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SECTION 1
GENERAL DESCRIPTION

The SPERRY UNIVAC V70 Series Floating Point Processor Manual
describes the Floating Point Processor (FFP) and its interface
with other 70 series system componénts,

The manual is divided into the following seven sections:

0 General Description (Introduction to the FPP,
related publications, and specifications)

o Installation

o Operation

o Theory of operation

o Maintenance

o} Mnemonics 1list

o Test programs

There is also a system documentation package which is assembled
when the hardware is shipped and reflects the configuration of
a specific system. It contains engineering documents such as
logic and installation drawings.

The following list contains the part numbers of other manuals
pertinent to the SPERRY UNIVAC 70 series computers (the x at the
end of each document part number is the revision number and can
be any digit 0 through 9):

V70 Series Architecture Reference Manual 98A 9906 00x
Processor Manual 98A 9906 02x
Option Board Manual 98A 9906 05x
Microprogramming Guide 98A 9906 07x
Writable Control Store Manual 98A 9906 08x
Memory Map Manual 98A 9906 10x
V76 System Reference Manual 98A 9906 23x
V77-600 System Reference Manual 98A 9906 40x
MAINTAIN III Manual 98A 9952 07x



The FPP is a high-speed, special-purpose processor which _
performs the arithmetic operations on single and double precision
real numbers represented in V70 series floating point format.

It also performs conversions between floating point and integer
formats.

When the FPP is installed in a V70 series system, its 56-bit
floating point accumulator and floating point instruction set
are fully integrated into the computer architecture both at the
machine language programming level and at the FORTRAN level.
This minimizes the overhead associated with passing control
between the FPP and the central processor. Pipelining of
instructions is implemented in order to increase throughput.
Direct memory access is used to obtain operands and store
results,

The basic FPP clock period is 165 nanoseconds; however, fast
shift operations occur during 82 nanosecond clock periods. This
provides faster average execution times by minimizing the time
spent in shifting the contents of the accumulator in connection
with alignment or normalization.

Specifications for the FPP are listed in table 1-1.
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Table 1-1. Floating Point Processor Specifications

Parameter

Specification

Arithmetic
operations

Format
conversions

Number range
(magnitude
ranges are
same for
positive and
negative
numbers)

Normalization

Round off

Out of range

indication

Addition, subtraction, multiplication, or
division of sihgle or double precision
floating point representations of real
numbers. (Mixed precision operations such
as addition of single precision operand to
double precision operand can be
performed.)

Conversions between floating point format
and 16-bit twos complement integer
formats. (Operands in integer format
must be converted to floating point
format prior to performing arithmetic.
Results can be converted to integer
format before storage in memory.

Largest magnitude: Single precision:

2127(1 ) 2-22)
Double precision:
2127 (1 = 5745,
. . -129
Smallest non-zero magnitude: 2

Zero is also a valid magnitude.

All result values except zero are
normalized before storage. All
operand values except zero are
normalized.

Results are rounded off before storage.

The FPP initiates an interrupt when an
out of range result occurs. (The
interrupt is also initiated if a string
of FPP instructions does not end with a
store instruction within 500 micro-
seconds).




Table 1-1. Floating Point Processor Specifications (continued)

Parameter Specification

Interrupt The FPP inhibits all interrupts when it is

inhibit executing a sequence of instructions. (A
sequence is defined to end when an
instruction which stores a result is
executed.)

Software Normally VORTEX I or VORTEX II. Will

operating operate in any environment which provides

system required instruction, address, and operand
formats.

Interrupt 076 (octal).

address

Priority Between real-time clock and highest

assignment
Basic cycle
time

Fast shift
cycle time

Dimensions
Installation
Input power

Operational
environment

priority PIM (for VORTEX I or VORTEX II
environment).

165 Nanoseconds.
82.5 Nanoseconds.
Contained on a 15.6 by 19 inch (39.6 by

48.3 cm) wire-wrap board.

Plugs into V70 series mainframe chassis
using three module slots.

+5V dc at 16 amperes.

0 to 50 degrees C, 0 to 90 percent
relative humidity without condensation.
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SECTION 2
INSTALLATION

2.1 INSPECTION

The FPP has been packed and inspected to ensure its arrival in
good working order. To prevent damage, take care during
unpacking and handling. Check the shipping 1list to ensure that
all equipment has been received. Immediately after unpacking,
inspect the equipment for shipping damage. Ascertain that
wires are neither loose nor broken and that hardware is secure.
If damage exists:

a. Notify the transportation company.
b. Notify Sperry Univac.

c. Save all packing material.

2.2 PHYSICAL DESCRIPTION

The FPP circuits are on a 15.6 by 19 inch wire-wrap circuit
board (p/n 44P0723). Figure 2-1 shows dimensions and connectors
of the FPP board.

2.3 DISCRETIONARY WIRING

Some of the FPP board wiring is dependent upon the system
configuration in which the floating point processor is used.

The wiring required for the particular application is normally
installed at the factory. If a change in the system configura-
tion is required, refer to FPP option drawing 01A1682 (in the
system documentation package) for information concerning optional
wiring.

2.4 INTERCONNECTION

The FPP board plugs into the V70 series mainframe chassis

using three module slots. The FPP board is essentially connected
in parallel with the central processor board. The only excep-
tion to this involves three I/0 control signals which pass
directly between the central processor and the option board when
an FPP board is not used but which are modified by the FPP when
an FPP board is used.

The FPP board operates from a +5-volt power source and draws
16 amperes.



19.00 IN,

15.6 IN, (48.26 CM)

VTi1-3205

Figure 2-1. FPP Board

For details of signal and power interconnection for any system
configuration refer to FPP option drawing 01A1682 (in the system
documentation package).



SECTION 3
OPERATION

. The FPP contains no operating controls or indicators. The FPP
is normally operated in a VORTEX or VORTEX II environment using
FORTRAN. However, the FPP can operate in any environment which
zupplies instructions, addresses, and operands in appropriate
ormats,

3.1 FPP INSTRUCTIONS

When so directed by the user, the FORTRAN compiler provides the
FPP instructions listed in table 3-1. The user also has the
option of coding FPP instructions directly in assembly language
using the octal codes specified by table 3-1 or defining macros
and using the table 3-1 mnemonics.

Table 3-1 gives minimum and maximum execution times for both
semiconductor memory and core memory. The maximum times do
not include unusual cases such as overflow,

Figure 3-1 illustrates the format of the FPP instruction word.
The address format is illustrated in figure 3-2. There is no
specific limitation on the number of levels of indirect
addressing. However, the time allotted for the execution of
any string of FPP instructions, including all required memory
accesses, is 500 microseconds.

A string of FPP instructions is defined as any sequence during
which operands are obtained and processed and a result is stored

in memory. Thus, an FST, FSTD, or FIX instruction is always
the last instruction of an FPP string.

3.2 NUMBER FORMATS

3.2.1 Single Precision Floating Number Format

As illustrated in figure 3-3, each single precision real float-
ing point number is stored in memory in two consecutive word
locations., The first word contains the sign bit (S), the
exponent (in excess-128 format), and the seven high order bits
of the fraction. The second word contains the 15 low order bits
of the fraction (bit 15 is always zero).
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Table 3-1. FPP

Instructions

Mne-
monic

Octal
Code

Description

Execution Times
(Nanoseconds)

Semiconductor
Memory

Core
Memory

Memory Reference

FLD

FLDD

FST

FSTD

FLT

FIX

105420

105522

105600

105710

105425

105621

Load floating point
accumulator with
single precision
number.

Load floating point
accumulator with
double precision
number.

Store floating
point accumulator
in memory in single
precision format.

Store floating
point accumulator
in memory in double
precision format.

Reformat single
precision integer
and load into float-
ing point
accumulator.

Reformat floating
point accumulator
and store integer
in memory.

1815

2475

1980

2640

1485-2475

1980-3960

2723

1043

2888

2558-4538

Arithmetic Instructions

FAD

105410

Add single
precision memory
to floating point
accumulator.

1815-3300

2723-3878
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Table 3-1. FPP Instructions (continued)
Execution Times
(Nanoseconds)
Mne- Octal Semiconductor | Core
monic | Code Description Memory Memory
FADD 105503 | Add double precision 2475-5940 4043-7178
memory to floating
point accumulator.
FSB 105450 | Single precision 1815-3300 2723-3878
floating point
subtraction.
FSBD 105543 | Double precision 2475-5940 4043-7178
floating point
subtraction.
FMU 105416 | Single precision 2970-3300 3383-3713
floating point
multiply.
FMUD 105506 | Double precision 5445-5775 6518-6848
floating point
multiply.
FDV 105401 | Single precision 3465-5280 4043-5693
floating point
divide.
FDVD 105535 | Double precision 6105-9735 7343-10973
floating point
divide.
15 14 13 12 N 10 9 8 5 4 3 2 1 0
1 {o oo [ o | 1 1 OP CODE
FPP CODE
Figure 3-1. FPP Instruction Format
5 14 13 12 N w 9 8 7 6 5 4 3 0
i ADDRESS
VTI1-3189 i = 1= INDIRECT ADDRESS
Figure 3-2. Operand Address Format
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14 13 12 1 10 9 8 7 6 5 4

15
1sT FRACTION (HIGH
orp 4] S EXPONENT + 128 CTION (HIGH)
2ND
i) I FRACTION (LOW)
A. FIELDS
s {128 |64 |32 [ w6 |8 | 4 |2 | v {2 va]ims 11617321764 1128
\ B 1 N 1 1|
LI (O SO O B B 7| <8l o190l <20 | -21] -2
0 | 7% | 577|028 | 2048 | %09 | 5797 |14384| 37768 |e5536) 27" | 2718 2717 [ 27X | 2% |2
B. DECIMAL WEIGHTS {
1
4,194,304
ol v jololo {1 oo o | 1 o o] o | 0
o{1{oflojof{o]o]o|lo|lo]lo|lo]lo]o]|ol]o
EXPONENT + 128 = 128 + 8
EXPONENT =8
FRACTION = 1/2 4 1/4 + 1/64 £ 1/256
VALUE OF NO., - 2F x (FRACTION)
- B /24174 51768 + 1/256)
= 256 (172 + 1/4 + 1/64 +1/256)
= 128464 k441 = 213
C. EXAMPLE OF POSITIVE NUMBER (213)
WORD 4
CONTAINING _o o | ! v Lo | 1 1 Lo | o | | 1 o | 1|
SIGN IS IN 1'S
COMPLEMENT
FORM 1 1olololoflofjo|lololo]ol]lol|lol|o]o
NOTE: THIS IS =213, SAME AS C EXCEPT NEGATIVE
D. EXAMPLE OF NEGATIVE NUMBER (=213)
VTI2-443
Figure 3-3. Single Precision Number Format

.
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The value of a floating point number is ZE X (FRACTION), where
E = exponent. The 8-bit exponent code provides an exponent
range of +127 (1111 1111) through -128 (0000 0000). Unless

the value of a number is zero, the fraction must be normalized;
that is, the most significant 1 of the fraction must be in the
2-1 bit position. The range of values that can be expressed by
the fraction is thus 2-1 (represented by a 1 in the 2-1 bit
position followed by all zeros) through (1 - 2-22) (represented
by all ones). Combining the exponent and fraction ranges, the
largest magnitude that can be represented is 2127 X (1 - 2-22)
and the smallest non-zero magnitude is 2-128 x 2-1 = 2-129, A
negative number is represented in the same manner as the
corresponding positive number except that the entire word
containing the sign bit is in one's complement form.

Figure 3-4 illustrates the representation of various numbers
within the allowable range. Notice that the zero which always
appears in bit position 15 of the second operand word is not
shown in the binary representation since it is not a component
of the fraction. It is, however, a component of the second
operand word format, shown in octal format.

3.2.2 Double Precision Floating Point Number Format

As illustrated in figure 3-5, each double precision real
floating point number is stored in memory in four consecutive
word locations. The first word contains the exponent in excess-
128 code. The second word contains the sign bit and the 15 most
significant bits of the fraction. The range of values that

can be represented by the double-precision fraction is 271
through (1 - 2-45). The double precision words thus provide
a non-zero magnitude range from 2-128 X 2-1 = 2-129 through
2127 X (1 - 2-45). For a negative number, the entire second
.operand word is in one's complement form (since this is the
word containing the sign bit).

3.2.3 Integer Format

As illustrated in figure 3-6, the integer format employs a
single 16-bit word. Positive numbers appear in absolute form
and negative numbers appear in two's complement form.

3.3 PROGRAM INTERRUPTS

The FPP normally inhibits program interrupts from the time that
, the first instruction of an FPP string is received until the
 final instruction of the string is executed, regardless of
| intervening instructions. However, the FPP can only inhibit
‘interrupts for a maximum interval of 500 microseconds after
| which interrupts are again enabled and the FPP generates a
| fault interrupt. The FPP also generates a fault interrupt

3-5



157 2ND
HIGH Low OPERAND | OPERAND
VALUE OF NUMBER EXPONENT | coACTION|  FRACTION  |WORD | WORD
(OCTAL) |(OCTAL)
T LARGEST 2'7 x 0 -2 nunn | oammn mmnnnnan | o777z | 077777
MAGNITUDE N
L[]
2127 1 126 111111 | 1000000 | 000000000000000 | 077700 | 0000CO
L]
POSITIVE .
RANGE
A x2l = 10000001 | 1000000 | 0OOOOOOOO000000 | 040300 | 000000
L]
L]
SMALLEST . . -
¥ MAGNITUDE o128 y =1 _ =129 00000000 | 1000000 | 0O0000000000000 | 000100 | 000000
ZERO 1284 -0 00000000 | 0000000 | 0O0000000000000 | 000000 | 000000
T SMALLEST 27128y pml L _pm129 mumm 0111111 | 000000000000000 | 177677 | 000000
MAGN ITUDE
L ]
L]
2 x2 - g 01111110 | 0111111 | 000000000000000 | 137477 | 000000
NEGATIVE .
RANGE .
2127 g 51 o pm128 00000000 | 0111111 | 000DOOO00000000 | 100077 | 000000
L[]
L]
X Kﬂ%ﬂws 27 w0227 00000000 | 0000000 | 1111111111111 100000 | 077777
VT11-3212
Figure 3-4. Examples of Single Precision Numbers

following the completion of any
condition has been sensed.

FPP string during which a fault
3.4 FAULT CONDITIONS

Exponent Overflow

3.4.1

‘Exponent overflow can occur during the execution of any
arithmetic instruction. It can also occur, in connection with
round-off, during the execution of the memory reference
instruction which stores the result. When an overflow is
detected, the magnitude of the result is set to the largest

possible in-range value and the sign of the number is not
changed.
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15

15T
WORD
(DA) 0 ZEROS EXPONENT + 128
2ND
WORD FRACTI
) S CTION (HIGH)
3RD
WORD FRACTION (MID
ooy | © ; (MID)
4TH
wORD | o
WO FRACTION (LOW)
A. FIELDS )
ol o] oo | o |o | o | o {128 |6t 3216|814 2]
S 1 1 1 1 1 1 1 1 INIERE 1 1 1 1
2 | 4 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 16384(32768
1
0 |—— ) . _ ol ot 25| coel corl oal ool -
mosaal 2717 2718 | 2719 | 20| 21| 22| 23| 24f 25| 26| 27| )28 =29 230
0 | 31| ;32| ;=33 ;=34 | =35 | ,-36| 37| ,-38| -39 | ,-40 | =41 | 42| 43| =44 | 45
B. DECIMAL WEIGHTS ’ ] P
35,184, 372,088, 832
ol oo o {o|lol|lo]o 1 0 1 0 1 o | 1 1
0 1 0o | o o | o o{olojo]of{olo}lo]| ol]o
0o { o o]lo | oo oo lo oo lo |o}lololo
ol ol ofo ] o o o | o o lolo o oo} o]
+4,398,046,511,104,25 - 2 X (FRACTION)
- Mg ey 92, 2
C. EXAMPLE OF POSITIVE NUMBER (242 + 272
WORD
CONTAINING 0 0 0 0 1 0 1 0 1 0 1 1
SIGN IS IN 0 oo |0
COMPLEMENT
FORM — 1 o | 1 1 | ) 1 1 1 1 1 1 1 1 1 1
ot ol oo | oo o lo oo |o |ofo]|lo|ofo
ol o] o] ojolo|o}o|]o]|o]o]|]o]o]|o]o]o
NOTE: SAME AS C EXCEPT NEGATIVE
D. EXAMPLE OF NEGATIVE NUMBER
VT12-445
Figure 3-5. Double Precision Number Format
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S MAGNITUDE

A. FIELDS

S 16384 8192|4096 | 2048 | 1024 | 512 | 256 | 128 | 64 32 16 8 4 2 1

B, DECIMAL WEIGHTS

0 0 0 0 0 0 0 0 1 ! 0 1 0 1 0 1

128 +64 +16+4 +1 = 213
C. EXAMPLE OF POSITIVE NUMBER

1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1

NOTE: SAME VALUE AS C EXCEPT NEGATIVE (-213)
D. EXAMPLE OF NEGATIVE NUMBER

Figure 3-6. Integer Format

3.4.2 Exponent Underflow

Exponent underflow can occur during the execution of any
‘arithmetic instruction. When an underflow is detected, the
-result is set to zero.

|

'3.4.3 Integer Overflow

Integer overflow can occur during the FIX instruction. When

,a positive integer overflows, the integer is set to the largest
,positive in-range value. When a negative integer overflows,
‘the integer is set to the most negative in-range value.

3.4.4 Divide by Zero

When an attempt to divide by zero is sensed, the result is set
to the largest possible in-range value and the sign of the result
is not changed.

3.4.5 Time-out

If the execution of an FPP instruction string is not completed
within 500 microseconds, time-out is sensed. The result is then
set to an illegal value to flag the type of fault that has led
to the fault interrupt. (The fraction is set to the non-zero,
non-normalized value, 0.01000...0. The exponent field is set to
all zeros. The sign is not changed.)
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SECTION 4
THEORY OF OPERATION

4.1 GENERAL

This section begins with a description of the major FPP functions
and of the manner in which the FPP interfaces with the central
processor and other components of the computer system. This 1is
followed by a description of the microprogram facilities of the
FPP. This includes information about the microinstruction word
format as well as descriptions of the various FPP instruction
microprogram routines. Flow charts are provided for each micro-
program routine. The remainder of the section provides a more
detailed description of the functional circuits which implement
the various operations required to interface with the other sys-
tem components and to execute the steps in the microprogram
routines. .

4.2 OVERALL FPP OPERATION AND SYSTEM INTERFACE

Figure 4-1 illustrates the FPP in terms of seven major functions.

4.2.1 Data Buffer, Address Output, and I/0 Selection

This function provides a buffer register which can hold one
instruction, address, or operand word received from memory. It
provides an address counter. It provides multiplexing required
to distribute operand words to the arithmetic section and to
select result words from the arithmetic section for transfer to
memory .

4.2.2 Instruction Double Buffer and Decoder

This function provides storage for two FPP instruction OP codes.
It also provides a decoder which recognizes the FPP code. Every
instruction fetched by the central processor is loaded into the
FPP data buffer at the same time that it is loaded into the cen-
tral processor instruction buffer. When an FPP instruction is
fetched, the next instruction fetch brings the starting operand
address into the central processor instruction buffer. Just
before this occurs, the decoder recognizes the FPP code of the
instruction held in the FPP data buffer. This recognition
causes the OP code of the instruction to be transferred to the
instruction double buffer at the time that the starting operand
address is loaded into the data buffer. A double buffer is pro-
vided so that a second OP code can be loaded while the previously
received instruction is still being executed.
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L MEMORY .
«RATABUS »| DATA BUFFRR,
MEMORY QUIPUT, AND
<22 170 SELECTION
MEMORY I INSTRUECTION
DOUBL : THMETIC
REQUESTS MORY P U—— BUFFER ég('m it
“ ME
MEMORY CONTROL . AND
STATUS »| AND SEQUENCING DECODER
X
1/O CONTROL, I
STATUS -
PROCESSOR CONTROL
STORE ADDRESS SYSTEM
<+ INTERFACE CONTROL
STORE
<28 > L 5]  MEMORY, —
- REGISTER, AND
DEC ODER
y
PROCESSOR -
CLOCKS o cLocx -
CONTROL FPP CLOCKS |
. VTI1-3188

Figure 4-1. FPP Simplified Functional Block Diagram

4.2.3 System Interface

This section provides the facilities for passing program control
back and forth between the central processor and the FPP. It
inhibits interrupts during the execution of an FPP instruction
string. It transmits an interrupt after a fault condition has
been recognized. It resolves contention for memory access. The
system interface passes program control to the FPP by forcing the
central processor microprogram to a control store address contain-
ing a no-operation (NOP) microinstruction. The central proces-
sor microprogram is held at this address until the portion of the
FPP microprogram which requires memory access has been completed.
The system interface then forces the central processor micro-
program to a location containing a microinstruction which leads
to another instruction fetch. This allows the central processor
to fill its instruction pipeline while the FPP is completing the
execution of an FPP instruction microprogram routine. If the
next instruction is an FPP instruction, the central processor
microprogram is again forced to the location containing a NOP at
the time that it fetches the starting operand address. Thus,



{during the execution of a string of FPP instructions, the central
processor activity is limited to the fetching of instructions and
associated operand starting addresses. From the time that the
first instruction of the string is recognized by the FPP decoder
until control is passed back to the central processor during the
execution of the final instruction of the string, the system
interface inhibits interrupts. An instruction string ends when
:an instruction which stores a result in memory is executed.
‘During FPP memory accesses, the system interface controls various
interface lines so as to prevent other system facilities from
!accessing memory. At the end of an FPP memory access cycle or

if an FPP memory access is not currently in progress, the system
jinterface yields memory access priority if a direct memory access
-(DMA) or priority memory access (PMA) request is pending. If the
FPP requires memory access and does not have memory access
priority, it suspends the activity that requires the memory
access until memory access priority is again available.

4.2.4 Memory Control and Sequencing

This section initiates memory requests, recognizes the completion
‘of memory cycles, and provides the signal which loads the data
‘from the memory data bus into the data buffer. During central
processor instruction fetches, the memory control merely steers

a central processor control signal to the data buffer as required
‘to load it. In this way, first an FPP instruction and then the
associated operand address are loaded into the data buffer. If
the operand address is an indirect address, the memory control is
now responsible for initiating as many memory access requests as
may be necessary to obtain a direct address. For an instruction
during which an operand must be obtained from memory, the memory
control is also responsible for initiating the memory access
required to obtain the first operand word. These memory accesses
Th s, they can occur while a previous instruction mlcroprogram
routine is still being executed.

4.2.5 Arithmetic Section

This section provides the registers and arithmetic/logic units
(ALUs) required to perform floating point arithmetic as well as
associated control circuits.

4.2.6 Control Store Memory, Register, and Decoder

This function provides the control store read-only memory 1in
which the FPP microprogram is stored. It provides an address
counter which determines the order in which microinstructions are



executed, a register which holds the instruction currently being
executed, and circuits which decode certain microinstruction
fields. The OP code of each FPP instruction points to the start-
ing address of the associated microinstruction routine. Within
the routine, microinstructions are executed in sequential order
except when a jump alters the contents of the address counter.
The microprogram initiates the memory accesses required to

obtain operand words (with the exception of the first operand
word), controls the transfer of operand words into the arithmetic
section, and controls the sequence of operations within the
arithmetic section. During the execution of an instruction which
stores a result in memory, the microprogram initiates the memory
accesses required to store each of the operand words.

4,.2.7 Clock Control

This function provides the clock signals which time parallel data
transfers, serial shifts of data, transitions of control signals,
and advancement of the microprogram. All of the FPP clock rates
are derived from clock rates received from the central processor.
The clock control section exercises control over the timing of
microprogram execution by inhibiting the clock which times the
microprogram advancement. When the microprogram initiates a
memory access, the clock is inhibited until the required memory
cycle has been completed. The clock is also inhibited during
certain operations of the arithmetic section until the required
number of iterations of the operation have been completed. When
the final microinstruction of a routine reaches the control

store register, the clock is inhibited until the next valid FPP
instruction OP code is available in the instruction buffer.
Another function of clock control is to select the fast shift
clock rate. The fast shift clock period is 82.5 nanoseconds as
compared to the basic clock rate of 165 nanoseconds.

4.3 FPP DETAILED BLOCK DIAGRAM

Figure 4-2 is a multi-sheet block diagram which illustrates the
FPP in terms of 24 functional blocks. Section 1 illustrates the
operand, result, memory address, and instruction data parallel
paths. Section 2 illustrates the interface between the control
store function and the other functional blocks. Section 3
illustrates the control signals, other than control store signals,
which pass between the various functional blocks. Section 4
illustrates the distribution of clock signals and shows clock
control inputs other than those from the control store function.
Section 5 illustrates the control interface with the central pro-
cessor and option board.
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FPP Detailed Block Diagram (Sheet 3 of 4)
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Functions shown in figure 4-2 correspond in most cases with func-
tions which are separately identified in FPP logic dia-

gram 91C0499. The instruction latch, instruction register, and
instruction decoder block shown on figure 4-2 corresponds to the
instruction double buffer and decoder block shown in figure 4-1.
Other blocks shown in figure 4-2 are subsidiary to blocks shown
in figure 4-1. Table 4-1 summarizes the correlation between
nomenclature used on figure 4-1 and 4-2 and nomenclature used on
the FPP logic diagram.

Numbers within parenthesis in figure 4-2 refer to sheets of FPP
logic diagram 91C0499,

4.4 MICROINSTRUCTION FORMAT

Figure 4-3 illustrates the two formats used in microinstruction
words. The mnemonic assigned to each of the 32 bits of the
microinstruction word are shown at the left of the figure. If
CSFMT+ is low, then format 0 is designated. If CSFMT+ is high,
then format 1 is designated. The only difference between the
two formats is in the interpretation of the status of the CSALn+
(0-5) bits. In format 0, bits CSALn+ (3-5) constitute the IN
field while bits CSALn+ (0-2) constitute the IO field. In for-
mat 1, the six CSALn+ (0-5) bits constitute the ALU field.

Table 4-2 lists the various active codes used in each micro-
instruction field. Each active code associated with a field is
assigned a mnemonic which is listed in the FLOW CHART MNEMONIC
column of the table. This mnemonic is either used directly on
the microprogram flow charts or else is used on supporting docu-
ments to indicate the field codes associated with particular
operations.

Where a field code is represented by an explicit decoding signal,
the decoding signal mnemonic is listed. (In many cases, the
field code bits are supplied to function selection inputs of ALUs
or registers or to address inputs of multiplexors so that
separate decoding is not required.)

4.5 MICROPROGRAM ROUTINES

The paragraphs which follow provide descriptions of each of the
routines contained in the FPP microprogram. Each description is
supported by a flow chart. Figure 4-4 illustrates the micro-
instruction block format that is used on the flow charts and
table 4-3 lists special notations that are used on the flow
charts.



Table 4-1, NomenclatureUCoffelation

Figure 4-1

Figure 4-2

FPP Logic Diagram

Instruction double
buffer and decoder

Instruction latch,
instruction
register, and
instruction decoder

Instruction register
(sheet 12.0)

System interface

Central processor
control

Central processor
control (sheet 5.0)

Priority control

Priority control
(sheet 6.0, 6.1)

Interrupt interface

Interrupt interface

(sheet 7.0)
Memory control Memory sequencer Memory sequencer
and sequencing (sheet 8.0)
Memory control Memory control
(sheet 8.1)

Clock control

Clock control

Clock control

(sheets 9.0, 9.1)

System clock
generator

System clock genera-
tor (sheet 9.2)

Data buffer,
address output,
and I/0 selection

Data latch and
address output

Data latch and
address output

(sheets 11.0, 11.1)

-I/0 data multi-

plexors

Input/output data
(sheets 16.0
through 19.0)

Control store
memory, register,
and decoder

Control store
memory, register,
and decoder

Control store
register, control
store decoder
(sheet 14.0, 14.1,
15.0)

Control store
address loop

Jump condition
multiplexor

Control store address
loop (sheet 13.0)




Table 4-1. Nomenclature Correlation (continued)
Figure 4-1 Figure 4-2 FPP Logic Diagram
Arithmetic section Data loop Data loop

(sheets 20.0
through 32.0)

Arithmetic clock
control :

Arithmetic control
clock logic
(sheet 10.0)

Multiply control

A, B control
encoder

Arithmetic control
(A, B and multiply)
(sheet 33.0)

MQ control

Arithmetic control
(MQ) (sheet 34.0)

ALU control

Arithmetic control
(ALU) (sheet 35.0)

Sign and zero flags

Arithmetic control
(Sign and Zero Flags)
(sheet 36.0)

Constants and con-
ditional inverter

Arithmetic control
(constants and con-
ditional invert)
(sheet 37.0)

Exponent loop

Exponent 1loop

(sheets 38.0, 39.0)

Exponent control

Exponent control
(sheet 40.0)

Shift counter con-
trol and constant
storage

Exponent control,
shift counter and
constant (sheet 41.0)
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BIT
MNEMONIC*

CSALS
CSAL4
CSAL3

CSAL2
CSALY
CSALO

CSAB2
CSABI
CSABO

CSAM
CSCM

CSEA3
CSEA2
CSEAI
CSEAQ

CSER1
CSERO

CSMWT
CSME!
CSMEO

CSFL3
CSFL2
CSFLI
CSFLO

csJc2
csJQl
CsJCo

CSJA3
CSJA2
CSJAL
CsJAO

CSFMT

FIELD
MNEMONIC
FORMAT 0

AB

AC

EADD

EREG

MEM

FLAG

JCOND

JADD

FMTO

*USED FOR BITS AT OUTPUT OF CONTROL STORE REGISTER

VTI2-437

Figure 4-3.

Microinstruction Word Formats

4-12

FIELD
MNEMONIC
FORMAT 1

ALU

AB

AC

EADD

EREG

MEM

JCOND

JADD

FMTI




" Table 4-2.

Microinstruction Field Formats

Field - Flow Decoding
Field Bit Chart Signal
Mnemonic | Levels Mnemonic | Mnemonic | Function
CSALn+
IN 543
LLL No operation
L LH LSAQ CSLSA- Loads single pre-
cision high
fraction into
MQ register
L HL LSBQ CSLSB- Loads single pre-
cision low
fraction into
MQ register
HLH LDBQ CSLDB- Loads double
precision high
fraction into
MQ register
HHL LDCQ CSLDC- Loads double pre-
cision middle
fraction into MQ
register
HHH LDDQ CSLDD- Loads double pre-
cision low frac-
tion into MQ
register
CSALn+
10 210
L LL 1D Connects data

latch outputs to
10nn+ (00-15) bus
in format appro-
priate for trans-
fer of any operand
field (except
single precision
high fraction) to
MQ register
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Tabie ;:E.

Microinstruction Field Formats (continued)

Field
Mnemonic

Field
Bit
Levels

Flow
Chart
Mnemonic

Decoding
Signal
Mnemonic

Function

I0
(Cont'd)

CSALn+
210

LLH

0SA

OSB

IS

ODA

ODB

0DC

ODD

Connects first
single precision
result word to
I0nn+(00-15) bus

Connects second
single precision
result word to
IOnn+ (00-15) bus

Connects data
latch outputs to
[Onn+ (00-15) bus
in format appro-
priate for trans-
fer of single
precision high
fraction to MQ
register

Connects first
word of double
precision result
to IOnn+(00-15)
bus

Connects second
word of double
precision result
to IOnn(00-15)
bus

Connects third
word of double
precision result
to I0nn+(00-15)
bus

Connects fourth
word of double
precision result

~to IOnn+(00-15)

bus
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Table 4-2. Microinstruction Field Formats (continued)

Field - Flow Decoding
Field Bit Chart Signal
Mnemonic | Levels Mnemonic | Mnemonic | Function
ALU CSALn+ |

5432 1 0

LLLL H L|CMPA ALU = A

LLHH H L ALONE ALU = 1

LHLH H L|{ BNOT ALU = B

LHHL L H{ AMINB ALU = A MINUS B

HLLH L Lj| APLUSB ALU = A PLUS B

HLHL H L|[|B ALU = B

HHLUL L L} APLUSA ALU = 2A

HHLUL H L} ALZERO ALU = 0

HHHH H L|A ALU = A

LLHH L L| MINUS1 ALU = -1

ALU CSALn+
(For 5 3210
CSWSD+=H)

LLLLLH AL CSAL#% Alignment micro-
instruction
during which
fraction of
smaller operand
is shifted to
right to align it
properly with
fraction of
larger operand

LLLLHL NO CSN@+t Normalize micro-

instruction dur-
ing which fraction
is shifted to

left until most
significant 1 is
in bit 46 position
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Table 4-2. Microinstruction Field Formats (continued)

Field Flow Decoding
Field Bit Chart Signal
Mnemonic Levels Mnemonic { Mnemonic | Function
AB CSABn+
210
L LL No operation
L LH SRA Shifts A register
to right
L HL SLA Shifts A register
to left
L HH LDA Loads A register
HL L LDB Loads B register
HLH SRAB Shifts A and B
registers to
right
HHL SLAB Shifts A and B
registers to left
HHH LDAB Loads A and B
registers
AC CSAM+ CSCM+
L L MQA Connects MQ
register outputs
to AMnn-(00-47)
bus; Connects A
register to
A input of ALU
L H MQC Connects MQ
register outputs
to AMnn- (00-47)
bus; connects
constants regis-
ter (CR) to A
input ot ALU




Table 4-2,

Microinstruction Field Formats (continued)

Field

Flow Decoding
Field Bit Chart Signal
Mnemonic Levels Mnemonic | Mnemonic | Function
AC CSAM+ CSCM+
(Cont'd)
HL ALA Connects ALU out-
puts to AMnn-
(00-47) bus;
Connects A register
to A input of ALU
H H ALC Connects ALU out-
puts to AMnn-
(00-47) bus;
Connects CR regis-
ter to A input
of ALU
EADD CSEAn+
3212
LLLL EAZERO Exponent ALU
=0
LLLH EMX Exponent ALU
= EMX, where EMX
is data select-
ed for connec-
tion to A input
of exponent ALU
LLHL MINEMX Exponent ALU
= EMX
LLHH EA255 Exponent ALU
= decimal 255
LHLL C Exponent ALU
= Ce, where Cg
is value from
constant store
LHLH CPLSMX Exponent ALU

= Ce + EMX

4-17




Table 4-2.

