprops; /* NULL */
unSIgned nurn; /* 1 */

int
gi apnparatobtnprog(to, paprops, foprops, nurn}

-gi buttonprog to;

int

dp paraprops *paprops;
dp -fontprops *foprops;
unSIgned nurn;

gi aptexttobtnprog(to, text, foprops}
-gi buttonprog to;

XString text;

/* NULL */
/* NULL */
/* 1 */

dp _fontprops *foprops; /* NULL */

DESCRIPTION

3-50

The following functions allow the user to add textual information to a CUSP button program.

gi_ apchartobtnprog(} is used to add a character to the button program.

gi_ apnparatobtnprog(} adds a new paragraph character with specified properties to the button program.

gi _ aptexttobtnprog(} adds a string with specified properties to button program.

For all three functions:

to is the button handle returned by an earlier call to gi_startbtn(} or gi_startnbtn(}.

char and text are the respective character and text strings to be inserted in the button program.

Refer to dp _paraprops and dp _fontprops in dp _props for a description offoprops and paprops.

nurn is the number of copies of the character or new paragraph characters to be added.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno(} is used to get the
reason for the failure.

ERRORS

gi_ ap*btnprogO will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

DOc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

SEE ALSO

Not enough virtual memory for the operation.

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-51

GRAPHICS IC LIBRARY

gi_btnforaframe

NAME

gi_btnforaframe - button info for anchored frame

SYNOPSIS

#include "DoclC.h"
#include "GraphicsIC.h"
#include "XString.h"

int
gi btnforaframe(aframe, props, gridprops, ret)

-di ins aframe;
XString *props;
gi gridprops *gridprops;
gi:buttonprog *ret; /* Returned */

DESCRIPTION

The gi btnforaframeO function is used to extract the properties of a button in an anchored CUSP button
frame during enumeration. The button handle that is returned, gi buttonprog, is a text object that points
to CUSP programming code. It may be passed as an argument toenumbtnprogO to enumerate the text
within the button.

The aframe argument is of the type di ins, an enumerated variable that contains the handle of the frame
in question. It was obtained by an earlier call to one of the di enumerateO call-back procedures
(di_ aframeproc{». -

The props argument is a pointer of the type XString. It is a return value in which the properties of a
button are returned.

The gridprops argument is a pointer of the type gi_gridprops. It is a return value in which the grid
properties of an anchored button are returned.

The ret argument is a pointer of the type gi buttonprog, a handle to the button program object that
contains the text contents of the anchored CUSJibutton.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

gi_ btnforaframeO will fail if one or more of the following are true:

Doc BadParm One of the arguments specified is invalid.

Doc_lIlegalHandle

Doc TimeOut

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di enumerateO, gi_ enumbtnprogO

3-52 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi_enumbtnprog

NAME

gi_enumgbtnprog - enumerate button program

SYNOPSIS

#include "GraphiesIC.h"

int
gi enumbtnprog(prog, procs, cdat. ret)

-gi buttonprog prog;
gi-btnenumproes *procs;
vOId *cdat; /* NULL */
dp _ bool *ret; /* Returned */

DESCRIPTION

The gi_ enumbtnprog() function is used to enumerate the properties and text contents of a CUSP button.

prog is a variable of the type gi_ buttonprog. Refer to gi_startnbtn() for a description ofgi_ buttonprog.

procs is a pointer of the type gi btnenumprocs, a user-supplied structure containing the user's call-back
procedures. gi_ btnenumprocs contains the following members:

di newparaproc *newpara;
di textproc *text;

newpara is a pointer of the type di newparaproc, a call-back procedure that is called when a new
paragraph character is encountered in the text.

text is a pointer of the type di textproe, a call-back procedure that is called whenever a substring of
text is encountered. The whoIe' substring is passed as a parameter. Therefore, di textproe may be
called repeatedly, once for each substring of text having the same properties. -

edat is passed to each call-back procedure during enumeration.

ret will be true if gi enumbtnprog() encounters an object it does not recognize, or an object for which a
call-back procedure was not supplied.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_ enumbtnprog() will fail if one or more of the following are true:

Doc BadParm One of the arguments specified is invalid.

Doc_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-53

GRAPHICS IC LIBRARY

SEE ALSO

gi_ btnforaframeO. gi_ enumerateO

3-54 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi enumerate

gi_enumerate - reading graphics

SYNOPSIS

#include "DoclC.h"
#include "GraphicsIC.h"

int
gi enumerate(gcont. procs. cdat. ret)

-di ins gcont;
gi-enumprocs *procs;
vola *cdat; /* NULL */
dp _ boo I *ret; /* Returned */

CALLBACK PROCEDURE

dp bool
gi bachtproc(cdat. box. props. data. chart)

-void * cdat;
gi box *box;
gi-bachtprops *props;
gi-chtdat *data;
di-ins chart;

dp bool
gi bmproc(cdat. box. bmprops. frprops)

-void *cdat;
gi box *box;
gi-bmprops *bmprops;
gi frameprops *frprops;

dp boo I
gi buttonproc(cdat. gcont. box. name. gridprops. frprops. prog)

-void *cdat;
di ins gcont;
gi-box *box;
XString name;
gi gridprops *gridprops;
gi-frameprops *frprops;
gi:buttonprog prog;

dp boo I
gi clusterproc(cdat. gcont. box)

-void *cdat;
di ins gcont;
gi:box *box;

dp bool
gi curveproc(cdat. box. props)

-void *cdat;
gi box *box;
gi: curveprops *props;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

3-55

GRAPHICS IC LIBRARY

dp bool
gi ellipseproc(cdat. box, props)

-void *cdat;
gi box *box;
gi ellipseprops *props;

dp boo I
gi Tfieldproc(cdat, box, fiprops, frprops. tfprops. paprops. foprops. cont)

3-56

-void *cdat;
gi box *box;
dp fldprops *fiprops;
gi frameprops *frprops;
gi-tframeprops *tfprops;
dp paraprops *paprops;
dp -fontprops *foprops;
di field cont;

dp bool
gi trameproc(cdat. gcont, box, frprops, gfprops)

-void *cdat;
di ins gcont;
gi-box *box;
gi-frameprops *frprops;
gi gframeprops *gfprops;

dp bool
gi 'nchtproc(cdat. box, props. data. chart)

-void *cdat;
gi box *box;
gi-Inchtprops *props;
gi-chtdat *data;
di-ins chart;

dp boo I
gi 'ineproc(cdat. box. props)

-void *cdat;
gi box *box;
gi:lineprops *props;

dp bool
gi -pichtproc(cdat. box. props. data. chart)

-void *cdat;
gi box *box;
gi-pichtprops *props;
gi-chtdat *data;
di-ins chart;

dp bool
gi -pislceproc(cdat. box. props)

-void *cdat;
gi box *box;
gi:pislceprops *props;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

dp bool
gi pointproc(cdat, box, props)

-void *cdat;
gi box *box;
gi:pointprops *props;

dp boo I
gi rectangleproc(cdat, box, props)

-void *cdat;
gi box *box;
gi:rectangleprops *props;

dp bool
gi tableproc(cdat, box, table, frprops, fixwidth, fixheight)

-void *cdat;
gi box *box;
di-ins table;
gi-frameprops *frprops;
dp boo I fixwidth;
dp :bool fixheight;

dp bool

/* FALSE */
/* FALSE */

gi -tframeproc(cdat, box, frprops, tfprops, cont)
-void * cdat;

gi box *box;
gi-frameprops *frprops;
gi-ttrameprops *tfprops;
di-text cont;

dp bool gi triangleproc(cdat, box, props)
void *cdat;

gi box *box;
gi triangleprops *props;

DESCRIPTION

GRAPHICS IC LIBRARY

The gi enumerateO function is used to read the contents of a graphics frame. It takes a graphics
container handle, a list of call-back procedures, and user data as arguments. Typically, a call-back
procedure is supplied for each type of graphic object that is in the graphics container. Once called,
gi enumerateO proceeds through each container, calling the appropriate procedure for each type of object
enCOuntered.

Each call-back procedure takes arguments that describe the properties of the object in question. These
properties are temporary, and will be invalidated upon completion of the procedure call. If you want to
save these properties, you must explicitly copy them.

gi rel* functions should not be called by any of the gi enumerateO call-back procedures because the
handles for each gi_rel* function is automatically released once it has been processed.

In the case of a CUSP button, a cluster, or a nested graphics frame, gi enumerateO may be called
recursively to extract the contents of nested frames. -

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-57

GRAPHICS IC LIBRARY

gi_ enumprocs contains the following members:

gi bachtproc *bacht;
gi-bmproc *bm;
gi-buttonproc *button;
gi-clusterproc *cluster;
gi-curveproc *curve;
gi-ellipseproc *ellipse;
gi-ffieldproc *ffield;
gi-frameproc *frame;
gi-Inchtproc *Incht;
gi-lineproc *Iine;
gi-pichtproc *picht;
gi-pislceproc *pislce;
gi-pointproc *point;
gi-rectangleproc *rectangle;
gi-tableproc *table;
gi-tframeproc *tframe;
gi triangleproc *triangle;

Related enumeration functions are di enumerateO and gi enumbtnprog(). They are used to enumerate
the contents of a document or text conWner and a CUSP button, respectively.

ret will be TRUE if gi enumerate() encounters an object it does not recognize, or an object for which a call
back procedure was not supplied.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi _ enumerate() will fail if one or more of the following are true:

Doc BadParm

Doc _lIIega I Handle

Doc TimeOut

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di_ enumerateO. gi_ enumbtnprog()

3-58 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi_finish*

NAME

gi_finishnbtn, gi_finishcluster, gi_finishgr, gi_finishframe, gi_finishcht - finish routine

SYNOPSIS

#include "DoclC.h"
#include "GraphicsIC.h"

int
gi finishcht(chart)
-gi_ handle chart;

int
gi finishcluster(ch)
-gi_ handle ch;

int
gi finishgframe(gfh)
-gi_ handle gfh;

int
gi finishgr(h. ret)

-gi handle h;
di-ins *ret;

int
gi finishnbtn(bfh)
-gi_ handle bfh;

DESCRIPTION

/* Returned */

The gi finish*() functions are used to signal that no more objects are to be added to the respective graphics
container. Calling a gi_finish*() function will free up the respective handle.

bfh, ch, h, and gfh arguments are the handles obtained from corresponding gi start*() functions. The
chart argument is obtained from gi adbacht(), gi adlncht()orgi adpicht() functions when wchild is set to
TRUE. - - -

gi_finishgr() returns di_ins. Typically, di ins is passed as an argument to di_apaframe().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_finish() will fail ifone or more of the following are true:

Doc_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-59

GRAPHICS IC LIBRARY

SEE ALSO

gi start*O. di_ apaframeO. gi_ adbachtO. gi_ adlnchtO. gi_ adpichtO

3-60 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi_getgframeprops

NAME

gi_getgframeprops - get graphics frame props

SYNOPSIS

#include "DoclC.h"
#include "GraphicsIC.h"

int
gi getgframeprops(aframe, ret)

-di ins aframe;
gi gframeprops *ret;

DESCRIPTION

/* Returned */

The gi getgframepropsO function is used to retrieve the name, description, and grid properties of an
anchored graphics frame.

The aframe argument is of the type di ins, an enumerated variable that contains the handle of the
anchored frame in question. -

The requested property values are stored in ret. It is a structure that contains the following members:

XString name;
XStri ng desc;
gi_gridprops grid props;

name is name of an anchored graphics frame. desc is description of an anchored graphics frame. Refer
gi_setgframepropsO for a description of gi_gridprops.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

gi_getgframepropsO will fail if one or more of the following are true:

Doc BadParm One of the arguments specified is invalid.

Doc_lIIegalHandle

Doc TimeOut

SEE ALSO

di_ enumerateO

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-61

GRAPHICS IC LIBRARY

gi_get*def

NAME

gi_get* - get default properties

SYNOPSIS

3-62

#include "GraphicsIC.h"

int
gi getbachtpropsdef(props)
-gi_ bachtprops *props;

int
gi getbmdispdef(disp)
-gi_ bmdisp *disp;

int
gi getbmpropsdef(props)
-gi_ bmprops *props;

int
gi getbmscalpropsdef(props)
-gi_ bmscalprops *props;

int
gi getboxdef(box)
-gi_ box *box;

int
gi getchtappdef(app)
-gi_ chtapp *app;

int
gi getchtdatdef(dat)
-gi_ chtdat *dat;

int
gi getcurvepropsdef(props)
-gi_ curveprops *props;

int
gi getellipsepropsdef(props)
-gi_ ellipseprops *props;

gi getframepropsdef(props)
-gi_frameprops *props;

int
gi getgframepropsdef(props)

-gi_gframeprops *props;

int
gi getgridpropsdef(props)

-gi_gridprops *props;

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Retu rned * /

/* Retu rned * /

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

int
gi getlinepropsdef(props)

gi_lineprops *props;

int
gi getlnchtappdef(app)

-gi_lnchtapp *app;

int
gi getlnchtpropsdef(props)

-gi_lnchtprops *props;

int
gi getpichtpropsdef(props)

-gi_pichtprops *props;

int
gi getpislcepropsdef(props)

-gi_pislceprops *props;

int
gi getpointpropsdef(props)

-gi_pointprops *props;

int
gi getrectanglepropsdef(props)

-gi_rectangleprops *props;

int
gi gettframepropsdef(props)

-gi_ tframeprops *props;

int
gi gettrianglepropsdef(props)
-gi_ triangleprops *props;

DESCRIPTION

GRAPHICS IC LIBRARY

/* Retu rned * /

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

1* Returned */

/* Returned */

1* Returned */

The following functions all return the default values of their respective properties. The properties that are
returned may be modified individually and then passed in a call to a suitable function to set the properties
of an object. The actual default values for the properties are shown as C comments.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-63

GRAPHICS IC LIBRARY

3-64

The gi_getbachtpropsdefO function is used to return the default bar chart properties.

double units;
unsigned div;
gi barscale scale;
dp color sclcol;
gi balayout layout;
gi-baspacing spacing;
gi-baorient orient;
dp bool key;
dp -bool bafloat;
dp -bool mirror;
gi chtapps *apps;
dp _ bool joined;

/* 1.0 */
/* 0 */
/* BS STICK (single tick) */
/*0,0,0*/
/* BL STACKED */
/* BSP HALF (half spacing) */
/* BO VER (vertical) */
/* FALSE */
/* FALSE */
/* FALSE */
/* NULL */
/* TRUE */

The gi_getbmdispdefO function is used to return the default bitmap display properties.

enum{
BM INTERNAL,
BM-FILE
} type;

union {
gi bmdat *bm;
XString name;
}u;

/* BM FILE */

/* NULL */

The gi_getbmpropsdefO function is used to return the default bitmap properties.

int xoffset;
int yoffset;
XString prntfile;
gi bmdisp dispsou;
gi-bmscalprops seal props;
dp bool remotefile;
dP: color bitcol;

/* 0 */
/* 0 */
/* NULL */
/* see gi bmdispdefO */
/* see gi-bmscalpropsdefO */
/* FALSE*/
/* CL BLACK * /

The gi_getbmscalpropsdefO function is used to return the default bitmap scale properties.

enum{
BMS PRNTRES,
BMS-FIXED,
BMS-AUTOMATIC,
} type;

union {
unsigned res;
gi scalfix fixed;
enum{

}u;

SHP SIMILAR,
SHP-FILLUP
} shape;

/* BMS AUTOMATIC */

/* SHP SIMILAR */

The gi _getboxdefO function is used to return the default box properties.

gi place place;
gi dims dims;

/* 1000, 1000 */
/* 1000, 1000 */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

The gi_getchtappdefO function is used to return the default chart appearances properties.

gi gray gray;
gi-textures txrs;
dp colortxrcol;
dp -color shdcol;
dp _color Incol;

1* GRY NONE *1
1* all FALSE *1
1*0.0.0*1
1* 0.0.0 *1
1*0.0.0*1

The gi_getchtdatdefO function is used to return the default chart data properties.

XString title;
gi dataset datset;
dp lang lang;
gi datsource datsou;
gi-Iabels *collabl;
gi-Iabels *rowlabl;
gi datvalues *values;

1* NULL *1
1* DAS COLUMN *1
1* LANG USE (USEnglish) *1
1* DTS PS, TFO BYCOL *1
1* NULL*I -
1* NULL *1
1* NULL *1

The gi_getcurvepropsdefO function is used to return the default curve properties.

gi brush brsh;
gi-Inend Inenw;
gi-Inend Inese;
gi-Inedhd Inhnw;
gi-Inedhd Inhse;
gi-place plnw;
gi-place plapx;
gi-place plse;
gi-place plpek;
dp bool eccentric;
unSIgned eccentricity;
dp _ bool fixangle;

1* 71, STB SOLID, O. O. 0 *1
1* LE SQUARE *1
1* LE-SQUARE *1
1* LEH NONE *1
/* LEH-NONE */
1* 1000,""0 *1
1* 0, 0 *1
1* 0, 1000 *1
1*0,0*1
1* TRUE */
1* 32768 *1
1* FALSE *1

The gi_getellipsepropsdefO function is used to return the default ellipse properties.

gi brush brsh;
gi-shading shade;
dp _ boot fixshape;

1* 71, STB SOLID, {O.O.O} *1
1* GRY NONE, all FALSE, {O. O. OJ, {10000. o. O} *1
1* FALSE *1

The gi_getframepropsdefO function is used to return the default frame properties.

gi brush brsh;
dp bool fixshape;
unSIgned mgns[4];
di caption capcont[4];
dp color bgcol;
dp :bool tranpare;

1* 71, STB SOLID, {O.O.O} *1
1* FALSE *T
1* 0,0,0,0 *1
1* NULL, NULL, NULL, NULL *1
1* 10000. O. 0 *1
1* FALSE *1

The gi_getgframepropsdefO function is used to return the default graphics frame properties.

XString name;
XString desc;
gi_gridprops gridprops;

1* NULL */
1* NULL *1
1* seegi_ bmscalpropsdefO *1

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-65

GRAPHICS IC LIBRARY

3-66

The gi_getgridpropsdefO is used to return the default grid properties.

dp boo I act;
gi gridstyle style;
gi-gridsize size;
gi:plaee offset;

/* FALSE */
/* GRD DOT */
/* GRD-SP*/
/* 0, 0 *T

The gi_getlinepropsdefO function is used to return the default line properties.

gi brush brsh;
gi-Inend Inenw;
gi-Inend Inese;
gi-Inedhd Inhnw;
gi-Inedhd Inhse;
gi-Indirct dirct;
dp _ bool fixangle;

/* 71, STB SOLID, {O, 0, O} */
/* LE SQUARE */
/* LE-SQUARE */
/* LEH NONE */
/* LEH-NONE */
1* LD WE */
/* FALSE */

The gi_getlnehtappdefO function is used to return the default line chart appearances properties.

unsigned psize;
gi ptfill pfill;
gi-ptstyle pstyle;
dp color peolor;
gi curvetype ctype;
gi:brush ebrush;

/* 3 */
/* PTF SOLID */
/* PTS-ROUND */
/* 0,0:0 */
/* CUT STRAIGHT */
/* 71, STB _SOLID, {O, 0, O} */

The gi_getlnehtpropsdefO function is used to return the default line chart properties.

double xunits;
double yunits;
double xmax;
double xmin;
double ymax;
double ymin;
unsigned xdiv;
unsigned ydiv;
gi axtype xaxtype;
gi-axtype yaxtype;
gi-rotation axorient;
dp bool key;
dp -color sealeol;
gi Inehtapps *apps;
dp _ bool joined;

/* 1.0 */
/* 1.0 */
/*0.0*/
/* 0.0 */
/* 0.0 */
/* 0.0 */
/* 0 */
/* 0 */
/* AXT STICK (single tick) */
/* AXT-STICK (single tick) */
/* RT NORMAL * /
/* FALSE */
/* 0, 0, 0 */
/* NULL */
/* TRUE */

The gi_getpichtpropsdefO function is used to return the default pie chart properties.

unsigned wth;
gi piestyle style;
gi-ehtapps *apps;
dp _ bool joined;

/* 71 */
/* PIS ADJOIN */
/* NULL */
1* TRUE */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

The gi_getpislcepropsdef() function is used to return the default pie slice properties.

gi brush brsh;
gi-shading shade;
gi-place center;
gi-place start;
gi-place stop;
dp _ bool fixshape;

/* 71, STB SOLID, {O, 0, O} */
/* GRY NONE, all FALSE, {O, 0, O}, {O, 0, O} */
/* 500,500 */
/* 500,0 */
/* 0,500 */
/* FALSE */

The gi_getpointpropsdef() function is used to return the default point properties.

unsigned wth;
gi ptstyle style;
gi-ptfill fill;
dp _color color;

/* 71 */
/* PTS ROUND */
/* PTF-SOLID */
/* 0, 0:0 */

The gi_getrectanglepropsdef() function is used to return the default rectangle properties.

gi brush brsh;
gi-shading shade;
dp _ bool fixshape;

/* 71, STB SOLID, {O, 0, O} */
/* GRY NONE, all FALSE, {O, 0, O}, {O, 0, O} */
/* FALSE */

The gi_gettframepropsdef() function is used to return the default text frame properties.

dp boo I expr;
dp -bool expb;
dp tframeprops props;

/* FALSE */
/* FALSE */
/* see dp _ tframepropsdefO */

The gi_gettrianglepropsdef() function is used to return the default triangle properties.

gi brush brsh;
gi-shading shade;
gi-place p1 ;
gi-place p2;
gi-place p3;
dp _ bool fixshape;

RETURN VALUE

/* 71, STB SOLID, {O, 0, O} */
/* GRY NONE, all FALSE, {O, 0, O}, {O, 0, O} */
/* 500,0*/
/* 0,1000 */
/* 1000,1000 */
/* FALSE */

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_get*def() will fail if one or more ofthe following are true:

Doc BadParm One of the specified arguments is invalid.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-67

GRAPHICS IC LIBRARY

gi_relbtnprog

NAME

gi_relbtnprog - release button program

SYNOPSIS

#include "GraphicsIC.h"

int
gi relbtnprog(btnprog)
-gi_ buttonprog *btnprog;

DESCRIPTION

The gi_relbtnprogO function is used to release handles obtained by calls to gi_startbtn{) or gi startnbtnO.

The btnprog argument is an opaque variable that points to the handle of the button program to be freed. A
call to this function will set the respective handle to NULL.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_relbtnprog{) will fail ifone or more of the following are true:

Doc_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_ startbtnO. gi_ startnbtn()

3-68 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi_setgframeprops

NAME

gi_setgframeprops - set graphics frame properties

SYNOPSIS

#include "OoclC.h"
#include "GraphicslC.h"

int
gi setgframeprops(aframe. props)

-di ins aframe;
gi_gframeprops *props; /* NULL */

DESCRIPTION

The gi_setgframepropsO function is used to set the properties of a graphics frame.

GRAPHICS IC LIBRARY

The aframe argument is an unsigned opaque variable that contains the frame handle returned by an
earlier call to di_ apaframeO.

The props argument is a pointer of the type gi gframeprops. It is a structure that contains specific frame
properties. gi_gframeprops contains the following members:

XString name;
XString desc;
gi_gridprops gridprops;

name and desc are the name and description of the graphics frame for which the properties are to be
set.

gi_gridprops is a structure that defines the composition of the grid. It contains the following members:

dp bool act;
gi gridstyle style;
gi-gridsize size;
gi:place offset;

act, short for activity, indicates the state of the grid. When act is TRUE, the grid is displayed in the
graphics frame. style and size describe the respective grid type and the interval between grid
marks.

style may have one ofthe following values:

GRO OOT
GRO-PLUS
GRO-TICK

/* dot */
/*plus*/
1* tick */

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-69

GRAPHICS IC LIBRARY

size is specified in units of points, where there are 72 points per inch. size may have one of the
following values:

GRD 4P
GRD-SP
GRD-12P
GRD-'6P
GRD-32P

1* 4 point *1
1* 8 point *1
1* 12 point *1
1* 16 point *1
1* 32 point */

offset describes the shift values of the upper left grid point relative to the upper left corner of the
graphics frame. offset is of the type gi place. It is a structure whose two members are integers
that define the x and y grid locations. Setting both members to 0 indicates that no offset is desired.
offset is specified in units of points, where 72 points are the equivalent of one inch.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

gi_setgframeprops() will fail if one or more ofthe following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di _ apaframeO

3-70 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi_startbtn, gi_finishbtn

NAME

gi_startbtn, gi_finishbtn - create and complete an anchored CUSP button frame

SYNOPSIS

#include "DocJC.h"
#include "DocJCProps.h"
#include "GraphicsIC.h"
#include "XString.h"

int
gi startbtn(doc. name. gridprops. wprog. ret)

-di doc doc;
XString name;

int

gi gridprops *gridprops;
dp bool wprog;
ret-startbtn *ret;

gi finishbtn(h. ret)
-gi handle h;

di-ins *ret;

DESCRIPTION

/* NULL */
!* NULL */
/* FALSE */
/* Retu rned * /

/* Returned */

The gi_startbtnO function is used to begin the creation of an anchored CUSP button.

GRAPHICS IC LIBRARY

The doc argument is of the type di doc, an enumerated variable that contains the document handle
returned by an earlier call to di_startD or d i_starta pO.

The name argument is an XString variable that contains either a valid button name or NULL. If name is
set to NULL, gi_startnbtnO will generate a new unique name for the button, such as Buttonl, Button2, etc.

The grid props argument is a pointer ofthe type gi gridprops. It is a structure whose members define the
style, size, and offset of the grid to be used in the new anchored button. Refer gi setgframepropsO for a
description ofgi_gridprops. -

The wprog argument is a Boolean value that determines whether the returned gi buttonprog will be
valid or NULL. Pass FALSE as the value of this argument if you do not intend to usegi ap*tobtnprogO
functions to append data to the button during the current programming session. Pass TRUE as the value of
this argument to get a non-NULL program for this button. Complete the implementation of the resulting
button, gi buttonprog, by calling the various gi ap*tobtnprogO functions. If wprog is set to TRUE,
gi relbtnprogO must be called to release gi buttonprog after all the desired data has been appended and
before calling gi finishbtn{). gi finishbtn{}finishes all the non-program aspects of button creation and
returns an instance to pass as thecont parameter of di _ apaframeO.

The ret argument is a pointer of the type ret startbtn. It is a structure in which will be placed the return
information. ret_ startbtn contains the folloWIng members:

gi handle h;
gi:buttonprog prog;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-71

GRAPHICS IC LIBRARY

h is the graphic handle of a CUSP button.

prog is a pointer 01 the type gi buttonprog. It is an enumerated variable that contains the button
program data and is supplied as an argument to gi_ ad*btnO functions.

The gi finishbtnO function is used to terminate the creation of an anchored button. This function is called
after airthe desired data has been added to the anchored button.

The h argument to gi finishbtnO is of the type gi handle. It is an enumerated variable that contains the
anchored button handle returned by an earlier calITo gi_ startbtnO.

ret is a pointer of the type di ins, an enumerated variable that is usually passed as an argument to
gi_ apaframeO only. -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

gi_startbtn() will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One ofthe arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

gi_finishbtn() will fail if one or more of the following are true:

Doc BadParm One of the specified arguments is invalid.

Doc_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_relbtnprog(), gi_finishbtn(), di apaframe(), gi setgframepropsO

3-72 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi_startcluster

NAME

gi_startcluster - start cluster

SYNOPSIS

#include "GraphicsIC.h"

int
gi startcluster(h, box, ret)

-gi handle h;
gi-box *box;
gi:handle *ret;

DESCRIPTION

/* NULL */
/* Returned */

The gi startcluster() function is used to create a set of graphic objects. Graphic objects may then be placed
at the IOcation specified in the box argument by passing the handle returned by this function, gi handle,
to the appropriate gi _ ad*O functions. -

The h argument is the graphics handle returned by an earlier call to gi_startgr(), gi_startgframe(),
startgframe(), or gi_startbtn().

The box argument is a pointer of the type gi box. It's two members, place and dims specify the location of
the container in which is to be placed graphic objects relative to the anchored frame, as well as the size of
the container.

gi place place;
gi_ dims dims;

gi place contains two integer variables x and y. These two variables indicate the grid location of the
box origin. gi dims contains two integer variables wand h. These two variables indicate the width
and height orthe box with respect to the box origin. Both place and dims are specified in units of
micas.

A {O, O} grid location indicates the upper left corner of a frame. Increasing the value of x causes the
placement location to shift towards the right. Increasing the value of y causes the placement location
to shift downwards. It is illegal to specify negative wand h values, therefore an object's dims.place
must always correspond to the upper left corner of a box. It is legal to specify negative x and y values.

box.dims defines the area in which may be placed graphic objects. Increasing the value ofw causes the
frame to grow towards the right. Increasing the value of h causes the frame to grow in a downward
direction. If an attempt is made to fit a graphic object within a frame that is too small to accommodate
the graphic object, via calls to gi ad*O functions, only that portion of the object which lies inside the
frame will be displayed. Those portions of the object which lie outside the frame still exist but are not
displayed.

For example, to define the location and area to be occupied by a cluster of graphic objects, box.dims
and box.place would have the following effect:

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-73

GRAPHICS IC LIBRARY

y area Frame

x ~7""""""""""""'~1 : : h · . · . · . · . · . · . · . · .

w

The cluster will be placed in the resulting area defined by wand h, relative to the location specified by x
and y. Once the cluster has been defined, graphic objects may be placed within it.

Once all the desired graphic objects have been added to the cluster, call gi_finishdusterO.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno(} is used to get the
reason for the failure.

ERRORS

gi_startdusterO will fail if one or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc _ OutOfDi skSpace Not enough disk space for the operation.

Doc OutOfVM

Doc BadParm

Doc_lllegalHandle

Doc TimeOut

Not enough virtual memory for the operation.

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

gi_finishduster()

3-74 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

gi_startgframe

NAME

gi_startgframe - start graphics frame

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"
#include "GraphicsIC.h"

int
gi startgframe{h, box, frprops, gfprops, wtcap, wbcap, wlcap, wrcap, ret)

-gi handle h;
gi-box *box;
gi-frameprops *frprops;
gi-gframeprops *gfprops;
dp bool wtcap;
dp -bool wbcap;
dp -boo I wlcap;
dp -bool wrcap;
ret_ startgframe *ret;

DESCRIPTION

/* NULL */
/* NUll */
/* NULL */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* Returned */

GRAPHICS IC LIBRARY

The gi startgframe() function is used to nest a graphics frame within a graphics container. The resulting
frame will have a set of user-defined properties. The handle returned by this function may then be passed
as an argument to other gi_ ad*() functions.

The h argument is the graphics container handle representing the container into which the nested
graphics frame is to be placed. This handle may come from several places, most notably gi startgr(),
gi_startgframe{), gi_startbtn{), gi_startnbtn{), or gi_startciusterO. -

The box argument is a pointer ofthe type gi_ box. Refer to gi_startcluster() for a description of gi_ box.

