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Parameterized Types for G+ +

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Type parameterization is the ability to define a type in terms of another,
unspecified, type. Versions of the parameterized type may then be created for
several particular parameter types. A language supporting type parameterization
allows specification of general container types such as list, vector, and associative
array where the specific type of the elements is left as a parameter. Thus, a
parameterized class specifies an unbounded set of related types; for example: list
of int, list of name, list of shape, etc. Type parameterization is one way of mak-
ing a language more extensible.

In the context of C++ , the problem are

[1] Can type parameterization be easy to use?

[2] Can objects of a parameterized type be used as efficiently as objects of a
“hand-coded” type?

[3] Can a general form of parameterized types be integrated into C++ ?

[4] Can parameterized types be implemented so that the compilation and
linking speed is similar to that achieved by a compilation system that
does not support type parameterization?

[S] Can such a compilation system be simple and portable?

A design is presented for which the answer to all of these questions is yes.
The implementation of this scheme is a fairly simple extension of current C++
implementations.

WARNING: The scheme for providing parameterized types described here is
not implemented. It is not part of the C++ language, nor is there any guarantee
that it ever will be.

1 Introduction

For many people, the largest single problem using C++ is the lack of an extensive standard
library. A major problem in producing such a library is that C++ does not provide a sufficiently
general facility for defining ‘‘container classes’ such as lists, vectors, and associative arrays. There
are two approaches for providing such classes/types:

[1] The Smalitalk approach: rely on dynamic typing and inheritance.

[2] The Clu approach: rely on static typing and a facility for arguments of type type.

The former is very flexible, but carries a high run-time cost, and more importantly defies attempts
to use static type checking to catch interface errors. The latter approach has traditionally given
rise to fairly complicated language facilities and also to slow and elaborate compile/link time
environments. This approach also suffered from inflexibility because languages where it was used,
notably Ada, had no inheritance mechanism.

Ideally we would like a mechanism for C++ that is as structured as the Clu approach with ideal
run-time and space requirements, and with low compile-time overheads. It also cught to be as
flexible as Smalltalk’s mechanisms. The former is possible; the latter can be approximated for
many important cases.

1988 USENIX C+ Conference



Note that G++ appears to have sufficient expressive power to cope with the demands of library
writing provided there is a single basic kind of object, such as a character (for string manipulation,
pattern matching, character 1/O, etc.), a double precision floating point number (for engineering
libraries), or a bitmap (for graphics libraries). The “container class problem” is particularly seri-
ous, though, since container classes are needed to specify all but the simplest interfaces; they are
the “‘glue” for larger systems.

2 Class Templates

A C++ parameterized type will be referred to as a class template. A class template specifies
how individual classes can be constructed much like the way a class specifies how individual objects
can be constructed. A vector class template might be declared like this:

template<class T> class vector {
T* v;
int sz;
public:
vector(int);
T& operator[] (int);
T& elem(int i) { return v[i]; }
I/ ... .
};

The template <class T> prefix specifies that a template is being declared and that an argument
T of type type will be used in the declaration. After its introduction, T is used exactly like other
type names within the scope of the template declaration. Vectors can then be used like this:

vector<int> vl (20);
vector<complex> v2 (30);

typedef vector<complex> cvec; // make cvec a synonym for vector<complex>
cvec v3(40); // v2 and v3 are of the same type
v1i[3] = 7;

v2[3] = v3.elem(4) = complex(7,8);

Clearly class templates are no harder to use than classes. The complete names of instances of a
class template, such as vector<int> and vector<complex>, are quite readable. They might
even be considered more readable than the notation for ‘the built-in array type: int[] and
complex(]. When the full name is considered too long, abbreviations can be introduced using
typedef.

It is only trivially more complicated to declare a class template than it is to declare a class. The
keyword class is used to indicate arguments of type type partly because it appears to be an
appropriate word, partly because it saves introducing a new keyword. In this context, class
means ‘“‘any type” and not just “‘some user-defined type.”

The <...> brackets are used in preference to the parentheses (...) partly to emphasize the
different nature of template arguments (they will be evaluated at compile time) and partly because
parentheses are already hopelessly overused in G++ .

The keyword template is introduced to make template declarations easy to find, for humans
and for tools, and to provide a common syntax for class templates and function templates.

