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SECTION 1 
GENERAL DESCRIPTION 

The SPERRY UNIVAC V70 Series Floating Point Processor Manual 
describes the Floating Point Proces·sor (FFP) and its interface 
with other 70 series system components. 

The manual is divided into the following seven sections: 

o General Description (Introduction to the FPP, 
related publications, and specifications) 

0 Installation 

0 Operation 

0 Theory of operation 

0 Maintenance 

0 Mnemonics list 

0 Test programs 

There is also a system documentation package which is assembled 
when the hardware is shipped and reflects the configuration of 
a specific system. It contains engineering documents such as 
logic and installation drawings. 

The following list contains the part numbers of other manuals 
pertinent to the SPERRY UNIVAC 70 series computers (the x at the 
end of each document part number is the revision number and can 
be any digit 0 through 9): 

V70 Series Architecture Reference Manual 
Process or Man ua 1 
Option Board Manual 
Microprogramming Guide 
Writable Control Store Manual 
Memory Map Manual 
V76 System Reference Manual 
V77-600 System Reference Manual 
MAINTAIN III Manual 

1-1 

98A 9906 OOx 
98A 9906 02x 
98A 9906 OSx 
98A 9906 07x 
98A 9906 08x 
98A 9906 lOx 
98A 9906 23x 
98A 9906 40x 
98A 9952 07x 



The FPP is a high-speed, special-purpose processor which 
performs the arithmetic operations on single and double precision 
real numbers represented in V70 series floating point format. 
It also performs conversions between floating point and intege·r 
formats. 

When the FPP is installed in a V70 series system, its 56-bit 
floating point accumulator and floating point instruction set 
are fully integrated into the computer architecture both at the 
machine language programming level and at the FORTRAN level. 
This minimizes the overhead associated with passing control 
between the FPP and the central processor. Pipelining of 
instructions is implemented in order to increase throughput. 
Direct memory access is used to obtain operands and store 
results. 

The basic FPP clock period is 165 nanoseconds; however, fast 
shift operations occur during 82 nanosecond clock periods. This 
provides faster average execution times by minimizing the time 
spent in shifting the contents of the accumulator in connection 
with alignment or normalization. 

Specifications for the FPP are listed in table 1-1. 
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Table 1-1. Floating Point Processor Specifications 

Parameter Specification 

Arithmetic 
operations 

Format 
conversions 

Number range 
(magnitude 
ranges are 
same for 
positive and 
negative 
numbers) 

Normalization 

Round off 

Out of range 
indication 

Addition, subtraction, multiplication, or 
division of sthgle or double precision 
floating point representations of real 
numbers. (Mixed precision operations such 
as addition of single precision operand to 
double precision operand can be 
performed.) 

Conversions between floating point format 
and 16-bit twos complement integer 
formats. (Operands in integer format 
must be converted to floating point 
format prior to performing arithmetic. 
Results can be converted to integer 
format before storage in memory. 

Largest magnitude: Single precision: 
2127 (1 - 2-22) 

Double precision: 

2127 0 _ 2-45) 

Smallest non-zero magnitude: -129 2 

Zero is also a valid magnitude. 

All result values except zero are 
normalized before storage. All 
operand values except zero are 
normalized. 

Results are rounded off before storage. 

The FPP initiates an interrupt when an 
out of range result occurs. (The 
interrupt is also initiated if a string 
of FPP instructions does not end with a 
store instruction within 500 micro­
seconds). 

"· 
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Table 1-1. Floating Point Processor Specifications (continued) 

Parameter 

Interrupt 
inhibit 

Software · 
operating 
system 

Interrupt 
address 

Priority 
assignment 

Basic cycle 
time 

Fast shift 
cycle time 

Dimensions 

Installation 

Input power 

Operational 
environment 

Specification 

The FPP inhibits all interrupts when it is 
executing a sequence of instructions. (A 
sequence is defined to end when an 
instruction which stores a result is 
executed.) 

Normally VORTEX I or VORTEX II. Will 
operate in any environment which provides 
required instruction, address, and operand 
formats. 

076 (octal). 

Between real-time clock and highest 
priority PIM (for VORTEX I or VORTEX II 
environment). 

165 Nanoseconds. 

82.5 Nanoseconds. 

Contained on a 15.6 by 19 inch (39.6 by 
48.3 cm) wire-wrap board. 

Plugs into V70 series mainframe chassis 
using three module slots. 

+SV de at 16 amperes. 

0 to 50 degrees C, 0 to 90 percent 
relative humidity without condensation. 
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SECTION 2 
INSTALLATION 

2.1 INSPECTION 

The FPP has been packed and inspected to ensure its arrival in 
good working order. To prevent damage, take care during 
unpacking and handling. Check the shipping list to ensure that 
all equipment has been received. Immediately after unpacking, 
inspect the equipment for shipping damage. Ascertain that 
wires are neither loose nor broken and that hardware is secure. 
If damage exists: 

a. Notify the transportation company. 

b. Notify Sperry Univac. 

c. Save all packing material. 

2.2 PHYSICAL DESCRIPTION 

The FPP circuits are on a 15.6 by 19 inch wire-wrap circuit 
board (p/n 44P0723). Figure 2-1 shows dimensions and connectors 
of the FPP board. 

2.3 DISCRETIONARY WIRING 

Some of the FPP board wiring is dependent upon the system 
configuration in which the floating point processor is used. 
The wiring required for the particular application is normally 
installed at the factory. If a change in the system configura­
tion is required, refer to FPP option drawing 01Al682 (in the 
system documentation package) for information concerning optional 
wiring. 

2.4 INTERCONNECTION 

The FPP board plugs into the V70 series mainframe chassis 
using three module slots. The FPP board is essentially connected 
in parallel with the central processor board. The only excep­
tion to this involves three I/O control signals which pass 
directly between the central processor and the option board when 
an FPP board is not used but which are modified by the FPP when 
an FPP board is used. 

The FPP board operates from a +5-volt power source and draws 
16 amperes. 
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VT11-3205 

Figure 2-1. FPP Board 

For details of signal and power interconnection for any system 
configuration refer to FPP option drawing 01A1682 (in the system 
documentation package). 
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SECTION 3 
OPERATION 

The FPP contains no operating controls or indicators. The FPP 
is normally operated in a VORTEX or VORTEX II environment using 
FORTRAN. However, the FPP can operate in any environment which 
supplies instructions, addresses, and operands in appropriate 
formats. 

3.1 FPP INSTRUCTIONS 

When so directed by the user, the FORTRAN compiler provides the 
FPP instructions listed in table 3-1. The user also has the 
option of coding FPP instructions directly in assembly language 
using the octal codes specified by table 3-1 or defining macros 
and using the table 3-1 mnemonics. 

Table 3-1 gives minimum and maximum execution times for both 
semiconductor memory and core memory. The maximum times do 
not include unusual cases such as overflow. 

Figure 3-1 illustrates the format of the FPP instruction word. 
The address format is illustrated in figure 3-2. There is no 
specific limitation on the number of levels of indirect 
addressing. However, the time allotted for the execution of 
any string of FPP instructions, including all required memory 
accesses, is 500 microseconds. 

A string of FPP instructions is defined as any sequence during 
which operands are obtained and processed and a result is stored 
in memory. Thus, an FST, FSTD, or FIX instruction is always 
the last instruction of an FPP string. 

3.2 NU~IBER FORMATS 

3.2.1 Single Precision Floating Number Format 

As illustrated in figure 3-3, each single precision real float­
ing point number is stored in memory in two consecutive word 
locations. The first word contains the sign bit (S) 1 the 
exponent (in excess-128 format), and the seven high order bits 
of the fraction. The second word contains the 15 low order bits 
of the fraction (bit 15 is always zero). 
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Table 3-1. FPP Instructions 

Execution Times 
(Nanoseconds) 

Mne- Octal 
manic Code Description 

Semiconductor 
Memory 

FLD 

FLDD 

FST 

FSTD 

FLT 

FIX 

FAD 

Memory Reference 

105420 Load floating point 1815 
accumulator with 
single precision 
number. 

105522 Load floating poin~ 2475 
accumulator with 
double precision 
number. 

105600 Store floating 1980 
point accumulator 
in memory in single 
precision format. 

105710 Store floating 2640 
point accumulator 
in memory in double 
precision format. 

105425 Reformat single 1485-2475 
precision integer 
and load into float-
ing point 
accumulator. 

105621 Reformat floating 1980-3960 
point accumulator 
and store integer 
in memory. 

Arithmetic Instructions 

105410 Add single 
precision memory 
to floating ~oint 
accumulator. 

3-2 

1815-3300 

Core 
Memory 

2723 

4043 

2888 

4208 

2063-2723 

2558-4538 

2723-3878 



Table 3-1. FPP Instructions (continued) 

Mne­
monic 

FADD 

FSB 

FSBD 

FMU 

FMUD 

FDV 

FDVD 

Octal 
Code Description 

105503 Add double precision 
memory to floating 
point accumulator. 

105450 Single precision 
floating point 
subtraction. 

105543 Double precision 
floating point 
subtraction. 

105416 Single precision 
floating point 
multiply. 

105506 Double precision 
floating point 
multiply. 

105401 Single precision 
floating point 
divide. 

105535 Double precision 
floating point 
divide. 

15 14 13 12 11 10 9 8 

o 1 o 

FPP CODE 

7 6 

Figure 3-1. FPP Instruction Format 

15 14 13 12 11 10 9 8 7 6 

ADDRESS 

VT11-3189 i = 1 =INDIRECT ADDRESS 

Figure 3-2. Operand Address Format 

3-3 

Execution Times 
(Nanoseconds) 

Semiconductor 
Memory 

2475-5940 

1815-3300 

2475-5940 

2970-3300 

5445-5775 

3465-5280 

6105-9735 

5 4 3 2 

OP CODE 

5 4 3 2 

Core 
Memory 

4043-7178 

2723-3878 

4043-7178 

3383-3713 

6518-6848 

4043-5693 

7343-10973 

0 

0 



lST 
WORD (SA) 

2ND 
WORD (SB) 

WORD 
CONTAINING­
SIGN IS IN l 'S 
COMPLEMENT 
FORM 

VTl2·443 

Figure 3-3. 

15 

s 

0 

s 

0 

0 

0 

1 

0 

14 13 

128 64 

l 1 
256 512 

1 0 

1 0 

0 1 

1 0 

12 11 10 9 8 7 6 5 3 2 

EXPONENT+ 128 I FRACTION (HIGH) 

32 

1 
1024 

0 

0 

1 

0 

FRACTION (LOW) 

A. FIELDS 

16 8 4 2 1 1/2 1/4 1/8 1/16 

1 1 1 1 1 1 
2-17 2-18 2-19 2048 4096 8192 16384 32768 65536 

B. DECIMAL WEIGHTS 

0 1 0 0 0 1 1 0 0 

-- -----·-·-

0 0 0 

EXPONENT 4 128 

EXPONENT 

FRACTION 

VALUE OF NO. 

0 0 

128 + 8 

a 

0 0 

1/2 + 1/4 -~ 1/64 ... 1/256 

- 2E X (FRACTION) 

0 

28 (1/2 + 1/4 + 1/64 ... 1/256) 

256(112 + 1/4 ... 1/64+1/256) 

128 + 64 ~ 4 + 1 = 213 

C. EXAMPLE OF POSITIVE NUMBER (213) 

1 0 1 1 1 0 0 1 

0 0 0 0 0 0 0 0 

NOTE: THIS IS -213. SAME AS C EXCEPT NEGATIVE 

D. EXAMPLE OF NEGATIVE NUMBER (-213) 

0 

1 

0 

1/32 

2-20 

0 

!--·--···· 

0 

1 

0 

Single Precision Number Format 

3-4 

0 

1/64 1/1 

t---

2-21 2-2 

-

4,194,304 

l 0 

I-·- t----

0 0 

I 

0 l i 

0 0 

--



The value of a floating point number is zE X (FRACTION), where 
E = exponent. The 8-bit exponent code provides an exponent 
range of +127 (1111 1111) through -128 (0000 0000). Unless 
the value of a number is zero, the fraction must be normalized; 
that is, the most significant 1 of the fraction must be in the 
2-l bit position. The range of values that can be expressed by 
the fraction is thus 2-l (represent~d by a 1 in the 2-l bit 
position followed by all zeros) through (1 - 2-22) (represented 
by all ones). Combining the exponent and fraction ranges, the 
largest magnitude that can be represented is 2127 x (1 - 2-22) 
and the smallest non~zero magnitude is 2-128 X 2-l = 2-129. A 
negative number is represented in the same manner as the 
corresponding positive number except that the entire word 
containing the sign bit is in one's complement form. 

Figure 3-4 illustrates the representation of various numbers 
within the allowable range. Notice that the zero which always 
appears in bit position 15 of the second operand word is not 
shown in the binary representation since it is not a component 
of the fraction. It is, however, a component of the second 
operand word format, shown in octal format. 

3.2.2 Double Precision Floating Point Number Format 

As illustrated in figure 3-5, each double precision real 
floating point number is stored in memory in four consecutive 
word locations. The first word contains the exponent in excess-
128 code. The second word contains the sign bit and the 15 most 
significant bits of the fraction. The range of values that 
can be represented by the double-precision fraction is 2-l 
through (1 - 2-45) .. The double precision words thus provide 
a non-zero magnitude range from 2-128 X 2-l = z-129 through 
zl27 X (1 - 2-45). For a negative number, the entire second 

·operand word is in one's complement form (since this is the 
word containing the sign bit). 

3.2.3 Integer Format 

As illustrated in figure 3-6, the integer format employs a 
single 16-bit word. Positive numbers appear in absolute form 
and negative numbers appear in two's complement form. 

3.3 PROGRAM INTERRUPTS 

The FPP normally inhibits program interrupts from the time that 
the first instruction of an FPP string is received until the 
final instruction of the string is executed, regardless of 
intervening instructions. However, the FPP can only inhibit 
interrupts for a maximum interval of 500 microseconds after 
which interrupts are again enabled and the FPP generates a 
fault interrupt. The FPP also generates a fault interrupt 
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lST 2ND 

VALUE OF NUMBER s EXPONENT HIGH LOW OPERAND OPERAND 
FRACTION FRACTION WORD WORD 

(OCTAL) (OCTAL) 

1 
LARGEST 2127 x (1 - 2-22) 0 11111111 1111111 111111111111111 077T77 077T77 
MAGNITUDE . 

• . 
2127 x 2-1 = 2126 0 11111111 1000000 000000000000000 077700 000000 

• 
POSITIVE • 
RANGE • 

.l 
21 x 2-1 = 1 0 10000001 1000000 000000000000000 040300 000000 . . 

• 
SMALLEST 2-128 x 2-l : 2-129 0 00000000 1000000 000000000000000 000100 000000 MAGNITUDE 

ZERO 2- 128 x 0 -= 0 0 00000000 0000000 000000000000000 000000 000000 

I 
SMALLEST -2-128 x 2-l = -2-129 1 11111111 0111111 000000000000000 177677 000000 
MAGNITUDE 

• . . 
-2 1 x 2- 1 = -1 l 01111110 0111111 000000000000000 137477 000000 . 

NEGATIVE . 
RANGE . 

.l 
_2121x 2-1 = -2-126 1 00000000 0111111 000000000000000 100077 000000 . . 

LARGEST 
. 

MAGNITUDE -2127 x (1 - 2-22) 1 00000000 0000000 111111111111111 100000 077777 

VTl1-3212 

Figure 3-4. Examples of Single Precision Numbers 

following the completion of any FPP string during which a fault 
condition has been sensed. 

3.4 FAULT CONDITIONS 

3.4.1 Exponent Overflow 

Exponent overflow can occur during the execution of any 
arithmetic instruction. It can also occur, in connection with 
round-off, during the executidh of the memory reference 
instruction which stores the result. When an overflow is 
detected, the magnitude of the result is set to the largest 
possible in-range value and the sign of the number is not 
changed. 
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l ST 
WORD 
(DA) 
2ND 
WORD 
(DB) 
3RD 
WORD 
(DC) 
4TH 
WORD 
(DD) 

WORD 
CONTAINING 
SIGN IS IN 
COMPLEMENT 
FORM -

VTl2-446 

Figure 3-5. 

15 14 13 

0 

s 

0 

0 

0 0 0 

1 1 s -- --
2 4 

0 
l -- 2-17 65536 

0 2-31 2-32 

0 0 0 

0 1 0 

0 0 0 

0 0 0 

0 0 0 

1 0 1 

0 0 0 

0 0 0 

12 11 10 9 8 7 6 5 4 3 2 0 

ZEROS J EXPONENT+ 128 

FRACTION (HIGH) 

FRACTION (MID) 

FRACTION (LOW) 

A. FIELDS 

0 0 0 0 0 128 64 32 16 8 4 2 l 

1 1 1 1 1 1 1 1 l 1 1 1 1 -- -- -- -- -- -- -- -- -- -- -- -- --
8 16 32 64 128 256 512 1024 2048 4096 8192 16384,32768 

2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28 2-29 2-30 

2-33 2-34 2-35 2-36 2-37 2-38 2-39 2-40 2-41 2-42 2-43 2-44 2-45 

8. DECIMAL WEIGHTS 

35, 184,372,088,832 

0 

0 

0 

0 

0 

1 

0 

0 

0 0 0 0 1 0 1 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

+4, 398,046, 511, 104.25 .,,. 2E X (FRACTION) 

0 

1 

0 

0 

,., 243 x (2-1 + 2-45) cc 242 + 2-2 

C. EXAMPLE OF POSITIVE NUMBER (242 + 2-2) 

0 0 0 1 0 1 

1 1 1 1 1 1 

0 0 0 0 0 0 

0 0 0 0 0 0 

NOTE: SAME AS C EXCEPT NEGATIVE 

D. EXAMPLE OF NEGATIVE NUMBER 

0 

1 

0 

0 

1 0 1 1 

0 0 0 0 

0 0 0 0 

0 0 0 1 

1 0 1 1 

1 1 1 1 

0 0 0 0 

0 0 0 0 

Double Precision Number Format 
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s I MAGNITUDE 

A. FIELDS 

s 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 

B. DECIMAL WEIGHTS 

I 0 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 0 I 1 I 0 I 1 I 0 1 

128 + 64 + 16 + 4 + 1 = 213 

c. EXAMPLE OF POSITIVE NUMBER 

I 1 I 1 1 I 1 I 1 I 1 I 1 I 1 I 0 I 0 I 1 I 0 I 1 I 0 I l l 

NOTE: SAME VALUE AS C EXCEPT NEGATIVE (-213) 

D. EXAMPLE OF NEGATIVE NUMBER 

Figure 3-6. Integer Format 

3.4.2 Exponent Underflow 

Exponent underflow can occur during the execution of any 
1 arithmetic instruction. When an underflow is detected, the 
result is set to zero . 

. 3.4.3 Integer Overflow 

I 

I 

Integer overflow can occur during the FIX instruction. When 
,a positive integer overflows, the integer is set to the largest 
;positive in-range value. When a negative integer overflows, 
.the integer is set to the most negative in-range value. 

3.4.4 Divide by Zero 

When an attempt to divide by zero is sensed, the result is set 
to the largest possible in-range value and the sign of the result 
is not changed. 

3.4.5 Time-out 

If the execution of an FPP instruction string is not completed 
within 500 microseconds, time-out is sensed. The result is then 
set to an illegal value to flag the type of fault that has led 
to the fault interrupt. (The fraction is set to the non-zero, 
non-normalized value, 0.01000 ... 0. The exponent field is set to 
all zeros. The sign is not changed.) 
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SECTION 4 
THEORY OF OPERATION 

4.1 GENERAL 

This section begins with a description of the major FPP functions 
and of the manner in which the PPP interfaces with the central 
processor and other components of the computer system. This is 
followed by a description of the microprogram facilities of the 
PPP. This includes information about the microinstruction word 
format as well as descriptions of the various PPP instruction 
microprogram routines. Flow charts are provided for each micro­
program routine. The remainder of the section provides a more 
detailed description of the functional circuits which implement 
the various operations required to interface with the other sys­
tem components and to execute the steps in the microprogram 
routines. 

4.2 OVERALL PPP OPERATION AND SYSTEM INTERFACE 

Figure 4-1 illustrates the FPP in terms of seven major functions. 

4.2.1 Data Buffer, Address Output, and I/O Selection 

This function provides a buffer register which can hold one 
instruction, address, or operand word received from memory. It 
provides an address counter. It provides multiplexing required 
to distribute operand words to the arithmetic section and to 
select result words from the arithmetic section for transfer to 
memory. 

4.2.2 Instruction Double Buffer and Decoder 

This function provides storage for two FPP instruction OP codes. 
It also provides a decoder which recognizes the FPP code. Every 
instruction fetched by the central processor is loaded into the 
FPP data buffer at the same time that it is loaded into the cen­
tral processor instruction buffer. When an FPP instruction is 
fetched, the next instruction fetch brings the starting operand 
address into the central processor instruction buffer. Just 
before this occurs, the decoder recognizes the FPP code of the 
lristruciion held in the FPP data buffer. This recognition 
causes the OP code of the instruction to be transferred to the 
instruction double buffer at the time that the starting operand 
address is loaded into the data buffer. A double buffer is pro­
vided so that a second OP code can be loaded while the previously 
received instruction is still being executed. 

4-1 



MEMORY ...... 
..._DATA BUS -- DATA BUFFER, --- .. 

MEMORY ADDRESS 
OUTPUT, AND ...._ADDRESS BUS 1/0 SELECTION 

""""'" 

l ,, 
INSTRUCTION 

MEMORY DOUBLE ARITHMETIC ...._REQUESTS MEMORY ...... BUFFER SECTION 
- MEMORY 

... 
AND CONTROL 

STATUS -- AND SEQUENCING ....---, •DECODER ... 
·~ • l 

1/0 CONTROL, 
...._STATUS -- ...... 
~ 

... -
PROCESSOR CONTROL 

SYSTEM 
,~ 

...._STORE ADDRESS ... INTERFACE CONTROL 
STORE 

...._E-BUS -- -- MEMORY, f+-.._.- -- -- REGISTER, ANO 
DECODER 

_, 
PROCESSOR --CLOCKS . CLOCK ..... -- CONTROL 

.._.-

FPP CLOCKS_.. --
VT11 31a -

Figure 4-1. FPP Simplified Functional Block Diagram 

4.2.3 System Interface 

This section provides the facilities for _passing program control 
back and forth between the central processor and the FPP. It 
inhibits interrupts during the execution of an FPP instruction 
string. It transmits an interrupt after a fault condition has 
been recognized. It resolves contention for memory access. The 
system interface passes program control to the FPP by forcing the 
central processor microprogram to a control store address contain­
ing a no-operation (NOP) microinstruction. The central proces­
sor microprogram is held at this address until the portion of the 
FPP microprogFam which requires memory access has been completed. 
The system interface then forces the central processor micro­
program to a location containing a microinstruction which leads 
to another instruction fetch. This allows the central processor 
to fill its instruction pipeline while the FPP is completing the 
execution of an FPP instruction microprogram routine. If the 
next instruction is an FPP instruction, the central processor 
microprogram is aqain forced to the location containing a NOP at 
the time that it fetches the starting operand address. Thus, 
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(during the execution of a string of FPP instructions, the central 
·processor activity is limited to the fetching of instructions and 
:associated operand starting addresses. From the time that the 
first instruction of the string is recognized by the FPP decoder 
until control is passed back to the central processor during the 
execution of the final instruction of the string, the system 
,interface inhibits interrupts. An instruction string ends when 
,an instruction which stores a result in memory is executed. 
During FPP memory accesses, the systpm interface controls various 
interface lines so as to prevent other system facilities from 

!accessing memory. At the end of an FPP memory access cycle or 
if an FPP memory access is not currently in progress, the system 

!interface yields memory access priority if a direct memory access 
'.(DMA) or priority memory access (PMA) request is pending. If the 
FPP requires memory access and does not have memory access 
priority, it suspends the activity that requires the memory 
access until memory access priority is again available. 

4.2.4 Memory Control and Sequencing 

This section initiates memory requests, recognizes the completion 
:of memory cycles, and provides the signal which loads the dat~ 
:from the memory data bus into the data bu£fer. During central 
processor instruction fetch~s, the memory control merely steers 
a central processor control sign?l to the dat~ buffer as required 

:to load it. In this way, first an FPP ihstruction and then the 
associated operand address are loaded into the data buffer. If 
the operand address i~ an indirect address, the memory control is 
now responsible for initiating as many memory access requests as 
may be necessary to obtain a direct address. For an instruction 
during which an operand must be obtained from memory, the memory 

.control is also responsible for initiating the memory access 
\..r~qu~red __ !_~ obtain th~ f~rst ope~_?-nq_ word._ These m~mory acces_ses 
can be accomplished without intervention of the FPP microproRram. 
Th s, they can occur while a previous instruction microprogram 
routine is still being executed. 

I 

4.2.5 Arithmetic Section 

This section provides the registers and arithmetic/logic units 
(ALUs) required to perform floating point arithmetic as well as 
associated control circuits. 

4.2.6 Control Store Hemory, Register, and Decoder 

This function provides the control store read-only memory in 
which the FPP microprogram is stored. It provides an address 
counter which determines the order in which microinstructions are 
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, executed, a register which holds the ·instruction currently being 
executed, and circuits which decode certain microinstruction 
fields. The OP code of each FPP instruction points to the start­
ing address of the associated microinstruction routine. Within 
the routine, microinstructions are executed in sequential order 
except when a jump alters the contents of the address counter. 
The microprogram initiates the memory accesses required to 
obtain operand words (with the exception of the first ope~and 
word), controls the transfer of operand words into the arithmetic: 
section, and controls the sequence of operations within the 
arithmetic section. During the execution of an instruction which 
stores a result in memory, the microprogram initiates the memory 
accesses required to store each of the operand words. 

4.2.7 Clock Control 

This function provides the clock signals which time parallel data 
transfers, serial shifts of data, transitions of control signals, 
and advancement of the microprogram. All of the FPP clock rates 
are derived from clock rates received from the central processor. 1 

The clock control section exercises control over the timing of 
microprogram execution by inhibiting the clock which times the 
microprogram advancement. When the microprogram initiates a 
memory access, the clock is inhibited until the required memory 
cycle has been completed. The clock is also inhibited during 
certain operations of the arithmetic section until the required 
number of iterations of the operation have been completed. When 
the final microinstruction of a routine reaches the control 
store register, the clock is inhibited until the next valid FPP 
instruction OP code is available in the instruction buffer. 
Another function of clock control is to select the fast shift 
clock rate. The fast shift clock period is 82.5 nanoseconds as 
compared to the basic clock rate of 165 nanoseconds. 

4.3 FPP DETAILED BLOCK DIAGRAM 

Figure 4-2 is a multi-sheet block diagram which illustrates the 
FPP in terms of 24 functional blocks. Section 1 illustrates the 
operand, result, memory address, and instruction data parallel 
paths. Section 2 illustrates the interface between the control 
store function and the other functional blocks. Section 3 
illustrates the control signals, other than control store signals, 
which pass between the variou~ functional blocks. Section 4 
illustrates the distribution of clock signals and shows clock 
control inputs other than those from the control store function. 
Section 5 illustrates the control interface with the central pro-
cessor and option board. -
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Figure 4-Z. FPP Detailed Block Diagram (Sheet 1 of 4) 
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ICICC .. 
~ 

ICICMEMt i.._KIC~ 

MfMOIY MQST· --CONTROL 
i..MCCICI- 11.1) MCAEN-

KKME,_.. 
...._ ICKl2t .... i:. KKMOIC• M!MOIY 

CLOCK _MCCS2-
SEOU!NCEll McCS2• _.MT!M . (11.0) 

CONTROi. MCS3+ CLOCK 
(9.0, ~GENfllATOI 

'·'' (9.2) 

KICCS. .... ICICMCDt 
~ 

...._PllCIN- ICICMPA-
~ PllOllllY ~ ICICMOIC· CONTROL 

J INTm\JPT ] 
r6.o.6.n ...._ ICIC,,... 

ICICl!G• INTER· ICICMFC+ 

1 'ACE l"llOUT.t (1.0) 

ICICI~ .... --KICHIG• AlllTH-_. 
...._ ACMEN- METIC ICICMOIC• CLOCK 
--ACSEN- CONTIOL 

ACDEN- oo.ot 

DATA 
lATCHANO ICICMEM>-ADDRESS 
OUTPUT 
(11.D, 11.1) 

ICICCSI .... INSTRUCTION 
- lATCH, INSTllUC· 

_TION IEGISTEI, ...._ICICMCOt 
ANO INSTIUC• ~ 

ICICCl'I- _. TION OECOOEI 
~ (12.0l 

SECTION 4. ClOCIC OISTI 

.A 
INPUTS (OTHE 

-Y 
VT13-329 

Figure 4-Z. FPP Detailed Block Diagram (Sheet 4 of 4) 
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Functions shown in figure 4-2 correspond in most cases with func­
tions which are separately identified in FPP logic dia-
gram 91C0499. The instruction latch, instruction register, and 
instruction decoder block shown on figure 4-2 corresponds to the 
instruction double buffer and decoder block shown in figure 4-1. 
Other blocks shown in figure 4-2 are subsidiary to blocks shown 
in ·figure 4-1. Table 4-1 summarizes the correlation between 
nomenclature used on figure 4-1 and' 4-2 and nomenclature used on 
the PPP logic diagram. 

Numbers within parenthesis in figure 4-2 refer to sheets of FPP 
logic diagram 91C0499. 

4.4 MICROINSTRUCTION FORMAT 

Figure 4-3 illustrates the two formats used in microinstruction 
words. The mnemonic assigned to each of the 32 bits of the 
microinstruction word are shown at the left of the figure. If 
CSFMT+ is low, then format 0 is designated. If CSFMT+ is high, 
then format 1 is designated. The only difference between the 
two formats is in the interpretation of the status of the CSALn+ 
(0-5) bits. In format O, bits CSALn+ (3-5) constitute the IN 
field while bits CSALn+ (0-2) constitute the IO field. In for­
mat 1, the six CSALn+ (0-5) bits constitute the ALU field. 

Table 4-2 lists the various active codes used in each micro­
instruction field. Each active code associated with a field is 
assigned a mnemonic which is listed in the FLOW CHART MNEMONIC 
column of the table. This mnemonic is either used directly on 
the microprogram flow charts or else is used on supporting docu­
ments to indicate the field codes associated with particular 
operations. 

Where a field code is represented by an explicit decoding signal, 
the decoding signal mnemonic is listed. (In many cases, the 
field code bits are supplied to function selection inputs of ALUs 
or registers or to address inputs of multiplexors so that 
separate decoding is not required.) 

4.5 MICROPROGRAM ROUTINES 

The paragraphs which follow provide descriptions of each of the 
routines contained in the FPP microprogram. Each description is 
supported by a flow chart. Figure 4-4 illustrates the micro­
instruction block format that is used on the flow charts and 
table 4-3 lists special notations that are used on the flow 
charts. 
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[Table Fl~ Nomenclature Correl~ti~n 

Figure 4-1 

Instruction double 
buff er and decoder 

System interface 

Memory control 
and sequencing 

Clock control 

Data buffer, 
address output, 
and I/O selection 

Control store 
memory, register, 
and decoder 

Figure 4-2 

Instruction latch, 
instruction 
register, and 
instruction decoder 

Central processor 
control 

FPP Logic Diagram 

Instruction register 
(sheet 12.0) 

Central processor 
control (sheet 5.0) 

Priority control Priority control 
(sheet 6.0, 6.1) 

Interrupt interface Interrupt interface 
(sheet 7.0) 

Memory sequencer Memory sequencer 
(sheet 8.0) 

~----------------------1-------------------~~--·~ 

Memory control 

Clock control 

Memory control 
(sheet 8 .1) 

Clock control 
(sheets 9.0, 9.1) 

r----------------------+-------------------------
System clock 
generator 

Data latch and 
address output 

I/O data multi­
plexors 

Control store 
memory, register, 
and decoder 

System clock genera­
tor (sheet 9. 2) 

Data latch and 
address output 
(sheets 11.0, 11.1) 

Input/output data 
(sheets 16.0 
through 19.0) 

Control store 
register, control 
store decoder 
(sheet 14.0, 14.1, 
15.0) 

1------------------------+-------------------~---

Control store 
address loop 

Jump condition 
multiplexor 
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Control store address 
loop (sheet 13.0) 



Table 4-1. Nomenclature Correlation (continued) 

Figure 4-1 

Arithmetic section 

Figure 4-2 

Data loop 

Arithmetic clock 
control 

Multiply control 

A, B control 
encoder 

MQ control 

ALU control 

Sign and zero flags 

Constants and con­
ditional inverter 

Exponent loop 

Exponent control 

Shift counter con­
trol and constant 
storage 
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FPP Logic Diagram 

Data loop 
(sheets 20.0 
through 32.0) 

Arithmetic control 
clock logic 
(sheet 10.0) 

Arithmetic control 
(A, B and multiply) 
(sheet 33.0) 

Arithmetic control 
(MQ) (sheet 3 4 . 0) 

Arithmetic control 
(ALU) (sheet 35. 0) 

Arithmetic control 
(Sign and Zero Flags) 
(sheet 36.0) 

Arithmetic control 
(constants and con­
ditional invert) 
(sheet 37.0) 

Exponent loop 
(sheets 38.0, 39.0) 

Exponent control 
(sheet 40.0) 

Exponent control, 
shift counter and 
constant (sheet 41.0) 



BIT 
MNEMONIC* 

CSAL5 
CSAL4 
CSALJ 

CSAL2 
CS All 
CS ALO 

CSAB2 
CSABl 
CS ABO 

CSAM 
CSCM 

CSEA3 
CSEA2 
CSEAl 
CSE AO 

CSERl 
CS ERO 

CSMWT 
CSMEl 
CS MEO 

CSFL3 
CSFL2 
CSFLl 
CS FLO 

CSJC2 
CSJCl 
CSJCO 

CSJA3 
CSJA2 
CSJAl 
CSJAO 

CSFMT 

.. 