Microinstruction Field Formats (continued)

Field Flow Decoding
Field Bit Chart Signal
Mnemonic Levels Mnemonic | Mnemonic | Function
EADD CSEAn+
(Cont'd) 3210
LHHL CMINMX Exponent ALU
= Ce - EMX
LHHH CMIN1 Exponent ALU
=Ce-1
HLULL E Exponent ALU
= E: where E
is output of
exponent
register
HLLH EPLSMX Exponent ALU
= E + EMX
HLHL EMINMX Exponent ALU
= E - EMX
HLHH EMIN1 Exponent ALU
=E -1
HHLL EPLUS1 Exponent ALU
= E + 1
EREG CSERn+
10
L L No operation
L H LDE Load exponent
register
H L LDSC1 Load shift counter
if ECRY- = H
H H LDSC Load shift counter
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Table 4-2.

Microinstruction Field Formats (continued)

Field
Mnemonic

Field -
Bit
Levels

Flow
Chart
Mnemonic

Decoding
Signal
Mnemonic

Function

MEM

CSMEn+

CSMWT+ 1
L L
L-H

0
L
H | WSDN

H | END

L | IMC

CSWSD+

CSEND-

CSMST -,
CSIMC+

No operation

Inhibits control
store clock until
SC = 0; where SC is
shift counter.

Also enables
special AL and NO
code recognition
(for ALU field)

If jump condition
(specified by JCOND
field) is satis-
fied, JADD field is
loaded into four
MSBs of control
store counter. If
jump condition is
not satisfied,
CSDN+ is placed at
high level. This
enables transfer
from instruction
latch to instruc-
tion register and
inhibits control
store clock if new
FPP instruction is
not available in
instruction latch.

Leads to initiation
of memory cycle
(unless time-out
flag, T@+ = H)
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Table 4-2.

Microinstruction Field Formats (continued)

Field
" Mnemonic

Field
Bit
Levels

Flow
Chart
Mnemonic

Decoding
Signal
Mnemonic

Function

MEM
(Cont'd)

CSMEn+

CSMWT+ 1
H L

0
H

INC

SIF

CSINC-,
CSIMC+

CSSIF

" of central proces-

Leads to initiation
of memory cycle
(unless time-out
flag, T@ = H) and
increments memory
address counter

Enables starting

sor instruction
fetch at next con-
trol store clock
time

FLAG

[ un N P

oo
[ ol o el o
o o+

LLHL

L LHH

CPO

MUO

iTZ

CSCPO+

CSMUO ¢

CSITZ+t

No operation

Reverses status of
AS+ and sets SUB+
and ADD- high if
ALU37+ is high.
Sets SUB+ and

ADD- low if

ALU47+ is low

Conditions arithme-
tic control for
multiply-initialize
microinstruction.
Also, forces CSMU1l+
to set high at con-
trol store clock
time so as to estab-
lishmain-multiply
functions during
next microinstruc-
tion period

Inhibits updating
of status of ZERO
flag
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Table 4-2.

Microinstruction Field Formats (continued)

Field
Mnemonic

Field
Bit
Levels

Flow
Chart
Mnemonic

Decoding
Signal
Mnemonic

Function

FLAG
(Cont'd)

CSFLn+
3210

LHLL

ZAS

SS

OFL

DIO

E128

EXC

CCR

C47

DIV

CSZAS-
CSSS+#
CSOFI-

CSDIO-

CS128+

CSEXC-

CSCCR-
CS47+

CSDIV:

Resets AS+ flag to
low level

Swaps states of AS
and BS flags

Sets interrupt
flag

Conditions arithme-
tic control for
divide-initialize
microinstruction

Conditions exponent
control to invert
MSB of E as
required to main-
tain excess-128
code during addi-
tion or subtraction
of exponents

Forces CSLDE- to
set low at control
clock time as
required to load
exponent register
from data latch
during next micro-
instruction period

Clears constants
register (CR)

Loads 1 into bit 47
of CR register

Conditions arithme-
tic control for
main divide micro-
instruction
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Table 4-2.

Microinstruction Field Formats (continued)

Field Flow Decoding
Field Bit Chart Signal
Mnemonic Levels Mnemonic | Mnemonic | Function
FLAG CSFLn+
(Cont'd) 3210
HHLH UFL CSUFL- Sets interrupt
flag; sets AS+ low
HHHL CTO CST@+ Resets time-out
flag (T@+) to low
level
JCOND CSJn+
210
LLL Inhibits jump
L LH JMP Unconditional jump
LHL JC Jump if ECRY+ = H
L HH JZ Jump if ZERO+ = H
HLL JSGN Jump if A47+ = H
or if ZERO+ = H
HLH JSAGN Jump if AS+ = BS+
HHL JESGN Jump if E7+ = H
HHH JTO Jump if T@P+ = H
JADD These bits are
used to alter con-
trol store address
counter if jump
condition is satis-
fied. If CSEND+
= H, they are
loaded into four
MSBs of counter
while if CSEND+
= L, they are
loaded into four
LSBs of counter.
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Table 4-2.

Microinstruction Field Formats (continued)

Field Flow Decoding
Field Bit Chart Signal
Mnemonic Levels Mnemonic | Mnemonic | Function
FMT CSFMT+ = L Microinstruction
format 0
CSFMT+ = H Microinstruction
format 1
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Table 4-3.

Special Flowchart Notations

Notation

Description

(DA), (DB),
(SA), (SB)
NC

CUFL

COFL

SC

EA

EAS

MQ
UFL

OFL

CR

(DC),

(DD)

Four words of double-precision operand
Two words of single-precision operand
Normalization count — indicates the
number of shifts required to normalize
fraction

Conditional underflow — indicates
exponent intermediate value which will
produce underflow if fraction has to
be shifted

Conditional overflow — indicates inter-
mediate exponent value which may
produce overflow

Shift counter

Exponent register

Exponent adder

Carry (borrow) from exponent adder

A register

B register

MQ register

Used on right side of microinstruction
block to indicate the sensing of
underflow condition. Used on left
side of block to indicate FLAG field
mnemonic

Used on right side of microinstruction
block to indicate sensing of overflow.
Used on left side of block to indicate
FLAG field mnemonic.

Constant register
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As an aid in understanding the more complex routines, numerical
examples are provided. Each numerical example is presented in

the form of a figure which shows the microinstruction path that

is followed for the particular operand values being assumed. The
operations performed by each microinstruction and the status of
§1gnificant registers and flags that results from these operations
is shown., :

4.5.1 FLD Routine

The purpose of the FLD routine (figure 4-5) is to obtain a single-
precision operand from memory, place the exponent field of the
operand in the exponent register, place the operand fraction in
both the A and B registers, and place the sign of the operand in
the AS flag.

When the routine is started, the memory access required to obtain
the first operand word has already been initiated. The INC code
in the MEM field of microinstruction LDSO causes the execution of
the microinstruction to be delayed until the completion of the
memory access cycle during which the first operand word is trans-
ferred from the memory to the FPP data latch. When the microin-
struction is executed, the INC code causes the memory address
count to be incremented to point to the memory location contain-
ing the second operand word and causes the initiation of the
memory request required to obtain this second operand word. The

EXC code in the FLAG field of the microinstruction prepares for
the transfer of the exponent field of the first operand word

from the data latch through the exponent loop ALU to the exponent
register during the next microinstruction.

MICROINSTRUCTION

FLAG, MEM, AND

JCOND FIELD CODE

MNEMONICS APPEAR

ON THIS SIDE OF IMP

BLOCK END A-B—————e-A
OPERATIONS PERFORMED
iN DATA LOOP OR
EXPONENT LOOP OR
UPON FLAGS APPEAR
ON THIS SIDE
OF BLOCK

VTI1-3197

Figure 4-4. Flow Chart Microinstruction Block Format
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FLD

FLD Routine Flowchart

LDSO 10

EXC

INC

LDS! n
DL(S)—=35
DL(SA)—=MQ(SA)

JMP  [DL(SE)—=E

END
T

LDS2 72

ss BS—=AS
AS—=85

SIF

LDS3 73
DL(5B)—= MQ(SB)

VTI1-3204
Figure 4-5.

LDS4

74

END

MQ—~=A
MQ—=8

NEW INST

Microinstruction LDS1 transfers the sign bit (S) of the first

operand word from
the high fraction
data latch to the
(SE) of the first

exponent register (E).

the data latch (DL) to the BS flag,
field (SA) of the first operand word from the
MQ register, and transfers the exponent field
operand word from the data latch to the

transfers

The SIF field of microinstruction LDS2 causes the execution of

this microinstruction to be suspended until the completion of the

memory cycle during which the Second operand word is transferred

from memory to the FPP data latch.

When the microinstruction is

executed, the SIF code causes control to be returned to the
central processor so that the next instruction fetch can be
executed. The SS code in the FLAG field of the microinstruction



causes the swapping of the sign bits held in the AS and BS flags
as required to enter the sign bit of the new operand into the
AS flag.

Microinstruction LDS3 transfers the low fraction field of the
second operand word from the data latch to the MQ register.
Microinstruction LDS4 transfers the assembled fraction from the
MQ register into the A and B registers.

4.5.2 FLDD Routine

The FLDD routine (figure 4-6) is similar to the FLD routine
except that it obtains a double precision operand. It is thus
required to initiate the three memory accesses needed to obtain
__the second through fourth operand words and to assemble the three .
fraction fields in the MQ register to form the 45-bit fraction.
The INC code in the MEM field of microinstructions LDDO, LDD2Z,
and LDD4 causes the necessary incrementing of the memory address

( FLDD )
LDDO 12 tDD4 64
EXC s BS ———e AS
INC INC AS ——= BS
LDD1 13 LDD5 65
IMP DL(DA)— £ DL(DC)==MG(DC)
END
.
LDD2 B4 LDD6 62
IMP
INC SIF
LDD7 £3
T IMP DL(DD)-=—MQ(DD)
LDD3 B3 END
IMP DL(DB)—= MQ(DB)
END DL(S)— 85
U Lps4 ¥ 74
VTI1-3210

Figure 4-6. FLDD Routine Flowchart
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to point to each successive operand word and causes the initi-
ation of the required memory accesses. Microinstruction LDD1
transfers the exponent field of the first operand word from the
data latch to the exponent registers. Microinstructions LDD3,
LDD5, and LDD7 transfer the three fraction fields of the second,
,third and fourth operand words respectively from the data latch
‘to the MQ register. Microinstruction LDD3 transfers the sign
'bit (S) of the second operand word from the data latch to the

BS flag and microinstruction LDD4 swaps the AS and BS flags as
required to enter the new sign bit into the AS flag. LDD6 pre-
pares for the return of control to the central processor so that
the next instruction fetch can be performed. The routine jumps
to microinstruction LDS4 of the FLD routine which transfers the
assembled fraction-from the MQ register to the A and B registers.

4.5.3 FLT Routine

The purpose of this routine is to obtain a single-precision
integer from memory and convert it to the floating point format.
At the completion of the routine, the exponent register contains
the exponent of the converted operand, the A and B registers
both contain copies of the operand fraction, and the AS flag
contains the operand sign bit.

The integer format provides 15 bits to the left of the decimal
point. In the floating point format, these bits must appear

to the right of the decimal point. Thus, to _maintain the same
value, the fraction must be multiplied by 215, 1In order to meet
this requirement, the exponent is provisionally set to 15. If
the number being converted is the maximum negative number that
can be represented by the integer format, there is a magnitude
overflow into the sign bit position. In this case, the fraction
must be shifted to the right and the exponent must be incremented
by 1. Alternatively, the fraction may have to be shifted to the
left to normalize it. In this case, the exponent must be
decremented by 1 for each left shift.

A negative integer is represented in two's complement form. Thus,
before the normalization status of the fraction is tested, it
must be determined whether the integer is positive or negative.

If the integer is negative, it must be complemented so as to
convert it to absolute form. The integer must also be tested to
determine whether it is zero since this requires a special float-
ing point format in which all fields are set to zero.

At the time that the routine (figure 4-7) is started, the memory
access required to obtain the integer word from memory has
already been initiated. The SIF code in the MEM field of
microinstruction FLTO suspends the execution of the instruction

4
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FLY

ZEROS6

B6

ZAS 0—=AS
0—=E
0—=A
END 0—e8

(NEW INST)

VTI2-439
Figure 4-7.

FLTO 15
CCR
SIF
FLTI 16
DLﬁDB)—-——MQ(DA)
DL(S)—=B8S
15—
T
FLT2 47
MQ—=8
FLT3 46
CPO {B = 0]—=ZERO
B47 —=ADD
B47 —=SUB
T
FLT4 87
Jz ADD
B ———A
SUB
B —a A
T
F
FLT5 B8
A—B
JSGN
T
5/’
FLT6 B9
Ax2NS-A
E-NC—=E
FLT? BA FLT6A BB
yps—ry AX2'——a
BX2 ' ——p
END END E+1—eF

(NEW INST )

FLT Routine Flowchart
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until the memory cycle during which the integer is transferred
from memory to the FPP data latch has been completed. When the
microinstruction is executed, the SIF code causes control to be
returned to the central processor so that the next instruction
fetch can be executed. The CCR code in the FLAG field causes the
constant register (CR) to be cleared.

Microinstruction FLT1 transfers the integer from the data latch
to the MQ register. The transfer is executed in response to the
LDBQ and ID codes in the IN and IO fields of the instruction
respectively. During a double precision operation, this combina-
tion of codes would cause a ones complementation of the data
being transferred if that data were negative. However, in this
case, the data is not converted because the double-precision bit
of the FLT instruction OP code held in the instruction register
is a zero, Thus, if the integer is negative, the binary one

sign bit is loaded into bit position 47 of the MQ register. This
is used subsequently in testing the sign of the integer. In
addition to transferring the integer to the MQ register, the
microinstruction also transfers the sign bit into the BS flag.

It also loads 143 (the excess-128 code for 15) into the exponent
register.

Microinstruction FLT2 transfers the integer from the MQ register
to the B register. The CPO code in the FLAG field of micro-
instruction FLT3 sets the ADD flag if the sign bit of the integer
in the B register is a zero (indicating a positive number) or
sets the SUB flag if the sign bit is a one (indicating a negative
number). (The function, ALU = B is performed in the data loop
ALU and it is actually the status of bit 47 of the ALU that 1is
evaluated rather than the status of bit 47 of the B register
itself. Also, if the integer is zero, then the all-zero output
of the ALU causes the ZERO+ flag to set high.)

Microinstruction FLT4 places either B or the twos complement of B
in the A register depending upon whether the ADD or SUB flag was
set in the previous microinstruction. This provides a twos com-
plementation of the integer if it is initially negative. Thus,
the contents of the A register after this microinstruction 1is
executed is the absolute value of the integer. The explicit
function performed by the ALU is either ALU = (CR + B) or

ALU = (CR - B). However, since the CR register was reset to zero

in microinstruction FLTO, the operations reduce to ALU = B and
ALU = -B,

The JZ code in the JCOND field of microinstruction FLT4 causes a
pump to microinstruction ZERO6 if ZERO+ was set high in FLT3;
that is, if the integer is zero. The ZERO6 microinstruction sets

all result fields to zero as required to provide the floating
point zero format.



If the integer is not zero, the routine advances from FLT4 to
FLTS. FLTS5 transfers the operand value from the A register to
the B register. The SS code in the FLAG field of the microin-
struction causes the sign bits in the AS and BS flags to be
swapped. This places the'sign of the integer in the AS flag. The
- JSGN code 1in ‘the JCOND field causes a.jump to microinstruction
FLT6A if A47 is high. This takes care of the case where the
operand value is the maximum negative value that can be repre-
sented in the integer format. This value produces a magnitude
overflow into the sign bit positian when the two complementation
is performed. (The two's complement of 1000 0000 0000 0000 is
1000 0000 0000 0000.) Microinstruction FLT6A shifts this
fraction one position to the right to normalize it and increments
the exponent by 1.

If a magnitude overflow in bit position 47 does not occur, the
routine advances from microinstruction FLT5 to microinstruction
FLT6. 1If left shifting of the fraction and decrementing of the
exponent is required to normalize the fraction it is performed
by this microinstruction. (If bit position 46 does not contain
a binary one, then the fraction is left shifted until a binary
one reaches this bit position. For each bit position shift of
the fraction, the exponent is decremented by 1.) The normaliza-
tion of the fraction is implemented in the A register. Micro-
instruction FLT7 copies the normalized fraction into the

B register.

A numerical example of the FLT routine is provided in figure 4-8.

4.5.4 FAD/FSB Routine

As illustrated in the flowchart of figure 4-9, the same routine
is used to execute either the FAD or the FSB instruction. For
the subtraction instruction, the operand that is received at the
start of the routine is the minuend. The sign of this number 1is
reversed at the time that it is transferred from the data latch
to the BS flag. This leads to the subtraction rather than the
addition of this number and is the only difference between the
execution of the FSB and FAD instructions. References to the
sign of the new operand in the discussion which follows apply to
the sign after it is loaded into the BS flag; that is, in the
case of the subtraction instruction, they refer to the sign of
the minuend after it has been reversed.

Unless the exponents of the two overands are equal, an alignment
of the smaller operand is required; that is, the fraction must be
shifted to the right the number of bit positions corresponding to
the difference between the exponent values. If this difference
is equal to or larger than 23, then the aligned fraction will
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Microinstruction Operation Results Comments
FLTO Transfer from ll 11111111100101 d] Integer received is -54 in two's complement form
memory to data DL
latch
FLTL DL(S)—PBS Bs+ [H] Negative sign is saved in BS
’ 47
DL (DB) —» MQ(A) MQ [1 1111111110010010... Number is transferred to MQ where it is loaded into 16MSB
) positions
15— E E(L0001111] E is set to 143 = 128 + 15
FLT2 MQ—P B B |1 11111111100101 OJ Number is transferred from MQ to B
FLT3 B37 —» ADD SUB+ @ . Subtractiog function is selected because number is negative as
B47 —» SUB indicated by high level in sign bit position B47 of B register
[B = 0] —% ZERO ZERO+ ZERO flag remains reset because number is non-zero
FLT4 B—-PADD A AJjo0o0OO0OOO0OO0OOOO110110 J WEVith subtraction selected, number is converted to absolute
orm
B SUB. A ) -
Jz Go to FLTS because ZERO+ is low.
FLTS A—>B B IOOOOOOOOOO 110110... Number is copied into B
SS AS+ BS+ E Sign of number is transferred to AS
JSGN Go to FLT6 because A47 = 0 (Magnitude overflow into sign bit
position has not occurred.)
NC . A is shifted left until most significant 1 reaches bit position
FLT6 A X2 A A IO’I 1011000 ..... 0] A46 as required to provide normalized fraction
E - NC—PE E Il 0000110 I E is decremented by 1 for each bit position shift of A
Final value is E = 134 = 128 + 6
Final result is -2% (271 + 272 4 274 4 275y 2 2%+ 2% 4 22 4 2l < 54
FLT? A—>B ABfo.1101100.......] Final fraction is copied into B
Figure 4-8. FLT Example (-54)




( FAD FS8 )

ADSO 08
EXC
ADS6C 32 ASS6C) 2¢
e 772
JMP A BeAl Jme A+ g AB
ADS) 09 END END
CCR |DLISAY—= MQISA)
DL/S) —= 8BS
IMP e DLisE) = 5C 1 1
END  {IE 2DL(SE) = GCRY >
ADS7C) 43 ADS7C2 4D
T 772
JSGN e+ 1 2 256 ECRY JSGN £ + 1 2 256~ ECRY
ADS?2 24 END END
ECRY
e =SC === 5C F NEW INST F NEW INST
1SC = Ol -=ECRY U
SIF )
NEW EXPONENT | NOT LARGER ADSBC1 44 ADSBC2 4f
ca7 -1 c47 -1
/ ADS3A 26 c A X2_‘-A o A X2.‘-—A
NEW EXPONENT BX2 '8 BXZ -8
ADS3 LARGER 28 I DL MQ(SB) END E+1 o E END E+) €
(SC 2 23] = ECRY
DLISBY-= MQISB) P - 4
IMP | 5C 3 23l——ECRY v/ 1
fnp ) meAuen oL
NEW [N
F OFL) 45 OF 4F
17 a7
T ADS4A 27 OFL 247-1 - A OFL 2‘7-]..A
271 &8 27 -1=B
ADSA 3C MQ =8 END 255 - E END 255 -=-E
55 MQ A i 0 = ZERO
c E+SCoE (NEW INST)
AS—=BS
BS-=AS D_NO SIGNIFICANCE
NC SIGNIFICANCE 7
f ADSSA 28 ADS5D1 2D ADS48 24
712
-SC MQ—8
ADSS 30 JASGN Bx2°5% 8 Awb JASGN
w 0=sc 0 =ZRO
JASGN|  gx273C. g SDN END
WSDN 3 1O ADD {
N 1C ADD F/ ADS5D2 33 \F
. : 2 ADS5B 25
ADS6A Aeb CPO  [ABeb
ATUI7 = Al
ADSA 3t e END N A ipiseers
A-B-eA END  [[ALU4ZT@®AS| = AS
IMP A<B = A END
(NEWINST) 1
T
T ADSB ko
ADSDB3 3A e
FAF2
Ax NG A ADS782 37 1z L 4
Imp E-NC- ¢ 712 NC -3 - A
wepn | UFL—=ECRY AX 2 G A
iz E-NC-—=E
UFL ~= F
WSDN L — ECRY
T 7N 10 26RO
ADS88 38 N ZEROY N
i amt zas [ oA
N 0-E
END END 0-=—AS
TO UFL
F
UFLY 49 (NEW INST )
UFL 0= A
08 NEW INST
Oe ¢
END 1o INT

Figure 4-9.

(NEW INST )
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have no significance. Thus, in this case, the routine is ter-
minated without actually performing the alignment or a subsequent
addition or subtraction. The result, in this case, is merely the
larger operand. If the exponent difference is less than 23, the
alignment is performed, The sum (A + B) is then formed if the
signs of the two .operands are the same or else the difference

(A - B) is formed if the signs of the two operands are different.
Because the smaller fraction is always located in the B register,
the difference is always positive so that the result is always in
absolute form. This simplifies subsequent handling of this
result. The special case where the exponents of the two operands
are equal is handled by a separate branch because in this case,
if difference (A - B) must be formed, then a test must be made to
determine whether the resultant difference is a negative number
in complement form. If this is the case, then the number must be

complemented to place it in absolute form before further process-
ing can occur.

Once the difference (A - B) is known to be in absolute form, it
can be normalized by shifting it to the left until a binary one
appears in bit position 46. For each shift to the left, the
result exponent, which is the exponent of the larger operand,
must be decremented by 1. If an underflow occurs during
normalization; that is, if the excess-128 exponent value is
decremented from 0000 0000 to 1111 1111, then the routine enters
an underflow branch in which it sets the result to zero and sets
an interrupt flag.

In the case where the two operands are of the same sign, the sum
(A + B) can overflow into the sign bit position. In this case,
the result fraction must be shifted one place to the right and
the result exponent must be incremented. This introduces the
possibility of an exponent overflow. The routine checks for this
possibility by evaluating whether the sum (E + 1) is equal to

or larger than 256 (that is larger than allowable). If this is
found to be the case and if the result fraction is found to

have overflowed into the sign bit position, then the routine
jumps into an overflow branch. This branch sets the result
magnitude at the maximum value and sets the interrupt flag.

If the signs of the two operands are the same, then the sign bit
initially residing in the AS flag can be used as the sign of the
result so that no change in the status of AS is required.

If the signs of the two operands are different, the sign of the
result is the sign of the larger operand. If the new operand is
smaller, then the sign of the result is the sign that resides in
the AS flag at the start of the routine. If the new operand is
found to have a larger exponent than the operand resulting from
the previous instruction, then the new operand fraction is placed
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in the A register and the sign bits held in the BS and AS flags
are swapped. Thus, after this swap, the AS flag holds the sign
of the result. In the special case where the exponents of the
two operands are equal, the initial status of AS must be reversed
if a subtraction produces a negative difference (for in this
case, the new operand has been found to be larger).

A description of the various branches of the FAD/FSB routine 1is
presented in the paragraphs which follow. A numerical example
is provided in figure 4-10.

Paragraph titles identify various branches in terms of the start-
ing and ending microinstructions of the branch. Certain micro-
instructions are not part of any branch identified by a paragraph
title. These microinstructions and the paragraphs in which they
are discussed are listed below:

Microinstruction Reference paragraph(s)
ADSS5D2 4.5.4.2

.ADS7B2 4.5.4.2, 4.5.4.5

ADS7B3 4 4.5.4.4

ADS8B 4.5.4.2, 4.5.4.4, 4.5.4.5
OFL1 4.5.4.3

UFL1 | 4.5.4.5

ZERO 1 4.5.4.5

4.5.4.1 Microinstructions ADSO through ADS2

Microinstruction ADSO performs the same functions as starting
microinstruction LDSO of the FLD routine. (Refer to paragraph
4.5.1 for a description of LDSO.) Microinstruction ADS1 trans-
fers the high fraction field (SA) of the first operand word from
the data latch into the MQ register and transfers either the
sign bit (S) or, if FSB is being executed, the inverse of the
sign bit into the BS flag. It subtracts the new operand excess-
128 code (obtained from the data latch) from the excess-128 code
of the result exponent held in the E register and puts the
difference in the shift counter. If this difference is positive
or zero, it sets ECRY+ high to indicate that the new exponent is
not larger than the result exponent. The CCR code in the FLAG
field of the microinstruction causes the constant register (CR)
to be cleared.
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Microinstruction Operation Results Comments
> i
Result of previous E ll 000001 1] Excess-128 code for exponent = +3
routine
AB 0.1 1100 ....... o_] Fraction = 1/2 + 1/4 + 1/8 + 0 + ... + 0 = 7/8
AS+ Low AS+ indicates ppsitive result
Number is *23 X 7/8 = +7
ADSO Transfer from memory S Exponent Fraction (high) Sign bit (S) = 0. Therefore, number is positive.
to data latch t - —r - ~ Excess-128 exponent code is 129. Exponent = +1.
[0to0000011000000]f High fraction = 1/2 + 0 + ... + 0
. Number = #21 X 1/2 = +1
ADS1 DL (SA)— MQ(SA) MQ|0.1000 ......... 0| High fraction transferred to MQ
DL(S)—® BS BS+ Sign transferred to BS ..
E - DL(SE)®SC SC [O 000001 0] Difference between exponents put in SC
E 2 DL(SE)—#ECRY ECRY+ ECRY set because difference is positive (New exponent is not larger)
ADS2 [SC = 0}—#ECRY ECRY+ ECRY reset because difference is not zero (that is, alignment is required)
JC Go to DIS3A because ECRY set high in ADS1
ADS3A DL—®MQ(SA) MQ tO.l 000 ........ 6] Low fraction (in this case all zeros) transferred to section of MQ.
Since all zeros are transferred to section, no change occurs.
[SC = 24]—PECRY ECRY+ ECRY remains reset because difference is less than 23
Jc Go to ADS4A because ECRY reset in ADS2
ADS4A MQ—®B B B.l 000 ....... 0] New fraction transferred from MQ to B
0—» ZERO ZERO+ ZERO flag is reset because ALU = 1 function is selected
Jc Go to ADSSA because ECRY+ remained reset at end of ADS3A

Figure 4-10.
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Microinstruction Operation Results Comments .
-5C SC- B . : . : s . :
ADS5A B X2 Contents of B register is shifted right each time shift count is
[b 000000 1][6.0 10 ...46] decremented until shift count reaches 0. (This provides appropriate
alignment of smaller operand fraction.) In this case, since SC is
[0 000000 01[9'0 01 ... f51 initially 2, two shifts occur.
12 ZERO+ Change in status of ZERO flag is inhibited
JASGN Go to ADS6C1 because AS = BS
ADS6C1 A+ B—pA,B ABf1.000 ...... 0} 0.11100 ..a.0 .
' : +0.00100 .....0
1.00000 .....0
112 ZERO+ Change in status of 2ERO flag is inhibited
ADS7C2 [E + 1 2 256]—ECRY | ECRY+ ECRY remains reset because (E + 1) = 132 < 256 "
72 ZERO+ Change in status of ZERO flag is inhibited
JSGN Go to ADS8C2 because A47+ is high. (Fraction has overflowed into sign bit
position.) Notice that jump is independent of any zero indication because
ZERO flag was reset in ADS4A and has since been inhibited from changing status
ADS8C2 AX 2'1——0-A A, B |0.1 000 ..... OI Result fraction is normalized by shifting A and B one bit position to right
Bx 2z l—ps
E+1—PpE E [1 000010 OI E is incremented when fraction is shifted to right as required to
maintain same total value of result
. RESULT = 2% x 271 = 23 = 8
JC, END End because ECRY+ is low

Figure 4-10,
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Microinstruction ADS2 performs twos complementation of the
difference formed in the preceding microinstruction if that
difference is a negative number in complement form (that is, if
ECRY+ is low). The explicit function that is performed is the
formation of the difference (0 - SC). This difference is loaded
into SC only if ECRY+ was not set high during the preceding step.
However, the subtraction operation is always performed because

it is also used to determine whether SC is zero. If SC is zero
no borrow occurs and ECRY+ is remains high. If SC is not zero, a
borrow occurs and ECRY+ is reset to the low level. (This occurs
as the microinstruction terminates and does not affect the condi-
tional jump out of this microinstruction.)

The SIF code in the MEM field of microinstruction ADS2 suspends
the termination of the microinstruction until the memory cycle
during which the second operand word is received has been
completed. When the microinstruction is terminated, the SIF code
causes control to be returned to the central processor so that
the next instruction fetch can be initiated. The JC code in the
. JCOND field causes a jump to microinstruction ADS3A if ECRY+

was set high during microinstruction ADS1; that is if the new
exponent 1s not larger than the old exponent.

4.5.4.2 Microinstructions ADS3 through ADS6

This branch is entered when the new exponent is larger than the
old exponent. Microinstruction ADS3 loads the high fraction
field of the second operand word from the data latch into the MQ
register and sets ECRY+ high if the exponent difference held

in the shift counter is 23 or more. The specific operation that
is used to test the shift counter magnitude is to add the twos
complement of 23 to the contents of the shift counter. If the
exponent difference is at least 23, this operation generates a
carry which sets ECRY+ high.

Microinstruction ADS4 transfers the fraction of the new operand
into the A register. (Since the result of the previous instruc-
tion is smaller than the new operand, the copy of the fraction
portion of this result that resides in the B register 1is
retained.) The SS code in the FLAG field causes the sign bits
held in the BS and AS flags to be swapped. This puts the sign
bit associated with the larger number (the new operand) in the AS
flag as required. The exponent difference from the shift counter
is added to the excess-128 exponent code held in the exponent
register and the sum is placed in the exponent register. This
effectively replaces the smaller exponent of the previous result
with the larger exponent of the new operand. The JC code in the
JCOND field causes a jump out of the branch to microinstruction
ADSS5D2 if ECRY+ was set high during the preceding microinstruc-
tion. ADS5D2 terminates the routine after copying A into B.
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This path is followed when at least 23 right shifts of the
smaller operand fraction would be required to align it with the
larger operand. In this case, there could be no significant ones
in the aligned smaller operand and thus addition or subtraction
need not be performed,.

Microinstruction ADSS5 performs the right-shifting of the smaller
operand fraction in the B register. The WSDN code in the MEM
field inhibits the control store clock until the shift count
reaches zero. The shift counter is counted down for each shift
right. Thus, the duration of ADS5 is the number of clock periods
required to complete the alignment. The JASGN code in the JCOND
field produces a jump if the sign bits of the two operands are
equal. This causes a branch to microinstruction ADS6C1 (where
addition is performed) if the signs are the same or a continua-
tion to microinstruction ADS6 (where subtraction is performed) if
the signs are different.

The difference (A - B) that is formed and stored in A during
microinstruction ADS6 is always a positive number in absolute
form and is either normalized or can be normalized by left shift-
ing. The required left-shifting (if any) is performed in
microinstruction ADS7B2 and then the routine advances to micro-
instruction ADS8B during which the aligned fraction result is
copied into the B register. If an underflow is detected during
microinstruction ADS7B2, then ECRY+ is set high as microinstruc-
tion ADS8B is entered. In this case, the JC code in the JCOND
field of microinstruction ADS8B causes a jump to microinstruction
UFL1 which sets the fraction and exponent result values to zero
and sets the interrupt flag. If an underflow does not occur,
then ADS8B is the final microinstruction of the routine.

4.5.4.3 Microinstructions ADS6C through ADSS8C1

This branch is entered from microinstruction ADSS after the new
operand fraction has been aligned in the B register and when the
signs of the two operands are the same. Microinstruction ADS6C
forms sum (A + B) and places it in the A and B registers.