The frprops argument is a pointer of the type gi frame props. It is a structure that defines the common
properties of the graphics frame. gi_framepropsContains the following members:

gi brush brsh;
dp boo I fixshape;
unSIgned mgns[4];
di caption capcont[4];
dp color bgcol;
dp :bool tranpare;

brsh is a structure that defines the visual qualities of the lines comprising the edges of the frame. It
contains the following variables:

unsigned wth;
gi stlbrush stylebrush;
dp _ color brushcolor;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-75

GRAPHICS IC LIBRARY

3-76

wth is the width of lines, specified in units of micas. The standard brush widths may have one of
the following value:

GSLW1
GSLW2
GSLW3
GSLW4
GSLW5
GSLW6

/* 1 width for Graphics Single Line */
/* 2 width for Graphics Single Line */
/* 3 width for Graphics Single Line */
/* 4 width for Graphics Single Line */
/* 5 width for Graphics Single Line */
/* 6 width for Graphics Single Line */

Each value corresponds to 35, 71, 106, 141, 176, and 212 micas, respectively. Non-standard
brush widths will result in an error.

stylebrush defines how the lines are to be drawn, such as solid or dashed. It may have one of the
following values:

STB INVISIBLE
STB-SOLID
STB-DASHED
STB-DOTTED
STB-DOUBLE
STB-BROKEN

/* invisible */
/* solid */
/* dashed */
/* dotted */
/* double */
/* broken */

The wth of STB DOUBLE borders is 3 times the usual width because it consists of two lines
separated by a gap equal to the width of the line. In this case, the brush widths may have one of the
following values:

GDLW1
GDLW2
GDLW3
GDLW4
GDLW5
GDLW6

/* 1 width for Graphics Double Line */
/* 2 width for Graphics Double Line */
/* 3 width for Graphics Double Line */
/* 4 width for Graphics Double Line */
/* 5 width for Graphics Double Line */
/* 6 width for Graphics Double Line */

Each value corresponds to 106, 212, 318, 423, 529, and 635 micas, respectively. The following
are examples of brush styles:

D
.---, · -D r·_·, · .
I I · L. __ .J · . L._ . .J ·

INVISIBLE SOLID DASHED DOTTED DOUBLE BROKEN

brushcolor specifies the color to be used to display the lines that make up the edges of the graphics
frame. The value of color may be any color that is a member of dp _ color.

fixshape is a Boolean value that, when set to TRUE, indicates that the aspect ratio of a frame will
remain intact when the user grows or shrinks the box that contains it. A value of FALSE indicates that
the aspect ratio of the graphic object will change in proportion to the changes made to the box that
contains it.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

mgns is an array used to define the margins outside the frame. It requires four values. The values set
the top, bottom, left, and right margins, respectively.

capcont is an array used to specify the captions associated with the frame. Its four elements are
opaque caption handles. The capcont parameter is only meaningful during enumeration and when
passing the caption handles as arguments to suitable gi ad*O functions, and not when calling
gi_start*(), since the contents of each caption is added afterthe frame is created.

bgcol is a structure comprised of integers that define the background color of the frame. These
integers are returned from a previous call to a color translation function, such as dp _ colfromname().

tranpare is a Boolean value that specifies if the background color of the frame is to be white or
transparent when the value of bgcol is {O,O,O} (i.e., white). A value of TRUE indicates that the
background is to be transparent when the color is {O,O,O}. A value of FALSE indicates that the
background is to be a solid white color.

gfprops is a pointer of the type gi gframeprops. It is a structure whose members are used to set specific
frame properties. Refer to the desCription of gi_setgframeprops() for more information.

w*cap arguments are Boolean values that specify whether or not the frame is to have captions. If a value
of TRUE is specified for a w*cap argument. the respective *cap return value will be non-NULL. These
caption arguments are used to set the top, bottom, left, and right captions, respectively. Docie functions
may then be used to add text to each caption. Note that the caption must eventually be freed by a call to
di_relcap().

gi startgframe() sets ret as the return information. ret_startgframe contains the following members:

gi handle gfh;
di-caption tcap;
di-caption bcap;
di-caption leap;
di caption rcap;

gfh is the handle to the newly created graphics frame. tcap, bcap, leap and rcap are the frame captions for
top, bottom, left and right, respectively.

Once the desired graphic objects have been added to the frame, gi_finishgframeO must be called to release
the handle and resources allocated by the system.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-77

GRAPHICS IC LIBRARY

ERRORS

gi_ startgframeO will fail if one or more ofthe following are true:

Doc DocumentFull No more room in the document.

Doc_ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM Not enough virtual memory for the operation.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

SEE ALSO

di_relcapO, dp _ colfromnameO, gi finishgframeO, gi setgframepropsO

3-78 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

gi_startgr

NAME

gi_startgr - start to create an anchored frame

SYNOPSIS

#include "DoclC.h"
#include "GraphicsIC.h"

int
gi startgr(doc, ret}

-di doc doc;
gi:handle *ret;

DESCRIPTION

/* Returned */

The gi startgr(} function is used to create a graphics frame in a document so that graphic objects may be
placedwithin the resulting frame. This function returns a graphics handle, gi handle, which is an opaque
variable that contains a graphics container. A graphics container is simplyan object that may contain
graphic objects. A graphics container may be a nested graphics frame, a CUSP button within a graphics
frame, or a similar construct, such as a chart.

The doc argument is the document file handle that was returned by an earlier call to either di start(} or
di_startap(}. -

Once all the desired objects have been added to a frame, call gi finishgr(} to free the handle and the
resources allocated to that graphics frame. -

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno(} is used to get the
reason for the failure.

ERRORS

gi_startgr(} will fail ifone or more of the following are true:

Doc DocumentFull No more room in the document.

Doc_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

SEE ALSO

Not enough virtual memory for the operation.

One of the arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

di_startap(}, gi_startgframe(}, gi startnbtn(}

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-79

GRAPHICS IC LIBRARY

NAME

gi_startnbtn - start nested button

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"
#include "GraphicsIC.h"
#include "XString.h"

int
gi startnbtn(h, box, name, grid props, frprops, wprog, wtcap, wlcap, wrcap, ret)

-gi handle h;
gi-box *box;
XString name;
gi gridprops *gridprops;
gi-frameprops *frprops;
dp boo I wprog;
dp -bool wtcap;
dp -bool wbcap;
dp -bool wlcap;
dp -bool wrcap;
ret-startnbtn *ret;

/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* FALSE */
/* Returned */

DESCRIPTION

3-80

The gi startnbtnO function is used to create a CUSP button in a frame. The resulting button may then
have CUSP code placed inside it via the prog argument to ret_startnbtn.

The h argument is the graphics container handle returned by an earlier call to gi startgframeO,
gi_ clusterO, gi_startnbtnO, or gi_startbtnO. -

The box argument is a pointer of the type gi box. Refer to gi _ adffieldO for a description of gi _ box.

The name argument is the default name of the button. If this parameter is left NULL, gi startnbtnO will
generate a new unique name for the button, such as Buttonl, Button2, etc. -

gridprops is a pointer of type gi grid props. It is a structure whose members determine the composition of
the grid. Refer to the descriptionof gi_setgframepropsO for more information.

frprops is a pointer of type gi frameprops. It is a structure whose members determine the common
properties of the graphics frame--:-kefer to the description of gi_startgframeO for more information.

wprog is a Boolean value that, when set to TRUE, indicates that the CUSP button is to have CUSP
program code added.

w*cap arguments are Boolean values that specify whether or not the CUSP button is to have captions. If a
value of TRUE is specified for a w*cap argument. the respective w*cap return value will be non-NULL.
DoclC functions may then be used to add text to each caption. Note the caption must eventually be freed by
a call to di_relcapO.

If the w*cap arguments are set to TRUE, and a call to this function returns a valid button program handle,
the returned handle must later be freed by a call to gi_relbtnprogO. GraphicslC provides several functions

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

GRAPHICS IC LIBRARY

that the user can call to add data to the CUSP program; refer to gi_ ap*btnprog(), for information
regarding these functions.

ret is a pointer to ret startnbtn. It is a structure for the return information. It contains the following
members: -

gi handle bfh;
gi-buttonprog prog;
di-caption tcap;
di-caption bcap;
di-caption leap;
di: caption rcap;

The bfh argument is the handle to the newly created button. prog is a handle to the CUSP program
code to be used by gi_ ap*btnprog functions.

tcap, beap, leap, and reap are as described above.

Once the desired graphics objects have been added to the frame, gi_finishnbtnO must be called to
release the handle and resources allocated by the system.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno{) is used to get the
reason for the failure.

ERRORS

gi_startnbtn() will fail if one or more of the following are true:

Doc DoeumentFull No more room in the document.

Doe_ ReadonlyDoc Document opened in ReadOnly mode.

Doc_ OutOfDiskSpace Not enough disk space for the operation.

Doc OutOfVM

Doc BadParm

Doe_lIIegalHandle

Doc TimeOut

SEE ALSO

Not enough virtual memory for the operation.

One ofthe arguments specified is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

gi startgframe{), gi relbtnprog(), gi ap*tobtnprogO. di releapO. gi finishbtnO. gi adffieldO.
gi_ setgframeprops(]. - - - -

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 3-81

GRAPHICS IC LIBRARY

3-82 DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE

4. Table Ie Library

ti_intro

NAME

ti_intro - introductory explanation oftable functions

DESCRIPTION

TablelC functions are used to read the contents of a table, create a new table, or add information to an
existing table.

A table is defined by three types of properties: table properties, column properties, and row properties.
Table properties include the name of the table, a description of the table headers, and the number of
columns and rows in the table; column properties include the division of columns and the alignment of text
within columns; and row properties include information about how the text is to be aligned within a given
row. The actual data of a table is included with the row information.

Table Building

The first step in generating a new table is usually a call to ti starttableO. A call to this function will cause
a table handle to be returned. The handle is a static variable that contains, in addition to table-related
data, a pointer to the contents of the table. (Refer to ti *props for a diagram that depicts the structure of a
table.) It is this handle that is passed to other ti *() functions as the means of identifying the table within
the document and its associated properties. At this point, the row properties have default values and the
contents of the table is nil. The contents and properties of each row are later added to the table via calls to
other ti *0 functions.

To add data to a table, pass the table handle returned by ti starttable() as an argument to ti appendrow().
ti appendrow() will add a row to the end of the table and insert the specified contents into that row.
ti-appendrow() is to be called repeatedly until all the rows and their contents have been appended to the
table. When the table is complete, call ti finishtableO to finalize the structure of the table. Once finalized,
ti finishtableO returns an instance of the table, di ins. This instance is comprised of only the rows and
contents of the table frame; the remaining table properties, such as captions and border style, are added
later via calls to related DociC or GraphicslC functions, such as di_ apaframe() or gi_ adtable().

The preceding paragraphs describe how to create a new table and then add data to it. To add information
to an existing table, call ti startextableO rather than ti starttable(). ti startextable() is used to initialize
a table in a document for editing. ti startextable() is called with an instance of the table, di ins, as an
argument and returns a handle to that table. The table instance passed to ti startextabli[) may be
obtained by a call to di enumerate(). When di enumerateO is used to obtain tne instance, the original
document handle supplied as an argument to di enumerateO must have originally come from di_startap().

The table handle returned by ti startextable() may then be passed as an argument to ti appendrowO and
ti finishtableO. - -

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 4-1

TABLE IC LIBRARY

Table Reading

The contents of a table are typically read by calling the ti enumtableO function. This function requires an
instance of a table, di ins, and a set of three call-back procedures as arguments. The three call-back
procedures are ti_ tableproe{), ti_ eolumnproe{), and ti_rowproe{).

The ti enumtable{) function calls ti tableproe{) and ti eolumnproe{) once while processing a table; these
procedures extract the table and column properties. Since the contents of a table are stored with the rows,
ti_ enumtableO calls ti_rowproe{) once for each row encountered in the table.

Properties

4-2

Table Properties

ti tableprops describes the properties of a table and its headers. ti tableprops contains the following
mEimbers: -

XString name;
unsigned nrows;
dp bool fxrows;
unSIgned neols;
dp bool fxeols;
dp -bool fillinbyrow;
dp -boo I reptop;
dp -bool repbottom;
dp -boo I deferon;
dp -bool vsblhd;
dp-bool rephd;
ti ndalignment halign;
ti-valignment valign;
unsigned thdmgn;
unsigned bhdmgn;
ti line bdrline;
ti-line dvrline;
ti sortkeys *sortkeys;

name is an XString that specifies the name of the table.

nrows is an integer that specifies the number of rows in the table. This value is valid only upon
reading by ti enumtable{). fxrows is a Boolean value that specifies whether or not the user may
change the number of rows in the table.

neols is an integer that specifies the number of columns in the table. This value is valid only upon
reading by ti enumtableO. fxeols is a Boolean value that specifies whether or not the user may
change the number of columns in the table.

fillinbyrow is a Boolean value that determines what happens when the user presses the NEXT key.
Iffillinbyrow is TRUE, pressing the NEXT key advances through the table one column at a time, and
the table is expanded by rows. In this case, the number of columns is fixed and the number of rows
can be either fixed or varying. If fillinbyrow is FALSE, then pressing the NEXT key advances
through the table one row at a time, and the table is expanded by columns. In this case, the
number of rows is fixed and the number of columns can be either fixed or varying.

vsblhd is a Boolean value that indicates whether or not there should be a visible header at the top
of the table; rephd, reptop, repbottom are Boolean values that indicate whether or not to repeat
the header, table top, or table bottom on every page when the table spans multiple pages.

DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE

TABLE IC LIBRARY

deferon is a Boolean value that indicates whether the pagination operation will defer the table
frame to the next page if it cannot fit on the current page. If deferon is FALSE, that portion of the
table that will fit on the current page will be placed on that page, and the remainder will placed on
successive pages.

halign and valignm are values of the type ti hdalignment and ti valignment, respectively. They
specify the alignment of text within a header:- -

ti_ hdalignment may have one of the following values:

HO LEFT
HO-CENTER
HO-RIGHT

/* left */
/* center */
/* right */

ti_ valignment may have one of the following values:

VA FTOP
VA-CENTER
VA-FBOTIOM

/* flush stop */
/* centered */
/* fl ush bottom * /

thdmgn and bhdmgn are integers that specify the amount of white space that should appear
between above and below each header element. Values are specified in units of micas.

bdrline describes the table border (not the frame border), and dvrline describes the line between
the header row and the rest of the table. A line may have a width anywhere from one pixel to six
pixels. Both bdrline and dvrline are of the type ti_line.

ti line is a structure whose members describe the properties of the line. It contains the
fo1fowing members:

ti linestyle style;
ti-linewidth width;

ti_linestyle is an enumerated type that may have one of the following values:

LS NONE
LS-SOLIO
LS-OASHEO
LS-OOTIEO
LS-OOUBLE
LS-BROKEN

/* none */
/* solid */
/* dashed */
/* dotted */
/* double */
/* broken */

ti_linewidth may have one of the following values:

LW W1 /* width of 1 pixel */
LW-W2 /* width of 2 pixel */
LW-W3 /* width of 3 pixel */
LW-W4 /* width of 4 pixel */
LW -W5 /* width of 5 pixel */
LW -W6 /* width of 6 pixel */

The argument sortkeys is a pointer of the type ti sortkeys. It determines whether columns are
sorted in ascending or descending order. It contains the following members:

unsigned length;
ti_ sortkey *keys;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 4-3

TABLE IC LIBRARY

4-4

ti sortkeys is comprised of an integer, length, and an optional array of ti sort key , where there
may be one ti sortkey specified for each table or column. A column must be divided-repeating in
order to havesort keys. The integer specifies the number of columns comprising the table.
ti_sortkey contains the following members:

XString name;
dp _ bool ascend;

ti sortkey consists ofa string that specifies the column's name and a Boolean value that indicates
whether to sort in ascending or descending order. A value of TRUE will result in an ascending sort
order.

Column Properties

ti colinfoseq describes the properties of all the columns in a table. ti colinfoseq is a structure
comprised of the following members: -

unsigned length;
ti_ colinforec *seq;

length is an integer that specifies the number of columns in the table.

seq is a pointer of the type ti colinforec.lts members describe the properties of each column. The
most complicated field in ti colinforec is hdentry; all of the other fields correspond directly to the
fields on the property sheet. The main column header properties are described below. The
remaining column properties are described in the section titled Other Column Properties.

ti_ colinforec contains the following members:

ti hdentry hdentry;
Xstring name;
XString desc;
dp bool divid;
unSIgned subcols;
dp bool repeat;
ti colinfo subcolinfo;
ti-halignment alignment;
unsigned taboffset;
unsigned width;
unsigned Imgn;
unsigned rmgn;
dp fldchoice type;
dp -bool req;
dp -lang lang;
XSmng format;
dp bool stpskp;
XSmng range;
unsigned length;
XString skptext;
dp skpchoice skpchoice;
XSmng fillin;
dp fontruns *fillinruns;
ti line line;
ti sortkeys *sortkeys;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

TABLE IC LIBRARY

Column Header Properties

ti hdentry is a structure whose members describe the textual content of each column header. The text
ineach column header may contain an unlimited number of font and paragraph properties. ti hdentry
contains the following members: -

ti hdinfo subhds;
ti-line line;
dp bool hint;
ti_ entry cont;

subhds is a value of the type ti hdinfo. It is used to describe the headers of each subcolumn. This
argument is applicable only TI' the column in question has been divided. subhds points to
ti hdinfoseq, a structure whose members define the number of columns in the table, including the
ti-hdentry variable of each subcolumn. Each subcolumn may in turn be subdivided, in which case
that subcolumn's ti_ hdentry.subhds field will point to another array.

ti_ hdinfoseq contains the following members:

unsigned length;
ti_ hdentry *seq;

Refer to the figure below for a graphic description of the flow of ti *0 functions and the
composition of headers and columns. -

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 4-5

TABLE IC LIBRARY

~--------------~ r----------------~

ti colinforec I and L ____ ~=~~:~t~~ ___ J

In case ofti starttable orti enumtable

............................ . .
~ tj col j nforec .. ~ --..... +

Table

A

a
I

subcollnfo: - subcollnfo: -
,---------~ ,---------~
I I I I

:cont: "A"
I

:cont: "B"
I

I I
I I I I '- _________ .J '- _________ .J

~,. "
subcollnfo: NULL subcollnfo: - subcollnfo: NULL ,...---------.., ,----------, r---------..,

I I I I I I

: cont: "a"
I

: cont: "b"
I

: cont: "c"
I

I I I
I I I I I I '- _________ .J '- _________ .J

'----------

"
,,.

B
b d c

i II

subcollnfo: -.---------..,
I I

: cont: "d"
I
I

I I '---------_

subcollnfo: NULL subcollnfo: NULL subcollnfo: NULL subcollnfo: NULL ,----------, r---------.., ,----------.., .---------..,
I I I I I I I I

: cont: "j" I : cont: "jj" I
: cont: "j"

I
: cont: "jj"

I
I I I I

I I I I I I I I '---------_ '---------_ '---------_ '---------_

In case of ti startextable

.... :j.~~~~~:~ ... ,
r-------------,r------------~

: subhds: 1 :: subhsd: :

--------L-~-~-n--t~_:_~_-_H-_-_: __ ~ J L ~~~: ~'~ ~'_ _ _ _ J
t
r------------~r------------~
: subhds: NULL :: subhds: :
: cont: "a" :: cont: "b" : L ____________ .JL ___________ .J

r------------'r------------,
: subhds: NULL :: subhds: NULL :
: cont: "j" :: cont: "jj" : L ____________ ~L ____________ ~

ti

~------------,~------------,

: subhds: NULL :: subhds: :
:cont:"c" ::cont:"d" : L ____________ .JL ___________ .J

r------------'r------------,
: subhds: NULL :: subhds: NULL :
: cont: "j" :: cont: "ji" : L ____________ ~L ____________ ~

colinforec and ti_ hdentry

i i

4-6 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

TABLE IC LIBRARY

line is a value of the type ti line. Its members describe the properties of the line that divides the
header from subheaders. linecontains the following members:

ti linestyle style;
ti-linewidth width;

ti_linestyle is an enumerated type that may have one of the following values:

LS NONE
LS-SOLID
LS-DASHED
LS-DOTTED
LS-DOUBLE
LS-BROKEN

/* none */
1* solid */
1* dashed */
/* dotted */
1* double */
/* broken */

ti_linewidth is an enumerated type that may have one of the following values:

LW W1 /* width of 1 pixel */ -LW W2 /* width of 2 pixel */
LW -W3 /* width of 3 pixel */
LW -W4 /* width of 4 pixel */
LW -W5 /* width of 5 pixel */
LW -W6 1* width of 6 pixel */

line is visible only when the column is subdivided.

hint is a Boolean value that indicates that the header is to contain only one line of text. Setting
this value to TRUE will result in faster processing because it simplifies the calculation of header
size. If hint is set to TRUE and then one or more lines of text are appended to the header text, the
resulting header entry will display only the first line of text, though more text is present. If this
situation occurs, it may be corrected by editing the text in the header, which will cause the
Document Editor to recompute the header's height.

eont is a value of the type ti entry. It is a union whose members describe the textual contents of a
header and the access permissions to those contents. It contains the following members:

enum{
READ = O.
WRITE = 1
} mode;

union {
di text text;
weant weont;
} u;

/* NULL */

weont contains the following members:

ti fillintxtproe *proe;
VOId *edat;

/* NULL */
/* NULL */

When enumerating a table, all the header and row entry permissions will be set to READ.
di text may be called to enumerate the text. Upon completion, there is no need to call
di-reltext().

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 4-7

TABLE IC LIBRARY

4-8

When creating a table, set all header and row entries to WRITE. ti fillintxtproc call-back
procedures may be invoked to fill the table with text. The value ofCdat will be passed to
ti _ fi II i ntxtproc.

Other Column Properties

name and desc are the name and description of the column as it would appear in the property sheet.

divid specifies whether the columns may be divided. subcols is the number of subcolumns; repeat
indicates that subcolumns may have subrows, and subcolinfo is a recursive description of each
subcolumn. subcols, repeat, and subcolinfo are ignored if divid is FALSE.

alignment describes the alignment oftext within a column.

taboffset specifies where decimal tabs are to be set, relative to the margin. taboffset only applies if
alignment is THA DECIMAL. taboffset is specified in units of micas. Note that this is different than
dp _ taboffset, whTch is measured in units of points.

width is the width of a column; Imgn and rmgn are the margins of a column. If the column is divided,
these parameters are ignored. These values are also specified in units of micas.

type indicates the type of contents to be placed in the column.

req indicates that data must be entered into a field before the user is permitted to proceed to another
field in the table.

lang determines the format of the date and amount fields. It is used when items are added to the
paragraph.

format allows the user to define a format to which the data in a column must conform.

stpskp controls the manner in which the skipping action of the SKIP button works. When set to TRUE,
the skipping action will stop at the next entry in a column.

range defines a specific range of acceptable entries for the column. Once defined, an entry that does
not match the criteria specified in range is not accepted.

length specifies the maximum number of characters to be entered into the column.

skptext and skpchoice define the conditions under which an entry may be skipped when the user
presses NEXT.

fillin describes the fill-in rule for the column.

fillinruns describes the font properties offillin.

line describes the properties ofthe vertical line to the right of the column.

sort keys describes the sort keys for the column.

Row Content

ti rowcont is a pointer to ti rowcontseq. ti rowcontseq is a pointer to a structure that describes the
properties and contents of a row. It contains the following members:

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

unsigned tmgn;
unsigned bmgn;
ti line line;
ti-valignment valign;
unsigned length;
ti rowent *rowdat;

TABLE IC LIBRARY

tmgn and bmgn are the row margins. That is, the margin above the top row and below the bottom
row. line is the properties of the line separating the rows. valign specifies the alignment of text
within a row. rowdat describes the contents of the row.

ti_rowent describes the textual content ofa given row entry and contains the following members:

ti subrows *subrows;
dp bool hint;
ti _entry cont;

ti su brows describes the properties and contents of a subrow. If subrows is non-NU LL, then the
rest of the ti rowent record is unused, since the textual information will be in each individual
subrow record. ti_subrows contains the following members:

unsigned length;
ti rowcont rows;

Note that subrows may exist only if the parent column is divided.

The remaining fields are as described in the header file.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 4-9

TABLE Ie LIBRARY

ti_appendrow

NAME

ti_appendrow - append row

SYNOPSIS

#include "TableIC.h"

int
ti appendrow(h. rc)

- ti handle h;
ti-rowcont rc;

DESCRIPTION

The ti_ appendrowO function is used to add a row to a table.

h is the value ofti handle, an opaque variable that contains the table handle returned by an earlier call to
either ti startta6T"eO or ti startextableO. - -
rc is the value of the type ti rowcont. It is a structure whose members specify the margins and alignment
of the row, as well as its contents. It contains the following members:

unsigned tmgn;
unsigned bmgn;
ti line line;
ti-valignment valign;
unsigned length;
ti rowent *rowdat;

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

4-10

ti_appendrowO will fail if the following is true:

Doc TableTooTall The specified table is too high to fit in the table frame.

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

ti_deffont. ti_defpara

NAME

ti_deffont, ti_defpara - default font and paragraph properties

SYNOPSIS

#include "DoclCProps.h"
#include "TableIC.h"

int
ti deffont(ret)

- dp _fontprops *ret;

int
ti defpara(ret)

- dp _paraprops *ret;

DESCRIPTION

/* Returned */

/* Retu rned * /

TABLE IC LIBRARY

The ti deffont() and ti defpara() functions are used to assign default font and paragraph property values
to the elements of a table.

These functions return dp fontprops and dp paraprops, respectively. The property structures that are
returned contain default font or paragraph property values. The returned structures may be trapped and
passed as arguments to the various table manipulation functions that require font or paragraph
properties.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

ti _ def*() will fail if the following is true:

Doc BadParm

Doc TimeOut

One ofthe specified arguments is invalid.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE 4-11

TABLE IC LIBRARY

ti_enumtable

NAME

ti_enumtable - read table

SYNOPSIS

#include "OoclC.h"
#include "TableIC.h"

int
ti enumtable{table. procs. cdat)

- di ins table;
ti -enumprocs *procs;
vOId *cdat; /* NULL */

CALLBACK PROCEDURE

ti stop
ti-columnproc{cdat. columns)

- void *cdat;
ti_ colinfo columns;

ti stop
ti-rowproc{cdat. cont)

- void *cdat;
ti _rowcont cont;

ti stop
ti-tableproc{cdat. props)

- void *cdat;
ti_ tableprops *props;

DESCRIPTION

4-12

The ti _ enumtableO function is used to parse the contents of a table.

The table argument is the value of di ins, an opaque variable that contains an instance of a table handle.
The procs argument is the value off! enumprocs, a structure comprised of call-back procedures. Its
members extract the properties of the table itself, and the properties of the columns and rows comprising
the table. ti _ enumprocs contains the following members:

ti tableproc *table;
ti-columnproc *column;
ti:rowproc *row;

/* NULL */
/* NULL */
/* NULL */

table, column, and row are pointers to the respective procedures. table and the column are called
once, but, since the data comprising a table is stored with the rows, ti enumtableO calls row once for
each row in the table. -

Each call-back procedure returns a Boolean value. If the return value ofti stop is TRUE, the enumeration
will stop. -

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

TABLE IC LIBRARY

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno(} is used to get the
reason for the failure.

ERRORS

ti_ enumtable(} will fail if the following is true:

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One ofthe specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 4-13

TABLE IC LIBRARY

ti_finishtable

NAME

ti_finishtable - finish table

SYNOPSIS

#include "TableIC.h"

int
ti finishtable{h, ret)

- ti handle h;
reT ft *ret; /* Returned */

DESCRIPTION

The ti finishtable{) function is used to close the table currently being edited. This function must be called
when flo more edits are to be performed on the table.

h is the value ofti handle, an opaque variable that contains the table handle returned by an earlier call to
either ti_startta6Te{) or ti_startextable{).

Once called, this function returns ret ft, a structure that may be passed as the cant argument to
di_ apaframe{) or as the table argumentto gi _ adtable{). ret_ ft contains the following members:

di ins table;
uriSigned width;
unsigned height;

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno{) is used to get the
reason for the failure.

ERRORS

4-14

ti_finishtable{) will fail if the following is true:

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

ti_get*def

NAME

ti_get*def - get default properties

SYNOPSIS

#include "TableIC.h"

int
ti getlinedef(line)
-ti line *Iine;

int
ti getsortkeydef(sort)
-ti_sortkey *sort;

int
ti getcol i nforecdef(col)

- ti colinforec *col;

int
ti gethdentrydef(hdentry)

- ti_ hdentry *hdentry;

int
ti getrowentdef(rowentry)

- ti_rowent *rowentry;

int
ti gettablepropsdef(props)

- ti_ tableprops *props;

DESCRIPTION

/* Retu rned * /

/* Returned */

/* Returned */

/* Returned */

/* Returned */

/* Returned */

The ti_getlinedefO function is used to get default line properties. Their values are:

ti linestyle style;
ti-linewidth width;

/* LS SOLID */
/* LW- W1 */

The ti_getsortkeydef() function is used to get default sort key properties. Their values are:

XString name;
dp _ bool ascend;

/* NULL */
/* TRUE */

TABLE IC LIBRARY

The ti_getcolinforecdef() function is used to get default column properties. Their values are:

ti hdentry hdentry;
XString name;
XString desc;
dp bool divid;
unSIgned subcols;
dp bool repeat;
ti col info subcolinfo;
ti=halignment alignment;

1* null ti hdentry */
/* NULL *7
/* NULL */
/* FALSE */
/* 0 */
/* FALSE */
/* NULL */
/*VA CENTER*/

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 4-15

TABLE IC LIBRARY

unsigned taboffset;
unsigned width;
unsigned Imgn;
unsigned rmgn;
dp fldchoice type;
dp -bool req;
dp -lang lang;
XString format;
dp bool stpskp;
XString range;
unsigned length;
XString skptext;
dp skpchoice skpchoice;
XString fillin;
dp fontruns *fillinruns;
ti line line;
ti: sortkeys *sortkeys;

/* 0 */
/* 2540 */
/* 0 */
/* 0 */
/* FLO ANY */
/* FALSE */
/* USE (USEnglish) */
/* NULL */
/* FALSE */
/* NULL */
/* 0 */
/* NULL */
/* SKP EMPTY * /
/* NULL*/
/* NULL */
/* LS SOLID, LW W2 */
/* NULL */ -

The ti_gethdentrydef(} function is used to get default header entry properties. Their values are:

ti hdinfo subhds;
ti-line line;
dp bool hint;
ti_ entry cont;

/* NULL */
/* LS SOLID, LW W2 */
/* FALSE */ -
/* */

The ti_getrowentdef(} function is used to get default row entry properties. Their values are:

ti subrows *subrows;
dp bool hint;
ti_ entry cont;

/* NULL */
/* FALSE */
/* */

The ti _gettablepropsdef() function is used to get default table properties. Their values are:

XString name;
unsigned nrows;
dp bool fxrows;
unSIgned ncols;
dp bool fxcols;
dp -bool fillinbyrow;
dp -boo I reptop;
dp-bool repbottom;
dp -boo I deferon;
dp -boo I vsblhd;
dp -bool rephd;
ti 1idalignment halign;
ti-valignment valign;
unsigned thdmgn;
unsigned bhdmgn;
ti line bdrline;
ti-line dvrline;
ti: sortkeys *sortkeys;

/* NULL */
/* 0 */
/* FALSE */
/* 0 */
/* TRUE */
/* TRUE */
/* TRUE */
/* TRUE */
/* FALSE */
/* TRUE */
/* TRUE */
/* HD CENTER */
/* VA -CENTER */
/*0*1
/* 0 */
/* LS NONE, LW W1 */
/* LS-SOLlD, LW-W4 */
/* NULL */ -

RETURN VALUE

4-16

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno(} is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

ti_gettableprops

NAME

ti_gettableprops - get table props from name

SYNOPSIS

#include "DoclC.h"
#include "TableIC.h"
#include "XString.h"

int
ti gettableprops(doc, name, ret)
-di doc doc;

XString name;
ti_ tableprops *ret; /* Returned */

DESCRIPTION

The ti _gettableprops() function is used to extract the properties of a named table.

TABLE IC LIBRARY

The doc argument is the value of di doc, an opaque variable that contains the handle of the document
which, in turn, contains the table in question.

The name argument is a text string that specifies the name of the table from which to extract the table
properties.

This function returns a pointer to ti tableprops, a structure that contains the properties of the named
table. All the fields in the structure MIl accurately reflect the properties of the table except for the name
field. It will be NULL. See ti_starttable() for a listing ofti_ tableprops members.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

ti_gettableprops() will fail if the following is true:

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE 4-17

TABLE IC LIBRARY

ti_maxelm

NAME

ti_maxelm - maximum table elements

SYNOPSIS

#include "TableIC.h"

int
ti maxelm{ret>

- unsigned *ret; /* Returned */

DESCRIPTION

The ti maxelm{) function is used to estimate the number of table cells that could reside in a document that
does not contain other structures. The value that is returned may be used to estimate how big a table may
be created within the document.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno{) is used to get the
reason for the failure.

ERRORS

4-18

ti _ maxel mO will fail if the following is true:

Doc BadParm

Doc TimeOut

One of the specified arguments is invalid.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

TABLE IC LIBRARY

ti_startextable

NAME

ti_startextable - open an existing table

SYNOPSIS

#include "DoclC.h"
#include "DoclCProps.h"
#include "TableIC.h"

int
ti startextable(table. hi. rowsource. deleterow. ret)

- di ins table;
ti hdinfo hi;
unsigned rowsource;
dp bool deleterow;
ti handle *ret;

DESCRIPTION

/* NULL */
/* 0 */
/* TRUE */
/* Returned */

The ti startextableO function is used to add data to an existing table. Data is added by appending rows
which Contain the data to the existing table.

