
"Use of ATTACHed Interrupts in the
UCSD p-System"

By Fritz Whittington
Texas Instruments, Inc.

Presented at the TI-MIX 1982 National Symposium.

ABSTRACT
Version IV.O of the UCSD p-System supports con

current processes with the use of the SIGNAL and
\VAIT primitive operations on semaphores. By use of
the ATTACH primitive, semaphores may also be sig
nalled by asynchronous interrupts. .

This allows for application programs written in
Pascal to respond to real-time external events. A sam
ple program which does terminal emulation with file
transmit and receive functions will be presented, along
with a program which illustrates control of hardware
functions of bit-oriented devices from a high-level
language.

The UCSD p-System provides a convenient basis
for software development on a large variety of micro
computers. Highly interactive, user-friendly programs
may be constructed to fill a variety of single-user, per
sonal workstation computing needs. However, many
useful applications of microcomputers involve re
sponse to real-time events, and asynchronous control
of devices which do not fall into the usual categories of
printers, consoles, or character-oriented devices. The
control of bit-oriented and analog devices by programs
running under the UCSD p-System has been difficult
or impossible until the release of Version IV.O.

Even without entering the realm of real-time ma
chine control, a very common problem facing the pro
grammer of a p-System personal workstation has been
the construction of a 'terminal emulator' program, to
allow communications to a remote host computer
through a modem or other serial communications link.
Appendix 1 contains a listing of a UCSD Pascal pro
gram which solves this problem for the specific case of
communicating with Telemail, an electronic mail ser
vice available on GTE Telenet. The program is not rep
resented as being completely general-purpose and user
configurable, nor is it transportable to other p-System
versions in object code form. However, modifications
to the source text to fit other machines would be minor,
provided the target implementation' supports the at
tachment of external events to semaphore data
structures.

For tutorial purposes, a much smaller and simpli
fied version of the program is listed in Appendix 2. The
basic algorithm is as follows:
repeat

{ if a key is struck on the keyboard, send the char
acter out to the modem}

{if a character is received from the modem, display
the character on the screen}

until finished;

A first attempt to code this in Pascal might look
something like this:

repeat

read(keyboard,ch) ;
write(remote ,ch);
read(remote ,ch);
write(output,ch);

until finished;

... which is quickly found to be of little use in
practical time-sharing applications, since only one
charactel; from the host can be displayed for every char
acter from the keyboard.

A solution which works on Version 11.1 uses the
UniLStatus system intrinsic to find out how many char
acters are in the input queue for the console and remote
units:

repeat

Unit_Status{l ,digits, 1);
if digits[O] <> 0
then

begin

end;

for i := 1 to digits[O] do
begin

end;

read(key board,ch);
write(remote,ch)

Unit_Status(7,digits,1);
if digits[O] <> 0
then

begin

end;

until finished;

for i := 1 to digits(O] do
begin

end;

read(remote,ch);
write(output,ch)

While this solution is adequate as presented, the
overhead of the polling technique, combined with the
desire to have more functions supported, make it dif
ficult to keep up with a continuous 300 baud data
stream. Practical terminal emulators with features such _

27

as file transmission and printer hardcopy became very
large and complex, resorting to obscure Pascal coding
tricks and to assembly-language external procedures in
an attempt to sustain a 300 or 1200 baud data rate.

Version IV.O, as currently implemented on all TI
990 computers which support interrupts from charac
ter-oriented p-System devices, allows a 'full-function'
terminal emulator program to be written with compar
ative ease, since language constructs are available
which match the problem to be solved. This makes the
main body of the terminal emulator appear effectively
as:

repeat
{Nothing}

until finished;

... since all the work is done by processes which
are activated in response to external events.

These language extensions include a neW data type
(SEMAPHORE), a new block type (PROCESS), and
five new pre-defined global procedures (ATTACH,
SEMINIT, START, SIGNAL and WAIT). All except
ATTACH are intended to be machine-independent con
structs, and can be used on systems which do not sup
port external asynchronous events. The use of these
language features is described in the Version IV.O
Users' Guide, however, since the ATTACH intrinsic is
somewhat machine-dependent, a description of the im
plementation on TI 990 computers is given here.

Just as a real processor needs to finish (or at least,
bring to some orderly suspension point) the current
machine instruction before handling an external inter
rupt, so must the p-machine. In practice, all of the p
machine interrupts which were generated by the real
machine during the interpretive execution of the prior
p-machine instruction are recognized before the next
p-machine instruction is fetched. P-machine interrupts
are selectively enabled by ATTACHing a SEMA
PHORE to an interrupt level, and disabled by' AT
TACHing the value NIL to an interrupt level. The prior
ity of the p-machine interrupt is determined by the
priority of the PROCESS which is WAITing on the
SEMAPHORE. In the current 990 implementation, 32
p-machine interrupts are supported; 64 will be sup
ported in the IV. 1 release in an effort to standardize the
use of ATTACH on all p-System processors.

It is important to note the difference between a p
machine interrupt and an interrupt generated by hard-.
ware and handled by the real processor. For example,
the 990/10 receives a hardware interrupt on level 5
every 1I120th of a secqnd. The machine code which
handles this interrupt maintains a 32-bit integer which
represents the time of day, but only on the full I-second
intervals does it generate the p-machine interrupt level
16, and then only iflevel16 has been enabled by having
had a SEMAPHORE ATTACHed to it. As a conse
quence, the DS990 Modell can run exactly the same
Pascal PROCESS for handling the p-machine level 16
interrupt, even though the real-time clock on the Model
1 generates hardware level 2 interrupt every 250 milli
seconds. These differences are handled in the machine
code which services the interrupt, so that the Pascal
programmer sees a consistent p-machine interrupt
structure.

