
~Wt ~ w as Jii'iiij!.2Z~'iJJI;eWiiR NISi ~~ 

NOTE: Western Digital Corporation reserves the right to change specifications 
without notice at any time. Information furnished in this document by Western 

'1pigital, Inc. is believed to be accurate and reliable; hOlo/ever, Western Digital, 
Inc. assumes no responsibility for its use, nor for any infringements of patents 
or other rights of third parties resulting from its use. No license is granted 
under any patent rights of Western Digital Corporation. 

2445 McCABE WAY IRVINE, CALIFORNIA 92714 (714) 5!57~35!50, TWX 910~595~1139 

e 

e 

o 

('") 
...... \<t. 

0 

(,-........ '\ 
~. 

WESTERN DIGITAL 
c o R P o R A T / o N 

Advanced Systems Division. 

TECHNICAL 
NOTE 

ADVANCED 
PROGRAMMING 
PACKAGE 

NUMBER: MOO13 July 1981 

SUMMARY: 'l'he following Teclmical Note descril:::es the Advanced l?roqramning 
Package which provides MicroEngine users with details on accessinq various 
parts of ti1e operating system. The package contains the following segments: 

1) 

2) 

3) 

4) 

5) 
6) 

7) 
8) 

An implerrentation guide on concurrent processing teclmiques. It descril:::es 
in detail the "SIGNAL", "y-1AIT", "SEMINIT" and "ATTACH" CCJIl11laIld. These 
items are useful for users who need to know the structure of semaphores 
and how queing is perfomed during concurrency operations. 
A Pascal representation of the Microcode of "SIGNAL" and "t-JAr'l'''. This data 
illustrates hO'" "SIGNAL" and "WAIT" are implerrented. 
An example of a U-Minus Program which illustrates how a progrCl1Tl'fEr can access 
the operating system global variables. 
A general document that explains to you how to reference absolute nenory 
locations. 
A docurrent that details the I/O and interrupt addresses. 
A document on interfocing to the parallel port which illustrates Western 
Digital's teclmique. 
List of operating system globals. 
Document on accessing t~~ directoLl{ on a disk. 

Because these techniques allow the user to access the operating system tables, "'-'e 

recommend that only the more knowledgeable users in your organization should be 
exposed to the details of this package. 

TABLE OF CON'I'ENTS 

Introduction ..•.•......••.•......•.•..••••....•..••••....•.••...•..•.......... 1 

Concurrent Processing Implementation Guide .....•.............................. 2 

Representation of "SIGNAL" & "~'1AIT" .•........••..••..•..•.•.••...•••........•. 15 

Exarrrple of U-Minus Program .•.•..••.••.....••.•..•••......••••.....••..••..•... 18 

Referencing Absolute-Memory Locations •.•...•..••.............•...........•.... 20 

Interrupts and Special Addresses ...........•...••.....................•.....•. 23 

Interfacing to the MicroEngine Parallel Port ....•....•......•......•....•..... 24 

Operating System Globals .•....•................••.••....•..•.......•.•.....•.. 28 

Directory Access ..........•••..•..•........•........•...•.•..•...•.•......•.•• 37 

2445 McCABE WAY IRVINE, CALIFORNIA 92714 (714) 557'35!'O, TWX 910~S9S~1139 

• 



OUTLINE 
-------

1.1 

1 .1 .1 

1.1.2 

1.2 

1.2.1-

1.2.2 

1 .2.2.1 

1 .2.2.1 .1 

1.2.2.1.2 

1.2.2.1·3 

1.2.2.1.4 

1.2.2.1.5 

1.2.2.1.6 

1 .2.2 

1.2.2.3 

2 

'1; 
3 

CONCURRENT PROCESSES 

RELEASE VERSION 3.0 

°1 8 
IMPLEMENTATION GUIDE 

P!"elimina!"y 

Memo!"y Layout DU!"ing Task Execution .•••••••••••.•••••• 3 

Data St!"uctu!"es ••••.•••..•••••••••••••••••.•••.••••••• 4 

Task Information Block (TIB) •••.••••••••••••••••.••• 4 

Semaphores ..•.•••••.••.•••••.••..•..••••••.••••.•••• 6 

P!"imitive Ope!"ations •••.•.••••.•••••.•••• o •••••••••••• 7 

Seminit •.•..••••.••••..•••..••••••..••.•••• 0 0" 0 •••• 7 

Wait and Signal ••••••••••.•••••••.•••••••••••••••••• 7 

Suppo!"ting Operations ..••••.••..•.•••.•••••••••••• 7_ 
Enqueue···········································8 

Dequeue ...•••.•.••••••••••.•••...••..•••.•••.••••• 8 

Taskswi tch .••••••••••••••••••••••.••..•••••••••••• 8 

I dIe •••.•••••••••••••••.••.•••••.•.••••••.•...•••• 9 

Ifetch .••.•••.•••••••••••••••••••••••••..•.•.•.••• '10 

Interrupts •••••.•••.•••.•••••••••••••••••••.•••.•• 10 

Wait •••.•.•..•.••••••••••••••••••••.••••.••••••••••• 10 

Signal .•.••••••••••..••.•••••.•••••.•••.•••••••..••• 11 

Attach ..••••.••.•.•••••••.••••••..••••.•.••..••••.••••. 12 

Start .....•••..•.••..••.••••.•....•...••...•..••••.•.•• 14 

" 
2 

~ 

i 

I 
i 

fit 

o 

High memory 
I 
I 
I 

I I 

-------------------------- < I I 
I I 
I I 
I I 

I 

I 
I 
I 
I 

I 
I 

IPe ---->1 Body of the process 
1-- A Code Segment 
I 

I 

I 
I 

SEG ----->1 

----> 
I 
I 

Task I 
Acti va tion I 

Record 1 
I I 
I I 
I I 
I I 
I 
I 
I I 
I I 

MP ---->---->1 
I 

SP ------>! 
I 
I 

I 
I 

Main Stack 
I 
I 

v 

I 
I 

Heap 
I 
I 

Local 
Variables 

MSCW 

1 Stack 
v 

TIB 

Low Memory 

I 
I 

1< 

1< 
I 

I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

1< 

I 
I 
I 

I 
I 

I 

I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I--
I 
I 
I 
I 
I 
I 

Figure 1 -- Memory during Task Execution 

At any given time, the P-machine may have 

1 task !"unni ng 
several tasks ready to run 
several tasks waiting for each of various 

semapho!"es to be Signalled. 

Task Stack 

tI A P-machine register curtsk always points to the TIB fa!" the 
cu!"rently executing task. Anothe!" !"egister !"eadyq points to the first 
in the list of the tasks ready to run. This is illustrated in Figure 
2. 

3 
-,_ ••. ,..-...... ~----'"' ... ...........---.~...... , :; j.. ri _~;.' '\ ~ 



CURTSK ----->1 TIB -- > NIL {register -1} 

READYQ ----->1 TIB -->1 TIB -->1 TIB I-->NIL {register - 3} 

count; 

waitq -->1 TIB -->\ TIB -->1 TIB -->NIL 

Figure 2 -- P-Machine Task Configuration 

1.1 Data Structures 

As noted above, there are three main data structures associated 
with each task, the body, task stack (containing the task's activation 
reco~d) and Task Information Block (TIB). The body and activation 
record structures are the same as those for ordinary procedures and the 
task stack is like the main stack except for its allocation as a fixed 
space on the heap. Thus, of these data structures, only the TIB 
~emains to be discussed. In addition, there is the newly introduced 
type semaphore which is also discussed below. 

1.1.1 Task Information Block (TIB) 

As noted above, the TIB contains information which is used; 
when a task begins execution, to restore the execution 
environment (i.e P-machine registers) to its state before the 
task was interrupted. It also contains other fields which we 
shall look at. 

A Pascal declaration of a TIB is shown in Figure 3. This 
corresponds to the structure in Figure 4. 

"", 
t\ 

Type 
byte = O •• 255; 
integerp = "'integer; 
mscwp = "'mscw; 
semp = "'semaphore; 
sibp = "'sib; 
sibvec = array [0 .. 0] 
tibp = "tib; 

Mark-Stack Control Word 

Segment Info Block 
of sibp; 

4 

o e 

e e 

g Q 

tib record { Task Information Blockl 
regs: packed record 

waitq: tibp; { Queue link for sema~hores l 
prior~ byte; ! Tasks CPU Priority J 
flags: byte State flags, not yet defined I 
splow: integerp; Lower stack pOinter limit } 
spupr: integerp; Upper limit on stack I 
sp: integerp; Actual top-of-stack pointer } 
mp: mscwp; Active procedure mscw ptr } 
bp: mscwp; Base addressing environment ptr 
ipc: integer; Byte ptr in current code seg I 
segb: "codeseg; Ptr to seg currently running } 
hangp: semp; Which task is waiting on I 
xxx: integer; Not used } 
sibs: "'sibvec; Array of sibs for 128 •• 255 

end {regs }; 
maintask: boolean; True if tib is root task I 
startmscw: mscwp Top mscw in task's stack 

end { tib } 

Figure 3 -- Declaration of TIB 

MSB LSB 

o qlink 

flags p~ior 

2 splow 

3 spupr 

4 sp 

5 mp 

6: bp 

7 ipc 

8 segb 

9 hangp 

10 <reserved) 

11 sibs 

12 maintask 

13 startmscw .. 
Figure 4 -- Structure of a TIB 

5 
•• '- ~-·._""''''--__ ~~lI .. ~<I_':S:.,;'~ 



,I 

IiIII 

The fields sp, mp, bp, ipc and sib contain the values to 
which the P-machine ~egiste~s must be ~esto~ed p~io~ to commencing 
execution of the task. 

