
For Xerox InH:rnal Use Only -- April 29, 1978

ALTO SUBSYSTEMS

Compiled on: April 29, 1978

Xerox Palo Alto I~esearch Center
3333 Coyote Hill Road

Palo Alto, California 94304

Alto Subsystems

For Xerox Internal ljse Only -- April 29, 1978

April 29, 1978

Alto Subsystems

2

This document is a directory of major Alto BCPL subsystems. Mesa subsystems are
collected together and documented elsewhere.

Binary versions of these programs are available on the <ALTO) directory. If the
documentation for the subsystem is short, it is included in this file directly. If it is
somewhat longer, the docllmen tation is stored separately and the en try is marked wi th a *.
The documentation for these objects is available on <ALTODOCS) in .TTY files. Programs
that have quite bulky documentation are denoted by **. These programs have separate
documentation on <ALTODOCS), usually CLS (AL TODOCS)name.EARS.

If you would like a full listing of documentation for all but the ** programs give the
command" "EARS <ALTODOCS)SUBSYSTEMS.EARS".

The person last known to be responsible for each subsystem is also given.

* A NSRV: a prognm that permits a Nova to be used from an Alto as a "remote batch"
computer. (Bruce Parsley)

*ASM: an assembler for Alto machine language, producing object files compatible with
the: 8c:pl loader. (Ed McCreight)

**BCPL: a compiler fot' the Bcpl language. (Dan Swinehart)

**BLOR: a loader for object files produced by Bcpl and Asm. It is documented in the
Bcpl man ua!. (Dan Swinehart)

**BRAVO: a display editor. (Charles Simonyi)

*BUILDBOOT: a program for constructing Alto boot files. (Ed McCreight)

*CHAT: establishes PUP Telnet connections between a pair of cooperating parties.
(Bob Sproull)

CLEANDIR: does a garbage collection on a file directory (not on the disk space,
though). Call it with
) CLt,AN 01 R directory-name n
to clean up the specified directory. The system directory is called SYSDIR. The
second parameter, fl, tells how much extra space to append to the directory. The
reason for it is that extending the directory in this way \vill tend to get the pages
allocated to consecutive disk sectors, so that subsequen t lookups wi II go faster. If
this program Jails," it will leave your disk unusable. To guard against lhis, you can
copy SYSOIR to a dummy file and rlln CLEANOIR on that first, then run it again
on SYSOIR. DO NOT try to copy the cleaned-up dummy file back to SYSDIR.
(Butler Lampson)

*COPYDISK: is run on an Alto with a dual disk drive to copy an enti re disk to a new
disk; it may also be" fun on a stand3rd Alto to copy entire disks over the Ethernet.
All old data on the disk to which you copy is destroyed. (David Boggs)

*CR EATEFILE: creates a file of a given size, allocating consecutively if possible.
(Peter Deu tsch)

*DOS: The Descriptive Directory System is a front end for the Alto file system,
providing a relational data base management system and facilities for displaying
1I1formatlon related to Alto files. (Peter Deut.sch)

Alto Subsystems

For Xerox Internal Use Only -- April 29. 1978

April 29. 1978 3

*OMT.BOOT: Alto memory diagnostic program and related statisti:s-gathering
programs. (D, vid Boggs)

*OPRINT: Prints disk files on the Diablo Printer. (Eel Taft)

**ORA W: An illustrator. (Patrick BeaudeJaire)

EMPRESS: Converts ordinary text files to Press files. and performs simple formatting
operations. (David Boggs)

*EXECUTIVE: The Alto command processor. (Ed McCreight)

The followi ng commands are a part of the EXEC:
BOOTFROM: allows you to initiate a software boot of your Alto from an
arbitrary file on the disk.
BOOTK EYS: tells you what keys to hold down to boot from a file.
COPY: copies from one file to another.
DIAGNOSE: invokes the memory diagnostic, OMT.
DELETE: deletes files.
DlJrvlP: dumps a set of files onto a single "dump" file which can be
manipulated as a unit. The files can be recovered later by a LOAD. There is
al:)o a Maxc subsystem called DUMP-·LOAD which will do DUMPs and LOADs
on Maxc.
FI LESTAT: displays attributes of files Oength. creation date, etc.). The files
may be specified by name or serial number.
INSTALL: installs Sys.Boot, or the file specified. Install allows you to erase an
o:d disk and create a new one. Refer to the OpE-rating System manual for
documentation of Install. .
LOAD: reads a file prodLced by DUMP and extracts the embedded files.
LOGIN: stores user nJme and password in the resident system to be provided
to subsystems which deal with access-controlled resources.
QUIT: terminates the operating system.
RELEASE: displays the verSIOn number and date of the currently running
operating system.
RENAME: renames files.
R ESUM E: restarts a resumable file. Call it with

)RESUfvIE file

If file is omitted. SWATEE is assumed.
SETIIME: sets the date and time.
STANDARDRAM: loads the Ram with a standard package. (See documentation
for RAMLOAD).
TYPE: types text files.

*FIND: a program to search text files for user-sup'plied strings. This program
originated as a demonstration of the power of compIlIng microcode from the given
problem. (Peter Deutsch)

*FTP: a PUR-based File Transfer Program for moving files to and from an Alto file
system. (David Boggs)

*GEARS, FEARS, DEFAUL T.ED: sends files over the Ethernet to be printed on
EARS. (David Boggs)

*LISTSYMS: converts the .Syms file produced by BLDR into human readable form.
(Peter Deutsch)

*MAILCHECK: A program that will check for waiting MAXC mail. (Larry tv1:tsinter)

Alto Subsystems

For Xef(» Internal Use Only -- April 29, 1978

April 29, 1978

**MARKUP: A document illustrator. (William Newman)

4

MICRO: The microcode assembler for Maxc, Dorado, DO, and other machilH!s. Basic
documentation is available only in the CSL archives. It is called "Maxc document
9.2". Recent changes are documented in (AltoDocs)Micro.tty. (Peter Deutsch)

MOVETOK EYS: Moves page 1. of the named file to the appropriate page of the disk
so that depressing the key-combination and the boot button will boot-load the file.
\Vhatever was on that page before is moved to the original page 1 of the file; i.e.
t} e two pages are swappe.?, and the necessary pointers ,arc f.i~~d lip. The legal keys
are 5,4,6,7,D,E.,K,P,U,V,O, ,I, and· \. If you wal1t to tJpe I to MoveToKeys type
"?" instead.
Example:;:
MOVETOKEYS DUMPER DU is a typical call
rvloveToK eys 1300T 5'16 allows one to invoke BOOT by holding down 5,1, and 6.
(Jim Morris)

::<MU: The microcode assembler for the Alto. (Chuck Thacker)

*NETEXEC: This subsystem, which is bootstrapJ?ed over the Ethernet, provides a
convenient interface to the other systems avaJlable from "boot servers" on the
net",ork. (David Boggs) .

*OEDIT: allows you to look at and modify arbitrary files in octal. (Butler Lampson)

*ORAM: A scheme for overhying several· segments of microcode in the Alto RAM.
(Peter Deutsch)

*PACKMU/RPRATvl: These two subsystems, in conjunction with the subroutine
ReadPRAlv1 or LoadRam, allow programs llsing the RAM to check the con:;tant
memory and load the RAM as a part of their inItialization. (Peter Deutsch)

*PEEKP'UP: a Pup software debugging aid. (Ed Taft)

**PREPRESS: A program for manipulating font files. (Bob Sproull)

*PRESSEDIT: combines Press files, converts Ears nles into Press format, or adds extra
fonts to a Press file. (William Newman)

*PRINT: can be lIsed to print any Press file on Ears via Maxc. That is its only use.
EmPress should be lIsed to send Press files to Press printers. (Vv'illiam Newman)

PROOFREADER: Proofreader for English text. (Ed McCreight)

PUT: A program for listing, copying, and deleting files. It is caJ?able of dealing with
both drives of a two-drive Alto. The program offers ht'lp on Its lise. (Keith Knox
-- 'NRC)

*QED: a teletype-oriented editor.

*RAl'vlLOAD: a propram for loading the Alto RAM from the files produced by the
microcode assembler, MU. (Dave Boggs)

READPRESS: reads Press files and displays a text-listing of the entity commands, DL
strings, etc. Command line is of the form: "ReadPress Test.Press". (Joe Maleson)

RENAME: renames a file quickly. Call it by typing:
)({ename oldFileNamc newFileName (David Boggs)

*SCAVENGER: a subsystem for checking and correcting disk packs. (Jim Morris)

Alto Subsystems

For Xerox Internal Use Only -- April 29, 1978

April 29, 1978 5

**SIL, Analyze, Gobble, G PR, PPR, Etc.:A system for automating logic design,
incIuddng an illustrator specialized to logic drawings. (Chuck Thacker)

SORT: a very small subsystem which will sort files containing less than 1000 entries,
each terminated by a carriage return. Call it with

>SORT <sortfilein> <sortfileout>

If <sortfileout> is omitted, the sorted data will be written back to <sortfilein>.
(Barbara H lint)

*SW AT: a d,ebugger for Bcpl programs. (Jim lvtorris)

SYS.BOOT: is the name of the boot file for the operating system on the Alto disk.
(David Boggs)

*Trident disk software: TFU, TRIEX and the TFS software packagl~. The Bcpl
software packaRe and utility programs for driving Trident disks interfaced to the
Alto. (Ed Taft) .

*VIEWDATA: a subsystem that displays 2D projections of 3D data on the Alto screen.
(Dick Lyon)

Alto SlIbsystem~

For Xerox Internal Use Only -- April 29, 1978

April 29! 1978

MISCELLANEOUS PROCEDURES AND INFORMATION
FOR PARe ALTO USERS

6

*NEWDISK: a procedure for creating a virgin disk and getting fresh, up-to-date
software from MAXC. (Bob Sproull)

*PARCAL TOS: a document containing miscdlaneolls information for Alto users and
maintainers at PARCo

ANSRV

For Xerox Internal Use Only -- April 29, 1978

March 4, 1977

ANSRV, NNSRV -- Nova Server

7

The purpose of this "system" is to do something like remote job entry to a Nova. There are
two subsystems involved in this system: NNSRV.sv running on a Nova and ANSRV.run
running on an Alto. The two subsystems communicate with each other via FrP over the
Ethernet. ANSRV.run may be found in the <Alto> directory and NNSRV.sv in the
<ROOS> directory.

First a user must get NNSRV.sv running on some Nova that is running under the ROOS 03
operating system and that is connected to the Ethernet. This may be done in the standard
way, i.e., by typing "NNSRV" to the Nova Command Line Interpreter (CLI). NNSRV
doesn't use any global or local switches nor take any parameters. N NSRV will start FTP
(presumably as a server only) and wait for FTP to be "killed" (aborted). Someday there
may be a Nova server on nll~ Ethernet dedicated to funning NNSRV, but until then users
must start one up themselves.

In order to use the Nova server, a user should type the following command line to the Alto
Executive: ANSRV[/s <Nova-hast-name>] <Nova-command-line>.

The "ANSRV" invokes the ANSRV.run subsystem.

A NSR V accepts one global switch IS. If that switch is not present, then it is asslimed that
the Nova host is named "NovaServer". If the IS is present, then the next token of the Alto
command line (indicated by "< Nova-host-name>" above) is taken to be a host name. See
the FTP manual for a discussion of host names. It is supposed to be the Ethernet name of
the Nova running NNSRV.

The rest of the Alto command line (indicated by u<Nova-command-line>" above) is taken
as a Nova command line. In general it is just the same sequence of characters you would
type to the Nova CLI, but see the documentation for t.he Alto subsys~em AROOS for det.ails
because there are some restrictions and inconsistencies with respect to normal Nova
command lines.

A NSR V will run FrP to send two files to tIle Nova host/server. One of those files
becomes COM.Cf\'1 on the Nova and contains a version of what the user typed for < Nova
command-line>. Ignore the other file. The Alto FTP also tells the Nova FT'P to "kill"
itself. Then the Alto FrP finishes normally and the user will be talking to the Alto
Executive again.

When the Nova FTP is "killed", NNSRV will get control. NNSRV creates any necessary
files and makes some entries on a log that it maIntains on the file $LPT (perhaps the paper
of an on-line printer). NNSRV then fUllS the appropriate .SV file. When that .SV fIle is
finished, NNSRV· gets control again, makes another entry in the log, and starts up FfP
again, ready for another go-round.

There are several things that should be noted about this procedure. NNSRV must be
running on some Nova when ANSRV is invoked, otherwise the Alto FTP will eventually
give lip trying to ,establish contact. All the requisite files must be present on the Nova
when A NSRV is invoked, e.g., the .SV file and any input~iles it needs. But note that FTP
is running on the server Nova most of the time, so a user Illay use t.he Alto FTP to transfer
any necessary files to the Nova before invoking ANSRV. Note that no "answers" are
automatically sent back to the Alto. The way to take care of this is to have your Nova .SV
file put its results in a Nova file. Then try to run the Alto IFTP to retrieve that file (copy
it to the Alto). If lhe Alto FTP can't establish a connection with the Nova FTP, then YOll
know that your .SV program (or somebody else's) is still running and you can try again
later.

ANSRV

For Xerox Internal Use Only -- April 29, 1978

March 4, 1977 8

Now it's time for some examples. Weill assume that NNSRV has been started on a Nova
named foo. We have a Fortran source code file called FProgJr on our A.lto and we want to
compile, load, and finally run it. We will give the Alto file fp~~og.in as input to FPROG.SV
and tell it to produce the file fQrog.·:>t as output. Indented lines below arc command lines
that might be typed to the Alto Executive.

ftp faa store/c fprogJr
ansrv/s faa fort fprogJr

Now we'll work on something else on our Alto for awhile and then do:

ftp faa retrieve/c fprog.er
type fprog.er

We'll repeat the above until the file fprog.er comes back with no new compilation errors. If
there are some errors, then the source code file muse be edited and the updated fprogJr sent
back to the Nova. Now we'll load FProg.

ansrv/s faa rldr fprog fort.Ib

And wait for the results:

ftp faa retrieve/c fprog.er
type fprog.er

And finally run fprog after it has loaded correctly:

ftp faa store/c fprog.in
ansrv/s foo fprog fprog.in/i fprag.otlo

Where fprog.in is the input file to fprog and the output file named fprog.ot is to be created
by fprog.sv. Now we'll wait awhile (or occupy ourselves doing something else) and finally
examine the results:

ftp faa retrieve/c fprag.ot
bravo/n fprog.ot

ASM

For Xerox Internal Use Only -- April 29, 1978

2 October 1974

ASM

9

This assembler, written in BCPL, runs on the Alto and produces BCPL-compatible
relocatable binary output files, suitable for input to BLDR, the BCPL loader. The source
language of this assembler is patterned after that of the Data General NOVA DOS assembler
(see document 093-000017-02). Addi tions, deletions, and i ncompati bi I i ties are described
below.

1. Symbols

Symbols may be up to 130 characters in length, and every character of a symbol mllst be
USEd to jdE~ntify it. By default upper- and lower-case characters are different, and two
character strings represent th.~ ~ame symbol o;-dy if the same letters and cases are llsed in
both. However, the III switch callses all lower-case letters in symbols to be changed to
upper case (even in externaOl symbols). Thus if you want an assembly-language program to
link to symbols contain1n& lower-case letters, you must either default lower-case conversion
in ASM or map all symbols to upper case in BLDR llsing its IU switch.

Strings follow BCPL conventions. They may not extend from one line to the next.

3. Omitted Pseudo-operations

The following tnve been omitted: .TXTO, .TXTE, .TXTF, .XPNG, .IFE, .IFN, .ENDC, and
.EOT. No f10eting point input format or operators are supported.

4. Assembly Regions

This assembler can asserilble into three regions: two static regions (one in page 0) and one
code region. The directives .NREL, .SREL, ancl .ZREL caw;e the assembler to begin placing
code in the Cf Ide region, the non-page-O static region, and the page 0 static region,
respectively. The SePL loader causes the restrictions that the code area may not contain
pointers into the code area, that the first word of the code area may not pomt to a static
area, and that no static area may contain pointen to a static area. The only external symbols
are statics.

A rithmetic is not allowed OTi sym bois denali no statics, and the symbol "." is undefined in
.SREL and .ZREL. Any absolute or code-rehltive expression (including such goodies as
.JMP@ 62) may be placed in .SREL ::>f .ZREL. Any absolute expression, static refer':!l1cc, or
inst.ruction referEnce to .ZREL may appear in .NREL.

ASM

5. Text

For Xerox Internal Use Only .-- April 29, 1978

2 October 1974 10

There are two text modes, .TXTM Band .TXTM L. Mode B causes the gene! ation of
stal'dard llCPL strings. Mode L causes the generation of long strings, a full word length
followed by the string characters, two per word.

6 .. GET

The directive .GET "FOO" calise::; the file FOO to be shoehorned into the sOllrce text at that
poil t. .G ET can be used up to two levels deep. Its primary utility is likely to be for lists
(Ii· externals atld for canned entry and exit sequences.

1- .G~TNOLIST

Works exactly like .GET, except that the "gotten" file is no': included in the listing, nor are
any files which it .GET's. .

_~ .. BEXr

In adc ition to .EXTN and .EXTD and .ENT, I have added two directives .BEXT and
.!3EXTZ which work exactly as BCPL's External works for non--page-O and page, 0 statics,
respeclively. This should increase the utility of the .GET feature above.

2. Expressions

Parentheses (but not precedence) have been added. Constructs like "I(and $*N and 5 and
17. ane 3310 are all primaries. Most BCPL and NOVA DOS assemb1er operators are
allc)wed. The constru:::t IBIO means 40(octal) , following the NOVA assembler's convention
·:'ather tha.) BCPL's. I am willing to be convltlced on this point.

This has been hft out:. DOA, lOP, .DIO, .DIOA .. DIAC, etc., won't work.

11. Predefined Symbols

All predefined symtols and directivE'S and opcodes are defined both in all upper-case and
all lower-cme letters. For example, both LDA and Ida are predefined, but Ld.I is not. The
following l\llo"specific opcode~; are prc\oaded in the symbol table:

JSRII JSR IS CYCLE CONVEI~T DIR EIR BRf
ReLK SIO BL T BLKS SIT RDRM 'WTRM

ASM

For Xerox Internal Use Only -- April 29, 1978

2 October 1974

JMPRM MUL DIY

11

In addition, the following pile of skips which test various conditions has been added,
courtesy of Dan Ingalls. Only the names have been changed to confuse the innocent:

Two Qperands:
SZE SZ SNZ SP SOZ SN SEQ
SE SNE SLT SLE SOT SOE SOTU
SLEU SGEU SL TU SODD SKEVEN SNIL SNNIL
MKZERO MKONE l"v1KNIL MKMINUSONE

No Operands:
NOP SKIP

H should be explained ::hat U stands for unsigned, and that Dan thinks of NIL as -1.

12. Operation

If the source file is caB cd FOO.SR, type

ASM FOO.SR

If you just type ASM FOO it will first try to use Faa ancl, failing in that, try FOO.SR.
The assem bIer wi II usually wan t to construct several files, which it wi II do by substi tuting
variclIs extensions on FOO unless you specify otherwise. There are a lot of switches which
apply to ASM:
IL Construct a listing file
IS Include the symbols defined by the Llser, for what they're worth
I A Include all symbols, even the predefined ones
IR Include a printout of the .BR file
IN Don't make a .ilR Lie
IE Make an .ER fill! which is a copy of the error messages

sent to the terminal .
10 Print debugging messages (as errors, in fact)
IP Pause after printing each error message (continue with CR)
/U Map all lower-case letters in symbols to upper-case

There are also a lot of switches which apply to file names, and
use this name instead of the one it was about to invent:
IL Names the listing file
IE Names the error file
IS Names the source file (also no switches)
IT Names the temporarY file .
IB Names the rel.ocatabfe binary file

which tell the assembler to

Boot Files

For Xerox Internal Use Only -- April 29, 1978

August 7, 1976

Alto Boot Files: Formats and Construction

12

The proce5S of "booting" the Alto is one of setting some or all of the Alto's state either by
reading a file from the disk or by accepting packets from the Ethernet. This document
aUempts to explain the various ways that state is restored, and the formats of "boot files"
built by various programs.

There ar,;: four ba~iic steps in "booting" the Alto: (1) the tmks in the microprocessor are
res;·t; (2) a 256-word "boot loader" is loaded into main memory and started; (3) the boot
J.::>ader loads a portion of Alto main memory from a "boot file" and finishes by transferin~
to a known place; (4) the wier's program loaded by the third step can restore even more at
the Alto's state .

. 1. Booting

"Booting" is accomDlished either by pushing the "boot button" located on the rear of the
keyboard cr by e'xecuti ng the SIO hstruction (see Alto Hardware Tvlanual). Unless
overriddel by the Reset Mode Register, the emulator task is started in a standard boot
program. This program reads locatIon #177034, a word whose contents can be altered by
pushing various keys on the keyboard. If the <bs> key is depressed during booting, the
machinl~ state will be restored from the Ethernet; otherwise, the state is restored from the
disk.

\Vben booting from the disk,lhe I~eyboard word is interpreted as. a disk address where a
"disk bact loader" is located. If no keys are depressed, disk address 0 is generated, which is
the normal resting place of the "disk boot loader" for the operating system. The emulator
reads a single 256-word disk record into memory locations 1, 2, ... #400; the 8-word disk
label for this page is placed in #402, #403, ... #411. When tile disk tra.nsfer is complete,
control is transferred to location 1 in the loader. The boot loader uses the saved label to
point to the remainder of a "boot file" which is read into main memory and started. The
types of "e isk boot loaders" and "boot files" are discussed below.

When boo~ing from the Ethernet, the microcode waits until a "breath of life" pelcket arrives,
containing a 256-word "Ethernet beat loader" which is read into locations 1 - 11400 and
executed by Iransferring LI location 3. It is up to this loader to establish communications
with a party willing to deliver the remainder of the state needed.

2. Boot File Formats and Boot Loaders

There are two basic kinds of boot files, and a variant:

B-File: Buill by the BuildBoot program; loader is DiskBoot.

S-File: Built by the OutLd subroutine; "s" loader.

SO-File: Variant of S-File built by the SaveState subroutine.

A B-File can be distinguished from an S-File or SO-File because B-Files have a a in their
second data word.

Boot Files

B-Files

For Xerox Internal Use Only -- April 29, 1978

August 7, 1976 13

B-Files ("BuildBoot" files) are the siml)le:;t sort of boot file. The booting process itself does
not restore tile entire state of the mac line; page 1 (addresses #400 to #777) is not restored;
no RAM or R -register state is restored except for the program counter.

A boot loader resides in the first (256-word) data page of a B-File. It is this page that is
read in by the booting process. The file is formatted as follows:

File page 1
File page 2
File page 3
File page 4

File page n

=>
=>
=>
=>

Disk Boot loader
Image of memory, page 0 fUO-#377)
Image of memory page 2 #1000-#1377)
Image of memory page 3 #1400-#1777)

Image of memory page n-1

The file can be of any length, except that 11 must not exceed 254. After reading the entire
file, control is transferred to the restored state by doing JMP@ O.

S-Files

S-Files ("Swat" files) are a somewhat complicated construction that permits more of the
Alto state to be restored: the interrupt system, active display, and so forth are all restored.
In order to achieve this, the restored state must contain a copy of the OutLd subroutine that
is res'lonsible for the final stage of the restore; when the state is fully restored, this
subroutine simply returns to its caller. This full state save and restore was originally
desi[ned for the Swat debug!~er. (Not.e: no RAM or R -register state except for the PC and
accumulators is restored by this kind of boot.)

A boot loader resides in the first (256-word) data page of an S-File. This 1S the page read
by the booting process. The file looks like:

File page 1 =>
File page 2 =)
File page 3 =>
File page 253 =)
File page 254 =>
File page 255 =>

"s" loader
Image of memory page 2 (#1000-#1377)
Image of memory page 3 (#1400-#1777)

Image of memory page 253 (#176400-#176777)
Image of memory page J (#400-#777)
Image of memory page 0 (#0-#377)

The S-File must contain at least 255 data parO'es; additional pages are ignored by the booting
process, and can be used to save additiona state. \Vhen the restore is finished, control
returns to the caller of Outld (see Alto Operating System Manual).

SO-Files

SI)-Files are a minor variant of S-Files that can be lIsed 10 restore the Alto state in 2
cliffen:nt ways. The variation is simply that location 0 of the restored memory image (Le.,
word 0 of file data page 255) contains an "alternate starting address." The file can be loaded
by (1) using it as an S-File, and execllting the loader saved in its first file data page, or (2)
by a loading process that loads all memory but page 1 (file page 254) and does a JMP@ O.
The operating system boot file, Sys.Boot, is an SO-File.

The SO-File is designed to permit Etherrlet booting from states conveniently saved by
OutLd.

Disk Boot loader (B- Files)

B)ot Files

For Xerox Internal Use Only -- April 29, 1978

August 7, 1976 14

The DiskBoot loader is commonly placed as the first data page in B-Files. Its source is
DiskBoot.Asm (in EiuildBoot.Dm); BuildBoot will normally included this loader on the front
of the 13-Files it constructes. NOTE: the file U[)iskBoot.Run" is not a literal copy of the
256 words that go on the front of the file, but the result of applying Bldr to the relocatable
file generated by assembling DiskBoot.Asm.

S loader (S- Files and SO-Files)

This loader is physically contained within the OutLd subroutine. OutLd simply copies the
loader onto the first data p:tge of the file on which it saves state. The sources for this
loader are stored \\, ith Operating System sources.

EtherNet loader ("Breath Of Life")

The "breath of life" loader, which is periodically broadcast by gateways, is loaded into
locations 1-#400 \1'hen the Alto is booted with the <bs> key pressed. The standard form of
this loader reads location #177035 (a keyboard word), and transmits "MayDay" packets
containing the 16-bil result. Some server on the network will interpret the 16-bit argument
as a request for a specific program. The server will open an EFfP connection with the Alto
which sent the MayDay. It transm its data pages in lhe same order as they are recorded in
B-Files (including the fint data page, even tholl!~h it contains a disk-oriented loader).
\Vhen the connection is closed, the loader does JM p@ O.

By convention, Ihe 16-bit argument #177777 is never answered by a server. This
convention is used by programs which have specifically started a "breath of life" loader and
are expecting an EFTP connection from some specific party.

(More information on Ethernet booting can be found in Ethernet protocols documentation.)

3. Constructing B-Files: BuildBoot

Tht.· program BUILDBOOT.Run will construct files for direct booting into the Alto. The
program copies its input file into its output file according to directives in the command line
and im the in HIt files themselves. Two kinds of input files are supported at the moment.
One is the segment file, which contains a block of words to be loaded into contiguous
addresses. The other is the executable file, which is what Bldr Qroduces on the Alto (see
Alto Operating SJ'stem Reference Manual for details). If several files 1;1 the command line
specify the contents of the same memory location, the last one will win. In addition to the
data already in the output file, the program maintains three slate variables between items in
the command line. One is the location counter which specifies the address where the next
segment file (if any) will be placed. Another is the address where the loaded image is to
begin Execution. Th1S defaults to the starting address of the last executable file in the
command line. The. third h; the address (it any) where the layout vector of the next
executable file is to be loaded. If this address is missing, the layout vector will not be
loaded.

I-Iere are the swi tches:

IE This is an executable file (also no switches)
/S This is a segment file
IN Reset the location counter to this octal number
10 Th is is tl" e output fi Ie
IG Th is octa I n lim ber speci fies where execution begi ns
113 This executable file contains a boot loader in its code

area. If omitted, defaults to "DiskBoot.Run"
IL Write load map on this file
IV The layoll t vector of the next·

Boot Files

F(Jr Xerox Internal Use Only -- April 29, 1978

August 7, 1976

executable file will be loaded in a confguous
block starling at the address specified by this
octal number

If we wanted to bootify the Nova .SY file PROM.SY, we might say

I3UILDBOOT PROM.BOOTlO PROM.BOOTLIST/L 20/N IOOO/Gt
PROM.SV/S

15

Similarly, if we had the diagnostic Y AMT.Run as an executable file (including any runtime
support it might neecl), W(could simply say

BUILDBOOT YAMT.BOOT/O YAMT.BOOTLIST/L YAMT.Run/E

The disk boot loader DiskBoot.Run is also includl~d in the file BuildBoot.Dm, and is
required by BuildBoot un es:;, another boot loader file is specified by the IB switch.

4. Constructing S-Files: OutLd

S-Files are constructej by the QutLd subroutine, which is documented in the Alto Operating
~~,ystem Man lIat.

5. Constructing SO-Files: SaveState

The SaveState subroutine, also included in l3uildBoot.Dm, can be called in a fashion similar
to OutLd, but it will create an SO-File. The Bcpl call is:

SaveState("filename" [,inits])

It I: ehaves like OutLd in that it ntl/rns 0 if the file has just been wri tten, 1 if it has been
restored by an InLd, and 2 if by a booting process. The optional argllment inits controls
the saving and restoring of critical operating system state (bit table of free pages on the
disk, open system log information, etc.). T~,e values of inits are:

O. No OS :;tate saving or restoring is done.

1. Before saving state, the bit table will be written out and the log closed.

2. Afte"' restoring state, ":he bit table will be read in and the log re-opened.

3. Functic)ns 1 & 2 are both performed.

6. The "standard boot file": disk address 0

The 256-Vlord datil pn;";! ~;ave:l on real disk address 0 cannot be part of any legal Alto file
because of the way the file system is cle~igned. As a result, the standard boot file is
estabJ ished hy cOPYlllg the fi rst data page of the boot fi Ie (e.g., Sys.Boot) into disk address 0
(the label and data ponic.ns are both copied verbatim). 'rhus the proper data (disk boot
l()a(L~r) Vw ill be read when booting, and the label will point forward to the (legal) boot file,
data page 2.

CHAT

'For Xerox Internal Use Only -- April 29, 1978

February 1, 1978

CHAT

16

CHAT is a program for establishing PUP Telnet connections between a pair of cooperating
parties. Its chief function is to permit Alto users to login to MAXC. Eventual extensions
'Nill support text-display control.

1. Simple operation

CHAT is organized so that default operation with MAXC is simple. Simply saying "CHAT"
will establish a connection with MAXC and (provided you are "logged in" on your Alto)
will try to establish the Alto as controlling terminal for a MAXC job that is logged in
under your name. CHAT will perform a "login" or "attach" as appropriate. If the simple
methods 'fail you must deal with MAXC yourself (life is hard).

TIlt: preferred method for exiting CHAT is to depress the key immediately to the right of
the 'return' key on the keyboard, and then to press "q" for Quit. The other method,
(shift>S\VAT. is frowned upon and is [.ot guaranteed to work.

2. Command Interpreter

\Vhile CHAT is running, YOll may wish to give various commands that alter its operation.
Der:ressing the key immediately to the right of the "return" key will cause CHAT to enter a
command mode. The commands are:

Q Quit--terminate the connection.

F Specify a new font. The screen will be re-initialized. which will cause recent typeout
to disappear. If insufficient core space is available for the font, the system font will
be used.

D Specify a "do" file to insert now. The text of the file will be treated as if it had
been typ,.:!d il at the keyboard--it will be transmitted to the connected party. This is
a simple way to "can" MAXC procedures that you use a lot.

E Change local echo setting. CH AT starts out aSSllll1 ing that the connected party will
echo all characters. In some instances, CHAT will want to echo your typein locally
(e.g., when connected to another CHAT).

o

T02~des the "input" switch for the typescript file, set by the USER.CM entry
T't i)ESCRIPTCHARS (see below).

T?f~gles the "output" switch for t.he typescript file, set by the USERCJ\t1 entry
Ty I}E~\CRIPT(HARS (see below).

3. (:ommand-Iine options

Several option:) may ce r.assed to CHAT by global switches in the command line (i.e., by
typing CHA 1'lslt where 's" and "t" are the sWItches):

CHAT

IA

IL

IN

IS

IE

II

IP

For Xerox Internal Use Only -- April 29, 1978

February 1, 1978 17

Attach" -- meaningful only when connecting to MAXC. This will force the
MAXC attach sequence to be typed rather than whatever CHAT considers
a;'propriate.

"Logi)" -- meaningful only when connecti n1! to MAXC. This forces a lo~in
sequence to be typed, regardless of what C11AT considers appropriate. For
exrlIliple, if you already have a detached job on MAXC and wish to create a
new Job, you must use this option.

CHAT will not attempt any autc.matic login or attach for rv'IAXC connections.

CHAT will be a "PUP Telnet Server," and will respond tJ requests for
connection from others rather than initiate requests itself.

CHAT will cause local echoing of input characters.

Equivalent to the command-line entry CHAT.INITIAL/D (see below).

CHAT will enable a display protocol (see below).

Seven) options may be specified with "local" switches:

stri ng 1his gi'tes the "name" of the party with whom CHAT should initiate a
connection. The name may. be an address constant of the form
net#l1ost#socket, or may be a futi symbolic name like Maxc+Telnet (see
"Naming and Addressing Conventions for Pup" for d~tails). The default
socket is 1, the Telnet socket. Thus typing "CHAT Regis" will try to connect
to a Telnet server on the host named Regis.

filename/F

filename/l)

Specifies the name of the font to use.

This gives a "do" file name that is fed to the connected party. When the last
character of the file has been sent, CHAT will not close the connection.

filename/E Similar to 10, but will end the connection when end of file is 'encotlntered.
(Because of current synchronization problems, this feature will not work well
in conjunction with MAXC. This problem will be among the first to be
fixed.)

4. USER.CM Options

The USER.CM file may also contain defaults that CHAT examines at initialization. The
seetio:1 of USER.eM, that CHAT examines mllst begin with a line with the 6 characters
rCHATl on it. Thereafter, lines begin with "labels," followed immediately by colons,
follov:ecT by arguments:

FONT: altofontnarne.AL [width height]

Gives the name of a font to use when displaying typeout from the connected party
(dlLlult: system font). If two numbers follow the name, they are interpreted as the
width of a line (in characters) and the height of a page (in lines). These numbers
override the calculations made by CHAT, and are shipped to MAXC to set the
termimll parameters.

BORDER: [BLACKIWHITE]

Givl~s the color of the top border of the screen (default: white).

CHAT

For Xerox Internal Us.(: Only -- April 29, 1978

February 1, 1978 18

BELL: [DING] [FLASH]

Tells what to do when a bell character is received. If DING is specified, a pattern
that spells out 01 NG wi II be displayed at the top of the screen. If FLASH is
specified, the bottom area of the screen wi II flash black. Both options can be
specified together (default: DING FLASH).

CONNECT: net#host#socket or ... network.name ...

Gives the network address constant or name of the party with whom a connection
should be initiated (see "Naming and Addressing Conventions for PUP" for details).
Default is Maxc+ Telnet, the MAXC PUP Telnet server.

TYPESCRIPT: filename [length]

Gives the name of a file on which to record a typescript of the session. The file
wi 11 be treated as a "ri ng" buffer of speci fied length (i n bytes; defaul t 5120). The
file wil1 be created at the beginning of the session, so that the lIser can be certain the
disk will not overflow when recording txpescript information. The string (=) will
mark the end of the ring buffer, which wtll be updated periodically.

TYPESCRIPTCHARS: [ONIOFF] [ONIOFF]

This entry governs the selection of characters that are included in the typescript file.
The first on/off switch controls characters typed on the Alto keyboard: If the switch
is "on," these characters wili be entered in the typescript file. The second switch
controls characters sent from the other party to the Alto: i':' the: switch is "on," these
characters will be entered in the file. Default is OFF ON.

LINEFEEDS: [ONIOFF]

Normally, line feeds transmitted by the other party are included in the typescript
file. If you wish to keep line feeds out of the ftle, set LI NEFEEDS: OFF.

ECHO: [ONIOFF]

This option turns on local echoir"g. This is lIsuc:lly necessary only if YOll are
connecting to another Alto running CHAT that has us(:d the /S option.

DISPLA VPROTOCOL: [ONIOFF]

This entry enables a display protocol. This permits the connected party (usually a
MAXC program) to establish another ESP connection for transmitting a simple
display protocol to the Alto. A set of INTER LISP-IO functions has been written to
ease lise of the display from LISP. Please see Bob Sproull for more information
about this protocol and its Wie.

CopyDisk

For Xerox Internal Use Only -- April 29, 1978

March 22, 1978

CopyDisk

19

CopyDisk is a program for copyi ng entire disk packs. It wilJ copy from one drive to
another on the same machine, or between drives on separate machines via a network.

1. History

The first Alto CopyDisk was calJed Quick and was written by Gene McDaniel in 1973.
During tile summer of 1975 Gracrne \Villiams wrote a new CopyDisk adding the ability to
copy disks over the network. During the slimmer of 1976 David Boggs redesigned the
network 'protocol ancl added the ability to copy Trident disks. The CopyDisk network
protocol IS specific j in < Pup >Copy Disk.ears.