FIELD 
MNEMONIC 
FORMATO 

IN 

10 

AB 

AC 

EADD 

EREG 

MEM 

FLAG 

JC ONO 

JADD 

FMTO 

*USED FOR BITS AT OUTPUT OF CONTROL STORE REGISTER 
VTl2-437 

Figure 4-3. Microinstruction Word Formats 
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FIELD 
MNEMONIC 
FORMATl 

ALU 

AB 

AC 

EADD 

EREG 

'AEM 

FLAG 

JC ONO 

JADD 

FM Tl 



Table 4-2. Microinstruction Field Formats 

Field 
Mnemonic 

IN 

IO 

Field 
Bit 
Levels 

CSALn+ 
5 4 3 

L L L 

L L H 

L H L 

H L H 

H H L 

H H H 

CSALn+ 
2 1 0 

L L L 

Flow 
Chart 
Mnemonic 

LSAQ 

LSBQ 

LDBQ 

LDCQ 

LDDQ 

ID 
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Decoding 
Signal 
Mnemonic 

CSL SA-

CSLSB-

CSLDB-

CSLDC-

CSL DD-

Function 

No operation 

Loads single pre­
cision high 
fraction into 
MQ register 

Loads single pre­
cision low 
fraction into 
MQ register 

Loads double 
precision high 
fraction into 
MQ register 

Loads double pre­
cision middle 
fraction into MQ 
register 

Loads double pre­
cision low frac­
tion into MQ 
register 

Connects data 
latch outputs to 
lOnn+(00-15) bus 
in format appro­
priate for trans­
fer ·of any operand 
field (except 
single precision 
high fraction) to 
MQ register 



Table 4-2. Microinstruction Field Formats (continued) 

Field 
Mnemonic 

IO 
(Cont'd) 

Field 
Bit 
Levels 

CSALn+ 
2 1 0 

L L H 

L H L 

L H H 

H L L 

H L H 

H H L 

H H H 

Flow 
Chart 
Mnemonic 

OSA 

OSB 

IS 

ODA 

ODB 

ODC 

ODD 
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Decoding 
Signal 
Mnemonic Function 

Connects first 
single precision 
result word to 
IOnn+(00-15) bus 

Connects second 
single precision 
result word to 
IOnn+(00-15) bus 

Connects data 
latch outputs to 
IOnn+(00-15) bus 
in format appro­
priate for trans­
fer of single 
precision high 
fraction to MQ 
register 

Connects first 
word of double 
precision result 
to IOnn+(00-15) 
bus 

Connects second 
word of double 
precision result 
to IOnn(00-15) 
bus 

Connects third 
word of double 
precision result 
to IOnn+(00-15) 
bus 

Connects fourth 
i~ o r <l o f do u b 1 e 
precision result 
to IOnn+(00-15) 
bus 



Table 4-2. Microinstruction Field Formats (continued) 

Field Flow Decoding 
Field Bit Chart Signal 
Mnemonic Levels Mnemonic Mnemonic Function 

ALU CSALn+ 
5 4 3 2 1 0 

L L L L H L CMPA ALU = A 

L L H H H L ALONE ALU = 1 

L H L H H L BNOT ALU = B 

L H H L L H AMI NB ALU = A MINUS B 

H L L H L L APLUSB ALU = A PLUS B 

H L H L H L B ALU = B 

H H L L L L AP LUSA ALU = 2A 

H H L L H L AL ZERO ALU = 0 

H H H H H L A ALU = A 

L L H H L L MINUSl ALU = -1 

ALU CSALn+ 
(For 5 4 3 2 1 0 
CSWSD+=H) 

L L L L L H AL CSAL± Alignment micro-
instruction 
during which 
fraction of 
smaller operand 
is shifted to 
right to align it 
properly with 
fraction of 
larger operand 

L L L L H L NO CSN0± Normalize micro-
instruction dur-
ing which fraction 
is shifted to 
left until most 
significant 1 is 
in bit 46 position 
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Table 4-2. Microinstruction Field Formats (continued) 

. ....., 
Field. Flow Decoding 

Field Bit Chart Signal 
Mnemonic Levels Mnemonic Mnemonic Function 

AB CSABn+ 
2 1 0 

L L L No operation 

L L H SRA Shifts A register 
to right 

L H L SLA Shifts A register 
to left 

L H H LDA Loads A register 

H L L LDB Loads B register 

H L H SRAB Shifts A and B 
registers to 
right 

H H L SLAB Shifts A and B 
registers to left 

H H H LDAB Lands A and B 
registers --

AC CSAM+ CSCM+ 

L L MQA Connects :.1Q 
register outputs 
to AMnn-(00-47) 
bus; Connects A 
regi.ster to 
A input of ALU 

L H ~IQC Connects >IQ 
register outputs 
to ,-\i-1 n n - ( 0 0 - 4 7 ) 
bus; connects 
constants reg is-

.. tcr (CR) to :\ 
i.nput of ALU 

--
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Table 4-2. Microinstruction Field Formats (continued) 

Field Flow Decoding 
Field Bit Chart Signal 
Mnemonic Levels Mnemonic . Mnemonic Function 

AC CSAM+ CSCM+ 
(Cont'd) 

H L ALA Connects ALU out-
puts to AMnn-
(00-47) bus; 
Connects A register 
to A input of ALU 

H H ALC Connects ALU out-
puts to AMnn-
(00-47) bus; 
Connects CR regis-
ter to A input 
of ALU 

EADD CSEAn+ 
3 2 1 2 

L L L L EA ZERO Exponent ALU 
= 0 

L L L H EMX Exponent ALU 
= EMX, where EMX 

is data select-
ed for connec-
tion to A input 
of exponent ALU 

L L H L MINEMX Exponent ALU 
= EMX 

L L H H EA255 Exponent ALU 
= decimal 255 

L H L L c Exponent ALU 
= Ce, where Ce 

is value from 
constant store 

L H L H CPLSMX Exponent ALU 
= Ce + EMX 
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Table 4-2. Microinstruction Field Formats (continued) 

Field Flow Decoding 
Field Bit Chart Signal 
Mnemonic Levels Mnemonic Mnemonic Function 

EADD CSEAn+ 
(Cont'd) 3 2 1 0 

L H H L CMINMX Exponent ALU 
= Ce - EMX 

L H H H CMINl Exponent ALU 
= Ce - 1 

H L L L E Exponent ALU 
= E: where E 

is output of 
exponent 
register 

H L L H EPLSMX Exponent ALU 
= E + EMX 

H L H L EMINMX Exponent ALU 
= E - EMX 

H L H H EMINl Exponent ALU 
= E - 1 

H H L L EPLUSl Exponent ALU 
= E + 1 ·-

EREG CSE Rn+ 
1 0 

L L No operation 

L H LDE Load exponent 
register 

H L LDSCl Load shift counter 
if ECRY- = H 

H H LDSC Load shift counter 
.. 
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Table 4-2. Microinstruction Field Formats (continued) 

Field · Flow Decoding 
Field Bit Chart Signal 
Mnemonic Levels Mnemonic Mnemonic Function 

MEM CSMEn+ 
CSMWT+ 1 0 

L L L No operation 

L· H H WSDN CSWSD± Inhibits control 
store clock until 
SC = 0; where SC is 
shift counter. 
Also enables 
special AL and NO 
code recognition 
(for ALU field) 

L H H END CSEND- If jump condition 
(specified by JCOND 
field) is sat is-
fied, JADD field is 
loaded into four 
MSBs of control 
store counter. If 
jump condition is 
not satisfied, 
CSDN+ is placed at 
high level. This 
enables trans fer 
from instruction 
latch to instruc-
tion register and 
inhibits control 
store clock if new 
FPP instruction is 
not available in 
instTuction latch. 

H L L IMC CSMST-, Leads to initiation 
CS IMC+ of memory cycle 

(unless time-out 
flag, T~+ = H) 
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Table 4-2. Microinstruction Field Formats (continued) 

Field 
· Mnemonic 

MEM 
(Cont'd) 

FLAG 

Field 
Bit 
Levels 

Flow 
Chart 
Mnemonic 

CSMEn+ 
CSMWT+ 1 0 

H L 

H H 

CSFLn+ 
3 2 1 0 
L L L L 
L L L H 

L L H L 

L L H H 

H INC 

H SIF 

CPO 

MUO 

ZTZ 
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Decoding 
Signal 
Mnemonic Function 

CSINC-, Leads to initiation 
CSIMC+ of memory cycle 

(unless time-out 
flag, T0 = H) and 
increments memory 
address counter 

CSSIF Enables starting 

CSCPO+ 

CSMUO± 

CSZTZ± 

· of central proces­
sor instruction 
fetch at next con­
trol store clock 
time 

No operation 
Reverses status of 
AS+ and sets SUB+ 
and ADD- high if 
ALU37+ is high. 
Sets SUB+ and 
ADD- low if 
ALU47+ is low 
Conditions arithme­
tic control for 
multiply-initialize 
microinstruction. 
Also, forces CSMUl+ 
to set high at con­
trol store clock 
time so as to estab­
lish main-multiply 
functions during 
next microinstruc­
tion period 
Inhibits updating 
of status of ZERO 
flag 



Table 4-2. Microinstruction Field Formats (continued) 

Field 
Mnemonic 

FLAG 
(Cont'd) 

Field . 
Bit 
Levels 

CSFLn+ 
3 2 1 0 

L H L L 

L H L H 

L H H L 

L H H H 

H L L L 

H L L H 

H L H L 

H L H H 

H H L L 

Flow 
Chart 
Mnemonic 

ZAS 

SS 

OFL 

DIO 

El28 

EXC 

CCR 

C47 

DIV 

4-21 

Decoding 
Signal 
Mnemonic 

CSZAS-

CSSS± 

CSOFL-

CSDIO-

CS128± 

CSEXC-

CSCCR-

CS47± 

CSDIV± 

Function 

Resets AS+ flag to 
low level 

Swaps states of AS 
and BS flags 

Sets interrupt 
flag 

Conditions arithme­
tic control for 
divide-initialize 
microinstruction 

Conditions exponent 
control to invert 
MSB of E as 
required to main­
tain excess-128 
code during addi­
tion or subtraction 
of exponents 

Forces CSLDE- to 
set low at control 
clock time as 
required to load 
exponent register 
from data latch 
during next micro­
instruction period 

Clears constants 
register (CR) 

Loads 1 into bit 47 
of CR register 

Conditions arithme­
tic control for 
main divide micro­
instruction 



Table 4-2. Microinstruction Field Formats (continued) 

Field Flow Decoding 
Field Bit Chart Signal 
Mnemonic Levels Mnemonic Mnemonic Function 

FLAG CSFLn+ 
(Cont'd) 3 2 1 0 

H H L H UFL CSU FL- Sets interrupt 
flag; sets AS+ low 

H H H L CTO CSTyJ+ Resets time-out 
flag (T0+) to low 
level ----

JCOND CSJn+ 
2 1 0 

L L L Inhibits jump 

L L H JMP Unconditional jump 

L H L JC Jump if ECRY+ = H 

L H H JZ Jump if ZERO+ = H 

H L L JSGN Jump if A47+ = H 
or if ZERO+ = H 

H L H JSAGN Jump if AS+ = BS+ 

H H L JESGN Jump if E7+ = H 

H H H JTO Jump if T0+ = H 

JADD These bits are 
used to alter con-
trol store address 
counter if jump 
condition is satis-
fied. If CSEND+ 
= H, they are 
loaded into four 
MSBs of counter 
while if CSEND+ 
= L, they are 
loaded into four 
LSBs of counter. 

---
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Table 4-2. Microinstruction Field Formats (continued) 

Field Flow Decoding 
Field Bit Chart Signal 
Mnemonic Levels Mnemonic Mnemonic Function 

FMT CSFMT+ = L Microinstruction 
format 0 

CSFMT+ = H Microinstruction 
format 1 
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Table 4-3. Special Flowchart Notations 

Notation Description 

(DA), (DB), (DC), (DD) 

(SA), (SB) 

NC 

CUFL 

COFL 

SC 

E 

EA 

EA8 

A 

B 

MQ 

UFL 

OFL 

CR 

Four words of double-precision operand 

Two words of single-precision operand 

Normalization count - indicates the 
number of shifts required to normalize 
fraction 

Conditional underflow - indicates 
exponent intermediate value which will 
produce underflow if fraction has to 
be shifted 

Conditional overflow - indicates inter­
mediate exponent value which may 
produce overflow 

Shift counter 

Exponent register 

Exponent adder 

Carry (borrow) from exponent adder 

A register 

B register 

MQ register 

Used on right side of microinstruction 
block to indicate the sensing of 
underflow condition. Used on left 
side of block to indicate FLAG field 
mnemonic 

Used on right side of microinstruction 
block to indicate sensing of overflow. 
Used on left side of block to indicate 
FLAG field mnemonic. 

Constant register 
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As an aid in understanding the more complex routines, numerical 
examples are provided. Each numerical example is presented in 
the form of a figure which shows the microinstruction path that 
is followed for the particular operand values being assumed. The 
operations performed by each microinstruction and the status of 
significant registers and flags that results from these operations 
is shown. 

4.5.1 FLD Routine 

The purpose of the FLD routine (figure 4-5) is to obtain a single­
precision operand from memory, place the exponent field of the 
operand in the exponent register, place the operand fraction in 
both the A and B registers, and place the sign of the operand in 
the AS flag. 

When the routine is started, the memory access required to obtain 
the first operand word has already been initiated. The INC code 
in the MEM field of microinstruction LDSO causes the execution of 
the microinstruction to be delayed until the completion of the 
memory access cycle during which the first operand word is trans­
ferred from the memory to the FPP data latch. When the microin­
struction is executed, the INC code causes the memory address 
count to be incremented to point to the memory location contain­
ing the second operand word and causes the initiation of the 
memory request required to obtain this second operand wqrd. The 
EX C code in the. FLAG - f i e iac;f the mi c r o ins tr u c t i on prepare s for 
the transfer of the exponent field of the first operand word 
from the data latch through the exponent loop ALU to the exponent 
register during the next microinstruction. 

MICROINSTRUCTION 
FLAG I MEM, AND 
JCOND FIELD CODE 
MNEMONICS APPEAR 
ON THIS SIDE OF 
BLOCK 

VT11-3197 

JMP A-B---A ~ 
END ~ 

--------- OPERATIONS PERFORMED 

IN DATA LOOP OR 
EXPONENT LOOP OR 
UPON FLAGS APPEAR 
ON THIS SIDE 
OF BLOCK 

Figure 4-4. Flow Chart Microinstruction Block Format 
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c FLO ) 

LDS4 74 

LOSO 10 MQ-A 

EXC 
M0-8 

END 

INC 

LDSl 11 (NEW INST) 

DL(S)-as 
DL(SA)-MQ(SA) 

JMP DL(SE)--E 
END 

<T 
LDS2 72 

SS BS--AS 
AS--BS 

SIF 

LDS3 73 

Dl(SB)-MQ(SB) 

VTl1-3204 

Figure 4-5. FLD Routine Flowchart 

Microinstruction LDSl transfers the sign bit (S) of the first 
operand word from the data latch (DL) to the BS flag, transfers 
the high fraction field (SA) of the first operand word from the 
data latch to the MQ register, and transfers the exponent field 
(SE) of the first operand word from the data latch to the 
exponent register (E). 

The SIF field of microinstruction LDSZ causes the execution of 
this microinstruction to be suspended until the completion of the 
memory cycle during which the ~econd operand word is transferred 
from memory to the FPP data latch. When the microinstruction is 
executed, the SIF code causes control to be returned to the 
central processor so that the next instruction fetch can be 
executed. The SS code in the FLAG field of the microinstruction 
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causes the .swapping of the sign bits held in the AS and BS flags 
as required to enter the sign bit of the new operand into the 
AS flag. 

Microinstruction LDS3 transfers the low fraction field of the 
second operand word from the data latch to the MQ register. 
Microinstruction LDS4 transfers the assembled fraction from the 
MQ register into the A and B registers. 

4.5.2 FLDD Routine 

The FLDD routine (figure 4-6) is similar to the FLD routine 
except that it obtains a double precision operand. It is thus 
required to initiate the three memory accesses needed to obtain 
the second through fourth operand words and to assemble the three 
fraction fields in the MQ register to form the-45--:::bTt fractfon-_--- -­
The INC code in the MEM field of microinstructions LDDO, LDD2, 
and LDD4 causes the necessary incrementing of the memory address 

FLDD 

LDDO 12 LDD4 64 

EXC SS BS -AS 

INC INC AS - BS 

LDD1 13 LDDS 65 

JMP Dl(DA)- E DL(DC)-MQ(DC) 

END 

LDD2 84 LDD6 62 

SIF 

LDD7 63 

JMP DL(DD)--MQ(DD) 

LDD3 83 END 

JMP 

Figure 4-6. FLDD Routine Flowchart 
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to point to each successive operand word and causes the initi­
ation of the required memory ~~~esses. Micro~nst~~ction LDDl 
transfers the exponent field of the first op~rand w6rd from the 
data latch to the exponent registers. Microinstructions LDD3, 
LDDS, and LDD7 transfer the three fraction fields of the second, . 
:third, and fourth operand words respectively from the data latch 
:to the MQ register. Microinstruction LDD3 transfers the sign 
.bit (S) of the second operand word from the data latch to the 
BS flag and microinstruction LDD4 swaps the AS and BS flags as 
required to enter the new sign bit into the AS flag. LDD6 pre­
pares for the return of control to the central processor so that 
the next instruction fetch can be performed. The routine jumps · 
to microinstruction LDS4 of the FLD routine which transfers the 
assembled fraction--from the MQ register to the A and B registers. 

4.5.3 FLT Routine 

The purpose of this routine is to obtain a single-precision 
integer from memory and convert it to the floating point format. 
At the completion of the routine, the exponent register contains 
the exponent of the converted operand, the A and B registers 
both contain copies of the operand fraction, and the AS flag 
contains the operand sign bit. 

The integer format provides 15 bits to the left of the decimal 
point. In the floating point format, these bits must appear 
to the right of the decimal point. Thus, to maintain the same 
value, the fraction must be multiplied by zl5. In order to meet 
this requirement, the exponent is provisionally set to 15. If 
the number being converted is the maximum negative number that 
can be represented by the integer format, there is a magnitude 
overflow into the sign bit position. In this case, the fraction 
must be shifted to the right and the exponent must be incremented 
by 1. Alternatively, the fraction may have to be shifted to the 
left to normalize it. In this case, the exponent must be 
decremented by 1 for each left shift. 

A negative integer is represented in two's complement form. Thus, 
before the normalization status of the fraction is tested, it 
must be determined whether the integer is positive or negative. 
If the integer is negative, it must be complemented so as to 
convert it to absolute form. The integer must also be tested to 
determine whether it is zero since this requires a special float­
ing point format in which all fields are set to zero. 

At the time that the routine (figure 4-7) is started, the memory 
access required to obtain the integer word from memory has 
already been initiated. The SIF code in the MEM field of 
microinstruction FLTO suspends the execution of. the instruction 
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c FLT ) 

FLTO 15 
CCR 

SIF 

FLTl 16 

Dl(DB)-MQ(DA' 
DL(S)-BS 
15-E 

0 
FLT2 47 

MO-B 

FLT3 46 
CPO (B =OJ-ZERO 

B47 -ADD 
847-sus 

FLT40 87 

JZ ADD 
B-A 

SUB 
-B-A 

~ FLTS F BB 

A-B 

JSGN 

~ 
FLT6 B9 

AX2t:!S-A 
E-NC-E 

ZER06 B6 FLT7 BA 

ZAS o-As A-B 
O--E 
o-A 

END o-s END 

(NEVV INST) (NEW INST) 

VT12-439 

Figure 4-7. FLT Routine Flowchart 
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until the memory cycle during which the integer is transferred 
from memory to the FPP data latch has been completed. When the 
microinstruction is executed, the SIF code causes control to be 
returned to the central processor so that the next instruction 
fetch can be executed. The CCR code in the FLAG field causes the 
constant register (CR) to be cleared. 

Microinstruction FLTl transfers the integer from the data latch 
to the MQ register. The transfer is executed in response to the 
LDBQ and ID codes in the IN and IO fields of the instruction 
respectively. During a double precision operation, this combina­
tion of codes would cause a ones complementation of the data 
being transferred if that data were negative. However, in this 
case, the data is not converted because the double-precision bit 
of the FLT instruction OP code held in the instruction register 
is a zero. Thus, if the integer is negative, the binary one 
sign bit is loaded into bit position 47 of the MQ register. This 
is used subsequently in testing the sign of the integer. In 
addition to transferring the integer to the MQ register, the 
microinstruction also transfers the sign bit into the BS flag. 
It also loads 143 (the excess-128 code for 15) into the exponent 
register. 

Microinstruction FLT2 transfers the integer from the MQ register 
to the B register. The CPO code in the FLAG field of micro­
instruction FLT3 sets the ADD flag if the sign bit of the integer 
in the B register is a zero (indicating a positive number) or 
sets the SUB flag if the sign bit is a one (indicating a negative 
number). (The function, ALU= Bis performed in the data loop 
ALU and it is actually the status of bit 47 of the ALU that is 
evaluated rather than the status of bit 47 of the B register 
itself. Also, if the integer is zero, then the all-zero output 
of the ALU causes the ZERO+ flag to set high.) 

Microinstruction FLT4 places either B or the twos complement of B 
in the A register depending upon whether the ADD or SUB flag was 
set in the previous microinstruction. This provides a twos com­
plementation of the integer if it is initially negative. Thus, 
the contents of the A register after this microinstruction is 
executed is the absolute value of the integer. The explicit 
function performed by the ALU is either ALU = (CR + B) or 
ALU= (CR - B). However, since the CR register was reset to zero 
in microinstruction FLTO, the operations reduce to ALU = B and 
ALU = -B. 

The JZ code in the JCOND fiela of microinstruction FLT4 causes a 
pump to microinstruction ZER06 if ZERO+ was set high in FLT3; 
that is, if the integer is zero. The ZER06 microinstruction sets 
all result fields to zero as required to provide the floating 
point zero format. 
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If the integer is not zero, the routine advances from FLT4 to 
FLTS. FLTS transfers the operand value from the A register to 
the B regfster. The SS code in th-e FLAG ffe.1d of the microin­
~tructiori causes the sign bits in. the AS and BS flags to be 

1swapped. This places the' sign of the integer in the AS flag. The 
·. JSGN code in the JCO~D field_ c-auses a. jump to mfcroinstru·c~ipn 

FLT6A if A47 is high. This takes c~re of the case where the-­
operand value is the maximum negative value that can be repre­
sented in the integer format. This value produces a magnitude 
overflow into the sign bi! position when th~_ two complementation 
is performed. (The two's complement 6£ 1000 0000 0000 0000 is 
1000 0000 0000 0000.) Microinstruction FLT6A shifts this 
fraction one position to the right to normalize it and increments 
the exponent by 1. 

If a magnitude overflow in bit position 47 does not occur, the 
routine advances from microinstruction FLTS to microinstruction 
FLT6. If left shifting of the fraction and decrementing of the 
exponent is required to normalize the fraction it is performed 
by this microinstruction. (If bit position 46 does not contain 
a binary one, then the fraction is left shifted until a binary 
one reaches this bit position. For each bit position shift of 
the fraction, the exponent is decremented by 1.) The normaliza­
tion of the fraction is implemented in the A register. Micro­
instruction FLT7 copies the normalized fraction into the 
B register. 

A numerical example of the FLT routine is provided in figure 4-8. 

4.5.4 FAD/FSB Routine 

As illustrated in the flowchart of figure 4-9, the same routine 
is used to execute either the FAD or the FSB instruction. For 
the subtraction instruction, the operand that is received at the 
start of the routine is the minuend. The sign of this number is 
reversed at the time that it is transferred from the data latch 
to the BS flag. This leads to the subtraction rather than the 
addition of this number and is the only difference between the 
execution of the FSB and FAD instructions. References to the 
sign of the new operand in the discussion which follows apply to 
the sign after it is loaded into the BS flag; that is, in the 
case of the subtraction instruction, they refer to the sign of 
the minuend after it has been reversed. 

Unless the exponents of the two operands are equal, an alignment 
of the smaller operand is required; that is, the fraction must be 
shifted to the right the number of bit positions corresponding to 
the difference between the exponent values. If this difference 
is equal to or larger than 23, then the aligned fraction will 
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Microinstruction Operation Results Comments 

FLTO Transfer from I l l l l 1 l l l l l 0 0 l 0 l 0 I Integer received is - 54 in two's complement form 
memory to data DL latch 

FLTl DL(S)--.BS BS• 0 Negative sign is saved in BS 

DL(DB}-.MQ(A} MQ u l l l 1 l 1 1 1 l 0 0 l 0 l 0 ... 1 Number is transferred to MQ where it is loaded into 16MSB 
positions 

15__.E E I 1 0 0 0 1 1 1 1 I E is set to 143 • 128 ... 15 

FLT2 MQ_.B B I 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 o .. · I Number is transferred from MQ to B 

FLT3 ITT-.ADD SUB• G Subtractio' function is selected because number is negative as 
B47 -.sue indicated by high level in sign bit position 847 of B register 

{B • OJ_. ZERO ZERO+ cg ZERO flag remains reset because number is non-zero 

Io Fr.T4 B ADD. A A 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 ... I With subtraction selected, number is converted to absolute 
form 

B~A .. 
, 

JZ Go to FLT5 because ZERO• is low. 

I 
I 

FLT5 A--.B B Io 0 0 0 0 0 0 0 0 0 1 1 0 1 I 0 ... Number is copied into B 

~ [!] 
I 

SS AS• BS• Sign of number is transferred to AS 

JSGN Go to FLT6 because A47 • 0 (Magnitude overflow into sign bit 
position has not occurred.} 

Io .1 I FLT6 A x 2NC -.A A I 0 1 1 0 0 0 •••••••••• 0 A is shifted left until most significant I reaches bit position 
A46 as required to provide normalized fraction 

E - Nc-.E E I 1 0 0 0 0 1 1 0 I E is decremented by 1 for each bit position shift of A 

Final value is E • 134 "" 128 ... 6 

Final result is -26 (2-1 + z-2 + z-4 + 2-5) s -(25 ... 24 ... 22 ... 21) "' - 54 

FLT7 A--+B A,B Io. i l 0 1 1 0 0 ...... ·I Final fraction is copied into B 

Figure 4-8. FLT Example (-54) 
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END 
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2A 

SC 
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ADS3 

ADS4 
SS 

JC 
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END 

MO-A 
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JC 

NC SIGNIFICANCE 

30 

TO ADD 

3E 

A-8-A 

O-A 
o-e 
o- E 
1-INT 

49 

NEW INST 

ADS3A 

JC 

TO UFL 

26 

DL-MQ(SB) 
(SC? 23]-ECRY 

NO ALIGN 

27 

28 

TO ADD 

29 

A-B-A 

3A 

38 

NEW INST 

ADS6C 

JMP 

END 

OFLI 

OFL 

END 

ADS5D2 

END 

ADS7B2 
ZTZ 

JZ 

WSDN 

32 

A' B-A.~ 

NEW INST 
45 

2
47

-1 -A 

247-1 - 8 
255 - E 

ADS5D1 

A-B 

END 

33 

A-B 

NEW INST 

37 

AX 2N£- A 
E - NC - E 
UFL- ECRV 

Figure 4-9. FAD/FSB Routine, Flowchart 
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have no significance. Thus, in this case, the routine is ter­
minated without actually performing the alignment or a subsequent 
addition or subtraction. The result, in this case, is merely the 
larger operand. If the exponent difference is less than 23, the 
alignment is performed. The sum (A + B) is then formed if the 
signs of the two .operands are the same or else the difference 
(A - B) is formed if the signs of the two operands are different. 
Because the smaller fraction is always located in the B register, 
the difference is always positive so that the result is always in 
absolute form. This simplifies subsequent handling of this 
result. The special case where the exponents of the two operands 
are equal is handled by a separate branch because in this case, 
if difference (A - B) must be formed, then a test must be made to 
determine whether the resultant difference is a negative number 
in complement form. If this is the case, then the number must be 
complemented to place it in absolute form before further process­
ing can occur. 

Once the difference (A - B) is known to be in absolute form, it 
can be normalized by shifting it to the left until a binary one 
appears in bit position 46. For each shift to the left, the 
result exponent, which is the exponent of the larger operand, 
must be decremented by 1. If an underflow occurs during 
normalization; that is, if the excess-128 exponent value is 
decremented from 0000 0000 to 1111 1111, then the routine enters 
an underflow branch in which it sets the result to zero and sets 
an interrupt flag. 

In the case where the two operands are of the same sign, the sum 
(A + B) can overflow into the sign bit position. In this case, 
the result fraction must be shifted one place to the right and 
the result exponent must be incremented. This introduces the 
possibility of an exponent overflow. The routine checks for this 
possibility by evaluating whether the sum (E + 1) is equal to 
or larger than 256 (that is larger than allowable). If this is 
found to be the case and if the result fraction is found to 
have overflowed into the sign bit position, then the routine 
jumps into an overflow branch. This branch sets the result 
magnitude at the maximum value and sets the interrupt flag. 

If the signs of the two operands are the same, then the sign bit 
initially residing in the AS flag can be used as the sign of the 
result so that no change in the status of AS is required. 

If the signs of the two operands are different, the sign of the 
result is the sign of the larger operand. If the new operand is 
smaller, then the sign of the result is the sign that resides in 
the AS flag at the start of the routine. If the new operand is 
found to have a larger exponent than the operand resulting from 
the previous instruction, then the new operand fraction is placed 
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in the A register and the sign bits held in the BS and AS flags 
are swapped. Thus, after this swap, the AS flag holds the sign 
of the result. In the special case where the exponents of the 
two operands are equal, the initial status of AS must be reversed 
if a subtraction produces a negative difference (for in this 
case, the new operand has been found to be larger). 

A description of the various branches of the FAD/FSB routine is 
presented in the paragraphs which follow. A numerical example 
is provided in figure 4-10. 

Paragraph titles identify various branches in terms of the start­
ing and ending microinstructions of the branch. Certain micro­
instructions are not part of any branch identified by a paragraph 
title. These microinstructions and the paragraphs in which they 
are discussed are listed below: 

Microinstruction Reference paragraph(s) 

ADS5D2 4 . 5 . 4 . 2 

ADS7B2 4 . 5 . 4 . 2 ' 4. 5. 4. 5 

ADS7B3 4.5.4.4 

ADS8B 4.5.4.2, 4.5.4.4, 4.5.4.5 

OFLl 4.5.4.3 

UFLl 4. 5. 4. 5 

ZERO 1 4.5.4.5 

4.5.4.1 Microinstructions ADSO through ADS2 

Microinstruction ADSO performs the same functions as starting 
microinstruction LDSO of the FLD routine. (Refer to paragraph 
4.5.1 for a description of LDSO.) Microinstruction ADSl trans­
fers the high fraction field (SA) of the first operand word from 
the data latch into the MQ register and transfers either the 
sign bit (S) or, if FSB is being executed, the inverse of the 
sign bit into the BS flag. It subtracts the new operand excess-
128 code (obtained from the data latch) from the excess-128 code 
of the result exponent held in the E register and puts the 
difference in the shift counter. If this difference is positive 
or zero, it sets ECRY+ high to indicate that the new exponent is 
not larger than the result exponent. The CCR code in the FLAG 
field of the microinstruction causes the constant register (CR) 
to be cleared. 

4-35 



: 

Microinstruction Operation Results Comments I 

... J 

I 1 ii Result of previous E 0 0 0 0 0 1 Excess-128 code for exponent • +3 
routine 

A,B Io .1 1 1 0 0 ....... o I Fraction • 1/ z + 1/4 + 1/8 + 0 + ... + 0 : 7/8 

AS+ IT] Low AS+ indicates p9sitive result 

Number is +2 3 X 7/8 • +7 

ADSO Transfer from memory s Exponent Fraction (high) Sign bit (S) • 0. Therefore, number is positive. 
to data latch I 

.. v .. 
oJ 

Excess-128 exponent code is 129. Exponent "' +1. 
Io 1 0 0 0 0 0 0 1 1 0 0 0 0 0 High fracti~n • 1/2 + O + ... + 0 . Number s ~2 X 1/2 • +1 

ADS! DL (SA)_. MQ(SA) ~tQ 1 o .1 0 0 0 . ........... o I High fraction tr-ansferred to MQ 

DL(S)-+ BS BS+ IT] Sign transferred to BS 

E - DL(SE)-.SC SC I 0 0 0 0 0 0 1 oj Difference between exponents put in SC .. 
E ~ DL(SE)-.ECRY ECRY+ G ECRY set because difference is positive (New exponent is nQt larger) 

ADSZ [SC "' OJ-+ECRY ECRY+ IT] ECRY reset because difference is not zero (that is, alignment is required) 

JC Go to DIS3A because ECRY set high in ADSl 

MQ I 0 .1 o I ADS3A DL--+MQ(SA) 0 0 0 ........ Low fraction (in this case all zeros) transferred to section of MQ. 
Since all zeros are transferred to section, no change occurs. 

[SC ~ 24 J--+ECRY ECRY+ cg ECRY remains reset because difference is less than 23 

JC Go to ADS4A because ECRY reset in ADSZ 

ADS4A MQ--+B B Io .1 0 0 0 ....... a I New fraction transferred from MQ to B 

o-+ZERO ZERO+ IT] ZERO flag is reset because ALU = 1 function is selected 

JC Go to ADSSA because ECRY+ rema_ined reset at end of ADS3A 

Figure 4-10. FAD Example, +7 +l • +8 (Sheet 1 of 2) 
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Microinstruction Operation Results Comments ' J 
1 

2-sc SC· B ADS SA B X 
Io i 110. 0 o I Contents of B register is shifted right each time shift count is 

0 0 0 0 0 0 1 0 ... decremented until shift count reaches o. (This provides appropriate 
alignment of smaller operand fraction.) In this case, since SC is 

lo 0 0 0 0 0 0 o 11 o.o 0 l ..... o I initially 2. two shifts occur. 

ZTZ ZERO+ [8 Change in status of ZERO flag is inhibited 

JASGN Go to ADS6Cl because AS • BS 

ADS6Cl A + a-.A,B A,B l i.o 0 0 . . .. . . o I 0.1 1 1 0 0 ..... 0 
+0.0 0 1 0 0 ..... o 

LO 0 o·o 0 ••••• 0 

ZTZ ZERO+ ~ Change in status of ZERO flag is inhibited 

ADS7C2 [E + 1 :! 256)-+ECRY ECRY+ ~ ECRY remains reset because (E + 1) . 132 < 256 
... 

ZTZ ZERO+ cg Change in status of ZERO flag is inhibited 

JSGN Go to ADS8CZ because A47+ is high. (Fraction has overflowed into sign bit 
position.) Notice that jump is independent of any zero indication because 
ZERO flag was reset in ADS4A and has since been inhibited from changing status 

ADS8C2 A x 2-l__.A A, B I o. 1 0 0 0 ..... ol Result fraction is normalized by shifting A and B one bit position to right 

B x z-l_.B 

E + 1--+E E I 1 0 0 0 0 1 0 a I E is incremented when fraction is shifted to right as required to 
maintain same total value of result 

RESULT • 24 x 2-1 ,. 23 :s 8 

JC, ENO End because ECRY+ is low 

Figure 4-10. FAD Example, +7 +l • +8 (Sheet 2 of 2) 
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Microinstruction ADS2 performs twos complementation of the 
difference formed in the preceding microinstruction if that 
difference is a negative number in complement form (that is, if 
ECRY+ is low). The explicit function that is performed is the 
formation of the difference (0 - SC). This difference is loaded 
into SC only if ECRY+ was not set high during the preceding step. 
However, the subtraction operation i~ always performed because 
it is also used to determine whether SC is zero. If SC is zero 
no borrow occurs and ECRY+ is remalns high. If SC is not zero, a 
borrow occurs and ECRY+ is reset to the low level. (This occurs 
as the microinstruction terminates and does not affect the condi­
tional jump out of this microinstruction~) 

The SIF code in the MEM field of microinstruction ADS2 suspends 
the termination of the microinstruction until the memory cycle 
during which the second operand word is received has been 
completed. When the microinstruction is terminated, the SIF code 
caus~s control to be returned to the central processor so that 
the next instruction fetch can be initiated. The JC code in the 
JCOND field causes a jump to microinstruction ADS3A if ECRY+ 
was set high during microinstruction ADSl; that is if the new 
exponent is not larger than the old exponent. 

4.5.4.2 Microinstructions ADS3 through ADS6 

This branch is entered when the new exponent is larger than the 
old exponent. Microinstruction ADS3 loads the high fraction 
field of the second operand word from the data latch into the MQ 
register and sets ECRY+ high if the exponent difference held 
in the shift counter is 23 or more. The specific operation that 
is used to test the shift counter magnitude is to add the twos 
complement of 23 to the contents of the shift counter. If the 
exponent difference is at least 23, this operation generates a 
carry which sets ECRY+ high. 

Microinstruction ADS4 transfers the fraction of the ne~ operand 
into the A register. (Since the result of the previous instruc­
tion is smaller than the new operand, the copy of the fraction 
portion of this result that resides in the B register is 
retained.) The SS code in the FLAG field causes the sign bits 
held in the BS and AS flags to be swapped. This puts the sign 
bit associated with the larger number (the new operand) in the AS 
flag as required. The exponent difference from the shift counter 
is added to the excess-128 exponent code held in the expone~t 
register ann the sum is placed in the exponent register. This 
effectively replaces the smaller exponent of the previous result 
with the larger exponent of the new operand. The JC code in the 
JCOND field causes a jump out of the branch to microinstruction 
ADSSD2 if ECRY+ was set high during the preceding microinstruc­
tion. ADSSD2 terminates the routine after copying A into B. 
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This path is followed when at least 23 right shifts of the 
smaller operand fraction would be required to align it with the 
larger operand. In this case, there could be no significant ones 
in the aligned smaller operand and thus addition or subtraction 
need not be performed. 

Microinstruction ADSS performs the right-shifting of the smaller 
operand fraction in the B register. The WSDN code in the MEM 
field inhibits the control store clock until the shift count 
reaches zero. The shift counter is counted down for each shift 
right. Thus, the duration of ADSS is the number of clock periods 
required to complete the alignment. The JASGN code in the JCOND 
field produces a jump if the sign bits of the two operands are 
equal. This causes a branch to microinstruction ADS6Cl (where 
addition is performed) if the signs are the same or a continua­
tion to microinstruction ADS6 (where subtraction is performed) if 
the signs are different. 