The p~io~ity field contains the p~io~ity level of this task. 

Qlink is only used when the p~ocess is pa~t of a wait queue, 
eithe~ of a semapho~e o~ ~eady-to-~un. It is used to const~uct a 
linked list of TIBs, as was shown in Figu~e 2. 

When a task is waiting on a semapho~e, the field hangp is set to 
point to that semapho~e. If the task is not waiting on a semapho~e 
then hangp is nil. One of its pu~poses is to allow a p~ocess to be 
~emoved from a semapho~e's wait queue. 

The flags field is intended to contain state flags fo~ the task. 
None of these flags a:e yet defined. 

Sibs is a pointe~ to a mapping a~~ay used fo~ segments with 
numbe~s 128 .. 255, the details of which have not yet been implemented. 

The boolean field maintask simply asse~ts whethe~ this TIB is fo~ 
the lI~oot" or outer task, that is the task which invoked all othe~ 
tasks. Only the ope~ating system task is in this state. 

Sta~tmscw points to the Ma~k-Stack Cont~ol Wo~d of the p~ocedure 
which sta:ted this task. It is identical to the dynamic link of the 
"topmost" MSCW in the task and is used to identify the oute~ block of 
the p!"ocess. 

1 .1 . 2 Semapho~es 

'l~1 

The function of the semapho:e data type has been discussed in the 
t:Microengine Refe!"ence Manual in concu~rent p~ocesses. An object of 
type semapho~e contains two elements* a count field and a queue field. 
A Pascal equivalent declaration of type semapho~e is shown in Figu~e 5, 
and the field allocation is shown in Figure 6. 

Type 
semaphore reco~d 

count: O .. MAXINT; 
waitq: tibp 

end semapho!"e 

Figure 5 -- Pascal Declaration of Type semapho~e 

o count 

waitq 

Figure 6 -- Structure of Type semaphore 

6 

.' A ~ ~ 

e e 

'" ~ 

1.2 Primitive Ope~ations 

The following discussion cove~s those ope~ations which are 
implemented as P-machine instructions (wait and signal) as well as 
seminit, which is compiled as an in-line sequence of instructions, and 
the machine-dependent built-in procedure attach. To support the 
discussion of wait and signal, some inte~nal operations (enqeue, 
dequeue, taskswitch and idle) are also described. This desciption is 
intended to support an implementation of these primitives in assembly 
language or microcode. 

1.2.1 Seminit 

The built-in p~ocedure seminit accepts two arguements. (1) a 
semapho~e variable and (2) a positive integer (See Tuto~ial and Use~sl 
Guide). The compiler generates in-line code to set the count part of 
the semaphore to the intege~ value and the waitq part of the semaphore 
to nil. 

The code is genereated as follows: 

GIVEN: 

CODE: 

seminit ( sem, count 

Load address 
DUP1 
Load 
Store@ 
INC 
LDCN 
Store@ 

sem 

count 

This code loads two copies of the semapho~e address onto the 
stack, loads the count and sto~es it in that add~ess, then inc~ements 
the other copy of that add~ess by one, making it point to the waitq 
field of the semapho~e, and stores nil there. 

1.2.2 Wait and Signal 

1.2.2.1 Supporting Ope~ations 

'lI!l 

7 

V"'hJi'.lFk45¥..~; •. ~ 

·.'~t~\<:.:~ 
"\:: " 



.'h 

II ~. ~~ .... ,;..:J...._ .... o.': . .d...'~ ..... ~~.~~: 

1 .2.2.1 .1. Enqueue 

The enqueue ope~ation is used in the implementation of signal and 
wait. Its function is to inse~t a task into a queue o~de~ed by 
prio~ity. The queue is ~ep~esented by a linked list of TIBs. A Pascal ~. 
description of enqueue is in Figu~e 7. 

p~ocedure enqueue ( va~ qhead: tibp; qtask:_ tibp ) 
label 1; 
var t1, t2: tibp; 

begin 

1 : 

[ Find place in queue to inse~t the TIB t 
t1 : =: qhead; 
t2 : := nil; 
while t1 <> nil do 

begin 
if t1A.regs.p~io~ity <qtaskA.regs.p~io~ity then 
goto 1); 

f else J 
t2 t1 ; 
t1 : =: t1 A . ~egs. qlink 

end; 

qtaskA.regs.qlink t1; 
if t2 =: nil then 

qhead ::=: q task 
else 

t2A.regs qlink: qtask 
end t enqueue }; 

Figure 7 -- Pascal Descriptlon of enqueue 

1.2.2.1.2 Dequeue 

Dequeue is the complementary operation to enqueue. It is used to 
remove a task from the nead of a wait queue. In the Pascal description 
of dequeue shown in Figure 8, a pointer to the TIB of the task is 
returned in qtask. 

procedure dequeue ( var qhead, qtask : tibp); 
begin 

qtask : := qhead; 
qhead : =: qheadA.regs.qlink 

end t dequeue ]; 

Figure 8 -- Pascal Desc~iption of dequeue 

1 .2.2.1.3 Taskswitch 

-

The Taskswitch routine is executed when the cu~rently running task 
has been put in a wait queue and there is task at the head of the ready ~ 
queue to be executed. This situation can occur through either of ., 
two different Circumstances, (1) when a wait has been executed and 
the current task must wait on a semaphore or (2) when a signal has been 

8 

8 

-

" 

.". 

executed and the task activated has a highe~ p~iority than the current 
task. In the former case, the current task is enqueued on the 
semaphore before Taskswitch, in the latter case, the current task is 
enqueued on readyq. 

Taskswitch sees that all current P-machine registers are saved in 
the TIB pointed to by curtsk, thus preserving the task's execution 
environment. In the example presented here, after Taskswitch is 
executed, the machine falls into Idle, which will activate the task 
at the head of the ready queue. 

TASKSWITCH: 
with curtskA.regs do 

begin 
t sp sp; 
t mp mp; 
t bp base 
t ipc ipc 
t sib : =: seg 

and; 

Figure 9 -- Pascal Description of Taskswitch 

1 .2.2.1 .4 I dIe 

The Idle loop is executed repeatedly when there are no tasks in 
the ready queue and the processor is waiting for a hardware-interrupt 
which has been attached to some Pascal semaphore. When the interrupt 
is received, the processor jumps out of the Idle loop. The interrupt 
will cause a signal and, since curtsk=nil, control will return to 
the Idle loop. If the Signal caused a task to be placed in the ready 
queue, that task will now be activated, otherwise the Idle loop will 
be repeated again. 

When the Idle loop is entered from Taskswitch, it kmust be the 
case that readyq <> nil. Therefore, the loop will be bypassed and the 
task at the head of the ready queue will be activated. 

TASKSWITCH: 

IDLE: while readyq := nil do 
begin 

curtsk : := nil 
if An interrupt is being asserted then 

if Its not masked then 
goto Interrupt 

end' 
dequeue ('readyq, curtsk ); 
with curtsk A

• regs do 
begin 

sp : =: t sp; 
mp : =: t mp; 
base : = t bpi 
ipc : "" t ipc; 
seg : = t sib; 

.. 
end; 

goto Ifetch; 

Figure 10 -- Pascal Description of the Idle Loop 

9 
- ---.·--...... ~ .... f.~-,.-...-~""' .. -'~ W !.~r~~. ~;~ 

","" 



"S 

Ii 

1 .2.2.1.5 Ifetch 

Fo~ completeness, we make mention of the Inst~uction Fetch 
(Ifetch) code. The only change f~om p~evious inte~p~ete~s is that we 
make explicit ~efe~ence to the need fo~ inte~~upt ~ecognition. 

IFETCH: If An interrupt is being asserted then 
if Its not masked then 

goto Inte~!"upt; 
Fetch opcode byte and execute no~mally; 

Figure 11 -- Description of Ifetch 

1 .2.2.1.6 Inte!"rupts 

From an a!"chitectural standpoint, the receipt of a hardware 
interrupt which has been attached to a semaphore must cause a signal 
operation to be executed on that semaphore. Whatever P-machine 
inst~uction is executing when the inte~rupt is raised must be allowed 
to complete befo!"e the signal is pe!"formed. 

