
PROCEEDINGS

C++ Conference

Denver, CO

October 17- 21, 1988

For additional copies of these proceedings write

USENIX Association
P.O. Box 2299

Berkeley, CA 94710 USA

Price: $30.00

Outside the U.S.A. and Canada please add
$20 per copy for air printed matter postage.

Copyright" 1988 USENIX Association
All Rights Reserved

This volume is pUblished as a collective work.
Rights to individual paPers remain

with the author or the author"s employer.

UNIX is a registered trademark of AT&T.
Other trademarks are noted in the text.

Second Printing (December 1988)

Program and Table of Contents

C-H- Conference

October 17-21, 1988

Monday and Tuesday, October 17 & 18

Tutorials

Wednesday, October 19 - Salons E & F

Opening Session

Keynote Speech
W. N. Joy, Sun Microsystenis

9:00 - 5:00

9:00 - 10:30

Parameterized Types for C-++ 1
Bjarne Stroustrup, AT&T Bell Laboratories

Brealc 10:30 - 11:00

Technique 11:00 - 12:30

Building Well-Behaved Type Relationships in C-++ 19
R. B. Murray, AT&T Bell Laboratories

Porting from Common Lisp with Flavors to C-H- 31
Joseph Eccles, AT&T Bell Laboratories

Lunch 12:30 - 2:00

Databases and File Systems 2:00 - 3:30

Prototyping Database Applications with a Hybrid of C-H- and 4GL 41
Ronan Stokes, Glockenspiel, Ltd.

Open Dialogue:
Using an Extensible Retained Object Workspace to Support a DIMS 53

Andrew Schulert, Kate Erf, Apollo Computer Inc.

A C-H- Class Hierarchy for Building UNIX-like File Systems 65
Peter Madany, Douglas Leyens, Vincent Russo,
Roy Campbell, University of Illinois

Brealc 3:30 - 4:00

Applications 4:00 - 5:30

Applying Object-Oriented Design to Structured Graphics 81
John M. Vlissides, Mark A. Linton, Stanford University

A C+f- Interpreter for Scheme 95
Vincent F. Russo, Simon M. Kaplan, University of Illinois

OPIO: Extensible Objects for Electronic Design Tools 109
Roger Scott, Prakash Reddy, Data General Corp.,
Russel Edwards, David Campbell, Valid Logic Systems

Thursday, October 20 - Salons E & F

Experience 9:00 - 10:30

C+f-: From Research to Practice 123
S. B. Lippman, B. E. Moo, AT&T Bell Laboratories

NAPS - A ~-++ Project Case Study .. 137
C. Berman, R. Gur, AT&T Bell Laboratories

153

10:30 - 11:00

11:00 - 12:30

Break

Parallelism and Simulation

Data-Level Parallel Programming in C-++
Thomas M. Breuel, MIT

A Multiprocessor Operating System Simulator 169
Gary M. Johnston, Roy H. Campbell, University of Illinois

Modelling of Control Systems with C-++ and pmos 183
Dag M. Bruck, Lund Institute of Technology

Lunch

Linguistics

12:30 - 2:00

2:00 - 3:30

Type-safe Linkage for C-++ ••••••••••••••••••••••••••••••••••••••.•..•.••.••••••.•••••••••••••••••••• 193
Bjarne Stroustrup, AT&T Bell Laboratories

I~plementinga Logic-Based Executable Specification Language in C-H-.. 211
.Peter A. Kirslis, AT&T Bell Laboratories,
Robert B. Terwilliger, University of Colorado

DebUgging and Instrumentation of C-++ Programs 227
Martin -J. O'Riordan, Glockenspiel, Ltd.

Brealc 3:30 - 4:00

Libraries 4:00 - 5:30

libg++, The GNU C* Library•... 243
Douglas Lea,
.State University of New York, College at Oswego

A C* Approach to Real-time Systems: Task Interface Library............. 257
Troy Otillio, Tandem Computers

A C* Library for Infinite Precision Floating Point 271
Jerry Schwarz, AT&T Bell Laboratoties

Iris: A Class-Based Window Library•....................... 283
E. R. Gansner, AT&T Bell Laboratories

r

Friday, October 21

Implementors' Workshop 9:00 - 5:00

Lexical Closures for C* ...•.. 293
Thomas M. Breuel, MIT

Pointers to Class Members in C-H- . 305
S. B. Lippman, B. Stroustrup, AT&T Bell Laboratories

Exception Handling without Language Extensions 327
William M. Miller, Software Development Technologies, Inc.

"Wrappers:" Solving the RPC Problem in GNU C-H- 343
Michael D. Tiemann,
Microelectronics and Computer Technology Corp.

Conference Chair:

Andrew Koenig
Room 4N-R12
AT&T Bell Laboratories
184 Liberty Comer Road
Warren, NJ 07060-0908

ark@ europa.att.com
{attmail,research}!ark

USENIX Conference Coordinator:
Judith H. DesHarnais

USENIX Tutorial Coordinator:
John L. Donnelly

USENIX Conference Liaison:
Waldo M. Wedel

Proceedings Production:
Tom Strong
Ellie Young

Program Committee:

Keith GorlenJ National Institutes
of Health

Mark LintonJ Stanford University
Richard MyersJ Apple Computer
Peggy Quinn, AT&T
Mark RafterJ University of Warwick
Michael TiemannJ MCC

Parameterized Types for C+- +

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Type parameterization is the ability to define a type in terms of another,
unspecified, type. Versions of the parameterized type may then be created for
several particular parameter types. A language supporting type parameterization
allows specification of general container types such as list, vector, and associative
array where the specific type of the elements is left as a parameter. Thus, a
parameterized class specifies an unbounded set of related types; for example: list
of int, list of name, list of shape, etc. Type parameterization is one way of mak
ing a language more extensible.

In the context of C++ , the problem are
[1] Can type parameterization be "easy to use?
[2] Can objects of a parameterized type be used as efficiently as objects of a

"hand-coded" type?
[3] Can a general form of parameterized types be integrated into C++ ?
[4] Can parameterized types be implemented so that the compilation and

linking speed is similar to that achieved by a compilation system that
does not support type parameterization?

[5] Can such a compilation system be simple and portable?
A design is presented for which the answer to all of these questions is yes.

The implementation of this scheme is a fairly simple extension of current C++
implementations.

WARNING: The scheme for providing parameterized types described here is
not implemented. It is not part of the C++ language, nor is there any guarantee
that it ever will be.

1 Introduction

For many people, the largest single problem using C++ is the lack of an extensive standard
library. A major problem in producing such a library is that C++ does not provide a sufficiently
general facility for defining "container classes" such as lists, vectors, and associative arrays. There
are two approaches for providing such classes/types:

[1] The Smalltalk approach: rely on dynamic typing and inheritance.
[2] The Clu approach: rely on static typing and a facility for arguments of type type.

The former is very flexible, but carries a high run-time cost, and more importantly defies attempts
to use static type checking to catch interface errors. The latter approach has traditionally given
rise to fairly complicated language facilities and also to slow and elaborate compile/link time
environments. This approach also suffered from inflexibility because languages where it was used,
notably Ada, had no inheritance mechanism.

Ideally we would like a mechanism for C+ + that is as structured as the Clu approach with ideal
run-time and space requirements, and with low compile-time overheads. It also ought to be as
flexible as Smalltalk's mechanisms. The former is possible; the latter can be approximated for
many important cases.

1988 USENIX C++ Conference 1

Note that C++ appears to have sufficient expressive power to cope with the demands of library
writing provided there is a single basic kind of objeCt, such as a character (for string manipulation,
pattern matching, character I/O, etc.), a double precision floating point number (for engineering
libraries), or a bitmap (for graphics libraries). The "container class problemtt is particularly seri
ous, though, since container classes are needed to specify all but the simplest interfaces; they are
the "gluett for larger systems.

2 Class Templates

A C++ parameterized type will be referred to as a class template. A class template specifies
how individual classes can be constructed much like the way a class specifies how individual objects
can be constructed. A vector class template might be declared like this:

template<class T> class vector {
T* Vi
int SZi

public:
vector(int)i
T& operator[] (int)i
T& elem(int i) { return v[i];
II ...

} ;

The template <class T> prefix specifies that a template is being declared and that an argument
T of type type will be used in the declaration. After its introduction, T is used exactly like other
type names within the scope of the template declaration. Vectors can then be used like this:

vector<int> vl(20);
vector<complex> v2(30);

typedef vector<complex> cvec;
cvec v3(40);

I I make cvec a synonym for vector<complex>
II v2 and v3 are of the same type

2

vl[3] - 7;
v2[3] - v3.elem(4) - complex(7,8);

Clearly class templates are no harder to use than classes. The complete names of instances of a
class template, such as vector<int> and vector<complex>, are quite readable. They might
even be considered more readable than the notation for "the built-in array type: int [] and
complex [] . When the full name is considered too long, abbreviations can be introduced using
typedef.

It is only trivially more complicated to declare a class template than it is to declare a class. The
keyword class is used to indicate arguments of type type partly because it appears to be an
appropriate word, partly because it saves introducing a new keyword. In this context, class
means u any typett and not just "some user-defined type. tt

The <••.> brackets are used in preference to the parentheses (...) partly to emphasize the
different nature of template arguments (they will be evaluated at compile time) and partly because
parentheses are already hopelessly overused in C++ .

The keyword template is introduced to make template declarations easy to find, for humans
and for tools, and to provide a common syntax for class templates and function templates.

J Member' FUDction Templates

The operations on a class template must also be defined. This implies that in addition to class
templates, we need function templates. For example:

1988 USENIX C++ Conference

template<class T> T& vector<T>::operator[) (int i)
{

if (i<O I I 8z<-i) error (Ilvector: range errorU);
return v[i);

A function template is a specification of a family of functions; template<class T> specifies that
T is a template argument (of type type) that must somehow be supplied to specify a particular func
tion.

Note that you don't usually have to specify the template arguments to use a function template.
For example, the template argument for vector<T>:: operator [] will be determined by the
vector to which the subscripting operation is applied:

vector<int> vl(20);
vector<complex> v2(30);

vl(3) .. 7;
v2(3) - complex(7,S);

II vector<int>::operator[) ()
II vector<complex>::operator[) ()

Member functions of a class template are themselves function templates with the template arga
ments specified in the class templates. Function templates and member function templates will be
discussed in greater detail in §9 and §12.

4 Outline of an Implementation

The basic idea for an implementation that incurs no additional costs in run-time or space com
pared with "hand coding" is to umacro-expand" a template for each different set of template argu
ments with which it is used. Naturally, template expansion is not really/just macro expansion; it
obeys proper scope and syntax rules. Names such as vector<int> can be encoded into compo
site class names such as _PTvector_int.

The example above expands into:

class __PTvector_int
int* v;
int sz;

public:
__PTvector_int(int);
int& operator[) (int);
int& elem(int i) { return v[i); }
/ I ...

} ;

class __PTvector_complex
complex* v;
int 8Z;

public:
__PTvector_complex(int);
complex& operator[) (int):
complex& elem(int i) { return v[i): }
II ...

} :

PTvector_int vl(20);
__PTvector_complex v2(30);
__PTvector_complex v3(40);

vl(3) - 7;
v2(3) - v3.elem(4) - complex(7,S);

A compiler need not have a separate template expansion pass. Since the information to do such
an expansion exists in the compiler's tables, the appropriate actions can simply be taken at the

1988 USENIX C+t- Conference 3

I I constructor
1/ constructor
II subscripting
II subscripting

4

proper places in the analysis and code generation process.
In addition to this expansion mechanism, a facility is needed for detecting which member func

tions have been used for which instances of a parameterized type. The example above used:

__PTvector_int::__PTvector_int();
__PTvector_complex::__PTvector_complex();
__PTvector_int::operator[] ();
__PTvector_complex: :operator [) 0;
__PTvector_complex::elem();

Note that the full list of such functions for a program can be known only after examining every
source file. The linker provides a form of this list as part of its list of undefined objects and func
tions.

The defmition of an operation on a class template might look like this:

template<class T> T& vector<T>::operator[] (int i)
{ .

if (i<O I I sz<-i) error ("vector: range error");
return v[i];

From this, the following two function defmitions will· have to be generated:

int& __PTvector_int::operator[] (int i)
{

if (i<O I I sz<-i) error (ltvector: range errorlt);
return v[i];

complex& __PTvector_complex::operator[] (int i)
{

if (i<O I I sz<-i) error (ltvector: range error lt);
return v[i];

This approach ensures that no run-time efficiency is lost compared to "hand-coding". Code
space might wasted by creating separate copies of functions that could have shared implementation.
For example, vector<int> and vector<unsigned> need not have separate subscripting opera
tions. Such waste can, if necessary, be reduced through suitable coding practices (see § 11) and/or
through a clever compile time environment.

A programmer can provide a definition for a particular version of an operation on a class by
specifying the template'argument(s) in a function defmition:

int& vector<int>::operator[] (int i) (return v[i); }

The general version of such a function as defined by its template will be used to create a function
for a particular argument type only when no user-provided version is specified for that type.

Replacing the default implementation of a function as defined by a template is useful where
implementations with greater precision, higher efficiency, etc. can be provided given some under
standing of a particular type. It may also be useful for debugging and for supplying different ver
sions of a function to different parts of a program (using static functions).

5 Some Design Considerations

Let us consider a few choices that were made to write the example above:
[I] Should all template arguments be of type type?
[2] Should a user be required to specify the set of operations that may be used for a template

argument of type type?
[3] Should a user be required to explicitly declare what versions of a template can be used in a

program?
[4] Should it be possible for a user to declare variables of type type?

.The answer to all (in the context of C++) is no. Let us examine them in turn.

1988 USENIX C++ Conference

Template Arguments

"Should all template arguments be of type type?" NOt there appear to be useful examples of
type parameters of "normart types. For examplet a vector template might be parameterized with
an error handling function:

typedef void (*PF) (char*);

template<class T, PF error> class vector (
T* V;
int sz;

pUblic:
T& operator[) (int i) {

if (i<- II sz<-i) error ("vector: range error");
return v[i);

} ;

void my_error_fct() (•••)
vector<complex,&m¥_error_fct> v(10);

This example im.,lies that default arguments might be useful:

template <class T, PF error-&standard_error_fct> class vector { ••• }

Another example is a buffer type with a size argument:

template<class T, int 8z-128> class buffer
T v[sz);
II ...

};

void f ()
(

buffer<char> buf1;
buffer<complex,20> buf2;
I I ...

buffer<char*,1000> glob;

Making sz an argument of the template buffer itself rather than of its objects implies that the
size of a buffer is known at compile time so that a buffer can be allocated without use of free
store. It appears that default arguments will be at least as useful for template arguments as they
are for ordinary arguments. Default arguments of type type might even be useful:

template<class T, class TEMP - double> class store
II ...
T sum() { TEMP sum - 0; .•• return sum; }

} ;

store<int,long> iatore;
store<float> fstore;

These examples demonstrate that the range of templates with which a type can be parameter
ized should be restricted only if there are compelling arguments that the restriction will signifi
cantlyease the implementation of templates. I see no such argument.

Type Argument Attributes

"Should a user be required to specify the set of operations that may be used for a template
argument of type type?tt For example:

1988 USENIX C++- Conference 5

6

II The operations -, --, <, and <-
II must be defined for an argument type T

template <
class T (

T& operator-(const T&);
int operator--(const T&, const T&);
int operator<-(const T&, const T&);
int operator«const T&, const T&);

} ;

>
class vector
II ...
} ;

No. Requiring the user to provide such information decreases the flexibility of the parameteriza
tion facility without easing the implementation or increasing the safety of the facility.

Consider vector<T>. To provide a sort operation one must require that type T has some
order relation. This is not the case for all types. If the set of operations on T must be specified in
the declaration of vector one would have to have two vector types: one for objects of types with
an ordering relation and another for types without one. If the set of operations on T need not be
specified in the declaration of. vector one can have a single vector type. Naturally, one still can
not sort a vector of objects of a type glob that does not have an order relation. If that is tried,
the generated sort function vector<glob>: : sort ()would be rejected by the compiler.

It has been argued that it is easier to read and understand parameterized .types when the full set
of operations on a type parameter is specified. I see two problems with this: such lists list would
often be long enough to be de facto unreadable and a higher number of templates would needed
for many applications.

Should experience show a need for specifying the operations on a parameterized type then such
a facility can be easily and compatibly added later.

Source Code

There might be a more fundamental reason for requiring that the operations performed on a
template argument of type type should be listed in the template declaration. The implementation
technique outlined here achieves near optimal run-time ch~acteristics by requiring the complete
source code of a template to be available to the compiler when processing a use of the template.
In some contexts, this is considered a deficiency and an implementation of templates that requires
only the object code for functions implementing the function templates would be preferable.

At fJrst glance it would appear that requiring the full set of operations on a template argument
to be specified would make it significantly easier to produce such an implementation. In this case,
a function template would be implemented by code using calls through vectors of function pointers
to perform operations on template arguments of type type. The specification of the set of opera
tions for a type argument would provide the definition for such vectors. Such an implementation
would trade run-time for compile and link time, but would be semantically equivalent to the imple
mentation scheme presented here.

Could an implementation along these lines be provided without requiring the user to list the set
of operations needed for each function template argument of type type? I think so. Given a func
tion template, the compiler can create a vector layout for the required set of operations without the
help of a user. Given the full set of function definitions for the members of a class, the compiler
can again create a vector layout for the required set of operations without the help of a user. If
the compile and link environment cannot provide such a list a less optimized scheme where each
member function has its own vector of operations can be used.

It thus appears that both implementation styles can be used even in the absence of template
argument attribute lists so that we need not require them to preserve the implementers' freedom of
action. It might be noticed that a virtual function table is in many ways similar to a vector of
operations for a template so that the benefits of the vector of operations approach can often be

1988 USENIX C-++ Conference

achieved by a coding style relying on virtual functions rather than the expansion of function tem
plates. Class pvector presented in §11 is an example of this.

Type Instantiation

"Should a user be required to explicitly declare what versions of a template can be used in a
program?" For example. should one require the use of an operation like Ada·s new? No. Such a
requirement would increase the size of the program text and decrease the flexibility of the template
facility without yielding any benefits to the pr~grammer or the implementer.

Type Variables

"Should it be possible for a user to declare variables of type type?" For example:

type t - int;

void f(type t)
{

switch (t) {
case int:

case char.:

case complex:

default:

Such a faCility would be useful in many contexts. but does not appear suitable for Cf.+. In partic
ular. it is not possible to assign integer values to represent constants of type type such as int.
line_module*. double (*) (complex*, int), and vector<complex> while maintaining the
current style of separate compilation. Since the C++ type system is open such assignment of
values in general requires an unbounded number of bits to represent a type. In practice. even sim
ple cases require lots of bits (the current cfront scheme for encoding function types in character
strings regularly uses dozens of characters) or some system of hashing involving a database of
types. Furthermore. the introduction of such variables would require an order of magnitude
greater changes to the C++ language and its implementations than the scheme (without type vari-
ables) described here. '

6 Type Inquiries

It would be possible to enable a programmer to inquire about properties of a template argument
of type type. This would allow the programmer to write code that depends on specific properties
of the actual types used.

An Inquiry Operator

Consider providing a print function for a vector type that sorts the elements before printing if
and only if sorting is possible. A facility for inquiring if a certain operation. such as <. can be per
formed on objects of a given type can be provided. For example:

template<class T> void vector<T>::print()
(

if (?T::operator<) 8ort(); II if (T has a <) sort_this_vector
for (int i-O; i<sz; i++) { .•• }

Because the < operation is defined for ints. printing of a vector<int> gives rise to an expansion:

1988 USENIX C+t- Conference 7

8

void __PTvector_int::print()
(

sort(); II that is, this->sort()
for (int i-O; i<sz; i++) { ••• }

On the other hand, printing a vector<glob> where the < operation is not defmed for globs
gives rise to an expansion:

void __PTvector_qlob::print()
{

for (int i-O; i<sz; i++) { ••• }

Tests on expressions of the form ?typ::oper (Udoes type typ have an operation oper?") must be
evaluated at compile time and can be part of constant expressions.

It would probably be wise not to include such a type inquiry feature in the initial experimental
implementation but to wait and see what properties (if any) programmers would find useful.
Potentially every aspect of a type known to the compiler can be made available to the programmer;
sizeof is a most rudimentary version of this kind of facility.

The absence of a type inquiry facility will be compensated for by the ability to define a function
for a particular set of template arguments, thus overriding the generation of the "standard" version
from the template. Furthermore, it can sometimes be preferable to define separate templates to
represent the different concepts. For example, one might have both a vector<T> class and a
sorted_vector<T> cla~s derived from it.

The typeof Operator

Writing code where the control flow depends of the properties of a type parameter doesn't
appear to be necessary, but defining variables of types dependent on type parameters does. Given
a template argument of type type, T, one can express a variety of derived types using the declara
tor syntax; for example, T*, T&, T [10], T (*) (T,T). One can also express types obtained by
template expansion such as vector<T>. However, this does not conveniently express all types
one might like. In particular, the ways of expressing types that depends on two or more template
arguments are weak. To compensate, one might introduce a typeof operator that yields the type
of its argument. For example:

template<class X, class Y> void f(X x, Y y)
(

typeof(x*y) temp - x*y;
II ...

It would probably be wise not to introduce a typeof operator before gaining more experience.
The uses of typeof appears to be quite limited and the scope for misuses large. In particular,
typeof appears more suited for the writing of macros (which templates are designed to replace in
many contexts) than for templates and heavy use of typeof will reduce the compilers ability to pin
point type errors.

7 More about Implementation

So how can we generate the proper code for definitions of operations on a template for a given
set of arguments? Assume that we know that versions of vector's subscripting operation

template<class T> vector<T>::operator[] (int) (•••)

are needed for T=mint and T=z:zcomplex. How can we create the proper expansions (as
pres" ted above)1

We might have a compiler option, -x, for creating such expansions. Assuming that the defini
_lions for vectorts member functions resides in a file called vector. c, one might call the

1988 USENIX C+f- Conference

compiler like this:

CC -x "vector<int>t1 vector.c
CC -x "vector<complex>l' vector. c

and have the appropriate. 0 files created. This would create not only the required subscript opera
tor functions but also functions for any other vector operation that has its definition stored in
vector. h. The strategy for splitting a program into separately compiled parts is in the hands of
the programmer. Where a finer granularity is required of . 0 files for a library, the programmer
can handle it using standard C library techniques.

Note that an expansion using the template expansion option, -x, may give rise to a program
that uses an instance of a template that has not already been used in the program. This implies
that another stage of umissing template implementation detection n is required after each expan
sion. Expansion is really a recursive activity. The depth of this recursion will typically be 1,
though. It will be necessary to have a mechanism protecting against recursive expansion. For
example:

template<class T> void f(T a) (T* p; ••• f(p); }

Naturally, one would try to ensure that c,= -x is used to generate. 0 files only for defmitions
of templates when

(1] a new template was used, or
[2] a new set of template arguments was used, or
[3] the declaration of a template was changed.

I imagine that after a short startup period all· the necessary . 0 files for templates for a
program/project will reside in a library and not interfere with the compilation process. When a
program/project reaches this state the compilation overhead incurred by using templates becomes
negligible.

Tools for Ensuring Consistent Linking

Consider having the tools described above:
(1] a C++ compiler handling the expansion of class templates into class declarations, and
[2] a -x option on this compiler to handle the expansion of function templates into function

defmitions.
One could then compile a C++ program using templates. A little manual intervention would be
needed to get a complete program to link and load.

What additional tools would be needed to
(1] guarantee consistent and complete expansion and linking?
[2] make programming reasonably convenient?
I conjecture that [1] is perfectly feasible, but non-trivial, where portability across operating sys

tems, compile and link time efficiency, and flexibility are all required. I also conjecture that very
little is needed to achieve [2]. Experience using such a system is clearly needed, but it might weD
be sufficient to modify a tool with access to the complete compiled program, such as munch or the
linker itself, to produce

(1] a list of function defmitions required, or
[2] a list of fdes for which cc -x needs to be run (assuming some correspondence between type

names and file names), or
[3] a make script for running cc -x for an appropriate set of fdes.
It would also be important to ensure that cc produces readable error messages when an opera

tion is applied to a particular template argument of type type for which it is not defined. For
example:

"foo.c", line 144: error: operator<- applied to glob in vector<glob>:: sort ()

This discussion of how one might provide a minimal and portable mechanism supporting tem
plates in 0+-+ should not be taken as an indication that such a mechanism provides the ideal pro
gramming environment. On the contrary, it is exactly a minimal facility. Much better facilities
can be built (think of a smart make, an incremental compiler, a SmaUtalk-like browser, etc.),

1988 USENIX C-++ Conference 9

However, a minimal facility must exist to ensure portability of C++ programs between aU imple
mentations since there is no hope that a single maximal programming environment will ever be
agreed on and implemented on every system supporting C++ .

8 Function Templates

In addition to providing class templates, it is necessary to provide function templates. Consider
providing a general sort function:

template<class T> void sort(vector<T»;

Given a vector v, one might call such a function like this:

sort (v);

The compiler can deduce the type of the sort function from the type of the vector. For exam
ple, had v been declared

vector<int> v(lO);

the sort function sort<int> would have been required. On the other hand had the declaration of
v been

vector<double> v(2000);

the sort function sort<double> would have been used.

Overloading

Declaring a function template is simply a way of declaring a whole bundle of overloaded func
tions at one time. This implies that we can use functions with arguments that can be distinguished
by the overloaded function resolution mechanism only. The following function cannot be used
because it takes no argument:

template<class T> T* create() { return (T*) malloc(sizeof(T»; }

The C++ syntax could be extended to cope with this by allowing the full generality of the
name<type> notation so that template arguments could be supplied explicitly in a call:

int* pi - create<int>();
char* pc - create<char>();

I I create_int ()
I I create_char ()

.....

10

Unless programmers define templates sensibly this form of resolution can become quite cryptic:

template<class X, class Y> f(Y,X); II template argument order differs
II from function argument order

f<char*,int>(l,"asdf");

I think it would be wise not to include any explicit resolution method in an initial implementation.
I suspect that the implicit resolution provided by the overloaded function resolution rules are suffi
cient - and more elegant - in almost all cases and it is not obvious that a mechanism for explicit
overloading is worth the added complexity.

Allowing explicit resolution would imply that a c++ compiler should treat function template
names differently from other names and similarly to the way keywords and class names are
treated. F~ example, without special rules for template names the last expression above would be
parsed as two comparisons and a parenthesized comma expression:

(g<123»(vv,lO);

1988 USENIX C++ Conference

A Problem

Consider writing a function apply () that applies another function to all the elements of a vec
tor. A traditional first cut would look something like this:

template<class T> void apply(vector<T>& v, T& (*g) (T&»
{

for (int i - 0; i<v .size (); i++) v [i) - (*g) (v [i)) ;

This follows the C style of using a pointer to function. Potential problems with this are
[1] efficiency, because there can be no inline expansion of the applied function, and
[2] generality, because standard operations of built-in types such as - and - for ints cannot be

applied.
Naturally, these are not problems to all people. However, an ideal template mechanism will pro
vide solutions.

A Solution

One might consider the function to be applied by apply () a template argument rather than a
function argument:

template<class T, T& (*g) (T&» void apply(vector<T>& v)
{

for (int i - 0; i<v.size(); i++) v[i) - (*g) (v[i);

To call apply () one must specify the function to be applied. Since this version of apply () takes
only a single vector argument the syntax for disambiguating an overloaded function call using
<••• > must be used:

class X { ••• };

vector<X> v2(200);

inline void hh(X&) { ••• };
void gg(X&); II not inline

apply<X,hh>(v2);
apply<X,gg>(v2);

Clearly, the X is redundant and not elegant. Since in principle each such call of apply () results
in writing a new function apply () inlining can be applied where sufficient information is avail.'
able. Consequently, one would expect a C++ compiler to inline hh () in the fust call in the exam
ple above and generate a standard function call of gg (). The fact that function pointers and not
functions are passed in C++ is at most a minor annoyance for the compiler writer.

Operators for built-in types can be considered inline functions in this context:

vector<int> v(lOO);
apply< int, &int::operator-- >(v);

However, as for the explicit resolution scheme itself, it remains to be seen if this degree of sophis
tication and complexity is actually needed.

9 Syntax Issues

Consider the declarations:

template<class T> class vector { ••• };
template<class T> T* index<clas8 T>(vector<T>,int);

[1] Why use the template keyword?
[2] Why use < ..•> brackets and not parentheses?

1988 USENIX c++ Conference 11

[3] Why use the class keyword?
[4] What is the scope of a template argument?

The template keyword

If a keyword is to be used template seems to be a reasonable choice, but it is actually not
necessary to introduce a new keyword at all. For class templates, the alternative syntax seems
more elegant at rust glance:

class vector<class T> II possible alternative class syntax

12

Here the template arguments are placed after the template name in exactly the way they are in the
use of a class template:

vector<int> vi(200);
vector<char*> vpc(400);

The function syntax at rust glance also looks nicer without the extra keyword:

T& index<class T>(vector<T> v, int i) { .•• }

There is typically no parallel in the usage, though, since function template arguments are not usu
ally specified explicitly:

int i - index(vi,10);
char* p - index(vpc,29);

However, there appears to be nagging problems with this "simpler" syntax. It is too clever. It is
relatively hard to spot a template declaration in a program because the template arguments are
deeply embedded in the syntax of functions and classes and the parsing of some function templates
is a minor nightmare. It is possible to write a C++ parser that handles function template declara
tions where a template argument is used before it is defined, as in index () above. I know,
because I wrote one, but it is not easy nor does the problem appear amenable to traditional parsing
techniques. In retrospect, I think that not using a keyword and not requiring a template argument
to be declared before it is used would result in a set of problems similar to those arising from the
clever and convoluted C and C++ declarator syntax.

< ...> vs (...)

But why use brackets instead of parentheses? As mentioned before, parentheses already have
many uses in C++. A syntactic clue (the <.••> brackets) can be useful for reminding the user
about the different nature of the type parameters (they are evaluated at compile time). Further
more, the use of parentheses could lead to pretty obscure code:

template(int sz - 20) class buffer
buffer (sz) (int i - 10);
II ...

};

buffer b1(100) (200);
buffer b2(100); II b2(100) (10) or b2(20) (100)?
buffer b3; II legal?

These problems would become a serious practical concern if the notation for explicit disambi
guation of overloaded function calls were adopted. The chosen alternative seems much cleaner:

1988 USENIX c++ Conference

template<int sz = 20> class buffer
buffer (sz) (int i - 10);
II ...

} ;

buffer b1<100>(200);
buffer b2<100>;
buffer b3;
buffer b4(100);

I I b2<100> (10)
I I b3<20> (10)
I I b4<20> (100)

The class keyword

Unfortunately, the ideal word for introducing the name of a parameter of type type, that is,
type cannot be used; type appears as an identifier in too many programs. Why use the class
keyword then? Why not? Classes are already types to the extent that the built-in types can be
considered second class citizens in some contexts (you cannot derive a class from a built in type,
you cannot take the address of an operation on a built-in type, etc.). What is done here is simply
to use class in a slightly more general form than is done elsewhere.

Scope of Template Argument Names

The scope of a template argument name is the template declaration and the template name
obeys the usual scope rules:

const int T;

template<class T>
class vector {

int sz;
T* Vi

public:
II ...

} i

int T2 - T;

II hides the const int T

II here const int T is visible again

Template declarations may not be declaration lists:

template<class T> f(T*), g(T); II error: two declarations

This restriction is made to avoid users making unwarranted assumptions about relations between
the template arguments in the different templates.

10 Templates and Typedef

The template concept is easily extended to cover all types. For example:

template<class T, int i> T array[i);

array<int,10> Vi II array of 10 ints

This allows great freedom in defining type names. In particular, a template without arguments
is equivalent to a typedef. For example:

template<> int I1;
typeclef int I2 i

I1<> x;
I2 y;
int Zi

II "x" is an int
II "y" is an int
II "z" is an int

For example, it follows that x and z in the example above are both of the same type (int) .
11<> is simply a rather unusual way of writing into

1988 USENIX C+f- Conference 13

11 Type Equivalence

Consider:

template<class T, int i> class X {
T vec[il;
II ...

} :

array<int,10> x:
array<int,10> y:
array<int,11> z;

Here, x and y is of the same type, but z is of the different type. Since the template arguments
used in the declarations of x and y are identical they refer to the same class. Naturally. only a
single class declaration is generated by a C generating C++ compiler. On the other hand, the tem
plate arguments used in the declaration of z differs and gives rise to a different class.

Different template arguments give rise to different classes even if the argument is used in a way
that does not affect the type of the generated class:

template<class T, int i> class Y {
public:

foo () (int buf [i): ... }
} ;

Y<int,10> xx;
Y<int,10> yy:
Y<int,11> zz:

Template arguments must be types, constants, or integer expression that can be evaluated at
compile time.

12 Derivation and Templates

Among other things, derivation (inheritance) ensures code sharing among different types (the
code for a non-virtual base class function is shared among its derived classes). Different instances
of a template do not share code unless some clever compilation strategy has been employed. I see
no hope for having such cleverness available soon. So, can derivation be used to reduce the prob
lemt of code replicated because templates are used? This would involve deriving a template from
an ordinary class. For example:

template<class T> class vector (
T* v;
int sz:

public:
vector(int):
T& elem(int i) (return v(i):
T& operator[) (int i);
II

} :

II general vector type

14

t If that reaDy is a problem: memory is cheap, etc. I think it is a problem and will remain so for the foreseeable future.
People's expectations of ccrnputers have consistently outstripped even the astounding growth in hardware perfonnance.

1988 USENIX C-++ Conference

temp1ate<class T>
class pvector : vector<void*>

public:

II build all vector of pointers
II based on vector<void*>

pvector (int i) : (i) (}
T*& elem(int i) (return (T*&) vector<void*>::e1em(i); }
T*& operator[] (int i) { return (T*&) vector<void*>::operator[] (i);
II ...

} ;

pvector<int*> pivec(100);
pvector<complex*> icmpvec(200);
pvector<char*> pcvec(300)i

The implementations of the three vector of pointer classes will be completely shared. They are all
implemented exclusively through derivation and inline expansion relying on the implementation of
vector<void*>. The vector<void*> implementation is a good candidate for a standard
library.

I conjecture that many class templates will in fact be derived from another template. For exam
ple:

template<class T> class 0 : B<T> (

}i

This also ensures a degree of code sharing.

13 Members and Friends

Here are some more details:

Member Functions

A member function of a class template is implicitly a template with the template arguments of
its class. Consider:

template<class T> class C (
T p;
T m1() { T a - p; p++; return a; }

} ;

C<int> C1i
C<char*> c2i

int i = c1.m1 (); II int C<int>::ml() (int a - Pi P++i return a; }

char* s = c2.m1()i II char* C<char*>::ml() (char* a - p; P++i return ai }

These two calls of ml () gives rise to two expansions of the definition of ml ().
Naturally a member template may also be declared:

template<c1ass T> class C (
template<class TT> void m(TT*,T*);

} i

This case will be discussed below. However. explicit use of class template arguments in member
function names is unnecessary and illegal:

1988 USENIX C++ Conference 15

template<class T> class C {
T m<T> 0 ;

} ;
II error

II correct, a constructor
I I error constructor

template<class T> C<T>::m<T>() (••.

template<class T> C<T>::m() { ••• }

This also applies to constructors:

template<class T> class C (
CO;
C<T>(int);

II error

II correct

II error

16

} ;

templa~e<class T> C<T>::C() { ••• } II correct

To avoid confusion it is not legal to define a template as a member with the same template argu
ment name as was used for the class template:

template<class T> class C (
template<class T> T m{T*);

} ;

Friend Functions

A friend function differs from other functions only in its access to class members. In particu
lar, a friend of a class template is not implicitly a template. Consider:

template<class T> class C (
friend fl(T a);
template<class TT> friend f2(TT a);

} ;

The definitions of f1 () and f2 () are legal, but clearly not equivalent.
The friend declaration of f1 (T) specifies that for all types T, f1<T> is a friend of C<T>.

For example, f1<int> is a friend of C<int>. However, f1<int> is not a friend of
C<double>. The definition of f1 () would probably look something like this:

template<class TT> fl(TT a) { •.• };

The friend f1 () need not be a template, but if it isn't the programmer might have a tedious time
constructing the necessary set of overloaded functions Uby hand."

The declaration of f2 () specifies that for all types T and TT, f2<TT> is a friend of C<T>.
For example f2<int> is a friend of C<double>.

Note that a friend function of a parameterized class need not itself be parameterized:

template<class T> class C
static int i;
friend f() { i++;

};

Static Members

Each version of a class template has its own copy of the static members of the class:

template<class T> class C { static T a; static int b; ••. };

C<int> XX;
C<double> yy;

This implies allocation of the static variables:

1988 USENIX C-f+ Conference

II all X<TT>s
II only Y<T>
II only Z<int>

II output an R

static int C<int>::a;
static int C<int>::b;

static double C<double>::a;
static int C<double>::b;

Similarly, each version of a parameterized function has its own copy of static local variables:

template<class T> f() { static T a; static int b; ••• };

Friend Classes

Friend classes can (as usual) be declared as a shorthand for declaring all functions friends:

template<class T> class C {
friend template<class TT> class X;
friend class Y<T>;
friend class Z<int>;

} ;

14 Examples 01 Templates

Here are some more examples of potentially useful templates. Versions of many of the tem
plates used as examples in this paper have been created using macros and actually used in real pro
grams. uFaking" templates using macros have been a major design technique for the template
facilities. In this way the language facilities could be designed in parallel with the key examples
and techniques they were to support.

An associative array:

template<class E, class I> class Map {
II arrays of Es indexed by Is
II
E& operator[] (I);

};

A "record" stream; the usual stream of characters is a special case:

template<class R> class ostream (
II ...
ostream<R>& operator« (R&) ;

} ;

An array for mapping information from files into primary memory:

template<class T, int bsz> class huge (
T in_core_buf[bsz);
I I ...
T& operator[] (int i);
seek(long);
II

A linked list class:

template<class T> class List { .•• };

A queue tail template for sending messages of various types:

1988 USENIX c++ Conference 17

18

template<class T> class mtail public qtail (
I I ...
void send(T arg)
{

II bundle "arg" into a new message buffer
II and put than on the queue

} ;

A counted pointer template (for user-defined automatic memory management):

template<class T> class CP
II ...

pUblic:
CP ();
CP (T);
CP(CP<T>&);
II ...

} ;

15 Conclusions

A general form of parameterized types can be cleanly integrated into C++. It will be easy to
use and easy to document. The implementation can be efficient in both run-time and. space. It can
be implemented portably and efficiently (in terms of compiler and link time) provided some
responsibility for generating the complete set of dermitions of function templates is placed on the
programmer. This implementation can be refined, but probably not without loss of either portabil
ity or efficiency. The required compiler modifications are manageable. In particular, cfront can
be modified to cope with templates. Compatibility with C is maintained.

16 Caveat

The key thing to get right for a C+ + template facility is assuring that basic parameterized
classes are implemented in an easy to use and efficient way for the relatively simple key examples.
The compilation system must be efficient and portable at least for these examples. The most rea
sonable approach to building a template system for C++ would be to achieve this rll'st, make the
inevitable changes in concepts based on that experience, and ,proceed with more advanced features
only as far as they makes sense then.

17 Acknowledgements

Andy Koenig, Jon Shopiro, and Alex Stepanov wrote many template-style macros to help deter
mine what language features was needed to support this style of programming. Jim Coplien, Mar
garet Ellis, Brian Kernighan, and Doug McIlroy supplied many valuable suggestions and questions.

1988 USENIX C-H- Conference

Building Well-Behaved Type Relationships in C++

R. B. Murray

AT&T Bell Laboratories
Warren, New Jersey 07060

1. Introduction

The 0++ programming languagelll allows the designer of a new user-defined type to define the
conversions between that type and another type. When the arguments to a function call,
overloaded operator, or initialization don't match a declaration exactlyJ the compiler can use
these conversions to coerce arguments to make them match. If exactly one declaration can be
matched using conversions, the compiler supplies the conversions automatically; otherwise it is a
compile time error.

These implicit type conversions can make it easier to write more concise code; however, they can
also create problems. The builder of a type structure is walking a thin line between supplying
enough conversions to avoid frequent explicit casts, and supplying so many conversions that
casts have to be added to resolve ambiguities. In addition, the type conversion rules of C++
make it possible for the addition of other declarattons at a later time to break existing code. As
the use of 0++ libraries grows, these interactions between different packages are likely to
become more common.

This paper will begin by reviewing the existing behavior of implicit type conversions in 0++.
We will then will suggest "rules of thumb" for avoiding unwanted interactions, both for the
type designer, and for the type user.

e. Review: type conversions in 0++

In both C and 0++, the compiler understands how to make certain type conversions, and will
quietly insert these conversions into the generated code when appropriate. For example, C and
0++ compilers know how to convert an 1nt into a double; so if a compiler is presented with
the code fragment

double d;
d = 2;

it will quietly convert the 1nt 2 into a double before doing the assignment to d.

In 0++, the designer of a user-defined type can specify conversions between that type and any
other type. This can either be a specification of how to the convert this type into some other
type, or how to convert some other type into this type. Either kind of conversion tells the
compiler how to make one type into another; the difference is in which of the two types involved
knows how to do the conversion.

e.l Oonstructors

Conversion from another type From_type to a new type To_type is specified by supplying a
construttor that takes exactly one argument, either of type From_type or From_typeet:

1988 USENIX Ci+ Conference 19

20

class From type {
II -
};

class To_type {
II ...
public:

To_type();
To type(From type&);

}; - -

To_type: :To_type (From_type& 0)
{

liDo what it takes to make a From_type into this To_type
}

main(){
From_type other_thing;
To_type this_thing;
this_thing = other_thing; IITo_type(From_type&) called

}

e.e Oonversion operators

Conversion to another type To_type from a type From_type is specified by supplying a
member function (called a conversion operator) of the form operator To_type:

. class To_type {
II
};

class From type {
II ... -
public:

operator !o_type();
};

From_type: :operator To_type()
{

liDo what it takes to make this From_type into a To_type
IIThis function returns the new To_type

}

main(){
From_type other_thing;
To_type this_thing;
this_thing = other_thing; IIFrom_type::operator To_type() called

};

e.9 Function matching

The Ot+ compiler will attempt to use implicit type conversions when the arguments supplied to
a function, overloaded operator, or initialization do not match any existing declaration exactly.
(For the remainder of this paper, the term "function" will be used to include overloaded
operators and initializations). The compiler may supply implicit type conversions in order to
coerce one or more of the arguments to the types expected by the function.

1988 USENIX Ci+ Conference

For instance, if the function sqr't expects an argument of type double, but the call passes an
in't, the generated code will include a conversion of the 1n't into a double and pass the
result to sqr't. This is also true in Draft Proposed ANSI 0 121; however, Ot+ extends this
behavior to include user defined types.

The 0++ compiler will only call implicit type conversions if:

• no declaration for the function matches the argument list exactly, and

• there is exactly one such declaration for the function such that each argument either:

- matches the corresponding argument in the function declaration exactly; or

- has exactly one direct conversion that will change the argument into the type specified
by the function declaration.

If there are no function declarations that can be made to match by adding conversions, or there
are two or more, it is a compile time error.

For example:

class Orange {
II
};

class Apple {
II ...
public:

Apple();
Apple(Orange&); Ilconver't Orange to Apple

};

overload cross;
void cross(Orange,Apple);
void cross(Apple,Apple);

main(){
Orange navel;
Apple mcintosh;
cross(navel,mcin'tosh);
cross(mcintosh,mcintosb);
cross(mcintosb,navel);
cross(navel,navel);

}; .

Ilcalls cross(Orange,Apple);
Ilcalls cross(Apple,Apple);
Ilconverts navel and calls cross (Apple, Apple);
Ilerror: two possible conversions

The first two calls to cross match a declaration exactly, so no type conversions are called.
Since the third call does not match any declaration exactly, and there is no way to make an
Apple into an Orange, the third call can only be resolved by converting navel to an Apple
and calling cross (Apple, Apple). The fourth call also does not match any declaration
exactly. The compiler could convert only the second argument (which would match
cross (Orange, Apple) , or it could convert both arguments (which would match
cross (Apple, Apple). Since there is no exact match, and there is not exactly one declaration
that can be made to match by supplying conversions, it is a compile time error.

9. Type conversion pitfalls

Implicit conversions can be convenient. However, if the class designer doesn't put some thought
into their structure, they can cause troubles (in the form of compile-time errors) later. This
section looks at some of the most common problems and describes ways to avoid them.

1988 USENIX C++ Conference 21

9.1 Multiple owner problem

This problem occurs when a conversion from S to T is necessary, and both T:: T (8) (or
T: :T(8&») and 8: : operator T exist. We call this the multiple owner problem because there
are two "owners" for the conversion 8 -to T:

T: :T(S)

8 -;... T

S: :operator TO

(In this picture, each arrow from type 8 to type T indicates that an implicit type conversion
from 8 to T is declared.) It is never correct for both. of these routines to exist.

This problem is minor because it cannot be introduced after the fact, since it requires that each
class involved knows about the other. Normally this is only true when the same set of people is
maintaining both classes, and it is therefore easily fixed by removing one of the conversions.

9.2 Ambiguou8 Type Structure

This error occurs when there is more than one possible set of conversions that will match the
function being called:

class T1;
class T2;

overload func;
void func(T1);
void func(T2);

class 8 {
II ...
public:

operator
operator

};

main() {
8 s;
func(s);

};

T1 () ;
T2();

IIError: two possible conversions
II (8->T1 or 8->T2)

In this case, there is no func (8) , and the type structure of the application allows either of two
conversions to resolve the function call:

T1 T2

22

\/
8

Avoiding the structural problem is harder, because it can be introduced after the fact. The
later addition of a new type can cause existing code that depends on an implicit type conversion
to no longer compile:

1988 USENIX c++ Conference

class Apple {
II ...
public:

Apple(int);
};

void peel(Apple);

main(){
peel(2); Ilcalls peel(Apple(2»;

};

The above code works, but if we later add another class that also defines peel we get a
problem:

class Orange {
II ...
publici

Orange(int);
};

void peel(Orange);

When the new declarations (which are probably buried in a new header file) are added, all the
calls to peel that depend on the implicit conversion 1nt -. Apple will no longer compile.

This problem will become more common in the future . .As software development moves toward
more aggressive reuse of code (as economics dictates that it must)13), the percentage of code in
an application that consists of libraries written by someone other than the application developer
will grow. This both increases the chances of an accidental name collision and reduces the
power of the victim to do anything about it (particularly if the victim does not have access to
the library source). A lot of trouble can be avoided if some thought about type structures goes
into the library design.

4. Rules for de8igning type structures

The structure problem arises when there are two or more conversions from the same type. If we
define the number of types that a type T can be implicitly converted to as the fanout oC T, the
number of opportunities Cor collision from structural problems is O(fanout(T)2) . This is
because a function name collision between any two types in the fanout is a possible structure
error. So our first rule of thumb is:

Minimise the fanout in the type structure.

By avoiding multiple implicit conversions from a given type, the chances that ambiguities will
be created are minimized. This does not mean that it should be impossible for users to convert
a given type to more than one other type; the point is that no more than one of these
conversions should be implicit. Other conversions should be normal member functions. For
example, this type structure has high fanout:

1988 USENIX c++ Conference 23

class Thing {
II ...
public:

operator Another thing();
operator Still another thing();
operator Yet_another_thing();

};

Rather than have implicit conversions to three other types, at most one of the types should be
chosen for implicit conversions. In this case, suppose Another_thing was the most common
of the types involved; we should only supply a conversion operator for Another_thing:

class Thing {
II ...
public:

operator Another_thing();
Still another thing cvt Still another thing();
Yet another thing cvt Yet another thing();

}; - - - - -

Conversions to Still_another_thing and Yet_another_thing will now require an
explicit call to the appropriate member function.

4.1 Simplifying conver8ion8

Implicit type conversions are especially useful when one of the classes is an extension of the
other. This may be an extension oC the domain (e.g. Complex is an extension of double), or
oC the concepts (String is an extension oC char*). In these cases, the implicit conversion
between the two classes should be Crom the extension to the simpler class; we call this a no
value-added conversion.

Why are no-value-added conversions better? In general, there will be more than one extension
Cor a given simpler class. Implicit conversions from the extensions to the simpler class will fan
in to the simpler class, which doesn't cause ambiguities:

T with bell- - T with Whistle- - T_with_widget

T

On the other hand, implicit conversions from the simpler class to the extensions (value-added)
will fan out; there can be an ambiguity as to which extension the simpler type should be
converted to:

T with bell- - T with whistle

24

T

Since the simpler type should not know about the extension, no-value-added conversions will be
',conversion operators (as opposed to constructors). So the rule of thumb is:

1988 USENIX C++- Conference

Conversion operators should provide unique conversions to simpler types (no "value
added").

4.e Mutual conversions are OK

It may not always be obvious when one type is an extension of another. For example, consider
the relationship between a type Rational, which implements rational numbers as the quotient
of a pair of arbitrary precision integers, and the type double. Conceptually, the set of real
numbers represented by double includes all rationals. However, since the implementation of
most doubles is a fixed sized mantissa and a fixed size exponent, the set of data representable
by Rational may in fact include all the data representable by doubler

For situations like this, it is often simplest to use mutual conversions; each type can be
implicitly converted to the other:

Ratlonal::Ratlonal(double)

Ra.tiona.l double

Rat1onal::operator double()

Surprisingly enough, this structure is not necessarily bad. If a function f accepts either a
Rational or a double, any use of Rational or double will match exactly; if the function
only accepts one of these types, the conversion will be called for the other type.

4.9 If in doubt, leave it out

Every automatic type conversion opens up a new opportunity for error, either from multiple
conversions requiring an explicit cast to be added, or (more sinister) from an unintended
conversion causing the wrong function to be called when the right function declaration was
missing. The most important rule of thumb is therefore:

If an implicit conversion is not obviously necessary, leave it out.

5. Implicit conversions in user code

The user of a library needs to be aware that constructors often break the rule that implicit
conversions should be unique, no-value-added conversions. Often, at least one form of the
constructor for an extension will take, as its sole argument, the simpler type:

class T {
II
};

cla.ss T with bell {
II ... - -
public:

T with_bell(T);
};

The constructor T with bell: : T with bell (T) defines an implicit value-added
conversion. The desig~ers of T with -bell may not have intended their users to depend on
this implicit conversion; it may ~mply -;xist because there is no way to specify a constructor of
this form without also declaring an implicit conversion.

This is particularly common with constructors that take built in types. For example, a class
that provides a buffer pool might have an integer parameter to the constructor that specifies an
initial size of the pool:

1988 USENIX c++ Conference 2S

26

class BUffer~pool {
II ...
publiC:

Buffer_pool(int);
};

The fact that this defines an implicit conversion from 1nt to Buffer_pool is just an
accident; users' code should not depend on it. For example, if there is a function

void flush(Buffer_pool);

which fills a BUf f er_pool with available things, users should not call

flush(5);

with the intention of throwing away the next five things. This code depends on the conversion
1nt -+ Buffer_pool to construct a temporary Buffer_pool of size 5, pass it to flush,
and destroy it after the call returns. A compilation error can be introduced by the later
addition of a constructor that takes 1nt as its only argument if there is also a name collision on
flush:

class Toilet {
II ...
pub11c:

To1let(1nt);
};

void flush(To1let);

Now, flushing an 1nt no longer works. The second example in section 3.2, where code
stopped working because an implicit conversion from 1nt to Apple was broken by the
subsequent addition of a conversion from 1nt to Orange, is another example of this. So the
rule of thumb here is:

Avoid the use ot value-added conversions, even it they happen to be available. This
is especially important for conversions from built in types.

5.1 Repairing a broken type 8tructure

H the user of a type gets bitten by a problem in the type structure, there are two ways to repair
the problem in the users' code.

5.1.1 Provide explicit conversions An ambiguity can be resolved by providing an explicit
conversion in each function call:

1988 USENIX C++ Conference

class Orange {
II ...
public:

Orange(int);
};

class Apple {
II ...
public:

Apple(int);
};

overload peel;
void peel(Orange);
void peel(Apple);

ma1nO{
peel(Apple(2»;

};

This has the advantage of making explicit an operation that may not have been obvious
beforehand; but it also may clutter up the code, and can be a big effort. If there are few lot of
calls involved this is probably the simplest and clearest solution.

5.1.e Provide disam6iguators An alternative is to provide a disam6iguator for the function
involved:

1nl1ne void
peel(int i)
{

peel (Apple(1»;
}

Since the disambiguator is 1nl1ne, there is no additional run time cost. This allows a fix to be
made in one place, as opposed to being scattered throughout the code. However, we have added
yet another inline function declarator to our headers. If there are many calls involved this is
probably the easiest solution.

6. An Ezample

As an example, we'll consider a type structure for various kinds of numbers. The types involved
will be:

- 1nt;

- B1g_int, supporting integers of arbitrary length;

- Rational, rational numbers (implemented as a pair of Big_1nts);

- double;

- Complex, a complex number implemented as a pair of doubles.

We'll build this type structure in two steps. The first step is to figure out what conversions
must exist, either because they are implied by constructors, or because they already exist:

1988 USENIX C-H- Conference 27

Rational

B1

g
,\

Complex

int ~ double

int and double are mutually convertible by the rules of C. We clearly need to initialize
Big_int from an int, and it makes sense to initialize Complex from a double.

How do we initialize Rational? This is a little harder. The fact that Rational is
implemented using Big_int is really an implementation detail; you should not require the user
of Rational to know about Big_int in order to use the package. However, we can imagine
that a Rational could be initialized by ints, doubles, or Big ints, and we supply
constructors for this: -

Rational

int "'~E---------

Complex

double

Having understood the conversions th~t exist because of constructors, the second step is to
decide what simplifying (no-value-added) implicit conversions (using conversion operators) we
should supply. We avoid implicit conversions when there are points in the domain that do not
obviously map to the range; e.g. it's not obvious how to convert a Complex to a double when
there is a nonzero imaginary part. However, there is a clear way to convert a Rational to a
double (although we should be aware of possible loss of precision or range errors). So we add
Rational: :operator double to our type structure:

28

Rational

int "'~E---------

Complex

double

1988 USENIX C-++ Conference

We don't add any other downward conversions, since that would increase the fanout from
Rational. The high fanout from int and double is unavoidable (and is characteristic of
built in types).

Suppose we want to convert a Rational to an int or a Big_int? Adding implicit
conversions Crom Rational would increase the Canout; but we can imagine times when these
conversions would be useful. The answer is to provide conversions that are normal member
functions, without defining an implicit conversion:

class Rational {
II ...
public:

Big_int cvt_Big_int();
int cvt_int();

};

these allow users of Rationals to get the Big_int and int equivalents by making an
explicit call.

We've avoided conversions between Complex and int or Big_int because we don't imagine
this conversion happening very often (if it does, perhaps a version of Complex that uses int or
Big_ints would be more appropriate), and can easily be done by converting to or Crom a
double first. Since the conversion is not obviously necessary, we leave it out.

1. Summary

The moral of the story is: use implicit type conversions carefully, and with restraint. Every
implicit type conversion has the potential for causing problems down the line. Think about the
type structure as a whole, and look for ways to avoid fanout. The use of implicit type
conversions from a simpler to a more complex type, even if the conversions are available, should
be avoided; this is especially true if the simpler type is a built in such as int.

As software economics drives us toward more ambitious reuse of code, larger and larger parts of
an application will consist of libraries written by someone other than the developer of the
application. It is the responsibility of the library developer to make sure that the type structure
provided by the library is as simple and small as is practical.

8. Acknowledgments

Helpful comments and suggestions were provided by Martin Carroll, Andrew Koenig, Stan
Lippman, Barbara Moo, Jonathan Shopiro, and Bjarne Stroustrup.

1988 USENIX C-H- Conference 29

30

REFERENOES

1. Stroustrup, B. The 0++ Programming Language, Addison-Wesley, 1986.

2. Draft Proposed American National Standard for Information Systems- Programming
Language 0, 5/13/88 draft, Doc. X3J11/88-090, J. Brodie, chair.

3. Levy, L. Taming the Tiger: Software Engineering and Software Economics, Springer-Verlag
1987.

1988 USENIX C-H- Conference

Porting from Common Lisp with Flavors to C++
Joseph Eccles

AT&T Bell Laboratories (Cap Gemini America)

ABSTRACT

While Lisp workstations provide a wonderfully productive
development environment, they are expensive, often forcing the
choice of another target machine for deployment.· This paper
describes some of the concerns and problems faced when porting a
large (20000 line) system from the Texas Instrument Explorer
workstation to a SUN/3. In each case an object oriented language
was used, Common Lisp with Flavors on the TI and C++ on the SUN.

The emphasis here is on the differences between the two
language systems. This paper addresses the translation of Flavors
into C++ classes, the semantics of Lisp lists, and the mimicing of Lisp
dynamic binding in C++. It deals only briefly with some other
dJ.1ferences, such as multitasking and window systems.

1. Introduction

During the late 1970's and early 1980's researchers at the MIT Laboratory for
Computer Science developed a Lisp based workstation that was later commercially
developed by several companies. The highly integrated and tool rich environment
prOVided by these workstations makes them attractive alternatives as development
environments, especially for prototyping. These systems include capabilities for
incremental compilation or interpretation of code, the intermixing of compiled and
interpreted code, powerful tracing, debugging, and data inspection facilities, and
flexible window systems. With all their advantages, though, the expense of these
machines makes them less than ideal delivery vehicles. In addition, since several
companies are now independently continuing development of the workstations, the
programming environments are diverging, especially in the area of extensions to the
windowing system. These divergences will tend to lock an application into a single
manufacturer's hardware.

On the other hand, UNIX has become a standard software platform for
graphics workstations, and there are several such systems with compu~g power
and bit-mapped graphics capability comparable to the Lisp machines. With the
addition of a portable graphics/windowing enVironment such as the X Window
System and the object oriented capabilities of C++ these are becoming cheaper and
more standardized alternatives.

For these reasons, we have undertaken to convert a large existing application
from the Common LispIF1avors language to C++ running on a UNIX workstation.
The application in question is a graphics based user interface for a network moni
toring and control system, consisting of about 20,000 lines of code running on a
Texas Instruments Explorer II color workstation.

The remainder of this paper will focus on the differences in the two language
enVironments, and the difficulties encountered as a result of these differences.

1988 USENIX C-H- Conference 31

32

2. C++ Replacements for Common Lisp Types

The standard data types of Common Lisp are easily replaced with C++ classes
or basic data types. Simple types such as integers and characters are as easily han
dled by either language. Other important Lisp data types require class extensions
to C++, either from existing class libraries, or specifically constructed to mimic the
Lisp programming environment. Examples of such data types are

• ~gs
• hash-tables

• lists.
2.1 Strings

Common Lisp has a large set of routines available for handling string and
other array like data, and user interface applications are likely use these routines
heavily. C++ can easily provide such functionality by creating a sub-class of an
existing string classl1] with the extra member functions added. Such an approach is
preferable to adding more member functions into an existing class deftnltion, since
the changes are then cleanly layered on top of the public interface of a base class.

2.2 Hash-tables

Within Lisp applications hash tables are commonly used to map properties to
key values. They are important in Common Lisp particularly when the key values
are not integers, or when the key values are sparse. An example of the first case is
the use of string keys, where a hash table will give a great performance advantage
over exhaustive string comparisons. We are currently using a class of hash tables
with string keysl2] to handle such mappings.

2.3 IJsts

While there is existing C++ support for linked list classes[l], these are not con
sistent with the Lisp concept of a list. The biggest diJrerence is that list classes
mentioned above are implemented as doubly linked lists. This makes both nested
lists and shared sub-lists, both of which are commonly used in Lisp programming,
impossible. As a result, we have implemented our own singly-linked list classl3].

The singly-linked class that we created was a list of pointers, which was
necessary because the objects in the lists could potentially belong to more than one
list. Another consequence of this is that destroying a list or removing an element
should not destroy the object being pointed to; it is left to the programmer to
ensure that an object is destroyed before all references to it vanish.

Incorporated into the deftnition of the singly-linked list class are equivalents
of many of the Lisp list functions, such as car, cdr, and so on. As in Lisp, making
a copy of a list creates a new list pointing to the original contents: only the top
level is normally duplicated.

1988 USENIX C-t+ Conference

3. An overview of Common LisplFlavors

Common Lisp/Flavors is an object oriented programming environment built
on top of Common Lisp. In addition to the standard Lisp types, such as integers,
characters, arrays, and lists, the Flavors extension allows for user deftned abstract
data types. Each abstract data type, or flavor has associated with it zero or more
private data members and a public interface consisting of one or more associated
functions, or metlwds. A flavor may be built on top of one or more base flavors,
and will inherit all data members from these flavors.

The interaction of methods in the derived and base classes can be controlled
by the programmer to a large extent. In the default, and most commonly used
scheme, each method is divided into three components, the before method, the
primary method, and the after method. For a method deftned directly for a single
class, the before, primary, and after methods are executed in order. For a derived
class that overrides the base class methods, however, things are more complex, and
the flow of execution proceeds as follows.

• The before method of the derived flavor is called, followed by that of the
parent :flavor if one is deftned, and so on, until all before methods in the
hierarchy have been called.

• Next the primary method for the derived flavor is executed. If none has been
explicitly deftned for this flavor, it will be inherited from the parent flavor.

• Finally, the after methods are executed in the reverse order of the before
methods.

For :flavors derived from several base flavors (multiple inheritance) the
sequence is more complex, but again the primary method will be inherited from the
first base :flavor for which it is defined, unless it redeftned for the derived flavor.
The Flavors system also prOVides other schemes for invoking methods, giving the
programmer control over how inheritance functions. For example, the or combina
tion calls the method for the derived flavor if it exists, then calls the method for
its base flavor only if the first call has returned false, and so on until some method
ftnally returns true or it runs out of base classes. In addition to the standard com
binations, a mechanism is also prOVided to allow the user to specify arbitrary com
binations of inherited methods. While these combinations add to the power of the
language, we found that they were not necessary for our application.

4. Differences between Flavors and C++

This section is not intended to be a complete discussion of C++, but rather a
comparison of C++ with the features of Flavors discussed above. There are several
differences in the semantics of Flavors methods and C++ member functions, but
these have generally not been a problem•

• All methods act like C++ virtual member functions, that is the binding of the
function is done dynamically at run time•

• Flavors allows methods to be broken into before, primary, and after
components, while C++ has no such concept.

1988 USENIX C-t+ Conference 33

34

• When multiple base flavors would create an ambiguity in the definition of an
inherited (primary) method, Flavors resolves the conflict by choosing the
method from the base class that was leXically ftrst in the flavor deftnltion. In
C++ such an ambiguity generates a syntax error at the spot where the refer
ence was used, and all such usages must be explicitly quallfted by the
programmer using the :: scope operator.

• While C++ handles the inheritance of member functions by allowing a class
to inherit an existing function from its parent class or to redefine it, Flavors
has a wide variety of ways in which a class's methods can be combined with
those from its base flavors.

In creating the Lisp version of the user interface, we found that full power of
methods combination in flavors was largely unused. With rare exceptions only the
default daemon combination was used, and the exceptions were invariably tied to
the TI window system and mouse interface, which had to be rewritten in any case.
Few of the methods used had before or after methods, and of these, most fell into
three groups that are easily dealt with.

• :after :init - This is a special method that is called when a flavor is instan
tiated, after storage for the object has been allocated and after variables have
been initialized. This is almost identical with a C++ constructor, except that a
constructor is also responsible for explicitly initializing member variables.

• :before :delete - It is common to deftne cleanup routines that deal explicitly
with a particular flavor within an objects inheritance hierarchy. This is like a
C++ destructor, which is invoked before the space for the object is reclaimed.

• :before :set-variable / :after :set-variable - Methods are often placed around
such variable setting routines to validate the operation or its results, or to do
additional processing implied by the operation, for instance, after setting a
background color, we might want to force a wmdow to redraw itself. The
reason such constructs are common in Flavors, however, it that the set
methods are often automatically generated, and do nothing other than change
the value of a single variable. In C++ such functions are always explicitly
coded, and so it makes more sense to write the entire before/set/after opera-
tion as a single routine. '

In these cases the processing done in the before or after method can be
conveniently incorporated into the body of a C++ member function - into the
constructor, the destructor or another routine.

S. Lisp Control Structures

Some of the control structures provided by Common Lisp proved to be partic
ularly difficult to deal With, because of the basic differences with the C++ language.
Of particular concern were several constructs that were heavily used in the Lisp
implementation of our system, including

• error and condition handling

• UNWIND-PROTECT clauses

1988 USENIX C+t Conference

• dynamic variable scoping and binding (the LEI' clause).

S.1 Error and Condition Handling

The Lisp environment on the MIT derived workstations provides a powerful
error handling facility based on Lisp's non-local branching, or THROW capability,
which is similar to the longjmp() routine in C or C++. Within this scheme an error
type is a Havor derived from the error or terror (fatal error) Havors, which in turn
are derived from the condition Havor. The programmer may declare a handler for
a condition or set of conditions, which is in effect until the flow of control exits the
stack frame in which it is declared. When an error is detected dUring the execution
of a Lisp expression, an object of the appropriate Havor is instantiated, and the
stack is unwound until an appropriate handler is found. The handler may do some
local processing, and then resume execution just after the point where it was
established, or use a non-local branch to unwind the stack further.

The main problem with trying to replicate this scheme in a C++ enVironment
is that C++ does not interact well with the setjmp/longjmp mechanism. While the
use of the stack for automatic variable storage ensures that the memory for local
objects will be reclaimed by a longjmp, it does not allow destructors to be called,
nor does it help for objects dynamically created with the new operator. In a recent
article W. M. Miller has discussed this problem[4], and has proposed a partial solu
tion.

The alternative to such a scheme is to propagate error conditions back from
function calls to a level where they can be intelligently handled. To do this one
must always be able to recognize an error value returned from any function. This
can be done, but it is cumbersome and is a potential source of errors, and requires a
reorganization of the code from that of the original Lisp program.

There are several problems With the approach described by Miller.

• Since destructors can not be directly called by the programmer, all destruc
tors must simply call the virtual function cleanup that does the real work.
This means that it is impossible to handle eXisting class libraries without
modifying them. For example, the Strings class could not be used without
changing its source.

• The constructor must be able to distinguish between automatic and dynamic
objects, so that the destructor will know when the space is not on the stack,
and so must be freed.

• The cleanup mechanism should probably not delete objects that were created
dynamically. This can be left to the programmer, with the aid of the protect
facility described in the next section.

To avoid these problems a class Clean was created as an alternative to Miller's
cleanup_obj. It maintains a stack of objects to be cleaned up, but rather than act
ing as a base class for other objects, each Clean object keeps a pointer of type Base,
which has a Virtual destructor. The only function of Base it to allow delete to
function on the pointer in the Clean object. The constructor for Clean accepts one
argument of type Base*. Thus when an objects are discarded from the stack, the

1988 USENIX C-++ Conference 35

}:

36

objects pointed to are deleted, and the proper destructors are called. The destruc
tor for Clean will also delete the object.

Objects of class Clean should always be automatic, since they do not know
how to release their own storage. The objects to be cleaned are always created
dynamically, but should not be deleted explicitly. They will be deleted when the
clean object goes out of scope. It is up to the programmer to decide which objects
should be cleaned up. Hopefully in the future error handling will be more com
pletely integrated in with the C++ language.

5.2 UNWIND-PROTECT

The UNWIND-PROTErT mechanism is Widely used in Common Lisp to han
dle cleanup of the running environment, especially in handling error conditions.
When execution :flow exits the scope of the UNWIND-PROTECf, a list of user
supplied expressiOns are guaranteed to be executed, whether the exit is normal or
by way of a non-local branch, including when a condition handler is invoked.

Protect is a simple class that prOVides a part of the UNWIND-PROTECf
functionality. Its only public interface is through a constructor and a destructor,
and thus the only legal operation is initialization. The class defmltion is

class protect {
void (*function)(void *[D:
void **params:

public:
protect(void (*f) (void *[D. void *p[j)

{function =f: params =p:
protectO { (*function)(params); }

The destructor for this class calls a user supplied routine with a user supplied
argument when the scope of the variable is exited. A simplifted example of using
class protect follows.

1988 USENIX C-f+ Conference

}:

#include <iostream.h>
#include "protect.h"

char *pll ={
"The second parameter is the integer %d
(char *)5

/ / This program will declare a protect handler within a block.
/ / and then exit the block. This will cause the handler to
/ / execute.
mainO
{

{
protect(doprotect. p):
cout < < "Ready to exit inner block :

}
cout < < "Done :

}

void
protect(void *args[])
{

char buf[80]:

sprintf(buf. (char *)args[O]. args[1]):
cout « buf:

}

This is of course overly simplified since in the absence of non-local jumps such
cleanup could be handled much more directly. Obviously this mechanism is only
useful with the condition handling mechanism described above or a similar one in
place, since if the normallongjmp is used the destructor will never be called. The
example above shows how the class would generally be used, that is, for
anonymous declarations. This is possible since the object created will never be
referenced by the programmer, and since keeping a temporary variable around to
reference it would simply clutter the program and make it less readable. There
would also never be a reason to allocate such objects dynamically using the new
and delete operators, since the power of the construct lies in the automatic call of
the destructor.

There are some deftciencies with this scheme when compared with the Lisp
UNWIND-PROTEcr mechanism. While UNWIND-PROTEcr can execute an
arbitrary collection of Lisp expressions with access to all the variables within the
scope of its deftnition, the protect class executes a function with access to only
those variables in its argument array or those that are global.

1988 USENIX c++ Conference 37

38

5.3 Dynamic Binding - LET

The most profound way in which Lisp differs from C or C++ is in its han
dling of variable binding. In Lisp a symbol is treated as a run-time object that can
be manipulated, while for most other compiled language symbols are replaced in
the execution environment With constant addresses. Thus for C++ it is not possible
to change the binding of a symbol, that is, to cause a symbol to reference a
different address. In Lisp code a symbol is in effect accessed by name, and its
contents are accessed by evaluating it. The LEI' statement in Lisp allows the
programmer to create a new value binding by placing a new symbol with the same
name on the run-time stack, masking the original definition. The new binding is in
effect until control exits from the level at which the new binding was made, and
the stack is unwound.

Dynamic bindings are often used in Lisp for much the same purposes as
pointers are used in C or C++, and the use of symbol bindings tends to make
pointer (or LOCF) references rare in Lisp programs.

Other uses of LET are harder to deal With, though. Lisp supports sroping of
variables dynamically as well as leXically. That is, while C or C++ define the
scope of a variable to be the block in which it was defined, and all nested blocks
within that block lexically (as read), a dynamically scoped, or special Lisp variable
may be accessed by any code that runs while the symbol is on the stack. In a
single-tasking environment this is eqUivalent to temporarily changing the value of
a global variable, although the "global" variable may not be accessible to all parts
of the program. In a multitasking system the effect is like haVing a separate set of
global variables for any execution stack that declares one.

Frequently the programmer will use this to avoid passing extra arguments to
functions. For example, when a task is associated with a particular Window, that
Window is bound to the symbol*standard-output*, which is the default target for
the common output routines. Often such a usage can be eliminated by replacing
ordinary function definitions with method or member function definitions for an
appropriate class.

It would certainly be possible to create a replacement for Lisp dynamic bind
ing in a C++ environment - for instance using a symbol class with the appropriate
properties - it is not clear that the gains would be sufficient to justify the added
complexity.

6. Other Problems

There are two additional sets of differences that had to be dealt with in the
process of accomplishing this port. The first is multitasking, which was exten
sively used in the Lisp version, and the second is the programming interface to the
window system. These two areas are strongly interconnected.

1988 USENIX C-++ Conference

6.1 Window System

For a user interface the window system is a primary concern, since it
provides all interaction with the user - both output and input. Unfortunately,
window systems also tend to be the least portable part of the environment for any
program that uses one. While this is starting to change with the development of
standards such as XII, the window system dependent code is still hardest part to
move from one target environment to another. XII is the target Window system
for this application, in part because of its growing status as an industry standard.

The window system prOVided by the Lisp machine environment is tightly
integrated with the operating system and all standard applications. It is built on
top of Flavors, with each type of window defined as a flavor, and options, such as
title bars and scrolling, defined as a mix-in flavor which can be added to another
window type. The set of predefined flavors is rich, and user defined Window types
are most often just trivial combinations of these.

Compared with this, XII is poor in features, prOViding just the basic support
for manipulation of simple Windows. To use XII effectively it is necessary to have
additional layers of functionality built on top as a toolkit. Unfortunately the Xt
toolkit prOVided with XII has several problems. It is cumbersome to extend and
use, largely because it tries to prOVide an object oriented interface using C. This
results in code that is difficult to read and debug.

6.2 Multitasking

A multiwindow user interface requires something akin to multitasking opera
tion, since there are multiple input sources, each of which can independently
require processing. In the Lisp machine enVironment it is common to prOVide a
separate running process for each window displayed, so that operations in one win
dow won't interfere with the functioning of other Windows. However, the Lisp
concept of a process is different from the UNIX one. A Lisp process is lightweight,
that is it shares a global address space with all other processes, and maintains a
separate stack for local variables. In the UNIX case, processes have completely
separate address spaces, and communication between processes occurs only through
well defined facilities, such as shared memory and message queues.

The task library for C++ by J. E. Shopiro£5] prOVides the capability to create
multiple tasks, or execution control threads, within a single UNIX' process.
Unfortunately, the real time task system did not interact well with XII, and was
abandoned.

While multitasking seems like a natural approach to handling multiple
sources of input, it Is not really necessary for the implementation of a multiwin
dow user interface. In an event driven system like XII, handling routines can be
called to process each event as it is detected. As long as no handler retains control
for to long a period of time the effect is like multitasking. It Is only necessary then
to allow the reading of other input sources, such as IPC messages from other
processes, to be intermixed with Window events. This approach Is now being
investigated.

1988 USENIX C+r Conference 39

40

7. Summary

To date the port of the Lisp version of the user interface is currently about 30
percent complete. Those parts dealing with the creation and initialization of the
major internal data structure - a directed graph[6] - and those for the parsing and
execution of keyboard commands have been recoded in C++. If we ignore the extra
C++ support needed to define Lisp lists, and so on, there seems to be little
difference in source code size for the two versions. The most troublesome part
remaining is the interface to XII.

1988 USENIX C++- Conference

Prototyping database applications with a hybrid of C++ and 4GL.

Ronan Stokes

Glockenspiel Ltd.
19, Belvedere Place
Dublin 1, Ireland

Phone 353-1-364515
Fax 353-1-365238

ronan@puschi.uucp
..!mevox!iclitc!puschi!ronan

Abstract

There are many 4GLs on the market which allow interfacing with C in order to provide added
functionality. Thispaperdescribes the author's experiences in developing a prototype for a shift
management and time recording system (STMS), which has been completed and delivered,
using the combination of C++ and a 4GL (in this case Seachange). The paper describes the
use ofclasses and inheritance to absb'act the functionality provided by the 4GL. The frrst part
of this paper illusttates how the hybrid of c++ and a 4GL allows development of the fmal
product by a system of incremental replacement. Incremental replacement is a systematic
method of re-implementing the absttact classes which interface with the 4GL features, in C++
in order to remove dependencies on the 4GL. This allows the development of a final C++
product as a further development of the prototype rather than a lengthy rewrite. The next part
of the paper describes the use of the concepts of services, sets, inheritance, interaction objects
and interface classes to produce an abstraction of the 4GL. This section is illusttated with
examples from the shift management system. The fmal part of the paper briefly discusses the
perfonnance constraints giving some metrics of using C++ with a 4GL.

1. INTRODUcrION

This paper is based on the prototype development of a rota management system STMS.
STMS is a shift and time management system for use in a hospital working environment.
The system is used for keeping employee information, planning and scheduling work
rotas and also for daily updates of infonnation such as absences, changes to shifts,
overtime and pay calculation by way of data transfer to other systems. The target hospital
environments are characterized by large numbers of employees with differing jobs,
working schedules and in many cases, employees work in more than one department during
a single day. In addition to this several working weeks were in operation for the hospitals
concerned - Five and a half day week, six day week and five day week.

1988 USENIX C++ Conference 41

42

Several constraints were to be taken into account when choosing the means of
development for the prototype.

:> The prototype was to be completed and delivered in two months. This meant
that development time was of prime importance.

:> Also due to time constraints it would not be possible to produce a 'throw-away'
prototype - a prototype with the look and feel of the end product but which would
be re-coded for speed and space optimization.

:> Secondly it should be possible to extend the system to work with various windows
packages and other user oriented interfaces. It should also be possible to
reimplement sections and add extra functionality without requiring changes to
existing functionality.

:> Finally certain implementation restrictions were applied. It should be portable
among the range of machines used in the hospitals - mainly pc's running Dos or
Unix.

Due to these restrictions and others to be described later a hybrid of C++ and a Fourth
Generation Language (or 4GL), in this case Seachange from Thomson Computers of
England, were chosen as the means of development for this prototype.

In the next section I will discuss· the merits and demerits of using 4GLs and C++.

2. PROTOTYPING WITH 4GLS.

There are no standard defmitions for the various generations of languages,
however here is a simple explanation. .

Martin [1] defines a Fourth Generation Language Qr 4GL as a non-procedural end-user
oriented language. Programming is achieved by specifying the solution directly rather than
as a set of functions or procedures giving an algorithm to fmd the solution. (For a good
overview and comparison of 4GL's see ref. [2]). The kno,!\,ledge required to find a
solution is built into the 4GLitself and the effectiveness of this solution relies on the scope
and efficiency of the 4GL's set of predefined functions, which tend to be directed toward
a narrow range of problems. This form of programming was intended to give the power of
a conventional language to non technical computer end-users allowing applications to be
produced in fractions of the development time required by conventional languages.

4GL systems currently in commercial use tend to be a set oftools comprising a database
management system, screen and report generators and some limited form of procedural
language allowing procedures to be composed from the 4GL's set of functions.

4GL's· usually allow some fonn of interactive task specification in addition to
programming through the language supplied. Common examples of 4GL systems
include dBase, Focus, Oracle, Ramis IT and Seachange.

The main advantages of using a 4GL are speed ofdevelopment time and small learning
curves. Interactive generators allow the building of the overall structure of the application
and its associated data representation in a matter ofhours. The development time advantage
however, quickly deteriorates as the programmer desires to achieve some effect outside of
the range of the 4GL.

1988 USENIX C-t+ Conference

Other inherent disadvantages include :-

:> Royalties and runtime license costs. Unlike conventional languages it is
customary to for developers intending to market the application to have to pay a
run time license fee to the 4GL distributor for each copy sold.

:> Runtime Limitations. Applications produced by 4GL's are generally a lot slower
than those produced from conventional languages.[2] Other runtime limitations are
enforced by the 4GL system itself - the use of certain keys in the application,
the enforcement of certain screen styles and in some cases (dBase & Seachange)
only records from one file may be displayed on the screen at time.

:> Language constraints. The 4GL systems supplied, due to their market, tend to be
intuitive rather than concise, rigorously defined languages. Procedural
components are often lacking in functionality or resort to old structure forms
(such as single line conditional branches etc.) As the language is often proprietary
to the company developing it, 4GL's don't have the advantages of conventional
languages with their larger user bases, independent research and conferences,
and the competitive multi-company language development. This reason also
contributes to the perfonnance failings of4GL's. With a lower user base, there is less
incentive to provide complex optimisations in the application generators provided
with these packages.

:> A major problem for developers is that of disposable prototypes. For
commercial or performance reasons, software developers may wish to develop
their final product in a general purpose programming language such as C or C++.
There are two common approaches to this task. One alternative is to convert the
4GL application to the target language using one of the 4GL converter products
available such as the 4GL to C converters. However the source code produced by
these is not easily maintained.
The other approach is to rewrite the system from scratch with the prototype being
used solely as a guide to the appearance of the fmal product. This approach is
wasteful of the time spent developing the original prototype.

In order to resolve some of these problems, many 4GL's allow interfacing with a
conventional language such as C. Seachange is one such 4GL and this was a major
consideration for its choice. .

3. PROTOTYPING WITH C++

Object-oriented programming in general, and C++ in particular has many features
which hasten the development time of large systems. Data hiding, data abstraction and
inheritance allow a modular implementation and a close mapping of design to
implementation. Using the data abstraction features allows rewriting and extension of
features without a rippling of the changes required throughout the system. C++ in
particular has the advantage of combining the philosophy ofobject-oriented programming
with speed and space efficient executables. The advantages of using C++ are obvious to
proponents of Object-Oriented programming.

1988 USENIX c++ Conference 43

44

However development time for C++ systems, although fast, is of several orders of
magnitude greater than that using a 4GL.

4. PROTOTYPING WITH AHYBRID OF C++ AND 4GL.

Using a hybrid of C++ and a 4GL provides a compromise which removes many of
the problems associated with prototyping solely by 4GL's or C++. By combining the
speed of development of a 4GL and the object-oriented features of C++, a prototyping
system is obtained which produces easily maintained and extended prototypes. The
modularity and maintainability of C++ allows the production of an easily maintained
and extended system. Production of a prototype can be tailored to available time and
functional requirements. Time critical or frequently used portions of the application may
be coded in C++ for efficiency, while large portions of the application may be developed
speedily through the use of screen generators etc.

One may argue that interfacing a language such as C to a 4GL would produce the
same effect. However the concepts of object-oriented programming allow the production
of a system which is independent of the quirks of the particular 4GL.

By using data abstraction and inheritance, it is possible to design a set of interface
classes which abstract the dependencies on the 4GL. Each service required from the 4GL
is interfaced to C++ by a clearly defined class (or class hierarchy) representing the service.
All dependencies on the 4GL are hidden in these interface classes, and subsequent changes
require only the modification of these classes. All further usage of a 4GL feature is provided
by the associated interface classes. Specialized handling of particular files and other
application objects can be provided by inheritance from these classes.

This system of interfacing allows the extension or re-implementation of the
application by incremental replacement. Any particular service can be re-implemented or
extended in isolation without affecting the overall product. Services can be reRlaced on
a service by service basis eventually ,if so desired, leading to a production version system
implemented totally in C++. In particular each change may be made while maintaining an
up to date working product. Other possibilities are adding on different types of user
interface (such as windows packages), natural language interfaces or replacing fue
systems or structure.

This system of incremental replacement ensures that prototypes can be developed
as a working starting point for the final product rather than as an initial disposable
imitation.

5. STMS DEVELOPMENT

STMS was implemented using the hybrid scheme described above. In order to
explain how Seachange interfaces to C++ it is necessary to understand the organization of
this4GL.

5.1 Seachange organisation.
Seachange, following the typical organization for 4GL's, provides a set of tools in

an integrated environment. These tools consist of a database generator, screen generator,
menu generator and report generator with a Quick C style environment surrounding this.
Each of the components for an application may be specified through interactive sessions
with Seachange which in turn generates 4GL language files and compiles them, or by
writing the 4GL language fues directly. These fues include ways of specifying fields in

1988 USENIX c++ Conference

records, options available in fonns, actions to be taken on certain menu options being
chosen, and screen layout. In addition to these components 'trigger' flies may be
specified - flies of actions to be taken upon certain events happening. An example follows
overleaf.

when removing with employee.s

remove from absencesJ index absence_key =
absence_key: employee_number

remove from hoursJ index hOUlS_key =
hours_key: employee_number

adjust
display "Removing cross references"

This set of actions causes the records of a particular employee for attendance hours
and absences to be removed from their associated file whenever the employee is removed
from the database.

At certain points C functions may be called from within Seachange either directly,
as in menu options or fonn options, or indirectly - by way of triggers, upon moving
fonn one field to another or as a set of actions to call when starting or fmishing a fonn
or menu. Within the C program the current menu, form, records etc. may be
interrogated or modified through a set of C libraries provided with Seachange.

From the C or C++ end functions are called by way sending a message to a message
handler associated with the given fonn or menu. The message, organized as three null
terminated strings is dispatched to the associated handler with the strings representing
the name of the fonn or menu, the name of the function to call and a single string as a
parameter to the function. From the C++ or C programmers point of view, this is quite
similar to message handling in MS-Wmdows.

From the C end it is also possible to modify a function table which contains pointers
to functions for the standard operations - validation of data types in fields, adding a record
etc.

5.2 Interface Classes.
The C++ interface to Seachange was organized as a system of several fundamental

services, each being represented as an inteIface class hierarchy. These services represented
as a file interface, a database interface, a screen interface (at low level - e.g. fonts, boxes
etc.), a fonn interface and menu and trigger inteIfaces. The database inteIface, as distinct
from the file service provides· means to locate global Seachange variables, to which flie
a certain key refers and other non-file specific actions and operations. All interface
classes use constructors and destructors where necessary. This avoids the need to call
any library functions directly for cleanup or initialization. The following example is
taken from the menu service.

1988 USENIX C-++ Conference 45

class menu {
char name[13];
int is_loaded;
DB_VALUE (*old_dispateher)(char*,char*,char*);

public:
menu(char *); /I Create menu from menu file.
-menuO;
voidrunO;
void set_dispateher(auto DB_VALUE (*)(char*,char*,char*»;
void restore_dispateherQ;
};

StartUp()
(
menu main_menu("title"); /I Load top level menu

46

main_menu.secdispateher(main-processing);
main_menu.ronO; /I Run menu
}

This simple service provides all menu handling required by applications. The menu
is created using the 4GL menu file, the dispatcher is set up and the menu is run. By
re- implementing the menu constructor it would be possible to replace the user input with
a windowing system or a natural language interface without requiring changes to the rest
of the program.

In another example, this time taken from the fonn service, it is possible to see the role
of inheritance in interface classes. Note: types prefixed with the letters "SC" refer to
Seachange underlying types.

class fonn (
protected:

stnlct SCF_subfonn fdef;
Stnlct SCF_functions *tIns;
stnlct SCF_footnote *fft;

public:
fonn(char *t dispatch_fn.j)tr);
fonnO; /I Current fonn being run
-fonnO;
void seCnnfn(remove_fn..,ptr);
char *nmO; 1/ Run fonn

};

1988 USENIX C-H- Conference

1/ Inside the menu dispatcher

if (sttemp(menu_message,"run_fonn") = 0)
(
fonn frm(param,fonn~essing);

frm.secnnfn(delete_func);
frm.runO;
return;

In this example all Seachange constructs are hidden within the private and protected
parts of the class. Two constructors are provided :- the fIrst constructor supplying the
pointer to the dispatcher function and a string representing the environment in which
the form is to be run, which is subsequently parsed by the fonn constructor. (This is
necessary as Seachange only allows one parameter to be passed through the dispatcher.)
The second constructor, when called within the dispatcher environment, gives a object
representing the current form. A more specialized form is derived from this providing one
constructor, only for use as within the dispatched environment. This autosrc_form forces
the form, upon startup to locate all the records in the associated file and display the fIrSt
one.

class autosrc_fonn : fonn (

public:

1/ Inside the fonn dispatcher

if (sb'Cmp(fonn_message,"automatic_search") = 0)
(
autosrc_fonn cr_fonn;
retW'D 1;

5.3 Interaction objects
In many cases communication between distinct interface classes of a given· service,

that is interface classes belonging to the sane service which are not derived from a common
base class, takes place through the use of interaction objects based on underlying
Seachange types.