The table argument is the value of di_ins, an opaque variable that points to an instance of a table.

hi is the value ofti
members:

hdinfo, a pointer to the structure ti_ hdinfoseq. This structure contains the following

unsigned length;
ti_ hdentry *seq;

1* Number ofti hdentry */
/* Array of ti _ hdentry * /

ti hdentry is a structure that is specified as an array, with one ti hdentry specification per table
column header. The members ofti hdentry specify the contents and appearance of a column header in
the table. ti_ hdentry contains the fOllowing members:

ti hdinfo subhds;
ti-line line;
dp bool hint;
ti _ entry cont;

length is an integer that specifies the number ofti_ hdentry entries in the array ofti_ hdentry.

Ifhi is NUll, then the existing column headers are used.

rowsource is the index of a row in the table. The properties of the specified row will be extracted and
applied as the default properties to each new row. The range of the index is between 0 and n, inclusive,
where n is the number of rows. All properties of the new row, except for the horizontal alignment, are
taken from the row specified in rowsource. The horizontal alignment of each element of the new row is the
same as that of the first row. .

deleterow is a Boolean value that indicates whether the table contents should be deleted before adding
new information. When set to TRUE, all the rows and their contents are deleted from the table, except for
header information.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 4-19

TABLE IC LIBRARY

Liketi starttableO, ti startextableOreturnsti handle, an opaque variable that contains a table handle. It
may then be passed as an argument to ti_ appenarowO and ti_finishtable().

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

ti_startextableO will fail if the following is true:

Doc_ ReadonlyDoc The document is read-only.

Doc BadParm One of the specified arguments is invalid.

Doc_lIIegalHandle The specified handle is illegal.

Doc TimeOut Inter-process communication has exceeded the maximum allowed time.

4-20 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

ti_starttable

NAME

ti_starttable - create a new table

SYNOPSIS

#include "OoclC.h"
#include "TableIC.h"

int
ti starttable(doc, props, col, ret)
-di doc doc;

ti tableprops *props;
ti-colinfo eol;
ti-handle *ret; /* Returned */

DESCRIPTION

The ti starttableO function is used to add a new table to a document.

TABLE IC LIBRARY

The doe argument is the value of di doc, an opaque variable that contains the document handle for the
document to which the table will be added.

The props argument is a pointer to ti tableprops, a structure whose members specify the properties of the
new table. These properties include the name of the table, the number of columns and rows to be assigned,
the alignment ofthe table within the frame, and so on. ti_ tableprops contains the following members:

XString name;
unsigned nrows;
dp bool fxrows;
unSIgned ncols;
dp bool fxeols;
dp -bool fillinbyrow;
dp -bool reptop;
dp -bool repbottom;
dp -bool deferon;
dp -bool vsblhd;
dp -bool rephd;
ti hdalignment halign;
ti-valignment valign;
unsigned thdmgn;
unsigned bhdmgn;
ti line bdrline;
ti-line dvrline;
ti= sortkeys * sortkeys;

eol is the value ofti eolinfo, a pointer to a structure ofthe type ti eolinfoseq. ti colinfoseq is an array of
ti eol i nforee, with one ti eol i nforee per each column in a table. I t specifies the properties of a col umn, such
asneaders, width, margIns, and the text to put in each columns. ti colinforec contains the following
members: -

ti hdentry hdentry;
XString name;
XString desc;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 4-21

TABLE IC LIBRARY

dp boo I divid;
unSIgned subcols;
dp bool repeat;
ti colinfo subcolinfo;
ti-halignment alignment;
unsigned taboffset;
unsigned width;
unsigned Imgn;
unsigned rmgn;
dp fldchoice type;
dp -boo I req;
dp -lang lang;
XSmng format;
dp boo I stpskp;
XSmng range;
unsigned length;
XString skptext;
dp skpchoice skpchoice;
XSmng fillin;
dp fontruns fillinruns;
ti line line;
ti: sortkeys *sortkeys;

This function returns ret, a pointer to ti_ handle. ti_ handle is an opaque variable that contains a table
handle.

ti starttable{) will raise a Doc DocumentFull error if the table and header row can not fit in the document.
TIlls error is raised when there is no more room to add an object (e.g., a table) into the specified document.
The size of a VP document may be as large as disk space allows but the structured portions may not exceed
255 disk pages. One disk page is comprised of 512 bytes.

RETURN VALUE

If the call is successful 0 is returned, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

4-22

ti_starttableO will fail ifone or more of the following are true:

Doc DocumentFull No more room in the document.

Doc TableTooWide

Doc TableHeaderTooTall

Doc BadParm

Doc_lIIegalHandle

Doc TimeOut

The specified table is too wide to fit in the document.

The specified headers are too tall.

One of the specified arguments is invalid.

The specified handle is illegal.

Inter-process communication has exceeded the maximum allowed
time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

5. Desktop Library

dsktp intro

NAME

dsktp_intro - introductory description of Desktop functions

DESCRIPTION

Desktop functions are used to manipulate existing document files and folders located on the Desktop or to
add new files and folders to the Desktop. dsktp *0 functions are used to copy or delete existing files, make
folders, and more. The most important aspect of Desktop functions is that they allow the interaction
between files on the desktop and the editing functions of other interfaces, such as those in DoclC and
GraphicslC.

di startO is called as the first step in the document generation process. Afterwards, the contents of a
document may be appended using DodC and GraphicslC functions. Lastly, di finishO is called to finalize
the document. di finishO returns a reference, or handle, to the newly created document. This reference
may be passed in calls to other dsktp *0 functions. Typically, this reference is passed as an argument in a
call to dsktp movedocO. The result of this function is to take the new file, which currently exists only in a
buffer, and pTace it on the Desktop. Once on the Desktop, the new file may be manipulated like any other
document.

When manipulating an existing document, dsktp enumerateO or dsktp getdocrefO is called as the first
step in the document editing process. The reference that is returned may"iTien be passed as an argument to
di openO or di startapO. These functions return a handle, di doc, that may be passed to document
editing functionS, such as those contained within in the Document Ie Library and the Graphics Ie
Library. The last step in the editing process is to indicate that the document is finished by a call to, either,
di close{) or di finish{). The finished document still resides in a temporary buffer. To move it from the
bulTer onto the Desktop, dsktp _ movedocO must be called.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 5-1

DESKTOP LIBRARY

dsktp_checkuser

NAME

dsktp_checkuser - verify the VP user identity

SYNOPSIS

#include "Desktop.h"
#include "DoclCProps.h"

int
dsktp checkuser(user. passwd. ret)

char *user;
char *passwd;
dp _ boo I *ret; /* Returned */

DESCRIPTION

The dsktp checkuserO function is used to verify the identity of a user accessing the Desktop. This function
checks both'"the user name and password.

The user argument is a string that indicates the user to be validated. It is specified in the form:
name:domain:organization.

The passwd argument is a string that specifies the VP password of the person identified in the user
argument.

The ret argument is where the results of dsktp checkuserO are placed. ret will have a Boolean value. The
value will be TRUE only when both the name and password supplied match the current VP logon user
name and password.

RETURN VALUE

o is returned if the call is successful, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

dsktp _ checkuserO will fail if one or more of the following are true:

Doc BadParm

Doc TimeOut

SEE ALSO

dsktp _getaccessO

5-2

One of the specified arguments is invalid.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DESKTOP LIBRARY

dsktp_copydoc

NAME

dsktp_copydoc - duplicate a document

SYNOPSIS

#include "Oesktop.h"

int
dsktp copydoc(ref, new)

dSktp docref ref;
dsktp docref new;

DESCRIPTION

/* Returned */

The dsktp _ copydocO function is used to copy a document and return a handle to the duplicate document.

The ref argument is an opaque variable of the type dsktp docref. It is a reference to the document that is
to be copied. ref was returned by an earlier call to dsktp _getdocrefO or dsktp _ enumerateO.

The new argument is also an opaque variable of the type dsktp docref. This argument defines the
structure of the return information into which will be placed the handle information for the duplicate
document.

Note that this function does not generate an icon for the duplicate document, only a handle to it. If an icon
is desired for the duplicate document, use the dsktp movedocO function. At which time, a unique name
may be assigned to the duplicate document. -

RETURN VALUE

o is returned if the call is successful, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

dsktp _ copydocO will fail if one or more of the following are true:

Doc BadParm

Doc TimeOut

OT _FileChanged

OT _FileOamaged

OT FilelnUse

OT FileNotFound

OT _FileNotUnique

One of the specified arguments is invalid.

Inter-process communication has exceeded the maximum allowed time.

The file has been modified during program execution such that it cannot be
used.

The file has been internally damaged.

The specified file is in use by another application.

The file was not found in the expected context.

One of the arguments to the function call is invalid.

The directory already contains a file of the same name (if the
UniquelyNamedContents of Folder Properties is set to TRUE) or the same
name and version (if the Uniquely N amedContents of Folder Properties is set
to FALSE).

OT _ LooplnHierarchy The directory is the same as, or a descendant of, the file being moved or copied.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 5-3

DESKTOP LIBRARY

DT MediutnFull There is not enough space on the appropriate file service to satisfy the request.

DT _ NoAccessRight Reading and/or writing to the Desktop is not allowed.

SEE ALSO

dsktp _ movedocO

5-4 DOCUMENT INTERFACES TOOLKIT SYSTEM RE:FERENCE

DESKTOP LIBRARY

dsktp_deletedoc

NAME

dsktp_deletedoc - delete a document

SYNOPSIS

#include "Desktop.h"

int
dsktp deletedoc(ref)

dSktp _ docref ref;

DESCRIPTION

The dsktp deletedocO function is used to remove a VP document from off the desktop, from within a
folder on the desktop, or from a nested folder.

The ref argument is an opaque variable of the type dsktp docref. It is a handle, or pointer, to the
document to be moved. ref was returned by an earlier call to dSktp _getdocrefO.

RETURN VALUE

o is returned if the call is successful, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

dsktp _ deletedocO will fail if one or more of the following are true:

Doc BadParm

Doc TimeOut

DT _FileChanged

DT _FileDamaged

DT FilelnUse

DT FileNotFound

DT_lIlegal

DT MediumFull

DT _ NoAccessRight

One of the specified arguments is invalid.

Inter-process communication has exceeded the maximum allowed time.

The file has been modified during program execution such that it cannot be
used.

The file has been internally damaged.

The specified file is in use by another application.

The file was not found in the expected context.

One of the arguments to the function call is invalid.

There is not enough space on the appropriate file service to satisfy the request.

Reading and/or writing to the Desktop is not allowed.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 5-5

DESKTOP LIBRARY

dsktp_enumerate

NAME

dsktp_enumerate - enumerate documents

SYNOPSIS

#include "Desktop.h"
#include "XString.h"

int
dsktp enumerate(pattrn, path, depth, list)

XString pattrn;
XString path;
unsigned short depth;
dsktp _reflist *Iist; /* Returned */

DESCRIPTION

The dsktp enumerateO function is used to list the documents in a folder, a nested folder, or on the desktop
that matcha specified criteria.

The pattrn argument is a text string that specifies the pattern to be used in searching for files. Two
wildcard characters are supported: * (asterisk) and # (pound). The asterisk character matches zero or
more characters in the file name; the pound character matches any single character in the file name. To
use the asterisk and pound characters literally, so that they have no special significance, they must be
preceded by a single quote.

The path argument is a text string that specifies the full path name of the folder or nested folder in which
to begin the search. To specify the desktop, set the value of path to NULL. A version number may be
appended to the path name. If a version number is omitted from the path name, the most recent version is
assumed.

The depth argument is an integer that indicates the levels of the folder hierarchy in which to descend
during the search for documents. The search begins with the folder specified in the path argument. A
value of 1 indicates that only the folder specified in path is to be searched.

The list argument is a pointer to the returned list and is of the type dsktp reflist. It points to a structure
whose members specify the number of objects in the list and a pointer t01he handle containing the list
itself. dsktp _reflist contains the following members:

int len;
dsktp _ docref *refs;

len is an integer that indicates the total number of documents that matched the search criteria. ref is a
pointer to dsktp docref, an array containing a reference to each document that matched the search
criteria. -

RETURN VALUE

5-6

o is returned if the call is successful, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DESKTOP LIBRARY

ERRORS

dsktp _ enumerateO will fail if one or more of the following are true:

Doc BadParm

Doc TimeOut

DT _FileChanged

DT _FileDamaged

DT FilelnUse

DT FileNotFound

DT_lIIegal

DT MediumFull

DT _ NoAccessRight

One of the specified arguments is invalid.

Inter-process communication has exceeded the maximum allowed time.

The file has been modified during program execution such that it cannot be
used.

The file has been internally damaged.

The specified file is in use by another application.

The file was not found in the expected context.

One of the arguments to the function call is invalid.

There is not enough space on the appropriate file service to satisfy the request.

Reading and/or writing to the Desktop is not allowed.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 5-7

DESKTOP LIBRARY

dsktp _getaccess

NAME

dsktp_getaccess - obtain the desktop information

SYNOPSIS

#include "Desktop.h"

int
dsktp getaccess(ac)

dSKtp _access *ac; /* Returned */

DESCRIPTION

The dsktp _getaccess() function is called to ascertain the status and access permissions of the Desktop.

The ac argument is a pointer of the type dsktp access. dsktp access is an enumerated variable that is set
by the call and may have one of the following values: -

DT NONE

DT READ

DT WRITE

DT READWRITE

DT LOGOFF

/* Both ReadAccess and WriteAccess are FALSE */

/* ReadAccess is TRUE, WriteAccess is FALSE */

/* ReadAccess is FALSE, WriteAccess is TRUE */

/* Both ReadAccess and WriteAccess are TRUE */

/* The Desktop is not opened */

RETURN VALUE

o is returned if the call is successful, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

5-8

dsktp _getdocref() will fail if one or more of the following are true:

Doc BadParm

Doc TimeOut

One ofthe specified arguments is invalid.

Inter-process communication has exceeded the maximum allowed time.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

dsktp_getdocprops

NAME

dsktp_getdocprops - obtain properties of a file

SYNOPSIS

#include "Desktop.h"

int
dsktp getdocprops(ref, props)

dSktp docref ref;
dsktp docprops *props;

DESCRIPTION

/* Returned */

DESKTOP LIBRARY

The dsktp getdocref() function is used to obtain the properties of a document on the Desktop. The
properties associated with a Desktop document are name, version, size, creation date, creator and type.

The ref argument is a variable of the type dsktp docref. It is a reference to the file whose properties are to
be returned. -

The props argument is a pointer to dsktp docprops. It is called to set the properties associated with a
Desktop document. dsktp _ docprops contains the following members:

XString name; /* file name */
unsigned short vers; /* version */
unsigned short size; /* size in disk pages */
dsktp date date; /* creation date */
XString username; /* created by */
dsktp _doctype type; /* file type */

dsktp _ date contains the following members:

unsigned short year; /* year expressed in four digits */
unsigned short month; /* [1-12] */
unsigned short day; /* [1-31] */
unsigned short hour; /* [0-23] */
unsigned short minute; /* [0-59] */
unsigned short second; /* [0-59] */

dsktp _ doctype may have one ofthe following values:

DT DOC
DT-FOLDER
DT-OTHER

RETURN VALUE

/* document */
/* folder */
/* other than document and folder */

o is returned if the call is successful, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

dsktp _getdocref() will fail if one or more of the following are true:

Doc BadParm One of the specified arguments is invalid.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 5-9

DESKTOP LIBRARY

5-10

Doc TimeOut

DT _FileChanged

DT _FileDamaged

DT FilelnUse

DT FileNotFound

DT_lIIegal

DT MediumFull

DT _ NoAccessRight

Inter-process communication has exceeded the maximum allowed time.

The file has been modified during program execution such that it cannot be
used.

The file has been internally damaged.

The specified file is in use by another application.

The file was not found in the expected context.

One ofthe arguments to the function call is invalid.

There is not enough space on the appropriate file service to satisfy the request.

Reading and/or writing to the Desktop is not allowed.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DESKTOP LIBRARY

dsktp_getdocref

NAME

dsktp_getdocref - obtain a document handle

SYNOPSIS

#include "Desktop.h"
#include "XString.h"

int
dsktp getdocref(name, vers, srcpath, ref)

XString name;
unsigned short vers;
XString srcpath;
dsktp _ doc ref ref; /* Returned */

DESCRIPTION

The dsktp getdocref() function is used to acquire a handle, or reference, to a document on the desktop.
The returned handle may then be passed as an argument to other related functions.

A document is referenced as name-version pair. The name argument is a text string that specifies the
name of the document to which a handle is desired. The ver argument is an unsigned short integer that
indicates the version number of the document. If set to to NULL, the most recent version is assumed.

The srcpath argument is a text string that specifies the desktop, folder, or nested folder in which the
desired document resides. The format for specifying a folder or nested folder is the same as currently used
to designate paths in NSFiling: folder1!vllfolder2!v2 . .IfolderN!vN. Separator characters, such as "/" and
"!", should be escaped when they occur within folder names. They are escaped by preceding them by a
single quote. Wildcards are not supported. If a version number is omitted from the path string, the most
recent version is searched. To access a document that is on the desktop, set the value ofsrcpath to NULL.

The ref argument is the return value and is of the type dsktp docref. It is an array of four unsigned
integers whose elements identify the document. -

RETURN VALUE

o is returned if the call is successful, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

. dsktp _getdocrefO will fail if one or more of the following are true:

Doc BadParm

Doc TimeOut

DT _FileChanged

DT _FileDamaged

01 FilelnUse

DT FileNotFound

DT_lIIegal

One of the specified arguments is invalid.

Inter-process communication has exceeded the maximum allowed time.

The file has been modified during program execution such that it cannot be
used.

The file has been internally damaged.

The specified file is in use by another application.

The file was not found in the expected context.

One of the arguments to the function call is invalid.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 5-11

DESKTOP LIBRARY

OT MediumFuli There is not enough space on the appropriate file service to satisfy the request.

OT _ NoAccessRight Reading and/or writing to the Desktop is not allowed.

SEE ALSO

di_ openO, di_finishO

5-12 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

dsktp_makefolder, dsktp_deletefolder

NAME

dsktp_makefolder, dsktp_deletefolder - create a new folder or remove an existing folder

SYNOPSIS

#include "Desktop.h"
#include "XString.h"

int
dsktp makefolder(name, dstpath, vers)

XString name;
XString dstpath;
unsigned short *vers; /* Returned */

int
dsktp deletefolder(name, vers, srcpath)

XString name;
unsigned short vers;
XString srcpath;

DESCRIPTION

DESKTOP LIBRARY

The dsktp _ makefolder(} function is used to create a folder on the desktop or within an existing folder.

The name argument is a text string that specifies the name of the folder to be created. The dstpath
argument is the full path to an existing folder, or nested folder, in which the new folder is to be placed. To
specify the desktop, set the value ofdstpath to NULl.

This function returns vers, an unsigned short integer that indicates the version number of the new folder.

The dsktp deleteO folder function is used to remove a folder from within another folder or from the
desktop. The name argument is a text string that specifies the folder to be deleted. The vers argument is
an integer that specifies the version number of the folder to be deleted.

The srcpath argument is a text string that specifies the desktop, folder, or nested folder in which the
document to be deleted resides. The format for specifying a folder or nested folder is described in
dsktp _getdocref(}. To specify the desktop, set the value ofsrcpath to NULl.

RETURN VALUE

o is returned if the call is successful, otherwise -1 is returned. The function getsigno() is used to get the
reason for the failure.

ERRORS

dsktp _ *folder(} will fail if one or more of the following are true:

Doc BadParm

Doc TimeOut

DT _FileChanged

DT _FileDamaged

DT FilelnUse

One of the specified arguments is invalid.

Inter-process communication has exceeded the maximum allowed time.

The file has been modified during program execution such that it cannot be
used.

The file has been internally damaged.

The specified file is in use by another application.

DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE 5-13

DESKTOP LIBRARY

DT FileNotFound

DT_lIIegal

DT _FileNotUnique

DT MediumFull

DT _ NoAccessRight

SEE ALSO

dsktp _getdocrefO

5-14

The file was not found in the expected context.

One of the arguments to the function call is invalid.

The directory already contains a file of the same name (if the
UniquelyNamedContents of Folder Properties is set to TRUE) or the same
name and version (if the UniquelyNamedContents of Folder Properties is set
to FALSE).

There is not enough space on the appropriate file service to satisfy the request.

Reading and/or writing to the Desktop is not allowed.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DESKTOP LIBRARY

dsktp_movedoc

NAME

dsktp_movedoc - move or rename a document

SYNOPSIS

#include "Desktop.h"
#include "XString.h"

int
dsktp movedoc(ref, dstpath, name, vers)

dSktp docref ref;
XString dstpath;
XString name;
unsigned short *vers; /* Returned */

DESCRIPTION

The dsktp movedocO function is used to move a document to a folder, a nested folder, or the desktop. This
function may also be used as a means to rename a document.

The ref argument is the value of dsktp docref, an opaque variable that is a reference, or pointer, to the
document to be moved. ref was returned by an earlier call to dsktp _getdocrefO or dsktp _ copydocO.

The dstpath argument is a text string that specifies the full path name of the folder or nested folder in
which to place the document. Refer to dsktp getdocrefO for a description of how to specify a full path. To
specify the desktop, set the value ofdstpath to NULL.

The name argument is a text string that specifies the name of the moved document. Ifleft NULL, the same
name is assigned to the moved document as the source document. To rename a document, specify a
different name but the same dstpath as that of the source document. If version numbers are omitted from
the path string, the most recent versions are used.

The vers argument is a pointer to an integer that indicates the version number ultimately assigned to the
moved document.

RETURN VALUE

o is returned if the call is successful, otherwise -1 is returned. The function getsignoO is used to get the
reason for the failure.

ERRORS

dsktp _ movedocO will fail if one or more of the following are true:

Doc BadParm

Doc TimeOut

DT _FileChanged

DT _FileDamaged

DT FilelnUse

DT FileNotFound

DT_lIIegal

One ofthe specified arguments is invalid.

Inter-process communication has exceeded the maximum allowed time.

The file has been modified during program execution such that it cannot be
used.

The file has been internally damaged.

The specified file is in use by another application.

The file was not found in the expected eontext.

One of the arguments to the function call is invalid.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 5-15

DESKTOP LIBRARY

DT _FileNotUnique The directory already contains a file of the same name (if the
UniquelyNamedContents of Folder Properties is set to TRUE) or the same
name and version (if the UniquelyNamedContents of Folder Properties is set
to FALSE).

DT _ LooplnHierarchy The directory is the same as, or a descendant of, the file being moved or copied.

DT MediumFull There is not enough space on the appropriate file service to satisfy the request.

DT _ NoAccessRight Reading and/or writing to the Desktop is not allowed.

SEE ALSO

dsktp _getdocref()

5-16 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

6. XString Library

XStrin9_intro

NAME

XString_intro - introductory description ofXString functions

DESCRIPTION

Characters and strings in the VP Document Editor are structured differently than their UNIX
counterparts. XString library functions manipulate characters and strings for use by other Document
Interfaces Toolkit functions and for conversion between VP and UNIX structures. The XString library is
also the means by which multinational characters and strings may be manipulated. The XString library
supports a set of multinational character codes that adhere to the XCCS(Xerox Character Code Standard).

The primary XString library functions perform basic services such as string copying, appending,
separating, comparing, and searching. These functions are very similar to conventional UNIX C string
handling functions. For example, XStrcatO is analogous to strcatO. The difference being, XStrcatO is used
to concatenate strings that are in the XCCS format and strcatO concatenates ASCII strings.

The XString library provides functions for conversion between XCCS 8-bit encoded strings and I6-bit
encoded XStrings, as well as conversion between ASCII strings and XStrings. Currently, the XString
library does not support conversion to and from EUC (Extended UNIX Code or JIS (Japanese Industrial
Standard).

XString data structure

An XChar is an unsigned short integer (16 bits). Internally, it is comprised of two 8-bit bytes, where the
first byte defines the XCCS character set and the second byte defines the XCCS character code. The
character code determines the character's appearance. The character set determines the character's
semantic meaning.

An XString is a simple array ofXChar with a a I6-bit NULL code (OxOOOO) at the end of the XString to act
as the terminator.

"TEXT

Terminator

Structure of XString

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 6-1

XSTRING LIBRARY

6-2

All string creation and editing functions in XString library, except XStrncpyO, assume that the resulting
string is terminated by a NULL character. Furthermore, XCC8 (Xerox Character Code for 8 bit characters)

is defined for a data structure of 8-bit encodings in the XCCS. XCC8 is analogous to ByteSequence in
Mesa XString.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XSTRING LIBRARY

XCharset. XCharcode. XCharmake

NAME

XCharset, XCharcode, XCharmake - determine the character set or code used, or define character/code
pairs

SYNOPSIS

#include "XString.h"

unsigned char
XCharset(xc);

XChar xc;

unsigned char
XCharcode(xc);

XChar xc;

XChar
XCharmake(set. code)

char set;
char code;

DESCRIPTION

The XChar* functions are used to invoke a character set having specific visual properties. That is, these
functions invoke a set of characters, as well as the style in which these characters are represented. These
character styles are referred to as character codes.

A character code is defined as any numeric code that represents a graphic character, a rendering
character, or a control character. The definition of a graphic character and a control character are self
evident. A rendering character is defined as one of the following:

• a non-conventional representation of a control code

• a sequence of graphic characters (i.e., ligature or accented character)

• a context-dependent alternate representation of a graphic character (e.g., initial, medial, or final
form for an alphabet such as Arabic)

• a "variant" representation of a graphic character

In effect, a character code is the static representation of textual content. A sequence of numeric character
codes is referred to as a string. Textual information is stored and transmitted as a sequence of numeric
character codes.

A character set is 256 blocks, with each block containing 256 codes. Each 16 bit character code consists of
two 8-bit bytes, where the high-order byte is the character set code, and the low-order byte is the
character's code within the character set.

The XCharsetO function is used to retrieve the XChar character set (the higher 8 bits) of a character. The
xc argument is the character for which the character set information is to be retrieved.

The XCharcodeO function is used to retrieve the XChar character code (the lower 8 bits). The xc argument
is the character for which the character code information is to be retrieved.

XCharmakeO is used to create an XChar character of an existing character, based upon definitions
contained within the Xerox Character Code Standard (XCCS). The variables, set and code, specify the

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 6-3

XSTRING LIBRARY

character set and the character code, respectively, that are to be used in creating the new characters. For
example,

xchar = XCharmake(O,'x');

results in an xchar being created for x.

RETURN VALUE

XCharsetO and XCharcode() return the character code of xc. XCharmakeO returns XChar character.

6-4 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XStrcat. XStrncat

NAME

XStrcat, Xstrncat - append to a string

SYNOPSIS

#include "XString.h"

XString
XStrcat(xs 1, xs2)

XString xs1, xs2;

XString
XStrncat(xs1, xs2, n)

XString xs1, xs2;
intn;

DESCRIPTION

XSTRING LIBRARY

The XStrcat() function is used to concatenate one string to the end of another string. The xs1 argument is
the string to which the other string is to be appended. That is, xs1 is the first portion of the concatenated
string. It is the programmer's responsibility to ensure that sufficient storage is allocated for the data to fill
xs1. The xs2 argument is the string to be appended. It is the second, or tailing portion of the concatenated
string.

The XStrncatO function is used to copy a specific number of characters from one string and append them to
the end of another string. The xs1 argument is the string to which the copied characters are to be
appended. It is the programmer's responsibility to ensure that sufficient storage is allocated for the data to
fill xs1. The xs2 argument is the string from which a specific number of characters are to be copied and
then appended to xs1. The n argument is the number of characters that are to be copied from xs2 and
appended to xs1.

RETURN VALUE

XStrcatO returns xs1. XStrncatO returns xs1.

SEE ALSO

XStrcpyO, XStrncpyO, XStrdupO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 6-5

XSTRING LIBRARY

XStrcmp, XStrncmp, XStrcasecmp, XStrncasecmp

NAME

XStrcmp, XStrncmp, XStrcasecmp, XStrncasecmp - compare strings

SYNOPSIS

#include "XString.h"

int
XStrcmp(xs1. xs2}

XString xs1. xs2;

int
XStrncmp(xs1. xs2. n}

XString xs1. xs2;
int n;

int
XStrcasecmp(xs1. xs2}

XString s1. xs2;

int
XStrncasecmp(xs1. xs2. n)

XString xs1. xs2;
intn;

DESCRIPTION

6-6

The XStr*cmp(} functions are used to compare two strings. They return negative, zero, or positive integers
if the first string in the argument list is less than, equal to, or greater than the second string in the
argument list. For example, in comparing the following strings:

xs1: abcdef
xs2: abcxyz

XStrcmp() compares the characters in xs1 against xs2 on a one-by-one basis. Upon reaching the fourth
character in xs2, a difference would be discovered. The value ofXChar "d" is Ox0064(100) and that of "x" is
Ox78(120). XStrcmp() then returns "d - x", which is -20 in decimal.

Comparisons are done in the order specified in the Xerox Character Code Standard (XCCS).

The XStrcmp() function is used to compare two strings, xs1 and xs2.

The XStrncmp() function is used to compare a portion of one string against another string. The xs1
argument is the string from which the first n characters are to be compared against the first n characters
ofthe string specified in the xs2 argument.

The XStrcasecmp(} function is used to compare two strings, while ignoring the case of ASCII characters.
That is, upper-case characters are equal to the lower-case equivalent characters. The xs1 and the xs2
arguments are the two strings to be compared. Non-ASCII characters will be compared in accordance to
the order specified by the XCCS.

The XStrncasecmp(} function is used to compare a portion of one string against another string, while
ignore the case of ASCII characters. The xs1 argument is the string from which the first n characters are
to be compared against the first n characters of the string specified in in the xs2 argument. Non-ASCII
characters will be compared in accordance to the order specified by the XCCS.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

RETURN VALUE

positive integer:
zero:
negative integer:

SEE ALSO

xs1 >xs2
xs1 = xs2
xs1 <xs2

XStrlexcmpO, XStrnlexcmpO, XStrcaselexcmpO, XStrncaselexcmpO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XSTRING LIBRARY

6-7

XSTRING LIBRARY

XStrcpy, XStrncpy, XStrdup

NAME

XStrcpy,XStrncpy,XStrdup - copy string

SYNOPSIS

#include "XString.h"

XString
XStrcpy(xs1, xs2)

XString xS1, xs2;

XString
XStrncpy(xs1, xs2, n)

XString xS1, xs2;
int n;

XString
XStrdup(xs1)

XString xs1;

DESCRIPTION

The XStrcpy() function is used to copy a specific string into a virtual memory storage area, defined by the
user. The argument xs2 is the text string to be copied. The argument xs1 is a pointer to the storage area
that is to receive the string. It is the programmer's responsibility to ensure that sufficient storage is
allocated for the data to fill xs1.

The XStrncpy() function is used to copy a specific number of characters in a text string. The argument xs2
is the text string to be copied. The argument xs1 is a pointer to the storage area that is to receive the
string. It is the programmer's responsibility to ensure that sufficient storage is allocated for the data to fill
xs1.

The argument n is an integer that specifies the number of character in the xs2 argument to copy. Copying
begins with the first letter of the text string and proceeds to the last. If the number of characters to copy, n,
is greater than than the length of the string, xs2, then the entire string, including the NULL character, will
be copied. If the number of characters to copy is less than or equal to the number of characters in the
string, the string will be copied and the terminating NULL character truncated.

The XStrdup() function is used to copy a text string into a storage area and return a pointer to that area.
The xs1 argument is the string to be copied. Memory space for the copy is reserved by malloc. If malloc
fails in memory reservation, a NULL pointer is returned.

RETURN VALUE

XStrcpyO and XStrncpy() return xs1. The return value of XStrdupO is xs1, a pointer to the duplicate
string. A NULL pointer is returned ifmalloc fails in memory allocation.