In the Pascal MicroEngine implementation by Western Digital, 
interrupt.s are only acknowledged between P-instructions, thus it 
is possible to immediai;ely perform the signal. It is this 
environment which has been reflected in the discussions of the 
Ifetch and Idle cooe. 

For related JII8.te~ial, see attach. 

INTERRUPT: Obtain vector address from device; 
Push contents of mem word designated by vecto~ onto stack 
goto signal; 

Figure 12 -- Western Digital Inter~upt Handling 

1.2.2.2. Wait 

The use of the Pascal statement 

wait ( s ); 

(whe~e s is a variable of type semapho~e) causes code of the 
following form to be gene~ated by the compiler: 

LDA 
WAIT 

s Push add~ess of s on stack. 

The wait operation pops the address off the stack and uses it to 
test the count part of the semaphore. If the count is zero then the 
cu~rent task is enqueued on the semaphore and a Taskswitch is made. 
Othe~wise the count is dec!"emented. A Pascal description of wait is 
shown in Figu~e 13. 

10 

ct e 

fJ: 4» 

e --

~,,;:,~ ~ • ..w..~_ ,,~, ... \,~~':::'~~:J.:..lI'~'''':':'''~'''''''''''''~~~''-=~''~_'--__ ~''''~~'-:_-_. ___ ... ~ ~.~.j.~~-: 

WAIT: {va~ s: semp l 
pop ( s ); 
if sA.count ~ a then 

begin 
enqueue ( sA.waitq, curtsk ); 
curtskA.hangp : = s; 
goto Taskswitch 

end; 
! else I 
sA.count : = sA.count-1; 
goto Ifetch 

Figure 13 -- Pascal Description of wait 

1 .2.2.3 Signal 

The P-code generated by a signal ope~ation is analogous to that 
generated by the wait. The Pascal statement 

Signal t s 

causes the code 

LDA s ;Push semaphore add!"ess 
SIGNAL 

to be generated. 

Du~ing the signal ope~ation, the add~ess of the semaphore is 
popped off the stack and the queue part is tested~ If found to be nil, 
the count is incremented. If the queue part is non-nil, the~e a~e 
tasks waiting on that semaphore; the task at the head of the semaphore 
queue is removed and added to the ready queue. 

I 

! 

If the priority of the currently running task is less than the p~i-
o!"ity of task newly readied (which must the~efo!"e be at the head of 

the re ~eady queue, having a priority g~eater than all other ~eady 
tasks). then a Taskswitch must be made. This p~ese~ves the 
~erquirement that the currently executing task be the highest p~io~ity 
task in the ready queue. 

Othe~wise the p~ocessor jumps directly to the Ifetch code and the 
cur- rently executing task continues to ~un. 

One· special case that can arise is when the CPU has been idling 
(no cu~~ent task), waiting for an inte~~upt. The interrupt is t~eated 
as a signal. The only change for handling this case is that, instead 
of jumping to Taskswitch or Ifetch, when complete, signal jumps back 
into the Idle loop. This will cause the newly readied task to be 
started since readyq is no longer nil. 

ttl 

11 
- ,.~ ..... -~.---.~ ... ,~~ .. ~~,.. - l~,.... S.~*"":"A~ 



''t 

I .•.•. _~_ •.• ~" .• "w ... ~ .• _"L~~_;·~··~·_~I:···.:..· · .... ----~. ~----
A Pascal desc!"iption of the algo!"i thm fo!" signal is shown in Figu!"e 14. I Attach is called as one of the "standa!"d procedures". For version 

i 3·0, the standard p!"ocedures are all in segment 3; attach is procedu!'e 
{ va!" s: semaphore; qtask: tibp} number 23 within that segment, thus the call to attach is 
pop ( s ); . 

SIGNAL: 

if sA.waitq<>, qtask ); 
begin ~:e CXG 3,23 

2 Attach 

dequeue ( s" . wai tq, q l.a3l~ ) ; 
qtask".hangp : = nil; 
enqueue ( readyq, qtask ); 
if curtsk = nil then 

goto Idle; 
else I 
if curtsk

A

.regs.p:.i0:.ity < qtaskA.regs.priority then 
begin 

enqueue (curtsk, readyq); 
goto Taskswitch 

end 
else I 
goto Ifetch 

end; 
{ else waitq = nil } 
s".count := s".count+1) 
if curtsk = nil then 

goto Idle 
else I 
goto Ifetch 

Fi@lre 14 -- Pascal Description of signal 

I) 

The attach intrinsic procedure is intended to establish a logical 
correspondence between a semaphore and an "interrupt identifier" such 
that when the specified interrupt is raised by the hardware, the 
specified semaphore will be signalled. A Pascal decla!'ation of 
attach would be 

type samp semaphore; 

procedure attach s semp; interrupt id integer ) ; 

The variable s contains a pOinte!' to the semapho!'e involved, while 
interrupt id contains whatever the machine requires to identify a given 
inte!'rupt. When attach is called, the stack is as shown in Figure 15. 
Both parameters are popped off the stack by the time attach !'eturns. 

/////////111/1111111/1111 
s 

sp ----->1 interrupt id 

e 
Figure 15 -- Stack state when attach is called 

12 
..... __ ........ -

e 

The details of how attach works are strongly processor-specific 
due to the varying nature of hardware interrupts. The approach used on 
Western Digital Corporation's Pascal Microengine illustrates how simple 
<:Ii.t.ach can be. 

To unde!'stand the Weste!'n Digital attach, we must fi!'st unde!'stand 
the Mic!'oengine's inte!'!'upt st!'uctu!'e. This machine designed to 
execute P-code di!'ectly has as numbe!' of possible inte!'!'upt "vecto!'s" 

·cr, to be more p!'e- cise, "inte!'!'upt codes". A table is maintained in 
main memo!'y which, indexed by interrupt code, contains the add!'ess of 
the semapho!'e associated with each code. When the p!'ocessor 
acknowledges an interrupt, the interrupting device returns its device
specific interrupt code. The processor then picks up the semaphore 
address associated with that interrupt code and signals it. To simplify 
matters further, the·semaphore table is based at address 0, so that the 
interrupt code is, itself the address of the table entry. 

Interrupt 
Codes 
(Add!'esses) 

1----------->1 

I I 1-----------1 
1------>1 

1------1 
Semaphores 

Figu!'e 16 -~ Microengine Interrupt Structure 

This is the attach mechanism for the Microengine consits simply of a 
Pascal procedure: 

p!'ocedure attach (s~: sempj Interrupt code 
begin 

Asemp ) ; 

e 
Interrupt code := s 
end {attach I, 

Figure 17 -- Mic!'oengine Implementation of Attach 

13 
-:-,.-.--~ ..... --.--.--~~u--~~-

~ 

... 4l~ ~~ .. ~~F~~ 



3. PROCESS START 

Unde~ the 111.0 UCSD concu~rency specification, processes are 
decla~ed in a manne~ similar to procedures. A process is invoked by 
the sta~t statement. The purpose of the start statement is to 
"c~eate a Task Information Block (TIB) for the process to be started 
and to place this TIB representing the process on the ready queue, 
which holds all processes that are ready to run when processing 
resou~ces a~e allocated to them. 

Since a p~ocess is decla~ed simila~ly to a p~ocedu~e, a p~ocess may 
have pa~amete~s. In o~der to insu~e that ~he pa~ameters being 
passed to the p~ocess being sta~ted are those values at the time of 
the sta~t statement, the~e is sych~onization code implemented using 
semapho~es to assu~e that the main p~og~am cannot p~oceed until the 
sub-p~ocess being started has ~eceived the pa~ameter values at the 
time of the start statement. This is implemented by semapho~e 
synch~onization pe~fo~med by compiler gene~ated code in conjunction 
with an ope~ating system int~insic. The mechanism basically causes 
the p~og~am sta~ting a p~ocess to wait on a semapho~e that is 
signalled when the subtask has ~eceived all pa~amete~ values. 

A process declaration takes the form: 

Process <. identifier) <formal parameter part) 

A process is started by the procedure Start described by the 
following format. 

Start <process statement> (processid var)J) 
[sta.cking expression); 
(priority expression~JJJ 

There are three optional parameters for the Start procedure. 

1) Processid - a pre-declared variable type in UCSD Pascal. 
When present, ~ssigns a value to the variable which 
is unique to the process that has been started. This 
points at the TIB created for the process. 

2) Stacksize expression - determines how much stack space 
will be allocated for this process. If no value is 
given, the compiler allocates a default value of 200 
words. 

3) Priority expression - determines what processes are 
handled first by the CPU. The higher priority processes 
are executed before lower priority processes. If no 
priority is given, the new process will inherit the 
priority of its caller. 

Start commands can only be called from a main task, such as the 
o~ter block of a user's program. If called from a subtask, a 
run-time error is generated. 