1988 USENIX c++ Conference 47

48

What are interaction objects?

It is often desirable for two or more classes to communicate some of their private
information. This can be achieved by making one class a friend of another or by providing
member access functions for one or more of the classes. However under either of these
two methods, the consumer of the information must know about all the types which
will communicate with it. An alternative to this is to allow the creation and consumption
of interaction objects. One class produces an object for consumption by another class as
a means to communicate information. The objects themselves have no functionality
except to serve as packets for information passing. The scheme basically goes as follows:-

> Object Producer knows how to produce objects of type I.

> Object Consumer uses objects of type I to produce some service.

> Therefore any new class introduced to the system can use Consumer's services by
providing objects of type I.

In the case of STMS these interaction objects can be provided by some of
Seachange's underlying types. Some of the underlYing types provide ready-made
interaction objects which are created and returned by the 4GL C interface functions (
and hence available to the interface classes). As long as the restriction that only the interface
classes manipulate these objects is applied, system flexibility is maintained.

The following examples are taken from the file service which consists of a record, flle
and index classes. In each case the interaction objects SC_record and SC_flle are passed
as pointers. Each class can be constructed from the appropriate interaction object and may
also be cast to the interaction object.

class record
(
protected:
SC_record *rec-Pb';
short create_flag;
public:
record(SC_file*);
record(SCJeCOrd *);
-recordO;
void secfield(int t long); /I Overloaded functions
void secfield(int t double); /I To set field values
void secfield(int t char*);

void get_field(mt t 100g&); /I Overloaded functions
void get_field(int t double&); /I To get field values
void get_field(int t char*);

operator SC_record*O (return rec-ptr;)
);

1988 USENIX C-f+ Conference

A record may be con"structed from the underlying Seachange types SC_record, or
SC_ftIe, and may be cast to a SC_record*. Constructing a record from a
(SC_record*) creates an object representing the database record and allows easy access
through the set_field and get_field functions. Creating a record with an SC_flie* creates
a record (and allocates space for it) compatible with the flie or index which generates the
SC_ftIe*.

class file
(
protected:

struet SC_file * fde-ptr;
int reference_count; /I Number of references to this fde
int *reference_addr;
fde(fde &); /I create a reference to existing file
SCreckey this_key;
public:

fde(SC_fIle *);
flle(char * ,iomode);
-fileO;
opemtor SC_fIle*O;
);

In the case of ftIes, a file can be constructed from the interaction object SC_file, or
by specifying the ftIename and mode of i/o. A third constructor is provided for use by
objects derived from file.

An index is considered to be a file with a particular index. This index corresponds to
searching a file in a given order based on some key. A file object may have several indexes,
hence the need for reference counting within the file object

Each of these objects can be constructed from a SC_file*, or cast to a SC_file*.

class index: public flle
(
SC_scanstate *scst;
SC_index *inx;

public:
record kval; /I record for key value

,. index(file& rtfJnt inxno = 0);

index(char* nm,iomode iom,int inxno =0);
index(SC_file * fI, int inxno = 0);

-indexO;
int fmd(FINDCOND); /I fmds record for reading,updating etc.
int flfStteeO;
int nextteeQ; /I failure returns zero

operator SC_fde*O (return file-ptr;)
);

1988 USENIX C++ Conference 49

50

In these cases interaction objects narrows the dependencies between the interface
classes of a service. Construction of files, indexes and records takes place on the basis of
a subset of the available information. In addition to t:'is messages received and returned
by the dispatchers are passed in the form of these interacl ion objects. This allows for a more
efficient solution for the application. le. files, indexes and records only need to be
created if the information and services given by the interface class are to be used. In all
other cases the smaller interaction object pointer is pa ~sed around.

5.4. Sets.
The concept of sets allows collections of anonymJUS objects to be manipulated, either

individually or as a collection.
In STMS a variant on sets is used to manipulat·~ a group of records retrieved from

searching an index, entry into a form or querying a form. Sets of records can be opened
for navigation, application of functions to the current item or all items, and for inspection.
In STMS an initial action is supplied to the working set indicating whether the current set
is to be used, discarded or a copy of the current set is to be used. The set may be extended
or reduced by addition or deletion of keys to the respective records.

A function can be applied to the current object with a "vararg" style parameter list.
This parameter list is a list of arguments which are passed to every invocation of the
function on a set object. The return value from this function is dictates the movement
within the set - whether the next invocation of the function is applied to the next, previous,
fIrst or last item. If the movement cannot be achieved or a SET_QUIT message is
passed back, the collective processing finishes.

class workinLset (

public:
workinLset(wks_init wid); /I Initial action
-workinLsetO;
void to_aIl(auto secmove (*f)(fonn&,record&,SCreckey*,PRMLIST),);
void exec(auto set_move (*f)(fonn&,record&,SCreck~y* ,PRMLIST),);
/I Insertion and deletion
void amCall(index&); /I Add all keys retrieved by a index
void add(SCreckey& rk);

voiddelO;
/I Current status
void currencrecord(record&);

/I Navigation
int farstO;
int IastO;

);

1988 USENIX C-t+ Conference

For example displaying all records in the set in sequence on a form could be
accomplished as follows.

show_item(form& cr_form, record& ree, SCreekey *key-ptr)
(

cr_fonn.show(tee);

form currencform;
womnLset wk;

wk.to_all(show_item);
)

In producing a prototype for STMS other C++ features such as references and function
and operator overloading also proved to be of value, resulting in a neater product.

6. PERFORMANCE CONSTRAINTS AND METRICS
The hybrid of C++ and 4GL proved to be effective for prototyping this type of ,

application. The resulting design is maintainable, flexible and extendible. The following are
a few points worth mentioning.

» Code size. The sources ran to 90K ofC++ and 88K of 4GL script for the completed
application.

» Development time. The project was completed and delivered with two person
months, with no overrun.

» Learning curve. The learning curve from scratch for the 4GL and its C interface ran
to about one week.

» Performance. The gatn In perfonnance was slight in many cases. This is
attributable to two things. Firstly the interface classes all eventually use 4GL
features resulting in the overall system being constrained by the 4GL
performance. Secondly the application itself is mainly i/o bound both in terms of
disk manipulation and user i/o.

» Extensibility. In several cases, fonns andreports were re-implemented in C++. These
cases proved to be speedy to re-implement (several hours) and gave large
performance gains in the respective cases.

7. CONCLUSIONS
This project was by no means perfect. Several areas could be improved. One particular

area is sets. These are currently restricted to Fonn environments, however by generalising

1988 USENIX C-H- Conference 51

the concept of sets, a further data abstraction could be provided for filing systems etc.
However these misgivings aside, I believe this strategy provides a speedy, efficient means
for providing extensible, flexible prototypes.

It is worth noting that it proved to be quite trivial to interface C++ to systems designed
for C. By implementing all package dependencies through interface classes, all further
coding was achieved in C++ with no dependencies on outside libraries and packages.

Finally experiences showed that C++ with its rich set ofconstructs is as much at home
producing applications which were fonnerly the domain of languages such as COBOL, as
it is for producing systems software. This hybrid development provides a useful
compromise between using application generators for prototyping and prototyping in a
conventional language.

8. REFERENCES

52

[1]

[2]

[3]

[4]

[5]

J.Martin, "Fourth-Generation Languages", Vol. 1, Prentice Hall.

S.K.Misra and P.J.Jalics, "Third-Generation versus Fourth-Generation Software
Development". IEEE Software July 1988.

John Carolan, "Object oriented Design and C++ syntax", UNIX Forum ill, Vienna,
October 1987.

John Carolan, "Techniques for Object-Oriented Design applied to Windows and
OS/2 applications in C++", Boston Computer Society seminar, June 29, 1987.

William E. Hopkins, "Experience in Using C++ for Software System
Development", USENIX proceedings and additional papers, C++ Workshop,
Sante Fe, June 1987.

1988 USENIX C-++ Conference

Open Dialogue:
Using an Extensible Retained Object Workspace to Support a UIMS

Andrew Schulert and Kate Erf
Apollo Computer Inc. l

Introduction
Open Dialogue (TM) is a User Interface Management System (UIMS) written in C++. In general, its
object-oriented design maps well onto the features of its implementation language. However, the goals
of Open Dialogue required us to inttoduce features outside of the language that would more nanmilly
have been incorporated into the language. The most significant of these were the ability to save and
restore a collection of objects (retained object workspace) and the ability for application developers to
add behavior to objects without recompiling existing binaries (extensibility). This paper discusses the
goals of Open Dialogue, explains the difficulties in realizing these goals, and describes how they were
addressed in the design. It concludes with a summary of possible implications for C++.

Open Dialogue Overview

Open Dialogue is based on a previous product, Domain/Dialogue (TM), that is written in Pascal, and
runs only on Apollo systems [7]. The two primary of goals of Open Dialogue above and beyond
Domain/Dialogue were that it be portable and that it be extensible. We considered C as an implemen
tation language because of the need for portability. However, C was not adequate. Both
Domain/Dialogue and Open Dialogue have an object-oriented design. We were able to maintain that
design when implementing Domain/Dialogue, but only because there was a small group of developers,
all of whom understood the conventions to be followed. This was not the case with Open Dialogue,
since customers had to be able to extend it themselves. We chose C++ as an implementation language
because of the additional support it provided for object-oriented programming.

A user interface management system allows a user interface to be described separately from its associ
ated application. Encapsulating the interaction between the user and the application in the UIMS has
several advantages as follows:

o It is possible to provide tools for defining the user interface that are more appropriate than
conventional programming languages.

o It is possible to define multiple interfaces to a single application.

I Andrew Sc:hulcrt is now at On Technology. Inc.

1988 USENIX C-H- Conference 53

o Rapid prototyping is encouraged by allowing the user interface to be changed without
affecting the application.

Other advantages of this approach and issues related to it are given in other papers [5,9].

Open Dialogue allows a user interface to be described declaratively, as a set of interrelated objects that
cooperate to interact with the user, transfonn the data passing between the user and application, and
coordinate the sharing of control with the application. Developing an application with Open Dialogue
involves following a sequence of steps to design, implement and refine the interface. We will illustrate
this process with a simple example called "square.n

The first step in creating the interface is to detennine how it will look and behave. Square displays a
field into which the user can enter a number, an area called a label where the square of the number is
displayed, and a button that can be selected to exit the application. Figure 1 shows this interface.

field

label

button

4.3

118.490000

EXIT

54

Figure 1. SQUARE·· A Program for Computing Squares.

The second step is to define the set of objects that are needed to support this interface. It is useful to
divide Open Dialogue objects into three categories. Interaction objects interact with the user to
acquire commands and data, and to display results. The interaction objects in square are the field into
which the user types, the label that displays the result, and the exit button. Application objects manage
the passing of conttol and data between Open Dialogue and the application. Square has two applica·
tion objects: one of these objects calls an application subroutine to compute the square of a number.
and the other returns to the application when the user wishes to exit from iL Finallyt it is often the case
that the form of data that is most convenient for the user is not the form that is most convenient for the
application. Transformation objects transform data from a type convenient for the user to a type more

1988 USENIX c++ Conference

suited for the application. In the case of square, the user enters and expects to see strings, but the
application expects floating point numbers. There are two transformation objects to convert the data
appropriately-- one to convert a string to a double and one to convert a double to a string.

Each Open Dialogue object takes a set of input values and provides a set of output values. An inter
face is constructed by connecting appropriate input and output values. Figure 2 shows a schematic of
the set of objects used ill the interface for square.

XII Application

Interaction
Objects

Transformer
Objects

Application
Objects

Figure 2. Schematic Representation of Square.

Figure 3 shows the development environment provided by Open Dialogue. This figure is drawn
to show the similarity between Open Dialogue and the model given by Tanner and Buxton [9].

1988 USENIX C-++ Conference 55

Application
specific

Primitives

Interface
Specification

Primitive
Library

Pre-processor

Compiled
Interface

Specification

RunTime

56

Figure 3. Development Environment Provided by Open Dialogue.

Open Dialogue comes with a standard set of primitives (primitive library) implemented as C++
classes. The user interface designer describes the primitives needed for a specific interface in a textual
interface specification. This is compiled by the Open Dialogue parser into a compiled interface
specification. At ron time the application uses the run-time library to display and manage the user
interface.

The set of primitives provided by Open Dialogue may not be sufficient for all applications. For exam
ple, in square the application writer might prefer an alternate way of having the user enter a number,
such as a graphical dial. The application could achieve this by calling X library routines directly, but
that would preclude the advantages of a UIMS. Consequently Open Dialogue allows customers to
extend the standard set of primitives by creating new classes. So, for instance, a dial primitive can be
added by the developer and used not only in square, but also in other interfaces.

1988 USENIX C,* Conference

In addition to defining new classes it may be desirable in some cases to implement new behavior for
existing graphic object classes. For instance, Open Dialogue graphic objects, such as menus and fields,
have member functions that return the amount of screen space they would like. However, they cannot
request that the space be in a particular aspect ratio. One could imagine adding a new layout manager
that took aspect ratio into accounL In addition to adding the new layout manager class, one would also
like to implement a default implementation of the aspect ratio member function for all existing classes.

A second type of extensibility within Open Dialogue is the ability to add new interface definition tools.
One can imagine many alternatives to the parser for defining interfaces. For this reason, Open Dialo
gue allows the consbUction of new tools that can either generate new or modify existing compiled
interface definitions. One possibility is a schematic editor that displays an interface in a fonn similar to
Figure 2 and allows the user to establish connections visually.

A new interface definition tool might also require adding behavior to existing classes. For instance, in
the case of a schematic editor, one might want a class-specific visual representation of the objecL The
editor can provide defaults for existing classes (e.g. a box with input and output arrows) and then allow
new classes that are aware of the editor to implement their own representations that look more realis
tic.

There are two aspects of Open Dialogue that were difficult to implement in C++. Allowing an inter
face to be defined separately from the application requires a retained object workspace. Second,
allowing developers to add new primitives and tools requires extensibility, including the ability to add
new behavior for existing classes without access to the source code for those classes.

Open Dialogue Design

This section discusses how Open Dialogue was designed to address the issues raised above.

Retained Object Workspace

We considered three alternatives for saving and restoring objects. The first was the use of save and
restore member functions. This requires each class to supply its own procedures for saving to a file
and restoring from a file. This allows the member function for a specific class to recursively copy all
referenced objects by invoking their respective save and restore member functions. This is the
approach taken by Andrew [6] and by OOPS [4]. It is also the approach we took with
Domain/Dialogue.

The advantage of this approach is that it is very general. It places no resttictions on the fonnat of
object data. It also allows the save and restore procedures to take into account the semantics of the
data. Gorlen, in his discussion of OOPS, gives the example of a hash table that compacts itself when
being saved. The disadvantage of this approach is that it requires these two member functions to be
implemented for all classes and to be updated with each change to the object structure. Adding a new

1988 USENIX c++ Conference 57

58

member variable requires updating three different places: the class definition, the save member func
tion, and the restore member function. This is tedious and error-prone.1

The other alternatives we considered both avoid the need for class-sPeCific save and restore procedures
by proposing that a single procedure be written to handle all objects. This can be done if the procedure
can determine the length of the object and the type and location of its member variables.

The second alternative considered was self-describing object data. With this approach, all objects are
represented in such a way that no information other than an object reference, not even the object's
class, is necessary to determine its structure. This is true of most implementations of Smallta1k and
Lisp. For instance, in most Smalltalk implementations [3] each object contains a length field. Within
each object, each member variable has a bit that indicates whether it is an in-line value or a pointer.
On conventional machines (those without tag bits and with only even addresses) this is done by shift
ing in-line values left One bit and setting the low bit This allows a machine-dependent object
workspace to be easily created by saving the in-line values direcdy to the file. A machine--indePendent
object workspace would require further information about the type of the in-line values (e.g., floating
point vs. char) so that they could be stored in a machine-independent fonn.

The advantage of self-describing object data is that it requires no class-specific information, simplify
ing the definition of new classes. However, there is a problem with taking this apProach with C++. It
requires adding a lot of mechanism for the manipulation of in-line values, since the values must be
decoded (e.g., shifted right) before use and encoded before storage. This added mechanism is also
inefficient if the target machine does not have tag bits.

The thinI approach was the use of class-specific object descriptors. This is similar to self-describing
object data, except that the object layout is detennined not by examining the object directly, but by
accessing a class-specific data structure that describes the layout. Objective C uses this approach [1].

Class-specific object descriptors retain the disadvantage of save and restore member functions, since
adding a new instance variable requires editing both the class definition and the object descriptor. It
does minimize the problem, though, since only two places must be updated instead of three.2 As with
self-describing object data, there needs to be sonk representation of the type of in-line values if there
is to be a machine-independent save and restore.

If our only concern were a retained object workspace, then we probably would have used save and
restore member functions. However, there are many additional advantages to having a standard object
layout. Strousttup gives the examples ofdebugging and printing routines. Others include:

1 StrooItnJp mgeatl Ibal these member functicm could be 8eDerated automatically by the compiler or a preprocessor [8].
We discuss this briefly in the 1Cdi0ll OIl implications for C++.
2 Like save and reIICR manber funClioDs, the daIa cleIcriptor could be 8enerated automatically by the compiler or a
PreproccIlCr.

1988 USENIX C-f+ Conference

o garbage collection -- A fundamental part of garbage collection is copying a live object from
memory that is about to be reclaimed into a fresh area. This is similar to saving an object to a
file. In most cases a single procedure could perfonn the copy automatically if it knew which
member variables referred to other objects.

o analysis of space usage -- For performance reasons, it would be useful to know which
objects were most heavily used and how much they contributed to the overall size of an object
workspace. This analysis could be done automatically with the use of object descriptors.

For this reason, we took a combination of the first and third approaches above. Open Dialogue classes
are required to have save and restore member functions. However, we provide a default implementa
tion of these member functions that makes use of a class-specific object descriptor. Most classes sim
ply define the object descriptor. A few of them,like hash tables, override the default behavior, imple
menting their own save and restore member ftmctions.

The object descriptor contains:

o The name of the object (for debugging purposes).

o The length of the object.

o A record for each member variable within the object.

The record for each member variable contains:

o The name of the member variable (for debugging purposes).

o The length of the member variable.

o The kind of data in the member variable. This is one of:

-- Explicitly typed data -- the data is a "real" object, and has its tyPe embedded
within it.

-- Implicitly typed data -- the data is a primitive object. Its type is not embedded
within it, but is indicated within the object descriptor.

-- Data described elsewhere - the data is described by some other object descriptor
that is referenced by this object descriptor.

o How the data is referenced. This is one of:

1988 USENIX C-t+ Conference 59

-- an in-line variable - the object contains the data directly.

-- a pointer - the object contains a pointer to the data.

- an array - the object contains a pointer to an array of data elements.

(This field is only for efficiency and simplicity. We could have introdu~ new primitive
types for pointers and arrays.)

The object descriptors rely on the existence of what we tenn primitive objects. These are not to be
confused with the primitives that the user interface designer works with. These are the primitive
values out of which other objects are composed, and have no embedded object type. Examples of
primitive objects include strings and integers. Something like this is needed as the basis for any
object-oriented system; C++ relies more heavily on them to avoid the overhead of typed objects.
While the type of a primitive object is not stored with the object, it is stored in the object descriptor of
any object that contains the primitive ObjecL This allows a fonn of polymorphic function invocation
on primitive objects. In other words, primitive classes can have their own save and restore member
functions. A procedure that is processing an object by making use of the object descriptor can invoke
the appropriate function for a primitive object by using the type stored in the object descriptor.

In addition to using object descriptors for save and restore, we use them for a simple fonn of garbage
collection. Open Dialogue does noi have a general purpose garbage collector. However, we have
implemented a separate "copy to new heap" member function that we use to collect garbage and com
pact the retained object workspace before saving it to a file.

Extensibility

As described above, adding new primitives and tools requires the ability to add new behavior to exist
ing classes. Because all extensions are not developed by the same person or institution there is the
additional constraint of not requiring existing classes to be recompiled. In other words, we give custo
mers a header file containing a class definition and an object (.0) file that implements its behavior. The
customer has to be able to define extensions to the class behavior in a separate header file and provide
an implementation of those extensions for that class, for subclasses that slhe develops and for subc
lasses that are developed elsewhere.

Virtual functions work well when all behavior in the class hierarchy can be predetennined. However it
is not possible to add new virtual functions for existing classes without recompiling all modules that
use these classes. We use traits to achieve this capability. Our trait model is adapted from the Apollo
trait system, which was designed to handle polymorphic operations on files. (Apollo files are typed
objects.) We adapted this design to apply to smaller grained objects, objects within files as opposed to
the files themselves.1

1Our tniIs are abo similar to &be trait facilily used in the implemenwiOll of Ihe Xerox Slat. The empIwis in that work

60 1988 USENIX C+t- Conference

Traits are a collection of related operations that describe a particular behavior. The operations for a
trait are implemented as member fUl1ctions. A given class either implements all of the operatio~s for a
given trait or none of the operations. For instance. the graphic object trait is supported by all classes
that can be displayed on the screen. This trait has operations for accepting input events. requesting
screen real estate and drawing to the display. Some operations. such as drawing an objec~ need to be
implemented for every graphic object class because all objects appear differently. However. as with
virtual functions. other operations. such as dealing with mouse input. may be inherited from the base
class if the default implementation is sufficient

Unlike vinual functions. traits are not correlated with the class hierarchy. i.e. two classes can support
the same trait even though their common parent does notJ For instance. the context trait is supported
by all classes that accept keyboard input This trait has operations for accepting and giving up the typ
ing focus. It is supported by a subset of the graphic objects classes. but those classes are scattered
throughout the class hierarchy.

The implementation of traits uses a class member variable in each object This contains a small integer
that identifies an object's class.1 Each Each class has a trait binding record for each trait it supports.
The trait binding record is a table of pointers to member functions for the operations required by that
trait The trait binding records are accessed through trait vectors. one for each trait A trait vector is
indexed by class type. For example. if menu had a class type of 4. then the 4th index in the graphic
object trait vector would hold a pointer to menu's trait binding record for the graphic object trait This
is shown in Figure 4.

menu object
graphic object

trait vector
menu graphic object
trait binding record

2

4 / redraw menu::redraw (n.)

Figure 4. Implementation of Trait Bindings.

was OIl supporting multiple inheritance rather than extensibility (2J.
J Traits describe behavioral abstracliODl. They say nothina aboul how that behavior is implemented. This is different from
a converuional male-inheritance abject oriented system such as c++ or Smalhalk. In those systems a class cannot inheril
the bdlavior of anOlher class without I1so inheriting its manber variables.
1 To moinWn uniqueness acrou classes, dau has a universal unique identifier which is 128 bilS-- this gets bashed into the
small integers stored in each object. This aDows an application writer to use classes developed at two differentlocatians
without risk of collision.

1988 USENIX C+i- Conference 61

62

Traits provide all the features we need to support extensibility. New behavior can be added to
an existing class by creating a new trait and a new trait binding record. By default, a class's
entry in a trait vector is set to the same as its base class. This can be overridden for both new
and pre-existing classes. Invoking a trait operation is not as simple as invoking a virtual func
tion, (by convention macros are used) but it does maintain type checking.

Implications for C++

This section discusses the implications of the design of Open Dialogue on the design of C++.
We realize that, while the issues discussed previously might be better addressed within the
context of a programming language, it isn't necessarily the case that what is best for Open
Dialogue is best for C++. This section makes no explicit recommendations for C++. It sim
ply proposes some alternatives that could be considered, briefly discussing their implications.

Retained Object Workspace

There are three alternatives for better integrating save and restore into the language. The first
is to give developers access to an automatically generated object descriptor (either through
self-describing object data or class-specific object descriptors). While this would have utility
beyond just save and restore, it is difficult to argue for its inclusion into the language,.since it
subverts type abstractions. More importantly, it requires the reification of classes (classes as
objects) to allow the type of a member variable to be given as part of the object descriptor.
This would have a major impact on the language.

A second alternative is to take Stroustrup's suggestion and automatically generate member
functions that recurse over an object's member variables, passing each member variable the
same arguments that the member function has received. This fits the language model much
better, but has two drawbacks. The first is that it requires that all member variables support
the member function being invoked. This means, for instance, creating explicit types for all
pointer variables. The second problem is that it isn't clear how generally applicable the
approach is. It is clear how it would work for save and restore, where the arguments passed
to each member variable are the same (e.g., a file descriptor). It is less clear how this would
work for, say, a deep copy operation used as part of garbage collection. In this case, each
member variable is passed the address of the variable it is copying itself to; this will be dif
ferent for each member variable.

The third alternative is to embed save and restore explicitly into the language. This could be
done by introducing standard member functions that are analogous to constructors and des
tructors. The advantage of explicit language support is that it allows C++ to automatically
genemte reasonable default behavior. The only apparent disadvantage to this alternative is
that it is not more generally applicable. It requires separate solutions for other problems, such
as gaJbage collection and debugging.

1988 USENIX c++ Conference

Extensibility

The problem with integrating extensibility is not with the language model, as one can imagine
extensions to the language for expressing this. The problem is how to implement it
efficiently. Extensibility means that there is no way to know the complete set of virtual func
tions at compile time. There has to be an extension-specific database that can be used at run
time to map from some representation of the object's type to the appropriate implementation
of the extension. Open Dialogue does this by using the trait vector to map from the object's
class member variable to its trait binding record. As currently implemented, C++ relies on
there being only a single record of virtual functions, and short circuits the database by having
a field in each object point directly to that record. Changing to a model like that of Open
Dialogue would make virtual function invocation less efficient. Another possibility would be
to retain the current model for behavior defined with the class, and embed an object type in
the virtual function record for use by extensions. This would impose no penalty on existing
systems, but would impose a greater penalty on extensions.

Summary

There are two major facilities that we incoporated into Open Dialogue that would have
benefited from greater language support. These are saving and restoring objects and the abil
ity to extend the behavior of the system by adding new behavior to existing classes.

Saving and restoring objects is a fundamental operation of any object management system.
Because this feature is so tightly linked to the layout of objects as they are defined in C++,
this could be most nalUrally implemented within the objects themselves as a standard member
function similar to or combined with constructors.

Extensibility of behavior cannot be completely implemented through virtual functions. There
needs to be a mechanism within C++ that allows new virtual functions to be added to existing
base classes without having to recompile the code. Open Dialogue was able to work around
this with che ttait mechanism, but this required additional work that could be handled within
che implementation language.

Bibliography

[1] Brad J. Cox. Object-Oriented Programming. Addison-Wesley, 1986.

[2] Gael Curry, Larry Bser, Daniel Lipide, Bruce Lee. Traits: an approach to multiple-

1988 USENIX C++ Conference 63

64

inheritance subclassing. Proc. SIGOA Conference On Office Information Systems. (philadel
phia. June 21-23. 1982). ACM, New York. pp. 1-9.

[3] Adele Goldberg and David Robson. Smalltalk-80 The Language and its Implementation.
Addison-Wesley. 1983.

[4] Keith E. Gorlen. An object-oriented class library for C++ programs. In USENIX
Proceedings and Additional Papers C++ Workshop (Santa Fe. 1987). pp. 181-207.

[5] Dan R. Olsen. Jr.• William Buxton. Roger Ehrich. David J. Kasik. James R. Rhyne, and
John Sibert. A context for user interface management. IEEE Computer Graphics and Appli
cations 4(12):33-42. 1984.

[6] Andrew Palay et a1. The Andrew Toolkit-- An overview. In USENIX Conference
Proceedings. Winter 1988 (Dallas. February 9-12. 1988). pp.9-21.

[7] Andrew J. Schulert. George T. Rogers, and James H. Hamilton. ADM -- A Dialog
Manager. In Proc. CHI'85 Human Factors in Computing Systems (San Francisco, April 14
18, 1985). ACM, New York. pp. 177-183.

[8] Bjame Strousttup. Possible directions for C++. In USENIX Proceedings and Additional
Papers C++ Workshop (Santa Fe, 1987), pp. 399-416.

[9] P.P. Tanner and W.A.S Buxton. Some issues in future interface management system
(UlMS) development In Gunther E. Pfaff. editor, User Interface Management Systems,
pages 67-79. Springer-Verlag. 1985.

1988 USENIX c++ Conference

A C++ Class Hierarchy for Building
UNIX-Like File Systems*

Peter w. Madany, Douglas E. Leyens
Vincent F. Russo, and Roy H. Campbell

University of illinois at Urbana-Champaign
Department of Computer Science

1304 W. Springfield Avenue
Urbana, IL 61801

Abstract

Class hierarchical object-oriented progranuning languages like C++ facilitate the
construction of organized libraries of related data structures and algorithms. In op
erating systems research, it is convenient to build such libraries to support system
abstractions. In our Choices [31 parallel operating systems research, we have been
experimenting with new and existing file system facilities in an attempt to design an
object-oriented file system implementation.

This paper describes a classification of the data structures and algorithms used
in UNIX-like file systems and an implemention of them using C++. We present a
class hierarchical organization for the System V [8] and 4.2 BSD [4] file systems that
reflects the conunon subcomponents, abstractions, and interfaces that these systems
share. Because of the flexibility afforded by designing such systems in an object
oriented language, new specializations of the abstract file system can mix and match
components from existing implementations forming hybrid systems.

We conclude by discussing the performance of our system and the influence of C++
on our design and organization.

1 Introduction

This paper describes an experiment in the classification and implementation of data struc
tures and algorithms used in UNIX-like file systems. Our long-term purpose is to provide

'This work was supported in part by NSF grant CISE-1-5-30035, by NASA grant NSG1471, and by
AT&T ISEP.

1988 USENIX CoHo Conference 65

66

a foundation for further research into object-oriented file systems; however, the immedi
ate goal is to combine the UNIX philosophy of file systems and the Choices philosophy of
object-oriented operating system components.

In the following three subsections we will describe Choices, the System V file system, and
the 4.2 BSD file system extensions.

1.1 Choices

Choices is a family of operating systems that can be customized to a particular multipro
cessor or parallel application [1] [2]. Object-oriented programming and class hierarchies are
used to facilitate the building and custonlization of the family. C++ was adopted as the
programming language because it provides an efficient implementation of objects and classes
[71·

A Choices system is an object-oriented operating system that uses persistent objects to
provide facilities and services to client processes. Choices persistent objects have lifetimes
independent of user processes. Many of these subsystem facilities and services would belong
in the kernel of a more "traditional" operating system. However, persistent objects allow
an application to load only those subsystems that it needs. Persistent objects can provide
secure services because Choices uses virtual memory protection mechanisms to restrict access
to the objects.

The file system is one of the lnore important subsystenls provided in an operating system.
In Choices, we have chosen to implement the file system as a collection of persistent objects;
each persistent object implements an independent conlponent of the file system. Using this
technique, an application may use a file system composed of many different components, each
tailored to improve the performance of the application, to optimize the use of the storage
technology, or to provide compatibility with file systems of other operating systems.

Currently, we have completed two different UNIX file systems: the 4.2 BSD file system
[4] and the System V [8] file system. The classes of the two file systems are specialized
from one, abstract, UNIX-based file system class hierarchy. However, many of the concrete
classes realizing the two systems are very different from one another. Further, it is possible
to combine file system components from UNIX BSD and System V implementations to
produce hybrid systems that combine the features of both. For example, the efficient BSD
disk allocation methods and larger block sizes can be combined with the System V directory
structure to yield a system with higher throughput without having to rewrite any user level
code that relied on a System V record structure for directories. Alternately, individual
features such as symbolic links or disk quotas may be added to the System V file system, as
needed.

C++ has been. 1 aid in developing our file system implementations. The language was
useful because it d ..-ectly supported the development of the abstract classes that forme~

the framework for, ur systems. The abstract interfaces permitted concurrent development
and debugging of t le various components of each file system. The virtual function feature
allowed us to simplify much code. The ease of developing and reusing C++ classes led to

1988 USENIX c++ Conference

much code reuse, both within a file system and between different file systems.

1.2 System V

The System V [8] file system is the standard file system model found in today's commercially
available UNIX systems. Its design is dominated by simplicity.

Basically a user program can view a UNIX file as a sequence of randomly accessible
bytes. All files can be accessed via the same standard interface: read, write, and lseek.
This interface conceals hardware device dependencies and hides block allocation and block
mapping. Because the operating system does not impose record structures on files, the
output of most UNIX tools can be the input of others. Nevertheless, any tool can impose
a structure on a file. Efficient implementation of random access allows even complex record
structures, such as ISAM, to be imposed on specific files when needed.

Disk drives in UNIX systems are divided into logical sub-devices, called partitions, each
of which contains one file system. A file system consists of a header for the system· called a
superblock, information about which disk blocks are available for allocation, and an array of
inodes that describe individual files. While file systems cannot span disk partitions, a single
directory tree contains all the files on all the file systems. The directory tree hides individual
disks and partitions from the user.

The inode is a structure that describes an individual file and and manages access that
file. Within a UNIX system, a file can be uniquely identified by specifying its partition and
the inode array index number, called the inumber. An inode contains its file's size, reference
count, ownership, access rights, timestamps, and the numbers of the blocks which hold the
file's data.

Directories are sequences of records that contain (name, inumber) pairs. Because directo
ries contain inunlbers instead of complete inodes, files can appear in more than one directory
at a time. Files are only deleted when their reference count reaches zero.

The System V file system's performance is marked by two impressive characteristics:
high disk space utilization and low CPU overhead per block transferred. However, there are
some deficiencies in both its performance and feature set that have been addressed by the
design of the 4.2 BSD file system.

1.3 BSD

The 4.2 BSD file system [4] maintains the same basic interface as System V and adds opti
mizations and extensions.

The penalty incurred by the System V file system per individual block transferred is
small. Its overall throughput is dominated by disk latency. To minimize the disk latency
and thereby improve overall throughput, the 4.2 BSD file system increased file block sizes
and improved inode and disk block allocation policies.

An 8192 byte block improves throughput almost sixteen times when compared to a 512
byte block. To maintain the high disk space utilization of System V, 4.2 BSD added the

1988 USENIX C-++ Conference 67

68

capability to fragment the last block in a file. The improved disk block and inode allocation
policies minimize both disk head seek time and rotational latency.

Three of the major extensions provided by the BSD file system are symbolic links, long
file names, and per-user disk quotas. Symbolic links allow users to create directory entries
which refer to files on different file systems. In System V, file names are restricted to 14
characters because of the fixed-size record structure used for directory entries. The 4.2 BSD
file system uses a variable-size record which allows file names to be up to 255 characters
long. Disk quotas allow system administrators to restrict individual users to using only a
portion of the space in a file system.

The following sections discuss the class and instance hierarchies in our system and are
followed by discussion of performance and directions for future work.

2 A Class Hierarchy for File Systems

The use of class hierarchies has been proposed as a solution to some of the traditional design
and engineering problems in today's software development lifecyde [6] [5] [7]. In particular,
class hierarchies support code reuse and the sharing of common interfaces among different
implementations. A class in a class hierarchy encapsulates an interface and a possibly empty
implementation. The interface, or signature, of a class is defined by the set of methods
or operations the class defines for its instances. The itnplementation of the nlethods of a
cla~s can either be defined by the class itself or can be defined by other classes that are
derived from the class through class inheritance. 1 A class in a hierarchy can define or
augment an interface, an implementation, or both. Classes that define only an interface and
have subclasses that supply implementation are abstract classes. Subclasses that define an
implementation for a particular inte~faceare termed concrete classes. Most classes are neither
concrete nor abstract; they often redefine only a portion of an implenlentation or augnlent
an interface with a few additional methods. A subclass can customize an implementation of
a superclass for specific applications ·and may share all, some, or none of its implementation
with "its superdass. Class derivation provides a framework for changing specific parts of a
system without altering the whole structure.

The following sections describe the majority of the classes in a hierarchy to implement
UNIX-like file systems. Figure 2 shows this hierarchy.

IThe classes that have methods that are inherited are usually termed parent or super classes. The classes
that inherit methods are usually termed derived or sub classes.

1988 USENIX C-H- Conference

File

Figure 2: MemoryObject Hierarchy

2.1 MemoryObject

The superclass MemoryObject abstracts both the Choices file system and memory manage
ment systems. It defines an interface which permits access to a block of data that may
either reside on permanent storage or be generated dynamically. The interface uses a read
unit/write-unit protocol. The units used for reading and writing are all the same size within
an individual MemoryObject, and this size must be an integer power of two. Subclasses of
MemoryObject augment the protocol and provide various implementations of the methods
involved.

In Choices, MemoryObjects are most often accessed by mapping them into a process'
virtual address space. The system caches portions of the MemoryObject into physical mem
ory and provides the address translation mechanisms necessary for the process to address it
with the read/write instructions of the cpu. A MemoryObject can, however, be accessed
directly by its read/vrite interface.

1988 USENIX c++ Conference 69

70

Class Common Public Methods
MemoryObject read write close open create synchronize
T Disk read write - - - -
TInode read write close - - -
TTBSDInode T write T - - -
TTSVlnode T T T - - -
TMemoryObjectView read write - - - -
t TDiskPartition read write - - - -
TTInodeSystem T T - open create synchronize
TTTasDInodeSystem T T - open create synchronize
TTTSVInodeSystem T T - open create synchronize

Class Protected Methods
TInode mapUnit getDireet getIndireet setDireet setIndireet
TTBSDInode T getDirect getIndirect setDirect setlndirect
TTSVInode T getDirect getlndirect setDirect setindirect

Class Protected Methods
TTInodeSystem get put free allocate readDinode writeDinode getFreelnode
TTTBSDInodeSystem T T free allocate T T getFreeInode
TTTSVlnodeSystem T T free allocate T T getFreeInode

Legend

Symbol Meaning
Boldface Abstract class.

Italics Abstract definition of method.
Roman Concrete class or method.

T Subclass or inherited method.
- Undefined method.

Table 1: MemoryObject Class Hierarchy.

1988 USENIX C-H- Conference

2.2 MemoryObject Subclasses

The following paragraphs discuss individual subclasses of MemoryObject and their particular
functionality. Table 1 and Table 2 show the class hierarchy using the format introduced in
[3].

The Disk subclass of MemoryObject represents the physical disk devices in a system. It
provides an abstract interface and access protocol to these disks. It is further subclassed for
specific hardware architectures and devices.

It is usually inconvenient or inefficient to copy a MemoryObject into virtual memory.
The MemoryObject View subclass of MemoryObject provides a window into another Mem
oryObject. The size of this window can range up to the size of the MemoryObject being
viewed. The window may be offset from the start of the MemoryObject. Its purpose is to
restrict access to the MemoryObject under the window. Several MemoryObjectViews may
exist for the same MemoryObject.

A DiskPartition is simply an instance of MemoryObjectView that windows a sub-range
of a Disk. The size and offset of the window is defined by the Disk's hardware partition
table.

The InodeSystem class is derived from MemoryObjectView and inherits its read and
write methods. One InodeSystenl exists per DiskPartition and contains a UNIX file systelu.
The InodeSystem is an abstract class definition that provides the framework for UNIX-like
file systenls. It contains the code for all methods that have the same implementation in the
derived classes. All common methods are implemented in this class to reduce the overall code
size and programming effort. The other nlethods defined here are needed by the subclasses,
but since they will be different, they cannot be inherited.

The two major subclasses of InodeSystem implemented are BSDlnodeSystem and SVln
odeSystem. Many of the nlethods of BSDInodeSystem and SVInodeSystem perform identical
functions but use different data structures or algorithms. The class InodeSystem contains
the code common to both the BSDInodeSystem and the SVInodeSystem. It also provides
virtual functions for methods that are implemented differently in these subclasses. For ex
ample, inumbers must be Inapped to physical blocks by the readDinode and writeDinode
methods. A maplnumber method is defined as a virtual function in the InodeSystem. Each
subclass implements this method in a different way. However, both the readDinode and
the writeDinode methods can be implemented in the InodeSystem and this implementation
can be inherited by the subclasses. The readDinode and writeDinode methods of BSDln
odeSystem and SVlnodeSystem use the implementation of maplnumber that is appropriate
to the subclass of the instance upon which the methods are invoked. Similarly the get and
put methods are inherited but need a variable containing the fragment-to-sector conversion
factor to be appropriately initialized by the derived class. Such techniques move general
code up into the base class where it can be reused instead of requiring it to be rewritten for
each new implementation.

Those methods that are sufficiently different between various subclasses of InodeSystem
(types of UNIX file systems) are simply defined as empty virtual functions in InodeSystem
and redefined by all subclasses. For example, the System V superblock contains a free list for

1988 USENIX C+f- Conference 71

12

File Class Hierarchy

Class Methods
T File read write seek close - - -

TT Directory read - - - put locate remove
TTTBSDDirectory read - - - put locate remove
TTTSVDirectory read - - - put locate remove

Table 2: File Class Hierarchy.

both free data blocks and free disk inodes while the BSD system uses bitmaps. Allocate,
free, and getUnusedlnode have sufficiently different implementations that they cannot
share code, only an interface.

The lnode is an abstract class that provides a franlework for a UNIX-like in-memory inode
object. As in the InodeSysteln, common code is moved into the base class and inherited by
the BSD and System V derived classes. These methods are mostly private methods used
to calculate disk block pointers and and nlanage internal caches of indirect blocks. There
is also a method, mapUn~t, that maps logical block numbers to physical file system block
numbers and can be inherited by both derived classes. The remainder of the class defines
the framework to be used by the derived classes.

The BSDlnode and SVlnode subclasses implement the Inode framework according to
the~r particular needs. The differences are due to the ways in which data block pointers are
stored, and the other fields in the disk inode structure. For example, methods to set and
retrieve the direct and indirect pointers are implemented by each subclass. System V has
10 direct pointers, a single, a double, and a triple indirect pointer. Each of these is stored
in three bytes in the disk inode and must be converted to and from an integer. BSD, on the
other hand, has 12 direct pointers, a single, a double, and a triple indirect pointer. Each of
these is stored as a four byte integer requiring no conversion.

From the user's perspective, an important subclass of MemoryObject is File. The File
class IS both a concrete class used for interaction with any UNIX disk file and an abstract
class from which the Directory class is derived. The unit size for the File class is one byte.
The File class adds the concept of a current file location pointer to the MemoryObject
interface and adds the seek method to position this pointer. The read and write methods
update this file pointer as well. These methods together provide a byte-oriented interface to
user level programs. Each instance of File communicates with a corresponding Inode object
which reads and writes blocks instead of bytes.

The Directory class is an abstract subclass of File which adds a directory-entry record
structure on top of the blocks supplied by the Inode object. It also provides methods to
simplify the insertion, retrieval, and removal of directory entries. Since directories in BSD
and System V are different, the methods of this class: read, put, locate, and remove, must
be defined by each subclass and cannot be inherited.

1988 USENIX C-t+ Conference

3 An Instance Hierarchy for File Systems

In this section, we describe the instance hierarchy for a complete working file system.

User Space

UserFileSystem File(s)

Object

1-"1

Persistent

Choices Kernel

1~ many

1-.. many

.0 .. DiskPartition(s)

Figure 3: File System Instance Hierarchy

When performing operations on files, user programs must invoke the methods of the
User Library Interface. These methods will in turn invoke methods on several other objects
in order to perform the requested action. Figure 3 shows the objects involved in these
operations and the basic data flow between them. Some sets of objects have a one to one

1988 USENIX C++ Conference 73

74

correspondence; for example, there is one Inode object for each File object. Other sets of
objects have a one to many relationship, such as the UserFileSystem which can communicate
with several InodeSystem objects.

A user program gains access to all file systems and files via persistent object calls. This
can be likened to the system calls used to gain access to a UNIX file system. These calls will
be translated into the appropriate method invocations in either the UserLevelFileSystem or
a File object. In Figure 3 the set of these calls is referred to as the User Library Interface.

The UserFileSystem object views all active file systems as a single tree. A reference is
maintained for each InodeSysteln in this tree. The UserFileSystem also contains instance
variables for pathname resolution that maintain references to the root directory and the
current directory. These are needed to correctly implement the operations required of the
UserFileSystem.

The public methods of the UserFileSystem are similar to several of the UNIX file system
calls including: open, creat, link, unlink, mkdir, chdir, and stat. These methods operate
on and return references to File objects and Directory objects which may in turn be used by
the User Library Interface to perform operations on File objects.

The File object corresponds to a UNIX open file table entry and provides a generic
interface to open files for user level programs. Its methods support operations similar to the
set of UNIX system calls that operate on open files including: read, write, seek, and close.
The File object communicates directly with its corresponding Inode object and nlaintains a
current byte offset for implementing seek and sequential read and write.

An instance of Directory is used to impose the directory record structure on a file. Direc
tory methods include read, put, locate, and remove. Read returns a directory entry and
is used by programs such as Is. Directory entries are added and removed from the Directory
object's underlying. file via the put and remove methods. The locate method finds the
inumber of an indicated file name in a directory., All of these methods are invoked by the
directory methods of the UserFileSystem. User programs are prevented from executing the
put and remove methods on a directory. The protection is provided by setting the file access
mode as opposed to using protected C++ functions.

An instance of an InodeSystem is used for each active file system. Creation of a new
instance is similar to the UNIX mount system call. The UserFileSystem communicates with
the InodeSystem when requesting operations on new and existing Inodes. The InodeSys
tem communicates with the DiskPartition to read and write disk blocks. It also manages
the superblock fields, disk inode allocation, and disk data block allocation. It creates and
provides the Inode objects when requested and keeps track of in-memory versions of the
corresponding disk inode structures.

The 'public interface to the InodeSystem includes methods that operate on and return
references to Inodes. These are open and create. The interface also includes methods to
maintain the data blocks of the DiskPartition for use by the Inodes. These methods are.
allocate, free, get and put. The synchronize method is used to write the modified su
perblock and in-memory versions of disk inodes to the DiskPartition to maintain consistency.

1988 USENIX C+T Conference

The Inode object contains the UNIX disk inode structure and the methods used to operate
on it. These include all information needed to access the file such as size, mode, protection,
ownership, and disk block pointers. Once this object is created by the InodeSystem, it may
be referenced by a File or Directory object to perform actions on blocks of data stored within
the InodeSystem's DiskPartition.

The DiskPartition object maintains the size and starting block location of the partition
it represents. It performs disk read and write requests for its corresponding InodeSystem
object and checks these requests to ensure that they only access blocks within the range that
it manages.

3.1 Choice'ing a File System

Choices supports the concept of customizable operating systems. The file system class hier
archies presented allow a system designer to choose and easily integrate existing, modified,
or new concrete components to create new customized file systems.

This mix-and-match approach leads to the following orthogonal "choices'" when designing
a new file system:

• Fixed or variable-sized file names.

• Per user disk quotas.

• Optimized inode and disk block allocation.

• Large block sizes and fragmented blocks.

• Symbolic links.

Some of these choices involve the selection of a conlplete specialized subclass, while others
simply require creating new concrete subclass with methods from two existing subclasses.

The following section presents performance data measured from our implementation.

4 Performance

The performance of our systems can be characterized in three ways. First, we measured
the overhead incurred by all of the Inode and InodeSystem methods as opposed to raw disk
reads and writes of the same disk blocks. Second, we checked to make sure that our BSD
implementation did not reduce or remove the effectiveness of the BSD optimizations. Third,
we observed the effect of altering certain parameters and algorithms used in the Inode class
methods.

To calculate the amount of CPU-time needed by all of the Inode and InodeSystem method
code, we measured the time to copy a 17 Megabyte file, and then measured the time it took
to do a raw disk copy of the same blocks using a simple iterative loop. Both copies were

1988 USENIX C-++ Conference 75

76

performed in the kernel. The raw disk copy took 127 seconds, whereas the copy that used
the Inode and InodeSystem code took 133 seconds. Therefore, only 5% of the time spent.
in the kernel while copying a file accounts for all of the block allocation and block mapping
code in the Inode and InodeSystem class methods. This corresponds to the System V design
goal of low overhead per block transferred.

When designing the interface between the Inode and InodeSystem classes, we took care
to ensure that both the BSO block and inode allocation policies were fully supported. We
also fully implemented the large block size and the block fragment features of the BSD file
system. Therefore, the performance improvements that the BSO optimizations brought to
UNIX will also be realized when using the BSO specialized classes under Choices.

After developing the file system code, we measured the effects of altering the block size
on the time it took to copy files. Each time the block size was doubled from 512 bytes up to
8192 bytes, the time to copy a file was almost halved. These results confirm those found by
the developers of the aso file system.

Since Choices currently has no disk buffer cache, we added an index block cache to the
Inode class. For copies of large files, those between one and sixteen megabytes long, we
found the index block cache tripled the speed of file copying operations.

5 Experiences with C++

While building the file system class library, the use of C++ not only enabled but also
encouraged an object-oriented programming style. This style in turn helped us to specify
object interfaces and to enforce data encapsulation, which usually allowed us to perform
independent development and debugging. While all the authors contributed as a group to
the designs of each class, we were able individually and simultaneously to work on the
implementation of the disk class methods, the BSD and System V details, and the user level
file and file system methods. Furthermore, by classifying the objects into hierarchies, we
were ~ble to achieve both code and design reuse.

The features of C++ that we found most useful were classes, inheritance and virtual
functions. A good example is the Inode class, and more specifically its private method
called mapUnit. The implementation of mapUnit needs no information about whether either
the Inode object or its containing InodeSystem object conforms to the BSD or System
V standard. Once its code has been debugged, it automatically functions equally well for
either of Inode's concrete subclasses; in fact, the file containing the code for the abstract class
doesn't even need recompilation in order to support additional concrete classes of Inodes.
The primary difference between a BSOInode and a SystemVInode is the details of the disk
inode representation. In order to allow functions like mapUnit to be inherited by concrete
subclasses of Inode, virtual functions were defined for disk inode access routines. At run
time, calls to these methods are translated into appropriately redefined concrete subclass
methods.

We did find it necessary to make restricted use of friends. Sometimes objects belonging
to different classes need more access to information stored in an object of yet another class.

1988 USENIX C++- Conference

For example, Inodes use the ·protected InodeSystem methods: get, put, allocate, free,
and close, while the UserLevelFileSystem uses only the public InodeSystem methods: open,
create, and synchronize. Even though InodeSystem declares Inode as a friend, an Inode
object still never directly accesses any data member of an InodeSystem object. Hence, we
do have a suggested enhancement for C++: instead of giving another class access to all the
private data and methods of a class via the friend mechanism, it would be useful to make
just certain private or protected methods accessible to another class.

In retrospect, the MemoryObject hierarchy suggests the need to use the multiple inheri
tance feature of C++. Some MemoryObjects, such as InodeSystems, are collections of other
MemoryObjects. They should inherit methods open, create, and synchronize from an
abstract class MemoryObjectCollection instead of class MemoryObject.

Our systems also benefited from other, somewhat unrelated C++ features such as inline
functions and type-checking. When procedure call overhead is elinlinated, one no longer has
to consider a tradeoff between code modularity and speed.

The lint-style type-checking of C++ invariably flags either coding errors or questionable
practices, we do not recall it ever getting in t·he way of code development.

In general, we always felt that th.e use of C++ provided the same speed and more
expressive power than would the use of C.

6 Future Work

We plan to add support for additional existing file systems, including other UNIX file systems
such as that of the Ninth Edition UNIX system, and sonle non-UNIX file systems, such as
the MS-DOS file system. Adding 1\15-D05 classes to the hierarchy will be more challenging,
but they will still fit into our existing class hierarchy.

We also plan on implementing experinlental file system components to further support
our research. In particular, we are developing an object-oriented file system that propagates
its object-oriented structure up into the user interface.

7 Conclusions

In Choices, we have used C++ to develop new operating system mechanisms and policies
based on object-oriented design. However, C++ may also be used to recode existing sys
tems in an object-oriented manner. In this paper, we discussed the developnlent of a class
hierarchy that captures the design of two existing, well-known file systems. Although data
encapsulation has been used in the design of these systems, the ease with which we have been
able to design a class hierarchy to capture the similarities between the systems also reflects
the adherence of the implementation of those systems to the UNIX standard file interfaces.

Our implementation contributes to our understanding of the design of class hierarchical,
obje~t-oriented systems in several ways.

• We demonstrated that system programs can be coded as efficiently in C++ as in C.

1988 USENIX c++ Conference 11

18

• We showed that by careful choice of the methods defined and inherited in the class
hierarchy, much code and design can be reused even though the implementations may
at first sight, appear to be different.

• The class hierarchy we described in this paper defines a family of file systems, and
this family provides an insight into new file systems that are not only constructed as
object-oriented systems but are also object-oriented in operation.

• The library of file system components that we built allows hybrid file systems to be
constructed that use particular components to provide a customized file system.

• The System V and BSD implementations we built are independent of UNIX and could,
potentially, be ported to many other systems in addition to Choices.

Throughout the implementation we have been impressed with the ease with which object
oriented design can be expressed in C++ code. This had many major benefits, particularly
in code maintenance, debugging, and modification. .

To conclude, this paper describes a complete, efficient implementation of 4.2 BSD and
System V file systellls as a portable package written in C++. Our next step is to build
object-oriented file systems for Choices based on our experience of building UNIX-like file
systems.

References

(1] Roy H. Campbell, Gary Johnston, Kevin Kenny, Gary Murakami, and Vince Russo.
Choices (Class Hierarchical Open Interface for Custom Embedded Systems). Operating
Systems Review, 21(3):9-17, July 1987.

[2] Roy H. Campbell, Gary Johnston, Kevin Kenny, Gary Murakami, and Vince Russo.
Choices (Class Hierarchical Open Interface for Custom Embedded Systems). In Fourth
Workshop on Real-Time Operating Systems, pages 12-18, Cambridge, Mass., July 1987.

[3] Roy H. Campbell, Vince Russo, and Gary Johnston. Choices: The Design of a Multi
processor Operating System. In Proceedings of the USENIX C++ Workshop, Santa Fe,
NM, November 1987.

[4] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast File System for UNIX.
ACM Transactions on Computer Systems, 2(3):181-197, August 1984.

[5] Bertrand Meyer. Reusability: the case for object-oriented design. IEEE Software, 50-64,
March 1987.

[6] Lawrence Snyder. Using types and inheritance in object-oriented programming. IEEE
Transactions on Computers, March 1981.

1988 USENIX c++ Conference

79

[7] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing Com
pany, 1986.

[81 K. Thompson. Unix implementation. Bell System Technical Journal, 57(6):1931-1946,
July 1978.

1988 USENIX Ci+ Conference

80 1988 USENIX C+t- Conference

Applying Object-Oriented Design to Structured Graphics

John M. Vlissides and Mark A. Linton
Center for Integrated Systems, Room 213

Stanford University
Stanford, California 94305

E-mail: vlis@lurch.stanford.edu, linton@lurch.stanford.edu

Abstract

Structured graphics is useful for building applications that use a direct manipulation metaphor.
Object-oriented languages offer inheritance, encapsulation, and runtime binding of operations to
objects. Unfortunately, standard structured graphics packages do not use an object-oriented model,
and object-oriented systems do not provide general-purpose structured graphics, relying instead on
low-level graphics primitives. An object-oriented approach to structured graphics can give applica
tion programmers the benefits of both paradigms.

We have implemented a two-dimensional structured graphics library in C++ that presents an object
oriented model to the programmer. The graphic class defines a general graphical object from
which all others are derived. The picture subclass supports hierarchical composition of graphics.
Programmers can define new graphical objects either statically by subclassing or dynamically by
composing instances of existing classes. We have used both this library and an earlier, non-object
oriented library to implement a MacDraw-like drawing editor. We discuss the fundamentals of the
object-oriented design and its advantages based on our experiences with both libraries.

1 Introduction

Many software packages have been developed that support device-independent interactive graphics
[1,3,4,6,7]. These packages provide various ways to produce graphical output. In immediate-mode,
a graphical element such as a line appears on the screen as soon as it is specified. Several packages
provide procedures for adding graphical elements to a display list; the elements appear on the screen
after an explicit call to draw the display list. Graphical elements in the list can be stored as data or
as procedural specifications. Structured graphics packages allow elements in a display list to be lists
themselves, making it possible to compose hierarchies of graphical elements.

Application programs designed for workstations make extensive use of graphics in their user inter
faces. Many programs such as drawing and schematics editors let the user manipulate graphical
representations of familiar objects. Structured graphics can simplify the implementation of such ap
plications because much of the functionality required is already implemented in the graphics package.
For example, drawing editor operations for translating and scaling geometric shapes, enlarging and
reducing the drawing, and storing its representation are supported by most structured graphics
packages. Graphical hierarchies could be used to compose and manipulate groups of notes on staves
in a music editor. A project management system could define the elements of bubble charts using
graphical primitives and allow structural changes to be made interactively using display list editing
operations.

However, there are drawbacks to using structured graphics. The library of procedures that comprises
such packages is often large and monolithic, rich in functionality but difficult for the programmer
to extend. Extensibility usually requires access to and manipulation of internal data structures, but

1988 USENIX C++ Conference 81

82

such access is dang, is and can compromise the reliability of the system. Also, it is often difficult
to edit and manipuJ the display list, particularly when its elements are represented procedurally,
because there is no' ,y to refer to graphic and geometric attributes directly. Editing the display list
may be inefficient & ..veil. For example, if the display list is compiled into a more quickly execu.ted
form, then the list rust be recompiled following editing before it can be drawn. These deficiencies
make it likely that .he structure provided by the package will not map well to that required by
the application, forcing the programmer to define data structures and procedures that parallel the
library's.

An object-oriented design offers solutions to these problems. Intrinsic to object-oriented languages
are facilities for data hiding and protection, extensibility and code sharing through inheritance,
and flexibility through runtime binding of operations to objects. However, existing object-oriented
programming environments [5,9] rely on immediate-mode graphics, and object-oriented user interface
packages [2,11] do not support general-purpose structured graphics. Ida [15] uses an object-oriented
framework that decomposes structured graphics into a set of building blocks that communicate via
message passing. Ida supports high-level functionality such as scrolling, though it does not provide
some graphical capabilities that structured graphics systems usually have, such as rotations and
composite transformations.

We have developed a C++ [12] library of graphical objects that can be composed to form two
dimensional pictures. The library is a part of the InterViews graphical interface toolkit [8] and runs
on top of the X window system [10). Our aim was to learn how inheritance and encapsulation could
be used in the design of a structured graphics library. A base class graphic is defined from which
all other structured graphics objects are derived. We show how a hierarchy of these primitives can
be composed to form more complex graphics and how features such as hit detection and incremental
screen update are incorporated into the model. We also compare this library to an earlier, non
object-oriented structured graphics library implemented in Modula-2, relating experiences we had
in using each library to implement a MacDraw-like drawing editor.

2 Class Organization

The graphic class and derived classes collectively form the Graphic library. The class hierarchy is
shown in Figure 1. Its design was guided by the desire to share code as much as possible without
compromising the logical relationships between the classes.

The derived classes define the following graphical objects:

• Point, Line, MultiLine: a point, a line, and a number of connected lines

• Rect, FillRect: open and filled rectangles

• Ellipse, FillElIipse: open and filled ellipses

• Circle, FilICirc1e: open and filled circles

• Polygon, FillPolygon: open and filled polygons

• BSpline, ClosedBSpline, FillBSpline: open, closed and filled B-splines

• Label: a string of text

• Picture: a collection of graphics

• Instance: a reference to another graphic

All graphics maintain graphics state and geometry information. Graphics state parameters are de
fined in separate base classes. These include transformer (transformation matrix), color, pattern

1988 USENIX c++ Conference

_Pi.c.tu.r.e.~ I
I I----,~--~-I,.....------.
w~ I Polnt ~ I Lln. CfJ I~Instance ,

I Circle'

Figure 1: Graphic library class hierarchy

(for stippled area fills). brush (for line drawing). and font. Each graphics state class implements
operations for defining and modifying its attributes. For example. transformers have translation.
scaling. rotation, and matrix multiplication operations. and colors allow their component intensities
to be varied.

A structured graphics package should be able to transfer its graphical representations to and from
disk. GKS uses "metafiles" for this purpose. The files PHIGS uses are called "archives." Both
packages provide procedures for saving and retrieving structures. for querying structures by name.
and for deleting structures from the file.

The approach used by these packages requires the programmer to save and retrieve structures explic
itly. The Graphic library uses persistent objects to automatically manage the storage of graphics.
The graphic class and graphics state classes are derived from a persistent class that provides trans
parent access to objects whether they are in memory or on disk. Persistent objects are faulted in
from disk when they are first referenced, and "dirty" objects are written to disk when the client
program exits.

3 Graphic

The graphic base class contains a minimal set of graphics state including a transformer and fore
ground/background colors. Derived classes maintain additional graphics state according to their
individual semantics. For example, the label class includes a font in addition to inherited state.
filled objects maintain a pattern. and outline objects include a brush.

3.1 Operations

All graphics implement a set of operations defined in the base class. These include operations for

• drawing and erasing, optionally clipped to a rectangle,

• setting and retrieving graphics state values,

• translating, scaling, and rotating.

1988 USENIX C-++ Conference 83

84

virtual boolean Contains(PointObjl);
virtual boolean Intersects(BoxObjl);

Figure 2: Interface to operations supporting hit detection

virtual void Drav(Canvas*);
virtual void Drav(Canvas*, Coord, Coord, Coord, Coord);
virtual void DravClipped(Canvas*, Coord, Coord, Coord, Coord);

virtual void Erase (Canvas*) ;
virtual void Erase(Canvas*, Coord, Coord, Coord, Coord);
virtual void EraseClipped(Canvas*, Coord, Coord, Coord, Coord);

Figure 3: Interface to drawing operations

• obtaining a bounding box, and

• ascertaining whether the graphic contains a point or intersects a rectangle.

The Contains and Intersects operations are useful for hit detection. Their definitions are shown
in Figure 2. PointObj and BoxObj are classes that serve as shorthand for specifying a point and
a rectangular region, respectively. Contains can be used to detect an exact hit on a graphic;
Intersects can be used to detect a hit within a certain tolerance.

3.2 Drawing Operations

Figure 3 lists the set of drawing and erasing operations defined on graphics. InterViews defines
canvas objects and the coord type. A canvas represents a region of the display in which to draw.
Canvases are rectangular and may overlap. A coord is a integer coordinate.

The graphic base class implements each erasing operation in terms of the corresponding drawing
operation. An erase operation first sets the foreground color to the background color, then calls the
drawing operation, and finally resets the foreground color to its original value.

The operations taking a single parameter draw and erase the graphic in its entirety. The coordinate
parameters are used to specify a rectangular region. Bounded Draw and Erase operations use the
rectangular region as a hint to the graphic's visibility. Graphics may perform optimizations based
on this information. For example, because canvases do not permit drawing outside their boundaries,
bounded draw and erase operations can cull parts of the graphic that fall outside the canvas.1

DrawClipped and EraseClipped clip during drawing or erasing. They are useful when drawing must
be strictly limited to a portion of the canvas. For example, DravClipped is often used to redraw
portions of a graphic that had been obscured by an overlapping canvas.

1The bounded operation could obtain the rectangular region directly from the canvas. For generality, however, the
region is specified explicitly.

1988 USENIX c++ Conference

4 Composite Graphics

Picture and instance are composite graphics. A picture composes other graphics into a single
object, while an instance is a reference to another graphic. Both rely on a notion of graphics state
concatenation to define how they are drawn.

4.1 Graphics State Concatenation

Composite graphics are like other graphics in that they maintain their own graphics state infor
mation, but they do not have their own geometric information. Composition allows us to define
how the composite's state information affects its components. The graphic base class implements
a mechanism for combining, or concatenating, graphics state information. The default behavior for
concatenation is described below. Derived classes redefine the concatenation operations as needed.

Given two graphics states A and B, we can write their concatenation as A EB B = C, where C
is the resultant graphics state. Concatenation associates but is not commutative; B is considered
"dominant." C receives attributes defined by B. Attributes that B does not define are obtained
from A. An exception is the transformation matrix; C's transformer is defined by p08tmultiplying
A's transformer by B's. B thus dominates A in that C inherits B's attributes over A's, and C's
coordinate system is defined by A's transformation with respect to B's.

A graphic might not define a particular attribute either because it is not meaningful for the graphic
to do so (a filled rectangle does not maintain a font, for instance) or because the value of the attribute
has been set to nil explicitly. Defined attributes propagate through successive concatenations without
being overridden or modified by undefined attributes. For example, suppose graphics state A defines
a font but B does not. Moreover, C maintains a font but its value has been set to nil. Then
D = A EB B EB C will receive A's font attribute. If A's transformer is nil but Band C's are non-nil,
then D will receive a transformer that is the product of B's and C's. If D =C E9 A EB B, then D
will receive a transformer that is the product of C's and B's.

The semantics for concatenation as defined in the base class are useful for describing how composite
graphics are drawn, but derived graphics can implement their own concatenation mechanism. This
creates the potential for concatenation semantics that are more powerful than the default precedence
relationship. For example, the concatenation operation could be redefined so that concatenating two
colors would yield a third that is the sum or difference of the two. Two patterns could combine to
form a pattern corresponding to an overlay of the two. This behavior could be used to define how
to draw overlapping parts of a VLSI layout.

The ability to redefine concatenation semantics demonstrates how inheritance lets the progranuner
extend the graphics library easily. Flexibility is thus achieved without complicating or changing the
library.

4.2 Picture

Pictures are the basic mechanism for building hierarchies of graphics. Each picture maintains a list
of component graphics. A picture draws itself by drawing each component with a graphics state
formed by concatenating the component's state with its own. Thus, operations on a picture affect
all of its components as a unit. Contains, Intersects, and bounding box operations are redefined
to consider all the components relative to the picture's coordinate system. The picture class defines
the operations shown in Figure 4 for editing and traversing its list of components. Pictures have a
notion of a "current" component, which aids in the traversal by acting as a position marker in the
list of components.

Pictures also define operations for selecting graphics they compose based on position. These opera
tions are shown in Figure 5. The ...Containing operations return the graphic(s) containing a point;

1988 USENIX C++ Conference 85

86

void Append(Graphic.);
void Prepend(Graphic.);
void Reaove(Graphic.);

void lnaertAfterCur(Graphic.);
void InsertBeforeCur(Graphic.);
void ReaoveCur();
void SetCurrent(Graphic.);
Graphic. GetCurrent();

Graphic. Firat();
Graphic. Last () ;
Graphic.len();
Graphic. PreY();
boolean IsEDpty();
boolean AtEnd()

Figure 4: Picture editing operations

Graphic. FirstGraphicCoDtaining(PointObjt);
Graphic. FiratGraphicIntersecting(BoxObjt);
Graphic. FiratGraphicVithin(BoxObjt);

Graphic. LastGraphicCoDtainiDg(PointObjt);
Graphic. LastGraphicInteraectiDg(BoxObjt);
Graphic. LastGraphicVithin(BoxObjt);

int GraphicsContainiDg(PointObjt. Graphic••t);
int GraphicsInters8ctiDg(BoxObjt. Graphic••t);
int GraphicsVithin(BoxObjt. Graphic••t);

Figure 5: Picture operations for selection

... Intersecting operations return the graphic(s) intersecting a rectangle; ..•Within operations
return the graphic(s) falling completely within a rectangle.

Pictures draw their components starting from the first component in the list. The Last. .. opera
tions can be used to select the "topmost" graphic in the picture, while First. .• operations select
the "bottommost." The Graphics. .. operations return as a side-effect an array of all the graphics
that satisfy the hit criterion. These operations also return the size of the array.

The following example demonstrates how concatenation can be used and extended using pictures.
Consider a what-you-see-is-what-you get text editor that implements paragraphs using a subclass
of picture called paragraph and words using a subclass of label called word. Both pictures and
labels maintain a font attribute. Thus, each word can define its own appearance, and the para
graph can override the appearance of all the words through concatenation. For instance, defining a
font attribute on the paragraph would cause all words to appear in that font independent of their
individual attributes.

1988 USENIX C++ Conference

void Incur(Graphic*);
void Incur(BoxObja);
void RepairO;
void Reset () ;
boolean Incurred();

Figure 6: Interface to damage class

By deriving paragraph from picture, we can change the concatenation semantics; for example, the
concatenation of an italic font with a bold font could yield a bold italic font. Defining an italic font
attribute on the paragraph would thus italicize the paragraph without ignoring the font of individual
words. Alternatively, paragraphs could rely on words to define the concatenation semantics. Thus,
instances of different word subclasses could respond differently to formatting changes within the
same paragraph. .

4.3 Instance

An instance is a reference to another graphic (the target). Graphic library instances are functionally
equivalent to instances in Sketchpad [14]. The concatenation of the instance's and target's graphics
states is used when the instance is drawn or erased. An instance can thus redefine any aspect of the
target's graphics state, but it cannot change the target's geometric information.

Instances are useful for replicating "prototype" graphics. Once the prototype is defined, it can
appear at several places in a drawing without copying. Also, structural and graphics state modifi
cations made to the prototype will affect its instances, thus avoiding the need to change instances
individually.

5 Incremental Update

Structured graphics can be used to represent and draw arbitrarily complicated images. Many images
(and most interesting ones) cannot be drawn instantaneously. Incremental techniques can be used
to speed the process of keeping the screen image consistent with changes in the underlying graphical
structure. Such techniques will be effective if the user makes small changes most of the time, and
experience with interactive graphics editors shows this to be the case.

To support incremental update, the Graphic library includes a damage base class. A damage object
is used to keep the appearance of graphics consistent with their representation. Damage objects try
to minimize the work required to redraw corrupted parts of a graphic. The base class implements a
simple incremental algorithm that is effective for many applications. The algorithm can be replaced
with a more sophisticated one by deriving from the base class.

5.1 Interface

The interface to the damage class appears in Figure 6. When a damage object is created it is passed
a graphic (usually a picture) for which it is responsible. The Incur operation is called by the client
program whenever the graphic is "damaged." The graphic is incrementally updated when Repair
is called. Reset discards accumulated damage without updating the graphic. Clients can determine
whether any damage has been incurred using the Incurred operation.

1988 USENIX c++ Conference 87

88

5.2 Implementation

The damage class implements a simple algorithm for incremental update. Each damage object
maintains zero, one, or two non-overlapping rectangles. A damage object must be notified whenever
the graphic's appearance changes by calling the Incur operation with either a region of the canvas
or a graphic as a parameter. If a graphic is supplied, its bounding box determines the extent of the
damaged region.

Incur either stores the new rectangle representing the damaged region or merges it with one or
both of the rectangles it has stored. Merging replaces a stored rectangle with the smallest rectangle
circumscribing the rectangles being merged. Repair calls DravClipped on the graphic for each
stored rectangle.

The number ofrectangles maintained by damage objects is limited to two because successive increases
in the number of rectangles bring diminishing returns. This is a result of the overhead associated
with drawing a graphic clipped; for complicated graphics this involves significant computation. We
found that the limiting value of two yielded subjectively the quickest screen update on average in an
object-oriented drawing editor based on the Graphic library. Typically the user either transforms
an object in place (producing a single damaged rectangle) or moves an object (producing one or
two rectangles). Assuming that drawing editors represent a fair benchmark for interactive graphics
applications, the two-rectangle limitation offers advantages in both performance and implementation
simplicity.

6 Experience

The design of the Graphic library was based on experience with an earlier structured graphics
library we implemented in Modula-2. The Modul~2 design emphasized high drawing speed over
low latency. It also tried to handle incremental update completely automatically; that is, it had no
operation comparable to Incur. The extent of damage was inferred from the operations performed
on each graphical object. Though the package attempted to provide an object-oriented interface,
the implementation language's lack of inheritance resulted in a monolithic library that could not be
extended easily.

We have developed two versions of an object-oriented drawing editor called idrav, shown in Figures 1
and 8. The first version uses the Modula.-2 graphic library, while the second version uses the C++
Graphic library. This gives us a good opportunity for comparing the two libraries based on actual
usage.

6.1 Graphics State Propagation versus Concatenation

A difference between the Graphic and Modul~2 libraries is in the way they manage graphics state.
Modula.-2 graphical elements propagate their graphics state to the leaves of the graphics hierarchy
as part of the modification operation. Graphic library objects defer the propagation until they are
drawn, relying on the concatenation mechanism to do the job. The rationale behind propagation
was to make" drawing as fast as possible. It was believed that on-the-fty concatenation would slow
drawing unnecessarily. Thus, as much work as possible was done before the drawing routine was
called.

We realized that propagation was a mistake as we used the Modula.-2 library to implement idrav.
Propagating graphics state each time an operation is called precludes amortizing many changes over
a few draws. That is, if several state-modifying operations are made before the graphic is drawn,
we can avoid traversing the structure if we defer propagation to draw time, when we must traverse
it anyway.

1988 USENIX c++ Conference

Figure 7: The idrav drawing editor, Modula.-2 version

IIIIIJIa
IIruIh

Wa •
R.l

1
'1J,

w....
...... St..

"- - WaTor"
Crier ...

SuI• .I R.lz ~a lirwttv wolf-~ lirld wolf
:

R 1Ir1llltetl0l'l
":' X

IlL1UU II

Aahlpeq

RJ.. ~.. R,,-
"-'My - ~

a

Tm -: ":"

'-.1 System A

1.1I
R.l

1 ~
Rka

\.h
0 0 R~ ~a Rka

';'-Dr
0 ":' X R Y

a "II
R.l.. ~ .. R..- -=

-: -:

SYS'1.m B

Figure 8: The idrav drawing editor, C++ version

1988 USENIX C-t+ Conference 89

90

Having made propagation an integral part of the Modula-2 library, there was no practical way
for users to modify the library to use concatenation. An object-oriented design would have used
inheritance to facilitate the modification of the library to use concatenation. In comparison, it
would be straightforward to derive a new sort of picture and redefine its graphic state modification
operations to propagate attributes immediately.

6.2 Incremental Update

The Modula-2 graphics library implemented an automatic incremental update feature. The library
kept track of changes to objects by storing lists of rectangles with each object. Newly-added rectan
gles were merged with any rectangles in the list they intersected. The list of rectangles was ultimately
limited by the object's bounding box;,when a rectangle in the list became large enough to subsume
the bounding box, the incremental update mechanism was disabled and the object would be drawn
in its entirety.

The Redraw procedure was used to initiate incremental redraw of a graphical object. Redraw erased
the regions defined by the rectangles in the object and redrew the object clipped to each rectangle.
Any nested objects would be redrawn recursively.

This approach worked-the screen was never left in an inconsistent state following incremental
redraw-but it did not always perform the update in an efficient way. The generality of the algorithm
coupled with the lack of a way for the programmer to influence the redraw mechanism often rendered
the facility uselessj the programmer would bypass the mechanism and redraw damaged objects
explicitly.

To illustrate, consider the case where a drawing is restructured so that an object obscured by other
objects is brought to the top. A simple way to update the screen is simply to draw the object; nothing
else need be redrawn. However, the incremental algorithm did not consider this optimization, and
Redraw proceeded to redraw all the obsc,ured objects as well.

The more serious problem arose because damaged rectangle information was always accumulated,
since Redraw could be called at any time. This added overhead to every appearance-modifying
operation. The overhead remained even if the programmer decided to bypass automatic redraw
and perform the update manually. The addition of a Disable procedure that turned off rectangle
accumulation complicated the use of the package and presented problems of its own: What should
happen when automatic redraw is enabled again? Should old damage information be eliminated?
How do we know the screen is still consistent?

The lesson we learned was that it is important not to exclude the programmer from the update
process. Damage objects do not in any way interfere with the normal operation of graphics. They
incur no overhead unless they are used, and they encapsulate the incremental update algorithm,
making it easy to enhance or replace. In contrast, the update mechanism pervaded the older library.
Damage objects give programmers the option of performing tricks of their own when updating the
screen without paying for mechanisms they do not use.

6.3 Persistence

We have mixed feelings about having used persistent objects in the Graphic library. On one hand
they are convenient because they free the programmer from worrying about storage. On the other
hand, objects created by a program live in their own world analogous to the address space in which
they were created. Thus, objects cannot communicate across program or machine boundaries easily,
nor is there provision for moving objects from one world to another.

Persistent objects are useful for preserving the state of a program transparently across execution~:,

but they are not suitable for communicating the state between p~ocesses. We expect that a latt :'
version of the Graphic library will incorporate a more conventional storage mechanism.

1988 USENIX C+f- Conference

Modula-S c++
structured common code 3600 3500
graphics incremental update 500 100
library hit detection 400 1500

persistence 600 1300
comments 700 300
total lines 5800 6700

idrav common code 13000 14000
user interface 2000 0
comments 1000 2000
total lines 16000 16000

Table 1: Comparison of Modula-2 and C++ source code (in lines)

6.4 Cached Bounding Boxes

To improve performance, the more complex graphics such as multilines, polygons, ~plines, and
pictures cache their bounding box once it is calculated. Caching can save substantial time, especially
for large pictures, because the bounding box is needed whenever a graphic is drawn clipped or
bounded.

The object-oriented approach makes it easy to add this optimization to classes that can use it without
penalizing other classes. The graphic base class declares operations for caching, invalidating, and
retrieving a bounding box. These are null operations by default; derived classes can redefine them if
they use caching. Thus, individual graphics can define their own caching and invalidation criteria.
Furthermore, since the base class does not allocate storage for the bounding box, no overhead .is
incurred on subclasses that do not require caching.

6.5 Quantitative and Qualitative Comparisons

This section presents quantitative and qualitative comparisons of the Modula-2 and C++ struc
tured graphics libraries and versions of idrav. Note that any direct comparisons are necessarily
crude because of differences in design criteria, in our experience level at the start of each library's
implementation, and in the implementation languages themselves. Nevertheless, we offer these com
parisons to add insight into the relative merits of the Modula-2 and C++ implementations.

Table 1 shows the source code sizes for both libraries and both versions of idrav. The library code
is divided into five components: common code (that is, code that implements the same functionality
in both libraries), code for incremental update, code for storing graphical objects on disk, code for
hit detection, and comments. The idrav code is divided into common code, user interface code, and
comments.

This partitioning lets us take into account different capabilities and levels of commenting when com
paring code sizes. For example, the Graphic library has a general persistent object facility, whereas
the Modula-2 library supports only manual read/write of graphical objects. Graphic subclasses im
plement fine-grain hit detection, while the Modula-2 library can detect hits only within an object's
bounding box. The Modula-2 library uses a more complicated incremental update mechanism and
is commented more heavily than the Graphic library. Modula-2 idrav implements scroll bars, pull
down menus, and rubberbands explicitly, while InterViews provides this functionality in the C++
version.

From the information in Table 1, we conclude only that the C++ and Modula-2 code is comparable
in size. The amount of common code in the structured graphics libraries is about the same, and

1988 USENIX C++ Conference 91

92

Drawing Test Modula-2 C++
ear.6 zoom #1 18 8.3
(82 objects) zoom #2 12 6.3

rotation 15 4.5
multidriver zoom #1 24 12
(361 objects) zoom #2 18 8.3

rotation 11 6.7

Table 2: Comparison of Modula.-2 and C++ idrav drawing performance (in seconds)

the C++ version has proportionally more code to implement added functionality. The Modula-2
idrav is somewhat smaller than the C++ version, taking into account that C++ idrav relies
on InterViews to implement its user interface. However, C++ idrav provides more functionality,
including arbitrary-level undo (versus single-level for Modular2 idrav), more sophisticated text
editing, and user customizability.

A possible disadvantage of an object-oriented implementation is a runtime performance penality
because of overhead such as method lookup. In the implementation of C++ we used, the overhead
amounts to three or four extra memory references per virtual function call [13]. To see whether
this overhead has a significant impact on the performance of idrav, we measured how long it took
each version of idrav to do three different operations on two different drawings, ear. 6 (shown in
Figure 7) and multidriver (shown in Figure 8). These are representative of two common types
of drawings: artistic drawings with many complex, overlapping polygons and splines, and technical
drawings consisting mainly of rectangles, lines, and text with little or no overlap. We timed the
following operations:

1. In the "zoom #1" test, the drawing is zoomed from half size to quarter size and back. The
drawing is fully visible throughout the test.

2. In "zoom #2," the drawing is zoomed from half size to full size and back. The drawing is
clipped when drawn at full size so that only half is visible.

3. In "rotation," the (top-level) object in the drawing is rotated 90°.

Table 2 shows the average of ten trials for each test. The C++ version outperforms the Modula-2
version in every test. The difference in speed is greatest for the rotation test on car. 6, but this
difference is exaggerated because of a bug in the Modula-2 library's incremental update routine that
caused redundant redraws of two subcomponents. In general, the Modula-2 library is handicapped
by the extra traversals associated with graphic state propagation and incremental update. The
results would be more comparable if the Modula-2 library were modified to use concatenation and
the simpler incremental update algorithm of the damage class.

The last quantitative comparison involves the object code sizes for each library and idrav version.
These values are shown in Table 3. The C++ sizes are larger mainly because of the added function
ality of both the Graphic library and C++ idrav, constructor, destructor, and inline code, and the
overhead associated with virtual pointer tables.

From a qualitative standpoint, the Graphic library and the corresponding version of idrav are both
significantly better structured, more understandable, and "cleaner" overall than their Modula-2
counterparts. One could argue that the lessons learned in the Modula-2 implementation efforts led
to superior C++ versions. However, the versions of idrav were developed by two different people.
In fact, the Modula-2 version was its author's second attempt at a drawing editor, while the C++
version was its author's first attempt. The object-oriented paradigm simply invites good program

1988 USENIX C+t Conference

Modula-' c++Istructured graphics library 40 110
idrav 0 130 280

Table 3: Comparison of Modula-2 and C++ object code sizes (in kilobytes)

structuring through inheritance, encapsulation, and late binding, all of which promote modularity
and flexibility.

7 Conclusion

A striking aspect of graphics packages such as CORE, GKS, and PHIGS is their size and complexity.
These packages are intended as standards that provide machine independence, extensive functional
ity, and generality, and they largely succeed in these respects. However, all reflect their procedural
implementation in their interface. Programmers cannot extend primitives through inheritance to
modify their semantics. The result is a substantial complexity penalty for every increase in flexibility.

For example, some packages bind graphics state attributes statically to graphical objects when the
objects are created. Others provide a simple form of state inheritance by allowing graphics to
reference other graphics in a manner similar to instances in the Graphic library. These facilities are
significantly less flexible than the graphics state concatenation mechanism, the semantics of which
can be changed on a per-class basis. In an object-oriented package, generality can be achieved
through class inheritance instead of supporting a broad range of behaviors explicitly.

Another advantage of the object-oriented approach is the ability to treat graphical objects generically,
relying on the runtime system to determine the correct method for a particular object. The virtual
mechanism accomplishes this in C++. Thus, functionality such as hit detection can be implemented
in a simple way without identifying objects with element pointers and labels. Furthermore, escape
mechanisms for exploiting special hardware facilities are unnecessary; subclasses can be derived that
reimplement key operations such as Drav to take advantage of unique capabilities.

In our experience, structured graphics is useful for applications that allow the user to manipulate
graphical objects interactively. Structured graphics is less useful for implementing the appearance
of the user interface. It is unnecessary to define scroll bars, menus, anod buttons using structured
graphics because they are simple to draw procedurally and their structure rarely changes. Thus,
structured graphics is not a replacement for immediate-mode graphics.

We are interested in using the Graphic library for animating graphics. Structured graphics is appro.
priate for animation if the hardware is fast enough to support it. Also, the current implementation
does not provide three-dimensional capabilities. Extending the library to support three dimensional
graphics would require significant additions to base class functionality, for example, to incorporate
operations governing lighting models and point of view, three-dimensional analogs of Contains and
Intersects, and additional information when clipping.

Of more immediate interest is the introduction of version 2.0 of C++ [13] with multiple inheritance,
among other enhancements. Though single inheritance is very useful, it often forces the programmer
to derive from one of two equally attractive classes. This limits the applicability of predefined classes,
often making it necessary to duplicate code. For example, there is no way to derive a graphic that is
both a circle and a picture; one must derive from one or the other and reimplement the functionality
of the class that was excluded.

The availability of multiple inheritance will undoubtedly change the class hierarchy shown in Fig
ure 1. Classes such as filled and open could be defined to simplify the relationships between filled
and non-filled graphics, which are currently derived as they are to maximize code sharing. Persis-

1988 USENIX C++ Conference 93

94

tence could be implemented as a separate class from which to inherit. Thus, non-persistent classes
can avoid the small space overhead caused by deriving graphic from a persistent class.

Acknowledgments

This work was supported by the Quantum project through a gift from Digital Equipment Corpora
tion. John Interrante implemented the C++ version of idrav. Paul Calder and Craig Dunwoody
provided helpful comments on earlier drafts of this paper.

References

[1] IRIS User's Guide. Silicon Graphics, Inc., 1984.

[2] P.S. Barth. An object-oriented approach to graphical interfaces. A CM Transactions on Graph
ics, 5(2):142-172, April 1986.

[3] P. Bono et al. GKS: The first graphics standard. IEEE Computer Graphics & Applications,
2(5):9-23, July 1982.

[4] Status report of the graphics standards planning committee of ACM/SIGGRAPH. Computer
Graphics, 13(3), Fall 1979.

[5] Adele J. Goldberg. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley,
Reading, MA, 1984.

[6] W.T. Hewitt. Programmers Hierarchical Interactive Graphics System (PHIGS). In G. Enderle
et al., editors, Advances in Computer Graphics I, Springer-Verlag, 1986.

[7] Keith A. Lantz and William .Nowicki. Structured graphics for distributed systems. ACM
Transactions on Graphics, 3(1):23-51, January 1984.

[8] Mark A. Linton, Paul R. Calder, and John M. Vlissides. InterViews: A C++ Graphical Inter
face Toolkit. Technical Report CSL-.TR-88-358, St~nford University, Stanford, CA 94305-2192,
July 1988.

[9] Patrick D. O'Brien, D.C. Halbert, and Mike F. Kilian. The Trellis programming environment.
In ACM OOPSLA '87 Conference Proceedings, pages 91-102, Orlando, FL, October 1987.

[10] Robert W. ScheiBer and Jim Gettys. The X window system. ACM Transactions on Graphics,
5(2):79-109, April 1986.

[11] Kurt J. Schmucker. Object-Oriented Programming for the Macintosh, pages 83-270. Hayden,
Hasbrouck Heights, NJ, 1986.

[12] Bjarne Stroustrup. The C++ Programming Language. Addi80n-Wesley, Reading, MA, 1986.

[13] Bjarne Stroustrup. The evolution of C++: 1985 to 1987. In Proceedings of the USENIX C++
Workshop~ pages 1-21, Santa Fe, NM, November 1987.

