
TEe Rl:rORT

'7~G

I O~(S

Micro SPL

Clinton W. Parker and Henry G. Baker

Department of Computer Science

University of Rochester

Rochester, NY 14627

TR 62

February 1980

ABSTRACT

This document describes the Micro-SPL language and compiler. The Micro-SPL compiler converts
programs in Micro-SPL, a high level programming language similar to Algol, directly into microcode
for the Xerox Alto minicomputer (64K words (16 bits) of main memory, 1K of microstore). The
generated microcode is designed to interface with main line programs written in BCPL and the
compiler automatically generates an interface that allows the BCPL main line to reference Micro
SPL routines as if they were external BCPL routines.

The Micro-SPL compiler generates microcode which is competitive with hand microcode, yet takes
only 30-50% as long to write and 10% as long to debug. Micro-SPL generated microcode runs over
ten times faster than an equivalent BCPL program and perhaps half as fast as good hand written
microcode without losing the advantage of writing in a high level language.

The preparation of this paper was supported in part by the Alfred P. Sloan Foundation under grant
number 78-4-15 and by the Defense Advanced Research Projects Agency. monitored by the ONR.
under contract number NOOOI4-78-C-0164.

CARLSON LIB A Y

Table of Contents

1. Introduction

2. Micro SPL Language Description
2.1 Programs
2.2 Routine Declarations
2.3 Declaration Lists
2.4	 Statement Lists

Assignment Statement
If Statement
While Statement

Exit Statement

Return Statement

2.5 Expressions
2.6 General

Comments

Constants

Octal Constants

3. How to Use Micro SPL
3.1 Files Needed
3.2 How to Execute the Micro SPL Compiler
3.3 Example

4. Compiler Description
4.1 Routine Specifications
4.2 Declarations
4.3 Statement Lists
4.4 Expressions
4.5 Internal Code Generation

Internal Code Fonnat

Basic Routines

Assignment

Plus

Minus

Shifts

AND and OR

Exclusive OR

Relational Operators

Relational Negation

Unary Minus

Array Reference

4.6 Mu Source Generation
4.7 Symbol Table Format

5. BCPL / Microcode Interface

1

2

2

2

2

3

4

4

5

5

5

6

7

7

7

8

9

10

14

14

16

Table of Contents

Figures
1 Word 1 of Internal Instruction 17

2 Word 2 of Internal Instruction 18

3 Word 3 of Internal Instruction 19

References 20

Appendices

A Micro SPL Syntax 21

B Reserved and Key Words 23

C Sample Micro SPL Program 24

D Microcode Generated for Sample Program 25

E BCPL Interface Generated for Sample Program 30

F BCPL Comparison Program 31

Acknowledgements:

Many thanks to Xerox Corporation for providing the facilities on which this document was

prepared and printed.

II

Chapter 1: Introduction

This document describes the Micro-SPL programming language and compiler. Micro-SPL is a
high level programming language which will generate Alto microcode as its object code. The
compiler described in this document generates object code which interfaces with BCPL. This
compiler is still under development and therefore lacks some features.

Each chapter of this document covers a different aspect of the compiler and the Micro-SPL
language. For those readers who are interested only in using the compiler, the chapters on Micro
SPL syntax and How to Use should be all that is needed. For the readers who must know how
everything works there is a chapter which presents an overview of the implementation of the
compiler. The last chapter of this document describes the BCPL interface code generated and the
general philosophy of linkage between the microcode and BCPL. Finally. there are several
appendices that can be used for quick reference.

In general the following styles will be used throughout this document:

Italics will be used for all important words or topics.
Bold face will be used for Reserved or Key words (in syntax).
A small font like this will be used for fine points (less important).

All example Micro-SPL code is indented to distinguish it from the surrounding text.

Chapter 2: Micro-SPL Language Description

This chapter describes the Micro-SPL language used for the current version of the Micro-SPL
compiler. It is not intended to be used as tutorial for the language and assumes that the reader
has familiarity with an Algol-like programming language. A full list of the Micro-SPL syntax is
given in Appendix A and a list of reserved and key words is given in Appendix B. Appendix C
contains a sample program which demonstrates most of the features of Micro-SPL described below.

2.1 Programs

Micro-SPL is a high level programming language that resembles Pidgin Algol. A Micro-SPL
program consists of a series of routine declarations followed by the reserved word START.

2.2 Routine Declarations

There are two kinds of routine declarations in Micro-SPL, these are junctions (FUNC) and
procedures (PROC). Both functions and procedures can be declared to be accessible from other
separately compiled code (BCPL). This is specified by preceeding the routine declaration by the
key word (ENTRY). ENTRY should be used for all Micro-SPL routines since only external (BCPL) references can
be made to them. All Micro-SPL routines must appear in the same compilation. There is no provision for separate
compilations. Functions must have a type in Micro-SPL, but currently the only legal type is integer
(INT).

Following the reserved words PROC or FUNC is the heading. The heading is used to declare the
arguments to the routine if there are any. The heading consist of a argument declaration list which
is enclosed by a pair of parentheses. The argument declaration list is very similar to a declaration
list (described below) with the following exceptions. First, all of the argument declarations
(described below) must be separated by commas and the reserved word REF proceeds the
declaration of arguments being passed by reference. Micro-SPL uses the BCPL calling convention (call by
VALUE) unless REF is specified. Also, REF does not make much sense for arrays (see declaration below) since an
array argument is assumed to be a pointer to the start of the array.

After the heading comes the body of the routine. The body of the routine consists of a declaration
list (described below) followed by a statement list (described below). The declaration list defines
the local variables that are to be used by the statement list and can be omitted if there are no local
Variables. The statement list is the actual executable code for the routine and should end with a
return statement. The RETURN statement is not required for procedure, but if a function has no
return, then a warning message will be given and a value of zero will be returned. Micro-SPL
considers zero to be FALSE and any non-zero value to be TR UE.

2.3 Declaration Lists

Declaration Lists are used to define the local variables that are used in the statement list of the
body of a routine in Micro-SPL. A declaration list is, as the name implies, a list of declarations. A
declaration is type specification followed by a I'ariable list. In Micro-SPL there are only two legal
type specifications: INT and INT ARRAY. INT ARRAYs are actually only useful as pointers in
Micro-SPL since no storage allocation is provided, thus no subscript is needed when declaring an
integer array. A variable list is a list of identifiers separated by commas.

2

MicroSPL

2.4 Statement Lists

A statement list is a list of statements optionally separated by a semicolon. There are five basic
statements in Micro-SPL and they are:

assignment statement
if statement
while statement
exit statement
return statement

The description of these statements is given below.