2. Concepts and Terminology

In a disk copy ~ peration, the information on a 'Source' disk is copied to a 'Destination'
di~ik, destroYing any previous information on the destination. A copy operation usually
consists of two steps:

reopy] Step one copies bit-far-bit the information from the source disk to the
acstll1ation disk.

[Check] Step two reads the destination disk and checks that. it is indentical with
the source disk. This step can be omitted at the user's peril.

Copying a disk from one machine (or 'host') to another over a network requires the active
cooperation of progral1s on both machines. In a typical scenario, a human user invokes a
program called a 'CopyDisk User' and directs it to establish contact with a 'CopyDisk Server'
on arother machine. Once I:on tact has been establ ished, the Copy Disk U~iE'r in I tiates requests
and su pplies parameters for the actual copy operation which the User and Server carry out
together. The User and Server roles differ in that the Copy Disk User interacts with a
human lIser (usually through some keyboard interpreter) and takes the initiative in
User/Sen'er interactions, whereas the CopyDisk Server plays a comparatively passive role.
The question of which machine is the CopyDisk User and which is the CopyDlsk Server is
independent of the direction in which data moves.

The Alto CopyDisk subsystem contains both a Copy Disk User and a CopyDisk Server,
running as independent prl)cesses. Therefore to copy a disk from one machine to another
YOll should start up the CopyDisk subsystem on both machines and then type commands to
one of them, WhICh becomes the CopyDisk User. Subsequent operations are controlled
entirely from tI':e User end, with no human intervention required at the Server machine.
Th's arrangement is similar to the way the Alto FTP subsystem works, and different from
'Ihe way the older CopyDisk worked.

3. Calling CopyDisk

Copy Disk can be run in two modes: interactive mode in which commands come from the

CopyOisk

For Xerox Internal Use Only -- April 29, 1978

March 22, 1978 20

keyboard, and non-interactive mode in which commands come from the command line
(Com.em). The general form of the command line to ·invoke CopyDisk looks like:

CopyOisk [[/<option switches>] [from] <source> [to] <destination>]

The square brackets denote portions of the command line that are optional and may be
omitted. If you just type "CopyOisk" the program goes into interactive mode, otherwise the
remai nder of the command line must be a complete description of the desired operation.

3.1. OPtion Swi tches

Each option switch has a default value which is used if the switch is not explicitly s~t. To
set a switch to 'false' proceed it with a 'minus' sign (thus CopyDisk/-C means 'no
checking'). To set a switch to 'true' just mention the switch.

Switch

14

IC

I\V

IR

ID

IB

/A

Default

false

true

true

true

false

false

false

Function

[tvlodeI44] tells Copy Disk to copy an entire Diablo model 44, without
asking for confirmation.

rChec"!:.] tells Copy Disk whether to check the copy operation.
CopyDlsk/-C, which omits the check step, is faster but more risky.

[\VriteProtect] prevents the CopyDisk network Server from writing on
a local disk. So unless you say CopyDisk/\V or issue the
\VRITEPROTECT commane, someone can make a copy of your disk·
over the network, but no one can (maliciously or accidentally)
overwrite it.

[Ram] tells CopyDisk to attempt to load the ram with some
microcode which speeds things up considerably. Copy Disk will still
work, though more slowly if it can't load the ram.·

rDebug] enables extra printout that should be interr;!sting only to
topyDisk maintainers.

[Boot] cn:ates 'CopyDisk.boot' for distribution to boot servers.

[A 110catorDebug] enables extra consistancy checks in the free storage
allocator.

3.2. Source and Destination Syntax

The general form of a. source or destination disk name is:

[Host name]Device

for" example "[MyrcldinJDPO". Ordinarily 'host name' can be a string, e.g., "Myrddin". Most
A ~ to~; have names which are registered in Name Lookup Servers. So long as a name lookup
server is available, CopyDisk is able to obtain the information necessary to translate a host
name to an inter-network address (which is what the underlying network mechanism uses).
You may omit the host nmne for disks attached to the local machine.

If the host name of the Server machine is not known, you may specify an inter-network
address in its place. The general form of an inter-network address is: .

< network> #. <host> # <socket>

CopyDisk

For Xerex Internal Use Only -- April 29, 1978

March 22, 1978 21

where each of the three fields is an octal number. The <network> number designates the
network to Y1ihich the Server host is connected (which may be different from the one to
\'jhich the User host is ,onnected); this (along with the "#" that follows it) may be omitted
if the Serve'r and User are known to be connected to the same retwork. The <host> number
designates tile Server host's address on <network>. The <socket> number designates the
actual Server process on that host; ordinarily it should be omitted, since the default is the
regular CopyUisk server socket. Hence to specify a CopyDisk server running in Alto host
n um ber 241 on the directly connected network, you should say "241.ft" (the trail ing .,#" is
requi red).

The syntax of the 'device' part of a disk name depencls on the disk type. Copy Disk
currently knows how to copy two kinds of disks:

DPn

TPn

Diablo disk unit 'n'. Most Altos have one Diablo disk called
'DPO'.

Trident disk unit 'n'. The unit number must be in the range 0-
7.

4. The CopyOisk display

CopyOisk displays a title line about one inch from the top of the screen, and below that the
mam display window, whicL consumes about half of the screen. The main window is shared
by the User and ,Se~ve[processes, only one of which is active at any time. The process
which currently owns the window ideotifies itself at the right side of the title line. The
title also shows the release date of the program and the host number of the Alto. \Vhen a
copy opcnltion is in progress, t.he current disk address is displayed in the area above the
title line.

,':fhen CopyDisk is started, the User is listening for commands from the keyboard and the
Server :s listening for connections from the network. If you start typing commands, the
U:,;er laJ:es over contr::>1 of the main window ('User' appears near the nght end of the title
line), and your commands and their responses are displayed there. The Server refuses
network connections while the User is active. If another CopyOisk program connects to the
Server, the Server takes over control of the main window ("Server' appears near the right end
(of the title line), and the Server logs its activity there. The User ignores type-in «(lashing
the screen if any k~ys are typed) while the Server is active.

5. Keyboard Command Syntax

CopyDisk's interactive command inte:rpreter presents a user interface very similar to that of
the t\.1to FrP subsystem. The standard edIting characters, command recognition features,
and help facility (via "?") are available.

5.1. Keyboard Commands

COpy
Starts a dialog to gather the information for c(lpyi ng a disk. Copy Disk fi rst asks for
the nal1l'~ of the source disk by displaying "Copy from'''. If the disk is local, it makes
sure it is ready; if the disk is on another machine, it opens a connection and asks the
remote machine if the disk is ready. If you want to abort the connection attempt, hit
the middle unmarked ('Chat') key. If the source disk is ready. CopyDisk prompts you

CopyDisk

For Xerox Internal Use Only -- April 29, 1978

March 22, 1978 22

QUIT

for the destination disk by displaying "Copy to", and then checks that that disk is
ready also. Next, it verifies that the disks are compatible, and depending on the disk
type, may ask some questions about things peculiar to that disk (such as "Copy all of
the model 4<l?"). Then Copy Disk asks you to confirm your intention to overwrite the
destination disk. If you change your mind, type 'N' Of <delete>. If you respond yes,
CopXDisk will pause for a few seconds, ignorin o the keyboard, and tlh~n ask you to
confirm once again. Type-ahead does not work for this second corJirmation. This is
your last chance to look at the disks and make sure that you are not overwriting the
\\rong one. J:t happens! This feature was in the original CopyDisk, was left out of
the second version, and is back in this third version by popular demand from the
many people who made that fatal mistake.

Terminates Copy Disk. One of three things happens:

The Alto Exec is restarted if OPO is ready, and has not been written on,
and if Copy Disk was not booted from the net.

OPO is booted if it is ready but has been written on or if CopyOisk was
booted from the net.

OMT is booted from the net if pro is not ready.

All of this is attempting to leave the Alto ru.nning something m.eful. If the disk in
OPO does not have an operating system on it when Copy DISk quits, the disk boot
(option 2, above) will fail. This will not hurt the disk, it will just leave the Alto in a
bad state. You will have to boot DMT manually.

CHECK
Toggles t.he switch which controls whether a disk is checked after copying. CopyOisk
displays "on" if checking is now enabled, and "off" if it is now d.isabled.

DEBUG
Toggles the switch which controls the display of debuggin;5 information. Th,~
performance data presented at the end of this document IS part of the debugging
Information; the network protocol interact.ions are displayed when this switch is set
also.

V{RITEPROTI:CT
To~gles the switch which allows the network Server to write on local disks. 'fhe
det ault is that people can't overwrite your disk.

VERIFY
Verifies that two disks arc identical. The dialog is very similar to the COry
command. Neither disk is ever written. This is useful to verify the health of your
disk drive (bu: remember that it does not check the write logic).

6. Command Line Syntax

CopyOisk can also be cont.rolled from the command line. If there is anything in the
command line except "CopyDisk" and global switches, the command line interpreter is
started instead c f the i nteracti ve keyboard interpreter. Its operation is most easi Iy explained
by examples:

Copy Disk

For Xerox Internal Use Only -- April 29, 1978

March 22, 1978

6.1. Command line examples

To copy DPO to OPl:

Copy Disk from OPO to DP1

23

Note that 'from' and 'to' are optional (though stong)y recommended for clarity), and one or
both may be omitted or abbrevIated:

Copy Disk OPO t DP1

is equivalent, though less obvious.

To copy the Basic non-programmer's disk from host 'Tape-Controller' (which is running
Copy Disk) onto a disk in your own machine:

CopyOisk from [Tape-Controller]DPO to OPO

or, equivalently:

CopyOisk from [3'#6'#]OPO to DPO

The si ngle quotes are necessary to keep the #s out of the cI utches of the Alto Exec. The
quotes are not needed when typing to th~ keyboard interpreter. Note that no spaces are
allowed between the host name and the devIce name.

If the command line interpreter funs into trouble, it displays an error message and then
~;ta[ts the interactive interpreter.

7. Disk Errors

Disk errors are termed 'soft' or 'hard' depending on whether retrying the operation corn;~cts
the difficulty. If CopyOisk is still having trouble after many retries, it displays a message
of the form "Hard error at OPn: cyl xxx hd y sec zz" in the main window and moves on.

Soft errors are not reported ltnless the debug switch is true, so as not to alarm users. Their
frequency depends on several factors. COPY1J1g over the network will cause more soft errors
then copying between two disks on the same machine. Alto lis get many more errors then
Alto Is.

During the Check pass. in addition to soft and hard errors, 'data compare' errors are also
possible. A data compare error means that the corresponding sections of the source and
destination disks are. not identical. If any hard errors have been reported, then data
compare errors are likely, otherwise getting data compare errors means that something is
very wrong. You should suspect the Alto.

Hard errors and data com pare errors are serious, and you should not trust the copied pack if
any are reported. If tile errors are on the source disk, tr~' Scavenging it. Bear in mind that
there is some variance in alignment among disk drives, ~lT1d that a rack which reads fine on
one drive may have trouble on another. Is the source disk in a dIfferent drive than where
. it is normally us~:d? Before allowing the Scavenger to rewrite sectors, consider that the pack
may be OK, but the drive it is in tllay be Ollt of alignment. In this case, allowing the
scavenger tel rewri le the sectors is a bad idea. If the errors are on the desti nation disk, try
the copy again, ancl then slIspect the pack or the disk drive itself. If the destination pack
was much colder than the temperature inside the drive, sectors written early in the copy pass
may read incorrectly during the check pass. It's a good idea to wait a few minutes for the
pack to reach normal operating temperature before ming it.

CopyDisk

.8. Creating a new disk

For Xerox Internal Use Only -- April 29, 1978

March 22, 1978 24

Suppose YOll want to make a new disk by copying one of the 'Basic' disks. There are two
n lajor ways tu do this:

Find an Alto with two disk drives. These are relatively rare beasts. This
method is called. the 'double disk copy' method.

Find two Altos, each with one drive, that are connected by a network. This
should be relatively easy. This method is called the 'network copy' method.

Having decided on one of the above methods, you must now get CopyDisk running on the
r\ to(s). There arl~ two major ways to do this:

Start Copy Disk from a disk which has 'CopyDisk.run' on it.

Boot Copy Disk over the n-',~twork from a 'Boot Server'.

8.1. Starting C2J2Y!)isk from another Disk

If you do not have a':12ess to a Boot Server, you must start Copy Disk from a disk that has it
on it. Put a disk with CopyDisk on it into the Alto and type "CopyDisk<retllrn)". Then
switch disks. BE CAREFUL!! People sometimes forget to switch disks at this point and
accidentally copy the wrong one. This is why CopyDisk asks you to confirm your
intentlons so m;:ny times.

8.2. Booting Copydisk from the net

The best way c) start CopyDisk is to boot it from the network. That way you are more
likdll to get the Iate~,t \ersion, and y011 avoid the Ditfall mentioned above. Of course, you
must have network access to ,~ Boot Server. Most Gateways have Boot Servers. If this
method doesn't s~em to work, you will have to fall back to starting CopyDisk from another
disk.

Hold down the <BS) and <Quote) keys while pressing the boot button on the Alto. You
must cor,tinue to hold down < BS) and <Quote) (but let go of the boot button!) IIntil a
small square appears in the middle of the screen. This can take up to 30 seconds, but
IIsually happens in le~;s than 5 seconds. You are now taking to the NetExec (see the
documentation i i1 the Subsystems man ual if YOll are curious). and you should type
"CopyDisk(return)". The screen will go blank, the Ii ttle square will appear again (you don't
have to hold dOVin any keys this time), and soon Copy Disk should appear on the screen.

8.3. The Double-Disk Copy Tvlethod

Put the basic disk in oro and put your disk in DPl. TYPE: "Copy<space)", and when it
says "fr011l" type DPO< return). \Vhen it says "Copy to", type "DPI < return)". Then type
(rell! rn > encl" ti nH! it (lsi ~s for confi rmatio. 11. Some n lim bers w:i 11 appear in the top center
of the sl;reen. \Vhen they disappear, CopyDisk is done. Type "t)uit<return)". Put the
basic disk back where it belongs, and take your disk with you.

8.4. T!L~J-,Jetwork Copy Method

Unlike the old Cory Disk, you net!d only type commands to one of the lwo Altos. It doesn't
matter which one. Assume l.hat the basic disk is in the Alto called "Tape-Controller", your

CopyDisk

For Xerox Internal Use Only -- April 29, 1978

March 22, 1978 25

disk is in the Alto called "Myrddin" and you are going to txpe commands to Tape.
Controller. Txpe "Cop,Y.<space)", and when it savs "from" type 'DPO<return)". When It
says "Copy to " type' LMyrddin]DPO<return)". Then type <return) each time it asks .for
confirmation. Some numbers will ~pear in the top center of the screen. When they
disappear, CopyDisk is done. Type ''(,}uit<return)'', and put the basic disk back in the rack.
Go to Myrddm and type "Quit<return)". It will boot the disk, and you should find
yourself talking to the Alto Exec .

.9.. Performance

This section calculates the times to copy' disks under different condit.ions. CopyDisk times
its operations and displays the results If the debug switch is set, so you can compare the
numbers derived here with n;:ality.

9.1. TSweep

First, we caIcula1:e TSt'leep, the time to read 'or write a disk assuming that we can consume
or produce data faster than the disk. This best possible case is the sum of two terms. The
fi I'st term is the time necessary to sweep an active read/write head over every sector on the
disk:

Rot * nCyl '" n Hds.

The second term is the time lost while seeking to the next cylinder. We assume that these
seeks take less than one rotation but that a whole rotation is lost:

Rot * nCyl.

Combining, we get:
TSweep = Rot * nCyl '" (nHds+1).

\vhere: Rot is the rotation time of the disk in seconds
neyl is the number of cylinders, and
nHds is T,he number of heads.

9.2. Disk-To-Disk· COpy

By disk-to-disk copy we mean copying from one disk to another on the same machine,
llsing a single controller and not overlapping seeks. The fastest way to do this is to read the
entire source disk into memory, switch to the destination clisk, and then write it all. The
switch frol"1 the SOUJlce to the destination disk, will lose on the average half a revolution
while waiting for the dght sector on the new disk to come under a head. NeO'lecling the
switch time which is small compared to the other two terms, the best possible disk-to-disk
copy time is 2 * TSweep.

With limited memory, the best we can do is fill all available memory buffers reading the
source dis:<, switch di.sks, write them onto the destination disk, and then switch back to the
source disk for another load. In this case we can't ignore the switch time, which is the total
number of sectors on the disk divided by the number of sector buffers times the rotation
time of the disk:

Rot * (nCyl * n Hds * nSec)/n Buf

nSec is tJ- e number of sectors per track, and
nBuf is the number of memory buffers.

where

So the disk-to-disk copy time, TDDCopy, is:

CopyDisk

For Xerox Internal Use Only -- April 29, 1978

March 22, 1978 26

TDDCopy = 2 * TSweep + Rot * (nCyl * nHds * nSec)/nBuf

9.3. Net Copy

By net copy we mean copying from a disk on one machine through a network to a disk on
another machine. In this case the disk controllers can be going In parallel. and the factor
of two in the first term of TDDCopy vanishes. In additorl, if the bandwidth of the
network connection is higher than the transfer rate of the disks so that as soon as a sector
is read from the disk it is s{~nt out of the machine, the memory limitation goes away and
the second term of TDlJCopy vanishes.

The CopyDisk network protocol sends a small amount of information along with each sector
which mllst be factored into the calculation of the bandwidth needed to run without
memory limitation. Note that the bandwidth we are concerned with here is that perceived
b~1 a client of the network services: user data bits per second, not raw bits per second
through the network hardware.

If the network is slower than the disks, then the time to COPY a disk is the time required to
transmit all of tI'e bits on c. disk plus the protocol overhead bits:

where

TNetCopy = nCyl * nHds * nSec * (s8 + sOv)/bwNet

s8 is the bits of disk information per sector,
sOy is the CopyDisk protocol overhead per sector, and
bwNet is the bandwidth of the network connection.

The bandwidth of the network connection is hard to state, and depends on a number of
factors. Here are a few:

Reduction of the emulator's instruction execution rate due to interference from the
disk and network hardware.

Reduction of the amount of the emulator cycles available to the network and disk
code due to mutual interference.

Reduction of the peak network bandwith due to interference from other hosts on the
netJvork.

The minimum network bandwith required to copy a disk at full speed is:

MinBwNet = 16 * nCyl * nHds * nSec * (sB + sOv)/TSweep.

9.4. The Numbers for Altos

Here are the relevant numbers for the disks which this program can copy:

Diablo-31 Diablo-44 Trident-80 Trident-300

Rot (ms) 40 ~:S 16.66 16.66
nCyl 203 406 HIS 815
nHds 2 2 5 19
nSec 12 12 9 9

s8 266 266 1036 1036
sOv 2 2 2 2
nBlIf 80 80 18 18

CopyDisk

9.5. Reality

For Xerox Internal Use Only -- April 29, 1978

Marth 22, 1978 27

Here are the results of plugging the numbers into the equations, and comparing them against
actual measurements. 1 he format is predicted(measured). NA means not available.

TSweep
TDDCopy
TNetCopy

bwNet
MinBwNet

Diablo-31

0:24-
0:51(0:51)
(1:05)

(323 Kb/s)
859 Kb/s

10. Revision History

At:.gust 7, 1977

First relese.

August 28. 1977

Diablo-44

0:30
1:04~1:16)
(2:1)

~308 Kb/s)
.375 Mb/s

Trident-80 Trident-300

1:21 4:32
3:18(4:00)
(26:31)

11:20(19:27)
(NA)

~383 Kb/s)
.520 Mbls ~~~J fv1b/s

Soft errors are only reported if the debug switch is set. Data compare errors now display
the offending disk address. VERIFY and WRITEPROTECT cor.1mands added to keyboard
command interpreter. 'Nrite protect global switch added.

October 16. 1977

More microcode to speed things up

October 27, 1977

Bug fixes

December 18. 1977

Fixed a bug which prevented it from copying the second half of a two disk file system.
The net\lork format for Diablo disks changed.

March 22. 1978

Copy Disk wi II now do the right thing for "[thisHost]dt:vice".
WRuTEPROTECTis now TRUE.

The default value of

Createfile

'For Xerox Internal Use Only -- April 29, 1978

April 21, 1975

Createfile

28

The CREATEFILE subsystem will create a [lIe of a given size, attempting to allocate it
consecutively on the disk. To run the program, use

)CREATEFI LE filename npages

where filename is the name of the file and npages is th~ size of the file in pages (in octal).
If tlte file al ready exists, CR EATEFILE will print "Old file -- deleted" and delete the file.
If the file does not exist, CREATEFILE will print "l~ew file". If there is no block of
npagt:s con~;ecutive free pages on the disk, CREATEFILE will print "Only nnn consecutive
pages" and create the file at an arbitrary place on the disk; otherwise, CREATEFILE will
find the smallest block of free pag(~s of size at least npages, and create the file there.

DDS 1.13

For Xerox Internal Use Only -- April 29, 1978

October 12, 1977

DDS - Descriptive Directory System - release 1.13

29

The Descriptive Directory System (DDS) is a front end for the Alto file system that
provides substantially greater flexibility than the "?II facility in the operating system's
command processor. In addition to file names, the DDS can display file lengths, creation
read-write dates, and contents.

If you have used DDS before and merely wish to learn about changes, bug fixes, and
new features, you probably want to skip to section 5 of this document. If not, sections 0
through 4 are a complete description of the current release. Sections significantly changed
since the last release are marked with ***.

O. The mouse and cursor

1 he three buttons on the mouse are called R ED (left or tep button), YELLOW
(middle button), and BLUE (right or bottom button). Most mouse-controlled actions in
t)DS happen as soon as you depress the mouse button: these are described below lIsing
phrases like "RED does XXXII, meaning liAs soon as you depress RED, xxx happens.1I Some
actions require depressing a buttorl and then releasing it: phrases like "clicking RED does
xxx" mean IIlf you depress RED and then release it, xxx will happen." Careful reading, or a
little experimenting, will familiarize you quickly with the distinctIOn.

The cursor changes shape according to its location on the display and according to
how DDS is interJreting the buttons. Generally speaking, when t.he cursor is circular, RED
selects what you are pointing at in so:ne way, arid BLUE deselects it \Vhen the cursor
assumes the shape of an hourglass, DDS is busy doing something and is not listening to the
mouse buttons.

1. The display

Like Bravo, DDS divides the display into a command area at the top, and one or
more windows below. Currently DDS just supports a single \vindow. A heavy black bar
separates the command area from the window. Section 2'- (below) describes the command
area.

The window has three parts, separated by lighter horizontal bars:
1) The top part is the vIew specification area, or viewspec area for short. It contains

a set of keywords that describe what information is to be displayed for the files being
examined in this window, and a set of keywords that de~icribe ho\v the displayed files are
sorted.

2:) The second part is the selection specification area, or selspec area for short. It
contains a pair of e)~iJressions which together determine what set of files is being examined
in the window. View and selection specification are completely independent: each can be
changed without affecting the other.

3) The main part of the window is the data area, which actually displays a set of files.
The names are always displayed: other information is controlled by the viewspecs.

1.1 The viewspec area

There are 10 keywords in the viewspec area that control what is displayed:
"created" .. the date when the file was created
"written" - the date when the file was la'it altered
"read" - the date when the fi Ie was last read.
"referenced" - the date when the file was last referenced (Le. the most recent

of "cf.:!ated", "written", and "rcad") ,
"size" - the size of the file in disk pages

DDS 1.13

For Xerox Internal Use Only -- April 29, 1978

October 12, 1977 30

"length" - the length of the file in bytes (characters)
"address" - the hardware address, in the form directory-pointer: (SN1,SN2)!VN

@ virtual-leader-address
"contents" - the contents of the file (in octal, if a binary file)
"pagemap" - the disk addresses of all pages of the file, with a "*" before each

address that represents a change of head position
"leader" - the contents of the file's leader page, in octal

If the keyword is displayed white-on-black, the corresponding information is displayed in
the data area, otherwise not.

There are 6 keywords that control other aspects of how the data are displayed:
"(marked)" - if turned on, DDS only displays marked files (see sec. 1.4 below)
"(small)" - if turned on, DDS uses a smaller font for the data, which allows

more data to appear all the screen (see sec. 3 below for how to tell DDS the name of the
font)

"(packed)" - if turned on, DDS displays several files per line if possible (not
implemented yet) .'

"(times)" - in conjunction with "created", "written", "read", or "referenced",
shows the ti me of day as well as the date

"(browse)" - if turned on, then when "contents" is turned on, DDS only
displays the first 5 lines of text files and the message "*** binary file ***" for binary files,
instead of the complete contents of the file.

"(chart)" - if turned on, changes the data display' to be a chart made up of
boxes in which the height of the box is proportional to the tile length. I Try it -- you'll
1'1 .) ILce It. .

When the cursor is positioned over a keyword name, RED turns the keyword on;
BLUE turns the keyword off. When the cursor is over the word "Show:" at the upper left
of the keywords, BLU E turns all keywords off.

There are currently 8 keywords that control sorting of the data:
"name" - alphabetic order by name (upper and lower case l,~tters are

equivalent)
"extension" - alphabetic order by extension
"created", "written", "read" - tht corresponding date and time
"referenced" - the date last referenced
"length" - the file length
"serial" - the file's sertal number (not of general interest)

The keywords which are displayed white-an-black are those actually used to sort the
data area. They arc displayed in the order most- to least-sign i ficant criterion, e.g.
"extensiont" followed by 'namet" means sort by extem,ion first, then sort files with the
same Extension by name. Following each keyword, whether active or not, is an arrow which
indicates whether the sort is to be in ascending (upward arrow) or descending (downward
arrow).

When the cursor is positioned over a sorting keyword name, clicking RED turns the
kt:yw~Hd on a~ld adds it to the list ~f white-an-black, keywords act,ually ,use,d for sorting;
clIckIng BLUI: turns the keyword of f and removes It from the 'llst; clIckIng YELLOW
inverts the direction of the arrow, re~ardless of whether the keyword is in tlh~ list. When
the cursor is over the words "Sort by: I at the left of the sorting keywords, BLUE turns off
all sarti ng cri teria.

Since sorting may take a long time and it is easy to request sorting by acciclent, you
can abort sorting at any time by typing any character. Be sure the cursor is not in the data
aeea when you do this: if it is, DD~) may start the sort over again!

Whenever the cursor moves into the data area, regardless of whetht!r any mouse
buttons are down, DDS repaints the display to be as specified by the viewspecs if the
viE'Wspecs have changed since the last time the display was repainted.

DDS 1.13

1.2 The selspec area

For Xerox Internal Use Only -- April 29, 1978

October 12, 1977 31

The selspec area contains two expressions which defines what su.bset of the directory
will actually be displayed in the data area. The~;e expressions are built up from name
patterns which are similar to those recognized by the Alto Executive. More precisely, a
name pattern is a sequence of characters which may contain "*"s and "#"s: "*,, matches any
sequence of characters in a name (including no characters at all), "#" matches any single
character. Upper and lower case letters are not distinrruished. Note that DDS deletes the
final "." from file names. Here are some examples of n-ame patterns and what they match:

*.BC All files with extension Be (or bc, be, or Bc).
*.13 All files with extension B ..
.B All files whose nanes contain the string .B -- this includes all files with

extension Bsomething, but also includes files like THIS.BINARY.THAT.
*.B# All files whose extensions consist of B and one more character.
* All the files in the directory.

You can build up more complex expressions using the ''lords "and", "or", and "not",
and parentheses. Here are some examples of such expressIons and what they select:

LPD* and not "'.temp
All files begll1ning with LPD, except those with extension temp.

"'.memo or *.memo$
All files with extension memo or memo$.

(*.BT or *.BS) and not X* .
All files with extension BT or BS, except those beginning with X.

The uRper expression in the selspec area is called the selspec; the lower one is called
the context. (rhe two together are simply called the selspecs.) Only files which satisfy both
expressions wIll b;~ displayed. The idea is that if you are going to be wor'dng on memos,
for example, you can set the context to "*.memo" and use the selspec to further select within
this set. As another example, if then: is some set of files you want net to see (like "*$"),
you can set the context to 'not *$".

To change the selspec or. the context, point at it, or at the word "Selspec:" or
"Context:", and click RED or YELLOW. This will cause it to change to white-on-black.
As soon as you start typing, the old text will vanish and what you type will appear white
on··black in its place; Eventually you mllst type one of the following three things before
you can point anywhere else or select any commands (see sec. 2 below):

<return> confirms the change, and repaints the display to reflect it.
<esc> is equivalent to *<return>, i.e. it adds a * to what you have typed and then

confirms the change.
 aborts the typein and restores the old selspec or context expression.

See section 3 below for how to get the selspec and/or context initialized
automatically to something other than "*It when you first enter DDS.

The third line of the selspec area is a message of the form "nnn files are selected, of
which mmm are marked" where nnn is the count at files selected by the current selspec and
mmm is the count of those which are marked (see 1.4 below). If there are marked fi;es not
selected by the selspec (again, sec 1.4), the message "there are kkk 1'i les marked but. not
selected" also appears. \\!hile DDS is sorting data, the message "Sorting ... " appears in this
area in place at the file counts.

1.3 The data area

As mentioned above, whenever the cursor moves into the data area, DDS regenerates
the display if necessary to conform La the current viewspccs.

The left edge of the data area is a scrolling bar which works the same way as in
Bravo: clicking RED scrolls up, clicking BLUE scrolls down, and clicking YELLOW jumps

DDS 1.13

For Xerox Internal Use Only -- April 29, 1978

October 12, 1977 32

proportionately to the vertical location in the window. A hollow arrow in the left mar~.in
shows where in the list 'iOU are positioned: if the ·arrow is at the top. you are at the
beginning of the list; if the arrow IS at the bottom, you af<! at the end. The idea is that if
you were to move the cursor tc- this arrow and click YELLOW, the list would stay
positioned just as it is. (This feature may appear in Bravo some day too.)

If you are positioned at the beginning of the list of selected files, DDS displays the
message "",,.,,,.,,,.,,,.,, BEGIN ,.",."IV,...,.,," at the head of the list; if not. DDS displays ",.",.",.",.",." nnn
files not shown ,.",.",.",.",.,,", indicating the position within the list of the first file actually
shown on the screen (e.g. "2 files not shown" means the first file OT! the screen is actually
the third in the list). Similarly, if the last file shown on the screen is actually the last file
in the list, DDS displays ",.",.",.",.",." EN D .-.I,.",."",,..." below it.

A vertical strip at the. right edge of the data area will be used in the future to
control the formatting (If the screen into windows. Currently the cursor changes shape when
it is in this area. but the buttons have no effect. Another vertical strip just to the left of
this one is used for mass marking and unmarking of files: see the following section.

1.4 Marking files

DDS provides a facility for marking any set of files for lat{!r processing by
commands sllch as <Deletc·>. <Send to Maxc>. etc. Marked files are displayed with a small
dark arro'.v in the left margin, and a count of how many marked files are in the current
selected set is maintained in the selspec window. When the cursor is in the data area of a
window, other than the right or left edge areas. the mouse buttons control marking and
unmarking of individ .lal files: RED mHrks the file on whose line the cursor resides; BLUE
unmarks the file. When the cursor is in the vertical strip about 1" in from the right edge
of the screen, the cursor changes to the word "ALL", and the buttons mark and unmark files
en masse: clicking RED marks all the files selected by the selspecs; clicking BLUE un marks
all the fi les.

Note that files may be marked even though they are not selected by the current
selspecs. i.e. marking is associat,;d with the file rather than the display. (If this proves'
confusing it will be changed.) The count of "files marked but not selected" in the selspec
area lets YOll know when there are marked files not selected by the current selspecs.

Since marking or un marking individual files occurs as soon as the button is
depressed, you. can hold dowr RED or BLUE and slide the mouse (slowly) in the vertical
direction to mark or unmark a group of adjacent files.

The marked file counts in the selspec window are adjusted as soon as a file is
marked or unmarl:ed, but if the "marked" vlewsrec is on and you unmark a file, you must
scroll the data to get the unmarked file(s) deletet from the display.

2. Commands

. The command area at the top of the screen consists of four parts: 1j A header wi th th. e DDS version Ilumber, time of day, and cOllnt of free disk pages;
2 A type-in area, where typed characters appear;
4· An error message line;
3 A menu of commands, with each built-in command being enclosed in angle

brackets < >.

When the mouse is in the command menu area, RED selects a. command for
subsequent execution: the selected command is displayed white-on-black, and any previously
selected command is deselected. BLUE deselects the currently selected command and selects
the default command <Quit>. Typing <esc> or <return) finally initiates the command: you
can freely select ()r deselect commands, type and edit your type-in, change viewspecs, etc. up

DDS 1.13

For Xerox Internal Use Only -- April 29, 1978

October 12, 1977 33

to that moment. For commands which do not require type-in, you may also initiate the
command by clicking YELLOW with the mouse in the command menu area. The cursor
takes the shape of a cirde with a cross when this is allowed, and a circle with a dot when it
is not.

Some commands require or allow type-in before the final <esc> or <return>. You
may type at any time. All typed characters are accumulated in the type-in area just below
the header until the <esc> or <return>. Control-A (or backspace), control-W, control-Q,
and are available for editing as in Bravo. DDS displays a vertical bar when it is
waiting for your typing, and of course you can "t) pe ahead" while DDS is processing a
command. However, as for selspec and context chang';s (sec. 1.2), once you have started to
tYRe, you must either confirm lhe command with <esc> or <return>, or abort with ,
before you can select another command or another place to type (selspec or context).

When you have selected a comm2.nd with RED, then when you release the button,
DDS may display something in the type-in area which is a default for that command. If
you want to execute the command with that default type-in, you can just confirm it (with
<esc>, <return>, or YELLO\V); otherwise, the default dIsappears as soon as you start typing,

, just like the old se\spec or context. _

In the description of commands below, "scmething" following the command name
means that DDS expects you to have typed something before the final <esc> or <return>
that initiates the command; "optional-something" means you may type something or not.
To help you remember, all the commands that require type-·in end with " ... ", and those
which allow but do not require type-in end with "[... J".

Many commands operate on ,~ set of files: they use precise:y those files which, at the
time you type the final <esc> or <return>, are both selected (i.e. match the selspec) and
marked. "FIlename-I ... fi lename-n" in the descriptions below refer to these files, which are
also called the "designated" files.

DDS presently has two classes of command:.: those which leave you in DDS after
execution (internal commands), and those which send you back to the Alto Executive
(external commands). DDS has a fixed collection. of ir.ternal commands, but YOli can add
new external commands of your own: see section 3 below for how to do this. For external
commands, DDS saves away a command line so that if something goes wrong, you can
execute the command again by typing @DDS.C1'v1@<l'eturn> to the Executive.

2.1 Internal commands (those which leave you in DDS)

<Put on file ... > "filename" writes on the fide named "filename" (in text form) the
contents of the window. DDS also writes a header with your name, the disk name, and the
date and time. The default for "filename" is "Dir.Lst") an arbitrary name which DDS
supplies so that you don't have to make one lip.

<List. on file ... > "filename lt writes on the file named "filename" (in text form) the
names of the designated files, separated by blanks. This makes it easy for you to make up
an @-file for the Executive by adding a command name to the front of this file. The
default for "filename" is "Dir.Cm", an arbitrary name which DDS supplies so you don't
have to make one up.

< Delete> deletes the designated files. There is presently no way to un-delete files) so
be careful: the count of marked files in the selspec window is a good clue as to whether you
are deleting more than you want. YOlt can stop a <Delete> at any time by typing any
charac1er: of course, ;;ome files may already have been deleted. DDS changes the "free
pages" coun t at the top of the screen as it deletes each file.

<Rename as ... > "filename" requires that there be exactly one designated file, and
changes its name 1.0 "filename". If there is already a file named "filename", <Rename>
gives an error message and does nOlhing else.

DDS l.13

For Xerox Internal Use Only -- April 29, 1978

Octt)ber 12, 1977 34

< In i tialize [select ... J> "selspec" restores your selspec. can text, and viewspecs to what
you have specified in USI:r.CI11. If you typed sonwthing, DDS takes· that in place of the
selspec in User.em.

2.2 External commands (those which leave you in the Executive)

<Quit> leaves DDS gracefully. Shift-Swat is also safe whenever DDS is awaiting
input (i.e. not in the midst of sorting, deleting, etc.).

< Bravo/[... J> "optional-switches" gives control to Bravo in the followi np way:
If there are no designated files, DDS effectively execlltes "Bravo/switches' .
If there is more than one designated file, DDS gives an error message and does

nothing else.
If there is a single designated file and you did not type anything, DDS effectively

executes "Bra'lo/N fi lename", i.e. instructs Bravo to read in the fi Ie.
If there is a single designated file and you did type in switches, DDS executes

"Bravo/switches filename".

<Gears/[... J> "optional-switches" executes "Gears/switches filename-I ... filename-nil,
i.e. prints the designated files.