[14] I.E. Sutherland. Sketchpad: A Man-Machine Graphical Communication System. PhD thesis,
MIT, 1963.

[15] Robert L. Young. An object-oriented framework for interactive data graphics. In ACM OOP
SLA '87 Conference Proceedings, pages 78-90, Orlando, FL, October 1987.

1988 USENIX C++ Conference

A C++ Interpreter for Scheme*

Vincent F. Russo and Simon M. Kaplan

University of Illinois at Urbana-Champaign
Department of Computer Science

1304 W. Springfield Avenue
Urbana, IL 61801

Abstract

This paper reports on a project to port an interpreter written in C for a
subset of the Scheme language, to C++. The primary advantage of such a mi
gration is the greatly improved internal structure of the interpreter, increasing
modularity and decreasing the effort required to maintain and extend it. A sec
ondary advantage is that the C++ interpreter is somewhat faster. We briefly
overview Schenle, discuss the implelnentation of the two interpreters, and give
performance data. We compare the two systems from the ease of maintenance,
extension, and performance viewpoints.

1 Introduction

Scheme [7] is a dialect of Lisp, with static scoping, full function abstraction, and the
ability to treat all objects in the language (including functions and continuations) as
first-class objects. These features, along with its simple syntax, make it an excellent
language both for teaching and research. As part of the Garp [6] [5] project, we are
investigating extensions to Scheme that support explicit parallelism. Implementation
of such extensions require that we modify an existing Scheme interpreter. Scheme
interpreters are usually written in C [1]. Because of C's poor abstraction support,
the resulting code is usually difficult to modify and maintain.

To try to solve these problems, we have reimplemented the SIon Scheme inter
preter [3] in C++. This paper reports on our experience with the reimplementation.
For the purpose of this paper, we are not concerned with Scheme per se; rather we
view Scheme as an application, reimplemented in C++, and comment on the advan
tages of migrating an interpreter from C to C++.

·This work supported in part by NSF grants CCR-88-09479 and CISE-1-5-30035 and grants from
AT&T~

1988 USENIX C4+ Conference 95

96

A Scheme interpreter is an interesting candidate for such a migration because of
its internal structure. The interpret.er loops continuously through the following three
phases:

• Read. Issue a prompt. Read an expression from the terminal.

• Eval. Evaluate the expression just read. This may mutate the state of the
interpreter by introducing new or Inodifying existing bindings.

• Print. Print out the result of the evaluation.

The read phase produces a data structure representing the expression read; the eval
uator then traverses this data structure, and produces a new structure representing
the result. This is in turn traversed by the printer.

In a traditional C implementation, the cornerstones of the implementation are a
discriminated union representing components of expressions and a large evaluation
procedure which interpre~s instances of this structure depending on the tag value
of each instance, i.e. the procedure body is essentially a giant switch statement.
This means that the logical structure of the interpreter is lost, and one ends up
with two large objects, the union and the code for the evaluator, both of which
must be consistent during modification or extension of the code. This makes the
interpreter difficult to write, maintain and understand. By switching to an object
oriented implementation in C++ we distribute both the union and the evaluator over
the classes representing the elements of the union. This:

.• makes the code modular. Classes are orthogonal, and the interpreter can be
extended by adding new (sub)classes.

• reduces maintenance effort. A particular part of the interpreter (for example
closures or cons nodes) can be understood independently of other parts .

• speeds up the interpreter. We were not looking for an efficiency improvement,
but found one anyway. This has to do with the change from a discriminated

. union and switched evaluator to an explicit object-based approach and using
C++ virtual functions to implicitly store the type information.

We should emphasize at this point that the performance figures reflect a simple change
from a C to a C++ based implementation. There were some poor design decisions in
the original C implementation which affect performance. To give a fair comparison, we
have not corrected these defects in our C++ implementation; therefore our speedup
reflects differences between C++ and C, not "superior hacking skill". Of course,
correcting the design defects will result in an even greater speed improvement.

The remainder of the paper is structured as follows. Section 2 discusses the
Scheme language, and identifies the subset which we have implemented. Section 3 first
overviews how a Scheme implementation is structured, then discusses the C and C++
implementations chosen, and then compares the implementations. Section 5 gives
comparative performance figures and discusses them. We end by offering conclusions
and directions for future work.

1988 USENIX C..... Conference

2 Scheme

This section of the paper discusses the Scheme language, and the subset of Scheme
implemented in the SIOD interpreter.

2.1 Scheme Overview

Scheme is a dialect of Lisp. Its full, formal definition can be found in [7]. An excellent
introduction is [2]. The salient features of the language are:

• Few syntactic features. These include binding (define and let), assignment
(set!) conditional (if and cond), function abstraction (lambda) and continu
ation access (callIcc) constructs.

• Library of standard functions. These include mathematical, logical, symbol,
string and list operators. There is also a collection of array manipulation op
erators. Note that in Scheme operators are not a part of the syntax of the
language, but part of a standard library.

• All objects in the language are first-class, including procedures and continua
tions. This nleans that these may be passed as arguments to or returned from
other procedures.

• Arithmetic is performed using infinite-precision nUlnbers represented according
to the rules in [7], not in the native nlachine floating point representation.

• Quasiquotation. This is a way of elegantly constructing data objects where
~onle parts are literals and some are results of function applications. It is nlost
often used in macro definitions and syntactic extensions.

Following are three sample Scheme function declarations. The performance of
them is analyzed later in the paper. The forms shown bind a naIne (for example
fact) to a value - the procedure, declared by a lambda expression. Note the prefix
polish notation for function (including predefined operator) application. The form of
an if expression allows three expressions: condition, then and else parts. Parentheses
surround function applications and the lambda-expressions.

The first computes the fibonacci number of its argunlent:

(define fib (lambda (x)
(if « x 2) x (+ (fib (- x 1» (fib (- x 2»»»

The second and third compute the factorial and fictorial of their arguments.

(define fact (lambda (x) (if (= x 0) 1 (* x (fact (- xi»»»
(define fict (lambda (x) (if (= x 0) 1 (* 1 (fict (- xi»»»

Fictorial is like factorial, but always multiplies by one in order to prevent numeric
overflow for large arguments. We will discuss these exanlples in more detail below.

1988 USENIX C++ Conference 97

98

2.2 SIOD Subset of Scheme

SIOD is a simple experimental interpreter and as such does not implement the entire
language. Significant exclusions and differences are:

• Omission of quasiquotation and the continuation construct.

• Use of native machine floating point arithmetic instead of the formal arithmetic
model.

• Omission of array types.

We should note that we do want to extend the interpreter to handle the full language,
and that in our C++ version this is easy to do, given the natural abstraction barriers
induced by the object-oriented paradigm.

3 Interpreter Structures

This section of the paper describes the implementation of the interpreters. It is
broken into four subsections. \Ve first discuss an abstract model of the interpreter,
then its realization in SIOD and the C++ interpreter, and finally compare the two
implementations Cronl a software engineering viewpoint. Discussion of perforrnance
implications is deferred to the following section.

3.1 An Abstract View

The interpreter consists of three major components: the reader, which reads an ex
pression and builds an internal representation for it; the e'valuator, which traverses
this internal structure and "interprets" it, possibly modifying the state of the inter
preter in the process; and the printer, which displays the result of the evaluation.

The building block of any dialect of LISP" is an S-e~pression. Numbers, sym
bols and lists (of numbers, symbols and other lists) are all S-expressions. From the
viewpoint of the interpreter there are four classes of data object:

• Numbers.

• Symbols.

• Null. A literal constant analogous to a NULL pointer in C.

• Pairs. A pair is the building-block for constructing lists of data objects; the
first element, or car is a data object, and the second element, or cdr is also
a data object. Any complex structure can be constructed out of collections of
such pairs. Pairs are sometimes referred to as cons nodes.

The reader builds an internal tree representation of an S-expression and passes it on
to the evaluator.

1988 USENIX C++- Conference

The evaluator traverses the tree and takes appropriate action depending on the
contents of each node of the tree. It has two argunlents: the root of the (sub)tree being
traversed (which allows recursive traversing), and an environment pointer that points
to a structure holding bindings of variables to values. An environment is created
for each scope (lambda-expression or let-expression). Each environment points to
its enclosing scope, creating a tree of environments. The environment pointer points
to some element of a tree that can be traversed to identify variables visible in that
environment.

If the node is a number node, the evaluator just returns the number stored there.
If the node is a symbol node, the evaluator looks up an identifier using the envi

ronment pointer, and returns the value bound to the identifier. If no binding is found
the evaluation fails.

If, however, the node is a cons node, then the following action depends on the
car field of the node. We evaluate the contents of the car field, and then switch:

• If the car field is a reserved symbol (eg if, def ine, set!, lambda, etc) then
we interpret that form. For example, for an if this would mean evaluating the
car of the cdr field (the location of the condition part), and if that is true then
evaluating the car of the cdr of the cdr (the location of the then part) and
otherwise the else part.

For a lambda-expression, its evaluation results in the construction of a closure,
which consists of the code for the expression (the arguments and body of the
procedure) together with a pointer to the enVirOnl11ent in which the expression
is being evaluated so that the evaluator can resolve free variables correctly
according to the rules of static scope. The closure is returned as the result of
the evaluator for the lambda-expression.

• If it is not a reserved synlbol, then the expression must be a function application
and the result of the evaluation must have been a closure or a priInitive operator.

Each argument is evaluated and its result stored on a runtime stack. A new
environment is created, and linked to the environment pointer in the closure
for resolution of free variables. The formal parameters are bound to the argu
ment results on the runtime stack in the new environment just created and the
function body is evaluated in this environment.

The application of most functions requires the allocation of more space for
the results of the applications. For example, the result of the application of
the primitive procedure cons is a new pair holding the two arguments to the
function .

• There are special cases, especially concerning quotation and quasiquotation,
that complicate this model and are beyond the scope of the paper.

As the evaluator executes, it destroys references to existing data and creates new
data structures. Another part of the evaluation process is to garbage collect space
that is no longer accessible when memory fills up.

1988 USENIX C+f- Conference 99

100

Once execution of the evaluator is complete, the printer traverses the structure
representing the result of the computation and displays the result in human-readable
form.

The following sections discuss the realization of this model in the C and C++
interpreters, highlighting their differences and the advantages of the object-oriented
approach.

3.2 SIOD Implementation Details

In SIOD a discriminated union, named obj, is used to represent all the data objects.
This union contains an enumerated type field indicating whether the object in ques
tion is a cons, number, symbol, primitive or a closure node. If it is a cons node,
the union contains two pointer to the car and the cdr of the list. If it is a number, t:_e
union stores the value of the number in a C double. If it is a symbol, the union stores
a C char pointer to the symbol's string representation and a pointer to the symbols
value. If it is a primitive, the union stores a pointer to the name of the primitive (for
debugging and printing purposes), and a pointer to the C builtin function that is the
body of the primitive. Finally if it is a closure, the union contains pointers to the
environment of the closure and to the body of the code. The body of the code is
stored just like any other S-expression. The reason for using a single data structure
is nlainly to simplify garbage collection by making all elements in the heap the saIne
sIze.

3.2.1 The Reader

In SIOD, the reader scans individual tokens from the input stream and builds up the
internal representation of the input S-expressions, numbers and symbols as trees of
objs. The reader sets the type code for each obj that it creates. Symbol names are
added 'to the global environment and their values are set to NIL. Numbers are parsed
and stored internally as C doubles. All other expressions are stored internally in the
forms described above.

3.2.2 The Evaluator

The evaluator is the most complex phase of the interpreter. Overall it inspects the
type code of each obj passed into it, evaluates the obj (possibly involving recursive
calls to itself), and then returns the value in the form of another obj. For all arguments
except symbols and cons nodes, the evaluator simply returns the argument. If the
argument is a symbol, the symbol is looked up in the environment and its value is
returned. If the argument is a cons node the car is split off and evaluated in the
environment. Usually it will be a symbol and its value will resolve to a primitive or
a closure. Other values are errors. If the symbol resolves to a primitive, a builtin C
function is called to evaluate the primitive and return a result in the fornl of another
obj. This result is then returned from the evaluator. If the symbol resolves to a
closure, the environment is extended to include the closures environment, and the
code is evaluated in the new environment by calling the evaluator tail recursively.

1988 USENIX C++ Conference

3.2.3 The Printer

Of all the phases of the interpreter, the printer is the simplest. Cons nodes are
printed as regular LISP S-expressions, numbers are printed as their values, symbols
are printed as their string representations, primitives print as #<SUBR primname>
and closures print as #<CLOSURE body environment> (where both body and environ
ment are also S-expressions).

3.2.4 Miscellaneous

The remaining portions of the interpreter consist of the code to evaluate all the Scheme
primitives implemented, the initial startup code which constructs the initial global
environment containing the names of all the primitives, the top level read-eval-print
loop and the garbage collector.

3.3 C++ Reimplementation Details

When recoding the SIOD interpreter in C++, every attempt was made to keep the
essential algorithms of the C and C++ implementation identical. The C++ imple
mentation attempts to replace all the uses of the type infornlation and case statements
in the interpreter with C++ virtual functions. For example, in the C implementation,
the printer is coded with the following skeleton.

print(0)

struct obj * 0;

{
switch(o->type) {

case ConsNode:

case Symbol:
printf("%s", «Symbol *) o)->name);
break;

case Number:
print£("%g", «Number *) o)->value);

case Primitive:

case Closure:

}
}

The more complex cases are elided to save space. Given a pointer to an object 0, the
print routine would be invoked simply as:

print(1:0);

1988 USENIX C++- Conference 101

printf("Y-s", name);

printf("Y-g", value);

102

In the C++ version of the interpreter this can be restructured by creating class
Object (much like the obj struct in the C version) and subclassing it to represent the
various members of the discriminated union in SIOD. Printing an object would be
performed by the simple syntactic transformation of the above to:

o->print();

But, by making print a virtual function in class Object, each subclass of object
(Le. Symbol, Number, ConsNode, etc) can redefine how to print its value.

For example:

Symbol: :print ()
{

}

or

Number: :print ()
{

}

The obvious advantage to this methodology is the removal of the need for explicit
type information to be kept with each Object and the grouping of all the code related
to a particular subclass of object together. The net effect is that the C++ complier
becomes responsible for keeping the type field (in the form of the pointer to the object
virtual function table) and for selecting which routine to execute for each action.

3.3.1 Major Classes in the Interpreter

The major class in the C++ implementation of the interpreter is the class Object.
Object defines virtual functions to implement all the major portions of the read, eval
and print phases of the interpreter. Object is subclassed into 5 subclasses. The class
Number represents numbers, the class Symbol represents symbols, the class ConsNode
represents pairs, the class Primitive represents builtin Scheme primitives, and finally,
the class Closure represents Scheme closures.

In Scheme, any operation can be applied to any data object. For this reason
all interpreter operations are defined as virtual functions which perform no function,
or are errors, by class Object and redefined, by the subclasses in which they make
sense, to do the proper actions. For example, class Object defines the car and cdr
operations to return an empty pair. The ConsNode subclass redefines them to return,
respectively, the car or cdr of the data element. The list below names each of the
virtual functions defined by class Object and gives a brief description.

• Object * print () - Print the value of the object in a human readable form.

1988 USENIX C-H- Conference

• Object * gcRelocate() - Relocate the object to a new heap (used in garbage
collection).

• void gcRelocateComponent s () - Relocate any objects the current object ref
erences to a new heap by invoking their gcRelocate () function.

G Obj ect * eval (Obj ect * environment) - Evaluate the object in the en
vironment passed as an argument.

• Object * car() - Return the LISP car of the object.

• Object * cdr() - Return the LISP cdr of the object.

• Object * setcar(Object * nevcar) - Set the car of the object to nevcar.

• Object * setcdr(Object * nevcdr) - Set the cdr of the object to nevcdr.

• Object * pairp() - Test if the object is a ConsNode or not.

• double value () - Return the numeric value of the object in a C double.

• Object * symbolp() - Test is the object is a Symbol or not.

• Object * symbolBound(obj * environment) - If the object is a Symbol,
test whether it is bound in the environment.

• Object * symbolValue(obj * environment) - If the object is a Symbol,
return its value in the current environment.

• Object * nUllp() - Test whether the object is the null pair.

4 Comparison of the Implementations

The original interpreter contained no data abstractions per se; rather, all data types
were implemented as instances of a discriminated union with an enumerated type
field as discriminant. Most internal functions in the interpreter consist of a large
case statement to interpret the various types. Thus there was no modularity in type
handling. Adding a new type is difficult, and requires modifying many different parts
of the code. In the re-implementation of the interpreter, abstractions are introduced
and implemented by C++ classes that are subclassed from a new "Object" class.
By using virtual functions defined for "Object" to implement the primitive opera
tions on each type, all explicit type information was removed from the interpreter's
implementation. This eliminated the case statements, and simplifies adding new ab
stractions. The implementation demonstrates the expressive power of class hierarchies
and object-oriented programming.

As an example, consider an attempt to modify both interpreters to extend Number
to Integer and Real. In the original C interpreter, almost every part of the interpreter
would need to be explicitly rewritten. New cases would have to be added to the

1988 USENIX C-++ Conference 103

20

I

C "I
I

I

I
I

I
I

/,

""A

1510

25

20

Runtime 15
(in seconds)

10

5

0
5

argument

Figure 1: fib function

case statements where ever Number was used. In the C++ version, we would simply
subclass Number into Integer and Real, and redefine the relevant operations on the
subclasses.

The print routines would become:

class Integer : public Number {
void print() { printf(tlYedtl , value); }

}

class Real : public Number {
void print() { printf("Yeg", value); }

}

5 Performance

The three scheme functions shown earlier were used to compare the two interpreters.
Data were gathered on an Encore Multimax using NS32332 processors running UNIX
in single user mode and averaged over 10 separate runs.

Figure 1 shows the runtime of fib versus its argument. As can be seen from the
graph, the C++ interpreter outperforms the C version. Figures 2, and 3 show the
relative performance of the two interpreters on the fact and fict functions. Both
functions show a linear relation between their arguments and their runtimes. The
fict function multiplies repeatedly by 1 rather than by x, to get the effect of the
multiplications without overflows. This allows it to run for a much larger argument

104 1988 USENIX C-++ Conference

Runtime
(in seconds)

0.15

0.1

0.05

c

c++

O-L..----~------~-----"'O"'-r__-~

50 100
argument

Figure 2: .fact function

150

30 ---.------------------------,

25

20

Runtime
(in seconds) 15

10

5

1988 USENIX C-H- Conference

5000 10000 15000 20000
argument

Figure 3: fict function

25000 30000

105

205 10 15
argument

Figure 4: fib cons work

o

50000

cons work

100000

150000

O-+----~---r_===-_,..---_.___J

800

600

cons work
400

200

50 100
argument

Figure 5: fact cons work

150

value. The performance data show that the larger the argument the greater the speed
difference between the two interpreters.

5.1 Analysis of Performance Data

The C++ version is consistently faster than the C version of the interpreter. This
can most likely be credited t· the use of virtual functions. There invocation is faster
than checking an explicit tYI code and executing a case statement. This is encour
aging because it indicates thi there is actually a performance bonus to be gained by
properly structuring code ace 'nLing to accepted object-oriented program development
guidelines [4].

In all three of the test cases, the amount of cons work (a rough measure of the
number of data structure traversals and evaluations performed by the interpreter),
rises proportionally to the argument (see figures 4, 5 and 6), but the runtime for the
C version rises faster than that of the C++ version.

106 1988 USENIX C-++ Conference

150000 ----r---------------""'7I

100000

cons work

50000

5000 10000 15000 20000 25000 30000
argument

Figure 6: fict cons work

6 Conclusions

We have reported on the reimplementation of an interpreter for Scheme in C++. We
found that the C++ version is:

• More modular. The structure of the code is improved because, rather than
having a monolithic discriminated union and equally large switch to evaluate
instances of the union, we use a collection of small, orthogonal objects.

• More easily eztended. Because each type in the system is implemented as an
independent (sub)class, code modification during extension to the system is
minimized.

• More reliable. Better code structure leads to a Qlore robust implementation.

• Faster. Simply restructuring a traditional C progranl into a class hierarchy, and
using an efficient object-oriented language for the inlpleluentation eliminates
costly switches based on discriminants and speeds up the interpreter.

Object-oriented programming is well-known for its improvement to program struc
ture, but programming mythology suggests that there is a performance price to be
paid for this improvement. Our results debunk this myth.

Our performance figures are not the last word on the speedup that can be gained
from a change to the object-oriented approach. There are several design flaws in
the initial C implementation which were highlighted by the change to C++; we have
ignored fixing these in this paper in order to get a fair comparison of performance
data, but we are currently working on extensions to the interpreter to correct these
flaws.

1988 USENIX C++ Conference 107

108

Acknowledgements

We are deeply indebted to George Carrette for his effort in implementing the SIOD
Scheme interpreter. We would also like to thank Roy Campbell for his comments.

References

[1] The mit c scheme interpreter. MIT public domain software, 1987.

(2] Harold Abelson and Gerald Sussman. Structure and Interpretation of Computer
Programs. The MIT Press, 1985.

[3] George J. Carrette. The siod (scheme in one defun) scheme interpreter.
comp.source.unix newsgroup, 1988.

{4] Ralph E. Johnson and Brian Foote. Designing reusable classes. The Journal of
Object-Oriented Programming, 1(2), 1988.

[5] Simon M. Kaplan and Roy H. Campbell. Designing and prototyping in grads.
In Proceedings IEEE Software Engineering Conference, Liverpool, England, July
1988.

[6] Simon M. Kaplan and Gail E. Kaiser. Garp: graph abstractions for concurrent
programming. In ESOP '88 Proceedings, March 1988.

[7] J. Rees and W. Clinger (Editors). Revised (3) report on the algorithmic language
scheme. Sigplan Notices, 21(12):37-79, December 1986. .

1988 USENIX c++ Conference

GPIO:
Extensible Objects for Electronic Design Tools

Roger Scott
Prakash Reddy
Russel Edwards·
David Campbellt

Data General Corp.
433 N. Mathilda Ave.
Sunnyvale, CA 94086

roger@panther.sv.dg.com

August 31, 1988

Abstract
GPIO is a library of object-oriented data structures developed at Data General

for use in building internal Computer Aided Design / Computer Aided Engineering
(CAD/CAE) tools. The goal of GPIO was to provide a software platform on which to
build these tools that included: efficient storage and retrieval of design objects into/from
a filing system; the ability for application programs to extend the data in the objects
without modifying GPIO itself; and the ability for application programs to determine the
implementation of GPIO's most important data structuring entity - the Collection.
GPIO is implemented entirely in C++ [1] and makes extensive use of virtually all
C++ features including inheritance, virtual functions, data hiding, inline functions,
constructors and destructors, overloading, pointers to (virtual) member functions, static
members, and global objects with constructors and destructors.

This paper will discuss the system of classes that comprise GPIO, the techniques
GPIO uses for storing and retrieving structured data, the techniques used to allow ap
plications to extend GPIO objects, and the details of the collection abstraction used
within GPIO. Along the way, applications of various C++ features will be noted, on
going open issues will be discussed, and the benefits of hindsight will be applied. A
number of perceived C++ deficiencies will also be discussed, including the need for 'pa
rameterized' types, multiple inheritance, and class 'meta objects'. Developers have built
several application programs using GPIO and this paper will describe their experiences
using this sophisticated class library.

1 Introduction

GPIO was originally conceived as a means of assuring that different application programs in
our internal CAD/CAE system would agree on both the format and the meaning of the files

-now affiliated with Valid Logic Systems, Inc. San Jose, CA
t now affiliated with Valid Logic Systems, Inc. San Jose, CA

1988 USENIX C* Conference 109

110

stored in our design database. The problem of sharing data among an assortment of CAD
tools is among the most important that CAD system builders face, and is not new. Tradi
tional approaches to this problem fall into two categories. The first is 'no solution', where
each application independently locates, reads, parses, and interprets the data files. With this
approach only discipline and luck provide coherence. The second is a procedural interface
to the database, often in the form of an 'access library'. This scheme provides much greater
assurance of coherency, but still requires that each application design data structures from
scratch and then manually bridge the gap between those data structures and the procedural
interface. GPIO is an attempt to apply the full power of Object Oriented Programming [2]
to the CAD database problem. The result is the logical next step from procedural interfaces:
a library of object oriented data structures for use in building CAD/CAE applications-an
object interface.

The design of the file formats and the design of the data structure abstraction were very
closely tied. Both follow a very simple model of fixed form aggregates, or structures, and
collections. The grammar of the file format is completely predictive, so, given an object
as a starting point, generating the file (when writing) and parsing the file (when reading)
are both trivial tasks. In fact, throughout most of GPIO reading and writing are unified
operations. Because the structures are fixed form and the collections are homogeneous, we
have managed to keep 'synchronization' overhead to a minimum in GPIO files.

Because different applications place different requirements on their data structures, typ
ically choosing widely spaced points on the time-space tradeoff continuum, we had to defer
to GPIO's 'customers' as many data structure design decisions as possible if it was to be
widely accepted. We initially adopted a very conservative design style which called for the
GPIO data structures to closely mirror the file formats, producing, in effect, an unannotated
parse tree. The intention was that any annotation of the the tree would be done by each
application as it saw fit. We recognized that this might turn out to be lower than the lowest
common denominator of the applications, but we reasoned that it would be easier to build
up GPIO over time to meet common needs than it would be to remove excesses that resulted
in unacceptable overhead for some applications. Over time we have recognized additional
common needs and incorporated these in GPIO; this paper describes its current state.

2 The Class System

GPIO is actually an application-specific class library built on top of a general purpose class
library. Because the general library is used extensively in the implementation of GPIO, it
will be described first.

2.1 DG Library

The DG C++ library is an assortment of general purpose classes that provides convenient
ready-made solutions to many common programming problems. It currently includes a
rudimentary string package, a sophisticated hash table/set package, two sizes of bit array
based sets-of-integers, an exception handling system,. and an easy-ta-use symbol table class.

1988 USENIX C+t- Conference

2.1.1 String

Our String class's main purpose is to eliminate one of the most common sources of errors
in C programs-string storage mismanagement. By starting with a very conservative 'allo
cate space and copy' strategy we have nearly eliminated problems with shared strings and
permanent data structures pointing to temporary strings or literal strings. The inclusion of
appropriate constructors and type conversion operators makes String objects interchange
able with 'const char *'s.

2.1.2 Set

Our Set class provides a very general set of pointers to objects capability. An object can
simultaneously be an element of multiple Sets, and the same object can participate in more
than one kind of set. Sets support a full compliment of set-theoretical operations, plus the
ability to look up an element given a pointer to an object.

Class Set is implemented with a pointer to a (variable sized) HashTable object and
a counter that holds the set's cardinality. Class HashTable contains an array of pointers
to HashTableElement objects. Class HashTableElement contains nothing but a trivial
virtual destructorl . HashTable:: Slot (HashTableElement *, PHashMember, PEqMember)
is the core of the hashing and set implementation. It returns the address of the slot in a hash
table that either does contain or would contain a (pointer to a) given HashTableElement.
The key to the generality of this method2 is found in the second and third arguments, which
are method variables (pointers to member functions of HashTableElement) that are used
to compute a hash function of an object and to compare two objects for 'equality'. In
practice, these are never actually members of HashTableElement, but rather members of
classes derived from it.

To date the only direct user of class HashTable / HashTableElement is class Set /
SetElement. SetElement is derived from HashTableElement, and adds virtual func
tions Hash() and Eq(), whose default implementations are based solely on object addresses.
Class Set includes two virtual member functions, HashFct() and EqFct(), that return
method variables that are supplied to HashTable: :Slot (...) by Set: :Slot (...). The
default implementation of Set: :HashFct () [Set: :EqFct ()] is to return SetElement: :Hash
[SetElement: :Eq]. Because SetElement: :Hash() and SetElement: :Eq() are virtual, many
different kinds of Sets can be created by deriving from SetElement and reimplementing
Hash() and Eq(). HashFct() and EqFctO only need to be reimplemented if you want to
have the same object occurring in more than one kind of set at a time. This degree of
generality in Set is a fairly recent addition whose positive implications have not really been
pursued in GPIO.

Sets use a dyn~mic hash tabl~ sizing scheme similar to that described in [3] except that
our table sizes are always prime and we do not allocate tables for empty Sets. HashTables
include reference counting features that are used to implement copy-on-write optimization
of assignment and initialization of Sets.

lwe almost always make destructors virtual so that delete can safely be used in cases where a pointer
may point to a derived-class object

2this paper will use the terms method and member function interchangeably

1988 USENIX C++ Conference 111

Because Sets do not have a natural ordering to their elements, we provide a SetEnu
merator class that can be used to enumerate the elements of a Set. By use of the reference
counting feature of HashTable we have made it safe to modify a Set while enumerat
ing it-a feature whose earlier absence was the source of some obscure bugs in application
programs.

2.1.3 Set16, Set32

Class Set16 provides for sets of integers between 0 and 15 (typically enums) that are im
plemented as bit vectors stored in short words. Set32 is similar except for being larger (0
to 31, stored in long words). Both support a full compliment of set theoretical operations,
almost all of which are implemented with inline functions that generate code identical to
that resulting from the 'equivalent' C 'bit twiddling' expressions.

2.1.4 Exception, Handler

Our exception handling package is pretty much yet another setjmp()/longjmp()-based
implementation. We allow for nested handlers and re-raising of exceptions. We do not
address the problem of destructors for local objects being skipped, except with a caveat in
the documentation.

2.2 GPIO Proper

GPIO itself consists of a group of non-application specific classes, and a few groups of
application specific classes.

2.2.1 Core classes

Class Class performs a function similar to the Smalltalk-80 [4] class Class-it describes
GPIO classes that can be redefined by application programs. It consists of virtual functions
to identify the class, allocate an object of that class, allocate a collection of objects of that
class for general use, and to allocate a collection of objects of some other class suitable for
use as a member of an object of this class (this last one will be explained in section 3.2).
Unlike Smalltalk-80 (or OOPS [5]) GPIO does not want to know about all application
defined classes-it only wants to know which GPIO classes have been derived from by an
application-thus it is not fully general like these other systems.

Class Object, as in so many systems, is the root of the application-level GPIO class
hierarchy. In the absence of multiple inheritance (hereafter,. m.L) Object is derived from
SetElement so Set can be used to implement some GPIO collections. Object contains a
static member that points to the current quasi-global IOHandle that is to be used to write
or read GPIO objects. Since many GPIO objects participate in collections that distinguish
objects by a String 'name', Object includes a virtual function KeyString() that can be
implemented in derivedcla.sses to return this 'name'. Object reimplementsHash() and Eq()

from SetElement based on KeyString(). Object also defines virtual functions IdIO(),
PageIO(), IO(), and GIO() which are used to implement the non-virtual functions OIO()
and OGIO() in a 'parameterized' manner. IdIO(), whose default implementation is a noop, is

112 1988 USENIX C++- Conference

implemented by those classes whose instances are pointed to by other objects, in conjunction
with class PointerMap. 'PointerMap is an associative array (again derived from Set) that
allows us to store actual pointer values in files for those object relationships that are not
reasonably expressible as collections.- This is achieved by arranging the file formats such
that objects pointed to always occur before objects that point to them and then having the
'pointed to' objects store their memory address when written. When such object are read.,
their file 'address' and their current memory address are stored in the pointer map in the
current IOHandle. When an object that points to it is read it reads the old pointer value
from the file, looks it up in the pointer map, and stores the resulting memory address in
the pointer member. Both sides of this operation are encapsulated in member functions of
Object: IdIOAction() for implementing IdIO(), and I oAndBind(...) for doing I/O on
pointers. While it is a nuisance for objects to have to 'know' that they may be pointed to,
it saves a lot of space in the files and in the pointer map if most objects do not have to store
their address, and this has been observed to be the case in GPIO.

10 () and GIO () are the non-graphical and graphical object I/O routines, respectively,
that are reimplemented in each derived class. Implementations of GIO () always call the same
class's 10 () routine; in the case of fundam~ntallynon-graphical objects, this is all they do.

Class IOHandle is a vaguely Stream[l]-like entity that encapsulates all of the low-level
details of how files are written and read. It understands some simple types and allows for a
fairly compact file format. It is currently based on stdio operations, because we were most
familiar with them. In addition to maintaining the state necessary for file I/O, IOHandle
also contains a PointerMap for use when reading an object and a method variable that is
the appropriate kind of collection I/O for objects to do. Encoding this state in a method
variable is another example of the 'data-driven' style that GPIO is written in-we tried
to minimize the use of explicit flow-of-control constructs. The result, in conjunction with
extensive use of virtual functions, is code with very few if statements and almost no avitch
statements.

Collection and CollectionEnu are abstract classes that define the interface GPIO
expects all derived collection and collection enumerator classes to support. Collection
specifies virtual functions to add and remove Objects, to remove all elements, to determine
the cardinality of the collection, to generate an appropriate enumerator object, and to get
the Class object that describes the objects that are contained in a collection. In addition,
Collection provides a number of (for now) non-virtual functions built from these opera
tions to do such things as add and subtract collections and delete all of the elements of a
collection. The most important Collection methods from GPIO's perspective are IO() and
GID(), which perform I/O (non-graphical and graphical) on each element of a collection.
Both are implemented by calls to the 'parameterized' inline function -ID() as follows [most
global identifiers in GPIO start with GP; error checking has been omitted for brevity]:

inline
void
GPCollection::_IO(int G) {

void (GPDbject::*piof)();
piof =G ? iGPObject::OGIO : iGPObject::OIO;
GPIOHandle *h = GPObject::IOHandle;

1988 USENIX C* Conference 113

GPClass *klass =Class();
GPeRecord br =klass->Identifier();
if (h->vriting(» {

II if writing non-graphical objects, map the collection
II 'type' to its non-graphical equivalent
GPeRecord rec = G ? br : GPUnG[br];
GPBaseRecord base(rec, Cardinality(»; II a collection descriptor
h->Write(lbase, BASERECORD);
GPCollectionEnu *en = nevEnu();
GPObject *p;
vhile (p = en->next(»

(p->*piof)(); II call via pointer to member function to vrite it
delete en;

} else {
GPBaseRecord base;
h->Read(lbase, BASERECORD);
int i;
for (i = base.RecordLength; --i >= 0;) {

II allocate an object of the appropriate class
GPObject *p = klass->NevObject();
(p->*piof)(); II to read it
add(p) ;

}
}

}

void
GPCollection::IO() {

_10(0);
}

void
GPCollection::GIO() {

_10(1);
}

Class CollectionEnu defines virtual next() and init() functions that are used to
advance through a collection and to reset an enumerator, respectively. The CollectionEnu
returned by Collection: :nevEnu() will always be set up to enumerate the Collection that
generated it.

Class GPSet and class SList are implementations of Collection employing Set and
singly-linked lists of pointers, respectively. Unfortunately, neither of these are purely imple
mentations of the Collection interface-both affect semantics in subtle and not-50-subtle
ways. For instance, GPSets also support operator[String] for looking up objects by
name, and GPIO assumes this capability in some places that it really should not (without
making the need for this feature explicit).

114 1988 USENIX C+t Conference

One of these two classes is the default implementation of every application-level collection
in GPIO. Because we firmly believe in type-secure interfaces we derive type-specific collection
classes from one of these two for all application-level GPIO classes. This process of adding
an implementation to a functional interface and then adding a type-specific interface to that
is one area where the reality of C++ does not live up to the promise; we will revisit this issue
in the 'problems encountered' section. All GPIO collections are homogeneous; we did not
feel that our objects were sufficiently purely object-oriented for heterogeneous collections to
be workable.

The design objects that are stored as files are referred to as named objects and are rep
resented in the GPIO class hierarchy by class NamedObject. Examples of named objects
are schematic drawings, schematic symbols, and connectivity files, or 'netlists'. NamedOb
ject is derived from Object and contains a member of class Name that is a structured,
application-specific name for that design object. This Name is used by the named object
locator to locate the file representation of the object in our filing system. The details of the
operation of the named object locator system, an interesting GPIO-based C++ application
itself, are outside the scope of this paper. From an application perspective, classes derived
from NamedObject are the lowest-level entities involved in I/O operations; NamedOb
ject provides Read(. ..) and Write (. ..) methods that entirely encapsulate the lower-level
details of object and file I/O. Both routines caJI a common, private RW(.•.) method that
sets up exception handling, asks IOHandle to open the file for the object's Name, caJIs
the object's (virtual) IO() function, and cleans up. RW() also takes care of stacking 10
Handles when nested I/O operations are required. NamedObject: : Read/Write() take an
optional method variable argument that is actually the function called by RW () and is ei
ther Object: :10 or Object: :GIO. The purpose of this generality will be apparent when we
discuss Conn and Schematic.

2.2.2 Overview of Application Level Objects

The application level objects in GPIO represent the components of one level of a hierarchical
electronic design. GPIO currently supports three levels of representational detail: abstract,
where only the interface to a block or cell is specified; connectivity, where the electrical
connections among the interfaces of subcomponents of a block and between the interface
to the block itself and its subcomponents is specified 'graph theoretically'; and schematic,
where connectivity information is augmented with graphical information and cosmetic data
to produce a representation suitable for viewing and editing with a graphical editor. An
interesting feature of GPIO is that it recognizes the distinction between graphical and non
graphical versions of objects at a very low level. This allows it to process graphical objects
as if they were non-graphical, a capability whose usefulness will be demonstrated below.

2.2.3 abstract

The most abstract of the three representations of an electronic design is what we call the
abstract. It consists of class Abstract, which is a NamedObject and contains a collection
of Ports. An Abstract is much like the declaration of a function in a programming language,
and a Port is much like a formal parameter. Class Pageltem is a semi-abstract class that
is derived from Object and is the base class for aJI application-level classes whose instances

1988 USENIX C-H- Conference 115

(can) occur on individual pages of a schematic drawing. Class Port is a PageItem (again,
only due to lack of m.L) and consists of a name, a type, a width (for multi-bit signals), and
a collection of NameVals, or name-value pairs, which is essentially a property list.

2.2.4 connectivity

The intermediate level representation is connectivity. It is analogous to an abstract syntax
tree for a function in a programming language in that it contains all of the essential infor
mation and no incidental information. It is embodied in class Conn, which is derived from
Abstract and contains a collection of Abstracts, a collection of SymInsts, a q>llection of
PortInsts, and a collection of Nets. The Abstracts are essentially declarations of other
blocks, or designs, that are used in this design. The SymInsts are symbolic instances of
these other designs. Abstracts are the first example of an object that is pointed to by other
objects and thus implements IdIO() with IdIOActionO.

Class SymInst is a PageItem plus a pointer to the Abstract of the design of which
it is an instance, an instance-specific name, a time stamp, a collection of PortInsts, and
a collection of NameVals. SymInsts are the first example of an object that points to
another object and thus uses IOAndBind(). Class PortInst is derived from Object and
contains a pointer to the Port of which it is an instance (either on an Abstract, when
a PortInst is within a SymInst, or on a Conn, when it is directly part of a Conn), a
pointer to the Net, if any, that is connected to this port, a 'back' pointer to the SymInst
this PortInst is part of (or nil), and a collection of NameVals. As is apparent, PortInsts
serve different purposes depending upon whether you are looking 'down' the hierarchy (from
Conn ,to SymInst) or 'up' (at the interface to a Conn, from within it). PortInsts are
similar to actual parameters in a programming language.

Class Net is a PageItem plus a name, a 'back' collection of PortInsts that it connects
to, and a collection of NameVals. The 'back' collection of PortInsts associated with a
Net is an example of annotation of the 'parse tree'-it is redundant information that is
not stored in the files, but rather it is constructed on-the-fly as a Conn is being read.
This is a natural consequence of the fact that PortInsts automatically maintain this 'back'
relationship whenever their Net pointer is modified. This collection, and the 'back' pointer
from PortInsts to SymInsts, are both essential for efficient traversal of connectivity, thus
their inclusion in the basic GPIO data structures.

2.2.5 schematic

The least abstract representation currently supported by GPIO is schematic. Schematic
objects are used in our CAD system to store schematic drawings for both logical and cir
cuit level electronic designs. Continuing the programming language analogy, schematics are
analogous to the source code for a function. They are a human-readable representation of
information that is meaningful to a computer program plus cosmetic details that may be
helpful to humans but are ignored by computer programs. Many of the classes at this level
are graphical versions of classes at the connectivity level. Classes that are in this relationship
have names beginning with 'G', such as GAbstract, GSymInst, GPort, GPortInst, and
GNet. Along these same lines you might think of a Schematic as a 'GConn'. All of these

116 1988 USENIX C+t Conference

'G' classes implement both IO() and GIO() The schematic level contains two named objects
derived from Abstract: Schematic and Symbol.

Class Schematic, which is derived from Conn, redefines all of Conn's collections and
adds two of its own. The Ports from Abstract become GPorts; the Abstracts, SymInsts,
PortInsts, and Nets from Conn become GAbstracts, GSymInsts, GPortInsts, and
GNets, respectively. Additionally, there is a collection of Shapes, which are cosmetic
graphics such as lines, polygons, and arcs, and a collection of Texts, which are graphical
strings with an assortment of display attributes.

Class GPort is derived from Port and implements the port's name as a Text object
rather than a String. GPort adds a Location member to describe the port's position
on a page and a collection of NameValInsts, which are graphical instances of NameVals
containing a pointer to the NameVal of which it is an instance and a collection of Strin
glnsts, which are instances of Strings containing a pointer to the String of which it is an
instance and a few members that hold display attributes. Class GAbstract is derived from
Abstract and adds only a pointer to the graphical Symbol of whose design it is the ab
stract. GAbstract: :GIO () performs the additional function of maintaining a global Symbol
table that is shared among all Schematics. Class GSymInst is derived from SymInst.
It redefines Symlnst's PortInsts to be GPortInsts, redefines the Abstract pointer to
be a GAbstract pointer, adds a Location member that specifies the position at which an
instance of a Symbol is to be drawn on a page, and adds a collection of NameValInsts.
Class GPortInst is derived from PortInst. It redefines the Port pointer to be a GPort
pointer, the Net pointer to be a GNet pointer, and the SymInst 'back' pointer to be a
GSymInst pointer. It also adds a collection of NameValInsts.

Class GNet is derived from Net. It redefines the PortInsts to be GPortInsts and
adds a collection of Wires. Class Wire is derived from PageItem and contains a collection
of Segments and a collection of NameValInsts that are instances of the NameVals that
are attached to GNets. Class Segment is derived from Object and consists of two Points.

Class Symbol is derived from Abstract. It, like Schematic, redefines the Ports to be
GPorts and adds collections of NameVals, NameVallnsts, Shapes, and Texts.

Classes NameValInst, StringInst, Location, Text, Shape, Wire, and Segment
are purely graphical and do not even bother to implement IO(). Consequently, they are
completely avoided by the 10() routines of the other schematic classes.

2.2.6 connectivity from schematics

Just as the source code for a program must be parsed before it can be compiled or interpreted,
so must a schematic drawing be processed to extract the connectivity information that
is needed by most CAD tools. Because GPIO's schematic level data structures are all
derived from its connectivity level structures, a GPIO-based application could just read in a
Schematic object and ignore the derived class information that is not needed. There are two
related problems with this: first, the schematic files are much larger than the connectivity
files and thus take longer to read; and second, the unneeded information in the graphical
structures can require an unacceptable amount of space in some applications.

GPIO addresses this problem by providing Schematic with a method called WriteConn()
that writes out the Schematic as if it were a Conn. This is where the parallel IO()

1988 USENIX C+t Conference 117

and GlO() Object and Collection methods come in, as well as the optional argument to
NamedObject: :Read/Write(). Since GlO() routines are always implemented as calls to lO()
routines plus I/O of the additional graphical data, the result of performing non-graphical
I/O on all the schematic level objects is identical to the result of performing it on the cor
responding connectivity level objects. A description of exactly how this is implemented is
too involved for this paper, but it involves manipulation of the quasi-global method variable
that controls which Collection I/O method objects use on their member collections.

WriteConn() is used by Schematic: :Write(. ..) to produce a separate file containing
only connectivity informatibn. Applications that only want connectivity for a design can
then create a Conn object for that design and Read() it in. Because it was created from
the schematic data at the same time that the schematic data was written, it is guaranteed
to be synchronized with it.

3 Extensibility

One of GPIO's goals was to allow application programs to extend its data structures to suit
their needs without having to change GPIO itself. Since GPIO data structures are defined
in terms of objects (aggregates) and collections, these are the things that an application
can extend. Both of these entities are represented in GPIO by C++ classes, so the natural
mechanism for extending them is C++ class derivation, or inheritance.

3.1 Application-derived classes

Since the original purpose of GPIO was to ensure agreement between different applications
as to the form and content of data files, we decided early on that the 'default' GPIO objects
would completely define the information content of the files. The intention of extensibility
was not to allow applications to add information to the objects, at least not information
that would be stored in the files. Instead, the intention was to allow data (Le., redundant
information) and application-specific information to be added to the objects for run time
use only.

The implementation of this capability has taken several forms, but all of them were
trying to simulate 'virtual' constructors. The current scheme uses class Class to encode
knowledge of how to construct an object of each of the application-redefinable classes. When
an application derives from a GPIO class, say from SymInst to MySymInst, it also derives
from the corresponding descendent of class Class, SymInstClass to MySymInstClass,
and creates a single static object of this new meta-class. As part of the derivation process,
the application will reimplement newObject() to return a new instance of its derived class,
MySymInst. The constructor for the default GPIO meta-classes is designed so that the
global pointer-to-meta-class-object that GPIO knows about, SymlnstCls in this case, will
end up pointing to this instance of the application-derived meta-class, MySymInstClass.
Internally, GPIO never news application redefinable classes; instead it invokes the NewObj ect
method of the appropriate meta-class object:

Symlnst *si =SymlnstCls->NewObject(); II when we know the type

118 1988 USENIX C+r Conference

Class *cls = ... ,
Object *p = cls->newObject(); II when we don't [see Collection::_IO()]

3.2 Application-derived collections

Collections are the one area where GPIO is purely object oriented; class Collection contains
nothing but methods, many of them virtual. GPIO defers implementation decisions about
collections to applications in two ways. First, it allows applications to redefine the default
collection implementation for each application-redefinable class, for instance, all collections
of Portlnsts. Second, it allows applications to control what type of collection is used for
a given class for each case where such a collection occurs as a member of another object,
for instance, the Portlnsts collection in a Symlnst can be different than the Portlnsts
collection in a Net. The purpose of this generality is to give applications as much control
as possible over the time-space tradeoffs. In a space-critical application the less fr~quent1y

used collections could be reimplemented to use minimal space (or non at all, theoretically).
The implementation issues for application-redefinable collections were very similar to

those for redefinable objects. GPIO always invokes methods of the meta-class objects when
creating collections. Recall that class Class has a method newCollection() and a method
newCollection(Class *ofClass). The first of these allocates the 'default' collection of
the class described by the meta-class, e.g. SymlnstClass: :newCollection() creates a new
instance of the default Symlnsts collection. The second of these allocates a collection of the
class described by its argument, ofClass, suitable for use as a member of the class described
by the meta-class, e.g.

Symlnst::Symlnst(...) {

portlnsts = SymlnstCls->NewCollection(PortlnstCls);

}

The default implementation of newCollection(Class *ofClass) simply returns
ofClass->newCollection(), so that all member collections of the same type of object are
the same.

All of this deriving, reimplementing, and declaring of objects can get rather tedious,
especially since within GPIO, and for most applications, the process is very mechanical. In
an attempt to alleviate these problems, GPIO provides several horrendous token-splicing pre
processor macros for generating both declarations and implementations of derived classes.

4 Experience

GPIO has so far been used for four different sorts of applications. It was used to replace the
database portion of our existing CAD system, while leaving the remaining portions largely
intact. This was an interesting exercise, because most of the system was written in PL/l.

1988 USENIX c++ Conference 119

c++ actually turned out to be more helpful than not in the integration task. Because the
goal of this project was not to build new applications based on GPIO's objects, but rather
to build existing PL/l data structures from GPIO's objects, this was less than an ideal
showcase for GPIO's capabilities. It did, however, demonstrate that GPIO worked and that
it was efficient enough in execution speed, memory usage, and data file sizes, to be practical
even when used in this rather twisted way.

Some of the tools in the system were rewritten from scratch in light of GPIO. One of
these is a browser/librarian program that does not actually operate on the contents of the
design data files to any appreciable extent. Consequently, it was able to use GPIO 'as is'
and it did not stress any of GPIO's more sophisticated extensibility-related features. One
'substantial' tool that was rewritten was our schematic verifier-a program that is something
like a 'lint' for schematics. It performs a fairly detailed semantic analysis of a drawing and
reports a number of common errors. In order to do the degree of analysis it does it needs
more powerful objects than the ones provided by default in GPIO, so it was a reasonably
good test case. It derives off of most of the 'G' versions of the connectivity objects; in fact,
it turns out that if you want type-secure interfaces and you don't want to end up casting
everywhere you are forced to derive from all members of a 'related' set of classes if you derive
from any of them.

The fourth use to which GPIO was put was to build a brand new utility that would
allow textual descriptions of connectivity (e.g., SPICE net lists) to be stored in our CAD
database. This application was not particularly demanding, but it was the first program to
build GPIO structures 'from scratch'. The developers of this program were not affiliated
with the developers of GPIO at all, so they faced a steep learning curve.

So far we have not had any applications reimplement the default collection for any GPIO
object type, let alone exploit the capability of using different collection types in different
contexts. There are several possible explanations for this, but it is quite possible that some
of these features are excessively general.

5 Problems Encountered

By far the most difficult problem we faced was getting used to C++ and object-oriented
design.' Early versions of GPIO were little more than glorified C structs with trivial Set
and Get methods for each member. The present library is the result of a year of nearly
constant refinement and redesigning. In the search for solutions to our problems, we left no
stone unturned in C++. This was at once an interesting and frustrating mode to operate
in, since C++, being a new language, had (and still has) numerous little-explored areas.

Perhaps the biggest impediment to a clean conceptual design is the problem of creating
type-secure interfaces to implementations of abstract classes. We would very much like the
hierarchy of our collection classes, at some level, to mirror the hierarchy of the classes of
the objects in those collections. Unfortunately, in order to do this today and still retain
independent control over how each collection is implemented we would be forced to replicate
the implementation for every type of collection. We are not certain, but we suspect that one
of the 'parameterized class' schemes being bandied about might solve this problem.

An implementation problem that we faced was how to construct objects whose members
require different initialization in derived classes than in base classes. The most common

120 1988 USENIX Ci+ Conference

case of this in GPIO is the connectivity-level classes that contain collection members. These
members are not actually 'collections, but pointers to collection objects. The schematic
level (G) objects derived from these use the same pointers to point to different collection
objects, but we would like to only initialize those pointers once. Our initial 'solution' was
to use virtual functions to initialize these pointers, but this does not work because during
the execution of a base class constructor the virtual type of the object is the base class, not
the derived class (although the analogous situation is not true for destructors). As things
stand, there appears to be no good way to solve this problem. For now we are allocating the
collections in the base class constructor, then deleteing them in the derived class constructor
and allocating the derived class's collections.

Another recurring problem has been the lack of m.L Its absence has forced us to define
common methods at lower levels in the class hierarchy than really makes sense in order to
have them available in all of the right derived classes. We have done some exploratory work
with an experimental m.L version of C++. Our initial impression is that m.L can provide a
very high degree of conceptual elegance, but it can also be very expensive in terms of object
size when used extensively.

It might be useful to have meta-classes built into C++ so that such things as the name,
size, constructors, and destructors for a class would be explicitly available as 'first class'
entities. This would also open up some interesting opportunities for programs to control the
'dynamic' type of objects themselves:

It should be mentioned that C++ significantly overtaxes the functionality of most linkers
that we have used. Features such as static object construction/destruction and sharing of
virtual function tables which depend on linker support are very difficult to use. Our suspicion
is that before too long C++ will needs its own compilation and linking paradigm not built
out of the simple tools used for C programs. Once this program building environment is in
place C++ will be free to clean up some of the current problem areas.

References

[1] Stroustrup, Bjarne: The C++ Programming Language. Addison-Wesley, 1986.

[2] Stroupstrup, Bjarne: What is Object-Oriented Programming? Proc. 1st European Con
ference on Object-Oriented Programming. Paris, 1987.

[3] Cox, Bradley: Object-oriented Programming: An Evolutionary Approach, Addison Wes
ley, 1986

[4] Goldberg, A., and Robson, D.: Smalltalk-80 The Language and its Implementation, Ad
dison Wesley, 1983.

[5] Gorlen, Keith: An Object-Oriented Class Library for C++ Programs, Software-Practice
and Experience, December, 1987.

1988 USENIX CoHo Conference 121

122 1988 USENIX C-H- Conference

c++: From Research to Practice
s. B. Lippman

B. E. Moo

AT&T Bell Laboratories
Warren. New Jersey 07060

1. Introduction

Research into language design has continued apace essentially since the inven
tion of high level languages in the fifties. Each year sees yet "Ulother new language
vie for inclusion into the much more restricted set of languages used for serious
development. Few succeed.

Atone level. of course. C++ is being used in practice because it is a very
pleasant language in which to program. But. other new languages exist that are
pleasant to program in and other languages have facilities that mesh cleanly and
support programming at higher levels of abstraction. Yet we are here at a .C++
conference and few other languages have generated interest suffident to justify
such a gathering. Why C+t?

For the past two years•. we have been involved in the effort to support C++:
initially in the development organiZation that supports and distributes the AT&T
C++ Translator. more recently focusing on spreading the use of C++ on major
development projects within AT&T Bell Laboratories. Through this experience we
have come to believe that much of the success of C++ is due to what we call the
"meta-lingual" aspects of the language. By this we mean those aspects of C++ that
transcend the language itself: the portability of its initial implementation, its
compatibility with C and its pragmatic evolution. Interestingly, these very aspects
of C++ that seem to have contributed to its ready acceptance have also contributed
greatly to the complications of prOViding and supporting C++.

2. C++- Acceptaru;e

C-t+ in its present form was first made aVailable to internal AT&T projects
and to universities in early' 1985. This initial implementation of the language was
Stroustrup·s cfront Release E which compiled C++ source into C. Early use inside
AT&T. as well as in the universities, was mostly in small. experimental projects.
With some minor enhancements to the language and many bug ftxes. that imple
mentation of C++ was released by AT&T as the AT&T C++ Translator in the fall of
1985. Until earlier this year, this implementation formed the basis for all C++
implementations of which we are aware.

The formal release of the AT&T C++ product paralleled the ftrst uses of Ci+
in actual development projects. The first products written in C++ at AT&T were
initiated at about the time of the 1.0 Release of the C-H- Translator. With each
subsequent release of the C-H- Translator the number of users, both inside and out
side of AT&T, and the size and compleXity of products being written in C-H- have
grown.

Today, C-H- is rapidly becoming the de facto standard language within AT&T
Bell Laboratories for development of new features and products. The primary use
of C-H- has been the development of new, mid-size (500,000 lines of code or less)

1988 USENIX C-H- Conference 123

124

systems to support specialized network applications. Typically, new users of C++
have been programming in C and often the initial use of C++ is to provide some
distinct new functionality to an existing system written in C. Users migrating to
C++ are concerned about the expected things: support, training, documentation, ease
of use for C programmers and ease of integration with existing C code. Experience
on these projects has demonstrated the productiVity gains expected from strong
type checking and data abstraction.

A few projects -have been in the field long enough to include maintenance
releases produced by developers other than the original implementors. Experience
on these projects has demonstrated the promise of data abstraction and object
oriented design in allOWing modiftcations and additions to the system Without
requiring complete understanding of the whole application,£l]

On the whole, our experience in using C++ has been very positive. For our
user community, the ease of migration from C to C++ has been especially
important. Its aVailability on a wide variety of systems has also been key.

3. Portability

The greatest reason for the success of C++ is its availability on essentially any
system. Most new languages must go through a relatively long period during
which compilers for the language are available only on a restricted set of machines.
~nguages then must go through an uncomfortable "chicken and egg" period where
potential new users, who might like to try the language, will only do so if a
compiler exists for their system, but software vendors can only justify the
relatively high costs of making a compiler aVailable on those systems for which
demand already exists.

This ready availability of C++ comes directly from the deliberate design deci
sion in Stroustrup's initial implementation to generate C rather than object or
assembly code. This has meant ~at C++ can be made available reasonably easily
for any machine for which a C compiler exists. In essence, by generating C, the
problem of porting the compiler is reduced from the tricky and expensive one of
prOViding a code generator for each supported machine to the relatively straight
forward problem of porting a roughly 20,000 line program. In practice, this has
allowed people interested in C++ to use the language at a heretofore unprecedented
low cost for a new language.

Likewise, once commercially aVailable, C++ could- be ported and made avail
able more quickly than has been true of other languages. For example, within 6
months of its first commercial release from AT&T, implementations of C++ based
on the AT&T Translator were available from other vendors for the PC market and
several major mini-eomputers. It is today commercially aVailable on over 24
different systems. Interestingly, it is only within the last several months that
machine speclftc compilers, generating object code directly, are being made avail
able. Surely the large and growing number of users of the CoHo Translator helped
these compiler writers justify the risk of introdUcing a new language into their
product lines. It is interesting to speculate whether these products would ever
have been written if C++ had been available only on the small set of machines that
would have been possible had the initial implementation not generated C. Would

1988 USENIX C++ Conference

};

sufficient users of C-H- have existed to justify such a great investment? Would
sufficient users of C-f+ have existed to justify last year's USENIX C-H- Workshop or
this USENIX C-H- Conference?

While this ready availability of C-f+ means that one can decide to use C-H- on
its own merits, without migrating to a new system or getting locked into a particu
lar configuration, it does not come Without cost. Distributing and supporting any
large program on a wide variety of systems is a non-trivial task. As a general rule
of thumb, any assumption one makes about the operating environment will be
violated by at least one system.

Portability of the C-f+ Translator has been a consistent and explicit design
goal. At times this has required sacriftcing the best solution for a particular system
to a general solution that, with possibly minor modifications, is applicable to all
systems. In other cases, the goal of portability for the implementation has simply
meant dealing, somehow, with the numerous system idiosyncrasies that invariably
complicate programs intended to port to a wide variety of machines and operating
systems.

The handling of static constructors presents a good example of the first
problem: the tradeoff between implementing a feature with the most general
approach for all machines rather than the best approach for a given machine. A
static constructor is a constructor that must be called prior to the start-up of the
program. Failure to do so will likely result in a run-time core dump of the
program. For example,

#include <iostream.h>

class Buf {
public:

Buf(int len =BUFSIZ):
II ...

Buf inBuf(4096): II requires a static constructor

mainO {
II inBuf must be initialized at this point
II otherwise. this will write into hyperspacell
while (cin > > inBuf)
{

II ...
cout < < inBuf;

}
}

The problem is as follows. All C and C-H- programs start execution in mainO.
However, if the first statement in mainO is executed prior to the constructor call
for inBuf, the program will fail. The program is composed of separately compiled
modules and a set of libraries. The compiler has no way of knowing what
constructors the executable requires. Generally available link-edltor technology
does not help. Any solution is going to be a hack.

1988 USENIX C-H- Conference 125

126

One aspect of a solution is when to invoke the constructors. Here are two
reasonable alternatives:

a. have crtO.s, the start-up routine, execute the constructors. ctrO.s, however, is
written in assembly. This strategy requires a non-trivial amount of expertise
from an individual wishing to port the Translator.

b. insert a function, _mainO, into mainO as the first exec-q,table statement. Then
create a _mainO function to execute the static constructors. An individual
porting the Translator need not even be aware of _main0's existence.

A second aspect of a solution is how to collect the set of static constructors
that need to be called. The simplest approach would be to gather together the
static constructors into a canonical function for each object module within the
executable. These functions then would need to be invoked from _mainO. Again,
there are two possible alternatives:

a. Patch the executable directly. Read and modify the a.out directly, threading
a list of initialization functions through which _main0 could then iterate.
This strategy reqUires intimate knowledge of the system's object file format.
The indiVidual porting the Translator would have to prOVide a new instance
of patch.

b. Munch the symbol table. Dump the symbol table names, keeping track of all
initialization functions. Build a table of function pointers and link with the
executable. _mainO can then walk through the table. This strategy reqUires
some tool which can print out the symbol table strings. Under the UNIX~

Operating System, the nm command is sufficient. An indiVidual porting to
any UNIX System need not even be aware of the existence of munch.

In each solution set, choice (b) clearly prOVides maximum system
independence, while choice (a) is cleaner and likely to be faster. The ease of imple
menting case (b) so dominates the knowledge that would be needed to implement
(a) on a new machine that the munch version was developed and distributed. To
gain the speed advantages for a large class of machines, a patch version of the
Translator for System V machines is also distributed with the product. Most ports
to non-System V machines have, however, initially been done using the munch
approach. munch versions of the C-H- Translator have been ported from
mainframes and super computers to Pcs. Once a user community for a particular
system develops, an optimized solution for that system can be implemented.

Our experience indicates that the C-H- Translator is surprisingly easy to port
to a new system. Design choices such as generating C and taking implementation
tradeoffs that favor system independence have helped to restrict the porting effort
to changes to header files, and establishing the target machine's size and alignment
reqUirements. However, there remains a second, nittier class of portability deci
sions driven by the idiosyncrasies of this or that particular machine. Here too, our
experience and the experience of our users ·in earlier porting efforts have helped
shape the current implementation of the Translator. For example,

• Trouble-shooting the first port of Release 1.1 to a Control Data Cyber-160
turned into a transcontinental process of problem isolation between one

1988 USENIX C-H- Conference

system which did not exhibit the problem but which had debugging facilities,
and a second system which exhibited the problem and as a result did not have
a working system capable of helping in the debugging process.

As it happens, the high bits of a pointer were being used to set protection
rings. Internally, the Translator would cast integer constants into pointers
for storage then cast them back into integers for later processing. That
proved rather disastrous on the Cyber in question. The constant 8, for exam
ple, suddenly measured the distance between Earth and the nearest galaxy.

In Release 1.2, the internal data structure had a new derived class for
storing integer constant values; explicit integer/pointer casts were removed.
This also helped simplify porting to the Intel 80286 processor•

• A second example of an unexpected system idiosyncrasy occurred during a
port of Release 1.2 to a Hewlett Packard 9000 series machine. In this case,
everything worked ftne, except that static destructors for class objects were
not being Invoked. Moreover, the same code executed correctly on an AT&T
3B20, Sun 3/60, VAX 8550 and Amdahl.

Static destructors pose the same class of problem as static constructors.
They must be invoked follOWing completion of the program, but before the
_cleanupO library call. The Translator's solution is to provide its own ver
sion of exitO. This version in libC.a executes the table of static destructors
built up by munch, then in turn calls _cleanupO and _exitO. The only way
not to invoke the static destructors is by not invoking exitO (for example, a
direct call of abortO). Or, as it happens, by invoking the libc.a instance of
exitO·

The Translator presumes that an unresolved symbol will bind to the
first instance found In an archive. Therefore, to replace the libc.a's exitO with
that defined in libC.a, the command line is fed the libraries in the order libC.a
libc.a.

As it happens, unless an explicit call to exitO is made within the
program code, the link-editor on our HP9000 bound exitO to the libc.a
instance regardless of the archive's placement on the command line. The sim
ple fix of haVing the Translator insert a call to exitO within mainO solves the
problem. However, programs that correctly return from mainO are likely to
generate a spurious statement not reached warning message. A clean system
level solution to this problem has as yet not been determined.

4. C Compatibility

Another important factor in the rapid spread of C++- has been the ease of using
C++- with C. There are two aspects to this compatibility: the ability to use C++
with eXisting C based systems and the ease with which C programmers can learn
and make effective use of C++-.

In all cases, our user community is migrating to C++- from C. Some of what
we have learned from their experience in melding C and C++- includes:

1988 USENIX C++- Conference 127

}:

128

• Keep the interface between the C and C++- parts clear and clean.

• "If It ain't broke, don't fix It..[2]: that is, there isn't likely to be sufficient payoff
to justify converting an existing system unless you are also doing some
substantial new development at the same time.

• Use the new features of C++- gradually rather than all at once. You can get
spaghetti classes just as you can have spaghetti code.

• Effective use of C++- comes with better design. You will get big payoffs from
haVing a couple of the more experIenced people spend the time to design a few
classes that are fundamental to your application.

• Most users can start with a minimal knowledge of C++- and yet make effective
use of general purpose or application speciftc class libraries.

While the close relationship C++- maintains with C is one of its greatest
strengths, it can also be a source of tension in the language. The C declarator syn
tax is a case in point. Here maintaining compatibility with C results in some
unaVOidable ambiguity in the language which can only be resolved by explicitly
defming the ambiguity" resolution within the language. Maintaining the old-style C
syntax is likely to be the design choice for which Stroustrup's name will be most
taken in vain by compiler writers to come'

Explicit conversions in C++- may take the form of either C-style casts, such as

(X) i:

or function-style casts, such as

X (i):

Function style casts are necessary to prOVide support for casts (constructors)
of user defined types which require more than a single argument, for example:

z = complex(x,y):

Using C style casting is not possible since

z = (complex)(x.y):

would be interpreted as casting the result of the comma operation (x.y)' However,
at local scope, the function style cast syntax introduces parsing ambiguities. The
confiict occurs when a statement begins with a type name. Lookahead can usually
resolve the ambiguity. For example,

typedef int (*PFI)():
class X {
public:

PFI f:
II ...

1988 USENIX C++- Conference

PX(*p)->f =0:

PFI(*r)0;

typedef X *PX:
void **p, **q, **r:

fO {
}

Until the member selection operator C-» is seen, it is equally possible for
PX(*p) to be evaluated as

• the declaration of a local instance of p.
p would be of type pointer to a pointer of X. This is possible because C per
mits extraneous parentheses in declarations! The follOWing two declarations
are eqUivalent.

/ / equivalent declarations of p
PX *P:
PX (*p);

• an expression involving the global instance of p.
p is first dereferenced. Its void* value is then cast to a pointer to X.

The member selection operator disambiguates the statement. Global p is
dereferenced and cast to a pointer to X.

Here is a second statement requiring lookahead:

frO {
PFI(*q)(int);

}

Until the closing right parenthesis follOWing the keyword int is seen, it is
equally possible for PFI(*q) (int... to be evaluated as

• an expression involving the global instance of q.
q is first dereferenced. Its void* value is then cast to a pointer to a function
returning an into That function is then invoked through q. q is passed a sin
gle argument which begins with the letters into

• the declaration of a local instance of q.
q would be a pointer to a function with a return type PFI.

The closing parenthesis disambiguates the statement. int evaluates as a type,
not identifter. A local instance of q is being declared.

These are instances in which the ambiguity can be resolved by lookahead.
This is not always the case. For example,

f30 {

}

It is equally possible for the parser to interpret this as

1988 USENIX C++ Conference 129

}:

130

• a declaration statement of a local instance of r.
r is a pointer to a function taking no arguments and returning a PFI•

• an expressIon statement involVing the global instance of r.
r is first dereferenced. Its void* value Is then cast to a pointer of type PFI,
which is then invoked.

The resolution is a meta-rule. Whenever a declaration and an expression are
equally possible, the statement is taken to be a declaration.

C-H- is not a formal superset of C, and there do eXist one or two fundamental
differences between the two languages. These differences are generally a result of
the greater functionality of C-H- and In our experience, have not caused difficulties
for our user community.

The C language maintains separate name spaces for user-deftned tag names
and identifters. This permits the same name to be used both as a tag name and an
identifter at the same scope. This has given rise to C code such as the follOWing:

struct stat { 1* ... *1 }:
struct stat stat:

struct mallinfo { 1* ... *1 }:
struct mallinfo mallinfo0:

The tag name instances are Indicated by prefixing the tag name With the struct,
enum or union keyword.

C-H-, on the other hand, maintains a single name space for both user-defmed
tag names and identifters. Were C-H- not to have a single name space, programming
with classes would need to look something like the follOWing:

II a hypothetical syntax were C++ to maintain two name spaces
class B { 1* ... *1 }:
class X : public class B {

class B b:
operator class B *0:
class X(const class X&):
class X(int i = O. intj = 0):
class X& operCJtor=(const class X&):
class X& operator+(class X&):
II ...

1988 USENIX c++ Conference

}:

}:

}

class X::class X(const class X& x) { 1* ... *1 }
class X& class X::operator=(const class X&) { 1* ... *1 }
class X *xp = new class XO:

II an explicit invocation of conversion operator
class B *bp = xp->operator class B *0:
II an explicit constructor is required
class X x = *xp + class X (1.2):

In a sense, by breaking name-space compatibility, C-++ maintains C's legacy of
lexical elegance.

Certain small incompatibilities are the result of deliberate, often difficult,
decisions. They are not made lightly, and in general reflect a trade-off bet'Yeen
breaking compatibility with the older language or losing valuable functionality. A
case in point is the scope of enumerations declared within a class type.

In C++, enumerations are local to the class in which they are declared.
Private and protected enumerations are encapsulated as are the other private and
protected members of a class. For example,

class ZooAnimal {
friend feedingHours(ZooAnimal&):
protected:

enum Status { ONLOAN. ONDISPLAY }:
Status status:
II ...

class Bear : private ZooAnimal {
protected:

ZooAnimal::status:
public:

isOnDisplay0:
II ...

I10k: these are permitted access to ZooAnimal::ONDISPLAY
Bear::isOnDisplayO { return(status == ONDISPLAY): }

feedingHours (ZooAnimal& z) {
if (z.status == ZooAnimal::ONDISPLAY)
II ...

1988 USENIX C-++ Conference 131

}

}

132

II error: these are not permitted access to ZooAnimal::ONDISPLAY
class TeddyBear : private Bear {
friend playingHours(TeddyBear&):
public:

isOnDisplayO { return(status == ONDISPLAY): } II error
II ...

playingHours(TeddyBear& t) {
if (t.status == ZooAnimal::ONDISPLAY) II error
II ...

In C++-, each class maintains an associated scope. Members within that scope
may be referenced directly using the class scope operator. ZooAnimal::ONDISPLAY
accesses the element 0 NDIS PLAY within the scope of ZooAnimal. The global name
space is not cluttered with element names only of interest to ZooAnimal and its
derivations. The possibility that including a new class containing an enumeration
will cause name collisions which break existing code is eliminated.

There is nothing analogous With regard to the C struct. There is no permissi
ble syntax to allow access of elements within a struct, if structs in fact maintained
their own scope, which they do not. Of course, in the draft proposed ANSI C stan
dard[3], enumerations declared within a struct assume the same scope as that
enclosing the struct. What other meaningful choice is there in C?

5. A New Language and A New Way to Program

Throughout its evolution, users of C++- have influenced its definition. Various
features have been added to the language as a direct result of user feedback. Obvi
ously for many of its early users, this ability to help move the language in a direc
tion. that made solVing their problems easier was a real boon. Others, who've never
suggested a change, benefit more indirectly as the language evolved to better meet
specific needs that have occurred in real development.

The rule of thumb to date has been that requests for extensions to the
language must result from a genuine need encountered by two unrelated users in
trying to implement solutions to real problems. This has meant that changes in the
language have tended to be designed to prOVide a better way of doing something
people really have wanted to do. Once a feature or ability is requested, a process is
undertaken to understand how the change fits with the existing language, to apply
theory and engineering approaches to determine a clean solution and finally to
prOVide a prototypical implementation to test the applicability of the solution to
the original problem. Some enhancements to the language have resulted from
requests for feature additions which would make particular classes of problems
easier to solve. Others came from what were initially reported as bugs in the
implementation. A few others resulted from natural extensions of existing
features in the language. Here are some examples:

• Prior to Release 2.0, the base part of a derived class could only be initialized
with the specified arguments of its constructors. An attempt to initialize it

1988 USENIX C-H- Conference

}:

}:

with another base class object resulted in a compile-time type violation. For
example,

class Base {
public:

Base(int):
Base(char *);
II no

class Derived : public Base {
public:

II ok
Derived(int i) : (i) 0:
Derived(char *s) : (s) 0;
II not ok prior to Release 2.0
Derived(Base& b) : Base(b) {}:
Derived(Derived *d) : Base(*d) 0:
II ...

One source of this change came from an active user of C++. The argu
ment was that object with object initialization was permitted for non-derived
and member class objects. In these cases, a default bitwise copy was applied.
It was only in this case that bitwise copy was not being applied. The argu
ment was not theoretical, he claimed; his application needed this.

A second source of this change came from problems with default bitwise
copy itself. (Bitwise copy has been replaced with memberwise initialization
and assignment. A discussion of this can be found in (4).)

• Prior to Release 2.0, the order of initialization of member and base classes·was
undefined. This order is now ftxed. (A discussion of this can be found in (4).)

One impetus for this change was another active user of C++. He was
speaking about extending his current work to incorporate multiple inheritance
during an internal AT&T C-f+ user group coDference. There was, he said, one
obstacle he saw no solution to; that is, the undefined initialization order. His
application allows for arbitrarily complex user-defined class types to be
written out and read from disk. To insure the integrity of this process, the
order of initialization must be guaranteed.

A second impetus for this change comes from the proliferation of C++
compilers. Without a specified initialization order, uniformity across imple
mentations cannot be guaranteed.

A particularly interesting example of the pragmatic basis for the evolution of
C-f+ is the design of type safe llnkage,£5] We had received several related concerns
about the existing mechanism for overloading functions. The solution which
emerged came to provide more than a simple ftx to these problems. As alternatives
to the existing mechanism were discussed and dismissed, the ultimate solution

1988 USENIX C-f+ Conference 133

134

evolved in such a way as to provide a natural and useful inter-module extension of
the type checking features of C++. Beta users of this new type safe implementation
report finding latent bugs in existing software. Incorrect function references
between files which had previously gone unnoticed were now being caught.

Again, these advantages come at some cost. Here the issues are not for the
implementation, but for our users. Because C++ is a new language, the implemen
tation tends to be less stable than compilers for older languages. Documentation
tends to be scarce and often incomplete or out of date. Because C++ prOVides
support for new approaches to programming, new ways of organizing develop
ments and designing programs are evolVing. This results in users getting started
and moving forward while a culture and common wisdom is still being developed.

Conferences such as this one, and publications of user experiences have begun
the process of creating a C++ style. Tutorials and papers at this conference have
ranged from introductions to C++ to techniques for advanced uses of the language.
With time, these ideas will gel into a set of conventional approaches. Until then
users are left more on their own than in other, more established languages. Infor
mal mechanisms for spreading these notions have been surprisingly effective. The
C++ netnews group (compJang.c++) has turned out to be a simple mechanism for
qUickly disseminating statements about what the language says and for discussions
of what techniques are useful. More formal mechanisms are also beginning to
appear. Many C++ books are either now hitting the book stores or will appear
within the next six months. A C++ Newsletter is rumored to be In the planning
stages and formal training courses are now available from a variety of vendors.

Internally, we have initiated a C++ user group which acts as a focal point for
information about C++. We publish a more or less bimonthly newsletter which in
addition to details about availability of software, includes a column focused on
C++ technique. Additionally, we have put in place a set of people to help our user
community. We have a hotline for questions about C++ as well as C++ consultants
who work closely with speciftc projects participating in design discussions, prOVid
ing suggestions for better ways of exploiting C++, and prOViding a general C++
resource to project personnel. As we develop new class libraries, in addition to the
traditional UNIX System manual pages arid tutorial material, we go out to the pro
jects to present the new classes and discuss ways of using them within the user's
application. Each of these actiVities is helping us understand useful ways of
applying C++ to real world applications and is allOWing us to help shape and
subsequently document the ways in which C++ is being used in practice.

Perhaps most intrigUing about the use of C++ in substantial development pro
jects is the potential for the evolution of new styles of programming organization.
In the simplest case, our experience already has been that C++ really does encourage
the hitherto elusive goal of concentrating on upfront design as opposed to leaping
directly into implementation. Several projects have reported that they have found
it natural In C++ to start with the fundamental classes for the application, thus
setting the overall design in place early. Related to this, has been a shift in
organizing the staff on these projects. Several of our projects have been able to
assign relatively experienced staff to design and implementation of the key classes
for the application and been able to use more inexperienced people to develop

1988 USENIX C-H- Conference

application code based on these libraries. This is giving us the ability to bring pe0
ple on board more quickly, but also giving them the opportunity to concentrate on
understanding the application before haVing to deal with the intricacies of the
implementation.

As we look further to the future, we see even more pervasive changes in
development organizations. As C++ libraries proliferate, we expect to see dramatic
reductions in the amount of new code required to solve a particular problem. For
simple, but uncontrived, test cases, we have seen code reductions of as much as
four to one to implement the same functionality in C++ rather than in C,£6] If this
scales and holds even to a two to one reduction, we should be able to cut develop
ment staffs dramatically for a given application size. Additionally, we expect the
modularity which C++ supports to allow us to subdivide problems more cleanly so
that the overhead of communications can be reduced vIa use of clean well thought
out interfaces. Both these forces should allow smaller application teams to be
formed. Smaller teams in tum wll1lead to more productive software develop
ment. It is well known that current software development cycles are greatly com
plicated by project size. Intuitively as software developers we know it from our
own experience: the larger the project, the more time is spent on project communi
cation and ensuring consistency among the parts of the application. More for
mally, even early studiesl7] have borne out this increase in overhead with size of
project. If we can cut development project size, we can cut this overhead as well.

6. Conclusion

There are many reasons why any system and especially why any program
ming language gets used. Our experience in supporting C++ for use on real develop
ment projects leads us to value certain aspects of the implementation that go
beyond the actual features of the language. In the case of C++, we believe that its
portability, its compatibility with C and its pragmatic evolution have been funda
mental in its rapid and Widespread user acceptance.

7. Acknowledgement

Laura Eaves implemented the lookahead component of the Translator's
parser. Much of the discussion of parsing ambiguity comes from discussions with
her. Comments on the initial abstract 'for this paper helped shape our treatment of
many of the details presented.

1988 USENIX C++ Conference 135

136 1988 USENIX C+r Conference

· NAPS • A C++ Project Case Study
c. Berman

R. GUT

AT&T Bell Laboratories
Middletown, New Jersey 07748

1. INTRODUCTION

Object-oriented Programming (OOP) promises to be one of the major advances in software
methodology in the next decade. C++ is one of the first languages that offers a cost-effective
execution environment for OOP. Yet the decision to use C++ in a production environment
should be made on the basis of business rather than on "philosophical" considerations. The
costs, and therefore risks, incurred in software development are too high to use a new
language without an analysis of its costs and benefits.

Network Application Programming System (NAPS) is an application programming
environment written in C++ using OOP, and supporting forty programmers writing large
applications. End user products written using NAPS as a foundation will be coming to market
in the near term. In the proposal and request-for-funding stage for NAPS, C++ and OOP
were cited as means of implementing increased complexity with less code and greater
reliability, and therefore with lower cost and greater quality. When asked if we have achieved
these goals the real answer is, of course, both yes and no. This paper describes our
experiences building NAPS and its applications as a case study in the use of C++ and object
oriented design and programming in a production environment.

2. NAPS DESCRIPTION

NAPS is a system written in C++, using OOP, supporting network management applications
on a multi-processor networked environment. NAPS uses a transaction model for
programming and provides a graphical user interface. Using UNIX· System V Release 3, X
Windows V11 and INFORMIX·· as its current software base, NAPS provides a stable
software interface to application programmers during a period of expected changes in the
base software.

A single object hierarchy provides base objects for inheritance in applications. Part of this
hierarchy is shown below.

3. PROJECT HISTORY

NAPS was prototyped in several phases using small groups of designers and programmers
over a period of a year before it was fleshed out into a production environment. This
prototyping had several goals. First to experiment with the technologies of OOP, windowing
systems, and networking, and to research existing designs in those areas. The second was to
translate the former into a design that could be easily learned and utilized by a larger group of
programmers. The common part of the system to be used by all applications was called the
platform. Finally the facilities of the platform were compared with application feature
requirements to ensure that all features could be implemented.

Over a shorter subsequent period of six to eight months, a second phase evolved NAPS from
a prototype to a production programming environment. The prototype objects were
formalized into an architecture description and object descriptions. In parallel with this

• UNIX is a trademark of AT&T
•• INFORMIX is a trademark of INFORMIX Software, Inc.

1988 USENIX c++ Conference 137

138

Figure 1. NAPS Class ffierarchy

Object
DatabaseView
DisplayObject
IpcAccount
Message
GraphicalView

Dialogltem
Field
Form

Frame
Window

Server
NetworkServer
TransactionServer

Service
TransactionService
DatabaseService

Transaction
DatabaseTransaction
NetworkTransaction

activity was the setting up of a development environment providing the necessary compilers,
debuggers, source code control, and problem tracking facilities. The prototype was then
substantially reimplemented to meet the formal specifications. A subset of applications was
implemented simultaneously with the platform to provide a sanity check from the application
point of view. A skeletal "NAPS Developer's Guide" showed how to write sample
applications using the NAP objects. At the conclusion of this phase, a subset of the NAPS
platform, along with the development environment and how-to documents were made
available to the development population at-large.

In the following eight months to the present time the cycle 'of applications development and
testing has been in full swing. New platform features are being developed in parallel.

4. PROTOTYPING

Prototyping was an invaluable tool for testing out 'concepts and technologies in a small and
risk-free environment before committing to them in a larger and therefore less flexible setting.
During the course of the prototyping period several object-oriented systems both in C++ and
in other languages were investigated.

4.1 The First C++ Program

The first small prototypes involved three programmers initially testing C++ itself, and loosely
translating object-oriented designs from Smalltalk-so£l] to C++ and SunViewl2] on Sun 3
workstations. A month of coding produced about 5000 source lines resulting in a single
process showing a graphical representation of a network and visually simulating network
control. The participants were new to C++, but agreed that the learning experience was
relatively painless coming from a C language background, and that this new language added
great power to C while seeming to add little run-time penalty. A second observation was that
the C++ languagelUNIX environment had very fuDdamental incompatibilities with the
Smalltalk-BO environment: Smalltalk-BO is interpreted, not compiled; it runs in a single
address space, not in the multiple address spaces of UNIX processes; it is dynamically
extensible, not statically linked. Herein lies one of the challenges of designing UNIX-based,
object-oriented systems in C++: tapping the power and elegance of the interpreted object-

1988 USENIX C+t Conference

oriented systems in an efficient implementation that runs under the UNIX Operating System.

4.2 The OOPS Based Prototype

Before the next iteration of prototyping, we acquired the Object-Oriented Programming
Support (OOPS) package[31. OOPS provides an implementation of a portion of the Smalltalk
80 object hierarchy in C++. For the prototyPe team this was like getting the answers to the
test questions at the end of the book! In addition to providing the Collection hierarchy
and Class system, OOPS was like a textbook in C++ techniques for operator overloading,
static initializations of lists. It also had useful documentation including UNIX-style manual
pages for many of the objects.

The next user-interface prototype was based on the OOPS object hierarchy. It made use of
its class identity facilities, such as Obj ect: : isA() and Object: : isKindOf (), which
respectively identify the Class corresponding to an object instance, or whether an object is a
instance of a derived class. Other features used from OOPS were the ClassDictionary,
storing and reading in of objects, and the rich set of Collection classes. The time span to
complete this prototype was also approximately a month, and resulted in about 8000 lines of
source code.

4.3 The Client/Server/Transaction Prototype

The last prototype was greatly increased in scope. It was to encompass a multi-process
software architecture; perform real, not simulated, network control; and support discrete,
packageable user commands called "transactions". A team of 10 programmers worked two
and a half months to design and implement a system that would approximate the performance
of the target end-user system.

In moving out of the user interface arena and into a distributed client/server process
structure, however, there were fewer sources of object-oriented design to draw from. Some
designs changed the semantics of the language, such as a C++ member function call to
sending an Inter-Process Communication (IPC) message(41, or defined new languages to
specify message interfaces[S). With the C++ version in use, however, this involved changes to
the translator itself or using an unsupported language, and were rejected as strategies for
NAPS.

Another question that came into play when dealing with multiple processes was whether
objects should be passed in descriptive form from one process to another. Like Smalltalk,
OOPS provided through its Obj ect: : readFrom() and Object: :writeTo () functions and
ClassDictionary object the ability to read or write object descriptions to or from a file
stream. The file stream could easily have b~en extended to a network device or IPC
mechanism. However, the sending of objects between processes for the prototype was
rejected both for performance reasons: it seemed unsuitable for real-time message passing,
and because it required a run-time class system which was not planned for NAPS. Instead,
only a Message object could be passed between processes. For this concept, of course,
many non object-oriented designs were available to draw from. One source, that was
available was the Sun RPC/XDR package[6] for server applications and processor-independent
data formatting. The Message object could encapsulate the machine independent data
formatting as well as its contents. These Message objects must be compiled into both
sender and receiver processes.

The application abstraction was a Transaction object that resided in a
TransactionServer, and that was input-driven. Invoked as a result of a user command, it
would make a series of low-level requests to various other servers. While waiting for the
result of these requests it would return control so the server could respond to new

1988 USENIX C++ Conference 139

140

commands. A state variable allowed the Transaction to continue when it was called with
the result of the pending request.

The user interface, derived from the first two prototypes was the end client for the
TransactionServer. The graphical and user interface objects were ported from SunView[2]
to the X-ray Toolkit[7] running on X Windows Version 10.4.

4.4 Prototype Results

The final prototype was important not only for the design validation, but for the testing of the
interaction among a group of ten people programming inter-dependent objects.

In most ways, the programming environment was like a traditional C language environment.
A central node contained the most recent version of the headers and libraries containing the
class definitions. It became obvious immediately that the dependence on header files was
much greater than in C. This has been noted in single person efforts[8]. More of the structure
and design of a program was contained in header files in C++ than in C. With software in
flux, programmers were more likely to conflict with each other through the headers. It
seemed that two or three was the maximum number of people that could work together at one
time in a single directory tree.

In the review of the application development environment, it came out that the transaction
programmers were unhappy with the idea of event-driven programming. Existing subroutine
libraries had to be taken apart to handle the state machine. The more conventional
sequential programming model was more understandable and adaptable to existing software.

5. METHODOLOGY

After a working prototype was constructed the next task was to try and adapt it to a larger
community of programmers. Since the introduction of a new language was a major risk, we
looked for a conservative approach to the design and coding standards. With an eye towards
the warnings strewn through the C++ literature about how dangerous C programmers are
when they are let loose in C++ we stayed with more "C-Like" syntax, for example, staying
away from operator overloading, and using pointers instead of references.

The pla~orm was to be implemented first. In addition to providing functionality, the
platform code would be a coding model for the application designers and programmers who
were new to the language. The applications that followed would be extensions of the platform
code.

5.1 c++ Programming Style

Style considerations in C++ were important to the success of the project. Strict discipline,
with respect to style, needs to be used in order to make efficient use of the C++ programming
language, especially for new C++ programmers.

5.1.1 Resource Allocation in Constructors Constructors in C++ can execute code.
Constructors cannot return error codes. This is a problem however when errors are
encountered in a constructor that does non-trivial initializations. How do errors propagate
back to the caller?

