I:hannel S000

THE INDEPENDENT NEWSLETTER OF THE VICTOR 9000/SIRIUS 1 COMPUTER

VOL. 1NO. 1

January

1983

PREMIER ISSUE

FROM THE EDITOR:

I have been involved in microprocessor hardware
and software design for over 12 years as an
engineer, manager, and consultant. Consequently,
1 have seen many systems of differing shapes,
sizes, and capabilities. Recent years have
brought a proliferation of microcomputer systems
due to the drastic lowering of memory and cpu
prices. While some of these systems have been
quite nice, I had not, until recently, seen one
that enthused me.

The introduction of the IBM/PC last year,
however, sparked my interest. The fact that it
carried the name 'IBM' held promise of more
sophistication and flexibility. Unfortunately,
the IBM/PC turned out not to be what I would call
technologically innovative, although it has
caused a surge in the development of 16-bit
software which is sorely needed.

Then, about six months ago, one of my clients
showed me the Victor 9000. It was not just
another run-of-the-mill micro system. I could
tell by examining the 9000's circuitry and
running the minimal demonstration software that
came with it that considerable thought and design
effort went into its development. It {s
technologically innovative: 600k bytes on one
side of an 80 track 5 1/4" diskette, a 800 by 400
pixel graphics monitor standard, and a codec for
sound and voice. I finally found a system worthy
of enthusiasm.

As I began working with the 9000, converting my
clients programs which had been running on a 64k
280 system, it became clear that there was a
severe lack of availability of technical
information. More disturbing was the apparent
lack of technical knowledge about the 9000 by
Victor personnel. This made it virtually
impossible to adapt the 9000 to our needs because
we needed detailed system information in order to
corwvert the existing Z80 programs to the 9000.

To make a long story short, after about three
months we finally received a very preliminary
copy of the Victor 9000 technical manual (which,
although fairly complete, contained absolutely no
schematics) and a diskette with the CP/M BIOS
program source code on it. The BIOS source was of
limited use because it is all written in Intel

assembly language and PL/M and cannot be compiled
on the 9000 itself. Apparently all the system
software development was done with an Intel
development system, which makes it very difficult
for the average dealer or user to modify the BIOS
program to add such code as special 1/0 drivers.

The delays in obtaining technical information
from Victor is understandable in the light of the
9000 being a new product just in the process of
being released. It is further understandable that
there might be a technical communication gap with
Victor because they did not develop the 9000
themselves. The 9000 was developed by Sirius
Systems Technology, Inc. of Scotts Valley, CA.
Victor has the exclusive marketing rights for the
9000 in the United States while Sirius markets
the 9000 out of the country. .

While Victor is making a good effort at
organizing their efforts in bringing the 9000 to
the marketplace, there seems to be a definite
need for an independent forum for information
concerning the Victor 9000. Also, Victor does not
appear to desire to become involved in any type
of specialty hardware or software which brings a
great opportunity to those of us who make our
living providing those types of items that the
OEMs don't supply. To do this, however, we need
some method of disseminating the news about what
we are doing. There is also a need for education
about the ins and outs of the 9000 in order that
the capabilities of the 9000 can be more fully
utilized.

All of this brings me to the reason that this
newsletter is being started. I think the Victor
9000 can be a serious (Sirius ??) contender in
the 16-bit microcomputer marketplace, but only
the users and independent dealers can make this
happen, not Victor. (IBM was fully aware of this
as evidenced by the way they chose to market
their Personal Computer.) I, and I am sure
others, have gleened much information concerning
the Victor 9000 that we are willing to share, but
we need a place to share {t. Here is the place.

We plan to keep this newsletter primarily
technical in nature. We do not want a gossip
column. Also, anyone interested is invited to
submit articles for publication. We plan to offer
in each issue of this newsletter the following:

1. The current status of the Victor 9000 product:
the state of the hardware and software, expected
release dates of upcoming products, technical
advisories, etc.

2. News briefs and new product releases for 9000
compatible hardware and software fram independent

suppliers.

3. A tutorial in each issue covering a technical
topic about the 9000. In addition, we will
probably be offering, at reasonable prices,
utility software and hardware that we have
developed relating to the topics presented. We do
not intend that the tutorials be a sales gimmick
to sell products. Instead, we intend that the
products be labor saving conveniences (i.e. we
will offer the source code of a program printed
in the newsletter on diskette).

4. Comments, letters and/or announcements from
dealers, users, user groups, etc., as space
permits,

5. Whatever else deemed of interest to Victor
9000 users.

The subscription rate for Channel 9000 is $30.00
for six issues (approximately one year). We would
like to publish more often than bimonthly, but
given the in-depth coverage we wish to provide
for each issue's tutorial, it may not be
possible.

Finally, let me reiterate my feelings that if the
Victor 9000 is to be a success there must be an
unselfish, open sharing of information and
discussion of ideas concerning the 9000. To that
end this newsletter is dedicated.

James M. Lesher, BEditor

POSTSCRIPT:

As this issue was being prepared, it was
announced that Sirius Systems Technology and
Victor Business Products were being merged into
one company, probably to be called Victor
Incorporated, with Kidde Inc. maintaining a
significant interest. It was also learned that
the management of Sirius would essentially become
the management of the new entity. This appears to
be a giant step toward correcting the problems
mentioned above.

In talking with some Sirius/Victor people, there
seems to be much enthusiasm resulting from this
reorganization move. There is promise of improved
communication and support for dealers and users.
In addition, I have been told that this
newsletter is a welcome aid and that we would be
given whatever help we need in providing
information about the Victor 9000.

J.M.L.

COMMING ATTRACTIONS:

In the next issue of Channel 9000 we will
present a potpourri of useful tips and
information concerning the Victor 9000 hardware
and software.

CHANNEL 9000

9742 Marcus

Lane, Tuj
(213) 352-6443

unga, CA 91042

James M. Lesher, Editor
Subscription rate: $30.00 for 6 issues
Published Bimonthly

KEYBOARD TUTORIAL

This issue's tutorial covers the operation of the
Victor 9000 keyboard.

Victor currently offers three keyboards:
Standard, Word Processing and Programming.
Contrary to what you might think, the differences
between the three keyboards are not the placement
or legending of the keys but just the total number
of keys on the keyboard. The standard keyboard has
91 keys, the word processing keyboard has 97 keys
and the programming keyboard has 99 keys.

I expected the programming keyboard to have the
same key legending and placement as most crt's.
Unfortunately, it is the same as the other two
keyboards except that the number row keys have the
common characters used in programming on the front
faces of the key caps. In order to type these
characters, you must depress the ALT key (what
Victor calls the CONTROL key) while depressing the
key with the desired character on its front face.
This is very inconvenient for someone who for
years has been using a standard crt keyboard.

There are same other minor irritations such as the
shifted and unshifted condition of the square
bracket key being reversed and there being no
separate ESC or LINE-FEED key. Fortunatly, the
keyboard design and BIOS driver software make it
fairly easy to correct these deficiencies, as we
will discuss later. Victor, unlike IBM, evedently
decided that most of the people that would be
using the 9000 would not be familliar with
anything other than a standard typewriter keyboard
layout, but I think that they should provide those
of us that are used to the standard crt keyboard
the option of buying one.

The Victor keyboard is manufactured by Keytronic
Corporation of Spokane, Wa. It is a capacitive
type keyboard and uses an on-board single-chip
microprocessor (an Intel 8051) for scanning the
keys and communicating with the cpu. The keyboard
has a maximum capacity of 104 keys, but as stated
above, the most currently available are 99.

The Victor keyboard i{s different from most
keyboards in that it is what is termed an event
processing keyboard. In other words, it not only
sends a message when a key is depressed, but also
sends a message when that key is released. This

There are two reserved codes used by the keyboard
to indicate special circumstances. The first is FE
hex, which indicates an overflow of the keyboard
event buffer and loss of data, The second is FF
hex, which indicates that the keyboard is dead or
not connected, although is is not clear to me how
the keyboard can send this code to the cpu if it
is dead or not connected.

The event data is sent to the cpu in a bit serial
manner with full handshaking. The 8 bits are sent
LSB first and are followed by a 9th bit which is
always zero (a stop bit). The keyboard uses three
signals for data transmission: a ready (RDY)
signal to the cpu, an acknowledge (ACK) signal
from the cpu, and a signal for the data (DATA).
In the idle state the RDY, ACK, and DATA signals
are all high. To initiate a transmission, the
keyboard sets the DATA signal to the value of the
LSB of the event data and brings the RDY signal
low. At this time, the cpu should sample the DATA
signal and respond by lowering the ACK signal.
The negative transition of the ACK signal tells
the keyboard that a bit has been accepted and
causes the keyboard to raise the RDY signal and
prepare for transmitting the next bit. When the
ACK 1line returns high, the keyboard processor sets
the DATA signal to the value of the next bit and
again sets the RDY signal low. This process
continues until all 9 bits have been sent.

In order to insure that data is sent properly to
the cpu, the keyboard starts a timer counting when
it lowers the RDY singal. If there is no response
from the cpu within 250 milliseconds, the keyboard
raises the RDY signal and restarts the event
transmission from the beginning. This allows for
the cpu to get back into syncronization with the
keyboard if a data bit is missed.

Once the data is recieved by the cpu, the cpu must
somehow determine what function the key event is
to represent. The designers of the 9000 came up
with a very flexible table method for determining
the meaning of each keyboard event. There are two
groups of three tables with 104 entries in each
table (one entry for every possible key on the
keyboard) . The first group of tables are 8-bit
data values or codes corresponding to each key,
while the second group of tables are 16-bit
attribute codes for each key. The three tables in
each group contain the data and attributes for
each key in its unshifted, shifted, and alternate

makes for an extremely flexible keyboard b
all the keys behave exactly alike; mo key has a
restricted function. (For example, it is possible
with this type of keyboard to make any key the
SHIFT key or any key the REPEAT key.)

When a key is depressed or released, the keyboard
microprocessor detects the event and stores the
key number (the keys are not encoded in any
particular manner) and whether it was a closure or
opening. This event and any subsequent events are
saved until they can be send to the cpu. Each
event is represented as an 8-bit number with the

least significant 7 bits being the key number and ~

the most significant bit indicating a key open
(MSB = 0) or key closed (MSB = 1).

state ively. There is also one other table
which is used to store the data for keys that
produce multiple character responses.

ATTRIBUTE TABLES

The attribute tables determine how a key event is
processed. The attribute word for each key is
defined as follows:

Bits Usage
T5-1¢ Type code
13 Auto repeat
12 Local data
11 Caps lock
10 shift lock
9-0 Legend code

=1=

AUTO REPEAT

The auto repeat bit, if set, causes the depressed
key to repeatedly generate its code(s) at a preset
interval as long as the key remains depressed.

LOCAL DATA

The local data bit, if set, causes the data
generated by the key to be sent directly, and
only, to the console output routine. (This bit is
set on keys such as the crt intensity controls.)

CAPS LOCK

The caps lock bit, if set, causes the shifted data
table entry to be used if the keyboard i{s in the
caps lock mode (see below). This bit is meaningful
only in the shifted attribute table.

SHIFT LOCK

The shift lock bit, if set, causes the shifted
data table entry to be used if the keyboard is in
the shift lock mode (see below). This bit is
meaningful only in the shifted attribute table.

LEGEND CODE
The legend code is an as yet unimplimented method
of locating specific keys on the keyboard, for

Dead Key - the special function mode data value
of zero is used for what is termed dead positions,
that is, positions that generate no data (see
below) .

Caps Lock - causes the shifted data table value
to be used for any key with the caps lock atribute
bit set.

shift Lock - causes the shifted data table value
to be used for any key with the shift lock
atribute bit set.

Left Shift Key / Right Shift Key - causes the
shifted data table value to be used.

Alternate - causes the alternate data table value
to be used.

Control - causes any single character data
generated by a key event that is in the range of
hex 40 through hex 7F to be converted to its
corresponding ASCII control character. (There is
currently no key designated for the control
function on the Victor keyboards.)

possibly modifying the data the key prod « A
key that may be in different positions on various
keyboards can be located by giving it a unigue
legend value. A program that wishes to locate the
key searches the attribute tables until it finds
the proper legend code. Once the table position of
the key is determined, the entries for the key may
be interrogated or modified as desired.

TYPE CODE
The type code is the basic determinate of how a
key is processed. There are four possible types:

Code Type

00 Special function

01 Single character data
10 Multiple character data
11 Reserved for future use

The SPECIAL FUNCTION type is used for functions
such as shift or caps lock, and also to generate
single character escape codes. If the data table
entry for a key defined as a special function has
a hex value of 20 or greater, then a two character
sequence is generated consisting of the escape
character (1B hex) and the data table entry. If
the data table entry for the key is less than 20
hex, then the key event is used to activate or
deactivate the following modes depending on
whether the event is a key closure or opening
respectively:

Data value Mode

Dead key

Caps lock
shift lock
Left shift key
Right shift key
Alternate
Control

Repeat

Clear keyboard
Advance line
Advance page
Reserved

—
CWVE®NAUVA WN O

11-31

P - the repetition of the last active
(key still depressed) key event that generated
character data.

Clear Keyboard - causes the flushing of the
cpu's keyboard event buffer and the initializing
of various internal parameters.

Advance Line - is used in conjunction with the
HOLD mode for console output.

Advance Page - is used in conjunction with the
HOLD mode for console output.

Note - Control mode has precidence over alternate
mode which has precidence over shift (or shift
lock) mode. Also, if the alternate mode table
entry is 'dead', then the shift mode table entry
is used. If the shift mode table entry is 'dead',
then the unshifted table entry is used. If the
unshifted table entry is 'dead' then the key event
generates no data

The SINGLE CHARACTER DATA type is used to
generate a single character of data subject to the
above described modes.

If a key event is a MULTIPLE CHARACTER DATA

type, then the data table entry for that event is

used as an index into the multiple character data

table. The first byte pointed to by the index is

the number of characters to be generated by this

event. This byte is followed by the characters
lves.

==

KEYBOARD TABLE GENERATION

The Victor SYSELECT system configuration program
lets the user select one of the predefined
keyboard files supplied by Victor for insertion
into the CP/M or MS-DOS BIOS, A source listing for
one of the files (the Domestic Programming
keyboard) is given in Figure 2. Figure 1 is a
diagram of the full 9000 keyboard including the
keyboard table position for each key. To modify
the function of a key, first find the table entry
number for the key from Figure 1. Next, change the
source file entries to whatever function you wish
for the key. Finally, generate the keyboard object
file by performing the following steps (assume the
file is named VICT03.A86):

A>ASMB6 VICTO03 § SZ PZ

A>GENOMD VICTO03

A>DDT86

-RVICT03.OMD
(After a read, DDOT86 gives the load addresses for
the file. We will use XXX: to indicate the segment
address shown by DDT86.)

~WVICT03.KB, XXX: 80, SFF

Now you can use SYSELECT to include the new
keyboard file in your BIOS.

Here is an example of modifying a keyboard file.
The MS-DOS editor, EDLIN, uses the character
sequence ESC-S to copy one character from the
template to the new line. Suppose we want to have
function key 1 generate the ESC-S sequence under
all conditions (unshifted, shifted, and
alternate). Also, we wish to have the key
auto-repeat.

From Figure 2 we find that special function key 1
is entry one in the keyboard tables. To generate
an ESC followed by a single character, we use the
Special Function Type Code with the data value
being the ASCII code for S (53 hex). We make entry
one in the unshifted data table
D8 S3H
and for entry one in the unshifted attribute data
table
D SPCLAREPEAT
In order to force the unshifted table entries to
be used at all times, we must 'kill' the shifted
and alternate table entries for key one by
entering in the data tables

DB 00H

and for the attribute tables

Dw SPCL

Finally, we assemble the new file as described
above. After assembly, we reboot the 9000 with an
MS-DOS diskette and using RDCPM, we copy the new
keyboard table from the CP/M diskette and use the
MS-DOS version of SYSELECT to incorporate it into
the BIOS.

KEYGEN PROGRAM

Victor has a keyboard modification program called
KEYGEN which may be used to selectively modify
existing keyboard tables. The keys of the keyboard
are identified as above by the entry position in
the keyboard table so that the layout in Figure 1
may be used with KEYGEN also.

KEYGEN is most easily used for making minor
changes to existing keyboard tables. when making
major changes or creating a table fram scratch, it
is probably easier to use the assembly method. I
leave it to the user to decide which i{s more
convenient.

ESCAPE SEQUENCE ALTERATIONS

The console output routine of the BIOS provides a

method of changing the SINGLE CHARACTER DATA value

of any key in the keyboard table in ram. This is

accomplished by a special five character ESCAPE
3

sequence
ESC 4 <mode> <key number> <new data>

The mode character is "1" for unshifted, "2" for
shifted and "3" for the alternate table entry.
The key number character is the table position of
the key to be changed (see Figure 1). New data is
the new byte value to be generated by the key
whenever it is depressed. Changing a key value
forces the key to be a SINGLE CHARACTER DATA,
non-local key regardless of the previous
characteristic of the key. None of the other
attributes of the key are (or can be) changed.

As an example, let us change the the period key
(key number 84) so that it produces a
‘greater-than' symbol (">") in shifted mode. We
can do this from BASIC by executing the following
print statement:

PRINT CHRS (27); "42";CHRS (84); ">"

UTILITY PROGRAMS

For those who wish to do keyboard modifications,
we are offering a diskette which contains the
following:

1. Assembly language text files of the standard
keyboard tables.

2. BASIC program to dump a keyboard table file to
a text file.

3. Program to load a new keyboard table into ram
(CPM & MSDOS) .

4. Program to change keyboard table on system disk
without using SYSELECT (CPM & MSDOS) .

The price of this diskette is $15.00 postpaid.

California residents please add 6.5% sales tax
($15.98).

=

L]
38
I%IE

B=gpf

TEEE

Figure 1. Keyboard / Entry Number Diagram.

‘ -

ok o ALl i sshift mode
1 header information used by ?
; SYSELECT configuration program] i i
H f] ; key data table - unshifted mode ’
org 00h]]
i type of file - K indicates keyboard file D8 0B8H ; 0 - function key 8
i 1 character field D8 081H + 1 - function key 1
'K' D8 082H ;i 2 - function key 2
D8 0834 ; 3 - function key 3
7 file format version number - 1 character D8 0B84H i 4 - function key 4
o' D8 0BSH ; 5 - function key 5
DB 0B6H ; 6 - function key 6
; display classification - 12 characters D8 0B7H 1 7 - function key 7
'VT52 ASCII * D8 088H i 8 - no key
D8 0894 ; 9 - function key 9
; name of keyboard type - 8 characters D8 OBAH ; 10 - function key 10
; displayed as part of banner at boot time D8 048H s 11 - - clear/home
a ‘Domestic’ D8 025 : 12~
D8 031H ; 13-
; space filler - 1 character D8 0324]
da 0 D8 0331 |
D8 034H i
; keyboard version number - 3 characters B 0354 3
; displayed as part of banner at boot time D8 036H]
d ‘o3 ' D8 0371]
D8 038H 1
; space filler - 1 character D8 03%) A-
. 0 D8 0306 ¢ 2-
D8 020 ;7 23 -
; comment - 35 characters D8 03D 7 24 -
db ‘703 . 8 008H 1 5~
db 'Victor Programming . D8 0BBH ;7 26 -
db $ 9 8 07FH 3 A -
D8 03DH ; 28 -
; origin of file - 16 characters D8 0254 3 -
a 'Victor BEng . D8 02FH ;3 -
D8 02Ad § A=
; date of file - 8 characters D8 0BDH] R~
d '82/04/23" s :] 0096 T B~
D8 071H 3 M-
;3 lemgth - 4 characters D8 07 ; 3B~
db £ 10 D8 0658 3 % -
2] o7 : 37 -
; 1 D8 074H ; 38 -
; actual keyboard tables begin F) D8 0798 3 39 -
i 7 D8 0754 ; 40 -
RG 80H D8 069H ; 4 -
DB 06FH ; 42 -
; table length data required by bios D8 o704 ; Q-
; bootstrap loader DB 03CH i 44 - <" (1/2 1/4 key)
D8 050DH ; 45-"')"
DW ENDKBD-OFFSET $-2;length of D8 0008 ; 46 -
;keyboard object data D8 OBEH ; 4 -
DwW 0 ;reserved location D8 0BFH ; 48 -
D8 037H 3 O -
; attribute flag definitions DB 038H ; 50~
D8 0394 s S1-
SPCL EQU 0000H ;special function D8 02DH ; S2 -
SGL EQU 40000 ;single character data D8 o708 8-
MULT EQU 8000H ;multiple character data DB 002H 3 S4-
e ;] 061H 7 55~
REPEAT EQU 20008 ;auto repeat this key B 073H 3 56 -
LOCAL EQU 1000H ;send data only to D8 064H s S7-
;display driver D8 066H : B -
CAPS EQU 0800OH ;key affected by DB 067H ;] 9 -
;caps lock mode DB 068H ; 60 -
SHIFT EQ 0400H ;key affected by 2 2] O06AH 3 61 -

Figure 2. VICT03.A86 listing.
-5

D8 068H s 62~ 'k’

D8 06CH ; 63 -1'1

o ;) 0384 ; 64~ "3

D8 027H ;5 65 - ''*

D8 000H ;1 66 - no key

D8 OE4H 3 67 - word left

DB OESH ; 68 - word right

D8 034H ; 69 - ‘4’

D8 035H s 70-"°5"

DB 036H i N -6

DB 028H ;] =

DB 030H ; 73 - undl

D8 003H ; 74 - left shift

DB 000H ; 75 - no key

D8 07AH 1 %~z

DB 078H p T -"x

DB 0634 ; M®-"'c'

D8 076H 1 P

D8 062H ; 80-"'b'

DB 06EH ; 8l -'n'

D8 060H ; 82-'m'

08 02CH ; 83-"*,

D8 02EH ; 84-1".

DB 02FH ; 8 -"*'/

D8 004 ; 86 - right shift

D8 00DH ;3 87 - return

D8 041H ; 88 - 'A' up arrow

D8 042H ;3 89 - 'B' down arrow

D8 0314 ; 9% -"'1°

08 032H 3 9l= 020

D8 0334 3 92-1'3

D8 00DH ; 93 - enter

D8 007H ; 94 - repeat

DB 005H ; 95 - alt

DB 020H ; 96 - ' ' (space bar)

DB 013H ; 97 - pause/cont

DB 044H ; 98 - 'D' left arrow

DB 043H ; 99 - 'C' right arrow

D8 0308 ; 100 - '0'

s 3] 000H ; 101 - double/triple zero

DB 02EH 3 102 %5t

D8 000H ; 103 - no key
i i
; key data table - shifted mode F
i i

o) OC8H 3 0

DB OC1H : 1

B oc2H g 2

D8 O0C3H i 3

DB 0C4H ;4

s) OC5H y 3

DB OC6H 3 6

DB OCTH 3

D8 0C8H 3 8

D8 0C9H * 9

DB OCAH 3 10

D8 045H § 11= 2

D8 060H 3 12T

D8 021H ¥ 13-4

D8 040H 3 M-

D8 0234 s 15—

DB 024H ; 16 - 'S

DB 025H 3 17=°%

D8 020H ; 18-"'"

D8 026H 3 19 - ‘&

D8 02AH ; 2-'"

Pigure 2, continued

CEE R

028H

000H
000H
000H
OCDH
000H
051H
057H
0454
052H
054H
059H
055H
049H
04FH

03EH
000d
OCEH

000H

-t S % e Ne %4 %e Se Me Se S e e Se e %o % e e e N S e S e S %6 S5 S e e e S0 %6 %6 %o % Se S S % Se % e e S e Se e e W e Se S S e e e e S e S e W we ow

2R R R e8I IdIA N EIN NSRRI RRL LSS E AR RO EBYRBRE L ERRNRRREN

R A B TR I

o

N
1
PR R AR R R BC OO 0B BBRRRR NN RRRRBEERILEEBBR8RILRERREEES

BE8380552238553800032028888003ER0000TRE2REEE5850R0E58088

RRRR R R R R R R R R R R R R R R R R AR R RRRRARRARRARRRARRARARRRRARRARRRARRRRR

i
i

unshifted mode

attribute data table

oOMNMenY

P

SGL+100H
SGL+100H
SGL+100H
SGL+1006
SGL+100H
SGL+1006

EEEEEER

£ ;
u AEREEZTEEWNS EEET

SRASRIFER wwommm m S=NOTnNY oS ANnTnYERRIANN Esﬂmnmnnﬁuﬁxﬂnnwuuuuﬁwn

0 e o T v s o S s s e e o o 55 4 o 55 e o i 40l B b o S T o T AL o S| B o i ot B £ s e

]

R EHEEHE I P EEE R P FE R R L
2

RERRRERRBRRRBRRR _m RRRRRRRRRRRRARRARRRARRARRRRRARRARRRARRRRARRARRRARRRA
>
g

Figure 2, continued

i

Y Y Y Y Y Y P Y P P PPV PP PP PP VY VP PP PP P PP PP PP PP PP PP PP PP PP Y P RFFY

SGL+100H

8GL

BGL

SGL

SPCL+100H
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL4+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+1006

8GL

SGL+REPEAT

SGL+100H

SGL+100H

SGL+100H

SGL+100H

SGL+100H

SGL+100H
SGL+REPEATHCAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGL+REPEAT4CAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT

SPCL

SGL

SGL

SGL+100H

SGL+100H

SGL+1006

SGL+100H

SPCL+100H

SPCL+200H
SGL+REPEAT+CAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT

SGL+1008
SGL+100H
SGL+100H
SGL+100H
SPCL+1006
SPCL+200H

Figure 2, continued

S0 e M e G e %0 TH N SE Ne Se e SE Ne TE Ne Se %o SE N0 T NS4 N %6 N e e S me Ne Ne Se Ne %e %e SH Ne %6 %e W we Se we e % S0 e e % e e Se w6 ve ve v e we Ve we e we v .