<Send to Maxc directory < ... > > "directory-name" sends the designated files to the
directory named "directory-name" on Maxc, "llsing Ftp. The default for directory-name is
the user name on your Alto disk. If you accept the default, DDS assumes you have already
done a Login in the Executive to supply the password; if you supply some other directorx··
name X YZ, DDS arranges things so the Executive will prompt you with the message "FIle
XYZ-Password does not exist type what it would contain" and you should type in the
password for XYZ at that time.

<Send to ... > "name" se:1ds the designated files to the Alto whose name is "name",
using Ftp. "Name" may be anything acceptable to Ftp. i.e. an Alto name, an Alto number,
etc. The default for "name" is Maxc, which is not really very useful.

< Execute ... > "command" constructs a command line formed from "command" and
the name~; of the designated files, and then executes the command line thus formed by·
either jumping directly to the subsystem or returning to the Alto Executive. (If there are no
deshmated file3, DDS produces an error me~;sage "No files are marked" and does nothing
else.) The command line is formed in the following way:

If "command" does not contain any 11:):11 characters, the command line is just
"command" followed by the names of the designated files. For example, if files ALPHA
and BETA are desi.(Jnated, < Execute ... > "13LDR/L" would execute the command line
"[3LDR/L ALPHA BfTA". "String" may contain blanks, so for example < Execute> "BLDR
FOO/S" would execute "BLDR FOO/S ALPHA BETA".

:If "command" does contain a "*", DDS divides "command" into 3 parts "sl s2*s3",
where s2 is the part of "command" extending backwards from the ":I:" to the first precedin~::
blank (or the beginning of "command"). Then the command line is "sl s2f1s3 s2f2s3 ... '
where f1, f2, etc. are the names of the files. For example, if ALPHA and BETA are
designated, < Execute ... > "BLDR @:~@" would execute the command line "BLDR
@AlpHA@ @BETA@". (If this seem~; confusing or useless, don't worry about it too much
-- some future version of DDS may find a better way to provide this facility.)

2.3 User-defined commands

If you define your own external commands with a SUBSYSTEMS entry in User.Cm
as described in section J below, these commands will also appear in the command menu
alolq wi th all the com malds I isted just above. They behave exactly Ii ke the < Execute>
cominand with res.r,ect to what they do about *'s, tYr-ein, and designated files. For example,
suppose your SUBSYSTEMS list looks like this:

SUBSYSTEMS: Chat, Ftp/-S Maxc, Foo

DDS l.13

For Xerox Internal Use Only -- April 29, 1978

October 12, 1917 35

Then if you select the second command with files Alpha and Beta designated and type
Dump/C B1ap.OM, what will actually get executed is Ftp/-S Maxc OUlllplC B1ap.OM Alpha
Beta.

2.4 Error messages

Nor-fatal error messages appear in bold characters just below the type-in line. Such
messages always abort the current command and reset the command to <Quit), but they do
not change the state of DDS in any other way. The message disappears as SDon as you type
any character.

Fatal errors cause DDS to call Swat. When this happens, the screen changes
completely and a heading like "Swat.21 (August 28, 1976)" appears at the top; the error
message itself appears :It tht bottom of the screen just above a '#". Fatal errors are never
supposed to happen, but if one ever does, summon a DDS eXpE'ft. If none is available, write
down the messagE: and what YOLI were doing at the time, and then type control-K. This will
throw you out of DDS and back to the Executive.

3. User profile

DDS examines the user profile (User.Cm) during initialization to obtain the names
of the fonts which will be used to display various things, and (tther rarely-changed
information. Just as Bravo's section of User.Cm begins witI-. rBr~A VO] and then follows
the format of OPTION:STRING, DDS looks for [DDS] and folrows the same format for its
entries.

The entries which DDS recognizes in User.Cm fall into two classes. "Initialization
only" entries are those which DDS only consults when you ask it to do a full initialization
(by using the FULLINIT: Yes entry in User.Cm. or the II switch in the command line, both
described below). "Ordinary" entries are those which DDS looks at every time.

The r ames of the "ordi nary" entries are:
FONT: fontname - specifies the na.rne of the normal font (used for the command

window, the file count line, and the data area).
BOLDFONT: fontname - specifies the name of the bold font (used for error messages,

the viewspec and selspec display, and the headings on the data area).
SMALLFONT: fontname - specifies the name of the small font (used for displaying

data when the "(smaJ))" viewspec is turned on) ..
SMALLBOLDFONT: fontname - specifies the name of the small bold font.
USERTYPE: type - lets DDS know what kind of user you are. If eype is NON

PROGRAMMER, DDS doesn't provide the "pagemap" ancl "address" viewspecs. If type is
WIZARD, DDS provides some extra features for debugging which are not described in this
document.

\VINDO\VS: Yes - enables you to use some experimental fadlities for splitting the
screen into multiple windc1ws in a Bravo-like manner. These facilities are NOT
DOCUMENTED, NOT FULLY DEBUGGED, AND NOT RECOMMENDED.

RAMOI(: Yes - tells DDS to use the RAM on your Alto. If your Alto is a standard
one, this will make DDS run about 30% faster; if not, DDS may not run faster, and may
not run at all. Try it once (or use the IR switch in the command line as describ~!d below)
ancl see what h~ppel1is.

FULLINIT: Yes - tells DDS to scan the whole Alto file directory e(1ch time it starts
liP, and reinitialize the sdspec, context, etc. from the "initialization-only" entrie~, in User.Cm
(possibly overridden by the command line: see sec. 4). FULLINIT: No - tells DDS to
updc. tc Its k ~,owledge of the world from Sys.Log (an incremental record of file activity since
you last ran DDS), and restore the selspec, context, etc. to what they wer~ when you last left
DDS. The default is FULLIN IT: No which leads to much faster startup. BECAuSE OF
DEFICIENCIES IN THE ALTO Os. AND IN BRAVO, THE RELEASED VERSION OF
DDS FORCES FULLINIT: YES REGARDLESS OF WHAT liS IN USER.CM.

DDS 1.13

For Xerox Internal Use Only -- April 29, 1978

October 12, L977 36

REENTER: Y(!S - tells DDS that you want to go back to DDS after completion of an
t:xternal command. (Normally the Executive retains control after an external command
fin ishes.)

The names of the "initialization-only" entries are:
SELSPEC: expression - specifies the initial value of the selspec when you enter DDS.

If there is something ille!!al about the expression, DDS just uses "*' for the initial selspec, as
though there were no SEt-SPEC entry in User.Cm.

CONTEXT: expression - specifies the initial value of the context when YOll enter DDS.
SHO\V: list of viewspecs - allows you to initialize th~: viewspecs. Use commas b~tween

viewspecs if there is more than onc.
SORT BY: list of sorting keywords - allows you to initialize the sorting order. Each

keyword mav be followed by tit" for ascending order or 1If-1i for descending order (neither
means c:scending order). Use commas between keywords if there is more than one.

SUBSYSTEl'vlS: list of commands - allows you to add your own favorite subsystems to
DDS' command set. Each command may be just a subsystem name (e.g. Chat) or a
subsystem name followed by some initial argument~; (e.g. Ftp/-S Maxc Dump/C). Use
commas between entries if there is more than one.

A word about fonts: if FONT is not specified in User.Cm. DDS uses the standard
system font SysFont.AI. If BOLDFONTis not specified, DDS f3bricates a boldface version
of the normal font, whatever it may be. If SMALLFONT is not sp'ecified, the "(small)"
viewspec has no effect. If you specify a font name and there is no fIle by that name, DDS
just ignores that entry in User.Cm.

4. The command line

.Just typing DDS to the Alto Executive will activate DDS in its nonnal way, in
which various m:pects of its behavior are controlled by entries in User.Cm if present.
Howr.~ver, you can override User.Cm by t}'ping switches following the name DDS to the
Executi\'e. Here are the switches currently Implemented:

DOSIE·· equivalent to REENTER: Yes in User.Cm.
OOS/·E - overrides (cancels) REENTER: Yes in User.Cm.
DDS/I - equivalent to FULLINIT: Yes in User.Cm.
DDS/··I .. overrides (carcels) FULLINIT: Yes in User.Cm.
DDS/R - equivalent to RAlvl0K: Ye~ in User.Cm.
DDS/-R - overrides (cancels) RAMOK: Yes in User.Cm.
ODS/W - equivalent to WINDOWS: Yes in User.Cm.
DDS/-W - overrideS (cancels) WINDOWS: Yes in User.Cm.
DDS/S - causes DDS to write some statistics in a file DDS.STA TS. Not currently of

general intel est.
DDS/P - causes DDS to write some data regarding disk activity in DDS.STATS. Not

of general interest.
DDS/X - causes DDS to display some mysteriolls statistics at the top of the screen.

Not of general interest.
These switches can be combined, e.g. DDS/IIR causes both full inhializntion and use of the
RAM. Switches may be either upper or lower case.

If DDS is doing a full initialization (either because FULLINIT: Yes appears in
User.Cm or because you said DDS/)), you may also supply initial selspec and cOIHext strings
in the command line, and these will take preced~nce over those in User.Cm, if any.
Unfortunately, the Alto Executive makes it a little inconvenient to include *'S in these
strings, and you can't have blanks in them at all. To include a *, you must type '*, e.g. to
start up DDS and specify alpha* as the selspec, you must type

DDS/I alpha'*
to the Executive. To specify beta* as the se1spec and *.cm as the context, you must type

DDS/I b~ta'* '*.cm

DDS 1.13

For Xerox Internal Use OOly -- April 29, 1978

October 12, 1977

5. Record of bug fixes, changes, and enhancements

Release 1.13:

Bugs fixed: user-defined commands were usually ignored e'len on full in it.

Additions: REENTER in User.Cm (sec. 3); IE in command line (sec. 4).

Release 1.12:

Bugs fixed: crash if User.Cm!n existed but no User.Cm.

Changes: fast startup permanently disabled.

37

Additions: "leader" viewspec (sec. 1.1); <List> and <Initialize> commands (sec. 2.1);
user-defined commands (sec. 2.3, 3); IX in command line (sec. 4).

Release 1.11:

Bugs fixed: falling into Swat when funning on non-standmd Alto configurations; fast
startup now works.

Changes: can point at "Selspec:" and "Context:" (sec. 1.2); feedback after deleting each
file (sec. 2.1); user and disk name appear on <Put) file (sec. 2.1); fast startup is the default
(sec. 3).

Additions: WINDOWS and RAMOK in User.Cm (sec. 3); switches, initial selspec and
context in command line (sec. 4).

Release 1.10:

Bugs fixed: "Bad VP" and "Bad tree" from < Delete>.

Changes: runs only under Alto OS version 5 or lat'~r; typing in selspec directly (sec.
1.2), "All" strip for marking/unmarking all files (sec. 1.3, 1.4). new typein scheme for
commands (sec. 2); change in <Send) cornmands (sec. 2.1).

Additions: "(chart)" viewspec for pictorial file lengths (sec. 1.1); BEGIN, END, arrow
fOf clearer indication of position within data list (sec. 1.3); default typein for commands
(sec. 2); saving command line in DDS.eM (sec. 2); initializing viewspecs and sorting from
Oser.Cm (SEC. 3); fast startup featun~ (sec. 3),

Release 1.9:

*** There was no official release 1.9.

Release 1.8:

Bugs fixec1: stack overflows (really!), "VstrE:am error" after < Delete>; fi Ie name from
<Put) wasn't getting added to data base.

Changes: funs under new Alto Operating System; "contents" 'v'iewspec shows the whole
file (sec. 1.1); marking all file~, is now done in selspec area (:lee. LA); error message line
moved to just below type-in line (sec. 2).

Enhancements: "referenced", "(browse)", and "(small)" viewspecs (sec. 1.1);
interrupting sorting by t~'ping (sec. 1.1); context expression (sec. 1.2); initiating commands
with YELLOW in command menu (sec. 2); <Context> and < Rename> commands (sec. 2.1);

DDS 1.13

For Xerox Internal Use Only -- April 29, 1978

Octob(:r 12, 1977 38

interrupting <Delete>. by typing (sec. 2.l); SMALLFONT, SMALLBOLDFONT, SELSPEC,
CONTEXT, U~)ERTYPE options in User.Cm (sec. 3) ..

Release 1.7:

Bugs fixed: "Break at 0" o~ "Break at 1" during < Dekte>; occasional stack overflows
("Break at gctframe+36").

Changes: error messages now appear in their own area (sec. 2.2); cursor need not be
in the window when confirming a command (sec. 2).

Enhancements: documentation sec. 2 has been expanded and improved to clarify the
notion of designated files.

Release 1.6:

Bugs fixed: DDS would go into SWAT "BrEak at getframe+36" (stack overflows); also
occasional "Bad vp" or "Vstream error" messages. A couple of typos In the documentation
also fixed. .

Enhancements: blinking caret for type-in (sec. 2); complex selspec expressions (~;ec.
1.2); count of marked files not selected (sec. 1.2, 1.4).

Release 1.5:

Changes: command menu in place of control characters (sec. 2); viewspecs do not
require clicking (sec. 1.1).

Enhancements: Delete, Send, Bravo, Gears commands are built in (sec. 2); sorting by
serial # (sec. 1.2).

Release 1.4:

Changes:date-and-time line rearranged; better behavior when displayed properties do
not fit on one line.

Enhancements: "Sorting ... " message (sec. 1.2); "*" feature in t Execute (sec. 2).

Release 1.3:

Bugs fixed: system would blow up on any attempt to produce an error message such
as "Mouse is not in a window"; system would sometimes blow up \vhen starting up; the date
and-time line no longer blinks.

Changes: 1 Execute now only. processes marked files (sec. 1.4, 2); sorting by extension
is implemented (SI;C. 1.1).

Enhancements: marking individual files (sec. 1.4); displaying tlH! file count (sec. 1.2,
1.4); "pagemap" viewspec (sec. 1.1); user-selectable fonts (sec. 2.1).

DMT. Peek, PeekSum

For Xerox Internal Use Only -- April 29. 1978

March 9, 1978

DMT, Peek, PeekSum

39

This documentation describes the operation of three related Alto Subsystems: DMT, the
Memory/Control Ram diagnostic; Peek, the program to which DMT reports its findings; and
PeekSut11, the program which summarizes the reports collected by Peek.

l. Creating a Peek Disk

You should devote a separate disk to Peek -- it has special requirements. If the Peek disk
isn't cleaned out regularly, you will find the Peekilng Alto in Swat out of disk space after a
long he,J iday weekend, especially if your network hns many mach i nes. Peek is also a boot
server (see below for details), so it is important that the boot files on the Peek disk be
current. The easiest way to meet both of these requirements is to periodically recreate the
Peek disk from scratch:

1) Boot an as from the net and respond 'Yes' when it asks if you want the long
installation dialog, and 'Yes' when it asks if you want to ERASE the disk.

2) Retrieve <}Jto>PeekDisk.cm and invoke it by typing to the Exec:
>@PeekDisk.cm@

2. History

Chuck Thacker made DMT (early 1973) by combining many small diagnostics which he had
developed to stress main memory using certain emulator instructions. There were originally
two versions: PMT (Printer Memory Test) which logg(:d statistics on the Diablo printer; and
DMT (Display Memory Test) which lIsed the display. Later (late 1973), an Ethernet driver
was added to Dr, IT, Bob Metcalfe wrote Peek, and Chuck wrote PeekSum. At this point,
development and maintenance of Pf'dT stopped. Still later (mid 1975), Dave Beggs added a
Control Ram tes:: to UMT, rewrote the Ethernet driver and took over maintenance. Nate
Tobol wrote the Alto II memory test (mid 1976), which was merged into DMT. Dave
rewrote Peek Clnd took over its maintenance. Doug elm k extended PeekSum, and took over
its main tc rtance (early 1977).

DMT is written in the BCPL-compatible variant of Nova Machine language and distributed
as a type-B boot file (see the BuildUoot documentation for more details).

When D1V1T is runni'lg, the Alto screen is black with a white cursor changing position once
each time through the main loop. For Alto I the cursor flips at random Intervals; for Alto
II 1 he interval is about 1 secolld. On Alto lIs with extended memory, the cursor contains a
num ~)er between 0 ancl 3 indicating which bank it is currently testing. Two keys are
checked each time through the main loop.

DMT, Peek, PeekSum

3.1. Statistics

For Xerox Internal Use Only -- April 29, 1978

March 9, 1978 40

If the'S' key is depressed, DMT will display (and transmit on the Ethernet) the statistics it
has accumulated. The display leoks something like this:

DT\1T of 10 Dec 77, Alto II XM 241. 456 blocks, testing 17341 to 176777
o bad llIain memory chips
o bad control memory chips

If there are errors, a line describing each type of error will be displayed, and thE~n, if the
errors can be resolved to a particular chip, the Card, Rowand Column (for Alto I), or the
Card and Chip number ~for Alto (I) will be displayed. Thi5 display will stay up as long as
the S key 'is depressed. I eriodically the statistics are automatically broadcast on the Ethernet
and appl~ar briefly on the screen.

3.2. Super Simple Debugger - SSD

If the 'Q' key is depressed, DMT will enter SSD, anoetal debugger. The screen will change
to white background, and 3 rows of numbers will appear.

The top row of numbers are the emula tor state when the debugger got control: ACO, ACl,
AC2, AC3, Carry, and PC. There are two \'vays to enter the debugger: by executing some
flavor of JSR whose effective address is the debugg'=r entry point, in which case PC will be
zero; or by executing an unimplemented op-code. in which case PC will contain TRAPPC
(location ~'27). The most COn1Ir;On way for a Nova program to die is to jump to some small
address, so DMT sets up low core to call the debugger. A less likely way to die, but useful
for setting breakpoints, is to execute an unimplementec. op-code, so DMT sets up the
TrapVector in page 1 to call the debugger also.

The middle row of numbers are the the R-regist~rs from the last parity error: DCBR,
KNMAR, DWA, CllA, PC, and SAD. These locations are written by the parity task
microcode and read by diagno~ tic programs when analyzing a parity error.

The bottom row displays two internal debugger registers, User Value 0 (UVO) and User
V<llue 1 (UV 1). UVI is displayed only if SSD has opened a main memory location.

SSD recognizes the commands listed below. C(UVO) means contents of the memory location
addr~:ssed by UYO. 'OpenCell' is true if UVlis bemg displayed. Type-in goes into UVO if
no cell is open, otherWIse it goes into U VI.

/ it OpenCel1 then UVO 'r UV1; UVI 'r- c(UVO); OpenCell .:- true
cr if OpenCell then c(UVO) f- UVl; OpenCell f- false
del OpenCe\l f- false
bs 'If OpenCell then c(UVl) f- c(UVl) rshift 3
If if OpenCell then c(UVO) f- VVl; UVO f- UVO+l; UVl f- c(UVO);

OpenCel1 f- true .
t if Open Cell then c(UVO) f- UY1; UVO f- UVO-1; UVI f- c(UYO);

Open Cell f- truc
G Restore Ste,te; Goto UVO
P Restore state; Goto (PC eq 0 !' AC3. PC)

Peek currelltly conditions the Ethernet interface to masquerade as host 11376, ignoring the
normal Alto host address. This way peek can run on any machine and DMT does not have
to find it.. This will evenlually be ch,mged when DMT implements the Pup Resource
Locatior Protocol.

DMT, Peek, F'eekSum

For Xerox Internal Use Only -- April 29, 1978

March 9, 1978 41

Peek opens several windows on the display. The top window is for user commands. There
is currenl' y only one: Quit. The next window displays the rele3se date of the program, a
digitc I clock, the Pup internetwork a.ddress 0:: the machine, and the number of free pages on
the disk. The next window is opened by the Peek Server and displays DMT reports as they
arrive.

Peek has a number of options, and reads User.cm to find out what to do. An example of
the Peek slice of a User.cm file is given below.

4.1. Peek Server

If there is a line of the form "Peek: <filename)" in User.cm, Peek will start up a Peeking
process which will listen for raw Ether packets of type PeekReport and write them on
(filename). The filename stould be 'Peek.reports' since PeekSum, described below, assumes
this.

4.2. Even t Report Server

Peek inplements the Pup Event Report protocol. For each line of the form "ERP:
<number> (filename)" in User.cm, Peek will instantiate an event ~'epoft process which will
listen orl socket <number) and write event reports on <filename).

4.3. Boot file Server

Peek implement~ the protocols necessary to be an Alto boot file server. For each line of the
form "Boot: <number) <filename)" in User.cm, Peek will send <filename) when it receives
a "'layday packet requesting bootfile (number).

4.4. Raw Ether Echo Server

Peek impleml!nts the raw Ethernet Echo protocol. This is the echo protocol used by EDP
and NEDP, the diagnostic programs for the Alto and Nova Ethernet interfaces. As
mentioned ab(>ve, the host address is #376.

4.5. Network Directory fytaintenance

PeekSum uses the network directory, which is available from Name-Lookup servers on the
network as a file called 'Pup- Network.Directory'. Peek implements a subset of the network
upd1te protocol to keep the local copy up-to-date.

4.6. User.cm Example

Below is ,\11 example of th,,! Peek part of a User.cm file. In this example DMT statistics go
to the file 'Peek.reports', Event reports addressed to socket 30 (swat parity error reports) go
to the file 'SwaLERP', and three maintenance-type boot files are available for dIagnosing
A Itos. Notice that all dlaracters between a semlicolon and a carriage return are considered
to be comments and ignored by Peek (this is not truc for all programs that lise User.cm).

[EXECUTIVE]
... executivc stliff. ..

[PEEK]
; Syntax:
; Boot <bootFileNumber> <fileName)

For Xerox Internal Use Only -- April 29, 1978

DMT, Peek, PeekSum March 9, 1978

; ERP <socLow> <fileName>
; Peek <fileName>
; All numbers are in octal

Peek: Peek.reports ; PeekSum.run assumes this

.; only diagnostic boot files should be kept on this disk -
; the other kinds change too frequently.
BClot: 5 CrtTest.Boot
Boot: 6 MadTest.Boot
Boot: 1:. PupTest.boot
Boot: 12 DiskTest.boot
Boot:] 5 KeyTest.boot

ERP: 30 Swat.ERP ; swat errors

[BRAVO]
... bravo stuff. ..

42

Peek wri tes the contents of User.cm into the Command window as it reads through the file.
If the file has bad syntax, Peek will call Swat with a description of its complaint (e.g.
"[ReadNumber] - number contains illegal characters" if it is expecting a number and reads
something other than 0-7). Tyr,ing <ctl>-U will rest.ore the user display. The last item in
t.he Command window is what I eek is having trouble with.

5. PeekSum

PeekSum reads the file Peek.Reports (the output of Peek) and constructs a summary of the
errors repo~ted by DMT (see above) for each Alto. PeekSum writes on the file
'PeekSummary.Tx' a tabulation of the error reports, to~,ether with the owner's name and the
machine's location, retrieved (if possible) from the I ile Pup-Network.Directory, which is
maie tained by Peek, as described above. .

As Peek is started and stopped, it writes short messages to this effect on Peek. Reports; these
messages are reproduced at the beginning of PeekSlImmary.Tx. The number of the local
network is also written. If Peek.Reports contains multiple reports from a single Alto (which
is i !slIally the case), PeekSum will reco.rd the largest number of errors of each type, over all
such reports.

Pcek~;um will complain and then gracefully stop execution if the files Peek.Reports or
PeekSummary.Tx are ullopenable for some reason. If Pup-Network.Directory is unopenable
or absent, the Ol put file PeekSummary.Tx will not include names and locations of Altos, but
will contain error reports grouped by Alto serial number.

To run PeekSum, just type:

>PeekSum

and the program will go about its business. When it has finished, PeekSummary.Tx should
be printed.

DPrint

For Xerox Internal Use Only -- April 29, 1978

March 23, 1977

DPrint - Diablo Printer Program

43

This program types text files on a Diablo printer connected to the Alto. It is a vanilla
program with very few features. Use Bravo if DPrint's facilities are inadequate.

The syntax of the command line is:
DPrint/switch parameterlswitch ... filename filename ...

The only switch permitted on the word "DPrint" is "/P", which instructs DPrint to p.luse
before the beginnlllg of each page.

One or more parameters may optionally be specified:

n/W Sets the line width to be n characters. Lines longer than this will wrap around
to the next line. The default is 75 characters.

niL Sets the page length to be n lines. This determines the point at which printout
will pause (if IP was in voked) and also controls the amount of paper spewed
when a form-feed is encountered in the file. The default is 66 lines (11 inches)
if IP is not in effect or 57 lines' (9.5 inches) if it is.

nlM Sets the left ma!.fdn to be n units of 1/10 inch from the hardware left margin
of the printer. I he default is zero.

Command line parameters without switches are assumed to be names of text files to be
printed. If a file cannot be found or a parameter is otherwise incorrect, you will be
prompted for the correct value.

When DPrint pauses, you may either type space to resume printout or "Q" to abort it and
quit out of the program. DPrint will pause :immediately if you strike any key while it is
printing, and also if the printer becomes not ready.

EmPress

For Xerox Internal Use Only -- April 29, 1978

December 14, 1977

EmPress

44

EmPress has several functions. Its p'rimary lise is to convert ordinary text files into Press
format, and to send the converted fIles to a Press printing server. Options include the ability
to produce a Pres~; file without tran~i1nitting it, and to transmit Press files that have been
previously produced. Additional features provide for merging sevEral Press page images into
a single Press file, and for personalizing individual copies of documents.

EmPress can distinguish Press files from text files, so it need not be told whether to
convert. As a text file converter, EmPress is intended for formatting program listings and
supports only simple formatting operations such as Tab and Form Feed. Bravo trailers are
ignored.

Joe Maleson wrote the original program. David Boggs made the modifications that allowed
transmission of files to pnnters. Rick Tiberi produced the current version, adding the Press
file merger and copy personalization facilities, and curing many problems.

Standard Case:

To send one or more Press qr text files to your default Press printer, using a default font to
con vert the text fi les, type:

empress filel file2 file3 ...

and read no further. The more general command line to EmPress is:

EmPress[/<global switches)] [<parameters)/<switches)] inputFiles

The square brackets denote portions of the command line that are optional and may be
omitted. EmPress will print up to 100 input files.

Each global switch has a default value which is used if the switch is not explicitly set. To
set a switch to 'false' proceed it with a 'minus' sign; to set it to 'true' just mention the
switch.

Switch Default

IT true

Inumber 8

IH true

Function

[Transmit] will send the resulting press file to a printer.

(text files only) tab width -- see below.

(text files only.) [Headings] will print a heading and page number on
.each page.

EmPress

For Xerox Internal Use Only -- April 29, 1978

December 14, 1977 45

EmPress recognizes a number of optional parameters which can be set from the command
line. Parameters set from the command lIne take precedence over defaults built into the
program.

Parameter

string/O

nllmber/C

string/H

string/I

string

nllmber/T

string/F

number/P

Default

Swatee

1

none

none

none

Function

[Output] the name of t'le output file. EmPress lIses Swatee
unless told otherwise, since the output press file is usually sent
to the printer and then discarded.

[Copies] the number of copies to print.

[HostName] the name of the printer. This takes precedence
over the name following PRESS: in the [HardCopy] section of
User.cm.

[Input.] the name of an input text file to be formatted and
saved or transmitted, or t)f an input Press file to be transmitted.

a string without any switches is assumed to be an input file.

The remaining switches apply to text conversion only.

8

Gac:ha

8

[Tab] the width of a tab character in multiples of the width if
a space character.

[FonlFace] the font to lise. You must have 'Fonts. Widths' on
your disk.

[PointSize] the point size of the font.

EmPress

User.Cm Entries

For Xerox Internal Use Only .-- April 29, 1978

December 14, 1977 46

The following is a sample User.Cm hardcopy section, configured to lise the Menlo Press
printing server as the preferred printer:

rHARDCOPYl
PR EFER R EoFORMA T: Press
EARS: Palo
PR ESS: Men 10
PRINTEDBY: "$"
FONT: TIMESROMAN 10 lYflR

The FONT entry specifies that TimesRoman 10i (italic) should be used as a default font
instead of Gacha8 (EmPress's default choice). The second, point size argument, and the
third. face specification argument are optional. The face ar9,ument contains three letters
specifying weight (M, B, or L), slope (R or I), and expansion (\..." R, or E), respectively.

The PRINTEDBY field, if present, specifies the name to be used in the Name field on the
break page. The current disk login name will replace the character $. EmPress chooses "$" as
a default in the absence of a specification.

EmPress

For Xerox Internal Use Only -- April 29, 1978

December 14, 1977 47

Program operation

When EmPress encounters a Press file in the input list, it transmits (or stores) any text file
that it is currently converting, then transmits the Press file. A new break page will be
printed for each Press file, containing that file's name. EmPress will override the "created
by" field of a Press file with a name derived as described above. It will fill in blank file
name and date fields with the obvious defaults. If copies are specified in the command line,
EmPress will override the number of copies specified in the Press file with the command
line value.

EmPress uses the file Swatee for temporary storage while converting text for transmission. If
in so doing Swatee becomes nearly full, EmPress will suspend formatting, send what has
accumulated so far, and then PfE:S:; on. This has two desirable consequences: 1) a very full
disk will not run out of space and 2) some pipelining can take place since the printer can
munch on the first chunk while Em Press empressifies another.

Press File Merging

EmPress will merge' several one page Press files into a single one page Press file. This allows
the outputs of Bravo, SiI, Draw, Markup, etc., to be merged without a separate pass through
Markup. One additional text or Press fi.le may also be submitted, and it wil be printed
follOWIng the one page merge result.

One invokes the merge feature through one' additional global switch, and one additional
local swi tch:

Adc itional Global Switch:

1m Merge. All subsequent input files that are not qualified by switches mllst be
single-rage Press files. They will be merged to form a single (cover) page in the
Press i1e result, con tai ni ng all their Pless specifications. Th is SWI tch also
conditions Empress to expect the additional local switches, described just below
and in the Personalization section.

Additional Local Switch:

Id Document. This switch may be used to identify an optional main document, when
the merge option is used. The file may be a simple text file or a Press file. It will
follow the one page merge result in each copy printed.

EmPress

Personal ization

For Xerox Internal Use Only -- April 29, 1978

December 14, 1977 48

This relatively specialized feature is provided to allow the personaliz2.tion of individual
copies of a document. Each copy of the document might contain, for instance, the name
and address -of the person for whom it is intended. Up to six lines of personalized
information can be specified. This information will replace distinct.ive "key strings" that
have been placed in the cover page (merged) files or in the main document.

The key strings must appear in contiguous groups of up to six lines each. The personalized
information for the current copy, specified in a paragraph of a special Bravo-format
addressee file or in the command line, wiII replace the key strings in euch group, line for
line. Thus the personc.lized information may occur more than once in each document (Dear
Mr. PARC/SOD: ... yes, you and all the members of the PARC/SOO household can enjoy
the benefits of ...). Lines in the addressee paragraph for which no keys are provided are
discarded.

The default key is "(", forty hyphens ("-"), th/en ")". If the string "(--title--)" appears
anywhere in the document, the name of the "main" document (the one specified using the
"/d" switch) will rep]ace it.

The "/m" (merge) global switch mllst be specified before any of these personalization
specification swi tches are valid.

Additional Local Switches:

Ik Key. The item is a key that replaces the default (see above).

/a Addressee. The item is either the name of a Bravo format file containing a list of
addressees -- one per paragraph, one line in each paragraph for each key line in
the cover page or mal n document -- or a literal add ressee, enclosed in double
quotes. In a ltteral, use hyphens where you wish blanks to appear in the name.

'For Xerox Internal Use Only -- April 29, 1978

Executive User's Guide March 20, 1978 49

Executive User's Guide

Executive, the Alto command processing subsystem, is the intermediary by which Alto lIsers
generally invoke other subsystems and ask simple questions about the state of the Alto file
system. I t is just the same as any other subsystem. except that its name is known by the AI to
Operating System, and it is invoked by the Operating System whenever the BCPL operator
"finish" or equivalent is executed. This document de~cribes version 8 of Executive.

1. What It Does

The operation of Executive proceeds thus:

1. It reads any leftover unexecut(d commands from a file called Rem.Cm into a main
memory command queue.

2. It begins building up a com:nand line (terminated by a CR). If the command queue
empties)efore the command line is termirlated, additional characters are read from the
keyboard until a CR is read. Editing is done during this phase. If the command line has
been empty for about twenty minutes, the user is assumed to be occupied elsewhere, and the
diagnosl.1C program Dm1.l3oot is invoked either from the disk (if it can be found) or from
the Ethernet.

3. The edited command is placed at the front. of the command queue and t.he command
queue is analyzed for *-, #-, and @-substitlltions. If something of the form @filename@ is
discovered in the first line in the command queue, it is replaced by the contents of the
named file and analysis continues with the flfSt character of the replacement. Executive
makes no attempt to detect or recover from infinitely recursive replacements. If the
characters :4; or :;'/: are encountered in a filename in the first line, the file directory is used
to replicate that filename with appropriate sub~ititlltions. This step results in a completely
eclited command line.

4. The first atom (contiguous sequence of legal file name characters) in the command line is
analyzed to see whether it is the name of a subsystem in the file directory or the name of a
command internal to Executive or neither. If neither, then Executive attempts to extend the
atom into the name of a subsystem or Executive command. Failin~ in this, it complains and
resets itself. Otherwise the line is written on the file Com.Cm. 1 hen if the first atom was
or could be extended into a subsystem name, the rest of the command queue is written on
Rem.Cm, and the subsystem is invoked with a CalISllbSY~i Operatin~ System call. If it is an
internal Executive command, the appropriate subrolltine is called. rhe Executive passes the
switches found on the subsystem name in the L1ser parameters vector of CallSubSys. See the
documentation of CallSubSys for more details.

In parallel with these steps, Executive does a few housekeeping chores:

a. It reads the entire file directory into memory, merges in the names of lIser-callable
routines internal to Executive, and sorts the resulting list alphabetically.

b. Having nothing else to do, it puts a line containing a continuously-updating digital clock
ancl the number of free disk pages on the user's screen, and flashes a cursor where the next
typed character wi II go.

A number of characters have special meaning during the editing step (2):

NuB:

For Xerox Internal Use Only -- April 29, 1978

Executive User's Guide March 20, 1978 50

Linefeed:
Ignored

Carriage Return:
Terminates the line, beginning step 3.

Control-A:
Backspace:

Removes the last character from the line queue.

Control-W:
Removes the last item which iooks like a file name from the line queue.

UpArrow:
Si ngle quote:

Causes itself and the next character both to be appended to the line queue,
regardless of what the next character is.

Control-U:
Signals that at the concltl:,ion of step 1. the line queue is to be written on the file
Line.Cm and its contents replaced by the text "Bravo/n Line.Cm". If one has the
proper Bravo and User.Cm, this will invoke Bravo on thE: command Jine ..

Control-X:
Performs step 3 on the line queue as it is, returns to step 2. In other words, it
eXpands @, ", and #.

Control-C:
Delete:

Escape:

?:

Tab:

Empties out the line queue, starts over again.

Interprets the last atom in the line queue as the prefix or a 'file name; continues
that file name until it is complete or ambiguous. Flashes the screen if it is
am biguous.

Interprets the last atom of the line queue as the prefix of a file name; types out all
file names which begin that way.

Same as "?" except it deletes the atom from the line queue after typing the file
names. This would be what one would normally use to IIlterrogatE: the directory. *
and # work as expected.

In step 3, several characters have special meaning:

~:em icolon:
Carriage Return:

Terminate the line; control goes to step 4.

Up Arrow:
If followed by a carriage return, do nothing. If followed by an liP arrow, put one
up arrow in the line queue. If followed by any other charactEr, put both characters
in the line queue (Ugh!).

/:
If followed by another "/", this begins a comment, so scan ahead until finding a
carriage return or semicolon. If not, put the "/" in the line queue.

For Xerox Internal Use Only -- April 29, 1978

Executive User's Guide March 20, 1978 51

@:

*.
#:

Scan ahead until finding another @ (the second @ may be omitted if it comes at
the end of the command). The atom in between is a file name. Replace the
@atom@ by the contents of the named file. If the file doesn't exist exactly as
specified, try extending the specification and forcing a .Cm suffix.

Expand the atom lIsing these characters by making a search through the file
directory. :« matches any seguence of file name characters. # matches any single
character except a period. FIle names are defined to end with an infinite number
of periods. The atom is replaced by all file names match i ng its pattern. Swi tches
on the atom, if any, are replicated.

In step 4, one switch is taken to have special meaning on the subsystem name only. The
switch I! will set the pause parameter in the call to CallSubSys to true allowing you to enter
Swat after your program is loaded, but before its fi:~st instruction is executed. This switch,
if detected. is removed from the command line before Com.Cm is created. This feature is
extremely useful if your program is hitting a bug before its first user interaction.

2. Executive Commands

The Executive contains a number of subroutines which can be invoked from the command
line. The commands corresponding to these subroutines can be identified by the extension
character " ", which is illegal in a file name. ExecL:tive commands include the following:

Type FileName ...
Display the contents of the named file(s) on the screen. After each page, it asks
whether YOll want to see more of the current file. A Ctrl-C at this point
terminates the entire Type command. You can type any files, even binary ones, but
typing some files will give you more Jseful information than typing others.