In NAPS we mandated that constructors could do things that had fatal errors, Le. errors that
would cause the termination of the process. These include errors such as memory allocation,
window allocation or other allocation that would cause the system to fail. However, non-fatal
errors could not be produced in constructors. This allowed programmers to call new of an

1988 USENIX C-H- Conference

object and if the call returned then the program would be guaranteed the object was allocated
without checking for an error. This meant that constructors could not do initializations that
would result in non-fatal errors such as opening a file. These were done in member fuctions
that returned error codes.

5.1.2 Recursive Headers The use of recursive headers makes programming in C++ easier.
Using recursive header files programmers just need to know the name of the header file
containing an object. Without recursive headers all objects and recursively all sub-objects
must be included.

There are usually two ways to implement recursive headers. By using a conventional system of
preprocessor ifdefs and defines such as the following:

#ifndef MYOBJECT_H
#define MYOBJECT_H

class header definition

#endif

The second method, used by NAPS, is to use the nmake(9] preprocessor that recognizes
multiple includes and only uses the first include. Recursive headers were mandated in NAPS
and proved to make the programming task much easier.

5.2 Documentation

Documentation of objects was a key aspect of the project. The interfaces between objects is
defined in NAPS by an interface document, similar to a UNIX style man page. This allowed
easy update and maintenance of object interfaces. It is important to note that the initial
strategy was to design the objects and write the interface documents first and then code the
objects. Then if any interfaces changed as a result of the coding the plan was to fold those
changes back into the interface documents.

This initial plan evolved into: define the headers for objects, review the headers, code the
objects and then write the interface document. This strategy saves time and allows room for
reviews. An example NAPS interface document for the SysLog object is presented at the
end of this paper.

6. NAPS PROGRAMMING MODEL

NAPS provides these basic units for application development: services, transactions, and user
interfaces.

6.1 Services

Services provide the basic functions required for servicing end-user requests such as database
records, network control, or real-time input using a client-server model. Services are
implemented in server processes, and are accessed by clients using Service objects, which

. implement message protocol or IPC internally. Servers also allow event-driven and timer
activated actions.

A service programmer creates an object derived from Server whose pseudo-code is as
follows:

1988 USENIX C* Conference 141

Figure 2. NAPS Programming Model

Server

RPCFUNC

RPCFUNC

RPCFUNC

RPCFUNC

RPCFUNC

RPCFUNC

class Server : public Object
II private stuff

protected:
II stores connections to clients
IpcAccount* clientList[NUMBER_OF_CLIENTS];

public:
II advertises a server name on the network
int advertise(char* advertiseName)i

II associates request code with a message and function
int registerService(int code, Message* msg, RPC_FUNCTION func);

II waits for inputs and dispatches request messages
int waitForlnput(int timeout =-1);

} ;

as well as an object derived from Service object:

class Service : public IpcAccount (
II private stuff

protected:
int connectTo(char* serverName);
int sendMessage(Message* msg)i
Message* receiveMessage()i

public:
Service(int fileDescriptor);

} i

However the Service provided to the client shows only application-specific requests. No

142 1988 USENIX C;+ Conference

message protocol is revealed to the client.

class DataService : public Service (
II private stuff

public:
status closeCircuit(char* circuitName);
status openCircuit(char* circuitName);
status rerouteCircuit(char* circuitName, int oldRouteld, int newRouteld);
NetworkService(char* networkName);

} ;

6.2 Transactions

A transaction groups together low-level Service requests into an end user level command
similar one that would appear in the product user manual. Transactions lack the full flexibility
of a server in control, but provide a sequential programming model that a Server lacks. All
NAPS transactions are derived from a base Transaction object:

class Transaction : public Object (
II private stuff

public:
int run(Collection* argumentValues);
int exit ();
int deferSignal();
int restoreSignal();

void outputRecord(Collection *outputValues);
void setOutputFormat(char *formName);

} ;

Each Transaction is like an autonomous program having its own· input arguments, start,
exit, and software interrupt handling routines. Its output is displayed record-by-record using
a form name. Forms are also created by the transaction writer using a form language. Many
transactions are grouped together into Transaction Server processes.

6.3 User Interfaces

User interface processes invoke transactions on behalf of users. They interpret forms, send
transaction requests to transaction servers and display transaction output. All current user
interfaces are part of the platform. In the future applications may develop their own user
interfaces using the display library objects.

7. DEVELOPMENT ENVIRONMENT AND TOOLS

The C++ development environment is an incremental, not sudden, change from a C language
development environment. Other than cfront, the C++ translator, no other new tools are
strictly necessary. The NAPS development environment is transitional in that it is has a thin,
growing layer of tools for C++.

7.1 nmake

As stated earlier, C++ forces greater reliance on header files than C. The UNIX tool make
does not provide implicit header dependency rules. Additionally, to preserve the data
encapsulation of class definitions NAPS headers contain nested includes of other header files.
Nmake and its associated preprocessor simplify the bookkeeping of these nested headers both
by automatically eliminating duplicate includes, and by searching through header files itself to

1988 USENIX C-H- Conference 143

determine dependencies. An nmak'e Makefile for a C++ file is far easier to read than a
corresponding make Makefile, and 0 more reliable than some of the other methods such as
Imake for maintaining up to date object files.

7.2 Debugging

Source level debugging is possible either with dbx in a BSD environment or sdb, but
requires the user to be familiar with the C++ to C name translations. Sdb++, a C++
enhanced version of the System V sdb, is a welcome convenience since it knows some of the
C++ syntax and naming conventions.

7.3 Needed Tools

NAPS programmers work without a browser. No tool shows the inheritance hierarchy of the
system, or all the members of a certain class including those of the parent classes. This has
the psychological effect of limiting the use of inheritance because it can't be seen easily on a
terminal or printout when looking at class definitions. The programming environment should
encourage the definition of deep inheritance trees with the maximum reuse of member
functions of parent classes. Browsers and browser-like tools would make inheritance more
accessible and easy to use.

7.4 Alternate Run-Time Strategies

The price of the greater efficiency of a compiled language C++ when compared with Smalltalk
is a longer compile/test/debugocycle. The compile-time behavior of C++ is helpful during the
initial coding phase of an object. It forces type-checking and catches many errors before the
program is ever run. During debugging however, each small incremental change requires a
long re-link, and tweaking the base objects can force long re-compiles and re-links. This
problem is certainly not peculiar to NAPS, or C++ itself,[lO] and is due both to the potentially
large size of each object file and of each executable. Below are some areas for investigation
in creating a better environment for C++ programming.

7.4.1 Shared Libraries UNIX System V Release 3 supports shared libraries of C code.
Shared libraries are useful in decreasing object code size, and in allowing wholesale updating
of system software libraries for applications without re-linking. The NAPS project has yet to
devote the effort to making a C++ shared library, but it' is not considered to be a difficult
technical problem. However shared libraries, while they reduce the run-time size of a
process, are restrictive in a debugging environment. In System V breakpoints cannot be set
in a shared library, and stack traces don't work. Shared libraries in their current form are
probably most useful for end-user software distribution rather than for software development.

7.4.2 Dynamic Loading of Objects Dynamic loading of objects allows objects to be compiled
incrementally and brought into a running process when it is referenced. The Andrew
System[l1] has implemented this for several processors including VAX·, Sun, and mM RT.
In addition to providing a possible solution to· the compile time problem it is potentially
powerful from an application design point of view as well.

8. TRAINING

8.1 Learning C++

An implicit expectation of the C++ language is to have an easy transition from C both in
software reuse and "personnel reuse". In the near future, however, any project using C++ has
to deal with the language learning curve. For example, on our project out of forty
programmers not one had prior experience .with C++. Newcomers to NAPS were handed the

• VAX is a trademark of Digital Equipment

144 1988 USENIX C-I+ Conference

c++ text book[U] and sent to a one week course. In retrospect, the language itself was not as
much of a problem as we might have feared, because a lot of the NAPS code "looked like" C
because of the style guidelines.

8.2 Learning Object-Oriented Design

While the concept of data-hiding is very strongly enforced in the corporate R&D
environment, other object-oriented concepts such as inheritance are much harder to grasp.
Most application programmers did not define their own class sub-hierarchies but preferred to
program in straight-line code and use predefined classes. As stated above, some of this is to
be blamed on a primitive development environment that makes it difficult to see the
inheritance hierarchy. More importantly, however, is the lack of object-oriented design
material currently available for C++. This situation will undoubtedly improve over the
coming years as more literature in C++ is published.

9. LANGUAGE ISSUES

9.1 Virtual Destructors

In the NAPS transaction system and user interface library, heterogeneous lists of related
objects are maintained and deallocated using pointers to a common base class. Graphics
objects such as in the following hierarchy are a common example of this construct.

Object
DisplayObject

DisplayBitmap
DisplayShape

DisplayLine
DisplayPolygon

The classes derived from DisplayObject allocate additional resources. However, when the
following code is executed:

DisplayObject* op = new DisplayBitmapi
delete 0Pi

only the base DisplayObject destructor is called, leaving dangling resources if any calls to
delete are required in the derived destructor. The most glaring example of this behavior is a
"memory leak" caused by not freeing some memory as a result of the correct destructor not
being called.

A virtual destructor allows the correct derived class destructor to be determined and called at
run-time. This works the same way as other virtual functions in C++. The example below
shows two related classes with a virtual destructor.

1988 USENIX C++ Conference 145

class DisplayObject : public Object
public:

II the destructor is declared virtual
virtual -DisplayObject{);

} ;

class DisplayBitmap : public DisplayObject [
public:

II all derived classes have virtual destructor
-DisplayBitmap();

) ;

There are several strategies for using virtual destructors. The one we opted for in NAPS was
to declare the destructor for the base class Object to be virtual.

9.2 Task Library

The task library supplied with C++ is used in NAPS as a configuration option for Transaction
Servers. If transactions are to be invoked often, and require relatively few database requests,
there could be a performance improvement in not having to fork and possibly exec a UNIX
process. Nevertheless, the tasking system is not a reliable environment to debug programs
from scratch. NAPS Transaction Servers can be derived from a base class that runs in a
single-threaded mode, or forks and execs for debugging, but derived from a different base
class for production that uses the C++ task library. This is made possible by restrictions on
transaction coding to not use UNIX system calls or signals, and not use static data. The
member functions of the Transaction and Service class can be implemented either with
streams or task queues, signals or task messages.

Unfortunately, the switch to the task library often brings up problems that would not occur in
a forklexec situation such as stack overflow, which does· not occur on a single UNIX process
stack, and "memory leaks" on task termination which would be cleaned up automatically on
UNIX process exit. These problems are handled in NAPS, but nevertheless, switching from
a process based transaction model to a task based one is time consuming to debug for the
application programmer.

9.3 Exception Handling

One opportunity for reduction of code sh that NAPS has not attempted is an exception
handling package. Although NAPS has I ~'jects to report error conditions, it does so by
reporting the line number and a text strin~ lescribing the problem. Much of the transaction
code reads like the following:

if ({result = deviceVie'\oj .Iuery{name»
II :-:eport error
return ERROR;

ERROR)

146

The above method of coding is tedious and error prone. Most production code has close to
half of the non-commented source lines devoted to catching these error conditions. An
elegant solution to this problem is to provide member functions in the task objects that are
called for a given exception. This would mean that most application level programmers would
never have to check for error returns from functions. Instead they would inherit an exception
handler from the base Transaction class to do application-specific cleanup.

1988 USENIX c++ Conference

9.4 Problems with Software Reuse

Although software reuse is a commonly cited advantage of object-oriented programming, the
use of a single object namespace has negative influence on the use of libraries of objects in
C++ from outside sources. The object namespace problem stems from the early ~ork in
object-oriented systems. where all programming was done within a single namespace.
Libraries of objects cannot be used in a process unless the names of the objects in the library
do not conflict with any object names within the process namespace.

One price projects using C++ will pay until the language matures is the lack of available
sample source code. One of the best features of UNIX has always been the ability to browse
through the source code at will to look for examples. C++ just does not have that body of
code yet. In fact, C++ makes it harder to have a body of available code to look at because of
the v.arions coupling mechanisms that inheritance forces. However, several publicly
distributed source packages such as OOPSl3], Andrewlll] and Interviews[13] have been valuable
sources of OOP code. None of these packages has provided objects that would fit into our
class hierarchy without modification. C++ comes standard now with String and task
classes. These packages do not integrate into our system because they make their own
assumptions. For example the standard task library prints errors to standard out, but j.n
NAPS there is no standard out and the only way to provide error output is to use the NAPS
SysLog object.

9.5 field Maintenance

Since private object data is defined in the header files, and determines an object instance's
size, binary compatibility between different versions of NAPS will be more difficult to
maintain in C++ than in a C language product. A one byte change in a base class of NAPS
will render the entire release incompatible with an earlier version.

9.6 Callbacks vs Command Objects

The first version of the User Interface class hierarchy was a set of classes that interfaced with
the X Window Xt toolkit. These classes implemented an event driven control mechanism for
these classes. The control portion was implemented via callback routines (i.e. routines that
are called when a specific event occurs) that were pointers to class member functions. These
were error-prone to program because the syntax was difficult, and it required disabling type
checking. Also virtual functions, whose addresses cannot be taken, could not be specified as
callback functions.

The new version of the User Interface class hierarchy uses a Command class for handling user
driven actionsl14]. The callback mechanism is handled instead by a virtual Command:: dolt()
member function. Each derived doit () makes use of the instance data in the derived object
rather than using arguments.

9.7 Multiple Inheritance

The most recent version of C++ has implemented multiple inheritance. Multiple inheritance
was not considered when NAPS was being prototyped and implemented, since C++ did not
support it at the time. In looking back over the the NAPS Class hierarchy, there are a few
key places where it would have been easier to make use of multiple inheritance rather than
single inheritance.

10. METRICS

In this section we present some metrics that are valid for the current state of NAPS. Since
NAPS is not completed yet these are preliminary figures and must be taken in the context of
the comments in this paper.

The total number of classes in NAPS is currently about 350 and growing. The number of

1988 USENIX C++- Conference 147

classes per process ranges from a low of 22 to a high of 135. On a 3B2 an average
Transaction Server contains 74 classes and has a static size of 190 Kbytes. An average Server
contains 38 classes with a size of 125 Kbytes. Both of these sizes are about 25% greater than
what they should be because NAPS is still compiled using C++ 1.2 options which makes all
class virtual tables static in each file. Version 2.0 should bring an automatic reduction in
process size. Below are some non-commented source line counts for NAPS sub-systems.

Figure 3. Non-Commented Source Lines in NAPS

Suh-system Headers Code
Platform 4593 61235
Database Applications 1426 8808
Network Application 1 548 19744
Network Application 2 368 4743
Total 6935 94530

This translates into an average of about 300 lines per class throughout the system.

11. EFFECTNENESS OF OBJECT-ORIENTED PROGRAMMING IN C++

11.1 Graphical User-Interfaces

Among the different software applications, graphical user· interfaces have perhaps the most
examples of OOP in both academic or commercially available systems. Some of these include
Smalltalk-80[1), MacApp[14), Andrew[l1), InterMedia[lO), and InterViews(13). With this depth of
sources, it is easy to model the problem ourselves using OOP, or stated another way, more
difficult to design without OOP.

11.2 Working in a Non Object-Oriented World

The strength of the C++ language is its ability to implement object-oriented facilities on
conventional software and hardware architectures. Application designs such as NAPS have
the same requirement. The lower levels on which NAPS is built such as the operating
system, relational database, windowing system, and perhaps previously written applications
code are not object-oriented. One of the first decisions in coming up with a design was to
decide which entities should not be modeled as objects. NAPS has non-object
representations of many entities. For example, fundamental types such as int, long, and
double are not defined as instances of classes. The database contains tables and records
rather than objects. Tables and records are represented using a data abstraction model, in
which load and store operations are virtual and redefined for each table type. Existing
application code also made it difficult to use a Network Device object from which
applications would inherit specific models.

11.3 OOP as an Implementation Tool

Although NAPS has not been modeled entirely with objects, data encapsulation and
inheritance are powerful implementation techniques even when used in a portion of the
system. The Server and Transaction systems make heavy use of inheritance, and
guarantee that the rest of the system, which is largely derived from them, will follow the same
low-level protocols.

12. CONCLUSIONS

Unfortunately we do not have the "magic metrics" in hand to show that the job has been done
better in half the lines of code. NAPS still suffers from many of the common problems
associated with other efforts its size. However, NAPS is a more modular and extensible

148 1988 USENIX C1+ Conference

system under C++ than it would have been using C. The language requires more human
discipline at the design level and less at the programming level. This benefit is seen especially
in a larger setting. On the negative side NAPS cannot be shown to be a significantly smaller
system than its predecessor. Like several other implementors in C++ we feel that it is the
"better" way to do things while we lack hard measurements to back up our case. We have
found, however,. that C++ is a reasonable platform for programming of real, production
software in a medium size environment.

13. ACKNOWLEDGEMENTS

Thanks to Jay Armstrong who participated in the initial prototyping work, Barry Books and
Mark Tuomenoksa for their work on the Client/Server system, Amnon Janiv for work on the
transaction system, and Brad Nohejl for his design and implementation of the database
system.

1988 USENIX C-H- Conference 149

150

REFERENCES

1. A. Goldberg and D. Robson, Smalltalk-80 The Language and its Implementation,
Addison-Wesley, Reading, Mass., 1983

2. "SunView Programmer's Guide", Sun Microsystems, Inc., 1986 .

3. K. E. GorIen, "An Object-Oriented Class Library for C++ Programs", Software-Practice
and Experience, Vol. 17(12), December 1987

4. L. A. Call, D. L. Cohrs, B. P. Miller, "CLAM - an Open System for Graphical User
Interfaces", OOPSLA '87 Proceedings

5. M. B. Jones, R. F. Rashid, "Mach and Matchmaker: Kernel and Language Support for
Object-Oriented Distributed Systems", OOPSLA '86 Proceedings

6. "External Data Representation Protocol Specification", "Remote Procedure Call Protocol
Specification", Sun Microsystems, Inc., 1986

7. "Programming With the X Window System", Hewlett-Packard, 1986

8. T. A. Cargill, "Pi: A Case Study in Object-Oriented Programming", OOPSLA '86
Proceedings

9. Glenn S. Fowler, ''The Fourth Generation Make", Proceedings of the Summer USENIX
Conference, 1985

10. N. Meyrowitz, "Intermedia: The Architecture and Construction of an Object-Oriented
Hypermedia System and Applications Framework", OOPSLA '86 Proceedings

11. The Andrew System Programmer's Guide to the Andrew Toolkit, Information
Technology Center, Carnegy Mellon University, January 1988

12. Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, Mass.,
1986

13. "InterViews Reference Manual Version 2.1", c.omputer Systems Laboratory, Stanford
University, 1987

14. Kurt J. Schmucker, Object-Oriented Programming for the Macintosh, Hayden, Hasbrouck
Heights, N.J., 1986

1988 USENIX c++ Conference

NAME
SysLog - System Log

SYNOPSIS
#include "SysLog.h"

typedef long lMask;

extern SysLog· Sy;

class SysLog : public Object {

public:

void setMask(IMask mask);
void print(lMask mask, const char • moduleName, char· format ...);

SysLog();
SysLog(lMask mask);
-SysLog();

};

DESCRIPTION
SysLog is an object that takes t1printf(3)" style format specifications and arguments, composes
the resulting text and stores the result into a log file. A mask is compared against a global
mask to determine candidacy for logging and to determine which types of messages to be
logged.

There is usually only one SysLog per process. The global SysLog pointer, ·Sy, is used to
access the global SysLog. All NAPS processes have a preallocated SysLog pointed at by Sy.

PUBLIC MEMBER FUNCTIONS
void setMask(IMask mask)

Set the mask for this SysLog. There is normally only one SysLog object per process.
This routine sets the mask for this process. The list of possible values for mask and
their usage is:

SY-ENTER
SY-EXIT
SY_NEW
SY.J)ELETE
SYJNFO
SY-ERROR

entering a function or process
exiting a function or process
allocating memory
deallocating memory
general information
error

The default setting for the mask is all possible values enabled.

SetMask should only be used for debugging a process. In a running system the mask will
be set by an external process. The mask can be changed dynamically in a running pro
cess.

void print(IMask mask, const char • moduleName, char· format ...)

1988 USENIX c++ Conference 151

Outputs the given arguments into the default system log. The mask is and'ed with the
global mask and if the result is non-zero the message is output. If the result is zero this
functions returns without outputing the message.

The define FILEID should be used for the moduleName argument. This define expands
to the current filename and current source line number.

If Sy is a pointer to a SysLog object and i is an integer and str is a string then the follow
ing is legal:

Sy->print(SYJ)EBUG, FILEID,
''This is a variable %lOx with a good string %s", i, str);

CONSTRUCTORSIDESTRUCTORS
SysLogO

Initialize a SysLog object with default values. There is a constructor of this type called at
the beginning of any NAPS process to initialize the global Sy pointer.

SysLog(IMask mask)

Initialize a SysLog with the given mask.

-SysLogO

Delete a SysLog.

USAGE
include file
library
module

SysLog.h
SysLog.a
platfonn/SysLog

SEE ALSO
NAPS: System Logging Manual

· WARNINGS
Syslog cannot be called in object constructors that may be static.

152 1988 USENIX C-f+ Conference

Data Level Parall~l Programnling in C++

Thomas ~f. Breuel •

Abstract

"'Ve describe the d~sign and implementation of a programming system for data level
parallel programming in C++.

C+ + is particularly suited to implementing data level parallel programs because it
llllows us to extend the syntax of the language to new data types, because it provides
operator overloading, and because it allows us to use a reference counting memory ~

location scheme. Furthermore, C++ encourages the use of abstract data types. which
makes it easy to pro~'ide efficient implementations of the programming system with iden
tical software interfac~s on both serial and parallel machines. To allow us to formulate
algorithms largely independent of the specific implementation of the communication
primitives for specific parallel machines, we take advantage of C++ function and oper-
ator overloading. .

We present examples of data level parallel programs written in our embedd~d lan
guage to demonstrate the expressive power and elegance of using C++ for data level
parallel programming.

A serial implementation of ollr language exists. We compare it to other data level
parallellangllages such as APL, *Lisp and C*. \Ve will also ,Jiscu"s a number of idioms
and techniques that we used, and point out issues in C+ 1- langua.ge design that came
up during the implementation.

We see our work as an interesting case study in using C++ as a tool for building
embedded programming languages, and as providing a useful a.nd practical tool for data
level parallel programming. We are currently working on improving the serial imple
mentation and writing a parallel version of the embedded language for the Thinking
Machine Connection Machine.

1 Introduction

With the advent of fine grained SIMD ("Single Instruction, Multiple Data") machines has
come a renewed interest in a form of progranuning that has come to be called "data level
parallel progranulling", but whose origins can be traced back to languages such as APL
[Ive62]. In particular, for the Connection Machine, a SI~ID machine with a hypercube
interconnection network and up to 216 one bit processors, several libraries and progranuning
language extensions exist to allow a progranuuer to make use of the hardware.

From our point of view, these existing progralluuing systenls have several Inajor disad
vantages. Low-level libraries such as the Paris library[Thi86a] for ConunonLisp or C are too
inconvenient to use for the application progranuner. Language extensions for ConunonLisp
and C, called ···Lisp" and "C·"[Thi86c][Thi86b~,respectively, are non-standard and rely to
a significant extent on vendor-specific hardware features.

• Author's addr~is: MIT Artifkial InteUigence Laboratory, Room 711,545 Technology Square, Cambridge,
~1.A 02139, eSA. The author wa.s :lupported by a fellowship from the Fairchild foundation.

1988 USENIX C-++ Conference 153

Progranuning languages such as ConunonLisp:Ste84] and C[KR781 require language ex
tensions to accomodate data types and operations for data level parallel programming be
cause they either do not give the progranuner sufficient control over storage allocation and
de-allocation to make efficient use of the limited per-processor resources on highly paral
lel machines, or because their syntax is so inflexible that specifying parallel operations is
cunlbersome and counterintuitive.

For exanlple, if we wanted to introduce a quaternions data type (a kind of number that
can be represented by four real nunlbers) into CommonLisp, we CQuid extend the syntax of
the language to make arithmetic operations on quaternions appear syntactically identical
to operations on, say, integers[ll. However, we could not avoid the run-time overhead of
type dispatching and of storage allocation and de-allocation every time we carry out arith
nletic with quaternions. Conversely, in C, we would have no trouble making sure that not
a single byte of storage gets lost; however, we would have to use function call syntax to ex
press arithlnetic operations on our quaternions and handle memory allocation.!deallocation
explicitly everywhere.

The prograInnung language C++[Str86], a derivative of C, renledies these problems. It
allows the programnler to extend the existing syntax of the language to new data types~

and gives him complete control over all aspects of storage allocation and de-allocation. It
is therefore ideally suited to inlplementing a data level parallel progranuning library.

Our prilnary goal has been to develop a useful tool for data level parallel progranuning
and to provide a system that encourages experiIllentation with new data level parallel
primitives. Our approach has been influenced significantly by the design of the Connection
rvlachine. This is not only because we will be using our progranuning systetn to program
the Connection rvlachine, but also because th~ Connection ~Iachine is the prototypical data
level parallel machine.

2 What is Data Level Parallel Programming?

Data level parallelisnl is a restricted form of parallelism in which (concep tually) different
processors carry out identical, independent operations -on the elements of large, unifortn
data structures(see also[Thi86b][HS86]). An example of a data level parallel algorithnl is
the component-wise addition of two vectors.

Data level parallel algorithms are easier to design than general parallel algorithnls be
cause they do not require any explicit synchronization. Rather, synchronization is inlplicit
at the completion of each prinutive operation. The existence of a good data level parallel
algorithm to solve a particular problem is a problem intrinsic property; data level paral
lelism is not a panacea for parallel programming. It is, however, one of a number of useful
conceptual tools in the design of parallel algorithms~2l.

A machine designed specifically for executing data level parallel programs is the Con
nection ~lachine[Hil85][Thi87]. The Connection Machine is a fine grained SIMD machine,
meaning that a single instruction stream is broadcast to all the processors in the machine
and operates in parallel on data in each of the processors' memories. In the CM-2, the
latest model of the Connection Machine, each processor is a bit-serial one-bit processor. In

(llWith some difficulties. We find that the Conunon Lisp language is significantly Hawed in that it dis
courages extending the existing syntax and functions to new data types.

[21 0 ther useful concepts are those of pipelining and independent branches of computations. These tend to
come into play at the lel-el of larger fundional units of algorithms than data level parallelism.

154 1988 USENIX C++ Conference

addition, groups of 32 processors share a single 32bit floating point co-processor.
However, while a fine grained SIMD machine is perhaps the Inost obvious and straightfor

ward design for a machine built to execute data level parallel progralns, it is not necessarily
the most economical. In particular, when the data types to be used in data level parallel
algorithms are larger than the word size of the individual processors, it is probably more
efficient to use a smaller number of more complex processors and sinlulate several "virtual
processors" with each physical processor, in order to give the progranuner a progranuuing
model of a large uniform machine. Once virtual processors are used, an implelnentation of
a data level parallel algorithrn can benefit further from a MIMD architecture because oper
ations in individual simulated processors may take different amounts of time, and a ~n~ID

architecture executing a data level parallel algorithm can defer synchronization until the
end of each data level primitive operation.

Data level parallel progranuning can also have significant benefits when used on vector
architectures like the Cray series of computers, or, due to instruction caching and data
prefetch effects, even on conventional serial microprocessors. An extreme example of a
serial machine specifically designed to execute data level parallel programs efficiently is the
cellular automata machine (CANI) designed by Toffoli[Tof84][3J•

But apart from issues of efficiency, data level parallel progranuning also enforces certain
kinds of abstractions that are analogous to the use of operator notation in favor of index
notation in mathematics. Rather than operating on large collections of data by iterating
over index sets, data level parallel progranmung requires the use of operators that "operate
on all the data at once"[4].

3 The Library

Regardless of whether a data level parallel algorithm runs on a fine grained machine with one
physical processor per data element, on a coarse grained machine with many data elements
per physical processor, or on a serial machine, we will use the following terminology. The
basic data structure of data level parallel programming is a "pvar" [5]. A pvar is a data
structure ver}' nluch like a vector, Le. a collection of items of identical type indexed by a
subset {O, 1, ... ,n} of the integers. A "processor" is an element of the index set.

Each pvar has associated with it a length which specifies the range of elements of ele
ments that take part in operations involving this pvar. Operations involving several pvars
check whether the pvars participating in the operation have compatible lengths.

Pvars come in several types that correspond to C++ data types. The library defines
the types pbool, pbyte, pshort, pint, and pfloat. It is guaranteed that each of the data
types pbool, pbyte, pshort, and pint is at least as large as the preceeding one in the list.
Furthermore, a pbyte is at least 8 signed bits large, a pshort is at least 16 signed bits large,
and a pint is at least 32 signed bits large. An element of a pint is guaranteed to be able

[3lThe next generation of CAM[TM85] will use 256 processors in parallel and is expected to execute data
level parallel programs that operate on individual bits with grid conununication at speeds comparable to
the CM-2, at a fraction of the cost.

[4!This abstraction is certainly not a benefit that is exclusive to the use of data level parallel programming
tools. Index Cree computation over arrays has been the main attraction of the APL programming language.
Modern introductions to programming such as Abelson and Sussman[AS8S] and modern approaches to
numerical methods as presented in Halfant and Sussman[HS87] encourage similar abstractions.

[SlOw terminology is similar to that used with the *Lisp language and APL programming languages.

1988 USENIX C+t- Conference 155

to hold the index of an element of a pvar. Corresponding C data types are provided under
the names Bool, Byte, Short. Int, and Float.

Pvars are declared and initialized as follows:

II pvar of length 0
pint vl;
II pvar of length 8
pint v2(S)j

pvars can also be assigned and converted easily as follows:

II set every element in v1 to 3
vl=3;
II convert apfloat to a pint
v1=pint(apfloat);
II set every element in v1 to
II its processor number
v2=address(S) j

The contents of a pvar can be exanuned and changed using the set, ref, and print
member functions. (These member functions can even be used interactively in a debuggp.r
such as gdb+).

x.print();
<pint: 3 1 9 2>

x.set(2,77);
x .. print() ;

<pint: 3 1 77 2>
printf(tly'd\ntl,x(O»j

3

Pvars can be used as components of structures, can be assigned to, and can be sub
scripted like arrays. All the arithmetic and logical operations of the C++ progranuning
language have counterparts for pvars that operate componentwise on the elements of the
pvars. Pvars and scalars can be combined freely in expressions. A number of conununica
tion primitives to mO\'e data between processors are also supported. These are described in
more detail in Sections 5.3 and 1.2. Here are some simple examples:

struct pcomplex {
pfloat real,imag;

};

pcomplex operator*Cpcomplex x,pcomplex y) {
pcomplex rj
r.real=x.real*y.real-x.imag*y.imagj
r.imag=x.real*y.imag+x.imag*y.real;

}

pfloat scale(pfloat x) {
float s=(x*x).reduce(op_swm)j
return xIs;

156 1988 USENIX c++ Conference

}

pf10at fiota(int n) {
pfloat x(n);
for(int i=O;i<n;i++) x[i]=(float)i;

return x;
}

Two control structures are provided, ~;'ahere(pbooO statement" and "all statemenf'.
These restrict operations on pvars occurring d)'nautically withing the statement to those
processors in which the pbool is TRUE. or all processor'5 in the case of all. \Vhile these
constructs are useful on occasion, we encourage th.e use of compression operations (see
section 5.3) and the operator?: to replace theIll whenever possible.

4 The Implementation

The data level parallel progranuning system described here is implemented in GNU C-+- +
~Tie88~ using the :\14 macro preprocessor[KR77]. The output of the M4 preprocessor is a
set of C+ ~ source files and header files. Programs using the data level parallel library do
not need to us~ the :\,[4 preprocessor; they can include the header files generated by the M4
preprocessor using the standard ('++ pre·processor.

All pvar data types (pbool, pbyte, pshort, pint, pfloat) are derived from a base class
pvar that implenlents allocation and deallocation and declares a number of virtuC\l member
functions. An object of type pvar is actually just a structure containing a pointer to the
data and reference count associated wit h the pva/6~. \Ve will discuss this in more detail in
Sections 5.1 and 6.2.

We used the r..I4 macro preprocessor to write code telnplates for classes of operations
such as "binary arithnletic operators" and instantiated these code tenlplates for specific
data types and operators. This use of the ;\14 marro preprocessor reduced the amount of
work involved in recreating for pvars all the arithnletic and logical operators of C'" T that
work on scalars significantly. See Appendix B for an exanlple.

The ahen and all control structures are implemented as C++ preprocessor macros.
Essentially, they have to modify a variable, the ess ("Currently Selected Set"), before and
after executing a statement. They expand into the head of a complicated for statement.
This trick allows us to use the same syntax for these new control structures as for built-in
control structures like if.

5 Where C++ Helped

5.1 Per-processor Memory is Limited

.Per-processor memory tends to be limited in data parallel progranuning. Efficient and
immediate reclamation of unreferenced data structures ("garbage") is therefore very impor
tant. Indeed, one of our main motivations for writing a data level parallel progranuning
language in C++ was that storage management in *Lisp, the data level parallel program
ming language most conunonly used at 1:IIT, is very cunlbersome. *Lisp cannot use the

(61This implementation of reference counting is similar to the one described in Section 6.9 of [Str86].

1988 USENIX C-++ Conference 157

CouunonLisp garbage collection facilities to reclaiIu storage because garbage collections
would occur very frequently (due to the limited amount of per-processor memory on the
Connection NIachine). The overhead of a invoking full Lisp garbage collection to reclaim
data structures residing in the Connection ~[achine's memories is unacceptably high.

*Lisp attempts to solve this problem by providing a number of macros to be used instead
of standard Conunon Lisp special forms in an attempt to implement a form of mark and
release type memory allocation. This solution is, however, very unsatisfactory. Conunon
Lisp does not really support the notion of providing replaceulerits for standard operations
like copy-on':return, assignnlent, or initialization, and the *Lisp user i:i forced to live with
two different sets of language prinlitives that interact in non-obvious ways. For example, to
define functions that use pvars as arguments or return a pvar, the *defun macro must be
used, otherwise the Corrunon Lisp defun special fonn is pennissible. To introduce variable
naInes that will hold pvars, the macro *let must be used, whereas for rion-pvar bindings,
the let special fornl is permissible.

*Lisp violates several of the principles of the Lisp programming language. It introduces
the notion that types are lexically associated with variable names fij , it uses objects with dy
namic lifetime, and it requires the progranuner to use explicit calls to memory management
functions for data structures that cannot be allocated on the stack.

In our impleIuentation, we use reference counting for management of the per-ptocessor
memory. A reference counting nlenlOry managelnent strategy can be implenlented transpar
ently in C+., without introducing new constructs or primitives foreign to the language. As
in the *Lisp language, the progranuner is required to allocate and deallocate pvars explicitly
when they are used in contexts where the compil~r cannot deternline their lifetime easily.
However, as opposed to *Lisp, this is entirely analogous to the allocation and deallocation
of any other complex data structure in C or C+ + and therefore does not break with the
conventions of the language.

5.2 Assignment by Copying is Expensive

Reference counting also allows us to implement shallow assignment. Shallow assignnlent
improves perfornlance significantly on a serial implementation. However, one might object
that shallow assignment is a break with the conventions of the C++ programming language
and may lead to un-obvious behavior from the programmer's point of view. We have found
so far that in most cases shallow assignment can replace assignnlent by copying without
changes to the meaning of the program, since most operations on pvars will produce new
pvars anyway.

In principle it is possible to iIuplement a "copy-when-needed" scheme that provides the
semantics of copy-on-assignnlent but avoids unnecessary copy operations. So far, we have
not experienced the need for this, and we fear that the overhead might be noticeable.

5.3 Machine Dependence of Communication Primitives

Data level parallel programming relies on a number of conununication primitives[LLl.V[+ 88]
[Thi86b]. Our library provides primitives for moving data around between different proces
sors, implemented by the operator [], and for scanning[8] and reduction oprations, imple
mented by the member functions scan and reduce. The operator 0 takes either a pbool

[7lNote that optional declarations are lexically associated with identifiers even in Common Lisp.
[al Also referred to as "parallel prefix". Our terminology agrees largely with APL 'g.

158 1988 USENIX C++ Conference

or a pint as an argwnent. \Vhen a pvar is subscripted by a pbool, a pyar of the same type
is constructed consisting only of those items stored in processors where the pbool is TRUE.
We refer to this operation as "compression". When a pvar is subscripted by a pint, a pvar
of the same type is constructed whose length is the sarne as the subscripting pint, and in
which each element is selected from the processor specified by each element of the pint. \Ve
refer to this operation as "indexing".

Here are some straightforward examples of the use of conlpression and indexing:

II permute the variable x
II 9ith a fixed, given permutation

try(pfloat x) {
pint perm(3);
int p1[]={3,2,1};
perm=pl;
return x [perm] ;

}

II determine h09 many applications
II of the permutation perm it takes
II to get back the original variable ind

order(pint ind,pint perm) {
int n=O;
pint last_ind;
do { last_ind=ind; ind=ind[perm]; n++; } 9hile(ind!=last_ind);
return n;

}

II sum the values of the 4nhd

pint sumnhd(pint v) {
II north tc. are either special address classes or
II global constants of type pint
return v[north]+v[south]+v[east]+v[west]+v;

}

On many parallel machines, some conununication patterns are more efficient than oth
ers. For example, on the Connection l\'lachine, conununication that takes place on a two
dimensional grid is significantly faster than general permutations. Often, it is also advanta
geous to pre-compute some additional infornlation about a specific conununication pattern
and associate this additional information with the conullunication pattern itself: for ex
ample, it is frequently desirable to replace a particular conununication step by two steps
with randomly chosen intermediates in order to obtain good expected perfornlance of an
algorithm.

To simplify experinlentation with different kinds of conununication printiti ves in a data
level parallel program, the operator [] is overloaded for different kinds of argurnents that
represent different corrununication patterns. The algorithnl itself, formulated in terms of
the operator [], relllains unchanged then when the types of the arguIllents that describe

1988 USENIX C-++ Conference 159

the communication operation are changed. Thus~ to change an algorithm to use a user·
defined distributor class instead of the built-in send prinlitive, it is sufficient to change
the definition of the pvar used for the distribution, not the algorithm itself:

oldAlgoiithm(pint x) {

pint distribution=makaDistribution(x)i
II some algorithm involving distribution follows

}

newAlgorithm(pint x) {
distributor distribution=makeDistribution(x)i
II some algorithm involving distribution follovs

}

Overloading of operator [] could also be used to eliminate the explicit definition of a
scan member function from the library.

5.4 Assigning to Subscripted Pvars

It is convenient to treat pvars syntactically like arrays. Unfortunately, it is difficult on
some parallel machines to treat references to per-processor memory as pointers; Le. the
per-processor memories are not mapped into the host machine's address space. We provide
some syntactic sugar that lets us write expressions such as:

pint temp(10)i
temp=Oi
temp[3]=li
temp[9]=li

This is implenlented by having the operator [] (int) return an object of type 1value_pvar
and overloading the assignlnent operator.

A generalization of this nlethod allows assignment to pvars with indexing[91. For exam
ple:

pint rp=random_permutation()i
y[rp.inverse()]=xi
assert(y==x{rp])i

I.e. if rp is a permutation of the processors, the expressions "y [rp. inverse()] =x" and
"y=x [rp] " are entirely equivalent[lol. However, the assignment form allows collisions. How
these are handled depends on the type of the argument to operator []. By default, the
behavior is Wlspecified. The implementation of permuted pvars on the left-hand side of
assignment operators is entirely equivalent to the implementation of subscripted pvars on
the left-hand side of assignment operators.

i9JThis operation is equivalent to the Paris send primitive
!l°)The member function inverse returns the inverse of a permutation.

160 1988 USENIX c++ Conference

6 Where C++ Didn't Help

6.1 Compiler Optimization

Perhaps the conceptually most displeasing disadvantage of our approach is that because op
erations are implemented as library subroutines (regardless of the syntactic sugar provided
for them), the C++ compiler cannot perfornl optimizations that a dedicated ~ompiler could.
A C++ compiler can perform constant folding, move expressions from loops, or eliminate
dead expressions, to name only a few optimizations, for arithmetic expressions in,'olving,
say, the data type "int", because it knows a great deal about the properties of 32 bit, two's
complement numbers. It has no such knowledge about user-defined arithmetic data types.
A dedicated compiler for a data level parallellangu~ge could know about such properties
and take advantage of them.

Practically, this objection is of little significance, since most special purpose languages,
such as C*, tend to lack good optimiziers anyway, simply because not as many resources go
into their development. Nevertheless, it would be desirable if the progranuner could declare
to the compiler that a user defined data type behaves "just like a built-in type", in our
case, that the arithmetic properties of, say, pint's are the same as the properties of ints.
Less promiscuous declarations would state that certain functions or operators are side-effect
free, that arguments are not modified or are "constant references", or that certain algebraic
properties such as conunutativity or associativity hold for a given operator.

In passing, we would like to mention that two particular kinds of optimization would
probably improve performance of the serial implementation of our library significantly:
elimination of index variables and loop merging. While the former is straightforward to
implement (and will be included in upcoming versions of the GNU C++ compiler), the
latter requires considerably nlore sophistication and global optimization strategies.

6.2 Storage Allocation

Currently, the storage for pvars is allocated using the operator nev in the serial imple
mentation, and a general, malloc-like storage allocator in the parallel implementation{1l1.
In principle, the overhead of calling a general storage allocator could be avoided in many
cases and a stack allocation scheme be used instead. A stack allocation strategy would also
reduce memory fragmentation, which is particularly important in the parallel i.mplementa
tion where per-processor memory is limited. Unfortunately, the C++ language definition
does not specify how a constructor can determine when stack allocation can be used for
additional storage associated with a class object.

We also feel that the use of reference counting to achieve immediate de-allocation of
unreferenced per-processor memory and the use of double indirection to achieve reference
counting are not the best possible strategies for memory management. Experience with im
plementations of Smalltalk has shown that using direct pointers and generation scavenging
storage reclamation are more efficient and can also be used to reclaim memory almost as

. soon as it has become garbage[UP84][Ung87].

[ll)See also the string class defined in [Str86], Section 6.9.

1988 USENIX Ci+ Conference 161

7 Some Unresolved Issues in Languages for Data Level Par
allel Programming

7.1 Multidimensional Pvars

We would like to provide the same kind of general treatment for multidinlensional p\-ars
in our library that multidimensional arrays receive in APL. Unfortunately, the ease with
which multidimensional arrays are manipulated in APL derives largely froll1 its specialized
syntax. C++ does not even provide multidimensional forms of the ,subscripting operator~12J.

~Iore importantly, in APL, most operations on Inultidimensional arrays ha\'e a straight.
forward and ob"'ious implenlentation. Arrays can simply be represented as vectors with
some associated information about their shape; reshaping a 3 X 5 array into a 5 x 3 array
does not require any actual data to be moved. However, the same approach does not work
on parallel machines. If we assign an n-tuple of integers as a multidimensional address to
each processor, reshaping an array actually involves inter-processor conunumcation in or
der to assure that data items with the same 'multidimensional addresses reside in the same
processor.

We are not sure yet how to support multidimensional pvars cleanly. Support in the
*Lisp language is rather ad hoc and machine specific. By nlaking multidimensional pvars
derived classes of pvars, and using the methods described in Section 5.3, the saUle kind of
functionality can be provided easily and more cleanly as an extension to our library.

7.2 Efficient Communications

A great variety of interconnection schemes for the processors in parallel and massively paral·
leI computers has been proposed. Complete networks, hypercube interconnection networks,
~huffte·exchange networks, fat-trees, two- and three-dimensional grids, and multigrids are
just a few other favorites.

Once a particular data level parallel algorithm has been chosen to solve a given problem,
the programmer's task is to implement the communication patterns required by the algo
rithm as efficiently as possible in terms of the underlying hardware. As in the case of serial
progranuning languages, he can do best by programming the data level parallel computer.
in "machine language". However, as in the case of serial programming languages, this is
undesirable because it requires considerable effort and is highly machine specific.

The solution is, of course, to provide a small set of abstract operations that can be
implemented reasonably efficiently on a variety of different machines [13]. By including more
specialized abstract operations, an implementer can provide more efficient implementations
for specific cases, at the cost of increasing the complexity of the language.

We do not know yet what a good and reasonably complete set of abstract conununi
cation primitives for data level parallel progranuning is. The classes of conununication
patterns that we have encountered in practice are: arbitrary communication patterns with
collisions, arbitrary communication patterns without collisions, and low-dimensional com
munication patterns without collisions (e.g. conununication on a two-dimensional grid).

(12IWe would like to see multidimensional subscripting added to the C++ language, Le. to allow the
programmer to overload operator [] with multiple arguments. This would require the progranuner to
parenthesize expressions containing the "," operator inside the jubscripting operator, an incompatible but
minor change in the syntax of the language.

[13IIn many cases, the progranuner can also give optional declaration' that don't change the meaning of
the program, but allow the implementer to use shortcuts to improve performance on specific machine~.

162 1988 USENIX C-H- Conference

Two basic classes of operations that occur frequently for all communication patterns are
send operations (that simply move data around), and scan operations (that combine data
with binary associative operators as it is moved; see in particular[Ble86] for a discussion
of the use of the scanning primitive in data level parallel progranuning). Finally, for each
operation and class of communication pattern, both uncompiled and compiled forms are
useful; the uncompiled form is used for conununication patterns that change often, whereas
communication patterns that are used for many conununication operations benefit from
compilation.

But as important as a set of primitives is the expectations of the progranuner of how
'~fast" or "slow" each primitive will be. Primitives for the high-dimensional uncompiled
conlD1unication patterns and scanning primitives cannot be expected to execute quickly
in general on data level parallel hardware that has only low-dinlensional communication
networks. Progranuning experience will show whether there are useful abstractions of classes
of conununication patterns internlediate in power between the high and low dimensional
patterns.

These issues can be addressed and studied in our embedded data level parallel program
ming library because new conununication primitives are easily added and easily tried with
existing algorithms. More complex are questions of compile-time optimization of comm~
nication patterns. If some conullunication patterns are known at compile time, a compiler
for a data level parallel prograrruning language could in principle allocate elements of pvars
to processors in such a way as to optinlize the performance of the communication primi
tives. In cases such as the following, the conlpiler might, for exarnple, decide to "renunlber"
the elements of pvar b globally to minimize the amount of inter-processor communication
required during the execution of the progranl:

pint x=address(10),y=10-address(10);
pfloat a,b;

pfloat fun() {

return a[x]+b[y]*b[y];
}

However, at the very least, optimizations like these require the compiler to evaluate constant
expressions involving pvars.

8 Conclusions

C++ has proven to be a very useful tool for designing and implementing a programming
system that lets us experiment with data level parallel programming. The ability to overload
functions and operators allowed us to implement a reference counting memory allocation
scheme~ to specify data level parallel algorithms independently of what conununication prim
itives are actually used, and to write expressions involving pvars and/or scalars concisely
and in standard arithmetic notation. Virtual functions permit us to use communication
primitives independent of the type of arguments they operate on.

The advantages to our approach are quite clear. Because our data level programming
system is implemented as a library in a widely-used programming language, a programmer
or user is already familiar with the syntax and semantics of the language. Both serial
and parallel versions of the library can be implemented quickly and ported to a variety of

1988 USENIX C++- Conference 163

machines easily (since only library source code and not translator source code, as in the
case of language extensions, needs to be transported).

There are also certain disadvantages to our approach. In principle, a dedicated compiler
can perform better optimizations than the C+ + compiler can, since a dedicated compiler
"knows" more about the properties of specific language primitives. In practice, this is
not a significant argument, since dedicated compilers tend to have poorer optimizers than
compilers for general purpose languages, since significantly more development effort has
been expended on the latter. We also hope that including new optional declarations in the
C++ language will allow the C++ compiler to be able to perfornl optimizations that up to
now only a dedicated compiler could perfonn. A dedicated compiler can also provide useful
syntactic extensions to the base language. However! we feel that the C++ language syntax
is powerful enough to let the progranuner express his algorithms clearly and concisely.

A more serious practical argument against our approach is that by trying to be general
and vendor-independent, a programmer may be forced to write less efficient code than if he
were IIsing a machine specific prograrruning system. The answer is the same as in the case
of the dualism of assembly language and high-level languages: use the latter for specifying
and testing your algorithm, and if speed is of utmost importance, implement a few critical
sections in assembly language. A Connection l\vlachine implementation of our library still
allows the progranuner to use Paris instructions whenever speed is critical.

Altogether, we believe that our system is a useful and efficient alternative to existing
programming systems for dat~ level parallel programming. We expect that it will be of
great utility in experimenting with different data level parallel progranuning primitives and
in writing applications for artificial intelligence and vision research.

Acknowledgements

I would like to thank Jim Little, Robert S. Thau, and nlany others who have participated
in discussions about data level parallel programming and!or made useful conunents on the
design of our system and the paper.

References

[A585]

[Hil85]

[HS86}

[H587]

[ive62]

164

Harold Abelson and Gerald Jay Sussman. Structure and Interpretation 0/ Com
puter Programs. MIT Press, 1985.

Guy E. Blelloch. Parallel Prefix vs. Concurrent lVlemory Access. Technical
report, Thinking Machines Corporation, October 1986.

W. Daniel Hillis. The Connection Machine. An ACM Distinguished Dissertation,
1985. MIT Press, 1985.

W. Daniel Hillis and Guy L. Steele Jr. "Data Parallel Algorithms. Communica
tions 0/ the ACM, December 1986.

Matthew Halfant and Gerald Jay Sussman. Abstraction in Numerical lVlethods.
Technical Report 997, MIT Artificial Intelligence Laboratory, October 1987.

K. E. Iverson. A Programming Language. John Wiley & Sons, Inc, 1962.

1988 USENIX C++ Conference

[KR77] Brian W. Kernighan and Dennis ~1. Ritchie. The .:.lf4 Itfacro Processor, July
1977.

[KR78] Brian \V. Kernighan and Dennis ~1. Ritchie. The C Programming Language.
Prentice Hall, 1978.

[LLM+88] TOIli Leighton, Charles E. Leiserson, Bruce ~1aggs, Serge Plotkin, and Joel Wein.
Theory of Parallel and VLSI Computation. Technical Report 1, MIT Laboratory
for Computer Science, March 1988.

[Ste84] Guy L. Steele Jr. CO'm'mon LISP: The Language. Digital Press, 1984.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, 1986.

[Thi86a] Thinking Machines Corporation. Connection Jfachine Parallel Instruction Set
(PARIS), Release .2 Revision 7, July 1986.

[Thi86b] Thinking Nlachines Corporation. Introduction to Data Level Parallelism, April
1986.

[Thi86c] Thinking)'Iachines Corporation. 'The Essential *Lisp ..lfanual, July 1986.

[Thi87] Thinking ~Iachines Corporation. Connection Jlachine J/odel CJI-2 Technical
Summary, 1987.

[Tie88} l\Iichael D. Tienlann. User's Guide to GNC C++, May 1988.

[TM85] Tommaso Toffoli and ~orman ~Iargolus. The CAM-7 Multiprocessor: A Cel
lular Automata ~Iachine. Technical Report LCS-TM-289, ~nT Laboratory for.
Computer Science, 1985.

[Tof84] Tommaso Toffoli. CA~I: A high-perforIuance cellular-automaton machine. Phys
ica, 10D:195-204, 1984.

[Ung87] David Michael Ungar. The Design and Evaluation of a High Performance
Smalltalk System. An ACM Distinguished Dissertation. rvUT Press, 1987.

[UP84] David 1\-1. Ungar and David A. Patterson. Berkeley Smalltalk: Who Knows
Where the Time Goes? In Glenn Krasner, editor, Smalltalk-80: Bits of History,
Words of Advice. Addison-Wesley, 1984.

A Examples

The sieve is a nice example of how the C++ operator notation lets us express a data level
parallel algorithm concisely. The idea is that the variable sieve represents those numbers
whose primality has not beed decided yet, whereas primes holds numbers that are definitely
prime. At each step the lowest number in sieve is obtained, which must be a prime, it is
added to primes, and it and its multiples are removed from sieve. After v'ii iterations,
sieve contains all primes greater than n, and primes all primes less than n. The union of
both variables is the answer.

1988 USENIX c++ Conference 165

II
II Compute the n loaest primes using the sieve method.
II
#include upvar.hh ll

void puts(char*);
double ceil(double);
double sqrt(double);

const n=20000;

int loaest(pbooll b) {
pint adr=address(n):
return adr[b][O];

}

maine) {
pint adr=address(n);
pbool sieve(n),primes(n):
int sqrtn=ceil(sqrt(n»,j;

sieve=l:
ahere(adr<2) sieve=O:
primes=O:
vhile«j=loaest(sieve»<sqrtn) {

sievel=«adrY.j)!=O):
primes [j] =1:

}

adr[primeslsieve].print();
}

B Code Templates

The following example illustrates the use of code templates in M4 to generate a complete
set of operators corresponding to the operators that exist for standard scalar data types in
C++:

II OP(returnType1,classType2,argumentType3,name4,op$)
define(OP,
p$1 p$2::$4(p$31 other) {

int n=mdn(box->size,other.box->size);
p$l result(n);
if(!selection) {

for(int i=O;i<n;i++)
result.box->contents$t[i]=

(box->contents$2[i] $6 other.box->contents$3(i]);
} else {

bool .psel=selection->box->contentsbool;
for(int i=O;i<nji++)

166 1988 USENIX Cf+ Conference

if(psel [i])
result.box->contents$l[i]=

(box->contents$2[i] $S other.box->contents$3[i])i
}

shallovret(result)i
})

We can now define groups of operators and use these to generate all operators for a
particular data type as follows:

define(ARITH,
II arith $1
UNARY($1,$1,operator++,++)
UNARY($1,$1,operator--.--)
OP($1.$1,$1,operator+,+)
OP($l,'l,$1,operator-,-)
OP($l,$1,$1,operator*,*)
OP($1 ••1,$1,operator/./)
...)

define(BOOLARITH,
II boolarith $1
OP($l,'1,'l,operatori,ti)
OP($1,$1,'1,operatorl.1 I)
OP($l,$1,$l,operator A ,!=)
COP($1,$l,'l,operatori,ii)

. ...)

1988 USENIX C* Conference 167

168

------------ ---- -------------

1988 USENIX C-t+ Conference

A Multiprocessor Operating System Simulator*

Gary M. Johnston
Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign

1304 West Springfield Avenue, Urbana, IL 61801-2987

Abstract

This paper describes a multiprocessor operating system simulator that was developed
by the authors in the Fall semester of 1987. The simulator was built in response to the
need to provide students with an environment in which to build and test operating
system concepts as part of the coursework of a third-year undergraduate operating
systems course.

Written in C++ [1], the simulator uses the co-routine style task package [2] that
is distributed with the AT&T C++ Translator to provide a hierarchy of classes that
represents a broad range of operating system software and hardware components. The
class hierarchy closely follows that of the Choices [3] family of operating systems for
loosely- and tightly-coupled multiprocessors. During an operating system course, these
classes are refined and specialized by students in homework assignments to facilitate
experimentation with different aspects of operating system design and policy decisions.

The current implementation runs on the IBM RT PCl under 4.3bsd UNIX. 2

1 Introduction

The principles of low-level operating system design have implications that are difficult to
appreciate without the practical experience gained by progranuning such systems. Multi
processor systems present even more problems. However, it is difficult to p;rovide university
students with such a learning experience. Hardware resources are too expensive to allow
each student single user access to a multiprocessor workstation. Low level parallel proc~ss
ing systems software, as an instructional resource, is usually poorly organized and difficult
to understand. In addition, there is little support for the debugging and testing of low-level
systems programs on multiprocessors. This paper describes a multiprocessor operating
system simulator we have constructed in C++ to overcome these problems. The current
implementation is used in the department's instructional laboratory and runs on 30 IBM
RT PCs which were donated to the university by the IBM Corporation.

The simulator is modeled on the Choices multiprocessor operating system family [3]
[4] [5]. It includ~s classes to model both the processes, schedulers, and exception handling

-This work was supported in part by NSF grant CISE-1-5-30035, by NASA grant NSG1471, and by
AT&T ISEP.

lRT PC is a trademark of IBM.
2UNIX is a trademark of AT&T.

1988 USENIX C-t+ Conference 169

170

mechanisms of Choices and the processors, I/O devices, traps, interrupts, timers, and other
hardware components of a typical multiprocessor like the Encore Multimax.3

The simulator was designed for a third- or fourth-year undergraduate course on oper
ating systems that is taught in the department. The goal of the course is to introduce
students to the principles of operating systems and to reinforce those principles with prac
tical experiments and projects involving the design of operating system mechanisms and
policies.

Using the simulator, experimentation is conducted within the framework of the class
hierarchy and object-oriented programming mechanisms afforded by C++. Many of the
practical design exercises involve specializing an abstract class into a concrete class that
implements a particular policy or mechanism. Policy exercises include process scheduling,
real memory management, page replacement, and disk scheduling. Mechanism exercises
include synchronization primitives, I/O queues, paging mechanisms, exception handling
schemes, and message passing primitives.

The operating system course benefitted from the use of C++ in several ways. The
language allows an efficient simulation of the operating system while providing a level of
type checking that aids debugging of student programs. Debugging and tracing aids are
built into the base classes of the simulator and help the students implement their designs.
The class hierarchy organizes the conlponents of the simulation into sinlilar algorithms
and data structures. This organization is a useful aid to the student that is learning the
system. The class hierarchy enables fairly large simulations of an operating system to be
built incrementally by the students.

The remainder of this paper consists of four major sections. Section 2 describes the
model of the Choices operating system and class hierarchy supported by the simulator.
Section 3 discusses the design and implementation of the simulator. Section 4 describes
how the simulator was used, including descriptions of some of the projects. Finally, we
summarize our experience with the simulator in section 5.

2 Choices Overview

Choices is a family of operating systems built using a class hierarchical object-oriented
approach to systems design and progranuning. A Choices operating system has been imple
mented on an Encore Multimax and is being ported to an Intel iPSC/24 hypercube [6]. It
demonstrates that object-oriented design techniques are both appropriate and beneficial for
writing complete operating systems for multiprocessors and networks of multiprocessors.

In Choices, a class hierarchy represents the major components of a family of operating
system designs. Classes represent the interfaces and implementations of processes, virtual
memory, context switching, exception handling, scheduling, and synchronization. They are
also used to provide a hardware/software interface by encapsulating machine dependent
algorithms and data structures for the hardware entities such as the CPUs, MMUs, interval
timers, disks, and networks.

The goal of the system is to allow an operating system designer to select, refine, and
combine classes from the class hierarchy to build a custom operating system for a particular
hardware environment or a particular application. The resulting operating system is also
more easily modified or extended than one based on more "traditional" approaches [7].

J M1iltimax is a trademark of Encore Computer Corporation
fiPSC is a trademark of Intel Corporation.

1988 USENIX C-t+ Conference

Choices Simulator Classes

Class Methods
Object - - - -
TProcess - - - -

TTldleProcess - - - -
TProcessContainer add remove - -
TTCPU add remove interrupt trap
TTFIFOQueue add remove - -
TTProcessQueue add remove - -
TException raise await handle -
TTInterruptException r T handle -
TTTResetException r T handle -
TTTTimerException T T handle -
TT SoftwareException raise T handle -
TTTldleException T T handle -
T11TerminateException 1 T handle -
illSemaphoreException r . 1 handle -
TSemaphore p V - -

Legend

Symbol rvleaning
method Definition of method.
method Redefinition of method.

i Subclass or inherited method.
- Undefined method.

Table 1: Choices Simulator Classes.

The ease of module substitution greatly facilitates prototyping, a great benefit to practical
operating systems research and experimentation.

This section presents a brief overview of the Choices project and of the Choices class
hierarchy as implemented by the simulator. For more detail, see [3] [4] [5].

2.1 The Choices Class Hierarchy.

The major classes of Choices as modeled by the simulator are shown in table 1. Class
Object is the root of the hierarchy. Subclasses are used to provide abstract interfaces and
concrete implementations for operating system mechanisms. They are used to encapsulate
data, policies, and alternative implementations or versions. Subclasses of Object define the
basic entities within an operating system. Further, subclasses of these classes add and/or
redefine methods in order to augment, specialize, or provide concrete implementations of
these classes.

2.1.1 Processes and ProcessContainers

Class Process provides the basic unit of execution within Choices. Process management in
the operating system is achieved by moving Processes between ProcessContainers. Sub
classes of ProcessContainers represent processors and schedulers.

1988 USENIX C++ Conference 171

172

An IdleProcess is associated with each simulated processor. It is executed only when
there are no other runnable Processes available. Each IdleProcess periodically checks the
scheduler and signals the processor when it detects that there is a Process which could be
executed.

Other Processes represent "user-level" processes. The behavior is redefined by the sim
ulation designer as necessary. Usually user-level Processes are designed to simulate a "job
load" for the simulation.

The ProcessContainer class defines methods to add() and remove() Processes. These
methods are specialized by the subclasses CPU, FIFOQueue, and ProcessQueue.

The CPU subclass of ProcessContainer represents processors. Adding a Process to a
CPU specifies that it should be executed by a particular processor of the multiprocessor
system; that is, the Process is dispatched on the CPU. Renloving a Process from a CPU
idles the processor, which represents preemption of the Process. Multiple instances of class
CPU represent multiple processors in a multiprocessor.

Facilities for scheduling and blocking Processes are provided by classes FIFOQueue and
ProcessQueue. A FIFOQueue acts as a simple "first-in-first-out" queue of Processes, while
a ProcessQueue is associated with a timeslice quantum. When a Process is renloved from a
ProcessQueue, the timeslice quantum field of the Process is set to the quantum associated
with the ProcessQueue. This field is used by the CPU to determine the maximum amount
of time the Process should be allowed to execute before being preempted. The quantum
associated with a ProcessQueue may be any value desired. The default quantum is a value
which means "run-to-completion." These classes may be refined by other subclasses in order
to implement a wide range of policies. FIFOQueues can act as queues of blocked Processes.
Other subclasses of ProcessContainer can be defined and substituted to provide whatever
sorts of scheduling disciplines the system designer desires.

2.1.2 Exceptions

In Choices, most movement of Processes between ProcessContainers is by Ezception han
dlers. In addition, the only way in which an executing Process can relinquish its CPU is by
the raising of an Exception. Relinquishing the CPU may be a voluntary, synchronous action
performed by the Process (Le., a "trap") or an involuntary, asynchron.ous action caused by
an external event (Le., an "interrupt").

. Class Exception itselfis an abstract class.s An Exception provides the methods handler),
raise(), and await(}. The raising of an Exception causes its handler to be invoked (with
the possible side-effect of unblocking one or more Processes awaiting the Exception).

There are two abstract subclasses of Exception: InterruptEzception and SoftwareEz
ception, each of which is further subclassed. An InterruptException is associated with an
interrupt vector which, when delivered to a CPU, causes the associated InterruptException
to be raised. Thus, InterruptExceptions occur asynchronously with the execution of Pro
cesses. A SoftwareException is not associated with an interrupt vector. Instead, it is raised
directly by an executing Process and acts like a "trap."

InterruptException subclasses include ResetEzception and TimerEzception. Each CPU
is associated with an instance of each of these. A ResetException provides the actions
to be taken when the CPU is "reset". The TimerException handles the expiration of the
per-CPU interval timer.

&By ab,tract, we mean that no instances of the class ever exist. Rather, it is used as a base class from
which subclasses are derived in order to provide specialized behavior.

1988 USENIX C-H- Conference

Other SoftwareException subclasses include IdleEzception, SemaphoreEzception, and
TerminateEzception. An IdleException is a software event that signifies that Processes are
available to the CPU for execution. An IdleException is raised by a CPU's IdleProcess
when it detects that the CPU's scheduler is non-empty. A TerminateException is raised to
remove the Process from the CPU an<J delete it. A SemaphoreException is raised when a
Process attempts to acquire a semaphore which is unavailable. The SemaphoreException
removes the Process from the CPU and adds it to the queue of Processes waiting for the
semaphore.

2.1.3 Semaphores

A Semaphore is the basic synchronization primitive within the simulator. It defines the
familiar PO and VO operations [8] for acquiring and releasing the Semaphore.

3 Implementation

The simulator provides a class hierarchy from which simulated multiprocessor operating
systems 'can be designed and studied, following the Choices model as closely as possible.
This section discusses the implementation of the simulator.

3.1 Microscheduling

Like Choices itself, the simulator is written in C++. In order to provide the required simu
lated concurrency, the simulator uses the '"coroutine-style task package" which accompanies
the AT&T C++ Translator [2].

The task package provides user-level coroutine-style tasks, but does not provide for
non-voluntary relinquishing of the virtual processor. That is, an executing task does not
block unless it explicitly calls a task package procedure (for example, delay() or sleep()).
While this is very useful for system simulation, it is inadequate to emulate a multiprocessor
programming environment realistically. A simulated user-level task executing an "infinite
loop" will prevent all the other simulated tasks from proceeding. This simple implementa
tion of tasks is inadequate to emulate interrupts or preemptive scheduling policies such as
round-robin time-slicing, nlulti-Ievel feedback queues, or "shortest job first."

In addition, we wanted to simulate the nondeterminancy that must be dealt with by
programs using or implementing synchronization primitives and executing within a mul
tiprocessor environment. Therefore, the basic task package was augmented with a "mi
croscheduling" sub-system that time-slices between executable tasks preemptively. Note
that this involved only additions to the task package. The task package itself was not
modified.

The microscheduling mechanism implements a time-sliced round-robin mechanism un
derneath the basic task package. This mechanism gives each executable (Le., non-blocked)
task a "microquantum" equal to one virtual clock tick. At the end of the microquantum, the
task is delayed for one clock tick, and the next executable task is dispatched. In this manner,
executable tasks are preemptively time-multiplexed on the underlying UNIX process.

The 4.3bsd UNIX interval timer and signal mechanisms were used to implement the
actual preemption of tasks. At simulator initialization time, an interval timer is armed to
deliver a signal to the underlying UNIX process each time the timer expires. When the
signal is received, the signal handler executes in the context of the current task. The signal

1988 USENIX C++ Conference 173

174

handler executes a call to the task package to delay the current task by one virtual clock
tick, thus relinquishing the underlying UNIX process to execute another runnable task. If
there are no more immediately runnable tasks, the virtual clock is incremented (by the
task system), allowing tasks which had delayed themselves during the previous clock tick
to become "ready" again. When a task that had previously delayed itself via the signal
handler becomes ready again, its invocation of the signal handler returns, thus restoring
that task's context to that which was in effect when the signal was received. The task
then continues execution at the point where it was preempted. Thus, the microscheduling
effectively implements a round-robin scheduling policy underneath the existing task package.

The basic task package requires no explicit shared resource access control internally be
cause there is no preemption. Provided that critical sections do not delay, they do not need
synchronization because, without preemption, races cannot occur. Once microscheduling
has been added, however, this is no longer the case. Within the Choices classes, mutual
exclusion primitives are used in order to ensure that critical sections are protected. In or
der to support these primitives in the simulator, instances of two low-level task classes are
distinguished by the microscheduling mechanism and are not preempted.6 Therefore, these
classes' nlethods do not need to use explicit Inutual exclusion primitives.

3.2 Class Hierarchies and Layering

The sinlulator is organized into two major class hierarchies: the augmented task package
class hierarchy (including the microscheduling mechanism) and the Choices class hierarchy
itself.

The basic task package provides the abstraction of a task, which is the primitive unit of
execution within a task package application. This hierarchy has been augmented by creat
ing subclasses of the task class in order to provide more specialized behavior as needed by
the rest of the simulator. These classes are CPUManager, CPLTTimer, and Process Task.
A CPUlvlanager and a CPUTinler are associated with each simulated CPU. The CPU
Manager sinlUlates the activity of the CPU. This includes interrupt vector processing, trap
processing, and exception handling actions. The CPUTimer siInulates a per-CPU interval
timer to provide support for preemptive time-slicing of sinlulated Processes. A ProcessTask
is associated with each simulated Process. The CPUManager associated with a CPU al
lows the ProcessTask to execute (on behalf of the simulated Process) when the Process is
dispatched on that CPU.

The Choices simulator class hierarchy provides the classes that form the basis for oper
ating system simulations: Process, ProcessContainer, CPU, Exception (and its subclasses),
etc. Table 1 shows this hierarchy. Figure 1 shows the arrangement in terms of layers.

3.3 Class CPU

A CPU contains a number of objects in addition to its CPUManager and CPUTimer. Each
CPU has a current Process and an IdleProcess. The current Process is the Process currently
being executed by that CPU. Since a CPU is a ProcessContainer, the current Process of a
CPU references a Process which has been added to the CPU. The IdleProcess is executed
only when the CPU is otherwise idle (e.g., when there are fewer Processes in the "system"
than there are CPUs7).

6These classes are CPUManager and CPCTTimer, discussed below.
1not including IdleProcesses, of course.

1988 USENIX C++- Conference

Microscheduling.

User simulation.

~-------------------------------

Choices classes.

--~----------------------------

CPUManager

CPUTimer

ProcessTask-------------------------------
Task package.

Figure 1: Conceptual Layering in the Choices Simulator.

Next, a CPU contains a queue of pending interrupt vectors and a table that maps inter
rupt vectors to InterruptExceptions. Incoming interrupt vectors and SoftwareExceptions
are detected by the CPUManager which then executes the InterruptException han41ers.

Each CPU references a ProcessContainer that operates as the "ready queue" or sched
uler. When an executable Process is removed from the CPU, it is added to this scheduler.
Also, a Process is removed from this scheduler when the CPU requires one. For example,
when an executing Process' tinleslice expires, it is removed from the CPU and added to this
scheduler. Then, another Process is removed from the scheduler and added to the CPU.

In this way, several CPUs may be associated with a particular scheduler. There is no
reason why there can't be more than one scheduler in the system, each associated with its
own set of CPUs. The siInulation designer' can change this association dynamically at any
time.

There are two groups of operations on a CPU: "private" routines intended for use by
"friends" (essentially CPUManagers and Exception handlers) and "public" routines in
tended for use by the simulation writer.

The private routines include add() , and remove(), which are redefinitions of the su
perclass ProcessContainer methods for adding/removing Processes to/from a ProcessCon
tainer. Adding a Process to a CPU is effectively a "dispatch" of the Process, while removing
a Process from a CPU corresponds to a "preemption" of the Process.

Two other important private routines are remove Vector() and getEzception(). These are
used by the CPUManager to remove an interrupt vector from the incoming vector queue,
and to map a vector to an InterruptException, respectively.

The public operations include the constructor and destructor, routines to get and set
the CPU's scheduler ProcessContainer, the interrupt() routine which is used to send an
interrupt vector to a CPU, the trap() method which is used when a SoftwareException is
raised, and the setEzception() routine which is used to associate an interrupt vector with
an InterruptException.

When a CPU is created it is empty, i.e., it contains no Process. The Exception table
(which maps interrupt vectors to InterruptExceptions) contains two default mappings: a
ResetException is associated with the ResetVector, and a TimerException is associated
with the TimerVector.

In the implementation, the CPU itself is passive; it is the CPUManager and the CPU
Timer which are the active entities, controlling the activities of the CPU. These are discussed

1988 USENIX C-++ Conference 175

176

next.

3.4 CPUTimer

A CPU's CPUTimer implements timed preemption of Processes. A CPUTimer is a task
that sends the TimerVector to the CPU when the time interval expires. If the CPUTimer
is stopped before it expires, then the residual time can be retrieved.

In general, when a Process that specifies a timeslice quantum is dispatched, the CPU
Manager sets the CPUTimer to expire at the appropriate time. If the CPUTimer expires,
the TimerVector interrupt triggers the execution of the associated InterruptException's
handler (usually a TimerException). If the Process is preempted for some reason other
than CPUTimer expiration, the CPUTimer is stopped and the residual is read and stored
in a field of the Process for possible use by the scheduler.

3.5 CPUManager Duties

The CPUManager handles asynchronous events in the system like interrupts, as well as
synchronous events such as traps, and invokes the Exception handlers associated with them.
The CPUManager is initially "asleep'," and the arrival of an interrupt or trap "wakes up"
the CPUManager. When a CPU's interrupt() method is called, the vector is enqueued
on the CPU and its CPU~Ianager is awakened. When a CPU's trap() method is called,
the SoftwareException is saved on the CPU, the invoking Process is stopped, and the
CPUManager is awakened. The general control loop of the CPUManager is shown in
figure 2.

~.6 Processes and ProcessTasks

Each Process is implemented by a ProcessTask which executes when the Process is dis
patched on a CPU. Each Process contains a tiIneslice quantmn and a residual, which is
used for preemptive timeslicing. The residual field is set by the CPU when the Process is
preempted. This information is intended for use by schedulers. In addition, each Process
keeps run-time statistics.

The ProcessTask associated with a Process is the entity which is actually executed. It is
ProcessTasks that are multiplexed on the underlying UNIX process by the microscheduling
me~hanism. The task methods are used by a CPUManager to start and stop the execution of
a Process' ProcessTask. In order to provide low-level critical section protection, methods are
provided to disable and re-enable the preemption of a ProcessTask by the microscheduling
mechanism.

IdleProcess is the subclass of Process that is executed by a CPU when there are no other
Processes for it to run. There is one IdleProcess associated with each CPU. The IdleProcess
continually checks the scheduler ProcessContainer of its CPU. When it detects that this
scheduler is not empty, it raises an IdleException which causes a Process to be removed
from the scheduler and added to the CPU, suspending the IdleProcess until such time as
the CPU becomes ,idle again.

3.7 Exceptions

The Exception subclasses are the major means by which Processes are moved between Pro
cessContainers. Each Exception subclass provides specialized handling. There are two sub-

1988 USENIX c++ Conference

II 1 CPUHanager's work is nevor done •••
for (n) {

II Vait for an interrupt.
sleepO;

II Stop and delete the CPUTimer, if there is one, saving the residual.
int residual = 0,
if (cpu->timer !3 NULL) {

residual = cpu->timer->stop();
delete cpu->timer,
cpu->timer = NULL,

}

II Handle and reset the pending trap (SoftwareException), if there is one.
II Otherwise, stop the current Process, if there is one.
Process. currentProcess ~ cpu->currentProcess,
if (cpu->trap != NULL) {

SoftwareException * trap =cpu->trap;
cpu->trap = NULL,
trap->handle(cpu),

} els. if (currentProcess != NULL) {
currentProcess->stop();

}

II Handle any pending interrupts (InterruptExceptions).
while ((int vector = cpu->removeVector()) != NoVector) {

II Get the corresponding Bxception.
II Call the Bxception handler.
InterruptBxception. interrupt = cpu->getBxception(vector),
interrupt->handle(vector, cpu),

}

II Start the current Process, if there is one.
II Note: The current Process we start here might very well not be
II the same one we stopped.
if (cpu->currentProcess != NULL) {

II Determine hov much time the Process will get:
II If the current Process is the same as befor.,
II it gets the rest of its timeslice (i.e., the residual).
II Otherwise, it gets whatever its scheduler specified.
int time ~ (cpu->currentProcess ~= currentProcess) ?

residual :
cpu->currentProcess->gotQuantum();

II Start the CPUTi.mer, unless the Process is marked "run to completion. It

if (time ! = RunToCompletion)
cpu->timer =nev CPUTimor(cpu, tim.);

}
}

Figure 2: Simplified CPUManager control loop.

1988 USENIX C* Conference 177

178

classes of Exception, InterruptException, and SoftwareException. Instances of subclasses
of InterruptException represent hardware interrupts. When an interrupt is delivered to a
CPU, it is mapped by the CPUManager to an InterruptException whose handler is then
called. Subclasses of InterruptException include:

ResetException: Associated with the ResetVector. It adds the CPU's IdleProcess to the
cpu.

TimerException: Associated with the TimerVector which is sent when the CPU's CPU
Timer expires. It removes the current Process from the CPU and adds it to the
scheduler ProcessContainer associated with the CPU. It then removes a Process from
the scheduler and adds it to the CPU.

A SoftwareException is raised as a direct result of the execution of a Process. Software
Exceptions are not associated with interrupt vectors; the raise method is invoked directly.
SoftwareException subclasses include: .

IdleException: Raised when a CPU's IdleProcess detects that the CPU's scheduler has
becom~ non-empty. Its handler removes the IdleProcess from the CPU, and then
removes a Process from the scheduler and adds it to the CPU.

TerminateException: Raised when the current Process on the CPU is to be terminated.
It removes and deletes the current Process from the CPU, and then renlOves a Process
frotn the scheduler and adds i.t to the CPU.

SemaphoreException: Raised by a Semaphore when a P() operation detects that the
requesting Process must block (Le., the resource is not available). It renloves the
current Process from the CPU and adds it to the ProcessContainer associated with
the Semaphore. It then removes a Process from the CPU's scheduler and adds it to
the CPU.

3.8 Semaphores

Each Semaphore contains a count and a FIFOQueue ProcessContainer which holds Pro
cesses that have been blocked attempting to acquire the Semaphore. It also references a
SemaphoreException that is raised when a Process must block.

The PO operation decrements the count. If the count then indicates that the Process
must block, a SemaphoreException is raised. The SemaphoreException removes the Process
from the CPU and adds it to the queue of blocked Processses.

The VO operation increments the count. If there are blocked Processes, one is removed
from the queue and added to the scheduler.

4 Projects

The resulting simulator has proven to be very realistic. Several of the race conditions that
occurred as bugs in the development of the real Choices operating system were also en
countered by students as they developed their own operating system components within
the simulator. During the course, the students developed semaphores, messages, supervisor
requests, scheduling policies, real storage management, virtual storage management, disk

1988 USENIX c++ Conference

IProcess
>

""",-

"

1PW;1
I

I
I

I

IPrace.;
\
\
\

Ip~p~, I
" " " " "

""""""

Ip';:e I
\

\
\

\

Ipr~ce••
I
I
I

I~p~ I
,,

""""
~ ~ / ~ Prace:.

e;

Figure 3: A Ring of Processes Connected by Pipes.

storage management and scheduling for the multiprocessor environment. This section dis
cusses some of these projects and how they were implemented within the environment of
the simulator.

4.1 Multiple Concurrent Producers and Consumers

The object of this exercise was to give students experience in designing systems involv
ing producer/consumer relationships among Processes, inclu~ng deadlock detection and
recovery.

Initially, class Pipe had to be implemented to support a two-ended stream of Messages.
Methods were required to perform blocking, non-blocking, and synchronous send operations
(send_block(), send(), and send_sync(), respectively), as well as blocking and non-blocking
receive operations (receive_block() and receive() , respectively). Each Message essentially
consists of a string of data bytes and an identifier specifying the ultimate destination Pr~

cess.
In this exercise, Processes are connected by Pipes in a ring, as shown in figure 3. Each

Process executes a loop in which it repeatedly choses one of the send or receive operations
at random, and then performs this operation on one of its two Pipes. For send operations,
destinations are chosen at random. For receive operations, if a Message is received on a Pipe
whose destination does not specify the receiving Process, it is forwarded on the other Pipe.
Since the Processes are arranged in ring, all Messages eventually reach their destinations
(unless they are lost or cancelled).

In this situation, deadlocks can and do occur. Students implemented a centralized dead
lock detection and recovery mechanism that consisted of a central Pipe Control information
object and an additional deadlock control Process that periodically examined the Control
information, discovering and breaking deadlock situations. The Pipe class was modified to

1988 USENIX C-++ Conference 179

180

support this. Each send and receive operation on a Pipe would report its updated state to
the Control object, where it could then be used by the deadlock control Process.

4.2 Real Memory Management

This project involved the implementation of "Choices-like" real memory management. Two
major classes were implemented: RealMemoryObject and RealMemoryManager.

A RealMemoryObject represents a "segment" or contiguous range of memory organized
in fixed-size pages. The operations supported are read(} and write(). Each operation spec
ifies an offset into the RealMemoryObject at which the transfer is to begin, a length (in
bytes), and a destination/source buffer address. Initial reads from unwritten RealMem
oryObject locations return zeros. The RealMemoryObject maintains a "dirty bit" for each
page which has been written. The constructor specifies the range of addresses which the
RealMemoryObject will represent.

The other major class required for this project was a RealMemoryManager. A Real
MemoryManager represents the physical melnory of the sinlulated machine, so only one
instance of this class is created. The RealMemoryManager allocates and deallocates Real
MemoryObjects as requested by user Processes. Operations are allocate(} and deallocate(}.

The allocate() operation specifies a number of bytes, and returns a RealMemoryObject.
The RealMemoryManager must find an unallocated range of menlOry that is at least as
large as the request. It then creates a RealMemoryObject to manage the range and returns
it.

The deallocate() operation specifies a ReallVlenloryObject to be deleted. The ReaIrvIem
oryManager deletes the ReallVIemoryObject, thus freeing the range of Inenlory for possible
allocation in future allocate() requests.

RealMemoryObject and RealMemoryManager provide simulated system services, and
are not supposed to be directly accessible by the user Processes (although the sinlulator
cannot enforce this). Therefore, the students implemented a subclass of SoftwareException
called SVCEzception. This class provides a user prograIn interface to the system. lvlecha
nisms for passing arguments into the "kernel" and for passing results back to the invoking
Process were also implenlented.

Simulated user Processes were created to randomly allocate and deallocate RealMenl
oryObjects, and to read and write them randomly. Statistics about menlOry usage, frag
mentation, and allocation routine times, etc. were collected. The allocation algorithms
conunonly known as "first fit," "best fit," and "worst fit" were implemented and analyzed.

4.3 Virtual Memory Management

This project extended the ideas from the previous project in order to provide students with
experience in the various aspects of virtual memory management.

The idea of a RealMemoryObject was expanded to represent a Process' virtual address
space. This is encompassed by class MemoryObjectCache. A MemoryObjectCache main
tains the state of each page in the virtual address space it represents. In addition to the
"dirty bit" (which was maintained by the RealMemoryObject in the previous project), the
MemoryObjectCache must maintain a "referenced bit" and a bit indicating whether or not
the page is resident. If the page is non-resident, the location o~ the page in secondary storage
must be stored. A MemoryObjectCache supports the same read and write operations as

1988 USENIX C-++ Conference

described for a RealMemoryObject, except that pages may be moved to and from secondary
storage.

When a MemoryObjectCache must read or write a page that is marked non-resident,
that page must first be retrieved from secondary storage. To facilitate this, an instance
of class PageManager manages the physical memory of the machine and is responsible
for paging to and from secondary storage. The PageManager implements the pageFault()
method, which is invoked by a MemoryObjectCache when a non-resident page needs to
be brought in from secondary storage. The PageManager fetches the specified page from
secondary storage and marks it as resident.

Secondary storage is implemented with an instance of class DiskManager. The DiskMan
ager responds to the messages readPage() and writePage().

Various page replacement algorithms were implemented and studied. These included
"least recently used," "not recently used," "first in, first out," and "random." In addition,
various disk scheduling strategies were used including "first come, first served," "linear (or
unidirectional) scan," and "circular (bidirectional) scan." Finally, the page access patterns
of the Processes were varied in order to simulate different degrees of temporal and spatial
locality.

5 Conclusion

In this paper, we have described the use of C++ as a high-level language for describing
the system data structures and algorithms introduced in a university course in operating
systems. The students used a simulator progranuned in C++ that emulated a system based
on Choices, an experimental multiprocessor operating system that we are building at the
University of lllinois. Class projects and exercises were chosen to give students practice at
systems design and progranuning. These projects and exercises were written in C++ and
refined or replaced classes in the simulator.

Most of the students in the course had programmed in C in a previous course on systenls
programming and machine organization. The transition to C++ was orderly. The students
found the additional type checking in C++ an aid; however, many of the diagnostic messages
from the compiler required the students to seek help from their teaching assistants. The
debugging and tracing aids built into the simulator were found to be very useful as the
standard UNIX debugger cannot give accurate diagnostic messages in terms of the names
used in C++ programs. This is because the current C++ compiler generates C code which
is then compiled by the C compiler. A native C++ compiler would solve many of these
problems.

C++ was proved to be an efficient programming language for the simulator. Quite large
simulations (both in terms of size and length) could be done on a workstation during the
period of time permitted each student in the laboratory.

The use of a class hierarchical object-oriented description of an operating system was
instrumental in helping the students understand Choices. The class hierarchies organized
the common algorithms and data structures of an operating system and allowed students to
infer the properties of the simulator classes from the more abstract classes presented during
lecture. Unlike previous operating system courses that we have taught, we were able to
present multiprocessor operating system material couched in the general principles of oper
ating system design. The more "traditional" single processor operating system algorithnls
and data structures could be presented as degenerate cases of the multiprocessor ones.

1988 USENIX C-H- Conference 181

182

Currently, a simulator is the only practical approach to providing a large class of students
(approximately sixty) with a hands-on environment for multiprocessor operating system
design. Many of the problems that are encountered in multiprocessor operating system
design - deadlocks, races, unnecessary mutual exclusion and interrupt disabling, etc.
were pointed out in lecture and successfully diagnosed by students during their exercises
on the simulator. In this and many other respects, the simulator provided a remarkably
accurate emulation of real multiprocessor system software development. The accuracy of
that emulation requires better diagnostic and tracing tools than we implemented in the
simulator. We believe some form of graphical visualization of the system is needed in order
to provide students with a better understanding of the utilization of resources, bottlenecks,
and communication flows. However, we do not see this as a drawback to the approach.
Rather, it points out a lack of necessary human interfaces and tools for designing complex
software. Such software tools would not only be useful in education, but they would have
application in the customization of Choices for particular applications and hardware. We
plan to incorporate such tools in the future revisions of the simulator.

References

[1J Bjarne Stroustrup, The C++ ProgranmIing Language, Addison-Wesley Publishing Com
pany, Reading, Massachusetts, 1986.

[2] Bjarne Stroustrup & Jonathan E. Shopiro, "A Set of C++ Classes for Co-Routine Style
Prograrruning," Proceedings of the USENIX C++ Workshop (1987).

[3] Roy Campbell, Vincent Russo & Gary Johnston, "The Design of a Multiprocessor Op
erating System," Proceedings of the USENIX C++ Workshop (1987).

[4] Vincent Russo, Gary Johnston & Roy Calnpbell, "Process Management and Excep
tion Handling in Multiprocessor Operating Systems Using Object-Oriented Design Tech
niques," OOPSLA '88 Conference Proceedings (forthcoming).

[5] Roy H. Campbell, Gary M. Johnston & Vincent F. Russo, "Choices (Class Hierarchical
Open Interface for Custom Embedded Systems)," Operating Systenls Review 21 (July
1987), 9-17.