28

Another advantage to this de-coupling of hardware
and software is that several p-machine interrupts can
be generated by the same hardware interrupt under dif
ferent circumstances, for example, a 0.1 second and a
10 second p-machine interrupt. Or more than one hard
ware interrupt could signal the same p-machine inter
rupt. Obviously, every hardware interrupt must have
some machine code in place to handle the interrupt, but
the amount of processing required in machine code
could be as simple as acknowledgement of the interrupt
bit and a generation of the appropriate p-machine in
terrupt. External (machine code) procedures are easily
written which can be called from a Pascal program to
effect CRU I/O and TILINE I/O.

Appendix 3 describes the requirements of a soft
ware driver which takes the output of a text formatter
program and controls a letter-quality printer. In this
case, the printer has a 24-bit parallel interface. The en
coding of the print-stream information was designed
with an assembly-language driver program in mind, but
the Pascal solution given was much easier to write, and
could be transported with a minimum of trouble. Fur
ther, the same Pascal source can be easily modified to
interface a variety of different output devices to the
same print-stream protocol, including the H-P 7220A
plotter which produced the overhead projection texts.

The preparation and production of this paper on a
personal workstation computer running the UCSD p
System is a (somewhat needless) demonstration of the
usefulness of the p-System in an office environment.
Likewise, the fact that the entire p-System can be main
tained and re-generated on the same machine is no sur
prise to system software developers who have used the
p-System. However, the introduction of sevetal new
factors in Version IV.O now makes possible the appli
cation of the p-System to a large subset of the problems
which previously required assembly-language operat
ing systems for real-time process control. Use of
ATTACHed Pascal PROCESSes, coupled with ma
chine-code interrupt handlers, external I/O primitive
routines, and the use of the Native Code Generator to
produce machine code from Pascal p-code, will allow
many real-time applications to be easily implemented
in a high-level, transportable language and Operating
System.

Appendix 1

{--+ I Terminal emulator program for use with I
I GTE Telenet and the Telemail service. I
I I
I Uses interrupts from the keyboard, remote, I
I and I-second interval timer, ATTACHed to I
I SEMAPHOREs which are WAITed on by several I
I PROCESSes. I
I I
I Fritz Whittington, Texas Instruments, Inc. I
+--}
program telemail;

const
clockslg 16;

var

keyslg 17;
rems ig 18;

ptr: integer;
tick I

godump,
waiting,

keyready,
remready,
eolecho,

reply: semaphore;
pid: processid;

p: packed record
case integer of

1: (a: packed array
[0 •• &0] of char);

2 : s: st r i n g [& 0]) ;
3:. k: integer);
4: x: integer;

onl ine: boolean);
end;

keycli,
remch,

ret: packed array [0 •• 1] of char;
ch: char;

dumping,
quitting: boolean;

i,
j: integer;

fname ,
mai 1,

username,
password,
altuser,
a ltpass,

termtype,
logoff: string;

ff: file; {the log file}
gg: interactive; {the file to transmit}

buff: packed array [0 •• 1023] of char;

process busy;

(--+ I The OS does not tolerate a user program I
I that has every process totally blocked. I
I This process has lower priority than the I
I main program, and cannot be blocked itself, I
I since it doesn't wait on anything. If it I
I is scheduled, it will be pre-empted sooner I
I or later by another task of higher priority. I
+--}

begin
while not quitting do {waste time};
signal(reply};

end {busy};

process clocker;

(----------~-----------~-------------------------+ I This process has the highest priority, and I
I ensures that there will be an opportunity I
I for task switching at one-second intervals. I
I The signal(reply) ensures that the program I
I doesn't become deadlocked due to a lost I
I character echo. I
+--}

begin
while not quitting do

begin
wa it (tick) ;
signal(reply);

end;
attach(nil,clocksig};

end {clocker};

process dumper;

{--------------------------------~-~-------------+ I This process lies dormant until a file is I
I opened for transmission by procedure dof5. I
I It then transmits the text a Une at a time, I
I putting a local copy on the console, and waitsl
I for the echo of the carriage retu~n. (This I
I delay avoids overrunning the Telenet input I
I ~uff~rs, which were set up with human typists I
I In mInd.) A possible deadlock could occur if I
I the echo is lost, but can be cured by enteringl
I a ~arriage return from .the keyboard. During I
I thIS process, the get rem process does not put I
I echoed chars to the screen or log file. I
+--}

var
S1 string[255];

begin
repeat

{$R-}

wait{godump);
seminit(eolecho,O);
if dumping then

begin
while not eof(gg) do

begin
re,:,dln{~gls);
wr 1 tel n (s) ;

moveright(s[1],s(2],length(s»;
unitwrite(8,s[2],length(s)"

16396) ;
{$R+}

unitwrite(8,ret,I,,16396);
wait(eolecho);

end;
close(gg,lock);
writeln('---Closlng File: ',fname,

'---I);
write!n;
dumping 1= false;

end;
until quitting;

end {dumper};

procedure dofl;

begin
unitwrite(&,mail[2],(length(mail) - 1),,16396);
unitwrite(&,ret,I"l6396);

end {dof!};

procedure dof2j

begin
end (dof2}t

procedure doD;

begin
end {doD} j

procedure dof4;

begin
end (dof4}j

procedure dof5;

begin
attach(nil,keysig);
(-------------------------------~----------------+ I We need to temporarily de-attach the keyboard I