Delete FileName ...
Removes the named fil(~s from the directory and frees their disk space. Use this
command very carefully. Its effect cannot be undone.

Copy DestFileName ~ SourceFilcName ...
Copies a file. If there are several SourceFileNames then the copy will contain the
concatenation of the information in the source files, in the order listed.

Rename Old FileName NewFileName (or NewFileName ~ OldFileName)
Changes the name of Old FileName. New FileName must not already exist unless
Old FileName and NewFilcName are the same (use this feature to change the
capi tal ization of a file name).

BootFrom Filel'hlIne r ... Sys.Boot]
Initiates a sortware-simulated boot.strap sequence on the file named by FileName.
Most probably the FileName should have the .Boot extension. Like the OS system
call l3ootFrom (which it uses) this command does not actually do a hardware
bootstrap operation, so it does not re-initi:tlize any Alto hardware or microcode
tasks. If you don't know what this implies, don't worry about it.

Qui t.'"
Diagnose."'"

Has the effect of BootFrom Dmt.Boot. This commences the funning of the
diagnostic program, which doesn't use the Operating System at all. This is done

For Xerox Internal Use Only -- April 29, 1978

Executive User's Guide March 20, 1978 52

Login.'"

automatically after a machine has been idle in Executive for about 20 minutes. If
OmLBoot is not on your disk or you turn the disk off Omt will be loaded from
the Ethernet.

Places your user name and password in the system area of main memory for use
by program, which interact with access-controlled resources (like timesharing
systems, for example).

SetTime.'"

Dump.""

Sets the Alto's internal time-of..,.day clock. The time is obtained from the Ethernet
if possible. Failing that you will be asked to supply the time (and possibly time
zone) manually in the form 12-jan-78 14:45. U~,e SetTime/m to bypass the
Ethernet and set time manually.

DumpFileName SourceFileName ...
\Vrites DumpFile as a structured file (in Dump format) containing the names and
data of al1 the SourceFilts. This is a convenient way of packaging up a collection
of related files into a single composite file that can later be decomposed into its
constituent parts. See Appendix A for details of Dump format. The primary virtue
of this particular format is that it is intended to be compatible wIth the Dump
format of the Data Genelal Nova DOS operating system, and it is compatible with
the Tenex subsystem DUI\1P-LOAO'.SAV.

Load.'" DunpFileName
This reads through a Dump format file and creates individual files corresponding
to its constituent parts. The IV switch causes Load to ask you about each
constituent part, whether to ccp)' it from the DumpFile to an individual file or
not. Acceptable responses are Y, N, and C. The latter indicates that you would like
it to be copied, but into a file with a different nanc than that indicated. You are
then asked to supply the name you prefer.

Release.'"
Tells you the release n umber and clate of Executive. The release number is also
shown in the first Executive herald line, just after the slash following "Xerox Alto
Executive.",

Stand lrd Ram.-
For any Trap except the Swat Trap (~t77400) the Alto microcode sends control of
the emulator ta5k to the microcode Ram for interpretation. StandardRam initializes
the microcode Ram to send control of the emulator task back to the Rom Trap
handling microcode. If you don't initialize the microcode Ram before executing a
program which 1) uses Traps, and 2) doesn't initialize the Ram itself, then when
the first Trap happens your machine will probably do something bizarre, but it
usually wi Il not destroy disk data.

Install.'" FileName [.. .sys.Bootl
Causes a customizea version of the operating system on the file named by
FileName to be written on the file Sys.Boot. For further details, please see the
section on "Installing the operating system" in the Alto Operating System manual.

BootKeys."" FileName [.. .sys.Boot.]
Oid you know t.hat by holding down various combinations of keys on the Alto
keyboard while pressing the boot button it is possible to get the Alto to bootstrap
load itself rrom any file on the disk? (This bootstrap will probably crash fairly
quickly on any file except one in .Boot format.) Bootstrapping the Operating
system is simply a special case or this: all keyboard keys lip refers to disk address
0, which by convention is where a copy of the fir~;t data page of Sy:;.Boot is stored.
To fi nd out what keys to push in order to bootstrap load other fi Ies, you use the
(3ootKeys command.

For Xerox Internal Use Only -- April 29, 1978

Executive User's Guide March 20, 1978 53

Resume FileName [... Swateel
The file named by FileName is patched so that its Swatee file pointer is the same
as the current Swatee file pointer, and then it is loaded in and run. For best
results, this file should be Swatee, or a coPY of a Swatee. If you want to return to
Swat with an old Swatee (for example, oflginally you didn't have the right .SYMS
file) you can say

Copy...... Swatee ~- OldSwatee (no need to do this if Swatee is already
correct)

Chat.
Ftp.""
Scavenger
NetExec.'"

Resume Swat

These commands load the corresponding programs from the Ethernet. If you have
the .Run file for one of these, it will be found instead by the normal Executive
lookup strategy.

EtherBoot.,.., octal number
This command will boot any available Ethernet boatable file provided that you
know its number.

r~i1eStat. FileName ...
This comm lnd will tell you several thi ngs about a file: its length in bytes, size in
pages, seria number and disk address, creation anp wri.te dateS. If any FileNa~le
IS of the form octalls (or octall,octal2/s) the fIle WIll be looked up by senal
number rather than by name. This is useful if Scavenger or some other program
gives you a serial number without telling you the name.

3. User.Cm Entries

The Exe·:utive section of User.em may contain several commands to the Executive. Most of
these are command lines to be executed if some event is noted (see the Operatin& System
docllment.Hion for a descri plion elf even ts). I n add ition to the stand~lfd even ts, L:xecutive
\\ill post eventClockWrong If it finds the value of the time-of-day clock unreasonable.

The number of text lines in the user command window can be set from User.Cm using the
selector w:;erDisplayLines: followed by a number. You are advised not to set this number
higher than its default value (currently 16), but you might want to reduce the number in
order to leave more memory space for your directory if you have a large number of files
(say, more than 300).

4. Dump Format

A dump fil·~ is a sequence of blocks of eight-bit bytes. The first byte of each block is the
block type. A typical dump file might look like:

<name block)<data block l) ... <data block n)

<name block)<data block l) ... <data block m)
<end block)

Name Block - Type=#377

For Xerox Internal Use Only -- April 29, 1978

Executive User's Guide March 20, 1978 54

A name block contains two bytes of file attributes and then the file name. The file
attributes are used by the Nova operating system; Alto Dump sets these bytes to 0, and
Alto Load ignores them. The file name is a sequence of ASCII characters terminated by a
o byte .

. Data Block - Type=# 376

A data block contains two bytes of byte count (high-order byte first), two bytes of
checksum (high-order bvte first), and a sequence of data bytes. The byte count must be less
than or equal to 256 tor compatibility with Novas, ancl the count does not include the
checksum or byte count; only the data b~!tes are counted. Noyas do not handle data blocks
with byte counts of 0 or 1 correctly. Alto Dump will not prodliceslich blocks unless
forced to dump a file whose length is less than 2 bytes. The checksum is a 16-bit add
ignoring carry, over the data and byte count. If the block has an odd number of bytes, the

. last byte is NOT included in the checksum computation.

Error Block - Type=#375

Novas generate error blocks. Alto Dump does not. Alto Load terminates if it encounters
one.

End Block - Type=#374

An end block has no contents and terminates a Load

Date Glock - Type=#373

Date blocks with six bytes of date are generated by Nova RODS. Alto Dump does not
generate th(:m; Alto Load ignores them.

N.B. This appendix is included thanks to David Boggs.

Find

For Xerox Internal Use Only -- April 29, 1978

January 16, 1978

Find - a file searching subsystem

55

The Find subsystem allows you to search tl~xt files at very high speed on an Alto. Examples
of such files might be an address/telephone list, a source program, or a library catalog.

Find basically looks for all the occurrences of a pattern in a file, just like doing repeated
Jump commands in Bravo. A pattern is just a character sequence, except for the following:

in a pattern means "any character at all", e.g. CAP and CUP cOllnt as occurrences of
the patte] n C# P.

,..., in a pattern means "allow one character in the occurrence to d is(}gree with the
corresponding chlfacter in the pattern". For example, LAP, CUP, and CAT all count as
occurrences of the pattern ""'CAP (or CAP,,· or C"'AP). Two NS mean "allow two
disagreements", and so on. N,)te that "disagreement" only means substituting one character
for another: it. does not include insertions (e.g. CLAP for CAP), deletions (CP for CAP), or
transpositions (CPA for CAP).

If you really want to have a pattern containing # or "", you have to type a ' before it,
e.g. to search for the character sequence ATOM #, you have to type ATOM t #.

Unless you use the /c switch described below, upper and lower case letters are
considered identical, e.g. Cap, cap, and CAP all count as occurrences of CAP or of cap.

Unless you lise the Is switch described below, blanks (spaces) in the file are completely
ignored, e.g. CAP cOllnts as an occurrence of CAP; blanks in the pattern are also ignored.

There are two ways to invoke Find. The first way just searches a file for one pattern:
>Find filename pattern

(Since the Executive docs something special about @, #, %, "', t, and ; in command lines,
you must precede any of these characters in your pattern by a t. This is in addition to any
s YOll may need as described in the preceding paragraph.) The second way only specifies
the file:

>Find filename
and Find then prompts you repeatedly for patterns. To leave Find when lIsing it this way,
lise shift-Swat. or type an empty pattern (just type <return> when Find says Pattern:). You
can also use Find to search several files together, by invoking it with

> Fi nd/m fi lenamel ... fi lenamen
which also prompts .you for patterns.

In any of the above command lines, you can also use the /s switch, i.e. any of the forms
> Fi ndls fi lename pattern
>Find/s filename
)Find/ms filenamel ... filenamen

This causes Find to treat spaces (blanks) just the same as any other character in the file and
in the pattern.

In any of the above command lines, YOll can also use the Ic switch, which causes Find to
trea.t upper and lower case letters as different from each other.

After completing the search, Find displays at the top of the screen a summary of the form:
79 occurrences, 1200 ms, 150 pages

giving the tolal number of occurrences. the time in milliseconds, and the number of disk
pages in the file. In the remainder of the screen, Find displays the line containing each
occurrence of a pattern, with the occurrence indicated in boldface. To the left of the line,
Fi:nd displays the character position in the file when: the occurrence was found. After each
screenfuI, Find waits for YOll to type <space> if you want more, or <del) if you don't.

In addition to displaying matches on the screen, Find always writes the lines containing
matches on a file called Find.r,lfatches. However, it (Inly writes those matches which it
displayed, so if you stopped the display of matches witli , only those matches you
actually saw will appear on the file.

Find

For Xerox Internal Use Only -- April 29, 1978

January 16, 1978 56

What Find finds for you is all the "items" containing occurrences of the _pattern. Normally
an "item" is just a single line of text, delimited by <cr> on both ends. However, Find also
knows about two other kinds of items: Bravo paragraphs, and groups of lines separated from
each other by a blank line. If you use the Ip (tor Paragraph) switch, Find will show
(display Hnd Vlrite on Find.Matches) the entire Bravo paragraph containing the occurrence.
ff you use the Ib (for Blank line) switch, Find will sho\v everything surrounding the
occurrence lip to the next preceding and following blank line.

Find produces a large number of error messages. The messages
Pattern too long
Can't preallocate
RAM full

all mean the same thing, namely that your pattern is too long or too complicated
(unfortunately, it is too complicated to explain ex,ctly what "too complicated" means). The
message

Can't load RAM
means that your Alto has old or non-standard ROMs and Find can't do what it needs to do:
you should contact a hardware maintainer. (This should never h.lppen on Alto II's.)

Find has mlny obvious limitations. They can all be removed if people complain about
them. The following features could also be added upon request:

Requiring that a match be delimited by non-alphanumerics.
Boolean combinations of matches, maybe.
Ability to work with Trident disks. .
Possi bly other features requested by users.

Propranmers should note that the file searching capability is also available as a library
paCKage (called FindPkg), so programs can lIse it as well as people.

History of changes:

Release of 1/16/78

Added Ic (distinguish upper and lower case), Ip (item = paragraph), and Ib (item -
between blank lines) switches.

Alto Pup FTP

For Xerox Internal Use Only -- April 29, 1978

March 15, 1978

Alto Pup File Transfer Program

57

FTP is a Pup-based File Transfer Program for moving files to and from an Alto file
~iystem. The program comes in 3 parts:

1) An FTP Server" which listens for file transfer requcHs from other hosts,

2) An FTP User, which initiates file transfers under control of either the keyboard
or the command line, and

3) A User Telnet for logging into a remote host using the Pup Telnet protocol.

1. Concepts and Terminology

Tranferring a file from one machine (or "host") to another over a network requires the
active coor:eration of programs on both machines. In a typical scenario for file transfer, a
human user for a program acting on his behalf) invokes a program ca\]ed an "J-<iP User"
and directs it to establlsh contact with an "FTr Server" program on another machine. Once
contact has been established, the FTP User initiates requests and supplies parameters for the
actual transfer of file~;, which the User and Server flroceed to carry out cooperatively. The
FTP User and ITP Server roles differ in that the FTP User interacts with the human user
(usually through some sort of keyboard interpreter) and takes the in i tiative in user/server
i1teractions, whereas the FTP Server plays a comparatively passive role.

The question of which machine is the FTP User and which is the FTP Server is completely
independent of the direction of file transfer. The two basic file transfer operations are
cared "Retrieve" and "Store"; the Retrieve operation causes a file to move from Server to
User, whereas Store causes a file to move from User. to Server.

The Alto FT'P subsystem corltains both an ITP User and an Frp Server, running as
independent processes. Therefore, to transfer files between a pair of Altos. one should start
up the FTP slItsystem on both machines, then issue commands to the ITP User process on
one macb ine directing it to establ ish contact with the FTP ServerjJrocess in the other
machine. Subsequent file transfers are controlled entirely from the FT'P User end, with no
human interventIon required at the Server machine.

Transferring files to or from a Maxc system or an IFS involves establishing contact with
FTP Server processes that run all the time on those machines. Hence, one may simply
invoke the Alte FTf> subsystem and direct its FTP User process to connect to the machine.

In the descriptions that -Follow, the terms "iocal" and "remote" are relative to the machine
on which the FTP User program is active. That is, we sp\!ak of typing commands to our
"local" FTP User program and directing it to establish contact with an I'TP Server on some
"remote" machine. A Retrieve command then copies a file from the "remote" file system to
the "local" file system, whereas a Store command copies a file from the "loc~;t1" file system
to the "rt~mote" file system. Furthermore, we refer to "local" and "remote" filenames. These
must conform to the conventions lIsed by the "local" and "remote" host computers, which
may be clissimi lar (for exanple, Alto versus Maxc). The Alto FTP knows nothing about
Maxc filename cOf;ventions or vice versa. .

Th(Alto FTP subsystem also includes a third proce~:s. called a "User Telnet", which
simulates a terminal in a manner exactly analogous to the Chat subsystem (though lacking
some of its fint!r features). By this means, you may log in to a file sytem machine to

Alto Pup ITP

F'or Xerox Internal Use Only _ .. April 29, 1978

March 15, 1978 58

perform operations not directly available via the basic file transfer mechanisms. If you log
mto Maxc, it is even possible to rlln "PupFTP". the Maxc Fff> User program, and direct. it
to establish contact wllh the FTP Sener in your own Alto. You should probably not. try
this unless you really understand what you are doing, however, since the terms "local" and
"remote" are relative to Maxc rather than to your Alto (since the ITP User program is
running on Maxc in this case), which can be confusing.

2. Calling the FrP Subsystem

A fluI11ber of opt: ons are available when running FTP. The program decides which parts of
itself to enable and where user commands will come from by inspecting the command line.
The general form of the command line to invoke fTP looks like: .

FrP[/<Global-switches>] [<Host-name> [<Command-list>]]

The S'luare brackets denote portions of the command line that are optional and may be
omitted.

Global switches, expl1ined below, select sOlne global program options such as using the
Trident disk instead of the Diablo. The first token after the <global-switches), if present,
is assumed to be a (host-name> (a discllssion of which appears later in the description of
the "Open" command). The User FTP will attempt to connect to the FTP Server on that
host. After connecting to the server, if a <command-list> is present, an interpreter is
started which feeds the~il! commands to the User FTP. \Vhen the command list is exhausted,
FTP returns to the ALo Executive. If no command list is present, an intt::ractive keyboard
command interpreter is started.

Each global switch has a default value which is lIsed if the switch is not explicitly set. To
set a switch to 'fals~' proceed it with a 'minus' sign (thus FTP/-S means 'no Server'), to set
a switch to 'true' just mention the switch.

Switch

IS

IU

IC

IT

IL

IA

Default

true

true

true

false

false

Function

[Server] starts the FTP Server. The Server is not started if the User
IS enabfed and is being controlled from th,~ command line.

[User] starts the FTP User. As explained above, the interactive
command interpreter or the command line interpreter will be started
depending on the contents of the command line.

[Chat] starts the Telnet. The Telnet is not started if the User is
enabled and is being controlled from the command line, or if the
system disk is TPO.

rTridentl sets the system disk to be a Trident drive. The default is 0,
but can be chaIH~ed by following the IT with a unit number between
o and 7' (thus FTP/T5 means lise Trident unit 5). User and Server
commands aQply Lo files on this disk but command line input is still
taken from C)IH.cm on the Diablo drive.

frLog] causes al1 output Lo the User FrP window to also go to the file
fFTP.log" on DPO, overwriting the previolls contt!nts. Log is true if
the User is ellabled and is being controlled from the command line.

[A(:pel)qLogJ enables the log but appends to FrP.log rather than
overwn tl ng It.

Alto Pu~, FTP

IE

III

IB

10

true

true

false

false

For Xerox Internal Use Only -- April 29. 1978

March 15. 1978 59

[Error] causes FTF' to ask you if you want t) continue when a non
tatal error happens during executton of a command line. FTP/-E
will cause FTP to automatll;ally recover from non fatal errors wi thout
consliiting you.

[Ram] allows FTP to use some microcode which speeds things up
slightly. If your Alto has no ram. this switch is ignored.

[Boot] creates 'FTP.Boot' for distribution to boot servers.

[Debug] starts FTP in debug mode.

The rest of the global switches are explained below under 'Server Options'.

3. The FTP Display

The top inch or so of the display contains a title line and an error window. The title line
displays the release date of that version of Frp. the clirrent date and time, the machine's
internetwork address, and the number of free pages on the disk. The error window displays
certain error messages if they arrive from the network (errors are discllssed in more detail
beJ(w). p .. window is created below the title line for each part of FrP which is enabled
during a session {server. user, and tel net}. .

If the ~IP Server is enab~ecl, it opens a window and identifies itself. f.f a User FTP
subsequently connects to this Server, the User's network address wiiI be displayed. Th;!
Server will log the commands it carries out on behalf of the remote User in this window.
The Server is not ,~nabled when FTP ;s being controlled from the command line.

The FTP U~;er opens the next window down and identifies itself. The command herald is
2ill a:;terisk.

The User Telnet ooens the bottommost window, identifies itself, and waits for a host name
to be e ltered. The Telnet is not enabled when FTP is being controlled from the command
:'ine.

3.1. Directing Keyboard input to the User and Telnet Windows

The bottom two unmarked keys control which window gets characters from the keyboard.
Hitting the unmarked key to the right of 'right-shift' (also known as the 'Swat key') directs
keyboard input to the Telnet window. Hitting the unnarked key to the right of the 'return'
key (also known as the 'Chat key'). directs keyboard input to the FTP User window. The
window which currently owns the keyboard will blink a Cllrsor at the next character position
if it is waitillg i:or type-in.

1J5~yboard Command Syntax

FTP's in~era(tive comnnnd interpreter presents a user interface very similar to that of the
A ito Executive. Its command structure is also very similar to that of the Maxc Pup FTf>
program (1IUpFTP), and the Maxc A rpaNct FTP program (FTP). The standard editing
characters, command recognition features, and help facility (via "?") arc available.

A.to Pup FTP

For Xerox Interna1 Use Only -- April 29, 1978

March 15, 1978

4.1. Keyboard Commands

OPE \./ <host name>

60

Opens a connection to the ITP Server in t.he specified host. FTP permits only one
user connection at a time. In most cases the word "OPEN" may be omitted: i.e., a
well formed <host name> is a legal command ancl implies a request to "OPEN" a
connection. FrP will try for one minute to connect to the specified host. If you
made a mistake typin~ the host name 2 nd wish to abort the connection attempt, hit
the mid.dle unmarked Key (to the right of <return».

Ordinarily, the host name can be a string, e,_g., "Maxc". Most Altos and Novas have
names which are registered in Name Lookup Servers. So long as a name lookup server
is available, FTP is able to obtain the information necessary to translat.e a known host
name to an inter-'network address.

If the host name of the server machine is not known, you may specify an inter
network address in place of the host name. The general form of an inter-network
address is:

<network> it <host> # <socket>

where each of the three fields is an octal number. The <network> number designates
the network to which the Server host is connected (which may be different from the
one to which the User host is connected); this (along with the "#" that follows it)
may be omitted if the Server and User are known to be connected to the same
net.work. The <host> number designates the Server host's address on <network>. The
<socket> n umber designates the actual Server 'process on that host; ordinari ly it should
be omitted, since the default is the regular l-TP server socket. I-Ience, to connect to
the FTP server running in Altc, host number 123 on the directly-connected Ethernet,
you should say "OPEN 123#" (the trailing "#tI is required).

CL·)SE
Closes the currently open User l::;TP connection.

LOGIN <user lIame> <password>
Supplies any login parameters required by the remote server before it will permit file
transfers. FTP will lise the user name and password in the Operating System, if they
are there. Logging into FTP will set the user name and password in the OS (in the
same manner as the Alto Executive's "Login" command).

\-Vhen you issue the "Login" command, ITP will first display the existing user name
known to the OS. If you now type a space, FfP will prompt you for a password,
whereas if you want to provide a dIfferent user name, you should first type that name
(which will replace the previous one) followed by a space. The command may be
terminated by carriage return after entering the user Ilame to omit entering the
password.

The parameters are not immediately checked for legality, but rather are sent to the
server for checking when the next file transfer command is issued. If a command is
refused by the server because the name or password is incorrect, FTP will prompt you
as if you had i~;sued the LOG I N command and then retry the command. Hitting
delete in this context will ahort the command.

A user name and password mllst be slIpplied when transferring files to and from a
Maxc system or an IFS. The Alto FTP Server requires a lIser-password to be supplied
if the server machine's disk is password-protected and if the password in the server
machine's OS does not match the pas~,word on the disk. Thus if the OS was booted
and FTP invoked because a Request-for-Connection was received (which bypasses

Alto Pup FrP

'For Xerox Internal Use o.nly -- April 29, 1978

March 15, 1978 61

password checking), FTP will refuse access to files unless a password is supplied.
However if the OS was booted normally, FrP assumes that the disk owner (who knew
the password) will control access by using the server option switches. The lIser-n.ame
is ignored.

CONNECT <directorl name> <password>
Requests the \-0 rp server to "connect" you (in the Tenex sense) to the specified
directory on the remote syst.em. The- password may be omitted by typing carriage
return after the directory name. As wIth LOGIN, these parameters are not verified
until the next transfer command is issued. At present, the "Connect" command is
meaningful only when transferring files to or from a Maxc system or an IFS; the Alto
FrP server curren tJy ignores can nect requests. If the "m ul tiple directory" feature of
the Alto Operating System ever comes into widespread lise, this may be changed.

RETRIEVE <remote filename>
Initiates transfer of the specified remote file to the local host. The syntax of <remote
filename> must conform to the remote host's file system name conventions.

If the server can find the file, FrP will then print out the complete filename followed
by the message "to local file <local filename> [OldlNew file]", where the local
filename is generally the same as the remote filename without directory or version.
At this point you may make one of th~ee choices:

1. Type Carriage Return to cause the data to be I.ransfened to <local filename>.

2. Type Delete to indicate that the file is not to be transferred.

3. Type any desired local filename followed by Return. The previous local, filename
will disappear, t.he new filenar:1e will replace it, and FTP will tell you whether a
file exists with that name. This filenam~! must conform to local conventions.
You now have the same three choices.

If the remote filename designates multiple files (the remote host permits "*" or some
equivalent in file names), each file will be transferred separately and FTP will ask you
to make one of the above three choies for each file. At present, only Maxc and IFS
support this capability. That is, you may supply "*"s in the remote filename when
retrieving files from Tenex or an IFS, but not when retrieving fi les from another
Alto.

STORE <local filename>
Initiates transfer of the specified local file to the remote host. Alto file name
conventions apply to the < local filename>; "*" expansion is not supported. FTP will
suggest a remote filename to which you should respond in a manner similar to that
described under RETRIEVE except that if you supply a different filename, it must
conform to the remote file system's conventions. The default remote filename is one
with the same 'name body' (name and extension) as the local file; the remote server
defaults other fields as necessary. If the remote host is a Maxc system or an I FS~ then
the directory is that most recently supplied in LOGIN or C01\jNECT commands and
the version is the next higher.

DUrvl P < remote fi lena me>
Bundles topether a grc)l p of files from the local file system into a 'dump-format' file
(see the Alto Executive documentation for the dump-file format and more on dump
files in general) and stores the result as <remote filename>. FTP will ask you for the
names of local files to include in the dump-file. Terminate the dump by typing just
<return> when FTP asks for anot.her filename. By convenUon, files lt1 dump-format
have extension '.dm'.

LOAD -(remote filename>

Alto Pup FTP

For Xerox Internal Use Only -- April 29, 1978

March 15, 1978 62

Performs the inverse operation of DUMP, unbundling a dump-format file from the
remote file system and storing the constituent fi·les in the local file system. For each
file in the dump-file, FTP will suggest a local file name and tell you whether a file
by that name exists on your disk. You should :·espond in the manner described under
RETRIEVE.

LIST <remote file designator>
Lists all files in the remote file system which correspond to <remote file designator>.
The remole file designator must conform to file naming conventions on the remote
host, and may designate multiple files if "*" expansion or some eguivalent is supported
there. If the <remote filename) is terminated by a comma, Ffl;o prints a prompt of
"*:t" at the left margin and prepares to accept one or more subcomll1ands. These
subcommands request printout of additi:mal information about each file. To
terminate subcommand input, type a <return> in response to the subcommand prompt.
The subcommands are:

Type
Length
Creation
Vlrite
Read
Times
Author
Verbose
Everything

Print file type and byte size.
Print length of file in bytes.
Prin t date of creation. .
Print date of last write.
Print date of last read.
Print times as we)] as dates.
Print author (creator) of file.
Same as Type+ \Vrite+Read+Author.
Print all information about the file.

This information is on:y as reliable as the Server that provided it, and not all Servers
provide all of these file properties. Altos derive much of this information from hints,
so do flot be alarmed if It is sometimes wrong.

DELETE <remote filename>
Deletes < remote fi lename> from the remote filesystem. The syntax of the remote
filename must conform to the remote host's file system name conventions. After
determinino that the remote file exists, FTP asks you to confirm your intention to
delete it. Ff the remote filename designates multiple files (the remote host permits "*"
or some equivalent in file names), IT? asks you to confirm the deletion of each file.

RENAtv1 E <old filename> <new filename>

QUIT

/{enames <old filename> in the remote filesystem 1.0 be <new filename). The syntax
of the two filenames must conform to the remote host's file system name conventions,
and each filename must specify exactly one file.

Returns control to the Alto Executive, closilllg all open connections.

TYPE <data type> .
Forces the data to be interpreted according to the s,r.ecified (data type>, which may be
TEXT or BINARY. Initially the type IS UNSPECIFIED, meanlllg that the source
process should, if possible, decide on the appropriate type based on local information.

BYTE-SIZE <decimal number>
Applicable only to files of type Binary, BYTE-SI ZE specifies the logical byte size of
the data to be transferred. The default is 8.

EOL <convention>
Applicable only to files of type Text, EOL specifies the End-of-Line Convention to
be lIsed for transferring text tiles. lhe values for <convention> are CR, CRLF, ancl
TRANSPARENT. The default is CR.

DEVICE <device>

Alto Pup FTP

For Xerox. Internal Use Only -- April 29, 1978

March 15, 1978 63

Causes <device> to be used as the default device in data transfer commands
(essentially it causes <device> to be attached to all renl0te filenames that do not
explicitly mention one). The punctuation separating <device> from· the other
components of a remote filename should not be included. For example you might
specIfy "Device DSK" to Tenex, not "Device DSK:"

CIRECTORY <directory name>
Causes <directory name> to be used as the default remote directory in data transfer
commands (essentially it causes <directory-name> to be attached to all remote
fi lenames that do not expl icitly men tion a d irecr.ory). Specifyi ng a defaul t directory
in no way mcdifies your access privileges, nhereas CONNECTing gives you 'owner
access' (and lIsually requires a password). Explicitly mentioning a dlfcctory in a file
name overrides the default directory, which overrides the connected directory, which
overrides the login directory. Punctuation separati ng <directory name> from other
Rarts of a remote filename should not be included. For example you might type
'Directory Alto" not "Directory <Alto>".

USER
Allows you to toggle switches which control operation of the FTP User. There is
currentl I' only one: DEI3UG, which controls display of protocol interactions. \Varning:
this printout (and the corresponding one in the SERVER command below) sometimes
includes passwords.

SERVER
Allows you to tog~le switches which control operation of the ITP Server. The
switches are PROTECTED, OVERWRITE, KILL, and DEBUG. The first three are
explained below under 'Server Options'.

TELNET
Allows vou to toggle switches which control operation of the Telnet. There is
currentl): only one: CLOSE, which closes the Telnet connectiol',; if one is open, and
clears the T~lnet window.

5. Command Line Syntax

The User FI~P can also be controlled from the command line. As explained above, the first
token cJter the subsystem name and server switches must be a legal host name; if the User

, FTP can't connect to the FTP Server on that host it will abort and return control to the
Alto Execlltive~ If a command list follows the host name, the comnnnd line interpreter is
invoked instead of the interactive keyboard in terpreter. Th is perm its the full capabll i ties of
the Alto Executive (filename recognition, "~:" expansion, command files, etc.) to be lIsed in
constructing co:nmands for FTP.

Each command is of the form:

<Keyword>/<SwitchList> <arg> ... <arg>

To get a special character (anyone of "*.#';") past the Alto Executive, it must be preceded
by a single quote. To get a 'J" into an FTP argument, the "I" must be proceeded by two
single quotes (the second one Lells FTP to treat the "/" as an ordinary character in the
argument, and the first one gets the second one past the Alto Executive).

Unambigllous ahbreviations of command keywords (which in most ca~ies amount to the first
l~tter) are legal. However, when constructing command files, you should always spell
commands in full, since the uniqueness of abbreviations in the plresenl version of FTP is
not guaran teed in future versions.

Alto Pup FTP

For Xerox Internal Use Only -- April 29, 1978

March 15, 1978 64

A command is distinguished from arguments to the previous command by having a switch
on it, so every command must have at least one switch. The switch "/C" has no special
neaning and should be used on commands where no other switches are needed or desired.

5.1. Command Line I;rrors

Command line errors fall into three groups: syntax errors, file errors, and connection errors.
FTP can recover from some cf these, though it leaves the decision about whether to try up
to you.

Syntax errors such as ullrecognized commands or the wrong number of arguments to a
command cause FrP's command interpret.er to get out of sync with the command file.
FrP can :~ecover from syntax errors by simply ignoring text until it encounters
another c.)mmand (i.e. another token with a switch).

File errors such as trying to retrieve a file which does not exist are relatively harmless.
FTF' recovers from file error~; by skipping the offending file.

Connection errors such as executing a store command when there is no open
connection could cause ITP to crash. FrP can't recover from connection errors.

When ITP detects an error, it displays an error message in the User window. If the error is
fatal, fTP waits for you to type any ch;uacter and then aborts, causing the Alto Executive
to flush the rest of the command line, including any commands to invoke other subsytems
after FTP. If FrP can recover from the error, It asks you to confirm whether you wish t.o
continue. If you confirm. it plunges on, otherwise it aborts. The confirmation request can
be b:~,r>as~ed by invoking FTP with the global error switch false (ITP/-E ...) in which case it
wiil plunge on after all non fatal errors. If you aren't around when an error happens and
you have told FrP to get confirmation before continuing after an error, the remote Server
will probably time out and close the connection. If you then return and tdl FTP to
continue, it will get a fatal connection error and abort.

5.2. Command Line Commands

OPEN/C <host name>
See description in "Keyboard commands". The first token after th,~ subsystem name
and globa switches is assumed to be a host name and no OPEN verb is required (in
fact If you supply it, ITP will try to make a connection the host named OPEN which
is almost certainly not what you want).

CLOSE/C
Closes the currently open User FTP connection.

LOGIN/C <user name> <password>
See description in "Keyboard commands". The <password> may be omitted.

LOGIN/C> <user name>
Causes FTP to prompt the lIser for the password. This form of LOG IN should be
used in command files since including passwords in command files is bad practice.

CONNECT/C <directory name> <password>
See description in "Keyboard commands". The <password> may be omitted.

CONNECT/Q <directory name>
Causes 'F1~P to promp.t the user for the password needed to connect to the specified
<directory name>. 'I his form of CONNECT should be lIsed in command files since
includir,g passwords in command files is bad practice.

Alto Pup FTP

For Xerox Internal Use Only -- April 29, 1978

March 15, 1978

RETRIEVE/C <remote filename> ... <remote filename>

65

Retrieves each <remot~ filename> and writes it in the local file system, constructing a
local file name from the name body of the actual remote file name as received from
the Server. FTP will overwrite an existing file unless the IN (No overwrite) switch is
appended to the RETRIEVE command keyword. If the remote host allows .,*" (or
some equivalent) in a filename, a single remote filename may result in the retrieval of
several fi les. (f'lote that you must quote the u*., to get it past the Alto Executive's
command scanner.) As mentioned previously, this capability is implemented only by
Maxc and I FS FTP Servers at present.

RETRIEVE/S <remote filename> <locel filename>
Retrieves <remote filename> and names it <local filename> in the local file system.
This version of RETRIEVE must have exactly two arguments. Frp will overwrite an
existing file unless the 11\ (No overwrite) switch is also appended to the RETRIEVE
command keyword. The remote filename should not cause the server to send m llltiple
files.

RETRIEVE/U <remote filename> ... <remote filename>
Retrieves <remote filename> if its creation date is later than the creation date of the
local file. A' file will not be retrieved unless a local file with name and extension
equal to the name and extension of the remote filename exists, or if the FTP server
does not send a CREATION-DATE property. This option call be combined with
RETRIEVE/S to rename the file as it is transterred.

RETRIEVE/V
Requests confirmation from the keyboard before writing a local file. This option is
uset ul in combination with the Update option since creation date is not a fool-oroof
criterion for updating a file.

STORE/C <local filename> ... <Io,:al filename>
Stores each <local filename> on the remote he·!;t, constructing a remote filename from
the name body of the local filename. A local filename may contain "'~", since i:t will
be expanded by the Alto Executive into the actual list of filenames before the FTP
SUbsY~item is invoked.

STORE/S <local filename> <remote filename>
Stores <local filename> on the remote host as <remote filename>. The remote
filename must conform to the file name conventions of the remote host. This version
of store must have exactly two arguments.

DUMP/C <remote filename> <local filename> ... <local filename>
See the description in "keyboard Commands".

LOAD/C <remote filename>
See the description in "keyboard Commands". If the IV switch is appended to the
LOAD command keyword, FTP will request confimation before wfltlng each file.
Type < return> to wflte the fi 'e, to ski pit. FTP wi II overwri te an ex isti ng file
unless the /N (No overwrite) switch is appended to the LOAD command keyword.

DELETE/C <remote filename>
See the description in "Keyboard Commands". If the IV switch is appended to the
DELETE command keyword, FTP will request confirmation before deleting each file.
Type <return> to delete the file, and (oops!) if you don't want to delete it..

COMPARE/C <remote filename> ... <remote filename>
Compares the contents of <remote filename> with the file by the same name in the
local file system. It tells you how long the files are if they are identical or the byte
position of the first mismatch if they are not. This command is not available in the
Keyboard command interpreter simply because there is no space left (when the

Alto Pup FTP

For Xerox Internal Use Only -- April 29, 1978

March 15, 1978 66

comrnar.d line interpreter is running there is no Telnet and no Server so there is lots
of space).

COIIIPARE/S <remote filename) <local filename)
Compares <n:mote filename> with <local filename). The remote filename must
conform to the file name conventions of the remote host. This version of COMPARE
IllUSt. have exactly two arguments.

RENATvlE/C <old filename> <new filename)
See the description in "Keyboard Commands".

TYPE/C <data type>
See the description in "Keyboard Commands".

BYTE-SIZE/C <decimal number>
See the description in "Keyboard Commands".

EOL/C <convention>
. See the description in "Keyboard Commands".

DEVICE/C
See the description in "Keyboard Commc~nds".