14 

.; 
~ 

I) 

" 

IA 
~:J1 

e 

o 

{PASCAL REPRESENTATION OF SIGNAL & WAIT} 

This program is a pascal representation of the signal and 
wait commands. The program illustrates how to manipulate the 
ready and wait queues as well giving an insight into the 
workings of the multi-tasking operating system.} 

{$g+} 
program pseudointerp; 
Labell, 2, 3, 4, 5, 6; 
Type 

tibp = fttib; . 
tib = record {task information block} 

regs: record 
{working registers •••• } 
pr ior: integer; 
qlink: tibp 

end { regs } 
{ non-hardware specfic stuff follows } 

end { tib }; 

semaphore record 
count: 0 •• MAXINT; {number of times signalled} 
waitq: tibp 

end { semaphore } ; 

Var {processor registers } 
curtsk, { 
readyq, { 
qhead, { 

task info block currently in execution } 
list of tasks waiting for cpu time} 
global list head operated on by enque and} 
{ deque } 

qtask: tibp; 
s: ft semaphore; 

procedure enque; 
label 1; 
var tl, t2: tibp; 

begin 
tl := qhead; 
t2 := NIL; 
while tl <> NIL do 

begin 

input and output var used in enque and deque} 
temp storage for wait and signal } 

if tlft.regs.prior < qtaskA.regs.prior then 
goto Ii 

1: 

t2 :=tl; 
tl :=tl ft .regs.q1ink 

end; 

qtask A .regs.qlink := tl; 
if t2 = NIL then 

qhead := qtask 
else 

t2 A.regs.qlink := qtask 
end {enque}; 

'" 

15 
....... m •• _ •• __ __,._--- ~'~ ._~~.~ 



• 1: 

IiiiiII 

proce9ure deque; 
begin 

qtask : = qhead; 
qhead := qhead~.regs.qIink 

end { deque } ; 

function AnlnterruptIsBeingAsserted 
begin end; 

function ItsNotMasked: boolean; 
beg in end; 

boolean; 

procedure FetchOpcodeByteAndDispatchNormally; 
begin end; 

procedure InteractWithDeviceOnBusAndObtainVectorAddress; 
begin end; 

procedure PushContentsOfMemWordDesignatedByvectorOnStack; 
begin end; 

procedure PopSemaphoreAddressIntoS; 
begin end; 

procedure SaveInternalCopiesOfRegistersInCurtskRegs; 
begin end; 

procedure RestorelnternalCopiesOfRegistersFromCurtskRegs; 
begin end; 

begin { pseudo-interpreter } 

1: { Ife !:ch } 
If AnlnterruptIs8eingAsserted then 

if ItsNotMasked then 
goto 2 { Interrupt }; 

FetchOpcodeByteAndDispatchNormally; 

2: { Interrupt} 
In terac t\vi thDeviceOnBusAndObta inVecto rAddress; 
PushContentsOfMemWordDesignatedByVectorOnStack; 
goto 4 { signal }; 

3: { Wa it} 
PopSemaphoreAddressIntoS; 
if s~.count = 0 then 

begin 
qhead := sA.waitq; 
qtask := curtsk; 
enque; 
sA.waitq := qhead; 
goto 5 { Taskswitch 

end; 
sA.count := sA.count-l; 
goto 1 { Ifetch }; 

16 

,...,.~ .. ...:.., ... : .• , ... ~~Jt<{.~ •. :~~:~~~~~.:;1:,.;. .. ;-~:,.;..,~ ...... ~,::.~ .... " ... ,;~ .. _:~~,,: ..... _,_,.~.c._. -.~.-,~ .. -.,-~.,-,_ ........ __ ~:...II ,_Ie ....... 

~ re 

t) ~ 

t· --

4: { Signal } 
PopSemaphoreAddressIntoS; 
if sA.count = 0 then 

if sA.waitq <> NIL then 
begin 

qhead := sA.waitq; 
deque; 
sA.waitq := qhead; 
qhead := readyq; 
enque; 
readyq := qhead; 
if curtsk = NIL then 

goto 6; 
if curtskA.regs.prior < qtaskA.regs.prior then 

begin 
qtask := curtsk; 
qhead := readyq; enque; 
readyq := qhead; 
goto 5 { Taskswitch } ; 

end; 
goto 1 { Ifetch 

end; 
sA.count := sA.count +1; 
if curtsk = NIL then 

goto 6; 
goto 1 { Ifetch }; 

5: { Taskswi tch } 
SavelnternalCopiesOfRegisterslnCurtskRegs; 

6: while readyq = NIL do 
if AnInterruptIsBeingAsserted then 

begin 
curtsk := NIL; 
if ItsNotMasked then 

goto 2 { interrupt }; 
end; 

qhead := readyq ; 
deque; 
curtsk := qtask; 
readyq := qhead; 
RestoreInternalCopiesOfRegistersFromCurtskRegs; 
goto 1 { Ifetch } 

end { pseudo-interpreter } • 

17 

• 

.~.:v_ ... ~. _____ • .....,.... ~-~ .... ~-.,~~~~~~ '~'Fi:~"')"9tf 



I " (",' ~./ '\' t I:. . ::' . \1 " • i'\ \rI. l ~ 

!$U-l 
This p~og~am demonstrates $U-. This compiler option allows 

a p~og~ammer to access operating system globals. Be ca~eful 
about altering operating system globals as this can have 
a delete~ious effect. This option also allows dynamic allocation of files~, 
in the heap.} ~ 

p~ogram pascalsystemexample; 

type 
phyle 
info~ec 

file; 
~eco~d 
worksym,wo~kcode: Aphyle; 
errsym,errblk,e~rnum: integer; 
slowterm,stupid: boolean; 
altmode: char; 

va .... 
end; 

fille~: a~ray[0 .. 6] of integer; 
use~info: inforec; 

space holde~ for unused OS globals} 

segment p~ocedure thep~og~am; 
[This segment procedure is the actual user program.} 
{The p~og~am's global variables should be declared here.} 

type filep = Aphyle; 

va~ cp: filep; 
arr: packed array[0 .. 511] of cha~; 
c: char; 

lDecla"'e 8 segment p~ocedures with no code to make subsequent 
segment procedu~es fall in the user segments. This is necessary 
as the operating system uses segments 0 and 2-7, while a user 
program has segments 1 and 8 - 15. These 'forward' declarations 
are only needed if the p~og~am contains other segment p~ocedures. 
Note that $U- allows fo~wa~d procedu~es to remain un~esolved, 
since they a~e needed only as space holders.} 

segment procedure num2; forward; 
segment p~ocedu~e num3; forward; 
segment procedure num4; fo~wa~d; 

segment p~ocedure num5; forwa~d; 
segment procedure num6; forward; 
segment p~ocedure num7; forwa~d.; 

{The program's segment procedures, if any, go here,} 
segment procedu~e firstuserses; 
val" i: integer; 
begin 
writeln (, in segment 8 ,); 
i:=i+1; 

t~· 

I. 
I 

I 

e 

~:::{,~ ":. ·;~~~~~:·1~~::~,~i:~~·,~ .. I: ::~:; Z~;i t ~~ • .. ~~~::~I':..;~·~ .~. :.,~<~;:~~.::.:.~."~ ... :.--:.;:.~ :jl~ ..... _ .... ..:.:- ~. I _~_ ... I_ .. 1.._-

begin 

{This code is invoked when this program is executed.} 

lIn other words, this will be the outerblock of the program.} 
for example, get the altmode character defined by SETUP} 
c := use~info.altmode; 

!Dynamically allocate a file } 
new(cp); 
reset (cp", 'dum.text'); 
if blockread(cp",arr,2) <> 2 then writeln ('read erro~ ,); 

{ call the first user segment procedure } 
firstusers; 

end; 
begin end. {This code will never be executed.} 

, end; 
~ ~ 

·f --
18 19 

... __ • ____ ,. . ...,-. ___ -" .'''''t •• ". $.;;;4,*." .. ,!~.~ ~~~ 



I .... ~ .......... , __ '_' " ..... ~ ••• ,,' .... "TI.it ......... ~_._ •• ,_ .. , .,"", .... A: .... ___ ,~_ ....... ~ ........ ~-i.~~...::~ ..... , ... "' ...... .. ~"' .... ,, __ ."',_. ». __ ._ .... ' •.. _ ••... _. _,_ ".'".>_~~ __ ,. ___ ._ n ___ ~_' ,,'" __ ~_ .. » • 

Referencinq I\,bsnlute Memory locations 

Absolute memory locations can be addressed on the MicroEngine. This use is 
discouraged as it is easy to corrupt operating system tables or code due to 
the power of this technique. Because the MicroEngine has memory mapped I/O, 
even 1/0 control registers may be accessed, and in fact, the 1/0 drivers 
use this technique. Absolute addressing is performed by means of Pascal 
variant records. A variant record specifies that two different variables 
with possibly different types may occupy the same memory location. The Pascal 
program below allows a user to access an absolute memory address interactively. 

program examine; 

type memrec record 
memcell 

end; 
integer 

var memvariant record case boolean of 

integer; 

begin 

true: (memadd : integer); 
false: (memconts : ~emrec); 

end; 

write (' enter absolute address '); 
readl n (i); 
memvariant.memadd :=i; 
writel n (, contents of I, i, I :: ',memvariant .memconts'" .memcell); 

end. 