The difference (A - B) that is formed and stored in A during 
microinstruction ADS6 is always a positive number in absolute 
form and is either normalized or can be normalized by left shift­
ing. The required left-shifting (if any) is performed in 
microinstruction ADS7B2 and then the routine advances to micro­
instruction ADS8B during which the aligned fraction result is 
copied into the B register. If an underflow is detected during 
microinstruction ADS7B2, then ECRY+ is set high as microinstruc­
tion ADS8B is entered. In this case, the JC code in the JCOND 
field of microinstruction ADS8B causes a jump to microinstruction 
UFLl which sets the fraction and exponent result values to zero 
and sets the interrupt flag. If an underflow does not occur, 
then ADS8B is the final microinstruction of the routine. 

4.5.4.3 Microinstructions ADS6C through ADS8Cl 

This branch is entered from microinstruction ADSS after the new 
operand fraction has been aligned in the B register and when the 
signs of the two operands are the same. Microinstruction ADS6C 
forms sum (A+ B) and places it in the A and B registers. 

Microinstruction ADS7Cl is mainly a decision instruction which is 
the end of the routine if the sum formed during the preceding 
microinstru~tion is normalized. However, the JSG~ code in the 
JCOND field causes a jump to microinstruction ADS8Cl if the sum 
contains an overflow into the sign bit position. In this case 
the A and B registers must be shifted to the right one bit 
position and the exponent mus~ be incremented by 1. In order 
to determine whether this will cause an exponent overflow, the 
summation (E + 1) is performed in the exponent adder during 
microinstruction ADS7Cl. If the exponent is already at the 
maximum allowable value, this summation produces a carry which 
sets ECRY+ to the high level, as the jump to ADS8Cl occurs. 
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Microinstruction ADS8Cl performs the required right shift of the 
A and B registers and increments the exponent by 1. The C47 code 
in the FLAG field causes a one to be loaded into bit position 47 
of the constants register (CR) in preparation for the conditional 
branch to microinstruction OFLl. If ECRY+ was not set high dur­
ing ADS7Cl, then the execution of ADS8Cl produces an in-range 
result and the routine terminates wi~h this instruction. However, 
the JC code in the JCOND field caus~s a jump to OFLl if ECRY+ 
was set high during ADS7Cl. 

Microinstruction OFLl sets the maximum values (all ones) into the 
A and B registers and into the E register and sets the interrupt 
flag. The all-ones value is formed for entry into the A and B 
registers by forming the difference (CR - 1), where CR contains 
a one bit in position 47 and zero bits in all other positions. 

4.5.4.4 Microinstructions ADS3A through ADS6A 

This branch, which is entered from microinstruction ADSZ if the 
new exponent is not larger is very similar to the ADS3 through 
ADS6 branch which is entered if the new exponent is larger. 
Thus, only the differences are described. The JC code in the 
JCOND field of instruction ADS3A causes a jump out of the branch 
to microinstruction ADS4B if the exponents of the two operands 
are equal. (If this is the case, ECRY+ is high when the branch 
is entered as required to cause the jump.) 

Microinstruction ADS4A transfers the new operand fraction from 
the MQ register to the B register. In this case, the new operand 
is smaller and thus its fraction is placed in the B register for 
alignment. Instruction ADS4A also sets the ZERO+ flag low. 
Since the ZERO+ flag responds to the output of the ALU, this is 
accomplished by selecting the ALU function, ALU= 1. 

The ZTZ code in the FLAG field of microinstruction ADSSA holds 
the ZERO+ flag low. This is in preparation for a possible jump 
to the branch starting with microinstruction ADS6Cl which 
requires that ZERO+ be low in order to obtain a correc~ branch 
decision in microinstruction ADS7C2. The jump from ADSSA to 
ADS6Cl occurs if the signs of the two operands are the same. If 
the path through ADS6A is followed, then the normalization shift­
ing (if required) occurs during microinstruction ADS7B3. From 
this microinstruction, the routine advances to ADS8B. 

4.5.4.S Microinstructions ADS4B through ADS6B 

This branch is entered when the two operand exponents are equal. 
In this case no alignment is required. Microinstruction ADS4B 
transfers the new operand fraction from the MQ register to the 
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B register. It also resets the ZERO+ flag to the low level . 
. This prepares for a possible jump to the branch beginning with 
microinstructton ADS6Cl. (The status of the ZERO+ flag is not 
allowed to change once this hranch is entered in order to avoid 

.. malcing· ._th~ wrong branch d.eci,sion ...... in st-ep ADS7C2 in the case where 
both op.er.ands .. are·· zero. ·····The··:JSGN_:·,.·code w~ich controls the jump 
decision causes a jump on either A47+ high or the ZERO+ flag 
high.) The JASGN cbde in the JCOND field of ADS4B causes a jump 
out of the branch to microinstruction ADS6Cl if the signs of the 
two operands are the same. If the signs are different, micro­
instruction ADSSB is performed. This microinstruction forms the 
difference (A - B) and stores it in B. It sets the ADD flag if 
the difference is positive or zero or sets the SUB flag if the 
difference is a negative number in twos complement form. (The 
sign of the difference is determined by evaluating the status 
of sign bit 47 from the ALU.) The CPO code in the FLAG field 
enables the setting of ADD or SUB and also causes the status of 
result sign flag AS to be reversed if (A - B) is negative. (The 
difference was formed because the signs of the two operands 
were different. The fact that the difference is negative indi­
cates that the operand in B is the larger operand and therefore 
the sign of the result is the same as the sign of B). 

During microinstruction ADS6B, the difference held in the B 
register is complemented and stored in A if SUB is high (that is, 
if the difference is negative). If ADD is high, the difference 
from the B register is supplied to the A register without being 
complemented. Thus, at the end of the microinstruction, the 
difference, in absolute form resides in the A register. The 
explicit ALU function that is performed is either (CR + B) or 
(CR - B). However, since the constant register (CR) was cleared 
in ADSl, the effective operation is ALU = B or ALU = - B. 

If the difference computed in microinstruction ADSSB is zero, the 
ZERO+ flag is set high as the advance from ADSSB to ADS6B occurs. 
In this case, the JZ code in the JCOND field of microinstruction 
DS6B causes a jump to microinstruction ZERO 1. This micro­
instruction sets the fraction (in A and B) and the exponent 
(in E) to zero and also sets AS+ to the low level as required 
to produce the correct zero format. If the difference is not 
zero, the routine advances from ADS6B to ADS7B2. This micro­
instruction performs left shifting (if required) to normalize the 
fraction. The routine then terminates with microinstruction 
ADS8B if the result is in range or jumps to UFLl if an underflow 
occurs in microinstruction ADS7B2. 

4.5.4.6 Microinstructions ADS6Cl through ADS8C2 

This branch is entered from either one of two other branches in 
the event that the signs of the two operands are the same. In 
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the case where the exponents of the two operands are equal, entry 
is from microinstruction ADS4B. In the case where the new 
exponent is smaller than the exponent of the previous result, 
entry is from microinstruction ADSSA. The branch is similar to 
branch ADS6C through ApS8Cl which is traversed when the signs of 
the operands are the same and the new exppnent is larger. The 
only difference is that in microinst.ructions ADS6Cl and ADS7C2 
of this branch, the ZTZ code in the FLAG field inhibits the 
setting of the ZERO+ flag to the high level. This is necessary 
in order to inhibit the setting of the ZERO+ flag in the case 
where both operands are zero. (A high ZERO+ signal level would 
cause a jump from ADS7C2 in response to the JSGN code.) 

4.5.S FADD/FSBD Routine 

As illustrated by the flowchart of figure 4-11, the FADD/FSBD 
routine performs certain functions and then jumps into an appro­
priate entry point of the FAD/FSB routine. The most basic 
difference between double precision and single precision opera­
tions is that four operand words mus·t be obtained from memory 
and that three fraction fields must be assembled in the MQ reg­
ister. Another operation that is handled separately for the 
double precision operation is the shift counter test to determine 
whether the smaller operand is too small to have any possible 
significance. In the double precision operation, this is the 
case if the difference between the exponent values is 47 or more. 

Microinstruction ADDO is identical to the first instruction of 
the FAD/FSB routine. Its purpose is to initiate the memory 
access request required to obtain the second operand word and to 
prepare for the transfer of the exponent field from the data 
latch to the shift counter during the next microinstruction. 
Microinstruction ADDI performs the exponent transfer and resets 
the constant register (CR). Microinstruction ADD2 initiates the 
memory access request required to obtain the third operand word. 
Microinstruction ADD3 transfers the high fraction field of the 
second operand word from the data latch to the MQ register and 
transfers the sign bit (S) from the data latch to the BS flag. 
As in the case of the FAD/FSB routine, the sign bit is inverted 
if the subtraction instruction (in this case FSBD) is being 
executed. Microinstruction ADD4 initiates the memory access 
required to obtain the fourth operand word. 

Microinstruction ADDS transfers the middle fraction field of the 
third operand word from the data latch to the MQ register. It 
also forms the difference between the new and old exponents by 
subtracting the contents of the shift counter (new exponent) from 
the contents of the exponent register. If this difference is 
positive or zero, the ECRY+ flag is set high. 
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FADD FSBD 
ADD7A 20 

ADDO 03 

EXC 
Dl (DD) MO (DD 

JC 
SC <!: 47--ECRY 

INC 
ADs.49 

ADDl 04 

CCR Dl(DA)- SC 
24 (NO ALIGN) 

ADD8A 21 
END 

MQ-8 

JC 

ADD2 75 ADSSDl 

20 (NO SIGNIFICANCE) 

INC ADD9A 22 

ADD3 76 
B X 2 -.?.,£_ 8 

Dl (D9)--MQ (DB) JASGN 

Dl (S)-BS WSDN 

ADS6C1 

ADD4 7C 
2C (ADD) 

ADDlOA 23 

INC 
A-B-A 

JMP 

ADDS 7D END 

D l (DC)-MQ (DC) 

JMP 
E - SC-SC 
[ E ~ SC} -ECRY 

END 

ADS781 34 

ZTZ AX2~A 
JMP E- NC-E 

ADD6 2E WSDN UFL-ECRY 

ECRY 

JC 
-sc-sc 
rsc = Ol-ECRY 

SIF 

NEW EXPONENT NOT LARGER 

ADD7 2F 

DL (DD)-MQ (DD} 
(SC<!: 471-ECRY 

VTl2~ 

Figure 4-11. FADD/FSBD Routine Flowchart 

4-43 



Microinstruction ADD6 complements the exponent difference if 
ECRY+ was not set high during the previous microinstruction; that 
is, if the difference is a negative number in twos complement 
format. The SIF code in ADD6 suspends the termination of the 
microinstruction until the memory cycle during which the fourth 
operand word is received is completed. When the microinstruction 
is terminated, the SIF code causes control to be returned to the 
processor so that the next instruciion fetch can be initiated. 
The JC code causes a jump to ADD7A if ECRY+ was set high; that is 
if the new exponent is not larger. As the routine exists from 
the step, ECRY+ remains high if the difference is zero or is 
reset if the difference is non-zero. 

If the new exponent is larger, the routine advances from ADD6 
into ADD7. In this microinstruction, the low fraction field of 
the fourth operand word is transferred from the data latch to the 
MQ register and ECRY+ is set high if the exponent difference in 
the shift counter is equal to or larger than 47. A jump into 
microinstruction ADS4 of the FAD/FSB routine is then executed. 

Microinstruction ADD7A, which is entered if the new exponent is 
not larger, performs the same functions as ADD7 and, in addition, 
provides a jump to microinstruction ADS4B of the FAD/FSB routine 
in the event that the exponent difference is zero. 

If the new exponent is smaller, the routine advances from ADD7A 
to ADD8A. This microinstruction transfers the new fraction 
from the MQ register to the B register and provides a jump to 
microinstruction ADSSDl if ECRY+ was set in ADD7A; that is, if 
the smaller operand is too small to have any possible 
significance. 

If ECRY+ was not set high in ADD7A, the routine advances to 
microinstruction ADD9A which aligns the smaller (new) operand 
fraction in the B register. The JASGN code causes a jump into 
microinstruction ADS6Cl of the FAD/FSB routine if the signs of 
the two operands are the same. If they are different, this 
routine continues through microinstructions ADDlOA and ADS7Bl. 
ADDlOA forms the fraction difference (A - B) and stores this in 
the A register. ADS7Bl performs normalization shifting of this 
difference (if and as required). If an exponent underflow occurs 
during the normalization, ECRY+ is set high. A jump into micro­
instruction ADSBB of the FAD/FSB routine is then executed. 

4.5.6 FMU Routine 

Multiplication (figure 4-12) involves the processing of the 
signs, exponents, and fractions of the two operands. Processing 
of signs involves setting AS+ low (to represent a positive result) 
if the signs of the two operands are the same or setting of AS+ 
high if the signs of the two operands are different. A provi­
sional result exponent is computed by adding the operand 
exponents and subtracting 128. 
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c ) FMU 
MUS3A 8 !\ 

MUSO OE MUD 
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END 
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Figure 4-12. FMU Routin~ Flowchart 
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(The subtraction of 128 preserves the excess-128 code.) 
Fractions must be multiplied and the result normalized. After 
the multiplication -0f the fractions is complete, the result frac­
tion is either in the normalized position or else has its most 
significant non-zero bit in the sign position (in which case it 
must be shifted to the right one position). 

The provisional result exponent is decremented to compensate for 
an inherent left shift of the fraction which occurs during the 
multiplication process. For example, the multiplication,· 
1/2 X 1/2 (0.1000 .. X 0.1000 ... ) which should produce the result, 
1/4 (0.0100 ... ), actually produces the result, 1/2 (0.1000 ... ). 
While the need for decrementing of the provisional result 
exponent is conditional upon the status of the result fraction, 
the routine invariably decrements it (in step MUSI). If it is 
subsequently found that the result fraction must be shifted 
right, the routine then increments the provisional result 
exponent at that time so as to cancel the earlier decrementing 
operation. 

A provisional result exponent value of 128 represents a condi­
tional overflow value (COFL). While 128 itself is outside of 
the allowable range, the value of 127 which will be the final 
exponent value if the result fraction does not require a shift to 
the right, is within range. Any provisional result exponent 
value greater than 128 is definitely an overflow value (OFL). A 
value of -129 or more negative is definitely an underlow value 
(UFL). In summary, any provisional result exponent value which 
is outside of the normal range (+127 through -128) indicates the 
possibility of an overflow or underflow. There is also one 
in-range provisional result exponent value which represents a 
conditional underflow value (CUFL). This is the value -128 which 
will produce the out-of-range final result exponent value -129 in 
the event that the result fraction does not require shifting to 
the right. 

Descriptions of the various branches of the FMU routine are pre­
sented in the paragraphs which follow. A numerical example is 
provided in figures 4-13 and 4-14. 

4.5.6.1 Microinstructions MUSO through MUS2 

Microinstruction MUSO performs the same functions as starting 
microinstruction LDSO of the FLD routine. (Refer to para­
graph 4.5.l for a description of LDSO.) 

Microinstruction MUSl transfers the high fraction field of the 
first operand word (SA) from the data latch to the MQ register 
and transfers the sign bit (S) from the data latch into the BS 
flag. It also adds the exponent value residing in the exponent 
register (E) to the exponent value obtained from the data latch 
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~icroinstruction Operation Results Comments 

Io o I Results of previous A,B 1 0 0 . . . . l/ 2 + 0 + 0 + ... + 0 .. l/ 2 r 
operation 

E 1 0 0 0 0 0 0 0 128 + 0 + ... + 0 = 128; Exponent • 0 

AS+ m Sign is positive 

Number is 2E-128 X FRACTION ,. 2° x 1/2 .. 1/2 

MUSO Transfer from memory s Exponent Fraction (High) 
to data latch 1 _L 

~"' 
_.__--""\ 

I 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 ii Sign bit .. 1. Therefore, number is negative. Thus, exponent and high 
fraction fields are in one's complement form 

DL 
Exponent •'+l; High Fraction .. 1/2 + 1/8 • 5/8 

Io ol MUSI DL(SA)--.MQ(SA) MQ 1 0 1 0 0 .... Sign and high fraction are transferred to MQ. One's complementation .. performed in response to negative sign bit i.n DLlS converts data 
' to absolute form. 

DL(S)--.BS BS+ ~ Sign bit is saved in BS. .~ 

E + DL(SE) - 128__.E E I 1 0 0 0 0 0 0 1 I 128 + 129 - 128 .. 129 

[EA G ll]___.ECRY ECRY+ cg Exponent is in range so ECRY remains reset. 

MUS2 0-+A A I 0 0 0 0 ........ o I A is cleared in preparation for product accumulation. 

jo Transfer from memory DL 0 
to data latch 

0 . . . . . . . . . . . . o I 2nd operand word (in this case all Os) is received by FPP 

E - 1-+E E I 1 0 0 0 0 0 0 o I E is decremented by 1 

JC Go to MUS3 because ECRY+ is low. 

Io oj MUS 3 DL(SB)-+MQ(SB) MQ 1 0 1 0 0 Low fraction transferred from DL to MQ. (Since low fraction is zero in 
this example, there is no change in status of MQ.) 

11-+SC SC lo 0 0 0 1 1 0 i I Shift counter is set to 11 to prepare for MUS4 

Figure 4-13. FMU Example (+l/Z)(-1 1/4) • 5/8 (Sheet I of Z) 
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Microinstruction Operation Results Comments 

MUS3 MUO AS+ G AS+ is set high to indicate negative result because AS I BS 
(Continued) 

(See figure 4-14.) First pair of multiplier bits is evaluated. (See figure 4-14.) 

MUS4 [(E + 1) 256 ]--+ECRY ECRY+ cg ECRY remains reset because E + 1 .. 129 < 256 

Multiply . • sc__.o (See figure 4-14.) Eleven iterations are performed. For each iteration; SUB, ADD, and 
CARRY flag status is updated in accordance with multiplier bit pair and 
CARRY flag status. Contents of B is added to or subtracted from previous 
partial product if ADD or SUB flag respectiveir is in set status and .. 
partial product is shifted right two positions·. Also, B register is 
shifted left or right, if appropriate, to provide ZM or M (where 
M •multiplicand) .. 

MUSS Final Multiply A lo 1 0 1 0 ....... o I (See figure 4-14.J 

[A + B • O]~ZERO ZERO+ cg Product fraction is non-zero. 

JC Go to MUS6 because ECRY+ is low. (E + 1 would be within range.) 

MUS6 A--.B A,B I a 1 0 1 0 .... o I Fraction result is copied into B 

JSGN END Routine ends because result fraction is non-zero and has not overflowed 
into sign bit position. 

Note: Final exponent value is zero (from MUSZ); final fraction value is 1/2 + 0 + 1/8 + .. +O 5/8 
(from MUSS). Final iign value is minus (from MUS3). 

Number is: - zO )( 5/8 -5/8 

Figure 4-13. FMU Example (+1/2)(-1 1/4) • 5/8 (Sheet 2 of 2) 
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MULTIPLIER: 0.1 01 00 00 00 00 00 00 00 00 00 00 

MULTIPLICAND: 0.1000 •••••• 0 

SHIFT 
MICROINST COUNT B REGISTER MULTIPLIER BITS SUB ADD CARRY A REGISTER 

(DEC) EVALUATED 

47 46 45 44 47 46 45 44 43 

MUS3 11 0 1 0 0 00 0 0 0 0 0 0 0 

MUS4 10 1 0 0 0 00 0 0 0 0 0 0 0 

9 1 0 0 0 00 0 0 0 0 0 0 0 

8 1 0 0 0 00 0 0 0 0 0 0 0 

7 1 0 0 0 00 0 0 0 0 0 0 0 

6 1 0 0 0 00 0 0 0 0 0 0 0 

5 1 0 0 0 00 0 0 0 0 0 0 0 

4 1 0 0 0 od 0 0 0 0 0 0 0 

3 l 0 0 0 00 0 0 0 0 0 0 0 

2 1 0 0 0 00 0 0 0 0 0 0 0 

0 1 0 0 01 0 0 0 0 0 0 

0 0 1 0 0 01 0 0 0 0 0 l 

MUSS 0 1 0 1 
VT11-3203 

Figure 4-14. Example of Fraction Multiplication Procedure 
- (1/2 x 5/8) ; 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(SE) and places this provisional result exponent in the exponent 
register. The El28 code in the FLAG field of the microinstruction 
effectively introduces a component of -128 into the exponent 
summation. This is necessary in order to maintain the excess-128 
code. If an out of range exponent sum (larger than +127 or more 
negative than -128) is obtained, the ECRY+ flag is set high. This 
prepares for a jump from the next microinstruction. 

Microinstruction MUS2 clears the A register in preparation for 
using it to accumulate the produce of the operand fractions and 
decrements the provisional exponent result computed in the pre­
ceding microinstruction. This decremented exponent value 
becomes the final exponent result value unless a subsequent right 
shift of the fraction result is required or the fraction result 
is zero. The SIF code in the MEM field suspends the advance to 
the next microinstruction until the end of the memory cycle 
during which the secorid operand word is received from memory and 
loaded into the FPP data latch. As the advance to the next micro­
instruction occurs, SIF causes control to be returned to the 
central processor so that the next instruction fetch can be 
initiated. The JC code in the JCOND field causes a jump to 
microinstruction MUS3 if ECRY+ was set high during MUSl. Thus, 
this path is followed if an out-of-range provisional exponent 
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result value was obtained. If the provisional exponent result 
value was within range, the routine advances to microinstruction 
MUS3. 

4.5.6.2 Microinstructions MUS3 "through MUS7 and ZER06 

This branch is executed when the provisional exponent result 
obtained during microinstruction MUSl is within range. Micro­
instruction MUS3 sets the AS+ flag to the low level if the signs 
of the two operands are the same or sets the AS+ flag to the high 
level if the signs are different. This action occurs in response 
to the MUO code in the FLAG field of the microinstruction. 

Microinstructions MUS3 through MUSS implement the fraction 
multiplication procedure. This is essentially an add and shift 
routine in which multiplier bits are processed in pairs. Each 
multiplier pair has a value of 0, 1, 2, or 3 times zn, where the 
value of zn is determined by the position of the pair in the total 
multiplier fraction. The basic scheme is to add a value of 0, 1, 
2, or 3 times the multiplicand to the previous partial product in 
accordance with the value of the particular multiplier bit pair 
that is being processed. After each step, the intermediate 
product is shifted two bit positions to the right. This imparts 
the appropriate weight czn) to each successive component that is 
added to the previous partial product. In actual implementation, 
the basic scheme is modified so that only two explicit component 
values are required, M and 2M, where M = multiplicand. Using 
these two values, 0, 1, or 2 times M can be added to the partial 
product directly. To add 3M, M is subtracted during the current 
step and a carry is propagated into the next step. Since the 
significance of each succeeding bit pair value is 22 = 4 times 
that of the preceding bit pair value, a carry into the next step 
is equivalent to the addition of 4M during the current step. 
Thus, the addition of 3M is implemented by adding 4M - M. When a 
carry from the preceding step is allowed, the number of possible 
values is increased to include the additional value, 4. However, 
the value 4 can be added simply by generating a carry into the 
next order. 

The required values of M and 2M are obtained by controlling the 
position of the multiplicand in the B register. When 2M is 
required, the contents of the B register are shifted to the left 
one position. When M is again required, the contents of the B 
register are shifted to the right. 

Each step consists of two sub-steps; namely the evaluation of the 
two multiplier bits and the carry bit and the addition or sub­
traction of the appropriate component to the previous partial 
product. Each sub step requires one clock period. However, 
once the process has been started, the addition or subtraction 
associated with the current step can be performed during the same 
clock period as the evaluation associated with the next step. 
Thus, the 12 pairs of multiplier bits can be processed in 13 
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clock periods. During the first of these clock periods, which is 
provided by microinstruction MUS3, only an evaluation occurs. 
During the next 11 clock periods, which are provided by micro­
instruction MUS4, both an evaluation and the addition or 
subtraction of a component occur. During the final clock period, 
which is provided by microinstruction MUSS, only an addition 
occurs. 

The MUO code in the FLAG field of microinstruction MUS3 conditions 
the arithmetic control for the evaluation of the first pair of 
multiplier bits. This microinstruction moves the second word of 
the multiplier (which contains the first two bits to be evaluated) 
from the data latch to the MQ register. Thus, these bits must be 
monitored, for purposes of the first evaluation, as they reside 
in the data latch. At the same time, a second pair of multiplier 
bits is loaded from the data latch into a multiplier bit pair 
buffer. This buffer provides the source of bits during the 
evaluations of microinstruction MUS4. At the end of each clock 
period during microinstruction MUS4, the contents of the buffer 
is updated from the MQ register. During each clock period of 
MUS4 (except the first), the contents of the MQ register is 
shifted two bit positions to the right. The first bit of the 
first bit pair is zero. The second bit of the first bit pair is 
obtained from bit position 00 of the data latch. The second bit 
pair, which is loaded into the multiplier bit pair buffer during 
microinstruction MUS4, is obtained from bit positions 01 and 02 
of the data latch. Thereafter, each successive bit pair is 
loaded into the multiplier bit pair buffer from bit positions 28 
and 29 of the MQ register. (The multiplier bit pair which 
initially resides in bit positions 28 and 29 after the parallel 
data transfer from the data latch is loaded into the buffer at 
the end of the first clock period of MUS4. By the end of the 
second clock period, the bits initially residing in positions 30 
and 31 have been shifted into positions 28 and 29 and are now 
loaded into the buffer. The shifting of the contents of the 
MQ register and the loading of the buffer continues in this 
manner for the remainder of MUS4. 

Another function performed by microinstruction MUS3 is the setting 
of the shift counter (SC) to 11. This determines the number of 
clock periods in MUS4. At each clock time, SC is counted down 
and an advance to MUSS occurs as SC reaches the count of 0. The 
MUO code in the FLAG field of microinstruction MUS3 causes the 
MUl flag (not shown in the flow chart) to set as microinstruction 
MUS4 is entered. It is this flag which conditions the arithmetic 
control to perform evaluations, additions or subtractions, right 
shifting of each partial product, and right shifting of the MQ 
register. The WSDN code in the MEM field of MUS4 inhibits the 
control store clock until the shift count reaches 1 as required 
to continue the microinstruction for 11 clock periods. 
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A subsidiary function performed by MUS4 is the formation, in the 
exponent loop, of the sum (E + 1). If the excess-128 exponent 
code is 255, then this summation produces a carry out of the 
highest order of the ALU which sets the ECRY+ flag to the high 
level. This indicates the conditional underflow (CUFL) value. 
(In this case, the initial provisional exponent result was 000, 
representing an exponent value of -128. This was decremented in 
MUS2 to become 255 so that the incrementation provided in this 
step produces an overflow.) 

In microinstruction MUSS, the final component is added to the 
partial product to form the final product. The JC code in the 
JCOND field causes a jump to microinstruction MUS6C for the 
conditional underflow case. If the final product formed in 
MUSS is zero, the ZERO+ flag is set high. If the conditional 
underflow case is not sensed, the routine advances from MUSS to 
MUS6. Microinstruction MUS6 copies the final product from the 
A register into the B register. If this final product is 
normalized, this is the final microinstruction of the routine. 
The JSGN code in the JCOND field causes a jump to microinstruction 
MUS7 if the final product has overflowed into the sign bit 
position or if the ZERO+ flag is high. 

Microinstruction MUS7 shifts the contents of the A and B registers 
one position to the right and increments the exponent as required 
to normalize the result. Unless the ZERO+ flag is high, this is 
the final microinstruction of the routine. The JZ code in the 
JCOND field causes a jump to microinstruction ZER06 if ZERO+ is 
high. Microinstruction ZER06 sets the fraction fields in the 
A and B registers and the exponent field in the E register to 
zero. It also sets the sign bit in the AS flag to zero. (This 
last action occurs in response to the ZAS code in the FLAG field 
of the microinstruction.) This is the floating point number zero 
format. This microinstruction, when performed, is the final 
microinstruction of the routine. 

4.5.6.3 Microinstructions MUS3A through MUS7A and OFL7; MUS6B 
and OFLS; and ZEROS 

This branch is entered from MUS2 when the provisional exponent 
result is out of range. MUS3A through MUSSA are identical to 
MUS3 through MUSS, described in paragraph 4.5.6.2. However, they 
lead to different terminations as appropriate to the out-of-range 
exponent condition. Whereas the setting of ECRY+ to the high 
level in MUS4 indicates a conditional underflow condition, the 
setting of ECRY+ in MUS4A indicates a conditional overflow (COFL) 
condition. (In this case, the provisional exponent excess-128 
code of 0000 0000 represents the overflow exponent value of +128~ 
This causes a jump from MUSSA to MUS6B in response to the JC 
code in the JCOND field of MUSSA. MUS6B copies the result frac­
tion from the A register to the B register. If the result 
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fraction is in the normalized condition, this is the final 
microinstruction of the routine. (Although the provisional 
exponent result value was out of range, this was decremented in 
MUSZ so that the exponent value in the E register now represents 
the in-range value of +127. If the fraction result does not 
require a right shift and is not zero, this becomes the final 
exponent value.) · 

The JSGN code in the JCOND field of MUS6B causes a jump to OFLS 
if the result fraction requires right shifting. Microinstruction 
OFLS establishes the overflow format. The A and B registers 
and the exponent register are set to all ones. This represents 
the largest possible magnitude. The sign bit is not affected. 

If the COFL status is not sensed, the routine advances from 
MUSSA to MUS6A. The exponent is now known to be either an under­
flow or an overflow value. Thus, the final result must be an 
underflow or overflow unless the fraction result is zero. 
Microinstruction MUS6A forms the sun (E + 1) and stores this in 
the E register as required to return the exponent result to the 
initial value computed in MUSl. The JZ code in the JCOND field 
of this microinstruction causes a jump to microinstruction ZEROS 
if the fraction result is zero. ZEROS establishes the floating 
point zero format. (This is identical to microinstruction 
ZER06.) 

If the fraction result is not zero, the routine continues from 
MUS6A to MUS7A. The purpose of MUS7A is to distinguish between 
an overflow and an underflow. This determination is controlled 
by the status of the most-significant bit of the excess-128 
exponent code. If this bit is a one, then the exponent code 
represents a negative out-of-range (underflow) value of -129 or 
more negative. If this bit is zero, then the exponent code 
represents a positive out-of-range (overflow) value of greater 
than +128. The JESGN code in the JCOND field of MUS7A causes a 
jump to UFL4 if the bit is a one or to OFL7 if the bit is a zero. 
UFL4 establishes the underflow format of zero in all fields 
including the sign bit field. OFL7 establishes the overflow 
format of the largest possible magnitude and does not change the 
sign. 

4.S.6.4 Conditional Underflow Microinstruction MUS6C and 
Microinstruction UFL4 

This microinstruction is entered from microinstruction MUSS when 
the conditional underflow value of -128 is sensed in micro­
instruction MUSS. This value was decremented in MUS2 to produce 
the underflow value -129. However, if the fraction result has 
overflowed into the ·sign bit position, then the exponent will be 
incremented and so will be returned to the in-range value. The 
result will also be in range if the fraction result is zero. The 
JSGN code in the JCOND field of MUS6C causes a jump to MUS7 if 
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the fraction result has overflowed into th~ siin bit position or 
if the fraction result is zero. This microinstruction is 
described in paragraph 4.5.6.3. If the result fraction is found 
to.be in the normalized status, the routine advances to micro­
instruction UFL4 which establishes the underflow format. · 

4.5.7 FMUD Routine 

As illustrated in figure 4-15, the FMUD routine performs functions 
associated with the transfer of a double precision number and 

.then, after performing a multiplication set-up instructi-0n which 
!sets the shift counter to 23, jumps into an appropriate micro-
' instruction of the FMU routine. In the case of the double-
precision number, there are four operand words to be obtained 
from memory rather than two. The routine must initiate the mem­
ory cycle requests required to obtain three of these words and it 

,must assemble the fraction fields from three operand words in the 
MQ register to form the multiplier fraction. 

Microinstruction MUDO is identical to MUSO. Microinstruction 
MUDl transfers the exponent field from the data latch to. the 
shift counter where it is held until microinstruction MUDS adds 
it to the exponent code he~d in _t~e e~ponent register. 

Microinstruction MUD2 waits for the completion of the memory 
·cycle during which the second operand word is transferred from 
memory to the FPP data latch. It then increments the memory 
address to point to the location containing the third operand 
word and initiates the memory request required to obtain this 
word. 

Microinstruction MUD3 transfers the high fraction field (DB) of 
the second operand word from the data latch to the MQ register 
and transfers the sign bit field of the second operand word from 
the data latch to the BS flag. 

Microinstruction MUD4 waits for the completion of the memory 
cycle during which the third operand word is transferred from 
the memory to the FPP data latch. It then increments the 
memory address to point to the location containing the fourth 
operand word. 

Microinstruction MUDS transfers the middle fraction field (DC) of 
the third operand word from the data latch to the MQ register. 
It also adds the exponents of .·the two operands and sets ECRY+ 
•igh if an out-of-range provisional result exponent is obtainedG 
(These are the same exponent-loop functions that are performed in 
microinstruction MUSl of the FMU procedure except that the new 
exponent code now resides in the shift counter rather than the 
data latch.) 
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FMUD MUD4 7E 

MUDO 06 
EXC 

INC 

INC MUDS 7F 

MUDl 07 E128 DL (DC)-MQ (DC) 

DL (DA)-SC JMP E + SC-128-E 
END EA7 <±) EAB-ECRY 

JMP 
END 

AO 

78 

JC 

JMP SIF 

INC 
COFL VUFL VOF L 

MUD7 Al MUD7A AC 

7~ MLX> SETUP MUD SETUP 
MULTIPLY MULTIPLY 
23- SC 23-SC 
DL(DD)- MQ(DD) DL(DD)-- MQ(DD) 

MUS4 

A2 

-
VTl1 ·3187 

Figure 4-15. FMUD Routine Flowchart 

Microinstruction MUD6 performs the same function as microinstruc­
tion MUSZ of the FMU routine. Microinstructions MUD7 and MUD7A 
are similar to microinstructions MUS3 and MUS3A. The differences 
are that the MUD7 and MUD7A microinstructions transfer the low 
fraction field of the fourth operand word from the data latch to 
the MQ register and that these two microinstructions set the 
shift counter to 23 rather than to 11. The higher shift count is 
required because in the case of a double-precision multiplier 
there are 24 pairs of multiplier bits to be processed rather 
than 12. 

From MUD7 or MUD7A, the routine jumps into MUS4 or MUS4A respec­
tively of the FMU routine. Double precision multiplication of 
functions in steps MUS4 and MUS4A is identical to single precision 
multiplication except for the number of iterations as noted above 
and the source of the bit pairs. In double precision multiplica­
tion, the first bit pair is obtained from bit positions 00 and 01 
of the data latch. The second bit pair is obtained from bit 
positions 02 and 03 of the data latch. The third and remaining 
bit pairs are obtained from bit positions 06 and 07 of the MQ 
register. 
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66 

WSDN r E ~ I;? 2561-E CRY 

0156 
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Figure 4-16. FDV Routine Flowchart 
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4.5.8 FDV Routine 

~~vision (figure 4·16) involves the processing of signs, frac­
tions, and exponents of the two operands. Processing of signs 
i~volves setting AS+ low (to represent a positive result) if the 
s~gns of the two operands are the sa~e or setting AS+ high if the 
signs of the two operands are different. The dividend fraction 
must be divided by the divisor fraction and the result must be 
normalized. After the fraction division procedure has been com­
pleted, the result fraction is either in the normalized position 
o: els7 has its most significant non-zero bit in the sign position 
(1n which case it must be shifted to the right one position). 
The exponent of the divisor must be subtracted from the exponent 
of the dividend to produce a provisional result exponent which 
must be incremented if the result fraction requires shifting to 
the right. 