Microinstruction ADS7Cl1l is mainly a decision instrvruction which is
the end of the routine if the sum formed during the preceding
microinstruction is normalized. However, the JSGN code in the
JCOND field causes a jump to microinstruction ADS8C1l if the sum
contains an overflow into the sign bit position. In this case
the A and B registers must be shifted to the right one bit
position and the exponent must be incremented by 1. In order
to determine whether this will cause an exponent overflow, the
summation (E + 1) is performed in the exponent adder during
microinstruction ADS7Cl. If the exponent is already at the
maximum allowable value, this summation produces a carry which
sets ECRY+ to the high level, as the jump to ADS8Cl occurs.
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Microinstruction ADS8C1 performs the required right shift of the
A and B registers and increments the exponent by 1. The C47 code
in the FLAG field causes a one to be loaded into bit position 47
of the constants register (CR) in preparation for the conditional
branch to microinstruction OFL1. If ECRY+ was not set high dur-
ing ADS7Cl, then the execution of ADS8Cl1 produces an in-range
result and the routine terminates with this instruction. However,
the JC code in the JCOND field causes a jump to OFL1 if ECRY+

was set high during ADS7C1.

Microinstruction OFL1l sets the maximum values (all ones) into the
A and B registers and into the E register and sets the interrupt
flag. The all-ones value is formed for entry into the A and B
registers by forming the difference (CR - 1), where CR contains

a one bit in position 47 and zero bits in all other positions.

4.5.4.4 Microinstructions ADS3A through ADS6A

This branch, which is entered from microinstruction ADS2 if the
new exponent is not larger is very similar to the ADS3 through
ADS6 branch which is entered if the new exponent is larger.
Thus, only the differences are described. The JC code in the
JCOND field of instruction ADS3A causes a jump out of the branch
to microinstruction ADS4B if the exponents of the two operands
are equal. (If this is the case, ECRY+ is high when the branch
is entered as required to cause the jump.)

Microinstruction ADS4A transfers the new operand fraction from
the MQ register to the B register. 1In this case, the new operand
is smaller and thus its fraction is placed in the B register for
alignment. Instruction ADS4A also sets the ZERO+ flag low.

Since the ZERO+ flag responds to the output of the ALU, this is
accomplished by selecting the ALU function, ALU = 1.

The ZTZ code in the FLAG field of microinstruction ADS5A holds
the ZERO+ flag low. This is in preparation for a possible jump
to the branch starting with microinstruction ADS6C1 which
requires that ZERO+ be low in order to obtain a correct branch
decision in microinstruction ADS7C2. The jump from ADS5A to
ADS6C1 occurs if the signs of the two operands are the same. If
the path through ADS6A is followed, then the normalization shift-
ing (if required) occurs during microinstruction ADS7B3. From
this microinstruction, the routine advances to ADSS8B.

4.5.4.5 Microinstructions ADS4B through ADS6B
This branch is entered when the two operand exponents are equal.

In this case no alignment is required. Microinstruction ADS4B
transfers the new operand fraction from the MQ register to the
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B register. It also resets the ZERO+ flag to the low level.
This prepares for a possible jump to the branch beginning with
microinstruction ADS6C1. (The status of the ZERO+ flag is not
allowed to change once this branch is entered in order to avoid
Jraking. the wrong branch dec151on in step ADS7C2 in the case where
both operands are zero. +The~JSGN:»code which controls the jump
decision causes a jump on either A47+ high or the ZERO+ flag
high.) The JASGN code in the JCOND field of ADS4B causes a jump
out of the branch to microinstruction ADS6C1 if the signs of the
two operands are the same. If the signs are different, micro-
instruction ADS5B is performed. This microinstruction forms the
difference (A - B) and stores it in B. It sets the ADD flag if
the difference is positive or zero or sets the SUB flag if the
difference is a negative number in twos complement form. (The
sign of the difference is determined by evaluating the status

of sign bit 47 from the ALU.) The CPO code in the FLAG field
enables the setting of ADD or SUB and also causes the status of
result sign flag AS to be reversed if (A - B) is negative. (The
difference was formed because the signs of the two operands

were different. The fact that the difference is negative indi-
cates that the operand in B is the larger operand and therefore
the sign of the result is the same as the sign of B).

During microinstruction ADS6B, the difference held in the B
register is complemented and stored in A if SUB is high (that is,
if the difference is negative). If ADD is high, the difference
from the B register is supplied to the A register without being
complemented. Thus, at the end of the microinstruction, the
difference, in absolute form resides in the A register. The
explicit ALU function that is performed is either (CR + B) or

(CR - B). However, since the constant register (CR) was cleared
in ADS1, the effective operation is ALU = B or ALU = - B.

If the difference computed in microinstruction ADSSB is zero, the
ZERO+ flag is set high as the advance from ADS5B to ADS6B occurs.
In this case, the JZ code in the JCOND field of microinstruction
DS6B causes a jump to microinstruction ZERO 1. This micro-
instruction sets the fraction (in A and B) and the exponent

(in E) to zero and also sets AS+ to the low level as required

to produce the correct zero format. If the difference is not
zero, the routine advances from ADS6B to ADS7B2. This micro-
instruction performs left shifting (if required) to normalize the
fraction. The routine then terminates with microinstruction
ADS8B if the result is in range or jumps to UFL1l if an underflow
occurs in microinstruction ADS7B2.

4.5.4.6 Microinstructions ADS6C1 through ADS8C2

This branch is entered from either one of two other branches in
the event that the signs of the two operands are the same. In



Fhe case where the exponents of the two operands are equal, entry
is from microinstruction ADS4B. 1In the case where the new
exponent is smaller than the exponent of the previous result,
entry is from microinstruction ADSS5A. The branch is similar to
branch ADS6C through ADS8C1 which is traversed when the signs of
the operands are the same and the new exponent is larger. The
only difference is that in microinstructions ADS6C1 and ADS7C2
of this branch, the ZTZ code in the FLAG field inhibits the
setting of the ZERO+ flag to the high level. This is necessary
in order to inhibit the setting of the ZERO+ flag in the case
where both operands are zero. (A high ZERO+ signal level would
cause a jump from ADS7C2 in response to the JSGN code.)

4,.5.5 FADD/FSBD Routine

As illustrated by the flowchart of figure 4-11, the FADD/FSBD
routine performs certain functions and then jumps into an appro-
priate entry point of the FAD/FSB routine. The most basic
difference between double precision and single precision opera-
tions is that four operand words must be obtained from memory
and that three fraction fields must be assembled in the MQ reg-
ister. Another operation that is handled separately for the
double precision operation is the shift counter test to determine
whether the smaller operand is too small to have any possible
significance. In the double precision operation, this is the
case i1f the difference between the exponent values is 47 or more.

Microinstruction ADDO is identical to the first instruction of
the FAD/FSB routine. Its purpose is to initiate the memory
access request required to obtain the second operand word and to
prepare for the transfer of the exponent field from the data
latch to the shift counter during the next microinstruction.
Microinstruction ADD1 performs the exponent transfer and resets
the constant register (CR). Microinstruction ADD2 initiates the
memory access request required to obtain the third operand word.
Microinstruction ADD3 transfers the high fraction field of the
second operand word from the data latch to the MQ register and
transfers the sign bit (S) from the data latch to the BS flag.
As in the case of the FAD/FSB routine, the sign bit is inverted
if the subtraction instruction (in this case FSBD) is being
executed. Microinstruction ADD4 initiates the memory access
required to obtain the fourth operand word.

Microinstruction ADD5 transfers the middle fraction field of the
third operand word from the data latch to the MQ register. It
also forms the difference between the new and old exponents by
subtracting the contents of the shift counter (new exponent) from
the contents of the exponent register. If this difference is
positive or zero, the ECRY+ flag is set high.
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(FADD FsBD)
ADDO 03 ADD7A 20
DL (DD} MQ (DD
EXC SC > 47 —= ECRY
Jc :
INC
ADS48
A
ool o4 F 24 (NO ALIGN)
CCR DL(DA) —= SC
ADDSA 7
END
MQ—=8
T I
ADD2 75 T\ ADS501
F/ 2D (NO SIGNIFICANCE)
INC ADDSA 22
=S
ADD3 76 JASGN BX2 == 38
DL (DB-=mMQ (DB)
DL (5)—=-BS WSDN
ADS6C
F
ADD4 7C 2C (ADD)
ADD10A 23
INC A-B—eA
IMP
ADDS5 7D END
DL (DCYy+=MQ (DC)
E - SC—=5C T
JMP |[E25C]=ECRY
END
h ADS781 34
Z1Z |y NC o
JMP E- NC—=E
ADD6 2E WSDN | UFL ——ECRY
ECRY
-§C——=SC T
e {SC = 0]—=ECRY
SIF
> NEW EXPONENT NOT LARGER ADSEB
r/ %
ADD7 2F
DL (DDY=MQ (DD)
[SC 2 47]—=ECRY

ADS4
3C

VTI2-444
Figure 4-11. FADD/FSBD Routine Flowchart
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Microinstruction ADD6 complements the exponent difference if
ECRY+ was not set high during the previous microinstruction; that
is, if the difference is a negative number in twos complement
format. The SIF code in ADD6 suspends the termination of the
microinstruction until the memory cycle during which the fourth
operand word is received is completed. When the microinstruction
is terminated, the SIF code causes control to be returned to the
processor so that the next instruction fetch can be initiated.
The JC code causes a jump to ADD7A if ECRY+ was set high; that is
if the new exponent is not larger. As the routine exists from
the step, ECRY+ remains high if the difference is zero or is
resct if the difference is non-zero.

1f the new exponent is larger, the routine advances from ADD6
into ADD7. In this microinstruction, the low fraction field of
the fourth operand word is transferred from the data latch to the
MQ register and ECRY+ is set high if the exponent difference in
the shift counter is equal to or larger than 47. A jump into
microinstruction ADS4 of the FAD/FSB routine is then executed.

Microinstruction ADD7A, which is entered if the new exponent is
not larger, performs the same functions as ADD7 and, in addition,
provides a jump to microinstruction ADS4B of the FAD/FSB routine
in the event that the exponent difference is zero.

If the new exponent is smaller, the routine advances from ADD7A
to ADDS8A. This microinstruction transfers the new fraction
from the MQ register to the B register and provides a jump to
microinstruction ADS5D1 if ECRY+ was set in ADD7A; that is, if
the smaller operand is too small to have any possible
significance.

If ECRY+ was not set high in ADD7A, the routine advances to
microinstruction ADD9A which aligns the smaller (new) operand
fraction in the B register. The JASGN code causes a jump into
microinstruction ADS6C1 of the FAD/FSB routine if the signs of
the two operands are the same. If they are different, this
routine continues through microinstructions ADD10A and ADS7B1.
ADD10A forms the fraction difference (A - B) and stores this in
the A register. ADS7B1 performs normalization shifting of this
difference (if and as required). If an exponent underflow occurs
during the normalization, ECRY+ is set high. A jump into micro-
instruction ADS8B of the FAD/FSB routine is then executed.

4.5.6 FMU Routine

Multiplication (figure 4-12) involves the processing of the

signs, exponents, and fractions of the two operands. Processing
of signs involves setting AS+ low (to represent a positive result)
if the signs of the two operands are the same or setting of AS+
high if the signs of the two operands are different. A provi-
sional result exponent is computed by adding the operand

exponents and subtracting 128.
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FMU
MUS3A 8s
MUSO 0E MUD )
DL(SB)-=MQ(SB!
EXC IMP T - sc
END
INC
MUS1 OF !
E128 | DL(SA)-=MQ(SA)
e | DL —— 85 MUS4A Aé
E+DL(SE) - 128~ MULTIPLY
END | [EA7@®EAB)=ECRY] SC=0
MUS68 AF WSDN | [E+12256]-=ECRY
. c47
JSGN A=B MUSSA A7
MUS2 80 END FINAL
ic MULTIPLY
I O—=A £ NEW INST [A+8=0]-=~ ZERO
E-1=E T
SIF COFL 4
> COFL V UFL VvV CFL OFLS 70 \F
£ OFL Y1 A
71— MUS6A A8
MUS3 a1 END 255 -=F
MU0 1z E+]-—E
P ?‘L(Sﬂ--g/\cQ(SB) (NEW INST)
END
/
ZEROS5 AB \\i
T ZAS O-=A
O-=138 MUS7A A9
MUS4 A2 O-=E c47
END O-= AS JESGN
gACULTgLY MUS6C AD
-
wson | [E¥122561 = ECRY NEW INST
JSGN A-=—B A
MUS5 A3 \\\f
AL OFL7 AA
Jc MULTIPLY T 47
MULTIPLY  er0 OFL 2% A
47
2% 1=18
o - — END 255 =
F
-/ UFL ST s (NEW INST)
MUS6 A4 O=A M7 A2
END O 8 z;z Ax2™ - A
A8 J -1
ISGN | 1a=0)= zERO END -k
END (NEW INST)
£ NEW INST
T T
F
ZEROS B6
ZAS O= A
NEW INST O=8
CwE
END C= AS
( NEW INST )
VTI2-448
Figure 4-12. FMU Routine Flowchart
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(The subtraction of 128 preserves the excess-128 code.)

Fractions must be multiplied and the result normalized. After
the multiplication of the fractions is complete, the result frac-
tion is either in the normalized position or else has its most
significant non-zero bit in the sign position (in which case it
must be shifted to the right one position).

The provisional result exponent is decremented to compensate for
an inherent left shift of the fraction which occurs during the
multiplication process. For example, the multiplication,

1/2 X 1/2 (0.1000.. X 0.1000...) which should produce the result,
1/4 (0.0100...), actually produces the result, 1/2 (0.1000...).
While the need for decrementing of the provisional result
exponent is conditional upon the status of the result fraction,
the routine invariably decrements it (in step MUS1). 1If it is
subsequently found that the result fraction must be shifted
right, the routine then increments the provisional result

exponent at that time so as to cancel the earlier decrementing
operation.

A provisional result exponent value of 128 represents a condi-
tional overflow value (COFL). While 128 itself is outside of

the allowable range, the value of 127 which will be the final
exponent value if the result fraction does not require a shift to
the right, is within range. Any provisional result exponent
value greater than 128 is definitely an overflow value (OFL). A
value of -129 or more negative is definitely an underlow value
(UFL)}. In summary, any provisional result exponent value which
is outside of the normal range (+127 through -128) indicates the
possibility of an overflow or underflow. There is also one
in-range provisional result exponent value which represents a
conditional underflow value (CUFL). This is the value -128 which
will produce the out-of-range final result exponent value -129 in
the event that the result fraction does not require shifting to
the right.

Descriptions of the various branches of the FMU routine are pre-
sented in the paragraphs which follow. A numerical example is
provided in figures 4-13 and 4-14.

4.5.6.1 Microinstructions MUSO through MUS2

Microinstruction MUSO performs the same functions as starting
microinstruction LDSO of the FLD routine. (Refer to para-
graph 4.5.1 for a description of LDSO.)

Microinstruction MUS1 transfers the high fraction field of the
first operand word (SA) from the data latch to the MQ register
and transfers the sign bit (S) from the data latch into the BS
flag. It also adds the exponent value residing in the exponent
register (E) to the exponent value obtained from the data latch
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Microinstruction Operation Results Comments
Results of previous A,B [0 . 100 .... 0] 1/2 + 0+ 0+ ... +0=1/2 ,
operation
E 10000000 128+ 0+ ... + 0 = 128; Exponent = 0
AS+ Sign is positive
Number is 257128 x FracTiON = 20 X 1/2 = 172
MUSO Transfer from memory S Exponent Fraction (High)
to data latch 1 A — A ey
Ll 01111110010111 1J Sign bit = 1. Therefore, number is negative. Thus, exponent and high
fraction fields are in ones complement form
DL
Exponent ='+1; High Fraction = 1/2 + 1/8 = 5/8
MUS1 DL(SA)—pMQ(SA) MQ [O .10100 .... Ol Sign and high fraction are transferred to MQ. One’s compleméntation
" performed in response to negative sign bit in DL1S5 converts data
to absolute form.
DL(S)—BS ps+ [H] Sign bit is saved in BS. -
E + DL(SE) - 128—pE ELIOOODOOI_] 128 + 129 - 128 = 129
[EA @ EAS)—ECRY ECRY+ Exponent is in range so ECRY remains reset.
MUS2 0—pA AJO . 000 ........ Ol A is cleared in preparation for product accumulation.
Transfer from memory DL LO 00 ....... v .O] 2nd operand word (in this case all 0s) is received by FPP
to data latch
E- 1—pE EfLo000000] E is decremented by 1
Jc Go to MUS3 because ECRY+ is low.
MUSs 3 DL(SB)—®MQ(SB) MQ [0 .10100 . ... (ﬂ Low fraction transferred from DL to MQ. (Since low fraction is zero in
this example, there is no change in status of MQ.)
11—SC SC h) 000110 l] Shift counter is set to 11 to prepare for MUS4

Figure 4-13. FMU Example (+1/2)(-1 1/4) = 5/8 (Sheet 1 of 2)
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Microinstruction Opetatfon Results Comments
MUS3 MU0 AS+ [:] AS+ is set high to indicate negative result because AS # BS
Continued .
( ) (See figure 4-14.) First pair of multiplier bits is evaluated. (See figure 4-14.)
MUS4 [(E+ 1) 256]—ECRY | ECRY+ ECRY remains reset because E + 1 = 129 < 256
Multiply
. . '
SC—p0 (See figure 4-14.) Eleven iterations are performed. For each iteration; SUB, ADD, and
, CARRY flag status is updated in accordance with multiplier bit pair and
" CARRY flag status. Contents of B is added to or subtracted from previous
partial product if ADD or SUB flag respectively is in set status and
partial product is shifted right two positions. Also, B register is
shifted left or right, if appropriate, to provide 2M or M (where
M = multiplicand) -
MUSS Final Multiply Alo.1010..... . 0] (See figure 4-14.)
{A + B = 0]—pZERD ZERO+ Product fraction is non-zero.
JC Go to MUS6 because ECRY+ is low. (E + 1 would be within range.)
MUS6 A—»B ABfo.1010 . o Fraction result is copied into B
JSGN END Routine ends because result fraction is non-zero and has not overflowed
into sign bit position.

Note: Final exponent value is zero (from MUS2); final fraction value is 1/2 + 0 + 1/8 +..40 = 5/8
Final sign value is minus (from MUS3).

(from MUSS).

Number is:

Figure 4-13.

0

-2° X 5/8 = -5/8
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MULTIPLIER: 0.1 01 00 00 00 00 00 60 00 00 00 00
MULTIPLICAND: 0.1000...,...0

MICROINST (%?ég;w B REGISTER g‘vlﬂl'mgga”s SUB ADD CARRY A REGISTER
47 46 45 44 ., .. - 47 46 45 44 43

MUS3 n o1 0 0. 00 00 0 0000 O0...
MUS4 10 100 0. 00 0o 0 o0 0 00 0 O.

9 1 0 0 0. 00 00 0 0 00 O0 O.

8 100 0. 00 00 0 0 00 0 O.

7 100 0. 00 0o 0 0 0000 O.

6 1 0 0 0. 00 0o 0o 0 0 0 0 0 0....

5 1.0 0 0. 00 0o 0 0 000 0 0.

4 100 0..,. 00 0 0 0 0 0 0 0 0.

3 100 0. 00 o0 0 0 000 O.

2 10 0 0. 00 o0 0 000 0 0.

1 o1 0 0. o1 0 1 0 0o 00 0 0.

0 01 0 0. o1 0 0 00 0 1 0....
MUS5 o1 0 1 o0,

VTI11-3203

Figure 4-14. Example of Fraction Multiplication Procedure
(1/2 X 5/8):

(SE) and places this provisional result exponent in the exponent
register. The E128 code in the FLAG field of the microinstruction
effectively introduces a component of -128 into the exponent
summation. This is necessary in order to maintain the excess-128
code. If an out of range exponent sum (larger than +127 or more
negative than -128) is obtained, the ECRY+ flag is set high. This
prepares for a jump from the next microinstruction.

Microinstruction MUS2 clears the A register in preparation for
using it to accumulate the produce of the operand fractions and
decrements the provisional exponent result computed in the pre-
ceding microinstruction. This decremented exponent value

becomes the final exponent result value unless a subsequent right
shift of the fraction result is required or the fraction result
is zero. The SIF code in the MEM field suspends the advance to
the next microinstruction until the end of the memory cycle
during which the second operand word is received from memory and
loaded into the FPP data latch. As the advance to the next micro-
instruction occurs, SIF causes control to be returned to the
central processor so that the next instruction fetch can be
initiated. The JC code in the JCOND field causes a jump to
microinstruction MUS3 if ECRY+ was set high during MUS1. Thus,
this path is followed if an out-of-range provisional exponent
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result value was obtained. If the provisional exponent result

value was within range, the routine advances to microinstruction
MUS3.

" 4.5.6.2 Microinstructions MUS3 ‘through MUS7 and ZERO6

This branch is executed when the provisional exponent result
obtained during microinstruction MUS1 is within range. Micro-
instruction MUS3 sets the AS+ flag to the low level if the signs
of the two operands are the same or sets the AS+ flag to the high
level if the signs are different. This action occurs in response
to the MUO code in the FLAG field of the microinstruction.

Microinstructions MUS3 through MUSS5 implement the fraction
multiplication procedure. This is essentially an add and shift
routine in which multiplier bits are processed in pairs. Each
multiplier pair has a value of 0, 1, 2, or 3 times 2™, where the
value of 2 is determined by the position of the pair in the total
multiplier fraction. The basic scheme is to add a value of 0, 1,
2, or 3 times the multiplicand to the previous partial product in
accordance with the value of the particular multiplier bit pair
that is being processed. After each step, the intermediate
product is shifted two bit positions to the right. This imparts
the appropriate weight (2") to each successive component that is
added to the previous partial product. In actual implementation,
the basic scheme is modified so that only two explicit component
values are required, M and 2M, where M = multiplicand. Using
these two values, 0, 1, or 2 times M can be added to the partial
product directly. To add 3M, M is subtracted during the current
step and a carry is propagated into the next step. _Since the
significance of each succeeding bit pair value is 22 = 4 times
that of the preceding bit pair value, a carry into the next step
is equivalent to the addition of 4M during the current step.
Thus, the addition of 3M is implemented by adding 4M - M. When a
carry from the preceding step is allowed, the number of possible
values is increased to include the additional value, 4. However,

the value 4 can be added simply by generating a carry into the
next order,.

The required values of M and 2M are obtained by controlling the
position of the multiplicand in the B register. When 2M is
required, the contents of the B register are shifted to the left
one position. When M is again required, the contents of the B
register are shifted to the right.

Each step consists of two sub-steps; namely the evaluation of the
two multiplier bits and the carry bit and the addition or sub-
traction of the appropriate component to the previous partial
product. Each sub step requires one clock period. However,

once the process has been started, the addition or subtraction
associated with the current step can be performed during the same
clock period as the evaluation associated with the next step.
Thus, the 12 pairs of multiplier bits can be processed in 13
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clock periods. During the first of these clock periods, which is
provided by microinstruction MUS3, only an evaluation occurs.
During the next 11 clock periods, which are provided by micro-
instruction MUS4, both an evaluation and the addition or
subtraction of a component occur. During the final clock period,
which is provided by microinstruction MUS5, only an addition
occurs.

The MUO code in the FLAG field of microinstruction MUS3 conditions
the arithmetic control for the evaluation of the first pair of
multiplier bits. This microinstruction moves the second word of
the multiplier (which contains the first two bits to be evaluated)
from the data latch to the MQ register. Thus, these bits must be
monitored, for purposes of the first evaluation, as they reside
in the data latch. At the same time, a second pair of multiplier
bits is loaded from the data latch into a multiplier bit pair
buffer. This buffer provides the source of bits during the
evaluations of microinstruction MUS4., At the end of each clock
period during microinstruction MUS4, the contents of the buffer
is updated from the MQ register. During each clock period of
MUS4 (except the first), the contents of the MQ register is
shifted two bit positions to the right. The first bit of the
first bit pair is zero. The second bit of the first bit pair is
obtained from bit position 00 of the data latch. The second bit
pair, which is loaded into the multiplier bit pair buffer during
microinstruction MUS4, is obtained from bit positions 01 and 02
of the data latch. Thereafter, each successive bit pair is
loaded into the multiplier bit pair buffer from bit positions 28
and 29 of the MQ register. (The multiplier bit pair which
initially resides in bit positions 28 and 29 after the parallel
data transfer from the data latch is loaded into the buffer at
the end of the first clock period of MUS4. By the end of the
second clock period, the bits initially residing in positions 30
and 31 have been shifted into positions 28 and 29 and are now
loaded into the buffer. The shifting of the contents of the

MQ register and the loading of the buffer continues in this
manner for the remainder of MUS4.

Another function performed by microinstruction MUS3 is the setting
of the shift counter (SC) to 11. This determines the number of
clock periods in MUS4. At each clock time, SC is counted down
and an advance to MUSS5 occurs as SC reaches the count of 0. The
MUO code in the FLAG field of microinstruction MUS3 causes the
MUl flag (not shown in the flow chart) to set as microinstruction
MUS4 is entered. It is this flag which conditions the arithmetic
control to perform evaluations, additions or subtractions, right
shifting of each partial product, and right shifting of the MQ
register. The WSDN code in the MEM field of MUS4 inhibits the
control store clock until the shift count reaches 1 as required
to continue the microinstruction for 11 clock periods.
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A subsidiary function performed by MUS4 is the formation, in the
exponent loop, of the sum (E + 1). If the excess-128 exponent
code is 255, then this summation produces a carry out of the
highest order of the ALU which sets the ECRY+ flag to the high
level. This indicates the conditional underflow (CUFL) value.
(In this case, the initial provisional exponent result was 000,
representing an exponent value of -128, This was decremented in
MUS2 to become 255 so that the incrementation provided in this
step produces an overflow.)

In microinstruction MUS5, the final component is added to the
partial product to form the final product. The JC code in the
JCOND field causes a jump to microinstruction MUS6C for the
conditional underflow case. If the final product formed in
MUSS is zero, the ZERO+ flag is set high. 1If the conditional
underflow case is not sensed, the routine advances from MUSS5 to
MUS6. Microinstruction MUS6 copies the final product from the
A register into the B register. If this final product is
normalized, this is the final microinstruction of the routine.
The JSGN code in the JCOND field causes a jump to microinstruction
MUS7 if the final product has overflowed into the sign bit
position or if the ZERO+ flag is high.

Microinstruction MUS7 shifts the contents of the A and B registers
one position to the right and increments the exponent as required
to normalize the result. Unless the ZERO+ flag is high, this is
the final microinstruction of the routine. The JZ code in the
JCOND field causes a jump to microinstruction ZERO6 if ZERO+ 1is
high. Microinstruction ZERO6 sets the fraction fields in the

A and B registers and the exponent field in the E register to
zero. It also sets the sign bit in the AS flag to zero. (This

last action occurs in response to the ZAS code in the FLAG field
of the microinstruction.) This is the floating point number zero
format. This microinstruction, when performed, is the final
microinstruction of the routine.

4.5.6.3 Microinstructions MUS3A through MUS7A and OFL7; MUS6B
and OFLS; and ZEROS

This branch is entered from MUS2 when the provisional exponent
result is out of range. MUS3A through MUSSA are identical to
MUS3 through MUSS5, described in paragraph 4.5.6.2. However, they
lead to different terminations as appropriate to the out-of-range
exponent condition. Whereas the setting of ECRY+ to the high
level in MUS4 indicates a conditional underflow condition, the
setting of ECRY+ in MUS4A indicates a conditional overflow (COFL)
condition. (In this case, the provisional exponent excess-128
code of 0000 0000 represents the overflow exponent value of +128.
This causes a jump from MUSS5A to MUS6B in response to the JC

code in the JCOND field of MUSS5A. MUS6B copies the result frac-
tion from the A register to the B register. If the result
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fraction is in the normalized condition, this is the final
microinstruction of the routine. (Although the provisional
exponent result value was out of range, this was decremented in
MUS2 so that the exponent value in the E register now represents
the in-range value of +127. 1If the fraction result does not

require a right shift and is not zero, this becomes the final
exponent value.) :

The JSGN code in the JCOND field of MUS6B causes a jump to OFLS
if the result fraction requires right shifting. Microinstruction
OFLS5 establishes the overflow format. The A and B registers

and the exponent register are set to all ones. This represents
the largest possible magnitude. The sign bit is not affected.

If the COFL status is not sensed, the routine advances from
MUSSA to MUS6A. The exponent is now known to be either an under-
flow or an overflow value. Thus, the final result must be an
underflow or overflow unless the fraction result is zero.
Microinstruction MUS6A forms the sun (E + 1) and stores this in
the E register as required to return the exponent result to the
initial value computed in MUS1. The JZ code in the JCOND field
of this microinstruction causes a jump to microinstruction ZEROS5
if the fraction result is zero. ZEROS5 establishes the floating
point zero format. (This is identical to microinstruction
ZER06.)

If the fraction result is not zero, the routine continues from
MUS6A to MUS7A. The purpose of MUS7A is to distinguish between
an overflow and an underflow. This determination is controlled

by the status of the most-significant bit of the excess-128
exponent code. If this bit is a one, then the exponent code
represents a negative out-of-range (underflow) value of -129 or
more negative. If this bit is zero, then the exponent code
represents a positive out-of-range (overflow) value of greater
than +128. The JESGN code in the JCOND field of MUS7A causes a
jump to UFL4 if the bit is a one or to OFL7 if the bit is a zero.
UFL4 establishes the underflow format of zero in all fields
including the sign bit field. OFL7 establishes the overflow
format of the largest possible magnitude and does not change the
sign.

4.5,6.4 Conditional Underflow Microinstruction MUS6C and
Microinstruction UFL4

This microinstruction is entered from microinstruction MUSS when
the conditional underflow value of -128 is sensed in micro-
instruction MUS5. This value was decremented in MUS2 to produce
the underflow value -129. However, if the fraction result has
overflowed into the sign bit position, then the exponent will be
incremented and so will be returned to the in-range value. The
result will also be in range if the fraction result is zero. The
JSGN code in the JCOND field of MUS6C causes a jump to MUS7 if

4-53



the fraction result has overflowed into the sign bit position or
if the fraction result is zero. This microinstruction is
described in paragraph 4.5.6.3. If the result fraction is found
to be in the normalized status, the routine advances to micro-
instruction UFL4 which establishes the underflow format.

4.5.7 FMUD Routine

As illustrated in figure 4-15, the FMUD routine performs functioéns
associated with the transfer of a double precision number and
‘then, after performing a multiplication set-up instruction which
'sets the shift counter to 23, jumps into an appropriate micro-
‘instruction of the FMU routine. In the case of the double-
precision number, there are four operand words to be obtained
from memory rather than two. The routine must initiate the mem-
ory cycle requests required to obtain three of these words and it
.must assemble the fraction fields from three operand words in the
MQ register to form the multiplier fraction,

Microinstruction MUDO is identical to MUSO. Microinstruction
MUD1 transfers the exponent field from the data latch to_ the

shift counter where it is held until microinstruction MUD5 adds
it to the exponent code held in the exponent register.

Microinstruction MUD2 waits for the completion of the memory
cycle during which the second operand word is transferred from
memory to the FPP data latch. 1It then increments the memory
address to point to the location containing the third operand
word and initiates the memory request required to obtain this
word,

Microinstruction MUD3 transfers the high fraction field (DB) of
the second operand word from the data latch to the MQ register
and transfers the sign bit field of the second operand word from
the data latch to the BS flag.

Microinstruction MUD4 waits for the completion of the memory
cycle during which the third operand word is transferred from
the memory to the FPP data latch. It then increments the
memory address to point to the location containing the fourth
operand word.

Microinstruction MUD5 transfers the middle fraction field (DC) of
the third operand word from the data latch to the MQ register.

It also adds the exponents of .the two operands and sets ECRY+
Righ if an out-of-range provisional result exponent is obtained.
(These are the same exponent-loop functions that are performed in
~microinstruction MUS1 of the FMU procedure except that the new
exponent code now resides in the shift counter rather than the
data latch.)



(mwo ) 7 MUD4 7E
MUDO 06
EXC
INC
INC MUD5 i 7F
MUD? 07 E128 DL (DC)'TMQ (DC)
P |E+SC - 128=E
DL (DA)~sC NP |EA7 ® ea—tcry
IMP
END
T
T
MUD6 A0
MUD2 78 E-1—=E
i 0—=A
IMP SIF
NC : COFLVUFLVOFL
F
T //
MUD7 Al MUD7A AC
MUD3 78 MU0 SETUP MUD  [SETUP
MULTIPLY
DI{DBYMQ(DBY 23 == SC %Ul'lws,g
D1 {5} —=BS DL(DD)-= MQ(DD) DL(DD} —= MQ(DD)
*MUS4 MUS4A
A2 T

Ab

VT11-3187

Figure 4-15. FMUD Routine Flowchart

Microinstruction MUD6 performs the same function as microinstruc-
tion MUS2 of the FMU routine. Microinstructions MUD7 and MUD7A
are similar to microinstructions MUS3 and MUS3A. The differences
are that the MUD7 and MUD7A microinstructions transfer the low
fraction field of the fourth operand word from the data latch to
the MQ register and that these two microinstructions set the
shift counter to 23 rather than to 11. The higher shift count is
required because in the case of a double-precision multiplier
there are 24 pairs of multiplier bits to be processed rather

than 12.