EEEEEEENNENEEEEEERREREEE R

SPCL
SGL+REPEAT+CAPS+SHIFT
SGL+REPEATHCAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGLAREPEATCAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGL+REPEAT4CAPS+SHIFT
SGL+REPEAT+CAPS+SHIFT
SGLAREPEAT+SHIFT
SGL+REPEAT+SHIFT
SGL+REPEAT+SHIFT
SPCL+200H
SGL+CAPS+SHIFT+100H
SPCL+REPEAT+100H
SPCL+REPEAT+100H
SGL+100H

SGL+100H

SGL+100H4

SGL+100H

SPCL+200H

SPCLA200H
SGL+REPEAT+CAPS+SHIFT
SGL+100H
SPCL+REPEAT+100H

e S Se %0 G Se Ne Te %e Te S0 N6 %6 T %e T N Se W e me e % %o S S we e e

attribute data table - shifted mode

EEEFEEFFREEERRREEEREREEEEEEEERERE

HRBRRRARAAS

(2]
§
[=3
=

e % e ne %e me e e e %o S e Seome Se e N6 M N N S e e me S omk S N S N S oae S e

VCONOAN A WN O

Dw SGL+REPEAT+CAPS+SHIFT 1 M Dw SPCL 1 102
DW SGL4REPEATHCAPS+SHIFT 1 3 DW SPCL 3 103
Dw SGL+REPEATH+CAPS4SHIFT 7 3%

DW SGLAREPEATHCAPS+SHIFT 3 H

W SGL+REPEAT+CAPS+SHIFT 3 38 ; attribute data table - alternate mode 7
DW SGL+REPEAT+CAPS+SHIFT P I

oW SGL+REPEAT+CAPS+SHIFT 1 40

DW SGL+REPEATHCAPS+SHIFT ; 4l DW SGL H 0
W SGL+REPEAT+CAPS+SHIFT ; 42 DW SGL 1)
Dw SGLHREPEATHCAPS+SHIFT 7 43 Dw SGL 1 2
oW SGLAREPEAT+SHIFT 7 4 Dw SGL H] 3
DW SGL+REPEAT+SHIFT : 45 DW SGL ;i 4
Dw SPCL ; 46 Dw SGL H 5
W SGL ;4@ DW SGL i 6
oW SGL ; 48 oW SGL ;7
Dw SPCL ; 49 DW SGL H 8
W SPCL 3 S0 DW SGL ;9
Dw SPCL y Sl W SGL 3 10
DW SPCL s S2 DW SPCL+LOCAL T
W SPCL+100H 3 53 DW SGL+REPEAT+SHIFT y 12
W SPCL 3 4 W SGL+REPEATHSHIFT : 13
DW SGL+REPEATHCAPS+SHIFT 3 B oW SGLAREPEATHSHIFT 3 14
Dw SGL+REPEAT+CAPS+SHIFT 3 56 W SGLHREPEATHSHIFT s 15
Dw SGL+REPEATHCAPS+SHIFT : 9 W SGL+REPEAT+SHIFT ;3 16
DW SGL+REPEAT+CAPS+SHIFT ; S8 oW SGLAREPEATHSHIFT 3 17
oW SGL+REPEATHCAPS+SHIFT -] DW SGL+REPEAT+SHIFT ; 18
Dw SGLAREPEAT+CAPS+SHIFT ;i 60 DW SGLAREPEATHSHIFT r 19
oW SGL4REPEAT+CAPS+SHIFT ;3 6l oW SGL+REPEAT+SHIFT 7 20
W SGL4REPEAT+CAPS+SHIFT ; 62 bW SGL+REPEATYSHIFT ;2
DW SGL+REPEAT+CAPS+SHIFT ;3 63 . DW SGL+REPEAT4+SHIFT : 22
oW SGL4REPEAT+SHIFT ; 64 W SGLAREPEATHSHIFT 3 23
oW SGL+REPEAT+SHIFT 3 65 DW SGL+REPEAT+SHIFT ;24
oW SPCL ; 66 oW SPCLAREPEAT 7 25
DW SGL ; 67 DW SGL ; 26
DW SGL ; 68 DW SGL+REPEAT 3 27
Dw SPCL : 69 DW SGL ; 28
oW SPCL : 70 DW SPCL 3
W SPCL ;N W SPCL ; 30
W SPCL 3 T2 oW SPCL : N
DW SPCL+100H 1 B3 oW SGL+1006 ; 32
oW SPCL ;74 DW SGL+100H : 33
Dw SPCL 3 15 DW SGL+CAPS+SHIFT ; 34
DW SGL+REPEAT+CAPS+SHIFT ; 716 W SGL+CAPS+SHIFT : 35
oW SGL+REPEAT+CAPS+SHIFT 5 T W SGL+CAPS+SHIFT ; 36
oW SGL+REPEAT+CAPS+SHIFT ; 18 Dw SGLACAPS+SHIFT 3 3
Dw SGL4REPEAT4CAPS+SHIFT 3 M DW SGLACAPS+SHIFT 3 38
DW SGL+REPEAT+CAPS+SHIFT ; 80 DW SGLACAPS+SHIFT 3 39
oW SGL+REPEAT+CAPS+SHIFT ; 8l DW SGL+CAPS+SHIFT ; 40
oW SGL+REPEAT+CAPS+SHIFT ; 82 W SGL+CAPS+SHIFT ;4
Dw SPCLAREPEAT4SHIFT ; 83 oW SGL+CAPS+SHIFT ;i 42
W SPCLAREPEAT+SHIFT ; 84 W SGLACAPS+SHIFT ; 43
Dw SGL+REPEAT+SHIFT ;3 85 DW SPCL4SHIFT ;M
W SPCL ;i 86 DW SGL+SHIFT ; 45
bW SPCLACAPS+SHIFT ; 87 oW SPCL ; 46
bW SPCL+REPEAT ; 88 DW SGL ; 47
DW SPCLAREPEAT : 89 DW SGL ; 8
DW SPCL 3 9% DW SPCL ;1 9
DW SPCL ;3 9 W SPCL 3 50
W SPCL ; 92 DW SPCL ;3 S1
Dw SPCL 3 B3 oW SPCL 3 52
oW SPCL ;i % oW SGL 3 S3
W SPCL i 95 W SPCL 3 54
Dw SPCL+REPEAT+CAPS+SHIFT : 96 DW SGL4CAPS+SHIFT 3 55
DW SGL+100H i3 N oW SGL+CAPS+SHIFT 3 56
W SPCL+REPEAT ; 98 DW SGL+CAPS+SHIFT ;1 57
DW SPCLAREPEAT 3 99 DW SGL+CAPS+SHIFT i S8
oW SPCL 3 100 DW SGLACAPS+SHIFT -]
Dw SPCL 3 101 oW SGL+CAPS+SHIFT ;3 60

Figure 2, continued

. -5-

bR N RN EEEEEEEEE

MULT+LOCAL+100H
MULT+LOCAL+100d
SPCL
MULT
SPCL
SPCL

TN SE e SE N e %e e me S one Se Ne %e e %e me Se me e M e % e e S me e Se S e e we Se ae % ve e e S e S

H
;3 multiple key data tables

3 this table has a length of 256 bytes

MKTBL

MKO

MK3

MK4

MKS

g B8 82 B3 BZ BE &

OFFSET $

OFFSET $-MKTBL
2,'00"

OFFSET $-MKTBL
3,01BH, "xA'

OFFSET $-MKTBL
3,01BH,'yA'

OFFSET $-MKTBL
3,01BH, "' xB"

OFFSET $-MKTBL
3,01BH, 'yB*

OFFSET $-MKTBL

Figure 2, continued

jdouble zero

DB 3,01BH, ' xC*
MK6 EQU OFFSET

DB 3,01BH,'yC’
MK7 EQU OFFSET $-MKTBL

D8 3,'000'

jtriple zero

; allocate remainder of table (unused)

RB 255~ (OFFSET $-MKTBL)

D8 0

jgenomd kludge

)
3+ end of keyboard file
1

ENDKBD EQU OFFSET $

VOL. 1NO. 2

I:hannel S000

THE INDEPENDENT NEWSLETTER OF THE VICTOR 9000/SIRIUS 1 COMPUTER

March

1983

From the Editor:

Thanks! The response to our premier issue has been
truly gratifying. We have received much
encouragement and many offers of support from
dealers and users as well as the people at Victor
Technologies. We plan to enhance our efforts to
provide as much as we can, of needed and timely
information. This issue's tutorial, "The In's and
Out's of I/0%, is in fact due to requests from our
subscribers for information on this subject.

I also want to reiterate my statement in our first
issue, that we desire this newsletter to be a
two-way communication channel. We are very
interested in hearing about what Victor dealers
and users are doing with the 9000. The more solid
information we have as to what is happening with
9000 hardware and software, the more successful we
all can be.

Dateline: Scotts Valley

I had an opportunity, in Pebruary, to pay a brief
visit to Victor Technologies' offices in Scotts
Valley, California. what a beehive of activity.
when I arrived, it took me five minutes just to
find a parking spot. Scotts Valley is a small
resort town in the mountains between San Jose and
Santa Cruz, and I was amazed at all the activity.

In assuming the duties of support and marketing,
as well as those of manufacturing, Victor, in
Scotts Valley, has undergone a very rapid
expansion. They have expanded into three
buildings, and are currently constructing more
space. While all of this cannot help but be
somewhat disruptive, Victor has planned ahead for
it and appears to be keeping close pace.

The Victor philosophy seems to be to do as much as
possible with as few people as possible. This is
meant to insure good intra—company communication
and avoid the bureaucratic quagmire. While this is
a desirable goal, I am sure that it has had some
effect on the delivery of product and the
dispensing of information. However, Victor is
approaching its goal of getting information to its
dealers in a timely manner. The Victor Software
Status binder (which is hot off the press) is an
example of their strategy. This binder, along with
its monthly updates, will keep dealers current on
the status of Victor software products.

The districts are proceeding as rapidly as
possible to staff their local technical support
positions. This problem is largely one of finding

qualified people (we all know how difficult that
is). Prospective applicants are brought to Scotts
Valley for extensive interviewing, after which a
recommendation is made to the district, as to the
applicants qualifications. Again, the plan is
sound, but takes time.

In order to maintain the future competence of
dealers and staff in the face of rapidly changing
technology and applications, Victor will
establish, this year, a training institute located
in san Louis Obispo, California. The idea is to
provide a way to keep staff, dealers, and possibly
users, and third party vendors, up to date
technically.

There are also plans to set a "PC conversion®
school. This school will provide third party
software vendors with the necessary training, so
that they can convert programs originally designed
for the IBM/PC, expanding them to fully utilize
the unique features of the Victor 9000.

The 9000 was designed as a “soft" tooled computer,
so that it could meet the varied needs of the
international marketplace. It is Victor's desire
that software, converted or designed to run on the
9000, be apropos for international distribution.
This requires intimate knowledge of the 9000 as
well as foreign computer usage methodologies. It
is the aim of the above schools to provide this
knowledge.

All in all, I was much encouraged by my visit to
Scotts Valley. I was treated as an ally, not an
interloper. There seems to be a genuine
willingness to provide us with whatever
information we feel is needed by our readers. They
realize that we all aspire to the same goal
--success for the Victor 9000.

Vvictor has chosen to bite-the-bullet in the short
term, to insure long term success in its support
areas. This has led to a feeling of abandonment by
some of those not close to the situation. It is
not the case. The work being done by the people at
Scotts Valley will be coming to fruition in the
near future, and I am sure that we will all be
satisfied with the results. Additionally, they
realize that it can never be a go-it-alone
situation. There must always be feedback. This
volition to listen and assist, will only bring us
more quickly to our common goal.

James M. Lesher

Third Party Page

Computer Aided Drafting System

while I was in northern California, I also paid a
visit to the Sun-Flex Company — the people who
make the anti-glare screen for the Victor 9000 as
well as most other CRT's. They are the world's
leading manufacturer of that type of equipment.

The reason I stopped by was to see a
demonstration of the new high resolution graphics
package they have specially designed for use with
the 9000. The package consists of two components.
The first is the TOUCHPEN System. It comprises a
transparent, on-screen digitizing mesh that
replaces the normal anti-glare screen on the
9000's CRT, a pointing stylus equipped with a
replaceable elastomer tip, and a microprocessor
driven, intelligent controller card, that plugs
into one of the 9000's internal expansion slots.
The system works by alternately establishing a
horizontal and vertical electric field across the
surface of the mesh and then measuring the
voltage at the point of contact with the stylus.
The controller uses this measurement to
interpolate an actual X,Y coordinate pair,
compensating automatically for any minor screen
distortions. The controller generates 15 X,Y
pairs per second. The system has the capability
of resolving 8000 points in both the X and Y
directions, more than enough to resolve one pixel
on the screen.

The second component of the graphics package is
AutoCAD, a two-dimensional computer-aided
drafting software package. AutoCAD is a well
proven product originally developed by AutoDesk,
Incorporated, for Z-80 based computers. It acts
like a word-processor for drawings. The user can
make drawings from simple components such as
lines (of any width), circles, arcs, and
solid-filled areas. These drawings can be stored
on disk and in turn may be used as components of
other drawings. This feature gives the AutoCAD
user the ability to create, and then select from,
customized parts libraries of the items most
often used in his drawings. Custom menus can also
be created to further simplify the drawing
process.

AutoCAD also has a full bidirectional zoom
capability, with a ratio of over one million to
one between the largest and smallest objects.
Objects may be aligned to grid boundaries, or
forced to run veritcally or horizontally only. Up
to 127 layers and colors may be used, allowing
selective viewing or plotting of drawings, as if
on transparent overlays. A variety of plotters
are supported. The package requires a Victor 9000
with 256K of ram.

As can probably be surmised, I was very impressed
with the Sun-Flex package. But I haven't

mentioned one of its most impressive points: a
suggested retail price of less than $1800.00. The
price-performance ratio of this product makes it
one of the best.

Sun-Flex plans to provide dealer training and
sales support for the package. More information
can be obtained by writing or calling:

Sun-Flex Company, Inc.
20 Pimentel Court
Novato, CA 94947

(415) 883-1221

Statistics Package

We received information in the mail concerning a
comprehensive statistics package soon to be
available for the Victor 9000 running under
CP/M-86. The program incorporates an interpretive
command processor that allows the user to
interactively perform such procedures as analysis
of variance, chi-square correlations, cross
tabulations, multiple regressions, and more. All
functions can also be performed in batch mode,
making it easy to do repeated analyses on
different data sets. Further information may be
obtained fraom:

Anderson-Bell
5336 S. Crocker St.
Littleton, CO, 80120.
(303) 794-7509

Memory Boards

Computer Technology Innovations, suppliers of
add-on products for the IBM/PC, are now offering
a series of memory expansion boards designed
specifically for the Victor 9000.

VSM-128C 128K Complete memory board
VSM-128X 128K Memory board (expandable to 384K)
VEM-256X 256K Memory board (expandable to 384K)
VSM-384C 384K Complete memory board

Prices for these boards are as follows:

tity: 1 2-10 11-50
VE—IZ% © 315.00 % 265.00
VSM-128X 350..00 325.00 299.00
VaM-256X 650.00 575.00 499.00
VSM-384C 899.00 799.00 699.00

These boards are currently in stock at:

Computer Technology Innovations
1037 North Faircaks Avenue
Sunnyvale, CA 94086
(408) 745-0180

CHANNEL 9000

9742 Marcus Lane, Tujunga, CA 91042
(213) 352-6443
James M. Lesher, Bditor
Subscription rate: $30.00 for 6 issues
Publ ished Bimonthly

In's and Out's of 1/0

The Victor 9000 has a good mix of input/output
ports, providing for a wide range of interface
methods and protocols. In this issues tutorial, we
discuss the basic hardware features and the more
common interface methods. We also discuss some of
the software aspects of the varfous input/output
methods available.

Serial Ports

The 9000's two serial ports are configured at the
connectors as RS232C DTE type circuits. RS232C
refers to a standard published by the Electronic
Industries Association (EIA) relating to the
interconnection of equipment that communicates
serially. DFE stands for Data Terminal Bquipment,
and generally refers to CRT temminals, printers,
and in our case, the Victor 9000. DTE devices are
usually connected to Data Communication Equipment
(DCE), such as modems. To facilitate these
interconnections, the standard defines the
circuits such that a DTE device is connected to a
DCE device by using a cable where there is a
one-to-one correspondence between the pins on
either end.

While the EIA standard does not specify a
particular type of connector to be used for
interconnection, the defacto industry standard has
become what is referred to as a subminiature "D"
type connector. There is no strong conformity
among equipment manufacturers, however, as to the
usage of male or female connectors, or even as to
which devices use DTE or DCE interfaces.

The following table lists the signals and pins for
the 9000's serial port A and B DTE connectors
(shown connected to an arbitrary DCE device) which
conform to the RS232C standard:

DCE Ssi 1

> Protective Ground
> Transmitted Data
Received Data

~
v
dmmﬁun—-l
g
g
®
[

Signal Ground
8 Recvd.Line Signal Det.
15 Xmission Signal Timing
17 Receiver Signal Timing
> 20 Data Terminal Ready
22 Ring Indicator
> 24 Transmit Signal Timing

AAAAANA

RRBO G ovaunawn
~

Multi-Protocol Serial Controller

Serial communication is controlled by a device
called a Multi-Protocol Serial Controller (MPSC).
This device i{s an Intel 8274 or a NEC uPD-7201. It
is beyond the scope of this newsletter (and space
available) to give a complete description of the
MPSC. The interested user is referred to the NEC
and Intel data sheets and application notes. We
will, however, mention a few items which may not
be contained or evident in the data sheets.

The MPSC is mapped into the memory space rather
than the I/0 space of the 8088 processor (as are
all of the 9000's peripheral devices). The
register addresses of the MPSC are as follows:

ister Address
§§n A data £000: 0040
Port B data E000: 0041
Port A command E000:0042
Port B command E000: 0043

Because the interrupt output of the MPSC fis
connected to a 8259A type interrupt controller,
Write Register 2 (WR2) of Port A should be
programmed using the following bit pattern (X's
indicate "don't care" values):

Msb Lsb
X 001 0 X X X

If interrupt operation is used with the MPSC, the
MPSC should be programmed for the
Status-Affects-Vector mode. The interrupt service
routine would then examine Read Register 2 (RR2)
of Port B to determine what MPSC condition caused
the interrupt. After the interrupt is serviced,
the End-of-Interrupt (EOI) command should be
written to the MPSC's Port A command register,
regardless of which port caused the Interrupt.

The interrupt output of the MPSC is connected to
Interrupt Request 1 (IR1) of the 8259A interrupt
controller. (The base address of the 8259A is
E000:0000.) The interrupt vector for IRl is at
address 0000:0104 for MS-DOS, and at address
0000:0044 for CP/M. The IRl vector is currently
not used or initialized by either MS-DOS or CP/M.

Asynchronous Communication

For asynchromnous communication (which is how the
MPSC is configured by the 9000's BIOS on reset),
RS232C connector pins 1 thru 8 and pin 20 are the
pins that are generally used. When ports A and B
are initialized by the BIOS, pin 5 is enabled to
control transmission of data on pin 2, and pin 8
controls reception of data on pin 3. This means
that pin 5 must have a positive voltage on it or
no data will be sent from the 9000 on pin 2.
Likewise, pin 8 must have a positive voltage on it
or no data will be received on pin 3. This allows
relatively slow devices such as printers to
"throttle" the 9000 so that data is not lost.

Auxiliary Signals

Not all of the RS232C signal inputs are available
by reading the MPSC registers. The auxiliary
signals are brought in through I/0 register A on
one of the 6522 VIAs (VIA2). VIA2 is also memory
mapped and has its base address at E800:0040. Its
port A register is at address E800:0041. In
addition to being the source of the auxiliary
signals, two bits of this register are used to
control the selection of the internal or external
baud rate clocks. The bit assigmments for the VIA
port are:

Signal

Serial A Clock Select (0O=internal)
Serial B Clock Select (O=internal)
Port A Ring Indicator

Port A Data Set Ready

Port B Ring Indicator

Port B Data Set Ready

Keyboard Data Input

Vertical Signal Input

w
-
-

slmm&uwn-ol

~1=

Baud Rates

The baud rate clock for the MPSC can be either
internal or external to the 9000. The internal
baud rate clock is an 8253 Programmable Interval
Timer. The external baud rate clocks came fram the
RS232C connectors.

For the internal baud rate clocks, counter 0 of
the 8253 is used for the Port A baud rate clock
and counter 1 is used for the Port B baud rate
clock. The input to counters 0 and 1 is a 1.25 MHz
signal which is divided down by the counters to
give the appropriate clock rate. The 8253 is
programmed for Mode 3 operation (square wave
output). The 8253 registers are memory mapped at
these locations:

Register Address

Counter 0 E000: 0020
Counter 1 E000: 0021
Counter 2 E000: 0022
Mode Word E000: 0023

The divisors for the common baud rates are given
in the following table:

Baud Rate Low Byte High Byte
300 04h Olh
600 82h 00h

1200 41h 00h
2400 21h 00h
4800 10h 00h
9600 08h 00h
19200 04h 00h

To change the baud rate for port A to 9600 baud,
you would execute the following instruction
sequence:

000H ;set 1/0 base address
MOV
MoV

2RX

, OE
+AX
+0020H iset 8253 offset

MOV PTR ES:3(BX],36H ;load ctr 0 mode 3
MOV BYTE PTR ES:0(BX],08H ;least sig. byte
MOV BYTE PTR ES:0(BX],00H ;most sig. byte

23

The external baud rate clocks come from pins 15
and 17 on the RS232C connectors. Pin 15 is
external transmit baud rate clock and pin 17 is
the external receive baud rate clock. These clock
inputs are generally used only with high-speed
synchronous modems.

The switching between internal and external baud
rate clocks is done through the setting of two
output signals of a 6522 VIA, VIA2 (see Auxiliary
Signals). The current state of these bit settings
can be determined by reading the VIA register. For
example, if you wanted to change only port A to
external clocks, you would execute the following
instruction sequence:

MOV AX, OEBOOH ;load 1/0 base address
MOV ES,AX

MOV BX,0041H iload register offset
MOV AL,ES: [BX) ;get current state

OR AL,O0lH ;force bit 0 to 1

MOV ES: [BX] ,AL joutput new state

The above sequence maintains register bit 1l's
previous state. Also, storing to bits that are
programmed as inputs has no effect.

External Parallel Port

The parallel port on the back of the 9000 was
designed to be used as either a Centronics or
1IEEE-488 type port. Since it was probably assumed
that the Centronics usage would be more common,
the connector and pin-out were chosen to conform
directly to that type of interface. For IEEE—488
usage, a special adaptor cable must be used.

The port is controlled primarily by one 6522 VIA
(VIAl, base address E800:0020), with a few signals
going to another 6522 (VIA2). The port signals are
buffered using bus transceivers designed for
IEEE-488 compatibility (75160 & 75161). The
transceivers are wired in such a way that, in the
IEEE-488 mode, the 9000 must be the controller
(and the only controller) on the buss.

The direction of most of the signals on the
connector are controlled by the state of the
VIA2-PB2 output. The table below gives, for each
pin of the connector, the source and direction
with regard to the output of VIAl-PB2. It should
be noted that for a VIA2-PB2 low output, the
direction of pin 15 is controlled by the output of
VIA1-PB3 (pin 35). If the output of VIAl-PB3 is
low, pin 15 is an output, otherwise it is an
input.

VIA2-PB2
Pin L H Signal Source
T T © VIAI-PBO,VIAZCA2
2 I 0 VIAL-PAO
3 I 0 VIAl-PAL
4 I 0 VIAl-PA2
S I O VIAl-PA3
6 I 0 VIAI-PAA
7 1 0O VIAL-PAS
8 I 0 VIAL-PA6
9 I O VIAL-PA7
10 0 I VIAL-PB6,VIAl-CAlL
11 I O VIAl-PBS,VIA2-CA2
12 - - NC
13 0 I VIAl-PB7,VIAl-CA2
14 - - N/Cor QD
15 1/0 0 VIAl-PBl
16 - - GO
17 - - CHASSIS G\D
18 - - NC
19-29 - - GND
30-31 - - N/C
32 - - TIED TO PIN 13
33 - - GD
34 0 0 VIAl-PB2
35 0 0 VIAL-PB3
3 0 O VIAl-PB4

Care should be taken when configuring the port, to
make sure that there are no driver conflicts
between the VIAs and the transceivers. In other
words, if signals are to be changed from outputs
to inputs, change the VIA's direction before
changing the transceivers direction. If signals
are to be changed fram inputs to outputs, change
the transceivers direction first, then change the
VIA's direction.

The connector on the back of the 9000 is what is
termed a ribbon-style connector. This name leads
to a lot of confusion. One usually regards the
word "ribbon" to refer to the flat,

B

multi-conductor cable -- ribbon cable. In this
case, however, the word ribbon refers to the pins
of the connector which are formed from flat
“ribbons" of metal. The confusion reaches its
height when one discovers that there are
ribbon-style connectors made to terminate to
ribbon cable.

Centronics Interface

The Centronics interface, as implemented on the
9000, is a very simple, B-bit, parallel, data
transfer protocol. Essentially, all that is done
to send a byte is to make sure the printer is
on-line and not busy, place the data on the
interface data lines, and strobe the printer. The
BUSY and ON-LINE signals are high true. The DATA
STROBE is a low going pulse.

The current 9000 BIOS programs configure the
VIA-PBO output high and use only the following
pins for data transfer:

Pin Signal
i Data Strobe (Output)

2 Data 1 (LSB)

3 Data 2

4 Data 3

5 Data 4 (All data are outputs)
6 Data 5

7 Data 6

8 Data 7

9 Data 8 (MSB)

11 Printer Busy (Input)
13 Printer On-Line (Input)

IEEE-488 (GPIB) Interface

The operation of IEEE—488 is far too complex to
discuss in the context of this newsletter. We
will, however, discuss some items relating to
Victor's perding release of its IEFE-488 driver.

The interface connector on the back of the 9000 is
not configqured for standard IEEE-488
interconnection. The standard IEEE-488 connector
is a 24 pin, ribbon-style connector. The table
below shows how to wire an adaptor cable to allow
connection of IEEE-488 devices to the 9000. In
addition, pins 18 - 24 on the IEEE-488 connector
should be wired to the GND pins on the Victor 9000
connector .