3 Member Function Templates

The operations on a class template must also be defined. This implies that in addition to class
templates, we need function templates. For example:
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template<class T> T& vector<T>::operator{] (int i)

{
if (i<0 || sz<=i) error("vector: range error");
return v{i};

}

A function template is a specification of a family of functions; template<class T> specifies that
T is a template argument (of type fype) that must somehow be supplied to specify a particular func-
tion.

Note that you don’t usually have to specify the template arguments to use a function template.
For example, the template argument for vector<T>::operator[] will be determined by the
vector to which the subscripting operation is applied:

vector<int> vl (20);
vector<complex> v2 (30);

v1i{3) = 7; // vector<int>::operator(] ()
v2(3] = complex(7,8); // vector<complex>::operator[] ()

Member functions of a class template are themselves function templates with the template argu-
ments specified in the class templates. Function templates and member function templates will be
discussed in greater detail in §9 and §12.

4 Outline of an Implementation

The basic idea for an implementation that incurs no additional costs in run-time or space com-
pared with “hand coding” is to “macro-expand” a template for each different set of template argu-
ments with which it is used. Naturally, template expansion is not really/just macro expansion; it
obeys proper scope and syntax rules. Names such as vector<int> can be encoded into compo-
site class names such as __ PTvector_int.

The example above expands into:

class _ PTvector_int {
int* v;
int sz;
public:
__PTvector_int (int);
int& operator(] (int);
int& elem(int i) { return v([i]; }
// ...
}:

class __ PTvector_complex {
complex* v;
int sz;
public:
__PTvector_complex(int) ;
complex& operator(] (int);
complex& elem(int i) { return v([i]; }
// ...
}:

_ _PTvector_int v1(20);
___PTvector_complex v2(30);
_ PTvector_complex v3(40);

vli([3] = 7:
v2[3] = v3.elem(4) = complex(7,8);

A compiler need not have a separate template expansion pass. Since the information to do such
an expansion exists in the compiler’s tables, the appropriate actions can simply be taken at the

1988 USENIX C+ Conference



proper places in the analysis and code generation process.
In addition to this expansion mechanism, a facility is needed for detecting which member func-
tions have been used for which instances of a parameterized type. The example above used:

_ PTvector_int::_ PTvector_int(); // constructor
__PTvector_complex::_ PTvector_ complex(); // constructor
_ PTvector_int::operator(] (); // subscripting
__PTvector_complex::operator{] (); // subscripting

_ PTvector complex::elem();

Note that the full list of such functions for a program can be known only after examining every
source file. The linker provides a form of this list as part of its list of undefined objects and func-
tions.

The definition of an operation on a class template might look like this:

template<class T> T& vector<T>::operator(] (int i)

if (i<0 || sz<=i) error("vector: range error");
return v[i];

}
From this, the following two function definitions will have to be generated:

int& _ PTvector_int::operator[] (int i)

{
if (i<0 || sz<=i) error("vector: range error");
return v{i];

}

complex& _ PTvector_complex::operatox([] (int i)

{
if (i<0 || sz<=i) error("vector: range error");
return v[i];

}

This approach ensures that no run-time efficiency is lost compared to “hand-coding”. Code
space might wasted by creating separate copies of functions that could have shared implementation.
For example, vector<int> and vector<unsigned> need not have separate subscripting opera-
tions. Such waste can, if necessary, be reduced through suitable coding practices (see § 11) and/or
through a clever compile time environment,

A programmer can provide a definition for a particular version of an operation on a class by
specifying the template argument(s) in a function definition:

int& vector<int>::operator([](int i) { return v([i]; }

The general version of such a function as defined by its template will be used to create a function
for a particular argument type only when no user-provided version is specified for that type.

Replacing the default implementation of a function as defined by a template is useful where
implementations with greater precision, higher efficiency, etc. can be provided given some under-
standing of a particular type. It may also be useful for debugging and for supplying different ver-
sions of a function to different parts of a program (using static functions).

5 Some Design Considerations

Let us consider a few choices that were made to write the example above:
{1] Should all template arguments be of type type?
{2] Should a user be required to specify the set of operations that may be used for a template
argument of type type?
[3] Should a user be required to explicitly declare what versions of a template can be used in a
program?
~ [4] Should it be possible for a user to declare variables of type type?
The answer to all (in the context of C++ ) is no. Let us examine them in turn.
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Template Arguments

“Should all template arguments be of type fype?” No, there appear to be useful examples of
type parameters of “normal” types. For example, a vector template might be parameterized with
an error handling function:

typedef void (*PF) (char*);

template<class T, PF error> class vector {
T* V;
int sz;
public:
T& operator[] (int i) (
if (i<= || sz<=i) error("vector: range error"):;
return vi(i];

}:

void my error_fct() { ... }
vector<complex, &my_error_fct> v(10);

This example implies that default arguments might be useful:

template <class T, PF error=&standard error_fet> class vector { ... )
Another example is a buffer type with a size argument:

template<class T, int sz=128> class buffer {
T v[sz}:
// ...