From MUD7 or MUD7A, the routine jumps into MUS4 or MUS4A respec-
tively of the FMU routine. Double precision multiplication of
functions in steps MUS4 and MUS4A is identical to single precision
multiplication except for the number of iterations as noted above
and the source of the bit pairs. 1In double precision multiplica-
tion, the first bit pair is obtained from bit positions 00 and 01
of the data latch. The second bit pair is obtained from bit
positions 02 and 03 of the data latch. The third and remaining
bit pairs are obtained from bit positions 06 and 07 of the MQ
register.,
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Figure 4-16. FDV Routine Flowchart
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4.5.8 FDV Routine

D@vision (figure 4-16) involves the processing of signs, frac-
tions, and exponents of the two operands, Processing of signs
involves setting AS+ low (to represent a positive result) if the
signs of the two operands are the same or setting AS+ high if the
signs of the two operands are different. The dividend fraction
must be divided by the divisor fraction and the result must be
normalized. After the fraction division procedure has been com-
pleted, the result fraction is either in the normalized position
or else has its most significant non-zero bit in the sign position
(in which case it must be shifted to the right one position).

The exponent of the divisor must be subtracted from the exponent
of the dividend to produce a provisional result exponent which

must be incremented if the result fraction requires shifting to
the right,

A provisional result exponent value of -129 represents a condi-
tional underflow value (CUFL). While -129 itself is outside of
the allowable range, the value of -128 which will be the final
exponent value if the result fraction requires shifting to the
right, is within range. Any provisional result exponent value
more negative than -129 is definitely an underflow value (UFL).

A value of +128 or larger is definitely an overflow value (OFL).
In summary, any provisional result exponent value which is out-
side of the normal range (+127 through -128) indicates the possi-
bility of an overflow or underflow. There is also one in-range
provisional result exponent value which represents a conditional
overflow value (COFL). This is the value +127 which will produce
the out-of-range final result exponent value +128 in the event
that the result fraction requires shifting to the right.

An attempt to divide by zero is also evaluated as an overflow
condition. The divide-by-zero attempt is recognized by sensing
the zero status of the divisor fraction.

At the start of the floating point divide routine, the operand in
the floating point accumulator is the dividend and the new operand
from memory is the divisor. The divisor fraction is loaded into
the B register and the dividend fraction remains in the A
register.

To divide fractions, a comparison algorithm with fast shift over
zeros is used. Twenty-four iterations of the fraction divide
step are performed for single precision division. At each itera-
tion, the partial remainder (or, in the case of the first itera-
tion, the divident fraction) in A is compared with the divisor
fraction in B and a quotient bit is shifted left into the MQ
register. If A is greater than or equal to B, then the quotient
bit is one and the difference, A minus B, is shifted left into A.
If A is less than B, then the quotient bit is zero and the con-
tents of the A register are shifted left. If bit 46 or bit 47 of
A is a one, then the comparison and the subtraction (if required)
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are performed by the arithmetic and logic unit (ALU). If bit 46
and bit 47 are both zero, then A is less than B, the quotient bit
is zero, subtraction is not required, and A is shifted left., In
the latter case, iterations are performed at twice the normal
clock frequency.

A description of the various branches of the EDV routine is pre-
- sented in the paragraphs which follow. A numerical example is
provided by figures 4-17 and 4-18.

4.5.8.1 Microinstructions DISO through DIS2

Microinstruction DISO performs the same functions as starting
microinstruction LDSO of the FLD routine. (Refer to
paragraph 4.5.1 for a description of LDSO.)

Microinstruction DIS1 transfers the sign bit (S) field of the
first operand word from the data latch to the BS flag and
transfers the high fraction field of the first operand word (SA)
from the data latch to the MQ register. It also subtracts the
exponent field of the first operand word, obtained from the
data latch, from the divident exponent code residing in the
exponent register (E) and places the difference in the exponent
register. A component of +128 is added to the difference as it
is formed in order to preserve the excess-128 representation. If
an out-of-range exponent difference (larger than +127 or more
negative than -128) occurs, the ECRY+ flag is set high. This
prepares for a jump from the next microinstruction. The E128
code in the FLAG field of the microinstruction effectively
introduces a component of +128 into the exponent computation as
required to maintain the excess-128 code.

Microinstruction DIS2 sets the ZERO+ flag to the high level if
the dividend fraction, held in the A register, is zero. Since
the output of the data-loop ALU controls the switching of the
ZERO+ flag, the function ALU = A must be selected in order to
allow the status of the A register to determine the status of

the ZERO+ flag. The SIF code in the MEM field of microinstruc-
tion DIS2 suspends the advance to the next microinstruction until
the end of the memory cycle during which the second operand word
is received from memory and loaded into the FPP data latch. As
the advance to the next microinstruction occurs, the SIF code
causes control to be returned to the central processor so that
the next instruction fetch can be initiated. The JC code in the
JCOND field causes a jump to microinstruction DIS3A if ECRY+

was set high during DIS1. Thus, this path is followed if an
out-of-range provisional exponent result value is obtained. If
the prov151ona1 exponent result value is within range, the routine
advances to microinstruction DIS3.



[

Microinstruction Operation Results Comments
Dividend (Result of E{Looo0o0011] ase N S O S LA AL AP Sl PO ST Sl I O,
previous routine) 2 1 0 -1 -2 .3 .
aBfol11111000.. 0] R L T
= +7.875
DISO Transfer from memory S Exponent Fraction (High) Sign bit (DL15) :-g' T?3r5f°f§' number is positive. Exponent = +1.
to data latch 1 —a—— High fraction = 2 = + 2 + 27+ 0 +...40
[01o0000011110000] Number is 2} (271 e 272+ 273) = 04 271, g2
= +1.75
DL
pIsi DL(S)—BE BS+ Positive flgn saved in BS.
DL(SA)—MQ(SA) NMQ [0.1 Tt1L000 ... 61 Sign and high fraction transferred to MQ
E - DL(SE) + 128—E E |10000010] 131 - 129 + 128 = 130
(EA7 @ EA8]—=ECRY ECRY+ Exponent is within range so ECRY remains relet
DIS2 [A = 0]—ZERO ZERO+ Dividend fraction is non-zero so ZERO remains reset.
Transfer from memory DL {0 00000000000000 | ind operand word is received by FPP
to data latch
ic Go to DIS3 because ECRY+ is low.
DIS3 DL (SB)—#»MQ (SB) MQ Io‘l 11000 ""f{J Low fraction (in this case all zeros) is transferred from DL to MQ.
Jz Go to DIS4 because ZERO+ is low.
DIS4 MQ—pB B [971 11000 ..... ;9] Divisor fraction is transferred from MQ to B.
24—pSC sc [p 001100 OAJ Shift counter is set to 24 to prepare for DISS.
DIO AS+ AS+ remains low because AS = BS,
SUB+ SUB+ is set in preparation for subtractions in DISS

Figure 4-17,

(Sheet 1 of 2)

FDV Example, +7.875 divided by +1.75 = +4.5
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Microinstruction Operation Results Comments
DISS [E +1 2 256]—9ECRY ECRY+ ECRY remains reset because (E + 1) = 131 < 256
Divide
SC—p0 First ‘'subtraction (First subtraction occurs during first clock period. Result is shifted
left one position as it enters A register so as to provide value shown
A =0.111111000 .. for SC = 23 in figure 4-18.)
B -0.1110000060.... Remainder or, if difference is positive or zero, remainder minus
ALU =0.000111000 ... divisor from ALU is shifted left one bit position into A register at
each clock time. A one is shifted into MQ each time that positive or
Second subtraction zero difference is sensed. A zero is shifted into MQ each time
negative difference is sensed.
A =0.111000000....
B =0.111000000.... ’ .
ALU = 0.000000000....
(See also figure 4-18.)
MQ 10010000 ....... 0 :
DIS6 MQ—pA,B A,B Il.D 010000 0] _Quotient is transferred from MQ to A,B
[B = 0]—®ZERO ZERO+ ZERO flag remains reset because divisor fraction is non zero.
Go to DIS7 because ECRY+ is low.
DIS7? Tz ZERO+ ZERO flag status is inhibited from changing
JSGN Go to DIS8 because A47 = 1. (Fraction result has overflowed into sign
bit position.)
DIS8 Ax 27 l—pa A8 fotoo1o000 ..., o] Final fraction value is 27l + 0+ 0+ 274 ¢ 0+.4 0
BX 2 l—ps Final exponent value is +3
E+ 1—pE E[to000001 1] Result is 25 (271 + 2% = 22+ 271 - w4
JZ, END Routine ends because ZERO+ is low.

Figure 4-17. FDV Example, +7.875 divided by #1.75 = +4.5
(Sheet 2 of 2)
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SHIFT COUNT MQ REGISTER ‘ A REGISTER

47 24 47

23 00000000000000000000000Y 000111000 .,...
22 000000000000000000000010 0O011Y10000.....
21 000000000000000000000%Y00 OYVYYOQOO0O0O00O0...,..
20 00000000000000000000100% 00000000O0..,..
19 000000000000000000‘6\00]0 ooooo00000 ...
18 60000000000000000O00100100 000000000 ..,...
17 0o0O000O0O00C0000OO0000O01O00YOO00 000000000 .. .
16 000000000000000010010000 000000O0O0O0OC ...
15 000000000000000100100000 000000000 ,....
14 c0000000000000Y0OO0YTDOOOOD0O 000000000 ...,..
13 0000O0DODOOOOOOYTOOYOO0O00000 OOOOCOO0O0O0CO ....,.
12 000000000000 100100000000 000O000000CO0 .

n 0coo0o00000OO0C00O1001000000000 OOCO00OO0O0O00O0 ..,
10 0000000000 10010000000000 000000000 ....
9 000000000O100100000000000 000000000 .....
8 cod000O0OOCGIOOITOODO00OOOO0OODO OOOOOOOOO ...
7 0c0O0000010010000000000000 OOOOCOQOOOO ., .
6 000000100100000000000000 OOOOOOOOGO ...
5 6000001001000000000000000 0000000000 . .
4 000010010000000000000000 OOOO0O0OOOO . .
3 000100100000000000000000C 0OO0O0O0OOCOOD0O . .
2 001001000000000000000000 00OO00OO0CO0O0O0O, .o
1 010010000000000000000000 000000000 ,.,...
0 100100000000000000000000 0OO0O0O0O0O0O0O0O. .

VTI1.3206

Divident Fraction = 0.11111100...
Divisor Fraction = 0.111000....

Figure 4-18. Fraction Division Procedure Example

4,5.8.2 Microinstructions DIS3 through DIS8 and OFL2

This branch is entered when the provisional exponent result
obtained during microinstruction DIS1 is within range. Micro-
instruction DIS3 loads the second operand word from the data
latch into the MQ register. The JZ code in the JCOND field of
this microinstruction causes a jump to microinstruction DIS4D1 if
the ZERO+ flag is at the high level; that is, if the dividend
fraction is zero. If ZERO+ is low, the routine advances from
DIS3 to DISA4.
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Microinstruction DIS4 sets the AS+ flag to the low level if the
signs of the two operands are the same or sets the AS+ flag to
the high level if the signs are different. This action occurs in
response to the DIO code in the FLAG field of the microinstruc-
tion. This code also causes the SUB+ flag to be set high as
required to select the subtraction function for the data loop
ALU.. The subtraction function remains selected throughout

. the fraction division procedure of the next microinstruction.
This provides the means of determining whether the partial
remainder is larger than or equal to the divisor fraction. The
divisor is permanently subtracted from the partial remainder

when the difference output from the ALU is actually loaded into
the A register and this occurs only when the difference is
positive or zero. The DIS4 microinstruction also sets the shift
counter to 24. This determines the number of iterations of the
fraction divide step during the next microinstruction. The
constant 24 is loaded into the shift counter via the exponent
loop ALU. It originates in a location within the constant PROM
which is addressed by the FDV OP code in the FPP instruction .
register. '

Microinstruction DISS performs the 24 steps of the fraction divi-
sion procedure. The DIV code in the FLAG field conditions the
arithmetic control for the continued selection of the subtraction
function, for the shifting of and conditional subtractions from
the partial remainder, and for the generation of the quotient
bits and shifting of these bits into the MQ register. The WSDN
code in the MEM field suspends the termination of the micro-
instruction until the clock time at which the shift count reaches
zero.

A subsidiary function performed by DISS is the formation of (E+l)
and the setting of ECRY+ to the high level if this summation
generates a carry out of the highest order bit position of the
exponent-loop ALU. This indicates a conditional overflow condi-
tion; that is, the provisional result exponent in excess-128 code
is 255 so that an overflow will occur if the fraction result has
to be shifted to the right.

Microinstruction DIS6 copies the quotient fraction from the MQ
register into the A and B registers. It also sets the ZERO+
flag to the high level if the divisor fraction initially in the
B register is zero. In order to provide the control of the
ZERO+ flag, the function ALU = B must be selected so that the
divisor fraction value residing in the B register appears at the
output of the ALU. The JC code in the JCOND field of micro-
instruction DIS6 causes a jump to microinstruction DIS7C if
ECRY+ was set high in DISS5; that is, if the provisional exponent
result value is +127., If ECRY+ is low, the routine advances
from DIS6 to DIS7. 1If the result fraction is normalized and the
divisor is not zero, this is the final microinstruction of the
routine. The JSGN code in the JCOND field of this microinstruc-
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tion causes a jump to microinstruction DIS8 if the result
fraction has overflowed into the sign bit or if the divisor is
zero. The ZTZ code in the FLAG field or DIS7 inhibits any

change in the status of the ZERO+ flag so that the status of this
flag still indicates whether the divisor fraction is zero, at

the time that DIS8 is entered.

Microinstruction DIS8 shifts the result fraction one position to
the right in the A and B registers and increments the exponent
result in the E register. If the ZERO+ flag is at the low level,
this is the final microinstruction of the routine. The JZ code

in the JCOND field causes a jump to microinstruction OFL4 if

the divisor is zero. This microinstruction establishes the
overflow format (all ones in the A and B registers and E register)
and sets the interrupt flag. Thus, the attempt to divide by 0
produces the overflow format.

4.5.8.3 Microinstructions DIS3A through DIS8A, OFL4, and UFL2;
DIS7B, DIS8B, and UFL2

This branch, which is entered from DIS2 when an out-of-range
provisional exponent result is computed in DIS1, is identical to
the DIS3 through DIS6 (described in paragraph 4.5.8.2). However,
this branch leads to different terminations as appropriate to

the out-of-range exponent condition. Whereas the setting of
ECRY+ to the high level in DISS indicates a conditional overflow
condition, the setting of ECRY+ to the high level in DISS5A
indicates a conditional underflow (CUFL) condition. (In this
case, the provisional exponent excess-128 code of 255 represents
the exponent underflow value of -129. This causes a jump from
DIS6A to DIS7B in response to the JC code in the JCOND field of
DIS6A. The JSGN code in the JCOND field of microinstruction
DIS7B causes a jump to microinstruction DIS8B if the result
fraction has overflowed into the sign bit position. (Code JSGN
causes a jump in response to either a one in the sign bit posi-
tion of the A register or a high ZERO+ flag signal. In this case,
however, it is known that the ZERO+ flag is low. This is because
a conditional underflow cannot occur in division when the divisor
is zero. If the divisor is zero then its exponent is -128.

When this is subtracted from the exponent of the dividend, the
smallest result that can be obtained is the in-range value, :
zero.) Microinstruction DIS8B shifts the result fraction in the
A and B registers one position to the right and increments the
exponent, The result fraction is now normalized and the exponent
is now at the in-range value of -128,

If the result fraction has not overflowed into the sign bit
position, then the final result is an underflow. In this case,
the routine advances from DIS7B to UFL2. This microinstruction
clears the FPP, accumulator and sets the interrupt flag.
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In the case where ECRY+ is not set high in microinstruction
DISS5A, the routine advances from DIS6A to DIS7A. If the divisor
fraction is zero, then the JZ code in the JCOND field of DIS7A
causes a jump to OFL4, Thus, the attempt to divide by 0 is
treated like an exponent overlow. Microinstruction OFL4 loads
the overflow value (all ones in the fraction and exponent fields)
into the FPP accumulator and sets the interrupt flag. (The
constant 247, used in OFL4, is loaded into the constant register
by DIS7A in response to the C47 code in the FLAG field of DIS7A.)

If the divisor fraction is not zero, then the routine advances
from microinstruction DIS7A to microinstruction DIS8A. The JESGN
code in the JCOND field of this microinstruction causes a jump to
microinstruction UFL2 if the most significant bit of the exponent
result is a one. This result, indicates that the value in the
exponent register is more negative than -128; that is an under-
flow value. Microinstruction UFL2 clears the FPP accumulator and
sets the interrupt flag. If the most significant bit of the expo-
nent result is zero, then the value in the exponent register is
more positive than +127; this is an overflow value. In this case,
the routine advances from DIS8A to OFL4 and generates an overflow
interrupt.

4,5.8.4 Microinstructions DIS4D1 through DIS6D, ZERO3, and OFL2Z

This branch is entered either from DIS3 or from DIS3A when the
dividend fraction is sensed to be zero. The purpose of the
branch is to determine whether the divisor fraction is also zero.
If the divisor fraction is also zero, then an attempt to divide
by zero is occurring. In this case, the routine terminates in
microinstruction OFL2 which generates an overflow interrupt. If
the divisor fraction is non-zero, then a valid zero result is
indicated. In this case, the routine terminates in microinstruc-
tion ZERO3 which clears the FPP accumulator. Microinstruction
DIS4D1 transfers the divisor fraction from the MQ register to the
B register in preparation for the zero test. Microinstruction
DIS5D selects the function ALU = B in order to set the ZERO+

flag to the high level if the divisor fraction is zero. Micro-
instruction DIS6D provides the jump to OFL2 if the ZERO+ flag is
high. The C47 code in the FLAG field of DIS6D sets a one into
bit 47 of the constants register for use in the OFL2
microinstruction.

4,5.9 FDVD Routine

As illustrated in figure 4-19, the double precision division
routine performs functions required for division by a double
precision divisor and then jumps into an appropriate microinstruc-
tion of the FDV routine. Double precision division is similar to
single precision division except that the number of memory words
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Figure 4-19. FDVD Routine Flowchart

4-65



in the divisor is four rather than two and the number of quotient
bits developed is 48 rather than 24.

Microinstructions DIDO through DID4 are identical to microinstruc-
tions MUDO through MUD4 of the FMUD routine (paragraph 4.5.7).
The remaining microinstructions &6f the FDVD routine are all
similar to microinstructions of the FDV routine. DID5 is similar
to DIS1 in that it transfers the fraction field of an operand
word (in this case the 3rd operand word) from the data latch to
the MQ register, subtracts the divisor exponent from the dividend
exponent, and sets ECRY+ high if the exponent difference is out
of range. DID6 is identical to DIS2, DID7 and DID7A are similar
to microinstructions DIS3 and DIS3A in that each transfers the
final operand word into the MQ register and each causes a jump

if the dividend fraction is zero. DIS4D2 of FDVD is identical to
DIS4D1 of FDV. From DIS4D2, a jump into DISSD of FDV occurs.

DID8 and DID8A are similar to DIS4 and DIS4A. However, the

DID8 and DID8A instructions set 48 rather than 24 into the shift
counter. From DID8 and DID8A, jumps occur into DIS5 and DIS5A
respectively of FDV,

Double precision fraction division in steps DISS5 through DISSA
is similar to single precision fraction division except for the
number of iterations and the destination of the quotient bits.
In double precision division, quotient bits are shifted into
bit 0 of the MQ register.

4,5,10 FST Routine

The purpose of the single precision store routine is to round off
a single precision floating number resulting from a previous
arithmetic operation and store this number in memory. Roundoff
may cause fraction overflow. In this case, the fraction must be
shifted to the right one bit position in order to normalize it.
This, in turn, may cause an exponent overflow. If an exponent
overflow occurs, the exponent and fraction fields of the number
must be set to the maximum values before the number is stored.
(Actually, the routine stores the first operand word twice if a
fraction overflow occurs. Thus, a corrected copy is stored in
place of the original copy if a fraction overflow is detected.)

As illustrated in the flow chart of figure 4-20, round off is
implemented by the first microinstruction of the routine (STSO).
This is accomplished by adding a binary one in bit position 24,
obtained from the constant register (CR) to the copy of the
previous result fraction in the B register, The rounded-off
result is placed in the A register. (The required constant is
loaded into CR prior to the start of the routine when the single
precision FST OP code is loaded into the FPP instruction latch.)
Microinstruction STSO resets the ZERO flag and selects the first
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Figure 4-20. FST Routine Flowchart

result word for output to memory. The IMC code in the MEM field
of the microinstruction causes the initiation of the memory
request required to transfer this first result word.

Microinstruction STS1 repeats the round-off operation provided
by STSO and continues to select the first result word for output
to memory. Microinstruction STS1 forms the sum (E + 1) in the
exponent loop. A carry out of the highest order bit position of
the exponent-loop ALU during this summation indicates that

(E + 1) is out of range. This sets the ECRY+ flag to the h1gh
level, indicating that a fraction overflow will produce an
exponent overflow. The JSGN code in the JCOND field of the
microinstruction causes a jump to microinstruction STS2A if a
fraction overflow into the sign bit position is sensed.
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Mlcro@nstruction STS2A continues to provide the rounded-off
fraction function and continues to select the first result word
so that the memory transfer that is in progress can be

completed. The IMC code in the MEM field of the microinstruction
suspends the termination of the microinstruction until the
memory cycle which accomplishes this transfer has been completed.
This microinstruction also loads the rounded-off fraction into
both the A and B registers. The C47 code in the FLAG field
causes a binary one to be loaded into the bit 47 position of the
constant register in preparation for the possible requirement to
generate an overflow interrupt. The JC code in the JCOND field
causes a jump to microinstruction STS3B if ECRY+ is high; that
is, if the required incrementation of the exponent would cause
an exponent overflow.

If ECRY+ is low, the routine advances to microinstruction STS3A.
This microinstruction shifts the result fraction to the right one
position in the A and B registers and increments the exponent.
"The CCR code in the FLAG field resets the constant register.

The routine then jumps back to microinstruction STSO to transfer
the corrected version of the result to memory. Notice, however,
that on the second pass through STSO and STS1, the constant
register contains zero. Thus, there is no repetition of the
round-off but only the required repetition of the transfer of

the first result word to the memory. On this second pass, no
overflow can occur and, consequently, the routine advances to
microinstruction STS2, STS2 is reached on the first pass if
roundoff does not cause fraction overflow. STS2 continues to
select the first result word for output to memory, The INC code
in the MEM field suspends the termination of the microinstruction
until the memory cycle is completed. The INC code also causes
the memory address to be incremented and causes another memory
cycle to be requested at the time that the microinstruction 1is
terminated.

From STSZ2, the routine advances to STS3., This microinstruction
again provides the rounded-off fraction function. IHowever, now,
the second result word is selected for output to memory. The

SIF code in the MEM field suspends the termination of the micro-
instruction until the memory cycle has been completed. The SIF
code also causes control to be returned to the central processor
at the time that the microinstruction is terminated. This allows
the next instruction fetch to be initiated by the central
processor,

From STS3, the routine advances to STS4 where it ends, This
instruction loads the rounded-off fraction into the 4 and B
registers. (Actually, the rounded-off value is contained in the
24 most significant bit positions and the 24 least significant
bit positions, which are not truncated, contain an excess
increment.)
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As noted earlier, the sensing of the overflow condition causes

a jump from STS2A to STS3B. This microinstruction causes the
maximum fraction value to be loaded into the B register. The
explicit function used to accomplish this result is to perform
the ones complementation of the constant register (which now has
a one in the sign bit position and zeros in all of the magnitude
positions). The OFL code in the FLAG field of this instruction
causes the interrupt flag to be set. The routine then loops
back to STSO via STS4B which resets the constant register. With
the constant register cleared, no fraction overflow can occur
and the routine advances from STSO through STS4 as previously
described,

4.5.11 FSTD Routine

!The FSTD routine (figure 4-21) is similar to the FST routine.

Because of the greater number of significant bits provided in a
double-precision result, the constant that is added during round
off is different from that used in the FST routine. The appropri-
ate constant value (a binary one in bit position 1) is loaded into
,the constant register prior to the start of the routine after the
FSTD OP code has been loaded into the instruction latch. The
Imost basic difference between the routines is that the FSTD
routine must transfer four result words rather than two result
words. Thus, where microinstruction STS3 of FST contains a SIF
code to return control to the processor after the transfer of the
second word, the corresponding FSTD microinstruction (STD3)
contains an INC code to increment the memory address and request
another transfer after the second word transfer has been
completed. Microinstruction STD4 presents the third result word
to the memory data bus and waits for this transfer to be
completed. It then increments the memory address and initiates
the next memory cycle. STD5 presents the fourth result word to
the memory data bus and returns control to the central processor
after this transfer has been completed.

4,5,12 FIX Routine

This routine converts the floating point result computed by the
previous FPP instruction routine into the integer format and
stores the integer in memory. The floating point number is
truncated during the conversion so that only the integer portion
of the floating point number contributes to the final integer
value; that is, there is no round-off to the nearest integer
value.

The routine first determines whether the exponent of the floating
point number is negative. If this is the case, then the
magnitude must be less than one. Thus, the routine sets the

¢ .
‘ W
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Figure 4-21. FSTD Routine Flowchart

integer to zero and stores this value. If the exponent is zero
or positive, the routine subtracts it from 15. If the difference
is positive or zero, then the integer portion of the floating
point number is definitely within the range that can be repre-
sented by the integer format. An exponent value of exactly

15 represents the value 215 X (fraction). Since the_most
significant bit of the fraction has the weight of 21, this means
that this bit must have the weight of 214 in the integer format;
that is, it must occupy the bit 14 position in that format. This
result is achieved without any shifting of the fraction. (During
the transfer from the B register to the memory bus, the most
significant magnitude bit position of the fraction is connected
to the bit 14 line of the memory bus.) If the exponent value is
less than 15, then the fraction must be shifted to the right
number of positions corresponding to the difference between

15 and the exponent value in order to provide the appropriate
alignment for the integer format.
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Negative numbers are represented in twos complement form in the
integer format. Before the twos complementation can be accom-
plished, the fraction must be truncated so that only the integer
portion of the number is complemented.

If the difference (15 - exponent) is negative, then the integer
portion of the floating point number is either the most negative
number that can be represented in the integer format (100000g) or
else it is out of range. The routine first determines the sign
of the number. If the sign is positive, then the routine sets
the integer to the largest positive in range value and sets the
interrupt flag to indicate that an overflow has occurred. If
the number is negative, the routine determines whether it is

the most negative in-range number or a negative overflow. In
either case, the most negative in-range integer value (100000g)
is stored in memory. In the overflow case, the interrupt

flag is set.

Microinstruction FIXO (figure 4-22) copies the floating point
exponent code into the shift counter in preparation for the
subsequent possible subtraction of this exponent code from the
constant 143 (the excess-128 code for 15). In response to the
SS code in the FLAG field, the sign bits held in the AS and BS
flags are swapped. This saves the sign of the floating point
number in BS. The JESGN code in the JCOND field causes a jump
to microinstruction FIX1A if the most sifnificant bit of the
exponent code is a one; that is, if the exponent is zero or
positive.

If the exponent is negative, indicating a zero integer, the
routine advances from FIX0 to FIX1l. FIX1 loads zero into the
B register. Also, because of the ZAS code in the FLAG field,
it resets the AS flag (making AS+ low as required to indicate
a positive sign).

From FIX1, the routine advances to the branch consisting of
microinstructions FIX6A through FIX8A. This branch stores the
integer in memory. The IMC code in the MEM field of microinstruc-
tion FIX6A, causes the required memory cycle to be requested.
The SIF code in the MEM field of microinstruction FIX7A suspends
the advance to the next microinstruction until the required
memory cycle has been completed and then causes control to be
returned to the central processor allowing the next instruction
fetch to be initiated. During the memory cycle, bits 32 through
47 of the quantity (CR + B), from the data-loop ALU, are
connected to the memory data bus. When this path is followed,
bits 32 through 47 of both the B register (B) and the constant
register (CR) are zeros. Thus, an all zero integer is stored.

Microinstruction FIX8A restores the initial contents of B, which
have been saved in A during the routine.
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Figure 4-22.

FIX Routine Flowchart
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When the exponent is found to be zero or positive in microinstruc-
tion FIX0, a jump to microinstruction FIX1A occurs as previously
noted. Microinstruction FIX1A forms the difference (143 - SC)

and places this difference in the shift counter. If the
difference is positive or zero, the ECRY+ flag is set to the high
level indicating that the floating point number is definitely
within the range that can be represented by the integer format.
The ZAS code in the FLAG field of this microinstruction causes the
AS flag to be reset (so that AS+ is low). This prepares for use-
of the AS/BS comparison as a means of determining whether the
number is positive or negative.

Microinstruction FIX1E swaps the signs in the AS and BS flags in
response to the SS code in the FLAG field. This returns the sign
of the number, which was previously saved in BS, to AS and places
BS in the reset status (BS+ low) in preparation for the subsequent
AS/BS comparison. The JC code in the JCOND field of microinstruc-
tion FIX1E causes a jump to FIX3B if ECRY+ is high; that is, if
the number is definitely within range.

Microinstruction FIX3B shifts the contents of the B register to
the right the number of times corresponding to the difference
computed in FIX1A as required to provide the appropriate align-
ment of the number. The shift count is decremented as each right
shift occurs. The WSDN code in the MEM field inhibits the
advance to the next microinstruction until the clock time when
the shift count reaches zero. The CCR code in the FLAG field
clears the constant register. This erases a binary one bit which
is automatically loaded into the constant register at the start
of the routine and which otherwise could affect the final result
that is stored. The JASGN code in the JCOND field causes a jump
to microinstruction FIX6A if AS = BA; that is, in this case, if
AS+ is low indicating that the number is positive. The termina-
tion of the routine when the branch beginning at FIX6A is
executed has already been described. Notice, however, that when
the branch is entered from FIX3B, the value in the constant
register is zero and the integer in B is transferred to memory
without modification,

When AS+ is high, indicating that the number is negative, the
routine advances into the branch beginning with microinstruction
FIX4B. The purpose of this branch is to convert the negative
number to twos complement form and then store it. Before the
number can be conplemented, it must be truncated. This is
accomplished by transferring bits 32 through 47 of the number
from B register to the MQ register. Since the remainder of the
MQ register contains all zeros both before and after this
transfer, the transfer places the truncated version of the
number in the MQ register. Microinstruction FIX4B executes this
transfer. Microinstruction FIX5B transfers the truncated number
from the MQ register into the B register. Microinstruction
FIX6B performs the twos complementation (by forming -B and storing
it in B) and also swaps the sign bits again. This sign swap
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again clears AS, This is necessary in order to avoid ones
complementation of the result that is transferred from the data-
loop ALU output to the memory bus during the next two,
microinstructions.

Microinstructions FIX7B and FIX8B, which store the result, are
identical to the previously described microinstructions FIX6A

and FIX7A. Microinstruction FIX9B copies the floating point
fraction which has been held in the A register throughout the
routine into the B register and again swaps signs. Since the
exponent register still contains its initial contents, the accumu-
lator fields are now in the same status as when the routine was
entered.

Now consider the case where the exponent is larger than 15. In
this case, ECRY+ remains low when FIX1A is executed so that the
routine advances from FIX1E to FIX2A. This microinstruction
transfers the negative difference computed in FIX1A from the
shift counter to the E register in preparation for a test for the
largest in-range negative value.

Microinstruction FIX3A now forms the sum (E + 1) and sets ECRY+
high if a carry is generated out of the most significant bit
position of the exponent-loop ALU. This indicates that the
difference computed in FIX1A was -1; that is, that the exponent
value is 16. This means that if the fraction value is 2-1, and
the number is negative, it can still be represented in the integer
format. The C47 code in the FLAG field of microinstruction FIX3A
causes a binary 1 to be loaded into bit position 47 of the
constant register. The subsequent use of this constant depends
upon the path that is followed. The JASGN code in the JCOND field
causes a jump to microinstruction FIX4C if AS = BS; that is, if
the number is positive.

Microinstruction FIX4C loads -1 in twos complement form into the
B register (that is, it loads all ones into the B register). It
also restores the exponent register to its initial status by
subtracting the difference computed in FIX1A, and now held in the
shift counter, from 143 and loading the result into the exponent
register. The OFL code in the FLAG field sets the interrupt flag.
From FIX4C, the routine jumps to the branch beginning at FIX6A.
This branch has previously been described. Notice, however, that
when this branch is entered from FIX4C, the B register contains
all ones and the CR register contains a one in the sign bit
position (47). The result, (CR + B), has ones in all bit posi-
tions except the sign position. Thus, the integer that is
obtained from the bit 32 through bit 47 segment of this function
is the largest in-range positive integer value.

When the test of microinstruction FIX3A determines that the
number is negative, the routine advances to FIX4A. This micro-
instruction shifts the fraction one bit position to the left and
restores the exponent register to its initial status. The
fraction is left shifted by forming A X 2 in the ALU and loading
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it into the B register. This left-shifted fraction is used in the
test for the largest in-range negative integer value in the event
that the exponent is found to be 16. Recall that if the exponent
is 16, the ECRY+ flag is set high in FIX3A., The JC code in the
JCOND field of FIX4A thus causes a jump into the branch beginning
at FIX5D if the exponent value is 16. If the exponent value is’
greater than 16, then ECRY+ is low and the routine advances from
FIX4A to FIXSA. This microinstruction is similar to micro-
instruction FIX4C in that it sets all ones into the B register,
sets the interrupt flag and then leads to the branch starting at
microinstruction FIX6A. Thus, in this case also, the largest
positive in range integer value is stored.