If an address of a ~fticroEngine 1/0 port were entered, the program would return 
the contents of the 1/0 port register. 

statcmdrec ' record case boolean of 
true: (command: integer); 
false: (status: packed array IP .. ZJ of boolean); 

end; [for devices that use same reg for stat and cmdj 

whole = ~ .. maxint; 
paralrec = record 

t'~l 

porta : statcmdrec; 
portb : integer; 
porte : statcmdrec; 
pcontro 1 : integer; 

end; 

20 

~ e 

t) 

t 

f 
\ 

e 

e 

floppyrec record 
fstatcom : statcmdrec; 
track : integer; 
sector : integer; 
data : integer; 
filler: array 1]' .. 3J of whole; 

[dma fi eldsJ 
dcontrol : integer; 
dstatus : statcmdrec; 
trcountl : integer; 
trcounth : integer; 
bufaddl integer; 
bufaddh integer; 
memex nteger; 
intid nteger; 

end; 

serialrec = record 

VAR 

serialtrix 

paraltrix 

floppytrix 

data : integer; 
statsyndle : statcmdrec; 
contro12 : integer; 
controll : integer; 
fi 11 er array ~ .. 3J of integer; 
switch statcmdrec; 

end; 

record case integer of 
~: (sdevadd : integer); 
1: (serial: Aserialrec); 

end; 

record case boolean of 
true: (pdevadd : integer); 
false: (parallel! paralrec); 

end; 

record casp boolean of 
true: (fdevadd : integer); 
false: (floppy: floppyrec); 

end; 

Program Serialtest; 

{This program illustrates the concepts of referencing absolute 
memory locations by using varriant records. It writes to the 
serial port using unitwrite.} 

~ 
statcmdec ~ record case boolean of 

true: (command: integer); 
false: (status: packed array[0 •• 7] of boolean); 

end; (* for devices that use same reg for stat and cmd*) 

21 

l!Ii 

".-' "»""<;~;~: 
'!f"':' 



~~ 

II 

serialrec = record 
serdata : integer; 
statsyndle : statcmdrec; 
contro12 : integer; 
control 1 : integer; 
filler array[0 •• 3] of integer; 
switch statandrec; 

e~; 

Var 
serialtrix 

o 
1 

end; 

record case integer of 
(devadd integer); 
(serial : ~serialrec); 

Procedure sunitwrite (ch: char); 

Begin 
with serialtrix do 

begin 
devadd := -1008; (* FC10 *) 
with serial~ do 

begin 
controll := 135; (*87 hex *) 
control2 := I: (* 01 *) 
repeat 

until statsyndle.status[0); 
serdata := ord(ch); 

end: 
end: 

end; 

begin 
sunitwrite ('hi ); sunitwrite ( 'it ); 

end. 

22 

\ .'" 

tf1i$ 

tJ! e 

t --

~ _ ... ~ • • ~-J' .... , .... ,.~ ........ ~l ••••• , .. , .. , .. , ..... _ ,~ .... ~" .. _._ .. ~.~._ .. _~ .... ~---,~IiI __ .; __ .• 

Interrupts and Special Addresses 

The MicroEngine supports not only I/O devices in the 1/0 address space, but 
other functions such as interrupt handling and bootstrap tests. The I/O 
address space on the MicroEngine ranges from FCOO to FC7F. On the single 
board '1icroEngine the I/O address space contains the system value for NIL, 
a bootstrap test, and interrupt latches. Addresses in this space on the 
MicroEnaine are implemented using external logic. The table below summarizes 
the addresses currently utilized in the I/O address space. 

FCOO 

FelO-FC13 
FC18 

FC20-FC23 
FC30-FC37 
FC40 

FC48 

FC50 

FC60 
FC68 

FC70-FC73 

System value for NIL (used for software pointers) 

Serial port A register addresses 
Switch used for DMA EOB and DINTR signals 

Serial port B register addresses 
Floppy disk-DMA register addresses 
Microcode uses this address during interrupt handling (see below) 

Software writes to the latch at this address to to enable all 
interrupts in the system. This is done as interrupts are disabled 
after a hardware interrupt. 

Autoload address for DMA (currently unused) 
nummy address used during interrupt handling (see below) 

!''';crocode examines this address during system bootstrap to 
1etermine whether to boot from floppy or ROM. See section 3.7.2 
of the MicroEngine Software Manual. 
Parallel port register addresses 

The addresses FC40 and FC60 are required by the firmware for interrupt handling. 
The address FC68 is used by the firmware to test whether to boot from floppy 
disk or ROM during bootstrap. The address FeOO is the microcode recognized 
value for a NIL pointer. The address FC30 which contains the floppy disk-DMA 
devices is requ'ired by the firmware if boot from floppy disk is desired. In 
addition, the DMA EOB (end of block signal) and the floppy controller chip 
signal, DINTR, must be interfaced to address FC18 at bit positions 5 and 4 
respectively. The floppy - DMA interface at this address FC30 and the signals 
at FC18 are not required if boot from ROM is implemented. Chip set users must 
imple~ent these addresses using external logic. 
Interrupts generated by external devices are handled by the Pascal firmware using 
the addresses FC40 and FC60. A hardware interrupt signal generated by a peripheral 
device causes the firmware to access address FC40. The write to FC40 is used to 
latch the interrupt encoder so the interrupt address doesn't change while it is 
being read. Refer to Table 5-3 in the MicroEngine Hardware Manual for the mapping 
of devices to interrupt vector addresses. Also refer to the MicroEngine schematics 
for details of an example hardware interface to the Western Digital Pascal processor. 
As a part of the interrupt sequence, the firmware executes an instruction that 
raises lACK, the interrupt acknowledge signal in the firmware. This instruction 
that raises lACK also must present an address on the bus. The firmware uses FC60 
as this address. FC60;s basically a dummy address that must be reserved. The 
lACK signal causes external lo~ic to gate the interrupt vector address generated _ 
by the encoder to nr~sent this interrupt vector address on the bus. 
The interrupt vector address contains a poi~ter to a software semaphore 
attached to the vector arl1ress. The firmware then executes the P-code 
operator, SIGNAL, using the interrupt vector address as a parameter and 
signals this semaphore. A software 1/0 driver would WAIT for this sema
phore to be signaled in order to proceed. 

23 

.... -- ----- "*"'"";~1?~ 



Interfacing to the MicroEngine Parallel Port 

The MicroEngine includes a standard 8255 programmable 
peripheral interface chip which is memory-mapped into 
consecutive word addresses beginning at FC70. An 8255 has four 
8-bit registers which appear on the data bus as the low-order 8 
bits of the data at the four addresses starting at FC70: Port A 
is FC70, Port B is FC71, Port C is FC72 and the control 
register (write-only) is FC73. These four consecuti ve addresses 
are declared in a Pascal record and bit patterns are deposited 
in (or read from) the low-order 8-bits of each address by means 
of two Pascal variant records. 

In order to refer to the absolute memory address of the 
8255 registers, a variant record is declared to contain either 
an INTEGER or a pointer to a data-type which maps the register 
names to the 8255 registers, depending on the field referred 
to: 

VAR 
paraltrix: RECORD CASE BOOLEAN OF 

true: (pdevadd: INTEGER); 
false: (parallel: paralrec); 

END; 

The pointer is made to point to the correct area of memory 
by Rssigning the starting address, -912 (-912 Signed decimal = 
FC70 hex), to the field "paraltrix.pdevadd". 

ThE~ data type which is pointed to is declared as four 
consecutive words of memory: 

TYPE 
paralrec RECORD 

porta statcmdrec 
portb statcmdrec 
portc statcmdrec 
pcontrol : INTEGER 

END; 

Each of the first three of these words (pcontrol is the control 
register which is write-only) is in turn declared in the second 
variant record in such a way as to be either an INTEGER or a 
series of eight individual bits depending on the field referred 
to in a Pascal statement: 

'!f.TYPE 
statcmdrec: RECORD CASE BOOLEAN OF 

true: (command: INTEGER); 
false: (status: PACKAGED ARRAY[0 .. 7] OF BOOLEAN); 

END; 

24 

, ..... ...t.:",:-~_._", __ • ~ .... ~ 

f1 

I 
I 
! 
i 
! en t 

i 

'0 

e 

Q 

"',00-- .... ,;..., -.:." • -~~.,~'..,;.io.'~:....~:. ..... .,," .-,,,_. -"-""-_._,, ,,--_ . 