DIRECTOR Y Ie <default directory)
See discriptioll in "Keyboard commands".

DEBUG/C
See the description of the DEBUG subcommand under the USER command in
"Keyboard Commands".

6. UsinK a Trident Disk

Starting FrP with the IT global switch C<1.uses FfP to store and retre·ive file~: from a Trident
disk. AccessinR a file on a Trident requires more code and more free storage than accessing
a file on the uiablo. Since FTP is very short on space, only an User or a Server FTP is
started when the IT switch is set. The default is to start a User FTP, but specifying no user
(FrP/T-U) or specifying a server (FTP/TS) will start a Server FTP instead.

7. Telnet

FfP provides a simple User Telnet as a convenience for logging into a remote host (e.g.,
Maxc) to poke around without having to leave the FTP subsystem and start Chat. It lacks
most of the creature comforts Chat provides, such as automatic attaching to detached jobs,
altc,matic logging in, etc. The Telnetis not enabled when the User FTP is being controlled
from the command line. \Vhen the Teind does not have an open connection, It waits for
you to type a host name with the syntax explained above for the OPEN command, and then
attempts to connect t(1 the specified host. If you wish to abort the connection attempt, hit
the botL)m unmarked key (opposite right-shift). YOLI can get a larger Telnet window by not
starting a server (type IF'TP I-S to the Executive).

A~ to Pup FrP

8. Fi Ie Properties

For Xerox Internal Use Only -- April 29, 1978

March 15, 1978 67

V/ithout f!xplicit information from the file system, it is often difficult to determine whether
a file is Binary or Text, if Binary, what its byte-size is, and if Text, what End.-Of-Line
convention is used. The User and Server FTPs use some simple hellristics to determine the
correct manner in which to transfer a file. The heuristics generally do the right thing. in
the face of incomplete information, and can be overridden by explicit commands fr::>111 a
human USf:r who knows better.

Tth:! FTP protl)col specifies a standard representation for a file while in transit over a
network. If the file is of type Binary, each logical byte is packed right-justified in an
integral number of 8-bit bytes. The byte-size is sent as a property along with the file. If
the file is of type Text, each character is sent right-justifIed in an 8-bit byte. An EOL
convention may be sent as a file property. The default is that (return) marks the end of a
line.

8.1. File Types

FTP determines the type of a local file by reading it and looking for bytes with the high
orde bit on. If any byte in the file has a high-order bit on, the file is assumed to be Type
Binary, otherwise it is assumed to be Type Text.

FTP will w~lrn you, but allow you to send what it thinks to be a text file as type Binary,
since no information is lost. It wil! refuse to send a binary file as type t~:xt.

Don't specify a Type unless you know wltat you are dc,ing. The heuristic will not
lose information.

8.2. Byte-Size

If a file is type Einary, the byte-size is assumed to be 8 unless otherwise specified. The
FTP User and Server will both accept binary files of any byte-size and write them as 8 bit
bytes on the disk. No transformation is done on the data as it is written to the disk: it is
stored in network defHllt format. Since there is no place in the Alto file system to save the
. by te-size property, it is lost.

Similarly, requests for Binary files will be honored with any byte size, and whatever is on
the disk \vill be sent to the net without transformation. Since Alto files have no byte size
information, the byte-size pJoperty will be defaulted to 8 unless otherwise specified (by the
BYTE command}, in which case whatever was otherwise specified will be sent as the byte
~;ize.

Don't specify a Byte-size unless you know what you are doing. Alto-Alto
transfers can't go wrong. Alto-Maxc transfers with weird byte--sizes will not work
unless the byte-size specified in the Alto to Maxc direction is the same as the
byte-size in which the file was stored on the Alto. If it isn't, the Alto will not
gIve any error indication, but the result wiiI be garbage.

8.3. End-of-Line Conventions

FTPs are expected to be able to convert text files between the local file system End-Or-Line
(EOL) convention and the network convention. Conveniently enough, the Alto file system's
internal representation of a text file is the same as the network standard (a bare <return>
marks the end of a line). The Alto FTP docs not do any transformations on text files. It
will refl:se to store a text file coming in from the net whose EOL convention is CRLF.

Alto Pup FTP

For Xerox Internal Use Only -- April 29. 1978

March 15, 1978 68

As an escape to bypass c,)nversion and checking, EOL convention 'transparent' tells both
ends NOT to convert to network standard. but rather send a file 'as is'. This is included for
Lisp source files which lise EOL convention CRLF and contain internal chara,:ter pointers
that are messed lip by removing line feed characters.

non't specify an EOL convention unless you know what you are doing. If your
te'(t file is a Lisp source file, specify EOL convention 'Transparent'.

8.4. File Dates

The Altt) file system keeps three dates with each file: Creation, Read, and \Vrite. ITP treats
the read and write dates as properties describing the local copy of a file: when the file was
last nead and written in the local file system. FrP treats the creation date as a property of
the file contents: when the file contents were originally created, not when the local copy was
created. Thus when FfJ> makes a file on the local disk, the creation date is set to the
creation date supplied by the remote FTP, the write date is set t.o 'now' and the read date is
~ et to 'never read.

ITP can keep a log (typescript) file for the FTP USI~r window. The file name is 'ITP.1og'.
It is always enabled when ITP is being. controlled from the command line; otherwise it is
controlled by the IL and / A global sWIt.ches. Some keyboard commands do not treat the
u~,er window as a simple teletype. so the typescript for these commands will not be exactly
wha: you saw, sigh.

10. Abort and Error messages

Error and Abort packets are displayed in a windc,w above the title line. Abort packets are
fatal; Error packets are not necessarily so. The most common Abort message is "Timeout.
Good bye", gfmerated when a server process has not received any commands for a long time
(typically 5 mill utes).

The most common Error message is "Port IQ overflow" indicating a momentary shortage of
input buffers at the remote host. Receiving an Error Pup does not imply that the file in
transit has been damaged. Loss of or damage to a file will be indicated by an explicit
message in the User FTP window. The next iteration of the Pup protocols will probably
rename 'Error Pups' to be 'Information Pups'.

11. Server Options

Server options are can trolled by switches on the subsystem name and subcommands of the
SERVER keybonrd command. There are currently four options:

switch DefauIL

none

Function

I f no server option is specified, retrieve requests (ci isk to net) are
allowed. Store requests (net to disk) ar,~ allowed ullless the store
would overwrite an ulready {:xisting file. Delete and Rename are not
permitted.

Alto Pup FTP

For Xerox Internal Use Only -- April 29, 1978

March 15, 1978 69

IP false

10 false

/K false

rProtectedl Retrieve requests are allowed.
Del~te and Rename are not permitted.

No stores are allowed.

[Overwritel Retrieve requests are allowed. Store requests can
overwrite files. Delete and rename are permitted.

[KiIlJ FTPwillreturntotheAltoExecwhentheserverconnectionis
close. A simple form of remote job entry can be performed if the
user FrP stores into Rem.cm (Com.cm on Novas).

12. CLI Examples

Here are some examples of Command lines.

To transfer files FTP.run and ITP.syms from the Alto called "Michelson" to the Alto called
"Morley", one might start up rIP on Michelson (to act as an FTP Server), then walk over to
Morley and type:

FTP Michelson Retrieve/c ITP.run FTP.syms

Alternatively, one could start an FTP server on Morley (invoking it by "FTP/O" to permit
files to be overwritten on Morley's disk), then issue the following command to Michelson:

FTP Morley Store/c FTP.rull FrP.syms

The latter approach is recommended for transferring large groups of files such as "*.run"
(since expansion of the "*,, will be performed by the Alto ExecutIve).

To retrieve User.cm from the rTP server running on Alto serial number 123 (name
unknown, but it is on the local Ethernet):

ITP 123'# Retrieve User.cm

Note that the ":P" must be preceded by a single quote when included in a command line,
since otherwise the Alto Executive does funny things with it. (Quotes are not necessary
when typing to FTP's interactive keyboard interpreter).

To start ITP, have the FTP User con nect to Maxc, and then accept further commands from
the keyboard:

FrP Maxc

To retrieve <System>Pl.lp-Network.txt from Maxc and store it on the Alto as
PupDi rectory.bravo, and store PupRTP.hcpl, Pup1b.bcpl, and PupBSPStreams.bcpl on < ORB)
with their names unchanged:

Fl P Maxc Connectlc drb mypassword Retrieve/s <System)Pup-Network.txt
PupDirectory.bravo Store/c PupRTP.bcpl Pup1b.bcpl PupBSPStreams.bcpl

To retrieve the latest copy of all .R UN files from the <alto> directory, overwriting copies
on t~·e Alt.) disk (The single quote is necessary to prevent the Alto Executive from
expand i ng the ":io"):

Frp Maxc Retlc <alto>'*.run

To update the Alto disk with new copies of all <alto> files whose names are contained in
file UpclateFiks.cm, requesting confirmation before each retrieval:

Alto Pup FTP

For Xerox Internal USI.! Only -- April 29, 1978

March 15, 1978

FTP Maxc Dir/c Alto Ret/u/v @UpdateFiles.cm(~

70

To store all files with extension .BCPL rrom the local AHo disk to your login directory, on
Maxc (the Alto Executive will expand "*.bcpl" before invoking FTP):

FTP rvlaxc Stlc *.bcpl

To retrieve <System> Host-name/desc: i ptor- fi]e.txt;43 (two single quotes are necessary to get
the "I" past the Alto Executive and the FTP command scanner, and one quote is necessary
to get the ";" past the Alto Executive):

FTP l'Ylaxc Relic <System> Host-name"/descriptor-file.txt';43

To send Prog.f4, Data.f4, and Command.f4 to Fortran-t\'~achine and then cause the FfP
server on Fortran-Machine to quit (presumably to eXE:cute Prog.f4 on Data.f4 according to
the commands in Command.f4):

ITP Fortran-Machine Store/c Prog.f4 Data.f4 Store/s Command.f4 Rem.cm

ITP on Fortan-Machine must be started with the IK server option switch, and <:ommand.f4
should re-invoke ITP as its last act so that the results can be retrieved.

To release a new version of FTP, I incant:

@ReleaseAltoFTP.cm@

which the Alto Executive expands into:

FTP Maxc Connect/q Alto Store/c FTP.rull FTP.syms Connectlq AltoSource
Dllmp/c FrP.dm @ftp.crn@

and then into:

FTPMaxc Connecllq Alto Store/c FTP.rlln FTP.syms Connectlq AltoSolirce
Dump/c Frp.dm (f~FtpSubsys.cm~Y @FtpPackage.cm@ ITP.cm

and fi nally into:

FTP.run Maxc Conncct/q A Ito Store/c FTP.Tun FfP.syms Connect/q AltoSource
Dump/c Ftp.dlll Ftp.bepl FtpNv.bcpl Ftplnit.hcpl Ftplnitl.bcpl FtpNvlnit.bcpl
FtpUscrlnit.bcpl FtpSubsys.decl Ftr,Kbdlnit.bcpl FtpKbd.bcpl FtpKbdl.bcpl
FtpKbd2.bcpl FtpCli I n i Lbcpl FtpCli.bcpl FtpClil.bcpl Ftpeli2.bcpl
FtpCl i Uti1.bcpl F' tpM iscb.bcpl FtpMisca.asm FtpServerlnit.bcpl FtpServer.bcpl
FtpTe-Inctlnit.bcpl FtpTelnet.bcpl FtpKeys.bcpl FtpCmdScanDsp.bcpl FtpMc.mu
FtpRnmTrap.mu CompileFtpmc.cm FtpSlIbsys.cm CO:l1pileFtpSlIbsys.cm
Com pi leAltoFtp.cm LoadAltoFtp.crn MakeH idden Flp.em Load H id j en Ftp.cm
Releas'~AltoFtp.cm CompileNovaFtp.cm LoadDosFtp.cm LoadRDosFtp.cm
FlpProt.dec1 I' tpU~.erProLbcpl FtpUserPr·)tFile.bcpl FtpUserProtMail.bepl
FtpServProtFile.bcpl FtpServProtMail.bcpl FtpPLlstlnit.bcpl FtpPListProt.bcr1
FtpPListl.bcpl FtpUlillnit..bcpl FlpUtilB.bcpl FtpUti ,A.asm FtpUtilXfer.bcp
FtpUtill.)mpLd.bcpl FtpUtileempf3.bcp\ FtpUtil<:ol11pA.asm Block Eq.1ll U
FtpOEPlnil.bepl CompileFtpPackage.el1l DumpFtpl)ackage.cm FtpPackage.cm
Ftp.em

To load Ftp.dm from <AltoSource>, expanding it out into its constituent files:

FTP Maxc Load/c <AltoSourcc>Ftp.dm

To cause Memo.ears to be spooled for printing on Ears by the Maxc printing system:

Alto Pup fTP

For Xerox Internal Use Only -- April 29, 1978

March 15, 1978

FTP Maxc Store/s Memo.ears LPT:

71

This also works for Press files and unformatted text files if you know what you are doing.
It does not do the right thing for Bravo-forma t file~;.

To use FTP as a stop-gap IFS:

FTF'/T'UO

This starts only a server with overwriting of existing files permitted. When llsing the
LriC.ent, there isn't enough space to start both a User and a Server.

13. Nova FTP

FTP is also available running under Dos Rev 4 and ROos Rev 3. Since the Nova versions
are nearl} identical to the Alto version (the same source files except for initialization), only
the differences are 'Iisted here.

1) IgnoIe al1 references to display windows. All printout goes to device #11,
\\, hatt ver that is. .

2) Ignore all references to 'unmarked' keys' such as for aborting connection
attempts and directing keyboard input to varIOUS windows.

3) Lack of memory and lack of a windowing display made including a Telnet
inpractical on the Nova.

4) The syntax of the command line is limited to thnt acceptable to the Nova
operating system. Warning: the command line examples given above may not all
work on a Nova.

5) The Nova OS does not mainta1n a lIsername or password, so all interactions
with a l\1axc system or an IFS will require the user to supply them.

6) File creation dates are not supported, so there is no Update option to
RETRIEVE, and the LIST command does, not show dates.

13.1. FTP releases

ThE: Nova FTP subsystem consists of a save-file, FTP.SY, and an overby-file, FTP.UB. You
mlllst get BeTH files when a new version of FTP is released. If you rename FTP.SY you
must n~name FTP.BB to have the same name (for instance if you rename FTP.SY to be
OLOFTP.SY you must also rename Ff'P.BB to be OLDrl'P.BB). New rekases of fTP will
:k: distriLuted as dump files with a consistant pair of save- and overlay-files.

13.2. Device codes

Fl'P assumes that Nova Ethernet interfaces have device codes 73 and 74, 63 and 64, or 53
and 54. It wi II lise all interfaces with these codes that seem (from reading some status
registers) t.o be E thernets. The Dos version of FTP assumes that Nova MeA interfaces are
device code 6 and 7, or 46 and 47. It will m,e all interfaces with these codes that seem to
be MCAs.

Alto Pup FTP

13.3. ROos notes

For Xerox Internal Use Only -- April 29, 1978

March 15, 1978 72

FIP is big, and v,.ill not run under some ROos sxstems. If you have trouble, generate a
smaller system and boot from it when running I- fP. FTP disables parts of ROos with
patches which may not work for versions other than Rev 3. It will NOT work under an
I~Dos that uses the memory map hardware. The ROos version does not include MCA
drivers.

14. Revision History

April 1976

First release.

May 1976

IQ swi':ch added to CONNECT. Connection requests to the User FrP and Telr:et can be
aborted. Login prompt changed. 1 minute Timeout added when waiting to finish after a
command line error. User Frp automatically recovers from more "No" responses from the
remote server.

June 1976

Dos versic n released. DIRECTOR Y and LIST, commands add~d. Update (/U) option
added. File creation dates added. 5 minute no-activity timeout add::d to Frp Server. ITP
version, time-of-day, and machine address added in top window. "Ding" now flashes only
the affected window instead of the whole displ~y.

August 1976

RDos version released. Same as June release for Dos and Alto.

October 1976

DUMP and LOAD commands added to user FTP. KILL command added. Free disk page
count added to the title line. Verify (IV) switch added to the RETRIEVE command.

November 1976

Bug fixes to the October release.

May 1977

This version was only released to friends. KILL command removed and turned into a server
o~-tion. DEE UG command ::110ved into new USER and SERVER commands. Trident disk
option (IT) added. User LIST command improved and Server L~ST response implemented.
Passworc checking by the FTP server implemented. Telnet window erdarged at the expense
of pcssibly losing information frem tht: top of the window if the lines are very full.
DELETE, RENAf'dE, and DEVICE commands implemented. Much internal reorganization
so that the r-rotocol modules could be used in IFS and released as a package.

Jul~' 1977

Global switches changed. (Shift-Swat> should work more reliably now. User LIST
command further improved. Keyboard command interpreter is much more robust and
consistant. Command line STORE ancl DUMP go much faster since they look up files using

Alto Pup FTP

For Xerox Internal Use Only -- April 29, 1978

March 15, 1978 73

MOL FTP/Tx opens TridenJ: unit 'x'. LOGIN command added to command line
in terpret,er.

November 1977

Special microcode added to speed up execution.

fvlarch 1978

User log option added (see IL and I A switches and 'ITP User Log' section).
AIlocatorOebug switch removed. tlew command line commands COMPARE, OPEN, and
CLOSE added. Command line errors are handled differently (see IE global switch and
'Command Line Errors' section). When using a Trident, either a User or a Server ITP is
started but not both (ste the section on Trident disks).

For Xerox Internal Use Only -- April 29, 1978

EARS, GEARS, SEARS June 21, 1977

EARS, GEARS. SEARS, and Other Related Items
(Revised 8 April 1975)
(Revised 21 June 1977)

74

The EARS pnntmg system is available in CSL room 2077. The EARS system may
be accessed direct!] from any machine on the Ethernet. ALTOs currently may access EARS
via the program GEARS which is described in this memo. Access to EARS via MAXC is
described in another memo. The use of PUB with respect to EARS is also described in
another memo.

}. EARS

EARS is a one page per :;econd printing system consisting of an Ethernett Alto,
RCG (Research Character Generator), and SLOT /7000. The EARS system IS designea to
spool more than 1000 pages of output)(1 its disk and to print graphic art quality
docliClents. Up to 190 individual documents may be spooled simultaneollsly.

EARS does no page composition. Page composition is done by other computers on
the Ethernet. This appfO<::.ch distributes the composition load, minimizes changes to the
EARS system software, c.nd allows users to write their own spe.:ial composition software.
Th·;: standard EARS File Format allows a user to ge i: at all of the features of EARS while
also allowing simple pages to be easily composed.

The EARS system will print multi-page documents in portraitt lanc1s·~apet or mixed
mode. The system is designed with the following limits:

1. 15k
2. 512
3. 128
4. 16
5. 64
6. 500
7. 32k
8. 600k

characters/page (including directives)
text strings/page
characters/font
f 0 n t~./ page
font sets/document
pages/ document
words of compressed f')I1t. storage/font set
words of guaranteed document storage space

. on disk at connect time

For Xerox Internal Use Only -- April 29, 1978

EARS, GEARS, SEARS June 21, 1977 75

2. SEARS

SEARS is the subsystem that may be run on the ALTO named Palo to start the
EARS system. Once EARS has been started, it displays various information about itself.
There are two display areas on the ALTO screen. The fast is a journal that records ethcrnet
traJlsactions and operator requests. The second records current system status such as
"spooling", "printing", "call key operator", etc.

The printing s~stem accepts the following keyboard commands from an operator:

P
B
D
R
C
H
S
N

~
Z

print
backspace printer (5 pages)*
delete current file*
restart current file*
complete current file and halt
halt f'~intcr
spoo IIll)ut
no spoo ing
quit
enable auto mode
disable auto mode

*These commands only work whlen the printer is in the HALT state.

When SEARS -is executed the system is initialized with both printing and spooling
enabled. The quit command is the only reliable method to terminate EARS. (Bootmg the
me.ellinc will merely cause a restart.) .

If the status display area reQuests a key operator, the duplicator POI tion of EARS is
probably jammed or out of paper. Follow the instructions posted near EARS to remedy chis
problem.

For Xerox Internal Use Only -- April 29, 1978

EARS, G EARS, SEARS June 21, 1977 76

]. GEARS

GEARS is an interim program that will compose text files and transmit them to
E~~RS via the Ethernet. The EARS Alto is named Palo, and is host 3 on 35-Ethernet.

GEARS may be controlled \I'ith global switches, Iccal switches, imbedded directives,
and item;; in User.cm. In the simplest case, you would t} pe G EARS, followed by any
number of text file names. Each filt: will be printed in the default fixed pitch font and
will receive appropriate headings.

If the default conditions are not acceptable, all of the capabilities of the system may
be accessed via the switches and directives. I believe the global switches are self
explanatory--if not. try one. (See Summary of Commands.)

GEARS searches User.cm for a [HARDCOPY] section to set some parameters.
Currently the network address of an EARS format printer and the 'Printed by' string on the
break page c'.n be set from User.cm. Here is an example:

n'IARDCOPY]
EARS: Palo
PRINTEDBY: "SOD - $"

'$' in the PRINTEDBY string is s{:ecial: it means insert the Username (from the OS)
in place of the $ character. The default string for PRINTEDBY is "$".

EARS font sel~ction is quite flexible. Ears h~;s lWO font concepts: A font and a
font set. A font is an arbitrary collection of up to 128 distinct characters while a font set
is a group of up to 16 fonts.

Normally a user will select a font from the default set. This font set is maintained
by EARS and (c1es not reside on each lI~jer's disk. Rather a directory for this font set is on
each uSer's disk and is named DEFAUL T.ED. A program named FEARS will list the fonts
in DEFAUL T.ED by name ancroynumber. A new d·:fault font may be selected by name in
the commandime or by number wilh a global directive. Local font changes are by number.
I-Iote the font names mllst have an extension since FONT.EP is a portrait font and
FONT.EL is a similar landscape font.

In general, EARS can complel:ely change font sets between each page. GEARS,
however, only supports font set changes between text files. A user may generate his own
font set~; by concatinating any sixteen fonts of his choLe. This is accomplished with the
hJcal switch G (generate) In the command line.

First (:i file FOO.EC should be generated with an editor. The file is a list of up to
sixteen fan 1s to be cor catinat.~d. The fon t names appear on separate text lines and are
ass·jglled numbers in order of occllrence. Fonts specified in the FOO.EC file mllst either be
in .EP (EA RS portrait) or .EL (EARS landscape) format. Fonts in these formats are found
on the MA.XC < FONl S> directory. Alternatively, .EP and .EL files may be gencrated from
.CU ,I Carneg.ie forn,l:l!) .fonts using. the program ~OM PRESS frolll the. < EA RS> directory.on
MAXC. C(JMPRESS IS called WIth the fonl(s) to be compressed III the command line
(COMPRESS FONTl.CU FONT2.CU, etc). Besides creating .EP and .EL files, COMPRESS

For Xerox Internal Use Only -- April 29, 1978

EARS, GEARS, SEARS June 21, 1977 77

creates an .ES (EARS specification) file which may be printed and contains information
about each character. .

After FOO.EC has been created and all of the fonts are on your disk you run
GEARS FOO/G TEXT. This will print your file TEXT in your font set and generate two
other files: FOO.ED (EARS directory) and FOO.EM (EARS multiple). After the initial
generation of a font set run G EARS FOOlS TEXT.

Global directivES must appear at the beginning of a. text file and only one global
directive mly appear on a text IlJle. Note that many global direetives requrre a special
password since they are used for debug only and can produce bizarre result!;. GEARS makes
very few consistency checks (e.g., if the line height is set less than the font height, the lines
merl~ly overlap a little) -- so be careful!

Local directives may be arbitrarily sprinkled throughout the text with interesting
results. The coordinate system for page composition' is shown in Figure 1. The basic unit
is .002 inches with the ori2.in in the lower left of a portrait page. Some care should be used
in applyins directives. For example, it is avisable, altho~lgh not necessary, to change to a
landscape tont if the t L landscape directive is used.

A list of the rrimitive microcode directives that are accessed by the local directives
is given in Appendix .

For Xerox Internal Use Only -- April 29. 1978

~ARS, GEARS. SEARS June 21. 1977

3.1. Summary of Gears Options

3.1.1. Oobal Switches
IA absolute, no formatting except page I>reat(s
ID process d.irective preceded by t (Not control)
IF generate inlermediate file FOD.EB where FOO is name of

first text file
IL print in landscape mode
IN no helding
IP proportional default font
IR bng lines truncated instead of wrapped around
IS small default font
IT test mode--no EFTP
IZ reads RCO-format files
In make n copies for n = 1 to 9

3.1.2. Local Swi tches
. FOO/I'"

FOO/O

FOOlS

TextlH

FOO/n

use font FOO (must include extensions listed
by FEARS)
generate font set
for all following files

lise font set FOO
for all following files

,tdd this text to the default heading
on each page - no blanks or slashes
allowed

print text file FOD wilh the TrY Tab set for
n spaces rathe:" than the default val ue of 8

78

Note: Font set and Default font must come before text file name. Font set andlor
ion I. specification is op iona!. As many files as you like may be printed subject to disk
~e~;trict.ions « 500 pages).

G EARS processes four control characters, fourteen global directives, and sixteen
:ocal di1ectives.

3.1.3. Control Characters
carnage return- end of line
form feed - end of page
tab - space to next column
line feed - ignored

Felr Xerox Internal Use Only -- April 29, 1978

EARS, GEA:~S, SEARS June 21. 1977

3.1.4. Global Directives - Must be at be innine of file but may be
~mbedde Hl a text stflntsuc 1 as a P_comr@!ii!I

t Bn. Bottom 1arg In
ten. Clock Frequency in bits/inch*
t On. Default font (0-15)
tGn .. S"oftware Left Margin (Gap)
t H n. Height from one II ne t·;} next
t In. Hardware Left Margin* (Indent)
t Ln. Lergth of line in characters before 'Nrap around.
tMn. Motor speed in lines/inct*
t N n. Number of scan lines at: uwed on page*
t Pn. Password*
t Rn. Raise bottom margin (Hardwar~)*
tSn. Change TTY tat· stops to n spaces
tTn. Top Margin.
t Xn. X.erox n copies

*These parameters are preset arid mod ified for
debug only. The system ignores these directives
wi thout the proper passwo~d.

3.1.5. ~ocal Directive [imbedded in text strings]

tan.

tbn.
td.
te
tfn.
thn.
~in.
to
trw.h.

tsn.
ttn.
tun.
tvn.

Alter text line location to n
'-bits from bottom page
Blank of Nidth n bits
revert to Qefault font with default spacing
L nd of page (same as Form feed)
Font change to n (0,-15)
Change height from one line to next.
tA relative to text base Iille (Jump)
Landscape string follows -
Overlay next character
S"olid rectangle of width VI and height h.
Used fo generate vertical and horizon :al lines in forms.
This directive only works after an tfn. that
~;.elect~; font RECTANGLE.EP
~pace modific:ltion for next character
Tab to line n
Unusual line--prilll: only on •. opy n
Vect:)r mode--modify space and width
"of next character
Width modification of next character
"'escape as in BCPL-nS become~; Ascii

Note: Unknown directives are ignored so Hat tt will print t.

79

For Xerox Internal Use Only -- April 29, 1978

EARS, GEARS, ~:EARS June 21, 1977 80

This secticn is included for those v'ho would like to write their own text compose-rs.
This file tyr.e has an .EB extension on ALTOs and an .EARS extension on MAXC ana may
be sent to Palo via EFTP on an ALTO or COpy on MAXC. The standard EARS file
format is p'age oriented. Each section of the print file is blocked in 256 word records. The
complete I ile is structured as follows:

Mnemonics Optional?

iDL 1 No
TL 1 No

DL n Yes
TL 11 Yes
PO No
FD Yes
FM 1 Yes
FS 1 Yes

FM m Yes
F~, n Yes
DD No

Descri ption

Displal list page 1
Text line array page 1

Display list page n
Text line array page n
Page directory
Font directory
Font memory set 1
Font specification set 1

Font memory set m
Font specification set m
Document Directory

The page layout I'or EARS is shown in Figure 1. The default scan resolution is 500
scan line.' inch and 500 bits/inch. These numbers are independently variable for special
appl ications.

4.1. Display List rOLl

EAR;; requi res a separate display I ist for each page. A display list contains strings
of ascii characters with imbedded direct.ives. Each entry in the display list is an eight bit
code. Characters have v:t\ucs between a and 177 octal. Directives have a value betwet:n 200
and 377. Directi \'(5 may be either one or two bytes long. Appendix 1 gives the EARS 8-
bit; character and d.irectlve code. The DL may also contain up to 40 tab stops. If used, the
first word of the DL must be -1 followed by 40 tab positions.

For Xerox Internal Use Only -- April 29, 1978

EARS, G EARS, SEARS June 21, 1977 81

4.2. Text Line Array [T!J

EARS requires initialization information for fach text string on a page. A page may have
512 ~itrings. The TL affa!' I~as four entries per text string.

Entry
:-1 distribution ind{:x**

1 byte pointer to fi 1st character of string in DL

2 initial font *128

~; initial text line location *8 (i.e. YBA *8)

*I'lf this entry i~; zero, the corresponding text string is
prillted on all ct)pies. If the entry is n, the string is only
printed on copy n. The last distribution index for a page
musl. have its sign bit set.

1.3. Page Directory [PO]

Ears allows up to 256 pages/document. Each page requires four entries in the PD.

Entry

(I starting record of OL for this page
(refereno:d from start of file - fust entry equals zero)

1 Numb::f of records in OL

2 Number of records in TL

~I Font set number (negative implies default font set)

4.4. Font DirecJQIL[FO] [OPtional]

~ntry

(Starting n cord of FM for this font set
(referenced from beginning of first FM)

1 Number of records in FM

2 Number of rec.>rds in FS

~I TTY tab for this font set

4.5. Font Memory [FM] [Optional]

EA RS allows up to 32k of font memory for each set. This data must be in the standard
[VI R LI format for the ReG. The first word of FM is special and must always be #20200.
No checks are made on this data so beware!

For Xero~ Internal Use Only -- April 29, 1978

EARS, GEARS, SEARS June 21, 1977 82

4.6. Font Specification [FS] [Optional]

This array allows the llser to properly identify 128 charactrers in each of 16 fonts. Each
character requires four I~Iements .

. Entry

o character align men I. (zero implies
special character--i.e., undef lied
or blank) .

1 space

2 wid t' 1-1(10MSB) and height-1(6LSB)

3 height-l(MSB) and font address(15LSB)

For Xerox Internal Use Only -- April 29. 1978

EARS, G EARS, SEARS June 21. 1977

4.7. Document Directory [DO]

This is a single 256 word record .

. ~ntry

o
1
2
3
4

5
6
7
o

11
12
13
14
15
16

17
20
to
23

general password (31415)
Lreplaced by fir:,t sector in core]
total number of records in this tile
n u III ber of pages
number of copies
font set used on last paRe (same default
conventions as used in 1.10)
startjng record of last page
length of last page DL
length of last page TL
length of PO
length of' FD
left margin ** -1 implies use of default values
bottom nlargin * All values ignored
bits/ inch * un less special password is used.
lines/inch *
maximum number *
of scan lines **
special password (Jefault is zero)
**
* reserved for PUB

**

The following entries are printed on the break
page between fi les.

2008 ID string terminated by EOl (328 words)

232g Creator terminated by EOL (208 words)

2528 Creation d2:te terminat(xl by EOL
(248 words)

4.8. Disclaimer

83

It is clear that the preceding file definition is not cOIllp'lete (e.g., the format of FM
is not given and the exact definitions for FS are not given). 'I his is intentional since most
lls.~n d(1 not need to know the messy details. If you need these details, come talk to me.

For Xert:x Internal Use Only -- April 29, 1978

EARS. GI~ARS, ~_:EARS June 21, 1977 84

5. EARS FONT FILES

Th,;~r'.! are five types of font files which are lIsed either directly or indirectly by the
EARS syst~'m.

~.l. .CU [Carnegie University] Font Files

The font compressor uses .CU files as input and creai:es .EP, .EL and .ES files.

Record 0 (2 words)

(I
1

MH (Maximum height of character matrix in bits)
M\V (\1axil11um width of character matrix in 16-bit words)

Record 1 (1 record pcr c:haracter 2 + lYIH * M'N words)

o Ascii code for chaf:.cter
] Width of this character in bits

The remaining fy1H*MW words contain a matrix representation of the character
SC2.n led left to fIght and top to bottom.

5.2 .. EP rnA R~--IlQrtraitl and .El [EARS Landscape] Font Files

T~ ese fi les are uSllally generated by the font compressor and contain redundant
information that is easily usable by either a comp,}sition PJogram or the EARS character
generali >n I:ardware.

Record 0 (64 words - only 8 words are used)

o Length of record 2 in words
1 Maximum character width in bits
2 f\'laximum character height in bits
3 Default TTY Tab in bit:~ (usually one ~ipace)
4 **
5 * Reserved for PSPOOL on MAXC
6 *
7 **

Record [(1024 words - 8 en tries/ character)

o font address- in words
1 storage length in words
2 character sp,'ce in bits
3 character width in bits
4 character height in bits
5 character ba;;eliI1c in bits
6 code <0; MRLI coding

For Xerox Internal Use Only -- April 29, 1978

EARS, GEARS, SEh:RS June 21, 1977

7

=0; special character
(blank or undefined)

)0; matrix coding
height in bytes

character alignment in bits - i.e. the same as
baseline in .EP but equals the distanc,~ from
toJP of matr·ix to bottom of ink in .EL

Record 2 (font storage)

PM data in M R LI format

Hecord 3 (512 words - Font Specification 'Table
- '\ entries/character) .

o

1
:2

3

Alignjl11~nt (13 MSB) and Code (3LSB)
Alignment two's complement
t\'latrix bit 13
End of page bit 14 .
Not end of line bit 15

Space in bits
Width -1 in bits (IO MS3) and
height-l in bytes (6 LSB)
LSB of height·-l (MSB) and
font address in words (15 LSB)

5.3 .. ES [EARS specification]

85

This i:; a text file output by the font compresser which gives detailed information
about ea·:h character in the font.

5.4 .. EM [EARS_Multiple] font file_

This file contains up to sixteen fonts. It is constructed from .EP and .EL fites and
i:; equi\'alent to the FM and FS entries in an .EB or .EARS file. An .ED (EAnRS
dil'eclory) file is created simultaneollsly with an .EM file. The .ED file is disclissed in the
next secLIt)":) and ilS a small directory into the .EM file.

Hecord 0 (u p tt} 32k words IOllg - padded to
be a multiple of 256 words)

\Vord 0 of this :t:cord is always ·#20200. The
rest of the record is M R LI data copies from the
second record of selected .EP and .EL fites.

Uecord 1

For Xerox Internal Use Only -- April 29, 1978

EARS, GEARS, SEARS June 21, 1977 86

This record is a directory or specification for the font data in record 0 of this file.
Each character is speci,:'ied by four numbers as follows:·

o
1
2

Alignment (13 MSB) and Code (3 LSB)
Space n bits
Width-l in bits (10MSB) and
height-I i;l bytes (6 LSB)

3 LSB of height-l (MSB) and font address
in words (15 LSB)

N· >te that this data may be copied directly from record 3 of an approprirlte .EP or
.EL fi':e with the exception that each font addres~; entry must bE~ relocated to point to the
proper data i·1 record O. The first 128 characters of this record represent characters 0-127
In font O. The next 128 characters represent characters 0-127 in font 1. Up to 16 fonts
may be inc1uded provided record 0 does not exceed 32k words.

5.5 .. ED [EARS Directory] file

This is a smal1 file that is a directory for a ,EM file and is lIsed by GEARS. It is
always 260 word! long of which the first f{lllf words are a header and the Iemaining are
allocattd 16 words per font. Unused space should be zero'd.

Header
o
1
2
3

Font Data
o
1
2

4-17

Number of fonts in font set
Number of 256 word records in FM
Number of 256 word records in FS
Default 'n'y Tab in bits

Number of characters in font name
Maximum width in bits
Maxim.lm height in bits
TTY tab in bIts
BePL st.ring containing font name
(unused bytes should contain nul1s)

Listi ng Syms fi les

For Xerox Internal Use Only -- April 29, 1978

March 28, 1978

ListSyms - a subsystem for listing Syms files

87

The ListSyms subsystem takes a Syms file (produced by 13LDR) and converts it to a
useful human-readable form. LislSyms produces a file with severc:1 parts: .

A listing of the space occupied by each binary output file (.Run or .BB).
A listing similar to the listing optionally produced by 13LDR. i.e. a list. sorted by

BR file and location within the file, of all static symbols defined. with an indication
as to whether the symbol is external and whether it is a procedure, label, or static
variable.

A list of all statics in alphabetic order, accompanied by the name of the BR file
in whicl each one is defined and (optionally) a list of all the BR files in which each
is used.

A list similar to the preceding. but listing the statics for each fil~ separately, and
only listing 3tatics declared external (Le. accessible from other files).