2.4.1 Assignment Statement

The assignment statement has the fonn variable expression. Variable can be any type defined f-

above including a subscripted array. f- can be either f- or . - Expression can be any legal
expression as described below.

2.4.2 If Statement

The if statement has the fonn IF expression THEN statement list ELSE statement list FI. The
THEN statement list is executed if expression is TRUE (non-zero), otherwise the ELSE statement
list is executed (if there is one).

Only enough of the expression is evaluated to detennine if it is TR UE or FALSE; once this has been detennined, the
remainder of the expression is ignored. This is called "shon-circuit" evaluation.

2.4.3 While Statement

The while statement has the fonn WHILE expression DO statement list OD. Expression is
evaluated as described for the if statement above. Statement list will continue to be executed as
long as expression is TR UE. Note that if expression evaluates to FALSE initially. then statement list will not be
executed.

2.4.4 Exit Statement

The exit statement has the fonn EXIT and causes the flow of control to continue following the OD
of the inner most while statement in which the EXIT is contained.

2.4.5 Return Statement

The fonn of the return statement depends on the routine type. If the routine is a procedure. then
then form is just the reserved word RETURN. For junctions, the form is RETlIRN(expression).
where expression is the value to be returned.

CHAPTER 2: Micro-SPL Language Description

2.5 Expressions

An expression is basically any combination of boolean and arithmetic operators applied to program
variables and constants. Given below is a list of legal operators and their precedence. Parentheses
can also be used to change the order of precedence. Operators of equal precedence are evaluated
from left to right.

(expression)

NOT, ,.." • (unary minus)

RSH, LSH

+,
0, ""=, = <, <=, "">, >. >=, ""<, NE, EQ, LS, LE, GR, GE
AND, &
OR, %

XOR, !

Where (expression) has the highest precedence and XOR has the lowest Please refer to the
syntax description «exp» in Appendix A for a complete description of the Micro-SPL expression
syntax.

2.6 General

In addition to the above description, the following items of Micro-SPL syntax should be
mentioned.

First, comments can be included in the text by preceeding the comment by / /. Everything
between / / and the next carriage return will be ignored. ~icro-SPL also regards a control-z (ASCII code
26 (decimal» as the start of a comment. Text following the control-z up to the next carriage return is ignored by
Micro-SPL.

Not all constants can be used in Micro-SPL. Micro-SPL will generate microcode for any constants
that you use but there are only about 200 constants that are available in the constant ROM for
micro-instructions (see [Thacker]). At this time, it is the responsibility of the user to guarantee that
the constant is legal (see AltoConsts23.mu). Octal constants can be entered by preceeding the octal
value with a # .

Any character not defined in the syntax (Appendix A) is considered a legal separator and ignored
otherwise.

4

Chapter 3: How to Use Micro·SPL

This chapter gives a brief description of what is needed to run Micro-SPL. It is assumed that the
user already has the BCPL compiler and the BCPL loader (BLDR) on their disk in addition to the
normal BCPL software support libraries.

3.1 Files Needed

The following files contain Micro-Spl and the non-standard routines needed to run Micro-SPL:
MicroSPL.RUN
RegDefs
Mu.RUN
PackMu.RUN
LoadRam.BR
AltoConsts23.mu

Any .BR files that are used by the BCPL program other than those mentioned above must be
supplied by the user.

3.2 How to Execute the Micro SPL Compiler

The general format for compiling a Micro-SPL program is:

);\1icroSPL.Rl'N/<s\\itches.) 01icro·SPL source> <microcode output> <BCPL output>

where:
The ">" before MicroSPL.RUN is typed by the executive.

<switches) are:
c - compile only, do not create command file to run Mu and PackMu on <microcode

output> and BCPL on <BCPL output>.

d - debug mode. This option is useful only for debugging the compiler.

h - hold the screen for observation at end of compilation. If this switch is not given,
Micro-SPL will return directly to the executive at the end of compilation if there are no errors or
warnings.

1 - show <microcode output> as it is being compiled.

s - show <Micro-SPL source) as it is being compiled.

<Micro SPL source) is the file name of the Micro-SPL program to be compiled.

<BCPL output) is the file name of the BCPL interface file to be generated. This file is optional
and if not provided, the BCPL interface code generated will be displayed on the screen. Nota
Bene: If this file is present, it must NOT have the same 'base' file name as <microcode output>
since this would cause /IVa . BR files with the same name to be generated.

5

CHAPTER 3: How to Use Micro SPL

3.3 Example

The following line is an example of the command used to compile the Micro-SPL program
contained in Heap.SPL (the sample program in Appendix C) and generate the microcode output file
HeapMu.Mu (Appendix D) and the BCPL interface in the file Heap.BCPL (Appendix E). The Micro·
SPL compiler will automatically set up a command file which causes the Mu assembly of
HeapMu.Mu (generating HeapMu.MB), the conversion of HeapMu.MB to HeapMu.BR (using
PackMu.Run), and the BCPL compilation of Heap.BCPL (generating Heap.BR). The file
HeapMu.MB is not needed after HeapMu.BR is created.

>MicroSPL.RUN Heap.SPL HeapMuMu Heap.BCPL

To LOAD the program in the above example the following .BR files would have to be added to
the list of "BR's" being loaded:

Heap
HeapMu
LoadRam

LoadRam contains the routines that will load the microcode RAM at run time with the microcode
generated by Micro-SPL, while Heap and HeapMu are the routines just compiled.

6

Chapter 4: Compiler Description

This chapter decribes the internal organization of the Micro-SPL compiler. The compiler is
written in BCPL and uses a recursive-descent parsing technique, with the exception of the
expression analyzer which uses an iterative technique to parse the expression into reverse polish
notation [Gries]. The sections of this chapter are broken into the six major functions of the
compiler. These are routine (segment) specification, declarations, statement lists, expressions,
internal code generation and Mu source generation.

4.1 Routine Specifications

Routine (segment) specifications are handled by the procedure Segment. This procedure determines
the type of the routine (PROC or INf FUNC) and sets up the symbol table entry for the routine
name. After parsing the routine name, Segment calls the procedure Heading if there is' an
argument list. This procedure parses the argument list by repeated calls to the procedure Declare
(described below). Segment then calls Declare until the local declarations have been parsed. At
that time StmtList (described below) is called to parse the body (statements) of the routine.
Finally ErulSeg is called to 'clean up' the current routine being parsed.

Erulseg performs several functions, the first is to save the number of arguments, the amount of
local storage used in the table which keeps track of information about each procedure (pointed to
by ptBase (base location of procedure table) and ptLoc(current position in procedure table».
EndSeg then frees any local variables that were defined in the current routine (see description of
ValidName and symbol table below). Finially, EndSeg inserts a return if one is needed and inserts
return labels in all of the locations in the linked list pointed to by retList (see ReturnStmt below).