9000 IEEE-488 Si 1
S il e
2 1 DIO 1
3 2 DIO 2
4 3 DIO 3
5 4 DIO 4
6 13 DIO S
7 14 DIO 6
8 18 DIO 7
9 16 DIO 8

10 7 NRFD

1 10 SRQ

13 8 NDAC
15; S EOI

17 12 SHIELD
34 17 REN

35 11 ATN
36 9 IFC

The IEEE-488 driver will be incorporated into the
BIOS at system generation time, instead of the
Centronics driver. The driver functions will be
controlled by sending the appropriate ESCAPE
sequences to the driver. As mentioned above, the
9000 must be the only controller on the buss, and
will not pass control to any other device.

User Port

The Victor 9000 provides an internal parallel port
accessible through a 50 pin ribbon cable type
connector. The connector is wired to a 6522 VIA
(VIA3) that is memory mapped with a base address
of E800:0080. All of the functions of VIA3 are
available with the exception of Timer 1 and output
PB7, which are used for the CODEC clock (audio
output) . The configuration of the port connector
is given below:

Pin Signal
T SI2vours
3 N

5 +12 VOLTS
7 45 VOLTS
9 NC

d
-
-]

(Codec)

888338332‘68882NBZE’;K‘.S«»:«.«:I

888828388228222828888

While the usual method of attaching to the user
port is by using a ribbon cable and connector, I
have found another way that allows the plugging of
a small circuit board directly into the connector.
AP Products Inc. of Mentor, Ohio, makes a
connector (part number 922576-50) intended to be
used to attach two ribbon cables to one header.
However, this connector can be soldered to a
circuit board and used to connect the circuit
board to the user port. Care must be taken with
the size of the circuit board to insure that it
does not hit the disk unit support bracket
directly over the user port connector. This limits
board height to about 1.9 inches.

I used this method for the design of a board to
connect a daisy-wheel printer with a parallel
interface to the 9000. On a board 1.9 inches high
and 2.7 inches wide, I was able to get four 20-pin
ICs, a resistor pack, a 50 pin ribbon cable
connector, and the AP Products connector.
Designing the interface this way was considerably
less expensive than using an expansion buss board.

3

Device Drivers

Now that we have discussed the hardware aspects of
1/0, is seems appropriate to give attention to the
software aspects, i.e. device drivers. But first
we should define the concept of logical and
physical devices.

A logical device is a generalization of a physical
mechanism that performs a particular function.
Printers, which perform the function of
transferring electronic data to paper, are
commonly reterred to as listing devices. By our
definition, a listing device is a logical device,
since it doesn't refer to a particular type of
printer. A Diablo 630, on the other hand, is a
physical device.

MS-DOS and CP/M define four logical devices that
they directly support. The first is the CONSOLE
device, the principal interactive device for
communication with the operator. Second is the
LIST device, the device to which hard copy output
is usually sent. The last two are the AUXILIARY
INPUT and AUXILIARY OUTPUT devices which are
non-descript input and output devices that are
usually user defined. (An example of an AUXILIARY
OUTPUT device would be a secord printer.)

Hardware independent software running under MS-DOS
or CP/M (meaning software that does not depend on
the specific features of a given computer)
performs all I/0 via these logical devices. The
program does not know, or care, about the actual
source or destination of its communications. The
computer operator connects the desired physical
devices to the computer and then tells the
operating system (MS-DOS or CP/M) which physical
device to associate with each logical device.

However, manufacturers do not know for certain
what make, or even what type, of physical device
will be connected to their computers. Since they
do know what provisions they have made to connect
external devices to their computers, meaning I/0
ports, they have taken to referring to these 1/0
ports as the physical devices, rather than the
mechanisms to which they are attached.

In addition, the software that drives the 1/0
port, the device driver, is considered to be a
part of the physical device. Some manufacturers
provide more than one physical device that all
actually use the same I/0 port, but incorporate
different driver software. This is useful in the
situation, for example, where sometimes a printer
that requires hardware hardshaking is used on a
port, and at other times a printer that requires
software handshaking is attached to the same port.
By changing the logical to physical device
assignment, the software that drives the port is
changed. (This concept is not currently
implemented with MS-DOS or CP/M for the Victor
9000.)

IOBYTE

Each of the four logical devices mentioned above,
can be associated with one of four physical
devices. Not all physical devices can be assigned
to a given logical device. The table below gives
the names of the physical devices that can be
associated with each logical device. Where the

CP/M names differ from the MS-DOS names, the CP/M
names are given in parentheses.

Logical Physical
Device Devices
[Y] TTY CRT BAT UCL
AUXIN (AXI or RDR) TTY PTR URl UR2
AUXOUT (AXO or PUN) TTY PTP UP1 UP2
LsT TTY CRT LPT ULL

The following table describes the physical devices
that are currently implemented on the 9000.

Physical

Device Description

CRT Keyboard input / CRT display output
TTY Serial port A

LPT External parallel port (Centronics)
uLl Serial port B

BAT Input from AUXIN / output to LST

The current state of the logical to physical
device assignments is kept in a byte in system
memory called the IOBYTE. The IOBYTE is divided
into four two-bit fields, one field for each
logical device. The value of a field (0-3)
indicates which physical device is assigned to its
corresponding logical device. The field
definitions are outlined below.

CON (Bits 0,1) AUXIN (Bits 2,3)
0 - TTY _o—g_

1 - CRT 1 - PTR

2 - BAT 2 - W1

3 -ucl 3 - UR2
AUXOUT (Bits 4,5) LST (Bits 6,7)
0 - TTY 0 - TIY

1 - PTP 1 - CRT

2 - uPl 2 - LPT

3 - up2 3-wl

It is possible to examine and set the IOBYTE by
using the STAT utility under CP/M or the SETIO
utility under MS-DOS. It is also possible to
examine and set the IOBYTE from a program by using
one of the following sequences.

; CP/M read IGBYTE into register al

MOV DX,OFFSET P81 ;load parameter offset
MOV CL,S50 ;direct bios call fn
INT 224 ;CP/M bios interrupt

PBl DB 19 ;get IOBYTE function

PB2 DW O ;jCcx register

PB3 D O ;dx register

; CP/M set IOBYTE from register al

MOV AH,0 ;zero upper byte of wd
MOV PB2,AX ;set IOBYTE in parm blk
MOV DX, OFFSET PB1 ;load parameter offset
MOV CL,50 ;direct bios call fn
INT 224 ;CP/M bios interrupt

PBl DB 20 ;set IOBYTE function

PB2 DW O iCx register

PB3 DW O ;dx register

=

i MS-DOS get IGBYTE to register al

MOV AX, DS iset ES to data segment
MOV ES,AX
LEA BX,PB1 iget offset of param block
MOV AX, 16 ;jget IGBYTE function
INT 223 jVictor super bios interrupt
MOV AX,PB1 iget ICBYTE to al (0 to ah)
P8l W 0 jparameter passing area
;i MS-DOS set IOBYTE from register al
MOV AH,0 iset upper byte to 0
MOV PB],AX ;set TOBYTE in param block
MOV AX,DS ;set ES to data segment
MOV ES,AX
LEA BX,PBl jget offset of param block
MOV AX,17 ;set ICBYTE function
INT 223 iVictor super bios interrupt
PBl DN O jparameter passing area
Custom Device Drivers
Notice:

In preparing the following section, it was
discovered that some of the features mentioned did
not work, or contained bugs. Specifically,
function 5 for the List Vector and Console Vector
calls does not work because the BX register is
clobbered by the BIOS code, and the "pass-on"
feature passes on one character too many (the
extra character is meaningless). Victor has stated
that since these are undocumented features of the
BIOS, they are not directly supported except as
they pertain to Victor programs. Therefore, the
likelyhood of the bugs being fixed is small. It is
also probable that the implementation of these
features will change in future operating system
releases, but the basic concepts will remain. We
decided to include the discussion of these
features anyway, in case the bugs are fixed, and
as infommation to users who might have wanted to
use these features.

At sometime it may be required to attach the 9000
to a device that is not compatible with the
standard device drivers supplied by Victor. This
was the case when I plugged my old Diablo 1620
into one of the 9000's serial ports. My Diablo
does not support hardware handshaking, and using
the Victor driver, I was forced to run at 300 baud
or lose data. Because of this, I decided to write
my own device driver that would support the
Diablo's ETX/ACK software protocol.

of
the

It turns out that there are two ways
incorporating a different device driver into
9000 system. The first, which is only viable for
MS-DOS, involves writing a replacement module for
the standard one supplied by Victor as part of
their system generation program. The sysgen
program uses MS-LINK to combine pre-assembled
modules to form the MS-DOS system file. By writing
a new module and changing the linker command file
to cause the linker to load the new module instead
of the standard one, it is possible to create a
system disk incorporating the new driver. This
task requires an intimate knowledge of the 9000

BIOS and should only be attempted by experienced
system programmers .,

Fortunately, the second method is somewhat easier.
The 9000 BIOS routes all calls to the LST device
through a long vector stored in memory. The BIOS
also provides a simple method by which to examine
or change this vector. A device driver written to
use this second method is a COM or (MD file that
consists of two parts. The first part is the
initialization section, which configures the port
hardware, changes the list vector to point to the
new list driver entry point, and then exits to the
system, leaving the module permanently resident in
memory. The second part is the device driver
itself. The module will remain as the new device
driver until the system is reset.

The second method is the method I used to
implement my Diablo driver. The driver for MS-DOS
is shown in Listing 1. The CP/M driver is similar
to the MS-DOS driver except for initialization and
differences in the assemblers. The initialization
part of the driver for CP/M is shown in Listing 2.
The CP/M driver has a somewhat more complicated
initialization section because there is mo direct
way to make a program permanent in memory. Even
though a program terminates, leaving itself
resident, a CONTROL-C entered by the operator can
cause the program's memory to be deallocated.

List Vector

Before doing an indirect long call through the
list vector, the BIOS sets the AX register to
indicate the function to be performed.

Function

Get data from list device
Send data to list device

Get list device input status
Get list device output status
Get list device input vector
Set list device input vector

v awn—olX

Data to be output is passed in the CL register and
input in the AL register. Status is returned in
the AL register (00h is busy or no data ready, FFh
is not busy or data waiting).

The list device input vector (functions 4 and 5)
is a long vector containing the address of the
list device input routine. The standard BIOS does
not provide an input routine for the list driver
and this vector points to a null subroutine that
returns zero in the AX, BX, and ES registers. This
vector can be used when it is desired to add an
input routine for the list device, accessible
through the standard list vector, without changing
the list device output routine. The list input
vector is set from and returned in registers ES
(segment) and BX (offset).

Output to the LST device from MS-DOS or CP/M
produces calls through the main list vector for
functions 1 and 3 only (see above). There is no
way to get input from the LST device using
standard system calls. In order to call the other
functions, the user must make a BIOS call to get
the list vector and then do a long indirect call
using the address obtained. An example of getting
the list input status is given below:

B

MOV AX,DS ;set ES to data segment

MOV ES,AX

LEA BX,PB1 ;set offset of param block
MOV AX, 14 jget device vector function
INT 223 jVictor super bios interrupt
MOV AX,2 ;jget input status function
CALL DWORD PTR LSTV ;call through vector

;the input status is in AL
2 ;list vector function
0 ;list vector is returned here
ifirst word is offset
;second word is segment

The following code sequence is used to change the
list vector:

MOV AX,D6 ;jset ES to data segment

MOV ES,AX

LEA BX,PBl ;get offset of param block

MOV AX,15 ;set device vector function

INT 223 ;Victor super bios interrupt
PBl DW 2 ;1list vector function

DN LSTOFF ;new list vector offset

DW LSTSEG ;new list vector segment

Console Vector

The 9000's BIOS also provides a vector scheme for
the console device (CON), similar to that for the
list device outlined above. This scheme is very
useful for adding functions to the keyboard or
display. For example, it is used by Victor to
implement the calculator program and graphics
package. The console vector may be examined or set
using the following routines:

; get console vector

MOV AX,D5 ;jset ES to data segment

MOV ES,AX

LEA BX,PB1 ;get param block offset

MOV AX,14 ;get device vector function

INT 223 ;Victor super BIOS interrupt
PBl DW 1 ;console vector function
cCanwvw oo 0 ;console vector returned here

;first word is offset
;secord word is segment

; set console vector

MOV AX,D5 ;set ES to data segment
MOV ES,AX

LEA BX,PB1 ;get param block offset
MOV AX, 1S5 ;set device vector function
INT

Dw

W

oW

223 ;Victor super BIOS interrupt

1 ;jconsole vector function
CONOFF ;new console driver offset
CQNSEG ;new console driver segment

As with the list driver, the AX register is used
to indicate the function to be performed by the
console driver.

Function

Get data from console (i.e. keyboard)
Send data to console (i.e. display)
Get console input status

Get console output status

Get user defined console vector

Set user defined console vector

0 awneolX

Data to be output is passed in the CL register and
input in the AL register. Status is returned in
the AL register (00h is busy or no data ready, FFh
is not busy or data waiting).

The user defined console (UDC) vector (see
functions 4 & 5) is provided to allow a simple
method of switching between two the standard
console drivers (TTY and CRT) and a custom driver.
Setting the IOBYTE (see above) to map the CON
device to the UCl driver causes all console I/0 to
be routed through the UDC vector. This reduces
switching between standard and custom driver to a
simple and familiar process that can be done in
command mode or under program control.

There is an additional feature provided in
conjunction with the use of the UDC vector. This
feature is known as the pass-on feature. It allows
for the "passing on" of ESCAPE sequences that are
not part of the standard CRT driver. In other
words, if the CRT driver detemines that an ESCAPE
sequence it has received is not one that it was
designed to recognize, the CRT driver will pass it
on through the UDC vector to a secondary, or
background, driver.

Furthermore, the UDC driver can cause a flag to be
set so that it directly receives all data

t to the ESCAPE sequence, preventing the
data from going to the CRT driver. when the UDC
driver decides it does not need further data it
causes the flag to be reset, thus resuming its
background status. The flag is set by the UDC
driver returning a non-zero value in the AL
register whenever it is called. The flag is reset
by the UDC driver returning zero in the AL
register.

; replacement diablo driver using etx/ack protocol

ioseq equ OE000h
sioda equ 40h
siodb equ 41h
sloca equ 42h
siocb equ 43h
ctco equ 20h
ctel equ 21h
cte2 equ 22h
ctectl equ 23h
cseq segment publ ic
assume cs:cseg,ds:cseg
org 05Ch
fcb db 1 dw (?)
org 100h
public dbdinit
dbdinit proc near
mov ax,cs
mov ds,ax
mov es,ax
mov byte ptr portf,0
mov al,fcb+l
and al ,00Fh
mov okmsgl,al
anp al,'A’
jz 30
anp al,'s'
jz s
jmp s9
s: mov byte ptr portf,OFFh
s0: mov bx ,offset oldvec
mov ax, 14
int 223
mov ax,6
call dword ptr prtvec
anp ax ,001ABh
jnz sl
mov dx ,offset msgl
mov ah,9
int 33
xor ax ,ax
int 33
sl: mov ax,cs
mov vector+4,ax
Listing 1.

i1/0 base address

;MPSC port offsets

18253 port offsets

;use file name for port spec
sthis org for COM file

1init entry point

jassume port A

jget port selection
imake upper case
jput port in message

jport A

;skip if valid port
jport selection error

jselect port B

;get print vector

;super bios call

;test for alt driver
;diablo drive installed ?

jnot installed, continue
jdriver already installed

;exit to system

jstore segment in parameter
;passing block

i

i

822

mov
mov
mov
int
mov
mov
anp
jnz

es ,ax

bx ,offset vector

ax,15
223
bx ,ioseg

es,
byte ptr
82

initialize for port A

mov
mov

mov

mov

mp

byte ptr
byte ptr
byte ptr

byte ptr

initialize for port B

e

mov
mov

byte ptr
byte ptr
byte ptr

byte ptr

byte ptr
byte ptr
byte ptr
byte ptr
byte ptr
byte ptr
byte ptr
byte ptr
byte ptr

portf,0

es:ctcctl, 36h
es:ctc0,41h
es:ctc0,00h

es:sioca,18h

es:sioca,d
es:sioca,047h
es:sioca,3
es:sioca,041h
es:sioca,5
es:sioca, 0OAAh
es:sioca,2
es:sioca,010h
es:sioca,l
es:sioca, 00Ch

es:ctcctl, 76h
es:ctcl,4lh
es:ctcl,00h

es:sioch,18h

es:siocb,4
es:sioch, 047h
es:siocb,3
es:siocb, 041h
es:siocb,5
es:siochb, OAAh
es:sioca,2
es:sloca,010h
es:siocb,1

jand in ES for call to bios
;get parameter blk address
1set new device vector
;super bios call

;set print port to 1200 baud

swhich port

;init port A to 1200 baud

;reset channel
;wait awhile

:init 7201
116x clk,] stop,even parity

;X enable 7 bits

;tx enable 7 bits

ino interrupts

7init port B to 1200 baud

iinit 7201

mov

s3: mov
lea
int
mov
int

s9: mov
lea
int

xor
int

dbdinit endp

byte ptr es:siocb,000h

ah,9
dx ,okmsg

dx,offset endall
39

ah,9

dx , inmsg
33

ax ,ax
33

; list call entry point

dbdent proc

dbdel: mov

dbde2: xor

jnz

far

bx,ioseg
es,bx
al,3
dbdosx
al,l

dbd

al,6
dbde2

ax ,0D1ABh

al ,al
al

;o interrupts

;all ok message

;exit but remain resident

;invalid spec

jexit to system

;point to i/o base

jtest function number
jstatus check

;print char
;installation check?

jreturn driver ID message

jreturn to caller

output a byte and if so, do it

dbdos

al ,al

dbd

byte ptr cs:portf,0
dbd0

es:sioda,cl

dbdl

es:siodb,cl

bx ,cs:hscnt
byte ptr cs:[bx]
cl,01Bh

al ,cs: [bx)

Listing 1, continued ...

jcan we send ?
;loop if not

;which port ?

;skip if port B
;send char to port A
;jsend char to port B

;jcheck char ocount

;jsent esc ?

jnz
anp
jnb
mov

dbd2: ret

dbd3: or
jnz
mov
ret

dbd3
al,2
dbd2
byte ptr cs:([bx],2

al,al
dbd2
byte ptr cs:dbdcts,l

; status check and handshake routine

dbdosx: call
ret

dbdent endp

dbdos

; output status near procedure

dbdos proc
anp
jnz

near
byte ptr cs:dbdcts,2
dbdos1

;skip if not esc

1force 2 chars after esc

;ok, more than 2 to go
jmake count 2

jrdy for handshake ?
jexit if not
j£lag time for shake

jcall status routine

jwaiting for ack ?
1skip if not

; must wait for ack, check for incomming char

call
and
jz
call
and
sub
jnz
mov
mov

dbdosl: call

and
jz

mov
or

jnz
dec
ret

dbdos2: inc

dbdsts

al,0lh

dbdosb

dbddta

al,07Fh

al,

dbdosb

cs:dbdcts ,al

byte ptr cs:hscnt, 32

dbdsts

al,04h

dbdosb

al ,byte ptr cs:dbdcts
al ,al

dbdos2

al

al

cs:dbdcts, al

byte ptr cs:portf,0
dbdos3

byte ptr es:sioda,03h
dbdosb

jget port status
jchar rcvd ?

jexit if not

jget char

istrip parity

jsub ack

jnot ack, exit
jclear flag

jreset char counter

jget status
;jcan we send 7
ino, exit

jtime to shake ?

1yep, shake it
jindicate ready to send

tinc flag indicating etx sent

jwhich port ?
3skip if port B
jsend etx to port A
jexit

dbdosb:

i get

dbdsts:

dbdstl:

i get

dbddta:

dbddtl:

dbdos

vector

oldvec
prtvec
prtoff
prtseg

hscnt
dbdcts
portf

okmsg
okmsgl
msgl
{irmsg

endall
cseg

¢ mov

Xor
ret

ot

po

anp
jnz

ret

ret

byte ptr es:siodb,03h 1send etx to port B ‘

al ,al ;indicate busy

t status to al

byte ptr cs:portf,0 swhich port ?

dbdstl ;skip if port B
al ,es:sioca ;get port A status
al ,es:siocb ;jget port B status

port data to al

anp
jnz

ret

mov
ret

endp
storage

dw
dw

8 eeBEE BBO Ty

2d
®

byte ptr cs:portf,0 swhich port ?

dbddt1 ;skip if port B
al ,es:sioda ;get port A data
al ,es:siodb jget port B data
2 ;new driver vector block
dbdent

0

2 ;0ld driver vector block
dword

[}

0

32 shandshake counter

0 ;hardshake flag

0 jport A/B flag

'Diablo ETX/ACK protocol established '
'on port '

'B at 1200 baud.',0dh,0ah,'S"'

'Diablo driver already installed.',07h,0dh,0ah,'s’
'Invalid port specification.',07h,0dh,0ah,'s’

$

dbdinit

Listing 1, continued ...

; replacement diablo driver using etx/ack protocol push es
mov dx,offset pblk jdirect blos call
ioseg equ OEO000h 31/0 base address mov cl, ;to get MRT pointer
sioda equ 40h 312701 port offsets int 224 jCP/M call
siodb equ 4lh
sioca eq 42h Pop es jrestore bios segaent
sioch equ 43h mov ax,cs jget current segment
ctc0 equ 20h 18253 port offsets sub ax,es:1[bx)] jsub start seg from current
ctecl equ 2lh mov es:3(bx],ax ;store new region length
ctc2 equ 22h
ctoctl equ 23h mov ax,cs jstore segment in parameter
fcb equ 5Ch jfile name offset mov vector+4,ax ipassing block
mov es,ax ;and in ES for call to bios
cseg jsnall system model mov bx,0ffset vector jget parameter blk address
org 100h mov ax,15 ;set new device vector
int 223 isuper bios call
dbdinit:
mov byte ptr portf,0 jassume port A 1 set printer port to 1200 baud
mov al,.fcb+l 1get port selection
and al ,0DFh jmake upper case mov bx,ioseg jget 1i/o base to ES
mov okmsgl,al jput port in message mov es ,bx
anp al,'A’ anp byte ptr portf,0 swhich port
jz s0 jport A jnz s2 1Jmp if not A
=p al,'s’
jz s jskip if valid port ; from here on, the program i{s the same as MS-DOS
Jmp 89 jport selection error
s: mov byte ptr portf,0FFh jselect port B
s0: nov bx ,offset oldvec jparameter block
mov ax,14 ;get print vector fn
int 223 jsuper bios call
mov ax,6 jtest for alt driver

callf dword ptr prtvec
anp ax , 0D1ABh

jcall current driver
jdiablo drive installed ?

jnz sl ;jnot installed, continue
mov dx ,offset megl jdriver already installed
mov cl,9 ;send msg

int 224 3CPM call

xor ax, ax jexit to system

int 24 JCP/M call (no return)

in CP/M, programs cannot be made permanently resident as in MS-DOS
Entering “C causes the previously allocated memory area to be
deallocated. Therefore, we load our program into high memory and
then fool CP/M into thinking there is less memory, so that it does
not overwrite our program. (See CP/M-Operating System System Guide,

pages 48-51.
sl: nov cl, 7 jget bios segment to ES
int 224 JCP/M call
Listing 2.

-10-

.VOL.1NO.3 '

[=

ek

THE INDEPENDENT NEWSLETTER OF THE VICTOR 8000/SIRIUS 1 COMPUTER

May

Prom the Editor:

Victor has come a long way since last year, when
2ll that was available in the way of an operating
system was CP/M-86, and available application
software, at best, was limited. At the National
Computer Conference (NCC) held this May, Victor
showed that it is quickly approaching a position
of software parity with Big Blue. Demonstrated at
NCC were such items as Lotus' 1-2-3, UNIX, and
Networking.

In this i{ssue, we discuss the various operating
systems and networks that are, or will shortly be,
available for the Victor 9000. As you will see,
there is as wide a range of systems that run on
the 9000 as anyone could possibly use. Besides
MS-DOS 1.25 and CP/M-86 (which came standard), you
can get the UCSD P-system, FORTH, BOSS (a single
or multi-user system from the UK), and within the
next few months, MD-DOS 2.0, UNIX System 3, and
XENIX.

Operating Systems

Unfortunately, having so many choices presents us
with the dilemma of selecting the most desirable
system for our use. As for the standard operating
systems, there is little operational difference
between CP/M-86 and MS-DOS 1.25. The selection of
one over the other is largely a matter of personal
preference. However, if you don't have a strong
preference, there are a few facts that might
influence your choice.

MS-DOS is the most widely used (over 90 percent)
operating system for 16-bit microcomputer systems.
Because of this, there is more system and
application software available for MS-DXS 1.25
than for CP/M-86. Another significant point for
MS-DOS 1.25 i{s that Victor has stated that it
plans to support MS-DOS, as part of its product
line, more fully than CP/-86. This is evidenced
by Victor's hard-disk system only running MS-DOS,
although it comes with a CP/M-86 emulator that
2llows you to run most CP/M-86 programs.

There is, however, no truth to the published
reports that Victor had dropped CP/M-86 from its
offering. In fact, CP/M-86 does have one point in
its favor worth mentioning. It is that programs
compiled under CBASIC using CP/M-80 will usually
ren, without recompiling, on the 9000, using
CRUNB6. For those who have spent a lot of time and
rioney developing application software using
CoAS1C, this could well be the deciding factor in
the choice of an operating system.

Networks

1 want to interject a few words on Victor's
philosophy relating to muli-user operating
systems, Victor believes, and I tend to agree,
that most microcomputer configurations do not
provide sufficient processing and storage
capabilities to adequitely support multiple users.
Also, in the case of a multi-user 9000 system, it
would require having essentially diskless 9000s
for use as terminals, if one wanted to have the
same display and keyboard features as in the main
unit. Por this reason, Victor feels that a better
solution to the multi-user problem is networking.