A concordance of undefined externals: for each BR file which references
undefined externals. it lists those externals in alphabetic order under the file name.

One invokes ListSyms as follows:
) ListSyms i nputfile outputfile

Inputfile will normally be something.Syms: if it has no extension, ListSyms will supply
.~:yms. Outputfile may be omitted, In which case ListSyms will take inputfile (shorn of
extension if any) and append .BZ to form the output file name.

ListSyms accepts 7 switches. all global:
I A produces the al phabetic listing
IF produces a file-by-file alphabetic listing with cross-reference
IN produces the numeric (file-by-file) listIng
10 produces only the listing of the binary file sizes
/S inc! udes static variables. which are normally omitted
IU r,roduces the listino of undefined externals
IX produces the alphabetic listing with cross-reference

The switches may be either upper or lower case, and IS is independent of the other switches.
If none of / A, IF, IN, 10, /U, or IX appears, you will get the lA, IN, and /U listings but
no cross-reference.

ListSyms starts by printing a message of the form
LiHSyms of [date] -- finputfilel -) [outputfile]

If ListSyms completes normally, it wilf print a message of the form
12345b characters written on outputfile

ListSyms produces a variety of error messages. Currently these are:
[filenane] does not exist

indicates ListSyms was unable to open the Syms file.
Syms fi Ie too big

indicates insufficient room for reading the Syms file. ListSyms aborts.
Can't open rfilename]

ListSyms was un~ihle to open the outputfile or one of the 13R files required for IU or IX.
In the former casc, List:~.yms aborts; in the latter, it continues.

rfilename] is not a proper L3R fi:e
One of' the BR files mentIOned in the Syms file does not have the proper format. ListSyms
ignores the file and continues.

[filename] is too big to process
One of the BR files "yas too big to read in. ListSyms ignores it and continues.

Too many BR fIles
There were too many BR files to process in the available memory. ListSyms aborts.

No room for bit table
There was not enough room to hold the bit table used for IU or IX (or I A if any
undefined symbols were present). ListSyms aborts.

Listi ng Syms fi les .

For Xerox Internal Use Only -- April 29, 1978

March 28, 1978 88

ListSyms is quite fast: it processes BRA VO.Syms in about 20 seconds, and a typical
modest program takes less than 10 seconds.

MailCheck

For Xerox In ternal Use Only -- April 29, 1978

March 6, 1978

MailCheck

89

This sinlple subsystem attempts to check for mail for a user at. some other host (e.g. Maxc)
via the Ethernet. It displays one of the following messages:

? This Alto has no Ethernet interface!
? Can't find a host named '<host>': <error message>
? No response from <host>
? < user> not valid user at <host>: <error message>
? Error: .<pup error message>
New mall for < user> on <host>: <date> <sender>
No new mail for <user> on <host>

Various options can be cont.rolled by switches and/or by an entry in your User.Cm.

Valid switches are:
II Check mail on Maxcl (default).
12 Check mail on Maxc2.
<ho!it>/H Check mail on <host>.
<user>/U Check mail for <user> (default is the user name obtained from the Alto

operating system). .
1Ft If there is new mail, execute a command line when f\1ailCheck exits. The

command line defaults to "@READMAIL.CM@", i.e. to execule the contents
of the file READMAIL.CM as a command. but this can be changed in the
User.Cm as outlined below.

In addition. if there may be a section in your User.Cm labeled [MAILCHECK] with the
following possible entries:
HOST: < host> Sets the default host to check.
USER: < user> Sets the defaull username to check.
NE\VMAIL: <string> Sets the command line to be executed if there is new mail. 'Nithin the

command line, the host name is substituted for "@H" and the user
nam; for "@U"; to put an "@" in the command line it is neccessary
to put two in the stnng.

For example. you mi&ht add the section:
rrvfAILCH ECKJ
HOST: Maxc2
NEWMAIL: CHAT@HMSG.DO/O

'¥here MSG.DO is a file on your alto disk which contains "MSG<return>".

One useful option is to put Mailcheck.Run inside the E:ventBooted section of your
USIER.CM. so that Mailcheck will be rlln whenever you boot, e.g.

[EXECUTIVEl .
eventBooted: fvTailcheck.Run I I eventBooted
eventRFC: FTP/OK IleventRFC
eventClock\Vrollg: SetTime I I eventClockWrong

Updates: As of March 1978, Mailcheck no longer does a SetTime

For Xerox Internal Use Only -- April 29, 1978

Mu: Alto MicroassembJ.;~r March 25, 1978 90

Mu: Alt) Microassembler

Thi~; document describes the source languaoe and operation of t-.1u, the Alto microcode
assenbler. Mu is downward compatible witi\ Debal, the original Alto assembler/debugger,
but has a number of additional features. Mu is implemented in BCPL, and runs on the
Alto.

1. The source language

An Alto micr,:progr~ m consists of a number of statements and comments. Statements are
termlnated by semicolons, and everything between the scmicolon and the next Return is
treited as a comrn';nt. Statements can thus span several text lines (the current limit is 500
characters). Al1 other control characters and blanks are ignored. Blavo formatting is also
ignored.

Statements are of four basic types: include statements, declarations, address predefinitions,
and executable code. The syntax and semantics of these constructs is as fol1ows:

1.1. Include Statements

Include statement~ have the form:

fiiename;

They caus; the contents of the specified file to replace the include statement. N(!sting to
;.hree levels is allowed.

1.2. Declarations

Dechlrations are of three types: symbol definitions, constant definitions, and R memory
names.

1.2.1. Symbol Definitions

~:ym bol definitions have the form:

$name$ Ln l,n2,n3;

The symbol "name" is defined, with values nl, n, and n3. There is a standard package of
symbols for the Alto (AltoConstsxx.Mu, where xx is. the current microcode verslOn) which
should be 'il'lcIuckd' at tLe beginning of evcry source program. For those who must add
~:.ymbol definitions, the interpretation of the n's is given in the appendix.

1.2.2. Constant declarations

Normal constants are declared thus:

$name$n;

For Xerox Internal Use Only -- April 29, 1978

Mu: Alto Microassembler March 25, 1978 91

This declares a 16 bit unsigned constant with value n. The assembler assigns the constant to
the first free location in the constant memory. unless the value has appeared before under
another name in which case the value of the name is the address of the previously declared
constant.

An alternative constant definition is used for mask constants which have a specified bus
source field (recall that the constant memory adares~; IS the concatination of the rselect and
bus source fields of the microinstruction). The syntax is:

$name$Mn:v; 4(n (7 0(v(2**16 - -' -

\l specifies the desired bus source value, v is the constant value.

1.2.3. R Memory declarations

R memory names are defined with:

$name$Rn; 0(n(40B
(100B if your Alto has ~ RArY1 beard, as most do)

An R location may have several names.

1.3. Add ress predefi n i tions

Address predefinitions at" cow groups of instructions to be placed in specified locations in the
~ontrol memory. as is required by the OR branching scheme lIsed in the Alto. Their syntax
IS:

!n, k. nameO, namel, name2, ... , namek-l;

This declaration cUlses a block of k consecutive locations to be allocated in the instruction
memory, and the names assigned to them. n defines the location of the block. in that if L
is file address of the last location of the block. Land n = n. Usually, n will be 2**p-l for
some small p. For example, if the predefinition

!3, 4, fooO, fool, fo02, fo03;

is encountered in the source text before any executable statements, the labels fooO-fo03 will
be assioned to control memory locations 0-3. If there are too few names, they are assigned

. to the lov. addresses in the block. If there are too manx. they are discarded, and an error is
indicated. If there are missing labels, e.g. "fooO"fo02,: I, the locations remain available for

. the normal instruction allocation process. A predefinition must be the first mention of the
name in the source text (forward references or lab,~:ls el1counte~'ed before a predefinition of
a given name cause an error when the predefinition is encountered.)

A more general variant of the predefinition facility is available. The syntax is:

%mask2, maskl, init., Ll, L2, ... Ln;

The effect of this is to find a block of instructions starting at location P, where P and
maskl = init, and assign the L's to 'successive' locations undt~r mask2. For example:

%1, 1, 0, xO, xl;

would force xO to an even instruction, xl to odd (the normal predefinition for most
branches).

For Xerox Internal Use Only -- April 29, 1978

Mu: Alto Microassembler· March 25, 1978

%360, 377, 17, La, L1, ... LI5;

\Vould place La at xxI7, LI at xx37, L2 at xx57, etc.

92

As before, if there are unused slots (e.g., 'L12"L14') they are available for reassignment, and
MU complains if there are too many labels for the block.

lA. Executable statements

Executable code statements consist (If an optional label followed by a number of clau.ses
St:parated by commas, and terminated with a semi-colon

label: clause, clause, clause, ... ;

If a label has been predefined, the in~;truction is placed at the control memory locaion
reserved for it. Otherwise, it is assigned to th<: lowest unused location.

Claw:es are of three types: gotos, nondata functions, and assignments.

Goto

Goto dauses are of the form ':Iabel', and came the value of the Jabel to be assembled
into the Next field of the instruction. If the label is undefined, a chain of forward
references is constructed which will be fi:(ed up when the symbol is encountert~d as a
label.

Nondata Functions

j\'ondata functions must be defined (by a literal symbol definition) before being
encoullitered in a code clause. This type of cia .lse assembles into the F1, 2, or 3 fields,
and represents either a branch condition or a control function (e.g. BUS=O, TASK).

Data transfers (assignments)

All data transfers are specified by assignments of the form:

destl +- dest2 +- ... +-source

This type of clause is assembled by lookieg lip the destinations, checking their legality,
and making the field assignments implied by the symbol types. Each destination
imposes detinitional requirements on the source (e.g., ALU output must be defined,
Bus mllst be defined). These requirements must be satisfied by the source in order for
the statement to be legal.

\Vhen the source is ellcountered, it is looked up in the symbol table. If it is legal and
satisfies the definitional requirements imposed by tte destinations, the necessary field
assignments are made, 2nd processing continues. If the entire source defines the Bus,
and the only remaining requirement is that the ALU output must be defined (e.g.,
Lf-fvlD). the ALUF field is set to 0 (ALU output = Bus), and processing continues.

If neither of Cle above conditions holds, the source can legally be only a bus source
concatenated with an ALU function. The :ource token is repeatedly broken into two
substrings, and each is IO(lked up in the symbol table. If two substrings can be found
which salisfy the requirements, the fielcl assignments implied by both are made;
othervrise, an error is generated. This method or evaluation is simple, but it has
pitfalls. For instance, L+-2+ T is legal (providing that the constant "2" has been
defi ned) t: lit L+-T +2 is not (the Bus operand must always be on the left). . Note that
'L+-fc,o+T+l' specifies a bus source of 'fool and an ALU function of '+T+l'.

For Xerox Internal Use Only -- April 29, 1978

Mu: Alto Microassembler March 25, 1978 93

CA VEAT: The T register may be loaded from either the Bus or tt.e output of the
P.LU, depending en the ALU function. The assembler does not check to see whether
an a~,signment of the form 'Tf-ALU' specifies an ALU function that. (lctual!x loads T
from the ALU. For example, the clause 'L<-Tf-MD-T' is accepted, but its effect is to
load T directlv from MD. If this is what you intend, it makes matters clearer if you
write 'Lf-MD-~r, T~-MD'; if it is not what YOll intend, you are in trouble. Beware!

The const.ant "0" is special, in that when one or more clauses in a statement require
that the bus be 0, generation of the constant is deferred until the end of the
statement. At that point, if any clause has caused the R memory t.o be loaded, the
constant is not used, sir.ce the hardware forces the bus to ° in this case.

The destination "SINK" allows a clause to specify a bus source without specification
of a destination. It is useful, for example, in constructs of the form 'SI NK foe ACO,
BUS=O', which puts ACO on the bus to be tested by the nondata function 'BUS=O'.
Y JU can also write things like 'SINK f-masl< cor;stant, Lf-DISP XOR T', which will
cause the value of DISP to be anded on the bus with the mask constant.

? Operation

The assembler is invoked with:

MU/global-switchcs sOl1rcefile listfil~/L binfile/B statfile/S

Legal globa"" switches are:

IL produce a I isting file
/D debug mode
IN do not produce a binary file (overridden by binfile/B)

If listfile/L is absent but the IL global switch is set, listing output will be sent to
sourcefi le.LS.

If Dinfile/B is absent, binary output is sent to sourcefile.MB.

If st;ltfilel5 is absent, statistics for the assembled pro&!,am are appended to the listin~ file if
there is one; otherwise, no statistics are generated. I he default extensic,n for a IS file is
',Stats'.

The default extension for sOl.lrccfile is '.Mu'.

Error messages will be sent to the listing file if one has beet:l specified, unless debug mode
has be ~n set. I n debug mode, errors are sent to the system display area, and a pause occurs
at at every error (and at certain other ti mes). Typi ng any character proceeds.

If no listing file has been requested, debug mode is set independent of the global switch.

3. Output fi Ie

The assembler produceds l\1icro format binary OlJtput. The string names of the two
memories sptcified in the file are CONSTANT and INSTRUCTION. Only defined locations

For Xerox Internal Use Only -- April 29, 1978

Mu: AHo Microassembler March 25, 1978 94

in these memories are output. Micro format is compatible with the PRom blowing program,
the RamLoad program. and the PackMu/LoadRam software. Note· that the Instruction
rnerrory specified in the binary file does not include the 3 bit F3 field, which exists only, in
the debugging RAM.

4. Listing file

The listing file contains:

1.) All error messages (un less debug mode is set)

2.) A listing of all unused but predefined locations and unresolved forward references.

3.) Two listings of the contents of the constant memory, the first sorted by address
and lhe second by value.

4.) A listing of the names assigned to the R memory

5.) A listing of the object and source code (with comments and declarations removed.
Th,:~ 35 bit Instruction IS printed out in· the following order:

Lo:ation: RSel, ALUF, BS, F1, F2, LoadL, LoadT, F3

6.) The microprogram s:atistics (unless sent to a separate file).

For Xerox Internal Use Only ._- April 29, 1978

Mu: Alto Microassembler. March 25, 1978 95

Appendix I: Literal symbol definitions

The value of a symbol is a 3 word quantity. The first word contains a type (6 bits) and a
value (10 bits) which dftemines the interpretation of the symbol in all cases except when it
is encountered as the source in a data transfer clause (assignment). The second word
contains the type and value used in this case.

The third word contains bits specifying the definitional requirements and source attributes
applied when the symbol is encountered in an assignment. The definitional requirements
are reJresented by single bits, where zero means 'must be dt:fined' and one means 'don't
care'. "

Bit 0: 0 if L output mllst be defined
Bit 1: 0 if BUS must be defined

(destination-imposed requirements)
"

Bit 2: 0 if ALU output must be defined
Bits 3-7: Unused (?)
Bit 8: L is defined

"

(Source attri butes)
Bit 9: Bus is defined
Bit 10: ALU Olltput is defined
Bit 14: ALU output is defined

if BUS is defi ned

"
"

A~;signment processing proceeds by ANDing together the attribute words for all the
destinations. The result contains zeroes in bits 0-2 fOf things that must b~ defined and
ones elsewhere.

When the source token is encountered, if it is a defined symbol it is tested by checking the
defi nitional requi rfmen ts of the desti nations agai nst the corresponding attri butes in the
source. If all destination requirements are satisfied, the claUSE: is complete. If the only
unsatisfied requirement is ALU definition, and if the Bus b defined, the ALU function is
set to gate the bus through (thefeby defining the ALU), and the clause is complete. If this
doesn't work, or the source token is not a defined symbol, the SOUfce ~;tring is dismembered
in a search for two sllbstrillg~, the first of which defnes the Bus (bit 9), and the second of
which defines the ALU output if the Bus is defined (bit 14). If two substrings are found,
the implied assignments are made, and the clause IS complete. Otherwise, an error is
indicated.

The symbol type(s) determine the fields to be set in the microinstruction: Some types are
legal only as an Isolated clause, some are legal only as the source or destination in an
assignment. The currently defined types are:

Type:

o Illegal
1 Undefined address
2 Defined address
3 R localic nf-
4 f- R lc.cation
5 ~Constant
6 Bus source
7 Non-data Fl
10 Fl +-
11 f-L defining Fl
12 Non-data F2
13 F2f-
14 f-Data F2

Legal as:

never
address
address
destination
sou rce
source
source
clause
destination
source
clause
c.estilOati on
source

I nstruction Field
Receiving Value:

Next
RSel
RSel
RSel, BS
BS
FI
FI
F1
F2
F2
F2

Side Effects:

Defines Bus to be 0

(f- L LSH 1, etc.)

nS t -l, RSELf-O
(f-DNS, ·:-ACDEST>

For Xerox Internal Use Only -- April 29, 1978

Mu: A1to Microassembler March 25, 1978

15 Data F24~ desti nation F2 ns+-o, RSEL+-O
(ACDEST+-, ACSOURCE+-)

16 Ef\'D clause Not used by Mu. .
17 +-1.. source
20 L+- desti nation LoadL
21 Non-data F3 clause F3
22 F3+- desti nation F3
23 +-F~, source F3
24 +-llLU functions source ALUF
25 T+- desti nation LoadT
26 +-T source ALUF ALUF"·1
27 No longer used
30 Predefined address
31 +-LMRSH, +-LMLSH source
32 +-Mask constant source
3~ ~I +-F2 source F2 nS+-2
34 +-F1 source Fl BS+-2
35 XMAR<- destination Fl, F2 FI+-1, F2<-6

The currEnt symbol definitions are contained in file AltoConsts23.Mu.

5. Revision History

October 24, 1974

'%' predefinition facility added.

March 4, 1975

96

This version has changed from previous releases in. that the .BM filc contains micro format
type 5 blocks which contain address symbols for the constant, instruction, and R memories.
Programs which read these files will be expected to deal with this type of block.

October 11, 1977

Bugs fixed: garbage in listing if statement too kmg; occasionally scrambled R-register
I isti ngs; premature termination at the end of 'i Ilsert' files.

Features: longer statement buffcr (500 characters); symbol type 35 for XrvlAR +-; '.Stats' file
genernted conditionall~'; checks for loading S-register from shifter; reports length in octal
and decimal; strips Bravo formatting.

March 25, 1978

Bug fixed: leaving the semicolon off the end of a predefinition yielded erroneous resuHs
with no error message.

Features: listing file contains constants sorted by value as well 2.S by address; source filename
extension de~:-aults to '.M u'.

Network Executive .

For Xerox Internal Use Only -- April 29, 1978

March 9, 1978 97

Network Executive

NetExec is an Alto command processor for invoking certain subsystems via the Ethernet
without using the local disk. It is useful for rebuilding a smashed disk and for loading
diagnostic programs when the disk is sick. Its user interface is intentionally similar to the
standard Alto Executive.

The program is invoked by holding down the <back~;pace) and <quote) keys while pressing
the boot button. You must continue to hold the keys down until a small square appears in
the middle of the screen, then Y::)lJ can let go. NetExec and all of the programs invoked by
it are boot-format files kept by 'boot-servers' -- programs which implement the Alto boot
protocol. Most gateways and some other programs (such as Peek) contain boot-servers.

When the NetExec arrives, it displays a ")" and blinks its cursor to indicate that it is ready
for commands from the user. In parallel with this it displays a pair of lines near the to~
of the screen with its name and version number, a digital clock, and the machine s
internetwork address.

Typing "?" causes the NetExec to display a list of the boot-files it knows how to invoke.
NetExec builds this list by probin!!, the netw()rk for boot servers and asking them what boot
files th.ey are willing to giye out. '1rhere are also somc built-in functions which are listed by
"?" as If they were boot flIes: .

Probe Causes NetExec to probe the network looking for boot servers. If it
discovers any new ones, it will add the new boot files to its list. This
is done once automatically when NetExec starts.

SetTime Causes NetExec to probe the network looking for a time server. If it
discovers one, it sets the Alto's clock from it. This is done once
automatically when NetExec starts.

Keys

Host

Quit

Prompts you for a boot file name and tells you the key combination
which will boot it directly.

Prompts you for a boot file name and tells you which Ethernet host
NetExec will get the file from.

Boots DMT

In the future, common subsytems should be stored in a few places throughout the network,
not on every local disk; perhaps the local disk can b;~ eliminated entirely. Doing so requircs
a much better integration of network and OS facilites than currently exists. The NetExec
described here is not intended to do this. There are several limitations in the current
implementation:

1)

2)

Most boot-filcs are core ima!;es and ~;o are ~uite large. Typical boot
servers have space for about 15 core-i mage fIles.

Boot-files are not properly hooked into the local disk. Programs
which use ovcrlays or keep internal file pointers (such as Gravo and
DDS) will not work.

Boot-servers typically run in machines with some other primary
purpose, such as gateways, and must not consume too many resources.
As a result, booting is slow and only one machine can be served at a
time.

OEDIT

For Xerox Internal Use Only -- April 29, 1978

January 17, 1978

OEDIT

98

The OEDIT program is for looking at and modifying Alto files in octal. Call it with
OEDIT f1 f2... where the f's are the names of the files you want to look at. It will
display the contents of the corresponding words of all the files on the same line. There is a
limit of four files which can be looked at simultaneously. If yOU want to be able to
modify the first file, lise the IW switch on the OEDIT command. If you don't use this
switch, OEDIT will request confirmation before letting you write into any of the files.

When it stan~;. the l)rogram computes the length (in bytes) of all the files. For large files
this can take upwarc s of 15 seconds, so don't be alarmed by the delay.

After typing the lengths, OEDIT waits for commands:
nl show location n of each file
If show the next location of each file
t show the previous location of each file
cr show the C"LJfrent location again
n! show locations n to n+37 of each file
> show the next 40 locations of each file
< show the previous 40 locations of ech file
nF beginning at current location in the first file,

find a word containing n, show it and its "address
Q quit

The If, t, <, >. and cr commands can be preceded by a number which is written into the
current location of the first file.

All numbers are octal. All addresses are word addres;es (even though the lengths are shown
in bytes.) Oedit shows each value as an octal number, two octal bytes, and two Ascii
characters. "

For Xerox Internal Use Only -- April 29, 1978

Alto microcode overlays October 20, 1976 99

Alto microcode overlays

Large systems which use the Alto control RAM, such as ByteLisp and Mesa,
inevitably want to put more instructions in the RAM than will fit. When this h3~pens, the
system implemt:ntors can choose either to implement the additional functions in software, or
to change the contents of the RAM dynamically. The package described here provides for
relatively cheap dy[wmic overlaying of the RAM. The overlay regime can be very simple
(just one overlay in RAM at a time) or complex (a nested allocation scheme) with no
changes in the swapper or the overlays themselves.

Users of this package must, of course, still decide when loading microcode is
preferable to falling back into Nova code. In terms of space, one microlllstruction does
about 2/3 as much work as a Nova instruction, and takes 32 bits rather than 16, so
(overlaid) microcode takes about 3 times as much core space for equivalent tasks. The
package presented hEre imposes an additional space overhead which may amount to as much
as 2 'f' the square of the number of overlays. In terms of speed. loading a microinstruction
takes about as long as executing a Nova instruction, and the package describe:l here adds an
additional time rou~hly equal to 1 Nova instruction for each overlay each time a new
overlay mllst be loaoed. so for totally straight-line code the net execution time favors Nova
implementation by about a factor of 2 (i.e. to break even, a given overlay must be executed
at least twice). However, microcode has easy access to the state information stored in the
processor's R registers, while Nova code does not (unless it can all be passed through the
AC's), so this may make microcode execution preferable even in the case of straight-line
code executed only once.

1. How to use it

Using microcode overlays requires three steps that differ from normal use of the
RAM. The Mu assembly process is different; the Oram rrogram must be fun to construct
the data structures necessary for the swapper; and a smal amount of extra initialization is
required at funtime.

The first step in constructing ovedayable microcode is to decide how to break up
one's microcode into overlays and to identify the entry points to each overlay. (One overlay
may have more than one entry point.) The microcode sources must be broken up into files:
a main file that includes all the resident code, rlus predefinitions (but no cock) for all
entry points of all overlays; an initialization file (to be described in a moment) that
supplies dummy code for all entry points; and files for the individual overlays.

The main file must include the following code at the beginning:

!O,l,zero; Required by the swapper
$ramvec2$Rnn; An S register fOf the base of the overlay table

[other predefi nitions, syn bol defs, constan tSt registerst etc.]

#swapper.mu; The swapper

This co{e must occur at the beginning of the main file because the swapper's entry point
(label "swapper") must be predefIned as location 1000 in the RAM.

The initialization file mllst have the following form:

#main.mu; (or whatever the main file is called)

en to: T ~ 0, :swapper;
entl: T ~ 1, :swapper;
en t2: T ~ 2, :swapper;

For Xerox Internal Use Only -- April 29, 1978

Alto microcode overlays October 20, 1976 100

ent3: T ~ 3, :swapper;

and so on for all the entry points. (EntO, etc. sh:>uld be replaced by the names of the entry
points, of course.)

Since microcode is not relocatable in the RAM, all decisions about what overlays can
be co-resident must be made at assembly time.

After assembling the dummy file and each leaf overlay file with Mu in the usual
way, run the Oram subsystem as follows:

)Oram xx.BR init.MB ovl.MB ... ovm.MB
where xx.BR is the BR file on which Oram will write the overlay tables, init.MB is the
result of assembling the initialization file, ancl ovl.MB through ovm.MB are the results of

·assembling the leaf overlay files. If all goes well, Oram will produce a variety of messages
ending with

nnn words written on xx.BR
and return to the Executive. Oram also writes all its messages on a file called Oram.Lst.

When you load your program with Bldr, you must include the file xx.BR produced
by Oram. The data in this file, unlike the initial RAM image produced by PackMu, is
required throughout the running of your program. You mlJst also load the RWREG library
package to obtain the WriteReg procedure used below, but this is only needed during
In i tialization. .

When loading the RAM during initialization, your program mllst include the
fol1owing code:

external [MCbase; MCtop] / / defined in xx.BR
if (MCbase&l) ne 0 then
[let len = @MCtop

Mc-veBlock(MCtop-len-l, MCtop-len, len)
MCbase = MCbase-l

JriteReg(nn, MCbase-2)

where nn is the register number in the definition of ramvec2 in the main fitt!.

2. Design details

In the RA~A, the t~ntry instructions of each overlay are all in the permanently
resident code. If the overlay is present, the ent:ry instruction is just the first instruction of
its code; in this case we say the entry instruction is "valid". If the ovelilay is absent, the
entry instruction loads T with the entry number and branches to the swap per (the entry
instruction is "invalid"). Thus when an overlay is loaded, the entry instructions of all
overlays it overlnps must be invalidated. The chief advantage of this approach is that there
is absolutely no time overhead if the overlay is already in the RAM, so it is feasible to
overlay very short sequences (15 instructions, say). '

There is just one global data structure (in core) that describes the overlay structure: a
table indexed by 2 '" entry number which points tel overlay descriptions, described in the
next paragraph, and also specifies \vhere to start execution after the overlay is loaded. (This
arrangement permits a single overlay to have multiple entry points.) The origin of this
table is the only thing known to tht; swapper.

The description of an overlay (in core) must begin at an even location, and has two
parts:

1) An invalidation table which specifies how to overwrite entry instructions. Each
entry in this table is a 2-word object: the first word is a RAM addres~;, t.he second word is
the upper half of the microinstruction to write there (the lower half always being

For Xerox Internal Use Only -- April 29, 1978

Alto microcode overlays October 20, 1976 101

"BUS~constant, Load T, branch to swapper"). The last entry is flagged by having bit 0 of
t.he RAM address set. .

2) A sequence of instruction blocks. Each block begi ns with a 2-word header
(IOOOOOb+RAM address, 0). The following data are a sequence of instructions where each
instruction's NEXT field specifies where to load the following one: this sequencing scheme
eventually requires the block to end. This sequence: is terminated by a final block consisting
of two zero words.

The swapper is a routine in the resident microcode which expects an entry number
in T, loads the appropriate overlay, and branches to the entry. It must fetch the overlay's
description from core and then do the following things:

1) Invalidate the entry instructions of all overlays with which the one being loaded
conflicts.

2) Load the code, which must include the entry instructions specified as being newly
valid;

3) Branch to the code. The initial RAM 'load must have all entry instructions invalid.

3. Mu/Bldr interface

The thi rd design issue is how best to get the necessary data structures incorporated
into Bcpl/Nova programs. It turns out that it is possible to support nested overlays with no
changes to Mu. For example, suppose that the main body of the microcode is M, and that
we have three overlays: X (entry point Xl), W.hich takes all the overlay space, and Y (entry
points Yl and Y2) and Z (entry point Zl), which will both fit at the same time. Assemble
the foll.)wing configurations WIth Mu: M+X,M+ Y, and M+ Y +Z. Then an overlay
preparation program, Gram, can .:ompute all the necessary tables and produce a .BR file that
can be loaded with the user's program. .

It is necessary to l:e a little careful to arrange that the entry instructions fall in the
same locations in all assemblies. Furthermore, if 1t is desired that one routine occupy a
subset of the RAM locations of another, they must have the same configuration of
predefinitions (and, of course, appear at the same place in the assembly sequence). Here is a
sketch for the example: .

M contains (somewhere):
!O,l,XI;
!0,l,Y1;
!O,l,Y2;
!O,l,ZI;

X contains:
Xl:

Y contains:
YI:
Y2:

Z contains:
Zl:

[code for X]

[code for Y]
[more. code tor Y]

[code for Z]

In general, some of the predefinitions could be omitted if the entry addresses were to be
predefined earlier, for example if they were entries in some kind of opcode dispatch. In
addition, there mllst be another file \V which is assembled with M to produce the initial
RAM load:

W contains:
Xl:
Yl:
Y2:
Zl:

T ~ 0, :swapper;
T ~ 1, :swapper;
T ~ 2, :swapper;
T ~ 3, :swapper;

For Xerox Internal Use Only -- April 29, 1978

Alto microcode overlays October 20, 1976

The pointer table would have the appearance
Xdesc; Xl;
Ydesc; Yl;
Ydesc; Y2;
Zdesc; ZI;

and the individuc.1 descriptions would be as follows:
Xdesc: Yl; inv,Jidate Y and Z

BUS~ 1 (hi part);
Y2;
BUS~2 (hi part);
#lOOOOO+Zl;
BUS~3 (hi Qart);
b~ode for X]

0;
Ydesc: lIIOOOOO+Xl; invalidate X

BUS~O (hi part);
b~ode for Y]

0:
Zdesc: #lOOOOO+Xl; invalidate X

BUS~O (hi.-.£art);
b~ode for zJ

102

O·
Fortunately, given the .MB files, the Oram subsystem can construct all the tables itself.
Oram assumes that any instruction in the base file (W) which branches to the swapper is an
en try instruction.

For Xerox Internal Use Only -- April 29, 1978

Packed RAM images February 11, 1976 103

PackMu, Rpram, ReadPram

These two Subsyslems and one library package make it easy for Alto programs which
use the RAM to check the constant menory and load the RAM as part of thdr
initialization. The first subsystem, PackMu, takes the output of Mu (a .MB file) and
converts it to a "packed RAM imagt;" which is easy to load. The second subsystem. Rpram,
reads a packed RAM image. checks the constant memory, and loads the RAM (Le .• it i~. a
microcode loader). This function is also available through a pair of library routines
ReadPackedRAM and LoadPackedRAM (available on a file called ReadPram.bcpl).

A packed RAM image is a .BR file containing 4401b words of data. The first word
is ignored. The next 400b words are the desired contents of the constant memory: a zero
word (which M LJ cannot generate) means "don't care". Constant 0 is reserved for a version
number, to help proorams check that they are getting the correct RAM contents. The
remaining 4000b words are the contents of the RAM. Each instrllction occupies two words,
first high-order part, then low-order part, e.g. words 0 and 1 go into RAM location 0,
words 2 and 3 into RAM location 1, and so on.

The invocation format for PackMu is
> PackM 1I foo.M B foo.BR version staticname

Foo.MB is the output from MU. Foo.BR is' the file for the packed RATvI image. Version
(optional) is a RAM version number which will be written as constant 0 in the output file;
if omitted, il defaults to zero. Staticname (optional) is the name for the static in foo.fiR
which will point to the RAM data; if omitted, it defaults to Ram(mage. PackMu prints out

xxx constan ts, yyy instructions
to indicate the number of constants and instructions read from foo .. MB. If foo.MB is
somehow illegal, PackMu prints

Error:
and an error message instead.

The invocation format for Rpram is
> Rpram foo.BR version

where foo.ilR is the output from PackMu. If there are any disagreements between the
constants in foo.fiR and the actual constant memory, Rpram prints

Constant Ilnn is xxx, should be yyy
for each constant that disagrees, and a summary message

nnn constants differ
at the end of loading (but it still loads the RAM). If version is supplied and disagrees with
constant location 0 in foo.BR. Rpram prints

Ram Version in file is xxx; version expected is mmm
If Rpram believe~;; that foo.BR is not a file written by PackMu, it prints

Bad RAM image
If everything is OK, Rpram prints nothing.

To read in a packed RAM image file from a program, use the subroutine
ReadPackedRAM(stream, IvRamV [J). The stream argument should be a word-item input
stream positioned at the beginning of a foo.BR file; IvRamV, if sUl)plied, is taken as the
address of a variable in which to store the value given by the file or constant 0 (i.e. the
RAM version). Reae! Packed RAM does exactly the same thing as the Rpram subsystem,
including printing disagreement messages 011 the display. but instead of printing the
summary message it just returns the number ·)f disagreements, or -1 in the case of a bad
RAM image file. Rpram e~;sentially just opens foo.BR and calls ReadPackedRAM.

Alternatively, you may wish to load the RAM image foo.BR with your program. In
this case, use the subroutine LoaclPackedRAM(staticname, IvRam V [J) where stalicname is
the name you gave to PackMu. LoadPackedRAM does the same thing as ReadPackedRAM,
except it takes the data out of memory instead of from a file.

For Xerox Internal Use Only -- April 29, 1978

Packed RAM images February 11, 1976

Maintainer's notes:

PackMu lIses the library packages OP and ReadMu.

Rpram llses the library package GP.

104

PeekPup

For Xerox Internal Use Only -- April 29, 1978

May 17, 1976

PeekPup

105

PeekPup is a small subsystem enabling one to peek at Pups going to and from a particular
Ethernet host. It is intended as an aid in debugging new Pup software.

PeekPup is invoked by the command

PeekPup hostnumber filename

where "hostnumber" is the Ethernet address (octal) of the host whose packets you want to
spy on and "filename" is the name of a file to write the output on. The program then
looks for packets whose Ethernet source or destination address is equal to "hostnumber", and
buffers them in memory. For each Pup so processed, "!" is displayed on the screen.
PeekPup terminates when any key is pressed, at which point it interprets the last 200 Pups
received and writes the r~sult on the specified file.

The output is mostly self-explanatory. The numbers in the left margin represent a
milliseo)nd clock (with no particular starting value and wrapping around at 32768). For
each Pup, a few lines of output are generated; the information about Pups sent to the host
being spied upon is indented further than information about Pups generated by that host.
Pup headers are fully interpreted, and Pup contents are displayed as eIther text or a series of
octal numbers representing bytes; large Pups get only the initial portion of their contents
displayed, followed by " ... ".

Pressedit

For Xerox Internal Use Only -- April 29, 1978

April 26, 1976

Pressedit

106

Pressedit is useful for combining Press files together, converting the Ears files genc:rated by
Pub and Bravo into Press format, selecting certain pages from a Press or Ears file, or adding
extra fonts to a Press file. The general com mand format is illustrated in the following
example:

pressed it foo.press fo a.press b.ears 2 5 c.press 3 to 7 9 meteor9/f

This means "make a Press file foo.press from all pa~;es of a.press, pages 2 and 5 of the Ears
file b.ears, and pages 3, 4, 5, 6, 7 and 9 of c.press; add font meteor9 to the fonts defined in
foo.press". The resulting file will be arranged in the same order as the component input
files.

Examples:

To convert all Ears file foo.ears LO a/fie foo.press in Press format:

pressedit foo.press fo foo.ears

To extract pages 3 alld 17 from a Press file long.press, and put them ill short.press:

pressedit shorLpress fo long.press 3 17

To extract pages 5 through 12 from foo.ears, and put them in short.press:

pressedit shorLpress fo foo.ears 5 to 12

To add fonts lo,go24 and hclvetica14 to a.press:

pressedit a.press fo a.press log024/f helvetica14/f

Here the arguments on the right hand side of the arrow may be given in any order.

To make a blank, olle-page Press file containing all three faces of TimcsromanlO:

pressedit blan kti mes.press fo timesroman10/f ti mesroman lOi/f timesroman lOb/f

To append 10 the end of chal)3.prcss all the Press files with names fig3-1.press, fig3-2.press,
fig3-3.press, etc:

pressedit chap3.press 'f- chap3.press fig3-*.press

Caution: when you combine files with Pressed it, try not to use different sets of fonts, or the
same fonts in different orders. This will result in proliferatkm of font sets, making the
fik more bulky and creating other minor sources of inefficiency.