\Yith these three declarations and the assignment of the 
absolute memory address to paraltrix.pdevadd,the individual 8255 
registers can be accessed by the names of the nested records. 
For example, the refer to port A as an integer, the name 
paraltrix.parallel.porta.command is used; to refer to the least 
significant bit of port A, the name paraltrix.parallel.porta 
.status [0] is used. Note that a packed array of booleans has 
been im- plemented in exactly the way in which a systems 
programmer thinks: .status [0] corresponds to the least 
significant bit of the integer .command or, from a hardware 
point-of-view, 'bit 0.' The names of the first two of the nested 
records can be put in a WITH statement and thereafter will be 
impHcit: viz., "WITH paraltrix, parallel DO BEGIN •..••• END." 

The 8255 is confi gured on the Mi croEngine board with Port A 
as a buffered input port, with Port B as a buffered output port 
and with Port C as two input lines and six output lines; only 
four of the output lines of Port C are brought out to the J3 37-
pin connector. Only a few of the possible ways of programming 
the 8255 will be consistent with this hardware configuration. 
In particular, mode 2 which configures Port A as a bi
directional 8-bit data bus cannot be used on the MicroEngine 
board. 

The simplest use of the parallel interface is referred to 
as mode O. When programmed to mode 0, Port A is an unlatched 
input port whose data will continuously follow the logic level 
presented to the assigned pins on the J3 connector and Port B 
is a latched output port whose assigned pins on the J3 
connector will reflect the data last transferred to Port B. 

The attached program uses these declarations to program t~e 
8255 and to exercise Port B as an output port. Because the 
MicroEngine data bus is inverted as seen by the 8255, the bit 
pattern to be deposited in the control register (pcontrol) must 
be inverted before being converted to the signed decimal value 
which is assigned to paraltrix.parallel.pcontrol. Conversion 
routines are provided for going between binary and signed 
decimal in either direction but the inversion is not done within 
the program. 

[The MicroEngine Manual specifies that the operating system 
programs the parallel port control register using the pattern 
0110 011x and states that the result is that which would be 
obtained, according to the specifications given in the manual, 
with the pattern 1001 100x. The discrepancy is due to the 
inversion of the data bus in relation to the 8255. In fact, the 
operating system programs the parallel port control register 
with the pattern 0110 1111 which sets Port A to unlatched input 
and Port Band C to latched output. The difference is in bit 3 
which controls the direction of the 4 high order bits of Port 
C.] 

25 

tAl 

- •• ----'~- ... w .. -·---,,-""-~·~-~~~t···4if. :~~ .(~~ 



m 

The alternative to the mode a operation programmed by the 
operating system is called mode 1. In mode 1: 

Port A i8 a strobed, latched input port with control signals of: 

RTBA- (STroBe A): an input signal to strobe data into the port; 

IBFA (Input Buffer Full A): an output signal to acknowledge to the 
peripheral that the data has been latched; and 

INTRA (INTerrupt Request A): an output to interrupt the CPU when data 
has been latched: becomes' acti ve (high) when the STBA- has gone in
active (high), IBFA io active and the interrupt enable flip-flop 
(controlled by bit set/reset of PC4) is set (high). 

Port B is a strobed, latched output port with control signals of: 

OBFB - (Output Buffer Full B): an output signal informing the 
peripheral that data is available; reset when ACKB - becomes active 
(low). 

ACKB - ACKnowledge B): an input signal from the peripheral sent when 
the data has been accepted. 

INTRB (INTerrupt Request B): an output signal to interrupt the CPU when 
data has been accepted by the peripheral: goes active (high) when ACKB -
is n0 longer active (high), OBFB - is no longer active (high) and the 
interrupt enable flip-flop (controlled by bit set/reset of PC2) is set 
(high). 

The two remaining bits of Port C (PC6 and PC7) must be 
programmed as output to match the hardware buffers. These two 
bits can be used for output only by means of the bit set/reset 
function (a write into the control register) and not by writing 
directly to Port C. 

The control register patterns for mode 1 operation are: 

For mode 1 on Port A (input) but mode 0 on Port B (output): 1011 0000 
(inverted = 0100 1111 = -177) in which case lower Port C will be de
fined as output and OBFB - (PC1) will be available as an output signal 
in addition to PC6 and PC7. PC3, PC4 and PC5 are control signals for 
Port A in mode 1; PC2 is disabled because it is buffered as an input 
signal and PCO is not available at the J3 connector. 

For mode a on Port A (input) but mode 1 on Port B (output): 1001 0100 
(~nverted = 0110 1011 = -149) in which case upper Port C will be de-
1ined as output and IBFA (PCS) will be available as an output signal 
in addition to PC6 and PC7 (each usable only by means of the bit 
set/reset function). PCO, PCl and PC2 are control signals for Port B 
in mode 1 and PC3 is not available at the J3 connector. 

26 

ff) 

&\\ Vii 

t 

1) 

e 

e 

11(.:. • ".'. ·1 ( • 
... ~ ...... _ ... ~." ___ Io; .... _'-~. • ___ ._~. __ , •• :.-:..._._. _ •• ..-....i.-.-~ .. 

For mode 1 on both Ports A and B: 1011 0100 (inverted = 0100 1011=-181) 
in which case PC6 and PC7 will be available for output using the bit 
set/reset function. The other bits of Port C are control signals for 
Ports A and B in mode 1. 

The output signals of Port Band PC1, PC5, PC6 and PC7 are buffered 
using a 741S136 exclusive-OR gate which is an open collector device 
requiring a pull-up resistor of 1K ohms at the device end of the 
connecting cable. 

27 

~ 



{$U-} 

**************************************************************** 

Copyright (c) 1979 Regents of the University of California. 
Permission to copy or distribute this software or documen
tation in hard or soft copy granted only by written license 
obtained from the Institute for Information Systems. 

**************************************************************** 

program pascalsystem; 

********************************************** 

WESTERN DIGITAL CORPORATION 

UCSD PASCAL OPERATING SYSTEM GLOBALS 

RELEASE LEVEL: III.0 

********************************************** 

const 

"1:, 

28 

} 
} 
} 
} 
} 
} 
} 
} 

-""_~;~"",,,,,,",,;~, ... j~,;i:»~~;.:.·,,~~~~:,,I,.,~ , .... ,~ ,,,, •• J .. __ ,~,.>, •• ' ,.""' .• ~ ....... " '.,,', ""'AA'...i_~":";"''''''''u,"-'; , • ..:...; •• ,_, •. u"';..~_· _~_~'.."""';'_';;'~'''''''''_'''''A.;._",._ .. _, __ ........... .:.....-'~..:.._ .• _II., _i.~. • 

~ 0 

TYPE 

ft) e 

t. fit 

mmaxint 32767; 
maxdir 77; 
vidleng 7; 
tidleng 15 ; 
maxseg 15 ; 
fblksize 512; 
dirblk 2; 
agelimit 300; 
eol 13 ; 
dIe 16; 
maxretry 10; 

maxq 
maxqp1 
(* 

79; 
80; 

maximum integer value I 
max number of ent~ies in a directory 
number of chars in a volume id I 
number of chars in title id I 
max code segment number } 
standard disk block len~th I 
disk addr of directory I 
max age for gdirp .•• in ticks (5 seconds) I 
end-of-line ••. ASCII cr } 
blank compression code J 
retry count for disk drivers 

type-ahead queue index limit 
type-ahead queue length } 

minremqavail 30; Send Xoff when q down to this avail 
Send Xon when q back to this avail remumeqa vail 

*) 
80; 

hiiopriority 250 kbddriver (serial in) processes I 
disk in/out, parallel out, serial out 
enabler process for kbddrivers } 

midiopriority 245 
lowiopriority 240 

iorsltwd 

cmdstate 

sysfile 

daterec 

(inoerror,ibadblock, ibadunit, ibadmode, itimeout, 
ilostunit,ilostfile,ibadtitle,inoroom,inounit, 
inofile, idupfile, inotclosed, inotopen, ibadforIDa.t, 
istrgovfl); 

{ COMMAND STATES •.• SEE GETCMD } 

(haltinit,debugcall, 
uprognou,uproguok,sysprog, 
componly,compandgo,compdebug, 
linkandgo,linkdebug); 

{ CODE FILES USED IN GETCMD I 

(assmbler,compiler,editor,filer,linker); 

packed record 
month: 0 •• 12; 
day: O •. 31 ; 
yea r : 0 •. 1 00 

end { DATEREC } 

I ARCHIVAL INFO ••• THE DATE 

o IMPLIES DATE NOT MEANINGFUL 
DAY OF MONTH } 
100 IS TEMP DISK FLAG 

! VOLUME TABLES 
unitnum = O .• maxunit; 
vid ~ string[vidleng]; 

dirrange = O •. maxdir· 
tid = st!'ing[tidlengj; 