4.2 Declarations

Declarations are parsed by the procedure Declare. This procedure is simply a loop which is
executed as long as there is a type specification (lNT or INT ARRAY). If the type is INT then
the procedure Dcllnt is called to parse the integer declaration. If the type is INT ARRAY, then
DclArray is called to parse the integer array declaration.

Dc/lnt is the procedure that checks to see if the identifier being declared is a legal variable, and if
so, makes the symbol table entry for that identifier. The function ValidName (described below) is
used to determine if the identifier is a legal variable name. If the identifier is a legal variable
name, then Dc/lnt fills in the symbol table information and allocates storage space for that
variable. If the identifier being declared is an argument to the routine, then Dc/lnt will generate
internal code to properly load the argument so that it can be referenced in the routine (see
Chapter 5 for more details on the BCPL/microcode interface). The REF type declaration is also
handled by Dcllnt if it is given in an argument list. (see Symbol Table Format below). Finally,
for each variable declared, Dcllnt generates an internal code for the register/variable name
equivalence comment (see Figure 1).

DclArray is similar to Dcllnt except that it does not permit an array argument to be declared
reference. As one might assume. DclArray sets the type to integer array instead of integer.

ValidName is a function that returns true if the current identifier is a legal variable name. If the
identifier is a legal variable name, then ValidName also sets up the table that will be used by
ErulSeg (described above) to free the local variables at the end of the current routine being parsed.

7

CHAPTER 4: Compiler Description

4.3 Statement Lists

Statement Lists are parsed by the procedure StmtList. StmtList consists of a loop which is
repeated as long as there are legal statements (see section 2.4). Integer assignment statements are
parsed by the procedure AssignStmt. Integer array assignment statements are parsed by the
procedure AAssignStmt. If statements are parsed by the procedure IfStmt. While statements are
parsed by the procedure WhileStmt. Return statements are parsed by the procedure ReturnStmt.
Exit statements are parsed by the procedure ExitStmt. All of these procedures are described
below.

AssignStmt first detennines the type of the assignment INT or REF 11\7) and then checks for the
assignment operator. After the assignment operator is parsed, the right hand side of the
assignment is parsed by ExpHandJer (see Expressions below). After the right hand side has been
parsed, CodeGen is called to generate the code for the actual assignment (see Internal Code
Generation below).

AAssignStmt first detennines the type of the assignment (array or pointer (array without subscript) and
then checks for the assignment operator. If the type is a subscripted array, then ExpHandler is
called to parse the subscript. After the assignment operator is parsed, the right hand side of the
assignment is parsed by ExpHandJer (see Expressions below). After the right hand side has been
parsed, CodeGen is called to generate the internal code to store the right hand side value into the
array element (see Internal Code Generation below).

I/Stmt first evaluates the conditional expression by calling ExpHandJer with the static variable
labType equal to 2 (the numeric code for generating IF conditional labels, see section 4.5.1). This
causes the expression handler to generate conditional code instead of arithmetic code for relational
operators. On return from ExpHandler, IfStmt checks to see if the top item on the variable stack
(varStackO) is of type TEST. If it is not then TestZero is called to generate the equivalent of «top
of stack) NE 0). In this state the global static compRel (comparison relation list) contains
conditional labels for the true and false cases of the conditional expression parsed (see Internal
Code Generation below for a description of the fonnat of the comparison relation list and
conditional labels). An internal condition label instruction (label field is TRUE, see figure 1) is
then generated for each true condition label in the comparison relation list. Now that the labels
for the THEN part of the if statement have been generated, StmtList is called (recursively) to
parse the statements of the THEN part. I/Stmt then checks to see if there is an ELSE part. If
there is, then internal code is generated for each false condition label in the comparison relation
list as. describe above for the THEN part. Before this is done though, another label is generated
and appended to the last statement of the THEN part (this is to jump around the ELSE part).
After the false condition labels are processed, the comparison relation list is replaced with one that
contains only the label generated to jump around the ELSE part in the false position. StmtList is
then called to parse the statements in the ELSE part. Finally, whether there is an ELSE part or
not, internal code is generated for each false condition label in the comparison relation list.

WhileStmt first saves the current value of endWH (see ExitStmt below) and then generates a label
(the lab local variable) and appends it to the last internal intruction generated. WhileStmt then
evaluates the conditional expression by calling ExpHandler with the static variable labType equal to
3 (the numeric code for generating WH conditional labels, see section 4.5.1). This causes the
expression handler to generate conditional code as opposed to arithmetic code for relational
operators. On return from ExpHandler, WhileStmt checks to see if the top item on the variable
stack (varStackO) is of type TEST. If it is not then TestZero is called to generate the equiYalent
of «top of stack) NE 0). In this state the global static compRel (comparison relation list) contains
conditional labels for the true and false cases of the conditional expression parsed (see Internal
Code Generation below for a description of the fonnat of the comparison relation lisl and
conditional labels). An internal condition label instruction (label field is TRUE, see figure 1) is
then generated for each true condition label in the comparison relation list and endWH is set to
the first false condition label in the comparison relation list. Now that the labels for the body of

8

Micro SPL

the while statement have been generated, StmtList is called (recursively) to parse the statements in
the body. WhileStmt then appends the label generated at the top of the loop (lab) to the last
statement of the body (this is the branch to the top of the while loop to execute the conditional
code). Finally, internal code is generated for each false condition label in the comparison relation
list (exit point of loop) and endWH is restored to its previous value.

ReturnStmt first checks to see if there is a return value. If there is, then ExpHandler and then
CodeGen are called to get the return value in ACO (see Chapter 5 for a description of the BCPL
return conventions). The global static retList is then appended to the last internal instruction
generated and retList is updated to point to where it was appended (linked list of return labels, see
description of EndSeg above).

ExitStmt simply appends endWH (described in WhileStmt above) to the last internal instruction
generated using AppendLab. Since endWH is set by WhileStmt to be a label to the end (false
condition label) of the innennost while loop currently being parsed, this is all that is needed to do
an EXIT. .

4.4 Expressions

Expressions are parsed by the procedure ExpHandler as follows. ExpHandler parses the current
expression into reverse polish notation using two stacks. The first stack (global statics varStaekO,
varStaekl, and varStaek2 referenced by varStaekTop) is used to hold the description of the
variables being parsed and temporaries used in the course of the evaluation of the expression. The
other stack (locals staek, spree, and staekaddr referenced by local staekTop) is used to hold the
operations pending.