($I-}

($I+}

I signal, in order to do an ordinary read!n of I
I the file name. I
+--J
write!n;
j 1= 99;

repeat
write('Enter name of text file',

'to transmit, or <esc> <ret> -->');
readln(fname)j
if fname[l] <> chr(27}
then

begin

end
else

fname : = concat (fname,'. text');
reset(gg,fname);
j := ioresult;
if j <> 0 then

writeln('No such file');
c1ose(gg) j

j : = 0;
until j = OJ

if fname[l] <> chr(27) then
begin

reset(gg,fname) ;
writeln('---Transmitting File: ',fname,

'---') ;
dumping := true;
signal(godump);

end;

{--+ I Now, we can re-attach the semaphore to the I
I keyboard interrupt so that the get key process I
I can handle characters. I
+--}

29

attach(keyready,keysig);
end {doO};

procedure dof6i

begin
unitwrite(&,altuser[2],(length(altuser)-I},,16396)j
unitwrite(&,ret,1,,16396)i
for j : = 1 t 0 2 000 do { wa s t e t I me } ;
unitwrite(&,a1tpass[2],(length(altpass)-1),,16396);
unitwrite(&,ret,l,,16396);

end {dof6};

procedure dofl;

begin
unitwrite(S,username(2],(length(username)-I),,16396);
unitwrite(S,ret,I,,16396)i
for j I = 1 t 0 2 000 do {wa s t e time};
unitwrite(8,password(2],(length(password)-I),,16396)i
unitwrite(&,ret,1,,16396);

end [dofl};

procedure dofS;

begin
unitwrite(&,10goff(2],(length(logoff)-1),,16396);
unitwrite(&,ret,1,,16396);
quittIng 1= true;

end {dofS};

process getkeYi

(--+ 'This process is activated by a character being ,
'placed in the keyboard queue. The speciatkey I
Ifunction returns TRUE if the key is one of the I
I'Fl' thru 'F8' keys on the 911 VDT, and trans- I
Ilates the keys to ASCII 'I' thru '8'. I

+--)

~unction specialkey: boolean;

begin (specialkey}
specialkey := false;
if ord(ch) in [146 •• 153] then

begin
ch := chr(ord(ch) - 97);
special key := true;

end;
end {specialkey};

begin (getkey)
repeat

wait(keyready);
if not quitting
then

begin
{get from keyboard}
unitread(2,keych,1,,12);
ch := keych[O];

end

if specialkey
then

begin
case ch of

'I': dofl;
'2'1 dof,2;
'3': doO;
'4' I dof4;
'5': dof5;
'6'1 dof6;
'7': dof7;
'8': dofS;

end {CASE}
end

else (not specialkey}
begin

{ put tor emo t e }
unitwrite(S,keych,1,,16396);

end

else {if quitting}
begin

attach(nil,keysig);
end;

until quitting;
end (getkey);

process get rem;

30

(-------------------------~----------------------+ 'This process is activated by a character being I
Iplaced in the remote queue. The echoed chars I
lare normally placed in the logfile, except for I
Icontrol chars, and during file transmission, I
Isince the echo is unreliable from Telenet, and
lanother copy of the text is not needed. 1

+--)
var

iord: integer;

begin
repeat

wait(remready);
if not qu itt i ng,
then

begin

end

{get from remin}
unitread(7,remch,1,,16384)j
ch 1= remch[O]·
iord := ord(ch)j
if iord <> 10 then

begin
if not dumping then

end;

begin
{put to screen}
unitwrite(l,remch,l)j
signa1(reply) ;

end;

if dumping and (iord ;: 13) then
signal(eolecho)j

if not dumping

then
if (iord = 13)

or «iord > 31) and (iord < 127»
then

begin
buff[ptr] .- chi
ptr := ptr + 1;
if, ptr = 1024 then

begin

end;

ptr := blockwrite(ff,
buff,2) ;

ptr 1= 0;
fillchar(bu~f,1024,chr(O});

end;

else {quitting}
begin

attach(nil,remsig);
end;

until quitting;
end {getrem};

proc~dure initialize;

(--+ I Initializes all the strings, and opens the !
Inext available logfile on the default volume. I
IUnitclears the remote and console units. I
+--)

begin
ret[O] := chr(13)j

{The four strings which follow need to be changed
to the appropriate values for each user. Note
the unused ':' at the beginning, which is used to
force word alignment for those PMEs that are
sensitive to word ali?nment on unitwrites.}

username := ':xxxxxxxx ;
password := ':XXXXXXXX'j
altuser := I:xxxxxxxx';
altpass 1= ':xxxxxxxx';

logoff ._ ':bye';
mai 1 1= ':Mai l' ;

termtype := ':01 1
;

dumping .- false;
quitting := falsej

(SI-}
i : = 0;
j : = 0;
repeat

i : = + 1;
p.5 : = I. X I;
p.s[2] := chr(i + 64);
fname 1= concat('termlog',p.s,'.text');
reset(ff,fname)j
j := ioresultj
if j ;: 0
then

{$I+}

close(ff,lock)
else

dose(ff)j
until j <> OJ

rewr i te(ft, fname);
fillchar(buff,1024,chr(0»;
ptr 1= blockwrite(ff,buff,2);
ptr t= 0;
uni tclear(1) j
uni tclear(7);

.un-i tclear(8);
end {initialize};

begin {main}

initialize;

write(chr(12»;
wr i teln('Wai t ing for connect ion ••• ');
writeln('214\748-0127 (300) ••• 214\748-6371 (1200}');

repeat
p.online := false;
unitstatus(7,p.a,1);

until p.online;

unitclear(7);
wr i teln('Use Fl for "Mai I" corrmand'};
writeln('Use F5 to select transmit file');
writeln('Use F6 for Alternate user');
writeln('Use F7 for Usernrume/password');
writeln('Use F8 for Quitting');
uni tclear(1);

seminit(remready,O);
seminit(keyready,O);