SEE ALSO

XStrcat(), XStrncatO

6-8 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XStrlen

NAME

XStrlen - string length

SYNOPSIS

#include "XString.h"

int
XStrlen(xs);

XString xs;

DESCRIPTION

XSTRING LIBRARY

The XStrlenO function is used to determine the logical length of an XString character. The returned value
will specify the number of characters in the string as an integer. The returned character length will not
include the terminating NULL character.

The xs argument is the string whose length is to be determined.

RETURN VALUE

The character length of xs.

, :~,r.~~<\CES TOOLKIT SYSTEM REFERENCE 6-9

XSTRING LIBRARY

XStrlexcmp, XStrnlexcmp, XStrcaselexcmp

NAME

XStrlexcmp, XStrnlexcmp, XStrcaselexcmp - compare strings lexicographically

SYNOPSIS

#include "XString.h"

int
XStrcaselexcmp(xs1. xs2. sortorder)

XString xs1. xs2;
SortOrder sortorder;

int
XStrlexcmp(xs1. xs2. sortorder)

XString xs1. xs2;
SortOrder sortorder;

int
XStrncaselexcmp(xs1. xs2. sortorder. n)

XString xs1. xs2;
SortOrder sortorder;
int n;

int
XStrnlexcmp(xs1. xs2. sortorder. n)

XString xs1. xs2;
SortOrder sortorder;
intn

DESCRIPTION

6-10

The XStr*lexcmp() functions are used to lexicographically compare two strings. They return negative,
zero, or positive integers if the first string in the argument list is lexicographically less than, equal to, or
greater than the second string in the argument list. Comparisons are done in accordance to the order
specified by sortorder.

The XStrlexcmp() function is used to compare two strings, xs1 and xs2, according to the order specified in
sortorder. sortorder is described in detail in the document, Multinational Programming Considerations.

The XStrnlexcmp() function is used to compare the first n characters of xs1 against xs2, based upon the
value of sortorder.

The XStrcaselexcmp() function is used to compare two strings, while ignoring the case of ASCII characters
and while sorting the character strings in the order specified in sortorder. Upper-case characters will be
equal to the lower-case equivalent characters. The xs1 and the xs2 arguments are the two strings to be
compared. Non-ASCII characters will be compared in accordance to the specified lexicographical order
defined by sortorder.

The XStrncaselexcmp() function is used to compare a portion of one string against another string, while
ignoring the case of ASCII characters. The xs1 argument is the string from which the first n characters are
to be compared against the string specified in the xs2 argument, according to the specified sort order,
sortorder.

DOCUMENT INTERFACES TOOLKIT.<;ycTC> • Dr.C r -

XSTRING LIBRARY

sortorder is the value of Sort Order, an enumerated type that may contain one ofthe following values:

STANDARD, DANISH, SPANISH, SWEDISH

Please refer to the table below for a description as to the category each language falls into:

Language SortOrder

Canadian Standard
(English)

Canadian Standard
(French)

Danish Danish

Dutch Standard

Finnish Swedish

French Standard

German Standard

Italian Standard

Norwegian Danish

Portuguese Standard

Spanish Spanish

Swedish Swedish

United Kingdom Standard

United States Standard

RETURN VALUE

1: xs1 > xs2
0: xs1 = xs2
-2: RPC function, clnt create() failed.
-3: RPC function, clnt-call() failed.
-4: UNIX standard function, gethostname() failed.
-5: The length ofxs1 or xs2 exceeds 8192 bytes.

SEE ALSO

XStrcmpO. XStrncmp(). XStrcasecmp(). XStrncasecmp()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 6-11

XSTRING LIBRARY

XStrchr, XStrrchr, XStrpbrk

NAME

XStrchr, XStrrchr, XStrpbrk- search for a character

SYNOPSIS

#include "XString.h"

XString
XStrchr(xs, xc)

XString xs;
XChar xc;

XString
XStrrchr(xs, xc)

XString xs;
XChar xc;

XString
XStrpbrk(xs 1, xs2)

XString xs1, xs2;

DESCRIPTION

The XStrchrO function is used to parse a string in search of a specific character. It starts the search at the
beginning of the string and proceeds towards the end. The xs argument is the string to be searched. The xc
argument is the character to be found in the string. If the specified character is found, a pointer to the first
occurrence ofthe character is returned. If the specified character is not found, a NULL pointer is returned.

The XStrrchrO function, like XStrchrO, searches a string for a character. It starts the search at the end of
the string and proceeds towards the beginning. If the specified character is found, a pointer to the first
occurrence of the character in the string is returned. If the specified character is not found, a NULL pointer
is returned.

For example, to find character "x" in the following example:

abcxdefxg

XStrchrO will return a pointer to the "x" which is the third character from the left. XStrrchrO will return a
pointer to the "x" which is the second character from the right.

The XStrpbrkO function is used to search a string for the occurrence of any character contained within
another string. The xsl argument is the string to be searched. The xs2 argument is the string from which
each character is extracted and then compared against each character in xs1. The first character in xs2 is
parsed, placed in a buffer and then compared against each character in xs1. The comparison stops upon the
first match. The system then returns a pointer to the first occurrence of the matching character in xs1. If
the specified character is not found, a NULL pointer is returned.

RETURN VALUE

A pointer to the character's location, if it is found. A NULL pointer, ifthe character is not found.

SEE ALSO

XStrschO

6-12 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XStrsch

NAME

XStrsch - search for a string

SYNOPSIS

#include "XString.h"

XString
XStrsch(xs1, xs2)

XString xs1, xs2;

DESCRIPTION

XSTRING LIBRARY

The XStrschO function is used to determine if a string is contained within another string. It starts the
search at the beginning of the string and proceeds towards the end. The xs1 argument is the main string.
The xs2 argument is the string that you would like to find in xs1. If the search is successful, the system
returns a pointer to the first occurrence ofxs2 in xs1. Otherwise, a NULL pointer is returned.

RETURN VALUE

A pointer to the string, if it is found. A NULL pointer, ifit is not found.

SEE ALSO

XStrchr(), XStrrchrO, XStrpbrkO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 6-13

XSTRING LIBRARY

XStrsep

NAME

XStrsep - separate a string into tokens

SYNOPSIS

#include "XString.h"

XString
XStrsep(xs1, xs2, xc)

XString xs1, xs2;
XChar *xc;

DESCRIPTION

The XStrsep() function is used to separate a string into tokens based upon one or more delimiter
characters. The xs1 argument is the string to be separated. The xs2 argument is a string containing one or
more delimiter characters. Each character within xs2 is considered as a delimiter. Separator characters
may be standard delimiters, such as ",", "!", ":", and ";", or they be any desired text characters. The xc
argument is a pointer to the returned delimiter character.

This function returns a pointer to the first character of the first token and returns the delimiter character
to xc. If the delimiter characters specified in xs2 can not be found in string xs1, then the system returns
the entire string as one token and sets xc to NULL. When xs1 can not be further separated into tokens, a
NULL pointer is returned.

After completing a call to XStrsep(), the original string specified as the argument xs1 will no longer exist.

RETURN VALUE

Pointers to the first character of each separated token.

6-14 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XStrfromASC, XStrtoASC

NAME

XStrfromASC, XStrtoASC - convert ASCII and XString strings

SYNOPSIS

#include "XString.h"

XString
XStrfromASC(xs, s)

XString xs;
char *s;

XString
XStrtoASC(xs, s, c)

XString xs;
char *s;
char c;

DESCRIPTION

XSTRING LIBRARY

The XStrfromASC() function is used to convert the ASCII string pointed to by s to XString xs. The return
value will be xs. It is the programmer's responsibility to insure that sufficient storage space is allocated for
xs. xs will require (2 X s byte length) + 2.

Basically, this function does not convert control coeds. If a control or 8-bit code (a code that belongs to the
group on the shift-out side) is in the ASCII string, s, it will be simply extended to a 16-bit code and copied
into xs. If the resultant code is identical to an XCCS code of the character set 0, it will be expressed as a
VP character in VP documents. Ifit is identical to a control code like a tab in VP, it will be used as is. Ifit
is not defined in VP, it will be expressed as a black square. An exception is OxFF, which will be converted
to Ox007F and copied into xs. It is the user's responsibility to process these codes correctly. Note the
following codes.

Ox09 (lIB) ~ Tab (Tab)
OxOD (15B) ~ New Line (NewLine)
OxlD (35B) ~ New Paragraph (NewPara)
Ox89 (21IB) ~ Paragraph Tab (ParaTab)
Ox87 (207B) ~ Page Number
Ox8E (216B) ~ Table of contents mark (left)
Ox8F (217B) ~ Table of contents mark (right)

The XStrtoASC() function is used to convert the XString xs into an ASCII string s. During the conversion,
characters that do not have ASCII equivalents are replaced by the character signified by c. This function
returns 0, if all the characters in xs were successfully converted to ASCII. Otherwise, it returns the
number of non-ASCII characters in xs.

It is the programmer's responsibility to assure that sufficient storage is allocated for s. s will require (xs
character length + 1 byte) for storage.

RETURN VALUE

xs is returned by XStrfromASC. XStrtoASC returns the number of non-ASCII characters in xs.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 6-15

XSTRING LIBRARY

XStrfromXCC8, XStrtoXCC8

NAME

XStrfromXCC8, XStrtoXCC8 - convert between XCCS 8-bit encoded string and XString

SYNOPSIS

#include "XString.h"

XString
XStrfromXCC8(xs. xcc8. len. prefix)

XString xs;
XCC8xcc8;
int len;
int prefix;

int
XStrtoXCC8(xs. xcc8)

XString xs;
XCC8xcc8;

DESCRIPTION

The XStrfromXCC8() function is used to convert an XCCS 8-bit encoded string into an XString string. The
xs argument is the storage area in which to place the converted XString string. The xcc8 argument is the
XCCS 8-bit encoded string that is to be converted. The len argument specifies the length in bytes of xcc8.
The prefix argument should be set to 0 if xcc8 is a standard 8-bit encoded string. The encoded string is
considered to be "standard" if the first character begins with the character set 0 or with character set
select (Oxff). If the first character in xcc8 begins with a character code that indicates the use of a non-zero
character set, the value of the prefix argument should also use that same character set. prefix should be-l
if the first character ofxcc8 begins with a 16-bit code. A successful conversion returns xs. An unsuccessful
conversion returns a NULL pointer.

To calculate sufficient storage resources for xs, allow (2 * xcc8 byte length) + 2 bytes.

The XStrtoXCC8() function is used to convert an XString string into a compact XCCS 8-bit encoded string.
The xs argument is the value of the XString string to be converted. The xcc8 argument is the return value
that is to contain the XCCS 8-bit encoded string.

In the XCCS system, a 16-bit encoded representation is possible by placing two character set selects (Oxfi)
plus 0 (total of three .bytes) at the point where the 16-bit encoding representation starts. Therefore,
XStrtoXCC8() first compares the length of the 8-bit and 16-bit ([Oxff,Oxff,OxO] at the head of xs) encoding
representations that XStrtoXCC8() would get after converting xs. After which, XStrtoXCC8() converts xs
into xcc8 in the shorter representation.

The first byte of the converted xcc8 begins, either, with a character code having a character set 0, or with
character set select 0 (Oxfi). The return code will be the byte length of the converted xcc8 string.

To calculate sufficient storage resources for xcc8, allow (2 * xs character length) + 3 bytes for storage.

XCC8 requires data structures of 8-bit encodings in a XCCS format. XCC8 is analogous to ByteSequence
in Mesa XString.

RETURN VALUE

6-16

XStrtoXCC80 returns the byte length ofxcc8. XStrfromXCC8() returns a NULL pointer, ifxcc8 encoding is
invalid or xs is invalid, otherwise it returns xs.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

7. Docu ment Ie Sig na Is

getsigno

NAME

getsigno - retrieve the number of an error

SYNOPSIS

#include "Signals.h"

int
getsigno{)

DESCRIPTION

When a function returns -1, getsigno{) is called to determine the cause for the failure.

The getsigno{) function takes no arguments and its return value indicates the reason for the failure.

The following is a list of error numbers and the corresponding text names, as specified in "Signals.h":

1* Signals from Document IC Toolkit operations *1

4096 (Ox1000) Doc_ContainerFull
Insufficient space for appending to this container.

4097 (Ox1001) Doc_DocumentFull
Insufficient space in the document.

4098 (Ox1002) Doc_Readonly Doc
Document opened in ReadOnly mode.

4099 (Ox1003) Doc_ OutOfDiskSpace
Insufficient disk space for the operation.

4100 (Ox1004) Doc_OutOfVM
Insufficient virtual memory for the operation.

4101 (Ox1005) Doc_ ObjIllegalInCont
Attempted to add an object of an unsupported type to a container.

4102 (Ox1006) Doc_BadParm
One of the arguments specified is invalid.

4103 (Ox1007) Doc_Unimpl
This function is not supported.

4104 (Ox1008) Doc_ OutOffioomForGraphics
Insufficient space in the document to insert graphics objects.

4105 (Ox1009) Doc_TableToo Wide
The specified table is too wide to fit in the document.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 7-1

DOCUMENT IC SIGNALS

7-2

4106 (Ox100a) Doc _ TableTooTall
The specified table is too tall to fit in the document.

4107 (Ox100b) Doc _ TableHeaderTooTall
The specified headers are too tall.

4108 (Ox100c) Doc_TimeOut
Timeout has occurred during inter-process communication.

4109 (Ox100d) Doc_IllegalHandle
The handle specified is invalid.

4110(Ox100e) Doc _ N oAccessRight
Reading and/or writing to the document is not allowed.

1* Signals from XString operations *1

8192 (Ox2000) XS_Illegal
The specified XString is invalid.

1* Signals from Desktop operations */

16384 (Ox4000)

16385 (Ox4001)

16386 (Ox4002)

16387 (Ox4003)

16388 (Ox4004)

16389 (Ox4005)

16390 (Ox4006)

16391 (Ox4007)

16392(Ox4008)

DT _FileChanged
While the function was executing, the file changed in such a way that execution
could not continue. This condition may occur, for example, when
dsktp enumerateO is called and the order of the files contained in a folder or on
the deSktop changes.

DT_FileDamaged
A file is internally damaged in some way.

DT_FilelnUse
The specified file is in use by another application.

DT_FileNotFound
A file was not found in the expected context.

DT_Illegal
One of the arguments passed to the desktop interface is invalid.

DT_FileNotUnique
The directory already contains a file with the same name (if the
UniquelyNamedContents of Folder Properties is set to TRUE) or the same name
and version (if the UniquelyNamedContents of Folder Properties is set to FALSE).

DT _ LooplnHierarchy
The directory is the same as, or a descendant of, the file being moved or copied.

DT_MediumFull
There is not enough space on the appropriate file service to satisfy the request.

DT _N oAccessRight
Reading and/or writing to the desktop is not allowed.

1* Signals from implementation failures */

32767 (Ox7ffi) IMPL_SIG
An unimplemented module has been encountered.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

DOCUMENT IC SIGNALS

/* Place holder for unidentified signals */

32766 (Ox7ffe)

RETURN VALUE

OTHER_SIG
The default signal that is displayed when an error occurs that cannot be addressed
by any ofthe preceding signals.

The return value of getsigno() is the reason for the most recent failure of all but XNS functional calls.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 7-3

DOCUMENT IC SIGNALS

7-4 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

8. XNS Library

XNS_intro

NAME

XNS_intro - introductory description of XNS interchange functions

DESCRIPTION

The XNS toolkit library is the means by which UNDUC programmers may interface with Xerox XNS
servers. The XNS toolkit library contains functions, referred to as stubs, that allow calls to be made to the
clearinghouse server, the authentication server, file servers, the print server, mail servers, and the
Gateway Access Protocol (GAP) server. Xerox System Integration Standards contain protocol information
on these servers. The standards described in these books, however, define the protocols with respect to the
Xerox Mesa language. C programmers may still benefit from the descriptions in these books because Mesa
and C functions are similar in many respects. Function calls in C require the same parameters as the
equivalent Mesa functions. These parameters are of the same type in both programming languages. The
exception is, the C representation of a function contains two extra parameters. They are Connection and
_ BDTprocptr.

Connection

Every XNS function called by a C application must contain a value for the parameter Connection. This
parameter is the courier connection number of the XNS server to which the C application is attempting
communication. Therefore, for example, depending upon the XNS server number entered, it is possible to
direct a C application to communicate with a specific printer.

The number to be supplied as the value of the _Connection parameter may be obtained by entering the
following code in the C application:

COURIERFD connected;
char *hostnameptr;

if(!(connected = cour_establish_conn(hostnameptr))) {
fprintf(stderr, U\t\tCOURIER CONNECTION FAILED!!!!\nU);
return;

}

In the example code above, connected is the return value of the cour establish conn function supplied by
libcourier.a (a library that you must link with to use XNS functions):""" -

hostnameptr is a string that contains the name of the desired server. For example, if you have access to
the Xerox organization and the Sunnyvale domain, and you wish to access a printer called BCobain in that
domain, then:

hostnameptr = "BCobain:Sunnyvale:Xeroxu

would be be the proper format for specifying the printer. If a connection to the host does not occur, an error
message will be printed.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-1

~\Urr ~e: ~N\'~~¥-
XNS LIBRARY ,.,1 \ f ",1" / r '

Some XNS functions do not require a valid value for\ Connection. Those functions requiring a valid
_Connection value are described as appropriate. The rem~iningfunctions should be set to NULL.

_ BDTprocptr

8-2

Every XNS function also requires a value for the parameter BDTprocptr. For those functions that
transfer bulk data, this parameter is the name of the function that performs th~.J>u~, transfer. Th,iS
bulk data function is created by the C programmer. As an exa pIe, to print UNIX filejhe C code may
contain the following call: . " f'lD (jtJ1f~ ~~:tff:~)

printresult = Print(printconnected, SendSource, BulkDatar-"immediateSource, attributes, options);

Two parameters of special importance are SendSource and BulkData1 immediateSource. SendSource is
the name of the user-defined C function that sends print data from the UNIX environment to the XNS
printer defined by the printconnected parameter, the courier connection number for the printer. The code
you write to define SendSource may be as follows:

int

{

SendSource (bdtconnection)
COURIERFD bdtconnection;

char * buf;
int buflen;
int count;
extern int errno;
int len;
char local_buflBUFSIZ];

len = sizeofOocal_buf) < < 3;
if(len < = 0 II !(buf = malloc(len))) {

buf = local_buf;
len = sizeof(but);

}
while «count = read(ipfile, buf, len» > 0) {

}

if (cour_bdt_write(bdtconnection, buf, count) < count) {
if (buf!= local_but)

free(but);
return BDT_ WRITE_ABORT;

}

if (buf! = local_buf)
free(but);
return (count> = O)? BDT_ WRITE_FINISHED: BDT_ WRITE_ABORT;

}

When transferring bulk data, another parameter of type Sink or Source must also be supplied. These two
types are bulk data types. They direct the function to source data from the UNIX environment or sink data
to the UNIX environment. To send data from UNIX to XNS, use BulkData1 immediateSource. To
retrieve data from XNS back to UNIX, use BulkData1_immediateSink. -

A valid value for this parameter is only required if the function transfers bulk data. If it does not, set the
value ofthis parameter to NULL.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

Error Handling

The code to trap errors generated by XNS functions must be defined by the user. Each XNS function has a
specified set of errors that it may return. The Standards book for the respective protocol explains each
error. This manual lists the possible errors each function may return. Two errors not described in either
the Gray Book or this manual are courier-generated errors: REJECT_ERROR and SYSTEM_ERROR.
These two errors may be generated by any XNS function. The following code may be inserted in the C
program to catch these errors:

#include < courier/except.h >

int secondlevelerror, syserror;
Cardinal probnum;

secondlevelerror = 0;
syserror = 0;

DURING
Status Result = GetPrinterStatus(getprintstatusconnected,NULL);
HANDLER {

char * msg;
switch (Exception. Code) {

case ServiceUnavailable:
msg = "GetStat: Service unavailable";
break;

case SystemError:
msg = "GetStat: System Error";
break;

case Undefined:
msg = "GetStat: Undefined error";
probnum = CourierErrArgs(U ndefinedArgs,problem);
secondlevelerror = 1;
break;

case REJECT_ERROR:
switch (CourierErrArgs(rejectionDetails, designator)) {

case 0:

}
break;

msg = "GetStat: REJECT: noSuchProgramN umber";
break;

case 1:
msg = "GetStat: REJECT: noSuchVersionNumber";
break;

case 2:
msg = "GetStat: REJECT: noSuchProcedureValue";
break;

case 3:
msg = "GetStat: REJECT: invalidArgument";
break;

default:
msg = "GetStat: REJECT: unknown error";
secondlevelerror = 1;
probnum = CourierErrArgs(rejectionDetails, designator);
break;

case SYSTEM_ERROR:
msg = "GetStat: Connection Error";
syserror = 1;

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-3

XNS LIBRARY

}

break;
default:

msg = "GetStat: Some random error";
secondlevelerror = 1;
probnum = Exception.Code;
break;

fprintf(stderr,"\t\t\tError: %s\n", msg);
if(syserror) {

syserror = 0;
fprintf (stderr, "\t\t\t%s\n", Exception.Message);

}
if (secondlevelerror) {
secondlevelerror = 0;
fprintf(stderr,"\t\t\tProblem number: %d\n", probnum);
}

} END_HANDLER;

When an error occurs, the XNS function will return a code number and sometimes a problem number. The
above code switches on the error code number in order to print out the user-defined error message. If the
error also returns a problem number, you can determine the cause of the error by calling CourierErrArgs().
Refer to the respective Standards book for more details.

Be sure to include except.h in the application. This header file defines the macros DURING, HANDLER,
and END_HANDLER.

Header Files

8-4

Each XNS service has two particular header files associated with it: [servicel_de.h and [servicel.h, where
[service] represents the name of the service. For example the printing service, which would be
Printing3_de.h and Printing3.h. Your application should include one or the other, but not both. The
[servicel_de.h header files simplifies typing. It has define statements that eliminate the need for prefixing
function and error statements with the service name. [servicel.h is the "raw" header file. If you include
this header file, you must prefix the name of the service to each function or error name in the application.
For example, the function ChangeStrongKey() may be specified in one of two ways: If the header file used
is Authentication2.h, the function must be specified as Authentication2 ChangeStrongKey(). If the header
file used is Authentication2.de.h, then the function may be specified as cnangeStrongKey().

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Authentication2_ChangeStrongKey, _ChangeSimpleKey

NAME

ChangeStrongKey, ChangeSimpleKey - change a user's strong or simple key

SYNOPSIS

#include < courier/Authenti2 de.h>
#include <courier/except.h >-

void
ChangeStrongKey(Connection, _ BDTprocptr, credentials, verifier, newKey)

COURIERFD Connection;
int (* BDTprocptr)();
Credentials credentials;
Verifier verifier;
Block newKey;

void
ChangeSimpleKey(Connection, _ BDTprocptr, credentials, verifier, newKey)

COURIERFD Connection;
int (* BDTprocptr)();
Credentials credentials;
Verifier verifier;
Cardinal newKey;

DESCRIPTION

XNS LIBRARY

The ChangeStrongKey() function is used to change a strong key that is registered with the Authentication
Service.

The strong credentials and verifier arguments identify the client for whom the key is to be changed. The
new Key argument is the strong key that has been encrypted using the ECB mode of DES, and the
conversation key that is contained in the credentials. The encryption and decryption of the strong key is
performed by user-defined code.

The ChangeSimpleKey() function is used to change a simple key that is registered with the Authentication
Service.

The simple credentials and verifier arguments identify the user for whom the simple key is to be changed.
The newKey argument is the unencrypted new key that is to be registered. The newkey must be hashed
by the user.

Use of these functions is contingent upon how the Internet is administered. If you are unable to change a
strong or simple key via remote function calls, it may be due to the Internet administrative rules.

RETURN VALUE

These functions return void.

ERRORS

Reports [AuthenticationError[problem], CallError[problem]]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-5

XNS LIBRARY

SEE ALSO

CreateStrongKey(), CreateSimpleKey()

8-6 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Authentication2_CheckSimpleCredentials

NAME

CheckSimpleCredentials - verify a user's identity

SYNOPSIS

#include <courier! Authenti2 de.h>
#include <courier!except.h>-

void
CheckSimpleCredentials(Connection, _ BDTprocptr, credentials, verifier)

COURIERFD Connection;
int (* BDTprocptr}();
Credentials credentials;
Verifier verifier;

DESCRIPTION

XNS LIBRARY

The CheckSimpleCredentials() function is used to verify that the correct password has been submitted to
the Authentication Service. The Authentication Service compares the simple key that is registered for the
initiator against the simple key in the verifier. The credentials are used to specify the Clearinghouse in
which the initiator is registered.

The credentials and verifier arguments must be the simple credentials and verifier of the initiator. Simple
credentials are the initiator's ThreePartName, specified as a text string. Simple verifier is the result of a
hashing algorithm applied by the Authentication Service upon the initiator's password.

RETURN VALUE

This function returns a structure called CheckSimpleCredentialsResults. Its one member is a Boolean
value. A value of TRUE indicates that the simple key registered for the initiator and the simple key
specified in the verifier match.

ERRORS

Reports [AuthenticationError[problem], CaIIError[problem]]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-7

XNS LIBRARY

Authentication2_CreateStrongKey, _CreateSimpleKey

NAME

CreateStrongKey, CreateSimpleKey - register a new strong or simple key

SYNOPSIS

#include < courier/Authenti2 de.h>
#include <courier/except.h>-

void
CreateStrongKey(Connection. _BDTprocptr. credentials. verifier. name. key)

COURIERFD Connection;
int (* BDTprocptr)O;
Credentials credentials;
Verifier verifier;
ThreePartName name;
Key key;

void
CreateSimpleKey(Connection. _ BDTprocptr. credentials. verifier. name. key)

COURIERFD Connection;
int (* BDTprocptr)O;
Credentials credentials;
Verifier verifier;
ThreePartName name;
Cardinal key;

DESCRIPTION

The CreateStrongKey() function is used to register a strong key with the Authentication Service.

The credentials and verifier specified must be the strong credentials and strong verifier of a privileged
user. The Authentication protocol for these two is described below. name is the user name as known by the
Clearinghouse. The key is the strong key to be registered with the Authentication Service. It will be
encrypted in the ECB mode of DES, using the conversation key contained in the credentials.

Strong credentials consist of data which has been encrypted using the National Bureau of Standards' Data
Encryption Standard (DES). A key is an array comprised of 4 I6-bit wide words, where the least
significant bit is assigned as the parity bit, thus leaving 56 bits for unconstrained data. The least
significant bit of each octet is set so as to make the parity of each octet odd.

The CreateSimpleKeyO function is used to register a new simple key with the Authentication Service. A
simple key is a simple password that has been hashed according to the algorithm specified in the Xerox
Authentication Protocol manual. Only a privileged user may register a new key.

The credentials and verifier arguments must be the strong credentials and verifier of a privileged user.
The name argument specifies the intended user of the key. The key argument is the unencrypted key that
is to be registered.

RETURN VALUE

These functions return void.

8-8 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

ERRORS

Reports [AuthenticationError[problem), CallError[problem))

SEE ALSO

ChangeStrongKey(), ChangeSimpleKeyO, GetStrongCredentialsO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-9

XNS LIBRARY

Authentication2_DeleteStrongKey, _DeleteSimple Key

NAME

DeleteStrongKey, DeleteSimpleKey - delete a user's strong or simple key

SYNOPSIS

#include <courier/Authenti2 de.h>
#include <courier/except.h >-

void
DeleteStrongKey(Connection, _ BDTprocptr, credentials, verifier, name)

COURIERFD Connection;
int (* BDTprocptr)O;
Credentials credentials;
Verifier verifier;
ThreePartName name;

void
DeleteSimpleKey(Connection, _ BDTprocptr, credentials, verifier, name)

COURIERFD Connection;
int (* BDTprocptr)O;
Credentials credentials;
Verifier verifier;
ThreePartName name;

DESCRIPTION

The DeleteStrongKeyO function is used to delete a strong key that is registered with the Authentication
Service.

The credentials and verifier arguments must be the strong credentials and verifier of the key's owner or of
a privileged user. The name argument specifies the user for whom the key is to be deleted.

The DeleteSimpleKeyO function is used to delete a simple key that is registered with the Authentication
Service.

The credentials and verifier arguments must be the simple credentials and verifier of the possessor or of a
privileged user. The name argument specifies the user for whom the key is to be deleted.

RETURN VALUE

These functions return void.

ERRORS

Reports [AuthenticationError[problem), CallError[problem))

SEE ALSO

CreateStrongKeyO, CreateSi mpleKeyO

8-10 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Authentication2_GetStrongCredentials

NAME

GetStrongCredentials- acquire privileged user permission

SYNOPSIS

#include < courier/Authenti2 de.h>
#include <courier/except.h>-

GetStrongCredentialsResults
GetStrongCredentials(Connection, _ BDTprocptr, initiator, recipient, nonce)

COURIERFD Connection;
int (* BDTprocptr)();
ThreePartName initiator;
ThreePartName recipient;
LongCardinal nonce;

DESCRIPTION

XNS LIBRARY

The GetStrongCredentials() function is used to create credentials in order to prove one's identity to a
specified communications partner (i.e., recipient). Once created, the privileged user can act on behalf of
any user within the same organization and domain. To get StrongCredentials you must have a strong key
registered with the Authentication Service and you must know how to decrypt the results.

It is sometimes necessary to authenticate oneself to the Authentication Service, such as when modifying a
strong key or fetching credentials through a proxy. To authenticate oneself, you must supply the name of
the Authentication Service. Since any instance of the Authentication Service may be specified, the service
is accessible through a "wellknown" name. This wellknown name may be used regardless of the instance
actually being accessed. The wellknown name of the Authentication Service is Authentication
Service:CHServers:CHServers.

A sender, called the initiator, attempts to authenticate itself to a receiver, called the recipient. To do this
the sender contacts the Authentication Service, via this function, and supplies to the Service the names of
both parties and a random number, called a nonce. The nonce is a check mechanism that insures the
validity of the Authentication Service. If the sender is properly registered with the Authentication
Service, this function will return credentials, the nonce, the receiver's name and conversation key. All
four are encrypted. The decrypted credentials are used by other functions, such as DeleteSimpleKey(). The
conversation key is not passed to any function. It is used to encrypt verifiers that are later passed to those
functions requiring strong verifiers.

The initiator argument is the distinguishing name, or alias, of the user that wishes to be authenticated.
The recipient argument is the distinguishing name, or alias, of the recipient to whom the initiator is
proving his identity.

RETURN VALUE

This function returns a structure called GetStrongCredentialsResults. Its one member,
credentialsPackage, is of type T r14 2 2. It has been encrypted with the initiator's key. Once decrypted
with the initiator's key, it will cOntaincredentials that have been encrypted with the recipient's key, of
which only the recipient may decrypt. It will also contain a nonce, the recipient's name, and a
conversation key. Once the credentialsPackage has been decrypted it is possible for the initiator to view
the nonce, the recipient's name, and conversation key. The initiator may not view the credentials because
it is still encrypted with the recipient's strong key.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-11

XNS LIBRARY

ERRORS

Reports [CallError[problem]]

8-12 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Clearinghouse2_AddGroupProperty

NAME

AddGroupProperty - add a group type property to an object

SYNOPSIS

#include <courier/Clearing2 de.h>
#include < courier/except.h >"

AddGroupPropertyResults
AddGroupProperty(Connection. _ BDTprocptr.name. newProperty. membership. agent)

COURIERFD Connection;
int (* BDTprocptr)();
ThreePartName name;
LongCardinal newProperty;
BulkData1 Descriptor membership;
Authenticator agent;

DESCRIPTION

XNS LIBRARY

The AddGroupProperty() function is used to add a new group type property to an object. The value of a
group type property is understood by the Clearinghouse to be a sequence of Clearinghouse names called
members.

A Clearinghouse object is comprised of three parts: a property number (ID), a property type, and a value.
A property is primarily used to hold a network location, or a list of other object names. Given an object
name and a property number, the Clearinghouse will return the value of that property, which will be
either a block of data (if the property type is item), or a list of names (if the property type is group). The
Clearinghouse does not inspect item properties, therefore they may consist of any data the client wishes.
The group property, on the other hand, is inspected and recognized by the Clearinghouse, therefore each
group property must contain a sequence of Clearinghouse names called members. The name argument is
the Clearinghouse name of the object. It may be in the form of either the actual name of the object or its
alias. UNIX wildcards may not be used in specifying any part of the object name.