The body of ExpHandler consists of a while loop to parse the expression followed by some c1ean
. up code. The while loop is executed as long as two variables or operators do not occur back to

back (with the exception of unary operator following a binary operator). Operators are handled by
the procedure StaekMgr (described below) and variables are handled by the procedure PushST
(described below) with the exception of arrays which are handled by the procedure ArrayElt
(described below). At the end of the while loop all of the operators remaining in the operator
stack are pop'ed off as described in the description of StaekMgr below.

StaekMgr is used to push operators onto the operator stack in accordance with their precedence
(this means that code is generated 'on the fly' for expressions as they are parsed, rather than
waiting until the whole expression has been parsed). When StackMgr is called with a new
operator, all operators of equal or higher precedence are pop'ed from the operator stack and passed
to CodeGen (see Internal Code Generation below) and then the new operator is push 'ed onto the
operator stack. Pop'ed means that the entry in the operator stack pointed to by stackTop is removed and stackTop is
decremented by one. Push'ed means that stackTop is incremented by one and then is used as the location in the
operator Slack to store the new operator.

PushST is used to push a variable's mode onto varStaekO and its address onto varStaekl. This
routine also checks to see if the ALU L register needs to be saved by calling SaveL. SaveL checks
to see if the mode in varStaekO is LREG and if so, it then allocates a register from the free
register pool (by calling NextReg) and generates an internal instruction to save L in that register
(see section 4.5.2 below). NextReg searches the free register pool (pointed to by the static
regStaek) for a positive entry. Once one is found, it remembers the register number for the return
value and negates the value in the table to indicate that it has been allocated. The routine
FreeReg deallocates the register passed to it so that it can be reallocated in the future.

9

CHAPTER 4: Compiler Description

ArrayElt is used to push an array variable onto the expression stack. First it calls PushST with the
array variable as an argument. It then checks to see if there is a subscript. If there is, it calls
ExpHandler recursively to parse the subscript and then calls CodeGen to generate the code to get
the array element

4.5 Internal Code Generation

CodeGen generates internal code for ten types of expressions. These are Assignment, Plus, Minus,
Shifts, And/Or, Exclusive Or, Relations, Relational Negation, Unary Minus, and Array References.
The type of the current expression is detennined by the opcode passed to CodeGen. This opcode
is used as the index to a case statement which detennines the appropriate routine to use to
generate internal code for that opcode. The actual description of these routines is given below, but
first the internal code fonnat and the routines that generate it will be described. It is a good idea
to refer to Appendix
described below can be
[Thacker].

D while
found

reading this section
there. A description

since
of the

examples of most
Alto microcode

of the
can be

microcode
found in

4.5.1. Internal Code Format

The internal code fonnat is designed to represent the information needed to generate Mu source
code. There are four types of internal instructions. The type is specified by the two high order
bits of the first word of the instruction (see Figure 1). Only instructions of type 0 generate actual
Mu instructions. Type 1 instructions generate label declarations for branching. Type 2 instructions
are used for inserting comments about register/variable equivalences in the output. Type 3
instructions are used for fonnauing infonnation. Currently the only fonnatting done is the
insertion of extra carriage returns into the output.

Type 0 instructions can be of four fonns; the first is a label declaration while the other three are
variations of a basic instruction. If the label field (bit 2, bits are numbered from left to right
starting at 0, see figure 1) is true (non-zero) then this is a label instruction. There are two kinds of
label instructions. The first is a textual label which is denoted by ALU function fieldbits 12
through 15 (bits 12 through 15) being zero. If this is the case then the second word of a label
instruction contains a pointer to the BCPL fonnat string that contains this label's name. If the
ALU Function field is non-zero then the second word of the label instruction is a conditional label
description (see Figure 3). The type field (bit 2 through 4) of the conditional label description
specifies the type. The type is used to generate a label of the fonn type#, where type is COND
for 0, IF for 1, and WH for 2. The # specifies that the value in the number field (bits 5 through
15) is to be appended to name for the type field. Thus, if the type field is 1 and the number field
is 7, then the label IF7 would be generated.

If the label field of a type 0 internal instruction is false (zero) then this is a nonnal microcode
instruction as described in figures 1, 2, and 3. For futher infonnation as to the function of the
fields, see the Hardware manual.

4.5.2 Basic Routines

The basic routines come in two flavors. First, there are the routines to generate the actual internal
code and then there are the routines to load variables into the ALU registers Land T.

There are three primative routines to generate the internal instructions. They are Push 0, Push2.
and Push3. All of these routines put one or more words into the internal code list and check for
too much code being generated. They also print the words being put in the instruction list if the
debugging flag is on. PushO does this for one word. Push2 inserts two words and Push3 insertS
three words. These two routines also set the static lastOp to the current value of codeTop (poimer

10

MicroSPL

to last word in instruction list) before inserting the words into the list The static lastOp is used
for code improvements described below.

LoadL and LoadT are used to load the T and L ALU registers from variables. They are both
passed three arguments. The first is the ALU function to be used when the register is loaded, the
second is the mode of the variable, and the third is the address of the variable. Both routines have
five different possible modes. They are constant (CaNST), register on the stack (STACK), local
variable (LOCAL), reference variable (REFVAR) and ALU L register (LREG). CaNST, STACK,
and LOCAL generate the same code for both routines with the exception that LoadL sets the L
field (bit 6, see figure 1) of the first instruction word generated and LoadT sets the T field (bit 7).
The code for CONST generates a three word internal instruction in which the constant field (bit 8
of the first word) is set to true and the address is the value of the constant used in the third word.
LOCAL generates a two word internal instruction in which the register field (bit 9 of the first
word) is set to true and address is used for the register number (bits 10 through 15 of the second
word). STACK generates the same code as LOCAL, except that it also returns the register
specified by the address to the free register pool by calling FreeReg described above,

The REFVAR and LREG code is different for LoadL and £oadT. The REFVAR code for LoadL
checks to see if the last internal instruction generated was a load T register. If it was, then it saves
this last instruction, backs up codeTop to delete the old instruction, and then generates the memory
request for the reference variable. The saved instruction is then inserted after the instruction that
started the memory request This sequence makes better use of the memory fetch delay than the
other code which just startS the memory request and puts in a Nap for the delay. In both cases,
the final instruction generated is to load the L register with the memory value. LoadT for
REFVAR generates the last case described above for LoadL, with the exception that the last
instruction loads the T register instead of the L. The LREG for LoadL just checks to see if the
operation passed in is non-zero. If it is then we want to perform an operation on the L register
and put the result back into the L register, so an instruction to do this is generated. If the
operation is zero, then nothing is done, since it doen't make sense to load the L register with itself.
LoadT for the LREG case, though, is more complicated. First we want to see if the last
instruction that loaded the L register is one that could have loaded the T register. If it is, then the
previous instruction is modified so that it loads the T register. You can see an example of why
this is useful in section 4.5.4 below. If the last instruction cannot load the T register, then an
instruction to load the T register from the L register is generated.