}:

void £()

{
buffer<char> bufl;
buffer<complex, 20> buf2;
// ...

}

buffer<char*,1000> glob;

Making sz an argument of the template buffex itself rather than of its objects implies that the
size of a buffer is known at compile time so that a buffer can be allocated without use of free
store. It appears that default arguments will be at least as useful for template arguments as they
are for ordinary arguments. Default arguments of type type might even be useful:

template<class T, class TEMP = double> class store {
// ...
T sum() { TEMP sum = 0; ... return sum; }

}:

store<int, long> istore;
store<float> fstore;

These examples demonstrate that the range of templates with which a type can be parameter-
ized should be restricted only if there are compelling arguments that the restriction will signifi-
cantly ease the implementation of templates. I see no such argument.

Type Argument Attributes

“Should a user be required to specify the set of operations that may be used for a template
argument of type type?” For example:
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// The operations =, ==, <, and <=
// must be defined for an argument type T

template <
class T (
T& operator=(const T&);
int operator==(const T&, const T&);
int operator<=(const T&, const T&);
int operator<(const T&, const T&);
}i
>
class vector {
/] ...

};

No. Requiring the user to provide such information decreases the flexibility of the parameteriza-
tion facility without easing the implementation or increasing the safety of the facility.

Consider vector<T>. To provide a sort operation one must require that type T has some
order relation. This is not the case for all types. If the set of operations on T must be specified in
the declaration of vector one would have to have two vector types: one for objects of types with
an ordering relation and another for types without one. If the set of operations on T need not be
specified in the declaration of vector one can have a single vector type. Naturally, one still can-
not sort a vector of objects of a type glob that does not have an order relation. If that is tried,
the generated sort function vector<glob>: :sort () would be rejected by the compiler.

It has been argued that it is easier to read and understand parameterized types when the full set
of operations on a type parameter is specified. I see two problems with this: such lists list would
often be long enough to be de facto unreadable and a higher number of templates would needed
for many applications.

Should experience show a need for specifying the operations on a parameterized type then such
a facility can be easily and compatibly added later.

Source Code

There might be a more fundamental reason for requiring that the operations performed on a
template argument of type type should be listed in the template declaration. The implementation
technique outlined here achieves near optimal run-time characteristics by requiring the complete
source code of a template to be available to the compiler when processing a use of the template.
In some contexts, this is considered a deficiency and an implementation of templates that requires
only the object code for functions implementing the function templates would be preferable.

At first glance it would appear that requiring the full set of operations on a template argument
to be specified would make it significantly easier to produce such an implementation. In this case,
a function template would be implemented by code using calls through vectors of function pointers
to perform operations on template arguments of type type. The specification of the set of opera-
tions for a type argument would provide the definition for such vectors. Such an implementation
would trade run-time for compile and link time, but would be semantically equivalent to the imple-
mentation scheme presented here.

Could an implementation along these lines be provided without requiring the user to list the set
of operations needed for each function template argument of type type? I think so. Given a func-
tion template, the compiler can create a vector layout for the required set of operations without the
help of a user. Given the full set of function definitions for the members of a class, the compiler
can again create a vector layout for the required set of operations without the help of a user. If
the compile and link environment cannot provide such a list a less optimized scheme where each
member function has its own vector of operations can be used.

It thus appears that both implementation styles can be used even in the absence of template
argument attribute lists so that we need not require them to preserve the implementers’ freedom of
action. It might be noticed that a virtual function table is in many ways similar to a vector of
operations for a template so that the benefits of the vector of operations approach can often be

1988 USENIX C+ Conference



achieved by a coding style relying on virtual functions rather than the expansion of function tem-
plates. Class pvector presented in §11 is an example of this.

Type Instantiation

“Should a user be required to explicitly declare what versions of a template can be used in a
program?” For example, should one require the use of an operation like Ada’s new? No. Such a
requirement would increase the size of the program text and decrease the flexibility of the template
facility without yielding any benefits to the prugrammer or the implementer.