[6J Roy H. Campbell & Daniel A. Reed, "Tapestry: Unifying Shared and Distributed Mem
ory Parallel Systems," Department of Computer Science, Universityoflllinois at Urbana
Champaign, Technical Report No. UIUCDCS-R-88-1449, Urbana, Illinois, 1988.

[7] Ralph Johnson & Brian Foote, "Designing Reusable Classes," The Journal of Object
Oriented Programming. 1:2.

[8] Edsger W. Dijkstra, "The Structure of the THE-Multiprogramming System," Commu
nications of the ACM 11 (May 1968), 341-346.

1988 USENIX C++ Conference

Modelling of Control SysteIns
with C++ and PRIGS

Dag M. Bruck

Department of Automatic Control
Lund Institute of Technology

Box 118, S-221 00 Lund, SWEDEN

E-mail: dag@control.1th.se

Abstract

This paper describes an interactive tool for modelling of control systems.
The focus is on practical experiences with C++ as a development tool,
and the need for multiple inheritance, parameterized types, and exception
handling, in this application. Experiences with a new graphics standard,
pmGS, using an object-oriented programming style, are briefly covered.

1. Introduction

Modelling has traditionally been one of the main topics in control engineering. Control
,systems are complex and require careful design and analysis, in particular, as errors in
control system design can become expensive. There exists today a great ne~ for computer
aided design of control systems.

Our research is centered around tools for model development and simulation. The
objective is to design the basic concepts needed for structuring models, and to design
the internal computer representation of control system models. An experimental tool for
modelling and simulation has been developed in KEE, an expert system shell.

The experimental tool will form the basis of an. engineering tool for the designer of
control systems. In such a product, flexible, efficient and affordable system software must
be used. We have therefore evaluated C++ as the future implementation language, and
pmGS as the main graphics system. A simplified experimental tool has been implemented
in C++. Whereas the KEE version supports all essential parts of an engineering tool, the
C++ version only provides graphical interaction; the internal structure is quite similar, in
order to meet future needs.

2. Modelling of control systems

The model of a control system can be regarded as a hierarchy of components. One of
the fundamental ideas is to build libraries of component models, ranging from basic items
(for example, a pump) to more complex objects (for example, a distillation column). The
designer has the option of working bottom-up, putting predefined components together to
form a new component, or top-down, decomposing a complex object into manageable pieces,

1988 USENIX CoHo Conference 183

184

or most likely) a combination of bottom-up and top-down design [Nilsson) 1987]. The key
word is reuseability - of earlier designs and of standard components.

A single component can be described in many ways: graphically) textually) using
block diagrams (describing its structure» or mathematically (for example) in state-space
or transfer-function form). It is also necessary to use models with different degrees of
detail and complexity) for example) an efficient simulation model for normal operation, and
an extended model for analyzing error conditions. All these models are needed in different
stages of the design, and should be available in a model development tool. It should be noted
that the common "machine)) view may be replaced by a "materials)) view. For example, a
chemical compound may carryall knowledge in the model) while the stations in the refinery
only signal changes of state.

With our set of basic concepts, a model has three properties: it has terminals which
provide an interface to the outside world) parameters for adapting its behaviour, and at
least one realization that defines its behaviour. Only data in the terminals are available to
other components; there are no global data) except a time reference for simulation.

We currently support two types of realizations: primitive realizations using ordinary
differential equations, and structured realizations using block diagrams. A structured real
ization consists of submodels and connections (between submodels, and between submodels
and the terminals of the enclosing model). Interaction between components is defined only
by connections.

Simulation is often used to analyze control systems, and the designer should be able
to simulate his/her model uSing this tool. Simulation introduces a number of interesting
mathematical problems) which will not be covered further in this paper [Mattsson) 1988b].
The connection concept also raises interesting questions: for example, what is a legal
connection, and how do you define compatibility between terminals [Mattsson) 1988a].

According to current trends) it is also necessary to throw in an expert system and a
couple of knowledge bases.

3. Direct model representation

Modelling of control systems maps nicely to the ideas in object-oriented programming.
It is natural to represent a model with a class in the programming language used for
implementing the design tool. It is then possible to develop new modelR using inheritance
and specialization of classes.

Inheritance is not suitable for describing all kinds of relationships between models.
Multiple representations of a single model (textual or mathematical), and specialization (a
car is a special kind of vehicle), can be described with inheritance. Decomposition of a
model into its components is different. For example, that a car has tyres does not mean
that the car can be inflated, so inheritance is not the right mechanism; components are
represented by class members (Listing 1).

The direct way of representing models with classes is used in the experimental tool
developed in KEE. Instantiation is used) for example, to create objects that contain
simulation data. A necessary key feature of KEE (and object-oriented systems like Loops)
is the possibility to dynamically define new classes while the program is running.

1988 USENIX C-++ Conference

class vehicle {
char. owner;

}j

class car : public vehicle {
tyre fl, fr, rl, rrj
engine ej

};
Listing 1. Direct representation or a car model, derived from vehicle.

4. Model representation in C++

If interactive model development is presumed, direct representation is not possible in C++,
simply because classes cannot be defined at runtime. Consequently, components cannot
be represented directly with class members, and inheritance cannot be used to derive new
models. To be able to interactively create models, we must implement a dynamic framework
for representing models, realizations, etc. This framework is similar to the class systems
commonly based on Lisp, but the implementation task is simplified by the structure of
control systems.

It should be noted that the engineer developing control systems will see an interactive
modelling tool; C++ is used only to implement the dynamic framework, not as a control
system description language. One can also say that the object-oriented aspects of model
representation have been separated from the object-oriented aspects of C++. Still, object
oriented programming effectively supports the design and implementation of the framework.

Internal data structures

Now, let's plunge straight into the internal data structures of the C++ program. The code
listed below is slightly simplified; constructors and destructors are not listed, and most
general purpose routines have been omitted. An example will be given below.

All objects are components; they have a name, and they can be inserted into lists
(Listing 2).

class component {
char. name;
link next;

public:
virtual void menuaction();
virtual void redrav();

};

Listing 2. Definition or the basic component class•

. Method redraw is a schoolbook virtual function in C++: every component has a
graphical representation, so all components must implement redraw in some way. Graphics
will be described further in Section 5.

When the user points at a component and presses a mouse button, some components
(e. g., models and realizations) will respond by displaying a menu. Other components
(e. g., terminals and connections) are not associated with a menu. In C++, which in its
present shape only supports single inheritance, method menuaction must be declared as a

1988 USENIX C-H- Conference 185

186

virtual function in the base class, component. When multiple inheritance becomes available
in C++, 'menuaction would more naturally be the property of a class associated purely
with the user interface; models and realizations would be derived from this class, but not
terminals and connections [Stroustrup, 1987a].

Generally speaking, multiple inheritance enables us to separate the user interface and
the modelling structure more effectively. There will be one CCthread" of inheritance for
the user interface (drawing block diagrams, and menu actions when applicable), and one
thread of inheritance for the modelling of control systems (components, models, etc.). The
development of class libraries, in particular, will benefit from multiple inheritance. For
example, functions provided by the operating system and the window manager, will be
easier to describe and use in an object-oriented fashion with multiple inheritance.

The model contains terminals and realizations, in C++ represented with linked lists
(Listing 3). General purpose lists of components are used, which effectively corrupts the
type security in C++. In addition, the programmer must bother about explicit type
conversions. Alternatively, generic lists could be faked with macros. Future versions of
C++ may incorporate true generics, also called parameterized types [Stroustrup, 1987b].
The need is evident, even in this small example.

class model : public component {
list terminals;
list realizations;

void new_terminal();
void new_realization();

pUblic:
void menuaction();
void redraw();

};

Listing 3. Definition of the model class.

There are two different kinds of model realizations: primitive realizations based on
equations, and structured realizations based on hierarchical block diagrams (Listing 5).
There is no ccone-of' concept (for example, allowing a pointer to a set of classes) in C++,
so an additional class realization is needed (Listing 4). In this case, there are no real
problems; in other cases, an awkward data structure might be forced upon the programmer.
The one-oC concept is available with Cull type checking in KEE, and has reduced the need
Cor common base classes.

class realization : public component {
};
Listing 4. The common part of all realizations.

A submodel establishes a relation between two models, one fully enclosed in the other
(Listing 6). With a structured realization, a model is described by the behaviour oC its
submodels and by its connections. The submodel also has a graphical meaning. When
a model is simulated, the submodel must be ccinstantiated" by the model representation
framework. Although many submodels may refer to ~ single model (e. g., a pump), every
submodel requires a private data area to hold simulation variables.

1988 USENIX c++ Conference

class eqn_realization public realization {
list equations;

void new_equa~ion();

public:
void menuaction();
void redraw();

};

class struct_realiza~ion public realization {
list submodels;
list connections;

void new_submodel();
void new_connection();

pUblic:
void menuac~ion();

void redraw();
};

Listing 5. Primitive and structured model realizations.

class submodel : pUblic component {
point position. size;
model. parent;
model. sub;
void. data;

public:
void move();
void scale();
void instantiate();
void redraw();

};

Listing 6. Definition of the 8ubmodel class.

An example

A small example will demonstrate the data structures above: a servo built from a regulator
and a motor. On the screen, the engineer will see a block diagram as in Figure 1. Input to
the servo is the reference value, also called the setpoint. Output from the servo is the actual
position of the actuator. The regulator controls the motor, but the common feedback loop
has been left out to simplify the example.

The textual representation in Figure 2 reveals the most important C++ objects needed
for the servo. The servo object has two terminals and a realization (terminals and
connections will not be described in more detail). The realization is of course structured, and
contains two submodels. It also contains three connections: the reference value imported
to the regulator, the control signal from regulator to motor (shown in Figure 2), and the
exported actuator position.

1988 USENIX C-++ Conference 187

188

Servo

Regulator Motor

Figure 1. A servo with two 8ubmodels.

The submodel objects (for example, MotorSub) serve two purposes in this example.
Firstly, the graphical appearance of a structured realization is determined mainly by the
position and size of the submodels. This information cannot be stored in the model object;
a certain kind of motor can be used as a submodel in many different models. Secondly,
the submodels establish a relationship between the enclosing model (the servo), and the
model objects used as components (e.g., the motor). The two pointers in the submodel
object are used, for example, when defining connections. The references between models,
realizations and submodels are shown graphically in Figure 3. The role of the sub.model
when simulating the control system is not discussed here.

The C++ objects used for representing the regulator and the motor are similar to
the servo objects. The main difference is that the regulator and the motor have primitive
realizations, probably expressed with differential equations.

Exception handling

Handling of exceptions (errors and similar uncommon events) is a problem in all software
systems. Ordinary programming techniques, using status flags and if-statements, lead either
to bad program structure and cluttered code, or to programs that take proper behaviour
for granted. A well designed exception handling mechanism (as in Ada), is an invaluable
asset in practical software development. Exceptions increase the readability of the program
and indicates the programmer's assumptions about expected and unexpected events [Ghezzi
and Jazayeri, 1982, page 22].

The model development tool is quite complex, and many inconsistencies must be
checked step-by-step, at different times. Exception handling is useful for restoring the
internal data structures to a previous well-defined state. Storing as little redundant
information as possible makes this task easier, but may increase complexity in other areas.

The absence of exception handling is a serious flaw of C++. Ada style exception
handling, which is also available in C [Lee, 1983], is very effective, but a more flexible
scheme may be called for in C++. Some people say that exception handling is needed for
developing good class libraries. .

Finally, it should be noted that friend functions have been used sparingly (for example,
a connection needs free access to terminals and submodels), and proved to be extremely
useful. By bending the rules a little, a natural data structure has been maintained; ever
expanding modules because of too strict encapsulation is often a problem with Modula-2
and Ada.

1988 USENIX C+f- Conference

Model: Servo
Terminals: [Ref, Pos]
Realizations: [ServoRealiz]

Struct-realization: ServoRealiz
Submode1s: [RegSub, MotorSub]
Connections: [RegSub.u - MotorSub.u, ...]

Submodel: RegSub
Position: (-0.6,0)
Size: (0.5,0.5)
Parent: -+Servo
Sub: -+Regulator

Submodel: MotorSub
Position: (0.6,0)
Size: (0.5,0.5)
Parent: -+Servo
Sub: -+Motor

Alodel: Regulator
Terminals: [Ref, u]
Realizations: [RegRealiz]

Eqn-realization: RegRealiz
Equations: [...]

Alodel: Motor
Terminals: [u, Pos]
Realizations: [MotorRealiz]

Eqn-reaIization: MotorRealiz
Equations: [...]

Figure 2. Textual representation of the servo; terminals, connections and equations are not
shown. Square brackets denote a list, an arrow (-t) a pointer reference.

5. Using PHIGS

PffiGS (Programmer's Hierarchical Interactive Graphics Standard) is a new 3D graphics
standard, aimed at interactive CAE/CAD applications [Brown, 1985]. PlUGS should be
regarded as an extension and a complement to the Graphical Kernel Standard [Hopgood
et al., 1983), but not as a replacement.

The basic unit in PffiGS is the structure (cf. segment in GKS). A structure contains
elements for drawing, graphical attributes, and transformations. It is possible to build
hierarchies of structures (i. e., one structure may call another») and to edit the contents of
a structure; this is not possible in GKS. Application data may also be stored in a structure,
possibly a useful feature.

1988 USENIX C-t+ Conference 189

190

Parent

~ ~ I
Servo ServoRealiz RegSub MotorSub

I
~

Regulator RegRealiz

Sub

~

Motor MotorRealiz

Figure S. References between models, realizations and submodels of the servo. Terminals,
connections and equations are not shown.

In order to take maximum advantage of the hierarchical structures in PillGS, one struc
ture is associated with every object in the C++ program.. This one-to-one correspondence is
very convenient; changes are normally localized to a single PillGS stmcture, and complete
regeneration of the graphics can be avoided. As a typical example, consider changing a
pump model: the structure associated with the pump must be changed, but models using
the pump as a submodel only refer to a structure identifier, and need no changes. The
fine granularity of the graphics hierarchy causes an extra overhead at redraw, which is quite
tolerable in this application, though. It can be noted that the model development tool is not
a typical PillGS application, in the sense that it uses the hierarchical fea"tures of PillGS,
but not the 3D capabilities.

The correspondence between the object hierarchy and the pmGS structure hierarchy
is shown in Figure 4. The object stmcture on the left is the same as in Figure 3, but the
regulator objects are not shown. A PHIGS structure is associated with each object, as
indicated by dashed arrows. The pmGS structures .on the right form a parallel hierarchy,
logically connected with "execute structuren primitives. The graphical representation of a
model is determined by the realization and its associated structure. The pmGS structures
are in reality more complex, for example, to control picking (see below).

The problem of associating a C++ object with a structure, was solved by some fancy
programming. A C++ object can easily refer to a structure by storing the structure
identifier, but a problem arises when control must go from a structure to the associated
C++ object (for example, when the object's menu action should be invoked). The solution
is to use the object's 'this pointer as pick identifier, after conversion to an integer. When
the PRIGS system returns a pick identifier, the identifier is converted back to a "pointer to
component.n The exact nature of the object is not known, but all components implement
method menuaction (Listing 2).

PRIGS can display graphics on multiple "workstations," which in a workstation envi
ronment corresponds to multiple windows. By using so called filters, different graphical rep
resentations can be displayed with a single structure hierarchy. Regrettably, multiple work
stations are not yet supported by some PHIGS implementations. Event mode input and rub
berband lines may also be missing in current implementations. Window management is not
available in the PHIGS standard, and may therefore cause considerable practical problems.

1988 USENIX C-H- Conference

SelVo

SelVoRealiz

MotorSub

MotorRealiz

rectangle(...)

execute(SelVoRealizStmct)

text(-1.1, 1, "SelVo")

execute(RegSubStruct)

execute(MotorSubStruct)

scale(...)

translate(...)

execute(MotorStnlct)

rectangle(...)

execute(MotorRealizStruct)

text(O, 0, "Motor")

Figure 4. Parallel hierarchies of C++ objects (left) and pmGS structures (right).

6. Conclusions

In our experience, a dynamic environment like KEE is the best choice for research and rapid
prototyping. An engineering tool requires a less expensive and more efficient implementation
tool that is available on many computers; in this case, C++ is superior. We have not made
a detailed evaluation of KEE versus C++, but the current work shows that programs and
data structures using the object-oriented parts of KEE can be implemented in C++ with
reasonable effort.

The major difficulty is that C++ does not support dynamic creation of classes. For
this reason, models of control systems cannot be directly expressed as classes in C++,
so an object-oriented framework must be implemented. The data abstraction and object
oriented programming aspects of C++ provide good support for this framework, and a
good programming environment in general. Multiple inheritance, parameterized types and
exception handling are much needed extensions to C++.

PIDGS is a powerful new graphics standard, but current implementations need im
provement. Window management remains a problem area.

Acknowledgements

I am grateful for many interesting discussions with Sven Erik Mattsson and Mats Andersson,
and for comments on the manuscript by Mats Andersson, Ola Dahl and the reviewers. This
work was supported by the Swedish National Board for Technical Development (STU).

1988 USENIX C-H- Conference 191

192

References

BROWN, MAXINE D. (1985): Understanding pmGS, Template Graphics, San Diego, CA,
USA.

GHEZZI, CARLO and MEHDI JAZAYERI (1982): Programming Language Concepts, John
Wiley & Sons.

HOPGOOD, F. R. A., D. A. DUCE, J. R. GALLOP and D. C. SUTCLIFFE (1983): Intro
duction to the Graphical Kernel Standard (GKS), Academic Press.

LEE, P. A. (1983): "Exception Handling in C Programs," Software - Practice and
Experience, 13, 389-405, May 1983.

MATTSSON, SVEN ERIK (1988a): ccOn Model Structuring Concepts," Proc. 4th IFAC
Symposium on Computer-Aided Design in Control Systems, Beijing, P. R. China.

MATTSSON, SVEN ERIK (1988b): ccOn Modelling and Differential/Algebraic Systems,"
Simulation, Accepted for publication.

NILSSON, BERNT (1987): ccExperiences of Describing a Distillation Column in some
Modelling Languages," CODEN: LUTFD2/TFRT-7362, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

STROUSTRUP, BJARNE (1987a): ccThe Evolution of C++: 1985 to 1987," Prac. USENIX
C++ Worksbop, Santa Fe, NM, USA.

STROUSTRUP, BJARNE (1987b): "Possible Directions for C++," Proc. USENIX C++
Workshop, Santa Fe, NM, USA.

1988 USENIX c++ Conference

Type-safe Linkage for C++

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the problems involved in generating names for overloaded
functions in c.t+ and in linking to C programs. It also discusses how these problems
relate to library building. It presents a solution that provides a degree of type-safe
linkage. This eliminates several classes of errors from Gt+ and allows libraries to be
composed more freely than has hitherto been possible. Finally the current encoding
scheme for GHo names is presented.

1 Introduction

This paper describes the type-safe linkage scheme used by the 2.0 release of c.t+ and the mechanism
provided to allow traditional (unsafe) linkage to non-C..... functions. It descnoos the problems with the
scheme used by previous releases, the alternative solutions considered, and the practicalities involved in
converting from the old linkage scheme to the new.

The new scheme makes the overload keyword redundant, simplifies the construction of tools
operating on Gt+ object code, makes the composition of C..... libraries simpler and safer, and enables reli
able detection of subtle program inconsistencies. The scheme does not involve any run-time costs and
does not appear to add measurably to compile or link time.

The scheme is compatible with older C..... implementations for pure Gt+ programs but requires expli
cit specification of linkage requirements for linkage to non-C..... functions.

2 The Original Problem

C..... allows overloading of function names; that is, two functions may have the same name provided
their argument types differ sufficiently for the compiler to tell them apart. For example,

double sqrt(double);
complex sqrt(complex);

Naturally, these functions must have different names in the object code produced from a GHo program.
This is achieved by suffixing the name the user chose with an encoding of the argument types (the sig
nature of the fWlction). Thus the names of the two sqrt () functions become:

sqrt_Fd
sqrt_F7complex

II the sqrt that takes a double argument
II the sqrt that takes a complex argument

Some details of the encoding scheme are described in Appendix A.
When experiments along this line began five years ago it was immediately noticed that for many sets

of overloaded functions there was exactly one function of that name in the standard C library. Since C
does not provide function name overloading there could not be two. It was deemed essential for C..... to
be able to use the C libraries without modification, recompilation, or indirection. Thus the problem
became to design an overloading facility for G++ that allowed calls to C library functions such as
sqrt () even when the name sqrt was overloaded in the C++ program.

1988 USENIX C++- Conference 193

3 The Original Solution

The solution, as used in all non-experimental C++ implementations up to now, was to let the name
generated for a C++ function be the same as would be generated for a C function of the same name
whenever possible. Thus open () gets the name open on systems where C doesn't modify its names
on output, the name _open on systems where C prepends an underscore. etc.

This simple scheme clearly isn't sufficient to cope with overloaded functions. The keyword
overload was introduced to distinguish the hard case from the easy one and also because function
name overloading was considered a potentially dangerous feature that should not be accidentally or
implicitly applied. In retrospect this was a mistake.

To allow linkage to C functions the rule was introduced that only the second and subsequent ver- .
sions of an overloaded function had their names encoded. Thus the programmer would write

overload sqrt;
double sqrt(double);
complex sqrt(complex);

I I sqrt
II sqrt__F7complex

and the effect would be that the Co.... compiler generated code referring to sqrt and
sqrt_F7complex. This enabled a CoHo programmer to use the C libraries. This trick solves the
problems of name encoding, linkage to C, and protection against accidental overloading, but it is clearly
a hack. Fortunately, it was documented only in the BUGS section of the GHo manual page.

4 Problems with the Original Solution

There are at least three problems with this scheme:
- How to name overloaded functions so that one may be a C function.
- How to detect errors caused by inconsistent function declarations.
- How to specify libraries so that several libraries can be easily used together.

The overload Linkage Problem

. Consider a program that uses an overloaded function print () to output globs and widgets.
Naturally globs are defined in glob. h and widgets in widget. h. A user writes

I I file1. c:
iinclude <glob.h>
'include <wi~get.h>

but this elicits an error message from the C++ compiler since print () is declared twice with different
argument types. The user then modifies the program to read

II filel.c:
overload print;
linclude <glob.h>
'include <widget.h>

and all is well until someone in some other part of the program writes

II file2.c:
overload print;
'include <widget.h>
'include <glob.h>

This fails to link since the object code file produced from filel. c refers to print (meaning
print (glob» and print_F6widget, whereas the output from file2. c refers to print
(meaning print (widget» and print_F4g1ob.

This is of course a nuisance, but at least the program fails to link and the programmer can - after
some detective work based on relatively uninformative linker error messages - fix the problem. The
nastier variation of this will happen to the conscientious programmer who knows that print () is over
loaded and inserts the appropriate overload declarations, but happens to use only one variation of
print (') in each of two source files:

194 1988 USENIX C-H- Conference

II filel.c:
overload print;
'include <glob.h>

II file2.c:
overload print;
'include <widget.h>

The output from filel. c and file2. c now both refer to print. Unfortunately, in the output from
fllel.c print means print (glob) whereas print refers to print (widget) in the output from
flle2.c. One might expect linkage to fail because print () has been defined twice. However, on most
systems this is not what happens in the imponant case where the definitions of print (glob) and
print (widget) are placed in libraries. Then, the linker simply picks the fllSt defmition of
print () it encounters and ignores the second. The net effect is that calls (silently) go to the wrong
version of print (). If we are lucky, the program will fail miserably (core dwnp); if not, we win sim
ply get wrong results.

The requirement that the overload keyword must be used and the non-uniform treattnent of over
loaded functions (' 'the fust overloaded function has C linkage' ') is a cause of complexity in C-++ com
pilers and in other tools that deal with C++ program text or with object code generated by a C-++ com
piler.

The General Linkage Problem

This problem of inconsistent linkage is a variation of the general problem that C provides only the
most rudimentary facilities for ensuring consistent linkage. For example, even in ANSI C and in Ct+
(until now) the following example will compile and link without warning:

'include <stdio.h>
extern int sqrt(int);

main ()
{

printf("sqrt(%d) -- %d\n",2,sqrt(2»;

and produce output like this

sqrt(2) -- 0

because even though the user clearly specified that an integer sqrt () was to be used, the C
compiler/linker uses the double precision floating point sqrt () from the standard library. This prob
lem can be handled by consistent and comprehensive use of correct and complete header files. How
ever, that is not an easy thing to achieve reliably and is not standard practice. The traditional C and C-++
compiler/linker systems do not provide the programmer with any help in detecting errors, oversights, or
dangerous practices.

These linkage problems are especially nasty because they increase disproportionally with the size of
programs and with the amount of library use.

Combining Libraries

The standard header complex. h overloads sqrt () :

II complex.h:
overload sqrt;
'include <rnath.h>
complex sqrt(complex);

Some other header, 3d. h, declares sqrt () without overloading it:

II 3d.h:
'include <math.h>

1988 USENIX C-H- Conference 195

Now a user wants both the 3d and the complex number packages in a program:

'include <3d.h>
'include <complex.h>

Unfortunately this does not compile because of this sequence of operations:

double sqrt(double);
overload sqrt;

II from <math.h> via <3d.h>
II from <complex.h>

A function that is to be overloaded must be explicitly declared overloaded before its flfst declaration is
processed. So the programmer, who really did not want to know about the internals of those headers,
must reorder the ##include directives to get the program to compile:

iinclude <complex.h>
finclude <3d.h>

This will work unless 3d. h overloads some function, say atan () , that complex. h does not. Even
in that case the programmer can cope with the problem by adding sufficient overload declarations
where 3d. h and complex. h are included:

overload sqrt;
overload atan;
finclude <3d.h>
iinclude <complex.h>

This reordering and/or adding of overload declarations is irrelevant to the job the programmer is
trying to do. Worse, if the extra overload declarations were placed in a header file the programmer
has now set the scene for the users of the new package to have exactly the same problems when they try
combining this new library with other libraries. It becomes tempting to overload all functions or at least
to provide header files that overload all interesting functions. This again defeats any real or imagined
benefits of requiring explicit overload declarations.

5 A General Solution

The overloading scheme used for C* (until now) interacts with traditional C linkage scheme in ways·
dult bring out the worst in both. Overloading of function names, which was introduced to provide nota
tional convenience for programmers, is becoming a noticeable source of extra work and complexity for
builders and users of libraries. Either the idea of overloading is bad or else its implementation in C* is
deficient. The insecure C linkage scheme is a source of subtle and not-so-subtle errol'S. In summary:

[1] Lack of type checking in the linker causes problems.
[2] Use of the overload keyword causes problems.
[3] We must be able to link C* and C program fragments.

A solution to 1 is to augment the name of every function with an encoding of its signature. A solution
to 2 is to cease to require the use of overload (and eventually abolish it completely). A solution to 3
is to require a C* programmer to state explicitly when a function is supposed to have C-style linkage.

The question is whether a solution based on these three premises can be implemented without notice-
able overhead and with only minimal inconvenience to C++ programmers. The ideal solution would

- require no Ci+ language changes;
- provide type-safe linkage;
- allow for simple and convenient linkage to C;
- break no existing Ci+ code;
- allow use of (ANSI style) C headers;
- provide good error detection and error reporting;
- be a good tool for library building;
- impose no run-time overhead;
- impose no compile time overhead;
- impose no link time overhead.

We have not been able to devise a scheme that fulfills all of these criteria strictly, but the adopted
scheme is a good approximation.

1% 1988 USENIX C-f+ Conference

II f Fi
I I f_FiPc

Type-safe C++ Linkage

First of all, every Ci+ function name is encoded by appending its signature. This ensures that a pr0

gram will load only provided every function called has a definition and that the argument types specified
in declarations used to compile calls are the same as the types specified in the function defmition. For
example, given:

f (int i) { ••• }
feint i, char* j) { ••• }

These examples will cause correct linkage:

extern feint);
f(l);

extern f(int,char*);
f(l,"asdf");

II f_Fi - links to feint)

II f FiPc - links to f(int,char*)

- links to ???

These examples will cause linkage errors independent of where in the program they occur because no
f () with a suitable signature has been defmed:

II no declaration of f() in this file
II (this is legal only in C programs)
f(l); II f

extern f(char*);
f("asdf");

extern feint •••);
f (1, "asdf tt

);

II f FPc - links to ???

II f Fie - links to ???

One might consider extending this encoding scheme to include global variables, etc., but this does
not appear to be a good idea since that would introduce at least as many problems as it would solve.
For example:

II file1.c:
int aa ... 1;
extern int bb;

Ilfile2.c:
char* aa - "asdf";
extern char* bb;

II error: aa is declared int in file1.c
II error: bb is declared int in file1.c

Under the current C scheme, the double defmition of a a will be caught and the inconsistent declarations
of bb will nOl Using an encoding scheme, the double definition of aa would not be caught since the
difference in encoding would cause two differently named objects to be created - contrary 10 the rules
of C and Ci+. The fact that the inconsistent declarations of bb would be caught by some linkers (not
all) does not compensate for the incorrect linkage of aa. Consequently only functions are encoded
using their signatures.

For a similar reason function argument types are not encoded (except for pointer to argument types):

II hypothetical encoding using return types:

II file1.c:
int f () { ••• };

Ilfile2.c:
char* f 0;

II f_Fv_i

Here a linker would report f () undefined because of the name mismatch. This could be quite confus
ing.

The adopted linkage scheme is much safer thaR what is currently used for C, but it cannot detect all
linkage problems. For example, if two libraries each provides a function f (int) as part of their public

1988 USENIX C+t Conference 197

interface there is no mechanism that allows the compiler to detect that there are supposed to be two dif
ferent f (int) s. If the .0 files are loaded together the linker will detect the error, but when a library
search mechanism is employed the error may go undetected.

Note that this linking scheme simply enforces the Gt+ rules that every function must be declared
before it is called and that every declaration of an external name in Gt+ must have exactly the same
type.

In essence, we use the name encoding scheme to "trick" the linker into doing type checking of the
separately compiled ftles. More comprehensive solutions can be achieved by modifying the linker to
understand G..- types. For example, a linker could check the types of global ·data objects and the return
types of functions. It might also provide features for ensuring the consistency of global constants and
classes. However, getting an improved linker into use is typically a hard and slow process. The scheme
presen~ here is portable across a great range of systems and can be used immediately.

Implicit Overloading

If a function is declared twice with different argument types it is overloaded. For example:

double sqrt(double);
complex sqrt(complex);

is accepted without any explicit overload declaration. Naturally. overload declarations will be
accepted in the foreseeable future; they are simply not necessary any more.

Does this relaxation of the Gt+ rules cause new problems? It does not appear to. For example, ori
ginally I imagined that obvious mistakes such as

double sqrt(double);
double d - sqrt(2.3);

double sqrt(int d) { •••

I I sqrt_Fd

would cause hard-to-find errors. It certainly would with the traditional C linkage rules, but with type
safe linkage the program simply will not link because there is no function called sqrt_Fd defined
anywhere. Even the standard library function will not be found because its name is as always "plain"
sqrt.

Another imagined problem was that a call

f (x);

would suddenly change its meaning when a function became overloaded by the inclusion of a new
header file containing the declaration of another function f (). The only case where f (x) can have its
meaning changed by the introduction of a new declaration f (T) is where T is the type of x. In this
case the meaning of f (x) ought to change. In all other cases, the Gt+ ambiguity rules ensure that the
introduction of a new f () will either leave the meaning of f (x) unchanged (when the new f () is
unrelated to the type of x) or will cause a compile time error (when an ambiguity is introduced).

C Linkage

This leaves the problem of how to call a C function or a Gt+ function "masquerading" as a C func
tion. To do this a programmer must state that a function has C linkage. Otherwise, a function is
assumed to be a C++ function and its name is encoded. To express this an extension of the "extern"
declaration is introduced into G..-:

extern "C" (
double sqrt(double); II sqrt(double) has C linkage

This linkage specification does not affect the semantics of the program using sqrt () but simply
tells the compiler to use the C naming conventions for the Ilame used for sqrt () in the object code.
This means that the name of this sqrt () is sqrt or _sqrt or whatever is required by the C linkage
conventions on a given system. One could even imagine a system where the C linkage rules were the
type-safe C-t+ linkage rules as described above so that the name of sqrt () was sqrt_Fd.

198 1988 USENIX C-i+ Conference

Linkage specifications nest, so that if we had other linkage conventions, such as Pascal linkage, we
could write:

II default: c++ linkage here
extern "c" {

II C linkage here
extern "Pascal" {

II Pascal linkage here
extern "C++1t

II c++ linkage here

II Pascal linkage here

II C linkage here

II c++ linkage here

Such nestings will typically occur as the result of nested iincludes.
The {} in a linkage specification does not introduce a new scope; the braces are simply used for

grouping. This use of {} strongly resembles their use in enumerations.
The keyword extern was chosen because it is already used to specify linkage in C and G++.

Strings (for example, "C" and "C++") were chosen as linkage specifiers because identifiers (e.g. C
and Cplusplus) would de facto introduce new keywords into the language and because a larger alpha
bet can be used in strings.

Naturally, only one of a set of overloaded functions can have C linkage, so the following causes a
compile time error:

extern "C" {
double sqrt(double);
complex sqrt(complex);

Note that C linkage can be used for C++ functions intended to be called from C programs as well as for
C fWlctions. In particular, it is necessary to use C linkage for C++ functions written to implement stan
dard C library functions for use by C programs. However, using the encoded C++ name from C
preserves type-safety at link time. This technique can be valuable in other languages too. I have
already seen an example of the C++ scheme applied to assembly code to prevent nasty link errors for
low level routines. One might consider using this C+t linkage scheme for C also, but I suspect that the
sloppy use of type infonnation in many C programs would make that too painful.

In an "all G++" environment no linkage specifications would be needed. The linkage mechanism is
intended to ease integration of C++ code into a multi-lingual system.

Caveat

One could extend this linkage specification mechanism to other languages such as Fortran, Lisp, Pas
cal, PIJI, etc. The way such an extension is done should be considered very carefully because one
"obvious" way of doing it would be to build into a G++ compiler the full knowledge of the type struc
ture and calling conventions of such "foreign" languages. For example, a C++ compiler might handle
conversion ofzero-tenninated G++ strings into Pascal strings with a length preflX at the call point of a
function with Pascal linkage and might use Fortran call by reference rules when calling a function with
Fortran linkage, etc.

There are serious problems with this approach:
- The complexity and speed of a C++ compiler could be seriously affected by such extensions.
- Unless an extension is widely available and accepted programs using it will not be portable.
- Two implementations might "extend" C+t with a linkage specification to the same "foreign"

language, say Fortran, in different ways so as to make identical C++ programs have subtly dif
ferent effects on different implementations.

Naturally, these problems are not unique to linkage issues or to this approach to linkage specification.
I conjecture that in most cases linkage from G++ to another language is best done simply by using a

1988 USENIX Ci+ Conference 199

common and fairly simple convention such as HC linkage" plus some standard library routines and/or
rules for argumenl passing, formal.conversion, etc., to avoid building knowledge of non-standard calling
conventions into Ci+ compilers. This ought to be simpler from Ci+ than from most other languages.
For example, reference type arguments can be used to handle Fortran argument passing conventions in
many cases and a Pascal string type with a constructor taking a C style string can trivially be written.
Where extension are unavoidable, however, C* now provides a standard syntax for expressing them.

6 Experience

The natural rust reaction to this scheme is to look for a way of handling linkage and overloading
without requiring explicit linkage specifications. We have not been able to come up with a system that
enabled C linkage to be implicit without serious side effects. I will summarize the advantages of the
adopted scheme here and discuss several possible objections to it. Section 7 below describes alternative
schemes that were considered and rejected.

Making Linkage Specifications Invisible

One obvious advantage of this scheme is that it allows a programmer to give a set of functions C
linkage with a single linkage specification without modifying the individual function declarations. This
is particularly useful when standard C headers are used. Given a C header (that is, an ANSI C header
with function prototypes, etc.),

II c header:
II C declarations

one can trivially modify the header for use from C*:

II c++ header:

extern "C" {
II C header:
II C declarat10ns

This creates a Ct+ header that cannot be shared with C.
Sharing with C can be achieved using #ifdef:

II C and c++ header:

tifdef __cplusplus
extern "c" {
'endif

II C header:
II C declarations

tifdef __cplusplus
}

tendif

where _cplusplus is dermed by every Ci+ compiler.
In cases where one for some reason cannot or should not modify the header itself one can use an

indirection:

II c++ header:

extern "c" {
iinclude ltC_header"
}

Fortunately, such b'ansformations can be done by trivial programs so that most of the effort in convert
ing C headers need not be done by hand.

It was soon discovered that even though programmers tend to scatter function declarations
throughout the Ci+ program text, most C functions actually come from well-dermed C libraries for

200 1988 USENIX C-++ Conference

which there are - or ought to be - standard header fdes.
Placing all of the necessary linkage specifications in standard header fdes means that they are not

seen by most users most of the time. Except for programmers studying the details of C library inter
faces, programmers installing headers for new C libraries for C++ users, and programmers providing C++
implementations for C interfaces, the linkage specifications are invisible.

.Error Handling

The linker detects errors, but reports them using the names found in the object code. This can be
compensated for by adding knowledge about the C..... naming conventions to the linker or (simpler) by
providing a filter for processing linker enor messages. This output was produced by such a filter:

c++ symbol mapping:

PathListHead::-PathListHead()
Path_list::sepWork()
Path: :pathnormO
Path::operator&(Path&)
Path: :first ()
Path: : last ()
Path: :rmfirst ()
Path: : rmlast 0
Path: :rmdots 0
Path::findpath(String&)
Path: : fullpath 0

__dt 12PathListHeadFv
sepWork__9Path_listFv
pathnorm 4PathFv
___ad__4PathFR4Path
first 4PathFv
last__4PathFv
rmfirst.....4PathFv
rmlast__4PathFv
rmdots 4PathFv
findpath__4PathFR6String
fullpath__4PathFv

Introducing this filter had the curious effect of replacing the usual complaint about "ugly C++ names"
with complaints that the linker didn't provide enough information about C functions and global data
objects.

The reason for presenting the encoded and unencoded names of undefined functions side by side is
to help users who use tools, such as debuggers, that haven't yet been converted to understand Q+
names.

A plain C debugger such as adb, dbx, or codeview can be used for C++ and will correctly refer to
the Q+ source, but it will use the encoded names found in the object code. This can be avoided by
employing a routine that "reverses" the encoding, that is, reads an encoded name and extracts informa
tion from itt. The encoding scheme is described in Appendix A. A Q+ name decoder should be gen
erally available for use by debugger writers and others who deal directly with object code. Until such
decoders are in widespread use the programmer must have at least a minimal understanding of the
encoding scheme.

Upgrading Existing C++ Programs

Decorating the standard header files with the appropriate linkage specifications had two effects. The
fust phenomenon observed was that most of the declarations scattered in the program text that were
referring to C functions were either redundant (because the function had already been declared in a
header) or at least potentially incorrect (because they differed from the declaration of that header fde on
some commonly used system). The second phenomenon observed was that every non-trivial program
converted to the new linkage system contained inconsistent function declarations. A noticeable number
of declarations found in the program text were plain wrong, that is, different from the ones used in the
function defmition. This was caused in part by sloppiness, for example, where a programmer had
declared a function

char* feint •••);

to suppress compiler warnings instead of looking up the type of the second argument. A more common
problem was that the "standard" header files had changed since the function declaration was placed in

t NaturaDy. this would be the same function as was used to write the linker output fdter. The examples here are based CD the
name decodins routine writtal by Steve Brandt and used to modify the UNIX System V C debusser sdb into sdb++.

1988 USENIX C-++ Conference 201

the text so that the "local" declaration didn't match any more; this often happens when a file is
transferred from one system to another, say from a BSD to a System V.

In summary, introducing the new linkage system involved adding linkage specifications. Typically,
these linkage specifications were only needed in standard header files. The process of introducing link
age specifications invariably revealed errors in the programs - even in programs that had been con
sidered correct for years. The process strongly resembles trying lint on an old C program.

As was expected, some programmers fll'St tried to get around the requirements for explicit C linkage
by enclosing their entire program in a linkage directive. This might have been considered a fine way of
converting old Ci+ programs with minimum effort had it not had the effect of ensuring that every pro
gram that uses facilities provided by such a program would also have to use the unsafe C linkage. To
achieve the benefits from the new linkage scheme most Gt.... programs must use it. The requirement that
at most one of a set of overloaded functions can have C linkage defeats this way of converting pro
grams. The slightly slower and more involved method of using standard header files (already containing
the necessary linkage specifications) and adding a few extra linkage specifications in local headers where
needed must be used. This also has the benefit of unearthing unexpected errors.

7 Details

The scope of C function declarations has always been a subject for debate. In the context of Ci+
with linkage specifications and overloaded functions it seems prudent to answer some variations of the
standard questions.

Derault Linkage

Consider:

extern "C" (
int feint);

int feint); II default (C++ linkage) overruled: f() has C linkage

Is it the same f () that was dermed with C linkage above and does it have C or C++ linkage? It is the
same f () and it does (still) have C linkage. The first linkage specification "wins" provided the second
declaration has "only" default (that is, Ci+) linkage.

Where linkage is explicitly specified for a function, that specification must agree with any pre~ious

linkage. For example: .

extern "C" (
int feint);

int gO;
int feint);

extern "c" (
int feint);
int gO;

II f() has C linkage

II default: g() has C++ linkage
II fine: default overruled, f() has C linkage

II fine
II error: inconsistent linkage specification

The reason to require agreement of explicit linkage specifications is to avoid unnecessary order depen
dencies. The reason to allow a second declaration with implicit Ci+ linkage to take on the linkage from
a previous explicit linkage specification is to cope with the common case where a declaration occurs
both in a •c fde and in a standard header file.

202 1988 USENIX C++- Conference

Declarations in Different Scopes

Consider:

extern "C" {
int f(int);

void 910
{

int f(int);
f (1);

}

Is the f () declared local to g1 the same as the global f () and does the function called in g1 () have
C linkage? It is the same f () and it does have C linkage.

Consider:

extern "C" {
int f (int) ;

void 920
(

int f(char*);
f (1);
f("asdf");

Does the local declaration of f () overload the global f () or does it hide it? In other words, is the call
f (1) legal? That call is an error because the local declaration introduces a new f () that hides the glo
bal f (). In the tradition of C, the declaration of f (char*) also draws an warning.

Consider:

void 93 ()
{

int ff(int);
};

void 940
(

int ff(char*);
ff("asdf");
ff(1);

} ;

Does the second declaration of f f () overload the fast? In other words, is the call f f (1) legal? The
call is an error and a warning is issued about the two declarations of f f () because (as in the example
above) overloading in different scopes is considered a likely mistake.

Local Linkage Specification

Linkage specifications are not allowed inside function defmitions. For example:

void g5 ()
{

extern "C" { II error: linkage specification in function
int hO;

The reason for this restriction is to discourage the use of local declarations of C functions and to sim
plify the language rules.

1988 USENIX C++ Conference 203

8 Alternative Solutions

So, the linkage specification scheme works, but isn't there a better way of achieving the benefits of
that scheme? Several schemes were considered. This section presents the first two or three alternatives
people usually come up with and explains why we rejected them. Naturally, we also considered more
and weirder solutions, but all the plausible ones were variations of the ones presented here.

The Scope Trick

The fust attempt to provide type-safe linkage involved the use of overload and the Co++ scope
rules. All overloaded function names were encoded, but non-overloaded function names were not. This
scheme had the benefit that the linkage rules for most functions were the C linkage rules - and had the
problem that those rules are unsafe. The most obvious problem was that at flfSt glance there is no way
of linking an overloaded function to a standard C library function. This problem was handled using a
&escope trick":

overload sqrt;
complex sqrt(complex);
inline double sqrt(double d)
{

extern double sqrt(double);

return sqrt (d) ;

II A completely new sqrt()
II not overloaded

II not a recursive call
II but a call of the C function
I I sqrt

II sqrt(double) has C linkage

In effect, we provided a C+f- calling stub for the C function sqrt (). The snag is that having thus
defined sqrt (double) in a standard header a user cannot provide an alternative to the standard ver
sion. The problems with library combination in the presence of overload are not addressed in this
scheme,' and are actually made worse by the proliferation of definitions of overloaded functions in
header files. In particular, if two "standard" libraries each overload a function then these two libraries
cannot be used together since that function will be defined twice: once in each of the two standard
headers.

There is also a compile time overhead involved. In retrospect, I consider this scheme somewhat
worse than the original lethe fust overloaded has C linkage" scheme.

C "storage class"

It is clear that the definitions providing a calling stub are redundant. We could simply provide a
way of stating that a member of a set of overloaded functions should be a C function. For example:

complex sqrt(complex);
cdecl double sqrt(double);

This is equivalent to

complex sqrt(complex);
extern tiC" {

double sqrt(double);
}

but less ugly. However, it involves complicating the C+f- language with yet another keyword. Functions
from other languages will have to be called too and they each have separate requirements for linkage so
the logical development of this idea would eventually make ada, fortran, lisp, pascal, etc., key
words. Using a keyword also requires modification of the declarations of the C functions and those are
exactly the declarations we would want not to touch since they will typically live in header files shared
with an ANSI C compiler. In some cases we would even like not to touch a flle in which such declara
tions reside.

204 1988 USENIX C-H- Conference

Overload "storage class"

The use of a keyword to indicate that a function is a C function is logically very similar to the link
age specification solution, though inferior in detail. An alternative is to have a keyword indicate that a
function should have its signature added. The keyword overload might be used. For example:

overload complex sqrt(complex);
double sqrt(double);

II use c++ linkage
II C linkage by default

This has the disadvantage that the programmer has to add information to gain type safety rather than
having it as default and would de facto ensure that the Co..+ type-safe linkage rules would be used only
for overloaded functions. Furthermore, this would mean that libraries could be combined only if the
designers of these librarie:; had decorated all the relevant functions with overload. This scheme also
invalidates all old C++ programs without providing significant benefits.

Calling Stubs

One way of dealing with C linkage would be not to provide any facilities for it in the C++ language,
but to require every function called to be a C++ function. To achieve this one would simply re-compile
all libraries and have one version for C and another for C++. This is a lot of work, a lot of waste, and
not feasible in general. In the cases where recompilation of a C program as a C++ program is not a rea
sonable proposition (because you don't have the source, because you cannot get the program to compile,
because you don't have the time, because you don't have the file space to hold the result, etc.) you can
provide a small dummy C++ function to call the C function. Such a function would be written in C (for
portability) or in assembler (for efficiency). For example:

double sqrt Fd(d) double d; 1* C calling stub for sqrt(double): *1
(

extern double sqrt();
return sqrt (d) ;

A program can be provided to read the linker output and produce the required stubs.
This scheme has the advantage that the user works in what appears to be an "all C++" environment

(but so does the adopted scheme once a few C libraries have been recompiled with C++ and/or a few
header files have been decorated with linkage specifications). It does, however, also suffer from a few
severe disadvantages. A HC calling stub maker" program cannot be written portably. Therefore, it
would become a bottleneck for porting C++ implementations and C++ programs and thus a bottleneck for
the use of C++. It is also not clear that this approach can be implemented everywhere without loss of
efficiency since it requires large numbers of functions to have two names (a C name and a C++ name).
This takes up code space and introduces large numbers of extra names that would slow down programs
reading object files such as linkers, loaders, debuggers, etc. The C calling interfaces would also be ubi
quitous and available for anyone to use by mistake, thus re-introducing the C linkage problems in a new
guise.

Encode only Crt- Functions

The fundamental problem with all but the last scheme outlined above is that they require the pro
grammer to decorate the source code with directives to help the compiler determine which functions are
C functions. Ideally, the compiler would simply look at the program and determine the linkage neces
sary for each individual function based on its type. Could the compiler be that smart? Unfortunately,
no. There is no way for the compiler to know whether

extern double sqrt(double);

is written in C or C++. However, one might handle most cases by the heuristic that if a function is
clearly a C++ function it gets C++ linkage and if it isn't it gets C linkage. For example:

complex sqrt(complex);
double sqrt(double);

1988 USENIX C-f+ Conference

II clearly c++: sqrt__F7complex
II could be C: sqrt

205

Since complex is a class, sqrt (complex) is clearly a C.... function and it is encoded. The other
sqrt () might be C so it isn'L

Applying this heuristic would mean that most functions would not have type-safe linkage - but we
are used to thaL It would also mean that overloading a function based on two C types would be impos
sible or require special syntax:

int max(int,int);
double max(double,double);

Such overloading must be possible because there are many such examples and several of those are
important. especially when support for both single and double precision floating point arithmetic
becomes widespread:

float sqrt(float);
double sqrt(double);

This implies that either overload or linkage specifications must be introduced to handle such
cases. The heuristic nature of the specification of where these directives are needed will lead to confu
sion, overuse, and errors.

If overload is re-introduced, the cautious programmer will use it systematically wherever a rela
tively simple class is used (m case a revision of the system should tum it into a plain C Sb'Uct). wher
ever an argument is typederd (because that typedef might some day refer to a plain C type), and
wherever there is any doubt This will lead to the now well known problems of combining libraries.
Similarly, if linkage specifications are required anywhere, they will proliferate because of doubts about
where they are needed.

It does not seem wise to refrain from checking linkage in a large number of cases and to introduce a
rather arbitrary heuristic into the linking rules for C++- without being able to reduce the complexity of ,the
language or to reduce the burden on the programmer somewhere.

Nothing

Naturally, while considering these alternative schemes the easy option of doing nothing was regularly
re-considered. However. the original scheme still suffers from the problems described in section 4:
insecure linkage, spurious overload declarations. overloading rules that complicate the life of library
writers and library users, and unnecessary complexity for tools builders.

9 Syntax Alternatives

The scheme of giving all Gt+ functions type-safe linkage and providing a syntax for expressing that a
given function is to have C linkage was thus chosen and tried. However. there were still several alterna
tives for expressing C linkage for this general scheme.

Why extern?

Instead of employing the existing keyword extern we might have introduced a new one such as
linkage or foreign. The introduction of a new keyword always breaks some programs (though
usuaIly not in any serious way and for a well chosen new keyword not many programs) and extern
aIready has the right meaning in C and 0++. In almost all cases extern is redundant since external
linkage is the default for global names and for locally declared functions. When used. extern simply
emphasizes the fact that a name should have external linkage. The use of extern introduced here
merely allows the programmer to tag an extern declaration with infonnation of how that linkage is to
be established.

Linkage for Individual Functions

One obvious alternative is to add the linkage specification to each individual function:

extern "C" double sqrt(double); II sqrt(double) has C li,nkage

The advantage of this scheme is that the linkage is obvious from looking at an individual function

206 1988 USENIX C-t+ Conference

declaration. The problem with this is that it does not serve the need to be able to give a set of C func
tions C linkage with one declaration and requires the declaration of every C function to be modified. In
particular. it does not allow a C header (that is. an ANSI C header) to be used from a C+f- program in
such a way that all the functions declared in it get C linkage.

This notation for linkage specification of individual functions is not just an alternative to the linkage
"block·· adopted but also an obvious extension to the adopted syntax. After observing the use of link
age blocks for a while and listening to the comments from users this extension was adopted.

extern "c" double sqrt(double); II sqrt(double) has C linkage

is by defInition equivalent to

extern "C" { double sqrt(double); }II sqrt(double) has C linkage

Naturally. a linkage specification applies to all members of a declaration list:

extern "C" double sin(double), cos(double); II sin and cos have C linkage

Linkage Pragmas

The original implementation of the linkage specifications used a #pragma syntax:

ipragma linkage C
double sqrt(double); II sqrt(double) has C linkage
tpragma linkage

This was considered too ugly by many but did appear to have significant advantages. For example. it
can be argued that linkage to Uforeign languages" is not part of the language proper. Such linkage can
not be specified once and for all in a language manual since it involves the implementations of two
languages on a given system. Such implementation specific concepts are exactly what pragmas were
introduced into Ada and ANSI C to handle. The fpragma syntax was trivial to implement and easy to
read. It was also ugly enough to discourage overuse and to encourage hiding of linkage specifications in
header files.

. There are problems with this view. though. For example. it is most often assumed that any
Ipragma can be ignored without affecting the meaning of a program. This would not be the case with
linkage pragmas. Another problem is that for the moment many C implementations do not support a
pragma mechanism and it is not certain that those that do can be relied upon to "do the right thing" for
linkage pragmas used by a C generating Cot+ compiler.

Linkage to a particular foreign language does not belong in C+f- because such linkage will in princi
ple be local to a given system and non-portable. However. the fact that linkage to other languages
occurs is a general concept that can and ought to be supported by a language intended to be used in
multi-language environments. In practice. one can assume that at least C and Fortran will be available
on most systems where C+f- is used and that a large group of users will need to call functions written in
these languages. Consequently. one would expect Ci+ implementations to support C and Fortran link
age.

The fact that C (like most other languages) does not provide a concept of linkage to program frag
ments written in other languages led to the absence of an explicit linkage mechanism in C+f- and to the
problems of link safety and overloading.

Special Linkage Blocks

Another approach would be to introduce a new keyword. say linkage. and use it to specify both
the start and the end of a· linkage block:

linkage ("Ctl);
double sqrt(double); II sqrt(double) has C linkage
linkage ('"') ;

This avoids introducing yet another meaning for {}. allows setting and restoring of linkage to be
two separate operations. allows all linkage directives to be found by simple pattern matching in a line
oriented editor, and allows all linkage directives to be suppressed by a single macro

1988 USENIX C-++ Conference 207

'define linkage(a)

The problem with this seems to be that it tempts people to think of as linkage as a compiler umoden

that can be switched on and off at random times and doesn't obey block structure. For example:

linkage(nC");

double sqrt(double); II sqrt(double) has C linkage

f () {
extern g();

linkage("");
extern hO;

II g() has C linkage

II h() has c++ linkage

It also becomes hard to convince people that linkage specifications come in pairs and can be nested.
The same approach, with the same educational problems. can be tried without introducing a new key

word:

extern "C";
double sqrt(double); II sqrt(double) has C linkage
extern It";

Note that whatever syntax was chosen. linkage specifications were intended to obey block structure to fit
cleanly into the language. In particular, if linkage "blocks" and ordinary blocks were not obliged to
nest, the job of writers of tools manipulating C++ source text, such as a C++ incremental compilation
environment, would be needlessly complicated.

10 Conclusions

The use of function name encodings involving type signatures provides a significant improvement in
link safety compared to C and earlier C++ implementations. It enables the (eventual) abolition of the
redundant keyword overload and allows libraries to be combined more freely than before. The use of
linkage specifications enables relatively painless linkage to C and eventually to other language as well.
The scheme described here appears to be better than any alternative we have been able to devise.

11 Acknowledgements

The new linkage and overloading scheme was essentially a joint effort of Andrew Koenig, Doug
McDroy, Jerry Schwarz, Jonathan Shapiro. and me. Brian Kernighan made many useful comments. The
name encoding scheme is based on a proposal by Stan Lippman and Steve Dewhurst with input from
Andrew Koenig and me. Steve Dewhurst, Margaret Ellis. Georges Gonthier, Bill Hopkins. Jim Howard,
Mike Mowbray, Tim O'Konski. and Roger Scott also made valuable comments on earlier versions on
this paper.

Appendix A: The Function Name Encoding Scheme

The (revised) C++ function name encoding scheme was originally designed primarily to allow the
function and class names to be reliably extracted from encoded class member names. It was then modi
fied for use for all CH- functions and to ensure that relatively short encodings (less than 31 characters)
could be achieved reliably for systems with limitations on the length of identifiers seen by the linker.
The description· here is just intended to give an idea of the technique used, not as a guide for imple
menters.

The basic approach is to append a function's signature to the function name. The separator _ is
used so a decoder could be confused by a name that contained _ except as an initial sequence, so don't
use names such as a_b_c in a GH- program if you like your debugger and other tools to be able to
decompose lIle generated names.

The encoding scheme is designed so that it it easy to determine
- if a name is an encoded name;

208 1988 USENIX c++ Conference

- what (unencoded) name the user wrote;
- what class (if any) the function is a member of;
- what are the types of the function arguments.
The basic types are encoded as

void v
char c
short s
int i
long 1
float f
double d
long double r

e

A global function name is encoded by appending _F followed by the signature so that
f (int, char, double) becomes f_Ficd. Since f () is equivalent to f (void) it becomes
f Fv.

Names of classes are encoded as the length of the name followed by the name itself to avoid tenni
nators. For example. x::f () becomes f_lxFv and rec: : update (int) becomes
update_3recFi.

Type modifiers are encoded as

unsigned U
const C
volatile V
signed S

so f (unsigned) becomes f_FUi. If more than one modifier is used they will appear in alphabeti
cal order so f (const signed char) becomes f_FCSc.

The standard modifiers are encoded as

pointer * p

reference & R
array [10] A10-function () F
ptr to member S' • * M1S

So f (char*) becomes f FPc and printf (const char* ...) becomes printf FPCce.
Function return types are encoded for arguments of type pointer to function. The return type

appears after the argument types preceded by a single underscore; for example. f (int(*)(char*»
becomes f_FPFPC_i. The return type is not encoded except for pointer to argument types (see §5).

To shorten encodings repeated types in an argument list are not repeated in full; rather. a reference to
the first occurrence of the type in the argument list is used. For example:

f(eomplex,complex); II f __F7complexTl
II the second argument is of the same type as argument 1

f(record,record,record,record); II f __F6recordN31
II the 3 arguments 2, 3, and 4 are of the same type as argument 1

A slightly different encoding is used on systems without case distinction in linker names. On sys
tems where the linker imposes a restriction on the length of identifiers. the last two characters in the
longest legal name are replaced with a hash code for the remaining characters. For example. if a 45
character name is generated on a system with a 31 character limit. the last 16 characters are replaced by
a 2 character hash code yielding a 31 character name.

Naturally. the encoding of signatures 'into identifier of limited length cannot be perfect since informa
tion is destroyed. However. experience shows that even truncation at 31 characters for the old and less
dense encoding was sufficient to generate distinct names in real programs. Furthennore. one can often
rely on the linker to detect accidental name clashes caused by the hash coding. The chance of an
undetected error is orders of magnitude less than the occurrence of known problems such as C

1988 USENIX C-++ Conference 209

programmers accidentally choosing identical names for different objects in such a way that the problem
isn't detected by the compiler or the linker.

210 1988 USENIX C-H- Conference

Implementing
A Logic-Based Executable Specification Language

inC-++

Peter A. Kirslis

AT&T Bell Laboratories
11900 North Pecos St.

Denver, Colorado 80234

Robert B. TerwiUiger

Department of Computer Science
University of Colorado

Boulder, Colorado 80309

ABSTRACT

PK/C++ is an object-oriented, logic-based, Wide-spectrum executable
specification language which supports software development by incremen
tal refinement. PK/C++ is part of ENCOMPASS, an environment that
supports software development using formal techniques similar to the
Vienna Development Method (VDM). PK/C++ can be viewed as a combi
nation of C++ and pure Prolog; it has the syntax of C++. Using PK/C++,
software components are first speclfted using a combination of conven
tional programming languages and predicate logic. These abstract
components are then incrementally refined into components in an imple
mentation language. PK/C++ speciftcations may be used in proofs of
correctness. They are also executable; therefore, initial specifications can
be validated and refinements can be verifted using testing-based
techniques. We believe the use of PK/C++ will enhance the development
process. The choice of C++ as the implementation language facilitated this
work. Inheritance and virtual functions support code sharing between our
data types, and operator overloading permits us to incorporate features of
Prolog into our implementation; all Without requiring extensions to the
syntax of C++. In this paper, we describe the implementation of PK/C++
in reasonable detail and give examples of its use.

1. Introduction

The efficient production of software remains in most cases an elusive goal.
One of the most important problems is quality; many of the systems produced do
not satisfy their purchasers in either functionality, performance or reliability.
Depending on the model of software development used, the software quality
problem can be subdiVided in a number of ways. Initially, a system exists only as
an idea in the minds of its users, purchasers, or producers. In our model, the first
step in the development process is the creation of a specification which precisely

This research was supported in part by NSF Grant CCR-8809418, and by a gift from AT&T.

1988 USENIX C++ Conference 211

212

descrIbes the properties and qualities of the software to be' constructed [4].
Unfortunately, current methods do not guarantee that the speciftcation correctly or
completely descrIbes the customers' desIres. A specIfication is validated when it is
shown to correctly state the customers' requirements [4]. It has been suggested
that prototyping and the use of executable specification languages can enhance the
communication between customers and developers [15]; provIding prototypes for
experImentation and evaluation should enhance the validation process. In general,
the speciftcation need not be executable; it must be translatable into an implemen
tation. Depending on the method used for translation, the exact relationship
between the specification and implementation- may be unknown. An implementa
tion is verijiEd when it is shown to satisfy its specification [4]. Many techniques
can be used to certify this relationship including testing [8], technical review [3],
and formal methods [1].

The ENCOMPASS environment supports Incremental software development
using executable specification languages [9, 11, 14]. In ENCOMPASS, the general
approach is to address the validation problem using executable speciftcations and to
address the verification problem using a combination of formal, testing, and peer
review techniques. ENCOMPASS automates trese techniques and integrates them
smoothly into the traditionaillfe-cycle. ENCOMPASS supports a phased or water
faU life-cycle [4], extended to allow the use of executable speclftcations and YOM:
a separate phase is added for user validation, and the design and implementation
processes are combined into a single refinement phase. In ENCOMPASS, a develop
ment progresses through the phases: planning, requirements definition, validation,
refinement and system integration. ENCOMPASS provides support for all aspects
of this development paradigm including simple tools for configuration control [6]
and project m~agement [1].

In ENCOMPASS, software is specified using a combination of natural language
and the PLEASE [10, 12, 13]. family of wide-spectrum, executable speciftcatIon
languages. The design of these languages is a compromise between a number of
confiicting goals. First, PLEASE must allow the specification of software using
pre- and post-eonditions written in predicate logic; the more powerful the
specUication method, the better.' Second, the language must allow the rapid,
automatic construction of executable prototypes from these specifications; the
prototypes should be as efficient as possible. Unfortunately, there is a conflict
between these goals. A fairly powerful speciftcation method would use pre- and
post-eonditions written in the full first-order, predicate logic. A resolution
theorem prover for first-order logic could be used to construct prototypes; how
ever, the performance of these prototypes would be very poor. The emergence of
logic programming as a technology, most notably Prolog [2], suggests a good
compromise. Although in one sense not as powerful as full ftrst-order logic, Prolog
allows much more efficient implementation techniques to be used. By' restricting
the specifications to a logic with an efficient, Prolog-style implementation, reason
able specification power is combined with implementation efficiency.

Our approach to executable specifications has changed dramatically since we
began our work. Our initial vision was of a purely declarative speciftcation
language and an extremely intelligent translation system that would automatically
produce Prolog procedures from predicate logic assertions. Our experience has led
us to believe that this is not a realistic approach in the short term. Therefore, the

1988 USENIX C...... Conference

latest member of the PLEASE family, PK./C++ [13] (Please Kernel on C++), differs
from its predecessor by being based on C++ rather than Ada, by haVing an opera
tional as well as declarative semantics, and by being based on flat (unification but
no backtracking) rather than standard Prolog. We feel these changes will
significantly enhance its use as a practical specification vehicle. Being based on C++
rather than Ada makes the power of object-oriented programming available. Hav
ing an operational as well as declarative semantics allows the programmer to hand
optimize PK./C++ speciftcations for improved execution. Basing our execution
strategy on flat rather than standard Prolog allows much simpler and somewhat
more efficient implementation techniques to be used.

PK./C++ supports the rigorous [5] development of programs. Although
detailed mechanical proofs are not reqUired at every step, the framework is present
so that they can be constructed if necessary. Proof techniques may be used that
range from a very detailed, completely formal proof using mechanical theorem
proving to a development "annotated" with unproven veriftcation conditions.
Detailed, mechanical veriftcation may be used on parts of a project, while other,
less critical parts may be handled using less expensive techniques. Our experience
so far leads us to believe that the complete, mechanical veriftcation of large
programs will be prohibitively expensive; however, inexpensive methods can
certify a large percentage of the verification conditions generated during a develop
ment. By eliminating these "trivial" veriftcation conditions, the total number is
reduced so that those remaining can be more carefully considered by the develop
ment personnel. Using PK./C++, some modules of a system may be developed using
formal methods, while others are developed using conventional techniques. This
flexibility allows fonnal methods to be used only on the most critical portions of
the system where the increased expense is justified.

In the rest of this paper we describe the implementation of PK./C++ in more
detail. In section 2 we introduce the central features of our language. In section 3

Figure 1: PK/C++ Data Types

1988 USENIX C-H- Conference 213

214

we describe these features in more detail, and discuss how C++ helped or hindered
us in our implementation efforts. We present an example in section 4, and give
system status and draw conclusions in section 5.

2. Overview of PKlC++

PK/C++ has been under development since the Spring of 1988. The architec
ture is simple; no compiler or pre-processor for the language is used. The entire
language is expressible using standard C++ syntax.

The system prOVides a number of predefined classes for data types which are
linked in with all PK/C++ programs. These classes include deftnitions of high
level generic types such as set, list, and map. PK/C++ programs can be annotated
with pre- and post-conditions, which can use either predefined predicates or newly
written ones speclftc to the task at hand. The predicates operate by comparing the
values of their operands and employing Prolog-style unification to prOVide a value
to those operands which have not yet been assigned one. The Prolog features are

. incorporated using overloaded operators. PK/C++ also prOVides run-time type
checking and error handling, to permit type-safe use of its data types.

In this section, we will give a high-level description of the essential features
of our system, and in the next section we will present the implementation details
of these features.

2.1. The Type Hierarchy

PK/C++ supplies the user with a predeftned set of types which can be used to
build executable speclftcations. This hierarchy is easily extensIble; new object
classes can be added as descendants of the predeftned types, thereby inheriting the
unification, type checking and error handling routines implemented there. We use
the term "class" here in the sense of "datatype"; we will see in section 3 that this
idea of a class directly corresponds to the class concept in C++.

Figure 1 shows the class hierarchy for the data types in PK/C++. The root of
the tree is the class Type; all object classes used in PK/C++ speclftcations must be
descendants of Type. Fundamental types immediately descended from Type are
integers, lists, sets, and maps. The latter three types are prOVided since they are
fundamental to VDM, and their inclusion permits the user to immediately proceed
with the speclftcation at a higher conceptual level than would be possible without
prOViding equivalent abstractions. From these types, other more specialized types
are then defined. Natural numbers are derived from integers, being a restriction of
the integers to non-negative numbers. A stack is defined using a list, since it can be
seen as a list with restricted operations; elements can only be added or removed in
the first position. Ukewfse, a queue can be defined as a restricted list which can
only have elements inserted at one end, and removed from the other. These types
prOVide a good base from which to build speclftcations.

2.2. Pre- and Post-Qmditions

A procedure or function can be formally defined by a pre-condition, which
states the requirements the input data must meet before execution begins, and a
post-condition, which states the relationship the input and output data must

1988 USENIX C++ Conference

satisfy after execution is complete. In a logic-based executable speciftcation
language such as PK/C++, when a routine (procedure or function) is first specifted,
it consists of only a pre- and post-eondition, which syntactically resemble function
calls. For example, consider the speciftcation in Figure 2 of a function to increment
by one an integer value on the top of a stack of integers. The pre-eondition checks
that the stack supplied is non-empty. The post-eondition assumes the existence of
the standard functions top, pop, and push, with the call to push returning a stack
which is a copy of the original stack with its top entry incremented. Through the
use of unification (described in the next sub-section), evaluation of the post
condition causes the output variables to be instantiated to values which make the
conditions true; thereby permitting the executable speciftcation to return a result.
Later, when code has been produced to implement the function, the same post
condition verifies that the values produced. by this code satisfy the reqUirements.

Figure 2a shows a ccpure" PKlC++ function; in other words, one which maps
inputs to outputs without any side effects. This function takes a stack 51 as input,
and returns a stack 52 which is a copy of Sl with its top entry incremented. Note
that variable 52 is apparently tested in the post-eondition without ever haVing
been set. But in PKlC++, the equality operator has been extended to additionally
perform the uniftcation function of Prolog. In this case, since 52 has no value when
it is accessed in the test, the system attempts to ftnd a value for it which will make
the comparison true; that value is precisely the result of the expression to the right
of the equality operator, which is assigned to 52. Had 52 already had a value,

void inc(S1. 52)
{

II input: 51; output: 52.

pre(!(S1 == empty_stack)):
post(S2 == push (top(S1)+1. pop(S1))):

Figure 2a: A specification of a function to
increment an integer on the top of a stack.

void inc(S)
{

II increment S in place.

Stack Si:
pre((Si == S) It&t !(S == empty_stack)):

post(unset(S) == push (top(Si)+1. pop(Si))):
}

Figure 2b: An alternate form of the same specification.
which modifies the stack in place. The call to unset
returns its argument. now available for unification.

1988 USENIX C-H- Conference 215

216

which would be the case if a code body existed for this function, then this test
would verify that the value being returned does indeed satisfy the post-condition.

While returning a copy of a stack to prevent modification to the original has
nice mathematical properties, it is hardly desirable in an implementation. But pure
functions are not the only constructs we can specify in C++. In Figure 2b, we
show a routine to modify a stack in place. The pre- and post-eonditions are now
more complicated, since in the pre-condition we must save the initial value of the
stack in variable Si, so that in the post-eondition we can unset S so that it can be
unified with the final stack after the increment operation is performed. Although
the form of the conditions still result in copying, a code body can be written which
makes no copies, and once the routine is tested and the conditions removed, the
routine will execute efficiently.

2.3. Prolog-style Unification

In Figure 2, we saw an example involving the use of the uniftcation operator
in a post-condition. We will now more precisely define what we mean by
uniftcation. Unification is a technique used in theorem proving to make two vari
ables (or terms) equivalent. In Prolog, a slmplifted version of unlftcation subsumes
the functions of parameter passing and the assignment statement. In Prolog, the
implementation 'of unlftcation is complicated because Uassignments" performed
dUring uniftcation may have to be undone during backtracking, this occurs when
assignments need to be redone because the original value is incorrect. Backtracking
can be eliminated, resulting in Ufiat" Prolog, which allows simpler implementation
techniques to be used. PK/C++ is based on fiat Prolog.

In PKlC++, a variable can play the role of either a program variable or a logi
cal variable at any given point in time, and this role may change during the execu
tion of the program. Each type of variable can be either instantiated or uninstan
tiated, depending upon whether or not it has been given a value.

A program Variable must be set before It is used, or an error results. A logical
Variable may be used whether it is set or unset: if it is set, then just like a program
variable its value can be referenced. If it is unset, and its first use is by a
unification operator, then it is linked to the other operand of the uniftcation. If the
other operands have been instantiated (to a common shared value), then this
operand becomes set to this value as well. If none of the operands are instantiated,
then this operand remains Unlnstantiated as well; later, when any of the linked
operands receives a value, all of the linked operands will be immediately instan
tiated to the same value. Once instantiated, the value of a logical variable does not
change.

In an executable specification, the variables are treated as logical variables by
the unification operators, and as program variables otherwise.

2.4. Run-time Type Checking

A run-time type checking mechanism for generic types is prOVided. This
feature permits type-safe use of derived data types when passed as base types,
ellmlnating the common problem where type safety is sacriftced in order to pass
types generically. Each PK/C++ data type has a unique mnemonic tag associated

1988 USENIX C++ Conference

with it, this tag is tested to determine the type of a variable. Composite types such
as lists and maps have a composite type tag structure associated with them, indi
cating the type of the data at each level in the composite type.

In the example in Figure 2 above, suppose our inc function had been passed a
stack containing sets instead of integers. A run-time error would occur during the
evaluation of the post-eondition, when the system attempted to call the plus
operator, which is not defined on an operand of type set. The error is caught by the
system in the case that a call to an inappropriate function is made by the user.

2.5. Type Extensibility

The PK/C++ type system is easily extensible. The addition of a new type
requires the introduction of a new type tag into the system, as well as the
defmition of the type itself and a set of routines to provide an implementation for
a common interface to type-ehecking and uniftcation. This new type can then be
used with no further changes to either the existing type hierarchy or routines.

For example, suppose we extend the type system to incorporate the notion of a
symbol, which is a character string name and integer value. First, we deftne a new
mnemonic type tag name SYMBOL, to represent the new data type. Second, we
define a new object class, derived from the base class Type, which contains data
elements for a character string and an integer. Third, we provide code bodies for
the virtual functions declared in the base class. Having performed these tasks, our
new type is now known to the system, and can be used with other types such as
lists and stacks, with no changes reqUired to those types. In section 3.5, we show
this extension in more detail.

3. Implementation of PKlC++

Many desirable features of our implementation are due to the object-oriented
properties of the C++ language. Inheritance permits us to deftne new types as spe
cializations of existing ones, automatically gaining access to already written rou
tines, and to an interface for the customizable routines which we prOVide. The use
of C++ virtual and/or overloaded functions and operators provide us with
polymorphic routines.

In particular, the ability to implement Prolog-style uniftcation by overloading
the comparison operators of the language permits us to incorporate features of
logic-based languages while remaining within the standard C++ syntax. We have
accomplished our goals without extending the syntax of the language in any way
or using a pre-processor.

In this section, we discuss the topics described in general terms in section 2,
describe their implementation in C++, and show how the C++ language helped or
hindered us where relevant.

3.1. The Type Hierarchy

The type hierarchy shown in Figure 1, and briefly discussed in section 2.1, is
implemented as a C++ class hierarchy, with a base class for Type, and derived
classes for each of the other data types. The connectivity between the types In the
figure by solid line indicates direct derivation, and by dotted line dependence on

1988 USENIX C++- Conference 217

that type as a data member, with implied derivation from the same class as the
class on which it depends. Figure 3 shows part of the deftnition of the data type
Type; of particular interest are the declarations of the virtual functions, for it is
through these functions that we achieve generality and extensibility of the type
system. Note that the unify procedure is not declared as Virtual, but is actually
deftned as a part of the base class. This deftnition hides the unification details in
one place, permitting new types to be added' without requiring any knowledge of
how uniftcation actually works, while automatically making the new type
unifiable as well. This is possible since the unify routine uses the virtual
comparison and assignment functions to perform much of its work. Each of the
unification, comparison, and assignment routines is specialized for a particular
purpose, with the result being a powerful set of cooperating routines.

The base class contains data fields consisting of a unification pointer, a set bit,
and a used bit. The unification pointer accesses a circularly linked list of all vari
ables in the equivalence class. Calls to the unify routine manipulate this pointer.

, The set bit is enabled by a call to the set routine, which is invoked whenever the

class type {
public:

type 0: 1/ Construct a -type-

virtual boolean operator <= (type It): /1 compare/unify operands
virtual boolean operator == (type It): /1 compare/unify operands

virtual type &operator = (type &): II assign by copy

virtual C_type *ctypeof 0: 1/ Return composite type designator
virtual S__type stypeof 0: /1 Return simple type tag

void set 0: // Instance has a value..
void used 0: // Instance has been used.
type Itunset 0: // Make instance undefined and

1/ available for unification.
/1 Does instance have a value?
/ / Has Instance been accessed?

boolean is_set 0:
boolean is_used 0:

protected:
void unify (type It): / / Perform Prolog-style unification

/ / operation on operands. This
/ / routine uses == and = above.

type *t_unify: / / Logical variables to which this
/ / variable Is linked.

char t_set. t_used: / / Set and used bits: O=no. 1=yes.
}:

Figure 3: The definition of class Type.

218 1988 USENIX C-++ Conference

variable is assigned a value. The used bit is enabled by a call to the used routine,
invoked when the variable is used. The U1lSet routine is called to clear the set bit;
this routine is invoked whenever we wish to make a variable aVailable for
uniftcation again. By placing this data and these routines in the base class, all data
types in our type hierarchy automatically inherit these properties, including those
which wIll be deftned later, as user needs require.

3.2. Pre- and Post-COnditions

In our implementation, pre- and post-eonditions are simple functions which
take boolean expressions as arguments. As C++ uses eager evaluation, the expres
sions are invoked (and return true or false) before the functions are called. Pre
and post simply check that the expressions returned true and raise the appropriate
exception otherwise. By default, this is a call to the assert library routine to ter
minate the process.

The routines which the user wants checked need to be defined with a call to
pre at the beginning and a call to post at the end. The one drawback this approach
has is that we cannot guarantee testing of the post-eondition on every .exit path
from the routine. Care must be taken that all paths out of the routine pass
through the post-eondition, since there is no language enforcement of this require
ment.

An alternate implementation we considered was to defi.ne a class to handle
pre- and post-eondition evaluation. In this scheme, a local class object is declared
in the routine to be checked, with the pre- and post-eondition expressions given in
the initializer portion of the declaration. The pre-eondition would be checked upon
entry to the scope, by the class constructor. The post-eondition would be checked
upon block exit by the destructor (and could be guaranteed to be invoked).
Unfortunately, this scheme has one major failing at present, which led us not to
use it in this implementation: there is no guaranteed way to get access to the return
value of the function to pass it to the post-eondition evaluator. Certainly, a
convention could be established using a variable of a certain name which could
then be placed in both the post-eondition and the return statement, but this will
not guarantee that this value is actually returned in all cases from the routine, an
unacceptable situation.

Language support of some kind for pre- and post-eondition evaluation would
be very helpful in this situation. One scheme which usolves" the problem would
be to permit the overloading of the Ureturn" statement. Then whenever a function
exits with a value which we wish to check in a post-eondition, we could get a han
dle on the value through our user-defi.ned routine which could inspect (and
perhaps change) the value being returned. Of course, one would have to be sure
not use a return statement from within this routine, lest the program "return" in
the wrong direction down the stack, deeper and deeper'

The observant reader will have noted that there are problems with this idea,
namely that (1) "return" is not an operator, but a statement; (2) overloading
works on the basis of argument type, so many overloaded return functions would
be needed; and (3) there is no good way to limit the scope of the overloaded
"return" functions to speciftc member functions within a class rather than to the

1988 USENIX C++ Conference 219

220

class itself. Since some solution to the problem of accessing the return value of the
function is needed, some language support in this case would be helpful.

3.3. Prolog-style Uniftcation

Prolog is the most Widely used of the logic-programming languages. Taking
Prolog and eliminating the backtracking results in "fiat" Prolog,. which allows
simpler implementation techniques to be used. PK/C++ is based on fiat Prolog.
This permits us to use C++ to provIde a reasonably elegant implementation of the
notions of a logical variable and unification.

In PK/C++, program variables hold values and pre- and post-conditions state
properties that must hold true for these values. At a particular point during
execution of the program, the program variables hold particular values which must
satisfy the conditions. PK/C++ logical variables. on the other hand. represent
unknowns which are assumed to satisfy the conditions. Using this vIew we can see
the "execution" of post-conditlons as the search for values of the logIcal variables
which satisfy the conditions. The only thing missing is a way to set program varI
ables to reflect the results of this search. In PK/C++ we provIde an explicit opera
tion. unset, to transform a program variable into an unlnstantIated logical variable
so that it can be set in a post-conditIon.

LogIcal variables and unification are implemented in the Type class so that this
code can be reused·in all descendant classes. Logical variables are implemented
using a set bit: if the bit is set then the object represents a program variable and has
a value; if it is not set then the object is a logical variable and can be instantiated
during unification. To implement uniftcation•.each object contains a Wlify field
which is a pointer to an object of the same type. We can view uniftcatIon as the
construction of equivalence classes of Variables; when two Variables are unified
their equivalence classes are merged. In PK/C++, the equivalence class of a logical
Variable is implemented as a circularly linked list using the Wlify field; when two
Variables are unified these lists are merged. We can View the unification of a
constant to a Variable as assigning the value to all variables in the equivalence
class. In PK/C++. when a logical variable is unifted with a value, the value is
assigned to all the variables in the equivalence class using the virtual function
defined for that data type, and their set bits are turned on. Jbus they will be
treated as constants from then on for the purposes of uniftcation, until their set
bits are turned off. The uniftcatlon operation is represented by the overloaded
equality operator (-=r). .

enum S_type {
TYPE. INTEGER. NATURAL. LIST. SET. MAP. STACK. QUEUE

}:

Figure 4: The definition of the type tags used in PKlC++.

1988 USENIX C-H- Conference

3.4. Run-time Type Checking

An enum type, shown in Figure 4, is provided which assigns a distinct
enumerator value serving as a type tag to each class in the type hierarchy. Each
derived class for a data type provides a body for a virtual function to return the
appropriate type tag for its data type. Composite types use a composite type desig
nator of type tags to represent their type. For example, the composite type desig
nator for a List of Integers is itself a list structure containing the two tags "LIST"
and "INTEGER", and the type designator for a List of Lists of Naturals is a list
structure containing the three tags "LIST", "LIST" and "NATURAL". The type
designators for objects are checked before operations are performed: to append two
lists, their type designators must match.

3.5. Type Extensibility

An important feature of our system is type extensibility, since it will be more
useful if a user can easily add specialized tyPes necessary for his/her problem
domain, gaining the ability to use these types with the predefined ones, and to per
form type-checking and unification on them. To add a new data type, the user
must first decide its placement in the type hierarchy, and then modify a supplied
class template to define the class and the class from which it is derived. Imple
mentations must be provided for the virtual functions declared in ancestor classes.
Lastly, a modifleation must be made to the existing enum type to define a new type
tag to represent this type. This new type can then be used with any of the preex
isting class types.

Notice that we have declared the assignment operator (=r) as virtual in the
base class Type, taking an object of class Type as its second argument. Therefore,
we can write a single assignment statement to assign any object derived from Type
to any other object derived from Type without knowing how to perform the
assignment. Each derived class supplies an implementation of "operator v:a", and
decides what, if any, limitations it wishes to impose on the types it will accept.

Since the second argument is a base type, we require the routine to check its
type at run time and generate an 'error if it is not appropriate. This permits our
type hierarchy to be extensible: new types can be added without requipng any
changes to any of the implementations of "operator r=" already in place. Alter
natively, we could have defined multiple versions of the virtual assignment opera
tor in the base class, each taking a speciftc second derived type as an argument. In
this case we would not need to make an explicit run time type check on the second
argument, but we would sacri1ice extensibility of the type hierarchy: any new type
to be added would require a new Virtual operator v:a to be added to the base class,
and modiflcations to be made to all the classes which need to process this new type.
In PKlC++, we elected to follow the former approach.

By taking this approach, we have strived to maintain type checking while per
mitting the use of "generic" routines. Our present approach uses additional data
structures to provide structural type checkingl •

lWhUe c++ uses name typing for classes, our use of structural typing allows us to have "generics"
without needing to perform an instantiation for each new type.

1988 USENIX c++ Conference 221

222'

For example, suppose we are now adding a stack type to the type hierarchy.
We can model this relationship by adding a class Stacie as a class derived from Type
in the PK/C++ hierarchy, and, using an instance of the List class as its data
member. The Stacie class uses the member functions and data structure of the list
class to implement the new type, but Stacie defines a new set of operations for· its
public interface and elects to not propagate the Ust operations which are not valid
for stacks to this interface. The Stacie class must also be assigned a type tag and
provide function bodies for the virtual functions equality (=) and assignment (-=);
by doing so, the type-checking and unification code defined in the base class Type
can be reused without modlfication. The code in the new equality operation simply
calls is_set to determine if either operand is uninstantiated, and if so, then calls
unify to perform the unlfication.

void sort_symbol(list &ll. list &l2)
{

pre(true);
post(insertion_sorted(Ll. L2)):

}

Figure Sa: An executable specification to sort a list of symbols.

predicate insert_in_sorted_order(type itT. list ItLI. list &l2)
{

list l3(ctypeof(Ll)):

return ((ll == emptylist It& (L2 == cons(T. emptylist)))

II
((T <= hd(ll)) && (l2 == cons(T.ll)))

II
(insert_in_sorted_order(T. tI(ll). l3) &&
(l2 == cons(hd(ll). l3)))

):

predicate insertion_sorted(list Itll. list Itl2)
(

list l3(ctypeof(ll)):

return((ll == emptylist Itlt l2 == emptylist)

II
(insertion_sorted(tI(Ll). l3) Itlt
insert_in_sorted_order(hd(ll). l3. l2))

):

Figure Sb: The predicates used by the specification.

1988 USENIX C++ Conference

4. An Example

To help clarify the features in PK/C++, in this section we present an example
of an executable specification to sort a list of symbols, where a symbol is the new
data type we added to the system. Figure 5a gives the speciftcation. Routine
sort_symbol takes a list of symbols and returns a sorted list.

The work is performed by the predicate insertion_sorted, shown in Figure 5b.
It returns true if either both lists are empty, or the tail of the input list is sorted
and the head of the sorted list appears in its correct position. Note the use of the
equality operator in the body of the predicates; it is this operator that sets the
uninstantiated variables to values. The reader will note that L2 and L3 are passed
as parameters without ever haVing been assigned values; this is correct provided
that the first access to these variables is through the unification operator.

The predicate insert_in_sorted_order takes a list L1 and an element T, and
creates a new list L2 containing the element in its proper position. Either the

void sort_symbol(list &Ll. list &L2)
{

pre(true):

list old_list(ctypeof(Ll)):
list new_list(ctypeof(Ll)):
list prev_new_list(ctypeof(Ll));
symbol t;

L2 =emptylist: .
for(old_list =Ll: !(old_list == emptylist): old_list =tl(old_list)) {

t =hd(old_list):
prev_new_list =emptylist:
new_list =L2:
while(!(new_list == emptylist) && !(t <= hd(new_list))) {

prev_new_list =new_list:
new_list =tl(new_list):

}
new_list =cons(hd(old_list). new_list):
if(prev_new_list == emptylist)

L2 =new_list:
else

}
post(insertion_sorted(Ll. L2)):

Figure 6: The executable specification from Figure 5. coded using
the set_cdr function to improve performance.

1988 USENIX C++- Conference 223

224

initial list is empty, in which case the new list L2 contains the single element T, or
T is smaller than the first (and every) element of LI, in which case it can be placed
at the head of the list, or T needs to be placed after the first element of LI, in its

. proper position, producing list L3, onto which the head of LI is reattached. The
reader is invited to work through a simple example or two, sorting ~ 2 or 3 element
list, to get a better feel for this algorithm.

Although the predicates in Figure 5b produce the correct result, they do so in
a fairly inefficient manner. Inserting an element into the middle of a list requires
building an entire new beginning portion of the list, since we cannot have side
effects in our calls. To improve the performance, we would like to be able to use
the set_cdr procedure to break a list in the middle and place the new element in its
place without copying any of the other cells in the list. We can write a simple
insertion sort to more efficiently produce the sorted list, as the body of our
sort_symbol routine. Such an algorithm is presented in Figure 6. Note that now
we are assigning L2 a value before the post-eondition is encountered; when the
condition is checked, the predicates will now manipulate both LI and L2 to try to
determine whether L2 is indeed a sorted version of LI or not. Again we invite the
reader to work through these predicates using short lists for both LI and L2, and
to try both the case where L2 is sorted and is not sorted, to see the behavior of the
post-eondition.