4.5.3 Assignment

The code generated for an assignment depends on the mode of the variable being assigned. There
are three modes which are recognized by the assignment code. They are local variables (LOCAL),
reference variables (REFVAR) and local arrays (LOCARRAY).

The code for LOCAL loads the ALU L register (if it is not already loaded) by calling LoadL. It
then sets the TASK field (bit 2 of the second instruction word) of the last generated instruction
(pointed to by lastOp) so that proper TASKing will occur. Then it generates an internal
instruction to load the local from the L register.

The code for REFV AR generates an instruction to Start a memory request of the address pointed
to by the reference variable. It then generates a TASK instruction and finally stores the top item
of the stack in that memory location.

The code for LOCARRA Y loads the subscript of the array into the ALU T register unless the
subscript is zero or one. It then generates a memory request at the address pointed to by the base
of the array plus the subscript. If the subscript was one, this is done by using the increment
function of the ALU. Then. as in the REFVAR case, a TASK and store instruction is generated.

11

CHAPTER 4: Compiler Description

4.5.4 Plus

The routine to generate code for the Plus operator checks to see if the second operand is one. If it
is, then an instruction to use the increment function of the ALU is generated. If it is not an
increment, then the T register is loaded with the second operand. If the code to load the T
register does not involve an ALU function, then the ALU function of that instruction is set to a
decrement instruction and the add is performed by generating an increment T ALU instruction.
Otherwise, a simple add instruction is generated. The reason for generating the increment T
instruction when possible, is that the T register can be used for the output of this instruction.
Thus, the microcode generated for A(b+c) would be equivalent to:

T +- c-l ;

T+- b+T+l ;

MAR+- A+T ;

4.5.5 Minus

If the second operand is one, then an instruction to use the decrement function of the ALU is
generated. If is not, then the T register is loaded with the second operand and an instruction to
subtract the first operand from the T register is generated. In both cases, the result is left in the L
register.

4.5.6 Shifts

Shift instructions are generated by the routine Shift. This routine requires two arguments, the first
is the type of shift and the second is the mask for that type of shift. The mask is 177400 (octal)
for a left shift and 377 (octal) for a right shift. Shift first allocates a temporary R register (reg) by
calling NextReg. It then checks to see if the shift count is a constant. If it is and it is greater than
15 then the constant 0 is placed Qn the variable stack and reg is freed. Otherwise, if the shift is
more than 7 bits then the operand is rotated 8 bits using the swap bytes instruction, an instruction
to AND it with the mask is generated and the shift count is decreased by 8. The remainder of the
shifts are done by the routine Shift] which is performed once for each shift. Shift] generates
instructions of the following form:

L+- reg, TASK ;

reg+- L LSH 1 ;

Note that the first time Shift] is called the first 'reg' will be the operand to the shift. The variable
stack is then set to indicate that the result is in the temporary reg.

The compiler currently cannot handle shift counts which are not constants. The plan is to call a
microcode subroutine in that case. However, this scheme has not yet been implemented

4.5.7 AND and OR

The logical and arithmetic functions for AND and OR are performed by the routine ConjExp.
This routine requires two arguments. The first is the type of operation (AND or OR) and the
second is the address of where the second operand for this operator started generating code. This
address is saved by the StackMgr described in section 4.4 and is passed as an argument to
CodeGen. The first thing that ConjExp does is to determine if either of the operands is a TEST
(see section 4.5.9 below). If either of them are, then this means that logical interpretation is to be
used for the operator, otherwise it is an arithmetic operation. If it is an arithmetic interpretation,
then the T register is loaded with the second operand and then the L register is loaded using the
operation passed as the first argument If the interpretation is logical, then each of the operands is
checked to see if they are TESTs. If an operand is not a TEST then TestZero (described below) is
called to make it into a TEST. After this is done, all of the instructions following the address

12

MicroSPL

passed as the second argument are shifted down two words in the instruction Jist to make room for
a new label. If the operator is AND, then this label is filled in with the label for the true result
for the first TEST operand from the comparison relation list (this is compRel!(addr2 + 1), see a
description of the comparison relation list below) and the list entry is set to zero. If the operator is
OR, this label is filled in with the false label for the first TEST operand list (this is
compRe/!(addr2 + 2)) and the list entry is set to zero. This causes the second TEST to be
perfonned only if the first one was true for the AND case or was false for the OR case.

TestZero is used to generate a comparison relation for the operand passed to it This is done by
loading the L register with the operand and using the BUS = 0 microcode comparison. After this is
done, two labels are generated and a label declaration is generated. Finally, a NOP instruction is
generated with the false label and a comparison relation Jist entry is made (see section 4.5.9).

4.5.8 Exclusive Or

The exclusive or operation is perfonned by loading the T register with the second operand "and
then loading the L register using the XOR ALU function. Thus, a XOR b would generate code
similiar to:

T.- b ,
L.- a XOR T ;

4.5.9 Relational Operators

CondExp is called to generate internal code for relational operators. This routine requires four
arguments, the first is the type of ALU operation that is to be perfonned on the two operands
before the comparison, the second is the type of comparison to use, the third is the nonnal mode
for the false branch of the ALU comparison and the last is true if this is an unsigned compare.

.	 For example, if the operation was Greater Than (», the arguments would be MINUSTl, LESS,
true and false. MINUSTl means generate an instruction of the fonn L+- a-T-1; and LESS means
use SH<O. Thus for a>b code similar to the following would be generated:

T+- b ;

L+- a-T-1 ;

NOP, SH<O, TASK

!l,2,lF5,IF6 ;

NOP, :IF5 ;

In the above example, control would go to IF5 if a is greater than b, otherwise it would go to IF6.

When CondExp is called, it checks to see if the second operand is a constant that can be
subtracted from the first operand without loading the T register. If it can be, the appropriate
instruction is generated, otherwise the T register is loaded with the second operand and the L
register is loaded by applying the ALU function passed as the first argument to the first operand
and the T register. Then the comparison operation passed as the second argument is used to
generate the comparison instruction (third line in the above example). Two labels are generated
and a label declaration is generated (fourth line above). Finally, a NOP instruction with the label
to the normal mode (third argument) is generated. The static lab Type (used for generating
conditional labels) is checked to see if this relational operation is a conditional expression or an
arithmetic expression (right hand side of an assignment). If it is a conditional expression, then the
true and false branches are entered into the comparison relation Jist (described below). Otherwise.
internal code is generated to load the L register with -1 for the true case and 0 for the false case.