Type Variables

“Should it be possible for a user to declare variables of type type?” For example:
type t = int;

void £ (type t)

switch (t) {
case int:

case char*:
case complex:
default:

}
}

Such a facility would be useful in many contexts, but does not appear suitable for G++ . In partic-
ular, it is not possible to assign integer values to represent constants of type type such as int,
line_module*, double (*) (complex*,int), and vector<complex> while maintaining the '
current style of separate compilation. Since the C++ type system is open such assignment of
values in general requires an unbounded number of bits to represent a type. In practice, even sim-
ple cases require lots of bits (the current cfront scheme for encoding function types in character
strings regularly uses dozens of characters) or some system of hashing involving a database of
types. Furthermore, the introduction of such variables would require an order of magnitude
greater changes to the C++ language and its implementations than the scheme (without type vari-
ables) described here. '

6 Type Inquiries

It would be possible to enable a programmer to inquire about properties of a template argument
of type rype. This would allow the programmer to write code that depends on specific properties
of the actual types used.

An Inquiry Operator

Consider providing a print function for a vector type that sorts the elements before printing if
and only if sorting is possible. A facility for inquiring if a certain operation, such as <, can be per-
formed on objects of a given type can be provided. For example:

template<class T> void vector<T>::print ()

{
if (?T::operatox<) sort(); // if (T has a <) sort_this_vector
for (int i=0; i<sz; i++) { ... }

}

Because the < operation is defined for inss, printing of a vector<int> gives rise to an expansion:
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void _ PTvector_int::print{)

{
sort(); // that is, this->sort ()
for (int i=0; i<sz; i++) { ... }

}

On the other hand, printing a vector<glob> where the < operation is not defined for globs
gives rise to an expansion:

void _ PTvector_glob::print ()
{

for (int i=0; i<sz; i++) { ... }
}

Tests on expressions of the form ?typ:.oper (“‘does type typ have an operation oper?’’) must be
evaluated at compile time and can be part of constant expressions.

It would probably be wise not to include such a type inquiry feature in the initial experimental
implementation but to wait and see what properties (if any) programmers would find useful.
Potentially every aspect of a type known to the compiler can be made available to the programmer;
sizeof is a most rudimentary version of this kind of facility.

The absence of a type inquiry facility will be compensated for by the ability to define a function
for a particular set of template arguments, thus overriding the generation of the ‘‘standard” version
from the template. Furthermore, it can sometimes be preferable to define separate templates to
represent the different concepts. For example, one might have both a vector<T> class and a
sorted_vector<T> class derived from it.

The typeof Operator

Writing code where the control flow depends of the properties of a type parameter doesn’t
appear to be necessary, but defining variables of types dependent on type parameters does. Given
a template argument of type type, T, one can express a variety of derived types using the declara-
tor syntax; for example, T*, T&, T[10], T(*) (T,T). One can also express types obtained by
template expansion such as vector<T>. However, this does not conveniently express all types
one might like. In particular, the ways of expressing types that depends on two or more template
arguments are weak. To compensate, one might introduce a typeof operator that yields the type
of its argument. For example:

template<class X, class Y> void £(X x, Y y)
{
typeof (x*y) temp = x*y;

}

It would probably be wise rot to introduce a typeof operator before gaining more experience.
The uses of typeof appears to be quite limited and the scope for misuses large. In particular,
typeof appears more suited for the writing of macros (which templates are designed to replace in
many contexts) than for templates and heavy use of typeof will reduce the compilers ability to pin-
point type errors,

7 More about Implementation

So how can we generate the proper code for definitions of operations on a template for a given
set of arguments? Assume that we know that versions of vector’s subscripting operation

template<class T> vector<T>::operator(](int) { ... }

are needed for T==int and T==complex. How can we create the proper expansions (as
prest - ied above)?

We might have a compiler option, -X, for creating such expansions. Assuming that the defini-
tions for vector’s member functions resides in a file called vector.c, one might call the
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compiler like this:

CC -X "vector<int>" vector.c
CC -X "vector<complex>" vector.c

and have the appropriate . o files created. This would create not only the required subscript opera-
tor functions but also functions for any other vector operation that has its definition stored in
vector.h. The strategy for splitting a program into separately compiled parts is in the hands of

. the programmer. Where a finer granularity is required of .o files for a library, the programmer
can handle it using standard C library techniques.