It turns out to be the case that the program in Figure 6 actually runs more
slowly than the one in Figure 5, because in the program with the insertion sort
implemented we are actually sorting the list twice, once in the body of the routine,
and once in the post-eondition. But the time taken in the bOdy of the routine is
much less than the time taken by the post-eondition, so that after running this
routine through a representative set of test cases to verify its operation, we can
compile out the pre- and post-eonditions and produce a program with reasonable
efficiency while haVing greater confidence that it correctly performs its function.

5. System Status and Conclusions

We have completed a prototype implementation of PK./C++; it is written in
C++ version 1.2 and runs under both System V UNIX and Berkeley UNIX, on both
AT&T 3b2s and Sun workstations. Although we do not believe the current imple
mentation demonstrates the full potential of the language, we are pleased with its
performance. The execution data we have gathered shows that PK./C++
speciftcations run about two orders of magnitude faster than the previous PLEASE
implementation, but are still two orders of magnitude slower than C++ programs
which perform the same functions. We feel we can improve their performance
with further research. We believe our choice of features for PK/C++ was wise.
Since PK./C++ is based on C++ the power of object-oriented programming is aVail
able. C++ classes and inheritance allow us to implement generics while retaining
type checking and permitting extensibility; however, we are not sure our use of
run-time structural typing is the ftnal solution to the problem. Basing our execu
tion strategy on fiat (unification but no backtracking) rather than standard Prolog
allowed much simpler and somewhat more efficient implementation techniques to
be used, although in some sense it decreased the logical power of the language. We
believe that the use of methods similar to those based on PK./C++ speciftcations
will enhance the design, development, validation and veriftcation of software.

1988 USENIX C-H- Conference

References
1. Campbell. R. H. and R. B. Terwilliger. "The SAGA Approach to Automated Project

Management". in International Workshop on Advanced Programming Environments.
Carter. L. R. (editor). Springer-Verlag Lecture Notes in Computer Science. New York.
1986. 145-159.

2. Clocksin. W. F. and C. S. Mellish. Programming in Prolog. Springer-Verlag. New York.
1981.

3. Fagan. M. E.. "Advances in Software Inspections". IEEE Transactions on Software
Engineering SE-12. 7 (July 1986). 744-751.

4. Fairley. R.• Software Engineering Concepts. McGraw-Hill. New York. 1985.

5. Jones. C. B.• Software Development: A Rigorous Approach. Prentice-Hall International.
Engelwood Cli1fs. N.J.• 1980.

6. Kirslis. P. A.• R. B. Terwilliger and R. H. Campbell. "The SAGA Approach to Large
Program Development in an Integrated Modular EnvironmentI'. Proceedings of the GTE
Workshop on Software Engineering Environments for Programming-in-the- Large.
June 1985. 44-53.

7. Loecla. J. and K. Sieber. The Foundations of Program Verification. John Wiley & Sons.
New York. 1984.

8. Meyers. G. J.• The Art of Software Testing. Johri Wiley & Sons. New York. 1979.

9. Terwilliger. R. B. and R. H. Campbell. "ENCOMPASS: an Environment for the Incre
mental Development of Software". Report No. UIUCDCS-R-86-1296. Dept. of Com
puter Science. University of Illinois at Urbana-ehampaign (also to appear in the Jour
nal of Systems and Software). September 1986.

10. Terwilliger. R. B. and R. H. Campbell. "PLEASE: Executable Specifications for Incre
mental Software Development". Report No. UIUCDCS-R-86-1295. Dept. of Computer
Science. University of Illinois at Urbana-ehampaign (also to appear in the Journal of
Systems and Software). September 1986.

11. Terwilliger. R. B.• "ENCOMPASS: an Environment for Incremental Software Develop
ment using Executable. Logic- Based Specifications". Report No. UIUCDCS-R-87-1356
(Ph.D. Dissertation). Dept. of Computer Science. University of Illinois at Urbana
Champaign. 1987.

12. Terwilliger. R. B. and R. H. Campbell. "PLEASE: a Language for Incremental Software
Development". Proceedings of the 4th International Workshop on Software
SPeCification and Design. April 1987. 249-256.

13. Terwilliger. R. B. and P. A. Kirslis. "PKlC++: an Object- Oriented. Logic-Based. Execut
able Specification Language". Technical Report CU-es-400-88. Department of Com
puter Science. University of Colorado at Boulder. June 1988.

14. Terwilliger. R. B. and R. H. Campbell. "An Early Report on ENCOMPASS". Proceedings
of the 10th International Conference on Software Engineering. April 1988. 344-354.

15. "Special Issue on Rapid Prototyping: Working Papers from the ACM SIGSOFT Rapid
Prototyping Workshop". Software Engineering Notes 7.5 (December 1982).

1988 USENIX c++ Conference 225

226 1988USENIX C+r. Conference

DEBUGGING AND INSTRUMENTATION
OF C++ PROGRAMS

Martin J. 0'Riordan
Glockenspiel Ltd.

19, Belvedere Place
Dublin 1, Ireland

Phone: 353 -1 - 364515
FAX: 353 -1 - 365238

martin@puschi.uucp
I ,. I· I hOI •... mcvax.lC ltC.pusc l. martln

ABSTRACT

Debugging ofc++ programs is both conceptually and technically more·difficult than
ttaditional 'C' programso We must learn how to make good use of our traditional
tools, and understand better the nature of our debugging problemSo However, the
very language that presents these new problems, also presents us with the tools to
bulld new and better solutions to our debugging needs.

Introduction

Debugging programs in any language is not easy, but at least in the traditional
programming languages including 'C' we are aware of the programming goals and the
probable areas of trouble we may incur. C programs are primarily functional in nature, by
which I mean, they are composed of units of code called "functions". These functions
collectively describe the solution to a given problem. Data where it exists is relatively
uncomplicate<L and has probably been derived as a bi-product of the functions which use
them. Consequently, the primary approach to debugging C programs has been to trace the
execution of the code or functions sometimes using very sophisticated debugging tools.
These tools also allow us to examine the state of the data used, in terms of their hex
values, or sometimes in more type specific formats. But the main broadside has been
aimed at the code, and the way in which code is likely to go wrong.

1988 USENIX C-H- Conference 227

228

With C++, and indeed other Object-Oriented programming languages, the subject which
we must debug is not so likely to that of the code. In fact the OOPLs have tended to make
the code more likely to be correct, or at least a correct representation of the problem
described by the programmer. Instead it has brought into existence, the subject of design
and data debugging, something which has generally been ignored by the debugger
designers. We now have the problem being described in tenns of objects and how these
objects interface with other objects. This is much more akin to the problem of debugging
network architectures or other forms of communications related designs.

2. TRADITIONAL METHODS AS APPLIED TO C++

Currently the major implementations of the C++ programming language are in the form
of a C++ to C translator, ~hich makes optimum use of the fact that C is already well
established and already has excellent optimising compilers, libraries, third party tools, and
indeed debugging tools. To introduce a new language as a compiler-resnicts it's
propagation through the programming community, and is also unlikely to be as good as
the 'Yell established C compilers with which in this case C++ would have to compete. As
the translation is to C, we may fll'Stly apply our C debugging techniques to C++.

2.1 Instrumentation

The first method of simple I nstrumentanon, is the insertion of code into the program, to
report status or some other programmer defined statistic. Typically, this in the fonn of a
simple 'print!', a method of debugging not to laughed at, as it can convey knowledge
about a specific program, that no general purpose debugger can presently do. However, it
does mean editing the original, and potentially while doing so there is the problem of
breaking something else. Also, it is very easy to leave some of this instrumentation in the
production version of a large piece of software, which may easily escape notice until a
customer sends you an enquiry.

The second most widely used form of instrumentation is the profiler which is combined
into the executable by the compiler and gathers certain usage statistics about the runtime
behaviour of a program generally in conjunction with some specially designed input data,
to exercise specific parts of the program.

1988 USENIX c++ Conference

2.2 Debuggers

Ranging from the very simple assembly level non-symbolic debuggers, right through to
the more sophisticated source level debuggers which allow interaction with the program
though the symbols and expressions of the target language. These latter debuggers allow
us to examine data according to the type it has been declared as, to enter expressions as
they may appear in C, and to put breakpoints not just at individual instructions in the
assembly code, but instead at lines as they appear in the original source code.

But these debuggers are inadequate when it comes to C++. The obvious problems are:-

Name-Mangling, which is a side effect of C++'s extended understanding of
scope and the introduction of overloaded function names. This makes it
difficult for us to recognise the correlation between the original C++ name,
and the generated C name, which the debugger sees.

Inline-FunctioDS, expand to· complicated expressions which bear no
resemblance to the simple call they appear to be in the source code. And to
compound matters, they cannot be breakpointed, as they do not exist as real
functions.

Virtual-Functions, may be called purely by an index into a table indicated by
the structure to which they belong. This means that we don't know until we
actually invoke the function, which function it is. This is made even more
difficult when you consider the passing of pointers to virtual functions, for
which the information is just a simple number. Breakpointing virtual functions
is extremely difficult, as it involves searching for all such functions in a
potentially large hierarchy, and setting a breakpoint on each.

Inheritance, introduces the problem of an object, especially pointers, not
being what they appear to be. Even the very clever C debuggers which use
type related formatting for presenting an objects state, cannot work correctly
here, as each class in a type hierarchy appear as discrete types to the C
debugger, indeed some of the newer C compilers object to derived class
pointers being passed to a function which declares a base class pointer as being
expected, although C++ is clearly generating correct code according to it's
model.

Header Files, add another new complication. It is generally considered bad
practice to include code in a header file when programming in C, and indeed
many source level C debuggers cannot track into a header file as they load
only the file described by the last "Ilinelt directive in the program. But where
else can you put an inline function for a third party object? For good
correlation between the C++ source, and the code being debugged, the current

1988 USENIX C-++ Conference 229

translators emit #line directives in and out of header fues, as code described in
them is executed. This new aspect causes many debuggers to fail, and others to
merely track apparently random lines in the wrong source fue.

But despite these difficulties, most of us will have become familiar with these aspects,
and will have compensated for them in our everyday debugging needs.

3. MAKING THE OLD WAYS EASIER TO USE

For those of us with access to the original AT&T translator sources there are many things
we can do without great difficulty. Indeed we at Glockenspiel have done much work in
this area to improve the lot of debugging, by passing on these changes to our customers.

3.1 Name Mangling

Changes in the name mangling algorithms is one simple way of improving debugging.
Data members of a class do not always need to have the class name of which they are
members prepended, as no conflict can exist in classes not involved in inheritance, and
name conflicts are surprisingly rare even in classes involved in object type inheritance
hierarchies. For this reason the class name may always be removed from the names of
data members in the base class, or in classes not involved in inheritance, and indeed one
can go farther, by omitting the class name even from members in a derived class when no
name conflict exists. This can be determined simply by scanning for a member of the
same name in the base, and in the base's base ... and if no such name exists, there is no
conflict. If a conflict exists, then the class name may be prepended. This facility can be
made optional, so that the default naming is always available.

The following sample illustrates this name reduction scheme in operation :-

/I Without name reduction

230

/I Original C++ Code
class Base {

int i;
char *name

);

/I Generated C Code
struet Base (

int _Base_i;
char *_Base_name;

1988 USENIX C+t Conference

class Derived: Base
Base *pBase;
long i;

};

/I With name reduction

/I Original C++ Code
class Base (

int i;
char *name

);

class Derived: Base
Base *pBase;
long i;

};

struct Derived (
int _Base_i;
char *_Base_name;
Base *_Derived-pBase;
long _Derived_i;
);

/I Generated C Code
sttuct Base (

int i;
char *name;

};

struct Derived {
int i;
char *name;
Base *pBase;
long _Derived_i;

};

Clearly, the generated names bear a much stronger resemblance to the original with the
name reduction scheme on, than they do without.

Similar approaches may be used to reduce the prefixing of the 'auto' lexical level on
function arguments and internal variables, by checking for name/scope conflicts, which in
most well designed programs don't exist. It is generally confusing to use the same name
for different variables in the same function at different lexical levels, as the fact may
easily go unobserved, generating error messages due to incorrect use at best, and
unexplainable behaviour at runtime, which is more likely. C++ needs to have this
mechanism of lexical prefixes, as it allows for greater scope flexibility than merely
lexical, and the two times they are most needed are for allowing access to a global
variable of the same name, and for invoking the destructors for dynamic objects to be
correctly invoked. But if no name/scope conflict exists the prefix may be removed, thus
local variables and function arguments may possess the same names as they had
originally.

The 'this' variable is a curious anomaly in C++. Only one 'this' variable may exist in a
function, and it is always at the outermost lexical level. Further more, it may only exist in
a function, thus a global instance of 'this' is not possible. The program may not simply
declare one when desired, as it is an implied variable. For this reason there is never a need
for the auto-prefix, and it may be unconditionally dropped, further simplifying the
interface to the debugger.

1988 USENIX C-H- Conference 231

3.2 Inline Functions

Debugging code containing inline functions can be extremely difficult, as the general
control flow appears to have been altered depending upon the complexity of the inline
function. When the inline functions interfere with debugging, then it is good idea to
switch them off. This allows you to view a call as a call, and not as an expanded, and
often complicated expression bearing little resemblance to the original code. At this level,
efficiency is not an issue as the sort of program being debugged using traditional
debuggers is probably not time critical anyway. For time critical code, the issues of
debugging remain greatly unchanged since C and all the old favourite techniques are
probably still best.

Suppressing inlines has a number of benefits. Not only does it allow the general control
flow of a function appear mostly unchanged in the emitted C and thus object code, but it
also enables breakpointing to be used where previously it was not possible. It also means
that we have a real symbol by which we may refer to an inline function, instead of the
"Trained and Familiarised Optical Pattern Recognition" schema on which we otherwise
have to depend upon, in order to identify an inline function expansion.

But this has side effects too. Suppression of inlines causes a static instance of the function
to be created, thus different instances, although functionally identical, exist in each
module processed in this way. Thus breakpointing has other problems similar to that of
virtual functions, in that all instances must be searched out, and individually marked, an
unpleasant exercise to have to undergo.

3.3 Header Files

When a debugger is unable to cope with code in header files, there are three options
available. Firstly, we may ignore all #line information and Source Level Debug the
generated C code, not to be recommended. The other two options involve adapting the
translator to emit customised #line directives. These customisations really fall into only
two forms. When code is referenced in an included rtle, simply Freeze the current
position by emitting #line's at the last position in the primary source file, until control
returns to the primary. The other method is similar, but in order to indicate that the code
being executed is actually in the included file, the #line's emitted may indicate the
#include line for the included file, until control returns to the primary. Thus the source
line display will stay on the #include directive until normal control is restored. Obviously
these methods are not good if the bug being sought actually exists in the included code,
but this measure is only suggested for that situation where the target debugger gets
confused by the multi-file method used in C++.

232 1988 USENIX C-++ Conference

The methods outlined above are simple effective methods for using the existing tools, but
with reduced pain. They are obviously not wholly adequate methods for debugging,
especially an OOPL, but in the absence of more powerful debugging tools and paradigms,
they contribute greatly to the overall usability ofC debugging tools with C++.

4. MAKING C++ EARN IT'S LIVING

Some aspects of debugging are best addressed by using the language against itself when
debugging "To catch a thief..." and indeed it does provide us with some interesting tools
with which to do this. One of the problems that we often want to solve in a program is
that of program flow from function to function, and more importantly, in programs using
either direct or indirect recursion. For this a method for determining when a function gets
control is required, easily provided with one statement at the entry to a function. Less
easily provided is a method of detennining when it returns control to the caller. If the
function has one exit point a second simple statement provides the solution, but when
there are many exit points, placing a statement at each is time consuming, and prone to
error and incompleteness.

C++ provides us with a very simple, yet powerful way of tackling precisely this type of
problem. A class which contains nothing but a constructor and a destructor may be used
to solve this :-

class Trace (
public:

Trace (char* FWlctioD_Name);
-Trace 0;

};

When a declaration of an instance of the class "Trace" is inserted into the function, before
any other statements, it solves both the problem ofentry and the problem of exit with only
one statement. It is a very simple trick, easily sneered at, but it provides us with the basis
for very powerful tools based on this and other simple mechanisms already provided by
the language.

The declaration is inserted as the first statement of the function, with the name of the
function as an argument. This causes the Constructor to be invoked, informing the
runtime support mechanism for the Trace facility, that a function has been entered, and
which function it is by name. This is completely automatic. Also completely automatic is
the in"'lCation of the corresponding Destructor. Whenever an object goes out of scope,
it's dcsbuctor is automatically invoked, and the Trace object can only go out of scope

1988 USENIX C+t- Conference 233

234

when the function reaches the closing brace, or when a return statement is encountered. In
either case, the language guarantees the invocation of the destructor. Thus, with the
addition of only one line of C++ code, we may monitor the entry/exit behaviour of a
particular function, or indeed that of many functions. This is similar to the way the
profiler works in present C compilers, but more powerful, in that the simple hook planted
in the code has user defined functionality, and may thus provide more specific data about
the program under test

5. INSTRUMENTATION

The previous section introduced a very simple example of C++ Leger de main. The
language has many simple tricks which we may use to monitor specific aspects of a
programs behaviour. These tricks generally involve the insertion of code into the source
file. This process, like printf'ing in C is very powerful, but like it's predecessor prone to
accidental damage while editing, or left in a vestigial state when the product is finally sent
to the customer, a bit like finding a screw-driver in the cabinet of your new computer.
Still, instrumenting a program is often the best way of debugging, and never was this
more true of a language than of C++. C++ is an OOPL, that is, it is intended for the
design of abstract objects. It takes care of a lot of the problems we had in C such as type
checking, initialisation of data, destruction of data in controlled and programmed ways.
The error messages and warnings are rich in the information they provide, often
indicating doubtful code or data design. If thew~gs are heeded that is. I would always
advise programmers to heed the warnings, as they are a lot easier to understand than the
unexplainable behaviour of a runaway program, or the intermittent and often unrepeatable
behaviour of a dangling pointer problem.

With the extra support, and the general design methodology of C++ programs, the
emphasis for debugging has moved from code level debugging, to Object Level
Debugging. That is, we must now debug the object in terms of it's behaviour, and of it's
intended purpose versus it's actual behavi~ur.

For C++ Instrumentation seems to be the best approach, certainly combined with
conventional C tools, perhaps enhanced to understand C++ syntax. But when it comes to
the debugging of the d:esign, only custom made tools can truelly provide the answer. For
this reason the automatic insertion of Instrumentation code is by far the best approach.
Automatic insertion of instrumentation means you don't have to worry about accidental
damage caused during an edit while inserting new instrumentation. A spanner need not be
left in the works, as a simple recompile of all the components without instrumentation
may be done before production, or indeed, and as a safety precaution, the existing object
code could be relinked with a dummy version of the instrumentation support library. As

1988 USENIX C+t- Conference

the instrumentation provides only hooks into the code, this is very easily achieved. The
same mechanism allows the test and/or design personnel to customise the operations they
require of the instrumentation by providing their own implementation of the instrument
hooks, or they can use the default ones provided. Similarly, a dummy version which does
nothing may be provided in order to catch those Spanners safely and tidily.

6. HI-JACKING THE VIRTUAL TABLE

No not an act of terrorism, not even extending the language. By Hi-Jacking the Virtual
Table, I mean Extending it's Original Purpose. The virtual table is after all ~
implementation feature. It's existence is not even implied by the language, and c~rtainly

it's construction is not. For this reason the nature of the virtual table may be altered or
extended in order to facilitate the needs of the debugging community.

The virtual table contains a list of the addresses of the virtual member functions, for a
given instance of a class within a type hierarchy. It allows us to dynamically bind the
behaviour of an object to the actual instance at runtime rather than statically bound at
compile time. However, how this is implemented is irrelevant to the function described in .
the language. Using an array is one method, although very efficient, it is not as flexible as
say a linked list, nor as powerful in a network distributed system, as a tree topology. What
I am saying is that the language itself is not altered by using alternative implementations
of the virtual table.

By extending it's functionality, I am suggesting that more information than purely the
virtual function addresses could be stored in the table. Essentially, it provides the only
dynamic means of identifying an object. By moving all the addresses up one index in the
array implementation, the zeroeth element becomes free, and at no loss of efficiency. This
zeroeth element may then be used to refer to a structure which can provide the debugger
with dynamic information and type identification of the object under examination. This
structure could contain the following information :-

The actual size of the object. Indeed this could be a useful facility in the C++
language, as it would provide a virtual 'sizeof' facility at small expense, and in
a non-user definable way.

The name of the object

A reference the the structure describing the base class of the object if any.

A list of the objects members, their types, and any other useful information.

1988 USENIX C-++ Conference 235

236

etc. In fact, the number of potential uses exceeds the needs of the debugging aspects. One
such use is that of Persistence, where the lifetime of an object may outlive the invocation
lifetime of the program that created it. Further extensions on the idea of persistence are
inter-processor communications, a problem that becomes especially difficult when one
considers the problems of communicating objects which are part of an inheritance
hierarchy, and which have an associated functionality as well as simply datum. And many
more.

7. POD -- A'Portable Object-oriented Debugger

It is from these and other simple alterations to the Behind The Scenes C++ that the design
and implementation of POD has been derived. POD has been designed by Glockenspiel
and will be available with 9ur next major product revision as part of the C++ Software
Development Kit we are forging. Many of the simpler name mangling facilities are
already present as simple switchable options, and have been so for quite some time. POD
was initially designed two years ago, and implementations of it have been in use within
Glockenspiel since April 87. Initially the design could have been called simply 'on or
Object-oriented Debugger, asPortable had not yet made it's appearance.

ith POD enabled, the translator emits Hooks into the generated C code, which provide the
programmer with a simple mechanism onto which they may build a special purpose
debugging tool. POD comes with a default debugging tool in the library "libPOD.au

,

which is not intended to be the ultimate debugger, but does provide many of the often
used, o~ often required debugging facilities.

What is more important, is the provision of a the POD header ftle, from which the
programmer may derive their own specific debugger, replacing POD's default
implementation with programmer defined versions. The number and nature of hooks
embedded by POD are determined at compile time by the programmer.

Many of PODs member functions are virtual allowing different versions of the debugger
to be used in different places, thus a context sensitive debugger is possible, a concept not
realisable with good old C. This means that a library of different debuggers could be built
up over the lifetime of a few projects, and then they would start to become reusable. The
debugger most suited to ·the task could be determined at run-time depending upon the
exact nature and context of the program being debugged. Indeed, with the increasing use
of dynamically linked libraries being used, the exact selection of the debugger could be
deferred until nmtime, so complete independence of the precise debugger used is
achieved, allowing the debugger to be tailored exactly to the needs of the problem.

1988 USENIX C-++ Conference

7.1 The Hooks POD Provides

POD provides many facilities to the debugger. Hooks may be emitted for a large variety
of purposes, but how many hooks, and which hooks are emitted are under the
programmers control, as all are enabled using special switches. The types of hooks fall
into a few simple categories, which are best discussed separately. The fIrst set of hooks
deal will the control flow characteristics of a program, and deal with such aspects as
source position, lexical levels, scope and such like.

7.1.1 Positional Hooks

While debugging, it is necessary to know where in the corresponding source code your
program is executing. For this purpose a LineIFile positional hook is emitted. This is a
message to the debugger, which infonns it that the current position has changed. The
positional information has several fonns. Absolute LineIFile messages infonns the
debugger that a complete source file has changed, and provides the name and line number
in the new fue. This is used when the code being executed moves from one module to
another. Relative messages infonn the debugger that the source line being executed has
changed, but not the file, and secondly, it may infonn the debugger that a relative source
fue has changed. This means that the source file in which it is now executing, actually
occurs in an included file, which fonns a part of the one object module. This allows for a
fue stack frame to be maintained be a debugger, enabling rapid context return to the
including source file.

The positional Line/File messages in POD are :-

/I Change the Absolute Source File and Line
void _POD_AbsFile (char*& FileName, int LineNo);

/I Change the Relative Source File and Line
void _POD_RelFile (char*& FileName, int LineNo);

/I Return to the including fde, at line #
void _POD_RelReturn (int LineNo);

/I Change the Relative Source Line
void _POD_RelLine (int LineNo);

7.1.2 Function and Lexical Hooks

When a running program enters or exits a function or a new lexical level, POD can send a
message to the debugger, informing it of the change. For this type of operation, the simple
positional infonnation is inadequate, as the debugger would have to parse the code in the
source to determine what action to take, and even then it cannot determine which lexical
level the program may be at. At the beginning of each new lexical level, POD can insert a

1988 USENIX C-++ Conference 237

simple Instrumentation class similar to the "Trace" class mentioned previously. The
outermost lexical level is a special case, in that it is the function entry point, and differs
only in the way in which it is constructed. This simple mechanism informs the debugger
immediately of a new lexical level, or entry to a new function. The destructor for this
object informs the debugger that the control flow is leaving this lexical block. Thus the
simple function in/out mechanism is easily extended to the more general lexical in/out
model.

The Function and Lexical messages in POD are :-

/I New Function Entry
_POD_Block::_POD_Block (char*& FunctionName,

void· FunctionAddr);

238

/I New Lexical Level Entry
_POD_Block::_POD_Block (intLexicalLevel);

/I Global Entry, one per module
_POD_Block::_POD_Block 0;

/I Exit Function or Lexical Level
_POD_Block::-_POD_Block 0;

7.1.3 Scope and Variables

Often the debugger needs to know about the variables in a function, and also the variables
available to a function from global data space. For th~s reason POD can send messages to
the debugger each time a new object is declared. This method implies the lexical
instrumentation, as the messages are to the _POD_Block object. These messages inform
POD about the name, address and type of the new data object being declared, allowing
the debugger to examine and monitor specific data in the program. Conveying the type of
the object is the most complicated part. If the type is simple, then a simple coded message
is sent If it is a composite type is involved, then a compressed composite code is
generated and sent to the debugger. However, if the object is an aggregate, then a pointer
to the corresponding type descriptor is sent. This type descriptor is also indicated by the
zeroeth element of the virtual table. All classes will have a type descriptor record
generated by the Translator, whether they have virtual functions or not. This means that
they may all be dynamically typed by POD and it's associated debugging facilities. For
global variables, the situation is more complicated, but again the language can help us.
C++ guarantees initialisation of user defined objects using their associated constructors.
This applies to global data also. POD will generate a static constructor containing
messages to the debugger infonning it of the global data declarations.

1988 USENIX C++- Conference

The Scope and Variable messages in POD are :-

/I Declare a compound variable in this scope
_POD_Block::AddVar (char*& VarName,

voidO VarAddr,
_POD_Type· VarType);

/I Declare a composite variable in this scope
_POD_Block::AddVar(char*& VarName,

void· VarAddr,
char*& VarType);

/I Declare a simple variable in this scope
_POD_Block::AddVar(charO&

void*
int

VarName,
VarAddr,
VarType);

Note that the destructor must also clean up all variable entries entered into it's scope.
Thus the whole scoping rules may be automatically controlled for lexically allocated
variables. Formal arguments are declared before any other statements are encountered,
thus POD must emit references to these before anything else other than the _POD_Block
object for function entry. Thus the formal arguments and first lexical local variables
appear in the same space. Thus POD must cater for variables being hidden in this way.

Global variables are entered by a static constructor into the scope of a global
_POD_Block object which operates in a similar fashion to the lexically bound
_POD_Block objects, and removed by the corresponding static destructor.

The above hooks provide for most of the needs of control flow debugging, as well as
allowing for actual user definable typing. But even these do not address all the needs of
Object-Oriented debugging. Consider the problem of breakpointing virtual functions, and
indeed inline functions. This is one area which is very difficult to address to address using
conventional debugging tools. Also, the ideas involved really require that the debugger
should be able to communicate with the objects themselves. The following section deals
with these more advanced tyPes of debugging needs.

7.1.4 Breakpoints in Virtual and Inline Functions

With C a function is a function, and setting a breakpoint on a function is simply a matter
of fmding it's symbolic name, and placing a breakpoint at the address indicated. When
execution causes this function to be invoked, the corresponding breakpoint causes
execution to stop, and the debugger changes it's mode of operation. With C++, setting a
breakpoint on a virtual function is not only conceptually more difficult, but technically
more difficult also. POD simplifies this in two ways. Firstly, it can optionally emit a trap
function for a specified virtual function in a type hierarchy. As all virtual function~ , ,. this

1988 USENIX Ci+ Conference 239

240

name and type go through the trap function, it is a simple matter to place a breakpoint
only on this function, causing execution to freeze there. Stepping over the function return
sequence gets into the real function. This allows POD to interact with conventional
debuggers, and ease there task when breakpointing virtual functions. Inline functions are
addressed in a similar fashion. These stub functions have the same name as the virtual
function to which they conespond, but prefixed by "_POD_".

A second method exists, which is more powerful and flexible as it operates purely within
POD. Already available is the Function/Lexical entry instrumentation, which knows when
and which function is being entered or exited. The runtime support for these functions can
internally breakpoint on a category of functions as breakpoints on all or just selected
branches of virtual functions is greatly simplified. Thus it is possible to be more selective
about which functions are to be trapped and which are not, possibly examining only one
or two branches of a large hierarchy. An analogous method applies to inline functions.

7.1.5 Debugger - Object Communication

Sometimes it is necessary for the debugger to examine the state of an object. For this
reason, POD will use the type information it finds in the type descriptor stored off the
zeroeth element of the virtual table. It will display are present the information according
to adefault algorithm for dumping or analysing aggregate types. However, sometimes this
is not always appropriate to a particular user defined type.

For this reason, POD will take a closer look at the type and if it has a member function
called "_POD_In", which takes a reference to a structure called It_POD_CommType'',
then instead ofperforming the default type analyses algorithm, it will call this function for
which the programmer must provide a definition. The argument exchanged is the way in
which the debugger may communicate with the object. This is a two way mechanism in
that the debugger may call the II_POD_In" in order to make a request of the object, but
the object may also send messages to POD, using the "_POD_Outlt function, which has
the same argument and invocation syntax, but which the program may call. The
_POD_Out function may only be invoked as a member function, and this function is not
provided by the programmer. Instead, the translator will generate the function
automatically for POD when enabled.

7.1.6 Other Messages

Finally, POD has a couple of other messages available which the programmer may insert
in their code. These are simple, globally available functions which are declared in the
associated POD header file "pod.hxx", which describes all the classes and declarations
necessary to avail of PODs facilities in the programmers code. This is automatically
included by the Pre-Processor when POD is selected. The four main functions available
are as follows :-

1988 USENIX C-f+ Conference

/I Force POD off, disable POD for now
void _POD_Off 0;

/I Force POD on, enables POD after _POD_Off has been used.
void _POD_On 0;

/I Force POD to restart it's statistics
void _POD_ReStart 0;

/I Force POD to display it's current statistics
void _POD_Display 0;

These functions are useful for gaining more selective control over POD's monitoring
functions. As POD comes with a dummy library, these may be left in production code
without any side effects other than a slight decrease in perfonnance, and a slight increase
in size. But not providing a two way method of communication between POD and the
program under the microscope is not worth the extra debugging value lost by their
exclusion.

7.2 POD Conclusion

As stated earlier, many of POD's functions are virtual. This means that the programmer
using POD can design their own debugging facility on the hooks provided. Glockenspiel
provide two debugger libraries with POD. The rust is a simple general purpose debugger
built on these hooks. We may place the implementation of this debugger in the public
domain at a later date, but for now it is provided only in object fonn as part of the POD
product.

Virtual hooks enable the debugger to change it's spots mid run if required, adapting to the
different needs of different parts of the program. This can be done dynamically as the
program executes, or selectively through the debugger's user interface by some
interactive means.

7.2.1 Other uses for POD

Uses for POD are not only for debugging and for data monitoring, but it may also be used
for various types of stress testing, and validation tools for complex pieces of software.
Another incidental spinoff, is for controlling demonstration software. The software may
be constructed with POD embedded, and instead of a debugger piggy-backed, it could
have some form of demonstration driver instead.

1988 USENIX c++ Conference 241

242

POD may be used for profiling also. Gathering the sort of statistics the standard C
compiler collects is relatively simple, but petfonning such services as topological
profiling is a newer and more complex type of profiling. With topological profiling, we
are not only interested in the percentage of time a given function is called, or how many
times it is called. But also in the way execution progresses. Topological profiling reveals
the inter-dependency between functions which regular profiling cannot. This allows us to
optimise locality problems, especially on distributed systems, or certain unmentionable
small computers using a simple segmented architecture. Furthermore, profiling can be
extended to a per line or per statement analyses within a single function, to determine
precisely where the resource hog is, in order to optimise correctly.

8. CONCLUSION

The Portable Object-Oriented Debugger "POD", presents a fairly complete set of hooks,
most of which are discussed above, but some also lesser ones which I have omitted.
However, it also can generate copious numbers of hooks. For many debugging tasks, the
full POD support is not required, so POD has a set of switches the programmer may use
to enable or restrict many of POD's hooks. These include restricting how many lexical
levels are to be monitored in the module, or whether positional information is emitted
every line, every statement, etc. The communication facilities may be enabled separately.
In fact there is a wide range of switchable facilities for POD support. For this reason,
although switches are actually used, a switch composition mechanism is provided through
which the novice POD user may construct the switches interactively. This means that
POD is available not only to the experienced programmer with, intimate knowledge of the
complex switches used, but also to the new-comer who wants to avail of it immediately,
without a large learning curve.

1988 USENIX C-H- Conference

libg++, The GNU C++ Library

Douglas Lea

State University of New York, College at Oswego
Oswego, NY 13126

(dl@rocky.oswego.edu)

ABSTRACf

The GNU C++ library is a collection of C++ classes and support tools.
The paper describes several general strategies for structuring and designing
GNU C++ library classes, along with an informal taxonomy of library
classes and their implementations.

1. Introduction

The GNU C++ library, libg++, is a collection of C++ classes and support tools
designed to be used with the GNU C++ compiler, g++. It is being produced on a
volunteer basis with the assistance and support of the Free Software Foundation
GNU project. However, as of this writing, neither libg++ nor g++ are official GNU
products. All distributions thus far have been labeled as test releases.

While the GNU C++ library accommodates and/or exploits minor differences,
extensions, and limitations of GNU C++ versus the AT&T version, it is by-and
large designed as a general C++ programming support system in its own right.

This paper describes several basic design and implementation decisions and
strategies made in the GNU C++ library that may be of interest to others creating
and using C++ libraries and support tools.

2. Architecture of a class library

An especially attractive virtue of the C++ language is that it directly supports
many different programming styles and methodologies, any of which mayor may
not be considered as "truly" object-oriented by those who like to argue about such
matters. This fact ~pacts a library designer in countless ways, but most
importantly in the ways that inheritance is employed in structuring the library.

One approach, taken by Keith Garlen's OOPS library [1], is to exploit inheri
tance in order to create a single rooted tree of classes that together constitute a con
sistent programming environment in which all classes are somehow derived from
the root class, Object. This Is also the route taken in libraries for several other
object-oriented languages, especially Smalltalk.

A less ambitious-looking approach is taken in the GNU C++ library, which
consists of a collection of generally independent classes available for indiVidual
selection and use. This "forest" of classes employs inheritance only when needed to
express inherent class dependencies.

There are many good reasons for choosing either approach.

1988 USENIX C+t- Conference 243

244

2.1. Consistency versus flexibility

Because the "tree" approach creates a consistent programming system in which
many decisions about class structure, intercommunication, usage and inheritance
conventions, etc., have already been made, such a system is often easier to use than
the "forest" approach, but can also be less flexible. A forest structure is often more
amenable to the integration of new classes written by different programmers for
different reasons, as is the case with the GNU C++ library.

A forest builder cannot fully enforce some conventions that are worth enforc
ing in many applications. An important example of this is the issue of error han
dling. Since the C++ language does not yet contain an exception handling
mechanism, any library must incorporate some kind of mechanism itself. In an
integrated hierarchy, enforcing a particular error recovery scheme is simple, since
the basic methods are contained at the root of the tree, while in a forest this may
only be enforced by mere convention. (Of course, the design and construction of a
good exception mechanism is not at all simple in either case. Currently, the GNU
C++ library relies on a simple client-resettable error function for each class.)

Because of the constant potential for inconsJstendes across classes, users of
forest libraries are more susceptible to the "glue" problem: How does one construct,
coerce, or intercommunicate between members of two thoroughly unrelated
classes?

A system presenting a consistent hierarchy may not be able to structure the
tree of classes in a way that is best for every application. A tree builder must
make occasionally arbitrary decisions about exactly where certain classes fit in the
hierarchy, in ways that sometimes poorly reflect the interdependendes desired in a
given application program. Generally, single hierarchies appear best suited for
systems in which each class adds or further speci1ies functionality with respect to
its parent, but other uses of inheritance are also possible within C++. The
introduction of multiple inheritance will do much to alleViate such logistic
diffi.culties.

A forest builder does not worry as much about such problems. For this rea
son, multiple inheritance will not impact the design of the GNU C++ library to a
great extent, but may heavUy impact programmers who use it to tie together other
wise unrelated classes. On the other hand, a forest builder should often make
provisions so that independent classes are designed in a way that applications
programmers can, with only a modicum of effort, interconnect classes into bigger
forests and trees that make sense in a given program. Several such design con
siderations are described below.

2.2. Efticlency and redundancy

Classes living in forests are sometimes moreeflident, more internally
coherent, and more redundant than those liVing in a single tree. This is in part due
to the fact that forest classes may be designed from ftrst-prindples, and need not
contain otherwise unnecessary overhead required to implement methods and
conventions used in the rest of the hierarchy. On the other hand, not being part of
a hierarchy can limit code reuse, resulting in otherwise aVOidable redundancies.
These characteristics are also partly based on the fact that a single hierarchy must

1988 USENIX c++ Conference

make heavy use of virtual functions, which are significantly less prevalent in a
forest. Indeed, in the forest approach, it is difficult for the library implementor to
decide whether any particular method in any particular class might make most
sense as a virtual since most often, ·clients, not other parts of the library, will
create subclasses. Fortunately, C++ is often forgiVing of errors in such decisions.
In most cases, a programmer Wishing to create virtual subclasses of any non
virtual class X may simply derive a new class VX in which no capabilities differ
except that selected methods are Virtual, and then use VX as the basis for all other
subclasses. A similar strategy is available in the corollary case of proceeding from
virtual to non-virtual.

2.3. C++ Limitations

C++ does not fully support the single tree approach because builtin types (like
int) are not classes, and thus fall outside of any hierarchy.

C++ does not yet contain a parameterized class generation mechanism for the
creation of basic container classes, for example a Stack class. This is not a major
problem in the tree approach, since a Stack class can be declared and defined only
once to operate on members of root class Object. This is a much harder issue in a
forest, where class designers must. rely on some variation of either of the two
pseudo-generic class construction methods descrIbed by Stroustrup [3] (section
7.3).

In the first, "pointer" method, which is an approximation to the approach taken
in "parametric polymorphic" languages like ML (see [4]), void· pointers are used as
the actual elements of the contaIner, and subclasses are constructed by coercing the
void· elements into pointers to the elements of interest. In the second, "macroiza
tion" method, an approximation to the approach taken in Ada, nearly all the work
is done by preprocessors, so that, for example, one Stack class prototype is
transformed at the source-code level into the particular class declaration of
interest vIa macro expansIon or sImple name substitution. Neither of these solu
tions is perfect: The pointer method introduces too much awkwardness and
inefficiency to be useful for such everyday purposes as declaring a simple stack of
int, while the macroization method can lead to unrestrained code red~dancy and
makes it impossible to cleanly express certain class interrelationships. Nonetheless,
one of these methods must be used.

In the GNU C++ library, the prototype macroization method is employed, for
one overriding reason: It is possible for programmers to generate a void· (or any
other pointer type) container class from its prototype, and thereafter use the
pointer method from this generated class, while the reverse is impossible. However,
in terms of library desIgn, this strategy does have a few disadvantages. Because
users of container classes generate these classes in source file form from prototype
ftles (using a simple text-replacement utility rather than via #define macros), this
reduces the degree of control that the library desIgner has over use. Programmers
are implicitly encouraged to alter the generated ftles in any way they see fit, both
for better and worse.

1988 USENIX C-H- Conference 245

246

3. Object-oriented libraries and bottom up design

The bottom-up software engineering methodologies encouraged by object
oriented programming languages affects basic support library desIgners perhaps
more than other programmers. An object-oriented library provIdes common classes
and utilities written in the hope that they may prove to be useful components of
larger programs. but. generally without any special knowledge about how or why
such objects might be employed. Indeed. during the brief existence of the GNU C++
library. there have already been several examples of "unintended" applications that
library classes have found themselves in.

There are many attractive aspects of this kind of bottom-up design. Library
builders ought to be able to concentrate much of their attention to the coherent
design. implementation. and testing of classes in and of themselves. wIthout being
tied to any particular application. However. pure bottom-up axiomatic develop
ment is rarely possible in practice. There are several competing pressures. for the
most part peculiar to C++. that interact with general class design strategies.

3.1. Featurism and data hiding

Given that most intrinsic operations are both more naturally and more
efficiently performed from within a class rather than by client functions. it is
much more difficult to limit the number and kinds of methods supported in a
general-purpose class (say. a String class) than in one designed for special purposes.
Thus the temptation to introduce a bit of "creeping featurism" enters into the
design of Virtually every general-purpose class.

An unthinkable "remedy" for this problem is to make all class data and
support functions public. so that clients can operate on the underlying representa
tions themselves in order to perform functions not dIrectly supported by a class.
But. of course. such an approach violates just about every virtue that object
oriented programming presents to software engineering efforts.

In the GNU C++ library a compromise position is taken. A certain amount of
featurism is tolerated. However. in awareness that a general-purpose class might
not exactly fit a client's needs. most underlying data are declared as protected. In
this way. a client may efficiently implement additional functionality, but only Via
the introduction of new subclasses that both Isolate such access and more properly
reflect their motivation.

3.2. Design elegance and special casing

C++ programmers probably ought to expect that a class implements common
operations about as efficiently as possible within its other desIgn constraints. This
can lead to the introduction of a nearly unbounded number of special-ase opera
tions in a general-purpose class, all of them logically superfluous. A good example
of this can be found In the GNU C++ library String class: A String can be created
from a simple char via a prOVided constructor. Also, a concatenation operator is
prOVided that takes two Strings and returns their concatenation. Given only these.
along with the C++ coercion rules, a client function can, of course, concatenate a

1988 USENIX C++ Conference

String with a char. However, a special purpose method for specifically concatenat
ing a String with a char could perform this in a significantly faster way, Without
going through the constructor overhead.

In the GNU C++ library, this kind of special-case function proliferation, and
corresponding near-redundancies of code are perhaps more prevalent than other
wise desirable. This is probably the right approach in C++. One of the major
advantages of C++ over other object-oriented languages is its efficiency. Support
libraries should not nullify this advantage.

3.3. C-t+ classes and C

Many C++ functions, including C++ class library functions, invoke standard
C library functions. This fact in1luences the content of C++ support tools in several
fairly obVious ways, but also impacts library class design.

First, the obVious ways. PrOVision of C++ "translations" of standard C header
files is one of the minimal components of a library support system. The task of
proViding these has been made a bit of a challenge given the fact that C libraries
and header files are currently undergoing revision in order to conform to ANSI
and/or POSIX standards. Steps are underway to automatically prOVide GNU C++
compatible header files based on those from the forthcoming ANSI standard GNU C
library. The portable use of these C library functions within C++ library classes is
also a constant pragmatic concern.

A C++ library support system can also help serve as a "better C library" by
providing minor extensions of common C library functions that operate on class
less builtin types. As a convenience, the GNU C++ library contains headers and
implementations for overloaded and/or inllned versions of abs, pow and the like.

A more interesting offshoot of the special relation between C and C++ lies in
how C libraries may be used in designing C++ classes "by theft". Standard C
libraries contain functions that have, for the most part, proven to be useful and
reliable tools for programmers. However, such libraries are not always good C++
programming tools due to the fact that groups of related C functions often do not
present themselves in a consistent, natural manner to C++ clients.

This line of reasoning suggests that a useful component of a C++ library might
be classes that serve as "front ends" to groups of C library functions that might
usefully be COnsidered as classes. So long as the front end merely "repackages" C
functions by calling them through inllnes, etc., and thus serves mainly as "syntac
tic sugar", such a class allows C++ programmers to view the component
functionality In a class-based, object-oriented manner without sacrificing efficiency
or, perhaps more importantly, perfect C compatibility.

Currently, the library contains one major set of classes designed under this
sort of strategy. Consider the fact that the C stdio library is, or would be if
written in C++, a class: It possesses a state represented by private data Cstruct
_iobuf - not actually declared as private, of course), a collection of methods
(fread, fprintf, etc. - actually regular C functions), several of which are inllned
(gete, pute - actually macros), and selected state access and control functions

1988 USENIX C++- Conference 247

248

(feof, setbuf, etc.). This stdio "class" is surely the most well-used set of C library
functions.

The GNU C++ library repackages C stdio as class File. However, it does so
while also providing somewhat more security, convenience features, and con
sistency. Moreover, several mainly cosmetic changes are implemented to make the
File class use Stroustrup's stream package state and error conventions. These
modifications allow the File class to serve as a base class for the libg++ istream and
ostream classes as well as other I/O related classes, such as one that generates
plot(S) format flIes.

The istream and ostream classes thus perform I/O via File class operations that
call stdio functions. This strategy has the advantage of minimiZing annoying minor
discrepancies between the C and C++ I/O, while maintaining the distinct advan
tages of C++ stream I/O over stdio function calls. However, this has the disadvan
tage of not being 1()()% compatible with the de facto standard AT&T stream pack
age, since File based streams do not have streambuf components. The GNU C++
stream package is undergoing modifications to comply with the AT&T version
while otherwise maintaining this general design strategy.

The GNU C++ library does or wU1 contain several other C library based
classes, including such. "natural" ones as those based on the GNU C library versions
of the getopt, env, and dbm functions.

3.4. Class interfaces

Of course, classes should be designed in a way so that they are easy and
natural for client functions to use as ready-made "off-the-shelf" software
components. Unfortunately, there are no hard and fast gUidelines that ensure suc
cessful translation of this cliche into practice. Generally, only weak and obVious
rules of thumb apply, including (1) minimizing of the use of overloaded operators
in non-standard contexts (as in the poor choice of the += operator to perform a
stack push); (2) using default parameters in order to provide :flexibility in special
cases without requiring overly detailed specification in the most common cases; (3)
using references rather than pointers; (4) minimiZing "surprise" by making clear
those cases where simple-looking methods do not have simple behavior and cases
where implementation code performs signiJicant behind-the-scenes memory alloca
tion and/or computation; (5) minimizing cases where client functions must them
selves deallocate space allocated within class methods; (6) limiting the number of
methods and friends within a class; (1) using friend functions or operators for
operations that construct new objects without modifying their argument(s),
members for thoSe that do mutate the object, and minimizing the number of opera
tions that do something in-between; (8) minimizing con:flicts with other C and C++
libraries and utilities; and (9) maintaining proper class documentation and clear
header ftle formatting.

4. Ubrary classes

No taxonomy of objects perfectly categorizes the kinds of classes one can
construct in C++, .nor cleanly separates what makes a good library class from an
applications class. However, the follOWing categorization of the contents of the

1988 USENIX C++ Conference

GNU C++ library helps to organize discussIon of some basIc commonalities (see also
[2]).

4.1. Algebraic types

Surely a library is the right place to implement classes that extend C++ to
support addition~l general-purpose basic types found in other type-rich languages.
Such types include complex numbers, rational numbers, multiple precision
integers, strings, and the like. These types generally possess Widely agreed-on
properties and capabilities based on algebraic specifications.

There is a simple goal in the design and implementation of such classes:
Excepting minor di1Ferences between classes and classless builtins in C++, a client
function should be able to employ an extended type in exactly the same ways as a
similar builtin type. Moreover, this generally ought to be the preferred and best
supported usage of the extended type. Thus, for example, a client function should
be able to replace all int variables with instances'of the multiple precision integer
class Integer wherever meaningful, with a minimum of additional effort.

4.1.1. Scalar semantics

Algebraic classes ought to posSess "scalar semantics": Clients should never
need to perform "manual" storage management for instances, should be able to use
parameter passing by-value when meaningful without penalty, and should be able
to rely on the natural use of binary and assIgnment operators.

These criteria are easy to meet for a class like Complex. Since it contains a
small amount of fixed-length data, all storage allocation is performed via the usual
C++ rules Without any dynamic allocation. Call by-value (versus by-reference)
mayor may not be the more efficient parameter passing mechanism for Complex
variables being logically passed by value, depending on the function and context,
but is in any case close. Simple copying and construction can be used to efficiently
implement assignment and operators.

4.1.2. Representations for variable-sized objects

Scalar classes like multiple-precision Integers and Strings containing varIable
sized data present more of a problem. Perhaps the most common compromise solu-,
tion for representing such types is an indirect pointer scheme in which class
instances merely contain a pointer to other structures actually containing the data,
and which are dynamically allocated and managed entirely behind the scenes. The
challenge of this kind of solution is how to implement a transparent storage
management system that contains enough advantages so as to outweigh the
constant cost of the additional level of indirection imposed via pointers.

The GNU C++ library adopts one version of this approach. The basic
technique used across all variable-size scalar types is the same, although various
details' necessarily di1Fer from class to class. The general strategy for representing
such objects is to create chunks of memory that include both header information
(e.g., the size of the object), as well as the variable-size data (an array of some
sort) at the end of the chunk.

1988 USENIX C++- Conference 249

250

Class instances themselves contain only a pointer to a chunk. Storage manage
ment is performed via reference counting. All headers possess a reference count
that is maintained in the usual way for storage reclamation. This representation
scheme (which is similar to one often used in implementing SNOBOL) has several
notable features.

4.1.2.1. Allocation

Combining headers and data results in generally fast memory allocation, since
only one, not two allocations are necessary. Expanding and contracting the vari
able part is also straightforward, as are techniques for automatically preallocating
and overallocating space for variables that appear to be changing. For example,
Strings are usually overallocated space whenever they grow, as a heuristic aimed at
minimizing future allocation overhead and free store fragmentation.

4.1.2.2. Constructors and assignment

Use of pointers allows both by-value and by-reference argument passing to be
equally efficient. A by-value argument invokes the X(X&) constructor, which con
sists only of a pointer copy and reference count increment. The assignment opera
tor requires only slightly greater overhead.

4.1.2.3. Sharing

The mechanism allows several variables to point to the same chunk. The
sharing of values across, especially, elements of arrays, appears common enough to
make this an effective mechanism for reducing overall storage reqUirements.

4.1.2.4. Chunk reuse

Operator-based assignment (e.g., operator +=) is also efficient. Because of
reference counting, objects that are the results of various self-modiftcation opera
tions (like destructive String concatenation) "may often be refit back into their
sources if they are big enough and are not shared, without any additional alloca
tion. If they are unshared, but not big enough, they may be reallocated.

4.1.2.5. Manual allocation

Since neither this mechanism nor any other strictly behind-the-scenes
dynamic storage management scheme can be optimal for all applications, methods
are available for clients to take over some allocation chores in order to fine-tune
their code. Each class includes a member function that forces data copying (not
pointer sharing) from one variable to another, a function that forces a variable to
point to an unshared chunk, and a function that prea1locates chunk space for a
variable. In the library documentation, programmers are given examples of cases
where manual tuning of storage allocation is likely to be worthwhile.

4.1.3. Integration

Algebraic types should be integrated in~o C++ in ways that hide, as much as
possible, the fact that they are not truly "built into" the language. In libg++, most
such classes possess converters that allow automatic coercion both from and to

1988 USENIX C+t Conference

builtin types (e.g., char· to and from String, long to and from Integer, etc.). There
are pro's and con's to circular converters, since they can sometimes lead to the
conversion from a builtin type through to a class function and back to a builtin
type without any special attention on the part of the programmer, both for better
and worse.

Because these kinds of classes bear such close relation to builtin types, they
are most susceptible to the problems (and/or advantages) of special-ease functlon
proliferation discussed above. It is often conceivable to support all possible combi
nations of mixed mode operations between builtins and class variables. It is rarely
clear which of these are actually worth implementing.

A final concern is that of consistency with commonly used syntax for algebra
ically defined types. This sometimes leads to the choice of established "friend" syn
tax when "member" syntax might make more logical sense. In fact scalar types
often possess many more "intrinsic" friends than do other kinds of classes, again
mainly owing to established conventions.

Classes like String, in which many different operator notations are in use,
require a certain arbitrariness. Should the concatenation operator be +, '*, &, I or
perhaps something else? In libg-++, it is +. No choice will "look" right to a casual
reader of String application code who expects + to indicate some kind of addition, *
multiplication, etc.

C++ does impose a few limitations on the degree to which extended types can
directly emulate the behavior of builtins, including for example, the fact that
operator ++ always works as if applied as a prefix operator. Among pragmatic
limitations is that the natural declaration of operator = to return a reference to
self, so as to support constructs like a = b = c; and if ((a = fO) == 0) ...; rather
than its value (so as not to waste copying values in order to support such
relatively rare constructs), can lead to minor anomalies, such as the fact that (a =
1) = c; would be a C++ error if a were a builtin, but not'if it were an extended
type. Clients should also be made aware that while the op= operators (+=, *=,
etc.) often result in only small efficiency improvements over constructive operators
(+, *, etc.) when used with builtin types, they are nearly always substantially
more efficient for extended types, since their use eliminates the need to construct,
destroy, and/or copy compiler-generated temporary objects.

4.2. Container classes

Container classes are objects like stacks and linked lists that hold collections
of elements, all of the same known type. These kinds of structures are also a
natural component of a C++ library, for the pragmatic reason that they are very
commonly useful in applications programs, but more importantly because, they,
like algebraic types, possess Widely agreed upon properties based on their charac
terizations as Abstract Data Types (ADTs). The majority of common container
classes are based on some variation of a basic Set ADT, supporting insertion, dele
tion, the inspection of elements in a collection with the follOWing properties.

1988 USENIX C+r Conference 251

252

4.2.1. Reference semantics

Once created, container classes normally undergo sequences of mutations.
Thus, they are nearly always logically passed to functions, etc., by reference.
Moreover, for both efficiency and soundness, they possess essentially no construc
tive operations. Even binary operations like set union are probably most desirable
if implemented destructively (via operator 1=) rather than constructively (via
operator p. Generally, the only constructive operation that requires support is a
X(X&) constructor so that clients may create new containers based on existing ones.

4.2.2. Mutable elements

Container classes normally require the existence of a method for clients to
inspect their elements one-by-one. This usually requires the creation of a compan
ion traversal class in order to maintain information about the state of a traversal.
Other element access or inspection methods are also sometimes desirable as well, as
in the need for a method to retrieve an element based on its key in a keyed diction
ary class, and the convenience of supporting a method that applies a given function
to each element of a container without the need for a traverser.

There is a data security problem inherent In the design of any element access
method. The most sensible implementation of an access method (and the one
employed in libg++) is to have it return a reference to the stored data, and not the
value. The alternative of haVing access functions return values is inappropriate for.
the majority of container class applications. Yet the return by-reference strategy is
fundamentally insecure. A client function may use this reference to modify the
item in a way that could corrupt the underlying data structure, as in the case
where a key field is modified in a container that stores items in ascending order of
keys. There is no language mechanism by which the container class itself can
ensure that only non-key fields are modified by clients. Clients must build in such
security themselves.

However, there are container classes that avoid such problems entirely.
Variations on associative tables in which the parts of elements that are used as the
basis for structuring the contaiher (I.e., the keys) are securely maintained
separately from the rest of the elements 'are attractive kinds of container classes In
C++ for this reason, as well as the overall simplicity of their client interface.

The converse case of a container class guaranteeing that it will preserve its
elements without modification is seldom a problem. It is natural and not at all
difficult to guarantee that the container will never itself perform any operations
that modify its elements.

4.2.3. Element characteristics

Container classes possess operations that function in the same way regardless
of the exact type of their base elements, and are thus logically parametric types. As
discussed above, since C++ does not yet support parametric types, the GNU C++
library generates such classes via macroization. However, any container class must
make some kinds of assumptions about the characteristics of its constituent ele
ments in ways that are not directly provided by such a mechanism.

1988 USENIX C-f+ Conference

The minimal requirement for an element to be eligible for use in a container
class is that it possess an X(X&) constructor. Otherwise container slots holding the
element could not be created. All GNU C++ library containers are designed to
insert elements via a constructor. Clients desiring classes that maintain pointers to
elements stored elsewhere may declare the containers to hold pointers.

A second requirement is that the container must know how arguments will be
passed into basic methods, for example an element deletion method: Should the
argument be passed into method del by-value or by-reference? The best answer to
this depends on both the type of the element and on the application. While neither
choice is logically incorrect, a user of a list of integers would prefer by-value, but
a user of a list of stacks would prefer by-reference. For this reason, the GNU C++
library textual substitution mechanism reqUires users to declare whether by-value
or by-reference argument passing is to be used, and adjusts the generated source
code accordingly. Note that this strategy is not designed to eliminate the use of
constructors dUring element insertion.

Container classes are designed to make one additional accommodation to this
issue. Classes like stacks prOVide it method to simultaneously delete and return a
value (i.e., the pop operation). In cases where the elements are large or normally
passed by reference, a superior altenlative is to prOVide a method top, that returns
a reference to the stored item, as well as a void method delete_top that silently
removes it, thus minimizing value copying. These methods are useful for con
tainers of objects that spend their entire existence Within the container and are
never used or constructed elsewhere. The GNU C++ library classes support both
kinds of access.

4.2.4. Element inspection

Container classes that are structured around particular properties of elements
must somehow be informed about how to access these properties. For example, sets
supporting a membership operation must know how to determine whether two ele
ments are considered equal, ordered sets must know how to compare two elements,
and hash tables must know how to compute hash functions. There are several pos
sible approaches to gathering and using such information.

Perhaps the easiest method to implement is to require that elements possess
particular operators. Thus a container with a membership operation might contain
code using operator ==, which would simply fail to compile when applied to base
type not possessing a == operator. This method appears entirely appropriate for
containers like unordered set classes in which no additional structuring informa
tion is required, and for which the notion of equality is fundamental to class
operation.

This approach is less justifiable for many other container classes. Consider an
ordered set implemented via a binary search tree. The minimal requirement for
base elements might be that they support a <= operator. However, the underlying
algorithms are generally best implemented in ways that require a full compare
function that returns whether one element is less than, equal to, or greater than
another. Such a function can most reasonably be prOVided Via function pointers
provIded by a client and held by the class. However, it is not particularly desirable
to desIgn constructors that require comparison function pointers as arguments, nor

1988 USENIX C++ Conference 253

254

for each instance of a binary search tree to hold its own pointer to a comparison
function. One important drawback is that such a strategy can preclude the imple
mentation of operators like set union that need to assume that the ordering func
tions for both sets are the same. Similar remarks hold for classes that require hash
ing functions and the like rather than comparison functions.

To avoid this problem in the GNU C++ library, such function pointers are
declared as static, and thus shared across all instances. This strategy is not
without drawbacks: Correct class operation depends on the client function prop
erly initializing the function pointers. The need for initialization by an unknown
function requires that they be declared as public, which is otherwise undesirable.
Also, it is only possible to create instances based on the same elements but employ
ing different ordering functions by generating completely separate classes.

On the other hand, there is an additional positive byproduct of this strategy.
Because comparison functions are designed to be shared across all instances, the
GNU C++ library allows the functions to be fully specified at compile time rather
than run time via C++ preprocessor statements that force the class comparison
functions to use a supplied function if one is :#defined, else to go through the static
pointers. This allows users to "hard-Wire" comparison functions into the code if so
desired, and also makes it possible to perform comparisons entirely inline. with no
indirect function call overhead.

For container classes structured on only parts of elements (I.e., keys). this
strategy is extended one further step. Keyed classes require two function pointers,
one to compare two elements. and one to compare a key with an element. (There is
an alternative: one could specify two different functions, one to compare two keys.
and one to extract a key from an element. but this is potentially less efficient and
often harder to use.) In fact. in the library. both keyed and unkeyed ordered sets
are prOVided using the same class prototypes. Two function pointers are required.
but in cases where items serve as their own keys, both should point to the same
function. Again, similar remarks hold for classes based on hashing. etc.

4.3. Vector-like classes

Classes like vectors, matrices, and Lisp-style lists behave like algebraic types
in some respects and container classes in others. Vectors, for example, support
standard constructive operators, like +, are frequently assIgned. and so on. yet
serve as simple container classes as well, providing an element membership test.

The main conflict in designing such classes is the storage management policy
and its degree of transparency to the client. Thus far, GNU C++ library classes
have merely followed convention in such matters.

Vectors are implemented in the usual way, as dynamically allocated arrays
deleted upon destruction. Clients are expected to know how to perform common
efficiency measures like passing by-reference and prea110catlng space.

Lisp-like lists are, on the other hand, managed In a basically LIspIsh manner.
completely transparently to clients. ("Usp-like" Is actually a slight mIscharacteri
zation of this class, which implements homogeneous lists like those found in
statically-typed functiona1languages, but otherwise supports operations similar to
those found In Lisp.)

1988 USENIX C+t- Conference

This categorization of classes concerns the way in which clients view classes
and their capabilities, not necessarily the primary data being represented or the
implementation algorithms themselves. For example, the GNU C++ library
currently supports three different classes for manipulating sequences of bits: Class
BitString is designed using the "scalar" model, class BitSet using a kind of "set"
model, and class BitVec using a "vector" model. All three contain arrays of data
manipulated via bitwise operations, but differ in how these data and operations are
managed and presented to clients.

4.4. Storage Management Utilities

C++ was designed wIth the philosophy that that programmers, not compilers
or run-time systems, are best able to perform storage management. Given this, one
may reasonably desire that a C++ library include general-purpose support classes
and utilities to assist in storage management details. However, there is less
opportunity to do so than might appear, for essentially the same reasons that C++
does not offer this kind of support i~lf: Without knowing the particulars of their
application, general-purpose. utilities for say, garbage collection-based freestore
management, are bound to be both suboptimal and inconvenient (at best) to apply.
There are some exceptions.

The GNU C++ library contains class Obstack, designed to be a general purpose
allocation mechanism for dealing with variable-sized objects that must have space
allocated but are encountered, one at a time, "head-first", without knowing their
ultimate size. Nearly any text scanning or parsing application fits this scheme:
words or tokens are read letter-by-Ietter without knowing their lengths. Obstac~
handle this by preallocating larger chunks of space and breaking them off into their
components, while also reallocating and copying to new freestore space when
current chunks become exhausted in the midst of the growth of a new object.
When a client has determined that an object has ftnished growing, a finish method
returns its ftnal start address. The space is allocated as a stack, so can be freed by
popping off no longer needed objects. This storage allocation method was discovered
by Richard Stallman and is used extensively inside the GNU compilers.

The library also contains a simple general-purpose class designed for allocat
ing fixed-sized objects (as might be useful for linked list nodes) out of a preallo
cated chunk of memory.

4.5. Service Classes

Service classes are those designed to encapsulate a particular collection of ser
Vices, and whose internal state representations are essentially irrelevant to their
clients. Good examples of service classes are the stream classes, other classes
repackaging C Ubrary functions described above, random-number generators, and
many applications-oriented classes.

The design of service classes within a library can be problematic because of
the arbitrariness of so many of their characteristics. Even given a clear idea about
the constituent representations and algorithms, one is never sure whether too much
or too little functionality is supported in a given class, whether to break classes up
into ftner units or integrate several as a whole, whether a collection of several
unrelated service classes are usable together, or even if the names chosen for the

1988 USENIX C++ Conference 255

256

classes and their methods will be considered appropriate. Of course these are the
kinds of "little" design issues that haunt object-oriented applications programming,
and for which there are few principled guidelines.

5. Conclusions

The GNU C++ library is an interesting experiment in managing a basically
disorganized collection of classes. The library is still quite new. Additional classes
are being added at an increasing pace, as other GNU C++ users begin contributing
classes for adaptation into the library. Little can be said as yet about its suitability
for particular applications or its general usefulness in practice. Tentatively, how
ever, a few observations can be made.

The emphasis on efficiency and flexibility appears well-placed. Thus far, most
substantive correspondence with library users has addressed accommodations
revolVing around these two issues rather than other aspects of class design. In
particular, few concerns about interclass consistency, "glue" problems, or redun
dancy have been expressed. This is surely in part due to the fact that the GNU C++
library is finding a different audience than the one best served by systems like
OOPS.

The GNU C++ library appears well suited for small-scale applications
programs in which only one or a few library classes are pulled "off the shelf"
Without otherwise committing to a purely hierarchical programming environment.
It appears likely that larger scale software engineering efforts will use (perhaps
modified versions of) GNU C++ library classes mainly as ready-made pieces of a
larger hierarchy otherwise designed from scratch.

Object-oriented programming languages represent a rather eXciting merger of
theory and practice. Perhaps even more attractive is the fact that neither the
theoretical basis nor the pragmatic consequences of object-oriented programming
methodologies are yet particularly well understood. A minor contribution that
both the authors and the users of a class library can make toward a better concep
tualization of C++ and object-oriented programming lies in the kinds of observa
tions that may be gleaned from experience with a library's "bottom-up" approach
to these issues.

References

[1] Gorlen, Keith E. An Object-oriented class library for C++ programs. Proceed
ings of the USENIX C++- Workshop, Santa Fe, NM, 1987.

[2] Rose, John R. Implementing a compUer in C++. Proceedings of the USENIX
C++- Workshop, Santa Fe, NM, 1987.

[3] Stroustrup, Bjarne. The C++- programming language. Addison-Wesley, 1986.

[4] Cardel1l, Luca and Wegner, Peter. On understanding types, data abstraction,
and polymorphism. Computing Surveys, 17 (1985),471-522.

1988 USENIX Ci+ Conference

c++ Approach to Real-Time Systems: Task Interface Library

TroyOtiDio
Tandem Computers
19333Vallco Parkway

Cupertino, California 95014-2599

Abstract

CPPARTS (C-Plus-Plus-Approach to Real-Time Systems), a C++ class hierarchy, was the
result of an academic project aimed at constructing several tools (objects) to aid
concurrentJreal-time systems development. The definition of these objects originated
from the abstractions put forth in Gomaa's articles on DARTS (Design Approach to Real
Time Systems) [Gomaa 84, 86]. This paper introduces those interfaces in terms of concept
and implementation technique. Included is an examination of the difficulties of using
C++ in a distributed process environment. The inconsistency between distribution and
inheritance is analyzed and solved for specific implementation scenarios.

Introduction

DARTS--a design method for real-time systems--Ieads to a highly structured modular
system with well-defined interfaces and reduced coupling between tasks [Gomaa 84].
CPPARTS uses the specifications for task interfaces as requirements for implementation
of corresponding C++ classes. CPPARTS provides a real-time or concurrent system
programmer a dependable, complete, and easy to use set of task interfaces with built-in
error handling. Although DARTS was defined for real-time systems development the
academic investigation of CPPARTS is limited to the scope of multi-process system
development and thus some relevant real-time issues, timing and performance, are not
addressed.

Unlike many class based systems CCPARTS class instances operate on common data and
system resources. Instance grouping, the means for specifying a logical set of instances
from one class is accomplished through the use of binding keys. Binding keys and
instance grouping are discussed in detail. Other problems associated with C++
implementations in an environment where processes occupy separate address space (
distributed process environment [Wegner 87]) are examined and solved. In general this
paper discusses the problems, solutions and work-around's for the combination of the
specifications of DARTS using the C++ programming language' in a distributed process
environment. To present the topic it is necessary to discuss concurrency, the class
structure, binding keys and the implementations of the root and leaf classes.

Because DARTS is an object-oriented solution to real-time systems development, and C is
a common systems programming language, C++ was chosen as the implementation
language. The development of this set of task interfaces was constructed using AT&T C++
and the Unix system V primitives on a Pyramid 98X at California Polytechnic State
University in San Luis Obispo California.

Due to the limited scope of this paper and because there are better sources to describe the
value and experiences of using the DARTS task interfaces [Gomaa 84, 86] this paper does

1988 USENIX C++ Conference 257

258

not discuss systems development using CCPARTS. However, the solutions presented are
in part a result of major systems development using the CCPARTS classes.

Concurrency

A sequential program specifies the sequential execution of a list of statements; its
execution is called a process [Andrews 83]. Concurrent programming differs from
sequential programming in terms of three issues: how to express 'concurrent execution,
how processes communicate and how processes synchronize their actions. Concurrent
systems consist of several parallel processes. Each process is sequential and concurrency
is achieved by having asynchronous tasks running at different speeds. Periodically,
processes need to communicate and synchronize with each other. [Gomaa 84]. For the
remainder of this paper the term process, the term task and the term program will be
considered synonymous. Furthermore, the distinction between parallel process,
distributed process, and concurrent process need not be recognized.

CLASS OVERVIEW

The final CPPARTS class structure, as shown in figure 1, was influenced by three factors.
The leaf classes were created in accordance with the task interface definition presented in
DARTS. The base classes were influenced by the IPC (Inter-Process Communications)
facilities needed to implement the leaf classes: message queue, semaphore and shared
memory. The lack of a symbolic debugger and an error recording facility as well as the
difficulty of debugging multi-process systems created a need for an additional class to
allow for tracing and control of error and debugging messages. This resulted in the
creation of the root class for all CPPARTS classes: MESSAGE_LOG. The message
logging facility provides derived classes a means to record errors, intermediary data
conversions and other relevant debugging information.

SEMAPHORE

---Solid lines indicate inheritence
- - ·Dashed lines indicate usage (simulated multiple inheritence)

Figure 1: The CCPARTS class family

1988 USENIX C-++ Conference

BASE_QUEUE is an encapsulated version of the IPC message queue facility that utilizes
the UNIX signal/alarm call to implement timeouts for blocked queues.
SHARED_MEMORY and SEMAPHORE are similar to BASE_QUEUE in the sense that
they are modeled after the matching IPC facilities semaphore and queue.

EVENT is a class to implement the DARTS notion of task synchronization where one task
can wait for anyone of several tasks to signal an event.

IHM (Information Hiding Module) is another DARTS task interface providing a section
of shared memory with guaranteed protection of mutual exclusion.

LOOSE_QUEUE and COUPLED_QUEUE were both derived from BASE_QUEUE. They
provide DARTS task interfaces tightly coupled and loosely coupled queue respectively.
PRIORITY_QUEUE was not defined in DARTS, but was a logical and fairly trivial class
to implement in addition to BASE_QUEUE.

CLASS INSTANCE LINKING: BINDING KEYS

Specific to the CPPARTS task interfaces is the need for groups of one or more class
instances to reference common system resources. For example, the IPC facility. semaphore
requires a logical key to be passed to the semaphore allocation function: semgetO.
Semget() returns a system key which is used as a parameter to the signaVwait function:
semopO. The base classes for all the CPPARTS objects are encapsulated IPC resources and
thus all CPPARTS objects require a grouping mechanism.

An elegant solution might be to use the class instance name to logically bind a set of peer
instances (peer in this case means of the same class type). Specifically, this would be
accomplished by using the instance name string to create the key.

The following page provides an example:

TASK A TASK B

»within the QUEUE constructor
QUEUE::QUEUE () {

this->key = string to unique key(INSTANCE NAME)i
request system queue(-this->key)i -
/ / etc.- -

Because C++ does not provide a means to access the instance name, as prototype
INSTANCE_NAME above suggests, an alternate scheme must be adopted.

In one sense this problem of binding peer instances is similar to a problem encountered in
languages that support the decomposition of a program into modules but do not support
"user-defined types". For this environment the solution to creating user types, grouping
data and operations, requires the creation of type manager modules [Stroustrup 87]. When
using this simulated data abstraction scheme one must always include an identification
key to the parameter list for any operation. CPPARTS uses a similar solution: class
instance groups are bound by providing an identification key to the constructor's
parameter list. The CPPARTS method for binding a set of class instances is to send a
binding key to the class constructor.

1988 USENIX c++ Conference 259

Problems using Binding Keys with embedded classes

Object-oriented solutions should hide details of implementation from the user. Since the
CPPARTS class hierarchy maintains several inter-dependencies (see figure 1) a problem
arises in the use of binding keys to bind the embedded classes. Keep in mind that all
CPPARTS classes require a binding key to allow access the same base IPC facility. It is
reasonable to expect the CPPARTS user to group two different types of task interfaces with
the same key (see figure 2). In fact this binding key convention, re-using a key for
different CPPARTS types, is good style; instead of using a number (44 in figure 2) a
constant called bind_process_A_and_B could be used for all interfaces needed between
process A and B. However, the user supplied binding key must be used to bind parents of the
derived class, but not for the created class since this may induce side-effects.

II IBM source file:
IBM: : IIDI (int key) (

SEMAPHORE protect_data(key);
II some interesting stuff
protect_data.wait();

}

II COUPLED_QUEUE source file:
COUPLED_QUEUE: :COUPLED_QUEUE (int key) {

SEMAPHORE arbitration (key);
arbitration.signal();
II etc.

}

Process B

COUPLED_QUEUE b1 (44);
IBM b2(44);

Process A

COUPLED_QUEUE a1 (44);
IBM a2(44);

260

Figure 2: Use of Binding Keys

Realizing both IHM and COUPLED_QUEUE create an instance of class SEMAPHORE the
implementation shown in figure 2 would causes havoc since two unrelated class groups,
(al,bl) and (a2,b2) would have the undesired side-effect of signaling and waiting on the
same semaphore. The CPPARTS solution is to create key sets for each leaf or interface
class through use of one standard "key" file. Each CPPARTS class adds a constant offset
to it's key to insure no cross-binding occurs among different CPPARTS instance groups.
The offset, which is unseen and unnoticed by the user, forces each class's binding key into
an unique physical range. The result is added elegance and improved reliability at the
cost of forcing the user to use keys from a single source.

1988 USENIX C-f+ Conference

Key file

II Standard shared key file
const key_type A_KEY = 1;
const key_type B_KBY = 2;
const. key_t.ype C_KEY = 3;
const key_t.ype LAST_DY = C_DY + 1;

const. key_t.ype SBMAPHORE_DY_OiTSET = LAST_KEY;
const. key_type STANDARD_QUJmB_KEY_OITSBT = LAST_KEY * 2;
conat key_type IBM_KEY_OFFSET = LAST_KEY * 3;

II IBN source file
COtJPLIm_QtJBl7B: :COUPLED_QtJBUB (int key) (
II aome interesting stuff
SEMAPHORE arbit.ration(key + COUPLBD_QUBUZ_KEY_OFFSET);

II used constructor's binding key and
II the key offset in "keys.h"

}

II IBM source file
IBN: : IBM (int key) (
II some interesting stuff

SEMAPHORE protect_data (key + IHM_KEY_OFFSET);
II used constructor's binding key and
II the key offset in "keys.h"

}

Figure 3

Now the user is hidden from the implementation details and thus the code in figure 2 would
not produce any unwanted side effects. The responsibility of the user shifts from
understanding the interdependencies of CPPARTS to modifying LAST_KEY in the key
file when the number of keys must be increased

Closely and loosely coupled queues

A loosely coupled queue, as per DARTS, is an interface in which a task may wait for a
message to arrive at anyone of several message queues [Gomaa 84]. This interface is
implemented in the LOOSE_QUEUE class. Closely coupled message communication is
accomplished via class COUPLED_QUEUE where sending and receiving of replies are
supported by having a one-element message queue in each direction -- one for messages
and one for replies [Gomaa 84]. As with all the CPPARTS classes binding keys are
supplied to the constructor to group peer class instances to persistent system queues.

1988 USENIX C-t+ Conference 261

LOOSB_QtJBUB task_b (A_Key) ;
int message;
task_a.send(message);

LOOSB_QOBUB task_a (A_Key) ;
int message;
task_a.receive(&message);

Loosely coupled message communcation

COUPLED_QUEUE task_a (A_Key) ;
---------------oIint message;

COUPLBD_QUZUZ task_b(A_Key); task_a. send_receive ("C++", &message) ;
task_b.activate_timeout();
task_b.send_receive("hello world",&reply);

262

Closely coupled message communcation

Figure 4

An interesting user error that can be foreseen but not eliminated at compile time is the
message type consistency required for peer instances for both types of queues. As shown in
figure 2 for Coupled Queue, Task A is sending a string, but Task B is expecting an integer.
The implementations for all three queues are able to simulate type consistency per
instance pair by embedding type information in the queue element. An alternative would
be to create an added class for each type of queue element. Since elements might typically
be structures and thus infinite in number ofdifferent types this exercise should be left to the
user. Even if C++ supported parameterized types the problem of insuring e~ch instance
pair used a consistent types would still exist. By embedding the type information in each
queue element a run-time error can be detected and instance pair compatibility can be
enforced.

A coupled queue allows the simulation of sequential execution between two tasks.
Sometimes a logical process needs to be physically divided between processors to enhance
performance; the simulation of sequential execution is a simple and powerful means to
affect division (Gomaa 84]. Implicit in the definition of this task interface is the need to
exclude the use of the parent class's, BASE_QUEUE, timeout facility. If a timeout was
allowed to occur the queue would become unsYDchronized and the data in the queue would
lose meaning. The translator used for the CPPARTS project provided no compile time
ability to exclude the timeout member functions. The only alternative was to re-define the
base class timeout functions to indicate an error and terminate. Thus figure 4's
accompanying code for coupled queue would compile but cause a run-time termination
since Task A invokes the member function activate_timeoutO.

1988 USENIX C-H- Conference

EVENT

Events are used for synchronization purposes between tasks where no actual information
transfer is needed [Gomaa 84]. A destination task may wait for an event occurrence, or a
source task may signal an event that activates the destination task. The EVENT class is
an implementation of this concept allowing a process to signal or to accept an event via
member functions.

svitch(do.accept_event(»{
case stop: { }
case run: { ... }

EVENT stop(A_Key, stop);

stop.signa1_8vent();

Figure 5

The current implementation of class EVENT contains both accept and signal constructs.
The signalling constructor accepts two parameters: a binding key and an event type. The
member function signal_eventO sends the signal to the receiving task. To differentiate
the signalling event instance from the destination event instance the constructor for the
destination instance is of a differing polymorphic type (i.e. it has one less parameter).

Since the BASE_QUEUE class was used as the parent class the implementation itself was
trivial and error free. The destination task is blocked on an empty queue until a
signaling task sends an ~vent to the queue. The EVENT class supports integrity checking
for accept_event() and permits the event to be of differing polymorphic types.

Further integrity should be provided to insure that for any given event group there exists
only one destination instance and one or more source instances system wide. One
solution could be to create separate child classes of EVENT: one having the accept construct
and one having the signal construct. This would cause the user to explicitly state the type of
class (signalling or accepting) at definition. Although it might prevent some coding
errors there is still no guarantee that only one destination instance exists and one or more
source instances exist per instance group. This problem could be addressed at run time via
an integrity table in shared memory. The scope of the CPPARTS interface is limited and
this scheme is not currently implemented. Could a compilerllinker perform this type of
check? What form would the sYntax take and what semantics could be expressed? It raises
the question about the kinds of type checking an object oriented language supports.

1988 USENIX Ci+ Conference 263

Class IHM

The IBM class provided the most challenging implementation since it nearly required the
support of parameterized types when of course C++ does not support parameterized types
[Stroustrup 87]. The IBM class was defined in DARTS as a data store used for reference
purposes. In DARTS an IBM defines the data store as well as the access procedures to it
[Gomaa 84]. The CPPARTS object 111M is accessed as an array of ele~ents where each
element is a set ofbytes. Thus the user is forced to view the data pool as a one dimensional
array of homogeneous elements. A binding key binds a set of class instances to the same
common memory. The IBM facility insures mutual exclusion for reading and writing of
data as well as run-time bounds checking. The '»' and '«~I operators are overloaded to
invoke reading and writing to the data store. For completeness here is a selected listing of
the interface file:

-IBMO;
IBM() (int key, int unit size, int low, int high a 0);

Ilif high is defaulted the bounds are O.• low
int low(); II returns low bounds
int high(); II returns· high bounds
int size(); II returns the cardinal size of the array
IBM operator[] (int index); II element selector
void operator« (void* some_struct); IIWriting an IBM element

II usage: <IBM element> « <some struct>
void operato~ » (void* some_struct); IIReading an IHM element

II usage: <IBM element> » &<some_struct>

Although mutual exclusion, bounds checking, and shared memory coordination is
provided, the user is still unprotected against several coding mistakes. The user must
insure that all instance sets use the same parameters in the constructor, especially unit
size. In general this points to the lack of support for instance group type integrity checking.
The user has further responsibility to use the same record type for both the definition of
unit_size and parameter for the overloaded read and write operations (ie. t_rec
consistency per figure 6). It was hoped some mechanism could have allowed the IHM class
to behave as a built in array of struct in terms of access to the struct fields. In the CPPARTS
experience it is impossible to overload the dot operator to provide access to fields allowing
the IBM to appear as a specialized array.

DATA'STORE

IBM table~A_Key, sizeof(t_rec), 0, 5);
t_rec *y;
table[2) » &y;
priDtf("td\D",y.val.ue);

IBN table(A Key, aizeof(t_r&c), 0, 10);
t_J:8C *x;
table[2] » 'x;
x.value = Dew_val;
table[2] « X;

Figure 6: IHM -Information Hiding Module

264 1988 USENIX C-t+ Conference

Message Log

MESSAGE_LOG is a base class for derived classes that require a flexible error logging
facility. Messages can be routed to the screen as well as a named file. Each instance can
use separate error tiles providing a means to debug and monitor real-time systems.
Within MESSAGE_LOG there are four levels of message severity: red, yellow, green and
blue. As a consequence the derived classes can record messages based o~ the severity level
of messages to be recorded in a tile or generated on the screen. In addition there is the
ability to tum on and off the message generation so that one can concentrate on specific
areas. Most UNIX debuggers (SDB, DBX, etc) are not architectured to handle a multi
process environment so subsequently the tracing and error/event monitoring facility is a
valuable feature. Additionally, to create the ability to record external interrupts, the
message_log constructor builds a routine to catch the SIGINT (interrupt) signal and
perform a graceful exit.

Conventions Used By Derived Classes

All the message sending members (red_message(args...), blue_message(args...) etc.)
use the first two parameters to indicate the class and member names of the derived class
using the facility. The additional two parameters are used to describe the specifics of the
message. Flexibility for message format is provided via polymorphic parameterization.

Blue and Grenn Messages

The blue and green messages are used to trace and debug the member functions of all
CPPARTS classes and are of little use to a user not in control of CPPARTS source code.
Although for those who have read access to CPPARTS source code the messages could be of
value.

Derived classes use blue messages to signify entry and exit from their member functions.
Thus by setting blue messages to lion" one can trace the internal path of calls through all
member functions. A tracing capability was most useful to find the specific location of a
run time crash especially in light of the lack of a run time debugger. By using the blue
message tracing capability most run time errors can be pinpointed quickly since the user
can see the last member function entered.

The green messages are used to record internal formats of successful data translations
and traditional debugging statements (eg. a shared memory section begins at location x).
This caveat was of immense help for testing and development since it allowed a clean and
organized method for retaining debugging statements in the code.

Red and Yellow Messages

Red and yellow messages display diagnostic messages and constraint errors. The yellow
messages indicate non-fatal errors such as timeouts or assumed defaults (such as the
creation default error file when none is specified by the user).

if « fp = fopen (file, "w")) = = NULL) {
red message (class name,member name,

- "Could-not open file for writing: exiting",file);
exit(-l);

1988 USENIX C+t Conference 265

266

Red messages are used to record a fatal error such as a range error or queue failure. Red
messages are typically issued prior to an exitO statement when the process can no longer
proceed in the current state. For example when a user program of IHM tries to access a data
element out of the shared memory range a red message is issued along with the value of the
index.

Choosing Message Routing

Every message has the capability, as controlled per derived class instance, to route
messages to the screen and a file. Therefore two types of messages exist: verbose
messages and error_log messages. These plint to the screen or a file respectively.
Operations on these types include set_{verbose/error_logl_onO (level) and
activate{verooselerror-loglO. In addition, the user can specify a file per CPPARTS objects
that the instance of MESSAGE_LOG or its derived class, will write to via
create_error_loLfile(char * filename). Through use of the member functions one can
tailor the type and location of message recording.

Example:

LOOSE_QUEUE queue (A_KEY); II LOOSE QUEUE is derived from
II BASE_QUEUE which is
II derived from MESSAGE LOG.

queue.set_error_log_level_on(all); II Blue, green,-yellow and
II red are set.

queue.create error log file(nLOOSE QUEUE A KEY");II opens the file
queue.activate error loge); II activates-writting

- - II to file: "LOOSE QUEUE A KEY"
queue.set_verbose_level_on(red); II Red message are-set, but

II not activated.
II some interesting stuff

queue.activate_verbose(); II Now screen logging is activated
queue.send(nhello world"); II Red "errors" will go to the screen.
queue.deactivate_verbose();11 Here the screen logging of red

Ilmessages is turned off

Inadequacy of Message Log

Although a variety of polymorphic message formats are provided a more general facility
such as that provided by formatlostream would be helpful. The current release of the C++
translator (1.7) had problems with ostream and thus the errors were sent via printflfprintf.
Furthermore the ellipse parameter declaration, forcing the C++ translator to tum off type
checking, was not available on this version of cfront. Message_Log was initially created
as an on the fly solution to the lack of debugging tools but tumed into an invaluable aid in
the development of CCPARTS.

Initialization and cleanup

Problems arise in use of the constructor/destructor facility when several processes share a
resource that has dynamic criteria for persistence. Persistence is a property of data that
determines how long it should be kept[Wegner 87]. If we expand the definition of
persistence to apply to objects/classes how then does one express or implement persistence

1988 USENIX C++ Conference

beyond the scope of the object. Many system resources, such as semaphore, require
initialization only once thus the constructor must employ some logic to discover if it is the
first to execute, and is subsequently responsible for initialization. Cleanup via the
destructor has a similar chore since one cannot assume that the system resource is no
longer needed by other instances. Depending on the support provided by the operating
system this mayor may not be a trivial chore. How does one derive from the system
process table what processes are associated with a given object? What is the overhead
associated with that type of system interrogation? What about common persistent resources
that aren't conveniently tracked by the operating system? If the overhead to acquire this
information during execution of the constructor or destructor is high the user of that object
might place the definition for that object (eg. sem_object), in the outermost loop of a process
to improve performance. Although this can be avoided by declaring the class type static the
solution fails for processes containing a high overhead class constuctor that are frequently
spawned in a loop and then "die". In this case the outermost loop is in a different, and
perhaps separately compiled module and thus the only work-around is to create
"initialization modules". The user now is forced to retreat from object oriented expression
caused by the need of implementation knowledge. A better solution is to create a section of
shared memory to keep a running count of the common processes using the same persistent
object. Each process consults this common structure on construction or destruction.