,seminit(godump,O)j
seminit(reply,O)j
seminit(tick,O);

attach(tick,clocksig);
attach(remready,remsig)j
attach(~eyready,keysig);

start(getkey,pid,800,142);
start(getrem,pid,500,140);
start(dumper,pid,500,129);
start(clocker,pid,500,145);
start(busy,pid,200,120};

{ Get Telenet's attention by sending 2 carriage returns
at human speed, then define the video terminal}

for i := I to 1000 do {waste time};
unltwrite(8,ret,I,,16396);
for i 1= 1 to 1000 do {waste time};
unitwrite(8,ret,1,,16396)j

for i := 1 to 1000 do [waste time};
unitwrite(8,termtype[2],2,,16396);
unitwrite(8,ret,1,,16396)j

repeat
wait(replY)j

until quitting;

if ptr <> ° then

end

ptr 1= blockwrite(ff,buff,2)j
close(ff,lock);

signal(keyreadY)j
signal(remready);
signal(godump);

attach(nil,clocksig);
attach(nil,keysig);
attach(nil,remsig)j

for i := 1 to 3000 do {waste time};
writeln;
writeln('Returning to PascaISystem');

{ tel email J •

Appendix 2

{--+ I Terminal emulator program tutorial. I
I Provides basic TTY emulation only. I
I I
I Uses interrupts from the keyboard, remote, I
I and I-second interval timer, ATTACHed to I
I SEMAPHOREs which are WAITed on by several I
I PROCESSes. I
I I
I Fritz Whittington, Texas Instruments, Inc. I
+--}
program tutorial;

const
clocksig

keys ig
remsig

16 ;
17 ;
18 ;

var
tick,

keyready,
remready: semaphore;

pid: processid;
keych,
remch,

chI char;
quitting: boolean;

process busy;

(--+ I The OS does not tolerate a user program I
I that has every process totally blocked. I
I This process has lower priority than the I
I main program, and cannot be blocked itself, I
I since it doesn't wait on anything. If it I
I is scheduled, it will be pre-empted sooner I
I or later by another task of higher priority. I

+--)
begin

while not quitting do {waste time};
end [busy};

process clocker;

{--+ I This process has the highest priority, and I
I ensures that there will be an opportunity I
I for task switching at one-second intervals. I
+--}

begin
while not quitting do

wait(tick)j
end {clocker}j

process getkeYj

{--+ IThis process is activated by a character being I
Iplaced in the keyboard queue. I
+--}

begin {getkey}
repeat

wait(keyready);
{get from keyboard}
unitread(2,keych,I"l2);
{put to remote}
unitwrite(8,keych,I,,16396);

until quitting;
end {getkey};

process get rem;

{--+ IThis process is activated by a character being I
Iplaced in the remote queue. I
+--}

begin
repeat

wait(remreadY)j
[get from remin}
uni t'read(7, remch, 1,,16384);
{put to screen}
unitwrite(1,remch,1);

until quitting;
end {getrem}j

procedure initialize;

31

~mer fi<iim~~ht%'·dW'f1'emtWfi'f,1fFftiX?ff'#W&t&lii·1iHiW&?aHAr1fYW1ry~e._.W{v;;if.ir'MHi§:ife't,_·--... 4191#et;fr9tit1lit~H4)~·~'~;@tii~Mitintnt#1&Wf?ltn'it~1~~*k~~ -:~f •

{---------------~--------------------------------+ IUnitclears the remote and console units. I
+--}

begin
quitting := false;
unitclear{l)j
unitc1ear(7)j
unitclear(8)j

end {initialize};

begin {main}

initialize;

seminit(remready,O);
seminit(keyready,O)j
seminit(tick,~);

attach(tick,clocksig)j
attach(remready,remsig)j
attach(keyready,keysig);

start(getkey,pid,800,142)
start(getrem,pid,500,140)
start(clocker,pid,500,145)
start(busy,pid,200,120)

repeat
wa it (tick) ;

until quitting;

{Note that there is no provlsi0n for quitting, and that
the~high~r priority) process clocker i~ also-w~iting
o-n tick.J

end {tutorial}.

T2WPUNIT Interface Description

The text formatter program generates a print-stream
which may be directed either to a file or to a printer. If
the print-stream is directed to a file, it may subse
quently be printed with the de-spooling program. Both
of these programs interface with the physical printer by
means of a unit T2WPUNIT which contains a signal
public procedure WPINTERF ACE(ch: char) to which
the print-stream is sent byte-by-byte.

UNIT T2WPUNIT;
INTERFACE

procedure wpinterface(ch: char);
IMPLEMENTATION

var
first_time: boolean;

procedure wpinterface;
begin
if first_time then

begin
first_time := false;
{here initialize printer}
end;

{here process print-stream byte ch}
end {wpinterfacel;

BEGIN {T2WPUNIT}
first_time := true;
***. ,
END {T2WPUNIT}.

For documents printed in fixed-pitch mode, the
print-stream is a simple ASCII stream. Each line of
print is sent from left to right and terminated by a CR.
The CR is usually followed by one of more LF's ac
cording to the amount of paper movement required be-

32

tween lines. However, where overprinting is required
(e.g. for underlining), the CR is not followed by a LF.
For fixed-pitch printers which are not capable of over
printing (because they have no non-advancing end-of
line function), the WPINTERFACE driver can throw
away all characters after a CR until a LF is encoun
tered. When single-forms mode is selected, the print
stream contains an ASCII group-separator character
GS to signify that the driver should pause for a new
sheet of paper to be positioned (or possibly should ac
tivate an automatic sheet feeder).