The branch beginning at FIXS5D determines whether the number
represents a negative overflow value or the largest in-range
negative value. In either case, the number which is stored is
the most negative integer value. The only difference is that,
in the case of an overflow, the interrupt flag is set,

Microinstruction FIXS5D adds the binary one held in the bit 47
position of the constant register (CR) to the left-shifted
fraction held in the B register and stores bits 32 through 47 of
the result in the MQ register. If the number is the largest
in-range integer value, then the truncated result in the MQ
register is all zeros. Microinstruction FIX6D transfers this
result to the B register., Microinstruction FIX7D sets the ZERO+
flag to the high level if this result is all zeros. Micro-
instruction FIX8D loads all ones into the B register. The JZ
code in the JCOND field of this instruction causes a jump,into
the branch beginning at FIX6A if ZERO+ is high: that is, if the
result is the most negative in-range integer. If the result is
an overflow, then microinstruction FIX9D is executed before
jumping to FIX6A. The OFL code in the FLAG field of this
microinstruction causes the interrupt flag to be set.

When FIX6A is entered from FIX8D or FIX9D, the B register
contains all ones and the CR register contains a one in bit
position 47, This produces a (CR + B) function which has a zero
in the bit 47 position and a one in every other bit position as
previously noted. However, in this particular case, AS+ is high.
This produces an inversion of the data as it passes from the ALU
output through the I/0 data multiplexor to the memory data bus so
that the data that is stored has a one in the bit 47 position and
zeroes in the 32 through 46 bit positions. Thus, the most
negative in-range integer (100000g) is stored in memory.

Figure 4-23 provides a numerical example of the FIX routine.

4.5.13 System Reset/Time-out Routine

This routine, illustrated in figure 4-24, is entered when a
system reset (SRST-) signal is received by the FPP or when a
time-out occurs. The routine has two branches, the system reset
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Microinstruction Operation Results Comments
Result of previous rltoooooo 0] ase BS+ 2 x b 2t LY
routine 0 1 .2
AB[ol 1L 1o00 ..., 0 0] S LR T L R P
= 2+ 1 + 0.5+ 0.25 = +3.75
FIX0 E— SC sc{1o00000010] Exponent copied into SC
BS —B»AS; AS —9BS | AS+ BS+ Signs swapped (Sign saved in BS)
JESGN Go to FIX1A because MSB of E is 1
FIX1A 143 - SC—p SC SCIOOOO[IOI] 10001111 (143)
-L00 00010 (130)
00001101 (13)
0 —p AS AS+ AS reset in response to ZAS
[SC < 143] —p ECRY ECRY+ ECRY sets because SC 143
FIXLE BS—AS; AS —»BS | AS+ BS+ Signs swapped (Sign returned to AS)
JC Go to FIX3B because ECRY+ is high
FIX3B B X Z.SC SC (Decimal) B Shift B right and decrement SC until
SC—9 0 SC = 0
12 0.011110...
11 0.0011110...
10 0.00011110...
{l ().OOE’OOOOOOOOOOIII!O...
CCR CR Reset CR
JASGN Go to FIX6A because AS = RS
FIX6A ALU = CR + B Memory Data Bus .
FIX7A 10(DE) —p» MEM 15 Lo Non-integral portion of result in B is
0000000000 O00CDO0O0TLT1 truncated because only 16 MSBs of B
are connected to memory data bus.
[nteger result stored in memory is 3.
FIX8A A—pB A, Bjo.lL bt oo ..., QJ Restores initial contents of B

- Figure 4-23. FIX Example

“1-76




( TIME OUT )

RSTD 00
JMP
END
T
RSTY DI
C47
JiD

?/’, RST2A D3

ZAS 47
2% o A
242——5
RST2 D2 IMC 0—=¢E
ZAS 0—=A
O0—eB
0o AS RST3A D4
END 0—=E R
cro AX2 V- A

LI

SIF BX2

(NEW INST ) RST4A o3
UFL
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Figure 4-24, System Reset/Time-Out Routine Flowchart

branch (microinstruction RST2) and the time-out branch (micro-
instructions RST2A through RST4A). The system reset branch loads
zero into the fraction, exponent, and sign fields of the FPP
accumulator. The timeout branch waits for the completion of any
memory cycle that is currently in progress, then returns control
to the processor, sets the interrupt flag, and sets an illegal
number into the fraction field to serve as an identification of
the reason for the interrupt.
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Microinstruction RSTO, the entry point into the routine, serves
no other function than to provide a jump to RST1. The JTO code
in the JCOND field of RST1 causes a jump to the timeout branch
if the timeout flag (TO+) high. The C47 code in the FLAG field
of RST1 loads a one bit into the bit 47 position of the constant
register.

Microinstruction RST2A sets the fraction fields in the A and B
registers to the constant value loaded in RST1. This places a
one in the sign bit position (bit position 47) and zeros in the
magnitude bit positions. RST2A also clears the E register. The
ZAS code in the FLAG field of RST2A resets the AS flag. The IMC
code in the MEM field causes the advance to RST3A to be delayed
until the end of any memory cycle that is currently in progress.
(The IMC code would normally initiate a memory request. However,
with TO+ high, this request function is inhibited.)

Microinstruction RST3A shifts the contents of the A and B
registers to the right one bit position. This moves the ones
from the sign positions into the most significant magnitude
positions which is a valid normalized number (representing 1/2).
The CTO code in the FLAG field causes the TO+ flag to be reset

to the low level. The SIF code in the MEM field causes control
to be returned to the central processor so that the next instruc-
tion fetch can be initiated.

Microinstruction RST4A shifts the contents of the A and B
registers to the right one bit position. This creates a non-
normalized, illegal number. The UFL code in the FLAG field
causes the interrupt flag to be set.

When the routine is entered due to a system reset signal, the

TO+ flag is at the low level. In this case, the routine advances
from RST1 to RST2. RSTZ clears the floating point accumulator.
The A and B registers and the exponent register are cleared. In
response to the ZAS code in the FLAG field, the AS flag is reset.

4.6 DETAILED FUNCTION DESCRIPTION

The remainder of this section describes the functional circuits
of the FPP. Each of the functional circuits illustrated as a
separate block in figure 4-2 is covered in a separate paragraph.

Subscripts identifying particular members of a logically identical
group of control or clock signals are omitted from the mnemonics
used in the text and illustrations which follow. For example,

the three logically identical clock signals; KKMOK-1, KKMOK-2,

and KKMOK-3; are all referred to as KKMOK-.



4.6.1 Central Processor Control

When a floating point instruction is decoded, the central
processor control forces the central processor microprogram to a
control store location which contains a no-operation (NOP)
microinstruction and locks the central processor microprogram at
this location until the FPP microprogram reaches a step which
specifies an instruction fetch. The central processor control
then forces the central processor microprogram to a control store
location which contains the start of an instruction fetch
routine. In addition to the two valid addresses which central
processor control supplies to the central processor control store
address lines, central processor control is also capable of
supplying repetitive high signal pulses to the address lines
during periods when they are not in use. The purpose of these
transient signals is to maintain some positive charge on the lines
so that they can be placed at the high level more quickly at the
start of a valid address period. If the system includes a WCS,
then this charging function is provided by the WCS and the
transient signal generating capability of central processor con-
trol is disabled.

IDGCH
cPs1+ _
KKMOK- GATES -1 ENABLE
—
KKMHC+
CONTROL MULTIPLEXOR
KKMPA- STATE CP168 ‘ CEADn (0-8)
| COUNTER >
CHARG+ o
HARD-WIRED PU+ AND GND INPUTS,
CPSI+ >
cpsl- | SELECT
DGO+ P
R CPSIF+ N
KKCS- SRST- SYRSTH N
> —_——p —
o YSTEM OR
KKMCD+ INSTRUCTION ?uiz—ouT
P FETCH FLAG
RESET
CS SIF+ PRTO- SRST-
> ———p] >
VT11-3209

Figure 4-25. Central Processor Control, Block Diagram
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Central processor control also supplies system reset signals to
other FPP circuits in response to a system reset signal from the
central processor or in response to a timeout signal from the
priority control.

The Central processor control store address lines are manipulated
by means of a 2-to-1 multiplexor and a control state counter.
(See figure 4-25.) The control state counter not only switches
the multiplexor input channel selection but also switches the
levels supplied to certain input lines of each channel. This
combination of control functions is used to select hexadecimal
1D8, 168, or 000 for application to the central processor contrcl
store address lines. 1D8 is the location containing the NOP
microinstruction 168 is the location containing a microinstruction
which initiates the next instruction fetch routine. 000 provides
all high outputs for use in charging the lines during periods
when they are not in use.

KKMHD+ [ | - . 1 ]
kevok- LML Sy LT
KKMCD+ 1 [ .M 1 [ ™
KKMPA- | | B ] | 1 . 1
IDGC+ r 1 {
ENABLE- P -
L1 . I

CPSIF+
CHARG+ J L L
CPSI+ | o -
CDS2+ o [ L
CP168+ o [ L
KKCS= ,

L |- L L
CSSIF+ L I 1
HEXADECIMAL o
ADDRESS > f
SUPPLIED TC —> ( 108 168
CEADn-(0-8) f
VTI1-3218

Figure 4-26. Central Processor Control Timing



When the floating point instruction is decoded, the IDGO+ signal
from the instruction register is high for one 165-nanosecond clock
period. With IDGO+ high, the KKMCD+ pulse from the system clock
generator resets instruction fetch flag CPSIF+ to the low level
and the KKMPA- pulse from the system clock generator sets CPS1l+

of the central processor control state counter to the high level.
(Refer to figure 4-26 for central processor control timing.)

With IDGO+ or CPS1l+ high, the ENABLE- signal (C3A8-) to the
multiplexor controlling central processor control store address
lines CEADn- (0-8) is low as required to enable the multiplexor.
During the period when IDGO+ is high and CPS1+ is low, multiplexor
input channel B is selected. Under this condition, the multi-
plexor output is determined by the status of the CHARG+ signal.
This signal is low when either IDGO+ or CPS1+ is high. Under this
condition, the address appearing at the multiplexor output is
hexadecimal 1D8. When CPS1+ switches to the high level, multi-
plexor input channel A is selected. Under this condition, the
multiplexor output is determined by the status of the CP168+ and
CP168- signals. With CPS1+ high and CPS2+ low, the CP168+ signal
is low and the CP168- signal is high. Under this condition,
hexadecimal 1D8 continues to be supplied to the multiplexor
output.

When an FPP microinstruction containing the SIF code in its MEM
field is executed, a high CSSIF+ signal is received from the
cantrol store decoder. This enables the leading edge of the next
KKCS- pulse to set CPSIF+ to the high level. With CPSIF+ high,
the next negative-going transition of KKMPA- sets CPS2+ of the -
control state counter to the high level. With CPS1+ and CPS2+
both high, CP168- is low and CP168+ is high. Under these
conditions, the address that is supplied on the CEADn- (0-8) lines
is hexadecimal 168. This central processor control store loca-
tion contains a microinstruction which initiates the next
instruction fetch routine. With CP168+ high, the next negative-
going transition of KKMPA- resets CPS1+ and CPS2+ to the low
level. This returns the ENABLE- signal to the high level,
terminating the FPP control of the CEADn- (0-8) lines.

When the ENABLE- signal (C3A8-) is not in a steady-state low
status, it is driven low during each period of coincidence of
high KKMHD+ and KKMOK- signals, provided that the board is con-
figured to enable the charging function. At this time CPS1+ is
low so that channel B of the multiplexor is selected and CHARG+
is high so that an all zeros (all high) set of address signals
is supplied as required to allow positive charging of the lines.

When a low SRST- system reset signal is received from the
central processor, the SYRST+ signal is placed at the high level
and the SYRST- and SRST- lines are placed at the low level as
required to produce a general FPP reset terminating any instruc-
tion routine that is currently in progress. When a low time-out
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signal PRTO- is received from the priority control, the SYRST+
line is placed at the high level and the SYRST- signal is placed
at the low level. This produces an FPP reset which is appropriate
to terminate the instruction in progress and allow the time-out
microprogram routine to be executed.

4.6.2 Priority Control

The priority control exercises control over the interrupt request
line (IRQC-A) to the central processor. This allows the priority
control to inhibit all interrupts during the period that a string
of FPP instructions is being executed. The inhibit is initiated
when the first FPP instruction is decoded and remains in force
until the FPP stores a result in memory by executing an FST,
FSTD, or FIX instruction. A 500-microsecond timeout circuit
provides the means of terminating the inhibit in the event that
the FPP instruction string is not completed within the expected
time. When the timeout occurs, the interrupt-inhibit is ter-
minated and a fault interrupt is initiated.

The priority control also exercises control over the PMA and

DMA memory access lines to the central processor (ORQM-A and
IRQM-A respectively) and the acknowledge line to the PMA (MAKO+A).
This control is used to inhibit PMA and DMA memory access during
. FPP memory cycles. When the FPP has memory access priority, the
priority control places the ORQM-A line to the central processor
at the low level. This simulates a pending PMA memory request.
Since PMA has higher priority than DMA, this prevents the central
processor from giving memory access to the DMA. PMA memory
access is inhibited during FPP memory cycles by inhibiting the
acknowledge line to the PMA. When a PMA or DMA request is
received by priority control, memory access priority is
surrendered to the PMA or DMA at the end of the current FPP
memory cycle. The priority control then places the PROUT+ signal
at the high level until the PMA or DMA completes its transfers
and drops its memory request. The high PROUT+ signal inhibits
FPP memory access during the period when the FPP does not have
memory-access priority.

Figure 4-27 illustrates the various priority control sub-
functions. If an interrupt request is enabled, a low IRUX-I
signal from the interrupt interface causes interrupt request
IRQC-A to switch to the low level in response to the trailing edge
of KKMFC- from the system clock generator. The IRQC-A signal
remains low until reset during the interrupt service routine
executed by the I/O control microprogram of the option board.

The reset occurs under the control of the IR007+, IINHC-, and
CINTF+ signals from the I/0 control on the option board. (The
interrupt request reset circuit duplicates a circuit provided on
the option board which controls the interrupt request reset func-
tion when an FPP is not used.)
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Figure 4-27. Priority Control, Block Diagram
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When the first FPP instruction of an FPP instruction string is
decoded (IDG@A+ high) the trailing edge of KKMCD+ from the system
clock generator sets PRINT- low. This inhibits the setting of
IRQC-A to the low level. Once set low, PRINT- normally remains
low, inhibiting interrupts, until the FPP transfers the results
of its computations to memory. This occurs during the execution
of an FST, FSTD, or FIX instruction. These instructions are
identified by a high ILWRT+ signal from the instruction latch.
After the FPP executes a microinstruction containing the instruc-
tion fetch code in its MEM field, CPSIF+ from the central
processor control switches to the high level. The coincidence of
high ILWRT+ and CPSIF+ signals resets PRINT- to the high level.

The PRINT+ signal of the interrupt-inhibit sub-function is used
to initiate the interrupt-inhibit time-out. The positive-going
transition of PRINT+ starts the time-out function. The STOUT+
signal is set high at the same time that the PRINT+ signal is set
high. (This is timed by IDGO+ and KKMCD-.) After the time-out
is completed, KKMCD- resets STOUT+ to the low level. If PRINT+
is still high at this time, the next KKMPB+ pulse is gated to the
PRTO-line. The low-going PRTO- pulse sets time-out flag TP+ to
the high level. PRTO- is also supplied to the system reset logic
where it is steered onto the SYRST+ line. This results in the
termination of the instruction routine that is in progress and the
transmission of an interrupt request to the central processor.
(With STOUT+ high, the next KKMCD+ pulse resets PRINT- to the
high level as required to enable interrupts.) After the FPP
microprogram has entered the time-out branch in response to the
high T@+ signal, a high CSCTO+ signal causes the next KKCS+

pulse to reset TP+ to the low level.

Memory priority is controlled by three flip-flops; PR@UT, PRMEI,
and PRMDN,

PRAUT indicates that the FPP has lost memory priority due to a
PMA request (ORQM) or a DMA request (IRQM). PRPUT is set by
either request and is not reset until both request (ORQM or IRQM)
and acknowledge (MAK@ or MIRAB) are reset. PRQPUT prevents
initiation of a new memory cycle by the FPP and, at completion of
the current memory cycle (PRMEI low), disables the FPP memory
address and data drivers.

PRMEI indicates the FPP is currently fetching or storing memory
words and prevents transfer of priority until the end of the
current memory cycle. PRMEI is normally set at the start of an
FPP instruction (CPSIF low) and reset when all operands have been
transferred (CPSIF high). PRMEI prevents acknowledge to the PMA
(it forces MAK@ low) and inhibits acknowledge to the DMA by
simulating a PMA request (it forces ORQM to the central processor
high). 1If the FPP loses memory priority (PRAUT high) then PRMEI
is reset at the end of the current memory cycle (KKMEM, MCMRQ,
and MCSYN low) allowing PMA and DMA memory access and disabling
FPP memory address and data drivers. PRMEI is not set again
until the FPP regains memory priority (PRAUT 1low). '
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Figure 4-28. FLD Instruction, Timing Diagram
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PRMDN is used to reset FPP memory fetches affer the FPP loses and
regains priority. PRMDN follows PRAUT by 44 nanoseconds.

To avoid clock skew problems, PRMEI is clocked at the negative-
going edge of MCDFC, PRQAUT is clocked 82 nanoseconds later, and
PRMDN is cloeked 41 nanoseconds after PRQUT.

When PR@UT+ is high at the time that the FPP microprogram
initiates a memory request (CSIMC+ high), the PRKIN- signal to the
clock control is placed at the low level. This inhibits control
store and register clocks during the period while the FPP is
waiting to regain memory access priority.

4.6.3 Interrupt Interface

When enabled, the interrupt interface stores a floating point
processor interrupt request until it can be serviced by the
central processor. Figure 4-29 illustrates the interrupt inter-
face as two functional blocks. One of these blocks provides an
interrupt storage register and an address encoder which places
the assigned interrupt address on the E-bus to the central
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{UAX-1 N PRJX~1 _
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Figure 4-29. Interrupt Interface, Block Diagram
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processor when the central processor services the interrupt
request. The second block provides the interrupt-enable function.

System reset signal SRST- from the central processor control
resets the interrupt-enable function, inhibiting the storage of
an interrupt request. In order to enable the storage of an
interrupt request, the interrupt-enable function must be set by a
command received on the E bus. The interrupt set/reset command
code appears on bits 0 through 5 and bit 11 of the E bus
(EBnn-1). When bit 7 of the E bus is high, the set/reset

command sets the interrupt-enable function. When bit 8 of the

E bus is high, the set/reset command resets the interrupt-enable
function. The interrupt-enable function is also reset if a low
TUJX-T signal is received from the central processor at the same
time as the low IUAX-I signal associated with the acknowledgement
of an interrupt request.

When the interrupt-enable function is set, the IPRME+ signal is
high. This enables the storage of an interrupt request in the
interrupt storage register. The storage of an interrupt request
occurs in response to the receipt of a low CS@PFL- or a low

CSUFL- signal from the control store decoder. These signals
indicate that an overflow or underflow condition respectively has
been detected. When the CS@FL- or CSUFL- signal is low, the
KKREG+A signal from the clock control logic clocks the input
stage of the two-stage interrupt storage register to the set
status. The output stage of the interrupt storage register 1is
updated to the status of the input stage by each interrupt clock
signal IUCX-I from the central processor. Three conditions must
be satisfied in order to transmit an interrupt request (low
TURX-T signal) to the central processor. The interrupt-enable
function must be set, the output stage of the interrupt storage
register must be set, and the PRIX-I signal must be at the low
level (indicating that no higher priority interface is currently
requesting an interrupt). When the central processor acknowledges
the interrupt request by placing the IUAX-I signal at the low
level, the address encoder places the assigned interrupt address
(76 octal) on the E bus. This requires driving the EBOl- through
EB0OS5- lines to the low level. This address is placed on the E
bus only if the interface is still the highest priority interface

currently requesting an interrupt. If the low IURX-I signal is

accompanied by a low FRYX-1 signal, then the input stage of the

interrupt storage register is reset as required to terminate the
interrupt request at the next IUCX-I time.

When the interface is not currently requesting an interrupt, it

passes the PRIX-I signal on the PRJX-I line to the next lower
priority interface.

A system reset signal (SRST-) resets both the input and output
stages of the interrupt storage register.
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4.6.4 Memory Sequencer

The memory sequencer (figure 4-30) supplies the MCDLE- signal
used to load data from the memory data bus into the data latch,
It also supplies a sequence of pulses used to synchronize FPP
memory control functions with respect to memory cycle timing.

A low MM1I- signal from the central processor is steered to the
MCDLE- 1line. This provides the MCDLE- signal which loads
instructions or addresses into the data latch during each central
processor instruction fetch cycle. This is the means by which
the FPP instruction reaches the data latch. It is also the means
by which the direct or indirect address of the first operand
word (fetched following the instruction word) reaches the data
latch. Subsequent transfers into the data latch occur during
states MCS1 and MCS2 of the memory sequence, provided that YDNM-
and MCA41+ are both high. The high YDNM- signal indicates that

a memory cycle 1s in progress. The MCA41+ signal follows the
MCAEN+A signal but is delayed with respect to MCAEN+A by one
clock period of KKMPK+ (41 nanoseconds). MCAEN+A is high when

a transfer between memory and the FPP is required and the FPP has
memory access priority. States MCS1 and MCSZ2 of the memory
sequence are indicated respectively by a low MCS1A- or MCS1B-
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ENABLE McAdT+ >
KKMOK+ » DELAY DELAY MCDLE-
LATCH >
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2+ A=
KK82+ ol MCSI >
18-
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KKMOK# N MCS2- ol
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DONE
MCAEN+ ol SYNCHRO- Clus- -
NIZER MCS2+
KK MEM+ N = >
+
SRST w2 >
- > MCCS2+ _
MCSYN- _
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Figure 4-30. Memory Sequencer, Block Diagram
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sigpal and by a low MCS2- signal. MCA41+ is necessary in order
to insure that data transferred over the memory data bus during a

PMA or DMA memory cycle is not unintentionally loaded into the
data latch. :

The memory done synchronizer synchronizes the memory done

signal (YDNM+) with the system clock (M@CLK+) and provides
synchronized timing pulses following the negative-going edge of
YDNM+, State flip-flops in the memory done synchronizer are
MCSOA, MCSOB, MCS1A, MCS1B, MCS2, MCS3, and KK82. Either MCSOA
or MCSOB is set within 41 nanoseconds after the negative-going
edge of YDNM+. Then either MCS1A or MCS1B is set between 82 and
124 nanoseconds after the negative-going edge of YDNM+, providing
the synchronized memory done signal, MCSYN+., MCS2 follows

MCSYN+ by 41 nanoseconds and MCS3 follows MCS2 by 41 nanoseconds.
The pulse width of MCSYN+, MCS2, and MCS3 is 82 nanoseconds.
Flip-flop KK82 provides 82 nanosecond period clocks to flip-flops
MCSOA, MCSOB, MCS1A, and MCS1B. A timing sequence for the memory
done synchronizer appears in figure 4-28.

In addition to controlling the timing of the MCDLE-signal, out-
puts from the memory done synchronizer inhibit the advance of the
FPP micreprogram, inhibit memory priority changes, and inhibit
initiation of the next memory cycle until the current memory
cycle is completed.

The MCCS2+ output of the memory sequencer is reset when an FPP
memory cycle is initiated. The signal is set at the same time
that MCS2+ is set. This signal allows the control store to
initiate a memory cycle after the current memory cycle is

completed. MCCS2+ also prevents double memory clocks (KKMEM+)
between memory cycles.

4.6.5 Memory Control

As shown in figure 4-31 the memory control function includes the
following sub-functions:

a. Memory Control Clock Inhibit. This sub-function stops
the control store clock (KKCS-) and the register clocks (KKREG-,
KKMQ-) when an FPP instruction is complete, and it starts these
clocks when the next FPP instruction routine is started.

b. Memory Request. This sub-function controls the memory
request line (MRQY-) to the central processor.

c. Memory Control Address Enable. This sub-function pro-
vides signals which enable the FPP address to the memory address
bus.

d. Memory Control Data Enable. This sub-function controls
the gating of data to the memory data bus and controls the write
request lines (MWRY+ and MWLY+).
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Figure 4-31.

Memory Control, Block Diagram
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e. Instruction Start Flag. This subfunction provides the
MCIST-s;gnal which initiates the first memory clock (KKMEM+) of
an FPP instruction and loads the first address into the FPP
address register.

. f. Load Address. This subfunction provides the MCLDA-
signal which loads the addresses into the FPP address register.

F;gure 4-28, which shows the timing of the FLD instruction, pro-
vides an example of the timing of the various memory control
signals.

In order to enable the control store clock generator, MCCKI- must
be high. This requires that either CSDN+ or MCICS- be low.
CSDN+, from the control store decoder, is the signal which
inhibits the control store clock generator at the end of an
instruction routine. It is high only for the final microinstruc-
tion of an instruction routine. MCICS-, which is generated in
the memory control clock inhibit sub-function, is the signal which
goes low to initiate each instruction routine. Under quiescent
conditions, the final microinstruction of the previous instruction
routine resides in the control store register so that CSDN+ is
high. MCICS- is also high at this time. When the presence of
the direct address of the first operand in the data latch is
sensed, MCICS- is set low to initiate the instruction routine.

A direct address is identified by a binary 0 in the bit 15 posi-
tion. Thus, when the data latch contains an address, a high
DL15- signal from the data latch indicates a direct address.

With DL15- high, MCICS- is set low by the negative-going transi-
tion of the KKMEM+ signal from the system clock generator. This
places MCCKI- at the high level to enable the control store clock
generator. The first control store clock loads the starting
microinstruction of the instruction routine being executed into
the control store register. This causes the CSDN+ signal to
switch to the low level. MCICS- also remains low until the
CPSIF+ signal from the central processor control switches to the
high level. This occurs following the execution of a micro-
instruction whose MEM field contains the SIF code. With MCICS-
returned to the high level, MCCKI- goes low again when the final
microinstruction of the routine is loaded into the control store
register causing CSDN+ to switch to the high level.

The memory control address enable sub-function sets the MCAEN+
signal high when there is a requirement for an operand transfer
between the FPP and memory. If the FPP currently has memory
access priority, then the high MCAEN+ level also places the
MCAEN+A and MCAEN+B signals at the high level. These signals
connect the address register outputs to the memory address bus.

A high MCAEN+B signal is also required to enable a memory request.
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During a non-write instruction, MCAEN+ is set at the start of the
first FPP-initiated memory cycle (indirect address of operand
fetch) and remains high until the next instruction fetch is init-
iated by signal CPSIF+.

In the case of a write instruction, MCAEN+ is set at the start
of the first FPP-initiated indirect address memory cycle (if
indirect addressing is required) and remains high until indirect
addressing is completed. MCAEN+ is also set at the start of the
first FPP-initiated write memory cycle and remains high until
the next instruction fetch is initiated by signal CPSIF+.

The priority inputs to the memory control address enable
sub-function are PROUT+ and PRMEI- from priority control. As
long as one of these signals is low, the FPP has memory access
priority. Under this condition, MCAEN+A and MCAEN+B are placed
at the high level when MCAEN+ is high.

A high MCAEN+B signal from the memory control address enable
sub-function arms the memory request sub-function to initiate a
memory request. The status of MCAEN+ is determined at the lead-
ing edge of each KKMEM+ pulse. If MCAEN+ is set high (or
remains high) at the leading edge of a KKMEM+ pulse and if the
FPP has priority (so that MCAEN+B is also high), then a memory
request is normally initiated at the trailing edge of KKMEM+. To
make a memory request, the MRQY- signal is placed at the low
level. When a memory cycle is initiated in response to the low
MRQY- level, the memory acknowledge signal (YDNMB+) switches to
the low level. This returns the MRQY- signal to the high level
terminating the request. The internal memory request flag 1is
then reset by the ClU8- signal from the memory sequencer. A

memory request can only occur if the XCFST+ signal from the WCS
option 1is high.

High MCDDE+A and MCDDE+B signals from the memory control data °
enable sub-function are used to connect the I/0 data multiplexor
outputs to the memory data bus. Three conditions are required to
obtain these high signals;

a. MCAEN+A and MCAEN+B must be high, indicating that a
transfer is required and that the FPP has memory access priority.

b, ILWRT+ must be high, indicating that a write instruction
is being executed.

c. AD15- from the address counter must be high, indicating
that the memory cycle is not an indirect address cycle.

The memory-write-left-byte and memory-write-right-byte signals
(MWLY+ and MWRY+) are also held high during a write transfer.
These signals are held low by the FPP only during read transfers
(that is, when MCAEN+A and MCAEN+B are high and ILWRT+ is low).
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Instruction start flag signal MCIST- is set low when the FPP
instruction is decoded (IDGO+ high) by the KKMCD+ pulse from the
system clock generator. It is set low by the first KKMEM+ pulse
of the instruction routine. The low MCIST- signal is steered to
the MCLDA- line by the load address sub-function. The low
MCLDA- signal is used to transfer the contents of the data latch
to the address counter. If an indirect address is transferred
from the data latch into the address counter, then AD15- is low.
Under this condition, MCLDA- remains low after MCIST- has been
returned to the high level. Thus, each address received from
memory is transferred from the data latch into the address
counter until a direct address has been loaded into the address
counter.

A system reset signal from the central processor or an FPP
timeout reset places the SYRST+ signal at the high level and the
SYRST- signal at the low level. The high SYRST+ signal resets
MCICS and the low SYRST- signal resets read request flip-flop
MCRRQ of the memory control address enable sub-function. During
a central processor system reset only, the SRST- signal is placed
at the low level. This resets MCIST- to the high level and
resets MCAEN+ to the low level.

4.6.6 Clock Control

As illustrated in figure 4-32, clock control provides the control
store clock, the register clock, and the MQ clock. The trailing
edge of each control store clock loads the microinstruction from
the currently addressed control store location into the control
store register and loads the current control store address plus 1
or a jump address into the control store address register as
required to advance the FPP microprogram. The register clock is
supplied to the A and B registers of the data loop and to the E
and SC registers of the exponent loop. The MQ clock is supplied
to the MQ register of the data loop.

When not inhibited, the control store clock generator provides a
KKCS-pulse during every fourth KKMPK- period. (Refer to fig-
ure 28 for an example of KKCS- timing.) Signals which inhibit
the control store clock generator are as follows:

,a. MCCKI-. A low MCCKI- signal inhibits KKCS- when the
final microinstruction of an instruction routine is executed.
With KKCS- inhibited, this final microinstruction remains in the
control store register until the start of the next instruction
reutine when MCCKI- is again set to the high level. MCCKI- is
supplied by the memory control.

b. MCCS2- and CSMWT+. The coincidence of high MCCS2- and
CSMWT+ signals inhibits the control store clock generator while
waiting for the completion of a memory cycle initiated by the FPP
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Figure 4-32. Clock Control, Block Diagram

microprogram, MCCS2- from the memory sequencer indicates that

the memory cycle has not been completed while CSMWT+ from the con-
trol store register indicates that the microprogram has requested
the memory cycle.

C. PRKIN-. A low PRKIN- signal from the priority control
inhibits the control store clock generator when the FPP micro-
program is requesting a memory cycle and the FPP does not have
memory access priority. :

d. ACSEN-. A low ACSEN- signal from the clock control
section of arithmetic control inhibits the control store clock
generator during shift operations.

e. ACDEN-. A low ACDEN- signal from the clock control
section of arithmetic control inhibits the control store clock
generation during the execution of the divide microinstruction.

f. ACMEN-., A low ACMEN- signal from the clock control
section of arithmetic control allows the control store clock
generator to run but inhibits the output gate supplying KKCS-
during the execution of the multiply microinstruction.
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The register clock generator has three modes of operation. When
ACDEN- and ACSEN- are both high and CSWSD+ is low, the register
clock generator follows the control store clock generator. In
this mode, the coincidence of high KKCPA+ and KKCPB+ signals
(which occurs once for each control store clock generator cycle)
starts a register clock generator cycle. The timing produced in
this mode is illustrated by figure 4-28. Notice that register
clock pulses KKREG+ generally occur in synchronism with KKCS-
pulses. However, since the register clock generator is following
the control store clock generator to KKREG+ pulse occurs in syn-
chronism with the first of a series of KKCS- pulses and one
KKREG+ pulse occurs following the final KKCS- pulse of a series.

When CSWSD+ from the control store decoder is high and ACSEN-
remains low, the register clock generator runs independently of
the control store clock generator but continues to provide the
same timing as it did when following the control store clock
generator. This mode is used to provide the KKREG+ pulses during
the execution of the multiply microinsturction when the control
store clock generator is inhibited. This mode also provides the
slower of the KKREG+ clock rates that is required during the
divide microinstruction.

When ACSEN- is low, the register clock generator divides the
KKMOK- rate by 2 to provide a KKREG+ rate which is double the rate
provided in other modes. In other modes, each KKREG+ period is
165 nanoseconds while in this mode it is 82 nanoseconds. The

fast mode implements shift operations during clock periods when

no ALU function is being implemented. This occurs during some
clock periods of the divide microinstruction and also occurs
during the normalize and align microinstructions.

A low ACDEN- signal inhibits control store clock. ACDEN- is low
during the divide microinstruction.