Concurrent programming in C++ requires common memory for resource allocation and
deallocation of persistent objects.

This too proves inadequate for a object such as sem_object since the reading and writing of
that shared memory cannot be protected via a semaphore (ie.the cart before the horse).
Furthermore who is responsible for creating the shared memory? To support the object
model in a multi-process programming environment C++ needs a method for specifying
object persistence beyond an individual process life. This would require a compilerllinker
that understood how to create common memory, which is of course system dependent. Ease
of portability could be enhanced for systems using UNIX V.2 that included the AT&T
System V Interface Definition. However this support is unlikely since all IPC shared
memory operations require special hardware support [Haviland 87].

c++ support for distributed programming

c++ (as is the case for other procedural and object-oriented programming languages) does
not contain SYnchronization primitives needed to address multi-process and concurrent
programing requirements. The use special library, or packaged routines that access
hardware synchronization facilities, is needed to fill the requirements [Davis 88]. The
CCPARTS interface library satisfies the need for synchronization primitives. A relevant
question is how well do C++ features support the expression and maintenance of concurrent
systems development? Certainly much of the support must be supplied by the operating
system [Andrews 83], as is the case for the development, implementation, and testing of
CCPARTS. If we take the view that object-oriented programming is programming using
inheritance while data-abstraction is programming using user defined types [Stroustrup
87] then the question becomes what C++ features, in terms of those paradigms, improve or
discourage the development of concurrent systems.

The class feature is highly useful for the development of the CPPARTS task interfaces
since those interfaces naturally fit the object concept: a queue, a data store etc. These
objects can be coded into C++ classes and conveniently hide and localize the typically
complex operating system interfaces. However, the support for classes weakens in a
dYnamic multi-process environment since objects cannot easily share data [Laursen 87].

1988 USENIX C++ Conference 267

268

It is impossible to share information between compilations causing the need for global data
at run-time. In sequential programming the use of static member variables allows
separate class instances to share data. This feature must be simulated in multi-process
environments.

c++ does not support static class variables in a multi-process environment

Thus it has been the experience of the CPPARTS project that it is necessary to provide
Ilbinding keysll to constructors to allow processes to share common persistent system
resources. (ie. shared memory, semaphores, etc.). In some cases shared memory must be
created for those instance "groups" to effect arbitration for certain resources (see section on
COUPLED_QUEUE).

Since the separate compilation of modules is common in multi-process environments the
method of achieving consistency for declarations in different files via including header
files provides an adequate solution. If separate processes communicate via operating
system resources as opposed to absolute memory locations the need for binding of an entire
system (a set of different processes) is reduced. However some type checking must be
accomplished at run-time errors to insure instance pair parameter consistency (sections
on LOOSE_QUEUE and EVENT provide further depth on instance pair parameter
consistency).

C++ does not support instance group parameter consistency.

The above statement is actually a corollary to the following observations. An instance
group is a set of class instances with the ability to coordinate operations via shared objects.

C++ enables, but does not support, instance binding.

Instance groupinglbinding is enabled through use of binding keys supplied to the
constructor, which are made part of the private data for that instance and used to logically
group peer class instances. Through use of partitioned key files the user code, or derived
class, of a class hierarchy with interdependencies caused by instance binding can be
protected from the side effect of unintentional binding.

Summary and Conclusions of CCPARTS value

The DARTS methodology proposes a software development approach that addresses the
requirements of real-time systems consisting of several concurrent processes that need to
communicate and synchronize their operations [Gomaa 86]. The DARTS methodology
proposes the use of well defined interfaces which serve as the basis for the CPPARTS
classes. The purpose of the CPPARTS classes is to provide the real-time/concurrent
programmer with reliable tools to implement real-time software systems. As the
philosophy of object-oriented design boasts the simplistic interface provided via the
member functions reduces a programmer's spectrum of required knowledge to the use of
the member functions. This is an extreme benefit for real-time programming since many
of the concepts, and especially the implementations of those concepts, are complex and
system dependent. This particular implementation is compatible with AT&T System V
Interface Definition (SVID) generically known as IPC (Inter-Process Communication)
facilities. However, systems implementation using CPPARTS task interfaces would
enhance portability since the system dependent code for inter-process interfaces would be
localized within CPPARTS classes.

1988 USENIX C-H- Conference

References

[Andrews 83]
Andrews, G. and F. Schneider, "Concepts and Notations for Concurrent Programming,"
Computing Surveys, Vol. 15, No.1, March 1983.

[Davis 88]
Davis, Helen and Hennessy, John, "Characterizing the Synchronization Behavior of
Parallel Programs," Proceedings of the ACMI SIGPLAN PPEALS, Parallel
Programming: Experience with Applications, Languages and Systems, Vol. 23, No.9,
September 1988.

[Gomaa84]
Gomaa, H., "A Software Development of Real-Time Systems," Communications of the
ACM, Vol. 27, No.9, September 1984.

[Gorlen 86]
Gorlen, K.,.Object-Oriented Program Support, Computer Systems Laboratory, Division of
Computer Research and Technology, National Institutes of Health, May 1986.

[Haviland 87] .
Haviland, K. and B. Salama, UNIX System Programming. Addison-Wesley. 1987.

[Laursen 87]
Laursen, J. and T. Merrow, "A Pragmatic System for Shared Persistent Objects,"
OOPSLA 87' Conference Proceedings, SIGPLAN NOTICES, Vol. 22, No. 12, December
1987.

[Stroustrup 86]
Stroustrup, B., The C++ Programming Language, Addison-Wesley, 1986

[Stroustrup 87]
Stroustrup, B., What is "Object-Oriented Programming" ?, AT&T Bell Laboratories, 1987.

[Wegner 87]
Wegner, Peter, "Dimensions of Object-Based Language Design," OOPSLA'87
Conference Proceedings, SIGPLAN NOTICES, Vol. 22, No. 12, December 1987.

1988 USENIX C++ Conference 269

270 1988 USENIX C+i- Conference

A C++ Library for Infinite Precision Floating Point

Jerry Schwarz

AT&T Bell Laboratories
Murray Hill, NJ

The Real library supports infinite precision floating point computation in C++. Arbi
trary precision rational arithmetic and transcendental functions are supported.

1 Introduction

The primary class supported by the Real library is Real. Arithmetic operators and many math
library functions that are defined for floating types (float and double) in C++ are defined for Reals.
In most contexts all that is necessary to replace ordinary floating point computations by infinite
precision computations is to include the header file real. h and declare variables to have type Real
rather than float or double. Values of type Real should be thought of as exact real numbers.

This paper's main concern is to describe the library interface. The details of the implementation are
not described in this paper. From the users point of view, the important feature of the implemen
tation is that it is based on the idea of "lazy evaluation". A Real should be thought of as having
a true mathematical value represented as a (potentially) infinite binary expansion. This is (per
force) fiction. The truth is that as the computation proceeds, data structures are built representing
expressions. In certain circumstances (output, control flow tests, and the like) it is necessary to
expand these expressions. Leading bits are computed, and the original data structure is replaced by
one containing those leading bits, and (a pointer to) another expression representing the remaining
(unexpanded) bits. This process may continue indefinitely. A further refinement of this model is
that expansions are not really binary. They use a balanced positional notation in which each bigit
(large binary digit) may be positive or negative. A representation requires such redundancy to be
used effectively in infinite precision computations. (See Vuillemin[l] for a proof that redundancy is
required.) Balanced positional notation provides this redundancy while ordinary binary represen
tation would not. Despite this representation, I will use phrases such as "binary point" and "bit"
when the intended meaning is clear.

The techniques USf''! in this library are related to those of Boehm et. a1.[2], Boehm[3] and Vuillemin[l].

P,"'~ential uses of this library include the following.

• When there is some part of a computation in which high precision is required. In this case,
the program might use Reals in some places and floating point types in others.

• When an analyst wants to determine if a program using ordinary floating point is suffering from
a numerical instability. Declarations of Reals can replace declarations of floating everywhere
and the resulting numbers compared with those generated by the floating point computation.

• When an analyst wants to compute some numbers to high precision, either because of intrinsic
interest or to serve as reference values for methods using ordinary floating point numbers.

• Algorithms that depend on infinite precision, such as that described in Witten[4].

1988 USENIX C-H- Conference 271

272

• For a simple computation where the programmer doesn't want to bother about round off. For
example, a program to compute the day of the Jewish holiday of Yum Kippur that is based
on certain astronomical equations.

A naive first approach to using the library is simply to replace some floats or doubles with Reals.
This may not work for several reasons. Most of this paper is concerned with explaining these reasons.
Section 2 discusses the Plimit class, which is used to specify limits or tolerances on computations.
Sections 3, 4 discuss how Plimits are used, and variations of ordinary operations, such as splitting a
number into "exponent" and "mantissa", that depend on the representation. Methods for calculating
using infinite series are discussed in section 6.

2 Precision Limits

For most operations the program can ignore the precision of intermediate values. However, in some
operations a Plimit (precision limit) is used to limit the work that might result from an attempt
to expand an infinite sequence of bits. For example, in comparing two Reals that are equal, but
not "obviously" 'so, the package might keep extending the precision of the difference, looking for a
non-zero bit but never finding it. Similarly, the operation that rounds to the nearest integer might
run forever when confronted with a Real whose value is 1/2, but not obviously so.

Low limits are sometimes appropriate. For example, trig functions typically want to transform their
argument by subtracting the nearest multiple of 1f'. However, when the value is close to a multiple
of 1f'/2 no harm is done by subtracting the neighboring multiple of 1f' that is slightly farther away.
Thus the rounding is done with a low Plimit.

There are two flavors ofPlimit, absolute (created by the function abs..plimit) and relative (created
by rel..plimit). Absolute and relative limits may be combined with operator+. In general, if p1
and p2 are Plimits, then pl+p2 is a Plimit that forces at least as much computation as either p1
or p2 would have. The function plimit returns a value that is both an absolute and relative limit.
That is, plimit has a definition equivalent to

Plimit plimit(int n) { return abs_plimit(n)+rel_plimit(n) ; }

An absolute Plimit requires that a number be expanded to at least a certain absolute precision.
For example, when used in a comparison a Plimit of abs..plimit(n) requires the difference between
two Reals to be expanded to at least n bits after the binary point. In other words, the comparison
operation will always report the correct result if the two numbers differ by more than 2-n • Similarly
in truncating (rounding towards 0) with abs-plimit(n), the result may be incorrectly rounded away
from zero only when it is within 2-n of an integral value.

Relative limits specify that a certain number of bits must be expanded. Unfortunately, this has a
Jlrecise meaning only in terms of the internal representation of Reals. Attempts to describe it based
on real values flounder because of the presence of leading zero bits and the possibility of representing
a true zero 88 an infinite sequence of zero bits. However, relative limits may still be useful when the
program wants to be sure that at each step of an iteration it is computing with more accuracy than
an earlier step. For example, relative limits are used for this purpose in the code implementing Log2
presented in section 6.

Each function that uses a Plimit uses a default value ifone is not specified explicitly. There is also a
global variable inf..plimit which contains a Plimit that forces exact results. That is, a calculation
that is carried out to this limit either yields a correct result or loops forever.

1988 USENIX C++- Conference

2.1 Underflow

When a computation is stopped because it has reached a Plimit an underflow may be declared.
This will happen only when the relevant Plimit is at least as large as the value of the variable
underflov.plimit. Introducing the notion of underflow into the library is a compromise between
the idea that exact results should always be produced, and the preference to stop computation when
exact results are impossible rather than looping forever.

An underflow also said to occur when the attempt is made to divide by an exact zero. (The library
treats an exact zero divisor as if the divisor suffered from an underflow.)

The default action when an underflow occurs is to print a message and call the library function
abort, which will usually result in a core dump. However, this behavior may be changed by the
program. There is a function pointer declared as

class Real {
public:

static void (*utlovaction) (Real* x) ;
} ;

If this variable is non-null, it will be called in place of the default action. When it is called, x will
be the Real whose expansion has been stopped by a limit. If the called function returns, the value
of x at that point will be used to continue the computation.

3 Other Operations

In addition to the ordinary arithmetic operations, the Real library contains operations that take
into account the infinite precision in some way, and those whose computation may be terminated by
a Plimit.

3.1 Constructors

The Real constructors are declared

class Real {
Real(long) ;
Real (double)
Real() ;
Real(Series*) ;
} ;

The constructors that take a long or double argument construct a Real with the corresponding
value. The constructor without an argument constructs an uninitialized Real, whose value is not
defined. The class Series is disussed in section 6.

3.2 Splitting

The math library contains a function trexp to split a floating value into an "exponent" and a
"mantissa". A Real may be split using trexp, but the pragmatics of infinite precision values
suggests some variations that are not relevant for ordinary floating point. These are declared

1988 USENIX C++ Conference 273

274

class Real {
public:

void split(Exp_tt e. Realt r. Plimit t =split_plimit)
void split(Exp_tt e. longt n. int P.

Plimit t =split_plimit)
} ;

These member functions separate the Real into an integral(Exp_t) "exponent" and a Real "man
tissa". For the first variant the value of x is exactly 2er and for the second variant the value is
approximately 2Cl n. The details of the variants are slightly different.

The first form attempts to assign a value to r satisfying 1/2 ~ Irl < 1. It first expands the Real
with limit t. It next does one of four things

• If the result is an exact zero it assigns zero to r and a large negative value to e. This is not
regarded as an underflow.

• If the expanded values contains only zero bits, but is not yet an exact zero split assigns e
and r appropriate values with r having a small value (being 0 for several bits after the binary
point). This is regarded as an underflow if t is at least underflov.plimit.

• If it can determine the correct value, of e and r it assigns these values to tll~m.

• In the remaining case, the Real is close to a power of 2, Irl may be less than 1/2, but if t is
at least rel.plimit(j), Irl will never be less than (1/2) - (1/2)-;.

Following these rules means that when the computation stops prematurely the split may be wrong,
but 2Cl r has the correct value.

Like the first variant, the second variant of split expands the Real with the specified limit and
then selects an action.

• If the Real is or appears to be zero, it assigns zero to n and a large negative number to e. This
is not regarded as an underflow. In some special cases the value may appear to be non-zero
but the possibility of zero cannot be completely e~cluded. In these cases it assigns 1 or -1 to
n and a large negative number to e.

• Otherwise it selects appropriate values for e and n. With the value assigned to n satisfying
2,,-1 ~ Inl < 2".

Whichever action is selected the value of the original real is always between (n - 1)2e and (n + 1)2e•

(An attempt is made to avoid the boundary points of this interval, but because of the possibility of
an infinite sequence of 1 bits, this cannot always be done.)

For example

x.split(e.n.1.abs_plimit(2»

can be used to get an order of magnitude approximation to x. Since pis 1 the value ofn will be -1,0 or
1. Ifn is assigned the value 0, the absolute value ofx is less than 1/4 because abs..plimit(2) requires
an absolute precision of two bits past the binary point. Using plimit(2) instead of abs..plimit(2)
would have required a certain amount of expansion even for small numbers, and thus would have
increased the chance of having a negative value assigned to e.

1988 USENIX C-H- Conference

II toward zero,
II away from zero,
II toward nearest,
II toward positive infinity
II toward negative infinity

3.3 Rounding

Functions are available for truncating (rounding) reals.

enum Round_dir {
round_dovn,
round_up,
round_near,
round_pos,
round_neg
} j

class Real {
public:

Real round(Round_dir=round_dovn, Plimit p = round_plimit) j

long iround(Round_dir=round_dovn, Plimit p =round_plimit) ;
} ;

These functions round x to an integer value in the indicated direction. Ifp is at least abs..plimit (n)
the error in determining the value of x will be at most 2-n • For example,

x.round(round_dovn,1) ;

Might potentially round a value that is wrong by 1/2. That is, the result might have value n, even
if the value of x is between nand n - 1/2. Similarly,

x.round(round_near,2) ;

might potentially round a value that is wrong by 1/4. So the difference between the value of x and
the value of the result may be up to 3/4.

In practice the representation usually does much better than suggested above.

iround returns an ordinary integral(long) value. It is possible for the value of the Real to be too
large to fit, which constitutes an overflow. The results of such an overflow are not defined.

3.4 Conversion Operators

Given a Real it is possible to calculate a corresponding double.

class Real {
operator double() ;
double dbl(Plimit p = split_plimit) ;
} ;

If x appears to be zero after it is expanded to this using limit p, then x.dbl(p) will be 0.0. An
underflow is possible.

operator double uses limit specified by split~limit. Conversion to an ordinary integral value is
supported by iround, which is discussed in section 3.3.

3.5 Testing Ranges

Member functions are provided to report whether a Real is zero and if not, whether it is positive or
negative.

1988 USENIX Ci+ Conference 275

276

class Real {
public:

int sign(Plimit p =relation_plimit)
int obvious_zero() ;

} ;

The value returned by sign is 1, 0 or -1 depending on whether x is positive, zero or negative
respectively. As usual, p specifies the amount of computation to do before deciding the value is zero.
An underflow is possible.

sign has an important side effect. It will normalize the Real. That is, as it searches for a leading
non-zero bit it will adjust the Real's exponent field.

x.obvious..zero() returns true (non-zero) when x has a representation that immediately implies it
has the value zero. Otherwise it returns false. It never forces any expansion. It is intended primarily
for use when computations can be avoided when some value is o. For example, the code that expands
Series tests for an obvious zero to allow finite series to be dealt with properly.

The ordinary C++ comparison operations are defined to use certain member functions.

class Real {
pUblic:

int equal(Real y, Plimit p =relation_plimit)
int gt(Real y, Plimit p =relation_plimit)
int ge(Real y, Plimit p =relation_plimit) ;

} ;

x. equal (y ,b, a), x. gt (y ,b, a), and x. ge (y ,b, a) report whether the value of x is equal to, greater
than, or at least as great as that of y respectively. They work by applying sign to x-y with limit p.
Underflow is possible.

3.6 Shifts

The Real library contains shifts of Reals

Real operator«(Realt x, long n)
Real operator»(Realt x, long n)

These·return a Real whose value is that of x multiplied by 2n or 2-n in the case of operator« or
operator» respectively.

4 I/O

An iostream inserter(operator«) and extractor(operator») are defined for class Real. The
extractor will input an arbitrary number of decimal digits from the input stream. The inserter will
output as many digits as are requested by the precision format state variable of the iostream.
Before inserting any decimal digits the inserter attempts to determine an exponent by splitting
Real(see section 3.2)the Real using the Plimit contained in the variable io-plimit· If the expanded
value is an exact zero, the fixed representation, OEO is used.

A function ator is provided to convert from an ascii string to a real.

Real ator(char*) ;

The i08tream package is available as part of release 2.0 of the AT&T C++ translator.

1988 USENIX c++ Conference

·SeriesO
nextO ;
stepO ;
bound() ;

5 Math library

The following functions from the "math" library are available with the same meanings as the corre
sponding double functions. They produce exact results not approximations.

Real acos(Real)
Real asin(Real) ;
Real atan(Real) ;
Real atan2(Real.Real)
Real cos (Real) ;
Real exp(Real) ;
Real frexp(Real.int.)
Real log(Real) ;
Real modf(Real v. Real. ip)
Real pov(Real.Exp_t) ;
Real pov(Real.Real)
Real sin(Real) ;
Real sqrt(Real) ;
Real tan(Real) ;

In some cases I have taken advantage of C++ overloading and references to declare obvious variants

Real modf (Real. Real.t. Plimit = round_plimit) ;
Real frexp(Real x.inta) ;
Real atan(Real.Real) ;

Some special values are also available.

Real pie) ;
Real natlogbase() ;

pi returns the value 11" while natlogbase returns e, the base of natural logarithms.

6 Infinite Series

Infinite series are supported by class Series. They are used to implement the transcendental
functions of the "math library" and may also be manipulated by user programs. This class is
intended to be specialized by derivation in which the derived class specifies terms of the infinite
series. The protected interface of the class is declared

class Series {
protected:

virtual
virtual Real
virtual void
virtual Real

} ;

These functions must be must be supplied by the derived class. If s is a Series then these functions
must have the following meanings.

s .next() is the next term of the series. Repeated calls to next must return the same value.

s. step() advances the series to the next term. That is, the value that was previously returned by
next is removed from the series, and future calls to next must return a new term.

1988 USENIX C++- Conference 277

next()
bound() ;
step()

278

s.bound() is a non-negative value that must be larger than the absolute value of the sum of all
remaining terms.

The following function given a Series s will return its sum to within eps. It will also have the side
effect of having removed the terms it as accumulated from s.

Real sum(Series ts. Real eps)
{

Real accum = 0 ;
II use "ge" rather than ">=,, on the off chance
II that s.bound()==eps could occur
while (s.bound().ge(eps.rel_plimit(16») {

accum += s.next()
s. step()
}

return accum ;
}

However, the intention is not for programs to use Series directly in this way, but for them to
incorporate Series into Reals. The constructor,

Real::Real(Series* s) ;

constructs a Real whose value is the sum of all the terms of s. In keeping with the general approach
of the Real library, the constructor incorporates s into a data structure and returns. The virtual
functions described earlier will be called as more precision is required of the Real. Because of this
method, a particular Series should be incorporated in only one Real. Once it is incorporated it
should not be further manipulated by user code. Also s must be the result of a new operation rather
than a pointer to a value in the stack. This requirement is imposed so that the library can delete it
when there are no more references to it.

To illustrate the above, I present the definition of a class used in the Real library.

class Log2 : pUblic Series {
II A class whose value is specifically the
I I natural logarithm of 2.
Real ID

Real p
long t

protected:
Real
Real
void

public:
Log2()
-Log20 ;

} i

Log2: :Log2()
m(Real(1)/Real(9)),
p(Real(1)/Real(3)),
t(l)

{
}

Log2::-Log2() { }

1988 USENIX C+f- Conference

x has the value

Real Log2::next() {return 2*(p/k) ; }
void Log2::step() {k += 2 ; P = p*m }
Log2::bound() { return 4*(p/k) ; }

An example of the use of this class:

Real x =new Log2

(

00 _1 (~)2k+l)
2 :E 2k +1 3

k=O

The library will automatically delete the Log2 object when it is no longer needed.

7 Hints

There are some problems with the AT&T Translator that are exposed by common use of class Real.
The package can only been compiled with release 2.0 of the Translator because it relies on the new
method for linkage of overloaded functions.

7.1 Logical Connectives

There are problems when the second operand ofa logical connective (act or II) contains an arithmetic
expression using Reals. The translator has difficulty placing the constructor/destructor calls for the
conditionally executed expression. Release 2.0 will complain, earlier releases silently generated bad
code. Various possible fixes include

• Replace the logical connective, (aa or II), by the arithmetic one (a or I respectively).

• Rewrite the statement to use a nested if.

• Rewrite the statement to avoid arithmetic in the second operand

All these solutions are ugly workarounds.

7.2 Nesting

For every statement containing an arithmetic expression using Reals, cfront based C++ compilers
create a nested block in the intermediate C code. This can cause problems because some C compilers
have limits on the number of nested blocks they can deal with. A typical error message is !'yacc
stack overflow". Note that these errors will come from the underlying C compiler, not cfront.

The workaround for this problem is have smaller blocks. Typically this can be done adding blocks
that have no semantic effect.

1988 USENIX C-t+ Conference 279

280

8 Performance

The performance of the Real library must be measured in two dimensions. The first is how many
expansions are performed for a particular computation, and the second is how much time and space
are required to perform an expansion.

In the current an implementation a bigit contains 13 bits and it takes approximately 300 microseconds
on a VAX 8650 to expand. This is around two (decimal) orders of magnitude slower than the
corresponding floating point operation.

In determining overall performance the number of expansions performed is just as important as
the time to perform a single expansion. The library implements several strategies for improving
performance on this dimension and a significant part of the time spent in expanding bigits goes into
avoiding unnecessary expansions. Still, it is harder to measure performance in this dimension, since
measurements are so sensitive to the details of the program. For example, to compute %256 to two
bigits (26 bits) of accuracy requires around 100 expansions when the expression is parenthesized
as a balanced tree, but around 20,000 when done by repeated multiplication by z. Improving this
number may require some new ideas.

9 Status

The library has been used for some small toy programs.

A version of awk has been compiled t~a.t uses Reals rather than doubles to represent numbers.

It has been used to compute 11" to 1000 decimal digits.

1988 USENIX C-H- Conference

References

[1] Jean Vuillemin. Exact real computer arithmetic with continued fractions. In 1988 ACM Con
ference on LISP and Functional Programming, Salt Lake City, Utah, 1988.

[2] Hans-J. Boehm, Robert Cartwright, Mark Riggle, and Michael J. O'Donnell. Exact real arith
metic: A case study in higher order programming. In 1986 A CM Conference on LISP and
Functional Programming, Cambridge, Mass., 1986.

[3] Hans-J. Boehm. Constructive real interpretation of numerical programs. In SIGPLAN '87
Symposium on Interpreters and Interpretive Techniques, St. Paul, Minnesota, 1987.

[4] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data compression.
CACM, 30(6), June 1987.

1988 USENIX C+f- Conference 281

282 1988 USENIX C+f- Conference

Iris: A Class-Based Window Library

ER. Gansner

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Iris library provides a basis for constIUcting user interfaces on biunap displays. Written
in C++, it provides a window class as the main data type, along with support for such
graphical classes as point, rectangle, font, icon, etc. Windows can be created within
windows; this property, along with the derived class notion in C++, allows the user to
design complex interface objects built from simpler components in a modular fashion. In
addition, a window can specify which input events, ranging from a change in a specific
mouse button to a move request, it will accepL This paper provides an introduction to Iris
and a discussion of its use.

1. Introduction

The Iris library provides a basis for constructing user interfaces for biunap displays. It implements
a flexible hierarchical window system, integrated with the standard bitmap graphics primitives such as
bitblt, line drawing and text display. In addition, the Iris model natumlly supports multiple input and
output contexts. The model is object-oriented; the programmer using Iris deals with "things" that have
a specific set of associated operations. The model, with its emphasis on building an interface from pieces
with well-defined interfaces, facilitates the design and construction of user interfaces, and provides a
base for building interface toolkits.

The principal design goals of Iris were simplicity and ease of use and reuse. For this reason, Iris
is a small, basic library, meant to be understood. It is based on a simple graphics model, an extension
of the one used on the Blit [pI1,PI2] terminal. If desired, the programmer can directly access the
window system and the graphics primitives, without intervening software layers adding bias and
preventing a simple action from being done simply. System details and hardware incongruities are
hidden as much as possible, especially when they exist on a single machine.

Dealing with the pieces of an interface, such as a scroll bar, on an ad hoc basis can be
cumbersome. The programmer has to deal with how the parts combine and communicate with each
other; how input is handled; how objects can be refreshed or reshaped. To get the full value out of an
interface tool, it is useful if it can be reused, extended or modified in some natural fashion. Iris has
adopted an object-oriented approach to address these concerns.

In keeping with the goal of simplicity, the number of basic objects and their associated actions is
minimal. The objects are sufficiently general as to not constrain the programmer, while providing a
common thread for the later combination of objects. The objects are uniform and reflect common
functionality. For example, the bitblt function is bound to a single name that works regardless of
whether the source and target bitmaps are on screen or off. Similarly, the process of window creation is
the same for all windows.

A corollary of Iris's design goals is that an object--oriented system should use a language that
supports object-oriented programming and integrate itself with the language's features and supporL
Indeed, a significant part of Iris's simplicity derives from its implementation in C++, a language
sympathetic to its model. The language's data absuaction facilities supports Iris's notion of a graphical
ObjecL Class inheritance, especially from multiple base classes, combines with the Iris window
hierarchy to provide a simple yet powerful mechanism for creating new objects from old. The virtual
function polymorphism gives the library a means of implementing the generic window operations in a
uniform, type.-safe manner for all graphical objects. A related benefit is that Iris avoids the mess of
names and types, and the type insecurity, that plague systems implementing an object paradigm without

1988 USENIX C* Conference 283

284

language support.

Another aspect of the ease of use of a window system involves the run-time environment of the
program, and the burdens it places on the programmer and the program. Iris is designed to operate in a
standard UNIXt environment, not in a rarefied graphics environment There are no assumptions that,
for the graphics part, there are actions a program would not or should not take. The familiar set of tools,
libraries and facilities for constructing and analyzing programs are all available for the interface code.

2. The Iris Model

Iris was designed to provide a foundation for constructing user interfaces from high-level
components while allowing access, when necessary, to low-level graphics primitives. In this, it follows a
bitmap graphics analogue to a design consideration of C++ for general programming. The C++ language
does not include such constructs as run-time typing or a list class, but it allows them to be buill
Similarly, Iris provides a collection of simple, generic constructs for bitmap graphics. The programmer
can extend this base as desired with the creation of additional graphical classes.

The idea of a graphical object (or widgets, in X terminology [SA]) is central to the Iris model.
The programmer should view a graphical object as a physical construct, with limited, well-defined
interactions with the rest of the world. A graphical object might closely mimic "real" components,
such as meters, switches, buttons and oscilloscopes; provide a graphics abstraction of ureal"
components, such as a scroll bar or a virtual terminal; or instantiate an object with no physical analogue.
New components can be made by tuning the parameters of extant objects, or building a new object out
of one or more available objects. In this model, the construction of an interface involves gathering an
appropriate collection of graphical objects and specifying how they interact, within the constraints of an
object's interface. This model provides an attractive base for using high-level languages and interactive
editors in the specification of interfaces.

This view of an object as a physical reality is one of the paradigms for object-oriented
programming. In the Iris context, this paradigm works particularly well. First, the programmer can
actually see the objects. Second, since Iris objects are built using a language that supports object
oriented programming, the manipulation and derivation of graphical objects as objects comes naturally.

The basic object supplied by Iris is the window. (In other systems, a similar object might be
called a viewport, a canvas, a layer, or a pad.) It provides a surface for all graphical output and a
context for input Lines can be drawn, text written, areas filled in a window, among other primitive
graphics operations. A window can specify its interest in certain input events, and provide handlers to
deal with the events when they occur. The coordinate system used to SPecify graphics output and report
user input are window coordinates, Le., the origin occurs in the UPPer left-hand comer of the window,
with increasing y values moving the point down, and increasing x values moving the point to the right
Section 3 gives additional detail concerning the atlributes and functionality of Iris windows.

Iris windows form a base class in C++: they are meant to be used to derive higher level graphical
objects. As is usual in C++, some derivations may simply add functionality to the base class, allowing
the base class to show through. Other derived objects will totally hide its base class behind a layer of
abstraction or replace some base class functions with its own. Typical Iris objects formed in this way
include scroll barst buttons, switches, banners, virtual terminals, text editors, list viewers, tile editors and
dialogue boxes.

In addition to being created as derived classes, new objects can come about through the Iris
window hierarchy. Basically, one Iris object can include a variety of other Iris objects as children or
subwindows. This technique allows an object to use the well-defined services of other objects to enhance
its interface. A canonical eXample of this technique is a virtual terminal object, which contains three

t RegiJtered tradeuwk d AT&T.

1988 USENIX c++ Conference

children: a text editor object, for displaying character output and receiving keyboard input; a banner
object, for displaying status information and providing certain window services; and a scroll bar, for
allowing the user to move the text view. In' turn, some of these objects may be further subdivided. For
example, the scroll bar might consist of a slider object and two arrow button objects, while the banner
might contain buttons for deleting or resizing the window. Figure 1 show some graphical objects built
using various combinations of C++ subclasses and the Iris hierarchy. The objects include a sketch pad, a
tile editor and a virtual terminal.

Figure 1. Some graphical objects.

A ~nt object's role can be passive, in which it creates the children, hooks them together and
gets out of the way, except for the occasional special service. In particular, a parent is usually
responsible for repositioning its children when it is resized. At the other extreme, a parent object might
take an active role, continually providing specific services or managing its children and their
communications.

Iris is initialized by creating the root window object corresponding to the display. Additional
objects can then be created, optionally specifying a parent and a location in the parent's coordinates.
Only Iris objects that are descendents of the root object will be visible. A child object need not intersect
with its parent, but only that portion of the child which overlaps with the parent is visible. A child
object always lies on top of its parent; a child cannot be moved behind its parent Sibling objects,
however, can be freely shuffled among themselves. In addition, invisible Iris objects can be created; if
a window is invisible, all of its descendents are invisible.

Children of the root window, which we shall refer to as base windows, maintain a backing store,
so that even if they are obscured by a sibling window, the obscured portions are stored in off-screen

1988 USENIX C+i- Conference 285

286

bitmaps. This allows Iris to handle automatically occasions when part of the window becomes exposed,
without requiring the object to assist in the refresh. In addition, these objects can always act as the
source of a bitblt operation without additional support from the object itself. The availability of backing
store greatly accelerates most screen refreshes, and simplifies the programmer's job when creating new
objects.

Though any window can have a backing store, a non-base window usually shares its parent's
bitmap. In many cases, base windows will be tiled by their children, essentially providing the benefits
of a backing store to the children without additional memory overhead. If a window can become
corrupted, it is responsible for redrawing the corrupted portions by supplying a refresh function.

Iris maintains the integrity of its windows, in that output in a given window will always be
clipped to that window (and its parent) and will not affect any sibling windows or their descendents,
even if the window is obscured by some siblings. In general, output in a window can only corrupt a
window's ancestors and descendents.

When the destructor operator is applied to a window, it calls the destructor of all the window's
descendents in depth-first order, frees the window's resources and initiates the refreshing of the display.
Note that the display is refreshed only once, after the entire subtree is freed. This avoids the visual
unpleasanmess and time used to update windows that are themselves slated to be destroyed.

Control flow in Iris is, by default, event-driven. Objects specify the types of events they are
willing to handle, and supply a handler for such events. When an event occurs, such as a mouse button
click or a timer event, Iris takes the event, determines. who should get the event and passes it to the
object using the object's event handler. In most cases, the object handles the event as expeditiously as
possible and returns control. back to Iris. In this way, the user is presented with an interface built of
multiple active contexts cooperating with each other.

There are times when an object decides, for efficiency or for clarity of code, that pure event-driven
control is inappropriate. Iris allows a program to forego the built-in scheduling entirely, to use it only
periodically or to Ugrab" the event stream for certain critical periods. The Iris library itself makes use
of this in its implementation of pop-up menus and other high-level input routines.

An object's event processing in Iris has an all-or-nothing flavor: accept one event at a time or
temporarily take control of all events. This can sometimes constrain the programmer's coding style.
forcing object state infonnation to be stored explicitly in the object when it would nonnally be stored
implicitly in the stack frame. In addition, events targeted for other objects living in the same process
can be delayed in delivery. The solutions offered by other interface libraries to similar problems are not
totally satisfactory. The correct answer is probably to incorporate some multiple thread mechanism, as
is done in NeWS [GO].

There are at present several general methods that could be used to support multiple threads in Iris.
Specifically, one could use either the C++ task library [SH] or the C++ version of the Concurrent C
language [GR]. We are currently pursuing a more radical approach (cf. [RG]).

2.1 Related Systems

The interface programmer has a wealth of window systems, libraries and toolkits (cf.
[EV,GO,LC,PA;RW.SA.SG), to mention a few) from which to choose. In terms of graphics functionality
and networking, Iris is not the most developed. However, the two aspects that particularly distinguish
Iris from similar work are its simplicity and its reliance on C++.

Compared to Iris, the models of many window systems are more complex, some to the point of
incomprehensibility. To do something simple might require much head scratching and programming
overhead. Some packages insist the programmer deal with several layers of system tasks before actually
being able to draw something in a window. This complexity can lead to a lack of uniformity, in which
the programmer must do different things at different times to achieve a similar effecL At other times.
the software layers impose restrictions preventing certain things from being done. Concerning graphics
systems, the word sophisticated can sometimes be used in a pejorative sense.

1988 USENIX C-t+ Conference

Iris is written in and for C++. Other interface packages, especially toolkits, are object-oriented in
flavor, but provide little language support for maintaining the object paradigm. For this reason, they are
cumbersome and limiting for the programmer, who must emulate or provide explicitly what would come
for free from a compiler. Without language support, the names and types tend to become cluttered, and
any use of inheritance will not benefit from type-checking. Also, transliterating a library's header files
into C++ is not the same as designing and writing the library using C++.

3. Basic Classes

Any bibnap graphics system needs some notion of points and rectangles. Thus, Iris provides the
following SbUctures:

struct Ipt {
short X;
short y;

} ;

struct Irect {
Ipt origin;
Ipt corner;

} ;

The fpt structure stores the x and y coordinates of a point The origin in frect specifies the upper left
corner of the rectangle. The comer specifies the point one below and to the right of the bottom right
point in the rectangle. Thus, the width and neight of the rectangle are given by (corner.x - origin.x) and
(corner.y - origin.y), respectively.

A pleasant bonus of using the C++ language is the ability to have operator arithmetic with points
and rectangles. Instead of calling a function to add two points or to translate a rectangle, one sees the
following, more aesthetic code:

Ipt ptl, pt2, pt3;
Irect rl, r2;

pt3 ptl + pt2;
r2 = rl + pt3;

II Add two points.
II Translate rl by the vector pt3.

3.1 The Bitmap Class

The class Ibitmap provides the target for graphical operations. An fbitmap corresponds to a
biunap, along with a set of output member functions, These include the usual graphics operations such
as marking a point, tiling a rectangle, drawing a line, writing text, and bitblting from one bitmap to
another. All graphics operations are modified by a boolean function corresponding to how the bits are
to be combined. In addition, the operations are clipped to the intersection of the bitmap's boundary and
its associated clipping rectangle. The geometric parameters passed to graphics routines are always in the
biunap's coordinate system. This is the only convention that makes sense for the programmer,
especially in an object-oriented, multi-window environment

Each Iris biunap has associated with it various attributes. Most attributes have both a get function,
for querying the attribute value, and a set function for setting the value, except in certain cases where
the attribute is read-only. For example, each bitmap has a clipping rectangle to limit the effect of
graphics operations, but is only used when clipping is activated Iris provides the Set_clip_rectO
function for setting the clipping rectangle, and the Set_clip() function for turning clipping on and off. In
addition, each bitmap possesses a current point This point is used as the initial point in line drawing
and text operations. When drawing lines, Iris resets the current point to the final point supplied; when
writing text, Iris resets the current point to the position where the next character would be written.

1988 USENIX C+t- Conference 287

288

3.2 The Window Class

The fimdamental Iris class is the window object Iws. This provides the base class for most of the
graphical objects using the Iris library. In essence, a window is a subclass of both Ibitmap and a tree

. class. This provides a window's output functionality and the parent-child relationship between windows.
In addition, the window provides a context for user input

The window class adds to the functionality it inherits from the bitmap class with attributes and
functions for handling the window hierarchy and input The functions TopO and Bottom() move a
window in front of and below all of its sibling windows, respectively. The MoveO function moves the
window so that its new origin corresponds to the argument point, given in the parent's coordinate
system. The Resize() function reshapes the window to a given rectangle, again in the parent window's
coordinate system.

An Iris window can dynamically specify which input events it is interested in receiving. (Iris
input is discussed below.) Other atttibutes associated with windows include cursor shape and position,
various sizes related to the window, the window's parent and whether the window is obscured.

3.3 Getting User Input

Iris events are divided into several categories: keyboard events, mouse events, window events and
system events. Mouse events include not only button clicks and mouse motion, but also the action of the
mouse entering or leaving a window. Window events are high-level events connected to requests to
change the external state of a window. System events involve timeouts and file I/O. All events are
received by a window through an appropriate virtual function. The use of separate handlers for each
type of event, as well as for refreshing, simplifies event handling somewhat

Keyboard events occur when a key is depressed; there are no provisions for handling up
transitions. Keyboard events are not totally raw, in that the depression of metakeys (control, shift, etc.)
are not reported when they occur~ but only in the context of the depression of another key. A class
derived from Iws must supply a virtual function KeybdIn to receive these events.

All mouse events are received through a virtual function MouseIn. The arguments specify the
type of mouse event that occurred and the point at which the event occurred, in window coordinates, as
usual. Iris provides other functions to query the current mouse state, buttons and position, at any time.
For efficiency and consistency, it is recommended that when ttacking the mouse, an object should poll
the mouse's position rather than rely on a stream of mouse motion events.

With window events, a window is informed that someone would like to move, reshape, shuffle or
delete it. This gives the object an opportunity to perform various cleanup operations. For example, an
edit window about to be deleted might wish to give the user the opportunity to write its contents into a
file. In addition, the window can use the return value to indicate its acceptance or rejection of the
proposed action.

The final category of events is system events. These include timeout events, in which a window
asks to be notified after a certain time period; file events, corresponding to the need to service some
open file; and requests for notification of the deletion of some object

Certain common input methods are supplied as member functions of Iris windows. The GetytO
routine allows the user to pick a point within the window, using a specified mouse button. The routine
can be set to return immediately when a button is pressed or to wait for the button to be released. The
Get_rectO routine allows the user to specify a rectangle within the window, using a given button. The
user moves the cursor to some position, corresponding to one comer of the rectangle, depresses the
button, moves to another position conesponding to the opposing comer and releases the button. The
cmrent rectangle shape is indicated by rubber banded lines. The Move rectO routine allows the user to
place a given sized rectangle within the windowt again using a given button. If the user depresses one
of the unspecified buttons, all of these routines return immediately. By convention, this indicates the
user's desire not to make a choice and, by extension, not to invoke any related action. Another useful
input operation, Track(), allows an object to loop on the state of a given mouse button while receiving

1988 USENIX c++ Conference

the current mouse position.

Iris also provides a pop-up menu class lmenu, with semantics roughly modeled on the menu
library of the Blit A menu is created by supplying the constructor with a NULL-terminated array of
strings. There are general facilities for inserting, removing and replacing menu items. To display the
menu, its Use() member function is invoked, supplied with a mouse button. As long as the button is
down, the user can move the mouse cursor over the menu items, each highlighted when it is under the
cursor. When the button is released, the index of the current item is returned, with 0 being the index of
the first item. If no item is selected, -I is returned.

The library uses basic Iris functions to implement all of the high-level input routines described
above. They are provided as part of the library because of their frequent use, especially in providing the
interface designer with basic iriput tools for prototype software. It is a simple matter to add alternative
input methods and menu systems in the Iris environment

3.4 Damage Control

All window objects should supply a RefreshIn virtual function. This routine will be called by Iris
whenever it needs help restoring a window. This may occur if the window does not have an associated
backing store, or if the window's size has been changed, or if a child window is externally altered One
argument to RefreshIn specifies the type of restoration necessary, in particular indicating whether the
window has been resized. This alerts the window to reset any size dependent parameters it uses and, if
necessary, to reshape its children. After being reshaPed, each child will have its own RefreshIn called.
Another argument specifies the region to be repaired.

3.5 Additional Objects

Other useful Iris classes include Idle, Icursor and Qont. An Idle represents a pattern of bits that
can be used to fill a closed polygonal region. An Icursor is an icon that can be used to represent the
mouse location on the display. An Icursor can be associated with any Iris window and is typically used
to represent the current state of the window. If a window does not choose its own cursor, it inherits the
one used by its parent

The Itile and Icursor are derived from the Ibitmap class, and can therefore be used and altered
with biunap member functions. Normally, though, the programmer will use biunap constructors that
take a character-based rePresentation of the bitmap or the name of a file containing such a
representation.

The Iris font class represents a font used for writing text The user creates an 110m by specifying
the pathname of the file containing the font's rePresentation. Once a font exists, the user can ascertain
the maximum height and width of the characters in the font, as well as other infonnation. There is also
a function for detennining the dimensions of a string if it were printed using the specified font. Iris
provides a default font Idefont.

4. Using Iris

The sttucture of a Program using Iris can be very simple: create a global object, create some
initial graphical objects and tum control over to Iris. Using Iris, the traditional program to print
"Hello, world" looks like:

1988 USENIX c++ Conference 289

'include <Iris.h>

main ()
{

Iws
Irect
Iws

*globalWin = new Iws ();
globalRect = globalWin->Get_rectangle ();
*win = new Iws (0, globalWin, globalRect»10)i

win->Text (Ipt(2,2), "Hello, world", Idefont, Istore_op);

This creates the default global window, determines its rectangle and creates a base window inset by 10
pixels from the global window. The string is then written in the base window, translated slightly from
the window's origin. Finally, the program passes conttol of the program over to Iris. The routine
Iris_loop() collects events and dispatches them to the appropriate objects.

Of course, a more typical program would use a variety of graphical objects, and establish a more
complex initial scene before calling Iris_loop(). Frequently, the global window itself is some derived
class. Figure 2 illusttates a prototype browser for trees built using Iris. It uses some ten different
subclasses of Iws.

IlJnit:ad stat:liti
I.-

'
136

"liLIiJW
liMA
IIC#tfi

ItcU:IdlII=
1;CU
Illii9
Iii6S

290

Figure 2. A tree browser.

1988 USENIX c++ Conference

There are various nuances in creating graphical objects using Iris. The code above exhibits a
standard way of composing one object out of others using the window hierarchy. This technique applies
well for a container class that knows what it "looks likett and creates its own children, a top-down
approach. It is also possible to create child objects first, essentially unparented, and later insert them in a
container class. Creating new objects using C++ is done with the standard derivation syntax:

class FormField : private Iws { ... };

But there are times when the programmer may find it advantageous to use a reference instead:

class FormField { Iws *wini ... }i

with less binding between classes.

For certain applications, an object may need to have more flexibility than is provided by
Iris loop(). In these cases, the program can read directly from the stream of Iris input events using the
function Iget_event(). This is the routine used by Iris)oop() when it distributes events.

5. Nuts and Bolts

Iris has been used as the interface library for a variety of programs, including a C source analyzer,
an economics analysis package and a programming environment generator. It has also been used as the
foundation for the windowing system in the Pegasus environment [RG]. At present, Iris runs on AT&T
5620 or 630 terminals, paired with hosts running the UNIX operating system, and on various UNIX
based workstations. It consists of about 4000 lines of C++ code, with an extra 4000 lines of C code
necessary for the terminal server when used with the 5620 or 630.

5.1 Maintaining Windows

A major design decision in most window systems is how to maintain window integrity, especially
if a window can be written on when partially obscured. Iris uses an extension of the layerop() method
[PI]. The Blit uses this method to provide a single level of windows with backing store. The method" is
elegant, lends itself easily to most primitive bitmap graphics operations, and, in some sense, uses the
minimum cost to maintain a backing store. In addition. it can be naturally extended to support the
general hierarchy and semantics of Iris windows.

5.2 Iris and C++

Iris was designed with C++ in mind. It reflects the syntax and semantics of the language and, as
explained in Section 1, attempts to use language features to the fullest to support its model. In
particular, inheritance in C++ complements the Iris hierarchy in the creation of new objects. With this
mixture of types, Iris depends critically on the virtual functions in C++ in order to cleanly manipulate
objects as windows.

The data hiding provided by classes and member functions has been a help for writing portable
Iris-based programs. Specifically,][ris has been implemented using a library model on workstations
while using a client-server model with the terminals. Yet, program source can be moved unchanged
between machine types.

The biggest disadvantage in using C++ has been its mutability. In attempting to remain current
with the language design and fixes to the translator, one found that legal code one week might be illegal
the next, and maybe legal again the week after. In addition, as useful new features appeared, it had to
be decided if, when and how they could be incorporated into the design.

6. Conclusions

The Iris library presents a ftexib!e and simple model for consbUcting biunap graphics interfaces.
The model is general enough so that many graphics interfaces could be built using Iris. This generality
is tempered by the object-oriented nature of Iris, especially as it is supported by C++. This nature
encourages the construction of interfaces using "graphical objects", components whose reuse, extension
and combination are facilitated by the c++ class and Iris window hierarchies. In this context, Iris

1988 USENIX C++- Conference 291

292

provides a good example of the desirability of building object-based systems using a language that
supports an object paradigm. Finally, we note that Iris blends well with the standard UNIX tools and
techniques.

Acknowledgments

The author would like to acknowledge his debt to Jonathan Shopiro, who was a pioneer in the use
of graphical objects in C++ and whose ideas provided a strong impetus for Iris. ~e comments and
complaints of Fahim JaIili, Tom Kirk, Dave Korn, Minsky Luo and John Reppy, among others, were
very helpful in providing additional direction for Iris.

REFERENCES

[EV] Evans, Steve, "The' Notifier", Proc. USENIX Tech. Con/., Atlanta, GA, June 9-13, 1986, pp.
344-354.

[GO] Gosling, James, "SunDew - A Distributed and Extensible Window System", Methodology or
Window Management, F. R. A. Hopgood ~ al., eds., Springer-Verlag, Berlin, 1986, pp. 47-57.

[GR] Gehani, N.H. and WD. Roome, "Concurrent C", Software-Practice and Experience, 16(9), Sept
1986, pp. 821-844.

[LC] Linton, Mark A. and Paul R. Calder, "The Design and Implementation of InterViews", Proc.
USENIX C++ Workshop, Santa Fe, New Mexico, 1987, pp. 256.267.

[PA] Palay, Andrew et al., "The Andrew Toolkit - An Overview", Proc. USENIX Tech. Con/., Dallas,
TX, February 9-12, 1988, pp. 9-21.

[PIl] Pike, R., "Graphics in Overlapping Bitmap Layers", ACM Trans. Graphics, 2(2), 1983, pp. 135
1~.

[PI2] Pike, R., "The Blit: A Multiplexed Graphics Terminalll
, AT&T Bell Laboratories Tech. Journal,

63(8), 1984, pp. 1607-1631.

[RG] Reppy, J.H. and ER. Gansner, IIA Foundation for Programming Environm.ents", Proc. 2nd ACM
SIGSOFTISIGPLAN Symposium on Practical Software Develop~nt Environments, Palo Alto,
CA., 1986, pp. 218-227.

[RW] Rao, Ram, and Smokey Wallace, "The X Toolkit: The Standard Toolkit for X Version 11", Proc.
USENIX Tech. Con/., Phoenix, AZ, June 8-12, 1987, pp. 117-129.

[SA] Swick, Ralph R. and Mark S. Ackennan, "The X Toolkit: More Bricks for Building User
Interfaces or Widgets for Hire", Proc. USENIX Tech. Cont, Dallas, TX, February 9·12, 1988, pp.
221-228.

[SG] Scheifter, R.W. and J. Gettys, tiThe X Window System", ACM Trans. Graphics, 5(2), April,
1986, pp. 89-97.

[SH] Shopiro, J., "Extending the C++ Task System for Real-Time 'Control", Proc. USENIX C++
Workshop, Santa Fe, NM, Nov. 9-10, 1987, pp. 77-94.

1988 USENIX c++ Conference

Lexical Closures for C++

Thomas M. Breuel ..

Abstract

We describe an extension of the C++ programming language that allows the nesting
of function definitions and provides lexical closures with dynamic lifetime.

Our primary motivation for this extension is that it allows the programmer to define
iterators for collection classes simply as member functions. Such iterators take function
pointers or closures as arguments; providing lexical closures lets one express state (e.g.
accumulators) naturally and easily. This technique is commonplace in programming
languages like Scheme, T, or Smalltalk-80, and is probably the most concise and natural
way to provide generic iteration constructs in object oriented programming languages.
The ability to nest function definitions also encourages a modular programming style.

We would like to extend the C++ language in this way without introducing new
data types for closures and without affecting the efficiency of programs that do not use
the feature. In order to achieve this, we propose that when a closure is created, a short
segment of code is generated that loads the static chain pointer and jumps to the body
of the function. A closure is a pointer to this short segment of code. This trick allows
us to treat a closure the same way as a pointer to an ordinary C++ function that does
not reference any non-local, non-global variables.

We discuss issues of consistency with existing scoping rules, syntax, allocation strate
gies, portability, and efficiency.

1 What we would like to add... and why

We would like to be able to nest function definitions in C++ programs. In this section,
we will discuss a number of reasons why the ability to nest function definitions is desirable.
Almost all other modem programming languages such as Scheme, T, Smalltalk-80, Common
Lisp, Pascal, Modula-2, and Ada offer this feature.

To illustrate the utility of this language feature, we have to agree on syntax. To indicate
that a function is defined inside another function, we will simply move its definition inside
that function but otherwise write it the same way we would at global level. For example,
the following fragment of code defines function2(int) inside function1(int):

function1(int x) {

II ...
function2(int y) {

II ...
}

II
}

• Author's address: MIT Artificial Intelligence Laboratory, Room 711,545 Technology Square, Cambridge,
MA 02139, USA. The author was supported by a. fellowship from the Fairchild foundation.

1988 USENIX c++ Conference 293

Unless function2 declares the identifier x itself, any mention of x inside function2 will
refer to the argument of function1.

To allow the definition of mutually recursive functions at inner lexical levels, it is nec
essary to provide some way of declaring functions that are not defined at global level. We
suggest that this is done by prefixing the function declaration by the keyword auto. Cur
rently, it is illegal to use the keyword auto before a function declaration. This extension is
therefore compatible.

1.1 Nesting and Modularity

The ability to nest function definitions encourages modular design of programs. It allows
the programmer to keep functions and variables that are only used by one function local
to that function. In C, such modularity is only possible at the level of files: the scope
of the identifier of a function can be limited to a file by declaring it static. The scope
of a variable's identifier that is to be shared among functions must encompass at least a
compilation unit since it must be declared at global level. C++ supports limiting the scope
of certain kinds of identifiers for functions and variables to member functions by making
those functions and variables members of a class.

However, it is often not natural to introduce a new class simply to limit the scope of
an identifier. Consider, for example, the hea.psort algorithm[Wir79]. It consists of a. sort
function that repeatedly calls a sift function to insert elements into a heap. In C or C++,
we would express this as follows:

sift(int* v,int x,int l,int r) {
II insert x into the heap
II formed by elements I ... r of v

}

II sort an array of integers v
II v is n elements long

heapsort(int* v,int n) {
II code that calls sift

}

This is unsatisfactory, however, beca.use the function sift is unlikely to be of any use
anywhere else in the program. The function sift ought to be visible only inside the function
heapsort. Furthermore, we would like to refer to the variable v inside sift without having
to pass it as a parameter. Nesting allows us to rewrite this as:

II sort .an array of integers v
II v is n elements long

heapsort(int* v,int n) {
sift(int x,int l.int r) {

II insert x into the heap
II formed by elements l ... r of v

}

II code that calls sift
}

294 1988 USENIX C++ Conference

Notice in particular that any use of the identifier v inside the function sift refers to
the argument v of the lexically enclosing function heapsort[l].

As another example, assume that we have a function integrate that integrates a given
function between two bounds and we would like to integrate a parameterized family of
functions. Again, the most natural way of expressing this is as follows:

integrate_all(int n,double* as,double *bs,double *cs,double eps) {
double integrate(double lov,double high,

double epsilon,double (*f)(double»;
double a,b,c;
double f(double x) {

return a*x*x+b*x+c;
}

for(int i=O;i<n;i++) {
aQ&s[i]; b=bs[i]; c=cs[i];
printf(t1a : Y.g, b: Y.g, c: Y.g, i: Y.g\n",

a,b,c,integrate(O.O,1.0,eps,f»;
}

}

1.2 Iterators

The ability to nest function definitions and to reference variables declared by enclosing
blocks is particularly useful together with iterators over collection classes. Consider the
following simple collection class:

class BagOflnts {
pUblic:

II add an int to the collection
void add(int);

II test whether an int
II is in the collection
int member(int);

II apply a function to every
II element in the collection
void walk(void (*)(int»;

};

For example, to print all the elements in a bag, we would write in standard C++:

printit(int x) {
printf(lIinteger in bag: y'd\nll,x);

}

maine) {
BagOflnts aBag;

(1] unless sift declares or defines anot.her identifier v

1988 USENIX C-++ Conference 295

aBag.valk(printit);
}

Note that we are forced to define the function printit far away from the place where it
is actually used. The reason why we made printit a function in the first place is not that
it is a useful abstraction of some process or that we are going to use it in several places, but
simply because the member function walk demands a function pointer as its argument.

Even more disturbing is that in standard C++ the only side effects a function that is
passed as an argument to the iterator can bave are to static variables or global variables.
If we would like to use the iterator walk to sum all the elements in a bag, we would have
to use a global variable:

int xxx_counter;

int xxx_count(int x) {
xxx_counter+=x;

}

fizzle() {
BagOflnts aBag;

xxx_countepO;
aBag.walk(xxx_count);
int sum=xxx_counter;

}

If we were allowed to nest function definitions, we could express this simply as:

fizzle() .(---
BagOflnts aBag;

int sum=O;
count(int x) {

Bum+=X;
}

aBag.valk(count);

}

Now, all the identifiers are declared and defined exactly where they are used. No iden
tifiers appear at global scope that should not be visible at global scope[2]. And, no global
data space is wasted for the counter; the space for the counter exists only while function
fizzle is active.

This approach to writing iterators for user-defined classes is actua.lly very commonly
used in Smalltalk and Lisp-like languages. For example, it Smalltalk-80[GR83], we would
express the function fizzle as follows:

[2]It is still disturbing that we had to invent a name for the function COWlt. We will suggest syntax to
define unnamed functions in later sections. We used the named version here in order to avoid getting into
questions of syntax at this point.

296 1988 USENIX Ci+ Conference

fizzle
I sum

sum <- O.
aBag do: [x I sum <- sum + x].

And in CommonLisp[Ste84] we might write:

(define fizzle ()
(let «aBag •.•)

(sum 0»

(map nil "(lambda (x) (incf sum x»)
...»

The reader might ask whether there are alternative approaches to iteration just using
standard C++ constructs. We will describe one of them shortly. Let us first remind
ourselves, though, what we ask of an iteration construct in any language.

An iterator is basically a construct that takes a piece of code and invokes it repeatedly
and changes the values of some bindings in. the environment of that piece of code. From
the built-in iterators of C and C++ we are used to being able to do the following.

1. We can write down the piece of code that is to be executed repeatedly at the point in
the source code where the iteration is performed.

2. The code that is executed repeatedly can reference identifiers whose scope is limited
to the enclosing function.

3. The names of variables modified by the iteration construct can be chosen freely.

These properties are very useful features of built-in iterators, and it would be most unfor
tunate to have to give up anyone of them for user-defined operators.

One way to achieve these goals it to introduce a new class together with a macro, as
follows:

class BagOflntsStepper {
public:

int more();
int next();

}:

'define iterateBagOflnts(bag,var) \
for(BagOflntsStepper stepper~bag.makeStepper();\

stepper.more(); \
varmstepper.next(»

This construct does not violate any of the above constraints. However, it bas several
disadvantages. It requires us to introduce a new class for the purpose of expressing iteration,
it requires two calls to member functions per iteration step, and it requires us to define a
macro. Most of all, however, we dislike about it that it is difficult to extend to the case when

1988 USENIX c++ Conference 297

we want to iterate over different collection classes with the same base type[3). For example,
we might also have a class SetOflnts. If we used the walk style iteration construct, we
could simply make BagOflnts and SetOflnts subclasses of a class CollectionOflnts and
declare walk to be virtual. To achieve the same effect with a stepper class is much less
straightforward and might also require the extra overhead of two virtual function call for
each iteration step.

2 How to Implement It

In order to implement nesting and lexical closures in C++, we have to introduce a static
link chain that links each activation record to the correct activation record for the lexically
enclosing function (see [AU79j" and [Wir77] for terminology). When we invoke a function,
we not only have to know its address, but we also have to pass along a pointer to the correct
activation record for the lexically enclosing function. There are two exceptions to this rule,
however.

No space for a static link pointer needs to be reserved in the activation record of a
function defined at global level because its lexical environment is known to be the global
environment and because it is clear at compile time whether an identifier refers to a global
variable.

Furthermore, a. function defined at global level does not need to be passed a pointer
to the lexically enclosing environment, because the lexically enclosing environment is the
global environment which is unique and has a known address.

These two exceptions together with the fact that C++ allows functions to be defined
only at global level make it possible to implement lexical scoping in C++ without using a
display, a static link chain, or passing around pointers to environments.

Adding space for the static link chain to the activation record of functions that are not
defined at the global level is trivial (they can be thought of simply as additional automatic
variables). Since the compiler always knows which a.bsolute lexical level an activation record
corresponds to, it is not a problem that the activation record for functions at the outermost
lexical level differs from that of activation records of functions at other lexicalleveIs.

What does present a significant problem is the fact that instead of just a pointer to
code, the invocation of a function at an inner lexical level in addition requires a pointer to
the proper activation record of the lexically enclosing function.

IT we want to be able to pass around pointers to functions at inner lexical levels freely,
this information must be passed around together with the pointer to the code of the function,
since this information cannot be derived in any other way.

As long as we are not using functions as arguments to other functions or assign functions
to variables, the compiler can silently take care of making sure that the information about
the proper lexical environment is passed along to the callee. However, as soon as we try to
pass around functions as data, we encounter a problem. In C++, only enough space for one
pointer needs to be reserved and passed around when defining and using a function pointer.
However, a closure, Le. a function with an environment req~ires two pointers in general, as
we have just seen.

Changing the representation of a C++ funct~on pointer to be two pointers large rather
than one pointer is unacceptable. This would mean, for example, that a "function pointer"
could not be assigned to a variable of type void. without losing information.

[3JThe base type of a collection is the type of the elements of the collection.

298 1988 USENIX C++ Conference

An alternative might be to introduce a new data type, "closure", that must be used to
express references to functions and their environment if those functions are not defined at
global level. Using implicit type conversions from function pointers to closures would allow
us to mix function pointers could be used in place of closures. However, closures could not
be passed to existing functions that expect function pointers. Furthermore, the language
becomes unnecessarily cluttered by two data types for essentially the same concept.

Clearly, neither of these alternatives is acceptable. Fortunately, there is a simple and
efficient solution. In fact, our solution is completely compatible with C++ and C. In
particular:

1. our closures can be used anywhere a C or C++ function pointer can be used, even if
the code using the closure was compiled with a compiler that does not know about
closures

2. the code generated for functions that do not contain nested functions does not change
when closures are added to the compiler

The code segment that generates a closure does so by generating a short segment of
code that loads the static link pointer into some known register and jumps to the function
(lines 0043-0046 in the listing below). At the beginning of a function, the contents .of the
register is moved into the static link field of the newly created activation record (line 0076).
In an assembly language similar to 68000 assembly language[4], this would look something
like:

;;; instruction for direct jump
lNST_JUMP equ Ox88888888

;;; instruction to load the 5L register with constant
lNST_LOADSL equ Ox77777777

; ; ; source code:
· .., , ,
·.. function1() {, , ,
·.. function2() {, , ,
·.., , ,
·.. }, , ,
, , , void (*x)();
; ; ; x=function2;
, , ,
·.. }, , ,

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

. 0016
0017
0018
0019
0020
0021

, , ,
·.., , ,
; ; ;
, , ,

machine registers:
FP: current frame
SL: a register that is used to hold the static link pointer

temporarily

[·JAssume that all data and instructions are 32bits wide. Temporary labels begin with a "$". The
ins~ructionaoveea moves the eft'ective address of its first operand into a location. The link instruction fills
in the "$dl" field of the activation record.

1988 USENIX C-++ Conference 299

link 4

link FP,28

move SL,$sl(FP)

;;; x=function2

code using x

function entry, as above

finish up

allocate space for the following variables:
void* $dl -- dynamic link chain
void* $sl -- static link chain
int $stub[4] -- space for machine code for closure
int (*x)() -- a function pointer
also sets up the dynamic link chain

·.., , ,

·.., , ,

·.., , ,

; ;; create closure for function2

unlink FP
return

move function1.x(FP),R1
call (R1)

moveea stub(FP),function1.x(FP)

move .INST_LOADSL,$stub(FP)
move FP,$stub+4(FP)
move 'INST_JUMP,$stub+8(FP)
moveea function2,$stub+12(FP)

; ; j

; ;; set up the static link chain

, , ,

, , ,

, , ,

..., , ,

..., , ,

$dl equ -4

function2:

$dl equ -4
$sl equ -8
$stub equ -24
function1.x equ -28

function1:0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0046
0046
0047
0048
0049
0060
0061
0052
0063
0064
0056
0066
0057
0068
0069
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069

300 1988 USENIX C-H- Conference

equ -8

move SL,$s!

unlink FP
return

0070 $sl
0071
0072
0073
0074
0076

·0076
0077
0078
0079
0080

..., , ,
; ; ;..., , ,

set up the static link chain
register SL was set up by the stub
code in functionl

The lifetime of the code array $stub is identical to the lifetime of the activation record
of functionl. This is reasonable, since the static link chain implicite1y defined by $stub
becomes invalid as soon as functionl exits[5].

This is the basic idea. There are several compile-time optimizations possible, some of
which we have already mentioned. If functionl is defined at global level, for example, it
does not need to reserve space for a static link chain in its activation record. If function2
does not reference any variables in the activation record of functionl, the compiler can
leave the activation record of functionl out of the static link chain handed to function2.
If function2 does not reference any non-local, non-global variables, its definition can effec
tively be moved to the global level (except for the scope of its name), and neither 1. static
link field nor a code stub needs to be generated inside functionl. If function2 is only
used within functionl and no closure is passed around, the code generating the stub code
can be eliminated since the compiler can geherate code to load register SL inUne just before
calls to function2[6].

3 How Efficient is It?

To see how efficient this scheme is, we have to compare it with alternative implementations.
The two most straightforward implementations are to represent a closure as either a struc
ture with two elements, a pointer to code and a pointer to the environment, or as a pointer
to such a structure.

The additional space required by our scheme consists of only the two machine instruc
tions contained in the stub code, and the two instructions inside functionl used to generate
the two machine instructions in the stub code. Assigning and passing closures is as efficient
as in the case where we use a pointer to a structure.

However, the overhead of closure creation is comparatively unimportant. As we have
seen above, the compiler has to create a closure only if a function pointer is to be passed
around. In our experience, a function pointer that is passed around·is usually used repeat
edly, so the overhead of invoking a closure is much more important than the overhead of
creating one.
. Let us look at the instruction sequences that are executed in each of the three different

implementations of closures. First, here is the instruction sequence for closures that are

[alWe willIam discuss possible extensions to extend the lifetime of a padicular static link chain beyond
the dynamic lifetime of the component activation records.

[OlIn fact, a restricted form of nesting where we disallow taking the address of functions defined at an inner
lexical levels can be implemented without extending the compiler to generate code stubs.

1988 USENIX c++ Conference 301

represented directly as structures(1). The closure consists of two machine words (pointers)
at offset x in the current activation record [S]:

move x(FR),SL
move x+4(FR),Rl
call (Rl)

In the case of a pointer to a closure, the calling sequence becomes a bit more complex.
Assume that px is the offset of the pointer to the closure in the current activation record[9]:

move px(FR),Rl
move (Rl),SL
move 4(Rl),Rl
call (Rl)

For our proposal, the sequence of instructions encountered is:

move px(FR),Rl
call (Rl)
move 'staticLink,SL
jmp function

We see that the instruction sequences executed when a function pointer to a function
requiring a static chain pointer is called are not too different. The major differences in
efficiency will probably come from cache and instruction prefetch effects. Some simple
experimentation indicates that on the 80386 a call/return pair that passes a static link
pointer along takes about 1.5 times as long as a simple indirect or direct function call. If
we use our proposed instruction sequence, this figure is increased to about 1.8 times.

4 Issues of Portability

To implement our proposal, it is necessary for a piece of code to be able to generate short
pieces of code at runtime and execute them; the generated code does not necessarily have
to be placed. on the stack, however.

This is possible and straightforward on most modem computer architectures like the
68000 series of microprocessors[Mot80], the VAX[Dig8Ib], and the 80386[Int87]. Even on
the PDP-II series processors with separate instruction and data space ("I and D spaces"),
the stack is ordinarily mapped. into both I and D space to permit execution of instructions
on the stack (in the standard PDP-Ii instruction calling sequence, the MARK instruction is
executed off thl! stack, see the PDP-ii processor handbook[Dig8Ia]).

There are, however, some architectures aIJ.d/or operating systems that forbid a program
to generate and execute code at runtime. We consider this restriction arbitraryllO] and
consider it poor hardware or software design. Implementations of programming languages

(7)These are Dot assembly language program fragments but traces of the assembly language instructioDs
executed during invocatioD of a closure.

(8)81 is some general purpose register.
(9)The contents of locations (81) and 4(81) in the following example could conceiw.bly be cached.

(lO)Such systems usually provide operating system calls to move data into the instrudion space, for example
for the benefit of a loader; however, the overhead of an operating system call is too high for the creation of
a closure.

302 1988 USENIX C-H- Conference

such as FORTH, Lisp, or Smalltalk can benefit significantly from the ability to generate or
modify code quickly at runtime.

We can use another trick to implement lexical closures even on these architectures. We
pre-a.1locate in instruction space an array of instruction sequence of the form:

move location_n,Rl
move (Rl),SL
move locatioD_n+4,Rl
jmp (R1)

We use this array as a sta.ck to allocate and deallocate closure stubs. A corresponding
array of locations in data space holds the actual pointers to the code and the static link
chain of the closures. These two new stacks behave essentially like the runtime stack. In
particular, longjmp must be modified to restore the two stack pointers for the stub stack
and the location stack appropriately.

5 Further Extensions

We observed in some of the above examples that often there is no need to name a function
explicitly. This is particularly so when we use iterators that take function pointers as argu
ments. The examples of Lisp and Smalltalk code given above involve unnamed functions.
We suggest to express an unnamed function as a cast of a compound-statement to a function
pointer. For example, the value of the following ezpression is a function pointer or a closure
(depending on the context):

(int (*)(int x»{ return x+l; }

Alternatively, we could introduce a new keyword, unnamed, and write the same construct
as

(int unnamed(int x){ return x+l; })

We prefer the first form slightly, but the second form may be easier to parse and allow
better syntax error detection and recovery.

The way we have proposed to implement closures limits their lifetime to that of the
activation record in which they were created. In order to make closures a data type of
the same standing as any other data type in C++, it should be possible to allocate and
deallocate closures. There are good reasons to provide closures that can be treated as data
structures. Abelson and Sussman[AS85] argue strongly for this feature, and in the Scheme
programming language[RC86] they are often used to build complex data types. However,
classes and structures provide much of the functionality of heap-allocated closures.

6 Conclusions

The ability to nest function definitions and to create lexical closures with at least dynamic
lifetime is an impo:,tant part of many modern programnling styles. Most modern program
ming languages provide it, and it can be incorporated into the C++ (and C) programming
language without affecting the efficiency of execution or meaning of programs that do not
take advantage of the feature. We would therefore like to see nested function definitions

1988 USENIX C-++ Conference 303

and lexical closures to be incorporated into the C++ language definition. We are currently
working on extending the GNU C[Sta88a][Sta88b] and C++[Tie88] compilers to provide
nested function definitions and closures. The availability of a good, free compiler with
source level debugger should encourage more people to use this feature.

Acknowledgements

I would like to thank Richard M. Stallman, Robert S. Thau, and many others who have
made useful comments on the proposal and the paper.

References

[AS85] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation 0/ Computer
Programs. MIT Press, 1985.

"
[AU79] Alfred V. Aho and Jeffrey D. Ullman. Principles 0/ Compiler DeBign. Addison-

Wesley, 1979.

[Dig81a] Digital Equipment Corporation. PDP-ll Processor Handbook, 1981.

[Dig81b] Digital Equipment Corporation. VAX Architecture Handbook, 1981.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implemen
tation. Addison-Wesley, 1983.

[Int87] Intel Corporation. 80986 Programmer's Reference Manual, 1987.

[Mot80] Motorola. Semiconductors Products, Inc. MC68000 16-bit Microproce88or User's
Manual, 1980.

[RC86] Jona.than Rees and William Clinger. The Revised3 Report on the Algorithmic
Language Scheme. Technical Report 84880, MIT Artificial Intelligence Laboratory,
September 1986.

[Sta.88a] .Richard M. Stallman. Intemals of GNU CC, April 1988.

[Sta88b] Richard M. Stallman. The GNU Debugger for GNU C++ Free Software, April
1988.

[Ste84] Guy L. Steele Jr. Common LISP: The Language. Digital Press, 1984.

[Tie88] Michael D. Tiemann. User's Guide to GNU C++, May 1988.

[Wir77] Nikla.us Wirth. Compilerbau. B. G. Teubner, Stuttgart, 1977.

[Wir79] Nikla.us Wirth. Algorithmen und Datenstrukturen. B. G. Teubner, Stuttgart, 1979.

304 1988 USENIX C++- Conference

Pointers to Class Members in C++

S. B. Lippman
B. Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRAOT

This paper discusses the syntax, semantics, implementation and use of
pointers to members. Pointers to members are necessary for the
completeness of the 0++ type system and relate directly to key design
and implementation issues. This paper shows how the design and
implementation of pointers to members is determined by the strategy for
object layout, by the implementation of virtual functions, and by the
need for an efficient function call mechanism.

1. Introduction

The introduction of a type-safe construct for expressing pointers to class members cleared up
one of the remaining holes in 0++111. Prior to this, there was no implementation-independent
way of declaring and using pointers to class member functions. In practice, the programmer
would hand translate a class member ftinction into its internal non-member representation.
That is, the programmer was forced to trick the type system.

The trick involved making the assumption that a member function was an ordinary C function
with an added first argument representing the 'this pointer (as explained and warned against
on page 154 of reference 121). This assumption had to be "wired intoU the user's code with casts
to override the type system. For example:

class X <
public:

void f(tnt);
};

typedef void (*pl)(...);

I () <
pI fake = (pf)&X::f;
X a;
(*falte) Caa,~) ;

}

II bad style

II assume a lot

II fake call

As with most uses of casts, this obscures what is going on; the compiler (and often the human
reader) cannot spot errors. Worse, by considering this code legal, the compiler is constrained to
generate working code for it - and this will in many cases mean sub-optimal code. In particular,
this code would not work were a 0++ compiler to take advantage of the special status of 'this
in member functions in order to generate a calling sequence that puts 'this into a register.
Another weakness of this style of "fakingU function calls is that it does not cleanly extend to
cope with virtual member functions.

This paper discusses what is needed in 0++ to ensure that a programmer will never have to
make this kind of unsafe assumption, write code this ugly, or force sub-optimal implementation
strategies on compilers. Naturally, the solution enables the usual pointers to function
techniques to be used for pointers to member functions without breaking the type system,
having to write spurious code, or sacrificing run-time efficiency or space.

1988 USENIX C* Conference 305

2. A Very Simple Object Model

Consider a perfectly abstract and general model of an object, such as might be used for a 0+-+
implementation designed to minimize the complexity of the compiler at the expense 01 space at
run-time. Consider this class:

clus X <
.. pll~llc:

lnt 1;
char .pc;
double d;
statlc sl;
Yold IDf(lnt);
Ylrtual vold vf(IDt);

);

An object is a sequence of slots; each slot points to a member. The elements appear in order.
There is an element ror each data or function member.

In this simple model we do not put the members themselves in the object, only pointers to the
members. This is to avoid problems stemming from the faet that the members are of quite
dilrerent typ. -an-d- reqoire-llirrerent amounts (and sometimes dirrerent types 01) storage. The
lirst slot is lert empty 80 that we can represent a pointer to no member 88 a plain zero.

-

pc

o
-'-

r--"""'i:-~ ~""d----

- Ii

-

306

EJ
-: ~ :... . -." ..-..... :. ,.-. .-. - ., . -

- -_.- --. -.~. -.- ----- -_. __ ._ ... ~ -----.- ... --~- -.. .. -_ ...-c:=J
F1sure 1. Simple Object Model

We can now address a member within an object by its index. For example 1's index is 1 and
.t's index is 6. Given such an index and an object we can apply the operation indicated by
the index on the object (ignoring type problems ror the moment).

This simple concept or a "index" or Uslot number" is the one that has been developed into the
0++ pointer to member _ concept. In essence, everything else is simply syntax and
implementation details: A pointer to member is a representation of a position in an object.

3. The C++ Object Model
The 0++ object model is derived from this model by optimizing Cor space and access time.
Data members are allocated directly in the object so that a pointer to a data member can be
represented simply as the member's location in the object, that is its offset in bytes from the
start oC the object:

1988 USENIX c++ Conference

o
10' i

char .pc

8

double d

us

Figure 2. The 0++ Object Model

The representation of a pointer to X:: 1 will be something akin to 0; the representation of
X: : d will be something akin to 8. We need to preserve 0 as meaning "pointing to no
member". This can be accomplished either by "wasting" a byte of storage at the beginning of
each object or by subtracting 1 at each access. Since there are typically many objects and few
member pointer accesses, the latter technique is used, so that a pointer to X: : 1 is represented
by 1 and a pointer to X: : d is represented by 9.

Instead of placing virtual functions in each object, we place a single pointer (the virtual table
pointer, or "vptr") to a table of pointers to virtual functions in each object (the virtual table, or
"vtbl"). Such virtual function tables can be shared by all objects of the same class:

la'i

char .pc

doubled

iIl'i

double d

o

nbl

X::IDI()(}

ill' X::.I

Figure 3. The 0++ Object Model with Virtual Table

A pointer to X: : vf should therefore be something akin to its index in the vtbl. Note that the
first entry in the vtbl is lert unused to allow 0 to represent "not pointing to any virtual
function" .

Pointers to non-virtual member functions are not allocated in the object at all; nor are static
data members.

Other optimizations or the general object model could be used ror 0++ implementations. The
general model itself might even be ideal for some purposes. Naturally, the implementation
details for pointers to members will difrer from implementation to implementation. We find it
useful, though, to base our discussion on a concrete example: The object model used for the
efront (a.k.a the AT&T Ot+ Translator) implementations of C++.

1988 USENIX c++ Conference 307

308

4. Pointers to Class Members: Type and Syntax

Consider

class X {
publlc:

lnt 1;
};

The complete type oC X: : 1 is "1nt member of class X". Consequently the complete type of a
pointer to X: : 1 must be "pointer to tnt, member of class X". In 0++ this type is written as
follows:

lnt X::*

A declar~tion of a pointer to member of class X of type 1nt looks like this:

lnt x: :*pIDX1;

and can be initialized like this:

lnt X::* pmXl =aX~:l;

The notation Cor pointer to member parallels the cla88-name::mem6er-name notation used for
explicit qualification of class members and appears minimal for the amount of information it
needs to convey. In the 0++ syntax cla,,-name:... is a component of a declarator exactly like •.
Here is a simplified grammar showing pointers to members:

declara'or I

• declara'or
lit. declortJ'or
cltJII-name II • decltJrtJlor
tleclortJ'or [ezpre,non]

and .similarly for abstract declarators:

tJ6,'rocl-tieclartJ'or I

emp"
• o6l'rtJcI-declartJ'or
cla'I-name II • tJ6"racl-declara'or
a6,'rac,-declartJlor [espre,rion]

Let us consider a larger example in detail:

class X (
publlc:

lilt 1;
cbar *pc;
const cl;
double d;
statlc sl;
vold foo(lnt);
vold bare double);
lnt foobar(lnt);
vlrtual vold vf(1nt);

};

1988 USENIX C++ Conference

lnt. 1;
class V { publlc: lnt. 1; };

lnt. X: :*pmXl =aX::l; II ok: legal lnlt.lallzat.lon

II each of t.he followlng asslgnment.s ls a t.ype vl01at.lon
II pmXl ls of t.ype lnt. X::*

pdl = al;
pIDXl = av:: 1;
pIDX1 = ax: :d;
pdl = ax: :cl;
pmXl = ax: :pc;
pmX1 = ax: :sl;

I I error I I
II error I I
II error I I
II error I I
II error I I
I I error I I

al ls of t.ype lnt. *
ay: : 1 1s of t.ype lnt. Y:: *
aX::d ls of t.ype double X::*
aX::cl ls of t.ype const. lnt. X::*
ax::pc ls of t.ype char X::*
aX::s1 1s of t.ype lnt. * (II see Sect.lon 7.1)

All these errors are caught at compile time.

4.1 Pointers to Member Functions: Declaration

The most common form of a pointer to member is a pointer to member function. The type
resulting from taking the address of the member function void X:: faa (int) is that of a
pointer to a member function of class X that takes one argument of type int and has a return
value of type void; that is,

vold (X:: *) Unt.)

Declarations of a pointer object with this type can look like this,

void (X::*pmfXV11)(lnt. =aX::vf;
vold (X::*pmfXV12)(lnt. =aX::foo;

II ...

pmfXVil =pmfXV12;

The following assignments to pmfXVil all result in compile-time type violations:

extern void foo(lnt.);
class Y { publlc: vold foo(lnt); };

II each of t.he following asslgnment.s ls a t.ype violat.lon
II pmfXV11 ls of t.ype vold (X::*)(lnt)

pmfXV11 =afoo;
pmfXV11 =aV::foo;
pmfXV11 = aX::bar;
pmfXV11 =&X::foobar;

II error I I foo ls of t.ype vold (*)(lnt.)
II errorl! V::foo ls of t.ype vold (V::*)(lnt.)
II errorl! X::bar ls of t.ype vold (X::*)(double)
II error!! X::foobar ls of t.ype lnt. (X::*)(lnt.)

Like pointers to functions, pointers to member functions are often declared as arguments to
functions. For example,

ext.ern lnt. f(lnt. (X::*)());

declares a non-member function f to take or e argument of type pointer to member function of
X taking no arguments and with a return value of type int.

Declarations of pointers to "ordinary" functions are often hard to read; as one would expect,
declarations of pointers to member functions are no better. As usual, this problem can be
ameliorated by using typedef declarations.

1988 USENIX c++ Conference 309

~ype4ef iD~ (X::*pmf1 X)();
exterD 1D~ I(pml1_X y;

Pointer to member function arguments may take default argument initializers. For example,

class Example {
public:

};

vold ml 1() { cou~ « -Example: :mf 1 called-; }
vold mt:2() { cou~« -Example::mt:2 called-; }

~ypedet vold (Example::*PKFv_Example)();
PKFv_Example pmt = tExample: :1111_1;

exterD vold f(PKFv_Example = tExamplt::mf_l);

to;
f (pml);
I(tExample::mf_2);

II Example::mf_l called (default argumeDt used)
II Example::ml_l called
II Example::mf_2 called

Class member function pointers may be class members themselves. For example,

class ScreeD {
publlc:

tDUm { WIDTH, HEIGHT };
1Dt (ScreeD::*pml)();

getWld~h() {return wldth; }
getHelght() { return helght; }
const Screent operator=(cODst Screent);
vold pmISet(lnt=VIDTH);
II ...

};

vold Screen::pmfSet(lnt 1) {
swltch (1)
{
case WIDTH:

pml = aScreen::getWldth;
break;

case HEIGHT:
pmf = aBcreen::getHelght;
break;

II
}

}

MyScreeD.pmfSe~();

MyScreeD.pmf8et(ScreeD::HEIGHT);
II Myscreen.pmf = aBcreeD::getWldth;
II MyScreeD.pm! = aScretn::getHtlght;

310

5. Pointers to Class Members: Function Call

A member function must always be invoked for a specific object of its class. Consequently, to
invoke a member function through a pointer to member, an object must also be supplied. To
accomplish this, two new operators (. * and ->*) have been introduced. For example,

1988 USENIX C++ Conference

1nt (Screen::*pmfl)() = Screen::getHeigbt;
const Screen. (Screen: :*pmfv) (const Screen&) = aScreen: :operator=;

Screen MyScreen. *BufScreen;

II direct lnvocation of member functlon
if (MyScreen.getHeigbt() == BufScreen->getHeigbt()) *BufScreen = MyScreen;

II same invocation througb pointers to members
if ((MyScreen.*pmfi)() == (BufScreen->*pmfi)()) (BufScreen->*pmfv) (MyScreen);

The calls (MyScreen. *pmfi) () and (BufScreen->*pmfi) () require the parentheses
because the precedence of the call operator () is higher than the precedence of the .*
operator. Without the parentheses MyScreen. *pmfi () would be interpreted to mean:
NyScreen. * (pmfi (». The . * and ->* operators have a precedence higher than binary *
but lower than . and ->:

->
->* .*
* I I
+
» «

Like most C++ operators, . * and ->* are left associative. Both . * and ->* are treated as
single tokens.

Within st. member function, the class object that has invoked the member function is available
through the explicit use of the this pointer. For example,

class Y {
public:

typedef lnt (Y: :*PMF1_Y)();

II explicit use of this pointer
int mf_f(PMFi_Y pmf) {return (tbls->*pmf)(); }
int mf ff() { return ++i; }
Y() - { i =mf_f(Y::mf_ff); }

private:
static 1nt 1;

}

Y a;
maln () { Y z; }

II Y::l = 1;
II Y::l =2;

A pointer to member function passed as an argument to a non-member function can bind its
call to a class object in a number of ways:

1988 USENIX C* Conference 311

II Example ls def1ned on page 8
Example global;

vold f(Examplea ob3, PMFv_Example p =aExample::mf_l)
{

}

Example local;
Examplea ff 0 ;

(global. *p) 0 ;
(local. *p) 0 ;
(ob3 .*p) 0;
(ff 0 .*p) 0 ;

II call through a global class ob3ect
II call through a local class ob3ect
II call through class ob3ect passed as reference
II call through a returned class ob3ect

};

Names of pointers to class member of course obey the usual constraints of information hiding.
For example,

class X;
typedef lnt (X::*pmf_X)();

class X
{
frlend Fo020;
publlc:

mf_pubO;
protected:

mf_protO;

pmf_X pp =ax::mf_prot;

Fo020
{

II 111egal: X::mf_prot ls protected I

};
pmf_X pp =ax::mf_prot; II ok within the fr1end member scope

312

6. Pointers to Class Members: Data Member Access

A data member of a class must always be accessed for a specific object of its class. This is also
true of a pointer to a class data member. Consider the following class:

class X {
publlc:

XC);
X(Xa Z, 1nt X::* p);
operator lnt X::*();

protected:
lnt 1;
double d;

};

The second constructor for X take a second argument of type pointer to a data member of class
X of type into For purposes of illustration, it is defined as follows:

II z.*p ==> y1elds the value of x.l
X: :X(D x, 1nt X::* p) : 1(x.*p)
{

II th1s->*p ==> y1elds the value of thls->l
d = dOUble (thls->*p) ;'

}

Conversion operators for pointers to class .members may be defined. As an illustration, X
provides a conversion operator for int X: : •.

1988 USENIX c++ Conference

II Ilno~: (1n~ X::*)~his->i;

X::opera~or 1nt X::*() { return ax::1; }

Let's see how these may be used:

X a;
1nt X::* p1_X =a; II ok: X: :operator 1ntX::·O calle4 for a

X b =X(a. p1 X);
X .px =nev Xla. b); II ok: X: :opera~or tnt X: :.0 called for b

Here are some examples of accessing a data member through pi_X.

fO {

}

a.*p1_X =1024;
b.*p1_X =a .•pl_X;

*px .•pl_X =a .•pl_X + b.•pl_X; II evaluated as (.px) .•pl_X
a .•pl_X =px->.p1_X • b .•pl_X; II evalua~ed as (px->*pl_X) • (b .•pl_X)
a .•p1_X =.px.*b; II evalua~ed as «*px) .•)b.operator lnt X::.()

Pointers to class members may be used to access a member of a specific object, cast (see Section
9) or, if they are of the same pointer to class member type, compared using the equality and
inequality operators. For example,

ftO
{

double X::. pd_X =(double X::.) pi_X;
1f (pd_X 1= (double X::.)p1_X)

}

7. Implementation Details

Class membership comes in four navors: data members, static data members, non-virtual
member functions and virtual member functions. We have seen how they are represented in
memory (see Figure 3). In this section, we will look at how the program text might be
transformed to renect the internal class representation. (A highly portable method of code
translation is the generation of C. This is reneeted in our examples.)