For documents printed in variable-pitch mode, the
print stream contains tightly encoded information on
horizontal printhead movement, vertical paper move
ment, print-element character selection, hammer en
ergy, special print effects, and single-forms control.
Such variable-pitch information is always introduced
in the print-stream by the ASCII sequence NUL-NUL
SO to indicate to the WPRINTERFACE driver that
variable-pitch mode is required. The driver must de
code the print-stream and produce the requested printer
actions. The following page defines the contents of the
print-stream when in variable-pitch mode.

AppendIx 3

Variable-Pitch Print-Stream Description

Drivers are instructed to enter variable-pitch mode
by the sequence NUL-NUL-SO, and to leave variable
pitch mode by the sequence NUL-NUL-SI. Once in
variable-pitch mode, the driver must respond to the fol
lowing character sequences:

where:

Type 1: (2 bytes) 1 r r r r r r r eeem rrrmm
Type 2: (2 bytes) 01 dd rrrmm rrrmm rrrmm
Type 3: (l byte) OOcc cccc

rrrrrrr = 7 -bit character (code or rotation)

eee = 3-bit hammer energy (zero if n/a)

m ••• m = 5-bit or 12-bit movement distance:

in 1/120-inch increments for horizontal movement
in 1/48-inch increments for vertical movement

dd :: 2-bit movement direction:

00 :: right (forward tabulation)
01 = left (reverse tabulation)
10 :: down (forward line feed)
11 = up (reverse line feed)

ccccc :: 5-bit special action code:

NUL :: no action
GS :: pause after single form
BS = set direction :: backward
HT :: set direction :: forward
CR = home printhead"set direction = forward
ESC = next Type-l sequence defines underline
51 :: return to fixed-pitch mode

Any Type-3 byte value from 30 to 3F hexadecimal sets special-effects:

byte = 0011 xdbu where:

U :: underscore mode
b :: boldface mode
d = double-strike mode
x = (not defined yet)

Type-l sequences cause the print-head to move
mmmmm 120ths of an inch to the left or right (which
ever was set by the last Type-2 or Type-3 sequence),
and then the character rrrrrrr to be printed with hammer
energyeee.

. ~
_'Jii

f,

, l

{$N+}
UNIT T2WPUNIT;
(UNIT for the NEC Splnwriter with parallel card
and using ABSOLUTE SPOKE mode]

INTERFACE
PRCCE.DlJRf. wpinterface(ch. char);

IMPLEMENTATICfII
const
wpcru = 64; {base address of interface card}

{cru output bits]
restore 12;
select. 16;

{sbo to restore, 5bz to run}
(sbo to select)

riblft 20,
halfsp 11;

{sbo for lower ribbon part (black»)
{lsb of horizontal movement}

wayblt 10,
Ipback 13;
pwstb la;
pfstb 17;
car st b· 19;

{5bz = right or down (head wrt paper»)
{sbo to read bits back for test}
(print wheel strobel
{paper feed strobe}

{cru input bits}
{carriage strobe}

papout 22;
ribout 211
pcheck 201
pready 16;
pfready 17;
pwready 18;
carready 19;

type
onebl t
twoblts
threebits
nibble
fivebits
sixbi ts
sevenbits
ubyte
twel vebi t s
bl t s
typekind
waykind
t3klnd
actlonkind

wordO

wordl

word2

wordl

word"

{word5 is just
word6

{true
{true
{true
(true
(t rue'
(true
(true

O •• 11
0 •• 1 ;
0 •• 71
O •• 151
O. :31;
O •• 61,
0 .. 127;
O •• 2551
0 .. 409.5;

If paper out)
if ribbon out}
if printer in check}
if printer ready}
If paper feed ready]
if print wheel ready]
if carriage ready}

packed array [O •• I.5J of boolean;
(typel,type2,typela,typelb);
(right,left,down,up); {direction of head wrt pape~]
(action,s_effects)1
(preflx,udl,ud2,ud3,uv4,ud.5,ud6,ud7,
set back, set norm, ud I 0 ,udll , udl2, home, ente rvp, ex i·t vp,
udI6,udI7,udla,udI9,ud20,ud21,ud22,ud2I,
ud24,ud25,ud26,setus,ud28,holdit,udIO,ud31);

packed record {for byte-swapping]
r_bytel ubyte;
I_byte. ubytel
end;
packed record
movement I
energYI
rotat lonl
!stypell
end;
packed record
movement!
dlrectionl
whlchtypel
end;
packed record
res 11
t3act ionl
whichtil
whlchtypel
end;
packed record
resll
us_onl
bf_onl
ds_onl
xx_onl
res21
whlcht3:
whichtypel
end;

an integer and
packed record
spokel
ribbonl
energYI
res 11
end;

{for TYPE I conmands}
fiveblts;
threeblts;
sevenbits;
boolean;

{for TYPE 2 comnands}
twelvebits;
waykind;
typekind;

(for TYPE 3 comnands- actions]
ubyte;
actionklnd;
tIklnd;
typekind;

{fo~ TYPE 3 comnands- effects}
ubytel
booleanl
boolean;
boolean;
boolean;
onebit;
t3kind;
typeklnd;

{not current Iy used}

Is denoted by i5}
{for 11.5.5 Diablo in
sevenbits;
threebits;
twobl t s;
nibble;