! DISK DIRECTORIES } 

29 

~ 

-~~~~~ 



filekind 

direntry 

(untypedfile, xdskfile, codefile, textfile, infofile, 
datafile, graffile, fotofile, securedir); 

record 
dfirstblk: integer; I FIRST PHYSICAL DISK ADDR I 
dlastblk: integer; {POINTS AT BLOCK FOLLOWING } 
case dfkind: filekind of 

secu::-edir, 
untypedfile: { ONLY IN DIR O] ••• VOLUME INFO I 

(dvid: vid; NAME OF DISK VOLUME 
deovblk: integer; LASTBLK OF VOLUME } 
dnumfiles: dirrange; NUM FILES IN DIR } 
dloadtime: integer; TIME OF LAST ACCESS 
dlastboot: daterec); MOST RECENT DATE SETTING 

xdskfile,codefile,textfile,infofile, 
datafile,graffile,fotofile: 

(dtid: tid; 
dlastbyte: 1 •• fblksize; 
daccess: daterec) 

end I DIRENTRY I ; 

TITLE OF FILE I 
NUM BYTES IN LAST BLOCK } 
LAST MODIFICATION DATE } 

dirp Adirectory; 

directory ~ array [dirrange] of direntry; 

FILE INFORMATION 

closetype = (cnorrual, clock, cpurge, ccrunch); 
windowp = Awindow; 
window = packed array [0 .. 0] of char; 
fibp = Afib ; 

fib 

'1: 

record 
fwindow: windowp; {USER WINDOW ••• F A

, USED BY GET-PUT} 
feof,feoln: boolean; 
fstate: (fjandw,fneedchar,fgotchar); 
frecsize: integer; {IN BYTES ..• O=>BLOCKFILE, l=>CHARFILE 
case fisopen: boolean of 

true: (fisblkd: boolean; FILE IS ON BLOCK DEVICE I 

end t FIB I 

funit: unitnum; PHYSICAL UNIT # I 
fvid: vid; VOLUME NAME I 
freptcnt, # TIMES FA VALID wlo GET 
fnxtblk, NEXT REL BLOCK TO 10 I 
fmaxblk: integer; MAX REL BLOCK ACCESSED } 
fmodified:boolean; SET NEW DATE IN CLOSE I 
fheader: direntry; COPY OF DISK DIR ENTRY I 
flock : semaphore; File access lock. J 
case fsoftbuf: boolean of { DISK GET-PUT STUFF 

true: (fnxtbyte,fmaxbyte: integer; 
fbufchngd: boolean; 
fbuffer: packed array [O •• fblksize] of char» 

! USER WORKFILE STUFF } 

inforec record 

30 
•• ___ ~_~ M •••• ___ ~ •• __ '. _ ~ __ ., ••• ___ • " ' •• 

~ 

t) 

w, 

~ W 

crt 

" 

symfibp,codefibp: fibp; 
errsym,errblk,errnum: integer; 
slowterm,stupid: boolean; 
altmode: char; 
gotsym,gotcode: boolean; 
workvid,symvid,codevid: vidj 
worktid,symtid,codetid: tid; 

end ! INFOREC } ; 

WORKFILES FOR SCRATCH } 
ERROR STUFF IN EDIT } 
STUDENT PROGRAMMER ID!! } 
WASHOUT CHAR FOR COMPILER I 
TITLES ARE MEANINGFUL } 
PERM&CUR WORKFILE VOLUMES } 
PERM&CUR WORKFILES TITLE } 

declarations supporting idsearch I treesearch intrinsics -
compiler using idsearch will have set up rw table with correct 
len for rwinfo, and have set syscomA.rwtable to point to it. 

alpha ~ ~acked array [0 •• 7] of char; 
trsnodep = trsnode; { symbol table node declaration 
trsnode record t -- used by treesearch } 

idsinfo 

rwtblrec 

syscomrec 

key alpha; 
rlink trsnodep; 
llink trsnodep; 

end; 
record idsearch returns results via this 

"pseudo record". compiler must 
declare vars in this order and 
pass its symcursor to idsearch. 

symcursor 
sy 

O • • 1023 
integer 
integer 
alpha; 

op 
id 

end; 
record 

rwindex 
rwinfo 

array f'A' •. '[I] of integer; 
array 0 •. 0] of 

end 

record 
id 
sy 
op 

end; 
I rwtblrec} ; 

alpha; 
integer; 
integer; 

SYSTEM COf1MUNICATION AREA 
SEE INTERPRETERS .•. NOTE 
THAT WE ASSUME BACKWARD 
FIELD ALLOCATION IS DONE 

record 

sysunit: unitnum; PHYSICAL UNIT OF BOOTLOAD } 
unused: array [0 .. 11 of integer; { 2 spare words. } 

rwtable: Arwtblrec; reserved word table for treesearch 
gdirp: dirp; GLOBAL DIR POINTER,SEE VOLSEARCH I 
diskinfo: packed record 

dseekrate: integer I STEP RATE FOR DISK DRIVE} 
dreadrate: integer DISK READ COMMAND} 
dwriterate: intege ; DISK WRITE COMMAND} 

end; 
auxinfo: pa.cked record 

baudrates: 
{ 5 words total } 

:packed array [0 •• 7] of 0 •• 15; 
! 2 words indices [0,4] not us~ 

xonoff: packed array lO .. 7] of boolean; 
clockvalue: integer; I tick clock rate } 
menudriven: boolean; I using *system.menu 

end; 
expanstwo: array [0 .. 12] of integer; {spare} 

31 

,.......,-.,.,.... "'*=~-""~"",;~.~ 
" 

\rJ~~'-l 



;·~.¥O:. •••. ~;~~~L":,.,,...4h~ ... J?;~i;..i~:!~ ... ~.~;.t .. ~,~~~\:;;~~~:Jr.dP.l~'"~"-: --.-.. -~ .. --... --~.--~~-, II.T .. A 

miscinforec 

auxcrtinfo: packed record 
verdlaychar: char 

end; 
hightime,lowtime: integer; 
miscinfo: packed record 

nobreak,stupid,slowterm, 
hasxycrt,haslccrt,has85 10a ,hasclock: boolean; 
userkind:(normal, aquiz, booker, pquiz) 

end; 
crttype: integer; 
crtctrl: packed record 

rlf,ndfs,eraseeol,eraseeos,home,escape: char; 
backspace: char; 
fillcount: 0 •• 255; 
clearscreen, clearline: char· 
prefixed: packed array [O •• 8j of boolean 

end; 
crtinfo: packed record 

width,height: integer; 
right,left,down,up: char; 
badch,chardel,stop,break,flush,eof: char; 
altmode,linedel: char; 
backspace,etx,prefix: char; 
prefixed: packed array [0 •• 13J of boolean 

end 
end { SYSCOM }; 

record 
msyscom: syscomrec 

end; 

memlinkp "" Amemlink; 
memlink "" record 

nextavail: memlinkpj 
nwords: integer 

end { memlink } ; 

markp "" Amarknode; 
marknode "" record 

byte 
integerp 
bytear:-ay 
codeseg 

prevmark: markp; 
availlist: memlinkp 

end ! marknode } ; 

O •• 255; 
"integer; 
packed array [O •• OJ of byte; 
record case boolean of 

true: (int: packed array [O •• OJ of integer); 
false: (byt: bytea:-ray); 

end; 

3ilbp == "'sib; 
3ibvec = array [0 •• 0] of sibpj 
3ib "" record { se~ment info block . 

segbase: cOdeSe g;! memory address of seg } 
segleng: integer; # words in segment } 
segrefs: integer; active calls - microcode maintained } 

32 

~ 

-

i/ 

" W 

8 

(If 

segaddr: intege:!"; I absolute disk add:!"ess } 
seguni t;: uni tnum; I physical disk unit} 
prevsp: intege:!"p;l SP saved by getseg for relseg cut back} 

end { sib I ; 

mscwp "" "mscw; 
mscw "" packed record {mark stack control word } 

msstat: mscwp; I lexical parent pointer J 

msdynl: mscwp; ptr to caller's 'mscw } 
msipc: integer; byte index in return code seg } 
msseg: byte; seg # of caller code } 
msflag: b;yte 

end { mscw t ; 

semp "" "semtrix; 
tibp "" "'tib; 
tib "" record { Task Information Block } 

regs: packed record 
waitq: tibp; 
prior: byte; 
flags: byte; 
splow: integerp; 
spupr: integerp; 
sp: integerp; 
mp: mscwp; 
bp: mscwp; 
ipc: integer; 
segb: "'codeseg; 
hangp: semp; 
iorslt : iorsltwd; 
sibs: "'sibvec 

end { R~GS } 
maintask: boolean; 
startmscw: mscwp 

end { TIB } ; 

semtrix record case integer of 
0: (sem: semaphore); 
1: (fakesem: record 

count: 
waitq: 

end) ; 
end { sem 

ports 1 .• maxport; 
cards"" O •• maxcard; 

QUEUE LINK FOR SEMAPHORES 
TASK'S CPU PRIORITY} 
STATE FLAGS ••. NOT DEFINED YET 
LOWER STACK POINTER LIMIT } 
UPPER LIMIT ON STACK J 