7.1 Static Class Members

Only one instance of each static member exists for a given class. A pointer to a static member
is treated outside the pointer to member elass syntax. Consider:

class X {
public:

stat1c 81;
};

1D~ .p1 =ax::s1;

Applying the address-of operator, a, to X:: 8i yields a value of type into* and not into
X: : *. This directly reflects the underlying implementation and allows optimal code generation,
but it does except pointers to static members from the usual rules for pointers to class members.
One reason for this "abnormality" is that it would allow the concept of a static member to be
extended to include static function members. A static function member would be a non
member function within the lexical scope of a class. Such functions could be quite useful.

1988 USENIX c++ Conference 313

7.2 Class Member Functions

The following is a simplified definition of a general Screen class:

class Screen {
pUbllc:
// cursor func~lons

vold move(ln~ x.ln~ 1) { cursor =screen + (x*vld~h + 1-1; }
vold home() { move(o.O); }

prlvate:
shor~ vld~h;

shor~ helgh~;

char *screen;
char *cursor;

};

Screen MyScreen;

How is code generated for the member functions of Screen? A generally portable internal
translation of Screen::home and Screen::move might look like this,

~hls->cursor =~bls->scrttn + x*tbls->vld~h + y;

move__Screen(~bls. 0, 0);

move__Screen(~hls. x. 7)
regls~er struct Screen *~hls;

lnt x. ,;
{

}

bome Scretn(~bls)
s~ruct Screen *~bls;
{

)

/* C code */

Each member function is translated by the compiler into an equivalent uniquely named non
member function. Membership is an association the compiler maintains between a class type
and its member functions. One link in this association is a class pointer argument the compiler
adds to the argument list of each of :ts translated member ." ~ctions. The name given to the
argument is tibis.

The tibis pointer provides the binding of the the member function and the object for which it
is called. The tibis pointer holds the object's address. To achieve this, the compiler translates
each member function call. For example,

MyScrten.homtC);

becomes

314

while

becomes

hOlle__Screen(aMyScreen),

Scrttn *TmpScretn =aMyScretn;
TDpScreen->move(x. 1);

/* C code */

1988 USENIX C+f- Conference

struct Screen *TmpScreen =aMyScreen; /* C code */
move__Screen(TmpScreen. x. y);

7.3 Virtual Functions under Single Inheritance
Consider this simple inheritance graph,

class ZooAnimal {
public:

void locate () ;
virtual void draw();
virtual void debug(int);
virtual ls0nLoan();
//

};

class Bear : public ZooAn1mal {
public:

void draw();
void debug(int);
virtual Datea bibernates();
// ...

};

ZooAnimal defines three virtual functions, draw(}, debug and isOnLoan(}. Bear, derived
from ZooAnimal, will supply its own instance of draw() and debug(} but wishes to share
ZooAnimal's isOnLoan () function. In addition, Bear introduces the virtual function
hibernates ().

The pointer to the virtual table is present in the base class (see Figure 3) and in inherited by
subsequent derivations. The address of each virtual function is stored ata fixed index into the
table. (The function draw(), for example, is always the first entry, debug() the second, and
so on.) If a derived class defines its own instance of the virtual function, such as Bear's instance
of draw(), the address of that instance is entered into the virtual table; otherwise, by default,
the address of the base class instance is entered.

Each call of a virtual function is translated by the compiler. The virtual function name serves
as an index into the virtual table. (The function draw(), for example, indexes table slot 1,
debug () table slot 2, and so on.) The internal function call is the indirect invocation of the
function whose address is present in the slot at run time. For example,

for (ZooAnlmal *p = pZ; p; p': p->n_l1st) p->drav();

becomes

struct ZooAn1mal *p;
// vptr 1s tbe object's pointer to Its table of
// virtual functions (see Figure 3).
for (p : pZ; p; p =p->n_llst) /* C code */

(*p->vptr[l]) (p);

7.4 An Implementation of Pointers to Member Functions tor Single
Inheritance

A pointer to a class data member will hold the byte offset into the class object. What will a
pointer to a class member function hold? It will hold either an address of a non-virtual member
function or an index into the virtual table for that class. On most machine architectures, a
simple trick can be used to distinguish between the two navors without the use of a

1988 USENIX c++ Conference 315

discriminant. For example, given the declarations

ZooAnimal .pz;
void (ZooAnimal::.pmfv)();

plIlfv may point to either the virtual function ZooAnimal::draw or the non-virtual
ZooAnimal::locate. Its invocation

(pz->.pmfv) () ;

needs to distinguish between a function address and virtual table index if not to invoke a run
time disaster. It can do so by the following general translation:

«(in~) pmfv) a (-127»
? (.pmfv) (pz);
: (.pz->Yp~r [«(tnt) pmfv)]) .(pz);

II a real func~ion address I
II an index into the virtual table

316

Of course, this implementation assumes a limit of 128 virtual functions to an inheritance
graph. This is not desirable but in practice it has proved viable. The introduction of multiple
inheritance, however, requires a more general implementation scheme and provides an
opportunity to remove the limit on the number of virtual functions.

8. Derived and Base Class Member Pointers

A predefined, standard conversion guarantees that a pointer to an object of a derived class is
implicitly converted to a pointer to a public base class. This holds even if the base class is
virtual. For example, given the following simplified inheritance chain:

class Endangered <public: in~ adjustPopula~lon(int); };
class ZooAnlmal { public: vold drav(); ln~ pz; };
class Bear: publlc vlrtual ZooAnlmal <public: vold drav(); lnt pb; };
class Raccoon: Virtual publlc ZooAnlmal <public: vold drav(); };
class Panda: publlc Bear. publlc Raccoon. publlc Endangered

<publlc: vold drav(); ln~ pp; };

pointers to objects of type Bear, Raccoon and Panda may all be assigned to a pointer of
type ·ZooAn1mal. This navor of implicit conversion is safe because each derived class is
guaranteed to contain a base class object. (A discussion of the implementation of derived class
objects can be found in (8).)

The opposite conversion, however, is not safe and requires an explicit cast on the part of the
user. For example,

Bear .pb =nev Panda; II ok: lmpllcl~ converslon
Panda .pp =nev Bear; II error: requlres expllcl~ converslon
Panda .pp = (Panda .) nev Bear; II ok: but dangerous

A Panda object will always contain a Bear part. However, a Bear object mayor may not
contain a Panda part depending on what it has been set to last. The following sequence
assigns 1024 to an undefined location in memory:

1988 USENIX C-H- Conference

Bear b;
Bear· *pb =new Panda; II ok: lmpllcl~ converslon
pb =ab; II pb no longer addresses a Panda ob1ect
Panda *pp = (Panda *) pb; II oops: no Panda part
pp->pp =1024; II disaster I

Users familiar with this behavior by habit extend it to pointers to class members. They assume
a derived class member may safely be assigned to a public base class pointer to class member. A
moments thought, however, reveals that this is not the case.

The class member pointer is derererenced for a specific object of its class. This means that the
base class pointer to class member will be bound to a .base class object. This object mayor may
not contain a derived class part depending on what it has been set to last. If it does not contain
a derived class part, the dereference is not safe. All references to memory allocated to the
derived class part are undefined.

On the other hand, a derived class object is guaranteed to contain a base class part. Therefore,
it is always safe to assign a member of a public base class to a derived class pointer to class
member. The behavior of pointers to class members is the reverse of the predefined, standard
conversion. For example, it is safe to assign a Panda pointer to class member a class member
of ZooAn1mal, Bear or Raccoon. The reverse assignments, however, will require an explicit
cast. For example,

ln~ Panda::* pmP =aZooAnlmal::pz; II ok: lmpllcl~ converslon
lnt Bear::* pmB =aZooAnlmal::pz; II ok: lmpllclt converslon

f(Bear ab) { lf (b.*pmP 1= b.*pmB) 1* ... *1; }

vold (Panda::*pmfPl)() = aSear::draw; II ok: lmpllcit conversion
void (Panda::*pmfP2)() = aRaccoon::draw; II ok: implicit conversion

I(Panda ap)
{

switcb (p.*pmP) {
case GIANT PANDA: (p.*pmfP1)(); break;
case RED PANDA: (p.*pmfP2)(); break;
II -
}

}

o. Casting

Pointers to class member functions may be explicitly cast to a pointer to any non-member
function type. The reverse cast, however, is not legal. A pointer to a non-member function may
not be cast to a pointer to class member function. For example,

extern f(void(*)());
void (*ptv) () ;
void (Panda::*pmf_Panda)();

I((vold (*)(»pmf_Panda); II ok: requires an ezplicl~ cast
pfv = (void (*)(»pmf_Panda; II ok: requires an .xplici~ cas~

/1 illegal: may not cast to a pointer to class member
pmt_Panda = (void (Panda::*)(» plv;

Each explicit cast of pmf_Panda tests for whether it contains an address or index, and assigns
the proper field to pfv. When there is no possibility of pmf_Panda addressing a virtual
function, the test is not generated and the f part is assigned directly. This sort of explicit cast
is unsafe but is necessary to avoid breaking existing code.

1988 USENIX c++ Conference 317

318

Pointers to class member functions may be explicitly cast to a pointer to void. The reverse cast,
however, is illegal since information is lost in the cast of a void•. For example,

ex~ern f(yold*);
Yold *PY; .
vold (Panda::*pmf_Panda)();

f((vold *)pmf_Panda); II ok: requlres an expllcl~ cas~

pv = (yold *)pmf_Panda; II ok: requlres an expllcl~ cas~

II lllegal: may no~ cas~ ~ a poln~er ~o class member
pmf_Panda = (vold (Panda::*)(» pv;

The explicit cast of a class member address must include both the class and data type of the
conversion. For example,

II cas~lng a po1nter to a der1ved member ~o a
II po1n~er ~o a base member requ1res an exp11cl~ cas~

ln~ ZooAnlmal::* pmZ = (ln~ ZooAnlmal::*) aBear::pb;
f(Bear.ap) <re~urn «ZooAnlmal)p).*pmZ;)

vold (ZooAnlmal::*pmfZ)() = (vold (ZooAnlmal::*)(» aBear::draw;
vold ff(Bear ap) < «(ZooAn1mal)p).*pmfZ)(); }

Recall, the value of a pointer to a class data member is the member's byte offset into the class
object. It is stored as a short. A pointer to a class data member may be explicitly cast to any
data type a short. value may be cast to. It is illegal to cast a non-pointer to class data
member into a pointer to class data member. An attempt to do so will result in a compile-time
error.

10. An Implementation of Pointers to Member Functions for Multiple
Inheritance

Consider this multiply derived inheritance graph:

class Endangered <
publlc:

vold adjus~Popula~lon(ln~);

vlr~ual vold blgbllgb~();

Ylr~ual vold lnform();
II ...

};

II Bear and ZooAnlmal are deflned on page 11.
class Panda: publlc Bear, public Endang.r.d <
publlc:

Yold onDlsplay(); II non-Ylr~ual member
Yold draw(); II r.d.fln.s B.ar::draw
vold debul(ln~); II redlfinls Blar::dlbug
void lnform(); II ridefines EDdangered::inforD
vlr~ual Tlmea feedlngHours();
II ...

};

In a portable implementation of virtual functions under multiple inheritance, it is no longer
enough to have the index into the virtual table.lsi• For example, an invocation of the
highlight () virtual function will require an additional offset. Since Panda has not defined
its own instance, the Endangered instance will be called. highlight.() expects a pointer to
an Endangered class object. This additional offset will locate the Endangered this pointer
within a Panda class object. (This is illustrated in Figure 4.)

1988 USENIX C-H- Conference

I ZooAnimal::iaOnLo&n(){}
Bear part.

Endangered part.

Panda part

--

I---

Panda/Bear vt.bl -.~
0

0 0 --
0 0 --
0 0

I0 0 ---
0 0

0

0 0

12 0 -~

Endangered vtbl --

Pa.nda::drawO{ }

Panda::debugO{ }

Bear::biberna.tesO{ }

Panda::feedingHoursO{ }

Panda: Bear, Endangered

Endangered::blgbllgbl(){ } I'

I Panda::inrorm(){}

Figure 4. Multiple Inheritance Virtual Function Layout

A pointer to member function, in order to handle non-virtual functions, virtual functions tJnd
possible multiple virtual tables, requires three elements:

• an offset, or delta, d, to permit computing the appropriate 'this pointer,

• an index, 1, into the virtual table, and

• an address, f, of a non-virtual function address, or an offset, d2, of the vp'tr in the object
identified by d.

In addition, there needs to be some discriminant to determine if the pointer contains an index
or an address. However, since an index is only valid as a non-negative value, a negative index
can be used to nag the presence of a non-virtual function address. This allows the
representation of a pointer to no function to have the traditional It all zeros" representation.

A pointer to class member function, therefore, is defined as a structure or the form

1988 USENIX C* Conference 319

typedef int (* vptr)();
class Hemptr {
public:

};

short d;
short i;
union { vptr f; short d2; }

};

};

320

Note that the virtual table itself is simply an array of pointers to members (Memptr []). The
virtual table pointers inserted within a class object are pointers of type Memptr, and of course
are set to point to the first entry of the virtual table (See Figure 4).

For example, here is how an initialization of a virtual member function address to a pointer to a
class member function is handled:

void (Panda::*pmfv)() =aPanda::feedlngHours;

becomes

struct Hemptr pmfv ={
o. II pmfv.d. offset. finds a base class this pointer
4. II pmfv.i, 6th entry in Panda/Bear virtual table
o II. pmfv.f. address. set for non-virtual member functions

Similarly, an initialization of a non-virtual member function to a class member function is
handled as follows:

void (Panda::*pmfv)() =aPanda::onDlsplay;

becomes

struct Hemptr pmfv =<
o. II p.fv.d, offset, finds a base class tbis pointer
-1. II pmfv.i. negative entry means address of function is stored
onDlsplay__Panda II pmfv.f, address set to program function instance

The most complicated example is a virtual function declared in a second (or subsequent) base
class:

VOid (Panda::*pmfv)() =aPanda::highlight;

becomes

struct H8Dptr p.fv ={
12. II ,.fv.d. offset of Endangered part of Panda object
1. II p.fv.i. hlghlight"S entry in Endangered"s vtbl
4. II p.fv.d2. offset of Endangered"s vptr

};

Finally,

void (Panda::pmfv)() =0;

becomes

1988 USENIX C-H- Conference

s~ruc~ Memp~r pmfv = { O. O. 0 };

A call of the member class pointer switches on a test of the index, as follows:

Panda * pp;
(pp->.pmfv) () ;

becomes

s~ruc~ Panda * pp; 1* C code *1
cbar* ~emp = «cbar*)pp)+pmfv.d;
(pmfv.1 < 0)

? (*pmfv.f) (temp); II non-virtual member function call
: II vlr~ual function call using vlr~ual table
(*«(memptr*)(~emp+pmfv.d2)->vptr[pmfv.l] .f)(temp + pp->vptr[pmfv.l] .d»;

Conversions between pointers to class members of a derived class and a 2nd or subsequent base
class need to adjust member offsets. For a pointer to class data member, this means adjusting
the physical offset by the s1zeof the intervening base classes. For example, in a conversion
between Panda and Endangered, the combined sizes of Bear and Re.ccoon must be either
added or subtracted:

ln~ Endangered::*p_Endangered;
ln~ Panda::. p_Panda;

II p_Endangered == 1
p_Endangered = aEndangered::pe;

II ok: lmpllcl~ conversion
II p_Panda ==> p_Endangered+slzeof(Bear)+slzeof(Raccoon)
p_Panda = p_Endangered;

II reqUires explicit cast
II p_Endangered ==> p_Panda-sizeof(Bear)-sizeof(Raccoon)
p_Endangered = (int Endangered::.)p_Panda;

For a pointer to a non-virtual class member function, the d offset will be set plus or minus the
combined size of the intervening base classes. For example,

void (Endangered: :.pmf_Endangered) (lnt);
void (Panda::*pmf_Panda)(lnt);

II paf_Endangered == { O. -1. aadjustPopulatloD }
paf_Endangered = aEndangered::adjustPopulation;

II ok: lmpllcl~ conversion;
II pmf_Endangered == {
II II offse~ of Endangered par~ of Panda
II slzeof(Bear)+slzeof(Raccoon).
II -1.
II aadjustPopulatlon }
paf_Panda = pmf_Endangered;

A pointer to a virtual class member function will also need to set d2 to offset into the relevant
vp'tr.

1988 USENIX C++- Conference 321

322

The second offset d2 is necessary because it is not possible to assume that the vpt,r is in a
fixed position in every object. In particular, unless we make room for a vpt,r in every object, it
is not possible to make the vp'tr the first word of an object. For example:

st.ruct. S {
1nt. sl;
1nt. s2;

};

class D : pub11c S {
v1rt.ual f () ;
1nt. dl;

};

The S part of a D may be used in a context where it is not known that it is a part of a D.
Therefore, D's vptr must be allocated after 81 and 82.

Conclusions

Pointers to members are important because if they were left out of 0++ they would leave a hole
in the type system. This would force people to "cheat" and force implementors to use sub
optimal techniques to allow such cheating. The design and implementation of pointers to
functions was determined by syntactic, semantic, and implementation details of other language
features to such an extent that it could be claimed that they were discovered rather than
invented. Pointers to members are most often used in ways that closely resembles the use of
pointers to functions; hence the name "pointers to functions." The introduction of multiple
inheritance complicated the originally very simple implementation of pointers to members, but
also caused a unification of the concept of a pointer to member and an entry in a virtual
function table.

Acknowledgements

The design of the pointer to member concept was a cooperative effort by Bjarne Stroustrup and
Jonathan Shopiro with many useful comments by Doug McDroy. The notion of static member
functions is due to Jonathan Shopiro. Steve Dewhurst contributed greatly to the redesign of
the pointer to member implementation to cope with multiple inheritance. Thanks to all who
commented on earlier versions of this paper and/or found errors in the early implementations.

1988 USENIX C+f- Conference

REFERENCES

1. "The Evolution of 0++: 1985 to 1987", B. Stroustrup, Proceeding8, USENIX C++
Workshop, 1987.

2. The 0++ Programming Language, B. Stroustrup, Addison-Wesley, 1986.

3. "Multiple Inheritance for 0++", B. Stroustrup, Proceedings, EUUG Spring '81 Conference,
Helsinki, 1987.

1988 USENIX C-H- Conference 323

324 1988 USENIX c++ Conference

1988 USENIX c++ Conference 325

326 1988 USENIX Cf+ Conference

'EXCEPTION HA'NDLING
WITHOUT LANGUAGE EXTENSIONS

William M. Miller, Software Development Technologies, Inc.

ABSTRACT

Exception handling is defined and its relevance to an object
oriented programming language such as C++ is explored. Design
goals for exception handling methods are discussed, and an
implementation of one suc~ method not requiring extensions to the
C++ language is descri bed.

1. Introduction

An exception is an event which derails the "normal" processing of a program.
Such events may arise from within the program (exceeding the bounds of an
array, for example), from services used by the program (no more memory is
available for allocation), from data used by the program (unsuccessful conversion
attempt), or from external causes (the user hit "break").

In small programs, recovery from the failure of an operation can usually be
done most effectively at the point at which the problem was detected. As
program size and complexity increase, however, issues of modularity make error
recovery at the point of failure less and less appropri~te. In a large program
the method of handling an error will typically depend more on the context from
which a general-purpose service routine was called than on the nature of the
function itself. Thus, the major challenge of exception handling is the transfer
of information and control from the code detecting the problem into a context
suitable for resolving it.

In languages such as Ada [1] and PLII [2], exception handling is provided by
native features. C++, however, reflecting its origins in the "bare bones"
approach of the C language, currently affords no such assistance to the
programmer. Ironically, the other strengths of C++ make exception handling
almost essential. As an object-oriented language it is intended to facilitate the
development of software components which can be used without modification in
a wide variety of environments, and clearly the methods which should be used
for error recovery will vary in different applications. Furthermore, one of the
staple techniques used in other languages which do not provide built-in exception

1 The work described in this paper was the subject of a previous article by
the author [3], who retains rights to the material published therein.

1988 USENIX c++ Conference 327

328

handling - returning a completion status - is inappropriate for functions which
are invoked via overloaded operators.

Although the seriousness of this deficiency in C++ has been recognized and a
proposal to extend the language to include exception handling has been
outlined [4], at this writing the proposal is still in embryonic form and the date
at which such a feature might become available is unknown. The remainder of
this paper presents an approach which, though not without weaknesses, can be
implemented to address the problem in the short term.

2. Desip Considerations

The major function of an exception handling mechanism as described above is
to pass information and control from the point at which a problem is detected
to a context in which the correct recovery strategy may be applied. In more
concrete terms, this means that a given function or block can establish a handler
which will be invoked if an exception is subsequently raised in that block or in
one of its direct or indirect dynamic descendants. The following design goals
should be kept in mind in considering any approach to exception handling:

2.1. I'lezible RecoverY Actions

There are at least three possible actions a handler ought to be able to take when
invoked by an exception:

• abort the operation currently in progress and transfer control to some
location within the context of the block which established the handler
(this option is the only one allowed in the current proposal for built
in exception handling)

• retry the operation, presumably after repairing the condition which
led to the problem

• abdicate handling the exception, allowing it to propagate to a handler
established earlier in the stack

u. Traasparency

This criterion requires that intervening code between the handler and that
raising the exception need take no special action to facilitate transfer of
information and control to the handler. In particular, code should not have to
check for completion values and do manual cleanup and propagation of error
conditions.

It is this latter consideration which causes the most trouble for C++. The setJmp
and longjmp functions are available to perform the abort action described in the
preceding section; however, these functions were inherited from C and have no
way of detecting that the stack frames being discarded may contain objects with

1988 USENIX C++- Conference

destructors. This failure to invoke destructor code makes setjmp/longjmp
unsuitable by themselves for use in a C++ environment.

2.3. Hlp laformadoD Bandwidth

This requirement refers to the ability of the code detecting an exception to
exchange information with the handler and is actually implicit in the first
design goal. For example, the decision to abdicate from the processing of an
exception would almost certainly be based on details concerning the exact nature
and cause of the exception, else why would the handler be present at all?
Similarly, the decision to retry an operation would usually involve communicating
some modified information back to the exception-producing code, lest the same
problem cause another exception.

2.4. Low Performance Overhead

Although good performance is an obvious requirement for any design, the
particular emphasis in exception handling must be to reduce the overhead
encountered when an exception is not raised. In the vast majority of cases,
processing will be normal and exceptions will not be encountered, so the penalty
for having the feature and not using it must be reduced as far as practical.

2.5. Portability

Any proposal must not rely on intimate knowledge of machine-specific informa
tion such as the format of stack frames; otherwise the availability of the
approach will be limited to gurus and those with access to them.

3. An Interim Approach

Although the ideal solution would be to have exception handling implemented
as an integral part of the language, it is possible to satisfy the listed design
goals to a large degree within the current definition of C++. In brief, the
approach described below utilizes a stack of all objects with destructors which
grows and shrinks in parallel with the call stack and which is used to destroy
objects prior to invoking longjmp to perform an abort operation. Exception
handlers are implemented as a function containing the code of the handler and
an object which associates the function with a given block.

The design is described below in four parts. The first part discusses a class
which maintains the parallel stack and provides the necessary hooks for cleaning
up prior to an abort operation. The second part covers issues related to transfer
of information to and from exception handlers. The third describes the class
used to establish an exception handler. The final section discusses the code
necessary to raise an exception.

1988 USENIX c++ Conference 329

330

3.1. The dcall_Jl-06j Class

As mentioned above, the major problem in C+f- with respect to exception
handling is the fact that longjmp is not capable of invoking the destructors of
objects created in the stack frames it discards. This design addresses the issue
via a class which implements the stack of objects with destructors (see Listing 1
below). The cleanup_obj class provides a base from which may be derived
classes requiring cleanup in the event of an abort.

The stack is implemented as a doubly-linked list. The simpler singly-linked
organization is not adequate because strict LIFO removal is not guaranteed; for
instance, current implementations of cfront invoke both constructors and
destructors of array members in increasing order of subscript. Also, this
mechanism can be used for objects created with the new operator, which allows
for arbitrary order of removal.

Two constructors are provided for the cleanup_obj class. The first takes no
arguments and simply pushes the object unconditionally on the stack. The
second takes an integer argument which, if non-zero, causes the object not to be
pushed. This second constructor is included to facilitate the use of cleanup_obj
with objects created via new. In some circumstances objects allocated in the
heap are to be used as local temporaries and should be cleaned up in the event
of an abort; other such objects may be intended for longer duration and should
survive an abort. The second constructor allows this flexibility at the expense
of a bit more execution time overhead.

Because C+f- does not allow invoking destructors directly in an implementation
independent fashion, classes derived from cleanup_obj must not supply their
own destructors. Instead, code which would ordinarily have occurred in a
destructor should instead be placed into the cleanup() member function, allowing
it to be invoked both during an abort and by the cleanup_obj destructor. In
addition to the class-specific actions normally performed by the destructor, the
derived cleanup() function must invoke cleanup_obj::cleanup() at some point in
its processing in order to remove the object from the stack.

A further responsibility of the derived class, and particularly the cleanup()
function, is to manage the storage used by the object itself. If the object was
allocated in the heap via new, that storage will not be freed automatically
during an abort operation because the destructor is not invoked. If a
cleanup_obj class is to be used with new, the derived class constructor must set
a flag in the object indicating whether the storage is in the heap or otherwise
(testing the value of this for zero upon entry to distinguish these cases and then
setting it explicitly). The cleanup() function is invoked with an argument which
is non-zero to indicate that the object is being destroyed as the result of an
abort OPeration, and if both an abort is in progress and the storage was allocated
in the heap, the object should be deleted as the last operation before returning.
Unfortunately, this storage management calinot be relegated to I the base class
because there is no implementation-independent way for the base class construc
tor to determine whether the allocation is static, automatic, or in free store.

There are two features of the new language definition (reflected in cfront
version 2.0) which will improve cleanup_obj. The first is the class-specific new

1988 USENIX c++ Conference

operator, which will allow the base class to assume the burden of storage
management described in the preceding paragraph. The second is multiple
inheritance. It may be awkward or even impossible to have to derive classes
from cleanup_obj because they actually need to be derived from a different base
class. With multiple inheritance, that will no longer be a problem.

3.2. Exception Types

One of the design goals mentioned earlier was to allow unlimited bandwidth
into and out of an exception handler. This feature is provided by the
exception_type class and its derivatives (see Listing 2). In its simplest form, an
exception_type object contains information about the exception to be communi
cated to the handler. The member exc_num can be used to identify the kind
of exception which occurred (e.g., subscript out of bounds, heap full, etc.), while
msgJmt and the virtual member function msg_text() give access to a printable
message describing the problem. In addition, return_allowed determines whether
or not an exception handler can request a retry or continuation of the processing
which raised the exception.

Classes derived from exception_type can provide much more information to the
handler about the details of the exception, including a version of msg_text()
which uses the additional information in constructing the printable message.
Furthermore, members can be included to allow the exception handler to
communicate information back to the point of the error for use in a retry of
the failing operation. The msgJmt_args class is provided so that classes
requiring use of sprintj() to generate a message utilizing some or all of the
additional information will have a buffer to use.

An alternative implementation of exception_type was considered before settling
on the version reproduced in Listing 2. This alternative used one derived class
for each kind of exception. This approach was rejected for two reasons. First,
in view of the fact that there might be literally hundreds of kinds of excep
tions, it seemed to be an unnecessary strain on the compiler's symbol table,
potentially rendering the method unusable on small systems. Having separate
classes only for the different kinds of information communicated to and from
exception handlers seemed much less likely to overwhelm the capacities of small
systems.

The second problem with a class per exception approach is that exception
handlers will frequently be specialized only to be able to respond to a small
range of exceptions, abdicating responsibility for all others to a more inclusive
handler earlier in the stack. C++ intentionally does not allow discrimination
between sibling classes of this kind, necessitating a "type" field of some sort;
since explicit identification of the exception type is required anyway, the
additional type security afforded by having different classes for each kind of
exception is not worth the added complexity.

1988 USENIX c++ Conference 331

. 332

3.3. Exception Handlers

There are two parts to an exception handler under this design. a function which
is invoked when an exception is raised. and a class which provides the linkage
between the function and a specific block. The type of the exception handler
function is declared by the type name exc_hdIJunc. and the linkage class is
exception_handler (see Listing 3).

The exception_handler class is derived from cleanup_obj because it also needs to
track the call stack (and thus provides an example of how to build derived
cleanup_obj objects). It implements a stack within a stack. allowing exceptions
to be propagated hierarchically from handler to handler. It also contains a
pointer to an exc_hdlJunc which is to be invoked when an exception is raised
and a jmp_but to which control will be transferred if the exception handler
chooses to abort the operation.

The abort() member function implements the operation of the same name. It
simply walks the stack of objects to be cleaned up, invoking the cleanup()
function for each, until it reaches the exception handler which invoked the abort
operation. Note that any objects which were created after the exception_handler
object will be cleaned up, even if they are in the same block: caution regarding
block structure and order of execution is required. After all necessary cleanup
operations are compleie. abort() calls longjmp() to transfer control to the location
indicated by the contained jmp_but.

Exception handler functions receive two arguments, an exception_type object as
described in the preceding section, and a pointer to the exception_handler object
on whose behalf the handler function was invoked. There are three ways to
terminate the execution of an exception handler function. corresponding to the
three actions described in the design goals above:

• abort: invoke ehp->abort(). This call will never return.

• retry: return a non-zero value. This action is only permissible if
return_allowed has be~n specified in the exception_type.

• abdicate: return zero.

Two actions are required to establish an exception handler in a given block.
First. simply declaring an automatic object of type exception_handler places the
linkage object into the stack. associating the block with the exception handler
function specified as the initial value (if none is given as an initial value, or
if the action to be taken changes at different locations in the code, the
overloaded assignment operator allows changing the association at any subsequent
point in the block). Second, the abort_label member must be initialized via an
invocation of setjmp(). It is imperative that this action be completed before any
code which might raise an exception.

1988 USENIX C++- Conference

3.4. Raising an Exception

The raise_exception() function (see Listing 4) is passed an exception_type (or one
of its derivatives) which has been previously initialized to appropriate values for
the particular exception. It simply traverses the stack of exception_handler

,objects, invoking each associated exception handler function in turn, until one
either calls abort() or returns a non-zero value. The caller of raise_exception()
should treat a return of control as a request for either retrying or continuing
the operation, whichever is appropriate in terms of the semantics of the
processing involved.

4. All Example

Listing 5 provides a complete example program demonstrating the use of the
classes and routines of Listings 1-4. It defines the skeleton of a string class
which cleans up the storage allocated for the string data in the event of an
abort operation and which raises an exception in the event of an attempt to
access a character with an offset larger than the current length of the string.

To begin, we derive an exception_type which allows two integer arguments to be
passed into the exception handler and which allows the handler to return an
integer value for use in a retry attempt (exception_argll_retl, conventionally
named to indicate the types of its arguments and return value). The msg_text()
member function is also upgraded to use the two integer arguments in creating
the associated printable message.

Next, we define the outline of a string class by deriving it from cleanup_obj.
The constructor allocates space for the string data, so the cleanup() member
function, which replaces the normal destructor, deletes the storage. In addition,
the constructor sets a flag specifying whether or not the allocation was via new
so that cleanup() can determine whether to delete the storage for the object itself
in the event of an abort.

The subscript operator checks to see that the desired subscript is less than the
current length of the string. If it is not, it raises an exception by declaring an
object of type exception_argll_retl, initializing it with t'he appropriate values
to describe the problem and allow a return, and calling ralse_exception(). If
that function returns, it tries the subscript operation again, using the return
value from the handler in place of the original subscript.

Next come two exception handler functions. The first is very simple and just
prints the message associated with the exception and .calls abort(). The second
attempts to recover from the error by using the maximum allowable subscript as
the new value. Since it is specific to subscript errors, it abdicates on all other
kinds of exceptions, and if there is no allowable subscript value (Le., the string
length is zero), itaborts.

Finally, the main function establishes an exception handler using the use_max
handler function and initializes the abort_label member using setjmp(). Note
that if setJmp() returns a non-zero value, it is the result of an abort operation

1988 USENIX c++ Conference 333

334

(the value returned is that passed to abort(», so the else clause contains the
normal processing after establishing the handler.

5. Conclusions

The design presented in this paper is an attempt to provide most of the benefits
of exception handling during the time before a built-in implementation is
available; it is not a claim that language extensions for exception handling are
unneeded or undesirable. In particular, two of the design goals described above
are not met fully. First, exception handling is not fuHy transparent to code
which is not directly in'volved. Objects which require cleanup must be derived
from the cleanup_obj class, and their destructors must be converted to cleanup()
functions. Although restricting the changes only to small parts of the class
declarations in this way is an improvement over ad hoc approaches to error
handling and cleanup, an implementation integrated with the language would
eliminate these "warts."

Second, there is some performance overhead involved in maintaining the doubly
linked list for the stack of cleanup_obj objects. Whether or not this overhead
is a problem will depend completely on the nature of the application. In the
implementation used by the author, the overhead of linking and unlinking an
object proved to be about half the time required to allocate and free a data
item in the heap, which is probably one of the most common reasons cleanup
functionality would be required. If blocks do a relatively large amount of
processing compared with the time required to construct and destroy objects, the
penalty is probably negligible. If, on the other hand, functions are typically
small and each declares a number of objects requiring cleanup, the performance
degradation would be quite noticeable. Again, an integrated implementation
could keep track of objects requiring cleanup with substantially less overhead.

The approach described in this paper has, however, proved useful in the author's
projects, and he presents it now in the hope that it will be helpful to others as
well.

REFERENCES

[1] ANSI/MIL-STD-181SA-1983, Reference Manual for the Ada Programming
Language.

[2] ANSI X3.S3-1976, American National Standard Programming Language PL/I.

[3] Miller, William M., "Error Handling in C++," Computer Language, May, 1988.

[4] Stroustrup, Bjarne, "Possible Directions for C++," Proc. USENIX C++
Workshop, 1987.

1988 USENIX C++ Conference

II so abort() can destroy objects
lIon the stack

II Derive from cleanup obj to have objects cleaned up by
II exception handler.abort()

class cleanup obj (
friend class exception_handler;

static cleanup obj* head;
cleanup obj* prev;
cleanup:obj* next;

protected:

II points to newer object
II points to older object

II Vith no arguments, object is always pushed onto the stack

cleanup obj():
prev(NULL), next(head) {

if (next Ie NULL)
next->prev = this;

head = this;
}

II back-link from old head

II Push onto the stack only if object is not to be permanent

cleanup obj(int permanent) {
if (permanent)

next = prey = this; II link to self (makes cleanup() safe)
else {

if «next = head) 1= NULL)
next->prev = this;

head e this;
prey = NULL;
}

}

-cleanup obj() (
cleanup(O) ;
}

II Pop object from stack

virtual void cleanup(int aborted) {
if (prev Ie NULL)

prev->next = next;
else head = next; II if nothing newer, this must be head
if (next 1= NULL)

next->prev e prey;
}

} ;

LISTING 1: The c/eanup_obj Class

1988 USENIX C++ Conference 335

336

II Use exception_type for messages which have no arguments

struct exception type {
int exc num;
const char* msg fmt;
int return_allowed;

exception type(const int exn, const char* fmt, const int retable):
exc:num(exn), msg_fmt(fmt), return_allowed(retable) {}

virtual const char* msg_text() {
return msg fmt;
} -

} ;

II msg fmt args is simply a base type for messages which have arguments,
II providing a buffer for use with.sprintf().

const int HAX_MSG_LBN = 160;

struct msg fmt args: public exception type (
char bUf[MAX_MSG_LEN]; -

msg_fmt_args(const int exn, const char* fmt, const int retable): (exn,
fmt, retable) {}

} ;

LISTING 2: Exception Types

1988 USENIX c++ Conference

II Type for exception handler functions

typedef int exc hdl func(exception type& excp,
class exception_handler* ehp);

class exception handler: public cleanup obj (
friend void raise exception(exception type& excp);

I I friend to allow traversal of stack of exception_handlers

static exception handler* top of stack;
exception handler* next; - -II points to older handler
exc_hdl_fUnc* func;

public:
jmp_buf abort_label;

exception handler(exc hdl func* exc func = NULL):
next(top of stack),-func(exc func) {

top of stack =-this; -
} - -

void cleanup(int aborted) { .
top of stack = next;
cleanup obj::cleanup(aborted);
} -

void abort(int ret_val);

void operator=(exc hdl func* exc func) {
func = exc func; - -
} -

} ;

II Code for abort() member function (not inline because the current
II cfront implementation does not allow loops in inline functions)

void exception handler::abort(int ret_val)
{ -

while (cleanup obj::head 1= NULL && cleanup_obj::head 1= this) {
cleanup obj::head->cleanup(l);
} -

longjmp(abort_label, ret_val);
)

LISTING 3: The excepllotLhand/er Class

1988 USENIX C++ Conference 337

338

void raise exception(exception type& excp)
{- -
II Valk the stack of exception handlers, invoking handler functions

for (exception handler* ehp = exception handler::top of stack;
ehp 1= NULL; ehp = ehp->next) { - - -

if (ehp->func 1= NULL && (*ehp->func) (excp, ehp» {

II TRUE return => return to exception for retry or continue

if (excp.return_allowed)
return;

fprintf(stderr, "Illegal return to exception: %s\n",
excp.msg text(»;

exit(998); -
}

}

fprintf(stderr, ItUnhandled exception: %s\n", excp.msg_text(»;
exit(999);
}

LISTING 4: raile_exception

1988 USENIX C++- Conference

II Define an exception type with two integer arguments, returning
II a string from the exception handler

struct exception argII retI: public msg_fmt_args {
int int argl;- -
int int-arg2;
int ret=val;

exception argII retI(const int exn, const char* fmt, const int retable,
const int-il, const int i2): (exn, fmt, retable), int argl(il),
int arg2(i2) { -

ret val = 0; II default return value
} -

const char* msg text() {
sprintf(buf,-msg fmt, int_argl, int_arg2);
return buf; -
}

} ;

II Define a string class (skeleton only) as a cleanup_obj

class string: public cleanup obj {
int in heap; II TRUE-=> allocated via I1new"
int max len; II maximum length string
int cur-len; II current length of string
char* data; II pointer to data of string

public:
string(int maxI): max_len(maxl), cur_len(O) {

if (this == 0) {
this = (string*) new char[sizeof(string»);
in heap = 1;
} -

else {
this = this; II needed to invoke base constructor
in heap = 0;
} -

data = new char[max len + 1];
} -

void cleanup(int aborted) (II in place of destructor
delete data;
cleanup obj::cleanup(aborted);
if (aborted && in heap) {

delete (char*)-this; II cast to avoid recursion
}

}

char& operator[] (int sub);
} ;

LISTING 5 (page 1 of 3)

1988 USENIX C+t- Conference 339

340

II Define subscript operator that raises an exception if the
II subscript is out of range

Idefine SUBSCRIPT_RANGE_EXCP 1000

char& string::operator[] (int sub) {
while (sub >= cur_len) {

exception_argII_retI excp(
SUBSCRIPT RANGB BXCP,
"Subsc;ript (%d)-too big (must be < %d)",
1, II Allow return
sub, cur_len);

raise exception(excp);
sub =-excp.ret val;
} -

return *(data + sub);
}

II An exception handler function which always prints the associated
II message on stderr and aborts

int do abort(exception type& excp, exception handler* ehp) {
fprIntf(stderr, "%s\n", excp.msg text(»;-
ehp->abort(I); II arbitrary non-zero number
return 0; II never reached
}

II An exception handler function (specific to subscript range error)
II which attempts to repair the error by using the maximum allowable

int use max(exception type& excp, exception handler* ehp) {
exception_argII_retI* subscr_excp = (exception_argII_retI*) &excp;

if (excp.exc num 1= SUBSCRIPT RANGE EXCP)
return-Oj II abdicate -

if (subscr excp->int arg2 > 0) {
subscr excp->ret val = subset excp-)int arg2 - 1;
return-I; - - -
}

do abort(excp, ehp);
return 0; II never reached
}

LISTING 5 (page 2 of 3)

1988 USENIX C-t+ Conference

int main() {
exception_handler eh(use_max); II establish handler linkage

if (setjmp(eh.abort label» {
return 1234; - II an exception was aborted
}

else {
string abc(lOO);
II ...
abc[lO] = 'x'; II generates exception
}

}

LISTING 5 (page 3 of 3): An Example

1988 USENIX C-++ Conference 341

342 1988 USENIX C-f+ Conference

Solving the RPC problem in GNU C+I

Michael D. Tiemann'

Experimental Systems Project
Microelectronics and Computer Technology Corporation

3500 West Balcones Center Drive
Austin, TX 78759

ABSTRACf

The C-t+ programming language is being used in a number of projects
which implement some form of distributed execution model. While each
of these projects durer in their goals and implementations, all of them
ultimately depend on some kind of remote procedure call (RPC), a facUity
which is not easily supported by C-H-. For this reason, many durerent
extensions to C-t+ have been implemented, each one coping with this
problem in its own, unique way. This paper presents a new construct,·
called a "wrapper," which prOVides a more general solution to the problem
than previous work, and in some cases, prOVides greater efficiency as well.

Wrappers are a highly experimental feature, implemented in the GNU
C-t+ compiler; this paper represents the start of their evolution. GNU C-t+
is a highly optimizing native code C-t+ compiler for the Sun3 and the VAX
running BSD 4.[23]. The compiler, as well as a C-H- source level debugger,
GDB+, a linker, documentation, and library support, is aVailable as free
software, under the,terms of the GNU General Public License.

1. Introduction

The Experimental Systems (BS-Kit) research at the Microelectronics and Com
puter Technology Corporation (MCC) is focused on development of rapid imple
mentation technologies applicable to low cost prototyping of parallel computing
systems. The architecture of these systems will be based on hardware modules,
linked together via bus and/or message communication channels. These modules
will proVide system-level functionality such as disk, memory, processor, etc.,
allowing a variety of architectural configurations to be assembled and measured
without great expense. The operating system for a machine comprised of these
modules must support parallel applications, and it must prOVide a convenient
interface to UNIX. The software language platform must support rapid
reconfigurability to match the hardware, software module reusability, and great
enough eftidency that high-performance designs can be reasonably proven against
more traditional systems.

Such requirements immediately qualiJied the C-t+ programming language.
Using the object oriented programming model to separate program functionality
into logical blocks (of both code and data), generic operations can be implemented.

t On leave at INRIA. B.P. lOS, 7SIS3 Le Chesnay Cec!ex, France.

1988 USENIX C-t+ Conference 343

344

and interfaced in a number of different ways, all in a consistent manner. Reusabil
ity is one of the keys to rapid prototypmg. By allowing the user to define the
semantics relating to such operations as type conversion and even the operators in
expressions, code can be written that looks natural, while in fact its operations
may be qUite complex. The abstract data typing facilities of C-H- make it possible
to design from a very high level, and then refine the implementation by substitut
ing functionality and/or behavior where desired. Yet C++ can still be compiled
into very efficient code, usually as efficient as normal C code would be.

For all of its strengths, C++ has some notable shortcomings as well. Just as a
user on a single processor system would like control over the type abstractions of
their application, users of parallel systems need to gain control over the program
ming languages semantics as control and data moves across logical and physical
machine boundaries. C++ fails to prOVide any mechanism for this reqUirement, and
few general purpose languages do. The absence of a good way to specify RPCs in
C-H- has led some groups away from the language ([Cap81]), and others to extend it
in differing, incompatible ways ([Gri81],[Ca181],[Gau811.[Lin81]).

The ES-Kit project, too, has developed some extensions to the C++ program
ming language which give programmers control at these boundary conditions, and
preserve, in a very substantial way, all the efficiency one could expect using a
language like C. The- baseline compiler for these extensions is the GNU C++
compiler, a highly optimizing, native code C++ compiler, largely compatible with
C-H- V1.2 from AT&T.! The compiler also has a C-H- source level debugger, GDB+,
and a linker which supports incremental linking with correct C++ semantics.

This paper will begin with a presentation of the ES-Kit software environment,
as a motivation for the implementation goals which resulted. A section on related
work gives this work context, and suggests that the approach, while well suited to
C++, is relatively language-independent. The implementation of wrappers is then
presented, along wIth their semantics and a suggested syntax. The implications
(and limitations) of wrappers are then discussed, and future areas of research are
outlined. The paper finishes with a discussIon of other uses to which wrappers can
be put.

2. Requirements and Goals

Remote procedure calls form the basis of the ES-Kit parallel execution model.
Unlike the serial environment, where procedure calls are mainly used to enhance
maintainability of software through modularity, the ES-Kit programming model
uses them to create parallelism. When a (remote) procedure call is made, control
forks, with one thread acting on the procedure call, while the other returns to the
caller. It is at the option of the caller whether to block the caller thread until the
call has completed, or to continue. It is absolutely essential that the programming
language proVide the user with a convenient way of manage this execution model,
or better yet, forgetting about it, just as a procedure-ca11 oriented environment
makes the use of its call stack simple and painless, and something which can
almost always be ignored.

1 All C++ 2.0 features are implemented except for multiple inheritance.

1988 USENIX C++ Conference

The basIc problem In Implementing a system which abstracts procedure calls
in C++ is that, like C, C++- does not provide any operations on function calls except
to execute them. It is possible to say sizeof (int), and the C++- compiler will return
the system's integer size in bytes, but one cannotask for the length of an argument
lJst, or reliably get the number of arguments passed, their ty~, their positions
and dispositions on the stack, etc. Thus, it is extremely di1licult for the systems
programmer to extend an abstraction when one hardly exists.

For reasons that were not immediately obvious, it was 'decided that the
compiler would handle this problem in as general a fashion as possible, subject to
the following constraints:

(1) any C++- member function call can be an RPC,

(2) the client source code should not reBect whether the member function call
is local or remote,

(3) the solution must be portable (preferably implementable within the limita-
tions of a C virtual machine),

(4) there should be minimal (if any) change to the GNU C++ compiler,

(5) it easily supports existing RPC environments (such as Sun RPC),

(6) it is easy to implement blocking vs. non-blocking semantics,

(7) it is easy to descrIbe how objects should be passed (migrated) for the call.

3. Related Work

The parallel execution model of the ES-Kit environment is derIved from
Halstead's work on futures[HaI85). One of the main dtlferences between the ES-Kit
envIronment[Led88] and Halstead's Multi1Jsp environment is that C++ is statically
typed, hence futures can have speciftc future types, leading to somewhat improved
effidency and safety. This realization was also made by Liskov in her presentation
of promises[Lis88]. The ES-Kit future is like Liskov's promise, though we have not
implemented other features of her work, such as call-streams.

The CLAM system[Mi186] prOVides an RPC fadlity which relies on a bundler.
Bundlers are attached to parameters when passing explicit pointers does not have
the desired semantics. For example, if a routine wanted to send a string as an
argument to a remote procedure, passing the address of the string on the local
machine does little good. A bundler can format the string into a parameter that is
suitable for interhostal transit. Bundlers must be explidtly placed with each
parameter in need of bundling.

The Sun RPC library[Sun88] is a collection of procedures which prOVide
remote argument passing for certain builtin types, and a stub generator (rpcgen)
while builds the RPC interface. rpcgen accepts a language that looks like restricted
C declarator syntax, with a dash of Pascal-style variant records. If the user
wishes to pass structures or other types which are not among the builtin types,
slbe can declare these types In the XDR language, and argument passing functions
will be automatically generated. The user must change the program Interface to
use rpcgen by only passing references (pointers In C) as arguments to possibly

1988 USENIX C++- Conference 345

346

remote functions. Sun's RPC protocol also requires that the procedure call com
plete before control is returned to the user.

On the SmallTalk front, Paul McCullough[McC87] has implemented some
thing he calls "Transparent Forwarding." There is a strIking sImIlarity between
the structure of his work and the work being presented here. In fact, there is
almost a direct correspondence between the three classes he needed to add to
SmallTalk and the three pieces which I will present as being necessary components
of an interesting wrapper design. Perhaps this similarity is a direct result of the
similarity of the initIal goals, and specifically, the transparency requirement.

A GNU C++ wrapper should not be confused with Zeta-Lisp wrappers. Zeta
Lisp wrappers were a more primItive idea which evolved into whoppers, a
mechanism very similar to GNU C++ wrappers. It is hoped that the reader will
excuse the author from not adopting the whopper nomenclature.[Gum88]

An alternative which was not investigated was extending C-f+ to incorporate
reflection. Reflection is a very powerful technique which, in essence, allows the
system to encapsulate itself and then perform computation on that encapsulation.
The inverse operation, reiftcatIon, allows the system to then "become" that system
which the reflection captured. Reflection and relficatIon are mentioned here because
they are interesting concepts, and because the wrapping of a function call is, in a
very limIted way, a reflective operation.

More detailed comparisons with related work will be expanded inllne.

4. Implementation of Wrappers

In the ES-Kit kernel, parallelism is achieved by using "futures." When an
application makes a RPC, the ES-Kit kemel intercepts the call, creates a new
process which will carry out the computation, and returns to the caller a "future"
(typically a more refined type, such as a future_int, a future_char_star, etc.). A
future is essentially a reference to the result of the function call which will be
aVailable "some time in the future." As long as the caller does not attempt to
evaluate the future, it will not block. When the caller does try to evaluate it, if
the future has not yet completed, the kemel puts the caller to sleep, and wakes it
up when the future is ready. If the future had completed by the time the caller
attempted to evaluate it, the caller gets the value of the future, and proceeds nor
mally. This model of parallelism is natural, largely transparent, and centers
around being able to translate what look like normal function calls into requests
for computation to be scheduled by the kernel.

As soon as a prelimlnary version of the GNU C-f+ compIler was aVailable, it
became eVident that in order to make life bearable for application programmers,
these requests for computation must be as easy to write as a normal function call.
To make it easier to port "normal" C-f+ programs into the ES-Kit environment, the
more these requests could resemble normal function calls, the better.

4.1. Introduction to Wrappers

The problem of implementing a transparent, user-definable RPC mechanism is
handled by adding a construct called a wrapper to the compiler. A wrapper is a
new syntactic construct that allows the programmer to specify an alternate

1988 USENIX C-H- Conference

implementation of member function calls. An RPC handler can then just be seen
as a special case of this. The basic idea behind a wrapper is the notion that In order
to execute a member function call, it is necessary only to know the object for that
call (which will become the this pointer), the member function for that object
being called, and the arguments to that function, A wrapper abstracts procedure
calls by haVing the compiler translate member function calls Into encapsulations of
member function calls, and passing these encapsulations to the wrapper.

First, an example of their syntax will be presented, followed by a description
of their semantics.

struct foo
{

}:

foo (): / / foo constructor
"'foo 0: // foo destructor

virtual Ofoo (int (foo::*)(...), ...): / / a virtual wrapper

int g (int): / / foo member function g
virtual int h (int, int): / / foo member function h

A wrapper has a very distinct syntactic form from operators, member func
tions, constructors and destructors, Initially, the idea was to pun wrappers with
an overloaded operator (actually the combination of two overloaded operators,
yielding operator->() ()). Bjame Stroustrup suggested starting from a clean syn
tactic point, to avoid the kinds of ambiguity problems that such punning can pose.
He proposed the syntactic form seen here, of placing empty parenthesis just In
front of the declarator. This syntactic form permits one to specify many different
ways of encapsulating (or executing) member function calls,

As can be seen from the declaration of the wrapper (which In this case hap
pens to be virtual), the wrapper has, as its arguments, all the Information it needs
in order to wrap calls for either foo::g or foo::h. Wrappers are member functions,
and hence calls to the wrapper have a this pointer, They take a pointer to member
function argument which is initialized by the compiler to the value of the (possi
bly virtual) member function being wrapped, The rest of its argument list, which
is left untyped for now, serves as the destination for the arguments of wrapped
function,

In these examples of syntax, the wrapper "wraps" all function calls, but the
user can specify whether to wrap the virtual or non-virtual function, and whether

. to wrap using a virtual or non-virtual wrapper:
main ()
{

foo *a:

a->g (100): / / wrap 'foo::g' with virtual wr.
a->h (101, 102): / / wrap virtual 'h' with virtual wr.

a->foo::h (103, 104): / / wrap 'foo::h' with virtual wr.

a->foo::(l g (200): / / wrap 'foo::g' with foo's wr.
a->foo::(h (201, 202): / / wrap virtual 'h' with fools wr.

1988 USENIX C-f+ Conference 347

}
a->foo::O foo::h (203, 204): / / wrap 'foo::h' with foo's wr.

348

Now that ideas behind wrappers have been sketched, it is time to look at them
a little more deeply.

Wrappers are intended to encapsulate, and not necessarily substitute for, calls
to member functions. As a result, when a member function call is being compiled,
the compiler performs all conversions necessary on the arguments to that member
function. Once this has been done, but before the code for the call is emitted, the
compiler then computes the address of the member function that is to be wrapped,
and makes that address an additional argument at the head of the argument list.
The wrapper is then called with the resulting argument list, again converting any
arguments from this list to match the types specified by the wrapper.

4.2. Wrapper Issues

If all member functions of a class have the same type sIgnature (numbers and
types of arguments, and return values), then wrIting wrappers for them Is a very
simple task. Problems arise when one wishes to write a single wrapper to handle
member functions with distinct type signatures. In such a situation, the different
argument lists can be matched by using the C++ '•••' notation, leaVing the types
and number of arguments to the wrapper unchecked. This makes putting function
calls into wrappers very easy, but makes getting them back out rather difficult.

If wrappers were added to the language Without any additional support, it
might leave more loose ends dangling than it tied up:

(1) How does one keep a specific function call from being wrapped?

(2) How does one keep a particular member function from being wrapped?

(3) What happens when passing a derived member function to a base wrapper?

(4) How does one handle type conversion in an argument list full of '•••'?

(5) Should constructors be wrapped?

(6) Should wrappers be recursive? (can a call to a wrapper be wrapped?)

(7) Should function calls wIthin wrappers be wrapped? (where is the bottom?)

(8) How does one wrap a function call via a pointer-to-function (which may
be missing type information)?

(9) How should return values be handled? (overload based on return types?)

Such a list looks long, but when looking at recent work on this problem (in
LISP and SmallTalk, not just C++I), one sees that it looks familiar. After present
ing our solutions to these problems for Ci+, a comparison will be made with
McCullough's work on SmallTalk. The two are strikingly similar, both yielding
extensions which are easily implemented, have low impact of the efficiency of the
system as a whole, and prOVide great expressive power.

1988 USENIX C++ Conference

4.3. Not Wrapping

The first two issues brIng up the questIon of escape hatches. No matter how
wonderful a particular language feature is, there always appears to be some case
where it is more desirable to get around it. Sometimes one wishes to defeat the
feature at compile-time (such as calling a virtual function directly, rather than by
the Virtual function table), other times on wishes to defeat the feature at run-time
(which is usually done with if-then-else control logic).

Distributed programs tend to have run-time behavior which is hard to predict
at compile time. In the context of RPC, the main reason not to go through an RPC
wrapper is because it is known (somehow ahead of time) that the call will be local,
and should therefore not go through the extra levels type conversions. Because
this locality information may be available at compile time or only at run time, the
means of getting the information to the compiler should be general enough to
produce an efficient solution in either case.

An attractive solution is to prOVide a wrapper predicate. A wrapper predicate
is a binary operator, which takes an object and a member function pointer, and
returns zero if the function should not be wrapped, and non-zero otherwise. An
example of the syntax is given in section 4.4. The syntax is defined in section 5.1-

A default wrapper predicate aiways returns the value 1 (indicating that the
function should be wrapped). Wrapper predicates are inherited, and may therefore
be required to handle member functions which are not members of the class that
the wrapper predicate belongs to. In that case, the wrapper predicate should
prOVide a udefault" case (which normally would return a non-zero result).

Wrapper predicates, when they are necessary, can be defined to be inllne, and
using standard constant-folding techniques, compile-time decisions can be made
based on their otherwise run-time semantics. This is not an unreasonable expecta
tion of a C+i- compiler, since such constant folding is already implemented in the
C-++ compilers from AT&T and GNU.

Wrapper predicates provIde both run-time and compile-time escape hatches
for wrapper users. They also seriously affect encapsulation (in the same way that
declaring a private function public in a derived class definition does), and should
probably be used only when necessary.

4.4. Making Wrappers Generic

Typically, the user would like all RPCs to be handled in a uniform fashion
(much as normal procedure calls are now). To that end, it is desirable to specify
one wrapper which will uniformly handle all procedure calls. In a strongly-typed
world, this is not always possible. The implicit conversion of a pointer to an object
to a pointer to a base class of that object is anti-symmetric with respect to
"pointers to member functions." That is to sayt we can only reliably convert
"pointers to member functions" from a upointer to base class member function" to
a upointer to derived class member function." It is therefore not type-safe to pass
a pointer to a derived member function to a wrapper in a base class, as can be seen
in the follOWing example:

struct B { virtual f 0: ... }:
struct 0 : public B { virtual f 0: virtual gO: .o. }:

1988 USENIX C-++ Conference 349

}

350

int foo (B*. int (B::*)O):
int bar (0*. int (D::*)O):

int surprise 0
{

B bb: D dd:

foo (&bb. &B::f): / / ok
bar (&bb. &B::f): / / error: B* does not convert to D*

/ / ok! f is in base class
foo (&dd. &D::f):

/ / errorl int (D::*)O does not convert to int (B::*)O
foo (&dd. &D::g):

The real problem with passing a pointer to a derived member function to a
wrapper expecting a pointer to a base member function is that type information is
lost. Fortunately, this problem can be solved with minimal overhead. If this and
the pointer to member function argument (call it pmf) are composed within a
wrapper, the compiler can know that combination to be type-correct. This is a
direct result of how the wrapper is called. An assignment to this and/or pmf, or an
implicit conversion of pmf (including the implicit conversion that occurs when pmf
is composed with another object, or further passed as an argument) means that
typewise, all bets are off. The compiler could insert code to test whether the
composition is indeed valid, relying on a run-time encoding scheme based on infor
mation held in the virtual function table, or it could just simply disallow such
things from happening. It can also prevent assignments to this and the pointer to
member function argument within wrappers.

Passing pointers to member functions against the inheritance hierarchy grain is
the first (and by far the easiest) problem to handle. The second problem to handle
is making a single wrapper wrap all member functions, regardless of their argu
ment lists. Wrappers are supposed to encapsulate a very simple, very powerful
idea, and it would be nice to specify the implementation of that idea as concisely as
possible. If a different wrapper must be declared for every different function, the
whole purpose of wrappers is defeated.

All argument lists can be matched by declaring a wrapper with an untyped
argument list, i.e., c.. .'. However, this argument list may need to maintain type
information until the arguments can get to the ultimate target of the procedure
call. To accomplish this, we allow ·wrappers to specify a typing fundion. Types
are not values in C++, so it is not possible to specify the typing function directly.
However, the compiler can generate such a function which is generally useful in
the two most important cases. The default typing function is the mapping of types
according to standard C promotion rules. All C and C++ compilers have such a
function built into them. A user~fmed typing function can be synthesized by
specifying the result type that all arguments should be converted to if the value
appears within the untyped part of a function's argument list. Such a result type
is called a synthetic type.

1988 USENIX C++ Conference

A synthetic type should be designed in such a way that it can ravel and
unravel any kind of type that may be passed as an argument to (or from) a
wrapper. The compiler enforces such rules in a lazy fashion, i.e., when a type
conversion is impossible, the user will get an error message. It does not tell the
user whether his synthetic type is a priori complete.

Because C++- is primarily a statically typed language, there is not a great deal
of support for encapsulating type information in a representation that can be
stored, retrieved, and used to reconstruct a well-typed value at runtime. This
restriction also currently applied to types which appear to be run-time dependent,
but can actually be computed statically from the program's control graph.
Although not well supported by C++-, most distributed systems implemented in
C++- (at least all that this author has seen) implement some kind of type which
performs this magic by hand, usually With some extension to the compiler.
Fortunately, one such group taking a look at such extensions is Dr. Stroustrup's.
His work on parametric types will be very influential on (and will hopefully
obViate the need for) synthetic types. In the mean time, here is an example of a
synthetic type:

struct DT
{

/ / a synthetic type

}:

DT (int):
operator int 0:
DT (double):
operator double 0:
DT (void):

/ / encode an int
/ / decode an int

/ / encode a double
/ / decode a double

/ / encode a void typel

struct Base
{

}

/ / wrapper predicate (from section 4.3):
int 01Base (int (Base::*) (...)) :

/ / wrapper w/ synthetic type:
DT (DT...)Base (int (Base::*)(...)....):

It is important to note the distinction between wrappers and stub generation.
Wrappers (and wrapper predicates and synthetic types) do not themselves
comprise a stub generator. However, they can be used to greatly simplify the
interface to one.

4.5. What Should Be Wrapped?

Until one has implemented a C++- compiler, it is difficult to appreciate what a
typed value is in C++-. Object construction is a process of type elevation. Starting
with an untyped chunk of memory, a base constructor renders it typed with a base
type. Such an instantiation may involve the initialization an object's virtual func
tion table pointer, and initialization of some of its members. After the objects base
types have been initialized, each type in the lattice between the base types and the

1988 USENIX C++- Conference 351

352

£mal type of the object will be initialized. It is not until this process of initializa
tion has been completed that the object can say HI am." Because of this, it makes no
sense to have a wrapper wrap calls to constructors, since the object has not been
completed, just as it makes no sense to stop initializing once an object has an opera
tor= in its scope, and start using assignment semantics for the rest of the operation.

Suppose a user wished to define her/his own wrapper for purposes of either
augmenting and/or reimplementing wrappers derived from base classes. Should
that wrapper be wrapped by those from the base class, or should the wrapping stop
at the first wrapper? This is indeed a very hard question, since it essentially forces
the distinction between wrappers as an initialization of function-eall objects, in
which case a recursive interpretation might be nice, and wrappers as an alternate
function-eall implementation (or operator), in which case the first applicable
wrapper applies, and nothing more.

The wrapper extension is a large one, and one which should be evaluated care
fully. To keep things manageable, the latter interpretation is the one which has
been implemented. If justifiable needs for the former develop, it would not be
hard handle them with a new, appropriate syntactic form.

4.6. Dealing With Return Values

Return values are a necessary evil in Ci+. Every machine (and almost every
compiler) handles return values in its own way. To make matters worse, return
values may come back in a register, or a set of registers, or sit atop the stack, or not
be returned at all, but may "fill in" an address handed to them by the caller; these
variations may all exist within the same compiler'

The Ci+ programming language does not allow overloading based upon return
type, and furthermore does not allow typeless return values (as it does allow for
its argument types). While these restrictions may seem unnecessary (and even an
annoying obstacle) for the task at hand, it is well to adhere to them nonetheless.
Portability reasons alone make it impossible to do otherwise: because a compiler is
required to do nothing more than create a coherent call/return interface, it is not
possible to predict ahead of time how many kinds of return values a wrapper will
need to implement.

A wrapper, therefore, is limited to accepting member functions which return a
certain type, requiring that new wrappers be written for functions that return new
types. Because of this, recursive wrappers are not necessarily desirable, since
wrappers of base types cannot wrap functions which return objects of derived
types. There is, however, no restriction that a wrapper must return the same type
as that of the function it is wrapping. Note that a wrapper need not return the
same type as the function that it wraps. Also note that the follOWing two
wrappers are distinguishable as haVing different argument lists, and does not
constitute (to first approximation) overloading based on return type:

int X::()X(int (X::*) (n.)•.n):
double X::OX(double (X::*)(n.). on):

1988 USENIX Ci+ Conference

5. Syntax and Semantics of Wrappers

5.1. Syntax

The syntax of wrappers is somewhat baroque, in keeping with C's (and
consequently C++'s) notorious declarator syntax. A wrapper for ·class T has the
declarator name OT. Its return value, argument list, virtual attributes, etc., are
declared just as they Nould be for normal member functions. The first argument
in the wrapper must be of type pointer to member function type, or type void *.

A wrapper predicate for type T has the declarator name O?T. It takes only
one argument, which must be of type pointer to member function type. It return
type is integer.

A synthetic type T2 is associated with a wrapper for type T by placing it in
its wrapper parenthesis followed by'...', i.e., (T2...)T. The type T2 must be a
user-defmed type, and it must be declared before use. Naturally, for this type to
be of any use, it must have at least one constructor.

5.2. Semantics

A wrapper is applied as follows:·

Given a class B with a wrapper W, a class D with a member function F, and given
that D deriVes froln B, P is a pointer to type D, and F is not a constructor or a
wrapper, then W may wrap the call to P->F (•••) under the follOWing conditions:

(1) there is no wrapper predicate P in any class between B and D in the type
lattice, or

(2) the wrapper predicate P returns a non-zero result given arguments 0 and
F.

Under no other conditions would an attempt be made to wrap the call to F.

Wrapping takes place as follows: all arguments to the original function are
converted according to the argument list of F (as per normal C++ (and ANSI C)
semantics). If the wrapper or the wrapper predicate do not satisfy normal C++
Visibility rules, it is an error. If D derives from multiple base classes Bl and B2,
and both prOVide a wrapper, an ambiguity error is reported; similarly for wrapper
predicates. If there are no Visibility or ambiguity problems, a function call is
wrapped by prepending a pointer to the member function being wrapped to the
argument list of the function, and passing the resulting argument string to the
wrapper. The wrapper treats the argument list as a normal function call would,
with the exception of its treatment of arguments which the wrapper converts to a
synthetic type.

If a synthetic type is specified for a wrapper, then

(1) it must be unique, and

(2) it must convert any argument passed to it, and

(3) all conversions must satisfy normal C++ Visibility rules, and

1988 USENIX C++ Conference 353

354

(4) all parameters which are not explicitly typed by the wrapper are converted
to the type of the synthetic type, and

(5) argument lists which contain synthetic types as a result of converting
arguments are terminated with a synthetic type encoding the void type.

It should be stressed again that synthetic types are a provisional measure until a
determination can be made as to how to (better) use parametric types, if they are
added to C++.

5.3. Implementation no~

The representation of pointers to member functions must be done in a host
independent manner. By filling the virtual function table with all member func
tions aVailable to a given class, and distributing a class's Virtual function table to
each node which could host an instance of that class, a member function's address
can be represented by its index in the (extended) virtual function table. This index
is, of course, host-independent.

Computing virtual function tables which permit explicit non-Virtual function
calls is somewhat tricky. This is because an object of derived type must be able to
make explicit calls to member functions from either the derived or base classes.
Phillipe Gautron solved this problem with a simple algorithm [Gau87], and this
algorithm is incorporated in the GNU C++ compiler.

It is possible for a function to be called with a variable number of arguments.
Unfortunately, it is not also possible to build an argument list of variable size.
That is, one can make two calls to the same function, one call with five arguments
and another call with seven arguments, but each of the calls has a fixed number of
arguments (frve and seven, respectively). For this reason, if a wrapper is to call a
function with the arguments it receives, and if it does not know (at compile time)
how many arguments with which to call this function, it is constrained to build an
argument buffer, and let the receiver of that buffer format a proper call stack.

A solution to this problem which would be the extension of varargs. The
varargs construct prOVides C programmer wIth the ability to process arguments
from an argument list, where the arguments have unknown size and type. These
arguments are accessed by a pseudo-function va_arg which takes a pointer to the
varIable argument declaration and the type of the argument to get. Functions
which use varargs usually have some means of detecting when all arguments have
been processed. If one had pseudo-functions va-push and va_call, then one could
use the normal call stack (or register Window parameter convention, or whatever)
to pass a variable number of arguments. This would be most useful when passing
an unknown number of arguments, all of the same type. Such an extension is
probably better left to the compiler. No extension of this kind has been imple
mented in GNU C++ as of this time.

The GNU C++ compiler, for historical reasons, also prepends the length of the
argument list to the parameter list, so that pure value-passed argument lists can be
copied into message buffers effiCiently. This argument is treated as a Visible
"invisible argument," hence a wrapper specified in GNU C++ look like

1988 USENIX C++ Conference

class X { protected: int OX (int arglen, int (X::*)(...), ...): ... }:
When this hack is no longer needed, it will be removed.

5.4. Comparison with a SmallTalk model

The solution to the RPC problem using wrappers bears a striking resemblance
to work done by Paul McCullough at Xerox PARC to add similar (transparent)
features to SmallTalk.

His model starts out with a proxy class which implements only one method,
the universal method doesNotUnderstand:. This would correspond to the ES-Kit
approach of implementing a future which prOVides a wrapper. Transparency is
achieved because in both cases, all messages that involve the proxy (future) object
are trapped by that object.

To prOVide better performance (and prOVide greater flexibility) McCullough
has something called a PolicyMaker, which decides whether and what should be
sent where. A wrapper predicate prOVides almost the same functionality.

Finally, when an RPC is to be made in McCullough's extended SmallTalk,
objects are sent Via a TransporterRoom object, which takes care of communication
protocols between machines, as well at the linearization of messages and object.
",ibis is clearly analogous to the possible behaVior of synthetic types.

Other changes he needed to make, for example, to have his proxy objects
respond to some messages (like a PrintYou! method from a debugger), or to have
them interact with SmallTalk's .- operator, are language dependent Implementa
tion details. In fact, he had to reimplement the primitive I:llID operator (which was
hard-coded for efficiency reasons) so that ... could be used to test for equality of
remote objects via proxy. Because C-H- is a compiled language, overloading opera
tor== has no impact on efficiency, and consequently no extensions for this need to
be made.

6. Other Uses For Wrappers

It was claimed at the outset of the paper that wrappers were a general exten
sion to the C-H- programming language. Besides RPC, to what other use, then, can
they be put? This question is answered by looking at other systems which make
the function-call abstraction a first-class item, and then making the obVious con
nections.

6.1. before: and after: methods

It is occasionally desirable to specify function prologue code, or function
epilogue code, or both, for a class of functions. For example, a program proftler
might start each function being profiled with code to call a proftllng routine, and
code at the end of the function to report that function has ftnished.

Instrumentation and debugging information Is very often specified as things
which must be done before and/or after a function is executed. The Zeta-Lisp
system (and other Common Lisp systems, no doubt), prOVide before: and after:

1988 USENIX C-H- Conference 355

/ / ::finish_call or (*this-> finish_call)
}

hooks.2 Wrappers provide the programmer with "a means of executing hooks
without changing the code of the function being executed. For example, here is a
wrapper which proftles how often certain functions are executed:

inline void OX(void (X::*pmf)(int. int). int i. intj)
{

start_call (pmf): / / ::start_call or (*this-> start_call)
(*pmf) (i. j):
finish_call (pmf):

This example shows that wrappers can handle cases as general as any handled
by before: and after: methods, since the wrapper can execute its own, class-specific,
or instance-specific before: and after: methods.

One advantage of haVing before: and after: methods is that they are distinct
from the function call, so that the problems of building the called functions argu
ment list within the wrapper need not be faced.

One could use a wrapper predicate as a before: hook, and always return 0,
causing the wrapper predicate's code to be executed without going through a
wrapper.

6.2. Memoization

Memoization is a technique which -can save computation. For example, if one
knows that a particular function is functional Cit contains and modiftes no state),
then one can be assured that repeated calls to that function with the same parame
ters will yield the same results. This can be very useful when a particular task
must be performed at some unknown point in a program, and its result used
subsequently.

Memoization is implemented in the GNU C++ compiler. The instruction recog
nizer assigns an integer instruction code value to an instruction based on the (tree)
pattern of that instruction. The instruction code is needed in several different
places within the compiler, but none of those places can be sure that the results
have yet been computed. If the compiler were to eagerly compute these codes (as
soon as the instruction was generated), itS work might be wasted, since the instruc
tion may later be optimized: a three-address add instruction may become a two
address add instruction, and later even just a move, or be optimized away com
pletely! It is therefore undesirable to try to recognize an instruction until its code
value is needed. A function called rec<>Lmemoized recognizes the instruction, and
memoizes the result. The result remains valid unless the instruction is changed
(i.e., by the optimizer). Given this implementation, an instruction is recognized
only as many times as it needs to be. The small overhead of memoization is more
than offset by the savings of not haVing to recognize the same Instruction more
than once..

Simulators are also a good example of an application which can benefit from
memoization. Simulators tend to have large "functional" units; computing the

2 A 1wo1c is a slot in a program where one can deposit a function to be executed.

356 1988 USENIX C++ Conference

value for one such unit may be expensive, but that value may not change if the
stimuli for that unit do not change (or vary more than a certain amount).

Wrappers provide a natural means to memoize functions. When a user has
isolated a function (or set of functions) which appear to be good candidates for
memoiZation. s/he can defme a wrapper, and have the wrapper implement the
lookup/execute machinery of memoization. The memoization can be enabled or
disabled without interfering with the original function (being memoized) in the
least. An example of a memoized factorial function is distributed With the GNU
C++- library.

Wrappers can also be used to look for such functions: a memoization table
can be constructed, and at the end of the run, statistics on how stimuli variation
affected the "memoized" functions can be printed. C++- is already used in many
simulation systems; adding memoizing wrappers to these existing platforms will
preserve encapsulation, while possIbly improving performance.

6.3. Synchronization

Remote procedure calls are useful for implementing formalisms in distributed
systems other than merely making procedure calls. For example. in Grass [Gra86].
a synchronization mechanism called mediators is presented. In the section of the
paper describing possible implementations, RPCs are used $0 that multiple clients
can exchange messages with a single mediator. As the paper states HIn the percep
tion of the client process, a remote procedure call appears to be no different than a
simple local procedure call."

A prOVider of resources can implement a synchronization mechanism inside of
a wrapper, and have all calls which depend on these resources go through this
wrapper. All such resources can then be managed in a consistent manner by a sin
gle wrapper, simplifying maintenance. When a new resource allocation procedure
is added, the prOVider need only concern herself/himself wIth the interface to the
resource, and not wIth the interface to the synchronization mechanism. The
wrapper automatically takes care of that.

7. Possibilities for future work

7.1. Handling Return Types

The handling of return types is currently very unclean. While a well
desIgned synthetic type can allow wrappers to handle any argument type which
may appear in the argument list of a wrapper, a single wrapper cannot handle a
task as simple as wrapping both a function which return an int and a function
which returns a double.

ThIs problem can be solved by making a reference to the return value avail
able as one of the parameters of the wrapper. The compiler could choose whether
to pass the wrapper a reference to the object being initialized by the function call,
or a reference to a temporary, which could then be copIed to presumably register
resident object. Such a choice would make initialization by wrappers essentially as
efficient as returns from normal functions. This has the benefi.t of allowing the
implementor of the synthetic type to take advantage of building the return value

1988 USENIX C++- Conference 357

358

where it will ultimately end up, rather than in a temporary buffer which will
have to be copied. C++- is good about letting class designers be smart about initializ
ing arguments, but not about coordinating return values.

7.2. Types as Values

When a call to a function f gets wrapped, arguments are fiJ;'St converted to the
types which f expects, then to the types that the wrapper expects. The wrapper
may cause f to be executed, in which case the arguments that came into the
wrapper must eventually be re-converted to what f expects. All this converting
can be inefficient, especially if it is not desirable.

An inline wrapper may convert arguments directly to the type the wrapper
expects (bypassing f's conversions completely). These arguments can then be
passed the function being wrapper (or any other function) using the type informa
tion of the function being called. An inline wrapper permits parameters of a
wrapped call to undergo only two conversions instead of three.

John Rose presents a similar idea [Ros88], in a much more general framework.
The greatest problem with wrappers is the amount of type information one must
give up in order to encapsulate, within the language, something as general as user
defined function calls. If there were some reasonable way for the user to compute
more directly with types, a lot of the complexity of designing a wrapper, a
wrapper predicate, and synthetic types would go away.

It also appears that Bjarne Stroustrup's work on a implementation of
parametric types for C++- may help accomplish the same goal. Any extensions
made with respect to wrappers must be especially careful with regard to possible
implementations of parametric types. For example, it is even possible that if
parametric types are expressive enough, wrappers could become an operator like
'&', a purely polymorphic operator which is applied by the compiler in certain
cases. Rules for expressions of this type (type wrapper-of-functlon?) can then be
implemented by parametric type rules. .

7.3. Wrappers for Constructors

The SOS project [Sha87] prOVides an execution environment with dynamic
linking. The dynamic linking extensions which they have added to C++- make it
possible to migrate objects from one machine to another and/or from one address
space to another. It is implemented by haVing all member function calls (including
calls to constructorsO go through an extended virtual function table. When a new
object instance is created, a call is made to find (dynamically loading if necessary)
the extended virtual function table the object will need. The object is allocated,
and the constructor is called with the object, the virtual function table (as an extra
hidden parameter), and whatever other arguments the call to that constructor
specifies.

Since the call to the constructor is made via the virtual function table, and the
virtual function table is not a priori linked with the application, the code for the
constructor does not need to be linked until an object of that type is actually allo
cated. At that time, all member functions that object needs are linked in.

1988 USENIX C-H- Conference

If it were possible to wrap calls to constructors, then the special function calls
needed to find the virtual function table, pass the virtual function table pointer to
the constructor, and the other vagaries of the system could be handled without the
need to make more speciJic compiler hacks.

8. Conclusion

Wrappers are an attempt to add flexibility to C++- where it is desperately
needed, while incurring minimal (possibly zero) runtime overhead. Wrappers
provIde a very nice encapsulation of procedure-oriented computation, making it
easier to write self-scheduling parallel programs, given the right environment.
They can also be used to profile functions in a user-deftnable way, which can be
useful for finding optimization opportunities, such as memoization.

The current implementation of wrappers suffers from the lack of certain
primitives within the C++ language, notably the lack of an ability to construct and
manipulate parameter lists as first-class objects. It is hoped that the extensions
presented in this paper will help to further clarify more precisely what primitives
are lacking, and prOVide a context in which to implement them usefully.

This paper has presented a number of possible extensions to the C++- program
ming language. While some of these extensions are implemented in the GNU C++
compiler, many are not, and some perhaps should not be. A language which
changes every day is no more useful than a language which never changes - a sen
sible compromise must be sought which allows the language to evolve while
remaining stable enough to be usable.

Wrappers are not a new idea, at least not any more so than object-oriented
programming is new. Both have been around for a while, in various guises. A
comparison between a c++ implementation and a SmallTalk implementation of
transparent RPC showed the ideas underlying wrappers useful in both cases, and
even showed that their solutions were structurally very similar.

This paper presents implementation issues and strategies which make
wrappers a reasonable extension to the C+t- programming language, and other issues
which show that there is still work to be done. Wrappers have been implemented
in GNU C++-; however, their implementation should be expected to change if related
language features, such as parametric types, simplify or generalize their use.

Acknowledgments

This work was funded in part by MCC, the MCC Experimental Systems Pro
ject, DARPA (contract number MDA972-88-e-O(13). The Institut National de
Recherche en Informatique et en Automatique (INRIA) also hosted me dUring the
time much of this paper was being written. This paper reflects the opinions of the
author, and does not necessarily represent the vIews of the US Government, MCC,
or the staff of the ES-Kit project.

Bill Leddy was the principle designer of the ES-Kit kernel; his needs precipi
tated most of these ideas. Wayne Allen, Gumby Wallace, and Jon Shopiro listened
well to early ideas concerning wrappers, and offered many useful suggestions.
Bjarne Stroustrup coined the term u wrapper," and prOVided me with a syntax, and
suggested that wrappers might be worthwhile. Doug Lea and John Rose

1988 USENIX C++- Conference 359

360

contributed ideas and inspirations which have been woven into this paper. Phillipe
Gautron pointed out the need to encode non-virtual functions in special ways in
virtual function tables, and also showed me his algorithm for doing that. Marc
Shapiro got out the red pencil when I needed a reviewer. Most of all, I would like
to thank Richard Stallman and contributors to the GNU project, for sharing their
software with me. .

Bibliography

[Ca187] Call, Lisa A., Cohrs, David L., and Miller, Barton P. "CLAM: an Open
System for Graphical User Interfaces." OOPSLA 87 Proceedings. October,
1987.

[Cap87] Caplinger, Michael. "An Information System Based on Distributed
Objects." OOPSLA 87 Proceedings. October, 1987.

[Gau87] Gautron, P., and Shapiro, M., "Two extensions to C*: A Dynamic Link
Editor and Inner Data." Proceedings and Additional Papers from the First
USENIX C++ Workshop. Santa Fe, New Mexico, November 9-10, 1987.

[Gra86] Grass, J.E., and Campbell, R.H., "Mediators: A Synchronization
Mechanism." Proceedings from the 6th International Conference on
Distributed Computing Systems. May 1986.

[Gri87] Grimshaw, Andrew S., and Liu, Jane W. S. "Mentant: An Object-orientecl
Macro Data Flow System." OOPSLA 87 Proceedings. October, 1987.

[Gum88] Gumby Wallace, Private communication.

[Hal85] Halstead, R., "Multilisp: A language for concurrent symbolic computa
tion." ACM Transactions on Programming Languages and Systems 4, 4
(October 1985).

[Led88] Leddy, B., "ES-Kit Kernel Release 1 Design Notes." MCC Technical Report
number ACA-ESP-141-88.

[Lin87] Linton, Mark. "The Design of the Allegro Programming EnVironment."
Proceedings and Additional Papers from the First USENIX C* Workshop.
Santa Fe, New Mexico, November 9-10, 1987.

[LisS8] Uskov, B., and Shrira, L., "Promises: Lingulstlc Support for Efficient
Asynchronous Procedure Calls in Distributed Systems." Proceedings of the
SIGPLAN '88 Conference on Programming Language Design and Implementa
tion. June, 1988.

[Mae81] Maes, P., "Concepts and Experiments in Computational Reflection."
OOPSLA 81 Proceedings. October, 1981.

[McC81] McCullough, P., "Transparent Forwarding: First Steps." OOPSLA 87
Proceedings. October, 1981.

[Ros88] Rose, J., "Refined Types: Highly: Differentiated Type Systems and Their
Use in the Design of Intermediate Languages." Proceedings of the SIGPLAN
'88 Conference on Programming Language Design and Implementation. June,
1988.

1988 USENIX C++ Conference

[Smi88] Smith, Robert J. IT, "Experimental System Building Blocks." MCC Techni
cal Report number ACA-ESP-I02-88.

[Sta88] Stallman, R., "Internals of GNU CC:' (Last updated version 1.25). Free
Software Foundation. Cambridge, Massachusetts, 1988.

[Sun88] Sun Microsystems, "Network Programming:' Part Number 800-1779-10.
Revision A, May 9, 1988.

[Tie88] Tiemann, M., "User's Guide to GNU C++." MCC Technical Report number
ACA-ESP-099-88.

1988 USENIX c++ Conference 361

362 1988 USENIX C++ Conference

USENIX Association Services and Benefits

The USENIX Association is a not-for-profit organization of individuals and
institutions with an interest in UNIX and UNIX-like systems and the C program
ming language. It is dedicated to fostering the development and communication of
research and technological information and ideas pertaining to UNIX and UNIX
related systems. The Association sponsors workshops and semiannual technical
meetings, produces and distributes a bimonthly newsletter, ;login:; publishes a
quarterly technical journal, Computing Systems; and serves as coordinator of a
software exchange via its USoftware Distribution Tapes."

The Association was formed in 1975 and incorporated in 1980 to meet the
needs of UNIX users and system maintainers who met periodically to discuss
problems and exchange ideas concerning UNIX. It is governed by a Board of Direc
tors elected biennially.

The USENIX Association offers several services to its members:

• Mailing of the newsletter ;login:;

• Mailing of the technical journal Computing Systems;

• Offering of various UNIX publications and technical information for purchase;

• Presentation of technical meetings twice a year and single-topic workshops
periodically; .

o A discount on the meeting registration fee;

o The right to order 4.3BSD UNIX Manuals;

.. The right to vote on matters affecting the Association, its bylaws, and in the
election of its directors and officers.

STUDENT MEMBERSlllP $15
Open to any full-time student at an accredited educational institution. A
copy of your student I.D. card must be provided.

INDIVIDUAL MEMBERSHIP $40
Open to any individual or institution. Individual Members may vote; how
ever, they do not automatically receive the Distribution Tapes or other ser
vices requiring UNIX license veriftcation.

USENIX Association Membership Application

Membership is by Calendar Year

Please type or print

[] New [] Renewal

Name: _

Address: _

Phone:

uucp network address: uunetl

Individual. Corporate. and Supporting categories are all open to either institutions or individuals.
Membership fees are:

[] $ 40 Individual

[] $ 275 Corporate

[] $1000 Supporting

[] $ 15 Student (full-time)
With C4py 01 student I.D. card

[] $125 Educational Institution

[] Check enclosed: $ _
Paynumts must be in US dollars payablA1 on a US bank

[1 Purchase order enclosed: invoice required

[1 Check if you do NOT want your name and address made available to other members.

[1 Check if you do NOT want your name and address made available for commercial mailings.

Please complete and return this form with
your purchase order or payment to:

USENIX Association
P. O. Box 2299
Berkeley. CA 94710

For Office Use

Inst: .

Mem#: Check#:: ..

Lic: Rf: .

Date: Db: ..

	Program and Table of Contents
	Parameterized Types for C++
	Building Well-Behaved Type Relationships in C++
	Porting from Common Lisp with Flavors to C++
	Prototyping Database Applications with a Hybrid of C++ and 4GL
	Open Dialogue: Using an Extensible Retained Object Workspace to Support a UIMS
	A C++ Class Hierarchy for Building UNIX-Like File Systems
	Applying Object-Oriented Design to Structured Graphics
	A C++ Interpreter for Scheme
	GPIO: Extensible Objects for Electronic Design Tools
	C++: From Research to Practice
	NAPS—A C++ Project Case Study
	Data Level Parallel Programming in C++
	A Multiprocessor Operating System Simulator
	Modelling of Control Systems with C++ and PHIGS
	Type-safe Linkage for C++
	Implementing a Logic-Based Executable Specification Language in C++
	Debugging and Instrumentation of C++ Programs
	libg++, the GNU C++ Library
	A C++ Approach to Real-Time Systems: Task Interface Library
	A C++ Library for Infinite Precision Floating Point
	Iris: A Class-Based Window Library
	Lexical Closures for C++
	Pointers to Class Members in C++
	Exception Handling without Language Extensions
	Solving the RPC Problem in GNU C++