Rib. Opt. 2}

{word7
wordS

is a packed array 01 bits}
in Absolute mode}

urec

var

packed record {for NEC Spinwrlter
spokel sevenbitsJ
absl boolean;
energYI threebits;
resll flveblts;
end;
packed reco cd
case integer of
0: (WOI wordO);
II (wI: wordI);
21 (w21 word2);
3: (w3: word3);
II: (w41 word4);
51 (1.5: integer);
61 (w61 word6);
71 (bltl bits);
81 (wal worda);
end,

inrec,outrec,usrec,cruwordl urec;
i ntype I, Intype2, Inusdef ,II xedp Itch: boo 1 ean;
vdir,hdirl waykind;
bold, dubst r ike. under lining I bool ean;
vrtpos,horpos,nulcountl Integer;
fir st_ t imel boo lean;
PROCEDURE CPUIDLE, EXTERNAL;
PROCEDURE SETBASE(~UBASEIINTEGER) I EXTERNAL;
PROCEDURE CLEARBIT(BITNUMIINTEGER); EXTERNAL;
PROCEDURE SETBIT(BITNUMIINTEGER); EXTERNAL;
PROCEDURE l.CWX:RU(Ilo\TA,r·U,IHTSIINTEGER); EXTERNAL;
PROCEDURE STORECRU(VAR Ilo\TAIINTEGER; tu.l8ITSIINTEGER); EXTERNAL;
FtKTlOO TESTBIT(BITNUMI INTEGER) I BOOLEAN, EXTERNAL;
PRCCEDURE wpintertace; (* PUBLIC PROCEDURE, PARAMETERS DECLARED ABOVE *)
procedure check_ready;

var
chi char;
acked: boolean;
pal packed array [O •• IOJ of integer;

begin (check_ready)
cpuldle; (allow cpu to idle unt i I interrupt)
if «not testbit(pready»

~hen
begin

or
(testblt(papout»

or
(t est bit (r i bou t))

or
(testblt(pcheck»

unitclear{I);
acked : = fal se;
while not acked
do
begin

write(chr(13+128»; (Return without auto linefeed)
write('Prlnter needs attentlon- press <space>',chr(7»;
cpu I dIe;
par 0] : = 0;
unLtstatus(l,pa,l); {get number of keys buffered for input}
if parOl <> 0 then read(keyboard,ch);

end;!., ch = ' • then acked 1= true;

uni tclear(I);
gotoxy(O.IOO);
wrlteln('Correct printer condition (paper, ribbon, cover)');
wr i teln;
writeln('Printing will resume when <enter> is pressed');
repeat read(keyboard,ch) until ch = chr(160);

end;
end; (check_ready)
procedure hardinit;
var

i I integer;
begin (hardinit)

cruword.15 : = 0;
I oadcru (cruword. i.5, 16);
setbi t (select);
setbi t (restore) j

clearbit(pfstb);
clearbi t (pwstb);
clearbit(carstb);
setbit(riblft);
for i := I to .500 do;
clearblt(restore);
i 1 = 1;

{clear all data lines}
{select the printer]
(te II I t to restore)
(deactivate strobe line)
{deactivate strobe Iinel
{deactivate strobe line
{raise the ribbon}
(waste some time)
(let go of restore line)

while (i < 3000) and (testbit(pready) = false)
do i : = i + I;
if not testbit(pready)
then
begin

writeln('Cannot open printer');
end;
check_ready;

end; (hardinit}
procedure print_it(kl urec);
var

timeout, I. integer;
begin (print_It)

check_ready;
c r uwo r d, i 5 I = 0;
cruword.w8. spoke 1= k.wl. rotat ion;
cruword.w8.energy 1= k.wl.energy;
cruword.w8.abs 1= true;
loadcru(cruword.i5,12);
if testbit(papout) then check_rea~y;
timeout I = I;
while (timeout < 30000)

and
(not testblt(pwready»

do
begin

check_ready;
t imeou t I = t imeou t + I;

end;
setbi t(pwstb);
clearbit(pwstb);

end; (print_it)
procedure move_carr iage(howfar: integer; whichway: waykind);
var

timeout, tempmove, bigmove,l sb, leadl integer;
beg i n {move_car r i age}

if whlchway = right then horpos 1= horpos + howfar
else horpos := horpos - howfar;

cheCk_ready;
if not underlining
then
begin

while howfar
do
begin

if howfar > 1023 then tempmove 1= 1023 else tempmove
howfar := howfar - 1023;
bigmove := tempmove div 2;
!sb ::; tempmove mod 2;
if lsb = 1 then setbit(halfsp) else dearbit(halfsp);
case whichway of

right: clear'bit(waybit);
leftl setbit(waybit);

end;
10adcru(bigmove,10) ;
timeout : = I;
while (timeout < 30000)

and
(not testbit(carready»

do
begin

check_ready;
timeout 1 = timeout + I;

end;
setbi t(carstb);
dearbi t (carstb);

end; {while howfar > O}

howfar;