There are two register clock inhibits that apply to the fast

mode. When an align microinstruction resides in the control

store register (CSAL+ high) and the shift counter is zero

(SCEQO+ high), the register clock generator is inhibited. This
prevents shifting of data which is already properly aligned.
Similarly, when a normalize instruction resides in the control
store register (CSNP+ high) and the data in the A register is
normalized (A46+ high), the register clock generator is inhibited.

An inhibit associated with the mode in which the register clock
generator follows the control store clock generator is provided
by the B5M3- signal which is low during the coincidence of high
MCCS2- and CSMWT+ signals. This stops the register clock genera-
tor to wait for the completion of a memory cycle initiated by the
FPP microprogram. Similarly, a low PRKIN- signal stops the
register clock generator as well as the control store clock
generator,
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KKHRG+ is a register clock generator output which is used in the
arithmetic clock control for switching the status of the ACMEN-
signal. KKHRG+ pulses follow KKREG+ pulses by 82.5 nanoseconds.

The MQ clock (XKKMQ-) is identical to the register clock (KKREG-)

except during the fraction multiply microinstruction. The MQ
clock period is 82.5 nanoseconds during fraction multiply.

4.6.7 System Clock Generator

The system clock generator provides buffering and inversion of
MFC-, MHC-, MCDFC-, and M@ACLK+ signals received from the central
processor. (See figure 4-33.,) It provides retiming of the
165-nanosecond clock periods in order to eliminate transmission
delays for critical cases. It also generates the memory clock
pulses which time FPP memory requests and other memory control
functions. In addition, it generates 82-nanosecond clock KK82t
which is used by the memory sequencer.

Most of the 165-nanosecond timing within the FPP is derived from
KKMCD+ which is the buffered MCDFC- clock., MCDFC- is a gated
version of central processor full clock MFC-. When not inhibited
it is identical to MFC-. Central processor full clock MFC- is
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Figure 4-33, System Clock Generator, Block Diagram
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inverted to provide KKMFC+ which is inverted to provide KKMFC-,
Central processor half clock MHC- is inverted to provide KKMHC+.

The 41-nanosecond central processor MPCLK+ signal provides the
fine clock timing for the FPP. Both phases of this clock are
provided by the buffers. A single KKM@K+ output is provided and
a fanout of KKMPK- signals is provided.

Because the MCDFC- signal, and consequently the KKMCD:z signal, is
somewhat delayed, a retiming clock generator is used to provide
the KKMPA* and KKMPB+ signals which are used for timing in cases
where the 165-nanosecond timing is critical. The KKM@K- signal
is used to provide the required retiming as shown in figure 4-34.
By timing the transitions of KKMPA and KKMPB with KKM@K-, posi-
tive-going transitions of KKMPA+ occur a short time before. i
positive-going transitions of MCDFC-, negative-going transitions
of XKKMPA+ are approximately coincident with positive-going
transitions of MHC-, and negative-going transitions of KKMPB+ are
approximately coincident with negative-going transitions of MFC-.

— DELAY IN
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MOCLK+ | l l I |

MFC-

mcoFc. | L
] [ 1
KKMOK-l l——l [—1 |—| —L_

B2H9+
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Figure 4-34, Retiming Clock Generator Waveforms
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In general, memory clock KKMEM+ is timed to occur at the begin-
ning or end of a memory cycle. At the positive-going edge of
KKMEM+, a decision is made as to whether the FPP requires a
memory access. If memory access is required, a memory request
is initiated by memory control at the negative-going edge of
KKMEM+. 1In order to obtain memory access, the FPP must have
memory access priority. If a request from a higher priority
device is pending PROUT+ from priority control is high. This
inhibits the generation of a KKMEM+ pulse.

If the FPP has memory priority (PR@UT+ low), then KKMEM+ can be
set by any of three items:

MCIST AND MCS3+ AND MCCS2+
or MCAEN+ AND MCICS- AND MCS3+ AND MCCS2+
or CSIMC+ AND KKCPB- AND MCCS2+.

In the first term, MCIST+ indicates the start of a FPP instruction
and MCS3+ and MCCS2+ occur at the end of the first address fetch
memory cycle. If an address fetch (DL15+ high) or an operand
fetch (MCRRQ+ high) is required, then the first KKMEM+ pulse
clocks the memory address into the address register, sets MCAEN+,
and initiates a memory cycle. During a non-write instruction
without indirect addressing, the first KKMEM+ pulse clocks the
address register without initiating a memory cycle. During FPP
instructions with indirect addressing, the second term sets KKMEM+
at the end of each address fetch memory cycle. The resulting
KKMEM+ pulse clocks the address into the address register and, if
required (DL1S+ high or MCRRQ+ high), initiates the next memory
cycle. The third term sets KKMEM+ for control store initiated
memory cycles.

If the FPP loses memory priority due to a PMA or DMA request
(PR@UT+ high), then the setting of KKMEM+ is delayed until the
PMA or DMA memory cycles are completed (PRPUT+ low and PRMDN
high).

4.6.8 Arithmetic Clock Control Logic

As shown in figure 4-35, the arithmetic control clock logic pro-
vides shift-enable signal ACSEN-, multiply-enable signal ACEM-,
and divide-enable signal ACDEN-. These signals condition the
clock control to provide clock rates or clock inhibits required
during certain FPP microinstructions. All transitions of ACSEN-
and ACDEN- (except transitions occurring during a system reset)
occur at the leading edge of KKREG+. Transitions of ACMEN- occur
at the leading edge of KKHRG+.
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Figure 4-35., Arithmetic Clock Control, Block Diagram
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ACSEN- is used during three types of microinstructions to produce
82-nanosecond clocks for shifting and to inhibit the trailing
edge of the control store clock until the shifting operating is
complete. During an alignment microinstruction (CSAL+ high)
ACSEN- is set low during the period when the smaller operand is
being aligned with the larger operand prior to addition or
subtraction. The number of shifts is determined by the number in
the shift counter which is decremented by 1 at each shift clock
time. To set ACSEN- low, the shift-count-less-than-or-equal-to-1
signal (SCLEl1-) must be high, indicating that at least two shifts
are required. (If only one shift is required, the microinstruc-
tion has a duration of one clock period and the required shift is
produced by the KKREG+ pulse at the end of this clock period. If
no shift is required, the microinstruction has a duration of one
clock period and the KKREG+ pulse at the end of the clock period
is inhibited by the clock control.) Once set, ACSEN- remains set
until the final shift pulse occurs. This shift pulse is identi-
fied by a high SCLEl+ signal. Figure 4-36 illustrates the timing
of the align microinstruction. Notice that the positive-going
edge of the KKCS- pulse (which terminates the microinstruction
period) is coincident with the negative-going edge of the final
shift pulse (KKREG+),

KKCS~
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CSWSD+ [ e |
CSAL+ I I 't J] S—
—_— P b
KKPB [ 1 L = L4 1 LJ 1
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Figure 4-36. Align Microinstruction Timing
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During a normalize microinstruction (CSN@+ high), is set low if
ZER@-, A46-, and A45- are all high. The high ZERP- signal indi-
cates that the result is not zero and can thus be normalized.

The high A46- and A45- signals indicate that the two most signi-
ficant magnitude bits of the result fraction are zeros so that at
least two shifts are required to normalize the result. (The
eases where one shift or no shift is required are handled
similarly to the corresponding cases during the align
microinstruction.) Once set, ACSEN- is reset by the KKREG+ pulse
occurring after A45+ becomes high. Thus, the microinstruction is
terminated when the most significant binary one of the fraction
is shifted from bit position 45 to bit position 46.

In the case of the division microinstruction (identified by a
high CSDIV+ signal), the status of ACSEN- is manipulated in
accordance with the status of the three most significant bits of
the ALU and in accordance with the status of bit 45 of the A
register. An exception to this occurs in the case of the final
iteration, when ACSEN- is reset to the high level (or remains
high) because SCLEl+ is high. The coincidence of high ALU47-,
ALU46-, and ALU45- signals indicates a positive difference whose
two most significant magnitude bits are zeros. Since the most
significant magnitude bit of the divisor fraction is always a
one, it follows that at least two left shifts of this difference
are required before another positive difference can be obtained.
Thus, this coincidence of high levels is used to set ACSEN- low
and enable the fast (82-nanosecond) shift clock rate. This rate
is maintained until a one is shifted into the most significant
magnitude position (A46) of the A register. At the time of this
shift, ACSEN- is reset to the high level as a result of A45+
being high (that is, as a result of the 1 that is being shifted
from bit position 45 to bit position 46).

Figure 4-37 provides an example of ACSEN- timing for a particular
fraction division.

ACSFT is a delayed version of ACSEN. While transitions of ACSEN
occur at the positive-going edge of KKREG+, transitions of ACSFT
occur at the negative-going edge of KKREG+. ACSFT is used to pre-
vent ACSEN from simultaneously receiving both set and reset
inputs.

In the case of the CSDIV+ microinstruction, it is the ACDEN- sig-
nal which inhibits the trailing edge of KKCS- until the final
interation. With CSDIV+ high, ACDEN- is set low at the positive-
going edge of the first KKREG+ pulse and remains low until the
positive-going edge of the final KKREG+ pulse when it is reset

to the high level because SCLEl+ is high.

During the main multiply microinstruction (identified by a high
CSMUI+ signal), ACMEN- is set low by the first KKHRG+ pulse and
is reset high by the KKHRG+ pulse occurring during the final
iteration period (identified by a high SCLE1l+ signal). (See
figure 4-38 for ACMEN- timing.) The low ACMEN- signal enables
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KKMQ- pulses to occur at the fast (82-nanosecond) rate as
required to shift the multiplier two bit positions to the right
during each iteration. AMEN- inhibits KKCS- pulses without
stopping the KKCS- clock generator. Thus after ACMEN- resets to
the high level during the final iteration period, a KKCS- pulse
occurs at the normal time and terminates the microinstruction.

System reset clears ACSEN, ACDEN, and ACMEN.

4.6.9 Data Latch and Address Output

The data latch provides buffer storage for each instruction,
address, or operand word that is transferred from memory to the
FPP. Before operand transfers can begin the direct address of
the first operand must be received from memory and loaded from
the data latch into the memory address counter. The memory
address counter is then incremented under the control of the FPP
microprogram following each operand word transfer so that succes-
sive operand words are transferred to or from consecutive memory
locations. As shown in figure 4-39 the address held in the
memory address counter reaches the memory address bus via
inverters and gates.

Each word transferred from memory to the FPP is loaded into the
data latch in response to a low MCDLE- signal from the memory
sequencer. Each address word received from memory is transferred
from the data latch to the memory address counter in response to
a low MCLDA- signal from the memory control. The address held in
the memory address counter is gated to the memory address by high
MCAEN+A and MCAEN+B signals from the memory control. Incre-
menting of the memory address count at the positive-going edge

of the KKMEM+ pulse from the system clock generator is enabled by
a high CSINC+ signal from the control store decoder.

MCLDA- AD15- _
—_—h >
CSINC+
e
ADDRESS [ADn +(00-1)
KKMEM+ »| COUNTER INVERTERS
> ADnn-
00-15)
MEMORY A B -1
MCAEN+A B ADDRESS MYA Bnn (00 5)’
GATES
MYDBnn -(00-15) DLnn + (00-15) >
DATA
MCDLE- LATCH DLnn = (10-15) >
————p
VTit-3214

Figure 4-39., Data Latch and Address Output, Block Diagram
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4.6.10 Instruction Latch, Instruction Regisfer, and Instruction
Decoder

The provision of an instruction latch and an instruction register
allows the pipelining of instructions to the FPP. Each FPP
instruction is decoded as it resides in the data latch. It is
then moved to the instruction latch. While the instruction
resides in the instruction latch, the direct address of the first
operand word is obtained from memory and loaded into the address
counter. In the case of a non-write instruction, the first
operand word is obtained from memory and stored in the data latch.
These functions are performed independently of the FPP micro-
program so that they can be performed while the microprogram for
the previous FPP instruction is still running. (Each FPP instruc-
tion jams the central processor microprogram at a NOP location
until it has completed its final operand word transfer. Thus,
there is no contention between the operand transfers associated
with one FPP instruction and the fetching of the next instruction
and direct operand address.)

Three signals (CDREN+, CEND+, and CAEN+) enable the FPP instruc-
tion decoder (see figure 4-40). CDREN+ high indicates a primary
decode request from the central processor control store. CEND+
high indicates no interrupt requests pending. CAEN+ high indi-
cates that the instruction in the central processor instruction
buffer (and the FPP data latch) is in the standard instruction
set or FPP instruction set. (CAEN+ low indicates an instruction
in an extended instruction set decoded and executed under control
of the WCS.) CAEN+ is clocked into a flip-flop (BS5T9+) at the
positive-going edge of central processor clock MCDFC-. The
instruction decoder is enabled when CDREN+, CEND+, and BSTO9+ are
high. When the decoder is enabled and an FPP instruction resides
in the data latch, the IDGO+ signal is placed at the high level.
An FPP instruction is identified by code 1000 1011 in bits 8
through 15 (where bit 15 is the MSB). With IDGO+ high, the eight
least significant bits of the instruction are loaded into the
instruction latch at the positive-going edge of clock MCDFC-.
These bits are received on data latch lines DLnn+ (0-7).

When the final microinstruction of an FPP instruction routine
reaches the control store register, the CSDN+ signal from the
control store decoder switches to the high level. 1If the direct
address of the first operand of the next FPP instruction has not
vet been obtained, then control store clocks are inhibited until
this function has been completed. Thus, the final microinstruc-
tion of the completed FPP instruction remains in the control
store register and the CSDN+ signal remains high. When the
direct address of the first operand word for the next FPP instruc-
tion is received and loaded into the data latch, control store
clocks are again enabled. The trailing edge of the next control
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Figure 4-40. Instruction Latch, Instruction Register and
Instruction Decoder, Block Diagram

store clock pulse (KKCS-3) loads the instruction from the
instruction latch into the instruction register. Bits ILnn+
(00-04) and bit ILWRT+ are supplied via the control store

address multiplexor to the control store address lines at this
time and thus specify the location of the first microinstruction
of the next FPP instruction microprogram.: This microinstruction
is loaded into the control store register by the same KKCS-
transition which loads the instruction latch into the instruction
register., The instruction register presents the instruction code
bits to the constant storage PROM and to the arithmetic control
logic for use during the execution of the microprogram.

The three most significant bits of each 8-bit instruction code
are designated to identify the functions they specify. In terms
of the instruction latch, these are the ILWRT+, IBDB+, and ILSU+
bits. A high ILWRT+"signal specifies a write instruction (that
is an FPP instruction during which operand data is transferred
from the FPP to the memory). A high ILDB+ signal specified a
double precision instruction. A high ILSU+ bit specifies a sub-
traction instruction.
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Special duplicate storage (memory write flag) is provided for

the most significant bit, which specifies a write or non-write
instruction. The memory write flag is stored at the same time
that the instruction is loaded into the instruction latch.
However, the memory write flag is reset to the low level by the
coincidence of high KKCPB- and CSIMC+ signals associated with

the first memory request initiated by the FPP microprogram. The
memory write flag (ILMRT+) is used in the memory control logic in
connection with obtaining the direct address of the first operand
during a write instruction.

4.6.11 Control Store Address Loop

The control store address loop (figure 4-41) provides the control
store address storage and manipulation required to cause the
microinstructions of a routine to be executed in the appropriate
order. The elements of the control store loop include the upper
and lower address adders, buffers, and multiplexors. The
starting control store address for a floating point processor
operation is obtained from the instruction latch. As indicated
by table 4-4, the instruction latch signals are connected to the

A ILWRT+, |LO4+
d PPER
UPPER > >
ADDRESS MULTI-
ADDER - CSAn + (4-7) N PLEXOR
UPPER 4 ]
B ADDRESS
[_—"" co BUFFER
= 1 CSEND-
]
SYRST- KKCS-
JCT-
8 C+ LOWER
| ADDRESS
= BUFFER |
i LOWER y
PUIS+ » ADDRESS CSAn+ (0-3) _
ADDER LOWER
ILnn+ (0-3) | ADDRESS ADCSn & (0-3)
MULTI- »
Ay CSJAn+(0-3) | PLEXOR
co
VTI1-3214

Figure 4-41. Control Store Address Loop, Block Diagram
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LOT-¢

Table 4-4. Control Store Address Multiplexor Outputs

Control

Inputs Outputs

CSEND- JCT- | ADCS7+ | ADCS6+ ADCS5+ ADCS4+ ADCS3+ | ADCS2+ | ADCS1+ | ADCSO+
L H ILWRT+ L L ILO4+ IL03+ IL02+ ILO1+ ILOO+
H H CSA7+ CSA6+ CSAS+ CSA4+ CSA3+ CSA2+ CSAl+ CSAQ+
L L CSJA3+ | CSJAZ+ CSJAl+ CSJAO0+ | CSA3+ CSA2+ CSAl+ CSAOQ+
H L CSA7+ CSA6+ CSA5+ | CSA4+ CSJA3+ | CSJA2+ | CSJAl+ | CSJAO+

Note: L = low; H = high



control store address multiplexor outputs when CSEND- is low and
JCT- is high. Under this condition, the five least significant
bits ILnn+(0-4) from the instruction latch are connected to the
four least significant control store address multiplexor output
lines, ADCSO+ through ADCS4+, while the most significant bit
from the instruction latch, ILWRT+, is connected to the most
significant ‘control store address multiplexor output line.
Hard-wired low (L) signals are simultaneously connected to the
ADCS5+ and ADCS6+ control store address multiplexor output lines.

In addition to the starting address selection, there are three
other selections that can be implemented by the control store
address multiplexor. When both CSEND- and JCT- are high, the
eight address signals from the upper and lower address buffer

are selected for connection to the control store address multi-
plexor output lines. Each KKCS- pulse from the clock control
logic clocks the upper and lower adder outputs into the upper

and lower address buffers respectively. The adders function to
increment the address being received from the control store
address multiplexor by 1. Thus, as long as both CSEND- and JCT-
are high, consecutive control store locations are addressed in
sequence. A low JCT- signal indicates that a jump condition is
satisfied. In this case, only half of the control store address
is obtained from the buffer register while the other half is
obtained from the jump address field of the word currently held
in the control store register. If CSEND- is high then the upper
address is obtained from the buffer while the lower address is
obtained from the jump address field (CSJAO+ through CSJA3+). If
CSEND- is low, then the upper address is obtained from the jump
address field while the lower address is obtained from the buffer.

4.6.12 Jump Condition Multiplexor

Complement jump-condition-true signal JCT- is obtained from an
8-to-1 multiplexor. When the selected input of the multiplexor
is high, the output is low as required to produce the jump. The
multiplexor selection inputs are the CSJCn+(0-2) signals from the
jump condition field of the word currently held in the control
store register. Table 4-5 summarizes the jump condition
selections.

4.6.13 Control Store Memory, Register, and Decoder

The FPP microprogram is contained in a 16-bit, 256-word read-only
memory (control store). Associated with the control store are a
control store register, which .holds each microinstruction while
it is being executed, and a control store decoder, which decodes
certain fields of each microinstruction held in the control store
register. (See figure 4-42.) The trailing edge of each KKCS-
pulse from the clock control loads the microinstruction from the
control store location currently addressed by the ADCSn+ (0-7)
signals (from the control store address loop) into the control
store register.
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Table 4-5. Jump Condition Selections

Jump Condition
CSJC2+|CSJC1+|CSJCO+ | Condition Selected| Function
L L L | Hard-wired Low No jump
L L H | Hard-wired High Unconditional jump
L H L | ECRY+ Jump if exponent carry
carry
L ‘H H | ZERO+ Jump if ZERO flip-flop
is set
H L L | ACZ47+ Jump if accumulator
is negative or zero
H L H | ASEBS+ Jump if AS = BS
H H L|E7+ Jump if MSB of
exponent is 1
H H H| TO+ Jump if time-out flip-
flip is set
Note: L = low; H = high
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Table.4-6 lists the fields of each microinstruction and lists
the signals associated with each field that are supplied by the
control store and the control store register.

The control store decoder provides decoding of various IN, ALU,
MEN, and FLAG codes as summarized in table 4-7. For information
about the significance of each of these decoding signals,

refer to table 4-2. B

When the decode signal CSEND- is low and the complement jump-
condition-true signal (JCT-) from the jump condition multiplexor
is high, the CSDN+ signal is placed at the high level. This sig-
nal inhibits KKCS- pulses at the end of an FPP instruction
microprogram until the next FPP instruction is decoded.

There are two decode signals that are loaded into the control
store register. CSMUO+ is loaded into the CSMUl+ stage of the
control store register while CSEXC- is loaded into the CSLDE-
stage. CSMUl+ identifies the main multiply microinstruction
which is executed following the multiply-start microinstruction
which contains the CSMUO+ code. The only function performed by
CSEXC- is to set the CSLDE- signal low during the next micro-
instruction period. This allows two FLAG codes to be used to
specify conditions for a single microinstruction, the CSEXC- code
being used in the preceding microinstruction which does not
require any information from the FLAG code field.

Complement decoding signal CSIMC- which is used to initiate a
memory request is gated by T@- from the priority control. This
allows the MEM field of one of the microinstructions of the
timeout routine to be used to provide a wait-for-memory-done
function without initiating a memory request.

4,6.14 1/0 Data Multiplexors

The I/0 data multiplexors are used to connect operand data from
the data latch to the MQ register and E register of the data
loop. They are also used to connect result data from the ALU in
the data loop and from the E register to the memory data bus of
the central processor. As shown in figure 4-43, a data source
selection multiplexor selects one of eight data sources while a
conditional inversion multiplexor selects either the inverted or
non-inverted outputs of the data source selection multiplexor

as appropriate. Data words which contain sign bits are inverted
when the operand or result being transferred is negative. This
provides the required conversion between the format used to store
operands in memory and the absolute format required and supplied
by the FPP.

Table 4-8 lists each of the eight data words that can be selected
by the data source selection multiplexor. Notice that two of
these words (selections LLL and LHH) are obtained from the data
latch (DLnn+). Selection LHH is used when transferring the first
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Table 4-6. Control Store and Control Store Register Outputs

Microinstruction Control Store Control Store
Field Signals Register Signals
ALU or IN/IO SALn+ (0-5) CSALn+ (0-5)

AB SABn+ (0-2) CSABn+ (0-2)

AC SAM+, SCM+ CSAM-, CSCM%
EADD SEAn+ (0-3) CSEAn: (0-3)
EREG SERn+ (0,1) CSERnt (0,1)

MEM SMEn+ (0,3) CSMEn+ (0,1), CSMWTz
FLAG SFLn+ (0-3) CSFLntz (0-3)
JCOND SJCn+ (0-2) CSJCn+ (0-3)
JADD SJAn+ (0-3) CSJAn+ (0-3)

FMT SFMT+ CSFMT+
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Table 4-7. Control Store Decoder Signals

Microinstruction Control Store Decoder Signal
Field Register Bits Activated
IN CSALS5+ CSAL4+ CSAL3+
L L H CSLSA-
L H L CSLSB-
H L H CSLDB-
H H L CSLDC-
H H H CSLDD-
ALU (With CSWSD- CSAL2+ CSAL1+ CSALO+
signal from :
MEM field L L H CSAL%
LOW)
L H L CSNp+
MEM CSMWT+ CSMEl+ CSMEO+
L H L CSWSD=
H L L CSIMC#
H L H CSINC+, CSIMCH
H H H CSSIF+
FLAG CSFL3+ CSFL2+ CSFL1+ CSFLO+
L L L H CSCPO+
L L H L CSMUO+
L L H H CSZITZ+
L H L L CSZAS-
L H L H CSSS+
L H H L CSQFL-
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Table 4-7. Control Store Decoder Signals (continued)

Microinstruction Control Store Decoder Signal
Field Register Bits Activated
FLAG CSFL3+ CSFL2+ CSFL1+ CSFLO+
(cont'd)

L H H H CSDIO-

H L L L CS128+

H L L H CSEXC-

H L H L CSCCR-

H L H H CSC47+

H H L L CSDIV-

H H L H CSUFL-

H H H L CSCTO+
Note: L = Low; H = high
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Figure 4-43. 1/0 Data Multiplexors, Block Diagram

word of a single precision number from the data latch to the data
loop. This selection transposes the positions of the exponent
and high-fraction fields of the word. Selection LLL is used when
transferring all other operand words from the data latch to the
data loop.

The remaining five selections are associated with the transfer of
result words from the data loop to memory. Selections LLH and
LHL are associated respectively with the transfer of words 1 and
2 of a single precision number while selections HLL through HHH
are associated respectively with the transfer of the four words
of a double precision number.

The data source selection is controlled by the IO field (CSALO+
through CSAL2+) of the microinstruction word currently held in
the control store register.

A conditional inversion is introduced in response to a high
ACINV+ signal. (The I/0O data multiplexor is the boundary between
the negative-true data-loop/exponent-loop domain and the positive-
true IOM/I0 domain. Therefore, a level inversion to convert
between negative-true and positive-true occurs when ACINV+ is

low. The high ACINV+ level eliminates this level inversion and
produces an inversion of ones to zeros and zeros to ones).
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Table 4-8. 1I/0 Data Multiplexor Selections

Sglec-
tion
Inputs - Source Data Selection
CSALn+
210 IOM15- IOM14- IOM13- IOM12- IOM11- IOM10- IOMO9- IOMOS8-
LLL DL15+ DL14+ DL13+ DL12+ DL11+ DL10+ DL09+ DLO8+
L LH PU+ E7- E6- ES5- . E4- E3- E2- El-
LHL PU+ ALU39- ALU38- ALU37- ALU36- ALU35- ALU34- ALU33-
L HH DL15+ DLO6+ DLOS5+ DLO4+ DL0O3+ DL02+ DLOl1+ DLOO+
HLL PU+ PU+ PU+ PU+ PU+ PU+ PU+ PU+
HLH ALU47- ALU46- ALU45- ALU44- ALU43- ALU42- ALU41- ALU40-
HHL PU+ ALU31- ALU30- ALU29- ALU28- ALU27- ALU26- ALU2S-
HHH PUI+ ALU16- ALU15- ALU14- ALU13- ALU12- ALUl1l- ALU1l0-
Source Data Selection (continued)
210 IOM07- TOMO6- IOMOS- IOMO04- IOM03- IOM(O2- IOMOl- IOMOO-
L LL DLO7+ DLO6+ DLOS+ DLO4+ DLO3+ DLO2+ DLO1+ DLOO+
L LH EO- ALU46- ALU4S- ALU44- ALU43- ALU42- ALU41- ALU4O-
LHL ALU32- ALU31- ALU30- ALU29- ALU28- ALU27- ALU26- ALU25-
L HH DL14+ DL13+ DL12+ DL11+ DL10+ DLO9+ DL08+ DLO7+
HLL E7- E6- ES- E4- E3- E2- El- EO-
HLH ALU39- ALU38- ALU37- ALU36- ALU35- ALU34- ALU33- ALU32-
HHL ALU24- ALU23- ALU22- ALU21- ALU20- ALU19- ALU18- ALU17-
HHH ALUO9- ALUO8- ALUO7- ALUO6- ALUOS- ALUO4- ALUO3- ALUOZ-

Note: L = low; H = high

4-116



During the transfer of results from the data loop to the memory,
the I0nn+ outputs from the conditional inversion multiplexor are
gated to the memory bus (MYDBnn-) in response to a high MCDDE+

signal from the memory control.

4.6.15

Data Loop

The data loop performs those data processing operations that
involve the fraction portions of operands.

figure 4-

a.

execution of the multiplication instructions.
logic or arithmetic function provided by the ALU depends upon
signals supplied to its four selection lines (SO0 through S3),
its mode (M) line, and to its carry input (Cp) line.

44,
ALU.

As illustrated in
the data loop includes the following components:

This is a 48-bit wide general purpose ‘arithmetic-
logic unit with a 2-bit extension that is used only during

combinations of inputs are used in the FPP.
the resultant functions are summarized in table 4-9,.
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Table 4-9.

ALU Functions

Input Code
S3 S2 S1 S0 M Cn
ALS3+ |[ALS2+ |ALS1+ |ALSO+ |ALM+ | ALCN+ Function
L L L L H L F =A (Logic
complementa-
tion of A)
L L H H H L F=1
L H L H H L F =B (Logic
complementa-
tion of B)
L H H L L H F = A MINUS B
H L L H L L F = A PLUS B
H L H L H L F =B
H H L L L L F = A PLUS A = 2A
H H L L H L F =20
H H H H H L F = A
L L H H L L F = MINUS 1
Note: L = low; H = high
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b. MQ Register. The MQ (multiplier/quotient) register is a
48-bit shift register with parallel-entry, parallel-readout,
shift-left, and shift-right capabilities. It holds the multiplier
during multiplication and the quotient at the end of division
(See figure 4-45.) All operands received by the data loop from
memory are initially assembled in the MQ register. Various
sections of the MQ register can be addressed separately for
parallel entry as required to assemble 16-bit words received from
memory into 22-bit single precision or 45-bit double precision
operand fractions. The MQ register function executed at MQ
clock (KKMQ-) time is determined by the status of the two
selection inputs (SO and S1) as summarized in table 4-10.

For parallel entry purposes, the MQ register is divided into six
separately addressable sections (A through F) as illustrated in
figure 4-46. The manner in which these sections are addressed
when loading single precision and double precision fraction words
is also indicated in the figure. For the single precision
fraction the loading control signal CSLSA- loads the sign (S) and
the seven most significant bits of the fraction (high fraction)
into section A of the MQ register. The low CSLSA- signal places
the MQAS1+ and MQASO+ signals at the high level in order to select
the loading function for this section. The data that is loaded
into the MQ register sections is obtained from the data latch

via the I/0 data multiplexor. Figure 4-46 indicates the data

NEW OPERAND
MQ / A

MULTIPLIER PARTIAL/FINAL PRODUCT

B

MULTIPLICAND

MULTIPLICATION

MQ
QUOTIENT
R
o NEW OPERAND A
DIVISOR DIVIDEND/REMAINDER
DIVISION
B A
R AND (OR NEW
SMALLER OPERAND &%(;ERNS};E ?XP%I&%NTSE
{IF ALIGNMENT IS OF TWO OPERANDS ARE
REQUIRED) EQUAL}
VT11-3200 ADDITION OR SUBTRACTION

Figure 4-45. Data Loop Register Usages
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Table 4-10. MQ, A, and B Register Function Selection

Selection Signals

S1 SO Function

No operation
Shift Right
Shift Shift Left

Z n = r
n o X

Load

Note: L = Low; H High

Ma [47[ae] 45] e4]4a]s2] 41 0]39]38]37T36] 32 [34[33]a2]a1[30]29] 28] 27 [26] 25 24 23]22 21 [20]0 18]  Tre s [ a[rar2]r i Tio] o[8[ 7 6 [ s[4 T3] 2] 1] 0]
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Figure 4-46. MQ Register Loading Formats

4-120



‘latch bit positions from which the data is obtained during each
transfer into the MQ register. When section A is loaded in
response to CSLSA-, the sign bit is obtained from data latch

bit 15 while the high fraction is obtained from bit positions 0
through 6. The CSLSB- signal loads the remaining bits (low
fraction) of the single precision fraction into sections B and C
of the MQ register. Bits 0 through 14 from the data latch are
loaded into bit positions 25 through 39 of the MQ register while
a zero (high level) is loaded into bit position 24.

In the case of a double precision fraction, three transfers are
required to assemble the complete fraction. The loading signals
associated with these transfers are CSLDB-, CSLDC-, and CSLDD-.
Section E is loaded twice. CSLDC- loads data latch bits 0 through
2 into bit positions 17 through 19 and a zero into bit position
16. CSLDD- loads MQ bits 17 through 19 back into the same posi-
tions in section E and loads data latch bit 14 into position 16
in place of the zero loaded in that bit position by CSLDC-. The
selection of the source data loaded into bit positions of
section E is accomplished by the MQE multiplexor. A low CSLDD-
signal selects the inputs required during the CSLDD- transfer
while a high CSLDD- signal selects the inputs required during
other transfers.

The bit 24 input to the MQ register (MQI@7+) is provided by a
multiplexor in the MQ control logic. (This is the logic which
supplies the selection signals to the MQ register sections.) The
multiplexor selects a zero (high level input) for single
precision operations or the appropriate output from the I/0O data
multiplexor for double precision operations.

With the exception of the selections just described, the bit
inputs to the MQ register sections are selected by the I/0O data
multiplexor. The data from the I/0 data multiplexor is
received on the IOnn+ (00-15) lines.

At the end of each FPP instruction microprogram routine, the MQ
register is cleared by loading zeros from the I/0 data multi-
plexor into all sections. In the case of division, where the MQ
register contains the quotient at the end of the routine, this
result is transferred to the A and B registers at the time that
the MQ register is cleared.

Shifting of the contents of the MQ register is described in
connection with descriptions of clock control and MQ register
control.

c. A and B Registers. The A and B registers are 48-bit,
shift-left, shift-right, parallel-entry, parallel-readout
registers similar to the MQ register. For addition or subtraction
the A and B registers hold the two operands and the result is
placed in the A register. During multiplication, the A register
is used to accumulate the product while the B register is used to
hold and shift the multiplicand. During division, the A register
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is used to hold and shift the dividend/remainder while the

B register is used to hold the divisor. If the result of an
operation is not in the A register at the end of an instruction
routine, it is copied into the A register. Every result is also
_copied into the B register at the end of an instruction. Thus,

“results reside in the A and B registers between instructions.
During addition or subtraction, the B register is used to align
the fraction portion of the smaller operand. Thus, if the
operand resulting from the previous operation is smaller, the
copy in the B register is used and the new operand is loaded into
the A register. Conversely, if the new operand is smaller, it is
loaded into the B register and the copy of the result of the
previous operation held in the A register is used in the new
operation.