Note that an expansion using the template expansion option, -X, may give rise to a program
that uses an instance of a template that has not already been used in the program. This implies
that another stage of *‘missing template implementation detection” is required after each expan-
sion. Expansion is really a recursive activity. The depth of this recursion will typically be 1,
though. It will be necessary to have a mechanism protecting against recursive expansion. For
example:

template<class T> void £(T a) ( T* p; ... £(p); }

Naturally, one would try to ensure that C~ -X is used to generate .o files only for definitions
of templates when

[1] a new template was used, or

[2] a new set of template arguments was used, or

[3] the declaration of a template was changed.
I imagine that after a short startup period all. the necessary .o files for templates for a
program/project will reside in a library and not interfere with the compilation process. When a
program/project reaches this state the compilation overhead incurred by using templates becomes
negligible.

Tools for Ensuring Consistent Linking

Consider having the tools described above:

(1] a G++ compiler handling the expansion of class templates into class declarations, and

[2] a -X option on this compiler to handle the expansion of function templates into function

definitions.
One could then compile a C++ program using templates. A little manual intervention would be
needed to get a complete program to link and load.

What additional tools would be needed to

[1] guarantee consistent and complete expansion and linking?

[2] make programming reasonably convenient?

I conjecture that [1] is perfectly feasible, but non-trivial, where portability across operating sys-
tems, compile and link time efficiency, and flexibility are all required. I also conjecture that very
little is needed to achieve [2]). Experience using such a system is clearly needed, but it might well
be sufficient to modify a tool with access to the complete compiled program, such as munch or the
linker itself, to produce

[1] a list of function definitions required, or

[2] a list of files for which CC -X needs to be run (assuming some correspondence between type

names and file names), or

[3] a make script for running CC -X for an appropriate set of files.

It would also be important to ensure that CC produces readable error messages when an opera-
tion is applied to a particular template argument of type fype for which it is not defined. For
example:

"foo.c", line 144: error: operator<= applied to glob in vector<glob>::sort ()

This discussion of how one might provide a minimal and portable mechanism supporting tem-
plates in C++ should not be taken as an indication that such a mechanism provides the ideal pro-
gramming environment. On the contrary, it is exactly a minimal facility. Much better facilities
can be built (think of a smart make, an incremental compiler, a Smalltalk-like browser, etc.),
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However, a minimal facility must exist to ensure portability of C++ programs between all imple-
mentations since there is no hope that a single maximal programming environment will ever be
agreed on and implemented on every system supporting C++ .

8 Function Templates

In addition to providing class templates, it is necessary to provide function templates. Consider
providing a general sort function:

template<class T> void sort(vector<T>);
Given a vector v, one might call such a function like this:
sort (v);

The compiler can deduce the type of the sort function from the type of the vector. For exam-
ple, had v been declared

vector<int> v(10);

the sort function sort<int> would have been required. On the other hand had the declaration of
v been

vector<double> v (2000);

the sort function sort<double> would have been used.

Overloading

Declaring a function template is simply a way of declaring a whole bundle of overloaded func-
tions at one time. This implies that we can use functions with arguments that can be distinguished
by the overloaded function resolution mechanism only. The following function cannot be used
because it takes no argument:

template<class T> T* create() { return (T*) malloc(sizeof(T)): }

The C++ syntax could be extended to cope with this by allowing the full generality of the
name<type> notation so that template arguments could be supplied explicitly in a call:

int* pi = create<int>(); // create_int ()
char* pc = create<char>(): // create_char()

Unless programmers define templates sensibly this form of fesolution can become quite cryptic:

template<class X, class Y> £(Y,X); // template argument order differs
// from function argument order

f<char*,int> (1, "asdf");

I think it would be wise not to include any explicit resolution method in an initial implementation.
I suspect that the implicit resolution provided by the overloaded function resolution rules are suffi-
cient — and more elegant — in almost all cases and it is not obvious that a mechanism for explicit
overloading is worth the added complexity.

Allowing explicit resolution would imply that a C++ compiler should treat function template
names differently from other names and similarly to the way keywords and class names are
treated. For example, without special rules for template names the last expression above would be
parsed as two comparisons and a parenthesized comma expression:

(g<123) > (vv,10) ;

10
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A Problem

Consider writing a function apply () that applies another function to all the elements of a vec-
tor. A traditional first cut would look something like this:

template<class T> void apply (vector<T>& v, T& (*g) (T&))
{

for (int i = 0; i<v.size(); it++) v[i] = (*g) (V[i]);
}

This follows the C style of using a pointer to function. Potential problems with this are
[1] efficiency, because there can be no inline expansion of the applied function, and
[2] generality, because standard operations of built-in types such as - and ~ for ints cannot be
applied.
Naturally, these are not problems to all people. However, an ideal template mechanism will pro-
vide solutions.