ACTUAL TOP-OF-STACK POINTER } 
ACTIVE PROCEDURE MSCW PTR J 
BASE ADDRESSING ENVIRONMENT PTR 
BYTE PTR IN CURRENT CODE SEG I 
PTR TO SEG CURRENTLY RUNNING } 
WHICH TASK IS WAITING ON } 
Result of last I/O call. } 
ARRAY OF SIBS FOR 128 •• 255 

integer; outstanding signals.} 
tibp task queue } 

statcmdrec record case boolean of 
true: (command: integer); 
false: (status: packed array[0 •• 7] of boolean); 

end; {for devices that use same reg for stat and cmd 
whole ~ O •• maxint; 
paralrec = record 

porta statcmdrec; 
portb integer; 
portc statcmdrec; 
pcontrol : integer; 

33 

fill 

'. -" -.,.,.---- _.-... '"~'"" ....... , ....... .,...,..~ . ..:~.' ",Cf- ¥.N 



; " ...... ~ ... " .......... ~.w ... w;; ... !~'.;;,.;.·N-'~"'tJ~ :'...;':" ' ... :.i~~~:.',~~-;,,;;;.t!~~~ii.t....J4.i~~ • ...:...>\· .. , ..... ,;~ ..... ~L':'f,~,,~· •. ~~·':::u':.i,.:~i~ '~""'_''''''':'' .. J.;.. ..................... ~ ........ _ .... ;.4.». ........ 1._ ..... : .~ ••• 
........ __ ._._ .... _ ....... ___ . ____ ._......:.... •. . l 

end; 

"floppyrec record 

serialrec 

sercontrol 

lorequest 

fstatcom : statcmdrec; 
t:-ack : integer; 
sector : integer; 
data. : integer; 
fswitch : statcmdrec; 
intprior : integer; 
intbase : integer; 
filler : integer; 
I dma fields } 
dcontrol : integer; 
dstatus : statcmdrec; 
trcountl : integer; 
trcounth : integer; 
bufaddl : integer; 
bufaddh : integer; 
memex integer; 
intid integer 

end; 

record 
data : integer; 
statsyndle : statcmdrec; 
contro12 : integer; 
contro11 : integer; 
filler : integer; 
switch : statcmdrec; 
{ special for single board system } 
I ** do NOT touch these fields in the 
filler2 : array [0 .. 1] of integer; 
switch2 : statcmdrec; 

end; 

record 
readsem, writebell, 
writesem, havch, qlock : semaphore; 
front, rear : integer; 

modular ** } 

chq : packed array [O .• maxqJ of byte; 
serialtrix: record case integer of 

0: (sdevadd: integer); 
1: (serial: "'serialrec); 

end; 
stst: semaphore; 
stwaitno: integer; 
sflag,fflag : boolean; { start/stop, flush} 
wrlock : semtrix; 

end; 

record 
ioready, 
iohavework, 
lodone : semaphore; 
iounit : unitnum; 
iowindowp : windowp; 

34 

Communication link between 
unitread/unitwrite and the 
I/O driver processes. 

e " 

e Cit 

VAH 

til) \1» 

floppyio 

decmax ~ 
longtrix 

memtrix 

devtype 

ioinx, 
iobytes, 
ioflags integer 

end; 

record 
floppylock : semtrix; 
floppysem : semaphore; 
fselect : integer; t reflects unit number } 
fa : windowp; 
fblock, finx, fbytes, fflags, fmode : integer; 
la : windowp; ( ptr to 'local' buffer J 
floppytrix : record case boolean of 

true: (fdevadd : integer); 
false: (floppy: ""floppyrec ); 

end; 
flready, flhaswork : semaphore; 
fstartit : boolean; { a trix flag 

end; 

integer[36]; 
~ record case integer of 

0: (intar array [0 •• 0] 
1: (BCDar racked array 

end llongtr x ; 

~ record case boolean of 
true: (addr: integer)· 
false: (loc: integerp); 

end; 

of integer); 
[0 •• 0] of 0 •. 1 5 ); 

(invalid, blocked, parallel, serial); 

syscom: ""syscomrec; MAGIC PARAM ..• SET UP IN BOOT} 
gfiles: array [0 •• 5J of fibp; GLOBAL FILES, O-INPUT, 1~OUTPUT 
userinfo: inforec; WORK STUFF FOR COMPILER ETC } 
ostibp: tibr; taskinfo block of op sys prog } 
emptyheap: integer; HEAP MARK FOR MEM MANAGING } 
inputfib,outputfib, CONSOLE FILES ..• GFILES ARE COPIES 
systerm,swapfib: fibp; CONTROL AND SWAPSPACE FILES J 

syvid,dkvid: vid; SYSUNIT VOLID & DEFAULT VOLID } 
thedate: daterec; TODAY .•. SET IF FILER OR SIGN ON J 
state: cmdstate; FOR GET COMMAND } 
heapinfo: record {heap management } 

lock: semaphore; 
topmark, 
heaptop: mark~ 

end { heapinfo J ; 
taskinfo: record t stuff for task management } 

lock: semaphore; 
taskdone: semaphore; 
ntasks: integer 

end { taskinfo } ; 
ipot: array [0 .. 4] of integer; 
filler: string[41]; 
digits: set of '0' •• '9'; 

INTEGER POWERS OF TEN } 
NULLS FOR CARRIAGE DELAY 

35 

tfe 



pI: st~ing; 
chainname: st~ing[23]; I chaineI' sets this - length) 0 means 

next getcmd executes chainname } 
unitable: array [unitnum of! 0 NOT USED } 

~eco~d 
uvid: vid; { VOLUME ID FOR UNIT} 
case uisblkd: boolean of 

true: (ueovblk: integer); 
end t unitable } ; 

filename: array [sysfile] of string[23]; 
topofsibs: Ainteger; 
safediskmode : boolean ; 
port: array [ports] of sercontrolj 

........• Variable access by system U- programs ends here •••••••••• } 

paraltrix array [cards] of 
record case boolean of 

true : (~devadd : integer); 
false: (parallel: Aparalrec); 

end; 
flport : array [0 .. ma.xcard] of .floPPYiO; 
parsem : array [ca~ds] of semaphore; 
pariolock : array [cards] of semtrix; 
enabletrix : memtrix; { for enabling interrupts 
is64kmem: boolean; I set by initialize } 
unitvalid: packed array [unitnum] of boolean; 
unittype: a~ray[unitnum] of devtype; 
clockinfo: record 

lock, 
clocksem 
tickrate 

semaphore; 
real; 

end; 
exceptint : semaphore ; 
breaksem : semaphore;' {Signaled by 'kbddriver' on user break. J 
seroutport : array [ports] of iorequest; 
parport : array [cards] of iorequest; 
dirlock : semaphore; 

'1: 

36 

e 

e 

w' 

" 

e 

._. -__ ... _ .. ____ . __ .. _____ .��� . ,,:... ... _ 

DIREClDRY ACCESS ON THE PASCAL MICROENGl'NE 

A diskette is canposed on granules called blocks. Each block contains 512 bytes. A 

single-sided, single-density diskette contains 494 blocks numbered fran Y1 - 493. A 

double-sided, double-density diskette contains 1,976 blocks. 

The directory for a diskette resides on block numbers 2-5 (i.e., it occupies 4 disk blocks: 

If there is a duplicate directory, this resides on blocks 6-9. Arrong other things, the 

directory contains the naIOO of the diskette, the ncuoo of each file on the diskette, 

infonnation concerning the starting and ending block for each file, and the date of 

each file's creation . 

The Pascal declaration for the directory is shown below. It is identical to that shown 

in the operating system globals. 

direntry = record 
dfirstblk: Integer, {FIRST PHYSICAL DISK ADDR~ 
dlastblk: Integer, (POINTS AT BLCCK FOL.t£Wrt-cl 
case dfklnd: filekind of 

securedir, 
untypefile: €ONLY IN DIR on ... VOWME INFOj 

(dvld: vld; 
deovblk.: Integer, fLASTBLK OF VOLlJME} 
dnmnfiles: dlrrange; (NUM FILES IN DIRS 
dloadt:ine: Integer; fUME OF LAST ACCESSS 
dlastboot: daterec); lMJST RECENT DATE SETTING1 

xdskfile,codefile,textfile,Infofile, 
datafile,graffile,fotofile: 

(dtld: tId; 
dlastbyte: 1.. fblksize; (NUM BY'rES IN LAST BLCCKl 

daccess: daterec) (IAST MODIFICA'rION DAm 
end iDIRENTRYj 

dirp = "directory; 

directory = array [dirrange] of direntry; 

The following program fragnent reads the directory from disk drive #4. 

\JAR gdirp: dirp; 

begin 
new (gdirp): 
tlIlitread (4, gdirpA., sizeof (directory), 2); 

fl: 
After' this read fram diskof the directory, the fields in the directory nay be examined. 

" For example, to access the date on the diskette: 

with gdirp [~J. dlast l:xx:>t do 

writeln ('today is', rronth, '/', day' /', year); 

37 