33

end
else
begin

{of then clause on ~if not underlining" I
(if underlining)

whi Ie howfar > 0
do
begin

printit(uHec);
case whichway of

right 1 c1earbi t(waybi t);
I e it I set bit (wa y bit) ;

end;
bigmove 1= 0; (that is 0/60ths)
setbit(halfsp); (+ 1/120th)
howfar 1= howfar - I;
10adcru(bigmove,10) ;
timeout 1= I;
while. (timeout < 30000)

and

do
begin

(not testblt(carready»

check_ ready;
timeout 1 = timeout + I;

end;
setbi t (carstb);
clearbi t(carstb);

end; {while howfar > OJ
end; {of the "If not underlining"}

end; {move_carriage}
procedure move_paper(howfarl integer; whichway: waykind).
var

tlmeout,tempmovel integer;
beg in (move_pape rl

34

if whichway = down then vrtpos 1= vrtpos + howfar
else vrtpos 1= vrtpos - howfarj

check_ready;
setbi t (halfsp);
case whichway of (oo.vN means printhead down, paper UP)

downl clearbit(waybit);
up: setbit(waybit);

end;
while howfar
do
begin

if howfar > 1023 then tempmove 1= 1023 else tempmove
howfar := howfar - 1023;
loadcru(tempmove, 10);
timeout : = I;
while (timeout < 30000)

and
(not testbit(pfready»

do
begin

check_ready;
timeout 1 = timeout + I;

end;
setbit(pfstb);
clearb! t(pfstb) j

end;
end; (move_paper)
procedure home_head;
beg i n (home_head I

hdir 1= left; .
move_car r lage (horpos, hd I r h
hdlr 1= right;
horpos 1= 0;

end; (home_head)
procedure turn_vPi
begin {turn_vp}

fixedpltch 1= false;
end; (turn_vp)
procedure turn_fp;
begin (turn_fp)

fixedpitch 1= true;
end; (turn_fp)
procedure initialize;
begin

intypel 1= false;
Intype2 1= falsej
fixedpitch := true;
nulcount 1= 0;
inusdef 1= false;
setbase(wpcru) ;
vdlr 1= down;
hdlr := right;
usrec. i5 : = 0;
usrec.wl.istypel true;
bold 1= false;
dubstrike 1= false;
underline 1= false;
vrtpos 1=.0;
horpos := 0;
hardi ni t ;
turn_fp;
home_head;

end. (ini t ial ize)
procedure ex_pause;
var

cg 1 char;
begin (ex_pause)

writeln('Printing suspended by [single forms]')'
writeln('Printlng will resume when <enter> is p~essfSdl);
repeat read(keyboard,cg) until cg = chr(160);

end; (ex_pause)
procedure ex_typel;
var

saveusf: boolean;
bdi r: waykindj
howfar: Integer;

begin (ex_typel)
if inusdef
then
begin

usrec.i5 1= outrec.i5j
lnusdef := false;
exit(ex_typel) ;

end;
howfar 1= out rec.wl.movement;

howfar;

move_car r i age(howfar, hdi r) ;
print_it(outrec);
if dubstrike and (not bold) then print_it(outrec);
if bold'
then
begin

case hdlr of
rightl bdir:= left;
left: bdlr 1= right,;

end;
saveusf 1= underl ining;
underlining 1= false;

;:~~t~~~ (~~~~ ~~ I ~d i r) I
pr int_i t (out rec);
move_car r i age (1, bd i r) ;
print_it(outrec);
underlining := saveusf;

end;
end; (ex_typel)
procedure ex_type2;
var

howfar: integer;
begin (ex_type2)

case outrec.w2.direction of
rightl hdir 1= right;
left: hdir 1= left;
down: vdir Is down;
Upl vdir 1= up;

end;
~~e~outrec.w2.direction = down) or (outrec.w2.direction = up)

begin
howfar 1= outrec.w2.movement;
move_paper (howfar. vd I r) ;

end
else
begin

howfar 1= outrec.w2.movement;
move_car r iage(howfar, hd i r) ;

end;
end; (ex_type2)
procedure ex_type3;
begin (ex_type3)

if nul count = 2
then
begin

nulcount 1= 0;
end;
if outrec.w4~whlcht3 = action
then
begin

case outrec.w3.t3action of
prefixI nulcount 1= nulcount + Ij
setbackl hdir 1= left;
setnorm: hdirl= right;
home I home_head;
entervpl turn_vp;
exitvpl turn_fp;
setuSI inusdef 1=
holditl ex_pause;

true;

end; {casel
end
else
begin

if
if
if

outrec.w4.bf_on then bold 1= true else bold := false;
outrec.w4.ds_on then dubstrike 1= true else dubstrike 1= false;
outrec.w4.us_on then underlining 1= true else underlining :=

false;
end;

end; {ex_type3}
procedure process_it;
var

pal packed array [0 •• 11 of char;
begin (process_i t J

if fixedpitch and (ch <> chr(O» and (nulcount <> 2)
then
begin

pa[O] 1= chr(ord(ch»;
uni twr I te(6 ,pa, 1,,12);
exit(process_it);

end;
if intype 1
then
begin

outrec.wO.r_byte.- ord(ch);
intypel := false;
ex_typel;
exit(process_lt) ;

end;
if intype2
then
begin

outrec.wO.f_byte .- ord(ch);
intype2 1= false;
ex_type2;
exit(process_it);

end;
Inrec.wO.I_byte 1= ord(ch);
if inrec.w2.whichtype = type3
then
begin

outrec.wO.l_byte:= ord(ch);
ex_type3;
exit(process_it);

end
else
begin

If inrec.wl.istypel
then
begin

end

outrec.wO.I_byte 1= ord(ch);
intypel 1= true

else
beg in

outrec.wO.I_byte 1= ord(ch);
intype2 := true;

end;
end;

end; [process_i t)
begin Iwpinterface)

if first_time then
beg in
first_time 1= false;
i ni t i a! i ze,
endi

process_i t;
end; Iwpinterface)
BEGIN I T2WPUNIT)
first_time := true; (UNIT initialization)
* ... *; •
(no UNIT terminat ion)
END [T2WPUNlT),

Machine code for the external funct Ions

_proc
limi
blwp
b
• proc
idle

machine
I
@8
"rll
cpuidle

b "r 11
.proc setbase,1
.def crubase,ws

;pascal declarat ion;