~ provisional result exponent value of -129 represents a condi~ 
tional underflow value (CUFL). While -129 itself is outside of 
the allowable range, the value of -128 which will be the final 
exponent value if the result fraction requires shifting to the 
right, is within range. Any provisional result exponent value 
more negative than -129 is definitely an underflow value (UFL). 
A value of +128 or larger is definitely an overflow value (OFL). 
In summary, any provisional result exponent value which is out­
side of the normal range (+127 through -128) indicates the possi­
bility of an overflow or underflow. There is also one in-range 
provisional result exponent value which represents a conditional 
overflow value (COFL). This is the value +127 which will produce 
the out-of-range final result exponent value +128 in the event 
that the result fraction requires shifting to the right. 

An attempt to divide by zero is also evaluated as an overflow 
condition. The divide-by-~ero attempt is recognized by sensing 
the zero status of the divisor fraction. 

At the start of the floating point divide routine, the operand in 
the floating point accumulator is the dividend and the new operand 
from memory is the divisor. The divisor fraction is loaded into 
the B register and the dividend fraction remains in the A 
register. 

-

To divide fractions, a comparison algorithm with fast shift over 
zeros is used. Twenty-four iterations of the fraction divide 
step are performed for single precision division. At each itera­
tion, the partial remainder (or, in the case of the first itera­
tion, the divident fraction) in A is compared with the divisor 
fraction in B and a quotient bit is shifted left into the MQ 
register. If A is greater than or equal to B, then the quotient 
bit is one and the difference, A minus B, is shifted left into A. 
If A is less than B, then the quotient bit is zero and the con­
tents of the A register are shifted left. If bit 46 or bit 47 of 
A is a one, then the comparison and the subtraction (if required) 
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are performed by the arithmetic and logic unit (ALU). If bit 46 
and bit 47 are both zero, then A is less than B, the quotient bit 
is zero, subtraction is not required, and A is shifted left. In 
the latter case, iterations are performed at twice the normal 
clock frequency. 

A description of the various branches of the ~DV routine is pre­
sented in the paragraphs which follow. A numerical example is­
provided by figures 4-17 and 4-18. 

4.5.8.1 Microinstructions DISO through DIS2 

Microinstruction DISO performs the same functions as starting 
~icroinstruction LDSO of the FLD routine. (Refer to 
paragraph 4.5.1 for a description of LDSO.) 

kicroinstruction DISl transfers the sign bit (S) field of the 
first operand word from the data latch to the BS flag and 
transfers the high fraction field of the first operand word (SA) 
from the data latch to the MQ register. It also subtracts the 
exponent field of the first operand word, obtained from the 
data latch, from the divident exponent code residing in the 
exponent register (E) and places the difference in the exponent 
register. A component of +128 is added to the difference as it 
is formed in order to preserve the excess-128 representation. If 
an out-of-range exponent difference (larger than +127 or more 
negative than -128) occurs, the ECRY+ flag is set high. This 
prepares for a jump from the next microinstruction. The E128 
code in the FLAG field of the microinstruction effectively 
introduces a component of +128 into the exponent computation as 
required to maintain the excess-128 code. 

Microinstruction DIS2 sets the ZERO+ flag to the high level if 
the dividend fraction, held in the A register, is zero. Since 
the output of the data-loop ALU controls the switching of the 
ZERO+ flag, the function ALU = A must be selected in order to 
allow the status of the A register to determine the status of 
the ZERO+ flag. The SIF code in the MEM field of microinstruc­
tion DIS2 suspends the advance to the next micioinstruction until 
the end of the memory cycle during which the second operand word 
is received from memory and loaded into the FPP data latch. As 
the advance to the next microinstruction occurs, the SIF code 
causes control to be returned to the central processor so that 
the next instruction fetch can be initiated. The JC code in the 
JCOND field causes a jump to microinstruction DIS3A if ECRY+ 
was set high during DISl. Thus, this path is followed if an 
out-of-range provisional exponent result value is obtained. If 
the provisional exponent result value is within range, the routine 
advances to microinstruction DIS3. 
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Microinstruction Operation Results 

Dividend (Result of E I 1 0 0 0 0 0 1 1 I AS• ~ previous routine) 
A,B I o. 1 1 1 1 1 1 0 0 0 .... 0 I 

D150 Transfer from memory 5 Exponent Fraction (High) 
to data latch 1 ,,. ,,... ..... ~ 

Io 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

DL 

DIS! DL(5)-+B6 BS+ IT] 
DL(5A)_.MQ(5A) MQ Io. 1 1 1 0 0 0 ••••• o I 
E - DL(SE) + 128_.E E I 1 0 0 0 0 0 1 o I 
[EA7 0 EAS]__.ECRY ECRY+ [9 

IJISZ [A • 0 ]__.ZERO ZERO+ GJ 
Transfer from memory DL Io 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
to data latch 

JC 

D153 DL(SB)__.MQ(SB) MQ Io. 1 1 1 0 0 0 ..... o I 
JZ 

DIS4 MQ_.B B 1 a .1 1 1 0 0 0 ...... 0 I 
24--+SC SC lo 0 0 1 l 0 0 0 I 
DIO AS+ 0 

SUB+ [EJ 

Figure 4-17. FDV Example, +7.875 divided by +1.75 .. +4.5 
(Sheet 1 of 2) 
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I 

I 

Comments 

.i-2 3 x ( 2-1 + 2- z + 2-3 ... z-4 + 2-5 ... 2-6 + O+ ... •0) 

... 22 zl 20 2-1 z- 2 + 2· 3 ... o + 
, .. + + + + .. + 0 

.. +7.875 

Sign bit (DL15) .. o. Therefore, number is positive. Exponent .. +1. 
z-1 + -2 -3 lligh fraction .. 2 + 2 + 0 + ... +O 

Number is 21 C z-1 + z-2 ... z-3) • zo + 2-1 + 2- 2 
• +1.75 

Positive sign saved in BS. 
• 

Sign and high fraction transferred to MQ 

131 - 129 + 128 "' 130 

Exponent is within range so ECRY remains re!;et 

. 
Dividend fraction is non-zero so ZERO remains reset. 

Znd operand word is received by FPP 

Go to 0153 because ECRY+ is low. 

Low fraction (in this case all zeros) is transferred from DL to MQ. 

Go to DIS4 because ZERO• is low. 

Divisor fraction is transferred from MQ to B. 

Shift counter is set to 24 to prepare for DISS. 

AS+ remains low because AS ,. BS. 

SUB+ is set in preparation for subtractions in DISS 



Microinstruction Operation 

DISS ( E + 1 ?:: 2 S 6 )-+EC RY 

Divide 

sc-.o 

DIS6 MQ-.A,B 

[B • OJ--.ZERO 

DIS7 ZTZ 

JSGN 

DISS A X 2-l_.A 

B x z- 1--.s 
E + 1-+-E 

JZ, END 

Results 

ECRY+ IT] 

First ·subtraction 

A s 0.1 1 1 1 1 1 0 0 0 
B s 0.1 1 1 0 0 0 0 0 0 

ALU s 0.0 0 0 1 1 1 0 0 0 

Second subtraction 

A s 0.1 1 1 0 0 0 0 0 0 

B . 0.1 1 1 0 0 0 0 0 0 

ALU "' 0.0 0 0 0 0 0 0 0 0 

(See also figure 4-lS.) 

MQ I 1.0 0 1 0 0 0 0 ....... 

.... 

. ... 

.... 

ol 

A,B ! 1.0 0 1 0 0 0 0 . . . . . . oj 
ZERO+ G 

ZERO+ DJ 

A,B 10.1 0 0 1 0 0 0 ..•.. ol 

E j 1 0 0 0 0 0 1 ii 

Figure 4-17. FDV Example, +7.S7S divided by +1.75 • +4.S 
(Sheet 2 of 2) 
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Comments 

ECRY remains reset because (E + 1) "' 131 < 256 

(First subtraction occurs during first clock period. Result is shifted 
left one position as it enters A register so as to provide value shown 
for SC • 23 in figure 4-lS.) 

Remainder or, if difference is positive or zero, remainder minus 
divisor from ALU is shifted left one bit position into A register at 
each clock time. A one is shifted into MQ each time that positive or 
zero difference is sensed. A zero is shifted into MQ each time 
negative difference is sensed. 

. Quotient is transferred from MQ to A, B 

ZERO flag remains reset because divisor fraction is non zero. 

Go to DIS7 because ECRY+ is low. 

ZERO flag status is inhibited from changing 

Go to DISS because A47 = l~ (Fraction result has overflowed into sign 
bit position.) 

Final fraction value is 2-l + 0 + 0 + 2- 4 + 0 + .. + 0 

Final exponent value is +3 

Result is 23 (2-l + 2- 4) s z2 + 2-l = +4.S 

Routine ends because ZERO+ is low. 



SHIFT COUNT 

23 

22 

21 

20 

19 

18 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

0 
VTl1-3206 

MQ REGISTER A REGISTER a ~u 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , 0 0 0 1 1 1 0 0 0 

o o o o o·o o o o o o o o o o o o o o o o o 1 o o o 1 , 1 o o o o 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 

000000000000000000001001 000000000 ••••• 

o o o o o o o o o o o o o o o o o o·o 1 o o 1 o o o o o o o o o o 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 , 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

o o o o o· o o o o o o o o o o 1 o o i o o o o o o o o o o o o o o 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 l 0 0 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

l 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Divident Fraction= 0.11111100 .. . 
Divisor Fraction= 0.111000 ... . 

Figure 4-18. Fraction Division Procedure Example 

4.5.8.2 Microinstructions DIS3 through DISS and OFL2 

This branch is entered when the provisional exponent result 
obtained during microinstruction DISl is within range. Micro­
instruction DIS3 loads the second operand word from the data 
latch into the MQ register. The JZ code in the JCOND field of 
this microinstruction causes a jump to microinst~uction DIS4Dl if 
the ZERO+ flag is at the high level; that is, if the dividend 
fraction is zero. If ZERO+ is low, the routine advances from 
DIS3 to DIS4. 
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Microinstruction DIS4 sets the AS+ flag to the low level if the 
signs of the two operands are the same or sets the AS+ flag to 
the high level if the signs are different. This action occurs in 
response to the DIO code in the FLAG field of the microinstruc­
tion. This code also causes the SUB+ flag to be set high as 
required to select the subtraction function for the data loop 
ALU •. The subtraction function remains selected throughout 

. the fraction division procedure of the next microinstruction. 
This provides the means of determining whether the partial 
remainder is larger than or equal to the divisor fraction. The 

_divisor is permanently subtracte~ f!om the pa~!ial remainde~ ___ . 
when the difference output from the ALU is actually loaded into 
the A register and this occurs only when the difference is 
positive or zero. The DIS4 microinstruction also sets the shift 
counter to 24. This determines the number of iterations of the 
fraction divide step during the next microinstruction. The 
constant 24 is loaded into the shift counter via the exponent 
loop ALU. It originates in a location within the constant PROM 
which is addressed by the FDV OP code in the FPP instruction • 
register. 

Microinstruction DISS performs the 24 steps of the fraction divi­
sion procedure. The DIV code in the FLAG field conditions the 
arithmetic control for the continued selection of the subtraction 
function, for the shifting of and conditional subtractions from 
the partial remainder, and for the generation of the quotient 
bits and shifting of these bits into the MQ register. The WSDN 
code in the MEM field suspends the termination of the micro­
instruction until the clock time at which the shift count reaches 
zero. 

1 A subsidiary function performed by DISS is the formation of (E+l) 
and the setting of ECRY+ to the high level if this summation 
generates a carry out of the highest order bit position of the 
exponent-loop ALU. This indicates a conditional overflow condi­
tion; that is, the provisional result exponent in excess-128 code 
is 255 so that an overflow will occur if the fraction result has 
to be shifted to the right. 

Microinstruction DIS6 copies the quotient fraction from the MQ 
register into the A and B registers. It also sets the ZERO+ 
flag to the high level if the divisor fraction initially in the 
B register is zero. In order to provide the control of the 
ZERO+ flag, the function ALU = B must be selected so that the 
divisor fraction value residing in the B register appears at the 
output of the ALU. The JC code in the JCOND field of micro­
instruction DIS6 causes a jump to microinstruction DIS7C if 
ECRY+ was set high in DISS; that is, if the provisional exponent 
result value is +127. If ECRY+ is low, the routine advances 
from DIS6 to DIS7. If the result fraction is normalized and the 
divisor is not zero, this is the final microinstruction of the 
routine. The JSGN code in the JCOND field of this microinstruc-
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tion causes a jump to microinstruction DISS if the result 
fraction has overflowed into the sign bit or if the divisor is 
zero. The ZTZ code in the FLAG field or DIS7 inhibits any 
change in the status of the ZERO+ flag so that the status of this 
flag still indicates whether the divisor fraction is zero, at 
the time that DISS is entered. 

-- - - - --- - - -

Microinstruction DISS shifts the result fraction one position to 
the right in the A and B registers and increments the exponent 
result in the E register. If the ZERO+ flag is at the low level, 
this is the final microinstruction of the routine. The JZ code 
in the JCOND field causes a jump to microinstruction OFL4 if 
the divisor is zero. This microinstruction establishes the 
'overflow format (all ones-in the.A ·and B registers and E register) 
and sets the interrupt flag. Thus, the attempt to divide by 0 
produces the overflow format. 

4.5.8.3 
I . Microinstructions DIS3A through DISSA, OFL4, and UFL2; 

DIS7B, DIS8B, and UFLZ 

This branch, which is entered from DIS2 when an out-of-range 
provisional exponent result is computed in DISl, is identical to 
the DIS3 through DIS6 (described in paragraph 4.5.8.2). However, 
this branch leads to different terminations as appropriate to 
the out-of-range exponent condition. Whereas the setting of 
ECRY+ to the high level in DISS indicates a conditional overflow 
condition, the setting of ECRY+ to the high level in DISSA 
indicates a conditional underflow (CUFL) condition. (In this 
case, the provisional exponent excess-128 code of 255 represents 
the exponent underflow value of -129. This causes a jump from 
DIS6A to DIS7B in response to the JC code in the JCOND field of 
DIS6A. The JSGN code in the JCOND field of microinstruction 
DIS7B causes a jump to microinstruction DIS8B if the result 
fraction has overflowed into the sign bit position. (Code JSGN 
causes a jump in response to either a one in the sign bit posi­
tion of the A register or a high ZERO+ flag signal. In this case, 
however, it is known that the ZERO+ flag is low. This is because 
a conditional underflow cannot occur in division when the divisor 
is zero. If the divisor is zero then its exponent is -128. 
When this is subtracted from the exponent of the dividend, the 
smallest result that can be obtained is the in-range value, 
zero.) Microinstruction DIS8B shifts the result fraction in the 
A and B registers one position to the right and increments the 
exponent. The result fraction is now normalized and the exponent 
is now at the in-range value of -128. 

If the result fraction has not overflowed into the sign bjt 
position, then the final result is an underflow. In this case, 
the routine advances from DIS7B to UFL2. This microinstruction 
clears the FPP. accumulator and sets the interrupt flag. 
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In the case where ECRY+ is not set high in microinstruction 
DISSA, the routine advances from DIS6A to DIS7A. If the divisor 
fraction is zero, then the JZ code in the JCOND field ~f DIS7A 
causes a jump to OFL4. Thus, the attempt to divide by 0 is 
treated like an exponent overlow. Microinstruction OFL4 loads 
the overflow value (all ones in the fraction and exponent fields) 
into the PPP accumulator and sets the interrupt flag. (The 
constant z47, used in OFL4, is loaded into the constant register 
by DIS7A in response to the C47 code in the FLAG field of DIS7A.) 

If the divisor fraction is not zero, then the routine advances 
from microinstruction DIS7A to microinstruction DISSA. The JESGN 
code in the JCOND field of this microinstruction causes a jump to 
microinstruction UFL2 if the most significant bit of the exponent 
result is a one. This result, indicates that the value in the 
exponent register is more negative than -128; that is an under­
flow value. Microinstruction UFL2 clears the FPP accumulator and 
sets the interrupt flag. If the most significant bit of the expo­
nent result is zero, then the value in the exponent register is 
more positive than +127; this is an overflow value. In this case, 
the routine advances from DIS8A to OFL4 and generates an overflow 
interrupt. 

4.5.8.4 Microinstructions DIS4Dl through DIS6D, ZER03, and OFL2 

This branch is entered either from DIS3 or from DIS3A when the 
dividend fraction is sensed to be zero. The purpose of the 
branch is to determine whether the divisor fraction is also zero. 
If the divisor fraction is also zero, then an attempt to divide 
by zero is occurring. In this case, the routine terminates in 
microinstruction OFL2 which generates an overflow interrupt. If 
the divisor fraction is non-zero, then a valid zero result is 
indicated. In this case, the routine terminates in microinstruc­
tion ZER03 which clears the FPP accumulator. Microinstruction 
DIS4Dl transfers the divisor fraction from the MQ register to the 
B register in preparation for the zero test. Microinstruction 
DISSD selects the function ALU = B in order to set the ZERO+ 
flag to the high level if the divisor fraction is zero. Micro­
instruction DIS6D provides the jump to OFL2 if the ZERO+ flag is 
high. The C47 code in the FLAG field of DIS6D sets a one into 
bit 47 of the constants register for use in the OFL2 
microinstruction. 

4.5.9 FDVD Routine 

As illustrated in figure 4-19~ the double prec1s1on division 
routine performs functions required for division by a double 
precision divisor and then jumps into an appropriate microinstruc­
tion of the FDV routine. Double precision division is similar to 
single precision division except that the number of memory words 
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in the divisor is four rather than two and the number of quotient 
bits developed is 48 rather than 24. 

Microinstructions DIDO through DID4 are identical to microinstruc­
tions MUDO through MUD4 of the FMUD routine (paragraph 4.5.7). 
The remaining microinstructions of the FDVD routine are all 
similar to microinstructions of the FDV routine. DIDS is similar 
to DISl in that it transfers the fraction field of an operand 
word (in this case the 3rd operand word) from the data latch to 
the MQ register, subtracts the divisor exponent from the dividend 
exponent, and sets ECRY+ high if ~he exponent difference is out 
of range. DID6 is identical to DIS2. DID7 and DID7A are similar 
to microinstructions DIS3 and D(S3A in that each transfers the 
final operand word into the MQ register and each causes a jump 
if the dividend fraction is zero. DIS4D2 of FDVD is identical to 
DIS4Dl of FDV. From DIS4D2, a jump into DISSD of FDV oc~urs. 

DID8 and DID8A are similar to DIS4 and DIS4A. However, the 
DID8 and DID8A instructions set 48 rather than 24 into the shift 
counter. From DID8 and DID8A, jumps occur into DISS and DISSA 
respectively of FDV. 

Double precision fraction division in steps DISS through DISSA 
is similar to single precision fraction division except for the 
number of iterations and the destination of the quotient bits. 
In double precision division, quotient bits are shifted into 
bit 0 of the MQ register. 

4.5.10 FST Routine 

The purpose of the single precision store routine is to round off 
a single pre~ision floating number resulting from a previous 
arithmetic operation and store this number in memory. Roundoff 
may cause fraction overflow. In this case, the fraction must be 
shifted to the right one bit position in order to normalize it. 
This, in turn, may cause an exponent overflow. If an exponent 
overflow occurs, the exponent and fraction fields of the number 
must be set to the maximum values before the number is stored. 
(Actually, the routine stores the first operand word twice if a 
fraction overflow occurs. Thus, a corrected copy is stored in 
place of the original copy if a fraction overflow is detected.) 

As illustrated in the flow chart of figure 4-20, round off is 
implemented by the first microinstruction of the routine (STSO). 
This is accomplished by adding a binary one in bit position 24, 
obtained from the constant register (CR) to the copy of the 
previous result fraction in ~he B register. The rounded-off 
result is placed in the A register. (The required constant is 
loaded into CR prior to the start of the routine when the single 
precision FST OP code is loaded into the FPP instruction latch.) 
Microinstruction STSO resets the ZERO flag and selects the first 
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Figure 4-20. FST Routine Flowchart 

result word for output to memory. The IMC code in the MEM field 
of the microinstruction causes the initiation of the memory 
request required to transfer this first result word. 

Microinstruction STSl repeats the round-off operation provided 
by STSO and continues to select the first result word for output 
to memory. Microinstruction STSl forms the sum (E + 1) in the 
exponent loop. A carry out of the highest order bit position of 
the exponent-loop ALU during this summation indicates that 
(E + 1) is out of range. This sets the ECRY+ flag to the high 
level, indicating that a fraction overflow will produce an 
exponent overflow. The JSGN code in the JCOND field of the 
microinstruction causes a jump to microinstruction STSZA if a 
fraction overflow into the sign bit position is sensed. 
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Microinstruction STS2A continues to provide.the rounded-off 
fraction function and continues to select the first result word 
so that the memory transfer that is in progress can be 
completed. The IMC code in the MEM field of the microinstruction 
suspends the termination of the microinstruction until the 
memory cycle which accomplishes this transfer has been completed. 
This microinstruction also loads the rounded-off fraction into 
both the A and B registers. The C47 code in the FLAG field 
causes a binary one to be loaded into the bit 47 position of the 
constant register in preparation for the possible requirement to 
generate an overflow interrupt. The JC code in the JCOND field 
causes a jump to microinstruction STS3B if ECRY+ is high; that 
is, if the required incrementation of the exponent would cause 
an exponent overflow. 

If ECRY+ is low, the routine advances to microinstruction STS3A. 
This microinstruction shifts the result fraction to the right one 
position in the A and B registers and increments the exponent. 

·The CCR code in the FLAG field resets the constant register. 
The routine then jumps back to microinstruction STSO to transfer 
the corrected version of the result to memory. Notice, however. 
that on the second pass through STSO and STSl, the constant 
register contains zero. Thus, there is no repetition of the 
round-off but only the required repetition of the transfer of 
the first result word to the memory. On this second pass, no 
overflow can occur and, consequently, the routine advances to 
microinstruction STS2, STS2 is reached on the first pass if 
roundoff does not cause fraction overflow. STS2 continues to 
select the first result word for output to memory, The INC code 
in the MEM field suspends the termination of the microinstruction 
until the memory cycle is completed. The INC code also causes 
the memory address to be incremented and causes dnother memory 
cycle to be requested at the time that the microinstruction is 
terminated. 

From STS2, the routine advances to STS3. This microinstruction 
again provides the rounded-off fraction function. However, now, 
the second result word is selected for output to memory. The 
SIF code in the MEM field suspends the termination of the micro­
instruction until the memory cycle has been completed. The SIF 
code also causes control to be returned to the central processor 
at the time that the microinstruction is terminated. This allows 
the next instruction fetch to be initiated by the central 
processor. 

From STS3, the routine advances to STS4 where it ends, This 
instruction loads the rounded-off fraction into the h and B 
reg i s t er s . (Ac tu a 11 y , t he r o.µ n de d - o f f v a 1 u e i s c on t a in e d in the 
24 most significant bit positions and the 24 least significant 
bit positions, which are not truncated, contain an excess 
increment.) 
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As noted earlier, the sensing of the overflow condition causes 
a jump from STS2A to STS3B. This microinstruction causes the 
maxi~u~ fracti?n value to be loaded into the B register. The 
explicit function used to accomplish this result is to perform 
the ones complementation of the constant register (which now has 
a one in the sign bit position and zeros in all of the magnitude 
positions). The OFL code in the FLAG field of this instruction 
causes the interrupt flag· to be set~ The routine then loops 
back to STSO via STS4B which resets the constant register. With 
the constant register cleared, no fraction overflow can occur 
and the routine advances from STSO through STS4 as previously 
described. 

4.5.11 FSTD Routine 
1rhe-FSTD routine (figure 4-21) is similar to the PST routine. 
Because of the greater number of significant bits provided in a 
double-precision result, the constant that is added during round 
off is different from that used in the FST routine. The appropri­
ate constant value (a binary one in bit position 1) is loaded into 

.the constant register prior to the start of the routine after the 
FSTD OP code has been loaded into the instruction latch. The 

!most basic difference between the routines is that the FSTD 
routine must transfer four result words rather than two result 
words. Thus, where microinstruction STS3 of FST contains a SIF 
code to return control to the processor after the transfer of the 
second word, the corresponding FSTD microinstruction (STD3) 
contains an INC code to increment the memory address and request 
another transfer after the second word transfer has been 
completed. Microinstruction STD4 presents the third result word 
to the memory data bus and waits for this transfer to be 
completed. It then increments the memory address and initiates 
the next memory cycle. STDS presents the fourth result word to 
the memory data bus and returns control to the central processor 
after this transfer has been completed. 

4.5.12 FIX Routine 

This routine converts the floating point result computed by the 
previous FPP instruction routine into the integer format and 
stores the integer in memory. The floating point number is 
truncated during the conversion so that only the integer portion 
of the floating point number contributes to the final integer 
value; that is, there is no round-off to the nearest integer 
value. 

The routine first determines whether the exponent of the floating 
point number is negative. If this is the case, then the 
magnitude must be less than one. Thus, the routine sets the 

( . 
' " 
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Figure 4-21. FSTD Routine Flowchart 

integer to zero and stores this value. If the exponent is zero 
or positive, the routine subtracts it from 15. If the difference 
is positive or zero, then the integer portion of the floating 
point number is definitely within the range that can be repre­
sented by the integer format. An exponent value of exactly 
15 represents the value zlS X (fraction). Since the most 
significant bit of the fraction has the weight of z-1, this means 
that this bit must have the weight of zl4 in the integer format; 
that is, it must occupy the bit 14 position in that format. This 
result is achieved without any shifting of the fraction. (During 
the transfer from the B register to the memory bus, the most 
significant magnitude bit po~ttion of the fraction is connected 
to the bit 14 line of the memory bus.) If the exponent value is 
less than 15, then the fraction must be shifted to the right 
number of positions corresponding to the difference between 
15 and the exponent value in order to provide the appropriate 
alignment for the integer format. 
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Negative numbers are represented in twos com~lement form in the 
integer format. Before the twos complementation can be accom­
plished, the fraction must be truncated so that only the integer 
portion of the number is complemented. 

If the difference (15 - exponent) is negative, then the integer 
portion of the floating point number is either the most negative 
number that can be represented in the integer format (100000~) or 
else it is out of range. The routine first determines the sign 
of the number. If the sign is positive, then the routine sets 
the integer to the largest positive in range value and sets the 
interrupt flag to indicate that an overflow has occurred. If 
the number is negative, the routine determines whether it is 
the most negative in-range number or a negative overflow. In 
either case, the most negative in-range integer value (100000 8) 
is stored in memory. In the overflow case, the interrupt 
flag is set. 

Microinstruction FIXO (figure 4-22) copies the floating point 
exponent code into the shift counter in preparation for the 
subsequent possible subtraction of this exponent code from the 
constant 143 (the excess-128 code for 15). In response to the 
SS code in the FLAG field, the sign bits held in the AS and BS 
flags are swapped. This saves the sign of the floating point 
number in BS. The JESGN code in the JCOND field causes a jump 
to microinstruction FIXlA if the most sifnificant bit of the 
exponent code is a one; that is, if the exponent is zero or 
positive. 

If the exponent is negative, indicating a zero integer, the 
routine advances from FIXO to FIXl. FIXl loads zero into the 
B register. Also, because of the ZAS code in the FLAG field, 
it resets the AS flag (making AS+ low as required to indicate 
a positive sign). 

From FIXl, the routine advances to the branch consisting of 
microinstructions FIX6A through FIXSA. This branch stores the 
integer in memory. The IMC code in the MEM field of microinstruc­
tion FIX6A, causes the required memory cycle to be requested. 
The SIF code in the MEM field of microinstruction FIX7A suspends 
the advance to the next microinstruction until the required 
memory cycle has been completed and then causes control to be 
returned to the central processor allowing the next instruction 
fetch to be initiated. During the memory cycle, bits 32 through 
47 of the quantity (CR+ B), from the data-loop ALU, are 
connected to the memory data bus. When this path is followed, 
bits 32 through 47 of both the B register (B) and the constant 
register (CR) are zeros. Thus, an all zero integer is stored. 

Microinstruction FIX8A restores the initial contents of B, which 
have been saved in A during the routine. 
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When the exponent is found to be zero or positive in microinstruc­
tion FIXO, a jump to microinstruction FIXlA occurs as previously 
noted. Microinstruction FIXlA forms the difference (143 - SC) 
and places this difference in the shift counter. If the 
difference is positive or zero, the ECRY+ flag is set to the high 
level indicating that the floating point number is definitely 
within the range that can be represented by the integer format. 
The ZAS code in the FLAG field of this microinstruction causes the 
AS flag to be reset (so that AS+ is low). This prepares for use· 
of the AS/BS comparison as a means of determining whether the 
number is positive or negative. 

Microinstruction FIXlE swaps the signs in the AS and BS flags in 
response to the SS code in the FLAG field. This returns the sign 
of the number, which was previously saved in BS, to AS and places 
BS in the reset status (BS+ low) in preparation for the subsequent 
AS/BS comparison. The JC code in the JCOND field of microinstruc­
tion FIXlE causes a jump to FIX3B if ECRY+ is high; that is, if 
the number is definitely within range. 

Microinstruction FIX3B shifts the contents of the B register to 
the right the number of .times corresponding to the difference 
computed in FIXlA as required to provide the appropriate align­
ment of the number. The shift count is decremented as each right 
shift occurs. The WSDN code in the MEM field inhibits the 
advance to the next microinstruction until the clock time when 
the shift count reaches zero. The CCR code in the FLAG field 
clears the constant register. This erases a binary one bit which 
is automatically loaded into the constant register at the start 
of the routine and which otherwise could affect the final result 
that is stored. The JASGN code in the JCOND field causes a jump 
to microinstruction FIX6A if AS = BA; that is, in this case, if 
AS+ is low indicating that the number is positive. The termina­
tion of the routine when the branch beginning at FIX6A is 
executed has already been described. Notice, however, that when 
the branch is entered from FIX3B, the value in the constant 
register is zero and the integer in B is transferred to memory 
without modification. 

When AS+ is high, indicating that the number is negative, the 
routine advances into the branch beginning with microinstruction 
FIX4B. The purpose of this branch is to convert the negative 
number to twos complement form and then store it. Before the 
number can be conplemented, it must be truncated. This is 
accomplished by transferring bits 32 through 47 of the number 
from B register to the MQ register. Since the remainder of the 
MQ register contains all zeros both before and after this 
transfer, the transfer places the truncated version of the 
number in the MQ register. Microinstruction FIX4B executes this 
transfer. Microinstruction FIXSB transfers the truncated number 
from the MQ register into the B register. Microinstruction 
FIX6B performs the twos complementation (by forming -B and storing 
it in B) and also swaps the sign bits again. This sign swap 
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again clears AS. This is necessary in order to avoid ones 
complementation of the result that is transferred from the data­
loop ALU output to the memory bus during the next two: 
microinstructions. 

Microinstructions FIX7B and FIXSB, which store the result, are 
identical to the previously described microinstructions FIX6A 
and FIX7A. M~croinstruction FIX9B copies the floating point 
fraction which has been held in the A register throughout the 
routine into the B register and again swaps signs. Since the 
exponent register still contains its initial contents, the accumu­
lator fields are now in the same status as when the routine was 
entered. · · 

Now consider the case where the exponent is larger than 15. In 
this case, ECRY+ remains low when FIXlA is executed so that the 
routine advances from PIXIE to FIX2A. This microinstruction 
transfers the negative difference computed in FIXlA from the 
shift counter to the E register in preparation for a test for the 
largest in-range negative value. 

Microinstruction FIX3A now forms the sum (E + 1) and sets ECRY+ 
high if a carry is generated out of the most significant bit 
position of the exponent-loop ALU. This indicates that the 
difference computed in FIXlA was -1; that is, that the exponent 
value is 16. This means that if the fraction value is 2-1, and 
the number is negative, it can still be represented in the integer 
format. The C47 code in the FLAG field of microinstruction FIX3A 
causes a binary 1 to be loaded into bit position 47 of the 
constant register. The subsequent use of this constant depends 
upon the path that is followed. The JASGN code in the JCOND field 
causes a jump to microinstruction FIX4C if AS = BS; that is, if 
the number is positive. 

Microinstruction FIX4C loads -1 in twos complement form into the 
B register (that is, it loads all ones into the B register). It 
also restores the exponent register to its initial status by 
subtracting the difference computed in FIXlA, and now held in the~ 
shift counter, from 143 and loading the result into the exponent 
register. The OFL code in the FLAG field sets the interrupt flag. 
From FIX4C, the routine jumps to the branch beginning at FIX6A. 
This branch has previously been described. Notice, however, that 
when this branch is entered from FIX4C, the B register contains 
all ones and the CR register contains a one in the sign bit 
position (47). The result, (CR+ B), has ones in all bit posi­
tions except the sign position. Thus, the integer that is 
obtained from the bit 32 through bit 47 segment of this function 
is the largest in-range positive integer value. 

When the test of microinstruction FIX3A determines that the 
number is negative, the routine advances to FIX4A. This micro­
instruction shifts the fraction one bit position to the left and 
restores the exponent register to its initial status. The 
fraction is left shifted by forming A X 2 in the ALU and loading 
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it into the B register. This left-shifted fraction is used in the 
test for the largest in-range negative integer value in the event 
that the exponent is found to be 16. Recall that if the exponent 
is 16, the ECRY+ flag is set high in FIX3A. The JC code in the 
JCOND field of FIX4A thus causes a jump into the branch beginning 
at FI XSD if the exponent value is 16. · ·-if the exponent value·· is -
greater than 16, then ECRY+ is low a~d the routine advances from 
FIX4A to FIXSA. This microinstruction is similar to micro­
instruction FIX4C in that it sets all ones into the B register, 
sets the interrupt fl·ag and then leads to the branch starting at 
microinstruction FIX6A. Thus, in this case also, the largest 
positive in range integer value is stored. 

The branch beginning at FIXSD determines whether the number 
represents a negative overflow value or the largest in-range 
negative value. In either case, the number which is stored is 
the most negative integer value. The only difference is that, 
in the case of an overflow, the i~terrupt flag is set. 

Microinstruction FIXSD adds the binary one held in the bit 47 
position of the constant register (CR) to the left-shifted 
fraction held in the B register and stores bits 32 through 47 of 
the result in the MQ register. If the number is the largest 
in-range integer value, then the truncated result in the MQ 
register is all zeros. Microinstruction FIX6D transfers this 
result to the B register. Microinstruction FIX7D sets the ZERO+ 
flag to the high level if this result is all zeros. Micro­
instruction FIX8D loads all ones into the B register. The JZ 
code in the JCOND field of this instruction causes a jump.into 
the branch beginning at FIX6A if ZERO+ is high: that is, if the 
result is the most negative in-range integer. If the result is 
an overflow, then microinstruction FIX9D is executed before 
jumping to FIX6A. The OFL code in the FLAG field of this 
microinstruction causes the interrupt flag to be set. 

When FIX6A is entered from FIX8D or FIX9D, the B register 
contains all ones and the CR register contains a one in bit 
position 47. This produces a (CR+ B) function which has a zero 
in the bit 47 position and a one in every other bit position as 
previously noted. However, in this particular case, AS+ is high. 
This produces an inversion of the data as it passes from the ALU 
output through the 1/0 data multiplexor to the memory data bus so 
that the data that is stored has a one in the bit 47 position and 
zeroes in the 32 through 46 bit positions. Thus, the most 
negative in-range integer (lOOOOOs) is stored in memory. 

Figure 4-23 provides a numerical example of the FIX routine. 

4.5.13 System Reset/Time-out Routine 

This routine, illustrated in figure 4-24, is entered when a 
system reset (SRST-) signal is received by the FPP or when a 
time-out occurs. The routine has two branches, the system reset 
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Figure 4-24. System Reset/Time-Out Routine Flowchart 

branch (microinstruction RST2) and the time-out branch (micro­
instructions RST2A through RST4A). The system reset branch loads 
zero into the fraction, exponent, and sign fields of the FPP 
accumulator. The timeout branch waits for the completion of any 
memory cycle that is currently in progress, then returns control 
to the processor, sets the interrupt flag, and sets an illegal 
number into the fraction field to serve as an identification of 
the reason for the interrupt. 
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Microinstruction RSTO, the entry point into the routine, serves 
no other function than to provide a jump to RSTl. The JTO code 
in the JCOND field of RSTl causes a jump to the timeout branch 
if the timeout flag (TO+) high. The C47 code in the FLAG field 
of RSTl loads a one bit into the bit 47 position of the constant 
register. 