A Solution

One might consider the function to be applied by apply () a template argument rather than a
function argument:

template<class T, T& (*g) (T&)> void apply(vector<T>& v)
{
for (int i = 0; i<v.size(); i++) v[i] = (*g) (v[i]):;

}

To call apply () one must specify the function to be applied. Since this version of apply () takes
only a single vector argument the syntax for disambiguating an overloaded function call using
<...> must be used:

class X { ... }:
vector<X> v2(200);

inline void hh(X&) { ... }:
void gg(X&); // not inline

apply<X,hh>(v2);
apply<X, gg>(v2);

Clearly, the X is redundant and not elegant. Since in principle each such call of apply () results

in writing a new function apply () inlining can be applied where sufficient information is avail-

able. Consequently, one would expect a CG++ compiler to inline hh () in the first call in the exam-
ple above and generate a standard function call of gg (). The fact that function pointers and not
functions are passed in C++ is at most a minor annoyance for the compiler writer.

Operators for built-in types can be considered inline functions in this context:

vector<int> v (100);
apply< int, &int::operator—-- >(v);

However, as for the explicit resolution scheme itself, it remains to be seen if this degree of sophis-
tication and complexity is actually needed.
9 Syntax Issues

Consider the declarations:

template<class T> class vector { ... }:
template<class T> T* index<class T>(vector<T>, int);

(1] Why use the template keyword?
[2] Why use <. ..> brackets and not parentheses?
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[3] Why use the class keyword?
[4] What is the scope of a template argument?

The template keyword

If a keyword is to be used template seems to be a reasonable choice, but it is actually not
necessary to introduce a new keyword at all. For class templates, the alternative syntax seems
more elegant at first glance:

class vector<class T> { // possible alternative class syntax

}

Here the template arguments are placed after the template name in exactly the way they are in the
use of a class template:

vector<int> wvi (200);
vector<char*> vpc (400);

The function syntax at first glance also looks nicer without the extra keyword:

T& index<class T>(vector<T> v, int i) { ... }

There is typically no parallel in the usage, though, since function template arguments are not usu-
ally specified explicitly:

int i = index(vi,10);

char* p = index(vpc,29);

However, there appears to be nagging problems with this “simpler” syntax. It is too clever. It is
relatively hard to spot a template declaration in a program because the template arguments are
deeply embedded in the syntax of functions and classes and the parsing of some function templates
is a minor nightmare, It is possible to write a C++ parser that handles function template declara-
tions where a template argument is used before it is defined, as in index () above. I know,
because I wrote one, but it is not easy nor does the problem appear amenable to traditional parsing
techniques. In retrospect, I think that not using a keyword and not requiring a template argument
to be declared before it is used would result in a set of problems similar to those arising from the
clever and convoluted C and C++ declarator syntax.

< 00> VS (o00)

But why use brackets instead of parentheses? As mentioned before, parentheses already have
many uses in C++. A syntactic clue (the <...> brackets) can be useful for reminding the user
about the different nature of the type parameters (they are evaluated at compile time). Further-
more, the use of parentheses could lead to pretty obscure code:

template (int sz = 20) class buffer {
buffer(sz) (int i = 10);
/7 ...

}:

buffer bl (100) (200);
buffer b2 (100); // b2(100) (10) or b2(20) (100) ?
buffer b3; // legal?

These problems would become a serious practical concern if the notation for explicit disambi-
guation of overloaded function calls were adopted. The chosen alternative seems much cleaner:

12
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template<int sz = 20> class buffer {
buffer(sz) (int i = 10);
/7 ...

}:

buffer bl<100>(200);

buffer b2<100>; // b2<100>(10)
buffer b3; // b3<20>(10)
buffer b4 (100); // b4<20>(100)

The class keyword

Unfortunately, the ideal word for introducing the name of a parameter of type fype, that is,
type cannot be used; type appears as an identifier in too many programs. Why use the class
keyword then? Why not? Classes are already types to the extent that the built-in types can be
considered second class citizens in some contexts (you cannot derive a class from a built in type,
you cannot take the address of an operation on a built-in type, etc.). What is done here is simply
to use class in a slightly more general form than is done elsewhere.