13

CHAPTER 4: Compiler Description

A comparison relation list is used by the compiler to keep track of the true and false labels for
conditional expressions. The first word of the comparison relation list is its size (in words).
Following the size are three word groups (an entry), one for each conditional expression. The first
word of each entry is a pointer to where the code for that comparison begins. The second word is
a conditional label (see section 4.5.1) for the true branch for the conditional and the third word is
a conditional label for the false branch. A zero in either the true or false branch word means no
label is defined for that case.

4.5.10 Relational Negation

If the operand to be negated is on the right hand side of an assignment then the operand is
exclusive or'ed with minus one. Otherwise, the operand is made into a TEST (see TestZero
above) if it is not already one, and the true and false cases for the operand are reversed in the
comparison relation list.

4.5.11 Unary Minus

If the operand is a constant then it is just negated. Otherwise, the L register is saved by calling
SaveL (see section 4.4), the operand is loaded into the T register and then the T register is
subtracted from zero leaving the result in the L register.

4.5.12 Array Reference

The routine to generate code for an array reference checks to see if the subscript is zero or one. If
it is zero, then an instruction to use the base address of the array is generated to start the memory
request. If it is 1, then an instruction to increment the base address is generated to stan the
memory request. Otherwise, the T register is loaded with the subscript and the T register is added
to base address to stan the memory request. Following this, an instruction to save the address in
the SAD register is generated, and finally, the L register is loaded with the result of the memory
request.

4.6 Mu Source Generation

The primary output of Micro-SPL is source level Alto microcode which can be compiled by Mu.
This section describes how this output is generated from the internal code fonnat. Please refer to
Figures 1, 2, and 3 and section 4.5 before reading this section.

The first step in generating the microcode output is to generate code to get the microcode
definitions that are in AltoConsts23.mu and RegDefs. Next the code used to return from the
Micro-SPL routine is generated. Following this, the dispatch table that will be used to reference
each of the Micro-SPL routines on entry to the microcode is generated. This is followed by the
code to load the first, second and third arguments and save a pointer to the other arguments if
there are any. After this, the actual microcode for the routines is generated. This is done by
translating the fields of the internal format into textual Mu instructions (see section 4.5 for a
description of internal format).

4.7 Symbol Table Format

The Micro-SPL symbol table consists of seven tables which are generated by the program
HTable.Run. The symbol table format is that of a hash table. When STManager is called, the
current identifier in the input stream is parsed to form a hash key (this is done by the routine

14

MicroSPL

FindKey). The key is used as an index into the hash table ktahle. A hash table entry can be one
of three possible values. If it is minus one, then that entry is currently unused and Enter is called
to make a new entry. If it is less than minus one, then there was a local variable of the same
name in another routine. This case is treated in the same way as a new entry except that a pointer
to the old entry is saved in the link field (bits 6 through 15, see figure 4) of attrl for this entry. If
the hash table entry is greater than minus one, then this is an old entry and only its address is
returned.

The actual symbol table is made up of five tables. The result of looking up an identifier is the
index into these tables where the information for that identifier is stored. The attributes of the
identifier are stored in the tables attrO and attrl. The left byte (bits 0 through 7) of attrO is used
to store the block level for which that identifier is defined and the right byte (bits 8 through 15)
contains the identifiers type. Figure 4 describes the fields of attrl. The table ptaddr is used to
hold pointers to the procedure table entry for the identifier (this is not currently used). The table
addr is used to hold the identifier's address if it has one. For local variables this address is the
relative offset in the stack frame, for globals, it is the offset in the global table. The table name is
used to hold the index into the table idName (described in FindKey below) where the identifier's
name is stored.

FindKey is the routine that stores the identifier's name in idName and generates a hash key for
that identifier. The key is initially set to the ASCII value of the first character in the identifier's
name. Then as long as there are two letters remaining in the identifier's name, the two letters are
added to the key being generated. The first letter's ASCII code is added to the left byte of the
key, and the second letter's ASCII value is added to the right byte of the key. If there is only one
letter remaining in the identifier's name, the ASCII value is multiplied by 2 and added to the key.
Finally, Find is called to get the actual symbol table entry for that key.

Find is the routine that does the actual hash table lookup for the identifier. The initial hash is
computed by taking the remainder of dividing the key by 997 (997 is the size of the hash table and
is also a prime number). A re-hash offset is also computed by taking the remainder of dividing
the key by 97. The routine then checks the hash table entry for the current hash value. If it is
minus one, then this is a new entry and the current hash value is returned. If it is not minus one,
then the name for that entry is compared against the name of the current identifier. If it matches,
the current hash value is returned. If it does not match, the re-hash offset is added to the current
hash and the hash table entry for the new hash value is tried. Currently there is no check for hash
table overflow because it is larger than the number of entries in the symbol table (see Enter).

Enter is the routine that makes a new symbol table entry. It first increments nextEntry (an index
to the next available entry in the symbol table) and checks to make sure that too many identifiers
have not been declared (the current maximum is 256). Then it sets the hash table entry to that
index (the value before it was incremented). The name table entry is set to the location in idName
where the identifier's name begins, the addr table entry is set to zero, the attrO table entry is set to
udndeclared identifier and current block level, and the attrl table entry is set to zero.

15

(

Chapter 5: BCPL/Microcode Interface

This chapter describes the BCPL code (see [Curry]) generated to link the microcode routines
generated with other BCPL routines. The goal was to make the Micro-SPL routines look as much
as possible like BCPL routines to the person who is using them and at the same time make them
as efficient as possible.

In order to make the Micro·SPL look like BCPL routines it was necessary to load the control
RAM automatically for the user. This is done by the static loadFlag which is initialized to true in
the BCPL interface routine. A test is inserted at the beginning of each dummy
procedure(described below) to test if this variable is true. If it is, then Micro/nit routine (defined
in the BCPL interface code) is called to load and initialize the microcode. This routine sets
loadFlag to false so that the microcode will not be initialized a second time.

For each routine that was defined in the Micro-SPL source, a dummy BCPL routine is generated
in the interface routine. This dummy routine initializes the microcode (as described above) and
generates the calling sequence to execute the microcode for that routine. This calling sequence
consist of a trap instruction (illegal Nova instruction = #70000+routine offset) followed by the
size of the stack frame for that routine. The calling sequence is also permanently changed as a
side effect so that the microcode routine is henceforth called directly instead of going through the
dummy interface routine again. This calling initialization scheme makes it possible for the control
RAM to be loaded and efficient linkages to be set up completely automatically.

16

t

12 15

A L U Func

Word 1 of Instruction

type: 0 normal opcode instruction.
1 label declaration for conditional branching. Word 2 contains a

conditional label, see figure 3.
2 register, variable name equivalence comment. ALU Func is

the register number and word 2 of the instruction contains a
pointer to the variable name.