Microinstruction RST2A sets the fraction fields in the A and B 
registers to the constant value loaded in RSTl. This places a 
one in the sign bit position (bit position 47) and zeros in the 
magnitude bit positions. RST2A also clears the E register. The 
ZAS code in the FLAG field of RST2A resets the AS flag. The IMC 
code in the MEM field causes the advance to RST3A to be delayed 
until the end of any memory cycle that is currently in progress. 
(The IMC code would normally initiate a memory request. However, 
~ith TO+ high, this request func~ion is inhibited.) 

Microinstruction RST3A shifts the contents of the A and B 
registers to the right one bit position. This moves the ones 
from the sign positions into the most significant magnitude 
positions which is a valid normalized number (representing 1/2). 
The CTO code in the FLAG field causes the TO+ flag to be reset 
to the low level. The SIF code in the MEM field causes control 
to be returned to the central processor so that the next instruc­
tion fetch can be initiated. 

Microinstruction RST4A shifts the contents of the A and B 
registers to the right one bit position. This creates a non­
normalized, illegal number. The UFL code in the FLAG field 
causes the interrupt flag to be set. 

When the routine is entered due to a system reset signal, the 
TO+ flag is at the low level. In this case, the routine advances 
from RSTl to RST2. RST2 clears the floating point accumulator. 
The A and B registers and the exponent register are cleared. In 
response to the ZAS code in the FLAG field, the AS flag is reset. 

4.6 DETAILED FUNCTION DESCRIPTION 

The remainder of this section describes the functional circuits 
of the FPP. Each of the functional circuits illustrated as a 
separate block in figure 4-2 is covered in a separate paragraph. 

Subscripts identifying particular members of a logically identical 
group of control or clock signals are omitted from the mnemonics 
used in the text and illustrations which follow. For example, 
the three logically identical clock signals; KKMOK-1, KKMOK-2, 
and KKMOK-3; are all referred to as KKMOK-. 
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4.6.1 Central Processor Control 

When a floating point instruction is decoded, the central 
processor control forces the central processor microprogram to a 
control store location which contains a no-operation (NOP) 
microinstruction and locks the central processor microprogram at 
this location until the FPP microprogram reaches a step which 
specifies an instruction fetch. Th~ central processor control 
then forces the central processor microprogram to a control store 
location which contains the start of an instruction fetch 
routine. In addition to the two valid addresses which central 
processor control supplies to the central processor control store 
address lines, central processor control is also capable of 
supplying repetitive high signal pulses to the address lines 
during periods when they are not in use. The purpose of these 
transient signals is to maintain some positive charge on the lines 
so that they can be placed at the high level more quickly at the 
start of a valid address period. If the system includes a WCS, 
then this charging function is provided by the WCS and the 
transient signal generating capability of central processor con­
trol is disabled. 

IDGO+ . --
CPSl+ ..... -- ENABLE ENABLE - (C3A8-)_.. 

KKMOK- GATES 
-.. ENABLE-

• 
KKMHC+ _. ... 

CONTROL MULTIPLEXOR 
KKMPA- STATE CP168.±. CEAD n (0-8) 

...... _. -- COUNTER .... 
CHARG+ ..... 

CPSI+ 
HARD-WIRED PU+ AND GND INPUT~ 

:: .... 

CPSl- ..... SELECT --
IDGO+ ..... ..._ -- --

CPSIFt ..... L...-+ ... 
SYRST±. 

KKCS- SRST- ...... --_... -- --.... 
SYSTEM OR 

KKMCD+ _. INSTRUCTION TIME-OUT .... FETCH FLAG RESET 
CS SIF+ PRTO- -- SRST- --... -- -- .. 

VTl1·3209 

Figure 4-25. Central Processor Control, Block Diagram 
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Central processor control also supplies syst~m reset signals to 
other FPP circuits in response to a system reset signal from the 
central processor or in response to a timeout signal from the 
priority control. 

The Central processor control store address lines are manipulated 
by means of a 2-to-l multiplexor and a control state counter. 
(See figure 4-25.) The control state counter not only switches 
the multiplexor input channel selection but also switches the 
levels supplied to certain input lines of each channel. This 
combination of control functions is used to select hexadecimal 
1D8, 168, or 000 for application to the central processor control 
store address lines. 1D8 is the location containing the NOP 
microinstruction 168 is the location containing a microinstruction 
which initiates the next instruction fetch routine. 000 provides 
all high outputs for use in charging the lines during periods 
when they are not in use. 
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When the floating point instruction is decoded, the IDGO+ signal 
from the instruction register is high for one 165-nanose~ond clock 
period. With IDGO+ high, the KKMCD+ pulse from the system clock 
generator resets instruction fetch flag CPSIF+ to the low level 
and the KKMPA- pulse from the system clock generator sets CPSl+ 
of the central processor control state counter to the high level. 
(Refer to figure 4-26 for central processor control timing.) 
With IDGO+ or CPSl+ high, the ENABtE- signal (C3A8-) to the 
multiplexor controlling central processor control store address 
lines CEADn- (0-8) is low as required to enable the multiplexor. 
During the period when IDGO+ is high and CPSl+ is low, multiplexor 
input channel B is selected. Under this condition, the multi­
plexor output is determined by the status of the CHARG+ signal. 
This signal is low when either IDGO+ or CPSl+ is high. Under this 
condition, the address appearing at the multiplexor output is 
hexadecimal 1D8. When CPSl+ switches to the high level, multi­
plexor input channel A is selected. Under this condition, the 
multiplexor output is determined by the status of the CP168+ and 
CP168- signals. With CPSl+ high and CPS2+ low, the CP168+ signal 
is low and the CP168- signal is high. Under this condition, 
hexadecimal 1D8 continues to be-iuppli~d to the multiplexor 
output. 

When an FPP microinstruction containing the SIF code in its MEM 
field is executed, a high CSSIF+ signal is received from the 
control store decoder. This enables the leading edge of the next 
KKCS- pulse to set CPSIF+ to the high level. With CPSIF+ high, 
the next negative-going transition of KKMPA- sets CPS2+ of the · 
control state counter to the high level. With CPSl+ and CPSZ+ 
both high, CP168- is low and CP168+ is high. Under these 
conditions, the address that is supplied on the CEADn- (0-8) lines 
is hexadecimal 168. This central processor control store loca­
tion contains a microinstruction which initiates the next 
instruction fetch routine. With CP168+ high, the next negative­
going transition of KKMPA- resets CPSl+ and CPS2+ to the low 
level. This returns the ENABLE- signal to the high level, 
terminating the FPP control of the CEADn- (0-8) lines. 

When the ENABLE- signal (C3A8-) is not in a steady-state low 
status, it is driven low during each period of coincidence of 
high KKMHD+ and KKMOK- signals, provided that the board is con­
figured t6 enable the charging function. At this time CPSl+ is 
low so that channel B of the multiplexor is selected and CHARG+ 
is high so that an all zeros (all high) set of address signals 
is supplied as required to allow positive charging of the lines. 

When a low SRST- system reset signal is received from the 
central processor, the SYRST+ signal is placed at the high level 
and the SYRST- and SRST- lines are placed at the low level as 
required to produce a general FPP reset terminating any instruc­
tion routine that is currently in progress. When a low time-out 
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signal PRTO- is received from the priority control, the SYRST+ 
line is placed at the high level and the SYRST- signal is placed 
at the low level. This produces an FPP reset which is appropriate 
to terminate the instruction in progress and allow the time-out 
microprogram routine to be executed. 

4.6.2 Priority Control 

The priority control exercises control over the interrupt request 
line (IRQC-A) to the central processor. This allows the priority 
control to inhibit all interrupts during the period that a string 
of FPP instructions is being executed. The inhibit is initiated 
when the first FPP instruction is decoded and remains in force 
until the FPP stores a result in memory by executing an FST, 
FSTD, or FIX in~truction. A 500-microsecond timeout circuit 
provides the means of terminating the inhibit in the event that 
the FPP instruction string is not completed within the expected 
time. When the timeout occurs, the interrupt-inhibit is ter­
minated and a fault interrupt is initiated. 

The priority control also exercises control over the PMA and 
DMA memory access lines to the central processor (ORQM-A and 
IRQM-A respectively) and the acknowledge line to the PMA (MAKO+A). 
This control is used to inhibit PMA and DMA memory access during 
FPP memory cycles. When the FPP has memory access priority, the 
priority control places the ORQM-A line to the central processor 
at the low level. This simulates a pending PMA memory request. 
Since PMA has higher priority than DMA, this prevents the central 
processor from giving memory access to the DMA. PMA memory 
access is inhibited during FPP memory cycles by inhibiting the 
acknowledge line to the PMA. When a PMA or DMA request is 
received by priority control, memory access priority is 
surrendered to the PMA or DMA at the end of the current FPP 
memory cycle. The priority control then places the PROUT+ signal 
at the high level until the PMA or DMA completes its transfers 
and drops its memory request. The high PROUT+ signal inhibits 
FPP memory access during the period when the FPP does not have 
memory-access priority. 

Figure 4-2( illustrates the various priority control sub­
functions. If an interrupt request is enabled, a low !RUX-I 
signal from the interrupt interface causes interrupt request 
IRQC-A to switch to the low level in response to the trailing edge 
of KKMFC- from the system clock generator. The IRQC-A signal 
remains low until reset during the interrupt service routine 
executed by the I/O control microprogram of the option board. 
The reset occurs under the co~trol of the IR007+, IINHC-, and 
CINTF+ signals from the I/O control on the option board. (The 
interrupt request reset circuit duplicates a circuit provided on 
the option board which controls the interrupt request reset func­
tion when an FPP is not used.) 
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Figure 4-27. Priority Control, Block Diagram 
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When the first FPP instruction of an FPP instruction string is 
decoded (IDG0+ high) the trailing edge of KKMCD+ from the system 
clock generator sets PRINT- low. This inhibits the setting of 
IRQC-A to the low level. Once set low, PRINT- normally remains 
low, inhibiting interrupts, until the FPP transfers the results 
of its computations to memory. This occurs during the execution 
of an FST, FSTD, or FIX instruction. These instructions are 
identified by a high ILWRT+ signal from the instruction latch. 
After the FPP executes a microinstruction containing the instruc­
tion fetch code in its MEM field, CPSIF+ from the central 
processor control switches to the high level. The coincidence of 
high ILWRT+ and CPSIF+ signals resets PRINT- to the high level. 

The PRINT+ signal of the interrupt-inhibit sub-function is used 
to initiate the interrupt-inhibit time-out. The positive-going 
transition of PRINT+ starts the time-out function. The STOUT+ 
signal is set high at the same time that the PRINT+ signal is set 
high. (This is ti~ed by IDGO+ and KKMCD-.) After the time-out 
is completed, KKMCD- resets STOUT+ to the low level. If PRINT+ 
is still high at this time, the next KKMPB+ pulse is gated to the 
PRTO-line. The low-going PRTO- pulse sets time-out flag T0+ to 
the high level. PRTO- is also supplied to the system reset logic 
where it is steered onto the SYRST+ line. This results in the 
termination of the instruction routine that is in progress and the 
transmission of an interrupt request to the central processor. 
(With STOUT+ high, the next KKMCD+ pulse resets PRINT- to the 
high level as required to enable interrupts.) After the FPP 
microprogram has entered the time-out branch in response to the 
high T~+ signal, a high CSCTO+ signal causes the next KKCS+ 
pulse to reset T0+ to the low level. 

Memory priority is controlled by three flip-flops; PR0UT, PRMEI, 
and PRMDN. 

PR0UT indicates that the PPP has lost memory priority due to a 
PMA request (ORQM) or a DMA request (IRQM). PR0UT is set by 
either request and is not reset until both request (ORQM or IRQM) 
and acknowledge (MAK0 or MIRAB) are reset. PR0UT prevents 
initiation of a new memory cycle by the PPP and, at completion of 
the current memory cycle (PRMEI low), disables the FPP memory 
address and data drivers. 

PRMEI indicates the FPP is currently fetching or storing memory 
words and prevents transfer of priority until the end of the 
current memory cycle. PRMEI is normally set at the start of an 
FPP instruction (CPSIF low) and reset when all operands have been 
transferred (CPSIF high). PRMEI prevents acknowledge to the PMA 
(it forces MAK0 low) and inhibits acknowledge to the DMA by 
simulating a PMA request (it forces ORQM to the central processor 
high). If the FPP loses memory priority (PR0UT high) then PRMEI 
is reset at the end of the current memory cycle (KKMEM, MCMRQ, 
and MCSYN low) allowing PMA and DMA memory access and disabling 
FPP memory address and data drivers. PRMEI is not set again 
until the FPP regains memory priority (PR0UT low). 
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PRMDN is used to reset PPP memory fetches after the PPP loses and 
regains priority. PRMDN follows PR0UT by 44 nanoseconds. 

To avoid clock skew problems, PRMEI is clocked at the negative­
going edge of MCDFC, PR0UT is clocked 82 nanoseconds later, and 
PRMDN is cloEked 41 nanoseconds after PR0UT. 

When PR0UT+ is high at the time that the PPP microprogram 
initiates a memory request (CSIMC+ high), the PRKIN- signal to the 
clock control is placed at the low level. This inhibits control 
store and register clocks during the period while the PPP is 
waiting to regain memory access priority. 

4.6.3 Interrupt Interface 

When enabled, the interrupt interface stores a floating point 
processor interrupt request until it can be serviced by the 
central processor. Figure 4-29 illustrates the interrupt inter­
face as two functional blocks. One of these blocks provides an 
interrupt storage register and an address encoder which places 
the assigned interrupt address on the E-bus to the central 

EBnn -1(00-05,07,08} .... 
--i INTERRUPT 

PRIME 
IUJX-1 .... -
IUAX-1 ...... -
SRST- _... 

IPRME+ E B n n - (O 1 -0 5) -- --... 2 STAGE 

CSOFL- INTERRUPT _.... STORAGE ... 
REGISTER 

CSUFL- AND 
_. ADDRESS -- ENCODER 

KKREG+ ...... --
IUCX-1 ...... IURX-1 --
PRIX-I .. -
FRYX-1 ----
SRST- .... ... .. 
IUAX-1 _.. PRJX- I ... 
VTl1-3199 

Figure 4-29. Interrupt Interface, Block Diagram 
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processor when the central processor services the interrupt 
request. The second block provides the interrupt-enable function. 

System reset signal SRST- from the central processor control 
resets the interrupt-enable function, inhibiting the storage of 
an interrupt request. In order to enable the storage of an 
interrupt request, the interrupt-enable function must be set by a 
command received on the E bus. The interrupt set/reset command 
code appears on bits 0 through S and bit 11 of the E bus 
(EBnn-1). When bit 7 of the E bus is high, the set/reset 
command sets the interrupt-enable function. When bit 8 of the 
E bus is high, the set/reset command resets the interrupt-enable 
function. The int~rrupt-enable function is also reset if a low 
IUJX-I signal is received from the central processor at the same 
time as the low IUAX-I signal associated with the acknowledgement 
of an interrupt request. 

When the interrupt-enable function is set, the IPRME+ signal is 
high. This enables the storage of an interrupt request in the 
interrupt storage register. The storage of an interrupt request 
occurs in response to the receipt of a low CS0FL- or a low 
CSUFL- signal from the control store decoder. These signals 
indicate that an overflow or underflow condition respectively has 
been detected. When the CS0FL- or CSUFL- signal is low, the 
KKREG+A signal from the clock control logic clocks the input 
stage of the two-stage interrupt storage register to the set 
status. The output stage of the interrupt storage register is 
updated to the status of the input stage by each interrupt clock 
signal IUCX-I from the central processor. Three conditions must 
be satisfied in order to transmit an interrupt request (low 
IURX-I signal) to the central processor. The interrupt-enable 
function must be set, the output stage of the interrupt storage 
register must be set, and the PRIX-I signal must be at the low 
level (indicating that no higher priority interface is currently 
requesting an interrupt). When the central processor acknowledges 
the interrupt request by placing the IUAX-I signal at the low 
level, the address encoder places the assigned interrupt address 
(76 octal) on the E bus. This requires driving the EBOl- through 
EBOS- lines to the low level. This address is placed on the E 
bus only if the interface is still the highest priority interface 
currently requesting an interrupt. If the low IURX-I signal is 
accompanied by a low FRYX-1 signal, then the input stage of the 
interrupt storage register is reset as required to terminate the 
interrupt request at the next IUCX-I time. 

When the interface is not currently requesting an interrupt, it 
passes the PRIX-I signal on the PRJX-I line to the next lower 
priority interface. 

A system reset signal (SRST-) resets both the input and output 
stages of the interrupt storage register. 
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4.6.4 Memory Sequencer 

The memory sequencer (figure 4-30) supplies the MCDLE- signal 
used to load data from the memory data bus into the data latch. 
It also supplies a sequence of pulses used to synchronize PPP 
memory control functions with respect to memory cycle timing. 

A low MMlI- signal from the central processor is steered to the 
MCDLE- line. This provides the MCDLE- signal which loads 
instructions or addresses into the data latch during each central 
processor instruction fetch cycle. This is the means by which 
the PPP instruction reaches the data latch. It is also the means 
by which the direct or indirect address of the first operand 
word (fetched following the instruction word) reaches the data 
latch. Subsequent transfers into the data latch occur during 
states MCSl and MCS2 of the memory sequence, provided that YDNM­
and MCA41+ are both high. The high YDNM- signal indicates that 
a memory cycle is in progress. The MCA41+ signal follows the 
MCAEN+A signal but is delayed with respect to MCAEN+A by one 
clock period of KKM0K+ (41 nanoseconds). MCAEN+A is high when 
a transfer between memory and the PPP is required and the FPP has 
memory access priority. States MCSl and MCS2 of the memory 
sequence are indicated respectively by a low MCSlA- or MCSlB-

MMll- ---.-

YDNM- .. ... 

MCAEN+A 
ADDRESS MCA41+ 
ENABLE ...... -.... 

KKMOK+ __.. DELAY DELAY MCDLE--- LATCH 
ENABLE 

KK82±. -- MCSIA- .... - --
YDNM+ -- MCSIB- .... -.... --i 

KKMOK± __.. MCS2- _.,, ... .... 
MEMORY 

MCA EN+ DONE CIUS-
~ SYNCHRO- ~"'" .... -NIZER 

MCS2± --KKMEM+ -- .. -- MCS3± ...... 
SRST-

.. --_.,, 
MCCS2± -- ----
MC SYN- __.. .. 

VTl1·3217 

Figure 4-30. Memory Sequencer, Block Diagram 
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signal and.by a low MCS2- signal. MCA41+ is necessary in order 
to insure that data transferred over the memory data bus during a 
PMA or DMA memory cycle is not unintentionally loaded into the 
data latch. -

The memory done synchronizer synchronizes the memory done 
signal (YDNM+) with the system cloc~ (M~CLK+) and provides 
synchronized timing pulses following ~he negative-going edge of 
YDNM+. State flip-flops in the memory done synchronizer are 
MCSOA, MCSOB, MCSlA, MCSlB, MCS2, MCS3, and KK82. Either MCSOA 
or MCSOB is set within 41 nanoseconds after the negative-going 
edge of YDNM+. Then either MCSlA or MCSlB is set between 82 and 
124 nanoseconds after the negative-going edge of YDNM+, providing 
the synchronized memory done signal, MCSYN+. MCS2 follows 
MCSYN+ by 41 nanoseconds and MCS3 follows MCS2 by 41 nanoseconds. 
The pulse width of MCSYN+, MCS2, and MCS3 is 82 nanoseconds. 
Flip-flop KK82 provides 82 nanosecond period clocks to flip-flops 
MCSOA, MCSOB, MCSlA, and MCSlB. A timing sequence for the memory 
done synchronizer appears in figure 4-28. 

In addition to controlling the timing of the MCDLE-signal, out­
puts from the memory done synchronizer inhibit the advance of the 
FPP microprogram, inhibit memory priority changes, and inhibit 
initiation of the next memory cycle until the current memory 
cycle is completed. 

The MCCS2+ output of the memory sequencer is reset when an FPP 
memory cycle is initiated. The signal is set at the same time 
that MCS2+ is set. This signal allows the control store to 
initiate a memory cycle after the current memory cycle is 
completed. MCCS2+ also prevents double memory clocks (KKMEM+) 
between memory cycles. 

4.6.S Memory Control 

As shown in figure 4-31 the memory control function includes the 
follo~ing sub-functions: 

a. Memory Control Clock Inhibit. This sub-function stops 
the control store clock (KKCS-) and the register clocks (KKREG-, 
KKMQ-) when an FPP instruction is complete, and it starts these 
clocks when the next FPP instruction routine is started. 

b. Memory Request. This sub-function controls the memory 
request line (MRQY-) to the central processor. 

c. Memory Control Address Enable. This sub-function pro­
vides signals which enable the FPP address to the memory address 
bus. 

d. Memory Control Data Enable. This sub-function controls 
the gating of data to the memory data bus and controls the write 
request lines (MWRY+ and MWLY+). 
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e. Instruction Start Flag. This subfunction provides the 
MCIST-signal which initiates the first memory clock (KKMEM+) of 
an FPP instruction and loads the first address into the PPP 
address register._ 

f. Load Address. This subfunction provides the MCLDA­
signal which loads the addresses i~~o the FPP address register. 

Figure 4-28, which shows the timing of the PLD instruction, pro­
vides an example of the timing of the various memory control 
signals. 

In order to enable the control store clock generator, MCCKI- must 
be high. This requires that either CSDN+ or MCICS- be low. 
CSDN+, from the control store decoder, is the signal which 
inhibits the control store clock generator at the end of an 
instruction routine. It is high only for the final microinstruc­
tion of an instruction routine. MCICS-, which is generated in 
the memory control clock inhibit sub-function, is the signal which 
goes low to initiate each instruction routine. Under quiescent 
conditions, the final microinstruction of the previous instruction 
routine resides in the control store register so that CSDN+ is 
high. MCICS- is also high at this time. When the presence of 
the direct address of the first operand in the data latch is 
sensed, MCICS- is set low to initiate the instruction routine. 
A direct address is identified by a binary 0 in the bit 15 posi­
tion. Thus, when the data latch contains an address, a high 
DLlS- signal from the data latch indicates a direct address. 
With DLlS- high, MCICS- is set low by the negative-going transi­
tion of the KKMEM~ signal from the system clock generator. This 
places MCCKI- at the high level to enable the control store clock 
generator. The first control store clock loads the starting 
microinstruction of the instruction routine being executed into 
the control store register. This causes the CSDN+ signal to 
switch to the low level. MCICS- also remains low until the 
CPSIF+ signal from the central processor control switches to the 
high level. This occurs following the execution of a micro­
instruction whose MEM field contains the SIP code. With MCICS­
returned to the high level, MCCKI- goes low again when the final 
microinstruction of the routine is loaded into the control store 
register causing CSDN+ to switch to the high level. 

The memory control address enable sub-function sets the MCAEN+ 
signal high when there is a requirement for an operand transfer 
between the PPP and memory. If the FPP currently has memory 
access priority, then the high MCAEN+ level also places the 
MCAEN+A and MCAEN+B signals at the high level. These signals 
connect the address register outputs to the memory address bus. 

A high MCAEN+B signal is also required to enable a memory request. 
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During a non-write instruction, MCAEN+ is set at the start of the 
first FPP-initiated memory cycle (indirect address of operand 
fetch) and remains high until the next instruction fetch is init­
iated by signal CPSIP+. 

-· 

In the case of a write instruction, MCAEN+ is set at the start 
of the first PPP-initiated indirect address memory cycle (if 
indirect addressing is required) and remains high until indirect 
addressing is completed. MCAEN+ is also set at the start of the 
first PPP-initiated write memory cycle and remains high until 
the next instruction fetch is initiated by signal CPSIP+. 

The priority inputs to the memory control address enable 
sub-function are PROUT+ and PRMEI- from priority control. As 
long as one of these signals is low, the FPP has memory access 
priority. Under this condition, MCAEN+A and MCAEN+B are placed 
at the high level when MCAEN+ is high. 

A high MCAEN+B signal from the memory control address enable 
sub-function arms the memory request sub-function to initiate a 
memory request. The status of MCAEN+ is determined at the lead­
ing edge of each KKMEM+ pulse. If MCAEN+ is set high (or 
remains high) at the leading edge of a KKMEM+ pulse and if the 
FPP has priority (so that MCAEN+B is also high), then a memory 
request is normally initiated at the trailing edge of KKMEM+. To 
make a memory request, the MRQY- signal is placed at the low 
level. When a memory cycle is initiated in response to the low 
MRQY- level, the memory acknowledge signal (YDNMB+) switches to 
the low level. This returns the MRQY- signal to the high level 
terminating the request. The internal memory request flag is 
then reset by the ClU8- signal from the memory sequencer. A 
memory request can only occur if the XCFST+ signal from the WCS 
option is high. 

High MCDDE+A and MCDDE+B signals from the memory control data · 
enable sub-function are used to connect the I/O data multiplexor 
outputs to the memory data bus. Three conditions are required to 
obtain these high signals; 

a. MCAEN+A and MCAEN+B must be high, indicating that a 
transfer is required and that the FPP has memory access priority. 

b. ILWRT+ must be high, indicating that a write instruction 
is being executed. 

c. ADlS- from the address counter must be high, indicating 
that the memory cycle is not .. an indirect address cycle. 

The memory-write-left-byte and memory-write-right-byte signals 
(MWLY+ and ~~RY+) are also held high during a write transfer. 
These signals are held low by the FPP only during read transfers 
(that is, when MCAEN+A and MCAEN+B are high and ILWRT+ is low). 
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Instruction start flag signal MCIST- is set low when the FPP 
instruction is decoded (IDGO+ high) by the KKMCD+ pulse from the 

' system clock generator. It is set low by the first KKMEM+ pulse 
of the instruction routine. The low MCIST- signal is steered to 
the MCLDA- line by the load address sub-function. The low 
MCLDA- signal is used to transfer the contents of the data latch 
to the address counter. If an indirect address is transferred 
from the data latch into the addrei~ counter, then ADlS- is low. 
Under this condition, MCLDA- remains low after MCIST- has been 
returned to the high level. Thus, each address received from 
memory is transferred from the data latch into the address 
counter until a direct address has been loaded into the address 
counter. 

A system reset signal from the central processor or an FPP 
timeout reset places the SYRST+ signal at the high level and the 
SYRST- signal at the low level. The high SYRST+ signal resets 
MCICS and the low SYRST- signal resets read request flip-flop 
MCRRQ of the memory control address enable sub-function. During 
a central processor system reset only, the SRST- signal is placed 
at the low level. This resets MCIST- to the high level and 
resets MCAEN+ to the low level. 

4.6.6 Clock Control 

As illustrated in figure 4-32, clock control provides the control 
store clock, the register clock, and the MQ clock. The trailing 
edge of each control store clock loads the microinstruction from 
the currently addressed control store location into the control 
store register and loads the current control store address plus 1 
or a jump address into the control store address register as 
required to advance the FPP microprogram. The register clock is 
supplied to the A and B registers of the data loop and to the E 
and SC registers of the exponent loop. The MQ clock is supplied 
to the MQ register of the data loop. 

When not inhibited, the control store clock generator provides a 
KKCS-pulse during every fourth KKM0K- period. (Refer to fig­
ure 28 for an example of KKCS- timing.) Signals which inhibit 
the control store clock generator are as follows: 

,a~ MCCKI-. A low MCCKI- signal inhibits KKCS- when the 
final microinstruction of an instruction routine is executed. 
With KKCS- inhibited, this final microinstruction remains in the 
control store register until the start of the next instruction 
reutine when MCCKI- is again set to the high level. MCCKI- is 
supplied by the memory control. 

b. MCCS2~ and CSMWT+. The coincidence of high MCCS2- and 
CSMWT+ signals inhibits the control store clock generator while 
waiting for the completion of a memory cycle initiated by the FPP 
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Figure 4-32. Clock Control, Block Diagram 

microprogram. MCCS2- from the memory sequencer indicates that 
the memory cycle has not been completed while CSMWT+ from the con­
trol store register indicates that the microprogram has requested 
the memory cycle. 

c. PRKIN-. A low PRKIN- signal from the priority control 
inhibits the control store clock generator when the FPP micro­
program is requesting a memory cycle and the FPP does not have 
memory access priority. 

d. ACSEN-. A low ACSEN- signal from the clock control 
section of arithmetic control inhibits the control store clock 
generator during shift operations. 

e. ACDEN-. A low ACDEN- signal from the clock control 
section of arithmetic control inhibits the control store clock 
generation during the executi~n of the divide microinstruction. 

f. ACMEN-. A low ACMEN- signal from the clock control 
section of arithmetic control allows the control store clock 
generator to run but inhibits the output gate supplying KKCS­
during the execution of the multiply microinstruction. 
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The register clock generator has three modes of operation. When 
ACDEN- and ACSEN- are both high and CSWSD+ is low, the register 
clock generator follows the control store clock generator. In 
this mode, the coincidence of high KKCPA+ and KKCPB+ signals 
(which occurs once for each control store clock generator cycle) 
starts a register clock generator cycle. The timing produced in 
this mode is illustrated by figure 4-28. Notice that register 
clock pulses KKREG+ generally occur in synchronism with KKCS­
pulses. However, since the register clock generator is following 
the control store clock generator to KKREG+ pulse occurs in syn­
chronism with the first of a series of KKCS- pulses and one 
KKREG+ pulse occurs following the final KKCS- pulse of a series. 

When CSWSD+ from the control store decoder is high and ACSEN­
remains low, the register clock generator runs independently of 
the control store clock generator but continues to provide the 
same timing as it did when following the control store clock 
generator. This mode is used to provide the KKREG+ pulses during 
the execution of the multiply microinsturction when the control 
store clock generator is inhibited. This mode also provides the 
slower of the KKREG+ clock rates that is required during the 
divide microinstruction. 

When ACSEN- is low, the register clock generator divides the 
KKMOK- rate by 2 to provide a KKREG+ rate which is double the rate 
provided in other modes. In other modes, each KKREG+ period is 
165 nanoseconds while in this mode it is 82 nanoseconds. The 
fast mode implements shift operations during clock periods when 
no ALU function is being implemented. This occurs during some 
clock periods of the divide microinstruction and also occurs 
during the normalize and align microinstructions. 

A low ACDEN- signal inhibits control store clock. ACDEN- is low 
during the divide microinstruction. 

There are two register clock inhibits that apply to the fast 
mode. When an align microinstruction resides in the control 
store register (CSAL+ high) and the shift counter is zero 
(SCEQO+ high), the register clock generator is inhibited. This 
prevents shifting of data which is already properly aligned. 
Similarly, when a normalize instruction resides in the control 
store register (CSN0+ high) and the data in the A register is 
normalized (A46+ high), the register clock generator is inhibited. 

An inhibit associated with the mode in which the register clock 
generator follows the control store clock generator is provided 
by the BSM3- signal which is low during the coincidence of high 
MCCS2- and CSMWT+ signals. This stops the register clock genera­
tor to wait for the completion of a memory cycle initiated by the 
FPP microprogram. Similarly, a low PRKIN- signal stops the 
register clock generator as well as the control store clock 
generator. 
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KKHRG+ is a register clock generator output which is used in the 
arithmetic clock control for switching the status of the ACMEN­
signal. KKHRG+ pulses follow KKREG+ pulses by 82.S nanoseconds~ 

The MQ clock (KKMQ-) is identical to the register clock (KKREG-) 
except during the fraction multiply microinstruction. The MQ 
clock period is 82.S nanoseconds during fraction multiply. 

4.6.7 System Clock Generator 

The system clock generator provides buffering and inversion of 
MFC-, MI-IC-, MCDFC-, and M0CLK+ signals received from the central 
processor. (See figure 4-33.) It provides retiming of the 
165-nanosecond clock periods in order to eliminate transmission 
delays for critical cases. It also generates the memory clock 
pulses which time FPP memory requests and other memory control 
functions. In addition, it generates 82-nanosecond clock KK82t 
which is used by the memory sequencer. 

Most of the 165-nanosecond timing within the FPP is derived from 
KKMCDt which is the buffered MCDFC- clock. MCDFC- is a gated 
version of central processor full clock MFC-. When not inhibited 
it is identical to MFC-. Central processor full clock MFC- is 

KKMOK- :r KKMEN± -PRO VT± 
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Figure 4-33. System Clock Generator, Block Diagram 
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inverted to. provide KKMFC+ which is inverted to provide KKMFC-, 
Central processor half clock MHC- is inverted to provide KKMHC+. 

The 41-nanosecond central processor M~CLK+ signal provides the 
fine clock timing for the FPP. Both phases of this clock are 
provided by the buffers. A single KKM~K+ output is provided and 
a fanout of KKM0K- signals is provid.ed. 

Because the MCDFC- signal, and consequently the KKMCD± signal, is 
somewhat delayed, a retiming clock generator is used to provide 
the KKMPA± and KKMPB+ signals which are used for timing in cases 
where the 165-nanosecond timing is critical. The KKM0K- signal 
is used to provide the required retiming as shown in figure 4-34. 
By timing the transitions of KKMPA and KKMPB with KKM0K-, posi­
tive-going transitions of KKMPA+ occur a short time before 
positive-going transitions of MCDFC-, negative-going transitions 
of KKMPA+ are approximately coincident with positive-going 
transitions of MHC-, and negative-going transitions of KKMPB+ are 
approximately coincident with negative-going transitions of MFC-. 

--f f--oELAY IN 
11 MCDFC-

MOCLK+ 

MFC-

MCDFC-

KKMCD+ 

KKMOK-

B2H9+ . 

KKMPA+ 

KKMPB+ 

VT11-3299 

Figure 4-34. Retiming Clock Generator Waveforms 
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In general, memory clock KKMEM+ is timed to occur at the begin­
ning or end of a memory cycle. At the positive-going edge of 
KKMEM+, a decision is made as to whether the FPP requires a 
memory access. If memory access is required, a memory request 
is initiated by memory control at the negative-going edge of 
KKMEM+. In order to obtain m~~9rY._!_~cess, the FPP must have 
memory access priority. If a request from a higher priority 
device is pending PROUT+ from priority control is high. This 
inhibits the generation of a KKMEM+ pulse. 

If the FPP has memory priority (PR0UT+ low), then KKMEM+ can be 
set by any of three items: 

MCIST AND MCS3+ AND MCCS2+ 

or MCAEN+ AND MCICS- AND MCS3+ AND MCCS2+ 

or CSIMC+ AND KKCPB- AND MCCS2+. 

In the first term, MCIST+ indicates the start of a FPP instruction 
and MCS3+ and MCCS2+ occur at the end of the first address fetch 
memory cycle. If an address fetch (DLlS+ high) or an operand 
fetch (MCRRQ+ high) is required, then the first KKMEM+ pulse 
clocks the memory address into the address register, sets MCAEN+, 
and initiates a memory cycle. During a non-write instruction 
without indirect addressing, the first KKMEM+ pulse clocks the 
address register without initiating a memory cycle. During FPP 
instructions with indirect addressing, the second term sets KKMEM+ 
at the end of each address fetch memory cycle. The resulting 
KKMEM+ pulse clocks the address into the address register and, if 
required (DLlS+ high or MCRRQ+ high), initiates the next memory 
cycle. The third term sets KKMEM+ for control store initiated 
memory cycles. 

If the FPP loses memory priority due to a PMA or DMA request 
(PR0UT+ high), then the setting of KKMEM+ is delayed until the 
PMA or DMA memory cycles are completed (PR0UT+ low and PRMDN 
high) . 

4.6.8 Arithmetic Clock Control Logic 

As shown in figure 4-35, the arithmetic control clock logic pro­
vides shift-enable signal ACSEN-, multiply-enable signal ACEM-, 
and divide-enable signal ACDEN-. These signals condition the 
clock control to provide clock rates or clock inhibits required 
during certain FPP microinstructions. All transitions of ACSEN­
and ACDEN- (except transitions occurring during a system reset) 
occur at the leading edge of KKREG+. Transitions of ACMEN- occur 
at the leading edge of KKHRG+. 