Scope of Template Argument Names

The scope of a template argument name is the template declaration and the template name
obeys the usual scope rules:

const int T;

template<class T> // hides the const int T
class vector {

int sz;
T* v;
public:

};

int T2 = T; // here const int T is visible again
Template declarations may not be declaration lists:

template<class T> £(T*), g(T); // error: two declarations
This restriction is made to avoid users making unwarranted assumptions about relations between
the template arguments in the different templates.

10 Templates and Typedef

The template concept is easily extended to cover all types. For example:

template<class T, int i> T array(i]:

array<int, 10> v; // array of 10 ints

This allows great freedom in defining type names. In particular, a template without arguments
is equivalent to a typedef. For example:

template<> int I1;
typedef int 12;

I1<> x; // ‘*x'’ is an int
I2 y; // *‘y’’ is an int
int z; // **z'’ is an int

For example, it follows that x and z in the example above are both of the same type (int) .
I1<> is simply a rather unusual way of writing int.
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11 Type Equivalence

Consider:
template<class T, int i> class X {
T vec[i];
// ...

}:

array<int, 10> x;
array<int, 10> y;
array<int, 11> z;

Here, x and y is of the same type, but z is of the different type. Since the template arguments
used in the declarations of x and y are identical they refer to the same class. Naturally, only a
single class declaration is generated by a C generating C++ compiler. On the other hand, the tem-
plate arguments used in the declaration of z differs and gives rise to a different class.

Different template arguments give rise to different classes even if the argument is used in a way
that does not affect the type of the generated class:

template<class T, int i> class Y {
public:

foo() { int buf[i]; ... }
}:

Y<int, 10> xx;
¥<int, 10> yy:
¥Y<int,1l1l> zz;

Template arguments must be types, constants, or integer expression that can be evaluated at
compile time.

12 Derivation and Templates

Among other things, derivation (inheritance) ensures code sharing among different types (the
code for a non-virtual base class function is shared among its derived classes). Different instances
of a template do not share code unless some clever compilation strategy has been employed. I see
no hope for having such cleverness available soon. So, can derivation be used to reduce the prob-
lemt of code replicated because templates are used? This would involve deriving a template from
an ordinary class. For example:

template<class T> class vector { // general vector type
T* v;
int sz;
public:
vector (int);
T& elem(int i) { return v[i]; }
T& operator[] (int i);
/7 ...

t If that really is a problem: memory is cheap, etc. I think it is a problem and will remain so for the foreseeable future.
People’s expectations of computers have consistently outstripped even the astounding growth in hardware performance.

14
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template<class T>
class pvector : vector<void#*> { // build all vector of pointers
// based on vector<void*>
public:
pvector(int i) : (i) {}
T*& elem(int i) ( return (T*&) vector<void*>::elem(i); }
T*& operator[] (int i) { return (T*&) vector<void*>::operator(] (i); }
// ...
}:

pvectoxr<int*> pivec (100) ;
pvector<complex*> icmpvec (200);
pvector<char*> pcvec (300);

The implementations of the three vector of pointer classes will be completely shared. They are all
implemented exclusively through derivation and inline expansion relying on the implementation of
vector<void*> The vector<void*> implementation is a good candidate for a standard
library.

I conjecture that many class templates will in fact be derived from another template. For exam-
ple:

template<class T> class D : B<T> {

};
This also ensures a degree of code sharing.

13 Members and Friends

Here are some more details:

Member Functions

A member function of a class template is implicitly a template with the template arguments of
its class. Consider:

template<class T> class C {

T p;

Tml() { T a = p; pt+; return a; }
};

C<int> el;
C<char*> c2;

int i = el.ml(); // int C<int>::ml() { int a = p; p++; return a; )}

char* s = c2.ml(); // char* C<char*>::ml() { char* a = p; p++; return a; }

These two calls of ml () gives rise to two expansions of the definition of m1 ().
Naturally a member template may also be declared:

template<class T> class C {
template<class TT> void m(TT*,T*);
}:

This case will be discussed below. However, explicit use of class template arguments in member
function names is unnecessary and illegal:
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template<class T> class C {

T m<T>(); // error
};
template<class T> C<T>::m<T>() { ... } // error
template<class T> C<T>::m() { ... } // correct