Networking is the interconnection of multiple
processors through communication channels that are
either public ({.e. the telephone system) or
private (i.e. a wire). The purpose of networking
is to provide shared access to resources that are
not econamical or practical to duplicate at each
work station. These shared resources include items
such as large data bases and high-speed printers.

While networks can span miles, or even states, the
usual network consists of a group of processors in
the same office or building. These local networks
can be as simple as two processors attached to the
same hard disk controller, to as complex as a
system of multiple work stations and network
servers.

The two most sophisticated newtorks running on the
Victor are covered in this issue.
Wordstar .

I have received many requests for information
how to patch Wordstar, in order to implement
features that are not accessible through the
stardard install program. Presented in this issuve
is a2 "tutorial® on the inner workings of Wordstar.
Most of the relevant (to the Victor 9000) patch
areas are listed, along with.a brief description
of the effects that they control.

In our next issue, we will present a number of
exanples of special effects that may be "patched”
into Wordstar. We will also give 2 method for
providing a "front-end® that will allow you to
select the initial state Wordstar from a list of
fomats (i.e. letters, reports, etc.), eliminating
the necessity of keeping separate versions of
wordstar for each format used.

James M. Lesher

1983

Operating S}stems

UCSD p-System
The UCSD p-System was developed about six years
ago as part of a project thats goal was to Create
a software system that would support machine
independence, standardized programming methods
(and languages), and simplicity of operation
("user friendliness"), without sacrificing

systems, including the Victor 9000.

‘capabillty. These goals were achieved, and the
| UCSD p-System is available for most computer
|

The p-System is an integrated operating system
that allows access to all system functions thru
single character commands from a one-line menu at
the top of the screen. The menu changes to reflect
the area that you are working in at the moment; a
different menu for the editor, the file handler,
etc. While simple in use, the menus provide quick
access to many powerful system commands.

The standard components of the p-System give the
user a very complete and capable system. The main
component is the System Foundation, which includes
the editor, file system, debujger, etc. Next is
the UCSD Pascal Compiler, considered to be one of
the best available. The implimentation of the
p-System on the Victor 9000 includes what is
called Extended Memory, which allows the usage of
up to 128K of memory for program and data storage.
Last, but definitely not least, is Turtlegraphics.
Turtlegraphics is a simple but very powerful
graphics interface which supports the full
resolution of the 9000's screen. It is callable
from Pascal and is compatible with a large
existing base of packages.

Optional packages available for the p-System are a
Fortran 77 compiler and a BASIC compiler, both of
which produce modules which can be linked with
Pascal. Also available is a more sophisticated
editor and a CP/M file transfer utility program.

The UCSD p-System for the Victor 9000 is
distributed by:

TDI Systems, Inc.
620 Hungerford Drive, Suite 33
Rockville, MD 20850
(301) 340-8700

In Canada, their address is:

66 Twenty-Third Street
Toronto, Ontario M8V N2
(416) 259-5081

BOS - Business Operating System

The BOS operating system is type of environment
one would expect to see running only on a
medium-scale minicomputer. The features it

contains make it an excellent system for
implimenting camplex commercial applications. BOS
is available in both single-user (BOS) and
multi-user (MBOS) configurations. On the Victor
9000, MBOS can support the main unit, two
terminals and one printer, or the main unit, one
terminal and two printers.

MBOS is currently the ONLY multi-user,
multi-tasking operating system available for
the 9000.

BOS has been marketed since 1981, following five
years of development by one of England's largest
software houses. BOS was designed to be a
computer-independent operating system, and is now
available on over 50 different micro and mini
computers.

All of BOS's sophistication does not mean that it
is difficult for the average person to use or
understand. BOS provides a full menu building
mechanism and system customization utilities that
make for an easy to use system. These utilities,
along with features such as program and file
password protection, automatic logical unit
assignments, volume ID checking, and record
locking, make BOS a system that is difficult to
get into trouble using.

Programming with BOS is done through the use of
the Microcobol compiler. This compiler
incorporates the major features of mainframe ANS
COBOL and provides for interactive operation with
formatted displays and system configuration
inquiry. Also supportec is record locking on
shared files, six file access methods including
ISAM and RSAM, overlays, and an assembly language
interface.

A number of application packages are available
that run under BOS. These include word processing
(AUTOWRITER) , a full accounting package, and data
base management type programs (AUTOCLERK and
AUTOINDEX). In addition, because BOS was designed
for computer independence and has been supported
on many different computers for some time, there
is a great deal of third-party application
software available that is ready to run on the
9000.

Names of local distributors or dealers of BOS may
be obtained by contacting:

BOS National Division
I-Concepts, Inc.
2560 Royal Lane, Suite 228
Dallas, Texas 75229
(214) 484-2717

CHANNEL 9000

9742 Marcus Lane,

Tujunga, CA 91042

(213) 352-6443
James M. Lesher, Editor
Subscription rate: $30.00 (US) for 6 issues

Overseas Air “sil Rate:

$37.50 (US) for 6 issues

Publiched Bimenthly

Forth

FORTH is an operating system / programming
language developed to be a simple interface
between the user and his computer. The FORTH
system consists of a built in dictionary of
procedures called 'words'. Any of these words can
be executed simply by typing in the word at the
system prompt.

New procedures can be developed and run
interactively, using the predefined words and
FORTH's reverse polish command syntax. These new
procedures can be given names and be stored in the
dictionary, thus creating new words. Words entered
into the dictionary can be 'forgotten', once they
are no longer needed for a particular session,
making FORTH very versitile and unlimited in
scope. Entire application and turnkey systems can
be created using these features.

Words are stored in the dictionary in compiled
format, so that execution of FORTH procedures is
very fast. The source code for words is stored in
what are called ‘screens'. Screens can be created,
modified, and deleted using FORTH's built in
editing features.

FORTH for the Victor 9000 is available in both
beginners and professional versions. The beginners
version includes a screen editor, 8086/8088
assembler, graphic interface, sound generation,
math extentions, and games. The professional
version has, in addition, on-line documentation, a
decompiler, a debugger, a resident operating
system file handler, and many performance
improvements.,

FORTH is available to run uder CP/M-86, MS-DCS,
or in a stand alone version. Information can be
obtained by contacting:

Dai-E Systems, Inc.
11001°S. W. Barnes Road
Portland, Oregon 97255

(503) 646-6159

Comming Attractions

The following operating systems were running at
NCC and should be ready for release in a few
months., MS-DOS 2.0 was running on a hard disk
system which was being used as the file server of
Victor's networking system. Victor's UNIX is an
adaptation of System III, a commmercial version
first released by Western Electic in 1981.

MS-DOS 2.0

MS-DOS 2.0 is the next step in Microsofts goal of
producing a machine independent operating system,
capable of supporting the rapidly expanding
features fourd in todays microcomputers.

MS-DOS 2.0 is a step upward from MS-DOS 1.25. All
of the features contained in version 1.25 are in
version 2.0. This means that users upgrading to
version 2.0 are still able to work in a familiar
environment, using just the MS-DOS 1.25 commands,
until they are ready to learmm the new features.

The new features found in MS-DOS 2.0 are intended
to provide the support needed to manaje a system
with large amounts of disk storage. Tney also

solve the problem of adding additional disk unit:
from other mfnufactures. With MS-DOS 1.25,
installing an external hard disk means modifying
the operating system, since all 1/0 is handled
directly by the BIOS. MS-DOS 2.0 includes &
feature called installable device drivers. This
mechanism allows the user to let the system know,
throuwgh entries in a file called CONFIG.SYS, that
another disk unit is attached to the system. When
MS-DOS 2.0 boots, it uses the CONFIG.SYS file to
determine what additional devices are connected to
the computer, and loads the drivers for those
devices as part of the operating system. These new
drivers can suppliment or replace the default
drivers.

Since MS-DOS 2.0 has the capability of accessing
virtually unlimited amounts of mass storage, the
file system has also been enhanced to make keeping
track of things more manageable. The file system
is modeled after that of UNIX (or XENIX,
Microsoft's offering of UNIX), which allows for
multiple directories on each logical storage unit.

The directories are arranged in what is called a
tree structure. The highest level directory, the
root directory, can contain names of files and
also names of other directories. In turn, each
sub-directory can contain more file names and
further sub-directories. By grouping logically
related files and programs under related
directories, the management of the large amounts
of data usually found on hard disk units becomes
simpler.

Another feature of version 2.0 is input and output
redirection. This allows the input that would
normally come from the keyboard, and the output
that normally goes to the display, to be
redirected to come from, or go to, another device
or a file. For example, the command DIR >DIRLIST
would send the list of files produced by the DIR
command to the file DIRLIST. One could then use
the command SORT <DIRLIST to produce a sorted
listing of the files on the display (the statement
<DIRLIST tells SORT to get its input from the file
DIRLIST instead of the keyboard).

An extension of the redirection feature is piping.
Piping allows the output of one command to be sent
directly to the input of another command, without
the necessity of specifying an intermediate file.
By using a pipe, the operation of producing a
sorted directory listing, as shown above, can be
reduced to the command DIR|SORT. The vertical bar
between the two commands indicates that the output
of the first is to be saved temporarily and used
as the input for the second.

There are many more useful features in MS-DOS 2.0
than there is space to discuss. It is emough now
to say that version 2.0 will be a significant step
forward in providing the Victor 9000 the means by
which its inherent capability can be utilzed.

UNIX

UNIX is a powerful and flexible system intended
prirarilly for programmers. It is multi-tasking
and rulti-user (althouch the multi-user aspect is
not heavily supported by Victor). UNIX is more
than just an operatinz system. It is & collection
of systems end softwgre that are designed to

s 5 e e i D) M A o s i 04 S e

increase programmer productivity. This software {s
divided into six catagories: the operating system,
larmguages, text processors, information handlers,
graphics, and miscellaneous utilities.

The file system is a hierarcical, tree-structured
system, similar to the MS-DOS 2.0 system described
above. Features such as I/0 redirection,
foreground and background program execution,
concurrent processes, batch control files, ard
chaining of programs are all supported.

The UNIX system includes a C compiler and a number
of supporting utilities. These utilities include a
program verifier and a program beautifier. There
is an interactive text editor, and other programs
such as a spelling checker, a key-word indexing
utility, and file encrypter and decrypter. There
is also an elaborate text formatting program that
is capable of driving a phototypesetter. In all,
there are over 200 subsystems included as part of
the INIX System III package.

XENIX

The Unidot Company is currently supporting an
effort to bring Microsoft's multi-user XENIX
operating system. (another unix derivative) up on
the Victor 9000. It is not known at this time how
the system will be distributed, but it should be
available later this year. PFor more infomation
contact:

UNIDOT
568 Weddell Drive, Suite 4
Sunnyvale, California 94086
(408) 745-0505

Networks

VICTOR Server Network

The Victor network offering is a local network
based on Omninet. Up to 54 work stations and 10
network servers can be connected to the network.
The Victor network is termed a linear contention
network, because all stations and servers are
connected together using one cable that runs from
unit to unit. All communications between work
stations and network servers occur over this one
cable, and the different stations must 'contend'
for use of the cable.

Connection to the network is accomplished by
installing an interface card, called a
transporter, in one of the expantion slots in the
Victor 9000, and hooking it up to the network
cable. Any model Victor 2000 with at least 256K of
ram can be connected to the network. The network
servers, however, must be hard disk units, and
canmot be used simultainously as work stations.

Each network server manages its own disk and
printer resources, providing for private and
public files, for file and record locking on
h €ilec, and for csponlinm of files for

~2rk stations logged in to the network have access
to wp to 15 disk volumes and 4 printers at a time.
£2ch Zisk volume and printer has its own logical
the user need not be concerned atout
location of the resource. In fact,
tion operates just as if it were a

stand-alone computer, except that it has more
resources available.

Interaction with the network is through a few
simple nds. These ds allow the user to
log on or off the network, spool files for
printing, check the status of the network servers,
display the active users on the network, and
protect, reserve, or release shared files. Two
additional commands provide for formatting and
configuring the network servers and for adding or
deleting users.

ShareNet

ShareNet is a somewhat smaller and simpler
network, but it is by no means less capable than
the Victor Server Network. A ShareNet system
consists of one network processor and up to 24
work stations and 5 printers. The network
processor supports up to 120 megabytes of disk
storage.

The basic topology of the ShareNet system is
refered to as a ‘star' network, because each work
station is connected directly and independently to
the network processor. This approach, while
generally requiring more cabling, is significantly
simpler and inherently more reliable than the
linear contention networks. The drawback to this
type of network is that there is only one network
processor, and if it goes down, the entire network
is down

Work stations are attached to the ShareNet by
installing a network interface card in the
computer to be used as the work station, and
running a cable to the network processor. ShareNet
currently supports interfaces for the Victor 9000
under MS-DOS and CP/M-86, the IBM-PC under PC-DCS,
CP/M-86 and the p-System, and numerous Z-80 based
microcamputers running CP/M-80.

‘The ShareNet network processor is a Motorola 68000
based microcomputer, running a sophisticated
operating system that administers the shared
resources for the network. The network processor
works in a vendor-independent manner that allows
different operating systems, running on the
various work stations, to concurrently share the
same directories and data files. The network
directories appear as logical units under each
work station's operating system. Security for the
network is handled on the file, directory, grow,
and user levels.

ShareNet supports procedures for file and record
locking, transaction processing, and deadlock
avoidance. Also supported are broadcast, and
station to station messages. Options include
electronic mail and a2 sophisticated data base
management system running on the network
processor.

For more information on ShareNet, contact:
Novell Datz Systems, Inc.
1170 N. Indestrial Park Drive

Orem, Utzh 84057
(B0C; 453-1267

-l

wWordstar Unvailed

In describing the following patches, the offsets

given (in hex) are offsets fram the start of the
program when it is loaded for execution. If you
are patching the MS-DOS version of Wordstar using
the DEBUG program, you can use the offsets as
given for the patches. If you are patching the
CP/M version of Wordstar using DDT86, you must add
180 hex to the offsets given. This is because .OMD
files have a header area that tells CP/M-86 how to
load them.

There is, however, an easier way of patching
Wordstar. The INSTALL program that comes with
Wordstar has a menu item (F) that allows the user
to enter patches during configuration. Using this
feature is somewhat safer than patching with a
debugger, in that INSTALL prevents you from
accidently modifying Wordstar outside of the
"legal" patch area. The addresses given below can
be used directly with the INSTALL patch facility.

For some of the patch items, the standard values
are listed to enable you to be sure you are in the
right place.

‘.Screen Patches

Custan patching of same of the screen routines can
be done through the use of the Wordstar INSTALL
program. However, most patch areas are listed just
in case you have a need to know where they are.

Screen Size
These two bytes set the screen dimensions.

HITE 248h Screen height in lines
WID 249h Screen width in columns
Highlighting

These two strings-are sent to enable and disable
highlighting. The first string is sent to enable
highlighting. The second string is sent to disable
highlighting. Highlighting is enabled for menu
display and for block identification.

IVON 284h 7 bytes, first is length
IVOFF 28Bh 7 bytes, first is length
Initialization

The next two strings are used to set the screen to
known conditions at the start and end of the
Wordstar session. The first string is sent when
wWordstar is invoked. The second string is sent
when Wordstar is exited.

TRMINI
TRYUNI

292h
298h

9 bytes, first is length
9 bytes, first is length

Initialization Subroutines

For initialization seguences that cannot be
performed by using the standard patches, Wordstar
provides two “"hooks"™ that can be used to call user
supplied subroutines. To install custom
subroutines, the locations specified should be
patched with a jump instruction to your routine
(which should end with a2 RET). The first
subroutine is called before the TRMINI string is
sent to the screen. The second subroutine is
celled after the TRMWNI string has been sent to
thz screen.

misw * 2a4h 3 bytes in length
UNISUB 2x7h 3 bytes in length
Delay Times

The following Bix bytes control the delay times
used by Wordstar to determine how long to wait
before continuing with certain functions. These
bytes can be set to any value from lh (for minimum
delay) to 7Fh (for maximum delay).

CR8LIV 285h Cursor Blink Enable
DEL1 2CFh Short Delay

DEL2 200h Medium Short Delay
DEL3 201h Medium Long Delay
DEL4 22h Lony Delay

DELS 203n Redisplay Delay

The Blink Enable byte, when set to FFh, tells
Wordstar to blink the cursor whenever it is
resting on an inverse video character. For no
blink, it is set to Oh.

The Short Delay controls the ON portion of the
cursor blink rate when the cursor is resting on a
highlighted character and CRBLIV flag is Ffh. It
also controls the flashing rate between certain
messages such as "REPLACE YA" and the cursor (it
determines the time spent in the display area).

The Medium-Short Delay controls the alternate
cycle of the rates controlled by the Short Delay
(above) . These are the cursor blink OFF time, and
the time spent displaying a message in the status
line.

The Medium-Long Delay controls the waiting time
from hitting a prefix character (such as “K or
“0), until the display of the related help menu.
It also controls the delay at such non-edit mode
messages such as "FILE NAME?" until the special
character menu is displayed.

The Long Delay controls such things as the time
the signon message, the "NBW FILE" message, and
the "ABANDON" message remain on the screen.

The Redisplay Delay controls the waiting time
until full screen redisplay during horizontal
scrolling. If a line you are typing becomes longer
than the width of the screen, that line is
immediately moved over so that you can see what
you are typing. Wordstar waits the length of time
specified by the Redisplay Delay before
redisplaying the entire screen in the shifted
position.

Default Wordstar Program Disk

The contents of this byte determines which disk
drive Wordstar looks at to find its overlay and
message files (WSOVLYl and WSMSGS), if they are
not on the currently logged drive. This tyte must
be changed if you want to put the wWordstar
programs on a disk drive other than A:, and then
edit files on a different cdrive. This byze is set
to ih for A:, 2n for B:, 3n for C:, etc.

2DCh 1h

Af:er setting this byte, you must alsc'' out
r '*ion in the ba‘y o. Wordstar
patch m

ristar mo

e e e o N o b e £ b e el P

program will not let you change these addresses.

ol _— Nt
367h DB 66 Paper Ht. in Lines
368h DW 8B*66 Paper Ht. in 1/48"

Address Contents Chai To
1E04h Blh gﬁ
1E0Sh 0lh 90h

oved, left or right, each time you move off the

rizontal Scroll Distance
his value is the number of columns the text is

screen.

SCRLSIZ 2DDh 14h
Initial Belp Level - “JH
This byte determines the help level in effect at
program start-up. Setting it to 3 provides maximum
help. A value of 2 eliminates the main editing
menu and provides more display area for the file
being edited. A value of 1 also causes suppression
of the prefix key help menus. Setting it to 0
disables all help.
ITHELP 360h 3h
Maximum Help Message
If this byte is 0“then the message "FOR MAXIMUM
HELP TYPE "JH3" is displayed at the beginning of
the first editing session, if the value of ITHELP
is 1 or 2. A value of FFh disables the message.
NITHLF 361h FFh
Initial Insert Mode - “V
If this byte is FFh, Wordstar starts out with
insert mode on. if it is Oh, insert mode will be
off.
ITITOG 362h FFh
Initial Directory Display - P
This value determines whether or mot a directory
listing of the logged drive is given when not in
edit mode. A value of Oh inhibits the directory
display, FFh enables it.
ITOSDR 363h FFh
Page Format — Dot Commands
The following group of values determine the format
of the page break display during editing, and also
the format for pagination during printing. The
default values shown can be overridden, both in
edit mode and during printing, by use of the dot
commands. Most parameters in this table are
defined twice. Once in terms of lines and once in
multiples of 1/48 inches. The specification for
the line height is repeated a number of times, and
is listed separately.

For clarity, all values listed for the page
parameters are in decimal.

Line Height (all values must be the same)

356h D8 8 Line Ht. in 1/48"
36Ah D8 8
36en DB 8
372h D8 8
376h D8 &
3725 D8 e

Paper Height (.F7)

Margin at Top of Page (.MT)

36Bh D8 3
36Ch DH 8%3

Top Margin in Lines
Top Margin in 1/48*

Heading Margin (.HM)

36Fh D8 2
3700 DN 8%2

Hdg. Margin in Lines
Hdg. Margin in 1/48"

Bottom Margin (.MB)

373h o -} 8 Bot. Margin in Lines
374h D¥ 8%*8 Bot. Margin in 1/48"

Footing Margin (.PM)

3T DB 2 Ft. Margin in Lines
378h D4 8% Ft. Margin in 1/48"

Standard Character Width (.Cw)

37Ch DB 12 10 cinch in 1/120"

Alternate Character Width (.CW)

370h B 10 12 ci/inch in 1/120°

page Offset (Printing only) (.PO)

37eh 8 8 8 chars from left
Screen Margins - “OL and “OR

These two values determine the initial values used
for word wrap ("OW) and paragraph reform (°B)
functions. The values are specified as the column
number minus 1. The legal values for the left
margin are 0, to the value of the right margin
column minus 3. Legal values for the right margin
are 2, to the value of the screen width minus 4.

INITIM
INITRM

37 oh
380h 40h (64)

Left Margin
Right Margin

Subscript / Superscript Roll - .SR
This value is the distance above or below the line
that superscripts of subscripts are printed. The
value is in 1/48 inches. This applies only to
printers that are capable of incremental movement,
such as daisy wheel printers.

INITSR 381h 3h
Word Processing Flags
The following group of flags determine the initial
states of the various word processing toggles.
Except for the Line Spacing value, Oh means OFF
and FFh means ON for each flag. All of the flags
except the Page Break Enable flag can be changed
during editing. If the Page Break Enazble flaj is
set to Oh, then the Page Break Display flzg is
ignored and page breaks are not shown. The Line
Spacing value is set to 1 for single spacing, 2
for double spacing, etc.

FFh Word Wrap - “OW
FFh Justify - “0J

Ffh Variable tabs - “CV
oh Soft Hyphen - “0Z

389h FFh Hyphen -Help - “(H

38Ah FFh Display Ctrl Chars - “0D
38Bh FFh Ruler Line Display - “OT
38Ch FFh Page Break Enable

380h FFh Page Break Display - “OP
38Eh 1h Line Spacing - “08

38Fh Oh Block Move - “KN

Non-Document Mode
If a file name is specified at the time Wordstar
is invoked, the non-editing menu is bypassed and
edit mode is immediately entered. The value of the
Non-Document Flag determines whether edit mode is
entered "in Document or Non-Document mode. A value
of Oh enables Document mode, FFh enables
Non-Document mode.

NONDOC 392h Oh
Decimal Tab Character
This byte defines the character that terminates
the "decimal® alignment function (70°I). This may
-be changed to allow column alignment about any
desired character.

DECCHR 393h 2th (*.')
Dot Command Character
This byte defines the character that indicates the
start of a dot command, if found in column 1. It
may be changed to any desirable character.

DOTCHR 395h 2th (*.")
Non—-Break Space
This character prints as a space, but Wordstar
does not use it as a place to break a word for
word wrapping, or as a place to add spacing for
justification. May be changed to any desirable
character.

BINCHR 39%6h OFh (Ctrl-0)
Dot Command Enable
This flag enables or disables the dynamic
interpretation of dot commands during editing. If
disabled, all dot commands are ignored during
editing, and the display (at the end of the line)
of a question mark, for unrecognized commands, is
inhibited. A value of FFh enables interpretation
of dot commands, Oh disables interpretation.

DOTSON 397h FFh
Hyphenation Zone
This value determines how many spaces, short of
being full, a line can be before hyphenation help
occurs (if hyphenation help is turned on). This
means that if the last full word that will fit
completely on the line is less than this number of
colunns from the end of the line, the user will be
prompted to hyphenate the following word. This
number will dynamically vary, depending on the
number of words on the line and the internal
hyphenation rules used.

HZONE 39Ah 4h
Flag Characters
The following is the list of characters that
indicate special conditions during editing. The
first 9 characters display in the right-hand

column of the display during editing. These
indicate the status of each line of text. The last
two characters occur in the text. SOFHYC {s the
character used to indicate the presence of a soft
hyphen. Its high order bit is set to cause it to
display in a highlighted mode. PAGFIL {s the
character used to fill the line at the end of a
page (if pace breaks are enabled). Any of these
characters may be changed to whatever suits the
user.

EOFCHR 3ADh 2Eh ('.') End of File

BOFCHR 3AEnh 3Ah (':') Beginning of File
CONCHR ~ 3AFh 28Bh ('+') Line Continued
OVPCHR 380h 2Dh ('-') Next Line Overprints
LFCHR 3Blh 4Ah ('J') Line Feed w/o CR
PAGCHR 382 50h ('P') Last Line of Page
SOFTCR 383h 20h (' ') Soft CR (Non Break)
HARDCR 384h 3Ch ('<') Hard (R (Break)
FDICHR 3B5h 4Dh ('M') MergePrint Ond Line
SOFHYC 3B6h ADh ('-'+80h) Soft Hyphen
PAGFIL 387h 2Dh ('-') End of Page Marker

Place Marker Display Characters

The following characters are used to indicate the
placement of markers in the text. The first two
characters are used to delineate the start and end
of a block of text for g block nd
("K). The remaining 10 characters indicate the
positions of user defined placemarks.

38Ah 42h ('B") Beginning of Block
388h 48h ('K') End of Block
38Fh 30h ('0%) User Placemark 0
Xoh 30h ('1*) User Placemark 1
3Clh 30h ('2') User Placemark 2
k ov..) 30h ('3*) User Placemark 3
X3 30h ('4") User Placemark 4
X4h 30h ('S") User Placemark 5
Xsh 30h ('6") User Placemark 6
X6h 30h ('7") User Placemark 7
X7h 30h ('8%) User Placemark 8
X8h 30h ('9') User Placemark 9

Print Questions Defaults
The next group of flags control the default

© responses to the gquestions asked at the start of

printing. Setting a flag to Oh causes a NO
default, setting it to FFh causes a YES default.
Setting the last flag to FFh causes suppression of
"Use Form Feeds?" message altogether.

3CAh Oh Disk File Output

XBh th Use Form Feeds

3CCh Oh Suppress Page Formatting
3Chh oh Pause Between Pages :
301h Oh Suppress FF Message

Dot Command Defaults

These three flags determine the initial settings
of certain dot commands. Setting them to FFh
enztles the command, setting them to 0h disables
the comand.