The name argument is comprised of three strings that identify the organization, domain, and name of an
object. Wildcards may not be used to specify any portion of this argument. It may be a distinguished name
or an alias.

The newProperty argument identifies the group type property that is to be added to an object.

The membership argument is a Bulk Data Transfer parameter that specifies the source that supply the
list of names in accordance to the Bulk Data Transfer Protocol. This list of names provides the initial
value of the new group type property. That is, the group type property is initialized with zero or more
members as specified by the source. The data sent via membership is of type SegmentOfThreePartName.
Wildcard characters may occur in any part of each name, but the characters will not have wildcard
significance. They will be interpreted as regular characters.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns a structure called AddGroupPropertyResults. Its one member, distinguishedObject,
is of type ThreePartName. It is the full name of the object that received the new group type property.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-13

XNS LIBRARY

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem],
PropertyError[problem], UpdateError[problem], WrongServer]

SEE ALSO

listPropertiesO

8-14 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Clearinghouse2_AddltemProperty

NAME

AddItemProperty -- add a item type property to an object

SYNOPSIS

#include < courier/CIearing2 de.h>
#include < courier/except.h:>"

AddltemPropertyResults
AddltemProperty(Connection, _ BDTprocptr, name, newProperty, value, agent)

COURIERFD Connection;
int (* BDTprocptr)O;
ThreePartName name;
LongCardinal newProperty;
Item value;
Authenticator agent;

DESCRIPTION

XNS LIBRARY

The AddltemProperty function is used to add a property of a specified value to an object. The property
value will be of type Item. Item type properties are not inspected by the Clearinghouse and therefore do
not have to adhere to Clearinghouse rules. An object may have up to 250 properties associated with it.

A Clearinghouse object is comprised of three parts: a property number (ID), a property type, and a value.
A property is primarily used to hold a network location, or a list of other object names. Given an object
name and a property number, the Clearinghouse will return the value of that property, which will be
either a block of data (if the property type is item), or a list of names (if the property type is group). The
Clearinghouse does not inspect item properties, therefore they may consist of any data the client wishes.
The group property, on the other hand, is inspected and recognized by the Clearinghouse, therefore each
group property must contain a sequence of Clearinghouse names called members. The name argument is
the Clearinghouse name of the object. The name may be either the actual name of an object or an alias.
UNIX wildcards may not be used in specifying any part of the object name.

If an attempt is made to add a property that already exists, even if it has a different value, the attempt will
be ignored. Use ChangeltemO to change the value of an existing item property.

The name argument is the name of the object to which the property will be added. It may be either the
actual name of the object or an alias. UNIX wildcards may not be used to specify any portion of the name
argument. The newProperty argument is an integer that identifies the property to be added. The value
property is the initial value, or data, to be assigned the new property.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns a structure called AddltemPropertyResults. Its one member, distinguishedObject, is
of type ThreePartName. It is the full name of the object to which the item type property was added.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[probleml, CallError[problem],
PropertyError[problem], UpdateError[problem], WrongServer]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-15

XNS LIBRARY

SEE ALSO

AddGroupPropertyO, ListProperties()

8-16 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Clearinghouse2_AddMember, _AddSelf

NAME

AddMember - add a member to a group type property
AddSelf - add the user to a group type property

SYNOPSIS

#include <courier/Clearing2 de.h>
#include < courier/except.h:;-

AddMemberResults
AddMember(Connection, BDTprocptr. name, property. newMember. agent)

COURIERFD Connection;
int(* BDTprocptr}();
ThreePartName name;
longCardinal property;
ThreePartName newMember;
Authenticator agent;

AddSelfResults
AddSelf(Connection. BDTprocptr. name. property. agent)

COURIERFD Connection;
int (* BDTprocptr)O;
ThreePartName name;
longCardinal property;
Authenticator agent;

DESCRIPTION

XNS LIBRARY

The AddMember() function is used to add a new member to a group type property of an object. The
AddSelf() function is used to add the user identified by the agent argument to a group property of an
object.

The value of a group property is understood by the Clearinghouse to be a sequence of Clearinghouse
names called members. The new member may be a distinguished name, an alias, or the name of a
Clearinghouse object that does not currently exist. The name of the member does not have to be registered
with the Clearinghouse at the time of calling this function, though the object must be registered.

The name argument specifies the object to which the new member is to be added. It is of type
ThreePartName. Its members, organization, domain, and object, identify the object in question. UNIX
wildcards may not be used to specify any part of the name. If the object name encountered is an alias, it is
dereferenced before it is processed.

The property argument specifies the property number of the property to which the new member will be
added. The newMember argument identifies the new member. It is specified as being of type
ThreePartName.

The agent argument is a structure of type Authenticator. Its two members contain the client's credentials
and verifier. In the case of AddSelf, agent identifies the user and verifies the user's credentials. In the
case of AddMember, it simply verifies the user's credentials. The new user is identified by the
newMember argument.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-17

XNS LIBRARY

RETURN VALUE

AddMember() and AddSelf() return structures called AddMemberResults and AddSelfResults,
respectively. They both have one member, distinguishedObject, which is of type ThreePartName. It is the
distinguished name of the object to whose group type property the member was added.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem],
PropertyError[problem], U pdateError[problem], W rongServer]

SEE ALSO

DeleteMemberO. AddGroupPropertyO

8-18 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Clearinghouse2_Changeltem

NAME

ChangeItem - modify the value of an item type property

SYNOPSIS

#include <courier/Clearing2 de.h>
#include <courier/except.h>

ChangeltemResults
Changeltem(Connection. BDTprocptr.name. property. newValue. agent)

COURIERFD Connectioo;
int (* BDTprocptr)();
ThreePartName name;
LongCardinal property;
Item newValue;
Authenticator agent;

DESCRIPTION

XNS LIBRARY

The Changeltem() function is used to assign a new value to an item type property. The name argument is
comprised of three strings that identify the organization, domain, and name of an object. Wildcards may
not be used to specify any portion of this argument. The property argument identifies the item type
property for which a new value is to be assigned. The newValue argument is the intended new value of the
property. The agent argument is a structure whose two members contain the client's credentials and
verifier.

RETURN VALUE

This function returns a structure called ChangeltemResults. Its one member, distinguishedObject, is of
type ThreePartName.1t is the full path name of the object whose item type property was modified.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CaIIError[problem],
PropertyError[problem], UpdateError[problem], WrongServer]

SEE ALSO

AddltemProperty(), Retrieveltem(), ListProperties().lsMember()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-19

XNS LIBRARY

Clearinghouse2_CreateAlias, _DeleteAlias, _ListAliases

NAME

CreateAlias - add an alias to an object
DeleteAlias - delete an alias of an object
ListAliases - list objects that are aliases

SYNOPSIS

#include < courier/CIearing2 de.h>
#include < courier/except.h->

CreateAliasResults
CreateAlias(Connection. BDTprocptr. alias. sameAs. agent)

COURIERFD Connection;
int (* BDTprocptr)O;
ThreePartName alias;
ThreePartName sameAs;
Authenticator agent;

DeleteAliasResults
DeleteAlias(Connection. BDTprocptr. alias. agent)

COURIERFD Connection;
int (* BDTprocptr)O;
ThreePartName alias;
Authenticator agent;

void
ListAliases(Connection. BDTprocptr. pattern. list. agent)

COURIERFD Connection;
int (* BDTprocptr)O;
ThreePartName pattern;
BulkData1 Descriptor list;
Authenticator agent;

DESCRIPTION

8-20

The CreateAliasO function is used to add a new alias to an object in the Clearinghouse database. If the
object being aliased is itself an alias, the existing alias will be de referenced before proceeding. The
resulting alias will point to the actual object rather than the alias of the object. Cross-domain aliases are
allowed.

The DeleteAliasO function is used to remove an alias of an object in the Clearinghouse database.

The ListAliasesO function is used to list the objects in a specific domain which are aliases and match
pattern.

The alias argument is the name by which the object may be referenced. In the case of CreateAliasO, the
alias argument is the name of the new alias to be attributed to the object. Wildcard characters may not be
used.

The sameAs argument is the actual name, or existing alias, of the object to which the new alias will point.
No wildcards may be used in specifying the sameAs argument.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

The value of the pattern argument is a structure whose members specifies the organization, domain, and
object name of the object whose aliases are to be listed. Wildcards may be used in specifying the object, but
not the domain and organization. The search for an object stops upon the first occurrence of a match.

The value of the list argument specifies the sink that is to receive the list of aliases, in accordance to the
Bulk Data Transfer Protocol. The list of aliases placed in the sink will be of type SegmentOfObject.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

CreateAliasO returns a structure called CreateAliasResults. Its one member, distinguishedObject, is of
type ThreePartName. It is the full name of the object to which the aliases point. DeleteAliasO returns a
structure called DeleteAliasResults. Its one member, distinguishedObject, is of type ThreePartName. It is
the full name of the object to which the aliases pointed. ListAliasesO returns void.

ERRORS

CreateAliasO and DeleteAliasO both report [ArgumentError[probleml, AuthenticationError[probleml,
CallError[probleml, UpdateError[problem], WrongServerl. ListAliasesO reports
[Argu mentError[problem], Authenti cati on Error[probl em], Call Error[probl em], Wrong Server]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-21

XNS LIBRARY

Clea ringhouse2_CreateObject

NAME

CreateObject - create a Clearinghouse object

SYNOPSIS

#include < courier/CIearing2 de.h>
#include < courier/except.h >"

void
CreateObject{ Connection, BOTprocptr, name, agent)

COURIERFD Connection;
int (* BOTprocptr){);
ThreePartName name;
Authenticator agent;

DESCRIPTION

The CreateObject{) function is used to create a new distinguished object in the Clearinghouse database.
Distinguished means the object is not aliased.

The name argument is a string that specifies the object's name, domain, and organization. It may not
contain wildcards.

The value of the agent argument is a structure whose two members contain the client's credentials and
verifier, as defined in the Authentication protocol.

RETURN VALUE

This function returns void.

ERRORS

Reports [ArgumentError[problem), AuthenticationError[problem), CallError[problem),
U pdateError[problem), WrongServer)

SEE ALSO

CheckSimpleCredentials{)

8-22 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Clearinghouse2_DeleteMember, _DeleteSelf

NAME

DeleteMember - remove a member of a group type property
DeleteSelf - remove a user from a group type property

SYNOPSIS

#include <courier/Clearing2 de.h>
#include < courier/except.h >"

DeleteMemberResults
DeleteMember(Connection, _ BDTprocptr, name, property, member, agent)

COURIERFD -Connection;
int (* BDTprocptr)O;
ThreePartName name;
LongCardinal property;
ThreePartName member;
Authenticator agent;

DeleteSelfResults
DeleteSelf(Connection, BDTprocptr, name, property, agent)

COURIERFD Connection;
int (* BDTprocptr)O;
ThreePartName name;
LongCardinal property;
Authenticator agent;

DESCRIPTION

XNS LIBRARY

The DeleteMember() function is used to delete a member from a group type property of an object. The
DeleteSelfO function deletes the user identified by the agent argument from a group type property of an
object.

The name argument specifies the object from which the member or user is to be deleted. It is of type
ThreePartName. Its three members, organization, domain, and object, identify the object in question.
UNIX wildcards may not be used to specify any part of the name. If the object name encountered is an
alias, it is dereferenced before it is processed.

The property argument indicates the group type property from which the specified member or user will be
deleted.

In the case of DeleteMemberO, the member argument is the name of the member that is to be deleted from
the Clearinghouse database. Like the name argument, it is of type ThreePartName. UNIX wildcards may
not be used to specify any part of the member. However, members of type group may be specified patterns,
in which case, wildcards may be included in the name string and will be interpreted literally. Since the
specified member is not verified by the Clearinghouse, any properly formed member name may be
specified.

The agent argument is a structure whose two members contain the client's credentials and verifier.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-23

XNS LIBRARY

RETURN VALUE

DeleteMember() and DeleteSelfO returns structures called DeleteMemberResults and DeleteSelfResults,
respectively. They both contain one member, distinguishedObject. It is of type ThreePartName. It is the
full path name of the object from whose group type property the member was removed.

ERRORS

Reports [ArgumentError[probleml, AuthenticationError[problem], CallError[probleml,
PropertyError[probleml, U pdateError[problem], W rongServer 1

SEE ALSO

AddMemberO, AddSelf{)

8-24 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

Clearinghouse2_DeleteObject

NAME

DeleteObject - delete a Clearinghouse object

SYNOPSIS

#inelude < courier/CIearing2 de.h>
#i nelude < courier/except.h >"

void
DeleteObject(Connection, _ BDTprocptr, name, agent}

COURIERFD Connection;
int (* BDTprocptr)(};
ThreePartName name;
Authenticator agent;

DESCRIPTION

The DeleteObject(} function is used to delete an object from the Clearinghouse database.

The name argument is of type ThreePartName, a string that specifies the object's name, domain and
organization. If the name argument is an alias, it is first dereferenced. As a result, all aliases that point to
the specified object will also be deleted. name may not contain any wildcard characters.

The value of the agent argument is a structure whose members contain the client's credentials and
verifier.

RETURN VALUE

This function returns void.

ERRORS

Reports [ArgumentError[probleml, Authentica tionError[probleml, CallError[problem],
U pdateError[problem], WrongServer]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-25

XNS LIBRARY

Clearinghouse2_DeleteProperty

NAME

DeleteProperty -- remove an object property

SYNOPSIS

#include < courierICIearing2 de.h>
#include <courier/except.h>

DeletePropertyResults
DeleteProperty{ Connection, BDTprocptr, name, property, agent)

COURIERFD -Connection;-
int(* BDTprocptr)O;
ThreePartName name;
LongCardinal property;
Authenticator agent;

DESCRIPTION

The DeletePropertyO function is used to remove a specific property from an object. Both the property
number and its value are deleted. The property number may then be used again when adding new
properties to the object. Note that an object is not automatically removed when its last property has been
deleted.

The name argument is the complete Clearinghouse name of an object from which a property is to be
removed. Wildcard characters may not be used to specify any portion of this argument. Aliases may be
used.

The property argument is an integer that identifies the property to be deleted.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns a structure called DeletePropertyResults. Its one member, distinguishedObject, is of
type ThreePartName. It is the path name of the object from which the specified property was removed.

ERRORS

Reports [ArgumentError[problem), AuthenticationError[problem), CaIIError[problem),
PropertyError[problem), UpdateError[problem), WrongServer)

SEE ALSO

AddltemProperty(), AddGroupPropertyO, ListPropertiesO

8-26 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

Clearinghouse2_lsMember

NAME

IsMember - determine membership of an object

SYNOPSIS

#include <courier/Clearing2 de.h>
#include < courier/except.h >"

ISMemberResults
IsMember(Connection, BDTprocptr, memberOf, property, secondaryProperty, name, agent)

COURIERFD Connection;
int (* BDTprocptr)O;
ThreePartName memberOf;
longCardinal property;
longCardinal secondaryProperty;
ThreePartName name;
Authenticator agent;

DESCRIPTION

The IsMember() function determines if a named object is a member of a group type property. IsMemberO
has two modes of operation which are determined by the secondaryProperty argument: normal and group.
The normal mode examines only the members of a specified property. The group mode extends the search
to include the membership of groups listed within the initial group property.

In normal mode, the specified member object is compared against every object belonging to a specific group
type property. This process continues until the first occurrence of a match.

A database object may have numerous group or item properties associated with it. A group property
contains objects which may, in turn, also contain group properties. In group mode operation, the search
algorithm is such that the first group property entry encountered is examined to determine if it is an
object. If it is not an object, the search algorithm continues to the next entry of the group property. If the
group property entry is an object, the algorithm compares the object name against the name specified in
the memberOf argument. If it does match, the search stops and the database object name is returned. If it
does not match, the group property entry is examined further to determine if it may, in turn, contain
objects having group properties. If a lower level object has a group property, the name of each object in the
lower level group property is compared against the name specified in the memberOf argument. If there is
more than one lower level group property, the algorithm searches each lower level group property for an
object name that matches the one specified in the memberOf argument. This applies only when the group
properties have a PID = secondaryProperty. If there are no matches, the algorithm pops back up a level to
the original group property. This search algorithm is performed on every object within the original group
property, including all sub-levels, until a match is found.

The memberOf argument is of type ThreePartName. It three members, organization, domain, and object,
identify the group property to be examined. UNIX wildcards may be used in both the normal and group
modes to specify any part of the name argument. However, wildcards will only be interpreted as such in
the object name field. Wildcards used in the domain and organization fields will be interpreted as normal
characters, devoid of any wildcard significance.

The property argument is an integer that identifies the group property to be searched.

The secondaryProperty argument controls the mode of operation. A value of nuliProperty, 37777777777B,
indicates that only the members of property are examined for name. If any other property ID number is

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-27

XNS LIBRARY

entered as the value of secondary Property, then the group property having the specified ID number is also
searched for the named object.

The name argument is of type ThreePartName. Its three members, organization, domain, and object,
identify the object for whom membership is being determined. UNIX wildcards may be used but are
interpreted literally. name may be an alias. It is not de-referenced before testing for membership.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns a structure called IsMemberResults. It has two members: iSMember and
distinguishedObject. IsMember is a Boolean whose value indicates if the named object had been found
(TRUE) or not (FALSE). distinguishedObject is the full path name of the object specified in the memberOf
argument. It is oftype ThreePartName.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem],
PropertyError[problem], WrongServer]

SEE ALSO

AddMemberO, AddSelf()

8-28 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

Clearinghouse2_ListAliasesOf

NAME

ListAliasesOf - list the aliases of an object

SYNOPSIS

#include < courier/CIearing2 de.h>
#include <courier/except.h:>

ListAliasesOfResults
ListAliasesOf(Connection, BDTprocptr, pattern, list, agent)

COURIERFD Connection;
int (* BDTprocptr)();
ThreePartName pattern;
BulkData1 Descriptor list;
Authenticator agent;

DESCRIPTION

The ListAliasesOf() function is used to list the aliases of an object.

The pattern argument is of type ThreePartName, a structure whose members specify the desired
organization, domain, and object name. UNIX wildcards may be used to specify the object, but not the
domain and organization. The search for an object using wildcards stops upon the first occurrence of a
match. If the object name encountered is an alias, it is dereferenced before its aliases are determined.

The list argument specifies the sink that is to receive the aliases of an object, in accordance to the Bulk
Data Transfer Protocol. The list of aliases placed in the sink will be oftype SegmentOfObjectName.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns a structure called ListAliasesOfResults. Its one member, distinguishedObject, is of
type ThreePartName. It is the full name of the object to which the aliases point.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem], WrongServer]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-29

XNS LIBRARY

Clearinghouse2_ListDomain

NAME

ListDomain - list the domains in an organization

SYNOPSIS

#include <courier/Clearing2 de.h>
#include < courier/except.h >"

void
ListDomain(Connection, BDTprocptr, pattern, list, agent)

COURIERFD Connection;
int (* BDTprocptr)();
ThreePartName pattern;
BulkData1 Descriptor list;
Authenticator agent;

DESCRIPTION

The ListDomain() function is used to list domain names within an organization.

The pattern argument is a text string that specifies the target organization and domain(s). UNIX
wildcards may be used to specify the domain, but not the organization. The search continues through the
entire Clearinghouse database, returning all the domain names that match the specified pattern. The list
argument specifies the sink that is to receive the list of organizations, in accordance to the Bulk Data
Transfer Protocol. The list of domains placed in the sink will be of type SegmentOfDomain.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns void.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem1, WrongServer]

8-30 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Clearinghouse2_ListDomainServed

NAME

ListDomainServed - determine the domains served by a Clearinghouse

SYNOPSIS

#include <courierlClearing2 de.h>
#include <courier/except.h>

void
ListDomainServed(Connection, _ BDTprocptr, domains, agent)

COURIERFD COnnection;
int (* BDTprocptr)();
Bulktra'ta1 Descriptor domains;
Authenticator agent;

DESCRIPTION

XNS LIBRARY

The ListDomai nServedO function is used to obtain a list of the domains served by a specific Clearinghouse
service.

The domains argument is a bulk data transfer parameter that specifies the sink that is to receive the list
of domains in accordance with the Bulk Data Transfer Protocol. The data returned to the sink is of type
SegmentOfDomainName.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns void.

ERRORS

Reports AuthenticationError[problem1, CaUError[problem11

DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE 8-31

XNS LIBRARY

Clearinghouse2_ListObjects

NAME

ListObjects - list objects in a domain

SYNOPSIS

#include < courier/CIearing2 de.h>
#include <courier/except.h::>

void
ListObjects(Connection, BDTprocptr, pattern, property, list, agent)

COURIERFD Connection;
int (* BDTprocptr)();
ThreePartName pattern;
LongCardinal property;
BulkData1 Descriptor list;
Authenticator agent;

DESCRIPTION

The ListObjectsO function is used to list the objects in a domain that have a specific property associated
with them.

The pattern argument is of type ThreePartName, a structure whose members specify the desired
organization, domain, and object names. UNIX wildcards may be used to specify the object, but not the
domain and organization. The property argument is used to specify a property that each object matching
the search pattern must have in order for it to be listed. One property number of particular importance is
0.0 is synonymous with all. When 0 is specified, it indicates that all the objects in a domain that match the
pattern, regardless of intrinsic properties, are to be listed.

The list argument specifies the sink that is to receive the list of domains, in accordance to the Bulk Data
Transfer Protocol. The list of organizations placed in the sink will be of type SegmentOfObject.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns void.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem], WrongServer]

8-32 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

Clearinghouse2_ListOrganizations

NAME

ListOrganizations -list Clearinghouse organizations

SYNOPSIS

#include <courier/Clearing2 de.h>
#include <courier/except.h::>

void
ListOrganizations(Connection, _ BDTprocptr, pattern, list, agent)

COURIERFD Connection;
int (* BDTprocptr)();
Stringpattern;
BulkData1 Descriptor list;
Authenticator agent;

DESCRIPTION

The ListOrganizations() function is used to list the names of organizations in the Clearinghouse database.

The pattern argument is a string that specifies the set of organizations to be listed. pattern is typically the
partial spelling of the desired Clearinghouse organization names. Wildcard characters may be included in
the partial spelling. The search continues through the entire Clearinghouse database, returning all
organization names that match the specified pattern. The list argument specifies the sink that is to receive
the list of organizations, in accordance to the Bulk Data Transfer Protocol. The list of organizations placed
in the sink will be of type SegmentOfOrganization.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns void.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem], WrongServer]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-33

XNS LIBRARY

Clearinghouse2_ListProperties

NAME

ListProperties -- list the property numbers of an object

SYNOPSIS

#include <courier/Clearing2 de.h>
#include <courier/except.h >"

ListPropertiesResults
ListProperties(Connection, BDTprocptr, pattern, agent)

COURIERFD Connection;
int (* BDTprocptr)O;
ThreePartName pattern;
Authenticator agent;

DESCRIPTION

The ListPropertiesO function is used to list the ID number of every property associated with an object. The
pattern argument is of type ThreePartName. It is a structure whose members specify the organization,
domain, and object name of the object whose property numbers are to be listed. UNIX wildcards may be
used in specifying the object, but not the domain or organization. The search for an object using wildcards
stops upon the first occurrence of a match.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns a structure called ListPropertiesResults. Its has two members: distinguished Object
and properties. distinguishedObject is of type ThreePartName. It is the full name of the object in question.
properties is of type Properties. properties is a list of the properties associated with the object. Note that
properties are referred to by number, not name.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem], WrongServer]

SEE ALSO

AddltemProperty(), AddGroupProperty()

8-34 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

Clearinghouse2_LookupObject

NAME

LookupObject - retrieve an object name

SYNOPSIS

#include < courier/CIearing2 de.h>
#include < courier/except.h >"

LOokupObjectResults
LookupObject(Connection, BDTprocptr, name, agent)

COURIERFD- Connection;
int (* BDTprocptr)();
ThreePartName name;
Authenticator agent;

DESCRIPTION

The LookupObject() function is used to query the Clearinghouse database for the full name of an object
that is contained within it.

The name argument is the name of the object in the Clearinghouse. The name that is specified may be a
partial spelling, an alias, or both. Wildcard characters may be included in the partial spelling of the
object name, but not the domain and organization. The search continues until the first occurrence of the
named object, or its alias, is encountered. If the object's alias is encountered, it is dereferenced before being
returned to the calling function.

The value of the agent argument is a structure whose members contain the client's credentials and
verifier.

RETURN VALUE

This function returns a structure called LookupObjectResults. Its one member, distinguishedObject, is of
type ThreePartName. It is the complete name of the Clearinghouse database object in question.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem], WrongServer]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-35

XNS LIBRARY

Clearinghouse2_RetrieveAddresses

NAME

RetrieveAddresses - query a server for its network addresses

SYNOPSIS

#include <courier/Clearing2 de.h>
#include < courier/except.h:>

RetrieveAddressesResults
RetrieveAddresses(Connection, _ BDTprocptr)

COURIERFD COnnection;
int (* _ BDTprocptr)();

DESCRIPTION

The RetrieveAddresses() function is used to query the clearinghouse server for a list of all of its network
addresses. This function knows the Clearinghouse server to access based upon the value of the

Connection argument. This function may also be used as a check to insure the Clearinghouse server is
available before calling other functions.

RETURN VALUE

This function returns a structure called RetrieveAddressesResults. Its one member, address, is of type
NetworkAddressList. It contains a list of the network addresses recognized by the Clearinghouse. A
network address entry is defined in Xerox Network Systems Architecture as host number (48b:1), network
number (32 bit integer), and a socket number (16 bit integer). The maximum number of entries returned is
40.

ERRORS

Reports [CallError[problem]]

8-36 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Clearinghouse2_Retrieveltem

NAME

Retrieveitem - list the value of an item type property

SYNOPSIS

#indude <courier/Clearing2 de.h>
#indude < courier/except.h >-

RetrieveltemResults
Retrieveltem(Connection. BDTprocptr. pattern. property. agent)

COURIERFD Connection;
int (* BDTprocptr}O;
ThreePartName pattern;
LongCardinal property;
Authenticator agent;

DESCRIPTION

XNS LIBRARY

The RetrieveltemO function is used to determine the value of an item type property that is associated with
an object. This function returns both the distinguished object name, and the value of the item property.

The pattern argument is of type ThreePartName, a structure whose members specify the organization,
domain, and object name of the object from which the value of property is to be extracted. UNIX wildcards
may be used in specifying the object, but not the domain and organization. The search for an object using
wildcards stops upon the first occurrence of a match. If the object name encountered is an alias, it is
dereferenced before it is returned.

The property argument specifies the ID number ofthe property for which its value is to be returned. UNIX
wildcards may not be used.

Properties are referred to by ID number, not name. One property number of particular importance is o. 0 is
synonymous with all. When 0 is specified, it indicates that all the item properties of the first object
encountered that matches the specified pattern are to be returned.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns a structure called RetrieveltemResults. It has two members: distinguishedObject
and value. distinguishedObject is of type ThreePartName. It is the full name of the object whose item type
property is being listed. value is of type Item. It contains the value ofthe item property.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem],
PropertyError[problem], W rongServer]

SEE ALSO

AddltemProperty(), AddGroupPropertyO, ListProperties(), IsMemberO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-37

XNS LIBRARY

Clearinghouse2 RetrieveMembers

NAME

RetrieveMembers - retrieve the value of a group type property

SYNOPSIS

#include <courierlClearing2 de.h>
#include <courier/except.h>

RetrieveMembersResults
RetrieveMembers(Connection, _ BDTprocptr, pattern, property, membership, agent}

COURIERFD Connection;
int (* BDTprocptr)(};
ThreePartName pattern;
LongCardinal property;
BulkData1 Descriptor membership;
Authenticator agent;

DESCRIPTION

The RetrieveMembers(} function is used to extract, or retrieve, the value of a group type property
associated with an object. The pattern argument is of type ThreePartName. It is a structure whose
members, organization, domain, and object, identify the object in question. UNIX wildcards may be used
to specify the object, but not the domain and organization. The search for an object using wildcards stops
upon the first occurrence of a match. If the object name encountered is an alias, it is dereferenced.

The property argument identifies the property from which a value is to be retrieved. One property number
of particular importance is 0.0 is synonymous with all. When 0 is specified, it indicates that all the group
properties that match the criteria specified in pattern are to be returned.

The membership argument is a bulk data parameter that specifies the sink that is to receive the list of
values in accordance to the Bulk Data Transfer Protocol. The data received via the membership argument
is of the type StreamOfThreePartName.

The agent argument is a structure whose two members contain the client's credentials and verifier.

RETURN VALUE

This function returns a structure called RetrieveMembersResults. Its one member, distinguishedObject, is
of type ThreePartName. It is the full name ofthe object from which the property value was extracted.

ERRORS

Reports [ArgumentError[problem], AuthenticationError[problem], CallError[problem],
PropertyError[problem], W rongServer]

SEE ALSO

Retrieveltem(},lsMember()

8-38 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Filing6_Close

NAME

Close - terminate a file handle

SYNOPSIS

#include < courier/Filing6 de.h>
#include < courier/exceptJi">

void
Close{ Connection. BDTprocptr. file. session}

Cc:mRIERFD Connection;
int {* BDTprocptr}(};
Handl'ifile;
Session session;

DESCRIPTION

XNS LIBRARY

The Close(} function is used to indicate to the File Service that a specific file handle is no longer wanted for
the remainder of the current session. The File Service then releases acquired resources, such as locks
associated with the handle, and invalidates the file handle. If no other file handle is associated with it, the
file buffer is also purged.

The file argument is the file handle originally returned by a call to the Open(} function. It specifies the file
that is to be closed. The session argument is the client's session handle that was returned upon executing
the Logon{} function.

RETURN VALUE

This function returns void.

ERRORS

Reports [AuthenticationError[problem], HandleError, SessionError[problem], U ndefinedError]

SEE ALSO

Open{}, Logon{}

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-39

XNS LIBRARY

Filing6_Continue

NAME

Continue - lengthen the duration of an inactive session

SYNOPSIS

#include <courier/Filing6 de.h>
#i ncl ude < courier/excepf.'Ji >

ContinueResults
Continue(Connection, BDTprocptr, session}

COURI'EllFD connection;
int (* BDTprocptr}{);
Session session;

DESCRIPTION

The Continue(} function is used to determine the duration, in seconds, permitted an inactive session before
it is terminated by the File Service. The duration of inactivity permitted a session is determined by the
File Service. A call to Continue(}, as with all other remote function calls, is considered activity and
therefore, the session is reallocated the full amount of time permitted an inactive session. The session
argument is the session handle returned by an call to Logon(}. It is the session to be lengthened.

RETURN VALUE

This function returns a structure called ContinueResults. Its one member, continuance, is a cardinal
number that specifies the timeout period of the file server. The timeout is specified in units of seconds. The
returned value indicates the frequency with which the client must perform some activity. For example, to
determine the timeout period of a session, use ContinueO:

Continue(token, (11B,27734B), verifier}

It returns:

(600)

Therefore, to prevent termination of the current session some activity must occur within every ten
minutes (600 seconds).

ERRORS

Reports [AuthenticationError[probleml, SessionError[probleml, U ndefinedError 1

SEE ALSO

Logon(}

8-40 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

Filing6_Copy

NAME

Copy - create a duplicate file

SYNOPSIS

#include <courier/Filing6 de.h>
#i ncl ude < courier/except];">

CopyResults
Copy(Connection, BDTprocptr, file, destinationDirectory, attributes, controls, session)

CODRIERFD Connection;
int (* BDTprocptr)O;
Hancfrefile;
Handle destinationDirectory;
AttributeSequence attributes;
ControlSequence controls;
Session session;

DESCRIPTION

The CopyO function is used to duplicate an existing file or directory. If the object to be copied is a directory,
all the descendants are also copied. The duplicate file or directory is then placed into a specified directory.
A file or directory cannot be copied into itself or any of its descendants.

The file argument is the file handle of the file or directory to be copied. Read access (i.e., read permission)
is required of the file. Ifthe object is a directory, then read access is required of all its descendants.

The destinationDirectory argument is the file handle for the directory in which the copy is to be placed.
Add access (i.e.,write permission) is required of the destination directory. The value of
destinationDirectory may be set to null Handle, thus indicating that the resulting file is to be placed in the
root directory.