3 formatting information, currently means insert CR in ouput file.
ALU Func field contains size of this instruction.

label:	 TRUE if there is a label at the beginning of the following instruction.
If ALU Func is zero then word 2 contains a pointer to the label,
otherwise word 2 contains a conditional label, see figure 3.

MD~:	 Load Memory Data from BUS.

Reg~:	 Load Register from ALU output, see figure 2.

MAR:	 Load Memory Address Register from ALU output.

L:	 Load L register from ALU output.

T: Load T register form BUS (or ALU depending on ALU Func).

cf: TRUE if BUS source is a constant, constant in word 3.

rf: TRUE if BUS source is a register, see figure 2.

~MD: TRUE if BUS source is Memory Data.

DISP: TRUE if BUS source is Displacement field of IR.

ALU Func: Arithmatic Logic Unit (ALU) Function.

Figu re 1

17

6 9 10 15

shift:

task:

next:

lab:

fi" :

F 2:

Register
Number:

F 2 Register Number

Word 2 of Normal Instruction

o no shift.

1 left shift (LSH 1).

2 right shift (RSH 1).

3 swap bytes (LCY 8).

TASK.

NEXT address label is in word 3 (or 4 if constant) of instruction.

Label type. If lab is TRUE then NEXT address label is a conditional
label (see figure 3), otherwise it is a pointer to the label.

not currently used.

o no activity. (see hardware manual for description of F2 field)

1 BUS=O.

2 SH<O.

3 SH =0.

4 BUS.

S ALUCY.

10 BUSODD.

other values not currently used.

Register Number for bus source or destination.

Figure 2

18

I'

a 1 2 4 5

fill type numberI.
15

fill :

type:

number:

Conditional Label Internal Format

not cu rrently used

o generate label COND # l where # is the value of number.

1 generate label IF # as above.

2 generate label W H # as above.

all other values not currently used.

number to be appended to end of label being generated.

Figure 3

19

References

[Curry] J. E. Curray. BCPL Reference Manual, Computer Sciences Laboratory, Xerox
Palo Alto Research Center, Palo Alto, CA 94304, 1976.

[Gries] D. Gries, Compiler Construction for Digital Computers, John Wiley & Sons, Inc.,
New York, 1971.

[Thacker] C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs,
"Alto: A Personal Computer", in D. Siewiorek, C. G. Bell, and A. Newell, Computer
Structures: Readings and Examples, second edition, McGraw-Hili, 1979.

20

I·

APPENDIX A - Micro SPL Syntax

<program> :: = {<segment list>} START

<segment list> :: = <segment list> <segment> I<segment>

<segment> :: =<segment type> <id> {<heading>} {<del list>} <strnt list>

<segment type> :: = {ENTRY} <routine type>

<routine type>:: = PROC lINT FUNC

<heading) :: = (<arg del list>)

<arg del list> :: = <arg del list> •<arg del> I<arg del>

<arg del> :: = REF I

<del list> :: =<del list> I

 :: = INT <int list> IINT ARRAY <int array list>

<int list> :: =<int list> •<id> I<id>

<int array list> :: =<int array list> , <int array> I<int array>

<int array> :=<id> ({<constant>)}

<stmt list> :: =<stmt list> <stmt> I<stmt>

<stmt> :: = <assign>

I<if)

I<while>

IEXIT

I<return>

<assign> :: =<var> <assign op> <exp>

<var> :: = <id> {«exp»}

<assign op> :: = := I +

<if) = IF <exp> THEN <stmt list> {ELSE <stmt list>} FI

<while> :: = WHILE <exp> DO <stmt list> 00

<return> :: = RETURN {(<exp>)}

21

APPENDIX A . Micro SPL Syntax

<exp>:: = <exp> <xor op> <equiv> I<equiv>

<equiv> :: = <equiv> <or op> <logical prod> I<logical prod>

<logical prod> :: =<logical prod> <and op> <relation> I<relation>

<relation> :: =<relation> <rei op> <add exp> I<add exp>

<add exp> :: = <add exp> <add op> <mult exp> I<mult exp>

<mult exp> :: = <mult exp> <mult op> <factor> I<factor>

<factor> :: = <unary op> <primary> I<primary>

<primary> :: = <constant> I<var> I(<exp>)

<xor op> :: = XOR I !

<orop> ::= OR I%

<and op>:: = AND I&

<rei op> :: =<> I = I = I< I<= I- >I>I>= I-<

INEIEQILSILEIGRIGEIUGEIUGRIULEIULS

<add op> :: = + I·

<mult op> :: = LSH IRSH

<unary op> :: = - I + I- INOT

<id> :: = <id> <letter> I<id> <digit> I<letter>

<constant> :: = <decimal num> I<octal num>

<decimal num> :: =<decimal num> <digit> I<digit>

<octal num> :: = #<octal digits>

<octal digits> :: =<octal digits> <octal digit> I<octal digit>

<letter> :: = a Ib Ic Idie I fig Ih Ii Ij Ikill m I0 Ip Iq I r Isit lui \'1 w Ix Iy Iz I
A i BICIDIE IFIG IHII IJ IKILIM INI0 IP IQ IRISIT IUIV I\\' I
XIYIZI$

<digit> :: =<octal digit> 18 I9

<octal digit> :: =0 11 I2 I3 14 I5 16 I7

,• f

APPENDIX B - Reserved and Key Words

RESERVED WORDS

ABORT
ARRAY
CALL
CASE
CHAR
DEFINE
DO
ELSE
ESAC
EXIT
FI
FUNC
GET
IF
!NT
00
PROC
REAL
REF
RETURN
START
STRING
THEN
WHILE

KEYWORDS

AND
EQ
ENTRY
EXT

. GE
GR
LE
LS
LSH
NE
NOT
OR
REM
RSH
UGE
UGR
ULE
ULS
XOR

23

,.

APPENDIX C - Sample Micro SPL program

ENTRY INT FUNC Delete(REF INT length, !NT ARRAY heap)
INT new, 12, root, son, cur, last, len, t

len" length

IF len = DTHEN RETURN(D) FI

last .. heap(len)

new" heap(l)

12 .. (len-I) RSH I

length .. len - 1

root .. 1

son" 2

WHILE root <=12 DO

cur .. heap(son)

t .. heap(son + 1)

IF t <cur THEN

cur .. t
son" son + 1

FI

IF cur <=last THEN

heap(root) .. cur

root .. son

son" root LSH 1

ELSE

EXIT

FI

OD

heap(root) .. last

heap(len) .. #77777

RETURN(new)

ENTRY PROC Insert(REF INT length, INT ARRAY heap, INT new)
INT 12, cur, t

cur .. length + 1

length .. cur

12" curRSH I

t .. heap(l2)

WHILE new <t DO

heap(cur) .. t

cur .. 12

12" cur RSH 1

t .. heap(l2)

OD
heap(cur) .. new

RETURN

START

24

,.