ITPORN Dh Oh Omit Page §'s - .0P/.P:
T D4h Frm Micro Justificetion - .UJ
ITelP 305h FFn Bidirectional Print - .BP

FPile Nanmes

The last three of the four filenames given below
2re the names Wordstar uses to access its
overleys. Tne first filename is the name of the

M e

main Wordstar command file (which contains these
tables). This name is used when the “R" command
(Run external program) is given so that Wordstar
can get back to itself. If you rename the Wordstar
command file, or make a copy of it with a
different name, this filename should be changed to
match that of the file that contains it.

3E7h DB 'WS oD’
3F3h DB 'WSMSGS OWR'
3FFh DB 'WSOVLY1l OWR'
408h D8 'MAILMRGEOWR'

Dispatch Tables

Wordstar uses what are called dispatch tables to
determine what to do with each key entered from
the keyboard. There are two of these tables. The
first table is used to interpret commands entered
while at the "NO FILE" menu. The second table is
used to interpret commands entered during the
editing of a file.

Each time a keyboard entry is received, Wordstar
scans the appropriate table, looking for a
matching entry. If at the "NO FILE" menu and no
match is found, the entry is ignored. If no match
is found while editing a file, the character is
entered into the text. In either case, if a match
is found, then the command function whose address
is given in the table is called.

Command sequences may be changed to suit the user.
However, it is recommended that, if possible, the
old command sequence be left as is, and that a new
comnand sequence be added to the table. This
provides compatability for those who may not be
aware of the changes.

Al] table entries have the following format:

DB FIRSTCHAR, SECONDCHAR
D4 OFFSET (OMDADDRESS)

Commands may be comprised of either one or two
characters. For a one character command, FIRSTCHAR
is set the the desired command character, and
SECONDCHAR is set to zero. For two character
commands, SECONDCHAR is set to the second
character of the command sequence.

There are a few restrictions on the choice of the
command characters. FIRSTCHAR should be a control
character in the range 0lh to 3Fh. This is because
only those characters not in the dispatch table
can be entered into the text.

SECONDCHAR may be any character execept a lower
case letter. While searching the table for a
matching entry for the second command character,
Wordstar treats letters and control characters as
ezeivalent (i.e. I is the same as "I). Because of
this Wordstar also converts lower case letters to
uzpar case before performing the search.

CDADDRESS is the address of the routine that
performs the command's function. This value should
i be changed. If you wish to make a duplicate
entry for a given command, then the CYDADDRESS for
(‘xe new command sequence should be careiully
from the C4DADDRESS of the existing table

1f OMDADDRESS is & value less than 256, then
instead of beiny an address of a comand routine,
CMDADDRESS is taken to be an index, into
WSMSGS.OVR, of a help message (see MSGINDEX,
below). The message indexed by CYDADDRESS is
displayed on the screen. The entries for these
help messages are usually placcd 2t the end of the
dispatch table so as not to increase tie search
time for regular commands.

The editing mode dispatch table also contains
entries for help messages for certain command
prefixes. These messages are automatically
displayed if the second command character is not
typed within a certain time period (see Delay
Times above). The entries for these messages are,
and must be, at the beginning of the table. They
have the following format:

DB PREFIXCHAR, OFFh
DB MSGINDEX
m®m 0

PREFIXCHAR is the first character of a two
character command sequence for which 2 help menu
exists, MSGINDEX is an index into the pointer
table at the beginning of the WSMSGS.OWR file.
This pointer table contains offsets into the
message file where the various messages are to be
found.

The format of the WSMSGS.OWR file is as follows:

Pile Offset Contents

000n - O7Fh Worastar Copyright Msg.
080h - 1FFh Message Pointer Table
200h - END Messages

There is space in the pointer table for 192
entries. The last message in the file is a dummy
(or error) message, and any pointer table entry
that points to this message can be used for the
addition of a new message.

All messages are displayed starting at the same
position on the screen (line 2, column 1). Control
characters should not be used in the message text
except that a new line (CR-LF) is indicated by a
OEh character and the end of the message is
indicated by a 00h character. Highlighting of
parts of the message can be done by setting the
most significant bit of the character to be
highklichted (i.e. 'A'+80h causes the A to be
highlighted).

Note:

The message offsets in the pointer table are 100h
grezter than the actuzl offset of the message in
the file, If you use DEBUG to patch the file, then
these offsets will be the actual location of the
messz3e in memory, beczuse DEBUG loads files into
its secment at an offset of 10Ch. However, the
offezts of the parts of the file in memory will be
10C- cown from those listed in the file offsets
tatle 2dove. If you use DOT86 to patch the file,
the- the hle offsets given above are the actual

menory, but the offsets in the pointer
1 be 100h e than the actual position
essage in m Yo

llowing tables list the aidresses for the
entries in tre cispatch tetles for an

umodified wordstar file. s2on Delete | character left
s3lh O Delete 1 character right
NO-FILE Dispatch Table 535h Y Delete line
4 $3%9h “QDel Delete to beginning of line
Addr Cmd Function 530h "Q°_ Delete to beginning of line
430h D EAIt file in DOCUMENT mode 541h TQY Delete to end of line
434h N Edit file in NON-DOCUMENT mode 545h °T Delete 1 word right
438h H Set help level 549n Vv Compl iment insert mode
43X X Exit to system S4Dh B Reform paragraph
440h P Print file 551h “QQ Repeat next command
440 M Run MailMerge 555h Insert CR-LF
448h Y Delete file 559h °I Tadb
440n F Display directory SSDh "M Carriage return
450h z Scroll directory up 56lh P Literal character entry
454h w Scroll directory down 565h “KH Hide block marker
458h L Change logged drive SA9h KB Mark beginnirg of block
45Ch R Execute external program $6Dh “KK Mark end of block
460h o Copy file 57lh KO Set place marker 0
454h E Rename file 575h K1 Set place marker 1
468h v DEBUG command 579h K2 Set place marker 2
46Ch S Run SpellStar 57Dh “K3 Set place marker 3
470h Unused 58l1h K4 Set place marker 4
474n Unused 585h “KS Set place marker 5
478h Unused 589h X6 Set place marker 6
47Ch Unused 580h X7 Set place marker 7
591h k8 Set place marker 8
EDIT MODE Dispatch Table 595h K9 Set place marker 9
) 59%9h KV Move block
Addr Cmd . Function 59Dh. “KC Copy block
Q Help display Salh Ky Delete block
485h “K Help display SASh KN Column / block mode toggle
48%h “0 Relp display 5A9h Kz DEBUG command *
48Dh “P Help display SADh U Stop command
49lh “JH Set help level S8l1h KX End edit and exit
49sh °s Cursor left 1 character 585 “KD End edit
49%h “H Cursor left 1 character S89%h “Ks Save file and restart
490h D Cursor right 1 character SBLh “KQ Abandon edit
4lh “A Cursor left 1 word Clh KR Insert file
4S5h °F Cursor right 1 word 5CSh KW wWrite block
4A%h Cursor down 1 line 5CSh K Delete file
&nh “E Cursor up 1 line SChh “KF File directory on/off
4Blh “QS Cursor to start of line 1h “KP Print file
485h "D Cursor to end of line SDSh "KL Select drive
48%h “QXx Cursor to bottom of screen s09h “KO Copy file
4Dh “QE Cursor to top of screen SDDh “KE Rename file
4&lh “QB Cursor to beginning of block SElh oL Set left margin
4CS5h QK Cursor to end of block SESh “OR Set right margin
4%h "o Cursor to last command posn Se9h “O1 Set tab stop
&£Dh Qv Cursor to last find/repl posn SEDh “ON Clear tab stop(s)
4Dlh "QO0 Cursor to place marker 0 SFlh “OF Set margins from line
45h "Q1 Cursor to place marker 1 SFSh “ow Word wrap toggle
40% “Q2 Cursor to place marker 2 SF9h “QJ Justify toggle
4DDh "Q3 Cursor to place marker 3 SFoh "oV Variable tabs toggle
4Elh "Q4 Cursor to place marker 4 601h “0D Dot command display toggle
4ESh "Q5 Cursor to place marker 5 605h “OT Ruler line display toggle
4E9h "Q6 Cursor to place marker 6 509h “oP Page break display toggle
4EDh Q7 Cursor to place marker 7 60Dh “OE Soft hyphen toggle
4Flh “Q8 Cursor to place marker 8 611h “OH Hyphen help toggle
4FSh "9 Cursor to place marker 9 615h "0G Set temp left margin
4F%h “OR Cursor to beginning of file 619h “OX Release margins
4FDh “QC Cursor to end of file 61Dh “oC Center line
S0lh “QF Find 621h “0s Set line spacing
505h “QA Replace 625h “JD Dot command help
509h “QL SpellStar command 629h "Js tatus line help
SODh L Repeat last find/replace 620h “JF Flagy character help
S11lh “ow Scroll continuous down 631 “Jp Place marker help
Ss1sh “Qz Scroll continuous up 635h “JB Pzragraph reform help
519h "2 Scroll wp 1 line 639h “IM vzrgins help
S5iDh "W Scroll down 1 line 630h “JI Cemand help
52lh R Scroll uwp 1 screen 641h “Jv Move text help "
s25h °C Szroll down 1 screen 645h “JR Ruler line help

52%h Del Delete] character left €49h Unusesd

640h Unused
651h Unused
655h Unused
659h Unused
650h Unused
661h Unused
665h Unused
669h Unused

Printer Control

The commands sent to your printer to control its
various functions are defined in the following
areas. For this discussion, any standard values
given for these areas are those used when Wordstar
is configured for a Diablo 630 printer.

POSMTH

The most important flag in this group is POSMTH.
It stands for Printer Overstrike Method. This
defines the basic capabilities of your printer
mechanism and how (if possible) certain printing
actions are performed. The usage of many of the
printer commands is determined by POSMTH.

For a printer that can only overprint a line by
performing a carriage returmn without a line-feed,
POSMTH should beset to FFh.

1f the printer has the capability of backspacing
and overprinting, then POSMTH should be set to
0ooh

1f the printer is capable of incremental movement,
and can print a character without moving the
carriage (or equivalent) then POSMTH should be set
to Olh. This is the setting for most "daisy wheel"
type printers.

POSMTH 746h Olh
Boldface Intensity - “PB
This value is the number of times a character is
printed, offset by a small distance, to give a
bold appearance. This value may range from 2, on
up. However, it is stated that for a daisy wheel
printer, only the value 2 should be used.

BLDSTR 74Th 02h
Double Strike — “PD
This is the number of times a character is printed
in the same position in order to give different
style of bold appearance. It may be set to any
desired value.

DBLSTR 748h 02h

Non-Daisy Wheel Control Strings

The following control string definitions are used
cnly when the value of POMTH is FFh or 00h. If
POS¥TH is Olh, then these strings are ignored.

Next Line
Tnis string is sent to the printer to advance it
to the next line and returm the carriage to the
left-most position.

PSCRLF

74Cn 11 bytes, first is length

Overprint Line
This string is sent to the printer to return it to
the left-most position in order to overprint the
current line.
PSCR 757h 7 bytes, first is length
Balf-Line Feed
This string is sent to the printer to return it to
the left-most position and advance one-half line
downward. If POSMTH is FFh or 00h, and ROLUP (see
below) is non-zero, this string is used for
printing superscripts and subscripts at half-line
intervals.
PSHALF 7SEh 7 bytes, first is length
Backspace
This string is sent to the printer to move its
carriage left one character position. It is used
for backspacing, underlining, and double strike,
if POSMTH is OCh.
PBACKS 765h 6 bytes, first is length
Alternate Widths - “PA “PN
The first string is sent to the printer to enable
printing at a different width. The secord string
is sent to restore printing to the standard width.
This feature should only be installed if your
printer is capable of supporting it.

76Bh
T70h

PALT
PSTD

S bytes, first is lemgth
S bytes, first is length

Roll Up / Down

These two strings are sent to the printer to roll
the carriage up or down without moving it left or
right. They are used for printing superscripts and
subscripts. The roll up distance must match the
roll down distance. This feature should only be
installed if your printer is capable of supporting
ft.

715h
T7Ah

ROLUP
ROLDOW

S bytes, first is length
S bytes, first is length

Combination Control Strings

The following strings are used to control all
types of printers.

User Print Patches — “PQ "PW “PE “PR

These four strings define the functions performed
during printing, when the corresponding control
sequence is encountered. These may be set to
implement any feature desired. Lines containing
these commands are always printed in the forward
direction.

USR1 TIFn S bytes, first is length
USR2 784h 5 bytes, first is length
USR3 78%h 5 bytes, first s length
USR4 78Eh 5 bytes, first is lemgth

Ribbon Color - “PY 2
The next two strings are used to change the color
of the ribbon, on printers that suppaort that
feature. The first string sets the printer to the
alternate color. The second strima restores the
printer to the original color.

<10~

PR,

En

L% 38 R

N
.

B2 ik o b GNNCE T

i

APy

PR prm——y—

T

5 bytes, first is length
5 bytes, first is length

793h
798h

RIBBON
RIBOFF

Initialize Printer :

These two strings are used to restore the printe
to known conditions. The first string is sent to
the printer at the start of printing, the second
is sent at the conclusion of printing. These
strings may be changed to suit your particular
printer, or additional items may be patched in
after the standard ones.

17 bytes, first is length
17 bytes, first is length

79Dn
TAENh

PSINIT
PSFINI

Additional Patches

Strikeout Character - “PX
This character is used for the “strikeout" print

‘feature.

SOCHR Clh h ('-")
Underscore Character - “PS
This character is used for the “underscore® print
feature. X

ULCHR 20 SFh (*_')
Initialization Subroutines
For printers that require initialization sequences
than cannot be accomidated through use of the
standard patches, Wordstar provides two "hooks" to
user supplied routines. If used, the contents of
the specified locations should be replaced with
jump instructions to the custom routines. The
first routine is called before the PSINIT string
is sent to the printer. The second routine is
called after the PSFINI string has been sent.

7C3h
7C6h

3 bytes in length
3 bytes in length

PRINIT
PRFINI

Printer Drivers

Wordstar makes provision for the selection of one
of five printer drivers to control 1/0 to your
printer. While Wordstar predefines the usage of
each driver, except for the OEM driver (CSWTCH=3),
there is really no logical difference between them
as far as calling sequence and function performed.
The OEM driver is a special driver and is not
discussed here.

Which of the five drivers is to be used is
controlled by the value in CSATCH. These values
and their corresponding drivers are listed below.

CSATCH 7CSh Oh
CSWICH Driver
0 Standard list device
1 INSTALL patchable port driver
2 User defined driver
3 OEM daisy wheel printer driver
4 Alternate console printer driver

There are three entry points for each driver.
These are as follows:

Busy Status

The busy status entry telle Wordstar if the
printer is ready to accept a character for
printing. If it is ready, the routine returns with
the carry flag set to zero (CY=0). If the printer
is not ready, the routine returns with the carry
flag set to one (CY=l). If there is no way to
decetmine if the printer is busy cther than by
trying to send a character, then the status
routine should return with the carry flag set to
zero (CY=0), just as if the printer were ready.

There is a flag that Wordstar examines to
determine whether the printer driver has a
meaningful busy status routine, or just a dummy
one. This flag is HAVBSY. Wordstar uses this flag
to improve its performance during concurrent
editing and printing. If this flag is non-zero, it
indicates that the driver busy routine is not a
dummy routine.
HAVBSY 7CAh Oh

Send Character

The send character routine outputs the character
in the AL register to the printer. If the printer
is busy, then this routine must wait until the
character can be sent.

Receive Character

The receive character routine checks for a
character from the printer. If there is one, it
gets it and returns it in the AL register with the
carry flag set to zero (CY=0). If no character is
available, it returns with the carry flag set to
one (CY¥=1). This routine i{s used only when a
handshaking protocol that requires receiving data
from the printer is used (i.e. ETX/ACK or
XON/XOFF) «

The entry points for each of the drivers is given
below, along with the amount of space available
for the routine. If more room is needed for a
routine, the space allocated to the unused
routines may be used, or the additional code can
be placed in the other extra patch areas.

CSWICH = Oh
LI8SY ~ ~7cch 15 bytes
LISDD 7Dbh 16 bytes

Printer status
Send character

LISINP 7EDh 3 bytes Receive char
CSWICH = 1h
POBSY 7F0h 13 bytes Printer status
POSEXD TFDh 4 bytes Serd character
POINP 80lh 15 bytes Receive char
CSWICH = 2h :
PUBSY 8llh 3 bytes Printer status
PUSEND 814h 3 bytes Send character
PUINP 817h 3 bytes Receive char
CSWICH = 4h
8lAh 19 bytes Printer status

o 820h 13 bytes Send character

ACINF €3Ah €3 bytes Receive char

Banishake Protocol
wWcrdstar supports two software handsheking
1s. These are the ETX/ACK protqeol and the
/XCFF protocol. If it is desired that one cf
se preotocols be used, then the valus at PROTTL

must be set to indicate which prfotocol to use. To
use the ETX/ACK protocol, PROTCL must be set to 1.

To use the XON/XOFF protocol, PROTCL must be set ~

to 2. Any other protocol must be implemented by
the user, and PROTCL must be set to 0.

PROTCL 879h Oh
1f the ETX/ACK protocol is selected, then Wordstar
needs to know how many characters it can send to
the printer before waiting for a handshake. This
value is one-half the printer's buffer size, and
must be stored at EAKBSZ.

EAKBSZ

87ah 7Fh

Daisy Printer Control Strings

The following control strings and definitions
apply only when POSMTH is Olh. These are mainly
escape sequences for controlling daisy wheel
printer movements. However, these may be used for
any printer capable of incremental movement that
can support these commards.

Vertical Motion Index

This string is the\lead-in string used to set the
vertical spacing ‘of the printer, in 1/48"
increments. The character that sets the spacing is
computed by Wordstar and sent immediately after
this lead-in string. -

The two bytes following the string define the
minimun value and the range of values for the
character sent after the lead-in. The minimum
value is the value to be sent to set the spacing
index to 0. The range value is the maximum spacing
value (in 1/48") that can be set, plus one.

DWILE 87Ch 5 bytes, first is length
DVMMIN 88lh Minimum value
DVWRNG 882h Range

Borizontal Motion Index

This string is the lead-in string used to set the
horizontal spacing of the printer in 1/120%
increments. The character that sets the spacing is
computed by Wordstar and sent immediately after
this lead-in string.

The two bytes following the lead-in string define
the minimum value and the range of values for the
character sent after the lead-in. The minimum
value is the value to be sent to set the spacing
index to 0. The range value is the maximum spacing
value (in 1/120%) that can be set, plus one.

DHMILE 87Ch S bytes, first is length
DEMIN 881ih Minimum value
DHRNG 882h Range

Forward Print
This string is sent to the printer to set the
printer to forward orint mode.

DFWD 88Fh S bytes, first is length
Reverse Print
This string is sent to the printer to put it in
reverse printing mode.

DBAK 894h S bytes, first is length
Porward Space
This string is sent to the printer to cause it to
space forward one unit of horizontal motion, as
set with the horizontal motion index (see above).

P 89%h S bytes, first is length
Backspace ¥
This string is sent to the printer to cause it to
space backward on unit of horizontal motion, as
set with the horizontal motion index (see above).

Des 89En S bytes, first is length
Line Feed
This string is sent to the printer to cause it to
space downward on unit of vertical motion, as set
with the vertical motion index (see above).

DLF 8A3h S bytes, first is length
Reverse Line Peed
This string is sent to the printer to cause it to
space upward on unit of vertical motion, as set
with the vertical motion index (see above).

IRLF ‘8ash S bytes, first is length
Phantom Space
This string is sent to the printer to cause it to
print the character on the print wheel associated
with the space character. This is usually the
cents character.

DPHSFC 8ADh S bytes, first is length
Phantom Rubout
This string is sent to the printer to cause it to
print the character on the print wheel associated
with the rubout character. This is usually the
logical not character.

DPHRUB 881h 5 bytes, first is length
Proportional Spacing
The following flag determines whether Wordstar
attempts proportional spacing while printing. If
this flag is Oh, then proportional spacing is
allowed. If it is FFh, then proportional spacing
is suppressed.

DNPROS 8Bfh Oh
Justification Algorithm .
This flag determines the algorithm used by
Wordstar for microjustification. If the flag is
FFh then more emphasis is placed on expanding
spaces between words than on spreading out
characters. To emphasize the opposite effect, the
flag is set to Oh.

VWS

8Coh Ch

Extra Patch Areas
Wordstar provides an area that may be used for
patch routines that do not fit into the standard
space alloted for them. This extra space is from
2EOh tc 3f3h, inclusive.

=]9=

a—

T David SekercAn

VOL. 1NO. 4

I:hannel SO00

THE INDEPENDENT NEWSLETTER OF THE VICTOR 9000/SIRIUS 1 COMPUTER

July

1983

From The Bditor:

Channel 9000 was fortunate to finally be mentioned
in the Clubs and Newsletters column of the July,
1983 issue of BYTE Magazine. We are getting many
inquiries from end users, hungry for information
on the Victor 9000. Hopefully, Channel 9000 and
the other Victor related publications described in
this issue, can fill the information gap which
still exists.

I am disturbed by some of the stories that have
been related to me by end users, regarding their
attempts to find out about software availablilty,
more detailed information about certain features
of the 5000, and just trying to get some general
help. While there is probably not a great deal
that any one person can do to improve this
situation (with the possible exception of
publishing a newsletter), I have an idea I would
like to try.

I would like to hear about the problems that both
dealers and users are having in obtaining help and
information from Victor. If we can compile enough
information to pinpoint the specific areas of
need, I believe Victor will be responsive. A
signed letter, outlininy your problem in as much
detail as possible, should be sent to Channel
9000, at our standard mailing address.

Local User Groups

Another way for users (and dealers) to get help,
is to help each other. One way to do this is
through the formation of local user groups. I have
been "volunteered” to assist in the formation of
the Los Angeles user group. Since I am becomming
involved in this activity, I would also like to
hear from other user groups throughout the
ocountry, or from anyone interested in starting or
joining one.

Victor has stated that they are very supportive of
the idea of user groups. I am sure that we get
their assistance in coordinating the formation of
these groups.

Kational User Group

I would also like to propose the formation of a
Kational Victor 9000 User Group. This idea has
been discussed informally in various circles for
some time. I believe the time is right to start
scriows discussiorn.

There are many services that a national group can
offer that may be impractical for local groups.
One service is the cataloguing, and distribution,
at low cost, of public domain software tailored
for the Victor 9000. Anothér posibility is the
establishment of a Remote Bullitin Board System,
so that users can dial up and download software
ard information, and also leave messages regarding
questions or problens.

There are many other po&ibﬂitiu, and we welcome
your and jons.

L. A. District Bulletin Board

The Victor Los Angeles District Headquarters is
pioneering an information bulletin board system
(IBBS) that should be operational shortly. The
system is designed to provide bulletins, outgoing
messages, and information about hardware and
software products, to four classes of users. These
classes are dealers, end users, software vendors,
and Victor employees. Each user class recelves
only information relating to that class. However,
general announcements to all classes are possible.

Each District Branch Office will maintain a
separate IBBS to eliminate the necessity of long
distance phone charges. While use of the system is
not restricted, each user is required to have his
own password for access, along with a special
communication program. This is being done to
ensure reasonable responsiveness from the IBBS.

More information about the IBBS can be obtained by
contacting:

Claude Coleman
Victor Los Angeles District Headquarters’
4685 McArthur Court
Newport Beach, CA 92660

In Closing

I believe that the ideas presented here can be
used to significantly narrow the Victor
information gap. However, these ideas can do M
good unless put into action. I hope that this
discussion will lead to that action. .

Janes M. Lesher

utility Disks Offered

Channel 9000 has a number of utility programs that
are available on diskette. These are offered at
naminal prices and are intended for non-commercial
use only. Anyone interested in distributing these
programs on a commercial basis should contact
Channel 9000 concerning distribution arrangements.

California residents please add 6.5% sales tax.

Keyboard Utility Disk - $15.00

Three programs, including source code, allow you
to load a keyboard table into the BIOS, change the
keyboard ‘table on a system diskette, or save a
keyboard table from the BIOS to a disk file. Also
included is a BASIC program that produces an
assembly language text file dump of a keyboard
table.

MS-DOS to CP/M Utilities - $30.00

RDMSDOS.(MD allows you to transfer files to CP/M
diskettes from MS-DOS diskettes (operates similar
to RDCPM.COM). COM20MD.COM converts COM format
files to OMD format allowing you to develop CP/M
programs using the MS-DOS assembler and linker

(which are -x:h'bctr.or than what is available for
CP/M). Converted programs can be run under CP/M or
under the CP/M emulator.

WordStar Pormat Selection - $35.00

This program, when patched into standard wordStar,
allows the user to select from various
initialization formats. Any patchable function can
be set by this program. The format selections are
defined in a standard text file which can be
easily modified using any editor. Source code and
a sample format file are included. Supplied for
both CP/M and MS-DOS.

ETX/ACK & X-ON/X-OFF Printer Drivers - $25.00
Two printer drivers which support the ETX/ACK and
the X-ON/X-OFF protocols on either of the Victor
9000's serial ports. Once installed, the driver
can be enabled or disabled through simple commands
(similar to the way 132 column mode works). Source
code is included. Supplied for both CP/M and
MS-DOS.

More Victor Related Publications

The popularity of the Victor 9000 is finally being
shown, as happened in the case of the IBM/PC, by
the emergence of more publications dealing
primarily with the specific machine. The following
three publications are aimed at various segments
of the Victor 9000 marketplace. Each is briefly
described, with references to where further
information can be obtained.