4-98 



KKREG+ ... --
CSAL+ ----SCLEl- .. --
SCLEl+ ---
CSNO+ ... --. 
ZERO- .. --
ALIJ.46- ----
All.145- ----
All.145+ 

------
CSDIV+ .. SHIFT -- ENABLE 
ALU47- ... --
ALL.146- .. --
ALL.145- ... AC SEN+ -- -...., .... 
ACSFT- - AC SEN- DELAYED ACSFT± -- SHIFT -- .... 
SCLE1- KKREG+ ENABLE .. .-. -- --
A45+ ... --. L-+ 
SCLEl+ ----
KKMOK- ----
SYRST+ ----. 

KKHRG+ ----
CSMUI+ .. -- MULTIPLY ACMEN- ... 
SCLEl+ .. ENABLE --. 

-. 

SYRST- .. --

KKREG+ .. --
SCLEl- .. 

-.. 
CSDIV+ ---- DIVIDE ACDEN- --SCLEl+ -- ENABLE .... 

..... 
KKMOK ... --
SYRST+ ..._ --VT12-440 

Figure 4-35. Arithmetic Clock Control, Block Diagram 
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ACSEN- is used during three types of microinstructions to produce 
82-nanosecond clocks for shifting and to inhibit the trailing 
edge of the control store clock until the shifting operating is 
complete. During an alignment microinstruction (CSAL+ high) 
ACSEN- is set low during the period when the smaller operand is 
_being aligned with the larger operand prior to addition or -
_subtraction. - The number of shifts is determined by -the- number in 
the shift counter which is decremented by 1 at each shift clock 
time. To set ACSEN- low, the shift-count-less-than-or-equal-to-1 
signal (SCLEl-) must be high, indicating that at least two shifts 
are required. (If only one shift is required, the microinstruc­
tion has a duration of one clock period and the required shift is 
produced by the KKREG+ pulse at the end of this clock period. If 
no shift is required, the microinstruction has a duration of one 
clock period and the KKREG+ pulse at the end of the clock period 
is inhibited by the clock control.) Once set, ACSEN- remain5 set 
until the final shift pulse occurs. This shift pulse is identi­
fied by a high SCLEl+ signal. Figure 4-36 illustrates the timina 
of the align microinstruction. Notice that the positive-goina 
edge of the KKCS- pulse (which terminates the microinstruction 
period) is coincident with the negative-going edge of the final 
shift pulse (KKREG+). 

KKCS-

CSWSD+ 

CSAL+ 

KKPA 

KKPB 

KKREG+ 

ACS EN-

SCLEl-

SCEQO+ 
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Figure 4-36. Align Microinstruction Timing 
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During a normalize microinstruction (CSN~+ high), is set low if 
ZER0-, A46~, and A45- are all high. The high ZER0- signal indi­
cates that the result is not zero and can thus be normalized. 
The high A46- and A45- signals indicate that the two most signi­
ficant magnitude bits of the result fraction are zeros so that at 
least two shifts are required to normalize the result. (The 
eases where one shift or no shift is required are handled 
s imi larl y to the corresponding cases' during the align 
microinstruction.) Once set, ACSEN- i~ reset by the KKREG+ pulse 
occurring after A45+ becomes high. Thus, the microinstruction is 
terminated when the most significant binary one of the fraction 
is shifted from bit position 45 to bit position 46. 

In the case of the division microinstruction (identified by a 
high CSDIV+ signal), the status of ACSEN- is manipulated in 
accordance with the status of the three most significant bits of 
the ALU and in accordance with the status of bit 45 of the A 
register. An exception to this occurs in the case of the final 
iteration, when ACSEN- is reset to the high level (or remains 
high) because SCLEl+ is high. The coincidence of high ALU47-, 
ALU46-, and ALU45- signals indicates a positive difference whose 
two most significant magnitude bits are zeros. Since the most 
significant magnitude bit of the divisor fraction is always a 
one, it follows that at least two left shifts of this difference 
are required before another positive difference can be obtained. 
Thus, this coincidence of high levels is used to set ACSEN- low 
and enable the fast (82-nanosecond) shift clock rate. This rate 
is maintained until a one is shifted into the most significant 
magnitude position (A46) of the A register. At the time of this 
shift, ACSEN- is reset to the high level as a result of A45+ 
being high (that is, as a result of the 1 that is being shifted 
from bit position 45 to bit position 46). 

Figure 4-37 provides an example of ACSEN- timing for a particular 
fraction division. 

ACSFT is a delayed version of ACSEN. While transitions of ACSEN 
occur at the positive-going edge of KKREG+, transitions of ACSFT 
occur at the negative-going edge of KKREG+. ACSFT is used to pre­
vent ACSEN from simultaneously receiving both set and reset 
inputs. 

In the case of the CSDIV+ microinstruction, it is the ACDEN- sig­
nal which inhibits the trailing edge of KKCS- until the final 
interation. With CSDIV+ high, ACDEN- is set low at the positive­
going edge of the first KKREG+ pulse and remains low until the 
positive-going edge of the final KKREG+ pulse when it is reset 
to the high level because SCLEl+ is high. 

During the main multiply microinstruction (identified by a high 
CSMUI+ signal), ACMEN- is set low by the first KKHRG+ pulse and 
is reset high by the KKHRG+ pulse occurring during the final 
iteration period (identified by a high SCLEl+ signal). (See 
figure 4-38 for ACMEN- timing.) The low ACMEN- signal enables 
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KKMQ- pulses to occur at the fast (82-nanose~ond) rate as 
required to shift the multiplier two bit positions to the right 
during each iteration. AMEN- inhibits KKCS- pulses without 
stopping the KKCS-_clock generator. Thus after ACMEN- resets to 
the high level during the final iteration period, a KKCS- pulse 
occurs at the normal time and terminates the microinstruction. 

System reset clears ACSEN, ACDEN, antl ACMEN. 

4.6.9 Data Latch and Address Output 

The data latch provides buffer storage for each instruction, 
address, or operand word that is transferred from memory to the 
FPP. Before operand transfers can begin the direct address of 
the first operand must be received from memory and loaded from 
the data latch into the memory address counter. The memory 
address counter is then incremented under the control of the PPP 
microprogram following each operand word transfer so that succes­
sive operand words are transferred to or from consecutive memory 
locations. As shown in figure 4-39 the address held in the 
memory address counter reaches the memory address bus via 
inverters and gates. 

Each word transferred from memory to the FPP is loaded into the 
data latch in response to a low MCDLE- signal from the memory 
sequencer. Each address word received from memory is transferred 
from the data latch to the memory address counter in response to 
a low MCLDA- signal from the memory control. The address held in 
the memory address counter is gated to the memory address by high 
MCAEN+A and MCAEN+B signals from the memory control. Incre­
menting of the memory address count at the positive-going edge 
of the KKMEM+ pulse from the system clock generator is enabled by 
a high CSINC+ signal from the control store decoder. 

MCLDA- _... AD15- .. - --
CSINC+ _..... MEMORY ... 

ADDRESS AD n n + (00- 15) 
KKMEM+ .. INVERTERS _... COUNTER --.. 
~ I ADnn-

(00-15) 

MCAEN+A B_""" MEMORY MYA Bnn (00-151.... 
-- ADDRESS --GATES 

MYDB n n -(00-15_l DL nn + (00-15) --... DATA ... 
MCDLE- .. LATCH DL n n - (10-15) ---- .... 
VTl1-3211 

Figure 4-~9. Data Latch and Address Output, Block Diagram 

4-103 



4.6.10 Instradtion Latch, Instruction Register, and Instruction 
Decoder 

The provision of an instruction latch and an instruction register 
allows the pipelining of instructions to the FPP. Each FPP 
instruction is decoded as it resides in the data latch. It is 
then moved to the instruction latch. While the instruction 
resides in the instruction latch, the direct address of the first 
operand word is obtained from memory and loaded into the address 
counter. In the case of a non-write instruction, the first 
operand word is obtained from memory and stored in the data latch. 
These functions are performed independently of the FPP micro­
program so that they can be performed while the microprogram for 
the previous FPP instruction is still running. (Each FPP instruc­
tion jams the central processor microprogram at a NOP location 
until it has completed its final operand word transfer. Thus, 
there is no contention between the operand transfers associated 
with one FPP instruction and the fetching of the next instruction 
and direct operand address.) 

Three signals (CDREN+, CEND+, and CAEN+) enable the FPP instruc­
tion decoder (see figure 4-40). CDREN+ high indicates a primary 
decode request from the central processor control store. CEND+ 
high indicates no interrupt requests pending. CAEN+ high indi­
cates that the instruction in the central processor instruction 
buffer (and the FPP data latch) is in the standard instruction 
set or FPP instruction set. (CAEN+ low indicates an instruction 
in an extended instruction set decoded and executed under control 
of the WCS.) CAEN+ is clocked into a flip-flop (BST9+) at the 
positive-going edge of central processor clock MCDFC-. The 
instruction decoder is enabled when CDREN+, CEND+, and BST9+ are 
high. When the decoder is enabled and an FPP instruction resides 
in the data latch, the IDGO+ signal is placed at the high level. 
An FPP instruction is identified by code 1000 1011 in bits 8 
through 15 (where bit 15 is the MSB). With IDGO+ high, the eight 
least significant bits of the instruction are loaded into the 
instruction latch at the positive-going edge of clock MCDFC-. 
These bits are received on data latch lines DLnn+ (0-7). 

When the final microinstruction of an FPP instruction routine 
reaches the control store register, the CSDN+ signal from the 
control store decoder switches to the high level. If the direct 
address of the first operand of the next FPP instruction has not 
yet been obtained, then control store clocks are inhibited until 
this function has been completed. Thus, the final microinstruc­
tion of the completed FPP instruction remains in the control 
store register and the CSDN+ signal remains high. When the 
direct address of the first operand word for the next FPP instruc­
tion is received and loaded into the data latch, control store 
clocks are again enabled. The trailing edge of the next control 
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CSSIF+ 
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13, 14) 
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FLAG .. 
- .... 
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CSIMC+ 

VTt1-3208 SYRST+ 

Figure 4-40. Instruction Latcht Instruction Register and 
Instruction Decoder, Block Diagram 

store clock pulse (KKCS-3) loads the instruction from the 
instruction latch into the instruction register. Bits ILnn+ 
(00-04) and bit ILWRT+ are supplied via the control store 

...... -

...... ... 

---

...... --
...... --
...... ... 

.... --

address multiplexor to the control store address lines at this 
time and thus specify the location of the first microinstruction 
of the next FPP instruction microprogram.· This microinstruction 
is loaded into the control store register by the same KKCS­
transi tion which loads the instruction latch into the instruction 
register. The instruction register presents the instruction code 
bits to the constant storage PROM and to the arithmetic control 
logic for use during the execution of the microprogram. 

The three most significant bits of each 8-bit instruction code 
are designated to identify the functions they specify. In terms 
of the instruction latch, these are the ILWRT+, IBDB+, and ILSU+ 
bits. A high ILWRT~signal specifies a write instruction (that 
is an FPP instruction during which operand data is transferred 
from the FPP to the memory). A high ILDB+ signal specified a 
double precision instruction. A high ILSU+ bit specifies a sub­
traction instruction. 
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Special duplicate storage (memory write flag) is provided for 
the most significant bit, which specifies a write or non-write 
instruction. The memory write flag is stored at the same time 
that the instruction is loaded into the instruction latch. 
However, the memory write flag is reset to the low level by the 
coincidence of high KKCPB- and CSIMC+ signals associated with 
the first memory request initiated by the FPP microprogram. The 
memory write flag (ILMRT+) is used in the memory control logic in 
connection with obtaining the direct address of the first operand 
during a write instruction. 

4.6.11 Control Store Address Loop 

The control store address loop (figure 4-41) provides the control 
store address storage and manipulation required to cause the 
microinstructions of a routine to be executed in the appropriate 
order. The elements of the control store loop include the upper 
and lower address adders, buffers, and multiplexors. The 
starting control store address for a floating point processor 
operation is obtained from the instruction latch. As indicated 
by table 4-4, the instruction latch signals are connected to the 

A -- ILWRT+, IL04+ --- .... 
UPPER 

CSJA n + (0-3) ADDRESS ADCS n .:!:. (4-7) 
UPPER _ ... 
ADDRESS 

.. MUL Tl- "11 

CSA n + (4-7) PLEXOR ADDER -- ---- --
UPPER • • 

B ADDRESS 

J co BUFFER 

• CS END-

• • 
SYRST- KKCS-

• ,, 
JCT-

B C+ LOWER 

J ADDRESS 
BUFFER 

LOWER • ,, 
PU15+ 

1111 
ADDRESS -- CSA n + (0-3) --ADDER -- .. 

LOWER 
ILnn+ (0-3) ADDRESS ADCS n .±: (0-3) .. -- _., -- MUL Tl- --ii 

A __ CSJA n + (0-3) .. PLEXOR -- co ... 

VT11-3214 

Figure 4-41. Control Store Address Loop, Block Diagram 
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Table 4-4. Control Store Address Multiplexor Outputs 

Control 
Inputs Outputs 

CS END- JCT- ADCS7+ ADCS6+ ADC SS+ ADCS4+ ADCS3+ ADCS2+ ADCSl+ ADC SO+ 

L H ILWRT+ L L IL04+ IL03+ IL02+ ILOl+ ILOO+ 

H H CSA7+ CSA6+ CSAS+ CSA4+ CSA3+ CSAZ+ CSAl+ CSAO+ 

L L CSJA3+ CSJA2+ CSJAl+ CSJAO+ CSA3+ CSA2+ CSAl+ CSAO+ 

H L CSA7+ CSA6+ CSAS+ CSA4+ CSJA3+ CSJA2+ CSJAl+ CSJAO+ 

Note: L = low; H = high 



control store address multiplexor outputs when CSEND- is low and 
JCT- is high. Under this condition, the five least significant 
bits ILnn+(0-4) from the instruction latch are connected to the 
four least significant control store address multiplexor output 
lines, ADCSO+ through ADCS4+, while the most significant bit 
from the instruction latch, ILWRT+, is connected to the most 
significant 'control store address multiplexor output line. 
Hard-wired low (L) signals are simultaneously connected to the 
ADCSS+ and ADCS6+ control .store address multiplexor output lines. 

In addition to the starting address selection, there are three 
other selections that can be implemented by the control store 
address multiplexor. When both CSEND- and JCT- are high, the 
eight address signals from the upper and lower address buffer 
are selected for connection to the control store address multi­
plexor output lines. Each KKCS- pulse from the clock control 
logic clocks the upper and lower adder outputs into the upper 
and lower address buffers respectively. The adders function to 
increment the address being received from the control store 
address multiplexor by 1. Thus, as long as both CSEND- and JCT­
are high, consecutive control store locations are addressed in 
sequence. A low JCT- signal indicates that a jump condition is 
satisfied. In this case, only half of the control store address 
is obtained from the buffer register while the other half is 
obtained from the jump address field of the word currently held 
in the control store register. If CSEND- is high then the upper 
address is obtained from the buffer while the lower address is 
obtained from the jump address field (CSJAO+ through CSJA3+). If 
CSEND- is low, then the upper address is obtained from the jump 
address field while the lower address is obtained from the buffer. 

4.6.12 Jump (C)ndition Multiplexor 

Complement jump-condition-true signal JCT- is obtained from an 
8-to-l multiplexor. When the selected input of the multiplexor 
is high, the output is low as required to produce the jump. The 
multiplexor selection inputs are the CSJCn+(0-2) signals from the 
jump condition field of the word currently held in the control 
store register. Table 4-5 summarizes the jump condition 
selections. 

4.6.13 Control Store Memory, Register, and Decoder 

The PPP microprogram is contained in a 16-bit, 256-word read-only 
memory (control store). Associated with the control store are a 
control store register, which .holds each microinstruction while 
it is being executed, and a control store decoder~ which decodes 
certain fields of each microinstruction held in the control store 
register. (See figure 4-42.) The trailing edge of each KKCS­
pulse from the clock control loads the microinstruction from the 
control store location currently addressed by the ADCSn+ (0-7) 
signals (from the control store address loop) into the control 
store register. 
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Table 4-5. Jump Condition Selections 

Jump Condition 

CSJC2+ CSJCl+ CSJCO+ Condition Selected Function 

L L L Hard-wired L'ow No jump 

L L H Hard-wired High Unconditional jump 

L H L ECRY+ Jump if exponent carry 
carry 

L ·H H ZERO+ Jump if ZERO flip-flop 
is set 

H L L ACZ47+ Jump if accumulator 
is negative or zero 

H L H ASE BS+ Jump if AS = BS 

H H L E7+ Jump if MSB of 
exponent is 1 

H H H TO+ Jump if time-out flip-
flip is set 

Note: L = low; H = high 
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Figure 4-42. Control Store Memory, Register, and Decoder, 
Block Diagram 
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Table 4-6 lists the fields of each microinst~uction and lists 
the signals associated with each field that are supplied by the 
control store and the control store register. 

The control store decoder provides decoding of various IN, ALU, 
MEN, and FLAG codes as summarized in table 4-7. For information 
about the significance of each of these decoding signals, 
refer to table 4-2. " 

When the decode signal CSEND- is low and the complement jump­
condi tion-true signal (JCT-) from the jump condition multiplexor 
is high, the CSDN+ signal is placed at the high level. This sig­
nal inhibits KKCS- pulses at the end of an FPP instruction 
microprogram until the next FPP instruction is decoded. 

There are two decode signals that are loaded into the control 
store register. CSMUO+ is loaded into the CSMUl+ stage of the 
control store register while CSEXC- is loaded into the CSLDE­
stage. CSMUl+ identifies the main multiply microinstruction 
which is executed following the multiply-start microinstruction 
which contains the CSMUO+ code. The only function performed by 
CSEXC- is to set the CSLDE- signal low during the next micro­
instruction period. This allows two FLAG codes to be used to 
specify conditions for a single microinstruction, the CSEXC- code 
being used in the preceding microinstruction which does not 
require any information from the FLAG code field. 

Complement decoding signal CSIMC- which is used to initiate a 
memory request is gated by T0- from the priority control. This 
allows the MEM field of one of the microinstructions of the 
timeout routine to be used to provide a wait-for-memory-done 
function without initiating a memory request. 

4.6.14 I/0 Data Multiplexors 

The I/O data multiplexors are used to connect operand data from 
the data latch to the MQ register and E register of the data 
loop. They are also used to connect result data from the ALU in 
the data loop and from the E register to the memory data bus of 
the central processor. As shown in figure 4-43, a data source 
selection multiplexor selects one of eight data sources while a 
conditional inversion multiplexor selects either the inverted or 
non-inverted outputs of the data source selection multiplexor 
as appropriate. Data words which contain sign bits are inverted 
when the operand or result being transferred is negative. This 
provides the required conversion between the format used to store 
operands in memory and the absolute format required and supplied 
by the FPP. 

Table 4-8 lists each of the eight data words that can be selected 
by the data source selection multiplexor. Notice that two of 
these words (selections LLL and LHH) are obtained from the data 
latch (DLnn+). Selection LHH is used when transferring the first 
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Table 4-6. Control Store and Control Store Register Outputs 

........ 

Microinstruction Control Store Control Store 
Field Signals Register Signals 

ALU or IN/IO SALn+ (0-5) CSALn± ( 0- 5) 

AB SABn+ (0-2) CSABn± (0-2) 

AC SAM+, SCM+ CSAM-, CSCM± 

EADD SEAn+ co- 3) CSEAn± co- 3) 

EREG SE Rn+ (0,1) CSE Rn± (0,1) 

MEM SMEn+ (0,3) CSMEn+ (0,1)' CSMWT± 

FLAG SFLn+ (0- 3) CSFLn± ( 0- 3) 

JCOND SJCn+ (0-2) CSJCn+ ( 0 - 3) 

JADD SJ An+ (0-3) CSJAn+ (0-3) 

FMT SFMT+ CSFMT± 
• ......i 

4-112 



Table 4-7. Control Store Decoder Signals 

Microinstruction Control Store Decoder Signal 
Field Register Bits Activated 

IN CSALS+ CSAL4+ CSAL3+ 

L L H CSL SA-

L H L CSL SB-

H L H CSLDB-

H H L CSL DC-

H H H CSL DD-

ALU (With CSWSD- CSAL2+ CSALl+ CSALO+ 
signal from 
MEM field L L H CSAL± 
LOW) 

L H L CSN0± 

MEM CSMWT+ CSMEl+ CSMEO+ 

L H L CSWSD± 

H L L CS IMC± 

H L H CSINC+, CS IMC± 

H H H CSSIF+ 

FLAG CSFL3+ CSFL2+ CSFLl+ CS FLO+ 

L L L H CSCPO+ 

L L H L CSMUO± 

L L H H CSZTZ± 

L H L L CSZAS-

L H L H CSSS± 

L H H L CS0FL-
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Table 4-7. Control Store Decoder Signals (continued) 

·-
Microinstruction Control Store Decoder Signal 
Field Register Bits Activated 

FLAG CSFL3+ CSFL2+ CSFLl+ CSFLO+ 
(cont'd) 

L H H H CSDIO-

H L L L CS128± 

H L L H CSEXC-

H L H L CSCCR-

H L H H CSC47± 

H H L L CSDIV-

H H L H CSUFL-

H H H L CSCTO+ 

..... 

Note: L = Low; H = high 

4-114 



ACINV+ --... 

CONDITIONAL 
INVERSION 
MULTIPLEXOR 

.. 
IOM n n ± (00 - 15) 

----... 

IOnn + (00 - 15) 
DL n n ..i. (00 - 5' ---- ......-.. 
ALUnn - (40- 46), En - (0- 7) .... ... 
ALU n n - (25 - 39) --D L n n + (07 - 14) / DL n n ..i. (00 - 6) , 

,,... t_ 
DU 5+ .... -- DATA SOURCE MCDOE+ MEMORY MYDB n n - (00 - 15) 

En-(0-7) -- DATA BUS 
....... 

_.. SELECTION -.... ... 
-- MULTIPLEXOR I-- DRIVERS 

ALU n n - (32 - 47'! .. --
ALU n n - (17 - 31) ..... --
ALU n n - {02 - 10) ..... 

----
CSAL n + (O - 2) _.. ... 
VTl1-3191 

Figure 4-43. I/O Data Multiplexors, Block Diagram 

word of a single precision number from the data latch to the data 
loop. This selection transposes the positions of the exponent 
and high-fraction fields of the word. Selection LLL is used when 
transferring all other operand words from the data latch to the 
data loop. 

The remaining five selections are associated with the transfer of 
result words from the data loop to memory. Selections LLH and 
LHL are associated respectively with the transfer of words 1 and 
2 of a single precision number while selections HLL through HHH 
are associated respectively with the transfer of the four words 
of a double precision number. 

The data source selection is controlled by the IO field (CSALO+ 
through CSAL2+) of the microinstruction word currently held in 
the control store register. 

A conditional inversion is introduced in response to a high 
ACINV+ signal. (The I/O data multiplexor is the boundary between 
the negative-true data-loop/exponent-loop domain and the positive­
true IOM/IO domain. Therefore, a level inversion to convert 
between negative-true and positive-true occurs when ACINV+ is 
low. The high ACINV+ level eliminates this level inversion and 
produces an inversion of ones to zeros and zeros to ones). 
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Table 4-8. I/O Data Multiplexor Selections 

Selec-
ti on 
Inputs - Source Data Selection 
CSALn+ 
2 1 0 IOMlS- IOM14- IOM13- IOM12- IOMll- IOMlO- IOM09- IOM08-

·-
L L L DLlS+ DL14+ DL13+ DL12+ DLll+ DLlO+ DL09+ DL08+ 

L L H PU+ E7- E6- ES- E4- E3- E2- El-

L H L PU+ ALU39- ALU38- ALTT37- ALU36- ALU35- ALU34- ALU33---
L H H DLlS+ DL06+ DLOS+ DL04+ DL03+ DL02+ DLOl+ DLOO+ 

H L L PU+ PU+ PU+ PU+ PU+ PU+ PU+ PU+ 

H L H ALU47- ALU46- ALU45- ALU44- ALU43- ALU42- ALU41- ALU40-

H H L PU+ ALU31- ALU30- ALU29- AT.U28- AT.U27- ALU26- ALU25-

H H H PTr+ ALU16- ALUlS- ALU14- ALU13- ALU12- ALUll- ALUlO·-

Source Data Selection (continued) 

2 1 0 IOM07- IOM06- IOMOS- IOM04- IOM03- IOM02- IOMOl- I OMO 0 ·· 
·-I 

L L L DL07+ DL06+ DLOS+ DL04+ DL03+ DL02+ DLOl+ DLOO+ 
·-I 

L L H EO- ALU46- ALU45- ALU44- ALU43- ALU42- ALU41- ALU40·· 

L H L ALU32- ALU31- ALU30- ALU29- ALU28- ALU27- ALU26- ALU25·· 

L H H DL14+ DL13+ DL12+ DLll+ DLlO+ DL09+ DL08+ DL07+ 
·---! 

H L L E7- E6- ES- E4- E3- E2- El- EO-

H L H ALU39- ALU38- ALU37- ALU36- ALU35- ALU34- ALU33- ALU3 2 ·· 

H H L ALU24- ALU23- ALU22- ALU21- ALU20- ALU19- ALU18- ALUl 7-· 

H H H ALU09- ALU08- ALU07- ALU06- ALUOS- ALU04- ALU03- ALU02-· 

Note: L = low; H = high 
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During the transfer of results from the data loop to the memory, 
the IOnn+ outputs from the conditional inversion multiplexor are 
gated to the memory bus (MYDBnn-) in response to a high MCDDE+ 
signal from the memory control. 

4.6.15 Data Loop 

The data loop performs those data processing operations that 
involve the fraction portions of operands. As illustrated in 
figure 4-44, the data loop includes the following components: 

a. ALU. This is a 48-bit wide gen~ral purpose arithmetic­
logic unit with a 2-bit extension that is used only during 
execution of the multiplication instructions. The particular 
logic or arithmetic function provided by the ALU depends upon 
signals supplied to its four selection lines (SO through 53), to 
its mode (M) line, and to its carry input (Cn) line. Twelve 
combinations of inputs are used in the FPP. These inputs and 
the resultant functions are summarized in table 4-9. 

MQRlvln r, - ACASl• CR•. n -_.. (01, 24, 471 IC• n - (OQ - 02\ _.. '16 - 19) ...... - ... 
-.. 

ACASO" MOnr - ..... PU· PU• ...... -- __. 
MOE ..._ '17 - 19\ --. - KKREG-

1014· ... MUL TIPLEXCR --.... c - SYR ST-
A 

MLIL TIPLEXOR r--, ..... REGISTER f.,n.,-(00-47' 
CSLDD- _.. -.. ...... --

MOn- - AMnn -
roo - 47' _.. (00 - 47\ • CSCM' ...... 

MG -.. 
REGISTER 

IC- n • 100 - 15\ ..... 
M0107- __. 

---
KKMO- __. --.... 

MOASl• - M'.)F:1, ..... --
MOASO• - MQ<SC-· A --.... MUL TIP Lt XO 

_.. r 
ACBS' • J 

--_1 8 Br· - 100 - 47'1 

ACBSO· ....., REGISTER 

KKREG- :1 
CSAM· .. 

ALU r n -
CSAMO• ..... - (00 - 491 - ---

ALCN+ ..... f4---J 
ALU 

ALM• ..... CM n n - (00 - 471 - -ALS"' <0- 3\ ..... ---
VT12-446 

Figure 4-44. Data Loop, Block Diagram 
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Table 4~9. ALU Functions 
-

Input Code 

S3 S2 Sl so M en 

ALS3+ ALS2+ ALSl+ ALSO+ ALM+ ALCN+ Function 

L L L L H L F = A (Logic 
complement a-
tion of A) 

L L H H H L F = 1 

L H L H H L F = B (Logic 
complement a-
tion of B) 

L H H L L H F = A MINUS B 

H L L H L L F = A PLUS B 

H L H L H L F = B 

H H L L L L F = A PLUS A = 2A 

H H L L H L F = 0 

H H H H H L F = A 

L L H H L L F = MINUS 1 

Note: L = low; H = high 
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b. MO Register. The MQ (multiplier/quotient) register is a 
48-bit shift register with parallel-entry, parallel-readout, 
shift-left, and shift-right capabilities. It holds the multiplier 
during multiplication and the quotient at the end of division 
(See figure 4-45.) All operands received by the data loop from 
memory are initially assembled in the MQ register. Various 
sections of the MQ register can be ~ddressed separately for 
parallel entry as required to assemble 16-bit words received from 
memory into 22-bit single precision or 45-bit double precision 
operand fractions. The MQ register function executed at MQ 
clock (KKMQ-) time is determined by the status of the two 
selection inputs (SO and Sl) as summarized in table 4-10. 

For parallel entry purposes, the MQ register is divided into six 
separately addressable sections (A through F) as illustrated in 
figure 4-46. The manner in which these sections are addressed 
when loading single precision and double precision fraction words 
is also indicated in the figure. For the single precision 
fraction the loading control signal CSLSA- loads the sign (S) and 
the seven most significant bits of the fraction (high fraction) 
into sectio~ A of the MQ register. The low CSLSA- signal places 
the MQASl+ and MQASO+ signals at the high level in order to select 
the loading function for this section. The data that is loaded 
into the MQ register sections is obtained from the data latch 
via the I/0 data multiplexor. Figure 4-46 indicates the data 
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Figure 4-45. Data Loop Register Usages 
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Table 4-10. MQ, A, and B Register Function Selection 

Selection Signals 

Sl so Function 

L L No operation 

L H Shift Right 

H L Shift Shift Left 

H H Load 

Note: L = Low; H = High 
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·1atch bit pos1t1ons from which the data is obtained during each 
transfer into the MQ register. When section A is loaded in 
response to CSLSA-, the sign bit is obtained from data latch 
bit 15 while the high fraction is obtained from bit positions 0 
through 6. The CSLSB- signal loads the remaining bits (low 
fraction) of the single precision fraction into sections B and C 
of the MQ register. Bits 0 through 14 from the data latch are 
loaded into bit positions 25 through'39 of the MQ register while 
a zero (high level) is loaded into bit position 24. 

In the case of a double precision fraction, three transfers are 
required to assemble the complete fraction. The loading signals 
associated with these transfers are CSLDB-, CSLDC-, and CSLDD-. 
Section E is loaded twice. CSLDC- loads data latch bits 0 through 
2 into bit positions 17 through 19 and a zero into bit position 
16. CSLDD- loads MQ bits 17 through 19 back into the same posi­
tions in section E and loads data latch bit 14 into position 16 
in place of the zero loaded in that bit position by CSLDC-. The 
selection of the source data loaded into bit positions of 
section E is accomplished by the MQE multiplexor. A low CSLDD­
signal selects the inputs required during the CSLDD- transfer 
while a high CSLDD- signal selects the inputs required during 
other transfers. 

The bit 24 input to the MQ register (MQI07+) is provided by a 
multiplexor in the MQ control logic. (This is the logic which 
supplies the selection signals to the MQ register sections.) The 
multiplexor selects a zero (high level input) for single 
precision operations or the appropriate output from the I/O data 
multiplexor for double precision operations. 

With the exception of the selections just described, the bit 
inputs to .the MQ register sections are selected by the I/O data 
multiplexor. The data from the I/O data multiplexor is 
received on the IOnn+ (00-15) lines. 

At the end of each FPP instruction microprogram routine, the MQ 
register is cleared by loading zeros from the I/O data multi­
plexor into all sections. In the case of division, where the MQ 
register contains the quotient at the end of the routine, this 
result is transferred to the A and B registers at the time that 
the MQ register is cleared. 

Shifting of the contents of the MQ register is described in 
connection with descriptions of clock control and MQ register 
control. 

c. A and B Registers. The A and B registers are 48-bit, 
shift-left, shift-right, parallel-entry, parallel-readout 
registers similar to the MQ register. For addition or subtraction 
the A and B registers hold the two operands and the result is 
placed in the A register. During multiplication, the A register 
is used to accumulate the product while the B register is used to 
hold and shift the multiplicand. During division, the A register 
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is used to hold and shift the dividend/remainder while the 
B register is used to hold the divisor. If the result of an 
operation is not in the A register at the end of an instruction 
routine, it is copied into the A register. Every result is also 
copied into the B register at the end of an instruction. Thus, 
results reside in the--A aiid--B- regfs-fers--he-tween- fns-fr-tic-t1ois- .--------
During addition or subtraction; the B register is used to align 
the fraction portion of the smaller operand. Thus, if the 
operand resulting from the previous operation is smaller, the 
copy in the B register is used and the new operand is loaded into 
the A register. Conversely, if the new operand is smaller, it is 
loaded into the B register and the copy of the result of the 
previous operation held in the A register is used in the new 
operation. 

During multiplication, the copy of the previous result held in the 
B register is used as the multiplicand. During division, the copy 
of the previous result held in the A register is used as the 
dividend. A load instruction places copies of the operand 
fraction in both the A and B registers. Thus, if the previous 
instruction was a load instruction, it is still true that the 
result of the operation is available in both the A and B 
registers. 

The contents of the A register is applied to the A input of the 
ALU via the C multiplexor. The contents of the B register is 
applied directly to the B input of the ALU. 

Both the A and B registers receive parallel data from the A 
multiplexor. Data appearing at the output of the A multiplexor· 
can be loaded into either the A or B register or both by appro­
priate control of the function selection inputs to the two 
registers. 

The A and B register are both clocked by KKREG- from the clock 
control. The function performed at the positive-going edge of 
each clock pulse is determined by the selection inputs as 
defined in table 4-10. The selection inputs to the A register 
are ACASO+ and ACAS!+ while those to the B register are ACBSO+ 
and ACBSl+. These inputs are supplied from the A, B, and multiply 
control. 

d. A Multiplexor. The A multiplexor provides the path by 
which operands are transferred from the MQ register to the A 
and/or B register. It also provides three paths by which 
result data from the ALU can be supplied to the A or B register. 
One of these paths shifts the ALU data to the right two bit 
positions (with the data from··bits positions ALU49 and ALU48 being 
loaded into the two most significant bit positions of the 
A register). This path is used during multiplication to shift 
each new partial product two bit positions to the right at each 
clock time. A second path shifts the ALU data one bit position 
to the left (and puts a zero into the least significant bit 
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position of the register). This path is used during division to 
shift the partial remainder one bit position to the left at each 
clock time. The third path supplies the ALU data to the A or B 
register without shifting it either to the right or to the left. 

The A multiplexor selection is controlled by the CSAM+ and CSAMO+ 
signals from the control store decoder. The paths selected by 
these signals are summarized in tab'ie 4-11. 

e. C Multiplexor. When CSCM+ from the control store 
decoder is high, the C multiplexor selects the constant being 
supplied from the constant register. When CSCM+ is low, the 
C multiplexor selects the contents of the A register. The data 
selected by the C multiplexor is supplied to the A input of 
the ALU. 

4.6.16 Multiply Control 

Multiply control selects the multiplier bit pair to be evaluated 
during each iteration period of the fraction multiply micro­
instruction, performs the evaluation of the selected multiplier 
bits, and manipulates various control signals in order to add or 
subtract an appropriate quantity to or from the previous partial 
product at each clock time. 

Two dual 4-to-l multiplexors and a latch circuit (figure 4-47) are 
used to select the two multiplier bits to be evaluated during 
each iteration of the multiplication routine. During the initial­
ization step, the multiplier bits are obtained from the data 
latch. Two bits are supplied through the multiplier control bit 

Table 4-11. A Multiplexor Selections 

Selection Inputs Selection 

CSAM+ CSAMO+ 

L L MQ register 

L H ALU x 2- 2 

H L ALU 

H H ALU x 21 

Note: L = low; H = high 
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DL02+ 

Dl.03+ 

MQ29+ 

MQ07+ 

IRDB+ 

CSMUl+ 
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MQ28+ 
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VTl2-451 

CONTROL BIT 
STORAGE 
MULTIPLEXOR 

4-T0-1 
MULTIPLEXOR 

• ·~ 

t ,, 

4-T0-1 
MULTIPLEXOR 

KKREG-

l 
C3B7+ _... -

MULTIPLIER 
CONTROL 
BIT STORAGE 
LATCH 

C3B9+ ...... --

CSMLO+ ...... ,... 