APPENDIX D - Microcode Generated for Sample Program

, 1O-JUN-79 17:21:35

AltoConsts23.mu;

#regdefs.;

!20,1,START;

!37,l,TRAPl ;

ret: L+- AC3+1, TASK;

START: PC+- L ; get return address

SWMODE;

NOP, :START;

!37,40,MicroInlt,
Delete,
Insert ;

TRAPl: T+- 3;
MAR+- L+- AC2+T;
T+- M-l;
L+- MD+ T, T+- MD;
SAD +- L. L+- T, TASK; SAD now contains address of 2nd arg

R44+- L ;

L+- ACO;

R42+- L;

L+- ACl:

R43+- L;

SINK +- DISP, TASK, BUS;

IR +- 0, :MicroInit ;

.MicroInit:
L+- ACO, TASK;
STATICS+- L;
L+- AC3+1, TASK, :START;

; register R42 is used for length

: register R43 is used for heap

; register R36 is used for new

: register R35 is used for 12

: register R17 is used for root

: register R16 is used for son

: register R15 is used for cur

: register R14 is used for last

: register XREG is used for len

: register PC is used for t

Delete: MAR+- R42 ;

NOP;

25

,
•

APPENDIX D· Microcode for Sample Program

L'" MD, TASK;

XREG ... L;

L... XREG, BUS=O, TASK;

!l,2,IFl,IF2 ;

Nap, :IFl;

IF2: L... 0, TASK;
ACO'" L, ;ret;

IFl: T'" XREG;
MAR L'" R43+T;
SAD L;
L... MD, TASK;
Rl4 ... L;

MAR'" L... R43+l;

SAD" L;

L'" MD, TASK;

R36" L ;

L... XREG-l, TASK;

ACO'" L RSH l;

L... ACO, TASK;

R35'" L;

L" XREG-l ;

MAR ... R42;

Nap, TASK;

MD"M;

L" ONE, TASK:

R17'" L;

L... 2, TASK;

Rl6'" L;

WHl: T.. R35;
L'" R17-T-l;
Nap, SH<O, TASK;

!l,2,WH2,WH3 ;

Nap, :WH2;

WH3: T.. Rl6;
MAR+- L" R43+T:
SAD+- L:
L+- MD. TASK;
Rl5" L ;

T.. Rl6+l;

MAR+- L+- R43+T;

SAD .. L;

26

Micro SPL

L+- MD, TASK;
PC+- L;

T+- R15 ;

L+- PC-T;

NOP, SH<O, TASK;

!l,2,IF3,IF4 ;

NOP, :IF3;

IF4: L+- PC, TASK;
R15+- L;

L+- R16+ 1, TASK;
R16+- L ;

IF3: T+- R14 ;
L+- R15-T-1;
NOP, SH<O, TASK;

!l,2,IF5,IF6 ;

NOP, :IF5;

IF6: T+- R17 ;
MAR +- R43+ T;
NOP, TASK;
MD+- R15 ;

L+- R16, TASK;
R17+-L;

L+- ACO, TASK;

ACO+- L LSH 1 ;

L+- ACO, TASK;

R16+- L, :IF7 ;

IF5: NOP, :WH2 ;

IF7: NOP, :WH1 ;

WH2: T+- R17 ;
MAR+- R43+T;
NOP, TASK;
MD+- R14;

T+- XREG;

MAR+- R43+ T;

NOP, TASK;

MD+- 77777:

L+- R36, TASK;

ACO+- L, :ret ;

; register R42 is used for length

27

APPEi':DIX D· Microcode for Sample Program

; register R43 is used for heap

; register R44 is used for new

; register R36 is used for 12

; register R35 is used for cur

; register R17 is used for t

Insert: MAR'" R42 ;
NOP;
L... MO+ 1, TASK;
R35'" L;

MAR'" R42;

NOP, TASK;

MO'" R35;

L'" R16, TASK;

R16'" LRSH 1;

L... R16, TASK;

R36'" L;

T'" R36;

MAR ... L'" R43+ T;

SAD'" L;

L'" MO, TASK;

R17'" L;

WH4: T'" R17;
L'" R44-T;
NOP, SH<O, TASK;

!l,2,WH5,WH6 ;

NOP, :WH5;

WH6: T'" R35;
MAR ... R43+T;
NOP, TASK;
MO'" R17;

L'" R36, TASK;

R35'" L;

L ... R16, TASK;

R16'" L RSH 1 :

L ... R16, TASK;

R36'" L;

T ... R36;

MAR'" L'" R43+ T;

SAD'" L;

L'" MD, TASK;

R17'" L, :WH4;

28

MicroSPL

WH5: T R35;
MAR R43+T;
NOP, TASK;
MO ... R44, :ret ;

29

APPENDIX E - BCPL Interface Generated for Sample Program

external RamImage
external LoadRam

static loadFlag = true

external Delete
external Insert

let Delete(arg1, arg2) = valof
[
ifloadFlag then MicroInitO

Delete = table [#70001; 10 1

resultis Delete(arg1, arg2)
]

and Insert(arg1, arg2, arg3) be
[
ifloadFlag then MicroInitO

Insert = table [#70002; 6]

Insert(arg1, arg2, arg3)
]

and MicroInitO be
[
LoadRam(RamImage)

loadFlag = false

let t = table [0;]

let Init = table [# 70000]

Init(t)

]

30

,

APPENDIX F - BCPL Comparison Program

external Insert!
external Delete!

let Delete!(length,heap) = "alof
[
let len =@length

if len eq 0 then resultis 0

let last = heap!1en

let new = heap! 1

@length = len - 1

let 12 =(len-I) rshift 1

let root = 1

let son = 2

while root Ie 12 do

[

let cur = heap!son

let t = heap!(son+ 1)

if t Is cur then

[

cur = t
son = son + 1

]

test cur Ie last

ifso

[
heap!root =cur

root =son

son = root lshift 1

]
ifnot

break

]
heap!root =last

heap!1en = #77777

resultis new
]

31

,
APPENDIX F - BCPL Comparison Program

and Insert/(1ength,heap,new) be
[

let cur = @length + 1
@length = cur
let 12 =cur rshift 1
let t =heap!l2
while new Is t do
[
heap!cur = t
cur =12
12 =cur rshift 1
t =heap!l2

1
heap!cur = new

1

32