Print

For Xerox Internal Use Only -- April 29, 1978

April 26, 1976

Press Print Program

The Print program can be used to print any Press file. Simply type:
print filel.press file2.press <return>

107

If you type Is after a file name, the file will be saved on Maxc in Ears format. You
may print more than one copy, as follows:
print 5/c foo.press

This will print five copies of foo.press.

Printing is at present done via Maxc. If you are logged in to Maxc, you may print a
Press file, 'foo.press,' on your Maxc directory by typing the following:
ears foo.press < return>

All of the normal subcommancls, for extra copies etc., are available.

QED

For Xerox Internal Use Only -- April 29, 1978

October 31, 1974

Alto QED T{:xt Editor

108

Alto QED provides a subset of the facilities incorporated in the original QED
implementation, the most notable omission being facilities for line editing.

QED is designed to run on a 64K Alto. All of the body of text being edited is maintained
permarh'ntly in core. This m~lkes for fairly rapid operatIon, but restricts the amollnt of text
that can be edited to about 1500 lines of average BCPL program. The screen can display 20
lines of text.

Line numbers are not stored internally, but are computed by QED. Whenever text is added
or deleted, the numbers of the lines following the alteration are changed accordingly.

A complete list of command~; in QED is as follows. Here s, f, and. e are line numbers or
expressIOns (set' below); c is the confirm character (carriage return). The user types the
underlined text; commands may be typed in upper or lower case.

eAppend.£ The following text is added after line e.

s,fChange.£ r:he following text replaces lines s to f.

sJDelete.£ Lines s to f are deleted.

E>nish.£ Terminates editing and returns to the operating system.

~!rsert.£ The following text is added before line e.

s,ffV!ove a copy after ec A copy of Ii nes s to f is placed after Ii ric e.

s,fOverwri~e old file name .£ Lines s to f are written onto the file which was last read
or WrItten. .

eRead from filenamec Text is read from file and is added after line e.

sJSubstitute newc for oldc QED substitutes the new text for the old text wherever the
~ old text lsfOund WIthin the given range. The number of substitutions is typed.

s,fTransfer after ~£ Lines s to f are moved after line e.

eWrite on filenamec Lines s to f are written alIt onto the named file. Note that this
- command does not affect the contents of the buffer.

s,fXchange newc for oldc Similar to Substitute, but the user must confirm each
substituTIOn with C,(Ttherwise the substitution is not made. The line containing
each occurrence of the old text is printed, with the text surrounded by double
quotes. If ctrl-Q is typed instead of c, then no further substitutions are made.

s,f / Lines s to f are I isted on the screen.

e= The value of expression e is typed on the screen.

QED allows expfi~ssions to be used in place of line numbers: thus e, sand f may be anyone
of the fol1owing:

a line r limber
the symbol $, meaning the last line in the buffer;
a period, meaning the current line;
;tcxt; or 'text', meaning the next line following the current

QED

For Xerox Internal U~,e Only -- April 29, 1978

Octob{~r 3t 1974

one on which the given text occurs;
:text, meaning the next line starti ng with the given text;
an expression formed by combining the above, using the
symbols + or space for addition, - for subtraction.

109

If s is omitted. QED assumes that the first line was meant; if f is omitted, it assumes the
last line; both may be omitted ... thus a single comma is equivalent to 1,$, Le. the entire
buffer contents. In addition the user may omit line numbers altogether: most commands
will then assume that the current line was meant with the exception of \Vrite and Overwrite
which assume the entift',! buffer; and Read and Append which assume that the last line was
meant.

The current line changes whenever text is read in, written Ollt, added or deleted. The
commands Substitute, Xchange and = leave the line number unchanged; all others leave it at
the last line of input or output or last line moved, with the exception of Delete which
leaves it at the line after the deletion. The easiest way to reset the current line to a fresh
position is to type the new line. To type: the line following the current one, type line-feed
(LF); to type the previolls one, type t.

T) start input to QED, type QED to the operating system, and then type A to apRend.
Dlring input, you may erase the last character typed with Ctrl-A, the whole line with DEL
or Ctrl-D, and retype the line being input with Ctrl-R. DEL wiIi normally cancel any
command being typed. Input following Append, Change and Insert is terminated with Ctr1-
Z.

Note:

1. QED removes line feeds, rllhollts and nulls when reading from a file, and appends a
line feed after each line when writing to a file.

L Control characters within a file are invisible.

RAM LOAD

For Xerox Internal Use Only -- April 29, 1978

April 1, 1975 110

RAMLOAD

RAM LOAD i!i a program that acts as a microcode loader, using the out.put of the microcode
assembler Mu. SlIlce there are now two types of microcode memory for the ALTO, some
distinction must be made. I-Iereafer, ROM means some combination of roms on the ALTO
control board, and add-on goodies which hang on the end of the control board like
debuggers with 512 words of ram. RAM means the extra board with 1K of ram which
plugs into a slot in the processor.

RAMLOAD gets its parameters from the command line and default values. If you do not
specify a parameter, the default is used. In addition there are some global switches which
d.o other useful thinos as explained below:
GLOBAL SWITCHE:S (of the form RAMLOAD/switchlist)

IR

IV

IC

IT

10
IN

compare the micro binary file against the contents of th:e RAM and display
differences.
compare' the micro binary file ngainst the contents of the ROM and display
differences.
compare the micro binary file against the contents of the constant memory and
display differences.
Test the RAM and extra R registers by writing random numbers and then reading
them back displaying differences and addresses.
Same as IT but do not test the R registers.
Do not request Confirming (CR) for any operation.

LOCAL SWITCHES (of the form foo/switch)

IF
1M

Ie
IV

IA

IS

use foo as the name of the micro bi nary file. Default is "Ill NFl LE."
lise foo as the name of the instruction memory in the micro bim: ry file. Default
is "INSTRUCTION". .
use foo as the name of the constant memory in the micro binary file. Default is
"CONSTANT".
foo is an octal number. Use it as the boot locus vector. Bit 15 corresponds to
task 0 (enulator). 0 means run task in the RAM. Default is #.L77777 - keep all
tasks in ROM.
1'00 is an octal number, representing the base address of a 5 word area in the
RAM which RAMLOAD can use for utility purposes. Default is the top 5 words
(#1772). See warnings below about restrictions for specific operations.
f 00 is an octal number interpreted as the be~inning address of the emulator main
1008 (START for microcode hackers). Default is the current START address,
#2 .

Note :hat global switches IV, IC, and IT do the same things that ;V, ;C, and ;T do in
DEB·\L. RAMLOAD in effect does a ;L, and also sets the boot locus vector. The IR
global switch was added because it was easy and peoph! might want to see if the microcode
got smashed after a fiasco. .

V/hen RAMLOAD is called, it will first display what it thinks it is supposed to do as
governed by the switches and defaults, ancl wait for a confirming carriage return. \Vhen
this is received, it will attempt to open the rnicro binary file. If this is unsuccessful, it wiB
put out a message to thn effect. Next, operations specified b:' global switches will be
performed (If the micro binary file could not be or.enecl, the only tests possible are IT and
10). If no global switches were set, the program will assume you wanted to load, and do so
without waitmg for confirmation. Loading IS a three step operation in which the first step,
setting the boot loclls vector, does not require an open mIcro binary file. This allows a user
to change the boot locus vector without (cloading the RAM. by specifying a nonexsistant

RAM LOAD

For Xerox Internal Use Only -- April 29, 1978

April 1, 1975 III

file name for the micro binary file. The p~o~ram will report the value the vector is set to.
Steps two and thre,:!, unsnarling the micro bInary file and loading its contents, oblt'iously
require an open file and will caUSt: RAM LOAD to bomb if there i5 none. When the
loading operation is complete, the number of instructions loaded, and the highest address
will be reported ala DEI3AL. Next the program will ask if you want to boot, thus moving
the tasks specified in the boot locus VE:ctor into the newly loaded microcode in the RAM.
If you confirm. and if you have an Ethernet board. the machine will do a software initiated
boot. Ilf you do not have an Ethernet, the boot wi II be a NOP, and a FI N ISH is executed.
Hitting the boot button after the program is finished will work for those hermits who do
not have Ethernets.

The routine which reads the micro binary file expects the limited subset of block-types that
DEBAL puts out. If it encounters an unusual block-type (3, 5, or 6) , it will endeavor to
do the right thing, and continue on. When it is finished reading, if any unusual types were
encountered, it will list how many of each it read. If the microcode was assembled using
DEBAL, this is cause for grave doubts about the correctness of the file, since DEBAL will
not currently generate these types .

. Where the 5 word utility area is specified can hav~ profound (ie. potentially disasterous)
effects on the machine's operation if you arc currently running from the RAM. \Vhile it is
possible to load the RAM while executing in it, this is living very dangerollsly. However, if
you must, observe the following caveats:

* if constant memory is being checked, and you are executing out of the low 256
locations, you are dead.

* the 5 word utility area must be specified in a place you \vil1 not be executing from
during the RAMLOAD program. RAMLOAD always saves any word in RAM it
modifies for utility purposes, and restorES it when It is done, but while in use, it
can have an arbitrary value.

A number of things can cause fatal errors during execution. If one happens, an error
message is written in the system display area, and the program is aborted.

SCAVENGER

For Xerox Internal Use Only -- April 29, 1978

May 24, 1976

SCAVENGER

112

A subsystem for checking and correcting disk packs is available as SCAVENGER. Invoke it
with no parameters and It will give you an opportunity to (1) change disks and (2) prevent
it from altering your disk seriously (see below).

The scavenger does the following:
1. Corrects header hlocks, prompting for G:>nfirmation.

. 2. Corrects check sum errors, by re-writing whatever came in, prompting for
confirmation.

3. Discovers all well-formed files and all free pages. Any disk page (ex1:ept page 0) that
is neither free nor part of a well-formed fill;:! is considered bad.

4. Makes the serial numbers of all well-formed tiles are distinct.
5. Corrects the system's notion of what pages are free.
6. Corrects the system's latest serial number.
7. Corrects the directory to contain precisely the well-formed files. If a directory entry

point~; into a chain of bad pages it attempts to salvage the file. If need be a
directory is created from scratch.

8. Links all bad, unsalvaged pages toget ler as part of the file Garbage.$.
9, Describes all changes to the disk in the file ScavengerLog, even those which were not

actually performed.
10. Corrects leader page information. Changes to leader pages should not cause alarm.

The information there is used as a hint by various systems.

The data in bad pages is not changed so you can attempt to reconstruct a lost file by
suitable operations on Garbage.$, consulting Scaven.gerLog to interpret its contents.

A horclessly smashed disk may be put back in shape by the following:
. Invoke scavenger on a good disk and answer yes to "Do you want to change disks?"

2. Replace the good disk with the bad one.
3. Answer yes to "Is the new disk ready?" when the yellow ready light comes on.
4. Answer yes to "May I al ter your disk to corret errors?"
5. If FTP lives all your disk, the scavenger will offer to invok,e it rather than retuning

to the executive. Once you are in Frp you can receive critcal files (like
Executive.Run or SysFont.AI) or evacuate your disl~ by sending riles elsewhere. If
the scavenger does not offer FTP, it is not there and you Will have to do some
more disk suffling to retreive files; i.e. invoke FTP from a good disk and change
disks after you are in.

You should take precautions to avoid losing vital files (such as QUICKing your disk to
another disk pack prior to running SeA VENGER).

SCAVENGER

PARC information

For Xerox Internal Use Only -- April 29, 1978

May 24, 1976 113

The following. more or less independent, procedure can be used to recover vital files that
might have been lost during scavenging.

1. Invoke FTP on a good disk.
2. At an early point in the dialogue replace the good disk with the bad one and wait

for the yellow ready I ight to come on.
3. Retrieve the needed files from MAXC (Executive.Run and FTP are the minimum

required, f think.)
4. Quit out of FTP.
5. Run the scavenger. It will correct the DiskDescriptor file which became inaccurate

during this process.

Seffime

For Xerox Internal Use Only -- April 29, 1978

January 2, 1978

~:etTime

114

This simple subsystem attempts to obtain the date and time from a tim~ serve .. on the
connected Ethernet. If it is successful, it sets the date and time in the operating system and
also displays it. If unsuccessful, it displays an error message and prompts you to type in the
date and time.

This subsystem intentionally ha:5 the same name as the corresponding Alto Executive
command 'SetTime I • If your Alto does not know the date and time when the Executive is
started, it executes an automatic SetTime command. If SetTime.Run exists on your disk, it
will be run in preference to e(ecuting the Executive command 'SetTime '.

If SetTime.Run is unsllccessful in obtaining the date and time (which is unlikely unless the
Ethernet is broken or your Alto isn't connected), it will ask you to type in the date and
time in the form 'day-month-year hour:minute', e.g., '2-.Jc.n-78 19:15'. Additionally, it may
ask you to enter the lo':;al time zone, which may be Eastern, Central, Mountain, or Pacific.
(You may also enter '+' or ,_, followed by a tllne in the form 'hours:minutes' designating
hours west (+) or east (-) of Greenwich.)

SWAT

'For Xerox Internal Use Only -- April 29, 1978

February 2, 1977

Swat, a BePL-oriented debugger

115

Swat i~i a deblH!ger meant to be lIs:~d with the ALTO o(?erating system. While many of its
features are nCI>L oriented, it can be used on any NOVA code program. This document
describe! version 18 of Swat.

1. J nvocation

Swat may be applied to any program running under the operating system after it has been
installed (see .! nstallation below}. There are four ways of getti ng its attention: '

(1) Press the lowest, right-hand key of the ALTO keyboard,
torether with the <control> and <shift> keys at the left.

(2) Have ylJur program execute the c p-code 77400B.

(3) Invoke the Resume/S command (~:ee below).

(4)

(5)

Boot the file Dumper.Boot. normally by booting with the "OU"
ke:rs depress,,!c..

Type <programname)/! to the Alto command processor.

(6) Call the function CallSwat. Up to 2 arguments will be printed
as B':::PL strings. Thus CallSwat("No more memory")

The command has suffix action symbols, all control characters (e.g. 1'C).. un" is any BCPL
expression (see Ex ressions below), "$" is escape except where noted, 'cr" means carriage
rewrn, "If" mE ans me- ee .

2.1. Displaying cells

n1'D prints the contents of n in decimal
n1'l prints the contents of n as two 8-bit bytes
n1'N prints the contents of n as a NOVA instruction
n1'O prints the contents of n in octal
n1'S prints the contents of n as a pair of characters
n1'V prints n (in octal) rather than its contents

The last cell printed is called the o~ cell. 1'0, 1'D, 1'1, 't N, or 1'S alone re-prints the open
cell i:n the appropdate format. IT you-wIsh to print out a number of cells, beginning wit.h
the open cell, say n$1 D, n$1'I, etc. This command will not change the identity of the open
cell.

If (1' J) prints the contents of the next cell (after the open one} in the same mode.

tW prints the cell before the open cell.

SWAT

For Xerox Internal Use Only -- April 29, 1978

February 2, 1977

,t A prints the cell pointed at by the open cell.

116

t E treats tile open call as a NOVA instruction, computes its effective address and
pri n ts its can ten ts.

!O2. Changing cells

rhe contents of the open cell (if there is one) may be changed by typing an expression for
·he new v.:t1ue 1:'01l0wcd by a cr or If.

J.3. Running the program

t P resumes the program, i.e. proceeds.

n to resumes the program at n, i.e. goes there.

<eO>S< tl >$... $<en > tC calls procedure <eO> wit.h parameters <el > , <en> (n < 6), If you
. wish one of the arguments to be a BCPL-format stflilg. mcrely enclose it in
quotes. Thus Open~ile$"Com.Cm."tC will return a stream on the file.

t U restores the llse(s screen. Hi tti ng the break key bri ngs back Swat.

t K forces the user programs to abort.

t4. Break Points

n t B sets a break at n

t B set a break c.t the open cell

O$n't B deletes thc break at n

O$$t B delet~:s all breaks

$$t B prints all broken locations and checks that they haven't been clobbered.

$7' P removes the current break and proceeds.

n$tP sets a break at a BCPL return point in the stack somewhere and proceeds from
the present break. The parameter 11 specifies the frame. Thus if tT typed out
0:000+56 1:HAM+5. 1$t P would sct a break at HAM+6 and proceed.

!o5. Stack Study

tT prints the current PC and all return addresses in the call stack (symbolically),
until an inconsistency is found in the stack. After each return address is listed
the parameters passed to the procedure that will be returned to. Thus, if you
see an entry like "3: Findlt+4)--(14] T~'777)". the procedure Findlt was called
wi th arguments 14b and -1.

ntT prints n (or . less) return addresses.

nt F I?rints the parameten; of the nth latest stack frame and sets the pseudo symbol
'$" (not escape) equal to the base of that frame. If tT displayed something
like O:FOO+3, l:BLETCH+IO" .. Type 1 tF to s(:e the parameters that were
passed to BLETCH. $ is set to the base of BLETCH's frame.

~\VAT

For Xerox Internal Use Only -- April 29, 1978

February 2, 1977 117

.!.6. Symbol table

tY prompts to get a symbol file. Type the name of the subsystem that'G running.
(If BLDR created the file FOa it abo created FOO.SYMS which gives the
locations of all the static names. Only statics can be used in Swat.)

.L7. Save/Restore

tQ saves the current SW ATEE on a file (prompts) (see below)

t L make:; a (prompted for) file the current SW A TEE (see below)

~.8. The Spy Facility

rhe S[·y ca', be used to estimate where the time is going on a percentage basis. (It samples
.·.he PC every 30-nilliseconds).

i1) Type t X and Swat will display how much user memory it needs for. the metering
code and tables.

Probe around to find a block of storage of the required size, and tell Swat by typing

ntX

where n is the first word of the block.

13) Proceed to run the program.

14) Ono:'e Swat gets control again you can type

$tX

to display the results and terminate the spying activity, or

$$tX

to display the results so far and continue the spying .

. !.9. f\1 iscellaneolls

$tY

ntR

\Vill prompt for the name of a (text) file from which Swat commands should
he taken. Reading will continue across "proceed~;" from breakpoints, but will
b~ aborted if Swat is invoked by the keyboard or by the standard break-point
trap (77400b). .

Prints out the value of an R or S register n. You must have a RAM for this
to work, and n cannot be 37b or 77b.

!.lO. Examples

{"OtD prints the value of X in octal, then decimal.

::;'UNC+3+t N If If prints instructions 3, 4, and 5 of FUNe.

l t07 sets location 1 to 7.

S\VAT

LABELtB

7 562t B

SQRT$16tC

LABEL+3tG

OtT

OtF

For Xerox Intt::rnal Use Only -- April 29, 1978

February 2, 1977

sets a break at LABEL

sets a break at location 7562B

calls the (user) function SQRT (the returned value is printed)

transfers to the third instruction after LABEL.

prints the PC

prints the parameters- of the most recent cal I

118

2tF

$1'0

prints the parameters of the third most recently called procedure; then

prints the saved stack pointer (FLAST)

$+ltO prints the return address (FRET)

~;+6tO prints the first local (if the procedure has 2 parameters).

3. Expressions

Expressions are as in BCPL with the following exceptions

\
I

means exclusive or
means remainder
means Ishift for positive arguments, rshift for negative
means NOT

A string of digits is interpreted as octal unless suffixed by a"."

$ (not escape) is the base of the last opened stack frame (see t F above). Initially it is thl;!
last frame .

. is the last opened cell

.PC is the address (sic) of the PC

.. ACl, ... ,.AC3 are the addresses of the accumulators

.CR Y is the address of the carry bit

No function calls in expressions.

No relational operators (e.g. EQ)

No conditional expressions

No I v operation

SWAT

For Xerox Internal Use Only -- April 29, 1978

February 2, 1977

3.1. Examples
.- I to prints the ceO I before the currently open ·celL

.+ltO

. AC1 t06

.PCt072
tP

is like line-feed .

sets AC1 to (i

is like 72tO

.PCtO If If If If prints the PC and the AC's

119

The conventions for expression evaluation are not truly BCPL-Iike. "FtO" will print the
first instruction of F if BLDR thought it was a procedure or label, but print the contents of
sta.ic ceIl F if BLDR thought it was a variable. If.F started life as a variable, but had a
proc<:dure assigned to it you must. calI it by "@FlC" instead of "FtC".

4. Resllmable Files .

The file :)'N ATEE is a snapshot of a running program and can bE: saved for subseqent
resllmpjon or examination. YOll can create a <::opy of SWATEE by llsing COpy or, if you
are in Swat, typing t L and giving a file name. This copies S\VATEE to the named file and
appends some information Int.ernal to Swat -- the current symbol table and break point
c1ata.

There are several ways to restart resllmable files:

1. Press the boot button vl'hile holding down the keys for the file.

2. Type thl:! comllland (it is interpreted by the command processor)

RESUME file

If "file" is omitted SWATEE is assumed.

RESUME/S file

writes file onto SW ATEE and invokes Swat.

3. \Vhile in Swat, type tQ and give a file name. The file is copied onto SW ATEE and
Swat's internal information is restored to whatever was saved by the t L command that
(reated the file. If:he file Vias· created in some way other than t L, the internal
information is reset to an empty state.

5. Invoking Swat with the Boot Button

At any time. press the boot button whilc holding down tht key:~ for the file Dumper.Boot
(hopefully "DU"). This writes the existilH!, mcnory onto S\VATEE with the omission of page
o which is lost. Also the display word (420) is cleared. Finally, Swat is invoked.

SWAT

For Xerox Internal Use Only -- April 29, 1978

February 2, 1977

6. Error Message Printing

120

Swat contains some facilities to aid in pnntmg error messages. Because the Swat resident is
almost always present when a program is running, an error mess.lge can be printed by
simulating a Swat "break:' and letting the Swat program decipher the error specification and
print a reasonable message.

If Swat is invoked by the #77403 trap instruction, the contents of ACO are taken to be a
pointer to a BCPL string for a file name; ACI is a pointer to table [errCode%ClearBit; pi;
p'2; p3; p4....], where errCode (0 Ie errCode Ie 32000.) is an error code, the piS are
'parameters," and ClearBit is either #100000 (clear the Swat screen before printing the
message) or 0 (do not clear).

The intended use is with a BCPLprocedure like:
. let BravoError(code, pI, p2, nil, nil, nil) be

~ode=code%U~;erClearScreen Bit
(table [#77403; :ft1401])("bravo.errors", Iv code)

/ / do a "fi n ish" here if fatal error
]

The error mes:;ages file is a sequence of error messages, searched in a dumb fashion. All
error message is:

a. An un~;igned decimal error number (digits only)
b. Followed optiollally by:

C Always clear the screen before printing the message
M (see below)
L Log the error via the Ethernet.

c. Followed by a <space>.
d. Followed by t.ext for the message, includinf; carriage returns, etc.
If you wish to refer to a parameter, give:

$.
followed by a digit to specify the parameter number (1,2,)
followed by a character to say how to print the parameter:

o = octal
o = decimal
S : string (parameter is pointer to BCPL string)

(e~:ample: $lD will print parameter 1 in decimal)
e. Followed by $$

After the message is tvped, if M was spl~cified, the message "Type <control) K to kill, or
<control>P to proceed.'l is typed out.

. 7. Parity Error Information

\Vhen the All(> detects a parity error, Swat is usually invoked to print a mEssage about the
detai Is of the error. It 1 hen attern pts to "log" the e.Tor wi th an Ethernet server responsible
for keeping maintenance information. [f the server is not operating, or if your Alto is not
connected to an Ethernet with such a server, simply strike the "Swat" key « blank·~bottom »,
and the familiar "#" will appear.

In many cases, you will want to continue execution of your program after a parity error is
detected. Simply type <control)P to Swat.

SWAT

~. I nstal1ation

For Xerox Internal Use OOly -- April 29, 1978

February 2, 1977 121

Get the file InstaIlSwat.Run. Then invoke it to will create SWAT (the debugger), SW ATEE
(the swapout file for the user's memory image), and Dumper.Boot. InstallSwat.Run may be
d'.;'leted after it has been run once. Use BOOTK EYS to discover the keys to depress for
Dumper.Boot. If the answer is not "DU" invoke

MOVETOKEYS Dumper.Boot DU

9. Caveats

1. Sft'at has about lk of resident code in high core. This code is not changed when new
sutsystems come in. Therefore re-boot if it seems to be in a bad state.

2. Instruction 77400B is used for breaks, and location 567B (in the trap vector) is used.

3. Interrupt channel 8 (01)4008) is used for keyboard interrupts.

4. The resident disables interrupts on entry and enables them on exit (clobbering 500B) so
putting breaks in non-interruptable code is dubious.

5. A program fetching data from a broken location will get 77400B.

6. V/hile most interrupt routines are reasonably polite and always resume the interrupted
code where it left off, the politeness of Swat's keyboard interrupt is entirely in the hands of
the person at the controls. If he re-starts by saying l' P, all goes well; but he may say 1'0 or
tC. Therefore

(1) You should disable the keyboard interrupt by anding 77377B into 453B during
critical sections of code (once they are debugged).

(2) Expect occasional anomalies after 1'C or 1'0 is used.

7. The mappings between symbols and addresses ar';:! naive about BCPL's block structure

a) If a symbol is defined twice or more you get the lowest address.

b) An address is mapped into a procedure name plus a displacement for symbolic type
out (e.g. for t f). If procedure A is defined inside procedure B, most of B's
addresses will be typed as if they were A's.

8. If a disk error ~revents swapping the offending disk control block and label are displayed
in the "boot-lights' manner.

9. Locations 700 throllgh 706 are used to save the reg~~iters before each swap.

10. If a file created all a different disk is resumed by booting, invoking Swat may not work
because S\VAT and SW ATEE may not reside at the same cTi:~k add resses on the different
disks. This difficulty does not occur if the RESUM E command is used.

For Xerox Internal Use Only -- April 29, 1978

Trident disk software February 26, 1978 122

Software and Utilities for Trident Disks:
Tfs and Tfu .

1. I n trod llction

This document describt:s Bcpl-based software for operating any of the family of Trident
disk drives attached tCI an Alto using a "Trident controlier card" (the software presently
deals with the T-80 and T-300 models). Hardware and diagnostic information can be found
in the document "Trident disk. for the Alto" (on <ALTODDCS)TRlDENT.EARS), by Roger
Bates.

The software documentation is divided into three parts: (1) a brief "how-to" section
descri~i!lg th,~ software package availabl~ for opefa~ilig the Trident; (2) a sec.tion describiryg
the utIlIty program· Tfu; and (3) a sectIon descnblllg the software package 1n more detail.
There is a short revision history at the end. (Documentation for the Triex program,
formerly includ(d here, has been eliminated. Triex is now needed only for hardware
checkout and is not required. during normal operation.)

The Tfs rackage and utilities all assume that the disk is to be formatted with 9 sectors per
track, 1024 data words per sector. Thus a 1'-80 disk has a capacity (815 tra:ks. 5 surfaces, 9
sectors, 1024 words per sect0r) of ~6.675 pm;es or 37,555,200 words. A T-300 (19 surfaces
rather than 5) has a capacity of 139,365 pages or 142,709,760 word:;; however, due to the
restriction of virtual disk addresses to 16 bIts, a single file system may utiliz,~ only about 47
percent of this capacity, and it is necessary to construct multiple file systems in order to
make use of the entire disk.

Because of bandwidth limitations, it is unwise to operate the Trident disk while the Alto
display is on. Although the Tfs package will save the display state, turn it off, Tun the disk,
and restore the display for e\'ery transfer, the user may prefer to turn the display off
himself. The rfs management of the display causes the screen to flash objectionably
II' henever frequent calls to Tfs are underway.

The present version of t.he software cor forms to the new Alto time standard and runs only
.mder Operating System version 14 or newer.

2. Trident File System (Tfs) software package

The software for oper:ating the Trident di~;k is contained in <Alto)Tfs.Dm, and consists of
the follo\Vin~. relocatable files: TfslniLBr. TfsBase.Br, TfsA.Br. TfsWrite.Br TfsCreate.Br,
TfsClose. t~r, ffsDDMgr.Br, TfsNewDisk.Br, TfsSwat.Br, and TriConMc.Br. The definitions
file Tfs.D is also included.

Included also are the Trident microcode source files, TriConMc.Mu and TriConBocly.Mu.
These are needed if you want to load other microcode into the Ram along with the Trident
microcode.

The LoadRam.Br file, formerly included as part of the Tfs, is now available as a separate
package.

Trider t. disk software

For Xerox Internal Use Only -- April 29, 1978

February 26, 1978 123

2.1. Initializing the l!licrocode

Operating the Trident: requires special microcode that must be loaded into the RAM before
disk activity can start. The procedure LoadRam will load the RAM from a table loaded
into YI)ur program (it is actually part of TriConMc.13r). It will th\!n "boot" the Alto in
order to start the appropriate micro-tasks in the RAM. (This booting process is "silent" -
it does not re-load Alto memory from the file Sys.Boot, bllt instead lets your program
continue.) The standard way to call LoadRam to loael the Trident disk microcode is:

external Disk Ramlmage
external LoadRam

let resull=LoadRam(DiskRamImage, true) IILoad and boot
if re~lIlt Is 0 then

~s("The Alto has no RAM or Ethernet board.")
\Vs(" Cannot operate Tride:nt")
finish
]

After LoadRam has returned successfully, the code of LoadRam and TriConMc may be
overla id wi th data -- they are no longer needed.

V/hen exi ting a program that has micro-tasks active in the RAM, it is helpful to "silently"
boot the Alto so that all micro-tasks are returned to the RO~Il. If this is not done,
subsequent use of the RAM may cause some running micro-task to run awry. To achieve
the "silent boot," simply call the procedure TFSSilentBootO at 'Lnish' time or as part of a
'.Jser finish procedure'.

For further information, consult the LoadRam package documentatio.ll.

2.2. Initializing the Trident drive

Once the RAM has been loaded, the Trident disk can be initialized. The procedure TFSInit
will do this, provided that a legal file structure has previously been established on the drive
(st:e Tfu Erase, below). The procedure returns a "disk object," a handle which can be used
to invoke all the disk routines. This disk object (or "disk" for short) can be passed to
various Alto Operating System procedures in order to open streams on Trident disk files,
delete Trident disk files, etc.

tridentDisk = TFSlnit(zone, allocate [false], driveNumber [0], ddMgr [0], freshDisk [false])

zone

allocate

You must [)rovide a frce-storage pool from which memory for the disk object
and possib y for a buffcr window on the disk bit table can be seizeJ. The
zone must obey the normal ccnventions (see Alto Operating System Manual);
zone~; created by Initial izeZone are fi ne.

This flag is true if you wish the machin~ry for allocating or de-allocating
disk space enabled. If it is enabled, a small DDM~r object alld a I024-word
buffer will be extracted from the zone in order to Duffer the bit table (unless
you supply a ddMgr argument, described below).

driveNumber This argument, 'Nhich defaults to 0, specifies the number of the Trident disk
drive being initialized. If the drive IS a T-300, the left-hand byte ~;pecifies
the number of the file system to be accessed on that drive, in the range 0 to
2. (For f lIfther information, con:wl t the section en ti tied 'Disk Format'.)

ddMgr This argument, which defaults to 0, supplies a handle on a 'DiskDescriptor

For Xerox Internal Use Only -- April 29, 1978

Tridl!nt disk software February 26. 1978 124

freshDisk

triden":Disl.

Manager' (DDMgr) object, whose responsibility it is to manage pages of the
Disk Descriptor (bit table), which, on the Trident, mllst be paged IIlto and out
cf mcmory dlJe to its considerable size. If this argument is defaulted, a
separate DDMgr win be created upon each call to TFSlnit, at a cost of a little
over 1024 v'ords. If you intend to have multiple Trident drives open
si m ultancously, you may conserve memory by fi rst Issui ng the call 'dd Mgr =
TFSCreatcDDMgr(zone) and then passing the returned pointer as the ddMgr
argument in each call to TFSlnit, thereby permitting the single ddMgr to be
shared among all drives. (This argument is ignored unless the allocate
argumcnt is true.)

tJormally, TFSInit attempts to open and read in the DiskDescriptor file in
order to obtain information about the file system. However, if fresh Disk is
true, this operation is inhibited and the corresponding portions of the disk
object are set up with default values. This operation is essential for creating a
virgin file system.

The procedure returns a disk object, or 0 if the Trident cannot be operated
for some reason. The most likely reasons are:

1. No Trident disk controller plugged into the Alto.

2. No such disk unit, or disk unit not on-line.

3. Can't find SysDir, can't open DiskDescriptor, or DiskDescriptor format is
incompatible. (These errors can't happen if fresh Disk is true.)

Important: If the AC power to drive 0 is turned off or no drive 0 is
connected, it is not possible to operate any drive. (Drive 0 need not be on
line, however.) This is due to a hardware bug that has been deemed too
diffic lilt to fix.

A":-'ler TFSInit hm; been executed, the code can be overlaid, as it is not used for normal disk
operation.

2.3. ~.19sinK the Trident disk

\tYhen all operations on the disk are completed, the TFSClose procedure will insure that any
important state saVEd in Alto memory is correctly written on the disk. This step can be
omitted if the 'allocate' argument to TFSlnit \vas false (assuming you don't mind the loss of
the storage that was extracted from 'zone' by TFSlnit).

TFSClose(tridenlDisk, dontFree [false])

The second argument is optional (default=false), (nd if true will not permit the
DiskDescriotor Manager (DDMgr) to be destroyed. This option is useful in conjunction
with the 'dclMgr' argument t.o TFSlnit.

lAo t:xample

Following is an ·example that uses the Trident disk system and dcmonstrates the procedures
c1escribc(above. Note that thc call~ on operating system disk stream routincs all pass a
private zone to lise for stream structures, rather than the default s),sZonc. The reason is
that streams on Trident disks require large buffers (1024 words) which quickly exhaust the
avai lable space in sysZone. I n add i tion, the stream rOllti nes wi II conslime more slack space
when operating the Trident disk than they do when operating the standard Alto disk.

Trident disk software

For Xerox Internal Use Only -- April 29, 1978

February 26, 1978 125

Since the Alto OS does not know about Trident disks. a caIl to Swat will not properly wait
for all Trident transfers to complete, with consequent undefined results. This problem is
easily remed ied through use of an assembly-language Swat context-switching procedure
TFSSwat, which is included as part of the TFS package. The example shows how it is set
lip.

IIExample.bcpl -- TFS Example
IIBldr Example TfsBase TfsA TfsWrite TfsCreate TfsClose TfsDDMgr
I I TfsSwat Tfslnit LondRam TriConMc

get "streams.d"

external r
TFSlnit
TFSClose
TFSSi lentBoot
LoadRam
DiskRamlmage

Open File
Closes
Puts
DeleteFile

In i tial izeZone
SetEndCode
TFSSW3 tCon textProc
IvUserFinishProc
IvSwatContextProc
]

static [savedUFP; savedSCP; TFSdisk = 0]

let TryltO be
[.

let dnveNumber=O
let zonevec= vec 3000
let TFSzore = In i tial izeZone(zonevec, 30(0)

IIInitialize the RAl'v1:
let res=LoadRam(DiskRamImage, true)
if res Is 0 then [Ws("Cannot load the RAM."); finish]

IISet up to cleanly 1'i n ish or call swat
5.aved U FP :: @lvUserFinishProc
@lvUserFinishProc :: MyFinish
savedSCP :: @lvSwatContextProc
@lvSwatContextProc :: TFSSwatContextProc

Illnitialize the disk:
TFSdisk :: TFSlnit(TFSzone, true, driveNumber)
if TFSd isk eg 0 then

[Ws("Cannot operate Tricit!nt disk"); finish]

IIReclaim space used bv initialization code:
SetEnclCode(TFSInit) IIOverlay TFSinil., LondRam, TriConMc

IINow we are ready to operate the disk:
DeleteFile("Old.Uad", 0, 0, TFSzone. 0, TFSdisk)

For Xerox Internal Use Only -- April 29, 1978

Trident disk software February 26, 1978 126

]

let s=OpenFile("New.Good", ksTypeRead\Vrite, 0,0,0,0,
TFSzone, 0, TFSdisk)

for i:::1 to 1000 do
for j=l to 1000 do Puts(s, $a) /IWrite a million bytes!

Closes(s)

finish

and MyFinishO be

[if TFSdisk ne a th·:!n TFSClose(TFSdisk)
@lvUserFinishProc = savedUFP
(@lvSwatContextProc = savedSCP

.]
TFSSilentBootO

3. Trident File Utility, Tfu

The Tru utility (saved on <Alto)Tfu.Run) is lIsed to certify a new Trident pack for
operation, to initialize a pack with a virgin file system, and to perform variolls file cooying,
deleting. and directory lIsting operations. Commands are given to Tfu on the conimand
line: immediately f(tllowing the word "Tfu" is a sub'-command name (only enough characters
of a sub-command are needed in order to distinguish it from other sub-commands),
follo\\ed . b l } optional ar.guments. Several subcommands may appear. on one command line,
separated by verticai bars. Thus "TFU Drive 1 I Erase" will erase drive L There must be a
space on each side of the vertical bar.