The attributes argument specifies the sequence of characteristics to be assigned to the new file or
directory, thus overriding those of the original file or directory.

The controls argument specifies the access permissions of the new file or directory.

The session argument is the client's session handle that was returned upon executing the LogonO
function.

RETURN VALUE

This function returns a structure called CopyResults. Its one member, newFile, is of type Handle. It is a
handle for the newly created file or directory.

ERRORS

Reports [AccessError[problem], AuthenticationError[problem], HandleError, SessionError[problem],
U ndefinedError]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-41

XNS LIBRARY

Filing6_Create

NAME

Create - make a new file

SYNOPSIS

#include <courierl Filing6 de.h>
#include <courier/except.n>

Create Results
Create(Connection, BDTprocptr, directory, attributes, controls, session)

CO(J1\IERFD Connection;
int (* BDTprocptr)O;
Hancf're' di rectory;
AttributesSequence attributes;
ControlSequence controls;
Session session;

DESCRIPTION

8-42

The CreateO function is used to make a new file. CreateO is particularly useful for creating directories. If
the file to be created is also to contain some data, use the StoreO function.

The directory argument is the file handle for the directory in which the created file will be placed.
null Handle may be specified, indicating that the file will be placed in the root level directory.

attributes are data items associated with a file. See OpenO for a description of attributes.

controls define the nature of permissible file access that a file handle gives to the client. controls may be
specified in any function that returns a file handle. The controls specified apply only to the returned
handle. controls is a structure that contains three enumerated types: LOCK, TIMEOUT, and ACCESS.

LOCK offers three choices: NONE, SHARE, and EXCLUSIVE. NONE indicates that there are no access
restrictions. SHARE means that other sessions cannot move or delete the file, and cannot place an
exclusive lock on the file. EXCLUSIVE means that other sessions cannot move or delete the file, and
cannot place a SHARE or EXCLUSIVE lock on the file.

TIMEOUT is an integer that indicates the number of seconds that the File Service will wait after a
client requests a lock on a file that is unavailable. If the time specified is exceeded and the locked file
does not become available, an error is returned. The interval that the File Service will wait is usually
an implementation-dependent constant, though you may specify an overriding interval. If a TIMEOUT
of zero is specified, the File Service will not wait. If the locked file is unavailable, an error is
immediately returned. If 177777B (defaultTimeout) is specified, the implementation-dependent
default is applied. If no TIMEOUT is specified, defaultTimeout is assumed.

ACCESS specifies the operations permitted a particular file handle with respect to a file or its children.
If access permissions have not been enabled, the file handle may not be used in any operation that
attempts to access the specific file. The six acceptable values of access are: READ, WRITE, OWNER,
ADD, REMOVE, and FULLACCESS(177777B).

READ means the client may read the contents and attributes of a file. If it is a directory, the client
may enumerate its children and search for files in that directory. WRITE permits the client to
modify the contents and attributes of the file. This includes deleting the file. If it is a directory, a
client may also change environment attributes access lists of the directory's children. OWNER
means a client may change the file's access list. ADD permits a client to add subdirectories and

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

files. REMOVE may only be applied to directories. It allows a client to d.elete subdirect~ries.
FULLACCESS(177777B) means a client is granted the complete set of access permissions. That is,
read, write, change the access list (owner), add, and remove. FULLACCESS cannot be specified along
with any of the preceding access types.

The session argument is the client's session handle that was returned upon executing the LogonO
function.

RETURN VALUE

This function returns a structure called CreateResults. Its one member, file, is of type Handle. It contains
the file handle for the newly created file.

ERRORS

Reports [AccessError[problem], AttributeTypeError, Attribute ValueError,
AuthenticationError[problem], ControlTypeError, Control Val ueError, HandleError, InsertionError,
SessionError[problem], SpaceError, UndefinedError]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-43

XNS LIBRARY

Filing6_Delete

NAME

Delete - remove an existing file

SYNOPSIS

#include <courier/Filing6 de.h>
#include <courier/excepf.'li >

void
Delete(Connection. BDTprocptr. file. session}

COlJRlERFD Connection;
int (* BDTprocptr)O;
HandTifile;
Session session;

DESCRIPTION

The DeleteO function is used to remove an existing file. When this function is called, the target file is
closed and then deleted. All resources allocated to the file are then freed for other uses. Once the file is
deleted, the file handle associated with it becomes invalid.

The file argument is the file handle of the file to be deleted. The file to be deleted can have only one file
handle during the current session. If the file handle specifies a directory, the directory and all its
descendents will be deleted.

The session argument is the client's session handle that was returned upon executing the LogonO
function.

RETURN VALUE

This function returns void.

ERRORS

Reports [AccessError[problem], AuthenticationError[problem], HandleError, SessionError[problem],
U ndefinedError]

SEE ALSO

Logon()

8-44 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

NAME

Find -locate a file

SYNOPSIS

#include < courier/Filing6 de.h>
#include <courier/exceptJi">

FindResults
Find(Connection, BDTprocptr, directory, scope, controls, session}

ctnJRIERFD CO'iinection;
int (* BDTprocptr)();
Hancf1'e' directory;
ScopeSequence scope
Control Sequence controls;
Session session;

DESCRIPTION

XNS LIBRARY

The Find(} function is used to locate and open a file in a directory. The File Service enumerates the
directory's descendants in accordance to the ordering attribute of the directory. The first file that meets
the search criteria is opened. Ifno file matches the search criteria, an error is reported.

The directory argument is the file handle of the directory whose descendants are to be enumerated.
null Handle may be specified to indicate that the search is to begin at the root directory. Read access (Le.,
read permission) is required of the directory to be enumerated. The scope argument specifies a criteria by
which to search for files.

The scope argument is a structure comprised of COUNT, DIRECTION, FILTER, and DEPTH.

COUNT specifies the maximum number of files to be viewed by the client. The unlimitedCount
constant may be specified as the value of COUNT to indicate that there is no limit to the files to be
viewed.

DIRECTION specifies the order in which files are enumerated. DIRECTION is used by those functions
that list (display files in a specified direction) or search (display files that match a specific criteria).
DIRECTION an enumerated type that accepts one of two values: FORWARD or BACKWARD. A value of
FORWARD indicates that enumeration is to begin with the first file in the sequence of ordered files and
end with the last. A value of BACKWARD indicates that enumeration is to begin with the last file in
the sequence and end with the first. If DIRECTION is not specified, a FORWARD direction is assumed.

FILTER is a set of Boolean operators and special characters that assist in differentiating files of
interest.

DEPTH is an integer that specifies the maximum number of levels down the directory hierarchy in
which to search for files. A value of 1 indicates that only the files in the specified directory are to be
considered. A value of 2 indicates that the directories immediately below the specified directory are
also to be considered when searching for files. The all Descendants constant may be specified as the
value of DEPTH to indicate that there is no restriction on the levels of directory hierarchy to descend.
That is, all directories below the specified directory will be considered when searching for files. If
DEPTH is not specified, a DEPTH of 1 is assumed. .

The controls argument specifies the access permissions to be applied to the new file handle.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-45

XNS LIBRARY

The session argument is the client's session handle that was returned upon executing the LogonO
function.

RETURN VALUE

This function returns a structure called FindResults. Its one member is handle is of type Handle. It
contains the file handle ofthe first file that matches the search criteria.

ERRORS

8-46

Reports [AccessError[probleml, AuthenticationError[probleml, ControlTypeError, ControlValueError,
HandleError, ScopeTypeError, Scope ValueError, SessionError[probleml, U ndefinedError 1

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Filing6_GetAttributes, _ChangeAttributes

NAME

GetAttributes - retrieve the attributes of a file
ChangeAttributes - modify file attributes

SYNOPSIS

#include <courierl Filing6 de.h>
#include <courier/exceptJi">

GetAttributesResults
GetAttributes (Connection, BDTprocptr, file, types, session)

COURIERF~ Connection;
int (* BDTprocptr)();
Hanclrefile;
AttributeTypeSequence types;
Session session;

void
ChangeAttributes (Connection, _ BDTprocptr, file, attributes, session)

COURIERFD COnnection;
int (* BDTprocptr)();
Hanclrefile;
AttributeSequence attributes;
Session session;

DESCRIPTION

XNS LIBRARY

The GetAttributes() function is used to retrieve the attribute and attribute value pairs of a specific file.
When this function is called, the File Service attempts to obtain the requested attributes and returns them
to the requester. The ChangeAttributesO function is used to modify the access-related attributes of a
specific file.

The file argument is the file handle of the file whose attributes are to be retrieved or changed. Depending
upon the changes to be made, you must have appropriate access permission. Write access is required if
only data attributes are to be changed. Write access to the file's parent is required for environment-related
attribute changes. Write access to the file's parent or owner access to the file itself is required if accessList
or defaultAccessList attributes are to be changed. Changes made to a file's access list attributes takes
immediate effect. All handles to the file within the current session and all new handles acquired later are
affected. Access list changes made in the current session may not affect the existing sessions of other
clients until those sessions are terminated.

The types argument is a sequence of types for which the values are to be returned. The a"AttributeTypes
constant is a cardinal number that may be specified as the value of the attributes argument to retrieve all
the attributes of the file. The session argument is the client's session handle that was returned upon
executing the Logon() function.

The attributes argument is a sequence of the attributes to be changed.

The session argument is the client's session handle that was returned upon executing the LogonO
function.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-47

XNS LIBRARY

RETURN VALUE

GetAttributesO returns a structure called GetAttributesResults. Its one member, attributes, is of type
AttributeSequence. It is a sequence of attributes that corresponds one-to-one with the items specified in
the types argument. ChangeAttributes() returns void.

ERRORS

GetAttributesO reports [AccessError[problem], AttributeTypeError, AuthenticationError[problem],
HandleError, SessionError[problem], UndefinedError] ChangeAttributesO reports
[AccessError[problem], AttributeTypeError, Attribute ValueError, AuthenticationError[problem],
HandleError, InsertionError, SessionError[problem], SpaceError, UndefinedError]

SEE ALSO

CreateO, LogonO. OpenO

8-48 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

Filing6_GetControls. _ChangeControls

NAME

GetControls - return the controls associated with a specific file
ChangeControls - modify the controls associated with a specific file

SYNOPSIS

#include <courier/Filing6 de.h>
#include < courier/excepfJi >

GetControlsResu Its
GetControls(Connection, BDTprocptr, file, types, session)

COURIERFD Connection;
int (* BDTprocptr)();
Hancf1'i fi Ie;
ControlTypeSequence types;
Session session;

void
ChangeControls(Connection, BDTprocptr, file, controls, session)

COURIERFD ~onnection; -
int (* BDTprocptr)O;
Hancf1'ifile;
ControlSequence controls;
Session session;

DESCRIPTION

The GetControls() function is used to determine the file access associated with a specific file. Only the
values of the specified controls will be returned. The ChangeControls() function is used to modify specific
controls associated with a file. If a lock is specified, the File Service will attempt to acquire it, and if
successful, any prior lock is released. Refer to Create() for more information regarding controls.

The file argument is the file handle of the file from which to extract or change control values. The types
argument is a sequence of integers that indicates the specific controls for which you are attempting to
retrieve the values. The controls argument is a sequence of the control items to be reset. The session
argument is the client's session handle that was returned upon executing the Logon() function.

RETURN VALUE

GetControlsO returns a structure called GetControlsResults. Its one member, controls, is of type
Control Sequence. It is a sequence of control items that corresponds one-to-one with the items specified in
the types argument. ChangeControls() returns void.

ERRORS

GetControls() reports [AccessError[problem], AuthenticationError[problem], ControlTypeError,
HandleError, SessionError[problem], UndefinedError]. ChangeControls() reports
[AccessError[problem], AuthenticationError[problem], ControlTypeError, ControlV alueError,
HandleError, SessionError[problem], U ndefinedError]

SEE ALSO

Create()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-49

XNS LIBRARY

Filing6 list

NAME

List - display the files in a directory

SYNOPSIS

#include < courier/Filing6 de.h>
#include < courier/exceptJi">

void
List(Connection, BDTprocptr, directory, types, scope, listing, session)

COURIERFD COnnection;
int (* BDTprocptr)();
Hand1"e directory;
AttributeTypeSequence types;
ScopeSequence scope;
BulkData1 Descriptor listing;
Session seSSion;

DESCRIPTION

The List() function is used to enumerate the files in a directory and return desired attributes. The File
Service enumerates the directory in accordance to its ordering attribute. The requested attributes of those
files meeting desired criteria specified in the scope argument are returned. Since attributes are obtained
with varying degrees of difficulty, it is recommended that you only request necessary attributes.

The files in the directory may change at any time while this function is being executed. Therefore, it is
possible that the set of files returned may not reflect the directory in its current state. If a depth greater
than 1 is specified, then descendants ofthe specified directory must also be considered. To prevent changes
from invalidating the results of ListO, it necessary to acquire a SHARE lock on the directory before calling
the List() function.

The directory argument is of type Handle,. It is the file handle for the directory to be enumerated.
null Handle may be specified to indicate that enumeration is to begin with the root directory. Read access
(i.e., read permission) is required of the directory to be enumerated. This also includes all the
subdirectories to be enumerated. The types argument specifies a sequence of attributes a file must have to
be considered. The allAttributeTypes constant may be specified as the value of types to indicate that all
files are to be considered, regardless of the attributes they posses.

The scope argument specifies a criteria by which to search for files. The scope argument is a structure
comprised of COUNT, DIRECTION, FILTER, and DEPTH. See the description of scope in Find() for more
information.

The listing argument specifies the sink that is to receive the data in accordance to the Bulk Data Transfer
Protocol. The transferred bulk data is oftype StreamOfAttributeSequence.

The session argument is the client's session handle that was returned upon executing the Logon()
function.

RETURN VALUE

This function returns void.

8-50 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

ERRORS

Reports [AccessError[probleml, AttributeTypeError, AuthenticationError[probleml, ConnectionError,
HandleError, ScopeTypeError, Scope ValueError, SessionError[probleml, TransferError[probleml,
U ndefinedError 1

SEE ALSO

FindO. OpenO. LogonO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-51

XNS LIBRARY

Filing6_Logoff

NAME

Logoff - end a current File Service session

SYNOPSIS

#include <courier/Filing6 de.h>
#i ncl ude < cou rier/exceptJi>

void
Logoff(Connection, BDTprocptr, session)

COO'RIERFD Connection;
int (* BDTprocptr)();
Session session;

DESCRIPTION

The Logoff() function is used to end the current File Service session. Upon calling this function, the File
Service verifies that the request is valid, terminates the session, releases any allocated resources, and
then invalidates the session handle. The session argument is the session handle returned by a call to
Logon().

RETURN VALUE

This function returns void.

ERRORS

Reports [AuthenticationError[problem], ServiceError[problem], SessionError[problem], U ndefinedError 1

SEE ALSO

Logon()

8-52 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Filing6_Logon

NAME

Logon - begin a File Service session

SYNOPSIS

#include <courier/Filing6 de.h>
#include <courier/exceptJi">
#include <courier/FllingSu1.h >

LogonResults
Logon(Connection, BDTprocptr, service, credentials, verifier)

COUTtIERFD Connection;
int (* BDTprocptr)O;
Three"'P"artName service;
Credentials credentials;
Verifier verifier;

DESCRIPTION

XNS LIBRARY

The Logon() function is used to initiate access to a File Service. This function must be executed before any
other Filing Protocol function. If the File Service verifies that the Logon request is valid, it will create a
session, and return a session handle. This session handle is an identifier that must accompany any other
filing function call.

The service argument is the name of the Filing Service to be accessed. If a service is not explicitly
specified, and thus the service name is left null, a default service is provided by the installed XNS system.
The credentials and verifier arguments identify the client, or user, initiating a File Service session.
credentials may be in one of several forms: primary, secondary, or encrypted secondary. The verifier is the
simple verifier returned earlier by the Authentication Service.

RETURN VALUE

This function returns a pointer to a structure, called LogonResults. This structure is similar to the
session structure and is also referred to as the session handle. Its one member, session, is of type Session.
It is a structure having two members: token and verifier. The token array identifies the session to the File
Service, thereby identifying the user and the status of the user's interaction with the File Service. The
session token, once returned, is to be used in subsequent function calls to the File Service within the same
session. The token remains static for the duration of the session and it cannot be interpreted by the client.
The verifier array is defined by the Authentication Protocol. It verifies that all function calls using the
same session handle have been originated from the same client that originally established the session.
The verifier is not static and may change with each new function call.

ERRORS

Reports [AuthenticationError[problem], ServiceError[problem], SessionError[problem], U ndefinedError]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-53

XNS LIBRARY

NAME

Move - move a file to another directory

SYNOPSIS

#include <courier/Filing6 de.h>
#include <courier/exceptJi'>

void
Move(Connection. BDTprocptr. file. destinationDirectory. attributes, session)

CatJRlERFD Connection;
int (* BDTprocptr)O;
Handlifile;
Handle destination Directory;
AttributeSequence attributes;
Session session;

DESCRIPTION

The Move() function is used to change the directory structure of the filing service without creating or
deleting files. The File Service moves a file or directory to a specific directory location. If the specified file
is a child of another directory, it is removed from that directory. If a temporary file is specified, it is made
permanent. If the specified file has descendants, they will remain as such and will be moved along with
the file. A file cannot be moved into itself or any of its descendants.

The file argument is the file handle of the file or directory to be moved. Read and write access (Le., read
and write permission) is required of the file or directory to be moved. Remove access is required of the
file's parent directory. There can be only one file handle in use during the current session for the file
specified. If there is more than one file handle in use for a file, it cannot be moved.

The desti nationDi rectory argument is the file handle for the directory in which the file is to be placed. Add
access (Le., write permission) is required of the destination directory. The attributes argument specifies
the sequence of characteristics to be assigned to the new file or directory, thus overriding those of the
original file or directory. The session argument is the client's session handle that was returned upon
executing the LogonO function.

RETURN VALUE

This function returns void.

ERRORS

8-54

Reports [AccessError[problem], AttributeTypeError, Attribute ValueError,
AuthenticationError[problem], ControlTypeError, ControlValueError, HandleError, InsertionError,
SessionError[problem], SpaceError, UndefinedError]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Filing6_0pen

NAME

Open - make a file available for use

SYNOPSIS

#include <courier/Filing6 de.h>
#include < courier/exceptJi>

OpenResults
Open(Connection, BDTprocptr, attributes, directory, controls, session}

COURIERFD Connection;
int (* BDTprocptr)(};
Attri6utesSequence attributes;
Handle directory;
ControlSequence controls;
Session session;

DESCRIPTION

XNS LIBRARY

The OpenO function is used to make a file available for use. Once this function is called, the file server
prepares the specified file for use, applies specific controls to it, then creates and returns a file handle. The
file is marked "in use" and attempts to move or delete it by other sessions is ignored.

The attributes argument identifies the file to be opened. It requires six parameters: parentlD, filelD,
name, path name, type, and version. parentlD specifies the starting directory in which may be found a file
containing the same ID as that specified in the filelD parameter. If parentlD is omitted, the starting
directory is the root directory.

filelD identifies the file that is to be opened. If parentlD or directory is included in the function call, the
specified file must be a child of the starting directory. If neither of the two is specified, the file may be
anywhere. The name parameter supplies the name of the file to be opened. The file specified in this
parameter must be a child of the starting directory. The path name parameter specifies the path name of
the file to be opened. The first component of pathname must be a child of the starting directory. If the
starting directory is omitted, the root directory is used. The client must have the appropriate access
permissions for every file specified in the path name. The type parameter indicates the file type of the
object to be opened. The version parameter specifies the version number of the file to be opened. If the
parameter is omitted, the file with the highest version number is opened. This parameter is ignored if the
last file named in the pathname argument explicitly states the version number. This parameter is
specified only if the name parameter or pathname parameter is used.

The sequence for specifying the attributes are as follows. The brackets indicate optional parameters:

a) filelD [parentID] [type]
b) name [parentlD] [type] [version]
c) pathname [parentID] [type] [version]

The directory argument specifies a starting directory from which to begin the search for the file specified
in the attributes argument. nuliHandle may be specified in the directory argument rather than a valid
session handle. null Handle is a reserved constant with special significance. It may be used in functions,
like Open(}, to imply the root directory. Unless specifically stated, a null Handle is not to be used as an
argument value.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-55

XNS LIBRARY

RETURN VALUE

This function returns a structure called OpenResults. Its one member, handle, is of type Handle. It is the
file handle for the file identified by the attributes argument. It is to be passed as an argument to all
further calls to functions that are to access the file during the current session.

ERRORS

Reports [AccessError[problem], AttributeTypeError, Attribute ValueError,
AuthenticationError[problem], ControlTypeError, ControlValueError, HandleError,
SessionError[problem], U ndefinedError]

SEE ALSO

Logon{)

8-56 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

Filing6_Replace

NAME

Replace - replace the contents of a file

SYNOPSIS

#include <courier/Filing6 de.h>
#include <courier/exceptJi">

void
Replace(Connection, BDTprocptr, file, attributes, content, session)

COURl1:RFD Connection;
int (* BDTprocptr)();
Handle"file;
AttributeSequence attributes;
BulkData1 Descriptor content;
Session seSSion;

DESCRIPTION

The Replace() function is used to remove the contents of a file and then replace it with data received from a
specific source.

The file argument is the file handle for the file whose contents is to be replaced. Write access (i.e., write
permission) is required of the specified file. The attributes argument specifies the sequence of
characteristics to be assigned to the resulting file. The content argument specifies the source that is to
supply the data to go in the replacement file in accordance with the Bulk Data Transfer Protocol. The
session argument is the client's session handle that was returned upon executing the Logon() function.

RETURN VALUE

This function returns void.

ERRORS

Reports [AccessError[problem], AttributeTypeError, Attribute ValueError,
AuthenticationError[problem], ConnectionError, HandleError, SessionError[problem], SpaceError,
TransferError[probleml, U ndefinedError]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-57

XNS LIBRARY

Filing6_Retrieve

NAME

Retrieve - extract the contents of a file

SYNOPSIS

#include < courierl Filing6 de.h>
#include <courier/exceptJi">

void
Retrieve(Connection, BDTprocptr, file, content, session)

COUIUERFD Connecl:ion;
int (* BDTprocptr)O;
Handrefile;
BulkData1 Descriptor content;
Session seSSion;

DESCRIPTION

The RetrieveO function is used to read the contents of an existing file and transfer them to the client.

The file argument is the file handle ofthe file from which the contents are to be retrieved. Read access (Le.,
read permission) is required of the specified file. The content argument specifies the sink that is to receive
the contents of the file in accordance with the Bulk Data Transfer Protocol. The session argument is the
client's session handle that was returned upon executing the Logon() function.

RETURN VALUE

This function returns void.

ERRORS

8-58

Reports [AccessError[problem], AuthenticationError[problem], ConnectionError, HandleError,
SessionError[problem], TransferError[problem], U ndefinedError]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Filing6_RetrieveBytes, _ReplaceBytes

NAME

RetrieveBytes - read bytes within a file
ReplaceBytes - modify the contents of a file

SYNOPSIS

#include <courier/Filing6 de.h>
#i ncl ude < courier/exceptJi">

void
RetrieveBytes(Connection, BDTprocptr, file, range, sink, session)

COURIERFtr Connection;
int (* BDTprocptr)();
Handlefile;
ByteRange range;
BulkData1 Descriptor sink;
Session seSSion;

void
ReplaceBytes(Connection, BDTprocptr, file, range, source, session)

COURIERFD"" Connection;
int (* BDTprocptr)();
Handlefile;
ByteRange range;
BulkData1 Descriptor source;
Session seSSion;

DESCRIPTION

XNS LIBRARY

The RetrieveBytes() function is used to read a range of bytes within a file. The ReplaceBytes() function is
used to overwrite the contents of a file or to append new data to a file.

The file argument is the file handle for the file from which to retrieve a range of bytes or modify a range of
bytes. Read access (Le., read permission) is required of the file from which you want to retrieve data. Write
access (i.e., write permission) is required of the file to be modified.

When calling RetrieveBytes(), the range argument is of type ByteRange. It specifies the contiguous
sequence of bytes to be returned. When calling ReplaceBytesO, the range argument specifies the file
location, in bytes, where data is to be inserted and the total number of bytes to be inserted. The value of
the range argument and the data supplied by the source must be the same. If the firstByte parameter of
the range argument is set to endOfFile, the supplied data is appended to the specified file. Otherwise, the
supplied data replaces the file data that starts at the specified file location, ending at however many bytes
are specified for the length. In the case of appending data, this function insures that all the data is
successfully appended or it will not modify the file at all.

ByteRange is a structure comprised of ByteAddress and ByteCount. These two members specify the
byte offset at which to begin storing or retrieving data and the number of bytes to store or retrieve,
respectively. ByteAddress is a LongCardinal number. The value specified cannot exceed the total size
in bytes of the file. Call the GetAttributesO function with the dataSize argument to ascertain the total
size in bytes of the file. ByteCount is a LongCardinal number that indicates the total number of
contiguous bytes to store or retrieve. The value specified, when added to the offset, cannot exceed the
total size in bytes of the file.

The endOfFile constant is a LongCardinal number that may be used as the value of ByteAddress or
ByteCount to refer to the logical end of a file. As a byte address, endOfFile is used to refer to the byte

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-59

XNS LIBRARY

position at the end of a file where new data can be appended. When used as a ByteCount, endOfFile
may be used to represent the number of bytes that begins at the specified offset and ends at the last
byte defined for the file.

The sink argument specifies the sink that is to receive the requested data bytes in accordance with the
Bulk Data Transfer Protocol. The source argument specifies the source that is to supply the data bytes in
accordance with the Bulk Data Transfer Protocol.

The session argument is the client's session handle that was returned upon executing the LogonO
function.

RETURN VALUE

These functions return void.

ERRORS

Reports [AccessError[problem], HandleError, RangeError, SessionError[problem], UndefinedError]

SEE ALSO

GetAttributesO, Open(), Logon()

8-60 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Filing6_Serialize, _Deserialize

NAME

Serialize - encode a file
Deserialize - unencode a file

SYNOPSIS

#include <courierl Filing6 de.h>
#include <courier/exceptJl">

void
Serialize(Connection. BDTprocptr. file. serializedFile. session)

COUIffERFD Connection;
int (* BDTprocptr)O;
HandTifile;
BulkData1 Descriptor serializedFile;
Session seSSion;

Deserial izeResults
Deserialize(Connection. BDTprocptr, directory, attributes, controls, serializedFile, session)

COURIERFD Connection;
int (* BDTprocptr)O;
HandTi directory;
AttributeSequence attributes;
ControlSequence controls;
BulkData1 Descriptor serializedFile;
Session seSSion;

DESCRIPTION

XNS LIBRARY

The SerializeO function is used to compress all the descriptive information and data of a file and its
descendants into a series of eight-bit bytes. The resulting data is a single object of type SerializedFile. This
object is then transferred to a sink. It is necessary to serialize a file in order to transfer it to another File
Service or store it on some other medium.

The DeserializeO function is used to reconstruct a file and its descendants from a previously serialized file.
When this function is called, a new file is created in the specified directory and a file handle for the new
file is returned. The new file will have most ofthe attributes, all the contents and all the descendants as it
did prior to serialization. Some attributes are ignored during de serialization because the attribute
duplicates information that is implicit to other data. For example, the numberOfChildren attribute is
ignored because the number of descendants a file has is already encoded in the serialized file. If the name
of the de serialized file duplicates that of an existing file, the de serialized file is created with an
appropriate version number. The existing file is not replaced by the deserialized file.

The file argument is the file handle for the file whose contents is to be serialized. Read access (Le., read
permission) is required of the specified file.

The serializedFile argument, either, specifies the sink that is to receive the compressed file contents in the
case of Serialize(), or specifies the source that is to supply the serialized file data in the case of
Deserialize(). The specifications are made in accordance to the Bulk Data Transfer Protocol.

The directory argument is a handle of the directory in which the new file is to be placed. directory may be
set to null Handle, thus indicating that the resulting file is to be placed in the root directory. Add access
(Le., write permission) is required of the destination directory if the file handle specified is not null Handle.
The attributes argument specifies the sequence of characteristics to be assigned to the new file, thus

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-61

XNS LIBRARY

overriding the default characteristics inherent to the serialized file. The controls argument specifies the
access permissions to be applied to the new file handle.

The session argument is the client's session handle that was returned upon executing the LogonO
function.

RETURN VALUE

The Serialize function returns void. The Deserialize function returns a structure called
DeserializeResults. Its one member, file, is of type Handle. It is the file handle for the file identified in the
attributes argument.

ERRORS

Serialize reports [AccessError[problem], AuthenticationError[problem], ConnectionError, HandleError,
SessionError[problem], TransferError[problem], UndefinedError] Deserialize reports
[AccessError[problem], AttributeTypeError, Attribute ValueError, AuthenticationError[problem],
ConnectionError, ControlTypeError, ControlValueError, HandleError, InsertionError,
SessionError[problem1, SpaceError, TransferError[problem], U ndefinedError]

SEE ALSO

OpenO, LogonO

8-62 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

NAME

Store - create a file

SYNOPSIS

#include <courier/Filing6 de.h>
#include <courier/exceptJi'>

StoreResults
Store(Connection, BDTprocptr, directory, attributes, controls, content, session)

CatJRIERFD Connection;
int (* BDTprocptr)();
HandTii'directory;
AttributeSequence attributes;
Control Sequence controls;
BulkData1 Descriptor content;
Session seSSion;

DESCRIPTION

XNS LIBRARY

The StoreO function is used to create a file that contains specific data. When this function is called, a new
file is created with specific attributes and is placed in a specified directory. It is then filled with data sent
by the client in accordance to the Bulk Data Transfer Protocol. Upon completion, a file handle is returned
for the new file.

The directory argument is the file handle for the directory in which the new file is to be placed. null Handle
may be specified to indicate that the resulting file is to be placed in the root directory. Add access (Le.,
write permission) is required of the destination directory if the file handle specified is not null Handle. The
attributes argument specifies the sequence of characteristics to be assigned to the new file. The controls
argument specifies the access permissions of the new file. The content argument specifies the source that
is to supply the contents of the new file in accordance with the Bulk Data Transfer Protocol. The session
argument is the client's session handle that was returned upon executing the Logon() function.

RETURN VALUE

This function returns a structure called StoreResults. Its one member, file, is of type Handle. It is the file
handle for the file identified in the attributes argument.

ERRORS

Reports [AccessError[problem], AttributeTypeError, Attribute ValueError,
AuthenticationError[problem], ConnectionError, ControlTypeError, ControlValueError, HandleError,
InsertionError, SessionError[problem], SpaceError, TransferError[problem], U ndefinedError]

SEE ALSO

RetrieveO

DOCUMENT INTERFACES TOOlKIT SYSTEM REFERENCE 8-63

XNS LIBRARY

Filing6_UnifyAccessLists

NAME

Unify AccessLists - group the access lists of a subtree of files

SYNOPSIS

#include <courier/Filing6 de.h>
#include < courier/exceptJl>

void
UnifyAccessLists(Connection, _ BDTprocptr, directory, session)

COURIERFD -C-onnection;
int (* BDTprocptr)();
Handle directory;
Session session;

DESCRIPTION

The UnifyAccessLists() function is used to assign the access list attributes (i.e., permissions) of a directory
to all its descendants. The file argument is the file handle of the directory. Write access is required of the
directory specified as well as all its descendants. The session argument is the client's session handle that
was returned upon executing the LogonO function.

Changes made to access list attributes takes immediate effect. All handles to the files within the current
session and all new handles acquired later are affected. Access list changes made in the current session
may not affect the existing sessions of other clients until those sessions are terminated.

RETURN VALUE

This function returns void.