To simulate the effect of a
; Machine check (level 2 interrupt)

,
procedure setbase(i: integer); external,
where i is the crubase desired (decimal)

;990 instruction is: Ii r 12, i

mav "rIO+,crubase Pop stack into private storage
b "rll Return to pascal

crubase ,word 0
ws ,block 32 Workspace for the others

,proc setbit,1
,ref crubase,ws

ipascal declaration!
procedure setbit(il integer); external;
where i is the bitnumber desired

j

; 990

start
inst
ep

instruct ion

mav
blwp
b
,word
sbo
mav
mav
andi
soc
x
rtwp

is I sbo

"rI0+,ws+2
start
* r I I
ws,ep
o
crubase,rl2
inst, r j
rl,OOfth
r I, r 5
r 5

.proc cJearbit,1
• ref crubase,ws

;pascal declaration,

Pop stack into new rl
Do the stuff
Return to pascal

Instruct ion mask
Get current base from private storage
Op code for sbo
Insure parm passed is 00 in first byte
R5 now has proper sbo instruction
Execute it

; Done #

procedure clearbit(il integer); external;
where i is the bitnumber desired

;990 inst ruct ion is I

mav
blwp
b

start .word
i nst sbz
ep mav

mav
andi
soc

sbz

*rI0+,ws+2
start
.. r I I
ws,ep
0
crubase, r 12
inst, r 5
rl ,00ffh
r I, r 5

Pop stack Into new rl
Do the stuff
Return to pascal

Instruct Ion mask
Get current base from private storage
Op code for sbz
Insure parm passed is 00 in first byte
R5 now has proper 5bz instruction

x r5 Execute it
rtwp Done
.proc Joadcru,2
• ref crubase, ws

; pasca! dec lara t ion;
; procedure loadcru(j,jl integer); external;
; where i is the 16-bit pattern desired, j is number of bits

;990 instruction lsI Ii rx,i
Idcr rx, j

start
ins t
ep

mav
mav
blwp
b
.word
J dcr
mav
mav
andi
sla
soc
x
rtwp

"rI0+,ws+2
*rI0+,ws+4
start
*r 11
ws,ep
r2,0
crubase, r 12
i nst, r j
rl,OOOfh
r 1,6
rl,r.5
r .5

.proc storecru,2
• ref crubase,ws

ipascal declaration,

I Pop II of bits Into new rl
Pop data word into new r2
Go do it
Return to pascal

instruction mask
Get current base from private storage
Puts'ldcr r2,O' instruction in r.5
Mask (I of bi ts to 0-15

; Shift to spot required in instruction
Or into r.5
Execute it
Done

procedure storecru(var i: integer; j: integer); external;
where i is the 16-bit result area, j is number of bits

;990 instruction is:

start
ins t
ep

mav
mav
blwp
b
.word
stcr
mav
mav
andi
5 I a
soc
x
rtwp

stcr
mav

"rI0+,ws+2
"rI0+,ws+4
start
* r I I
ws,ep
*r2,0
c r u ba s e , r I 2
inst ,r 5
rl,OOOfh
r 1,6
r I, r 5
r .5

.func testbit,1
• ref crubase ,ws

I pasca I dec I arat ion;
funct i on test bi t (j: integer) I

; where i is the bitnumber

rx, j
rx, i

Pop II of bits into new rl
Pop address of data into new r2
Go do it
Return to pascal

Instruction mask
Get current base from private storage
Puts 'stcr "r2,0' instruction in r.5
Mask If of bits to 0-1.5

I Shift to spot requir~d in Instruction
Or into r.5
Execute it
Done

bool ean; external i

;990 instruction iSI tb i
(returns true if bit is 1)

mav "rIO,wH2 Pop II of bits into new rl
ai rl0,2 ; Point to word provided on stack

Note- the stack pointer is left point Ing to resul t word
blwp start ; Go do it

start
Inst
ep

$1

mav
b
.word
tb
mav
cl r
andi
mav
soc

jne
inc
rtwp
.end

ws," riO
"r II
ws,ep
o
crubase, rI2
rO
rl,OOffh
i nst, r.5
r 1, r.5
r .5
$1
rO

Push rO of new ws
Return to pascal

; Instruction mask
Get current base from private storage
Assume bit is false
Insure displacement is in range
Get copy of instruct ion
Or in di splacement
Execute test bi t
Jump if bi twas fal se
if bit was I, rO := I
Al I done

The Two Faces of UCSD Pascal

By Rich Gleaves
Volition Systems

Rich Gleaves of Volition Systems submits the
slides from a talk of his. I (as usual) dI:opped out where
and when the talk was. I have included the first few
slides of his talk of which the outline was as follows':

THE TWO FACES OF UCSD PASCAL
UCSD PASCAL_ INDUSTRY IMPACT
UCSD PASCAL - HISTORY
UCSD PASCAL SYSTEM VERSIONS
UCSD PASCAL vs. STANDARD PASCAL
UCSD PASCAL EXTENSIONS
PROGRAM SEGMENTATION
SEPARATE COMPILATION - UNITS
UCSD I/O HIERARCHY
INTERACTIVE I/O
RANDOM ACCESS FILES

UNIT I/O
STRINGS
BYTE ARRAY MANIPULATION
DYNAMIC STORAGE
PROCEDURE TERMINATION
EVEN MORE TRICKS
RECORD AND ARRAY COMPARISON

If you would like to have the bodies for all these
slides, please contact Volition Systems. ed.

THE TWO FACES OF UCSD PASCAL

• Friendly beginner's language

Used at UCSD to teach introductory computer pro
gramming to non-science students. UCSD Pascal's

35