During multiplication, the copy of the previous result held in the
B register is used as the multiplicand. During division, the copy
of the previous result held in the A register is used as the
dividend. A load instruction places copies of the operand
fraction in both the A and B registers. Thus, if the previous
instruction was a load instruction, it is still true that the
result of the operation is available in both the A and B
registers.

The contents of the A register is applied to the A input of the
ALU via the C multiplexor. The contents of the B register is
applied directly to the B input of the ALU.

Both the A and B registers receive parallel data from the A
multiplexor. Data appearing at the output of the A multiplexor
can be loaded into either the A or B register or both by appro-

priate control of the function selection inputs to the two
registers.

The A and B register are both clocked by KKREG- from the clock
control. The function performed at the positive-going edge of
each clock pulse is determined by the selection inputs as

defined in table 4-10. The selection inputs to the A register
are ACASO+ and ACAS1+ while those to the B register are ACBSO+

and ACBS1l+. These inputs are supplied from the A, B, and multiply
control.

d. A Multiplexor. The A multiplexor provides the path by
which operands are transferred from the MQ register to the A
and/or B register. It also provides three paths by which
result data from the ALU can be supplied to the A or B register.
One of these paths shifts the ALU data to the right two bit
positions (with the data from-bits positions ALU49 and ALU48 being
loaded into the two most significant bit positions of the
A register). This path is used during multiplication to shift
each new partial product two bit positions to the right at each
clock time. A second path shifts the ALU data one bit position
to the left (and puts a zero into the least significant bit
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position of the register). This path is used during division to
shift the partial remainder one bit position to the left at each
clock time. The third path supplies the ALU data to the A or B

register without shifting it either to the right or to the left.

The A multiplexor selection is controlled by the CSAM+ and CSAMO+
signals from the control store decoder. The paths selected by
these signals are summarized in table 4-11.

e. C Multiplexor. When CSCM+ from the control store
decoder is high, the C multiplexor selects the constant being
supplied from the constant register. When CSCM+ is low, the
C multiplexor selects the contents of the A register. The data
s;leiigd by the C multiplexor is supplied to the A input of
the .

4.6.16 Multiply Control

Multiply control selects the multiplier bit pair to be evaluated
during each iteration period of the fraction multiply micro-
instruction, performs the evaluation of the selected multiplier
bits, and manipulates various control signals in order to add or
subtract an appropriate quantity to or from the previous partial
product at each clock time.

Two dual 4-to-1 multiplexors and a latch circuit (figure 4-47) are
used to select the two multiplier bits to be evaluated during

each iteration of the multiplication routine. During the initial-
ization step, the multiplier bits are obtained from the data
latch., Two bits are supplied through the multiplier control bit

Table 4-11. A Multiplexor Selections

Selection Inputs Selection
CSAM+ CSAMO+
L L MQ register
L H ALU X 272
H L ALU
H H ALU X 2%
Note: L = low; H = high
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Figure 4-47. Multiply Control, Block Diagram

multiplexor to the ACMCn+(l1,0) lines for use in controlling the
first iteration. The next two bits are supplied through the
multiplier control bit storage multiplexor to the multiplier
control bit storage latch for use in controlling the second
iteration. During subsequent iterations, the multiplier control
bit multiplexor selects the contents of the multiplier control
bit storage latch for application to the ACMCn+(1,0) lines while
the multiplier control bit storage multiplexor selects two bits
from the multiplier-quotient register (MQnn+) for loading into
the multiplier control bit storage latch at the end of the
iteration. The particular bits selected in each case depend upon
whether single or double precision multiplication is being
performed.
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Both multiplexor selections are controlled by IRDB+ and CSMU1+.
The status of IRDB+, which indicates whether single or double
precision multiplication is being performed, determines the
particular multiplier bit selections while the status of the
CSMUl+ signal determines whether the bits are selected from the
data latch or from the MQ register and the multiplier control bit
storage latch. Table 4-12 summarizes the bit selections.

Multiplication is implemented by an add and shift algorithm. The
selected pair of multiplier bits is evaluated to determine the
quantity to be added to the partial product during each iteration.
The bit pair can assume any of the values 00, 01, 10, or 11
(decimal 0, 1, 2, or 3). Thus, the basic requirement is to add
OM, 1M, 2ZM, or 3M to the partial product during each iteration
(where M = multiplicand). However, only M and 2M are explicitly
available. (2M is obtained by shifting the multiplicand one bit
position to the left in the B register and M is recovered by
shifting 2M one bit position to the right.) 3M is added by
subtracting M and generating a control bit carry into the next
iteration. The carry indicates a component, M, that must be
added to partial product during this next iteration. (Since the
partial product is shifted to the right two bit positions after
each iteration, adding M one iteration later is equivalent to
adding 4M during the current iteration. Thus, effectively, 3M
is added by adding 4M - M. When the control bit from the
preceding iteration is added to the bit pair value for the
current iteration, the number of possible values increases to
include the new value, 4. However, this value is easily handled
by generating a carry into the next iteration time.

The multiply control manipulates signals which specify left shift-
ing of M to provide 2M (ACMBL-) right shifting of 2M to provide
M (ACMBR-), addition (ADD+), subtraction (SUB+), and multiplier
bit carry into the next iteration period (ACMCY+). The ACMBL-
and ACMBR- signals depend upon the current values of ACMCO+,
ACMCY+, and B47+. The ADD+, SUB+, and ACMCY+ are stored quanti-
ties which depend upon the values of ACMCl+, ACMCO+, and ACMCY+
at the previous clock time. Figure 4-48 provides an example of
multiply control timing. Nine clock times are identified by the
circled numbers, 0 through 8, in the figure. At register clock
time 0, the stored quantities (SUB+, ADD+, and ACMCY+) are set
to the values appropriate for the first iteration. No addition
or subtraction occurs at this clock time. In the example shown
the first multiplier bit pair is 10 (as indicated by the high
ACMC1+ signal and the low ACMCO+ signal at clock time 0). This
results in the setting of ADD+ to the high level while SUB+ and
ACMCY+ remain at the low level. Because the addition of 2 is
indicated and B47+ is initially low, ACMBL- is low prior to
clock time 0. This causes a left shift of the B register as
indicated by the positive-going transition of B47+ at clock

time 0. With ADD+ high and with 2M in the B register, the
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Table 4-12. Multiplier Control Bit Selections

Bits Stored Bits Evaluated
For Next During Current
- Step/Mode CSMU1+ | IRDB+ | Iteration Iteration

C3B7+ | C3B9+ | ACMC1+ | ACMCO+

Initialization, L L DLO2+ [ DLO1+ | DLOO+ L
Single Precision

Initialization, L H DLO3+ | DLO2+ | DLO1+ DLOO+
Double Precision

Subsequent H L MQ29+ | MQ28+ | C4C15+ | C4Cl4+
iterations,
Single Precision

Subsequent H H MQO7+ | MQO6+ | C4C15+ | C4C14+
iterations,
Double Precision

Note: L = low; H = high

wope W LT L LU W LU

BTT PAIR
VALUE —= 2 3 0 2 0 3 3 0

ACMC1+
J I N S l
ACMCO + .—l—————i , L

ACMCY+ ] [ [ 1__—___.
ACMSBL- _-l ]—_[ m
et T | R S

847+ 1 I Y [ S
ADD+ ———I—I————J L ] I
sug+ ‘ l I I
ADD sus ADD ADD ADD sus ADD ADD
2M M M 2M ZERO M ZERO M
VTI11-3202

Figure 4-48. Example of Multiply Control Timing

4-126



addition of 2M to the partial product occurs at clock time 1. At
this clock time, ACMCY+ and SUB+ are set high, ADD+ is set low,
and the contents of the B register is shifted to the right to
recover M, This prepares for the addition of 3M by subtraction
of M at clock time 2 and addition of M at clock time 3. The
process continues in this manner until every pair of multiplier
bits has been processed. -

Table 4-13 summarizes the manner in which the control signals
depend upon the values of ACMCY+, ACMC1l+, and ACMCO+ at each
clock time. Notice that the B register shift control signal
status depends not only upon the status of the multiplier bits
and carry bit but also upon the current status of the B register
(as indicated by the status of the B47+ signal). ACMBL- is
placed at the low level to enable the left shift only if B47+ is
low, indicating that the current contents of the B register is M.
Similarly, ACMBR is placed at the low level only if B47+ is high.
This inhibits the shifting of the B register when the B register
already contains the quantity (M or 2M) required for the addition
or subtraction at the next clock time.

The ADD+ and SUB+ flip-flops are in the ALU control logic. The
signals from this logic which control the switching of these
flip-flops at clock times are the ACMAD- and ACMSU- signals. The
C5D6+ signal controls transitions of the ACMCY+ flip-flop which
is part of multiply control as illustrated in figure 4-48.

4.6.17 A, B Control Encoder

The A, B control encoder provides the function selection signals
to the A and B registers. The function selections can be
controlled by the AB selection field of the microinstruction
currently held in the control store register. (As indicated in
table 4-14, there are seven active function selections that are
encoded in response to control store register AB control signals
CSABn+ (0-2). When these three signals are all low, the register
function selection can be controlled by any of four other inputs.
Three of these control the selection function codes supplied to
the B register. These are the ACMBL-, ACMBR-, and CSAL- signals.
ACMBL- and ACMBR- are supplied from the multiply control and
control shifting of the multiplicand in the B register during the
multiplication microprogram. CSAL- from the control store decoder
provides right shifting of the B register during the alignment
microinstruction.

During the fraction divide microinstruction, MQQB- from the MQ
control selects either left shifting of the partial remainder in
the A register (if the partial remainder is smaller than the
divisor) or loading of a new partial remainder from the ALU into
the A register (if the partial remainder in the A register is
larger than or equal to the divisor).
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Table 4-13. Multiply Control
Inputs Control Outputs at KKRGE Direction
of Condi-
Resultant Flip- |[tional B
CSho+ ACMBL- ACBMR- Flop Outputs Register
(Next (If B47+| (If B47+|after KKREG- Shift at
ACMCY+ | ACMC1+| ACMCO+ | ACMSU-| ACMAD- | ACMCY+)| is 1low) |is high)|SUB+ ADD+ ACMCY+|KKREG-
0 0 0 H L L L H L L L Left
0 0 1 H H L H L L H L Right
0 1 0 H H L L H L H L Left
0 1 1 L L H H L H L H Right
1 0 0 H H L H L L H L Right
1 0 1 H H L L H L H L |Left
1 1 0 L L H H L H L H |Right
1 1 1 H L H L H L L H Left
Note: 0 = = 1= H high




Table 4-14. A, B Control .Encoder

B Register A Register
Encoder Input(s) Control Control
Func-
CSABZ+ CSABl1+ (CSABO+ ACBS1+ ACBSO+ ACAS1+ ACASO+ tion

* g L NOP
L L H L L L H SRA
' H L L L H L SLA
: . i L L H H LDA
H L L H H L L  LDB
H L H L H L H  SRAB
H H L H L H L SLAB
; H i H H H H  LDAB
5882: : ﬁ (See note 4.) g ? égﬁ
CSAL- = L . . -
ACMBR- = L . . .
ACMBL- = L . . s

Notes: 1. L = low; H = high
2. SR = shift right, SL = shift left, LD = load

3. A = A register, B = B register, AB = A and B
registers

4., When MQBB- is controlling ACASO+, ACAS1 is held high
by low CSAB1l- signal.
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4.6.18 MQ Control

The MQ control (figure 4-49) provides the function selection
signals to the various separately addressable MQ register
sections. It provides the path by which quotient bits are
shifted into the MQ register during division. Also, it deter-
mines, in accordance with the precision selection, the source of
the data bit that is loaded into bit position 24 of the MQ
register during the assembly of the operand fraction in the MQ
register.

Function selection signals MQmSl+ (A-F) and MQmSO+ (A-F) provide
the capability of addressing the appropriate sections of the MQ
register during assembly of the operand in the MQ register. For
example, a low CSLSA- signal places the MQAS1+ and MQASO+ signals
at the high level as required to load the sign bit and high

CSMUI- _

CSDIV-

CSDN- N

CSLSA- MQ MQmS1+ (A-F) >

REGISTER
CSLSB - FUNCTION MQmSO + (A-F) _
SELECTION >

CSLD8- N

C5LDC- _

C3LDD-

CSDIV+ _

DIVISCR=
A47 -~ | REMAINDER
& peLaTIVE MQQB-
. MAGN |-
ALJA7: > rué%
EvALU
Adh- | e LUATION
MQSID-
MQ >
INPUT MQSIS -

IRDB - »  MULTI- >
MQ23- (| PLEXOR MQICT7+ .
10,07+
Py~

>
VT11-3215

Figure 4-49. MQ Control, Block Diagram
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fraction of a single precision operand into register section A.
Refer to figure 4-46 for a diagram that illustrates the various
loading signals involved in loading the operand words of both
single and double precision operands into the MQ register.

In the case of the selection of the MQ shift-left or shift-right
function, the function is selected .for all sections of the
register. The control inputs which select shift functions are
CSMUl- and CSDIV-., CSMUl- selects the right-shift function that
is required to shift the multiplier to the right during multipli-
cation. CSDIV- selects the left-shift function required to shift
quotient bits into the MQ register during division.

A low CSDN- signal selects the load function for all MQ register
sections. This causes zeros to be loaded into the MQ register at
the end of the final microinstruction of each FPP instruction
microprogram., During division, quotient bits are supplied to

the MQQB- line by a sub-function which evaluates the magnitude
relationship between the partial remainder (or, during the first
iteration, the dividend) and the divisor. If the partial
remainder is at least as large as the divisor, MQQB- is placed

at the low level to produce a binary one quotient bit). The
evaluation is enabled during the division microinstruction in
response to the high CSDIV+ signal from the control store decoder.
There are two evaluation results which place the MQQB- line at the
low level. One of these is the coincidence of high A46+ and
ALU47- levels. This accounts for the case where the most
significant binary one magnitude bit of the remainder is in bit
position 46 of the A register (A46+ high) and the subtraction of
the divisor from this remainder is producing a positive
difference (ALU47- high). The second result which places MQQB-
at the low level is a high A47+ signal. This indicates that the
most significant binary one magnitude bit of the remainder is in
bit position 47 of the A register. In this case, the remainder
must be larger than the divisor, since the most significant
magnitude bit of the divisor is in bit position 46. (In this
case, the status of the ALU47- signal does not indicate the sign
of the result of the ALU subtraction because of the presence of
the magnitude bit in bit position 47 of the A register.)

The quotient bits appearing on the MQQB- line are supplied to
the MQ register via the MQ input multiplexor. If the IRDB+
signal from the instruction register is low, indicating the
selection of single precision, then MQQB- is connected to the
MQSIS- line. In this case, quotient bits are shifted into bit
position 24 of the MQ register. If IRDB+ is high, indicating the
selection of double precision, then MQQB- is connected to the
MQSID- line. In this case, quotient bits are shifted into bit
position 0 of the MQ register. In this case, MQ23- from the MQ
register is connected to the MQSIS- line to shift bits from bit
position 23 to bit position 24. (When single precision 1is
selected, PU+ is connected to MQSID- to shift zeros into the
unused sections of the MQ register.)
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The status of the IRDB+ signal also determines the source of the
data that is supplied to bit position 24 of the MQ register via
the MQI@7+ line during parallel loading. When single precision
is selected, PU+ is connected to MQI07+ to load a zero. When
double precision is selected, IP07+ is connected to MQI@7+ to
load a magnitude bit received from the I/O data multiplexor.

4.6.19 ALU Control

The ALU control (figure 4-50) provides function selection signals
ALSn+ (0-3), mode selection signal ALM+, and carry-input signal
ALCN+ to the ALU. When the CSFMT- signal from the control store
register is high, these signals provide the addition function
when the ADD- signal is low or the subtraction function when the
SUB+ signal is high. (Refer to table 4-9 for a complete list of
the ALU functions provided in response to each combination of
control inputs that is used by the FPP.) The status of the ADD-
and SUB+ signals is updated at each KKREG- pulse time in accord-
ance with the status of the control inputs. During multiplica-
tion, the status of ADD- and SUB+ is determined by the ACMAD-

and ACMSU- signals respectively from the multiply control. When
ACMAD- is high, ADD- is set low to select the addition function.
When ACMSU- is low, SUB+ is set high to select the subtraction
function., During division, SUB+ is initially set high, to select
subtraction, in response to the low CSDIO- signal from the con-
trol store decoder and is maintained high in response to the low
CSDIV- signal from the control store decoder. When a micro-
instruction with the CPO code in its flag field resides in the

CSFMTL _
CSAL n-(0=5)
ALU ALSn +(0-3;
FUNCTICN, i»
mcoe, ALM+
KKRGG- AND >
> CARRY ALCN+
SYRST = - CONTROL >
ACMAD- N
_ ADD, ADD-
ACMSU R bl
FLIP-
CSDIO- FLOPS SUB*+
CSDIV- _
cscPC+ _ >
ALU 47+ R
VTH1-3196

Figure 4-50. ALU Control, Block Diagram
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control store register (CSCPO+ high), then SUB+ is set high to
provide the subtraction function if ALU47+ is high (indicating
that the current ALU function is providing a negative result).
This is used to select a subtraction operation for the purpose
of inverting a negative result. When none of the above control
inputs is providing active control of the ADD- and SUB+ lines
and CSFMT- is high, then ADD- is low as required to select the
addition function by default.

When CSFMT+ is high, the control lines to the ALU are controlled
by the status of the ALU field of the microinstruction in the
control store register as follows: CSALO+ controls ALCN+; CSAL1l+
controls ALM+, CSAL2+ through CSALS5+ control ALSO+ through

ALS3+ respectively.

4.6.20 Sign and Zero Flags

Sign flag AS (figure 4-51) indicates the sign of the result at
the end of an instruction microprogram and between instruction
microprograms. Sign flag BS indicates the sign of the new
operand that is received during an instruction microprogram. The
ZERO flag generally indicates whether the ALU output is zero or
non-zero. A subsidiary signal (ACZ47+) indicates either the ZERO
condition or the presence of a binary one in the most significant
bit position of the A register.

The updating of sign and ZERO flags is synchronized by the
KKREG+ signal.

The following operations on sign flags are provided:

a. Loading sign of new operand (DL15+) into BS. This
operation occurs when the new operand word containing the sign
bit is in the data latch (as indicated by a low CSLSA- or CSLDB-
signal from the control store decoder). As the sign bit is
transferred, it is inverted if a subtraction instruction is being
performed (IRSU+ high).

b. Resetting of AS. A low CSZAS- or CSUFL- signal from the
control store decoder resets AS providing a positive sign flag
for a positive or zero result. (CSUFL- zeroes the floating point
accumulator when underflow occurs.)

c. Swap signs. The swap sign decode (high CSSS+, low
CSSS-) from the control store decoder swaps the signs in AS and
BS. This is used to transfer the new operand sign from BS to AS
in cases where the sign of the result is simply the sign of the
new operand (for example, addition of a larger new operand to a
smaller previous result). Swaps signs is also used to place a
sign bit in AS temporarily so that it can be reset.
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d. Toggling of AS. During the multiply or divide set-up
microinstruction (CSMUO- or CSDIO- low), AS is toggled if BS+
is high. .This provides the exclusive OR function which determines
the sign of the result in multiplication or division. The
set-up-complement decode (high CSCPO) toggles AS if a fraction
subtraction produces a negative result (ALU47+ high). This
conditional operation puts the sign of the larger number in AS.

When CSZTZ+ from the control store..decoder is low, the ZERO flag
is updated by each KKREG- pulse to indicate a zero or non-zero
ALU output. High ALUHZ+ and ALLHZ+ signals indicate upper ALU
zero and lower ALU zero. For single precision (IRDB- low) the
ZERO flag status is determined by ALUHZ+ only. A high CSZITZ+
signal inhibits updating of the ZERO flag.

4.6.21 Constants and Conditional Inverter

The constant register provides constants that are required for
various data loop ALU operations. The conditional inverter
control provides inversion of I/0 data to accomplish the conver-
sion between the inverted sign word format used in memory and
the absolute format used in the FPP.

At the first KKCS- time of an instruction microprogram, the

CSDN+ signal from the control store register is high (indicating
that the final microinstruction of the previous instruction micro-
program is still held in the control store register). Under this
condition, the KKCS- clock loads a round-off constant into the
constant register. The constant loaded depends upon the status

of IRDBx. If IRDB- is high, indicating single precision, a
binary one is loaded into the CR24- bit of the constants register.
If IRDB+ is high, indicating double precision, a binary one is
loaded into bit position CR01-. These bits are added to the
result fraction during a store instruction in order to round off
the result.

A high CS47+ signal from the control store decoder causes a
binary one to be loaded into the CR47- bit position of the
constant register (provided that CSDN- is low). This constant is
used to generate the largest fraction after an overflow has

been sensed. B}

The microprogram can clear the constant register by placing the
CSCCR- 1line at the low level.

During the transfer of the operand word containing the sign bit
from the data latch to the MQ register, the ACINV+ signal is
placed at the high level if DL15+ from the data latch is high,
indicating a negative operand. In this case, the word is in ones
complement form. The high ACINV+ signal provides the inversion
required to convert the word to absolute form. The transfer of
the single precision operand word containing the sign bit is
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Figure 4-52, Constant and Conditional Inverter, Block Diagram

identified by high CSFMT-, CSAL4-, and CSAL3+ signals and a low
CSALS+ signal. The transfer of a double precision operand word
containing the sign bit is identified by the same set of high
signals coupled with a low IRDB- signal.

The ACINV+ signal must also be placed at the high level during the
transfer of the result word containing the sign bit if the result
is negative. This transfer is identified by high CSFMT-, CSAL1l-,
and CSALO+ signals. The negative result is identified by a high
AS+ signal. :

4.6.22 Exponent Loop

As illustrated in figure 4-53, the exponent loop includes the
following components:

a. Shift Counter The shift counter is used to count regis-
ter clocks (KKREG-) to control the number of shifts during align-
ment or the number of iterations of the fraction multiply or
fraction divide step. The shift counter is also used to provide
temporary storage for exponents, The exponent ALU output data is
loaded into the shift counter at KKREG- time in response to a low
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Figure 4-53. Exponent Loop, Block Diagram

SCLD- signal. Counting of KKREG- pulses is enabled by a high
SCCT+ level. SCLD- and SCCT+ are supplied by the shift counter
control,

b. Exponent Register The exponent register holds the final
value of the exponent at the end of an instruction microprogram
as well as various intermediate values during the execution of
a microprogram. During the normalization microinstruction
(CSNO+ high), the contents of the exponent register is counted
down at each KKREG- time. (This decrements the exponent value by
1 for each left shift of the fraction.) The exponent ALU output
data is loaded into the exponent shift register at KKREG- time
in response to a low ELD- signal from the exponent control.

c. Exponent ALU The ALU adds two exponents, subtracts one
exponent from a second exponent, increments an exponent by 1,
decrements an exponent by 1, or provides twos complementation of
an exponent. The function performed by the exponent ALU depends
upon the following:
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(1) The level of the EASO+ signal (which is applied to
the SO and S3 function selection inputs) and the level of the

EAS1+ signal (which is applied to the S1 and S2 function selection
inputs).

(2) The level of the EACN+ signal which is supplied to
the carry input.

(3) The ALU data inputs selected by the A-input and
B-input multiplexors.

The EAS1+, EASO+, and EACN+ signals are supplied by the exponent
control.

d. A-Input Multiplexor When the CSEA3+ signal from the
EADD field of the microinstruction currently held in the control
store register is high, the A-input multiplexor supplies data
from the exponent register to the A input of the exponent ALU.
(The most significant bit of the exponent data reaches the A-input
multiplexor on the EC128- line from the exponent control. This
allows the exponent control to invert this bit as required to add
or subtract 128 to or from the exponent value in order to main-
tain the excess-128 code during addition or subtraction of expon-
ents.) When CSEA3+ is low the data from the constant store and
readout is connected to the A input of the exponent ALU. This
data is received on the ECSTn-(0-7) lines.

e. B-Input Multiplexor When the CSLDE- signal from the
control store register is low, data from one of two sections of
the data latch is connected to the B input of the exponent ALU,
in accordance with the status of the IRDB+ signal. If a single
precision instruction is being executed (IRDB+ low), the DLnn+
(07-14) data is selected. If a double-precision instruction is
being executed (IRDB+ high), the DLnn+(00-07) data is selected.

In either case, the data selected is the exponent data for the
new operand. When CSLDE- is high, shift counter signals SCn-(0-7)
are connected to the B input of the exponent ALU.

4.6.23 Operations on Exponents

Operations performed on exponents include the following:

a. Addition of exponents during floating multiply
instructions.
b. Subtraction of the ‘divisor exponent from the dividend

exponent during floating divide instructions.

c. Subtraction of the exponent of the smaller operand from
the exponent of the larger operand during floating add and
floating subtract instructions.
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d. Decrementing or incrementing of result exponent during
normalization.

e.  Decrementing or incrementing of exponent to test for
marginal overflow or underflow situations.

With one exception, all of these operations are performed using
the exponent loop ALU. The exception is the decrementing of the
exponent during normalization which is performed by down counting
the exponent register.

Exponents are represented in an 8-bit, excess-128 binary format.
(Let E = exponent. Then representation is E + 128.) The range
of decimal values of (E + 128) is 0 through 255; the range of
decimal values of E is -128 through +127.

4.6.23.1 Exponent Operations for Floating Multiplication

Exponent operations for floating multiplication instructions are
illustrated in table 4-15. The first step is to add the excess-
128 representations of the operand exponents and convert the
representation of the sum from excess 256 to excess 128. The
conversion is accomplished by subtracting 128 from the sum. If
E7 is the multiplicand exponent, E2 is the multiplier exponent,
and Es is the sum, E1 + E2, then the first step is represented
by the following equation:

(Es + 128) = E7 + Ep + 128 = (E; + 128) + (E2 + 128) -128

All possible exponent sums, Ej + E2, are divided into five groups
as indicated in column 1 of table 4-15. The corresponding
excess-128 representations are indicated in column 2. Bit 8 of
the sum, E1 + Ep + 128, is loaded into the exponent carry flip-
flop (ECRY) and bits 7 through 0 are loaded into E. (The sign

of the sum is neither computed nor stored.) Column 3 indicates
corresponding numbers in the E register after E is decremented by
one. Column 4 indicates the value of the carry from bit 7 of the
sum, E + 1. Column 5 indicates the final result in E if the
fraction product is less than 1/2. Column 6 indicates the final
result in E if the fraction product is greater than or equal

to 1/2.

(Note that after fraction multiplication, the most significant bit
of the fraction product is in bit 47 of the A and B registers. If
bit 47 is a one, then the fraction product is greater than or .
equal to 1/2, A and B are shifted right once, and the E register
is incremented by 1.)
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Table 4-15. Exponent Operations for Floating Multiplication

1 2 3 4 5 6

Sum of Excess 128 Representation

Operand | of Sum, Decrement Test for Final Result Final Result

Exponentq E; + E; + 128 . E Register| E = 1111 1111| if Fy x Fp < % if F{ x F2 2 %

Ey + E2 .

Exponent | Decimal ECRY E E ECRY Exponent E Exponent E

+254 +382 1 0111 1110 | 0111 1101 | O +127 1111 1111 +127 1111 1111
Overflow ) ) * :

+129 +257 1 0000 0001 0000 0000 | O +127 1111 1111} +127 1111 1111
Conditional - ) .
Overflow +128 +256 1 0000 0000 1111 1111 1 +127 1111 1111} +127 1111 1111

+127 +255 0 1111 1111 1111 1110 | O +126 1111 1110 | +127 1111 1111
In-Range * :

-127 +1 0 0000 0001 0000 0000 | O -128 0000 0000 | -127 0000 0001
Conditional
Underflow -128 0 0 0000 0000 1111 1111 1 -128 0000 0000 | -128 0000 0000

-129 -1 1 1111 1111 1111 1110 | O -128 0000 0000 | -128 0000 0000
Underflow .

I -256 -128 1 1000 0000 | 0111 1111 O -128 0000 0000 { -128 0000 0000

NOTES: Ey is multiplicand exponent

F; is multiplicand fraction
E, is multiplier exponent
Fy is multiplier fraction
E is exponent register
ECRY is exponent carry flag (used for sum bit in column 2)
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Three tests are performed to separate the exponent sums into five
groups (overflow, conditional overflow, in-range, conditional
underflow, and underflow). First, the value of ECRY indicated

in column 2 is tested to separate the sums into two groups:

ECRY

1 Overflow, underflow, conditional overflow

ECRY

0 In-range, conditional underflow

Second, the value of ECRY indicated in column 4 is tested to
separate the two groups into four groups:

ECRY = 1 Conditional overflow
ECRY = 0 Overflow or underflow
ECRY = 1 Conditional underflow
ECRY = 0 In range

The overflow or underflow group is then separated into two groups
by incrementing the E register by one (result indicated in
column 2) and testing bit 7 of E:

E7 =1 Underflow
E7 = 0 Overflow

For the overflow group (Ei + E2 greater than or equal to 129), an
overflow interrupt is generated, and 1111 1111 is loaded into E.
For the conditional overflow group (E; + Ep = +128), the result is
either in-range or overflow depending on the fraction product.
For the in-range group (-127 less than or equal to Ej + E2 less
than or equal to +127), the exponent in E is the final result if
the fraction product is less than 1/2. Otherwise, the exponent
in E is incremented by one. For the conditional underflow group
(E1 + Ep = -128), the result is either underflow or in-range
depending on the fraction product. For the underflow group

(E1 + E» less than or equal to -129), and underflow interrupt is
generated and zero is loaded into E.

4.6.23.2 Exponent Operations for Floating Division

Exponent operations for floating division instructions are illus-
trated in table 4-16. These operations are similar to floating
point multiplication. The divisor exponent is subtracted from the

dividend exponent and the representation of the difference is
converted from binary to excess-128 by adding 128:

(Ep + 128) = Ey - Ep + 128 = (Eq + 128) - (Ez + 128) + 128
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Table 4-16. Exponent Operations for Floating Division

1 2 3 4 5
Operand ( Excess 128 Representation
Exponent| of Difference Test for Final Result Final Result
E; - E2 | Ey - E; + 128 E = 1111 1111 if Fj : Fz <1 if F| : Fp21
Exponent | Decimal ECRY E ECRY { Exponent E Exponent E
+255 +383 1 0111 1111 | O +127 1111 1111 +127 1111 1111
Overflow : * : : ) :
+128 +256 1 0000 0000 0 +127 1111 11117 +#127 1111 1111
Conditional ‘
Overflow +127 +255 0 1111 1111 1 +127 1111 1111 +127 ¢ 1111 1111
|
+126 +254 0 1111 1110 0 +126 1111 1110 +127 1111 1111
In-Range : : . . :
-128 0 0 0000 0000 | O -128 0000 0000| -127 0000 0001
Conditional
Underflow -129 -1 1 1111 1111 1 -128 0000 0000/ -128 0000 0000
|
-130 -2 1 1111 1110 0 -128 0000 0000 -128 0000 0000
Underflow . ' : .
-255§ -127 1 1000 0001 ; 0 -128 0000 0000] -128 0000 0000
NOTES: Ejp is dividend exponent
F1 is dividend fraction
E; is divisor exponent
F, is divisor fraction
E is exponent register
ECRY is exponent carry flag (used for sum bit in column 2)
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where Ep is the exponent difference, Ei is the dividend exponent,
and Ep iIs the divisor exponent. Bit 8 of the difference, E7 - E?
+ 128, is loaded into ECRY and bits 7 through 0 are loaded into
E, as indicated in column 2 of table 4-16. The carry from bit 7
of sum (E + 1) is loaded into ECRY to test for the value,

E = 1111 1111, as indicated in column 3. Column 4 indicates the
final result in E if the fraction quotient is less than one.
Column 5 indicates the final result in E if the fraction quotient
is greater than or equal to one.

The value of ECRY in column 2 is tested to separate exponent dif-
ferences into two groups:

ECRY = 1 Overflow, underflow, conditional underflow
ECRY = 0 In-range, conditional overflow

These two groups are separated into four groups by testing the
value of ECRY in column 3:

ECRY = 1 Conditional underflow
ECRY = 0 Overflow or underflow
ECRY = 1 Conditional overflow

ECRY = 0 In-range

The overflow or underflow group is separated into two groups by
testing bit 7 of the E register (column 2).

E7 = 1 Underflow
E7 =0 Overflow

Final results for each of the groups are shown in columns 4 and 5.

A floating point interrupt is generated for the overflow and
underflow groups.