ERRORS

Reports [AccessError[probleml, AuthenticationError[problem], HandleError, SessionError[problem],
U ndefinedError]

SEE ALSO

LogonO, OpenO

8-64 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Gap3_Create

NAME

Create - start terminal emulation

SYNOPSIS

#include <courier/Gap3 de.h>
#include <courier/excepT.'h>

void

XNS LIBRARY

Create(Connection, _ BDTprocptr, sessionParameterHandle, transportList, createTimeout, credentials,
verifier}

COURIERFD Connection;
int (* BDTprocptr)();
Sessio;;ParameterObject sessionParameterHandle;
T _p3 3 18 transportList;
Cardinal aeateTimeout;
Credentials credentials;
Verifier verifier;

DESCRIPTION

The CreateO function is used to initiate a terminal emulation session with a mainframe computer system.
Terminal devices such as TTY, VT100, IBM 3270, etc. can be emulated. This makes it possible for nonXNS
terminal devices to interconnect with an XNS system and access XNS services. For this reason, the
Gateway Access Protocol (GAP) is also referred to as the Virtual Terminal Protocol (VTP).

When a workstation client requests an emulation session with a host computer, the workstation uses the
Clearinghouse to locate an External Communication Service (ECS) that supports connections with a
specified host. The workstation then connects to the ECS which initiates a session with the remote host
and performs conversions between the XNS and remote host protocols. The protocol conversion provided
by the ECS allows information originating from the mainframe computer or anywhere else on the XNS
internet to be transferred to and from the mainframe environment and the system on which Create() was
invoked.

The sessionParameterHandle argument is a structure that supplies the host system all the pertinent
information necessary for the local workstation to emulate a specific terminal. Acceptable terminal types
are: XEROX800, XEROX850, XEROX860, SYSTEM6, CMCLL, IBM2770, IBM2770HOST, IBM6670,
IBM6670HOST,IBM3270,IBM3270HOST, OLDTTYHOST, OLDTTY, OTHERSESSIONTYPE, UNKNOWN,
IBM2780, IBM2780HOST, IBM3780, IBM3780HOST,SIEMENS9750, SIEMENS9750HOST, TTYHOST, and
TTY.

Some of these terminal types require some additional information. XEROX860 requires pollProc.
I BM6670HOST requires the block size of the transmit and receive packets. OLDTTY requires the length of a
byte (five, six, seven, or eight bits to a byte), parity (none, odd, even, one, or zero), the stop bit (oneStopBit,
twoStopBits), and the frameTimeout (integer indicating milliseconds). IBM3780HOST requires the block
size of the transmit and receive packets. And TTY has the same requirements as OLDTTY, plus flowControl
(flowControlNone or XOn/XOfl).

The transportList argument specifies the device that is to receive data. Devices include a modem on an
RS232 line, teletype, various BSC terminals and controllers, and so on. Acceptable types are: RS232C, BSC,
TELETYPE, POLLEDBSCCONTROLLER, POLLEDBSCTERMINAL, SDLCCONTROLLER, SDLCTERMINAL,
SERVICE, UNUSED, POLLEDBSCPRINTER, and SDLCPRINTER.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-65

XNS LIBRARY

The createTimeout argument is an integer that specifies the number of seconds to wait for a
connection to the mainframe computer before aborting the attempt.

The credentials argument is the credentials returned earlier by the Authentication Service. The
credentials may be either simple or strong. The client cannot switch from simple to strong authentication
or visa versa within the same session. The verifier argument is the simple verifier acquired at the same
time as the credentials.

RETURN VALUE

This function returns void.

ERRORS

8-66

Reports [badAddressFormat, controller AlreadyExists, controller DoesN otExist,
dialingHardwareProblem, illegalTransport, inconsistentParams, mediumConnectFailed,
noCommunicationHardware, noDialingHardware, terminalAddressIn Use, terminalAddressInvalid,
tooManyGateStreams, transmissionMediumU navailable, serviceTooBusy, user N otAuthenticated,
user N otAuthorized, serviceN otFoundl

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Inbasket2_ChangeBodyPartsStatus

NAME

ChangeBodyPartsStatus - update the status of message body parts

SYNOPSIS

#include <courier/lnbasket2 de.h>
#include <courier/except.h>-

Cha ngeBodyPartsStatusResults
ChangeBodyPartsStatus{ Connection, _ BDTprocptr, index, setStatusTo, session)

COURIERFD connection;
int (* BDTprocptr)();
LongC8rdinal index;
BodyPartsStatusChangeSequence setStatusTo;
Session session;

DESCRIPTION

XNS LIBRARY

The ChangeBodyPartsStatus{) function is used to update the status of one or more message body parts.
When all the body parts of a message have been set to deletable, the entire message will be deleted by the
mail service. Therefore, if the client wants data from a body part, be sure to store the data before the status
is changed to deletable. Once the status of a part part has been changed to deletable, it is irreversible. All
the parts of a message are accessible until the entire message is deleted. This function also updates the
MessageStatus field to KNOWN.

The index argument is the index number of the message to be updated. The setStatusTo argument is a
structure having two members: bodyPartlndex and deletable. Together, they define the body parts to be
modified. The bodyPartlndex member specifies the part in accordance to the
MailTransportEnvelopeFormat. The deletable member is a an enumerated type that may contain one of
two values: TRUE or noChange.

The session argument is the inbasket session handle returned by a preceding call to LogonO.

RETURN VALUE

This function returns a structure called ChangeBodyPartsStatusResults. Its one member, deleted, is a
Boolean that indicates the success of the operation. A value of TRUE indicates that all the body parts of the
message have been marked as being deletable.

ERRORS

Reports [AuthenticationError[problem], IndexError[problem], OtherError[problem],
SessionError[problem], ServiceError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR,
default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-67

XNS LIBRARY

Inbasket2_ChangeMessageStatus

NAME

ChangeMessageStatus - change message status from new to known

SYNOPSIS

#include <courierllnbasket2 de.h>
#include <courier/except.h>-

void
ChangeMessageStatus(Connection, _ BDTprocptr, range, changeUserDefinedStatus,
newUserDefi nedStatus;Session)

COURIERFD Connection;
int (* BDTprocptr}O;
Rangerange;
Boolean changeUserDefinedStatus;
Cardinal newUserDefinedStatus;
Session session;

DESCRIPTION

The ChangeMessageStatusO function is used to update a specified range of messages from new to known.
This function may also be used to update the userDefinedStatus.

The range argument specifies a set of messages whose status is to be updated from new to known. It
requires two parameters. The two parameters are integers that specify the low and high message indices
between which all the messages are to be changed. The messages corresponding to the low and high
indices will also be affected. The constant nulllndex may be used as a value for one or both of the
parameters. For example, if the value of range is (nulllndex, 5) then all the messages between the first
inbasket message up to the fifth, inclusive, are updated to known. If(5, nulllndex) is specified, then all the
messages between the rlith and last, inclusive, are affected. A value of (nulllndex, nulllndex) may be
specified to indicate that all the messages in the inbasket are to be affected. Once a message has been
updated to known, it can never be reverted back to new. Attempts to do will be ignored.

The changeUserDefinedStatus argument is a Boolean value that indicates whether or not the user defined
status should be changed. When set to TRUE, changeUserDefinedStatus causes existenceOfMessage to be
set to KNOWN and userDefinedStatus to be updated with the value of newUserDefinedStatus. The default
is FALSE.

The newUserDefinedStatus argument is an integer that specifies the new value of the messages specified
in the range argument. This user defined status is not interpreted by the mail service. It serves only for
use by sophisticated clients to attach arbitrary status information to a message. Only the client who
attaches the status information may retrieve it. The range of acceptable values are cardinal numbers
between 0 and 65,535, inclusive.

The session argument is the inbasket session handle returned by a preceding call to LogonO.

RETURN VALUE

This function returns void.

ERRORS

8-68

Reports [AuthenticationError[problem], IndexError[problem], OtherError[problem],
SessionError[problem], ServiceError[problem], TransferError[problem], Courier Errors:
REJECT_ERROR, SYSTEM_ERROR, default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Inbasket2_Delete

NAME

Delete - remove messages from the inbasket

SYNOPSIS

#include < courier/lnbasket2 de.h>
#include <courier/except.h>-

void
Delete(Connection, BDTprocptr, range, session)

COO1UERFD Connection;
int (* BDTprocptr)O;
Rangerange;
Session session;

DESCRIPTION

XNS LIBRARY

The DeleteO function is used to remove one or more contiguous messages from the inbasket. If there are
no messages within the range of specified indices, no error is returned.

The range argument specifies the set of messages to be deleted. It requires two parameters. The two
parameters are integers that specify the low and high message indices between which all the messages are
to be deleted. The messages corresponding to the low and high indices will also be deleted. The constant
nullindex may be used as a value for one or both of the parameters. For example, if the value of range is
(nullindex, 5) then all the messages between the first inbasket message up to the fifth, inclusive, will be
deleted. If (5, nullindex) is specified, then all the messages between the fifth and last, inclusive, will be
deleted. A value of (null Index, nulllndex) may be specified to indicate that all the messages in the inbasket
are to be deleted.

The session argument is the inbasket session handle returned by a preceding call to Logon().

RETURN VALUE

This function returns void.

ERRORS

Reports [AuthenticationError[problem], OtherError[problem], SessionError[problem],
ServiceError[problem], Courier Errors]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-69

XNS LIBRARY

Inbasket2_GetSize

NAME

GetSize - retrieve the size of the inbasket

SYNOPSIS

#include <courierllnbasket2 de.h>
#include <courier/except.h >-

GetSizeResults
GetSize(Connection, BDTprocptr, inbasket, credentials, verifier)

COURTERFD Connection;
int (* BDTprocptr)();
Threel'"artName inbasket;
Credentials credentials;
Verifier verifier;

DESCRIPTION

The GetSizeO function is used to retrieve a tally of the disk space occupied by all the messages in an
inbasket The value returned is in units of bytes.

The inbasket argument is a structure of type ThreePartName. Its three members, organization, domain,
and object, identify the mail recipient. The recipient must be registered with the Clearinghouse. Usually
the value of the inbasket argument is the same as the user identified in the credentials. UNIX wildcards
may not be used to specify any part of the name. Aliases are allowed and are resolved by the Mail Service.

The credentials argument is the credentials returned earlier by the Authentication Service. The verifier
argument is the verifier returned earlier by the Authentication Service.

RETURN VALUE

This function returns a structure called GetSizeResults. Its one member, sizelnBytes, is a cardinal number
that indicates the total number of bytes being used by the specified inbasket.

ERRORS

8-70

Reports [AuthenticationError[problem], AccessError[problem], OtherError[problem],
ServiceError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR, default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Inbasket2_Logon. _Logoff

NAME

Logon - initiate a new inbasket session
Logoff - terminate an inbasket session

SYNOPSIS

#include <courier/lnbasket2 de.h>
#include <courier/except.h>-

LogonResults
Logon(Connection, BDTprocptr, inbasket, credentials, verifier)

COUTtIERFD Connection;
int (* BDTprocptr)();
Three"'P"artName inbasket;
Credentials credentials;
Verifier verifier;

void
Logoff(Connection, BDTprocptr, session)

COlJRlERFD Connection;
int (* BDTprocptr)();
Session session;

DESCRIPTION

XNS LIBRARY

The Logon() function is used to initiate a new inbasket session with the mail service. Once an inbasket
session has been initiated, the client may access messages sent to the user specified in the credentials. The
Logoff() function is used to end an inbasket session with the mail service. The inbasket session handle will
then become invalid.

Most inbasket operations take place within the context of a session. Each session references a single
inbasket that is specified when the session is initiated. The name of the inbasket will be the same as the
name of the message recipient. The message recipient does not have to be same person as specified in the
credentials that were used to authorize the inbasket session. More than one session may access the same
inbasket simultaneously. When this occurs, each session is cognizant of changes made by the other
session(s).

The inbasket argument is a structure comprised of organization, domain, and object name. It is used to
identify the mail recipient for whom an inbasket session is being initiated. The recipient must be
registered with the Clearinghouse. U suaUy the value of the inbasket argument is the same as the user
identified in the credentials. UNIX wildcards may not be used to specify any part of the name. Aliases are
allowed and are resolved by the Mail Service. The name is to be the same as the inbasket name that was
initially assigned by the System Administrator.

The credentials argument is the credentials returned earlier by the Authentication Service. This
argument is used to by the Authentication Service to unequivocally determine a client's right to access the
specified inbasket. The credentials may be either simple or strong credentials. If the user specified in the
inbasket argument is not the same as that identified by the credentials, the client must have strong
credentials to initiate the inbasket session. The verifier argument is the verifier returned by the
Authentication Service.

The session argument is the inbasket session handle returned by a preceding call to Logon().

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-71

XNS LIBRARY

RETURN VALUE

The Logon(} function returns a structure called LogonResults. It contains three members: session, state,
and anchor. session is of type Session. Its one member, token, is of type T r18 2 63. token is an
unspecified array that is used as an identifier. It should be passed unchanged to all operations within the
same session.

state is a structure of type State. It contains two members, new and total. new is a cardinal number
that indicates the number of new, or unread, messages in the inbasket. total is a cardinal number that
indicates the sum total of all the messages in the inbasket. The values returned by new and total
reflect only those changes that have been made permanent.

anchor is a five-wide integer of type Anchor. It is used to determine the validity of the mailing service
cached indices. Each message in an inbasket is identified by a unique index which is permanently
assigned to each message. Indices are positive integers allocated from a 32-bit field. On occasion, the
association of an index to a message becomes invalid due to such events as, shuttling an inbasket
between mail services.

The anchor is especially important when the same message indices are used in more than one inbasket
session. If the same indices are used, the anchor returned by each call to Logon() should be stored and
compared against the anchors returned by each succeeding call to Logon(). If the anchor returned by a
call to Logon(} is different than that of a preceding call to Logon(), then the previously cached indices
are invalid. When this occurs, flush the old values from the cache(s) in order to maintain accurate
indices of the messages in the mail box. When a client is aware that an index has become invalid
during the course of an inbasket session, the client may assume that the message referenced by the
invalid index has been deleted by another client.

The Logoff() function returns void.

ERRORS

8-72

Logon() reports [AccessError[problem], AuthenticationError[problem], InbasketInUse,
OtherError[problem], ServiceError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR,
default]. Logoff(} reports [AuthenticationError[problem], OtherError[problem], SessionError[problem],
Courier Errors: REJECT_ERROR, SYSTEM_ERROR, default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Inbasket2_MailCheck

NAME

MailCheck - check an inbasket from within a session

SYNOPSIS

#include <courierllnbasket2 de.h>
#include <courier/except.h>-

MailCheckResults
MailCheck(Connection, BOTprocptr, session)

COURlffio connectiOn;
int (* BOTprocptr)O;
Session session;

DESCRIPTION

XNS LIBRARY

The MailCheckO function is used to determine the state of an inbasket. Unlike MailPoIIO, this function is
to be used during an inbasket session.

The session argument is the inbasket session handle returned by a preceding call to logonO.

RETURN VALUE

This function returns a structure called MailCheckResults. Its one member, state, is of type State. It is a
structure having two members: new and total. new is a cardinal number that indicates the number of
new, or unread, messages in the inbasket. total is a cardinal number that indicates the sum total of all the
messages in the inbasket. The values returned by new and total reflect only those changes that have been
made permanent.

ERRORS

Reports [AuthenticationError[problem], OtherError[problem], SessionError[problem],
ServiceError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR, default]

SEE ALSO

logon()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-73

XNS LIBRARY

Inbasket2_MailPolI

NAME

MailPoll- check an inbasket without starting a session

SYNOPSIS

#include < courier/ Inbasket2 de.h>
#include < courier/except.h >""

MailPoliResults
MailPolI(Connection. BDTprocptr. inbasket. credentials. verifier)

COUmRFD Connection;
int(* BDTprocptr)();
Three"'P"artName inbasket;
Credentials credentials;
Verifier verifier;

DESCRIPTION

The MailPoliO function is used to quickly determine the stateofaninbasket. This function is fast because
the client does not incur the overhead of initiating an inbasket session.

The inbasket argument is a structure of type ThreePartName. Its three members, organization, domain,
and object, identify the mail recipient. The recipient must be registered with the Clearinghouse. Usually
the value of the inbasket argument is same as the user identified in the credentials. UNIX wildcards may
not be used to specify any part of the name. If the object name encountered is an alias, it is de-referenced
before it is processed. The Mail Service will resolve aliases.

The credentials argument is the credentials returned earlier by the Authentication Service. The verifier
argument is the verifier returned earlier by the Authentication Service.

RETURN VALUE

This function returns a structure called MailPoliResults. Its one member, state, is a structure of type
State. state has two members: new and total. new is a cardinal number that indicates the number of new,
or unread, messages in the inbasket. total is a cardinal number that indicates the sum total of all the
messages in the inbasket. The values returned by new and total reflect only those changes that have been
made permanent.

ERRORS

Reports [AccessError[problem], AuthenticationError[problem], OtherError[problem],
SessionError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR, default]

SEE ALSO

MailCheckO

8-74 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Inbasket2_RetrieveBodyParts

NAME

RetrieveBodyParts - extract specific body parts of a message

SYNOPSIS

#include <courier/lnbasket2 de.h>
#include <courier/except.h>-

void
RetrieveBodyParts(Connection, _ BDTprocptr, message, bodyParts, contents, session)

COURIERFD connection;
int (* BDTprocptr)();
LongCiirdinal message;
BodyPartSequence bodyParts;
BulkData1 Descriptor contents;
Session seSSion;

DESCRIPTION

XNS LIBRARY

The RetrieveBodyParts() function is used to copy specific parts of an inbasket message from the outbasket
to the client's local disk.

The BDTprocptr argument is the name of the client-defined function that will be retrieving the body
part8.This function must be provided.

The message argument is the index number of the message from which body parts are to be retrieved. The
bodyParts argument may be either a list of individual body parts or the constant aliBodyParts. Body parts
are retrieved in the order they are specified in the BodyPartSequence parameter.

The contents argument is the stream of body part data in which the returned parts are to be placed in
accordance to the Bulk Data Transfer Protocol. The returned body parts are concatenated without any
structure-related information separating them. The client can determine the starting point of each body
part by using the part sizes listed in the tableOfContents. Use BulkDatal immediate Sink when
retrieving to a local file.

The session argument is the inbasket session handle returned by a preceding call to Logon().

RETURN VALUE

This function returns void.

ERRORS

Reports [AuthenticationError[problem], IndexError[problem], OtherError[problem],
SessionError[probleml, ServiceError[problem], TransferError[probleml, Courier Errors:
REJECT_ERROR, SYSTEM_ERROR, default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-75

XNS LIBRARY

Inbasket2_RetrieveEnvelopes

NAME

RetrieveEnvelopes - extract the envelope of a message

SYNOPSIS

#include <courier/lnbasket2 de.h>
#include <courier/except.h>-

void
RetrieveEnvelopes(Connection. _ BDTprocptr. index. whichMsg. session)

COURIERFD connection;
int (* BDTprocptr)();
LongC'ardinal index;
T p18 2 69 whichMsg;
Session seSSion;

DESCRIPTION

The RetrieveEnvelopes() function is used to extract a particular message (envelope) from the inbasket. For
messages of type StandardMessage, the heading (body part number 0) is also extracted. One message, a
series of messages, or all the messages in the inbasket may be easily retrieved.

The index argument is the index number of the message to be enumerated. The constant nullindex may be
used to enumerate all the messages in the inbasket. To enable nulllndex, whichMsg must be set to next.
nulllndex is also returned when there are no more messages to enumerate. If there is no message in the
inbasket that has the specified index value, IndexError is raised.

The whichMsg argument is an enumerated type that determines which of two messages to enumerate.
One of two values may be specified, this or next. this indicates that the message having the number
specified in the index argument is to be enumerated. next indicates that the message after the message
having the number specified in the index argument is to be enumerated.

To view a series of messages, specify the index number of a message that immediately precedes the
messages of interest and set whichMsg to next. Mter the first call to RetrieveEnvelopesO, set the value of
index in the current call to the value of index returned by the previous call. This will cause all the
messages starting from index + 1 and ending with the last message to be enumerated.

The session argument is the inbasket session handle returned by a preceding call to Logon().

RETURN VALUE

8-76

This function returns a structure called RetrieveEnvelopesResults. It has three members:
transportEnvelope, status and index.

transportEnvelope is of type Envelope.It is an array of records that defines the MTA-visible portions
of the message. It contains information regarding the pre-delivery history of the message.

status is of type Status. It is a structure that has two members: MessageStatus and BodyPartsStatus.

MessageStatus is a structure that applies to the message as a whole. It indicates one of two
conditions: NEW or KNOWN. NEW means the client has not yet been made aware of the delivery of
the specific message. KNOWN means the client has been appraised of the delivery of the specific
message but has not yet received the message contents. It is important to note that status serves as
an indication of the reception of a message by the client, as mediated by the mail service. It does
not reflect the delivery of the message itself to the client by the message transfer service, nor the

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

transfer of information to the inbasket. After being alerted as to the status of a message, it is the
client's responsibility to to update MessageStatus.

BodyPartsStatus refers to, and indicates the condition of the sequence of component parts that
comprise an entire message. BodyPartsStatus is an array of Boolean values, with one Boolean value
per each message body part. The body parts of a message are numbered from zero to the actual number
of body parts minus one. Body parts are numbered in the same order as they are displayed in
tableOfContents. BodyPartlndex is used to refer to a specific part of a message.

index is a cardinal number that indicates the index number of the last enumerated message. When the
value of index is nullindex, it indicates that there are no more messages to enumerate.

ERRORS

Reports [AuthenticationError[probleml, IndexError[probleml, OtherError[probleml,
SessionError[problem], ServiceError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR,
default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-77

XNS LIBRARY

MaiiTransport5 _AbortRetrieval

NAME

AbortRetrieval - postpone deli very of a message

SYNOPSIS

#include <courier/MaiITran5 de.">
#include <courier/except." >-

void
AbortRetrieval(Connection, BOTprocptr, session)

COURIERFO- Connection;-
int (* BOTprocptr){);
Session session;

DESCRIPTION

The AbortRetrieval{) function is used" to direct the mail service to stop the retrieval process immediately
and retain the remainder of the message until the client is ready to accept it. Subsequent messages will
become unavailable until the envelope or message in question is disposed of in some way. This function
may only be called immediately following a call to either RetrieveEnvelope{) or RetrieveContent{).

The session argument is the session handle returned by a preceding call to BeginRetrieval{).

RETURN VALUE

This function returns void.

ERRORS

8-78

Reports [AuthenticationError[problem], OtherError[problem], SessionError[problem],
ServiceError[problem], TransferError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR,
default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

MailTransport5_BeginPost

NAME

BeginPost - post outgoing messages

SYNOPSIS

#include < courier/MaiiTran5 de.h>
#include < courier/except.h >-

BeginPostResults
BeginPost(Connection, BDTprocptr, postingData, postlflnvalidNames, aliowDLRecipients,
optionalEnvelopeData, creCJentials, verifier)

COURIERFD Connection;
int (* BDTprocptr)();
PostingData postingData;
Boolean postlflnvalidNames;
Boolean aliowDLRecipients;
T_p17 5 38optionalEnvelopeData;
CredentraliCredentials;
Verifier verifier;

DESCRIPTION

XNS LIBRARY

The BeginPost() function is used to initiate the posting of a message with a mail service. Once an
appropriate mail service has been located, BeginPost() is used to start the posting of a message. It is then
followed by a sequence ofPostOneBodyPart() operations, and terminated by EndPost().

The postingData argument is a structure that contains a list of clients to receive the message, the contents
type, the size of the message contents, and a list of the body parts comprising the message. postingData
contains four members: Recipients, contentsType, contentsSize, and bodyPartTypesSequence.

Recipients is a sequence of records, each one defining the full path name of each intended recipient.

contentsType is an enumerated type that directs the interpretation of messages by the Mail Service.
One of the following values may be specified:

UNSPECIFIED
STANDARDMESSAGE
REPORT
NULL

To be in a human readable format, the value of contentsType must be either REPORT or
STANDARDMESSAGE.

contentsSize specifies the size of the entire contents portion of the message in bytes. If the size
specified is not within 5000 bytes of actual size, the Mail Service will raise an error.

bodyPartTypesSequence is a sequence of body part types. Body part types for standard messages are a
sequence of cardinal numbers that range between 0 and 12, inclusive. 0 indicates the Heading body
part. Number 1-12 indicate portions of the Interpersonal Message body part. There should be a one-to
one correspondence between the body parts in T _r17 _ 5 _37 and the elements in the message.

The postlflnvalidNames argument is a Boolean value that controls how BeginPost() handles invalid
recipients. A value of TRUE causes all valid recipients to receive the message, regardless of the number of

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-79

XNS LIBRARY

non-valid recipients. The invalid recipient names will be returned. A value of FALSE will prevent the
message from being sent to anyone if an invalid recipient name exists and an results in an error.

The aliowDLRecipients argument is a Boolean that indicates whether or not the message is to be sent to
distribution lists. A value of TRUE causes the message to be sent regardless of the number of intended
recipients. A value of FALSE causes any recipient that is a distribution list to be designated as invalid.

The optionalEnvelopeData argument is a structure that allows the client to include additional
information regarding the handling of the message.

The credentials argument is the credentials returned earlier by the Authentication Service. The verifier
argument is the verifier returned earlier by the Authentication Service.

RETURN VALUE

This function returns a structure called BeginPostResults.1t has two members: session and invalidNames.

session is of type Session. It is a mail transport session handle to be used to complete the posting
process.

invalid Names is of type InvalidNameList. It is a list of invalid recipients, in the case where not all the
recipients are valid but the message was posted anyway. This can only occur when
postlflnvalidNames is set to TRUE. The mail transport session handle returned will be invalid if
postlflnvalidNames was set to FALSE and the recipient list contained invalid names. An error will be
raised if an invalid mail transport session handle is passed to PostOneBodyPart{).

ERRORS

8-80

Reports [AuthenticationError[problem], InvalidRecipients[namelist], OtherError[problem],
ServiceError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR, default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

MailTransport5_BeginRetrieval

NAME

BeginRetrieval - initiate the extraction of messages from a mail slot

SYNOPSIS

#include <courier/ MaiiTran5 de.h>
#include < courier/except.h >-

BeginRetrievalResults
BeginRetrieval(Connection, BOTprocptr, deliverySlot, credentials, verifier)

COURIERFO- Connection;-
int (* BOTprocptr)O;
Three"'P"artName deliverySlot;
Credentials credentials;
Verifier verifier;

DESCRIPTION

XNS LIBRARY

The BeginRetrievalO function is used to initiate the retrieval of one or more messages from a specified
delivery slot. A typical delivery slot session consists of a call to BeginRetrievalO, multiple calls to
RetrieveEnvelopeO and RetrieveContentO, and a concluding call to EndRetrievalO.

The deliverySlot argument identifies the slot to be accessed. A delivery slot is associated with a specific
recipient name. To retrieve messages via a delivery slot, the client must locate the mail service on which
the recipient name is registered. This is done by looking up the recipient's name in the Clearinghouse to
determine the value of the mailboxes property associated with that name. (The format of this property is
defined in the Clearinghouse Entry Formats Standard.) The mailboxes property contains an array of mail
service names, each of which hold a mailbox for the user.

The credentials argument is the credentials returned earlier by the Authentication Service. The
credentials may be either simple or strong. If the delivery slot is not owned by the client identified in the
credentials, the client must have strong credentials to access that slot. The client cannot switch from
simple to strong authentication or visa versa within the same session.

The verifier argument is the simple verifier acquired at the same time as the credentials.

RETURN VALUE

This function returns a structure called BeginRetrievalResults. Its one member, session, is of type Session.
It is the mail transport session handle that is to be passed to all related *RetrievalO functions.

ERRORS

Reports [AccessError[problem], AuthenticationError[probleml, Other Error[problem],
ServiceError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR, default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-81

XNS LIBRARY

MaiiTransportS_EndPost

NAME

EndPost - signal termination of posting a message

SYNOPSIS

#include <courier/MailTran5 de.h>
#include <courier/except.h>-

EndPostResults
EndPost(Connection, BDTprocptr, session, abortPost)

COUmRFD Connection;
int (* BDTprocptr)();
Session session;
Boolean abortPost;

DESCRIPTION

The EndPost() function is used to signal the mail service that the message initiated by BeginPost() is
complete and no more data is to follow.

The session argument is the transport session handle returned by BeginPost(). Once the call to EndPost()
completes, the mail transport session handle is no longer valid. The abortPost argument is a Boolean that
indicates what is to be done with the completed message. If abortPost is TRUE, the message will not be
posted and it will be discarded by the mail service. If set to FALSE, the message will be sent to the
recipients listed in BeginPost(). The default is FALSE.

RETURN VALUE

This function returns a structure of type EndPostResults. Its one member, messagelD, is of type
MessagelD. messagelD is a unique identifier assigned by the mail service during posting and is used for
use in pairing messages to their associated reports or in locating messages referenced by other messages.

ERRORS

8-82

Reports [AuthenticationError[problem], OtherError[problem], SessionError[problem],
ServiceError[problem], TransferError[problem], Courier Error]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

MailTransport5_EndRetrieval

NAME

EndRetrieval - terminate a retrieval sequence

SYNOPSIS

#include < courier/MaiiTranS de.h>
#include < courierlexcept.h>-

void
EndRetrieval(Connection, BDTprocptr, session)

COURIERm" Connection;
int (* BDTprocptr)O;
Session session;

DESCRIPTION

XNS LIBRARY

The EndRetrievalO function is used to end the current delivery slot retrieval sequence. Calling this
function invalidates the session handle returned by a preceding call to BeginRetrievalO.

The session argument is the session handle returned by a preceding call to BeginRetrievalO.

RETURN VALUE

This function returns void.

ERRORS

Reports [AuthenticationError[problem], OtherError[problem], SessionError[problem],
ServiceError[problem], TransferError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR,
default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-83

XNS LIBRARY

MailTransport5_MailPoll

NAME

MailPoll- check a delivery slot for messages

SYNOPSIS

#include <courier! MailTranS de.h>
#include <courier!except.h>-

MailPoliResults
MailPoli (Connection, BDTprocptr, deliverySlot, credentials, verifier)

COURTE:RFD Connection;
int (* BDTprocptr)();
Threel'"artName deliverySlot;
Credentials credentials;
Verifier verifier;

DESCRIPTION

The MailPoliO function is used to determine if messages are present in a delivery mail slot. Due to the
overhead of invoking the various *Retrieval() functions, MailPolI() is the suggested means of verifying the
existence of mail.

The deliverySlot argument identifies the slot to be accessed. A delivery slot is associated with a specific
recipient name. To retrieve messages via a delivery slot, the client must locate the mail service on which
the recipient name is registered. This is done by looking up the recipient's name in the Clearinghouse to
determine the value of the mailboxes property associated with that name. (The format of this property is
defined in the Clearinghouse Entry Formats Standard.) The mailboxes property contains an array of mail
service names, each of which may contain mail for the specified recipient.

The credentials argument is the credentials returned earlier by the Authentication Service. The
credentials may be either simple or strong. If the delivery slot is not owned by the client identified in the
credentials, the client must have strong credentials to access that slot. The client cannot switch from
simple to strong authentication or visa versa within the same session.

The verifier argument is the simple verifier acquired at the same time as the credentials.

RETURN VALUE

This function returns a structure called MailPoliResults. Its one member, mailPresent, is a Boolean value
that indicates the presence of mail in the delivery slot. A value of TRUE indicates there is mail ready for
retrieval. A value of FALSE indicates that the delivery slot is empty.

ERRORS

8-84

Reports [AccessError[probleml, AuthenticationError[probleml, OtherError[probleml,
SessionError[probleml, ServiceError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR,
defaultl

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

MailTransport5_PostOneBodyPart

NAME

PostOneBodyPart - send message data to a mail service

SYNOPSIS

#include <courier/MailTran5 de.h>
#include <courier/except.h>-

void
PostOneBodyPart(Connection, _ BDTprocptr, session, bodyPartType, contents)

COURIERFD COnnection;
int (* BDTprocptr)();
Session session;
LongCardinal bodyPartType;
BulkData1_ Descriptor contents;

DESCRIPTION

XNS LIBRARY

The PostOneBodyPart() function is used to submit the data that was declared in BeginPost() to a mail
service. BeginPost() informs the mail service that a specific body of data, having specific qualities, is to
follow. PostOneBodyPart() specifies that body of data. This function is to be called once for each body part.
If more than five minutes elapses between the time BeginPost() is called and PostOneBodyPart() is called,
an error is raised.

The BDTprocptr argument is the name of the client-defined function that will be posting the body part.
This function must be provided.