In what follows, an "Xfile" argument is a filename, perhaps preceded by a string that
specifies which disk is to be m.ed:

s:name.extension
tn:name.extension
name.extension

-- use sta ndard A I to system disk
-- use Trident drive n (n=O to 7)
-- use default disk (Trident)

The "cefault disk" is always a Trident drive; the iC:entity of the drive is set with the Drive
command.

TFU DRIVE drive~·lumber

This command sets the default Trident drive number to lise for the remainder of the
command line. The default drive is effectively an 'argument' to the CERTIFY,
ERASE, DIRECTORY, CONVERT, and BADSPOTS commands. (On a T-300, file
systems 0, I, and 2 are specified as 'x', '40x', and '100x', where 'x' is the actual unit
number.)

TFU CERTIFY [passes]

This command initializes the headers on a virgin Trident disk pack, then funs the
specified n umber of passes (default 10) over the enti rc pack, testing it usi ng random
data. Any sector exhibiting an uncorrectable ECC error, or correctable EeC errors
on two or more st:parate uccasions, is permanently marked unusahle in the pack's bad
page list. Thi:; information will survive across all subsequent normal fIle system
operations (induding TFU ERASE), but may be clobbered by the Triex program.

'For Xerox Internal Use Only -- April 29, 1978

Trident disk software FebrulrY 26, 1978 127

This command should be executed on every new Trident pack before performing any
ott.er () perations (such as TFU ERASE). 10 passes of TFU CERTI FY are adequate
for reclsonably thorough testing, though more are recommended for packs to be used
in applications requirIng high reliability. The running time for TFU CERTIFY is
approximately 3 mInutes per pass on a T-80 and 9 minutes per pass on a T-300.

TFU CERTIFY may be terminated prematurely by striki~ any character to get its
attention, then typing 'Q'. Subsequent runs of TFU CER I IFY will not clobber the
existing bad page information but rather will append to it. It is recommended
(thougl~ not necessary) that TFU CERTIFY be executed before each TFU ERASE so
as to pick up any new bad spots that may have developed.

TFU CERTIFY ordinarily asks you to confirm wiping out the disk before going
ahead and doing so; however, the IN global switch may be used to indicate that no
confirmation is necessary.

TFU BADSPOTS

Displays the addresses of all known bad spots on the disk pack mounted on the
default drive.

TFU ERASE [tracks]

This command initializes (or reinitializes) a file system on the pack mounted on the
default Trident drive, after asking you to confirm your destructive intentions
(overridden by the IN global switch). The tracks argument specifies how many
tracks of the drive are to be included in the file system; it defaults to the maximum
possi ble. If smaller n umbers are used, the in i tial ization is correspond i ngly faster. In
any case, tracks beyond the one specified are available for use outside the confines of
the file system~ (Note that one 'track" is 45 pages; this corresponds to one cylinder
on a T-80 and to nothing in particular on a T-3bo.)

The disk pack should previously have been initialized and tested by means of the
TFU CERTIFY command.

TFU COPY Xfile ~)(file

This command copies a file in the direction of the arrow. The destination file may
be optionally followed by the switch ie, in which case (provided itis a Trident disk
file). the file will be allocated on the disk at consecutive disk addresses. (Note: More
precisely, an attempt will be made to perform Stich an a:l1ocation. If the attempt
fails, you will sometimes get an error message. The best way to verify that a file is
contiguolls is to use t.he "address" command, below.)

TFU CREATEFILE Xfile pages

This command creates a contiguous file named Xfile with length "pages."

TFU DE LETE Xfile

This command deletes the given file.

TFU DIRECTOR Y [Xfile]

This command lists the directory of the default Trident drive on the file Xfile; if
Xfile is omitted, each entry will be typed on the display. \Vhen the display fills lip
or the listing is finished. Tfu waits for you to type any character before proceeding.
A somewhat more verbose listing can be achieved with TFU DIR/V.

TFU ADDRESS Xfile

Trident disk software

For Xerox Int·;!rnal Use Only -- April 29, 1978

February 26, 1978 128

This command reads the entire file and prjnts a list (in octal) of virtual disk
addresses of the file pages. Typing any character will proceed to the next outPLIt
line.

TFU CO~~VERT

An incompatible change in the format of DiskDescriptor was made in the Tfs release
of July 24, 1977. The current Tfs software will refuse to access Trident disks written
in the old format (specifically, TFSlnit will return zero). The TFU CONVERT
command reformats the DiskDescript,)r to conform to current conventions (it is a
no-op if applicd to a disk that has alrcady been converted). Once you have
converted all your Trident disks, you should take care to get rid of all programs
loaded with the old Tfs, since the old Tfs did NOT check for version compatibi lity.

TFU EXERCISE passes drive drive drive ...

Thi~: command e:nbarks on a lengthy "exercise" procedure; it is repeated 'passes' times
(default=lO), and uses the disk drives listed after 'passes' (if none are specified, all
drives that are on-line are used). It operates by making a series of fileS (te~t.OOl,
tesL002 etc.) on the disk packs. and performing variolls copying. deleting, writing and
positior.in o operations. The files are deleted when the exercise finishes. It is not
essential that the packs be fully erased initially; the procedure for building test files
will try to fill up .the dis:<, just short of overflowing. The test takes 20 to 30
minutes per full pack per pass. '.

One or more of the following global switches may be soecified (i.e., a command of
the form TFU/switcl, EXER ...): . .

IW Use a systematic data pattern when writing files, rather than arbitrary garbage.

Ie Carefully check the data read from the disk (implies I\V). Usc of this switch
makes the test run considerably slower than normal.

ID Leave the display on during TIident disk transfers. This causes data late errors
to occur and thereby exercises the error recovery logic.

IE Turn the Ethernet on dl'ring Trident disk transfers, with results similar to 10.

4. The Tfs software package in more detail

If programmers wish to interface the tht! Trident disk at levels lower than Operating System
. streams, the Tfs package provides ·an additional interface. The "disk" object created by
- TFSlnit has a nUIl1.ber of abstract operations defined on it, which the Tfs package

imr1lem; nls. Docllr;lentation fOor these operations can be found in the Alto Operating System
Manual in the section labeled "Disks and Bfs." The catalog of available procedures is:

In TfsBase.Br and TfsA.Br:
AclOnDiskPages(disk, CAs, DAs,)
ReaIDiskDA(c1isk, vda,)
VirtualDiskDA(di~k,)

In Tfs\Vrite.Br:
\VriteDiskPagcs(disk, CAs, DAs,)
AssignDiskPage(disk, vda)*

In TfsCreate.Br
CreateDiskFile(disk, name,)*

For Xerox Internal Use Only -- April 29, 1978

Trident disk software February 26, 1978

DeleteDisk Pages(disk, CA,)*
Release DiskPage(d isk, vda)*

129

The items with *'s following may. be invoked only if the disk object was created with the
'allocate' argument set to true. WriteDiskPages may be invoked even if 'allocate' is false,
provided it never allocates new di~.k space. It should be noted that the standard Alto
Streams pLckage invokes WriteDiskPages even for files opened for reading only, and that
TFSlni1. uses Streams to read in the DiskDescriptor. Hence it is necessary that all of the Tfs
modules (TfsI3ase, TfsA, Tfs\Vri1.e, TfsCreate, a.nd TfsDDMgr) be loaded in order to avoid
undefined 'external' references. However. after initialization is complete, the space occupied
by TfsCreate and TfsDDMgr may be reclaimed if you do not intend to allocate or delete
pagES. and TfsWrite may be discarded if you are not using streams but rather are caBing
ActOnDiskPages directly.

The TfsWrite and TfsCreate modules require that TfsDDMgr.Br (or some equivalent) be
loaded. This module provides the standard primitives necessary for managing the
.DiskDescriptor. The DDMgr is an 'object', so it may be replaced by one of your own
devising so long as it provides equivalent operations. An example of this would be to
manage pages ot the DiskDescriptor as part of a more general virtual memory mechanism
(perhaps through use of the Alto YMem package). A complete descrtption of the required
DDMgr operations may be found as comments at the beginning of TfsDDMgr.BcpI.

In addition to the standard "actions" defined in Disks.d, T1's permits the following. These
actions are defined in Tfs.d and are available only on Trident disks.

DCread Ln D Read header, read label, no data.

DCreadnD Check header, check label, no data.

DCwri tcLn D Check header, wri te label, no data.

These actions neither read nor write the data record and therefore do not require a buffer
to be provided.

CreateDiskFile has a special feature for operating the Trident disks -- an optional seventh
argument. If this argument (pageBuf) is present, it i!; assumed to point to a 1024-word
buffer that will be lIsed to create the leader page for the file. This feature may be used to
save stack space in CreateDisk file and/or to write interesting data into the portion of the
leader page not lIsed by the file system (only the first 2.56 words are used by the file system;
the remainder has no st.andard interpretation).

VirtualDiskDA returns filIlnDA as the virtual address for a real disk address that is either
illegal or outside the confines of the file system .

. The procedures for creating and destroying the disk object, TFSlnit and TFSClose, were
expIalf1ed above. The procedure TFSWriteDiskDescriptor(disk) will write out onto the disk
all vital information about the disk that is presently saved in memory. If you write
programs that rlln the disk for extremely long periods of ti me, it is wise to write the disk
descriQtor occasionally. The only automatic. calion TFS\VriteDiskDescriptor is performed
by Tr ... SClose.

Tfslnit.Br contains a procedure TFSDiskModel(disk) that returns the model number (80 or
300) of the drive referenced by the disk handle. This is useful in deciding whether to open
a second or third file system on a T-300. .

A lower level of access is permitted wi th the routines TFSlnitiaIizeCbStorage, TFSGetCb,
and TFSDoDiskCommand, analogous to the Bfs routines described in the Operating System
Manual. Users of these routines may wish to retrieve source files for the Tfs package and

Trid~nt disk software

For Xerox Internal Usc Only -- April 29, 1978

February 26, 1978 130

examilw the definitions in Tfs.D and the actual disk operation in some detail. Sources are
on (/\.lloSOul"ce)TfsSolirces.Dm.

4.1. TFSNewDisk

The TFS],'JewDisk procedure, d·efined in TfsNewDisk.Br, "erases" a disk (formatting it and
making all its pages appear free) and creat.es a virgin Alto file system (SysDir and
DiskDescriptc,r). It is called by:

success = TFSNewDisk(zone, driveNumber [0], diskSize [default])

The zone passed to TFSNewDisk mllst be capable of supplying about 3500 words of storage.
If the drive is a T-300, the driveNumber may include a file system number (0 to 2) in Its
left hyte, as is the case for TFSlnit. The diskSize argument is the number of disk pages to
be included ir, the file system; it defaults to the maximum possible, which is all of aT-EO
or a little less than half of a T-300. TFSNewDisk returns true if successful.

4.2. DiskFindHole

The procedure DiskFindHole, in DiskFindHole.Br, can be used to locate a "hole" of
available space in the disk bit table. The caB:

virtmJ DA=DiskFindHcle(d isk, nF'ages)

will attempt to locate a contiguous hole nPages long. If it fails, the procedure returns -1,
othen1,'ise the virtual d isl~ address of the first page of the hole.

In order to create a contiguolls file, it is first necessary to create the minimal file with a
leader page at the given (lisle address and then t.o lise Operati ng System or Tfs routines to
extend the file properly. The first step is achieved by calling TFSSetStartingYDA(disk, vda).
where 'vda' is the desired disk address (i.e., the result returned by DiskFindHole). ThIS
valll'~ will be used to bias the selection of an initial disk address for the leader page. Once
the file is crea:ed, it is wise to extend it to its final length immediately, as other disk
allocations might encroach on the "hole" that was located.

For eX2.mple, if we are lIsi 19 the Operating System, we might proceed as follows:

let nPages=433 1 l~lImber of data pages needed.
let vda=DiskFindHole(TFSdisk, nPages+2)

11(+2= 1 for leader, 1 for last pave)
if -Ida eq -1 then (Ws("Can not fi nd a hole big enough f)]
T FSSetStarti ng V DA(TFSd isk, vda)

let s=Open Fi le("New.Con t igllOllS" ,ksType \Vri teOn ly,O, ver New,O,O,O,
TFSzone, 0, TFSd isk)

PositionPage(s, nPages) IIt\fake the file the right length
Closes(~,,)

5. File structure on the Trident disk

The file structure built on the Trident disk by Tfs{Trident File System) is as exact a copy
of the Alto file structure built Bfs (Basic File System) as is possible. Certain exceptions are
presen': due to hardware and microcode differences. The Alto Operating System Reference
Manual should be consulted for all file formaLS and internal information not presented here.

For Xerox Internal Use Only -- April 29, 1978

Trident disk software February 26, 1978 131

5.1. Disk Eormat

The Trident disk unit and pack, as it comes from Calcomp, is set up to run with the
following parameters:

number of cylinders:
number of surfaces:

815
5 (T-80), 19 (T-300)

TFU CERTIFY will format each surface in the standard Tfs format:

n urn ber of sectors per track: 9
heJder words per sector: 2
label words per sector: 10
data worcls per sector: 1024

Thus, a T-80 disk will have 9*5*815 = ~,6,675 sectors = 37,555,200 words. Sector 0 will not
be used by Tfs. All but sector 0 will be available to the file system.

Ordinarily, Tfs utilizes only the first 383 cylinders (= 65,493 sectors = 67,064,032 words) of
a T-300 disk. Thi's is the largest integral number of cylinders th8t can be addressed using a
16-bit virtual disk address. 1 he 16-bit virtual address limitation is deeply embedded in all
existing higher-level Alto file system software, so changing the Tfs interface to p~rmit a
hlrger virtual address space ,would be impractical.

Instead, Tfs permits one to obtain another, e'ntirely independent disk object for referencing
the second 383 cylinders of the same T-300, thereby permitting a s(~parate, self-contained
fik syst.em to be construc.ted. This is done by passing a 'I' in the left byte of the
'driveNumber' argument tJ TFSlnit or TFS,NewDisk (that is, drive 'tt400' refers to the
second file system on a T-300 pack mounted on drive 0). A third file system (number '2',
drive '# 1000') may also be constructeci, but it contains only 49 cylinders (= 8379 pages, only
fi percent of the disk's total capacity), so doi ng so is probably not worthwhile.

5.2. Qisk I-leader and Label

On the Trident. a real disk address requires two words to express, rather than the single
word on the Diablo 31. Also, m ic focode considerations gave rise to a reorderi ng of the
entries in the Label. The result is that both the header and label formats are different for
the Trident. The Trident format follows. If you are interested in this level of detail, the
file "]·''fs.d (contained within <Alto>Tfs.dm) should be consulted.

I I disk header
structure DH:

[.
track word
head byte
sector byte
]

I I disk label
~itrl1ctllre DL:

Eleid word IFID
packID word
numChars wOfd
pageNunlber word
previolls @DH
next @DH
] ,

manife:·;t IDL = size DL/16

Trident disk software

5.3. Disk Descriptor

For Xerox Internal Use Only -- April 29, 1978

February 26, 1978 132

Ev{'ry valid Tfs disk has on it two files which must contain the state information necessary
to maintain the integrity of the file system. The Tf5 system directory, "SysDir.", is ider,tical
in format ancl pL rpose with its Bfs counterpart. However the Tfs dIsk descriptor file,
"DiskDescriptor.', while identical in purpose, is formatted differently to allow easy
manipulation of the bit table (which, for the Trident, has to be paged in and out of
me:nory). This difference in format should not be evident to even low-level Trident users
(unless you writ·.! your own ODMgr), but is mentioned here for completeness.

5.4. Bad Page Table

Tfs and Tfu observe the standard Alto file system convention of recording -2's in the labels
of all known bad pages. However, if this were the only location of such information,
"crasing" a disk (to create a virgin file system) would require two passes over the entire
disk: one to collect the addresses of all known bad pages and one to mark all remaining
pages deleted. This would require aTl excessive amount of time, particularly on a T-300.

A duplicate table of known bad pages is therefore recorded on physical page zero (=
cyl i nder O. head 0, sector 0) of the disk. Th is page is not avai lable to the fi Ie system for
other reasons having to do with end-of-file deteclion. The format of the table is given by
the BPL structure, which is defined in Tfs.d. Note that the entries are REAL disk addresses
and can therefore refer to any page on the disk regardless of wLether or not such a page is
accessible through the file system. (A T-300 has only one bad page table, even If it
contains several file systems.)

The TFU CERTIFY command is responsible for testing the pack and building the bad page
table. The TFSNewDisk procedure (called by TFU ERASE} is careful not to clobber this
information but rat.her to propagate it to the other places where it is needed (namely, the
disk bit table ancl the labels of the bad pages themselves). As a result, the bad page
information, once initialized, will survive across all normal operations on the disk, including
"erase" operations.

Theie does not presently exist any facility for manually appending to this list when new bad
pages are discovered. Experience to date with the Trident disks (which provide correction
for error bursts of up to 11 bits in lengthl has shown that sllch a facility is probably not
needed. Thorough testing of disks (using I~FU CERTIFY) is recommended before putting
them into regular use, however.

6. Revision History

July 24·, 1977

Incompatibi lities:

The formel of DiskDescriptor has changed. The new Tfs cann'Jtaccess old disks or vice
versa. See description under "TFU CONVERT".

There is now another file, TfsA.Br, that is logically part of TfsBase.Br and must be loaded
along with it. it contains assembly-language code formerly included as "tables" in
TfsBase.Br. .

New Feat.ures:

Partial support for T-300 disks.

Trident disk software

For Xerox Internal Use Only -- April 29. 1978

February 26. 1978

Conforms to new cor ventions for maintaining addresses of known bad pages.

TFSInit checks for vaJid SysDir leader page and DiskDescriptor version.

133

Count of bit table discrepancies added to DiskDescriptor. (These are pages falsely claimed
to be free in the bit table.)

VirtualDiskDA returns filllnDA for illegal real disk addresses.

Additional Trident-specific disk actions.

Tfs is now entirely reentrant, so it is safe for the IdleO procedure to give control to another
process that in turn calls Tfs procedures.

October 21, 1977

I ncom pati bi I i ties:

The former Tfs\Vrite module has been' broken into four pieces: TfsWrite, TfsCreate,
TfsClose, and TfsDDMgr. In most applications, all four must be loaded.

The 'sharedBT' argument to TF:3lnit has been replaced by a 'ddMgr' argument. The
mechanism for sharing a bit table buffer ainong multiple drives has been entlfely changed.
(Programs that omit this argument are unaffected by the change.)

The TFSCreateVDA static has been removed. In its place is a new procedure
TFSSetStartingYDA(disk, vda) that serves the same purpose.

The syntax of the TFU EXERCISE command has been changed. It is now 'TFU EXERCISE
<passes> <list of drives>', and <list of drives> defaults to all drives that are on-line.

New features:

Complete support for 1'-300 disks. In conjunction with this, the TF~)DiskModel procedure
has been added.

It is novl possible for DiskDescriptor pages to be managed externally (perhaps through some
sort of vlftual memory mechamsm) by use of a user-defi ned 'Disk Descri ptor Manager'
object. .

1'FSSilentBoot procedure added.

November 9, 1977

Incompatibilities: None.

New features:

TFU CERTIFY and TFU BADSPOTS commands added. TFU CERTlFY initializes the
headers on a \'i rgin disk pack and then fllns repeated tests over the entilre pack, permanently
recording any bad spots that it finds. This command replaces all the normal lIses of the
Triex program, docllm'~:ntation for which has been removed.

Microcode modified for more efficient reading on Alto-lis (by about 25%).

Fe bruary 26,] 978

Incompatibilities: Software updated to new time standard; will not run under as versions
earl ier than 14.

For Xerox Internal Use Only -- April 29, 1978

Trident disk software February 26. 1978 134

New features: Microcode source now in two parts. to facilitate combining it with other
microprograms.

VIEWDATA

For Xerox Internal Use Only -- April 29, 1978

September 9, 1977

ViewData -- 2D projections of 3D data on Display Screen

135

ViewData is a BCPL subsystem that will draw a picture of a file of data on your dispaly
screen, and allow you to interactively control your point of view on the data. It handles
only a two-dimensional array of single-word values (i.e. a three-dimensional surface, a
function of two variables evaluated over a regular finite grid). Here is a list of features:

1) ViewData accepts input in the simplest possible file format: an optional header of an¥
number of words (with any contents, wh'lch are ignored), followed by a block of (signed)
data words of any size, with any dimensions.

2) ViewData takes all parameters from a dialog with the user via keyboard and mouse.
By specifying different header sizes and dimension sizes, the user can eXE'fci~;e limited
control over the selection of data from his file.

3) ViewData takes all graphical parameters from screen points clicked with the mouse.
A point of view is specified by clicking the screen positions of three corners of the data
array. Zooming is accomplished by clicking opposite corllers of the rectangle to be
expanded. Prompts appear below the plot regIon to indicate what points and/or switches
to click.

4) ViewData contains a call to DCBPress to allow generation of a one-page output file
with a picture of your data. This can be annotated by Markup and printed by an
appropriate server. '!lith PressEdit, it can be editted into a report.

5) ViewData uses the new PlotStream package (to be released soon) to provide a display
interface which is transparent to the average programm'~r; thus the program is easily
modified to better suit your data viewing requirem(!nts.

6) ViewData is reasonably small. especially if one deletes unneeded routines from the
variolls files which are loaded with It (lVlathUtil, SDialog, UtiiStr, PlotStream,
FractionProduct, DCBPress).

Getting and Running Viewdata:

U~;e FTP to retreive viewdata.run. If you need some sample data, lise the FTP Load
command to get Test.Data from ViewData.Dm (stored with sources). Execute ViewData and
default all the parameters with CR to get a sample display. Using the mouse, follow the
instructions of the prompts to zoom, redraw in a new orientation, or overview (zoom back
out to the hi8,hest level). After you finish by pressing all three mouse buttons at once, you
have the optIons of producing a press file, restarting (possibly with a new data file), or
quitting.

New Disks

For Xerox fnternal Use Only -- April 29, 1978

April 29, 1978

Making a new Alto disk

136

This document describes procedures for creating a new disk, either by copying the disk or
by usi.n~ the File Transfer Program. It may be helpful to refer to documentation for
CopydisK and FTP.

I.

The normal way to obtain a new, clean disk is to copr one of the Basic Alto Disks CNon
Programmer's, BCPL Programmer's, Mesa Programmer s, or Proofreader s) lIsing Copydisk.
You will need an Alto with a dual jisk drive. Place the Basic Alto Disk into disk drive O.
Place the new disk into disk drive 1. Type

>NetExec
>CopyDisk
*Copy from: clpO
Copy to: dpl

Copydisk will copy disk 0 to disk 1, overwri.ting everything on the disk.

You can also copy the Basic disk from one Alto to another over the Ethernet. The
C:opyDisk documentation explains how to do this.

There should be a date on the label of the Basic Alto Disk which tells wilen it was last
updated.

An alternative way of building ,l, new disk from scratch is to erase it by means of the
Install procedure, then use ITP to retrieve the subsystems and other files that you need.

First, bootstrap the NetExec by booting the Alto with the BS and single-'quote keys
depressed. Then type:
>Sys.boot

This will load a copy of the OS from the network. When it starts up, it will ask you if you
want to install the OS; respond 'Y'.

Install will ask if you want the long dialog; respond 'Y'. Then it will ask if you want to
erase a disk. Reply 'Y'. It will ask you for the name of the local file server and the name
of the directory on that server from which to obtain files (the correct response to the latter
question is usually 'Alto'). Finally, it will ask the usual questions about your name, the disk
name, and the password.

When Install has finished initializing the disk it will run FTP to obtain the Executive.
Now, to obtain current versions of the 'basic' software type
>ftp file-server retlc <alto>newdisk.cm
>@tlewdisk.cm@ ,

where 'file-server' is the name of your local file :server.

After this has completed, to obtain additional software for a 'basic non-programmer's disk'
tYQe
>@npdisk.cm@

To obtain additional software for a 'basic BCPL programmer's disk' type
>([Qpdisk.cm@

To obtain additional software for a 'basic Mesa progi'ammer's disk' type

New Disks

>@mesadisk.cm@

II.

For Xerox Internal Use Only -- April 29, 1978

April 29, 1978 137

You can copy files from your old disk to the new one in two ways. One is to put them
:>nto a file server and retrieve them with FrP. If there arl~ many, it is a good idea to
package them into a dump file. The other way is to copy them from the old disk on one
Alto to the new disk on another Alto. On your new disk, type
>ftp

On the Alto with the old disk, type
>ftp <Host name> store/c <filename1> <filename2> ...

<Host Harne> is the name of the Alto which has the new disk.

The easiest way to specify and transfer lots of files is to use DDS (i f you have it on your
old disk) to select the desired files, then issue the <Send to ... > command and type in the
name of the Alto with your new disk.

Without DDS, a way to specify lots of files is to obtain a file with all your file names by
typing
)*<control-X> <control-U><return> <return>

This will automatically invoke Bravo and read in 'Iine.crn'. You may' then edit line.cm to
exclude the files which you do not want to transfer and insert the necessary FTP commands,
thereby creating a command file which may be invoked in the usual way. For example, at
the ce$inning of the file insert
ftp < I-lost name> store/c

then delete everything except the files which you want to transfer. 'P'ut the command string
onto a file. 'Q'uit out of BRA YO and type
>@foo@

where 'faa' is the name of the file which you just created with BRAVO. The selected files
will be sent to the waiting Alto with the new dISk.

Executing either variant of procedure I to erase and initialize your disk, followed by
procedure II to transfer all of your files using FTP, is a good way to compact a fractured
disk.

For Xerox Internai Use Only -- April 29, 1978

For PARe Alto Users April 29, 1978 138

L PARe Information

LI. Getting Started

Each administrative group in Parc handles disk pack allocation differently. Ask your
secretary how to get a disk.

A set of BASIC ALTO DISKS is kept in a rack near the Altos in the Maxc room. These
disks are recrfattd once a v,eek. The date when a disk was last created is on its label.
Procedures for copying a Basic Alto Disk to your new disk are described in the "new disk"
section of this document.

1.2. T\1AXC Directories for ~lto Software

. The (ALTOOOCS) directory cont.ains documentation for the subsystems and subroutine
packages.

The (AL TO) dire~tory contains current versions of all the Alto programs. Programs are
normally kept in executable form; thus the CopyOisk program c.ppears as
(AL TO)CopyDisk.R un. In addition to the executable file, some programs also have a
symbol file on (ALTO). The symbol file for CopyOisk is (AL TO)CopyDisk.Syms. This
fi e is llseful to t he author when someth i ng goes wrong with a subsystem, but it is not
normally reeded by users. Subsystems which need' more than one file, either because they
have ~verlays or because they need data fi1es, should hnve tile individual files stored,
together with a command file which may be flln to retrieve each file via FTP. The
command file should have the extension .eM. Definition files have the extension .0.
These files are useful only to programmers.

Subroutine packages are keRt on (ALTO) with an extension of .BR or as "dump" files
(extension .OM) if several ftles l:elong together as a package.

. .
The (A LTOSOUR CE) directory contains the source files for the subsystems and subroutine
packages. It also contains the PUB files for the documentation which IS on (AL TODOCS).

1.3. Alto Software Maintenance Procedure

The maintainer of a subsystem or subroutine package handles a new or revised release in the
followi ng manner:

A. Copy.} dump file with a name of the form Subsystem Name.OM and the following
contents to (A LTOSOURCE):

1) The source files from which the subsystem may be created.

2) The command files which are needed to creal<: the subsystem from the enclosed
source. unless the creation procedure is "obvious." The following are the usual
ingredients:

a) A command file containing statements to compile the enclosed source.
Compiler messages should be written to a file. For example:

BCPL/F FOO.BepL.

The filename should be in the format, COMPILEsubsysName.CM.

For Xerox Internal Use Only -- April 29, 1978

For PARC Alto Users April 29, 1978 139

b) A command file to load the files which WC!re produced in step a. For
example:

BLOR Faa

The filename should be in the format, LOAOsubsysName.CM.

If the subsystem is small, the two command files may be combined
into one. The name should be in the format,
CREATEsubsysName.CM. The following example will create the
package for subsystem FOO.

BCPL/F FOO.BCPL; BLOR FOO

c) A command file containing statements to save all relevant filcs in
subsysName.DM, e.g. the file DUMPFOO.CM would contain;

DUMP FOO.OM FOO.BCPL CREATEFOO.Cfvl DUrvIPFOO.CM

B. When you have a change to make to documentation, or wish to introduce new
documentation into the system, the following three steps are required:

1. Retrieve the relevant .PUB file from <ALTOSOURCE>. The file name is in the
format, sys.PUB, where 'sys' is the name of the subsystem or subrouUne package. If you are
creating biand new documentation, start with the file
<ALTC;SOURCE>ALTOOOCTEMPLATE.PUB, which contains the necessary Pub
incantations and some instructions to authors.

2. Edit the pub file. Pass it to PUB-- a .TTY version of the documentation will be
produced.

3. \Vhen you are finished, copy the pub file back to <ALTOSOURCE>, and copy
the .TTY version to <ALTODOCS>. .

Please be sllre to copy the pub files from <ALTOSOURCE> afresh e[!ch time you ~dit them,
because they may have been edited to produce expurgated versions (for distribution outside
PARC), to produce indexes, remedy formatting problems, etc.

Please try to avoid need less references to PARC or Maxc faci Iities. For example, it is
frowned upon to mention the <AL 10> directory as a place to find something. That is
assumed for PARC users. Similarly, avoid needless references to GEARS or EARS.

C. Copy files needed for the new release to <ALTO>.

D. Send a message to Alto users describing the changes which will be tffective with this
release. The list of Alto users is on the file, <Secretary>AltoUsers.DL. The subject of the
message should be the name of the subsystem or su brouti ne packa~,e. Try to keep the
message short.

PJsswords: The password lto all Alto-related directories on MAXC is ISF\VGI. Software
rnaintainers are cautioned to alt~r only files for which they will take responsibility. Feel
free to archive old versions, but please leave thc current versIon of nil files.

1.4. Alto Documentation

Formal doclllllcntation is provided in two forms: a "perusal" form, which can be
conveniently typed at a TI or VTS terminal on Maxc or perused with Bravo on un Alto, and
a "notebook" form, which can only be printed on Ears or a Press printer, and may have

For Xerox Internal Use Only -- April 29, 1978

For PARe Alto USt!rs April 2.9, 1978 140

fancy illustrations or fonts in it. Informal "message" documentation can be extracted from
the <ALTO>MESSAGE.TXT file. .

A. The "perusal" documentation is always stored on <AL TODOCS) under a file name like
sy~;.lTY, where "sys" is the name of the subystem or package you are ii n terested in. For
example, the documentation for a subroutine package, FOO, would be fClInd on
(A L TODOCS) FOO.TTY. There is one exception to this rule: for very simple subsystems
the documentation is in <ALTODOCS)SMA LLSUBSYSTEMS.TIY.

B. The "notebook" documentati.)n is packaged in larger packages to reduce storage overhead
and to provide more manageable sets of documentation for printing. Currently, the
following files are maintained in notebook-style:

Alto User's Handbook. This document is available only as a printed, bound manual.
It (ontains the Non-Programmer's Guide to the Alto, and manuals for Bravo,
Markup, Draw, and. FTP.

BRA YO.EARS, MARKUP.EARS, ORA W.EARS, NSIL.EARS, GYPSY.EARS.
Currently, these subsystems have their own separate Ears documentation.

OS.EARS. Operating System manual.

BCPL.EARS. BCPL ,manual.

SUBSYSTEMS.EARS, .PRESS. Documentation for most Alto subsystems. These are
arranged alphabetically, with headings to indicate which system is being
described. A directory at the front t)f the file contains documentation .about
very simple subsystems. The last section of this manual contains special
information relating to Altos at PARC--where to find the software, how to
ma intain it, etc.

PACKAGES.EAR), .PRESS. This contains documentat.ion for the software packages
available for the Alto. A directory at the front of the file con tams
documentation ab~ut very simple packages.

ALTOHARD\VARE.EARS, .PRESS. This is the "hardware" manual for the Alto.

TR IDENT.EARS. Documentation for the Trident disk controller.

These files are formatted, and should therefore be printed with

@EARS FOO.EARS -- or -- PRESS FOO.PRESS

C. The file <ALTO)MESSAGE.TXT contains all of the information which has been sent to
Alto users with SNDMSCJ. Information about recent changes to a specific subsystem may be
selected by using the. '5ubj~ct string' option of the MSG subsystem. For example, YOll may
type

TviSG <AL TO)]VlESSAGE.TXT T S FOO

Or you can read the entire file by saying

File: <ALTO)MESSAGE.TXT

to READ1'vlAIL. Every. six months this file will be purged and its old contents left on the
next version of OLDMESSAGE.TXT.

For Xerox Internal Use Only -- April 29, 1978

For PARC Alto Users April 29, 1978 141

1.5. Com Oland Files

In addition to th~ subsystems, packages, and definition files, the following command files
may be found on the <ALTO) directory:

NEWDISK.CM: creates a minimal syste'm on a new disk. See the NewDisk
procedurE', in the Alto Subsystems manual.

DISTDISK.CM: creates the disk for distribution to other Xerox sites. NEWDISK.CM
must be run first.

MES.A'~DISK.CM: creates a Basic Mesa Disk. NEWDISK.CM must be run first.

NPDISK.CM: creates a Non Programmer's Disk. NE\VDISK.CM must be run first.

PDfSK.CM: creates a Programmer's Disk. NEWDISK.CM must be run first.

PROOFDISK.CM: creates a Proof ReHder's Disk. N E\VDISK.CM must be run first.

INDEX

<ALTO>
<ALTODOCS>
<AL TOSOURCE>
<control>P

Analkze
ANS V
ASM

BCPL
BLDR
Boot FilES
BOOTFROM
Booting
BOOTKEYS
BRAVO
BUILDBOOT

CallSubSys
CHAT
CLEANDIR
Com.em
com Illand processing
COpy
COPYDISK
CREATEFILE

DDS
DEF AUL T.ED
DELETE
DIAGNOSE
disk
DiskBoot.Run
d i~lay protocol
D T .
DMT.BOOT
Documen tation
DPRINT
DRAW
DUMP
Dump Format
Dumper.Bo,)t

EARS
EMPRESS
EtherBoot
EtherNet loader
EXECUTIVE
Executive Commands

FEARS
FILESTAT
FIND
Fl'P

GEARS
Gobble
GPR

illustrator

For Xerox Internal Use Only -- April 29, 1978

April 29, 1978

138
138
138
120

5
2
2, 9

2
2. 3,9
12
3. 51
12
3, 52
2, 106
2. 14

4·9
2. 16, 53
2
49
49
3, 51
2, 19, 136
~:, 28

. 2,29
3
3, 51
3, 51
112
14
18
39
:..
139
3
3
3, 52
53
115, 119. 121

74, 106, 107
3, ~4
53
14
~t. 49
51

3
3, 53 . 3
J, 53, 57, 136

3, 74
5

... 5

~" 4

142

INDEX

. INSTALL
I nstallSwat.Run

LISTSYMS
LOAD
LOGIN

MAILCHECK
MARKUP
MAXC
MAXC mail
memory diagnostic
MICRO
microcode assem bIer
microcode loader
MOVETOKEYS
tv1U

NETEXEC
new disk
NEWDISK

OEDIT
ORAM

PACKMU
PARe Information
PARCALTOS
parity error
Peek
PEEKPUP
PeekSum
PPR
PREPRESS
Press file
Press files
PRESSEDIT
PRINT
printing
PROOFREADER
P!IR
PUP Telnet
PUT

QED
QUIT

RAM
RAMLOAD
ReadPram
READPRESS
RELEASE
Rem.em
RENAME
RESUME
RPRAM

SaveState subroutine
SCAVENGER
SETTIME

For Xerox Internal Lse Only -- April 29, 1978

April 29, 1978

.

3, 52
121

3
3, 52
3, 52, 60

3, 89
4
16
3
3
4
4,90
]03, 110
4
4, 90, 103, 110

4; 53
136
6

4,98
4

4, 103
138
6
120
39
4, 105
39
5
4
4, 106, 107
3
4, 106
4, 107
74
4
105
2, 16
4

108
3, 51

4, 103, 110.
4, 110
103
4
3, 52
49
3, 4, 51
~" 53, lIS, 119
4, 103

15
4, 53, 112
3, 52, 114

143

INDEX

SIL

For Xerox Internal Use Only .. - April 29, 1978

April 29, 1978

.... . 5
Soft\\'are Maintenance Procedure 138
SORT (' . . _I

STANDARDRAM 3, 52
SWAT 5, 13, lIS, 121
SWATEE 121
SYS.BOOT 5, 15

TFS 5
TFU 5
time 114
Trident disk software 5
TRIEX 5
TYPE 3, 51

User.em 53

VIE'VDATA 5

144