4.6.24 Exponent Control

As shown in figure 4-54, the exponent control provides the
following:

a. the exponent carry flag (ECRY+) which is used in
evaluating exponent loop ALU results in terms of the specific

operation being performed so as to identify a negative or out-of-
range result,

b. the add/subtract-128 sub-function which inverts the E7-

bit from the exponent register during exponent additions and
subtractions so as to maintain the required excess-128 format,

4-143%



KKREG+
SYRST-
»
CSi128+
EACR7+ R
EXPONENT ECRY+ .
7 > CARRY
FLAG
CSNo- R
CSNO+ R
EEQO+ -
E7+
ADD/ )
CSR8% SUBTRACT ECI28 >
» 128
CSLDE-
IRDB- R
FUNCTION
— > SELECTION EASn+ (0, 1) .
CSEAQ+ CONTROL
CSEAIL
CSEAn + (1=3)
> CARRY EACN+
IN .
S > CONTROL
CSERI-
o LOAD ELD- R
CSERQ + _ CONTROL >
VTI2-441

Figure 4-54. Exponent Control

c. the function selection control which determines the
function performed by the exponent ALU,

d. the carry-in control which provides the carry-input
(EACN+) to the exponent 1loop ALU,

e. the load control which provides the load control input
(ELD-) to the exponent register.
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Table 4-17 summarizes the addition and subtraction of exponents
that occurs in connection with multiplication and division
respectively. During these additions or subtractions, CS128+ is
high. Under this condition, ECRY+ is set high at KKREG+ time if
an out-of-range exponent value is sensed. If E7- is low
(indicating that Eq is zero or positive) then ECRY+ is set high
if EACR7+ 1is high %indicating a carry or the absence of a borrow).
If E7- is high (indicating that E; is negative) then ECRY+ is set
high if EACR7+ is low (indicating a borrow or the absence of a
carry). The high CS128+ signal also causes an inverted version
of E7- to be supplied on the EC128- line to the exponent adder
A-input multiplexor as required to add or subtract 128 from

(E1 + 128).

When CS128+ is low and a normalize microinstruction is not being
executed (as indicated by a low CSN@+ signal), then ECRY+ is set
high by any operation that produces a carry from the exponent
loop ALU. The setting of ECRY+ during the implementation of ALU
output = (E; + 1) thus identifies a value of (El + 1) greater
than or equal to 256 during the test for a conditional exponent
value. The status of ECRY+ also identifies the sign of the
difference obtained during the exponent subtraction at the start
of an addition or subtraction instruction. This allows the
difference to be complemented if it is negative and also deter-
mines the branch of the microprogram that is followed.

When a normalize microinstruction is being executed (as indicated
by a high CSNf+ signal) a high EEQO+ signal at KKREG+ time causes
ECRY+ to be set high to indicate that the exponent value is being
decremented into the underflow status.

Function selection control signal EASO+ controls the S0 and S3
inputs and signal EAS1+ controls the S1 and S2 inputs to the
exponent loop ALU. Table 4-18 summarizes the function selections
in terms of the inputs to the function selection control.

The carry in control provides signal EACN+ to the carry input of
the exponent loop ALU. The coincidence of high CSEAl+ and CSEAOQ-
signals provide the high carry input required for a normal sub-
traction operation. Notice that this high carry input is not
provided in the case where the exponent input is being comple-
mented. Thus, a ones complement function is provided in this
case, as required. The coincidence of high CSEA3+ and CSEAZ2+
signals provides a high carry input in cases where the ALU
function, F = A + 1 is required. This is the function that is
used to generate (Ej + 1).

The coincidence of high CSER1- and CSERO+ signals from the EREG
field of the microinstruction currently held in the control store
register places the ELD- line at the low level as required to
load the output data from the exponent loop ALU into the exponent
register.
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Table 4-17. Exponent Additions and Subtractions

, Overflow/
Conditions ALU Function performed Underflow
Multiplication
Eq + 128 2 0 Eq1 + 128 - 128 + E, + 128 | Carry
(E7- = L) = Ey + B, + 128 (EACR7+ = H)
(Eq zero or positive)
E;1 + 128 < 0 Eq{ + 128 + 128 + Ep + 128 No Carry
(E7- = H) = E1 + E2 + 128 + (256) (EACR7+ = 1)
(E1 negative)
Division
E1 + 128 2 0 E; + 128 - 128 - (Ez + 128)| No borrow
(E7- = L) = E1 - Ep + 128 - (256) (EACR7+ = H)
(Eq zero or positive)
Eqj + 128 < 0 E; + 128 + 128 - (E; + 12) | Borrow
(E7- = H) E1 - Ep + 128 (EACR7+ = L)
(Eq negative)

NOTES: 1. (256) indicates a component of the result which is
lqst if a carry occurs or a borrow does not occur

2. (Eq + 128) is initially in the exponent register as
the result of a previous operation

3. (Ep + 128) is received from the data latch
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Table 4-18. Exponent

Loop ALU Function Selection

Function Selection Code Presented
Control Inputs to ALU Function Selected®
CSEA1+ ESEAQ+ S3 S2 S1 SO
L L L L L L F=AorF=A+1
L H H L L H F = A PLUS B **
H L L H H L F = A MINUS B **
H H H H H H F = A MINUS 1

*Assumes appropriate level on carry input line EACN+

**When CSLDE- is low and IRDB- is high, the addition input code
is converted to a subtraction code if DL15+ is high. This is
necessary in order to convert the exponent of a negative
single precision operand to absolut form (by forming the
complement of the complement).

Note:

L = low; H =

high

4-147




4.6.25 Shift Counter Control and Constant Storage

As shown in Figure 4-55, the shift counter control and constant
storage provides the following:

a. The shift counter load control (SCLD-) and count enable
(SCCT+) signals,

. b. The SCLE1l+ signal which indicates when the shift count is
or 0,

C. The constant store and readout which supplies the
constants required to specify the number of iterations, establish
magnitudes, or test for relative magnitudes.

The bits of the EREG field of the microinstruction currently held
in the control store register control SCLD-. If CSER1+ is high
and CSERO- is low, SCLD- is placed at the low level as required
to load the shift counter. If CSER1+ and CSERO- are both high,
then SCLD- is placed at the low level only if ECRY+ is low. This
is used to load the two's complement of the shift count into the
shift counter if the shift counter contains a negative number in
twos complement form.

CSERI+
i SHIFT
CSERO- o COUNTER SCLD- >
ECRY+ LOAD
> CONTROL
CSAL-
SHIFT
- COUNT .
CSMUI > SCCT >
CSDIV- o COUNT
ENABLE
SHIFT
$Cn - (1-6) -~ COUNTER SCLE{: R
COUNT >
1 CRO
CSEAZ- .
CONSTANT - (0-
o STORAGE ECSTn - (0-7) .
|Rﬂ 0- ) . AND
READOUT
VT13-3192

Figure 4-55. Shift Counter Control and Constant Storage
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Shift clock counting is enabled for any of three microinstructions;
the align microinstruction (CSAL- low), the main multiply micro-
instruction (CSMUl- low), and the main divide microinstruction
(CSDIV- low). In the align microinstruction, shift counting
determines the total number of shifts. In the main multiply and
divide instructions, it determines the number of iterations.

The SCLE1l+ signal is placed at the high level when SCn-(1-6) are
all high, indicating that the shift count is either 1 or 0. This
provides advance information during the down counting of the

shift count that the next shift clock will reduce the shift count
to 0.

The reading of a constant is enabled by a high CSEA2+ signal from
the EADD field of the microinstruction currently held in the
control store register. The constant that is read out depends
upon the status of the IRn+ (0-4) signals from the instruction
register. The constants associated with each instruction are
summarized in table 4-19.
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0ST-v

Table 4-19.

Stored Constants

ROM Address

Constant

Instruction | (Binary) Binary Value | Decimal Value | Function
FAD/FSB 01000 1110 1001 Two's comple- Used to test whether smaller
ment of 24 operand will have signifi-
cant bits after alignment
FADD/FSBD 00011 1101 0001 - Two's comple- Used to test whether smaller
ment of 48 operand will have signifi-
cant bits after alignment
FMU 01110 0000 1010 11 Number of iterations of main
multiply step
FMUD 00110 0001 0110 22 Number of iterations of main
multiply step
FDV 00001 0001 1000 24 Number of iterations of main
divide step
FDVD 11101 0011 0000 48 Number of iterations of main
divide step
FLT 10001 1000 1111 143 Initial excess-128 exponent
code relating integer to
floating format
FIX 10101 1000 1111 143 143 minus exponent of floating

point number establishes
initial value of exponent




SECTION 5
MAINTENANCE

Maintenance personnel should be familiar with the contents of
this manual before attempting FPP troubleshooting. A test
program (Section 7) is available to verify correct operation and
to isolate malfunctions to a particular section of the FPP,
Further diagnosis can then be made by referring to this

manual.

5.1 TEST EQUIPMENT

The following test equipment and tools are recommended for FPP
maintenance:

a. Oscilloscope, Tektronix type'547 with dual-trace plug-in
unit or equivalent.

b. Multimeter, Triplett type 630 or equivalent.

c. Soldering iron, 15-watt pencil type.

5.2 CIRCUIT BOARD REPAIR

The FPP board is a wire-wrap circuit board. The ICs contained
on the board consist of LSI read-only memories; MSI multiplexors,
decoders, ALUs, and registers; and SSI gates and flip-flops.

If it has been determined that circuit board repair is required,
it is recommended that the Sperry Univac customer service
department be contacted so that a new circuit board can be
installed in the user's system and the faulty one returned to the
factory for repairs. However, if the user decides to perform his
own repairs, extreme caution should be used so that the circuit
board is not permanently damaged. Approved repair procedures
should be followed such as the ones described in document
IPC-R-700A prepared by the Institute of Printed Circuits.

5.3 CIRCUIT-COMPONENT IDENTIFICATION
A system of row and column coordinates provides the means for

locating IC components. Major row identifications are A, B, and
C. Each of these major rows contains six rows of components
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designated 1 through 6. 1In addition to the component rows within
major rows A, B, and C, there are two additional rows designated
as X and Y. Columns are designated by single letters of the
alphabet. Logic elements are identified by the location coordi-
nates of the IC package. For example, a gate designated as B4U
in the FPP logic diagram is in the IC package at major row B,

sub-row 4, column U. (IC packages in rows X and Y are identified
by the row designations X1 and Y1 even though these are single
rows. For example, Y1K is at row Y, column K.)

A parts list in the system documentation package provides a
cross reference between Sperry Univac and manufacturers part
numbers.



SECTION 6
MNEMONICS

'This section presents an alphabetized list of FPP signal mnemonics
with definitions.

Plus or minus signs are included at the end of each mnemonic.
The plus sign indicates the signal ‘is at a high logical level
when its function is being performed. The minus sign indicates
the signal is at a low logical level when its function is being
performed. A signal that is the logical inversion of another
uses the same mnemonic with an opposite sign; these signals

are complements of each other.

I/0 bus signal mnemonics end with -1I.

Letter and/or number subscripts are used after the plus or minus
sign to indicate particular members of a family of logically
equivalent control or clock signals. For such families of
signals, only the base mnemonic is given. For example, KKMOK-
is listed for the family that includes KKMOK-1, KKMOK-2, and
KKMOK-3,

Mnemonic Description

Ann-(00-47) A register outputs

iACASn+(0,l) Function selection inputs to A register

ACBSn+(0,1) | Function selection inputs to BAregister

ACDEN- Arithmetic control divide enable

ACINV+ Invert 1/0 data

ACMAD- Multiplication routine ADD selection

ACMBL - Multiplication routine shift B register left

ACMBR- Multiplication routine shift B register right

ACMCn+(0,1) Multiplier bit pair evaluated during current
iteration

ACMCY+ Multiplier evaluation bit pair carry

'ACMEN - Multiplication clock enable

%ACMSU- Multiplication routine SUB selection

ACSEN- Shift clock enable
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Mnemonic
ACZ47+
ADnn+(00-15)
ADD-

ADSn- (0-7)
ALCN+
ALLHZ +

ALM+
ALSn+(0-3)
ALUnn-(00-49)
ALUHZ+

AMnn- (00-47)
AS+

_ ASEBS+
Bnn-(00-47)
BS+

CAEN+

CDREN+
CEADn-(0-8)
CEND+
CIDIO+

CINTF+
CMnn- (00-47)

CPSIF+

Description

ZERO+ or A47+ is high

Memory address counter outputs

Selects fraction addition for format 0
Control store address

Carry input to data-loop ALU

Lower half of data-loop ALU = 0

Mode control input to data-loop ALU
Function selection inputs to data loop ALU
Data-loop ALU outputs

Upper half of data-loop ALU = 0
Data-loop A multiplexor outputs

Sign of result (high = negative)

AS = BS

B register outputs

Sign of new operand (high = negative)

Central processor microinstruction decoder
active

Central processor microinstruction decoder
partial enable

Address lines to central processor control
store

Central processor microinstruction decoder
partial enable

I/0 instruction decoded (from central
processor, FPP, or WCS)

I/0 control interrupt flip-flop

Constant multiplexor outputs (data loop)

Start instruction fetch (by return of control

to central processor)

6-2



Mnemonic

CPSn+(0,1)

CP168+

CRnn- (01,24,47)

CSABn+(0-2)
CSAL+

CSALn+(0-5)
CSAM+
CSAMO+

CSAn+(0-7)

CSCA47-

CSCCR-

CSCM+

CSCPO+

CSCTO+

CSDIO-

CSDIV-

CSDN+

CSEAn+(0-3)

CSEND-

Description

Central processor control state counter
outputs

Central processor control address 168 (hex)
selection

Constant register outputs
Control store register, AB field signals

Align microinstruction decoding of ALU field
of control store register

Control store register ALU field signals
MSB of AC field of control store register
Multiply or divide selection signal from
control store decoder to data-loop A
multiplexor

Control store address register outputs

Set-constant-register-bit-47 decode of FLAG
field of control store register

Clear-constant-register decode of FLAG field
of control store register

Constant multiplexor-enable (LSB of AC field
of control store register)

Change-to-positive decode of FLAG field of
control store register

Reset-time-out-flag decode of FLAG field of
control store register

Set-up-divide decode of FLAG field of control
store register

Main-divide decode of FLAG field of control
store register

END and jump condition not true (start or
wait for next routine)

Control store rggister EA field signals

END decode of MEM field of control store
register
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Mnemonic Description

CSERn+(0,1) Control store register EREG field signals

CSEXC- Exponent-coming decode of FLAG field of
control store register

CSFLn+(0-3) Control store register FLAG field signals

CSFMT+ Control store register format bit

CSIMC+ Initiate memory cycle signal from control
store register decoder

CSINC+ Increment-memory-address-and-request-cycle
decode of MEM field of control store register

CSJAn+(0-3) Control store register JADD field signals

CSJCn+(0-2) Control store register JCOND field signals

CSLDB- Load double precision middle fraction into
MQ register

CSLDC- Load double precision middle fraction into
MQ register

CSLDD- Load double precision low fraction into MQ
register

CSLDE- Load exponent from data latch into exponent
register (or shift counter)

CSLSA- Load single precision high fraction into MQ
register

CSLSB- Load single precision low fraction into MQ
register

CSMUO+ Multiply-set-up decode of FLAG field of
control store register

CSMU1+ Main-multiply flag from control store
register

CSMWT + Wait for memory done (MSB of MEM field of

control store register)

CSNO+ Normalize microinstruction decode of ALU
field of control store register

CSOFL- Overflow decode of FLAG field of control
store register
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Mnemonic

CSSIF+
CSSS+

CSUFL-
CSWSD+
CSZAS+
CSZTZ-

DLnn+(00-15)
DLWRT -

En-(0-7)
EACN+
EACR7+
EADn (0-7)
EAMn- (0-7)

EASn+(0,1)

EBnn-I1(00-08)

EBMn-(0-7)
EC128-
ECRY+
ECSTn-(0-7)
EEQO+

Description

Start-instruction-fetch decode of MEM field
of control store register

Swap-signs decode of FLAG field of control
store register,

Underflow decode of FLAG field of control
store register

Wait-for-shift-done decode of MEM field of
control store register

Set-AS=0 decode of FLAG field of control
store register

ZERO-to-ZERO decode of FLAG field of control
store register

Data latch outputs

Data latch write output (instruction is a
storage type)

Exponent register outputs

Exponent-loop ALU carry input
Exponent-loop ALU carry output
Exponent-loop ALU outputs |

Exponent-loop ALU A-input multiplexor
outputs

Exponent-loop ALU function selection control
inputs

E bus (I/0 bus)
Exponent-loop ALU B-input multiplexor outputs

Conditionally inverted MSB of exponent
register

Exponent;loop ALU carry/out-of-range flag

Gated outputs constant store

Exponent register = 0
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Mnemonic
ELD-
ICPRM+
IDGO+

IEXCX-

IINT-

IINHC-
ILnn+(00-04)
ILMRT+

ILSU+
ILWRT+

I0Onn+(00-15)

IOMnn+(00-15)
IPRME+
IRn+(0-4)
IR0OS+

IR0OO7+

IRDB+

IRQC-A

IRQM-A
IRSU+

IUAX-1I

Tucx-1I

Description

Load exponent register
Clock for interrupt enable

Instruction decoder go (FPP instruction
decoded)

Interrupt interface decode of EXC instruction
on E bus

FPP interrupt pending
I/0 control clock inhibit signal
Five LS bits of instruction latch

Memory-write-instruction flag of instruction
latch

Instruction latch subtract bit
Instruction latch write-instruction bit

Conditionally inverted outputs from I/0 data
multiplexor

I/0 data multiplexor selected data
Interrupt master enable
Five LS bits of instruction register

I/0 control, control store bit 5 (DMA
request bit)

I1/0 control, control store bit 7 (idle bit)

Double precision bit from instruction
register

Interrupt request to central processor

DMA request to central processor
Subtract bit from instruction register

E bus acknowledge

Interrupt clock
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Mnemonic
TUJX-1I
TURM+
IURX-1I
JCT -
KK82+
KKCPA+
KKCPB+
KKCS+
KKHRG+
KKKIN-
KKMCD+
KKMEM+
KKMFC
KKMHC+
KKMOK -
KKMPA+
KKMPB+
KKMQ-
KKPA+
KKPB+

KKREG+

MAKO+
MCAEN+
MCAEN+m(A,B)

MCCKTI -

Description

E bus jump and mark

FPP interrupt request

E bus interrupt request

Complement jump condition true signal
82-nanosecond ciock

Control store clock generator phase A output
Control store clock generator phase B output
Control store clock

Register half clock

Inhibit KKREG+ and KKMQ

Buffered version of central processor MCDFC
Memory clock

Buffered version of central processor MFC
Buffered version of central processor MHC
Buffered version of central processor MOCLK
Retiming clock generator phase A

Retiming clock generator phase B

MQ register clock

Register clock generator phase A

Register clock generator phase B

Register clock (to all arithmetic registers
except MQ)

PMA memory request acknowledge
Memory control address enable

Memory control address enabled and memory
access priority available

Memory control store clock inhibit
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Mnemonic

MCCS2+

MCDDE+
MCDLE -
MCDEC-
| MCICS-
MCIST-

MCLDA-
MCMRQ-
MCRRQ-
MCSOA+
MCSOB+
MCS1A-
MCS1B-
MCS2+

MCS3+

MCWRQ+

MFC-

MHC -
MM1TI-

MOCLK-
MQnn- (00-47)

MQmSO+

MQmS1+

Description

Memory sequencer state 2 or not FPP memory

cycle

Memory control data driver enable

Memory control data latch enable

Central processor full clock, gated

Initiate control store clocks

Initiate first KKMEM+ pulse (instruction

start)

Load address register

FPP memory request

Read request pending

Memory sequencer state

Memory
Memory
Memory
Memory

Memory

sequencer
sequencer
sequencer
sequencer

sequencer

state

state

state

state

state

Write request pending

Central processor full

0A
0B
1A

1B

clock

Central processor half clock

Instruction latch enable (from central
processor)

41 nanosecond clock (from

MQ register outputs

LSB of function selection

of MQ register (where m

MSB of function selection

of MQ register (where m
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Mnemonic Description

MQIO07+ Parallel data input to bit 24 position of
MQ register from MQ control

MQMnn-(16-19) MQ input multiplexor outputs

MQQB- Quotient bit

MQSID- Double precision quotient input to MQ
register

MQSIS- Single precision quotient input to MQ
register

MRSZA- Memory sequencing signal (from central
processor)

MWLY+ Memory write left byte

MWRY + Memory write right byte

MYAnn- (00-15) Memory address lines

MYDnn-(00-15) Memory data lines

ORQM-A PMA. memory request to central processor

ORQM-C PMA memory request from PMA

PRIDL- FPP version of I/0 control IEIDLE

PRINF- FPP version of I/0 control IINTF

PRINT+ Intérrupt inhibit

PRIRQ+ FPP version of I/0 control IRQM

PRIX-1I Interrupt priority input to interrupt
interface

PRJX-1I Interrupt priority output from interrupt
interface

PRKIN- Inhibit clocks to wait for memory access
priority

PRMDN+ PMA or DMA memory cycle complete flag

PRMEI+ PMA and DMA memory cycles inhibited flag
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Mnemonic - Description

PROUT+ FPP memory access priority lost to PMA or
DMA

PRTO- Set time-out flag

PUn+(1-18) Pull-up resistors

SCn-(0-7) Shift counter

SCCT+ Shift count decrement enable

SCEQO+ Shift count = O

SCLD- Load shift counter

SCLEL- Shift count less than or equal to 1

SRST - System reset

STOUT+ Time-out detection enable

SUB+ Selects subtraction function for format 0

SYRST+ System and time-out reset

TO+ Time-out flag

XCFST+ Memory request enable input from WCS

YDNM+ Memory acknowledge (trailing edge is memory
done)

ZERO+ ALU = O flag
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SECTION 7
TEST PROGRAMS

7.1 GENERAL

The FPP test program, which is controlled by the MAINTAIN III
iTest Executive program, is used to verify correct operation and
'to isolate malfunctions, Minimum hardware requirements for using
.the test program consist of a SPERRY UNIVAC 70 series processor
‘'with 8K of mainframe memory, an object input device, and a
console Teletype (TTY) of equivalent CRT terminal

7.2 TEST PROGRAM ORGANIZATION
The test program includes three tests:
a. Operational Test
b. Fault Test
c. Sequence Test
To thoroughly exercise the FPP, both the operational test and

the fault test should be run. The sequence test is used
primarily for troubleshooting.

7.2.1 Operational Test

The operational test includes all of the FPP instructions. The
test starts with the more simple instructions and progresses to
the more complex instructions. Mixed mode arithmetic operations
(single and double precision) are performed. Direct and
indirect fetching and storing of data are performed. The
sequences of instructions and the operand data are varied as the
test progresses. Results are checked against known data and, if
a discrepancy occurs, the actual and expected values are
displayed.

7.2.2 Fault Test
The fault test generates those conditions which produce

fault interrupts, and verifies that these interrupts occur or
reports their failure to occur.

7.2.3 Sequence Test

The sequence test allows the user to specify a sequence of FPP
instructions and to execute this sequence either one time or
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repetitively. The operator also specifies the operand data.
Results may be displayed if desired. When a fault occurs an
error message is displayed.

7.3 PROGRAM-TAPE LOADING

 Before loading the FPP test program tape, the MAINTAIN III test
 executive tape must be loaded into the reader (refer to Test

Programs Manual). Included in the test executive is the object
tape loader for the FPP test program. After the test executive
is loaded, mount the object tape of the FPP test program in the
reader. The FPP test program tape is identified by Sperry Univac
part number 92U0109-005 punched in the leader portion of the
tape. Position the tape in the reader past this area. To load
and start the execution of the test program, use the console

TTY to type an L followed by a period.

7.4 SENSE SWITCHES

Operation of the FPP test program can be modified by positioning
of SENSE switches on the computer control panel. The switch
functions are listed in table 7-1.

Table 7-1. SENSE Switch Settings

SENSE

Switch Set Reset

1 Suppresses error (or Prints error (or result)
result) messages messages

2 Halts program on No halts on error
error (see note 1)

3 Terminates the test Allows test to continue

Note 1: After the error halt, one of the following operations
can be performed:

a. To allow the program to continue to the next error
halt, keep SENSE switch 2 set and press START.

b. The program can be made to loop on the sequence which
caused the error condition by resetting SENSE switch 2 and
pressing START. The program continues to loop until SENSE

switch 2 is set; it then continues to run in the halt-on-error
mode.
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7.5 OPERATING PROCEDURES

When loading is completed, the test program is automatically

directed to the starting memory address 0500, and the TTY prints
the message:

FLOATING POINT PROCESSOR TEST
USE REAL TIME CLOCK?

If the real-time clock is to be enabled during testing, the
operator responds by typing a Y. If the real-time clock is to
be inhibited, the operator responds by typing an N.

The program now responds by typing a double asterisk (**) to
indicate that it is waiting for an input directive. The
operator now selects the test to be performed by typing one of
the test selection directives listed in Table 7-2.

Table 7-2. Test Selection Directives

Directive Program Response

T. Operational test runs once. Program prints
double asterisk upon test completion.

T,C. Operational test runs continuously until
terminated by setting SENSE switch 3.

F. Fault test runs once. Program prints
double asterisk upon completion of test.

F,C. Fault test runs continuously until
terminated by setting SENSE switch 3.

S. Program prints single asterisk to
indicate that it is awaiting Sequence
Test commands

Note: The operational test should always be allowed to run

to its completion or be terminated by setting SENSE switch 3.
This is necessary in order to provide restoration of initial
contents of certain memory locations whose contents are altered
during the operational test.
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In the case of the sequence test, the operator must enter the
test commands required to specify operand values and a sequence
of up to eight FPP instructions. Specified operand values are
stored in software registers. These software registers are
memory locations which are dedicated to the storage of operand
values. They are addressed by the mnemonics R1, R2, D1, D2,
and I; where Rl and R2 are dedicated to the storage of single
precision operands, D1 and D2 are dedicated to the storage of
double-precision operands, and I is dedicated to the storage of
an integer operand. Table 7-3 summarizes the available
sequence test commands.

7.6 ERROR MESSAGES

'If the operator deviates from the correct format during the
entry of a test selection directive or sequence test command,
the program responds by printing a question mark after the
faulty character and then printing a double asterisk or single
.asterisk as appropriate to indicate that it is awaiting another
test selection directive or Sequence Test command.

When an FPP error is detected by the program, an error-type
number is printed on the console TTY. The error type number

is followed by the location in the test program where the

error was detected. By referring to the test program listing
it may be determined which instruction (or sequence of
instructions) caused the error. Error type 7 or 8 can occur
during the operational test only. Error types 2, 3, 4, 5, or 9
can occur during the fault test only. Error types 1 and 6 can
occur during any test. Table 7-4 provides a summary of these
error-type messages.

7.7 TTY PRINTOUT EXAMPLE

The printout shown in Table 7-5 occurred during FPP tests run
on a V73 processor with 32K of core memory, a model ASR-33 TTY,

a high-speed paper tape reader, a PIM module on device address
040, and an FPP.
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Table 7-3. Sequence Test Commands

Command Format

Opérand or Instruction Specified

n = (1,2)

This command loads a single precision
operand into software register Rl or
R2 (as specified by the value of n).
Parameter i specifies the octal value
of the exponent and high fraction
fields found in the first operand
word of a single precision operand.
Parameter j specifies the octal value
of the low fraction field found in the
second operand word of a single
precision operand. (See figure 3-3.)

EXAMPLE: R1l, -40720,0

Here: Rn = Rl specifying software
register Rl

i = 40720 (octal) =
10000011 1010000 (binary)

where 10000011 specifies an exponent

value of +3 in excess-128 code and
1010000 specifies a fraction value of
.101.

j=0

The minus sign preceding the
specifies a negative operand.

[

Thus, the specified operand is
23 X .101 (binary) = -101 (binary)
-5 (decimal)

Note: If no sign precedes the i
field, a positive operand is
specified.

This command loads a double precision
operand into software register D1 or

D2 in accordance with the value of n.
Parameter i specifies the octal value
of the excess-128 exponent code found
in the first operand word of a double
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Table 7-3. Sequence Test Commands (continued)

Command Format

Operand or Instruction Specified

Dn’i’j’k’]"
n = (1,2)
(cont'd)

k,f,r.

precision operand while parameters j,
k, and 1 specify the octal values of
the high, middle, and low fractions
found in the second, third, and fourth
words respectively. (See figure 3-5.)

EXAMPLE: D2, 202, 52525, 52525, 52525

Dn = D2 specifying software
register D1

i = 202 (octal) = 010 000 010

= 130 (decimal) = +2 in excess
-128 code

k =1 = 52525 (octal)
101 010 101 010 101 (binary)

j

This command loads a signed integer
into software register I. Parameter i
specifies the octal value of the
integer. A minus sign preceding the

i specifies a negative number.

EXAMPLE: 1I,377.

i = 377(octal) = 011 111 111
(binary)
= 255 (decimal)

Specifies an FPP load or arithmetic
instruction and a source register and
(optionally) indirect addressing.
Parameter k is the mnemonic of the
instruction to be performed (FLD,
FLDD, FAD, FADD, FSB, FSBD, FMU,
FMUD, FVD, or FDVD). Parameter

f = 1 specifies indirect address.

In this case the first address sup-
plied to the FPP when the instruction
is executed is not the direct address
of the specified software register
but is, instead, and indirect address.
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Table 7-3. Sequence Test Commands (continued)

Command Format

Operand or Instruction Specified

k,f,r
(cont'd)

k,f.

This tests the capability of the FPP
to request additional memory cycles
until a direct address is received.
If parameter £ = 0 or if parameter f
is omitted, direct addressing is
provided. 1 specifies the source
register mnemonic. Rl or R2 must be
specified for a single precision
operation while D1 or D2 must be
specified for a double precision
operation.

Specifies an FPP, float, fix, or store
instruction. This is similar to format
k,f,r. except that the mnemonics that-
can be specified are FLT, FIX, FST, and
FSTD and that no source register is
specified. In the case of a FLT
instruction, the operand is
automatically taken from the I
register. The addresses supplied for
the FPP for the FIX, FST, and FSTD
instructions are addresses dedicated

to buffer storage in connection with
printout and are specified by the
program. (Results of FIX, FST, and FSTD
instructions are printed out unless
SENSE switch 1 is set.)

‘Note: Instruction sequences must end g

with a FIX, FST, or FSTD instruction
or a time-out interrupt will occur.

This command initiates a single execu-
tion of the previously entered sequence
of FPP instructions. The program
prints a single asterisk after
completing the sequence to indicate
that it is waiting for another direc-
tive. A repetition of the E command
will produce another single execution
of the sequence.




Table 7-3. Sequence Test Commands (continued)

Command Format

Operated or Instruction Specified

Note: Commands which load operands
have no affect on previously specified
instruction sequences. Thus, the

same instruction sequence can be run
for different operand values without
the need for re-entering the sequence.
However, any instruction entry follow-
ing the execution of an E command
erases the previously stored
instruction sequence.

This command initiates repetitive
execution of the previously entered
sequence which continues until
terminated by setting SENSE switch 3.

This command terminates the sequence
test mode. In response, the program
prints a double asterisk to indicate
that it is now waiting for a test
selection directive.
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Table 7-4. Error Messages

Error Type

Number Description

1 An actual result differs from the expected
result. The actuyal result is printed on the
line following the program location. The
expected result is printed on the line
following the actual result.

2 FPP fails to interrupt after executing
instruction which should produce exponent
overflow

3 FPP fails to interrupt after executing
instruction which should produce exponent
underflow

4 FPP fails to interrupt after executing
instructions involving integer overflow.

5 FPP fails to interrupt after executing
instruction involving division by zero.

6 FPP interrupts when no fault condition is
expected

7 Error in sequence of CPU instructions
intermixed with FPP instructions.

8 Real-time clock interrupt occurs during
period when FPP should be inhibiting
interrupts

9 FPP fails to interrupt when a time-out

should have occurred
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Table 7-5.

Sample TTY Printout

Printout

Comments

THIS IS THE V70/620 or V75 TEST
EXECUTIVE MEMORY SIZE IS 32K

L.
FLOATING POINT PROCESSOR TEST
USE REAL TIME CLOCK? N

RET |
ARAL

L

*R1,40540,0.
*D2,202,60000,0,0.
*FLDD,D2.

*EMU, R1.

*FSTD, I.

*E,

000204 044000 000000 000000

*D1,377,40000,0,0.
*xD2,377,40000,0,0.
*FLDD,D1.

*EADD,D2.

*ESTD,

*E,

6 ( 000700 )

000377 077777 077777 077777

MAINTAIN III test executive
program identifies itself and
the memory size after loading

Operator initiates loading of
FPP test program. Program is
identified when loading is
complete and inquiry about
enabling of real time clock
interrupts is answered in
negative.

Single passes through the
operational test and fault
test are requested and
successfully completed and
the sequence test is entered.

Data is loaded into single-
precision register R1 and
into double-precision
register D2, a sequence of
three FPP instructions 1is
entered, the E command is
entered, and upon completion
of the sequence a double-
precision result is printed
out (as a result of the
double-precision store
instruction).

Data is loaded into the two
double-precision registers
and the instruction sequence
required to add these two
operands and store the result
is entered. The E command 1is
then entered. An exponent
overflow occurs as indicated
by the type 6 error message.
The value in parenthesis is
the memory location of the
starting instruction of the
sequence.
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Table 7-5.

Sample TTY Printout (continued)

Printout

Comments

*R1,234,87
*R1,2-7
*R1,-2,2,?
*RO?

¥R1 -

*R3?
*R2,1234567

*G.
* %

FLOATING POINT PROCESSOR
TEST
USE REAL TIME CLOCK? Y

**T_
**F.

*%T,C.

*%
* %

Several invalid sequence test
commands are entered and
rejected by the program. The
G command is then entered,
terminating the sequence test
mode. The program prints a
double asterisk to indicate
that it is ready to accept
another test selection
directive.

The test program is restarted
by using console controls to
start the processor at
location 0500. On this
start, the inquiry about
enabling of real-time clock
interrupts is answered
affirmatively. Successtul
single passes through the
operational test and the
fault test are completed.
The operational test is then
executed in the continuous
mode and runs until SENSE
switch 3 is set.
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