The session argument is the transport session handle returned by BeginPost(). The bodyPartType
argument is a cardinal number that indicates the body part. This argument insures that all the body parts
that are supposed to be included in the message are sent to the mail service. The value of this argument is
to be identical with the value of bodyPartTypeSequence that was specified in BeginPost(). If there is any
discrepancy between BeginPost(), bodyPartTypeSequence, and bodyPartType, an error is raised.

The contents argument specifies the source that is to supply the data comprising the message in
accordance to the Bulk Data Transfer Protocol.

RETURN VALUE

This function returns void.

ERRORS

Reports [AuthenticationError[problem], OtherError[problem], SessionError[problem],
ServiceError[problem], TransferError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR,
default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-85

I
XNS LIBRARY

MailTransport5_RetrieveContent

NAME

RetrieveContent - extract the contents of a message

SYNOPSIS

#include < courierl MailTran5 de.h>
#include < courier/except.h >-

void
RetrieveContent(Connection, BDTprocptr, content, session)

COURIERFD -Connection; -
int (* BDTprocptr)O;
BulklJata1 Descriptor content;
Session seSSion;

DESCRIPTION

The RetrieveContentO function is used to extract the contents of a message that is at the head of the
delivery slot queue. This function must follow a successful call to RetrieveEnvelopeO.

The BDTprocptr argument is the name of the client-defined function that will retrieve the contents of the
message. This function must be provided.

The content argument is the sink that is to receive the contents in accordance to the Bulk Data Transfer
Protocol. Use BulkDatal_ immediateSink when retrieving to a local file.

The session argument is the session handle returned by a preceding call to BeginRetrievalO.

RETURN VALUE

This function returns void.

ERRORS

8-86

Reports [AuthenticationError[problem], OtherError[problem], SessionError[problem],
ServiceError[problem], TransferError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR,
default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

MailTransportS_RetrieveEnvelope

NAME

RetrieveEnvelope - extract the header information regarding a delivery slot message

SYNOPSIS

#include <courier/MailTranS de.h>
#include < courier/except.h >-

RetrieveEnvelopeResults
RetrieveEnvelope(Connection, _BDTprocptr, session)

COURIERFD COnnection;
int (* BDTprocptr)O;
Session session;

DESCRIPTION

XNS LIBRARY

The RetrieveEnvelope() function is used to extract an envelope from the head of the delivery slot queue
and, for those messages with contents of type ctStandardMessage, the heading (body part #0) is also
extracted. The extracted envelope does not contain the message itself, only pertinent information
regarding the message. If, based upon the envelope information, the message is of no interest, the
envelope contents may be discarded by immediately calling RetrieveEnvelopeO a second time.

This function may be called repeatedly in tandem with RetrieveContentO during the same session to
extract all the envelopes in a delivery slot.

The session argument is the session handle returned by a previous call to BeginRetrieval().

RETURN VALUE

This function returns a structure called RetrieveEnvelopeResults. It has two members: empty and
envelope.

empty is a Boolean value that indicates the presence of available envelopes. A value of TRUE indicates
that the active delivery slot is empty and there are no envelopes. A value of FALSE indicates that the
delivery slot is not empty and there are envelopes available.

envelope is of type Envelope. It is the envelope itself.

ERRORS

Reports [AuthenticationError[problem], OtherError[problem], SessionError[problem],
ServiceError[problem], TransferError[problem], Courier Errors: REJECT_ERROR, SYSTEM_ERROR,
default]

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-87

XNS LIBRARY

MailTransportS_ServerPoll

NAME

ServerPoll- query the mail service ifit will accept posted messages

SYNOPSIS

#include <courier/MailTranS de.h>
#include <courier/except.h>-

ServerPoll Resu Its
ServerPolI(Connection. BOTprocptr)

COURI!:1D=O connection;
int (* _ BOTprocptr)O;

DESCRIPTION

The ServerPoliO function is used to determine if the mail service currently in use will accept additional
messages for posting. This function may be broadcast to assist other clients in locating a mail service to
use for posting messages. This function requires only the Connection and _ BOTprocptr arguments.

RETURN VALUE

This function returns a structure called ServerPoliResults. It has three members: willingness, address,
and serverName.

willingness is of type Willingness. It is a cardinal number that specifies the availability of a particular
mail service for posting mail. The range of willingness is between 1 and 10, inclusive. 1 is least
receptive to new postings. 10 is most receptive. The returned value for willingness[i] gives the
service's ability to accept messages of size 8[i] bytes to size (8[i + 1] - 1) bytes. The last element in the
sequence gives the service's ability to accept a message of size 8(index of the last element in the
sequence) bytes to a message of unbounded size,

address is of type NetworkAddressList. It is the list of clearinghouse network addresses that may be
used to contact a mail service. The address list will contain more than one element only if the mail
service is connected to more than one network.

serverName is of type ThreePartName. It is a full path name that identifies the name of the responding
mail service.

ERRORS

Reports [Courier Errors: REJECT_ERROR, SYSTEM_ERROR, default]

8-88 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Printing3_GetPrinterProperties

NAME·

GetPrinterProperties - retrieve the static properties of a printer

SYNOPSIS

#include < courier/Printing3 de.h>
#include < courier/except.h;;
#include <courierl papersize.h>

GetPrinterPropertiesResults
GetPrinterProperties{ Connection. _ BDTprocptr}

COURIERFD Connection;
int (* _ BDTprocptr)O;

DESCRIPTION

XNS LIBRARY

The GetPrinterProperties() function is used to query the print service for the static properties of a printer.
This function knows the printer to access based upon the value of the _Connection argument.

RETURN VALUE

This function returns a structure called GetPrinterPropertiesResults.lts one member, properties, specifies
the handling characteristics of the printer. properties is of type PrinterProperties. It has three fields:
media, staple, and twoSided.

The media field is like the mediumHint parameter of Print Options in that it specifies the paper sizes
available for a specific printer. The media listed need not be immediately available, but the print
service should be able to provide them at the time of printing.

The staple field specifies if a document sent to the printer in question will be stapled upon completion.
The default is FALSE.

The twoSided argument specifies whether or not a document will be printed on both sides of each
sheet of paper. The default is FALSE.

ERRORS

Reports [ServiceUnavailable, SystemError, Undefined[problem))

SEE ALSO

PrintO

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-89

XNS LIBRARY

Printing3_GetPrinterStatus

NAME

GetPrinterStatus - determine the availability of the print service

SYNOPSIS

#include < courier/Printing3 de.h>
#include < courier/except.h >'
#include < courier/papersize.h >

GetPrinterStatusResults
GetPrinterStatus(Connection, _ BDTprocptr)

COURIERFD "t'onnection;
int (* _ BDTprocptr)();

DESCRIPTION

The GetPrinterStatusO function is used to determine where the print service is with respect to the four
aspects of printing a document: spooling, formatting, printing, and the paper on which to print the
document. The spooler accepts a master; the formatter decomposes it; and the printer marks the
decomposed document for printing. This function knows the printer to access based upon the value of the
_Connection argument.

RETURN VALUE

8-90

The GetPrinterStatus() function returns GetPrinterStatusResults. Its one member, status, describes the
state, or condition, of the four aspects of printing. status is of type Pri nterStatus. It contains the status of
four objects: spooler, formatter, printer, and media.

The spooler may be in anyone offour states: AVAILABLE, BUSY, DISABLED, and FULL.

The formatter may be in anyone of three states: AVAILABLE, BUSY, and DISABLED.

The printer may be in anyone of five states: AVAILABLE, BUSY, DISABLED, NEEDSATTENTION, and
NEEDSKEYOPERATOR.

And MEDIA describes the paper sizes that are available on the printer.

AVAI LABLE indicates that the respective phase is ready to accept input.

BUSY indicates that the respective phase is currently processing another print request and cannot
accept input. This is a transient condition that lasts a relatively short time.

DISABLED indicates that the respective phase is not available and cannot accept input. The
duration of this state may last a long time.

FULL indicates that the spooler is currently unable to accept additional input. This is due to the
number of printing requests exceeding the capacity of the spooler queue.

NEEDSATTENTION indicates that the marking engine of the printer is not functioning properly
and requires some non-technical human intervention.

NEEDSKEYOPERATOR indicates that the marking engine of the printer is not functioning properly
and requires the attention of a trained technician.

MEDIA enumerates the paper sizes currently available on the target printer.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

XNS LIBRARY

ERRORS

Reports [ServiceUnavailable, SystemError, Undefined]

SEE ALSO

Print(), GetPrintRequestStatus(), GetPrinterProperties()

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-91

XNS LIBRARY

Printing3 GetPrintRequestStatus

NAME

GetPrintRequestStatus - determine the status of an outstanding print request

SYNOPSIS

#include < courier/Printing3 de.h>
#include <courier/except.h'5"
#include < courier/ papersize.h >

GetPrintRequestStatusResults
GetPrintRequestStatus(Connection, _ BDTprocptr, printRequestlD)

COURIERFD Connection;
int (* BDTprocptr)O;
RequestlD printRequestlD;

DESCRIPTION

The GetPrintRequestStatus() function is used to ascertain the status of a document that was sent to a
printer. The printRequestlD argument is the return value ofthe PrintO function and must be supplied here
to properly identify the document in question.

RETURN VALUE

This function returns a structure called GetPrintRequestStatusResults. Its one member, status, is of type
RequestStatus. It may have one of the following nine values:

PENDING, has not begun printing.
INPROGRESS, currently being printed.
COMPLETED, the document has successfully completed printing.
COMPLETEDWITHWARNING, the document has been printed but low level problems have been
encountered.
UNKNOWN,the print service is at a complete loss as to what happened to the document in question.
REJECTED, the document was not accepted into the marking phase because errors, such as illegal
interpress commands, have been encountered in the master.
ABORTED, the printing request was aborted during the formatting or marking phase.
CANCELLED, the document was queued for printing but someone having priority credentials cancelled
the printing request.
HELD, the printing service has postponed processing the document until a later time because other
print requests having a higher priority have been received.

ERRORS

Reports [ServiceUnavailable, SystemError, Undefined[problem]]

SEE ALSO

Pri ntO I GetPri nterPropertiesO I GetPri nterStatusO

8-92 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

Printing3_Print

NAME

Print - print a master

SYNOPSIS

#include <courier/Printing] de.h>
#include <cQurier/except.h >
#include < courier/papersize.h >

PrintResults
Print(Connection. BDTprocptr. master. printAttributes. printOptions)

COURIERFD Connection;
int (* BDTprocptr)O;
BulkData1 Descriptor master;
PrintAttributes printAttributes;
PrintOptions printOptions;

DESCRIPTION

XNS LIBRARY

The PrintO function is used to access bulk transfer data in a source and send it to the print service queue.
This function knows the printer to access based upon the value of the _Connection argument.

The BDTprocptr argument is the name of the client defined function that will send the data to the print
queue. This function must be provided.

The master argument is a bulk data transfer parameter that specifies the source that is to supply the
interpress master in accordance with the Bulk Data Transfer Protocol. Use BulkDatal immediateSink
when retrieving to a local file. -

The printAttributes argument is a structure that specifies supplementary information about the document
to be printed, such as the name of the object to be printed, the creation date, and the sender's name. The
information specified here is printed on the document cover page.

The printOptions argument specifies parameters that affect the printing of a document, and the
characteristics the printed document is to have or that are relevant to the printing process. There are ten
parameters to this argument:

The first, printObjectSize, indicates the size of the master to be printed in bytes. This may be useful for
allocating printing resources or determining if the master size exceeds the capability of the printer.
The default value is the size of the master received.

The second parameter, recipientName, is the name of the person for whom the printed document is
intended. Typically this will appear on the banner sheet of the printed document and, on print servers
with sorters, it may be used as the basis of a sort key. The default value is the same as the sender Name
parameter specified in the printAttributes argument.

The message parameter is typically used to specify the status information to be displayed either
locally or printed on the banner sheet. This message accompanies a print request. It is a text string.
The default is a NULL string.

The copyCount parameter specifies the number of copies to be made. The default is 1.

The pagesToPrint parameter specifies the range of pages to be printed. beginningPageNumber
specifies the page number at which printing is to commence.

DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE 8-93

XNS LIBRARY

The endingPageNumber parameter specifies the page number at which printing is to stop. "Page
number" is the ordinal position of the page in the document, not the page number actually printed on
the page. The default value is every page in the master.

The mediumHint parameter indicates the size of the paper on which the document is to be printed.
Refer to papersize.h and Printing3.cr for information regarding acceptable paper sizes and the format
for specifying them. Though listed as an option, the value of unknown may not be used. The default
paper size is specific to each print service.

The priorityHint parameter is the printing priority requested by the sender. The default value is
specific to each print service. If a request is not to be processed immediately by the print service a non
NULL release Key is to be supplied by the user.

The releaseKey parameter is datum that must be presented to the print service in order to release a
held request. The source for a releaseKey is assumed to be a password consisting of a string of
characters. The releaseKey is computed from the password using the algorithm specified by the
Authentication Protocol. The default value is 177777B, "NULL string".

The staple parameter specifies if the document is to be stapled upon completion. The default is FALSE.

The twoSided parameter specifies whether or not the document is to be printed on both sides of each
sheet of paper. The default is FALSE.

RETURN VALUE

This function returns PrintResults, a structure whose one member, printRequestlD, contains a unique
identifier for the document being printed. The identifier is assigned by the print service and is of type
RequestlD. It may later be supplied as an argument to GetPrintRequestStatus(}, a function that ascertains
the status of documents that have been sent to the print spooler.

ERRORS

Reports [Busy, ConnectionError, InsufficientSpoolSpace, InvalidPrintParameters, MasterTooLarge,
MediumUnavailable, ServiceUnavailable, SpoolingDisabled, SpoolingQueueFull, SystemError,
TooManyClients, TransferError[problem], U ndefined[problem11

SEE ALSO

GetPrintRequestStatus(), GetPrinterProperties(}, GetPrinterStatus(}

8-94 DOCUMENT INTERFACES TOOLKIT SYSTEM REFERENCE

_BDTProcPtr, 8-2
_Connection, 8-1

A
Authentication2_ChangeSimpleKey, 8-5
Authentication2_ChangeStrongKey, 8-5
Authentication2_CheckSimpleCredentials, 8-7
Authentication2_CreateSimpleKey, 8-8
Authentication2_CreateStrongKey, 8-8
Authentication2_DeleteSimpleKey, 8-10
Authentication2_DeleteStrongKey, 8-10
Authentication2_GetStrongCredentials, 8-11
anchored frame

start creation, see gi_startgr
auxiliary menus, see document

B
bar chart, see gi_adbacht
bit map graphics, see gi_adbm
brush widths, 3-33

C
call-back procedures

di_aframeproc, 1-30
di_apfstyleproc, 1-52
di_appstyleproc, 1-52
di_breakproc, 1-30
di_ckabortproc, 1-38
di_docproc, 1-30
di_fieldproc, 1-31
di_fillinproc, 1-34
di_fnpropsproc, 1-41
di_fntileproc, 1-31
di_fstyleproc, 1-35
di_indexproc, 1-31
di_newparaproc, 1-31
di_pfcproc, 1-31
di-pstyleproc, 1-35
di_sfbrkproc, 1-31
di_styleproc, 1-52
di_textproc, 1-31
di_txtlnkproc, 1-37
gi_bachtproc, 3-55
gi_bmproc, 3-55
gi_buttonproc, 3-55
gi_clusterproc, 3-55
gi_curveproc, 3-55
gi_ellipseproc, 3-56
gi_ffieldproc, 3-56
gi_frameproc, 3-56
gi_lineproc, 3-56
gi_lnchtproc, 3-56
gi_pichtproc, 3-56

DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE

Index

gi_pislceproc, 3-56
gi_pointproc, 3-57
gi_rectangleproc, 3-57
gi_tableproc, 3-57
gi_tframeproc, 3-57
gi_triangleproc, 3-57
ti_columnproc, 4-12
ti_rowproc, 4-12
ti_tableproc, 4-12

Clearinghouse2_AddGroupProperty, 8-13
Clearinghouse2_AddltemProperty, 8-15
Clearinghouse2_AddMember, 8-17
Clearinghouse2_AddSelf, 8-17
Clearinghouse2_Changeltem, 8-19
Clearinghouse2_CreateAlias, 8-20
Clearinghouse2_CreateObject, 8-22
Clearinghouse2_DeleteAlias, 8-20
Clearinghouse2_DeleteMember, 8-23
Clearinghouse2_DeleteObject, 8-25
Clearinghouse2_DeleteProperty, 8-26
Clearinghouse2_DeleteSelf, 8-23
Clearinghouse2_lsMember, 8-27
Clearinghouse2_listAliases, 8-20
Clearinghouse2_listAliasesOf, 8-29
Clearinghouse2_listDomain, 8-30
Clearinghouse2_listDomainServed, 8-31
Clearinghouse2_listObjects, 8-32
Clearinghouse2_listOrganizations, 8-33
Clearinghouse2_listproperties, 8-34
Clearinghouse2_lookupObject, 8-35
Clearinghouse2_RetrieveAddresses, 8-36
Clearinghouse2_Retrieveltem, 8-37
Clearinghouse2_RetrieveMembers, 8-38
CUSP button

ancored frame properties, see gi_btnforaframe
create, see gi_startnbtn

o

enumerate contents, see gi_enumbtnprog
release handles, see gi_relbtnprog

data types
DoclC, 1-2

desktop
access permissions, see dsktp-iJetaccess
copy document, see dsktp_copydoc
delete folder, see dsktp_deletefolder
document handle, see dsktp-iJetdocref
list folder contents, see dsktp_enumerate
make folder, see dsktp_makefolder
overview, 5-1
properties, see dsktp-iJetdocprops
remove document, see dsktp_deletedoc
security/access control, see dsktp_checkuser

INDEX-1

INDEX

di_abortO, 1-5
di_apaframeO, 1-6
di_apaframe, 1-6
di_apbreak, 1-9
di_apchar, 1-10
di_apfield, 1-11
di_apfntile, 1-13
di_apfstyle, 1-14
di_apindex, 1-16
di_apnewpara, 1-18
di_appfc, 1-20
di_appstyle, 1-14
di_aptext, 1-22
di_aptofillin, 1-24
di_aptotxtlnk, 1-25
di_c1earfillin, 1-27
di_c1eartxtInk, 1-28
di_c1ose, 1-29
di_enumerate, 1-30
di_enumfillin, 1-34
di_enumstyle, 1-35
di_enumtxtInk, 1-37
di_fillintype, 1-24
di_finish, 1-38
di_getfieldfromname, 1-40
di~etfnprops, 1-41
di~etmode, 1-49
di_open, 1-43
di_rel*, 1-45
di_setfnprops, 1-47
di_setmode, 1-49
di_setpara, 1-50
di_start, 1-52
di_startap, 1-55
di_starttext, 1-57
di_tcont

new paragraph characters, 1-18
di_textforaframe, 1-58
document

creation, 1-1
enumeration, 1-1
properties

anchored frame, 2-7
basic records, 2-13
break, 2-1
color, 2-18
dp_fontdesc, 2-5
dp_fontprops, 2-6
field, 2-1
font, 2-5
font runs, 2-2
font style, 2-15
footnote numbering, 2-3
index, 2-9
mode, 2-15
page, 2-9
paragraph, 2-12
paragraph style, 2-16
tab, 2-14
textframe, 2-17

dp_colfromname, 2-20
dp_enumfrun, 2-22

INDEX-2

dp_getbaspropsdef, 2-25
dp~etbreakdef, 2-24
dp~etcolwidthdef, 2-24
dp_getfielddef, 2-24
dp~etfnnumdef, 2-24
dp~etfontdef, 2-24
dp_getfontdescdef, 2-24
dp~etfontelmarralltrue, 2-25
dp_getfontstyledef, 2-25
dp~etframedef, 2-24
dp~etindexdef, 2-24
dp~etmodedef, 2-25
dp~etpagedef, 2-24
dp~etpagedel, 2-25
dp~etparadef, 2-24
dp_getparaelmarralltrue, 2-25
dp~etparastyledef, 2-25
dp~etrundef, 2-24
dp_gettabstopdef, 2-25
dp_gettframedef, 2-25
dp~ettoc, 2-25
dp_namefromcol, 2-20
dp_pageprops

set margins, 1-20
dp_wkcolfromcol, 2-20
dsktp_checkuser, 5-2
dsktp_copydoc, 5-3
dsktp_deletedoc, 5-5
dsktp_deletefolder, 5-13
dsktp_docref, 1-38
dsktp_enumerate, 5-6
dsktp~etaccess, 5-8
dsktp~etdocprops, 5-9
dsktp~etdocref, 5-11
dsktp_intro, 5-1
dsktp_makefolder, 5-13
dsktp_movedoc, 5-15

E
eccentricity, 3-19
enumeration

F

fill-in runs, 2-22
graphics container, 3-2

Filing6_ChangeAttributes, 8-47
Filing6_ChangeControls, 8-49
Filing6_Close, 8-39
Filing6_Continue, 8-40
Filing6_Copy, 8-41
Filing6_Create, 8-42
Filing6_Delete, 8-44
Filing6_Deserialize, 8-61
Filing6_Find, 8-45
Filing6_GetAttributes, 8-47
Filing6_GetControls, 8-49
Filing6_List, 8-50
Filing6_Logoff, 8-52
Filing6_Logon, 8-53
Filing6_Move, 8-54
Filing6_0pen, 8-55
Filing6_Replace, 8-57

DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE

Filing6_ReplaceBytes, 8-59
Filing6_Retrieve, 8-58
Filing6_RetrieveBytes, 8-59
Filing6_Serialize, 8-61
Filing6_Store, 8-63
Filing6_UnifyAccessLists, 8-64
font families, 2-5
frame contents, 1-1

G
Gap3, 8-65
getsigno, 7-1
gi_intro, 3-1
gi_adbacht, 3-5
gi_adbm, 3-11
gi __ adcurve, 3-16
gi_adellipse, 3-21
gi_adffield, 3-25
gi_adline, 3 -28
gi_adlncht, 3-30
gi_adpicht, 3-33
gi_adpislce, 3-35
gi_adpoint, 3 -38
gi_adrectangle, 3 -40
gi_adtable, 3-43
gi_adtframe, 3-45
gi_adtriangle, 3-47
gi_apchartobtnprog, 3-50
gi_apnparatobtnprog, 3-50
gi_aptexttobtnprog, 3-50
gi_btnforaframe, 3-52
gi_enumbtnprog, 3-53
gi_enumerate, 3-55
gi_finishbtn, 3-71
gi_finishcht, 3 -59
gi_finishcluster, 3 -59
gi_finishgframe, 3 -59
gi_finishgr, 3-59
gi_finishnbtn, 3-59
gi~etbachtpropsdef, 3-62
gi~etbmdispdef, 3-62
gi~etbmpropsdef, 3-62
gi~etbmscalpropsdef, 3-62
gi~etboxdef, 3-62
gi~etchtappdef, 3-62
gi~etchtdatdef, 3-62
gi_getcurvepropsdef, 3-62
gi~etellipsepropsdef, 3-62
gi~etframepropsdef, 3-62
gi_getgframepropsdef, 3-62
gi_getgridpropsdef, 3-62
gi~etlinepropsdef, 3-63
gi_getlnchtappdef, 3-63
gi~etlnchtpropsdef, 3-63
gi~etpichtpropsdef, 3-63
gi~etpislcepropsdef, 3-63
gi_getpointpropsdef, 3-63
gi~etrectanglepropsdef, 3-63
gi~ettframepropsdef, 3-63
gi~ettrianglepropsdef, 3-63
gi~etgframeprops, 3-61
gi_relbtnprog, 3-68

DOCUMENT INTERFACES TOOLKIT SOFlWARE REFERENCE

gi_setgframeprops, 3-69
gi_startbtn, 3-71
gi_startcluster, 3-73
gi_startgframe, 3-75
gi_startgr, 3-79
gi_startnbtn, 3-80
graphics

clusters, 3-73
create, 3-1
cross-reference, 3-2
read, 3-1

graphics frame
create, see gi_startgframe

INDEX

enumerate contents, see gi_enumerate
enumerate properties, see gi-fjetgframeprops
set properties, see gi_setgframeprops

H

I
I nbasket2_ Change BodyPartsS tatus, 8-6 7
Inbasket2_ChangeMessageStatus, 8-68
Inbasket2_Delete, 8-69
Inbasket2_GetSize, 8-70
Inbasket2_Logoff, 8-71
Inbasket2_Logon, 8-71
Inbasket2_MailCheck, 8-73
Inbasket2_MailPolI, 8-74
Inbasket2_RetrieveBodyParts, 8-75
Inbasket2_RetrieveEnvelopes, 8-76

K

L
line

M

properties, see gi_lineprops
chart, 3-30

mail services, see MailTransportS_ *
MaiITransport5_AbortRetrieval, 8-78
MaiiTransport5_BeginPost, 8-79
MaiITransport5_BeginRetrieval, 8-81
MaiITransport5_EndPost, 8-82
MaiITransport5_EndRetrieval, 8-83
MaiiTransport5_MaiIPolI, 8-84
MaiiTransport5_PostOneBodyPart, 8-85
MaiiTransport5_RetrieveContent, 8-86
MaiiTransport5_RetrieveEnvelope, 8-87
MaiiTransport5_ServerPolI, 8-88
messages

access, see Inbasket2_Logoff, Inbasket2_Logon
delete, see Inbasket2_Delete
body parts, see Inbasket2_ChangeBodyParts,

Inbasket2_RetrieveBodyParts
envelope, see Inbasket2_RetrieveEnvelopes,
size, see Inbasket2_GetSize
status, see Inbasket2_ChangeMessageStatus,

Inbasket2_MaiICheck, Inbasket2_MailPofl

INDEX-3

INDEX

N
nested frame, 3-1

o
p
pagination, 1-52
paragraph characters

add to CUSP button, see gi_ap*btnprog
insert, 1-3, 1-50

pie chart
join elements, 3-34
placement, 3-33

pie slice
placement, 3-36
texture, 3-36

point
placement, 3-38

printer
properties, see Printing3_GetPrinerProperties
status, see Printing3_GetPrinterStatus,

Printing 3 _ GetPrintRequestStatus
print, see Printing3_Print

printing
bit map graphics, 3-14
print, see Printing3_Print

Printing3_GetPrinterProperties, 8-89
Printing3_GetPrinterStatus, 8-90
Printing3_GetPrintRequestStatus, 8-92
Printing3_Print, 8-93

Q

R
rectangle, see gi_adrectangle
release functions

di_finish, 1-53
di_relcap, 1-45
di_relfield, 1-45
di_relfoot, 1-45
di_relhead, 1-45
di_relnum, 1-45
di_relindex, 1-45
di_reltext, 1-45

S
signals

getsigno, 7-1
status

di_opstat, 1-43
di_scstat, 1-54, 1-55
dsktp_docref, 1-38

T
tabs

alignment, 2-14, 2-15
settings, 2-14

tables
add rows, see gi_appendrow
build, 4-1
create new, see ti_starttable
default font properties, see ti_deffont

INDEX-4

default paragraph properties, see ti_defpara
default properties, see ti-fjet*def
edit existing, see ti_startextable
enumerate contents, see ti_enumtable
estimate number of cells, see ti_maxe/m
extract properties, see ti-fjettableprops
finish, see ti_finishtable
placement, 3-43
properties

basic, 4-2
column, 4-4
column header, 4-5
other column properties, 4-8
row contents, 4-8

read, 4-2
terminal emulation, see Gap3_Create
text

add to CUSP button, see gi_ap*btnprog
inner margin, see dp_tframeprops
orientation, see dp_tframeprops

text frame, see gi_adtframe
ti_appendrow, 4-10
ti_deffont, 4-11
ti_defpara, 4-11
ti_enumtable, 4-12
ti_finishtable, 4-14
ti_get*def, 4-15
ti~etlinedef, 4-15
ti~etsortkeydef, 4-15
ti~etcolinforecdef, 4-15
ti~ethdentrydef, 4-15
ti~etrowentdef, 4-15
ti~ettableprops, 4-17
ti~ettablepropsdef, 4-15
ti_intro, 4-1
ti_maxelm, 4-18
ti_startextable, 4-19
ti_starttable, 4-21
triangle, see gi_adtriangle

u

v

w

x
XCCS

page number delimeter, see dp-fjetpagedel
table of contents characters, see dp-3ettoc

XCharcode, 6-3
XCharmake, 6-3
XCharset, 6-3
XNS

_BDTProcPtr 8-2
_Connection 8-1
aliases, see CreateAlias, DeleteAlias, Lis tAliases,

ListAliasesOf
error handling, 8-3
header files, 8-4
change key, see ChangeStrongKey,

ChangeSimpleKey

DOCUMENT INTERFACES TOOLKIT SOFlWARE REFERENCE

create key, see CreateStrongKey,
CreateSirnpleKey

credentials, see CheckSimpleCredentials,
GetStrongCredentials,

delete key, see DeleteStrongKey,
DeleteSimpleKey

domains, see ListDomain, ListDomainsServed
group properties, see Add Group Property
file

access, see GetControls, Change Controls,
Unify AccessLists

attributes, see GetAttributes, ChangeAttributes
contents, see Replace, Retrieve, Retrieve8ytes,

Replace8ytes
create, see Create, Store
delete, see Delete
duplicate, see Copy
encode, see Serialize, Deserialize
handle, see Close, Open
list, see List
locate, see Find
move, see Move

item properties, see AddltemProperty,
Change/tern

logoff, see Logoff
logon, see Logon
members, see AddMember, DeleteMember,

/sMernber
network, see RetrieveAddresses
objects, see Create Object, DeleteObject,

DeleteProperties, ListObjects, ListProperties
LookupObject, Retrieveltem, RetrieveMembers

organizations, see ListOrganizations,
XStrcasecmp, 6-6
XStrcaselexcmp, 6-10
XStrcat, 6-5
XStrcmp, 6-6
XStrcpy, 6-8
XStrdup, 6-8
XString

append string, see XStrcat, XStrncat
character code, see XCharcode
character set, see XCharset
compare, see XStrcmp, XStrncmp,

XStrcasecmp, XStrncasecmp
convert, see XStrfromASC, XStrtoASC,

XStrfromXCC8, XStrtoXCC8
copy, see XStrcpy, XStrncpy, XStrdup
create, see XCharmake
length, see XStrlen
search, see XStrchr, XStrrchr, XStrpbrk,

XStrsch
structure, 6-1 through 6-2
tokens, see XStrsep

XString_intro, 6-1
XStrlen, 6-9
XStrlexcmp, 6-10
XStrchr, 6-12
XStrncasecmp, 6-6
XStrncaselexcmp, 6-10
XStrncat, 6-5
XStrncmp, 6-6

DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE

XStrncpy, 6-8
XStrnlexcmp, 6-10
XStrpbrk, 6-12
XStrrchr, 6-12
XStrsch, 6-13
XStrsep, 6-14
XStrfromASC, 6-15
XStrtoASC, 6-15
XStrfromXCC8, 6-16
XStrtoXCC8, 6-16

Y-Z

INDEX

INDEX-5

INDEX

INDEX-6 DOCUMENT INTERFACES TOOLKIT SOFTWARE REFERENCE

NOTES

NOTES

NOTES

NOTES

Customer Comments
XEROX@

VP Series Reference Library
Document Interfaces Toolkit Software Reference

Our goal is to improve the organization, ease of use, and accuracy of this library. Your comments
and suggestions will help us tailor our manuals to better suit your needs.

Name: Company:

Address: City:

State: Zip:

Please rate the following:
Excellent Good Fair Poor

1. Is the organization suitable for your needs? 0 0 0 0

2. Are you able to easily find the information you need? 0 0 0 0

3. Are the illustrations useful? 0 0 0 0

4. Overall, how would you rate the documentation? 0 0 0 0

Did you find any errors?
Page number I Error

How can we improve the documentation?

We appreciate your comments regarding our documentation. Thank you for taking the time to reply.

Staple or tape

..... Fold here .. ," .,., ,., ... , ~~. ~~s~'~~'~' \

Necessary

BUSINESS REPLY MAIL
First Class Permit No.229 EI Segundo, California

Postage will be paid by Addressee

Xerox Corporation
Attn: Product Ed ucation WS, N2-15
701 South Aviation Boulevard
EI Segundo, California 90245

If Mailed
In the

United States

...... Fold here .. .

Staple or tape