Sirius Computing
The largest publication exclusivly for the Victor
9000 / Sirius 1 computer (90+ pages per issue) was
started the same month as Channel 9000 (January).
It is published in England and is distributed
mainly by ACT Limited, the English distributor of
the Sirius 1. The magazine contains ads, reviews,
_ tutorials, interviews, and a question and answer
column. It is published bimonthly. Information may
be obtained by writing or calling:

Sirius Camputing Sales
Paradox Group Limited
39-41 North Road
London, England N7 9PD
(01) 607-9489

Resource 9000
Primarily intended for the Victor dealer, this
magazine was started by a group of attorneys in

the Boston area, who, after buying some 5000's,
realized the need for more information concerning
the product. The magazine contains ads, reviews,
and tutorials. The subscription rate is $50.00 per
year. Its first issue came out in May, 1983. It is
to be published monthly. Por more information,
contact:

Resource 9000
240 Commercial Street
Boston, MA 02109
(617) 367-6959

Hi-Tek Routines Club Mewsletter

Originally billed as the “"Victor 9000 Users Club",
this group's aim is "to better understand and
utilize advanced micro-processors, such as the
victor 9000 and IBM Personal Computer.® This
newsletter format publication contains a question
and answer section and listings of technically
oriented programs. The newsletter is published
monthly for an amual subscription rate of $35.00.
Further information may be obtained by writing:

Hi-Tek Routines Club
310 S.W. 2nd Street
Ft. Lauderdale, FL 33312

CHANNEL 9000

9742 Marcus Lane, Tujunga, CA 91042
(213) 352-6443
James M. Lesher, Editor
Subscription rate: $30.00 (US) for 6 issuves =
Overseas Air Mail Rate: $37.50 (US) for 6 issues
Published Bimonthly

Printing TAB With BASIC

BASIC has the nasty habit of converting the ASCII
TAB character (CHRS$(9)) into the appropriate
number of spaces. This occurs when using PRINT
with the BASIC interpreter, and LPRINT with both
the BASIC interpreter and compiler. Apparently,
this i{s an artifact from the days of Teletypes,
when many terminals did not support the TAB
function. However, with todays printers and
terminals, this “"feature®" can cause much
frustration. The Diablo 630, amoung others,
requires the TAB character be sent "as is" to
perform many of its special functions.

Portunately, at least when using LPRINT, there is
a simple solution to this problem. Because the
ASCII character set defines only 128 codes, wost
printers (especially when using RS232
communication) strip the high-order bit from any
character received. Since BASIC allows character
codes from CHRS (0) to CHRS (255), it is possible to
trick BASIC into ignoring the TAB character by
setting the high-order bit before using it in an
LPRINT command. This is done as follows:

10 LPRINT CHRS (9+128)

Unfortunately, the above method does not work if
you want to send CHRS (9) to the display, or to a
device on the parallel port that does not strip
the high-order bit, or if you want to semd full
8-bit data using the RS232 ports. If you desire to
do this type of output, the only solution is to
patch BASIC to prevent it from modifying the TAB
character.

To patch the MS-DOS BASIC interpreter (version
5.27), follow the steps below.

MADEBUG MSBASIC.OOMKcr>

>E2D30<cr>
X0X: 2030 75. Blen>

)sznco<cr>

X00K: 20C0 75. EB<Cr>

>Wer>

To patch the CP/M-86 BASIC int.erpreter, use the
following steps:

ADOT86<CTr>
1C86 .CMD<cT>

000(: 0000 XXK: 71 TP
~S2A87<cr>

3 5 EB<cr>
X0 2A88 15 .<cr>
-52B17<cr>
X0: 2817 75 EBCCD>.
X0X: 2818 14 .<cr>
—WBASICB6<Cr>

To patch the MS-DOS BASIC runtime file BASRUN.EXE
(version 5.32 or 5.33) it is first necessary to
rename the file to give it a different extention.
This is because DEBUG loads EXE files for
execution and they cannot be properly resaved once
they have been loaded this way. Changing the
extention prevents DEBUG from changing the file
when loading.

To determine which version of BASRIN.EXE you have,
check the size and date of the file with the DIR
command. Version 5.32 has a size of 20608 and a
date of 7/21/82. Version 5.33 has a size of 21120
and a date of 10/18/82.

Use the following steps to modify BASRUN.EXE 5.32:
EXE BASRUN.S532<cr>

A)DEBLG BASRUN . 532<cr>
SEZT38<cr>
12136 15

cr>

><er>
ASREN BASRUN.532 BASRUN.EXE<CT>

Use the following steps to modify BASRUN.EXE 5.33:

AOREN BASRUN.EXE BASRUN.S533<cr>
A>DEBUG BASRUN 53 <er>
>E27B0<cr>

X500(: 2780 75. EBLCD>

>\-Kcr>
Writing 5280 bytes.

)Q(C(>
A>REN BASRUN.533 BASRUN.EXE<cr>

Communications

Today, with so many people and businesses having
computers, an important capability is
inter-computer communication. There is always a
need to transfer data from one computer to
another. Usually this is accomplished by just
taking a diskette out the first computer and
inserting it into the second. This works ok if the
two computers are of the same type, or use the
same disk format. Unfortunately, the Victor 9000
hzs a disk format that is unique in the industry.
That means that the only way to exchange data

between the 9000 and anything else is over wire,
at least until someone designs an add-on disk unit
that is compatable with other formats.

wWhile I am sure there are many other communication
programs available, I am covering here only the
two most popalar third-party programs, along with
the Victor offerings. If anyone would care to
submit a review of other programs, or more
detailed discussions of the ones presented here,
we would be glad to publish them.

MOVE-IT

Move-It is the simplest, and easiest to use, of
-the general purpose programs covered here.
Although it has a "dumb terminal® mode, Move-It is
primarily designed to transfer files between two
computers. Once Move-It is running on the two
computers that wish to communicate, all commards
need be entered at only of them (either end).

Move-It allows you to display a local or remote
file directory for any drive on the two systems.
Pile transfers can be done fram and to any drive,
and Move-It supports "wild-card® filenames. This
makes it very easy to transfer an entire diskette
full of information.

Move-It transfers both text and object files. All
file transfers are done in a blocked manner, with
each block being checked for validity before the
next one is sent. Any failure of the transmission
is reported to the user.

Move-It also has a message command that allows you
to send a one-line message to the remote camputer.
This feature is handy for telling the remote
operator to change disks, or that the session is
over. When a message is sent, the bell is sounded
at the receiving end to alert the operator.

Move-It is lvnifihh for CP/M80 computers, the
IBM-PC, and the Victor 9000. Por more infommation,
contact:

Wolf Software Systems

23842 Archwood Street

Canoga Park, CA 91307
(213) 703-8112

Crosstalk-XVI

The Crosstalk program is the most widely used
microcomputer communications package on the
market. Crosstalk-XVI is an enhanced version of
the original 8-bit version of Crosstalk,
completely rewritten to make full use of the
capabilities of 16-bit machines. Crosstalk-XVI is
currently undergoing testing for release as a
Victor Level 2 software product.

In addition to supporting text and object file
transfers between computers (with error checking),
Crosstalk allows the Victor 9000 to act as a very
smart remote terminal. Configurations for
different systems (baud rates, parity, etc) can be
stored in separate “"command®" files so that
changing communication parameters is done simply
by telling Crosstalk to load a new command file.

Log-on response procedures can be stored in
"script" files so that signing on to a computer
utility such as CompuServe can be done at the
“push of a button.® The script file system uses
its own programming language to make it a very
power ful communications controller.

Crosstalk also allows you to store strings of
characters that will autamatically be sent when
the function keys are hit. If you have a “smart"

modem, Crosstalk can even be programmed to dial
the number for you.

Data received from on-line sources, in addition to
being displayed on the 9000's screen, can be
selectively captured to memory, or saved on disk,
for editing, reviewing, or printing, at a later
time. You can also review data captured to memory,
on the 9000's screen, while remaining on-line. It
is also possible to selectively send incomming
data directly to your printer.

Crosstalk is available for all common CP/M-80
systems, for CP/M-86, the IBM-PC, and, of course,
the Vvictor 9000 in either MS-DOS or CP/M-86
versions.

Por more information, contact:

Microstuf
1845 The Exchange
Atlanta, GA 30339

(404) 952-0267

Victor Technologies

The following Victor software products are either
released for sale, or should be released soon.
These products cover a wide range of capabilities.
For further information, contact your Victor
dealer or local Victor branch office.

PC ComM

PC COMM provides the means for sending text and
object files from the IBM—PC to the Victor 9000,
only. It cons{sts of two programs. The first runs
on the IBM-PC and sends files to the Victor. The
second program runs on the Victor and receives the
files sent fram the IBM-PC. Communication is over
a Centronics type cable connected from the Victor
parallel printer port to the IBM-PC Parallel
Printer Adapter. The PC COMM package includes the
cable,

PC COMM is intended primarily for software houses
and dealers, providing a low cost method of
transporting programs from the IBM-PC to the
Victor 9000.

ASYNC .

Victors ASYNC program is an inter-compute

communication program whose overall capabilities
fall between those of MOVE-IT and CROSSTALK,
mentioned above. ASYNC provides for asynchromous
terminal emulation, data transaission and capture
in terminal mode, file transfering with complete
error checking in datalink mode, and “smart® modem
control. ’

ASYNC is available only for CP/M-86, although it
will run under MS-DOS using the CP/M-86 emulator.

BISYRC 86 - 3270 & 3780
Victer is offering two enulation packages that
support the IBM, and IBM compatable, bisynchronous
cominicztion protocols.

The 3270 program supports emulation of the
following TBM equipment: 3271 controller and 3277
display, 3275 display, 3284 printer, 3286 printer.
The 3270 program can be used with the Victor 9000
to perform operator controlled, physical
emulation. It is also possible to enhance the 3270
interface through user-defined program additions.
These user defined routines can provide for
extensive pre and post processing of the
communicated data, or any other processing that
may be necessary.

files. Received data can go to the screen, the
printer, or to one or more print or punch files,

Both the 3270 and 3780 emulators use IBM's
bisynchronous communications protocol with baud
rates from 1200 to 9600. Both products are
available only for CP/M-86, but will run under
MS-DOS using the CP/M-86 emulator.

WOTE:
We recently learned that the BETA release of the

3270 package has been temporarilly withdrawn, It
will be re-released in the future with a new

Victor's 3780 package is a Remote Batch Entry
vendor version.

Station emulation program. It is capable of
emulating IBM 2770, 2780, 3741, and 3780 devices.
The emulator provides for the transmission of data
from the Victor keyboard, or from one or more data

10 DEFINT A-Z ' only integers required

20 PRINT "Envelope Addresser - Version 1.0

30 PRINT

40 BLKMARK=18 ' use CTRL-R as hlock marker -
50 OFFSET=45 ' column offset for envelope address

60 ' get letter file name and open it

70 PRINT "Enter Letter Pilename: *;

80 LINE INPUT "";L$

90 OPEN "R", #1, LS

100 ' set wp to read file one character at a time

110 FIELD 41,128 AS F$ ' read as randam file, 128 bytes at a time

120 J=1 * initialize character counter
130 R=1 ' initialize file record counter
140 GET #1,R ' get the first record

150 ' skip until first occurance of block marker

160 GOSUB 1000 ' get one character from file
170 IF C=26 THEN 500 ' exit if end of file encountered
180 IF COBLKMARK THEN 160 ' loop back if not block marker
190 * print all lines (offset by OFFSET) until next block marker
200 LPRINT TAB (OFFSET); ' tab to address position

210 GOsuB 1000 get one character fram file
220 IF C=26 THEN 500 exit if end of file

230 IF C=BLKMARK THEN 500 exit if end of address block
240 IF CO13 THEN 270 skip if not R

250 LPRINT print R-LF

260 LPRINT TAB (OFFSET); tab to address position

270 IF C<32 THEN 210 skip all other control chars

280 LPRINT CS; print regular character
290 GOTO 210

500 ' end of address block

510 LPRINT ' restore carriage

520 CLOSE ' close input file

530 SYSTEM ' returmn to system

1000 ' subroutine to return one char in file in C and C$

* 1010 IF J>128 THEN 1060 skip if not at end of record
1020 C$=MIDS (F$,J,1) ' get next char from record
1030 C=ASC(CS) AND &HTF strip sign bit (Wordstar flag)

1040 J=J+1 ' increment char counter
1050 RETURN
1060 R=R+1 ' increment record counter
1070 GET ¢1,R ' read next record fron file
1080 J=1 ' reset character counter

'

1090 GOTO 1000 get one char fram record

Listing 1. Envelope Addressing Progran.

' -5_

WordStar Continued ...

ETX / ACK Protocol

1 have often been asked why the ETX/ACK or the
X-ON/X~OFF protocols do not work with the Victor
9000. This "problem" {s not one associated only
with the 9000. WordStar states, during the
nstallation of one of the above protocols, that
n order for the protocol to work, the USER must
nstall a routine in WordStar's patch area to
receive characters from the printer. If this
receive routine is not installed, then, for the
ETX/XCK protocol, a few characters will be printed
and then WordStar will "hang®, and for the
X-ON/X-OFF protocol, characters will be printed
(and overprinted) just as i{f no protocol had been
specified. While it is fairly easy to write a
receive routine for the port the printer is on,
this does not solve the general problem of
communicating with a printer that does mot use
hardware handshaking.

The printer I use with my 9000 is a Diablo 1620,
which does not use hardware handshaking. Modifying
_WordStar to support the ETX/ACK protocol that the
1620 uses solves the handshaking problem for
WordStar, but does nothing for all of the other
programs that output to the printer. A better
solution to the problem is to install a custom
device driver in the system that supports your
printers particular protocol. This method solves
the handshaking problem for all programs, not just
WordStar.

Custom device drivers were discuss'ed, with
examples included, in Channel 9000, Volume 1,
Number 2.

Envelope Addressing

.I use WordStar to campose most of the letters that
I write. I find it inconvenient to have to
duplicate the addressee's address (which is at the
beginning of the letter) for the purpose of typing
the erwelope. To make the addressing of envelopes
- easier, I have written a BASIC program which finds
the address in the letter and prints it in the
proper position on the envelope.

To indicate the position of the address in the
letter, I precede and follow it with the WordStar
“PR user patch command, which, for my setup,
performs no function. Entering this command into
the text places a Ctrl-R (12 hex, 18 decimal) in
the text file. The BASIC program skips all lines
up to the first Ctrl-R, then prints all lines up
to the second Ctrl-R.

The BASIC program is given in Listing 1. It may
easily be modified to print a returm address, for
use with envelopes that are not pre-printed. This
program can be compiled or converted to assembly
langusge to make execution quicker and easier.

L]
MS-DOS / CP/M—86 Conversion

In researching WordStar in preparation for writing
the May, 1983 issue, I discovered that WordStar
was designed to run under both CP/M-86 and MS-DOS.
There is a one-byte flag in WordStar that
indicates which system the program is running
under, WordStar uses this flag to decide whether
to use CP/M system calls or MS-DOS system calls.
All that is required to convert WordStar between
CP/M and MS-DOS is changing the system flag,
adding or removing the CP/M OMD file header, and
changing the system calls in the printer patch
area. The following is a description how to
convert WordStar fram one system to the other.

Systea Type Flag
This flag indicates to WordStar which system it is

- running under. It is set to OCh for CP/M-86 and to

FFh for MS-DOS.
MSDOS 2D6h

CP/M Beader

In order to provide compatability between CP/M and
MS-DOS, WordStar is configured as the 8080 Memory
Model under CP/M, and as a COM file under MS-DOS.
Both these configurations assume only one segment
(the CODE segment) and also assume that the
program starts at offset 100h.

System determination

CP/M OMD files have a header that tells CP/M how
to load the file, how much memory to allocate, and
how to initialize the segment registers before
executing the program. This header is 128 bytes in
length. MS-DOS COM files have no header and are
always loaded in a single segment starting at
100h.

The CP/M loader requires that space be allocated
in the OMD file for the memory from Oh to FFh,
whereas the MS-DOS COM file loader assumes that
the data in the COM file starts at 100h. This
means that to convert WordStar from CP/M to
MS-DOS, 384 bytes must be stripped from the front
of the OMD file to make it a COM file. This can be
done using either DDT86 under CP/M or by using
DEBUG under MS-DOS.

The following procedure converts CP/M WordStar to
MS-DOS using DOT86 (the underlined parts are typed
by the user):

A>DDTB6<CT>
=RWS .CMDXcr>

START BED
X00X: 0000 XXX : S2FF
-5356<cr>
XX0X: 0356 00 FP<cr>
X0X: 0357 00 .<cr>

~WnS ,COM,180,52FF<cr>

e

The following procedure converts MS-DOS WordStar
to CP/M using DEBUG (the underlined parts are
typed by the user):

MDEBUG

NS .COM<CT>

>L280<cr>

>F100,27F ,00<cr>

>EYb'6"6I"§7_’§9_’_b’p_ 00 FF OF<cr>

>E458 00<cr>

<cr>

X

:5300<cr>

SNWE .CMD<cD>
e
mlang 5300 bytes

Printer Interface

The above procedure converts the editing portion
of WordStar between MS-DOS and CP/M. However, it
does not convert the printing portion. The printer
drivers in WordStar are all in the custom patch
areas described in our last i{ssue (Vol. 1, No. 3).
Because of this, these drivers must be corwerted
manually.

On _ the Victor 9000, WordStar i{s almost always
configured to use the Standard List Device for
printer output (CSWICH = Oh). The patch areas for
the Standard List Driver are as follows:

LIBSY 7CCh 15 bytes Printer Status
LISBND 7DCh 16 bytes Send Character
LISINP 7EDh 3 bytes Receive Char.

The WordStar INSTALL program puts dumny routines
in for the Printer Status (LIBSY) and Receive
Character (LISINP) calls. These need not be
changed when converting WordStar between CP/M and
MS-DOS. The Send Character routine (LISEND) is the
operating system call that causes a character to
be printed on the current list device. The
versions of this routine for CP/M and MS-DOS are
given below, both in assembly language and in hex.
The hex codes may be used for patching the driver
using DEBUG, DDT86, or WordStar's INSTALL program,
as described in Volume 1, Number 3.

CP/M Send Character Routine

LISEND: MOV DUL,AL jchar i{s in AL
MOV CL,S ;print char fn
INT OE(n ;CP/M bdos call
cw ;jclear status flag
RET jreturn to WS

CP/M Send Character Routine in Hex

8Ah,D0h,B1h,05h,CTh,EOh,F8h,C3h

M5-DOS Send Character Routine

LISED: MOV DL,AL ;char is in AL
MOV A4,5 ;print char fn
INT 021h sMS-DOS dos call
(o7 ;clear status flag
RET ;jreturn to WS

Tooh 8Mh,Dh , B4, 05h,Cth, 21h,P8h,C3h

Control C

There is a problem with WordStar versions prior to
version 3.2]1 that has te do with the proper
handling of Control-C when running under MS-DOS.
These early versions use MS-DOS function calls
that cause termination of the program if a
Control-C is detected during input. Because of
this, these early versions are not suitable for
conversion from CP/M to MS-DOS.

Program Name

Once wordStar has been converted from to run under
a different operating system, the file name that
wordStar uses to get back to itself, following the
execution of the "R" (run external program), must
be corrected. This file name is at offset 3E7h
(see Volume 1, Number 3).

Overlay Files
There are no modifications required to the
WordStar OVR files for running under an alternate

operating system,
132 Column Mode

The Victor 9000 is can switch its screen format
from 80 columns by 24 lines to 132 columns by 50
lines. This is through the use of the 132 column
utility program, 132C, which enables the 9000 to
be switched between the two formats. The program
132C-ON switches the 9000 to 132 column mode. The
program 132C-OFF puts the 9000 back in 80 column
mode.

wWordStar is also has the capability of running in
132 column mode. The height of the screen is
determined by the HITE patch location (248h) and
the width of the screen is determined by the WID
patch location (249h). These should be set to 50
(32 hex) and 132 (84 hex), respectively, for 132
column operation.

Automatic Column Mode Switching

WordStar can be patched so that it automatically
enables 132 column mode when it is invoked, and
restores 80 column mode when it is terminated.
After the 132C utility has been run to enable 132
colunn mode, 132 column mode can be turned on by
sending "ESC |" (1Bh,7Ch) to the display. 80
column mode is restored by sending "ESC z*
(1Bh,7Ah) to the display. All that is requiréd to
have wordStar switch automatically into and out of
132 column mode, is to have it send the
appropriate ESC sequence to the display at
initializaion and termination. The patch locations
in WordStar that are used to accomplish this are
TRAINI (292h) and TRMUNI (29Bh) .

In the standard version of WordStar for the Victor
9000, there is not enough extra room at the TRAINI
patch area to add the ESC sequence for turning on
132 column mode., There is, however, an ESC
sequence installed in this patch arez that is not
generally needed when invoking wordStar. It {s the

- enable keyboard sequence "ESC {* (1Bh,7Bh). This
sequence can be replaced with the 132 column mode
on sequence. There is no space problem with the
TRMINI patch area.

The following are the required patches for
automatic switching into and out of 132 column
mode :

TRMINI 292h 07h,1Bh,78h,04h,18h,7Ch,1Bh,33h
TRYUNI 298h 02h,1Bh,7Ah
Highlighting Method

The standard WordStar configuration uses reverse
video for highlighting of menus and text blocks. I
have found the contrast between the reverse and
normal video to be greatly annoying. I prefer the
way that Dbase-II performs highlighting by using
the foreground and background (high and low

intensity) modes available on the 9000's display.’

The foreground and background method has the
additional advantage that the contrast between the
two modes is adjustable using the screen contrast
and brighness keys (these are the ALT cursor
positioning keys) .

Although the opposite implimentation works just as
well, I chose to have the menus and marked text
blocks display at low (background) intensity, and
the normal text to display at high (foreground)
intensity.

The WordStar patches to change the highlighting
method to that described above are as follows:
IVON

284h 02h,18h,2%h

IVOFF 28Bh 02h,1Bh,28h
One side effect of making the menus low intensity
and the text high intensity is that, after exiting
WordStar, the cursor is at a different intensity
than the rest of the screen. If this is anmoying,
then the "ESC)" (1Bh,29h) sequence should be
added to the TRMUNI patch area to set the cursor
to low intensity mode when WordStar terminates.
The following patch accamplishes this:

TRMINI 298h 02h,1Bh,2%h
If the menus are set to display at high intensity,
and the text at low intensity, then the above
patch is not needed.

WordStar "Front End®

I have three or four standard formats that I
repeatedly use in word processing. One of the few
things that I don't like about WordStar is the
inablity to select its initial state from a
predefined list of formats., This means that I
either have to manually set uwp my editing format
each time I enter WordStar or I have to keep
several copys of WordStar, with each one
configured for a particular format.

Not caring for either of the above options, I
decided to write a small program that I could
patch into WordStar, that would allow me select
from a predefined list of formats, and would
configure WordStar to the format selected.

The program reads a file named PORMATS.WS to get
the menu list of formats that I have defined,
along with the patch information required to
implement each format. After selecting a format,
the program sets the specified patch locations to
the given values and then jumps to WordStar's
entry point. The PORMATS.WS file is an ASCII file
that can be easily changed using a simple editor
(like Wordstar, in non-document mode) .

The syntax for each menu entry in the PORMATS.WS
file is defined as follows:

Title Line —

The first line of each menu item contains the
title of the format that is displayed on the
screen when WordStar is invoked. The first
character on the line must be an asterisk ('*').
Everything after the asterisk, to the end of the
line, is displayed on the screen as the title for
the format. The following line would cause the
title * 1. Inter-office memos® to be displayed on
the screen, if it were the first entry in
FORMATS .WS.

*Inter—office memos

Default Drive Line -

‘The second line of each format item is the default
drive specification. This is the drive for which
wordStar will display the directory. The syntax
for this line is the drive letter followed by a
colon (':'). The following line would cause the
®B* drive to be the default drive after WordStar

starts running.
B:

Patches —

The third and following lines of each format item
are the patches to be made in wWordStar prior: to
its start-up. The syntax for each patch line is
the starting address of the patch (in hex)
followed by a semi-colon (';'), followed by one or
more byte values (in hex), separated by comas
(','), that are the values to be placed at the
patch address. If mcre than one byte value is
specified, these values are placed at successive
addresses after the initial patch address. The
following line would cause the value 2h to be
stored at 298Bh, 1Bh to be stored at 29Ch, and 2%h
to be stored at 29Dh.

298;2,1B,29

Non-consecutive patches must be entered on
sepirate lines. There is mo limit to line lemgth,
but consecutive entries must all be on the same
line. In other words, the first entry on each
patch specification line must be a2 patch starting
address. All patch infomation is in EZX.

.

An example PORMATS.WS file is shown below. The
"Letters” format sets the left margin to column 1,
the right margin to column 65, micro-justification
is turned off, hyphen help is turned on, and the
page break display is turned off. The 132 Column®”
format sets the automatic 132 mode (described
above), sets the left colum to 1 and the right
column to 100, turns micro-justification off,
turns hyphen help off, and turmns the page break
display off. For a more complete description of
the effect of each of the patches, refer to Volume
1, Number 3.

*Letters

B:

377;0

380;40

386;0

389;FF

38D;0

*132 Column Mode

C:

248;32

249;84

292;7,18,78,4,18,33,18,C

298;4,18B,29,1B,7A
- 37F;0

380; 63

386;0

389;0

38D;0

This format file produces the following screen
display when the modified WordStar is started:

wWordStar Pormat Selection Menu - Version 1.0

1. Letters
2. 132 Column Mode

Enter Selection:

i s e i i i

wWhen the. selection is entered, the program then
patches WordStar according to the information in
FORMATS.WS for the correspording selection. After
the patches are made, the program jumps to
wWordStar and WordStar continues normally.

The format selection program is given in Listing 2
in CP/M assembler format. The program is the the
same for MS-DOS, except for minor assembler
differences. To patch the format program into
wordStar, you must first assemble it, then make it
into a COM or O4D file, and then use DEBUG or
DDT86 to incorporate it into WordStar. (When
linking the program under MS-DOS, you will get an
error message saying that no stack was defined.
This is normal for COM files. Ignore the message.)