CSMUl+ ...... MULTIPLY -,.... 
CONTROL 

847+ --111"" 

c 

DLOO+ 

DLOl+ 

C4C15+ 
---[j 

IRDB+ 

CSMUl+ 

~ DLOO+ 

C4Cl4+ ..... 

D 
...._ 
..... 

..._ ... 
C506+ 

KKREG-

..._ ACMCYJ.. --
ACMSU- _... --

CONTROL BIT 
MULTIPLEXOR 

4-T0-1 
MULTIPlcXOR 

4-T0-1 
MULTIPLEXCR 

_... ... 
... CARRY ,, STORAGE 

AC MAD- _., L-+ .... 
ACBML- .. -.A.CBMR- .. ... 

Figure 4-47. Multiply Control, Block Diagram 

ACMCl+ 

ACMCO+ 

multiplexor to the ACMCn+(l,O) lines for use in controlling the 
first iteration. The next two bits are supplied through the 
multiplier control bit storage multiplexor to the multiplier 
control bit storage latch for use in controlling the second 
iteration. During subsequent iterations, the multiplier control 
bit multiplexor selects the contents of the multiplier control 
bit storage latch for application to the ACMCn+(l,O) lines while 
the multiplier control bit storage multiplexor selects two bits 
from the multiplier-quotient register (MQnn+) for loading into 
the multiplier control bit storage latch at the end of the 
iteration. The particular bits selected in each case depend upon 
whether single or double precision multiplication is being 
performed. 
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Both multiplexor selections are controlled by IRDB+ and CSMUl+. 
The status of IRDB+, which indicates whether single or double 
precision multiplication is being performed, determines the 
particular multiplier bit selections while the status of the 
CSMUl+ signal determines whether the bits are selected from the 
data latch or from the MQ register and the multiplier control bit 
storage latch. Table 4-12 summarizes the bit selections. 

Multiplication is implemented by an add and shift algorithm. The 
selected pair of multiplier bits is evaluated to determine the 
quantity to be added to the partial product during each iteration. 
The bit pair can assume any of the values 00, 01, 10, or 11 
(decimal 0, 1, 2, ·or 3). Thus, the basic requirement is to add 
OM, lM, 2M, or 3M to the partial product during each iteration 
(where M =multiplicand). However, only Mand 2M are explicitly 
available. (2M is obtained by shifting the multiplicand one bit 
position to the left in the B register and M is recovered by 
shifting 2M one bit position to the right.) 3M is added by 
subtracting M and generating a control bit carry into the next 
iteration. The carry indicates a component, M, that must be 
added to partial product during this next iteration. (Since the 
partial product is shifted to the right two bit positions after 
each iteration, adding M one iteration later is equivalent to 
adding 4M during the current iteration. Thus, effectively, 3M 
is added by adding 4M - M. When the control bit from the 
preceding iteration is added to the bit pair value for the 
current iteration, the number of possible values increases to 
include the new value, 4. However, this value is easily handled 
by generating a carry into the next iteration time. 

The multiply control manipulates signals which specify left shift­
ing of M to provide 2M (ACMBL-) right shifting of 2M to provide 
M (ACMBR-), addition (ADD+), subtraction (SUB+), and multiplier 
bit carry into the next iteration period (ACMCY+). The ACMBL-
and ACMBR- signals depend upon the current values of ACMCO+, 
ACMCY+, and B47+. The ADD+, SUB+, and ACMCY+ are stored quanti­
ties which depend upon the values of ACMCl+, ACMCO+, and ACMCY+ 
at the previous clock time. Figure 4-48 provides an example of 
multiply control timing. Nine clock times are identified by the 
circled numbers, 0 through 8, in the figure. At register clock 
time 0, the stored quantities (SUB+, ADD+, and ACMCY+) are set 
to the values appropriate for the first iteration. No addition 
or subtraction occurs at this clock time. In the example shown 
the first multiplier bit pair is 10 (as indicated by the high 
ACMCl+ signal and the low ACMCO+ signal at clock time 0). This 
results in the setting of ADD+ to the high level while SUB+ and 
ACMCY+ remain at the low level. Because the addition of 2 is 
indicated and B47+ is initially low, ACMBL- is low prior to 
clock time 0. This causes a left shift of the B register as 
indicated by the positive-going transition of B47+ at clock 
time 0. With ADD+ high and with 2M in the B register, the 
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Table 4-12. Multiplier Control Bit Selections 

· Step/Mode CSMUl+ 

Initialization, L 
Single Precision 

Initialization, L 
Double Precision 

Subsequent H 
iterations, 
Single Precision 

Subsequent H 
iterations, 
Double Precision 

Note: L = low; H = high 
KKREG­

MULTIPLIER 
BTT PAIR 
VALUE~ 

ACMC1+ 

ACMCO+ 

ACMCY+ 

2 

LJ LJ LJ 
3 0 

Bits Stored 
For Next 

IRDB+ Iteration 

C3B7+ C3B9+ 

L DL02+ DLOl+ 

H DL03+ DL02+ 

L MQ29+ MQ28+ 

H MQ07+ MQ06+ 

Li LJ LJ 
2 0 3 3 

.. 
Bits Evaluated 
During Current 
Iteration .. 
ACMCl+ ACMCO+ 

DLOO+ L 

DLOl+ DLOO+ 

C4Cl5+ C4Cl4+ 

C4C15+ C4C14+ 

LJ LJ LJ 
0 

ACMBL­

ACMBR-
'---

847+ 

ADD+ 

SUB"'-

~ ~ J • ~ ~ ct ~ J cb 
ADD SUB ADD ADD ADD SUB ADD ADI) 
2M M M 2M ZERO M ZERO M 

VTl1·3202 

Figure 4-48. Example of Multiply Control Timing 
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addition of 2M to the partial product occurs at clock time 1. At 
this clock time, ACMCY+ and SUB+ are set high, ADD+ is set low, 
and the contents of the B register is shifted to the right to 
recover M. This prepares for the addition of 3M by subtraction 
of M at clock time 2 and addition of M at clock time 3. The 
process continues in this manner until every pair of multiplier 
bits has been processed. 

Table 4-13 summarizes the manner in which the control signals 
depend upon the values of ACMCY+, ACMCl+, and ACMCO+ at each 
clock time. Notice that the B register shift control signal 
status depends not only upon the status of the multiplier bits 
and carry bit but also upon the current status of the B register 
(as indicated by the status of the B47+ signal). ACMBL- is 
placed at the low level to enable the left shift only if B47+ is 
low, indicating that the current contents of the B register is M. 
Similarly, ACMBR is placed at the low level only if B47+ is high. 
This inhibits the shifting of the B register when the B register 
already contains the quantity (M or 2M) required for the addition 
or subtraction at the next clock time. 

The ADD+ and SUB+ flip-flops are in the ALU control logic. The 
signals from this logic which control the switching of these 
flip-flops at clock times are the ACMAD- and ACMSU- signals. The 
CSD6+ signal controls transitions of the ACMCY+ flip-flop which 
is part of multiply control as illustrated in figure 4-48. 

4.6.17 A, B Control Encoder 

The A, B control encoder provides the function selection signals 
to the A and B registers. The function selections can be 
controlled by the AB selection field of the microinstruction 
currently held in the control store register. (As indicated in 
table 4-14, there are seven active function selections that are 
encoded in response to control store register AB control signals 
CSABn+ (0-2). When these three signals are all low, the register 
function selection can be controlled by any of four other inputs. 
Three of these control the selection function codes supplied to 
the B register. These are the ACMBL-, ACMBR-, and CSAL- signals. 
ACMBL- and ACMBR- are supplied from the multiply control and 
control shifting of the multiplicand in the B register during the 
multiplication microprogram. CSAL- from the control store decoder 
provides right shifting of the B register during the alignment 
microinstruction. 

During the fraction divide microinstruction, MQQB- from the MQ 
control selects either left shifting of the partial remainder in 
the A register (if the partial remainder is smaller than the 
divisor) or loading of a new partial remainder from the ALU into 
the A register (if the partial remainder in the A register is 
larger than or equal to the divisor). 
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N 
00 

Table 4-13. Multiply Control 

Inputs Control Outputs at KKRGE 

CSD6+ ACMBL-
(Next (If B47+ 

ACM CY+ ACMCl+ ACM CO+ ACMSU- ACMAD- ACMCY+) is low) 

0 0 0 H L L L 

0 0 l H H L H 

0 1 0 H H L L 

0 1 1 L L H H 
·. 

1 0 0 H H L H 

1 0 1 H H L L 

1 1 0 L L H H 

1 1 1 H L H L 

Note: 0 L = 1 = lJ = high 

Direction 
of Condi-

Resultant Flip- tional B 
ACBMR- Flop Outputs Register 
(If B47+ after KKREG- Shift at 
is high) SUB+ ADD+ ACMCY+ KKREG-

H L L L Left 

L L H L Right 

H L H L Left 

L H L H Right 

L L H L Right 

H L H L ·Left 

L H L H Right 

H L L H Left 



Table 4-14. A, B Control .Encoder 

B Register A Register 
Encoder Input(s) Control Control 

Fune-
CSAB2+ CSABl+ CSABO+ ACBSl+ AC·BSO+ ACASl+ ACASO+ ti on 

L L L NOP 

L L H L L L H SRA 

L H L L L H L SLA 

L H H L L H H LDA 

H L L H H L L LDB 

H L H L H L H SRAB 

H H L H L H L SLAB 

H H H H H H H LDAB 

MQQB- = L (See note 4.) H H LDA 
MQQB- = H H L SLA 

CSAL- = L L H SRB 

ACMBR- = L L H SRB 

ACMBL- = L H L SLB 

Notes: 1. L = low; H =high 

2. SR= Shift right, SL = shift left, LD = load 

3. A = A register, B = B register, AB = A and B 
registers 

4. When MQBB- is controlling ACASO+, ACASl is held high 
by low CSABl- signal. 
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4.6.18 MQ Control 

The MQ control (figure 4-49) provides the function selection 
signals to the various separately addressable MQ register 
sections. It provides the path by which quotient bits are 
shifted into the MQ register during division. Also, it deter­
mines, in accordance with the precision selection, the source of 
the data bit that is loaded into bit position 24 of the MQ 
register during the assembly of the operand fraction in the MQ 
register. 

Function selection signals MQmSl+ (A-F) and MQmSO+ (A-F) provide 
the capability of addressing the appropriate sections of the MQ 
register during assembly of the operand in the MQ register. For 
example, a low CSLSA- signal places the MQASl+ and MQASO+ signals 
at the high level as required to load the sign bit and high 

CSMUI- ... --
CSDIV- --.... 
CSDN- ... --
CSL SA- -- MQ MOmSl~ (A-F) ----- REGISTER 

.... 
CSLSB- -- FUNCTION MQmSO + (A-F) .... - SELECTION .... 
CSLDB- ... --
CS LDC- .. 

---
CSLDD- _..... --

CSDIV,_ _..... .. DI '/ISOR-
A.47~ -- REMAINDER - RELATIVE MQQB- --
ALlJ47- MAGNI- --

_ .. TUDE .... 
A.46· 

E'16.Ll.JATION 

--.. MQSID-
MO 

... 
IRDB-

INPUT MQSIS-- MUL Tl -,.... 
MQ23-

PLEXOR MQIC7+ ---
. . 10,07-1- .. ... 

PU· ---VTI 1-3215 

Figure 4-49. ~!Q Control, Block Diagram 
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fraction of a single prec1s1on operand into register section A. 
Refer to figure 4-46 for a diagram that illustrates the various 
loading signals involved in loading the operand words of both 
single and double precision operands into the MQ register. 

In the case of the selection of the MQ shift-left or shift-right 
function, the function is selected .for all sections of the 
register. The control inputs whic~ select shift functions are 
CSMUl- and CSDIV-. CSMUl- selects the right-shift function that 
is required to shift the multiplier to the right during multipli­
cation. CSDIV- selects the left-shift function required to shift 
quotient bits into the MQ register during division. 

A low CSDN- signal selects the load function for all MQ register 
sections. This causes zeros to be loaded into the MQ register at 
the end of the final microinstruction of each FPP instruction 
microprogram. During division, quotient bits are supplied to 
the MQQB- line by a sub-function which evaluates the magnitude 
relationship between the partial remainder (or, during the first 
iteration, the dividend) and the divisor. If the partial 
remainder is at least as large as the divisor, MQQB- is placed 
at the low level to produce a binary one quotient bit). The 
evaluation is enabled during the division microinstruction in 
response to the high CSDIV+ signal from the control store decoder. 
There are two evaluation resµlts which place the MQQB- line at the 
low level. One of these is the coincidence of high A46+ and 
ALU47- levels. This accounts for the case where the most 
significant binary one magnitude bit of the remainder is in bit 
position 46 of the A register (A46+ high) and the subtraction of 
the divisor from this remainder is producing a positive 
difference (ALU47- high). The second result which places MQQB-
at the low level is a high A47+ signal. This indicates that the 
most significant binary one magnitude bit of the remainder is in 
bit position 47 of the A register. In this case, the remainder 
must be larger than the divisor, since the most significant 
magnitude bit of the divisor is in bit position 46. (In this 
case, the status of the ALU47- signal does not indicate the sign 
of the result of the ALU subtraction because of the presence of 
the magnitude bit in bit position 47 of the A register.) 

The quotient bits appearing on the MQQB- line are supplied to 
the MQ register via the MQ input multiplexor. If the IRDB+ 
signal from the instruction register is low, indicating the 
selection of single precision, then MQQB- is connected to the 
MQSIS- line. In this case, quotient bits are shifted into bit 
position 24 of the MQ register. If IRDB+ is high, indicating the 
selection of double precision, then MQQB- is connected to the 
MQSID- line. In this case, quotient bits are shifted into bit 
position O of the MQ register. In this case, MQ23- from the MQ 
register is connected to the MQSIS- line to shift bits from bit 
position 23 to bit position 24. (When single precision is 
selected, PU+ is connected to MQSID- to shift zeros into the 
unused sections of the MQ register.) 
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The status of the IRDB+ signal also determines the source of the 
data that is supplied to bit position 24 of the MQ register via 
the MQI07+ line during parallel loading. When single precision 
is selected, PU+ is connected to MQI07+ to load a zero. When 
double precision is selected, I007+ is connected to MQI07+ to 
load a magnitude bit received from the I/O data multiplexor. 

4.6.19 ALU Control 

The ALU control (figure 4-50) provides function selection signals 
ALSn+ (0-3), mode s~lection signal ALM+, and carry-input signal 
ALCN+ to the ALU. When the CSFMT- signal from the control store 
register is high, these signals provide the addition function 
when the ADD- signal is low or the subtraction function when the 
SUB+ signal is high. (Refer to table 4-9 for a complete list of 
the ALU functions provided in response to each combination of 
control inputs that is used by the FPP.) The status of the ADD­
and SUB+ signals is updated at each KKREG- pulse time in accord­
ance with the status of the control inputs. During multiplica­
tion, the status of ADD- and SUB+ is determined by the ACMAD-
and AC~SU- signals respectively from the multiply control. When 
ACMAD- is high, ADD- is set low to select the addition function. 
When ACMSU- is low, SUB+ is set high to select the subtraction 
function. During division, SUB+ is initially set high, to select 
subtraction, in response to the low CSDIO- signal from the con­
trol store decoder and is maintained high in response to the low 
CSDIV- signal from the control store decoder. When a micro­
instruction with the CPO code in its flag field resides in the 

CSFMT.±. ---
CSAL n • (0-51 ... ....... 

ALU ALS n "'-(0-31 
FUNCTICN, -i 
MCDE, ALM+ 
AND KKRGG- _ ... CARRY -.... 
CONTROL ALCN"'-

SYRST- --t ...... -
AC MAD- ...... ....... 
ACM SU- ADD, ADD-.. SUB --....... 

FLIP- -
CSDIO- _ ... FLOPS sus~ .... ....... -
CSDIV- .... ... .. 
CSCP0-1- ...... -i ... 
ALU 47+ _... ....... 
VTl1 ·3196 

Figure ~-50. ALU Control, Block Diagram 
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control store register (CSCPO+ high), then SUB+ is set high to 
provide the subtraction function if ALU47+ is high (indicating 
that the current ALU function is providing a negative result). 
This is used to select a subtraction operation for the purpose 
of inverting a negative result. When none of the above control 
inputs is providing active control of the ADD- and SUB+ lines 
and CSFMT- is high, then ADD- is le~ as required to select the 
addition function by default. 

When CSFMT+ is high, the control lines to the ALU are controlled 
by the status of the ALU field of the microinstruction in the 
control store register as follows: CSALO+ controls ALCN+; CSALl+ 
controls ALM+, CSAL2+ through CSALS+ control ALSO+ through 
ALS3+ respectively. 

4.6.20 Sign and Zero Flags 

Sign flag AS (figure 4-51) indicates the sign of the result at 
the end of an instruction microprogram and between instruction 
microprograms. Sign flag BS indicates the sign of the new 
operand that is received during an instruction microprogram. The 
ZERO flag generally indicates whether the ALU output is zero or 
non-zero. A subsidiary signal (ACZ47+) indicates either the ZERO 
condition or the presence of a binary one in the most significant 
bit position of the A register. 

The updating of sign and ZERO flags is synchronized by the 
KKREG± signal. 

The following operations on sign flags are provided: 

a. Loading sign of new operand (DLlS+) into BS. This 
operation occurs when the new operand word containing the sign 
bit is in the data latch (as indicated by a low CSLSA- or CSLDB­
signal from the control store decoder). As the sign bit is 
transferred, it is inverted if a subtraction instruction is being 
performed (IRSU+ high). 

b. Resetting of AS. A low CSZAS- or CSUFL- signal from the 
control store decoder resets AS providing a positive sign flag 
for a positive or zero result. (CSUFL- zeroes the floating point 
accumulator when underflow occurs.) 

c. Swap signs. The swap sign decode (high CSSS+, low 
CSSS-) from the control store decoder swaps the signs in AS and 
BS. This is used to transfer the new operand sign from BS to AS 
in cases where the sign of the result is simply the sign of the 
new operand (for example, addition of a larger n~w operand to a 
smaller previous result). Swaps signs is also used to place a 
sign bit in AS temporarily so that it can be reset. 
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CSCPO+ .... ... 
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SYRST- ..... .. 
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VTl2~50 

Figure 4-51. Sign and Zero Flags, Block Diagram 
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d. Toggling of AS. During the multiply or divide set-up 
microinstruction (CSMUO- or CSDIO- low), AS is toggled if BS+ 
is high .. This provides the exclusive OR function which determines 
the sign of the result in multiplication or division. The 
set-up-complement decode (high CSCPO) toggles AS if a fraction 
subtraction produces a negative result (ALU47+ high). This 
conditional operation puts the sign of the larger number in AS. 

When CSZTZ+ from the control store .. decoder is low, the ZERO flag 
is updated by each KKREG- pulse to indicate a zero or non-zero 
ALU output. High ALUHZ+ and ALLHZ+ signals indicate upper ALU 
zero and lower ALU zero. For single precision (IRDB- low) the 
ZERO flag status is determined by ALUHZ+ only. A high CSZTZ+ 
signal inhibits updating of the ZERO flag. 

4.6.21 Constants and Conditional Inverter 

The constant register provides constants that are required for 
various data loop ALU operations. The conditional inverter 
control provides inversion of I/O data to accomplish the conver­
sion between the inverted sign word format used in memory and 
the absolute format used in the FPP. 

At the first KKCS- time of an instruction microprogram, the 
CSDN+ signal from the control store register is high (indicating 
that the final microinstruction of the previous instruction micro­
program is still held in the control store register). Under this 
condition, the KKCS- clock loads a round-off constant into the 
constant register. The constant loaded depends upon the status 
of IRDB±. If IRDB- is high, indicating single precision, a 
binary one is loaded into the CR24- bit of the constants register. 
If IRDB+ is high, indicating double precision, a binary one is 
loaded into bit position CROl-. These bits are added to the 
result fraction during a store instruction in order to round off 
the result. 

A high CS47+ signal from the control store decoder causes a 
binary one to be loaded into the CR47- bit position of the 
constant register (provided that CSDN- is low). This constant is 
used to generate the largest fraction after an overflow has 
been sensed. 

The microprogram can clear the constant register by placing the 
CSCCR- line at the low level. 

During the transfer of the operand word containing the sign bit 
from the data latch to the MQ register, the ACINV+ signal is 
placed at the high level if DLlS+ from the data latch is high, 
indicating a negative operand. In this case, the word is in ones 
complement form. The high ACINV+ signal provides the inversion 
required to convert the word to absolute form. The transfer of 
the single precision operand word containing the sign bit is 
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KKCS- ---
CSC47- -- CR47- ....... .. -CSDIV+ 

CONSTANT CR24-_.. .. - REGISTER -
ILDB+ CROl--- _ .. -- -
CSCCR- ....... -

CSAL5+ _.. --
CSAL4- ....... .... 
CSAL3+ ....... ... 
DLIS+- CCNDI----- TICNAL ACINV+ 
CSALI- INVERTER ....... ..... ---.... 
CSA LO+ ..... -
AS+ .... -
CSFMT- _., -

VTI 1 ·3216 

Figure 4-52. Constant and Conditional Inverter, Block Diagram 

identified by high CSFMT-, CSAL4-, and CSAL3+ signals and a low 
CSALS+ signal. The transfer of a double precision operand word 
containing the sign bit is identified by the same set of high 
signals coupled with a low IRDB- signal. 

The ACINV+ signal must also be placed at the high level during the 
transfer of the result word containing the sign bit if the result 
is negative. This transfer is identified by high CSFMT-, CSALl-, 
and CSALO+ signals. The negative result is identified by a high 
AS+ signal. 

4.6.22 Exponent Loop 

As illustrated in figure 4-53, the exponent loop includes the 
following components: 

a. Shift Counter The shift counter is used to count regis-
ter clocks (KKREG-) to control the number of shifts during align­
ment or the number of iterations of the fraction multiply or 
fraction divide step. The shift counter is also used to provide 
temporary storage for exponents. The exponent ALU output data is 
loaded into the shift counter at KKREG- time in response to a low 
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ELD- __.. ... 
CSNO+ ..... ... En- (0~7) 

KKREG-
.. 

__.. ... 
EXPONENT EEQU+ _. 

EAD n - (0-7) REGISTER 
.... --En- (0-6) _.,, .. 

..... SYRST- ...... 
ECl28-

_ .. A 
..... 

-.... EAMn- (0-7) EXPONENT INPUT ...... 
ECST n- (0-7) MULTI-

-....- ALU _.... 
-....- PL EXOR 

CSEA3+ _... ... 

EASI+ ...... -....- Sl,S2 
KKREG-

EASO+ so, S3 ...... _.,, -..-... 
SYRST-

EACN+ 
__.. SHIFT _. ... 

COUNTER SCEQO+ __.. .. ... 
__.. 
-.....- SCn- (0-7__. 

SCLD-
DLnn+ (07-14)_.. 

__.. --- SCCT+ 
DL n n + (00-07)_.,, 

__. 
--..... .. 

B 
SC n- (0-7) _.... INPUT EBMn (0-7) __. 

-....-
MUL Tl-

-..... 

CSLDE- ..... PLEXOR ... I 

IRDB+- _. EACR7+ __. ... -..... 
VT11-3190 

Figure 4-53. Exponent Loop, Block Diagram 

SCLD- signal. 
SCCT+ level. 
control. 

Counting of KKREG- pulses is enabled by a high 
SCLD- and SCCT+ are supplied by the shift counter 

-

b. Exponent Register The exponent register holds the final 
value of the exponent at the end of an instruction microprogram 
as well as various intermediate values during the execution of 
a microprogram. During the normalization microinstruction 
(CSNO+ high), the contents of the exponent register is counted 
down at each KKREG- time. (This decrements the exponent value by 
1 for each left shift of the fraction.) The exponent ALU output 
data is loaded into the exponent shift register at KKREG- time 
in response to a low ELD- signal from the exponent control. 

c. Exponent ALU The ALU adds two exponents, subtracts one 
exponent from a second exponent, increments an exponent by 1, 
decrements an exponent by 1, or provides twos complementation of 
an exponent. The function performed by the exponent ALU depends 
upon the following: 
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(1) The level of the EASO+ signal (which is applied to 
the SO and S3 function selection inputs) and the level of the 
EASl+ signal (which is applied to the Sl and S2 function selection 
inputs). 

(2) The level of the EACN+ signal which is supplied to 
the carry input. 

(3) The ALU data inputs selected by the A-input and 
B-input multiplexors. 

The EASl+, EASO+, and EACN+ signals are supplied by the exponent 
control. 

d. A-Input Multi~lexor When the CSEA3+ signal from the 
EADD field of the microinstruction currently held in the control 
store register is high, the A-input multiplexor supplies data 
from the exponent register to the A input of the exponent ALU. 
(The most significant bit of the exponent data reaches the A-input 
multiplexor on the EC128- line from the exponent control. This 
allows the exponent control to invert this bit as required to add 
or subtract 128 to or from the exponent value in order to main­
tain the excess-128 code during addition or subtraction of expon­
ents.) When CSEA3+ is low the data from the constant store and 
readout is connected to the A input of the exponent ALU. This 
data is received on the ECSTn-(0-7) lines. 

e. B-Input Multiplexor When the CSLDE- signal from the 
control store register is low, data from one of two sections of 
the data latch is connected to the B input of the exponent ALU, 
in accordance with the status of the IRDB+ signal. If a single 
precision instruction is being executed (IRDB+ low), the DLnn+ 
(07-14) data is selected. If a double-precision instruction is 
being executed (IRDB+ high), the DLnn+(00-07) data is selected. 
In either case, the data selected is the exponent data for the 
new operand. When CSLDE- is high, shift counter signals SCn-(0-7) 
are connected to the B input of the exponent ALU. 

4.6.23 Operations on Exponents 

Operations performed on exponents include the following: 

a. Addition of exponents during floating multiply 
instructions. 

b. Subtraction of the 'divisor exponent from the dividend 
exponent during floating divide instructions. 

c. Subtraction of the exponent of the smaller operand from 
the exponent of the larger operand during floating add and 
floating subtract instructions. 

4-138 



d. Decrementing or incrementing of result exponent during 
normalization. 

e. Decrementing or incrementing of exponent to test for 
marginal overflow or underflow situations. 

With one exception, all of these operations are performed using 
the exponent loop ALU. The exception is the decrementing of the 
exponent during normalization which is performed by down counting 
the exponent register. 

Exponents are represented in an 8-bit, excess-128 binary format. 
(Let E = exponent. Then representation is E + 128.) The range 
of decimal values of (E + 128) is 0 through 255; the range of 
decimal values of E is -128 through +127. 

4.6.23.1 Exponent Operations for Floating Multiplication 

Exponent operations for floating multiplication instructions are 
illustrated in table 4-15. The first step is to add the excess-
128 representations of the operand exponents and convert the 
representation of the sum from excess 256 to excess 128. The 
conversion is accomplished by subtracting 128 from the sum. If 
E1 is the multiplicand exponent, E2 is the multiplier exponent, 
and Es is the sum, El + E2, then the first step is represented 
by the following equation: 

(Es + 128) = El + E2 + 128 = (E1 + 128) + (E2 + 128) -128 

All possible exponent sums, El + Ez, are divided into five groups 
as indicated in column 1 of table 4-15. The corresponding 
excess-128 representations are indicated in column 2. Bit 8 of 
the sum, El + E2 + 128, is loaded into the exponent carry flip­
flop (ECRY) and bits 7 through 0 are loaded into E. (The sign 
of the sum is neither computed nor stored.) Column 3 indicates 
corresponding numbers in the E register after E is decremented by 
one. Column 4 indicates the value of the carry from bit 7 of the 
sum, E + 1. Column 5 indicates the final result in E if the 
fraction product is less than 1/2. Column 6 indicates the final 
result in E if the fraction product is greater than or equal 
to 1/2. 

(Note that after fraction multiplication, the most significant bit 
of the fraction product is in bit 47 of the A and B registers. If 
bit 47 is a one, then the fraction product is greater than or . 
equal to 1/2, A and B are shifted right once, and the E register 
is incremented by 1.) 
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Table 4-15. Exponent Operations for Floating ~ultiplication 

3 4 6 

Sum of Excess 128 Representation 
Operand of Sum, Decrement Test for Final Result Final Result 
Exponents El + Ez ... 128 E Register E = 1111 1111 
El + E2 

if Fl x F2 < '1 if Ft x F2 ?: ~ 

Exponent Decimal ECRY E E ECRY Exponent E Exponent E 

f 
+254 +382 1 0111 1110 0111 1101 0 +127 1111 1111 +127 1111 1111 

Overflow 

l +129 +257 1 0000 0001 0000 0000 0 +127 1111 1111 +127 1111 1111 

t 
Conditional +128 +2 5°6 1 0000 0000 1111 1111 1 +127 1111 1'111 +127 1111 1111 Overflow 

J_ 

I +127 +255 0 1111 1111 1111 1110 0 +126 1111 1110 +127 1111 1111 

In-Range 

t 
-127 +1 0 0000 0001 0000 0000 0 -128 0000 0000 -127 0000 0001 

CondJional -128 0 0 0000 0000 1111 1111 1 -128 0000 0000 -128 0000 0000 Underflow 

-129 -1 1 1111 1111 1111 1110 0 -128 0000 0000 -128 0000 0000 

Underflow 

I -256 -128 1 1000 0000 0111 1111 0 -128 0000 0000 - 12 8 0000 0000 

NOTES: Et is multiplicand exponent 

Fl is multiplicand fraction 

E2 is multiplier exponent 

F2 is multiplier fraction 
E is exponent register 

ECRY is exponent carry flag (used for sum bit in column 2) 

'•\ 
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Three tests are performed to separate the exponent sums into five 
groups (overflow, conditional overflow, in-range, conditional 
underflow, and underflow). First, the value of ECRY indicated 
in column 2 is tested to separate the sums into two groups: 

ECRY = 1 

ECRY = 0 

Overflow, underflow, conditional overflow 

In-range, conditional underflow 

Second, the value of ECRY indicated in column 4 is tested to 
separate the two groups into four groups: 

ECRY = 1 

ECRY = 0 

ECRY = 1 

ECRY = 0 

Conditional overflow 

Overflow or underflow 

Conditional underflow 

In range 

The overflow or underflow group is then separated into two groups 
by incrementing the E register by one (result indicated in 
column 2) and testing bit 7 of E: 

E7 = 1 

E7 = 0 

Underflow 

Overflow 

For the overflow group (E1 + Ez greater than or equal to 129), an 
overflow interrupt is generated, and 1111 1111 is loaded into E. 
For the conditional overflow group (E1 + Ez = +128), the result is 
either in-range or overflow depending on the fraction product. 
For the in-range group (-127 less than or equal to El + E2 less 
than or equal to +127), the exponent in Eis the final result if 
the fraction product is less than 1/2. Otherwise, the exponent 
ln-E--is incremented by one. For the conditional underflow group 
(E1 + Ez = -128), the re~ult is either underflow or in-range 
depending on the fraction product. For the underflow group 
(E1 + E2 less than or equal to -129), and underflow interrupt is 
generated and zero is loaded into E. 

4.6.23.2 Exponent Operations for Floating Division 

Exponent operations for floating division instructions are illus­
trated in table 4-16. These operations are similar to floating 
point multiplication. The divisor exponent is subtracted from the 
dividend exponent and the representation of the difference is 
converted from binary to excess-128 by adding 128: 

(En + 128) = E1 - Ez + 128 = (E1 + 128) - (Ez + 128) + 128 
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Table 4-16. Exponent Operations for Floating Division 

2 3 4 5 

Operand Excess 128 Representation 
Exponent of Difference Test for Final Result Final Result 
E1 - E2 El - E2 + 128 E = 1111 1111 if Fl -: F2 < 1 if F1 .;. F2 ?: 1 

Exponent Decimal ECRY E ECRY Exponent E Exponent E 

J +255 +383 1 0111 1111 0 +127 1111 1111 +127 1111 1111 

Overflow 

l +128 +256 1 0000 0000 0 +127 1111 1111 +127 1111 1111 

t 
Conditional +127 +255 0 1111 1111 1 +127 1111 1111 +127 • 1111 1111 Overflow 

I 

f 
+126 +254 0 1111 1110 0 +126 1111 1110 +127 1111 1111 

ln-R1ge 
-128 0 0 0000 0000 0 -128 0000 0000 -127 0000 0001 

Condi-ti on al 
-129 -1 1 1111 1111 1 -128 0000 0000 -128 0000 0000 Underflow 

I 

·t -130 -2 1 1111 1110 0 -128 0000 0000 -128 0000 0000 

Underflow 
I 

1 -255 -12 7 1 1000 0001 i 0 -128 0000 0000 -128 0000 0000 

NOTES: Et is dividend exponent 

F1 is dividend fraction 

E2 is divisor exponent 

F2 is divisor fraction 
E is exponent register 

ECRY is exponent carry flag (used for sum bit in column 2) 
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where Eo is the exponent difference, E1 is the dividend exponent, 
and Ez is the divisor exponent. Bit 8 of the difference, E1 - E2 
+ 128, is loaded into ECRY and bits 7 through 0 are loaded into 
E, as indicated in column 2 of table 4-16. The carry from bit 7 
of sum (E + 1) is loaded into ECRY to test for the value, 
E = 1111 1111, as indicated in column 3. Column 4 indicates the 
final result in E if the fraction quotient is less than one. 
Column S indicates the final result in E if the fraction quotient 
is greater than or equal to one. 

The value of ECRY in column 2 is tested to separate exponent dif­
ferences into two groups: 

ECRY = 1 Overflow, underflow, conditional underflow 

ECRY = 0 In-range, conditional overflow 

These two groups are separated into four groups by testing the 
value of ECRY in column 3: 

ECRY = 1 Conditional underflow 

ECRY = 0 Overflow or underflow 

ECRY = 1 Conditional overflow 

ECRY = 0 In-range 

The overflow or underflow group is separated into two groups by 
testing bit 7 of the E register (column 2). 

E7 = 1 

E7 = 0 

Underflow 

Overflow 

Final results for each of the groups are shown in columns 4 and 5. 
A floating point interrupt is generated ~or the overflow and 
underflow groups. 

4.6.24 Exponent Control 

As shown in figure 4-54, the exponent control provides the 
following: 

a. the exponent carry flag (ECRY+) which is used in 
evaluating exponent loop ALU results in terms of the specific 
operation being performed so as to identify a negative or out-of­
range result, 

b. the add/subtract-128 sub-function which inverts the E7-
bi t from the exponent register during exponent additions and 
subtractions so as to maintain the required excess-128 format, 
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KKREG+ ... ... 
SYRST- ----
CSl28+ .. --
EACR7+ _ .. ... 

EXPONENT ECRY+ --E7- -- CARRY ........ .. FLAG 
CSNO- ---
CSNO+ __. --
EEQO+ _. 

---

_c_E:_:_a± ________________ ~:~I~ ____ f_~_;rn_/_A_CT----~------E_c_12_e_-__________ ...,~ 

CSLDE- ..... .... 
IRDB- ----
DUS+ 

FUNCTION EASn + (0, l) _. SELECTION _ .. -- ... 
CSEAO± 

CONTROL 
.... --

CSEAI± --.. 
CS EA n + (1-3) --.. CARRY EACN+ 

IN --CSEAO-
-... 

..... CONTROL .... 

CSERI-

:1 ~ LOAD ELD-
CS ERO+ CONTROL • 

VTl2-441 

Figure 4-54. Exponent Control 

c. the function selection control which determines the 
function performed by the exponent ALU, 

d. the carry-in control which provides the carry-input 
(EACN+) to the exponent loop ALU, 

e. the load control which provides the load control input 
(ELD-) to the exponent register. 
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Table 4-17 summarizes the addition and subtraction of exponents 
that occurs in connection with multiplication and division 
respectively. During these additions or subtractions, CS128+ is 
high. Under this condition, ECRY+ is set high at KKREG+ time if 
an out-of-range exponent value is sensed. If E7- is low 
(indicating that E1 is zero or positive) then ECRY+ is set high 
if EACR7+ is high (indicating a carry or the absence of a borrow). 
If E7- is high (indicating that E1 is negative) then ECRY+ is set 
high if EACR7+ is low (indicating a borrow or the absence of a 
carry). The high CS128+ signal alsd causes an inverted version 
of E7- to be supplied on the EC128- line to the exponent adder 
A-input multiplexor as required to add or subtr~ct 128 from 
(E1 + 128). 

When C5128+ is low and a normalize microinstruction is not being 
executed (as indicated by a low CSN0+ signal), then ECRY+ is set 
high by any operation that produces a carry from the exponent 
loop ALU. The setting of ECRY+ during the implementation of ALU 
output = (E1 + 1) thus identifies a value of CEi + 1) greater 
than or equal to 256 during the test for a conditional exponent 
value. The status of ECRY+ also identifies the sign of the 
difference obtained during the exponent subtraction at the start 
of an addition or subtraction instruction. This allows the 
difference to be complemented if it is negative and also deter­
mines the branch of the microprogram that is followed. 

When a normalize microinstruction is being executed (as indicated 
by a high CSN0+ signal) a high EEQO+ signal at KKREG+ time causes 
ECRY+ to be set high to indicate that the exponent value is being 
decremented into the underflow status. 

Function selection control signal EASO+ controls the SO and 53 
inputs and signal EA51+ controls the Sl and 52 inputs to the 
exponent loop ALU. Table 4-18 summarizes the function selections 
in terms of the inputs to the function selection control. 

The carry in control provides signal EACN+ to the carry input of 
the exponent loop ALU. The coincidence of high CSEAl+ and CSEAO­
signals provide the high carry input required for a normal sub­
traction operation. Notice that this high carry input is not 
provided in the case where the exponent input is being comple­
mented. Thus, a ones complement function is provided in this 
case, as required. The coincidence of high CSEA3+ and CSEA2+ 
signals provides a high carry input in cases where the ALU 
function, F = A + 1 is required. This is the function that is 
used to generate (E1 + 1). 

The coincidence of high C5ER1- and CSERO+ signals from the EREG 
field of the microinstruction currently held in the control store 
register places the ELD- line at the low level as required to 
load the output data from the exponent loop ALU into the exponent 
register. 
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Table 4-17. Exponent Additions and Subtractions 

Overflow/ 
Conditions ALU Function performed Underflow 

--
Multiplication 

E1 + 128 2: 0 E1 + 128 - 128 + Ez + 128 Carry 
(EACR7+ = H) (E 7- = L) = E1 + Ez + 128 

(El zero or positive) 
--

E1 + 128 < 0 E1 + 128 + 128 + E2 + 128 No Carry 
(E 7- = H) = E1 + Ez + 128 + (256) (EACR7+ = L) 

(E1 negative) 

--
Division 

E1 + 128 ~ 0 E1 + 128 - 128 - (E 2 + 128) No borrow 
(E7- = L) = E1 - Ez + 128 - ( 2 5 6) (EACR7+ = H) 

(E1 zero or positive) 

---E1 + 128 < 0 E1 + 128 + 128 - (E 2 + 12) Borrow 
(E 7- = H) E1 - E2 + 128 (EACR7+ = L) 

(E1 negative) 

NOTES: 1. ( 2 56) indicates a component of the result which is 
lost if a carry occurs or a borrow does not occur 

2 • (E1 + 12 8) is initially in the exponent register as 
the result of a previous operation 

3. (E 2 + 12 8) is received from the data latch 
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Table 4-18. Exponent Loop ALU Function Selection 

Function Selection Code Presented 
Control Inputs to ALU Function Selected* 

CSEAl+ ESEAO+ S3 S2 Sl so 

L L L L L .L F = A or F = A + 1 

L H H L L ·H F = A PLUS B ** 

H L L H H L F = A MINUS B ** 
H H H H H H F = A MINUS 1 

*Assumes appropriate level on carry input line EACN+ 

**When CSLDE- is low and IRDB- is high, the addition input code 
is converted to a subtraction code if DLlS+ is high. This is 
necessary in order to convert the exponent of a negative 
single precision operand to absolut form (by forming the 
complement of the complement). 

Note: L = low; H = high 
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4.6.25 Shift Counter Control and Constant Storage 

As shown in Figure 4-55, the shift counter control and constant 
storage provides the following: 

a. The shift counter load control (SCLD-) and count enable 
(SCCT+) signals, 

b. 
1 or 0, 

The SCLEl± signal which indicates when the shift count is 

c. The constant store and readout which supplies the 
constants required to specify the number of iterations, establish 
magnitudes, or test for relative magnitudes. 

The bits of the EREG field of the microinstruction currently held 
in the control store register control SCLD-. If CSERl+ is high 
and CSERO- is low, SCLD- is placed at the low level as required 
to load the shift counter. If CSER!+ and CSERO- are both high, 
then SCLD- is placed at the low level only if ECRY+ is low. This 
is used to load the two's complement of the shift count into the 
shift counter if the shift counter contains a negative number in 
twos complement form. 

CSERl-i- ---
CS ERO- ...... -
ECRY+ ...... ... 

CSAL- ---
CSMUI- _ .. -
CSDIV- --... 

SCn - rl-6) --... 

CSE AZ-

--
IR n '- (0-4) --

VT13·3192 

SHIFT 
COUNTER 

LOAD 
CONTROL 

SHIFT 
COUNT 

COUNT 
ENABLE 

SHIFT 
COUNTER 
COUNT 
1 OR 0 

CONSTANT 
STORAGE 
AND 
READOUT 

SCLD- ----

SCCT+ __., --

SCLEl.t 

--

ECSTn - (0-7) 
...... --

Figure 4-55. Shift Counter Control and Constant Storage 
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Shift clock counting is enabled for any of three microinstructions; 
the align microinstruction (CSAL- low), the main multiply micro­
instruction (CSMUl- low), and the main divide microinstruction 
(CSDIV- low). In the align microinstruction, shift counting 
determines the total number of shifts. In the main multiply and 
divide instructions, it determines the number of iterations. 

The SCLEl+ signal is placed at the high level when SCn-(1-6) are 
all high, indicating that the shift count is either 1 or 0. This 
provides advance information during the down counting of the 
shift count that the next shift clock will reduce the shift count 
to 0. 

The reading of a constant is enabled by a high CSEA2+ signal from 
the EADD field of the microinstruction currently held in the 
control store register. The constant that is read out depends 
upon the status of the !Rn+ (0-4) signals from the instruction 
register. The constants associated with each instruction are 
summarized in table 4-19. 
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Rmt Address 
Instruction (Binary) 

FAD/FSB 01000 

FADD/FSBD 00011' 

FMU 01110 

FMUD 00110 

FDV 00001 

FDVD 11101 

FLT 10001 

FIX 10101 

Table 4-19. Stored Constants 

Constant 

Binary Value Decimal Value 

1110 1001 

1101 0001 

0000 1010 

0001 0110 

0001 1000 

0011 0000 

1000 1111 

1000 1111 

Two's comp le -
ment of 24 

T\·;o's comp 1 e -
ment of 48 

11 

22 

24 

48 

143 

143 

Function 

Used to test whether smaller 
operand will have signifi­
cant bits after alignment 

Used to test whether smaller 
operand will have signifi­
cant bits after alignment 

Number of iterations of main 
multiply step 

Number of iterations of main 
multiply step 

Number of iterations of main 
divide step 

Number of iterations of main 
divide step 

Initial excess-128 exponent 
code relating integer to 
floating format 

143 minus exponent of floating 
point number establishes 
initial value of exponent 



SECTION 5 
MAINTENANCE 

Maintenance persorinel should be familiar with the contents of 
this manual before attempting FPP troubleshooting. A test 
program (Section 7) is available to verify correct operation and 
to isolate malfunctions to a partic~lar section of the FPP. 
Further diagnosis can then be made by referring to this 
manual. 

5.1 TEST EQUIPMENT 

The following test equipment and tools are recommended for FPP 
maintenance: 

a. Oscilloscope, Tektronix type 547 with dual-trace plug-in 
unit or equivalent. 

b. Multimeter, Triplett type 630 or equivalent. 

c. Soldering iron, 15-watt pencil type. 

5.2 CIRCUIT BOARD REPAIR 

The FPP board is a wire-wrap circuit board. The ICs contained 
on the board consist of LSI read-only memories; MSI multiplexors, 
decoders, ALUs, and registers; and SSI gates and flip-flops. 

If it has been determined that circuit board repair is required, 
it is recommended that the Sperry Univac customer service 
department be contacted so that a new circuit board can be 
installed in the user's system and the faulty one returned to the 
factory for repairs. However, if the user decides to perform his 
own repairs, extreme caution should be used so that the circuit 
board is not permanently damaged. Approved repair procedures 
should be followed such as the ones described in document 
IPC-R-700A prepared by the Institute of Printed Circuits. 

5.3 CIRCUIT-COMPONENT IDENTIFICATION 

A system of row and column coordinates provides the means for 
locating IC components. Major row identifications are A, B, and 
C. Each of these major rows contains six rows of components 
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designated 1 through 6. In addition to the ~omponent rows within 
major rows A, B, and C, there are two additional rows designated 
as X and Y. Columns are designated by single letters of the 
alphabet. Logic elements are identified by the location coordi­
nates of the IC package. For example, a gate designated as B4U 
in the FPP 10gic diagram is in the IC package at major row B, 
sub-row 4, column U. (IC packages in rows X and Y are identified 
by the row designations Xl and Yl even though these are single 
rows. For example, YlK is at row Y, column K.) 

A parts list in the system documentation package provides a 
cross reference between Sperry Univac and manufacturers part 
numbers. 
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SECTION 6 
MNEMONICS 

This section presents an alphabetized list of PPP signal mnemonics 
with definitions. 

Plus or minus signs are included at the end of each mnemonic. 
The plus sign indicates the signal ·is at a high logical level 
when its function is being performed. The minus sign indicates 
the signal is at a low logical level when its function is being 
performed. A signal that is the logical inversion of another 
uses the same mnemonic with an opposite sign; these signals 
are complements of each other. 

I/O bus signal mnemonics end with -I. 

Letter and/or number subscripts are used after the plus or minus 
sign to indicate particular members of a family of logically 
equivalent control or clock signals. For such families of 
signals, only the base mnemonic is given. For example, KKMOK­
is listed for the family that includes KKMOK-1, KKMOK-2, and 
KKMOK-3. 

Mnemonic Description 

Ann-(00-47) 

:AcASn + ( 0 ' 1) 
I 
ACBSn+(O,l) 

A register outputs 

Function selection inputs to A register 

Function selection inputs to B register 

I 
I 

ACDEN-

AC INV+ 

ACMAD­

ACMBL­

ACMBR­

ACMCn+ ( O, l) 

ACMCY+ 

ACMEN-

IACMSU-

ACSEN-

Arithmetic control divide enable 

Invert I/O data 

Multiplication routine ADD selection 

Multiplication routine shift B register left 

Multiplication routine shift B register right 

Multiplier bit pair evaluated during current 
iteration 

Multiplier evaluation bit pair carry 

Multiplication clock enable 

Multiplication routine SUB selection 

Shift clock enable 
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Mnemonic 

ACZ47+ 

ADnn+(00-15) 

ADD-

ADSn- (0-7) 

ALCN+ 

ALLHZ+ 

ALM+ 

ALSn+(0-3) 

ALUnn-(00-49) 

ALUHZ+ 

AMnn-(00-47) 

AS+ 

ASE BS+ 

Bnn-(00-47) 

BS+ 

CAEN+ 

CDREN+ 

CEADn-(0-8) 

CEND+ 

CIDIO+ 

CINTF+ 

CMnn- ( 0 0 - 4 7) 

CPS IF+ 

Description 

ZERO+ or A47+ is high 

Memory address counter outputs 

Selects fraction addition for format 0 

Control store address 

Carry input to data-loop ALU 

Lower half of data-loop ALU = 0 

Mode control input to data-loop ALU 

Function selection inputs to data loop ALU 

Data-loop ALU outputs 

Upper half of data-loop ALU = 0 

Data-loop A multiplexor outputs 

Sign of result (high = negative) 

AS = BS 

B register outputs 

Sign of new operand (high = negative) 

Central processor microinstruction decoder 
active 

Central processor microinstruction decoder 
partial enable 

Address lines to central processor control 
store 

Central processor microinstruction decoder 
partial enable 

I/O instruction decoded (from central 
processor, FPP, or WCS) 

I/O contr~l interrupt flip-flop 

Constant multiplexor outputs (data loop) 

Start instruction fetch (by return of control 
to central processor) 
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Mnemonic 

CPSn+(0,1) 

CP168+ 

CRnn-(01,24,47) 

CSABn+(0-2) 

CSAL+ 

CSALn+(0-5) 

CSAM+ 

CSAMO+ 

CSAn+(0-7) 

CSC47-

CSCCR-

CSCM+ 

CSCPO+ 

CSCTO+ 

CSDIO-

CSDIV-

CSDN+ 

CSEAn+(0-3) 

CSEND-

Description 

Central processor control state counter 
outputs 

Central processor control address 168 (hex) 
selection 

Constant register outputs 

Control store register, AB field signals 

Align microinstruction decoding of ALU field 
of control store register 

Control store register ALU field signals 

MSB of AC field of control store register 

Multiply or divide selection signal from 
control store decoder to data-loop A 
multiplexor 

Control store address register outputs 

Set-constant-register-bit-47 decode of FLAG 
field of control store register 

Clear-constant-register decode of FLAG field 
of control store register 

Constant multiplexor-enable (LSB of AC field 
of control store register) 

Change-to-positive decode of FLAG field of 
control store register 

Reset-time-out-flag decode of FLAG field of 
control store register 

Set-up-divide decode of FLAG field of control 
store register 

Main-divide decode of FLAG field of control 
store register 

END and jump condition not true (start or 
wait for next routine) 

Control store register EA field signals 

END decode of MEM field of control store 
register 
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Mnemonic 

CSERn+(0,1) 

CSEXC-

CSFLn+(0-3) 

CSFMT+ 

CS IMC+ 

CS INC+ 

CSJAn+(0-3) 

CSJCn+(0-2) 

CSLDB-

CSLDC-

CSLDD-

CSL DE-

CSL SA-

CSL SB-

CSMUO+ 

CSMUl+ 

CSMWT+ 

CSNO+ 

CSOFL-

Description 

Control store register EREG field signals 

Exponent-coming decode of FLAG field of 
control store register 

Control store register FLAG field signals 

Control store register format bit 

Initiate memory cycle signal from control 
store register decoder 

Increment-memory-address-and-request-cycle 
decode of MEM field of control store register 

Control store register JADD field signals 

Control store register JCOND field signals 

Load double precision middle fraction into 
MQ register 

Load double precision middle fraction into 
MQ register 

Load double precision low fraction into MQ 
register 

Load exponent from data latch into exponent 
register (or shift counter) 

Load single precision high fraction into MQ 
register 

Load single precision low fraction into MQ 
register 

Multiply-set-up decode of FLAG field of 
control store register 

Main-multiply flag from control store 
register 

Wait for memory done (MSB of MEM field of 
control store register) 

Normalize microinstruction decode of ALU 
field of control store register 

Overflow decode of FLAG field of control 
store register 
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Mnemonic 

CSSIF+ 

CSSS+ 

CSUFL-

CSWSD+ 

CSZAS+ 

CSZTZ-

DLnn+(00-15) 

DLWRT-

En-(0-7) 

EACN+ 

EACR7+ 

EADn(0-7) 

EAMn-(0-7) 

EASn+(O,l) 

EBnn-1(00-08) 

EBMn-(0-7) 

EC128-

ECRY+ 

ECSTn-(0-7) 

EEQO+ 

Description 

Start-instruction-fetch decode of MEM field 
of control store register 

Swap-signs decode of FLAG field of control 
store register. 

Underflow decode of FLAG field of control 
store register 

Wait-for-shift-done decode of MEM field of 
control store register 

Set-AS=O decode of FLAG field of control 
store register 

ZERO-to-ZERO decode of FLAG field of control 
store register 

Data latch outputs 

Data latch write output (instruction is a 
storage type) 

Exponent register outputs 

Exponent-loop ALU carry input 

Exponent-loop ALU carry output 

Exponent-loop ALU outputs 

Exponent-loop ALU A-input multiplexor 
outputs 

Exponent-loop ALU function selection control 
inputs 

E bus (I/O bus) 

Exponent-loop ALU B-input multiplexor outputs 

Conditionally inverted MSB of exponent 
register 

Exponent-loop ALU carry/out-of-range flag 

Gated outputs constant store 

Exponent register = 0 
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Mnemonic 

ELD-

ICPRM+ 

IDGO+ 

IEXCX-

IINT-

IINHC-

ILnn+(00-04) 

ILMRT+ 

ILSU+ 

ILWRT+ 

IOnn+(00-15) 

IOMnn+(00-15) 

IPRME+ 

IRn+(0-4) 

IROOS+ 

IR007+ 

IRDB+ 

IRQC-A 

IRQM-A 

IRSU+ 

I UAX- I 

IUCX-I 

Description 

Load exponent register 

Clock for interrupt enable 

Instruction decoder go (FPP instruction 
decoded) 

Interrupt interface decode of EXC instruction 
on E bus 

FPP interrupt pending 

I/O control clock inhibit signal 

Five LS bits of instruction latch 

Memory-write-instruction flag of instruction 
latch 

Instruction latch subtract bit 

Instruction latch write-instruction bit 

Conditionally inverted outputs from I/0 data 
multiplexor 

I/O data multiplexor selected data 

Interrupt master enable 

Five LS bits of instruction register 

I/O control, control store bit 5 (DMA 
request bit) 

I/O control, control store bit 7 (idle bit) 

Double precision bit from instruction 
register 

Interrupt request to central processor 

D~A request to central processor 

SubtrJ.ct .bit from instruction register 

E bus acknowledge 

Interrupt clock 
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Mnemonic 

IUJX-I 

IURM+ 

IURX-I 

JCT-

KK82+ 

KKCPA+ 

KKCPB+ 

KKCS+ 

KKHRG+ 

KKK IN-

KKMCD+ 

KKMEM+ 

KKMFC 

KKMHC+ 

KKMOK-

KKMPA+ 

KKMPB+ 

KKMQ-

KKPA+ 

KKPB+ 

KKREG+ 

MAKO+ 

MCAEN+ 

MCAEN+m(A,B) 

MCCKI-

Description 

E bus jump and mark 

FPP interrupt request 

E bus interrupt request 

Complement jump condition true signal 

82-nanosecond clock 

Control store clock generator phase A output 

Control store clock generator phase B output 

Control store clock 

Register half clock 

Inhibit KKREG+ and KKMQ 

Buffered version of central processor MCDFC 

Memory clock 

Buffered version of central processor MFC 

Buffered version of central processor MHC 

Buffered version of central processor MOCLK 

Retiming clock generator phase A 

Retiming clock generator phase B 

MQ register clock 

Register clock generator phase A 

Register clock generator phase B 

Register clock (to all arithmetic registers 
except MQ) 

PMA memory request acknowledge 

Memory control address enable 

Memory control address enabled and memory 
access priority available 

Memory control store clock inhibit 
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Mnemonic 

MCCSZ+ 

MCDDE+ 

MCDLE­

MCDFC­

MCICS­

MCIST-

MCLDA-

MCMRQ-

MCRRQ­

MCSOA+ 

MC SOB+ 

MCSlA-

MCSlB-

MCS2+ 

MCS3+ 

MCWRQ+ 

MFC-

MHC-

~1Ml I -

>IOCLK-

MQnn-(00-47) 

MQmSO+ 

~IQmSl + 

Description 

Memory sequencer state 2 or not FPP memory 
cycle 

Memory control data driver enable 

Memory control data latch enable 

C~ntral processor full clock, gated 

Initiate control store clocks 

Initiate first KKMEM+ pulse (instruction 
start) 

Load address register 

FPP memory request 

Read request pending 

Memory sequencer state OA 

Memory sequencer state OB 

Memory sequencer state lA 

Memory sequencer state lB 

Memory sequencer state 2 

Memory sequencer state 3 

Write request pending 

Central processor full clock 

Central processor half clock 

Instruction latch enable (from central 
processor) 

41 nanosecond clock (from central processor) 

MQ register outputs 

LSB of function selection code to section m 
of MQ register (where m =A, B, C, D, E, F) 

MSB of function selection code to section m 
of >IQ register (where m =A, B, C, D, E, F) 
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Mnemonic 

MQI07+ 

MQMnn - (16 -19) 

MQQB-

MQSID-

MQSIS-

MRSZA-

MWLY+ 

MWRY+ 

MYAnn-(00-15) 

MYDnn-(00-15) 

ORQM-A 

ORQM-C 

PRIDL-

PRINF-

PRINT+ 

PRIRQ+ 

PRIX-I 

PRJX- I 

PRKIN-

PRMDN+ 

PRMEI+ 

Description 

Parallel data input to bit 24 position of 
MQ register from MQ control 

MQ input multiplexor outputs 

Quotient bit 

Double precision quotient input to MQ 
register 

Single precision quotient input to MQ 
register 

Memory sequencing signal (from central 
processor) 

Memory write left byte 

Memory write right byte 

Memory address lines 

Memory data lines 

PMA.memory request to central processor 

PMA memory request from PMA 

FPP version of I/O control IE IDLE 

FPP version of I/O control IINTF 

Interrupt inhibit 

FPP version of I/O control IRQM 

Interrupt priority input to interrupt 
interface 

Interrupt priority output from interrupt 
interface 

Inhibit clocks to wait for memory access 
priority 

PMA or DMA memory cycle complete flag 

PMA and DMA memory cycles inhibited flag 
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Mnemonic 

PROUT+ 

PRTO-

PUn+ (1-18) 

sen-Co- 7) 

SCCT+ 

SCEQO+ 

SCLD-

SCLEl-

SRST-

STOUT+ 

SUB+ 

SYRST+ 

TO+ 

XCFST+ 

YDNM+ 

ZERO+ 

Description 

PPP memory access priority lost to PMA or 
DMA 

Set time-out flag 

Pull-up resistors 

Shift counter 

Shift count decrement enable 

Shift count = 0 

Load shift counter 

Shift count less than or equal to 1 

System reset 

Time-out detection enable 

Selects subtraction function for format 0 

System and time-out reset 

Time-out flag 

Memory request enable input from WCS 

Memory acknowledge (trailing edge is memory 
done) 

ALU = 0 flag 
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SECTION 7 
TEST PROGRAMS 

7.1 GENERAL 

The FPP test program, which is controlled by the MAINTAIN III 
iTest Executive program, is used to verify correct operation and 
'to isolate malfunctions. Minimum h'ardware requirements for using 
,the test program consist of a SPERRY UNIVAC 70 series processor 
with SK of mainframe memory, an object input device, and a 
console Teletype (TTY) of equivalent CRT terminal 

7.2 TEST PROGRAM ORGANIZATION 

The test program includes three tests: 

a. Operational Test 

b. Fault Test 

c. Sequence Test 

To thoroughly exercise the FPP, both the operational test and 
the fault test should be run. The sequence test is used 
primarily for troubleshooting. 

7.2.1 Operational Test 

The operational test includes all of the FPP instructions. The 
test starts with the more simple instructions and progresses to 
the more complex instructions. Mixed mode arithmetic operations 
(single and double precision) are performed. Direct and 
indirect fetching and storing of data are performed. The 
sequences of instructions and the operand data are varied as the 
test progresses. Results are checked against known data and, if 
a discrepancy occurs, the actual and expected values are 
displayed. 

7.2.2 Fault Test 

The fault test generates those conditions which produce 
fault interrupts, and verifies that these interrupts occur or 
reports their failure to occur. 

7.2.3 Sequence Test 

The sequence test allows the user to specify a sequence of FPP 
instructions and to execute this sequence either one time or 
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repetitively. The operator also specifies the operand data. 
Results may be displayed if desired. When a fault occurs an 
error message is displayed. 

7.3 PROGRAM-TAPE LOADING 

Before loading the FPP test program tape, the MAINTAIN III test 
executive tape must be loaded into.the reader (refer to Test 
Programs Manual). Included in the test executive is the object 
tape loader for the FPP test program. After the test executive 
is loaded, mount the ob)ect tape of the FPP test program in the 

, reader. The FPP test program tape is identified by Sperry Univac 
I part number 92U0109-005 punched in the leader portion of the 

tape. Position the tape in the reader past this area. To load 
and start the execution of the test program, use the console 
TTY to type an L follo~ed by a period. 

7.4 SENSE SWITCHES 

Operation of the FPP test program can be modified by positioning 
of SENSE switches on the computer control panel. The switch 
functions are listed in table 7-1. 

Table 7-1. SENSE Switch Settings 

SENSE 
Switch Set Reset 

1 Suppresses error (or Prints error (or result) 
result) messages messages 

2 Halts program on No halts on error 
error (see note 1) 

3 Terminates the test Allows test to continue 

Note 1: After the error halt, one of the following operations 
can be performed: 

a. To allow the program to continue to the next error 
halt, keep SENSE switch 2 se~ and press START. 

b. The program can be made to loop on the sequence which 
caused the error condition by resetting SENSE switch 2 and 
pressing START. The program continues to loop until SENSE 
switch 2 is set; it then continues to run in the halt-on-error 
mode. 
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7.5 OPERATING PROCEDURES 

When loading is completed, the test program is automatically 
directed to the starting memory address 0500, and the TTY prints 
the message: 

FLOATING POINT PROCESSOR TEST 

USE REAL TIME CLOCK? 

If the real-time clock is to be enabled during testing, the 
operator responds by typing a Y. If the real-time clock is to 
be inhibited, the operator responds by typing an N. 

The program now responds by typing a double asterisk (**) to 
indicate that it is waiting for an input directive. The 
operator now selects the test to be performed by typing one of 
the test selection directives listed in Table 7-2. 

Table 7-2. Test Selection Directives 

Directive Program Response 

T. Operational test runs once. Program prints 
double asterisk upon test completion. 

T,C. Operational test runs continuously until 
terminated by setting SENSE switch 3. 

F. Fault test runs once. Program prints 
double asterisk upon completion of test. 

F,C. Fault test runs continuously until 
terminated by setting SENSE switch 3. 

S. Program prints single asterisk to 
indicate that it is awaiting Sequence 
Test commands 

Note: The operational test should always be allowed to run 
to its completion or be terminated by setting SENSE switch 3. 
This is necessary in order to provide restoration of initial 
contents of certain memory locations whose contents are altered 
during the operational test. 
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In the case of the sequence test, the operator must enter the 
test commands required to specify operand values and a sequence 
of up to eight FPP instructions. Specified operand values are 
stored in software registers. These software registers are 
memory locations which are dedicated to the storage of operand 
values. They are addressed by the mnemonics Rl, R2, Dl, D2, 
and I; where Rl and R2 are dedicated to the storage of single 
precision operands, Dl and D2 are dedicated to the storage of 
double-precision operands, and I is dedicated to the storage of 
an integer operand. Table 7-3 summarizes the available 
sequence test commands.: 

7.6 ERROR MESSAGES 

;If the operator deviates from the correct format during the 
entry of a test selection directive or sequence test command, 
the program responds by printing a question mark after the 
faulty character and then printing a double asterisk or single 
asterisk as appropriate to indicate that it is awaiting another 
test selection directive or Sequence Test command. 

When an FPP error is detected by the program, an error-type 
number is printed on the console TTY. The error type number 
is followed by the location in the test program where the 
error was detected. By referring to the test program listing 
it may be determined which instruction (or sequence of 
instructions) caused the error. Error type 7 or 8 can occur 
during the operational test only. Error types 2, 3, 4, 5, or 9 
can occur during the fault test only. Error types 1 and 6 can 
occur during any test. Table 7-4 provides a summary of these 
error-type messages. 

7.7 TTY PRINTOUT EXAMPLE 

The printout shown in Table 7-5 occurred during FPP tests run 
on a V73 processor with 32K of core memory, a model ASR-33 TTY, 
a high-speed paper tape reader, a PIM module on device address 
040, and an FPP. 
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Table 7-3. Sequence Test Commands 

Command Format 

Rn,i,j. 

n = (1,2) 

Dn,i,j,k,l. 
n = (1,2) 

Operand or Instruction Specified 

This command loads a single precision 
operand into software register Rl or 
R2 (as specified by the value of n). 
Parameter i specifies the octal value 
of the exponent and high fraction 
fields found in the first operand 
word of a single precision operand. 
Parameter j specifies the octal value 
of the low fraction field found in the 
second operand word of a single 
precision operand. (See figure 3-3.) 

EXAMPLE : R 1 , - 4 0 7 2 0 , 0 

Here: Rn = Rl specifying software 
register Rl 

i = 40720 (octal) = 

10000011 1010000 (binary) 
where 10000011 specifies an exponent 
value of +3 in excess-128 code and 
1010000 specifies a fraction value of 
.101. 

j = 0 

The minus sign preceding the 
i specifies a negative operand. 

Thus, the specified operand is 
- 23 X .101 (binary) = -101 (binary) 
= -5 (decimal) 

Note: If no sign precedes the i 
field, a positive operand is 
specified. 

This command loads a double precision 
operand into software register Dl or 
D2 in accordance with the value of n. 
Parameter i specifies the octal value 
of the excess-128 exponent code found 
in the first operand word of a double 
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Table 7-3. Sequence Test Commands (continued) 

Command Format 

Dn , i , j , k , 1 , 
n = (1,2) 
(cont'd) 

I, i. 

k,f ,r. 

Operand or Instruction Specified 

precision operand while parameters j, 
k, and 1 specify the octal values of 
the high, middle, and low fractions 
found in the second, third, and fourth 
words respectively. (See figure 3-5.) 

EXAMPLE: D2, 202, 52525, 52525, 52525 

Dn = D2 specifying software 
register Dl 

i = 202 (octal) = 010 000 010 
(binary) 

= 130 (decimal) = +2 in excess 
-128 code 

j = k = 1 = 52525 (octal) 
= 101 010 101 010 101 (binary) 

This command loads a signed integer 
into software register I. Parameter i 
specifies the octal value of the 
integer. A minus sign preceding the 
i specifies a negative number. 

EXAMPLE: I,377. 

i = 377(octal) = 011 111 111 
(binary) 

= 255 (decimal) 

Specifies an FPP load or arithmetic 
instruction and a source register and 
(optionally) indirect addressing. 
Parameter k is the mnemonic of the 
instruction to be performed (FLO, 
FLDD, FAD, FADD, FSB, FSBD, FMU, 
FMUD, FVD, or FDVD). Parameter 
f = 1 specifies indirect address. 
In this case the first address sup­
pli~tl to the FPP when the instruction 
is executed is not the direct address 
of the specified software register 
but is, instead, and indirect address. 
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Table 7-3. Sequence Test Commands (continued) 

Command Format 

k,f ,r 
(cont'd) 

k,f. 

E. 

Operand or Instruction Specified 

This tests the capability of the FPP 
to request additional memory cycles 
until a direct address is received. 
If parameter f = O or if parameter f 
is omitted, direct addressing is 
provided. r specifies the source 
register mnemonic. Rl or R2 must be 
specified for a single precision 
operation while Dl or DZ must be 
specified for a double precision 
operation. 

Specifies an FPP, float, fix, or store 
instruction. This is similar to format 
k,f ,r. except that the mnemonics that· 
can be specified are FLT, FIX, FST, and 
FSTD and that no source register is 
specified. In the case of a FLT 
instruction, the operand is 
automatically taken from the I 
register. The addresses supplied for 
the FPP for the FIX, FST, and FSTD 
instructions are addresses dedicated 
to buffer storage in connection with 
printout and are specified by the 
program. (Results of FIX, FST, and FSTD 
instructions are printed out unless 
SENSE switch 1 is set.) 

Note: Instruction sequences must end e 
with a FIX, FST, or FSTD instruction 
or a time-out interrupt will occur. 

This command initiates a single execu­
tion of the previously entered sequence 
of FPP instructions. The program 
prints a single asterisk after 
completing the sequence to indicate 
that it is waiting for another direc­
tive. A repetition of the E command 
will produce another single execution 
of the sequence. 
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Table 7-3. Sequence Test Commands (continued) 

Command Format 

E,C. 

G. 

Operated or Instruction Specified 

Note: Commands which load operands 
have no affect on previously specified 
instruction sequences. Thus, the 
same instruction sequence can be run 
for different operand values without 
the need for re-entering the sequence. 
However, any instruction entry follow­
ing the execution of an E command 
erases the previously stored 
instruction sequence. 

This command initiates repetitive 
execution of the previously entered 
sequence which continues until 
terminated by setting SENSE switch 3. 

This command terminates the sequence 
test mode. In response, the program 
prints a double asterisk to indicate 
that it is now waiting for a test 
selection directive. 
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Table 7-4. Error Messages 

Error Type 
Number Description 

1 An actual result differs from the expected 
result. The act~al result is printed on the 
line following the program location. The 
expected result is printed on the line 
following the actual result. 

2 FPP fails to interrupt after executing 
instruction which should produce exponent 
overflow 

3 FPP fails to interrupt after executing 
instruction which should produce exponent 
underflow 

4 FPP fails to interrupt after executing 
instructions involving integer overflow. 

5 FPP fails to interrupt after executing 
instruction involving division by zero. 

6 FPP interrupts when no fault condition is 
expected 

7 Error in sequence of CPU instructions 
intermixed with FPP instructions. 

8 Real-time clock interrupt occurs during 
period when FPP should be inhibiting 
interrupts 

9 FPP fails to interrupt when a time-out 
should have occurred 
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Table 7-5. Sample TTY Printout 

Printout 

THIS IS THE V70/620 or V75 TEST 
EXECUTIVE MEMORY SIZE IS 32K 

L. 
FLOATING POINT PROCESSOR TEST 
USE REAL TIME CLOCK? N 

**T. 
**F. 
**S. 

*Rl,40540,0. 
*D2,202,60000,0,0. 
*FLDD,D2. 
*FMU,Rl. 
*FSTD,I. 
*E. 
000204 044000 000000 000000 

*Dl,377,40000,0,0. 
*D2,377,40000,0,0. 
*FLDD,Dl. 
*FADD,D2. 
*FSTD. 
*E. 
6 ( 000700 ) 
000377 077777 077777 077777 
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Comments 

MAINTAIN III test executive 
program identifies itself and 
the memory size after loading 

Operator initiates loading of 
FPP test program. Program is 
identified when loading is 
complete and inquiry about 
enabling of real time clock 
interrupts is answered in 
negative. 

Single passes through the 
operational test and fault 
test are requested and 
successfully completed and 
the sequence test is entered. 

Data is loaded into single­
precision register Rl and 
into double-precision 
register DZ, a sequence of 
three FPP instructions is 
entered, the E command is 
entered, and upon completion 
of the sequence a double­
precision result is printed 
out (as a result of the 
double-precision store 
instruction). 

Data is loaded into the two 
double-precision registers 
and the instruction sequence 
required to add these two 
operands and store the result 
is entered. The E command is 
then entered. An exponent 
overflow occurs as indicated 
by the type 6 error message. 
The value in parenthesis is 
the mcmorv location of the 
starting ~nstruction of the 
sequence. 



Table 7-5. Sample TTY Printout (continued) 

Printout Comments 

*Rl,234,8? 
*Rl,2-? 
*Rl,-2,2,? 
*RO? 
*Rl~ 
~R3? 

*R2,123456? 
*G. 
** 

FLOATING POINT PROCESSOR 
TEST 
USE REAL TIME CLOCK? Y 

**T. 
**F. 
**T,C. 

** 
** 

7-11 

Several invalid sequence test 
commands are entered and 
rejected by the program. The 
G command is then entered, 
terminating the sequence test 
mode. The program prints a 
double asterisk to indicate 
that it is ready to accept 
another test selection 
directive. 

The test program is restarted 
by using console controls to 
start the processor at 
location 0500. On this 
start, the inquiry about 
enabling of real-time clock 
interrupts is answered 
affirmatively. Successful 
single passes through the 
operational test and the 
fault test are completed. 
The operational test is then 
executed in the continuous 
mode and runs until SENSE 
switch 3 is set. 
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