To make a patched WordStar OMD file named WSM.OMD,
using CP/M, follow the steps below:

APASMB6 WSMENU<CT>
ASGENCMD 5080<cr>

Amco

—RWS .CMD<CD>

“START _ BND

3000K: 0000 J000K: S2FF

~RWSMENU .CMD<C>

TSTART B

YYYY:0000 YYYY:SSFP

—MYYYY: 5300, S5FF 000K : 5300<cr>

~500K: 181<cr>

X300 F<cr> ¢
00: 0182 38 SI<er>

3000K: 1083 E9 L<Cr>

-SX00X:5300<cT>

000X 5300 00 BA<er>

000X: 5301 00 Ve

Y0(X: 5302 BC .<cr>

~WWEM .. CMD ,X00KX: 0, 5SFP<CD -

To make a patched WordStar COM file named WSM.COM,
using MS-DOS, perform the following steps:

A>ASM WEMENU; <cr>
MOLINK WSMENU; <cr> (ignore the warning)
ASEXEZBTN WEMENU WSMENU .COMKCT>

A>DEL WSMENU .EXE<CT>

A>DEBUG WSMENU .COM<CT>
SNWS .COMCCT>
>L<er>

>EI01 81 38<cr>
>EB280 B4 39<cr>
SRX<C

X

:5480<cr>

>Wcry

Writing 5480 bytes
>QSCI'

After you have a patched version of WordsStar,
create a simple FORMAT.WS file, like the one
above, to test the new program. Once you have
determined that the new program is working, you
can then experiment with more complicated patch
setups.

@

i WondStar Sotip Menu Program

progdrv oqu
nsflay equ

cseq
org
start: Jmp
org
wsentry dw
y3menu: mov
mov
mov

mov
cld

ds:byte ptr .2DCh;WordStar default drive spec
ds:byte ptr ,206h;MS-DOS flag

100h ssmall model start

wsmenu

5280h jaddress of end of WS.COM
0 jwordstar entry address
sp,offset stack jset stack pointer

ax,cs]

ds,ax 1

e3,ax

1
1all strings forward

; set DMA segment If CP/M

anp
jnz

mov
nov
call

msflag,0 jtest for MS-DOS version
wsm0 3skip if Ms-DOS

dx ,ax jmove SEG to proper register
cl,51 jset DMS segment

bdos ?

; e~ in FOMATS.WS and parse data

wIrd: mov
mov

mov
mov
call

or

iz

mov

jmp
vImle mov

mov

v-mla: push

mov

al ,progdrv 1get WS program drive spec
fcb,al ystore in file block
dx,offset fcb jpoint to file block

o, 15 jopen flle

bdos jcall system

al,al - jcheck {f found

waml yskip if yes

dx,of fset ermsgl;open error
error jquit

ds:byte ptr fcb+32,0;reset record number
dx,offset formats;set dma address for read

dx jsave offset
ah,26 1set transfer adr

Listing 2. ,wordStar Front End.

call

call

pop
anp
jnz

add
mp

bdos]

dx,offset fcb jpoint to file block

ah,20 1sequential read

bdos jread entire flle

dx jrestore read offset

al,0 jcheck for eof

wsmlb 1skip {f eof

dx,128 1increment offset for next rec
wsmla jread some more

3 display format menu and get patch table addresses

wsmlb:

mov
call

%g=g§ 3

§ 38 w87 edl ¥

%8 283
ND =

g

Akd

dx ,offset menumsg;put up initial menu msg
print 3

bx,offset fmttbl;initialize pointer
si ,offset formats;point to start of format file

al 1get char of title

al,' e ystart of title ?

wamd sprint title {f found

al, lAh jend of file ?

wsm8 190 on if eof found

wsm2 1keep looking

dx ,offset menunum;print format index number
ah,9 sprint string

bdos H]

ds:byte ptr menunum+l;increment index number
ds:byte ptr menunumtl,’'9';overflow ?
wsmS 1skip {f ok

ds:byte ptr menunumtl,'0';resat 1s digit
ds:byte ptr menunum,'l' ;set ms digit

al jget char of title
dl,al jput in proper register

ah,2 1display char

bdos '

d1,0ah jend of line ?

wsmS 11loop back {f mot
skipctl yskip all ctrl chars

ds:word ptr [bx],si;save patch address
bx,2 spoint to next table position
ds:word ptr fmtcont;increment number of formats

jmp wsm2 1look for next format jmp wsml 2 1look for next patch line
w3 mov dx,offset menumsgl;put up rest of menu message 1 set default drive
call print :
wsm20: mov dl,ds:drvspec jget default drive spec
wim: call getsel ;get selection mov ah,14 1select disk function
anp tx,0 ;Check validity of selection push bx ;save index
jle wsma ;invalid, try again call bdos jcall DoS
anp bx ,ds:fmtent icheck upper limit jmp ds:word ptr wsentry;go to wordstar
jle wsml0 iskip 1f ok
3 error exits
A mov dx,offset emmsg3; invalid entry
mov ah,9 ;print string error0: mov dx ,offset ermsgd;bad drive spec
call bdos H error
jmp wsmQ ;invalid, try again errorl: mov dx,offset ermsy5;bad patch table
error
+wml0: dec bx ;base at zero Instead of one
shl bx,1 smake word index error: mov ah,9 1print error msg
mov si,ds:fmttbl[bx];get setup table address call bdos]
lods al ;get drive spec exit: amp msflag,0 JMS-DOS ? -
anp al, A’ ;1 check minimum jnz exitms yskip If Ms-Dos
jb error0 3 exit {f error
xor ax ,ax 1CP/M exit
sub al,'a’ smake bdos value mov dx,ax]
mov ds:drvspec,al ;save int 224 jexit to system
lodn al ;check for terminator exitms: int 32 sexit to system
omp al,%:"]
jnz. error0 3 exit If not proper terminator t universal bdos call
ymll: call skipctl 1skip ctrl chars bdos: omp msflag,0 IMS-DOS ?
jz bdos1 1skip 1f not
v-ml2: call getnum ;get patch address
jb errorl jexit 1f syntax error int 33 jcall Ms-DoS
anp bl,* ** ;erd of patches ? ret I
jz wim20 1 exit {f yes
amp bl, 1Ah jerd of flle ? bdosl: mov cl,ah schange for CP/M call
jz wim20 3 exit If yes push bx]
anp bl,*;" icheck ending int 224 ycall CP/M
jnz errorl ; exit if error pop bx '
ret ’
mov ai ,ax ;put patch adr in Index reg
3 print string system call
+=ml3: call getnum :get patch value
jb errorl 3 exit Lf syntax error print: mov ah,9 sprint string system call
stos al jstore patch call bdos]
ret]
anp bi,* ," ;more to come ?
DL wsml 3 1loop If yes 1 get number from Input file - SI is pointer to current position
t.isting 2. W¥ordStar Front BEnd.

11=

qgetnum: xor bx , bx

qnl: lods al
anp al,lAh
jz gn9
anp al,oth
jz gn3
anp al,'®
jz gn9
anp al,';'
jz g
anp al,',’
jz gn9
anp al,' *
jbe gnl
anp al,'o*
jb gnlo
anp al,'9’
jbe gn2
and al, 5Fh
anp al,'A’
jb gnl0
anp al,'p'
ja gnlo0
add al,9

m2: and ax,0Fh
shl bx,1
shl bx, 1
shl bx,1
shl bx,1
add bx ,ax
jmp gnl

qgnd: xchg ax,bx
cle
ret

anl0: stc
ret

1init number to zero

sget next char
jend of file

; exit {f eof
jerd of line ?

7 exit {f eol
send of patch ?

3 exit {f eop
jend of address ?
1 exit if eoca
jerd of byte ?

7 exit if eob
;space or ctrl

1 skip if space or ctrl

jless than 0 ?

3 error exit if so
jover 9 ?

;skip if not

sforce upper case
3less than A ?
3 error exit if so
jmore than F ?
1 error exit if so

jconvert letter

jassume good hex char
yshift over prev. result
¥

I

)
1add In next digit (hex)
190 for more

1 Swap
1mo error
1

1flag error
1

; skip control chars and spaces

=kipctl:lods al
anp al,' *
jbe skipctl

dec si

Listing 2. WordStar Front End.

jget char
jtest
1loop {f ctrl or space

sback up pointer
jexit

1 get selection

getsel: mov
call

sub

mov

mov

ret ~
3 data area
fcb db

d

o]
1 selection men

menumsg db
db

3 2988999

=1

ah,1 1get 1 char from kbd
bdos !

al,'o’ jmake binary

bl,al imove to index reg
bh,0 jclear index msb

0 1drive spec
"PORMATS WS '

27

u message

27,69 jclear screen

‘Channel 9000 WordStar Pormat Selection Menu'
' - version 1.0',13,10

10,10,10,10

lsl

13,10,10,'Enter Selection: $'
‘il 8

'Cannot open PORMATS.WS',13,10,'$"'

‘Not enough memory available.',13,10,'s’
13,10,'Invalid selection.'

' Enter selection again: §'

'Bad drive specification in '

'patch information file',13,10,'s"'

'Bad patch format.',13,10,'$"'

128

0 jdefault drive

0 jnumber of formats

15 jreserve room for 15 adrs

0 send of prog (gencmd kludge)

I:hannel 9000

THE INDEPENDENT NEWSLETTER OF THE VICTOR 9000/SIRIUS 1 COMPUTER

VOL.1NO. 5

September

From the Editor:

The biggest news of recent days is the
re-reorganization that Victor is undergoing. Last
November, Sirius Systems Technology merged with
Victor United (and Victor Business Products) to
form Victor Technologies, the manufacturing
entity, and Victor United, the sales and
distribution subsidiary. Subsequently, eight
districts were established, each charged with the
duties of providing marketing, sales, and
technical support for a specific region of the
country.

The districts had a great deal of autonomy in
terms of what they could do and how they could do
it. I think that Victor, seeing the success it was
having in Europe, tried to fashion its domestic
marketing organization after the European model,
in which each country has a single distributor,
who determines how the product is to be marketed
in its region. Also, there appears to have been a
mandate that the districts should put forth an
image of success. Apparently, little expense was
spared in doing this.

In addition, Victor has had some problems in
gearing up for increased production to meet the
growing demand. They were still having difficulty
getting software out the door. These problems,
coupled with typically slow summer European sales,
led to a net operating loss last quarter measured
in millions of dollars.

All of this has caused Victor, evidently being
prodded by its parent, Kidde, Inc., to retrench,
and reevaluate its marketing and distribution
strategies. While things are still in a state of
flux, it appears that Victor is cutting the number
of districts to four, and eliminating all but the
major branches. Victor has laid off close to 1000
people, some from the main plant, but most from
the districts and branches.

While all of this makes the outlook for Victor
seem bleak, I don't believe that it is. Most new
companies, like infants, make some false steps
learning to walk. Victor is far from falling on
its face. First of all, the Victor 9000 is what I
consider to be the most viable small business
computer on the market. Sirius sales in Europe
will pick up again as summer comes to a close. And
last, but not least, Kidde, Inc. is a well fixed
company with an investment to protect.

Although there is no doubt in my mind that Victor
will eventually be very successful, how do these
recent events affect those of us who are current
users, owners, and dealers. It seems to me, at
least for the near future, that there is probably
not much hope for improved customer support. Fewer
people will be available to provide assistance. It
still looks like the only way we are going to get
any help, is to continue to help ourselves.

Users groups still appear to be the best way to do
this. The following is a very brief list of those
groups that I have heard from since our last
edition.

Arizona, Pheonix
Problem Solvers Unanimous

Joe E. Reid (602) 946-5948
Arizona, Tuscon
Bernard Bell (602) 3266324

California, Sacramento
Victor Users Group of Sacramento
M. Wong (916) 924-9611
California, San Prancisco Bay Area
Victor*Group
Jack Skalicky (415) 921-5884
There are other groups for which I do not have
contacts yet. I have also received many letters
asking if there are groups in various parts of the
country. One of the problems is going to be
getting those people who want to start or belong
to a group in contact with each other.

There is some good news from Victor concerning
this. Sandy Wells, the editor of the Software
Newsletter for Victor, is doing all she can to
support and encourage the formation of users
groups. If you have a group, or would like to
start or join one, please call or write her at the
address below.

Sandy Wells
victor Technologies, Inc.
380 E1 Pueblo Road
Scotts Valley, CA 95066
(408) 438-7000

Victor has always stated that they support the
idea of users groups, and I am very pleased that
they are starting to back this up with action at
the main office.

James M. Lesher

1983

Third Party Products

Auxiliary Mmonitor Interface

Professional Data Systems has developed a device
that converts the Victor 9000 monitor signals to
composite video. A key feature of the interface is
that it does not require internal attachment or
modification to the Victor 9000. It is easily
connected between the CRT output port on the CPU
unit and the 9000's video monitor. Once installed,
the interface allows the connection of multiple
monitors, or large screen projection systems,
making it ideal for group presentations for demos,
trade shows, training, etc.

PDS is offering the Auxiliary Monitor Interface in
conjunction with a broad selection of quality
monitors. Custom configurations are also
available.

Professional Data Systems
444 Camino Del Rio South
Suite 130
San Diego, CA 92108
(619) 291-2300

Clock/Calendar Board

A Clock/Calendar board is now available for the
Victor 9000. This board is easily fitted into one
of the internal expansion slots of the 9000. It
features an on-board NI-CAD battery that keeps its
popular MSM real-time clock/calendar chip running,
even when the system is turned off.

Features include: Selectable 24 or 12 hour format;
Automatic leap year recognition; Easy time and
date setting; Latched input and output ports.
Sample programs are included with purchase.
Suggested retail price is $225.00.

Computer Possibilities Unlimited, Inc.
280 North Central Avenue
Suite 114
Hartsdale, NY 10530
(914) 949-0766

External Hard Disk System with Clock/Calendar
Univation, Inc., the manufactures of add on memory
boards for the Victor, now are offering an
external add-on, 11 Megabyte, hard disk system,
that is attractively styled to compliment your
Victor computer. The hard disk unit contains its
own power supply, and attaches to the 9000 through
an interface card that plugs into one of the
9000's internal expansion slots. The interface
card also comes standard with a clock/calendar.

The hard disk can be partitioned so that multiple
logical units may be defined simultaneously for
MS-DOS and CP/M-86. The partitions and/or logical
units may be of any size, up to the full capacity
of the unit. Single unit pricing for the hard disk
system is $1750.00.

Univation, Inc.
1037 North Fair Oaks Avenue
Sunnyvale, CA 94086
(408) 745-0180

VT100 Emulator

EM100 is a VT100 emulator for the Victor 9000. It
is capable of emulating all of the major functions
of a VT100 terminal with the exception of blink
and the double width character set (these may be
added later). The program features a user
friendly, menu driven setup. An ASCII file
transfer utility is included that supports wild
card file transfer. Logging to a local floppy is
also supported. EM100 is currently being field
tested and will be available for final shipment by
October 1st. The price of EM100 is $125.00.

Diversified Computer Systems
P.0. Box 7575
Boulder, CO 80306
(303) 443-6522

CHANNEL 9000

9742 Marcus Lane, Tujunga, CA 91042
(213) 352-6443
James M. Lesher, Editor
Subscription rate: $30.00 (US) for 6 issues
Overseas Air Mail Rate: $37.50 (US) for 6 issues
Published Bimonthly

Back Issues Available

Due to their demand, we try to keep reprints of all issues in stock.
Prices are: $5.00/ea for the US and Canada, $6.25 for Overseas.

Topics Covered:

Vol. 1, No. 1l: Keyboard Tables
Vol. 1, No. 2: I/0 Ports and Drivers
Vol. 1, No. 3: WordStar Patches
Vol. 1, No. 4: More on WordStar
Vol. 1, No. 5: Victor Display System

vVictor 9000 Display System

The Victor 9000 video display is a flexible and
unique design, which provides for a wide range of
display options. The display has two standard
modes of operation: character mode and high
resolution mode. In character mode, the screen is
configured as a matrix of 2000 cells (or character
positions) arranged as 25 rows of 80 cells, where
each cell is 10 pixels (dots) wide by 16 pixels
high. In high resolution mode, the screen {s
configured as a matrix of 1250 cells, arranged as
25 rows of S0 cells, where each cell is 16 pixels
wide by 16 pixels high. For both modes, the
overall resolution of the screen is 800 by 400
pixels.

The display screen has an aspect ratio of 3:2.
This means that the pixels are spaced vertically
1-1/2 times farther than they are horizontially.
In other words, a vertical line 10 pixels long is
the same physical length as a horizontal line 15
pixels long. The aspect ratio must be taken into
account when drawing, so that objects are
proportioned properly.

In order to implement "soft tooled"™ character
sets, as well as bit-mapped graphics, for the
display, Victor has chosen a two level memory
scheme, At address F000:0000, there is a 4K byte
screen buffer, organized as 2048 16-bit words.
Each word in the screen buffer is used to define
the contents of a cell (character) to be displayed
on the screen, along with its attributes. The
format for a screen buffer word is as follows:

Ls8 MSB
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
rv 1i ul nd xx |—Font Cell Pointer (fcp)—I|

v - Reverse Video

11 - Low Intensity

ul - Underline

nd - Non-Display

xx - Reserved

The pattern displayed in a cell is determined by
the Font Cell Pointer (FCP). The FCP points to a
16 word (32 byte) area, in one of the two 64K
blocks of the lower 128K of system memory, which
contains the dot matrix pattern for the character
to be displayed. Each 16 word area used for
defining a cell (character) pattern is called a
“font cell".

The 4K byte screen buffer is mapped into physical
address space from F000:0000 to F000:O0FFF. The
hardware is configured so that the addresses in
the range F000:1000 to F000:1FFF logically appear
to be the same as F000:0000 to F000:0FFF. This
enables the display controller to be programmed to
start scanning the screen buffer at any address
from F000:0000 to F000:1000, and still be able to
display a full screen's worth of information. This
feature allows the scrolling of the screen by
adding 80 (in character mode) to the display
controller's start address and blanking the 80
words following the previous end of screen. when

doing this, it Is necessary to AND the lower 16
bits of the resulting address with 1FFF (hex) to
keep everything within the accessible address
range.

Character Mode Fonts

The format of a font cell, used in character mode,
is given below. The letter "G" is used for the
example. Each X indicates that the corresponding
bit is set, blank indicates that the bit is
cleared. Note that the least significant bit of
each word is on the left,

oof
-0
@O

wo
-

MSB
11
45

X wo
X a0
xuwno
X oo
xXxwo
o -
N
W

&
B
HKEHXHXHXRXXXXXX O
>
>
x X x X
B > x

>
>
>
> x

As stated above, in character mode, only the 10
least significant bits of each word (bits 0 - 9)
are used to define the character. The other bits,
except for the most significant bit of each word,
are ignored. The MSBs of the font cell words are
used to determine placement of the underline (or
strikeover) in the cell. In the above example, the
MSB of word 14 is set, which means that if the
underline attribute bit in the screen buffer word
is set, then an underline will appear in the 14th
row of the character cell when the "G" is
displayed. Any or all of the words in the font
cell may have their MSB's set. Usually, however,
only one MSB in any given font cell word is set.

Character Tables for Character Mode
The dot-matrix patterns used to generate the
characters that appear on the display are stored
in files with the .CHR extension. The typical
contents of a character table file is shown, in
Listing 1, in assembly language format.

The System generation program, SYSELECT, provides
for the selection of one or two character sets to
be included with the system. The console
modification program, MODCON, provides for
dynamically changing the current character set (in
RAM) . The graphics kernal, GRAFIX, provides for
the display, in graphics mode, of any of the
available character sets, simultainously.

Character sets used for the the system display can

be either 128 or 25 characters is size. However,
the current BIOS software only provides enough

s

space for 256 characters total. This means that if
the primary character set specified in SYSELECT
contains 256 characters, the second character set
will not be incorporated in the system, even
though it was specified to be included.
Correspondingly, if the primary character set
contains 128 characters, only 128 characters from
the secondary character set will be included in
the system, even though it may actually contain
256 characters.

There are also some peculiarities in the way the
BIOS handles the display of characters
corresponding to the hexadecimal codes 80 through
FF. If the primary character set contains 256
characters, then the upper 128 characters can be
displayed by sending the hex codes 80 through FF
to the console. If the primary character set
contains 128 characters, then sending the hex
codes 80 through FF to the console causes the
display of the characters corresponding to the hex
codes 00 through 7F.

The results for the secondary set are somewhat
different, since the secondary character set can
only contain 128 characters. Sending the hex codes
80 through FF to the console, while the secondary
character set is enabled, causes the display of
the characters corresponding to the hex codes 00
through FF from the primary character set.

Another ideosyncracy occurs when the primary
character set contains 256 characters. Since
SYSELECT does not allow more than 256 characters,
total, for character sets, there is no secondary
character set, when the primary character set
contains 256 characters. Enabling the secondary
character set under these conditions causes the
character font pointers in the BIOS to point to
that area of memory where programs are loaded.
This can cause some strange dot patterns to be
displayed on the screen.

The character sets used by the system are accessed
directly by the hardware, so they must be designed
to display properly under those restraints. The
fonts should be designed to display horizontally
in a 10 by 16 pixel area, and they should
correspond to the ASCII definitions, where
applicable. The SYSELECT program only uses that
portion of the character set file header up to,
and including, the “"number of records" entry (see
Listing 1).

High Resolution Mode

In high resolution mode, all 16 bits of each font
cell word are utilized for display. The MSB's of
each word are still active for underlining, but
this feature is generally not used in this mode.

Screen access in high resolution mode is usually
done using a bit mapped approach, where each pixel
on the screen is controlled by a separate bit in
memory. While there are many other ways of mapping
the screen, this is the simplest method, and is
the method used by the GRAFIX program.

Since the screen resolution is 800 by 400, it

requires 320,000 bits, or 20,000 words, to
represent it in a bit mapped manner. In order to
have each pixel controlled by a separate bit, the
screen buffer must be set up so that each font
cell pointer points to a different 16-word area of
memory. For discussion, we will use the address
0000: 0000 as the base of our 20,000 word font
memory. In actual applications, this wouldn't be
done because both MS-DOS and CP/M use this lower
area of memory.

Figure 1 shows a mapping scheme for the screen
buffer that simplifies the computations required
to determine which bit controls which pixel. This
method was also chosen because it makes the
drawing of vertical lines trivial; setting the
same bit in a number of successive words
accomplishes this.

All addresses and offsets given in Figure 1 are in
hexadecimal. Each box in the figure represents one
word (two bytes) of the screen buffer. The number
in each box represents a 16 word (32 byte) font
cell. The 9000 display driver hardware effectivly
multiplies this number by 32 to get the address of
the first word of the font cell.

With the mapping scheme given, the following BASIC
program will convert the cartesian coordinates
(X,Y) to the byte offset and bit number for the
pixel. The program assumes that the coordinate of
the lower, left pixel is (0,0), and the upper,
right pixel is (799,399).

10 INPUT "X";X

20 INPUT "Y";Y

30 X.COL = INT(X/16)*400

40 Y.ROW = INT(399-Y)

50 WRD = X.COL + Y.ROW

60 WBIT = X MOD 16

70 BYTE = WRD * 2

80 IF WBIT>7 THEN BYTE=BYTE+l
90 BBIT = WBIT MOD 8

100 PRINT “BYTE = “;BYTE;" BIT = ";BBIT

The above mapping method uses only 1250 of the
2048 words of the screen buffer, and only 40,000
of the 65,536 bytes of font memory that is capable
of being addressed. With some minor modification,
the above scheme can be made to accomodate a
graphic area that is 1024 by 512 dots, with the
display screen being a 800 by 400 dot window on
that area. In addition, the font memory can be
readily switched between the first and second 64K
block of memory, allowing for the quick changing
of display information.

400 +02 +04 +06 +08 +0A +0C

056 055 ¢5A 48: 05& 060 062

#000:0000 | 0 | 9!32[48!64!70!961 1433I44CI465|47!I49714681€9l
F000: 0064 | 1 | NEIGE | = | 97 1 I uu 40| 461 47¢| 498 | 46l 4cal
F000: 00C8 E 2|1 1B| 34 |4 66| 7F| 98| | 435| ‘4D| 467| 480| ‘99| ‘ﬂ)l ul

|) |

A ru . - S S S
F000:0898 | 16 | 2F | 48 | 61 | 7A | 93 | AC | | 449[‘52] 47B| 494| ‘63| 4C6| 4;;
F000:08FC | 17 | 30 ! 49 ! 62 | 78 | 94 ‘l AD 1 | 44a| 463| ‘7C| ‘95| 469 | 4C7ET401
F000: 0960 1 18 | 31 ! 4A 1 63 | 7C |‘ 95 | AE l 1445L464! 4701 496 46a| 4C8L‘EH
Figure 1. High Resolution Mapping

Display System Hardware

The operation of the display system i{s controlled
by a HD46505 type CRT Controller chip (CRTC). This
chip provides all the timing, addressing, and
control functions for the display system. The CRTC
is memory mapped at the following addresses:

E800: 0000
E800:0001

Address Register (AR)
Register File (RF)

The Address Register (AR) is used to tell the chip
which of the 18 registers accessible through the
Register File (RF) you wish to read or write. To
read or write to a register, you first write the
number of the register you wish to access to the
AR at E800:0000, then you read or write the data
through the RF address, E800:0001.

The following is a brief description of the CRTC
register functions. All registers are 8-bit. 16
bit parameters are programmed using two separate
registers. For a more detailed description, obtain
a manufacturer's data sheet (Hitachi).

RO - Horizontal Total Register

This register determines the horizontal frequency
sent to the CRT. It is programmed in terms of
character times, being the total of displayed and
non-displayed character time units minus one. In
interlace mode (the mode used by the 9000), the
total character times must be even (i.e. the
number programmed into RO must be odd).

Rl - Horizontal Displayed Register

This register determines the number of characters
displayed on each line. Any value less than that
programmed into RO is legal.

R2 — Horizontal Sync Position Register

This register determines the position of the
horizontal sync pulse and, therefore, the
left-right centering of the displayed lines on the
screen. It is programmed in terms of character
positions. It should be a value between those of
Rl and RO, but any value less than RO is legal.

Increasing the value of R2 moves the displayed
lines to the left, decreasing R2 moves the lines
to the right.

R3 - Sync Width Register

This register determines the widths of the
horizontal and vertical sync pulses. The most
significant four bits of R3 (bits 7-4) determine
the vertical sync pulse width in terms of the
horizontal period (i.e. a value of 12 would set
the width to 12 horizontal periods). A value of
zero sets the vertical sync width to 16 horizontal
periods. The least significant four bits of R3
determine the horizontal sync pulse width in terms
of character times. The value of zero is illegal.

R4 - Vertical Total Register

This register determines the total number of
character rows per frame. The value programmed
should be one less than the total number of
character rows. This register, together with RS,
determines the overall frame rate. Values in the
range of one to 127 are legal.

RS - Vertical Total Adjust

This register sets the additional number of
horizontal time periods used to fine tune the
vertical period (see R4). Values in the range of
zero to 31 are legal.

R6 - Vertical Displayed

This register determines the number of character
rows displayed on the screen. Any number smaller
than R4 is legal.

R7 - Vertical Sync Position

This register determines the position of the
vertical sync pulse and, therefore, the up-down
centering of the displayed lines on the screen. It
is programmed in temms of character row number. It
should be a value between those of R6 and R4, but
any value less than R4 is legal. Increasing the
value of R7 moves the displayed lines upward,
decreasing R7 moves the lines downward.

-5-

R8 - Mode Control

This register sets the interlace mode and delay
timing of two of the CRTC output signals. The two
least significant bits (bits 1 & 0) set the
interlace mode as follows:

Bit 1 Bit 0 Mode
] 0 Non-interlace mode
1 0 Non-interlace mode
0 1 Interlace sync mode
1 1 Interlace sync & video

The most significant four bits (bits 7 - 4)
control delay timing for some of the outputs of
the CRTC. For the hardware design of the 9000,
these bits are always set to zero.

R9 - Maximum Raster Address Register

This register determines the number of rasters
(l1ines) per character. It is programmed to one
less than the number of rasters, for non-interlace
and interlace sync mode. For interlace sync and
video mode, it is programmed to two less than the
number of rasters, and the number of rasters must
be even. The difference for interlace sync and
video mode is due to difference in the display
method used in that mode. For that mode, the odd
and even rasters are displayed in alternating
frames, in order to improve the display resolution
and prevent flicker. If in this case, R9 is
programmed to one less than the number of rasters
instead of two less, the even frame would display
9 rasters per character, instead of 8, as it
should. |

R10 - Cursor Start Register

This register determines the cursor starting
position in the character cell and the mode of
cursor displayed. The five least significant bits
(bits 4 - 0) set the starting raster number for
the cursor. Bits 6 and 5 set the cursor mode, as
follows:

Bit6 BitS Mode
0 0 Steady cursor
0 1 No cursor
1 0 Blink at 1/16 field rate
1 1 Blink at 1/32 field rate

R1l ~ Cursor End Register

This register determines the cursor ending
position in the character cell. The five least
significant bits (bits 4 - 0) set the ending
raster number for the cursor.

Cursor Note:

By setting the cursor start and end to the same
raster number, an underline cursor can be
programmed. By setting the cursor start to zero,
and the cursor end to the last raster number, a
block cursor can be programmed.

R12 & R13 — Start Address Registers

These registers determine the address in screen
memory of the first character of the displayed
scan (the character at the top left of the
display). For the 9000, only 11 bits of address
are used. The least significant 8 bits of the

address are programmed into R13. The most
significant 3 bits of the address are programmed
into the least significant 3 bits of R12. In the
Victor 9000, two of the unused address bits of the
CRTC are used to enable high-intensity mode, and
to control which 64K address space is used for the
font memory. Bit 4 of RI2 controls the 64K font
memory block. A zero sets it to the lower 64K of
system memory, a one sets it to the upper 64K. Bit
5 controls the resolution mode of the display. A
zero sets character mode, a one sets high
resolution mode.

Rl4 & R15 - Cursor Address Registers

These registers determine the position that the
cursor is displayed on the screen. The position is
programmed by setting the cursor address to the
address, in screen memory, of the character that
corresponds to the position at which the cursor is
to display. R14 and R1S are programmed in the same
manner as R12 and R13, above, including the bits
used as mode control.

R16 & R17 - Light Pen Registers

These registers contain the address, in screen
memory, of the character that was being displayed
when the light pen input was strobed.

CRTC Standard Programming

The Victor BIOS and other Victor programs use two
recommended sets of values for initializing the
CRTC registers. These values are given in the
table below.

Register Char. Mode Hi-Res Mode
RO 92 (%0) 3A)
Rl 80 (50) 50 (32)
R2 81 (51) 52 (34)
R3 207 (CF) 201 (C9)
R4 25 (19) 25 (19)
RS 6 (06) 6 (06)
R6 25 (19) 25 (19)
R7 25 (19) 25 (19)
R8 3 (03) 3 (03)
R9 14 (OE) 14 (OE)
R10 0 (00) 0 (00)
R11 15 (OF) 15 (oF)
R12 0 (00) 0 (00)
R13 0 (00) 0 (00)
R14 0 (00) 0 (00)
R15 0 (00) 0 (00)

The values for character mode result in an 80
character by 25 line display with a horizontal
frequency of 16,129 Hz, and a vertical frequency
of 38.2 Hz. The values for high resolution mode
result in a 50 character by 25 line display with a
horizontal frequency of 15,890 Hz, and a vertical
frequency of 37.7 Hz. While these values are close
to the television standards of 15,750 Hz for the
horizontal frequency, and 30.0 Hz for the vertical
frequency, they are far enough off that not all
standard monitors would be capable of
synchronizing with them. Care should be taken if
you wish to use a non-Victor monitor, to make sure
that monitor can synchronize with the Victor's
outputs.

=6

Video Output

Connection to the external monitor is made through
a 9-pin, subminiature "D" connector on the back of
the Victor 9000 CPU unit. Connection for the power
for the monitor, as well as the video signals, is
made through this connector. The pin assignments
for the connector are as follows:

Slgml

Video

Video Ground

+12 Volts (Power to monitor)
Ground

Brightness

Video shield

Vertical Sync

Ground

Horizontal Sync

Pin §
i &

CoNanawn

Light Pen Input

The 9000 provides a buffered TTL input for the
light pen input to the CRTC. This signal is pulled
to +5 volts through a 2.2 resistor. The input is
activated by grounding it. The signal is available
through the User Port connector inside the Victor
CPU unit. The light pen input signal is on Pin 10
of the User Port connector, and its corresponding
ground is on Pin 11.

Brightness and Contrast

The Victor 9000 display system provides for 8
levels of brightness and 8 levels of contrast for
the display. Brightness is the overall intensity
of both the high intensity and low intensity
modes. Contrast is the difference in intensity
between the high intensity and low intensity
modes. Decreasing the contrast decreases the
difference in intensities.

While the brightness and contrast are nommally
controlled through the sending of escape sequences
to the console, is also possible to control them
directly through the hardware. The brightness and
contrast are each controlled by three bits of the
B port of the VIA2 6522 Peripheral Interface
Adapter chip (base address E800:0040) .

VIA2 pins Function
PB2 Brightness 0 (LSB)
P83 Brightness 1
PB4 Brightness 2 (MSB)
PBS Contrast 0 (LSB)
PB6 Contrast 1
P87 Contrast 2 (MSB)

The following assembly language and BASIC routines
illustrate the manipulation of the contrast and
brightness controls. The assembly routines assume
that the ES register contains OE800H.

;increase brightness

INCB:MOV AL,BYTE PTR ES:40H ;get current value
MOV AH,AL ;make copy of register
ADD AL,04H ;increment brightness
AND AL,ICH jmask all but brightness
MP AL,0 icheck for overflow
JZ NODO ;skip if at maximum
AND AH,O0E3H ;get original reg values

OR AH,AL jmerge in brightness
MOV BYTE PTR ES:40H,AH joutput new values
NODO: RET jcontinue on

idecrease brightness

DECB:MOV AL,BYTE PTR ES:40H ;get current value
MOV AH,AL jmake copy of register
SUB AL,04H jdecrement brightness
AND AL, 1CH jmask all but brightness
OMP AL, ICH icheck for underflow
JZ NOD1 iskip if at minimum
AND AH,OE3H 1get original reg values
OR AH,AL ;merge in brightness
MOV BYTE PTR ES:40H,AH j;output new values
NOD1:RET ;continue on

;increase contrast

INCC:MOV AL,BYTE PTR ES:40H ;get current value
MOV AH,AL ;make copy of register
ADD AL, 20H ;increment contrast
AND AL, OEOH jmask all but contrast
CMP AL,0 ;check for overflow
Jz NOD2 ;skip if at maximum
AND AH, 1FH 1get original reg values
OR AH,AL smerge in contrast
MOV BYTE PTR ES:40H,AH ;output new values
NQD2:RET jcontinue on

;decrease contrast

AL,BYTE PTR ES:40H ;get current value
AH,AL ;make copy of register
AL, 20H ;increment contrast
AL, OEOH ;mask all but contrast
AL, OEOH icheck for underflow
;skip if at minimum
;get original reg values
A ;merge in contrast
BYTE PTR ES:40H,AH ;output new values
;oontinue on

:
LEEREH
:

g

THEN VIA2=VIA2+4 : POKE &H0040,VIA2
60 RETURN
70 REM DECREASE BRIGHTNESS
80 VIA2=PEEK (§H0040)
90 IF (VIA2 AND &H00IC)<0
THEN VIA2=VIA2-4 : POKE &H0040,VIA2
100 RETURN
110 REM INCREASE CONTRAST
120 VIA2=PEEK (&H0040)
130 IF (VIA2 AND &HOOEO)<>&HOOEO
THEN VIA2=VIA2+&H20 : POKE &H0040,VIA2
140 RETURN
150 REM DECREASE CONTRAST
160 VIA2=PEEK (&H0040)
170 IF (VIA2 AND &HOOE0)<>0
THEN VIA2=VIA2-&H20 :
180 RETURN

POKE &H0040,VIA2

=, i

High-Resolution Graphics
Programming Notes

Programming for high resolution mode requires that
some careful consideration be given to the memory
areas used for graphic functions, along with those
used for the program itself. There are
restrictions as to where the font memory can
reside, and there are areas within the possible
font memory locations that are reserved for use by
the CP/M and MS5-DOS operating systems.

"Reserved” Operating System Areas

The lowest 11K bytes of memory (slightly more for
MS-DOS) are used by the operating system. The
first 1K bytes are hardware and software interrupt
vectors. For MS-DOS, the next 128 bytes are used
for jump tables, which are the link between the
MS-DOS BDOS and the Victor BIOS. Following that,
for both CP/M and MS-DOS, are 10K bytes that are
used for the dot patterns for the sign-on logo and
the resident character sets. Immediately following
these areas is the start of the Transient Program
Area (TPA), the lowest address available for
program usage. The tables below show the (hex)
addresses of these areas.

MS-DOS Memory Map

Addresses Usage

0000: 0000 - 0000: 03FF Interrupt Vectors
0000:0400 - 0000: 047F MS-DOS Jump Table
0000: 0480 - 0000: OC7F Logo Dot Patterns
0000:0C80 - 0000: IC7F First 128 Char Set
0000:1C80 - 0000: 2C7F Second 128 Char Set
0000:2C80 - Start of TPA

CP/M-86 Memory Map

Addresses Usage

0000: 0000 - 0000:03FF Interrupt Vectors
0000:0400 - 0000: OBFF Logo Dot Patterns
0000:0C00 - 0000: 1BFF First 128 Char Set
0000: 1C00 - 0000: 2BFF Second 128 Char Set
0000: 2C00 - Start of TPA

It is generally not desirable to require that the
system be rebooted when a program is terminated.
This requires that those memory areas up to the
beginning of the TPA either not be modified, or
else be restored to their original contents when
the program ends.

Placement of Graphics Memory

As discussed earlier, 40,000 bytes are required
for the screen representation for bit mapped
graphics. These 40,000 bytes are also required, by
the hardware, to be entirely within the first 64K
block of memory (0000:0000 - 0000:FFFF), or
entirely within the second 64K block of memory
(1000: 0000 - 1000:FFFF). The beginning of
available memory in the first 64K is at the start
of the TPA. For MS-DOS, there are 54,144 bytes
(D380 hex) available. For CP/M, there are 54,272
bytes (D400 hex) available. For both systems there
is sufficient memory available in the first 64K
bytes for hi-res graphics.

The availability of sufficient memory in the
second 64K block depends on the total memory
available in a given Victor 9000 configuration.
The CP/M and MS-DOS operating systems both reside
in the high end of available memory. CP/M (version
2.4) requires 32,480 bytes. MS-DOS, configured as
a floppy only system (version 2.6), requires
32,720 bytes, and configured as a hard disk system
(version 2.61), requires a minimum of 39,856
bytes. For systems with only 128K of memory,
neither operating system leaves enough memory
space in the second 64K to accommodate bit mapped
graphics. In systems with 256K, or more, of
available memory, the entire second 64K block can
be utilized for graphics.

System Character Font Location

Since there is a possibility that the absolute
address of the system character font table will
change with new releases of the operating systems,
a programmatic method of detemmining its location
is needed. This can be done simply by first
clearing the screen (using the <ESC> E sequence),
and then reading the first word of the screen
memory (at F000:0000) to get the font cell
pointer. The font cell pointer will point the the
cell for the ASCII SPACE character (hex 20), so it
must be adjusted to point to the start of the
table. The following BASIC and assembly programs
determine the starting segment address for the
system character set.

30 PRINT CHRS(27); “E";
40 A=PEEK (0)+ ((PEEK (1) AND &HO7) * 256)
50 A=(A%2)-64

MOV DL, 1BH iClear screen

MOV AH,2 H

INT 33 i

MOV DL,'E' H

MOV AH,2 H

INT 33 :

MOV AX, OF000H ;Point to screen ram
MOV ES,AX ; using

MOV AX,WORD PTR ES:0;Get font pointer
AND AX,7FFH ;Mask out pointer part
SHL AX,1 ;Make segment address
SUB AX,64 ;Point to table start

Since there are 8K bytes allocated for system
character sets, adding 256 to the value obtained
above yields the lowest segment address that
should be used for graphics memory.

System Character Font Usage

If the system character font is left undisturbed,
it can be used for displaying text or special
characters in high resolution mode. The dot matrix
patterns for characters have the same proportion
in high resolution mode as in character mode. It
is also possible to use the other special
character sets (vertical, proportional, etc.), but
these must be loaded separately by the
application.

i

Displaying a character in high resolution mode
requires a lot of bit manipulation because the
standard character cells are 10 by 16 pixels, and
the cells used in high resolution mode are 16 by
16 pixels. This means that it is not possible to
display a character just by copying it to the
graphics memory. Quite a few calculations must be
performed to determine the word and bit offsets
for each dot of the character being displayed. In
addition, the calculations depend on how the font
pointers in the screen memory are ordered (that
is, the mapping scheme used).

Graphics Program Placement

The CP/M-86 operating system loads all programs at
the highest possible memory location (unless the
program was generated to specifically run at a
given absolute address). In this case, no
consideration concerning placement is needed. Only
the size of the program needs to be checked to
ensure that it does not encroach on the graphics
memory.

Placement under MS-DOS is not so simple. MS-DOS
COM files are always loaded at the base TPA
address, as are most EXE files. For 128K systems,
this can present some problems, since the second
64K is not available for graphics memory use.

For COM files, one solution is to keep the
program less than 14,000 bytes long, thus leaving
enough space for graphics. Another is to reserve
40,000 bytes near the beginning of the program for
graphics memory (this, however, makes the program
file on disk 40,000 bytes bigger). Still another
solution i{s to build into the program a small
relocation routine that moves the program after it
is loaded.

These solutions are valid only for COM programs
you are writing, not for existing programs that
you may possibly wish to use to do some high
resolution graphics programming, like the BASIC
interpreter. It would be an advantage to be able
to use the interpreter to develop and debug a
graphics program (a game, for example), with the
intention of compiling it, when finished, to speed
its execution.

To enable us to use the BASIC interpreter to do
this, BASIC must be made to load at least 40,000
bytes higher than it normally does. A short
assembly language program is all that is required
to do this. The program consists only of an INT 39
instruction with the DX register containing
40,000. The INT 39 instruction causes an exit to
the system that allows the program to remain
resident, but telling the system to assign to it
40,000 bytes of memory (determined by the contents
of the DX register when the INT 39 {is executed).
Once this program is » all subsequent COM
programs will be loaded 40,000 bytes higher than
nommal, until the system is rebooted. The graphics
memory is accessed in BASIC by using the DEF SEG
statement along with PEEKs and POKEs. DEF SEG,
PEEK, and POKE would also be used to initialize
the CRTC and other memory mapped I/0 devices for
high resolution mode.

The loading area for EXE files can be somewhat
determined through the use of the appropriate

- switches when linking. The linker normally
allocates memory starting as low as possible,
ordering segments (by Group and Class) as they are
encountered in the object file. For assembly
language programs, forcing loading into high
memory is fairly simple. For compiled BASIC
programs, it is trickier.

Compiled BASIC programs that are to be loaded into
high memory must be compiled using the /O option.
This forces linking with the BASCOM.LIB library so
that the BASRUN.EXE runtime module is not
required. This restriction i{s because when the
BASIC program is loaded into high memory, there is
no room for the BASRUN.EXE file, which must be
loaded above the BASIC program. Once the program
is compiled, it must be linked using the /H and /S
options. The /H option forces loading into high
memory. The /S option forces allocation of
additional stack space for strings. The value used
with the /S option must be empirically determined.
I start with a value of 60000 and decrease it
until I get no linking errors. The following is an
example of compiler and linker commands:

BASCOM progname/O;
LINK progname/H/S:60000;

CRTC Notes

First, something should be said concerning the
aesthetics of graphics programming. I'm sure you
have moticed the "jump® that the screen does when
switching between 80 column mode and 132 column
mode, or when switching in and out of graphics
mode when using GRAFIX. This jump is due to the
slightly different video synchronization
frequencies between the two modes. To me, this
jump is annoying. For most applications, there is
a simple way around the problem.

All that is necessary to prevent the jump from
being seen is to have the display memory blank, or
force the intensity to zero, when changing the
CRIC parameters. While the jump is still present,
it can't be seen if nothing is on the screen.
Setting the screen intensity to zero is the
easiest solution because is doesn't require the
clearing of the 40,000 bytes of graphics memory,
which you may wish to leave in tact while
switching modes. I much prefer the screen
going blank for a short period to the "jump" of
the display.

A programming note concerning the CRTC should also
be mentioned. This note can also apply to other
memory mapped I/0O devices. The CRTC is always
programmed by first writing a register file
address byte to E800:0000, and then writing the
corresponding data byte to E000:0001. Since the
8088 processor does word writes by storing the low
address byte first, followed by the high address
byte, a CRTC register can be set by doing one
write word operation instead of two write byte
operations. This saves both program space and
execution time. The following example stores the
value 5C hex to register 1.

MOV AX,0E800H jPoint to I/0 space
MOV ES,AX ; using ES
MOV WORD PTR ES:0,5CO01H; Set register 1

It is also possible to use the string instructions
of the 8088 to quickly initialize the CRTC, or
other devices. The following code sets the CRTC to
high resolution mode.

; assume DS = CS for this example

MOV AX,OEBOOH ;Point to I/0 space
MOV ES,AX ; using ES
MOV SI,OFFSET TBL ;Point to data table
MOV CX, TBLLEN ;Get length of data
CcLD ;Increment pointers
LP: LODSW ;Get word of data
MOV WORD PTR ES:0,AX;Store to CRTC
Loop LP iGo til done
etc...
TBL DW 3A00H ;Data for register 0
D4 3201H ;Data for register 1
DW 3402H ;Etc, etc, etc
DN 0C903H
DWW 1904H
D4 0605H
OW 1906H
W 1907H
DW 0308H
DA OEO9H
D4 200AH
D4 OFOBH
DW 000CH
D4 000DH
DW 000EH
D4 000FH
TBLLEN EQU ($ - TBL)/2 ;Table size in words

; File: brkpnt.asm
i graphics mode debugging breakpoint routine

; assemble as follows:

Debugging Graphics Programs

The debugging of graphics programs can present
some interesting logistical problems. One such
problem occurs when using a debugger such as DEBUG
or DDT86. The problem is that if you set a
breakpoint in your program, when that breakpoint
is hit, the debugger tries to display information
about that breakpoint. If you have changed to high
resolution mode, what is displayed, i{f anything,
will be garbled. What I have done to get around
this problem is to write a short routine that
restores character mode, and then essentially does
an INT 3 (INT 3 is what both debuggers use for
breakpoints). I pick some otherwise unused
software interrupt to use in place of INT 3 (INT
254, for example) and put the address of the
routine in that interrupt's vector location
(0000: 03F8 for INT 254). Setting my breakpoint,
unfortunately, must be done manually, as must
resetting it. It is set by storing CD FE (hex) at
the point in the program at which I wish to break.
The breakpoint routine is given in Listing 1. It
saves all registers, restores character mode, and
clears the screen. It then subtracts one from the
address offset that was stored on the stack when
the interrupt occurred. This is done because INT 3
used by the debugger is a one byte instruction,
and all other interrupts are two byte
instructions. Adjusting the offset compensates for
this difference and corrects the instruction
pointer (IP) display. Finally, the routine
restores all registers, and does a long jump
through location 0000:000C, the vector for INT 3.
The routine is completely relocatable. It can be
placed in any segment at any offset.

Other methods of performing breakpoints are
possible. what is done depends on the specific
requirements you have while debugging.

i asm brkpnt; R asm brkpnt;
H link brkpnt; link brkpnt;
H exe2bin brkpnt brkpnt.com sysloc brkpnt brkpnt.com

; load in debug as follows:

: Nbrkpnt .com
i LXK : YYYY

; then set desired interrupt vector to XXXX:YYYY

Listing 1. Debugging breakpoint.

OOOXX:YYYY is desired loading location)

cseq segment
assume Cs:Cseq,ds:cseq

int254: push bp ;save base pointer
mov bp,sp ;keep copy of stack pointer
push es ;save rest
push ds ;
push ax ;
push bx H
push ox H
push dx H
push si ;
push di ;
mov dl,1Bh jclear screen
mov ah,2 :
int 33 ;MS-DOS call
mov dl,'e’ H
mov ah,2 3
int 33 7
call next sthis is to get the IP value
next: pop ax ; for this instruction
mov ax,cs ;set DS to current segment
mov ds,ax ;
mov ax, 0E800h ;point to I/0 space
mov es,ax ; using ES
mov si ,offset (tbl - next) joffset to table from next
add si ,dx ;adjust for position in segment
mov cx,tbllen ;get length of table
1p: lodsw ;get data
mov word ptr es:0,ax i;send to CRIC
loop 1p ;9o til done
dec word ptr (bp+2] ;correct address offset on stack
mov bx,offset (exit — next) ;get offset to exit
add bx ,dx ;adjust for position in segment
xor ax ,ax ;point to interrupt tables
mov es,ax ;
mov ax,word ptr es:0Ch iget INT 3 offset
mov word ptr [bx+l],ax ;joffset of INT 3
mov ax,word ptr es:0Eh ;get INT 3 segment
mov word ptr [bx+3],ax ;segment of INT 3
pop di ;restore registers
pop si
pop- dx
pop ox
pop bx
Pop ax
PopP ds
pop es
Pop bp
exit db OEAh ;jmp far instruction
dw 0000h ;offset for jump
dw 0000h ;segment for jump
tbl aw 5CO0H, 5001H, 5102H, OCFO3H,1904H, 0605H,1906H,1907H
dw 0308H, OE09H, 000AH, OF0BH, 000CH, 000DH , 000EH , 000FH
tbllen equ ($ - tbl)/2
cseg ends
end int254

Listing 2. Debugging breakpoint, continued.

T

ORG OH

~

set type (1 char)
D8 ¢!
format version (1 char)
Io‘
(12 chars)
‘Victor Int'l’
; banner name (8 chars)
DB *Int'l 3
filler (1 char)
DB '

-~

0B
display class
D8

; banner version (3 chars)
oL !

D8
filler (1 char)
D8

; comment (35 chars)

D8 *Victor International v
; originator (16 chars)
D8 ‘Sirius S/W .
; date created (8 chars)
DB '82/02/20"
; number of records (4 chars per rec)
D8 ‘64 *
3 filler
B8 0,0

"
character orientation and dimensions
Bit 7 =0 if horizontal, 1 if vertical
Bits 4-6 = up/down shift lines for super/sub script
Bits 0-5 = height of char in lines minus 1
DB TFH
user/system & stock/special flags
Bit 0 = 0 if user, 1 if system
Bit 1 = 0 if stock, 1 if special
D8 OH
proportional flag & character width
Bits 4-7 = 0 if not proportional, F if proportional
Bits 0-3 = width of char set (in dots) minus one
D8 0%H

e e

~ e

e ne

ORG 80H

Character 0 (hex)

00000000000000008

10000000000000008
00000000000000008

SRR EEEEREREEE

Listing 2. Character Font File

12~

1 Character 1 (hex)

00000000000000008
00000000000000008
00000000111111008
00000001000000108
00000001010010108
00000001000000108
00000001001100108
00000001000000108
00000001011110108
00000001001100108
00000001000000108
00000000111111008

00000000000000008
10000000000000008
00000000000000008

PYYPYPYPYPYPYIYY

; Character 2 (hex)

00000000000000008
00000000000000008
00000000111111008
00000001111111108
00000001101101108
00000001111111108
00000001110011108
00000001111111108
00000001100001108
00000001110011108
00000001111111108
00000000111111008
00000000000000008
00000000000000008
10000000000000008
00000000000000008

¥

PYYYEYYEERYERY

; Character 3 (hex)

00000000000000008

g¥

00000000000000008
00000000000000008
00000001110111008
00000011111111108
00000011111111108
00000011111111108
00000011111111108
00000001111111008
00000000111110008

FRYPYRPEYRTEEY

The remaining characters are omitted
due to space limitations

; then at the end of the fonts, there

is a table of widths, one for each
; character. Each width occupies 1/2,
; byte, and is the width of the char
; (in dots) minus one.

H
i
i
; If the char set is proportional,
i
H