This also applies to constructors:

template<class T> class C {

Cc():; // correct, a constructor
C<T>(int); // error constructor

};

template<class T> C<T>::C() { ... } // correct

To avoid confusion it is not legal to define a template as a member with the same template argu-
ment name as was used for the class template:

template<class T> class C {
template<class T> T m(T*); // error
};

Friend Functions

A friend function differs from other functions only in its access to class members. In particu-
lar, a friend of a class template is not implicitly a template. Consider:

template<class T> class C {

friend £1(T a);

template<class TT> friend £2 (TT a);
}:

The definitions of £1 () and £2 () are legal, but clearly not equivalent.

The friend declaration of £1(T) specifies that for all types T, £1<T> is a friend of C<T>.
For example, fl<int> is a friend of C<int>. However, f£l<int> is not a friend of
C<double>. The definition of £1 () would probably look something like this:

template<class TT> £f1(TT a) { ... };

The friend £1 () need not be a template, but if it isn’t the programmer might have a tedious time
constructing the necessary set of overloaded functions “by hand.”
The declaration of £2 () specifies that for all types T and TT, £2<TT> is a friend of C<T>.
For example £2<int> is a friend of C<double>.
Note that a friend function of a parameterized class need not itself be parameterized:
template<class T> class C {

static int i;
friend £() ( i++; )

Static Members
Each version of a class template has its own copy of the static members of the class:
template<class T> class C { static T a; static int b; ... };
c<int> xx;

C<double> yy;

This implies allocation of the static variables:
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static int C<int>:
static int C<int>:

:a;
:b;
static double C<double>::a;
static int C<double>::b;

Similarly, each version of a parameterized function has its own copy of static local variables;
’ template<class T> £() { static T a; static int b; ... };

Friend Classes

Friend classes can (as usual) be declared as a shorthand for declaring all functions friends:
template<class T> class C {

friend template<class TT> class X; // all X<TT>s
friend class Y<T>; // only Y<T>
friend class Z<int>; // only Z<int>

14 Examples of Templates

Here are some more examples of potentially useful templates, Versions of many of the tem-
plates used as examples in this paper have been created using macros and actually used in real pro-
grams. “Faking” templates using macros have been a major design technique for the template
facilities. In this way the language facilities could be designed in parallel with the key examples
and techniques they were to support.

An associative array:

template<class E, class I> class Map {
// arrays of Es indexed by Is
// ...
E& operator([] (I):;

}:

A “record” stream; the usual stream of characters is a special case:

template<class R> class ostream {

/...

ostream<R>& operator<<(R&); // output an R
}:

An array for mapping information from files into primary memory:

template<class T, int bsz> class huge {
T in_core_buf [bsz];
/! ...
T& operator[] (int i);
seek (long) ;
/! ...

A linked list class:
template<class T> class List { ... };

’

A queue tail template for sending messages of various types:
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template<class T> class mtail : public gtail {
/7 ...
void send(T arg)
{

// bundle ‘‘arg’‘’ into a new message buffer
// and put than on the queue

}:
A counted pointer template (for user-defined automatic memory management):

template<class T> class CP {
/! ...
public:
CP();
CP (T);
CP (CP<T>&) ;
/...
};

15 Conclusions

A general form of parameterized types can be cleanly integrated into C++ . It will be easy to
use and easy to document. The implementation can be efficient in both run-time and space. It can
be implemented portably and efficiently (in terms of compiler and link time) provided some
responsibility for generating the complete set of definitions of function templates is placed on the
programmer. This implementation can be refined, but probably not without loss of either portabil-
ity or efficiency. The required compiler modifications are manageable. In particular, cfront can
be modified to cope with templates. Compatibility with C is maintained.

16 Caveat

The key thing to get right for a C++ template facility is assuring that basic parameterized
classes are implemented in an easy to use and efficient way for the relatively simple key examples.
The compilation system must be efficient and portable at least for these examples. The most rea-
sonable approach to building a template system for C++ would be to achieve this first, make the
inevitable changes in concepts based on that experience, and proceed with more advanced features
only as far as they makes sense then.

17 Acknowledgements

Andy Koenig, Jon Shopiro, and Alex Stepanov wrote many template-style macros to help deter-
mine what language features was needed to support this style of programming. Jim Coplien, Mar-
garet Ellis, Brian Kernighan, and Doug Mcllroy supplied many valuable suggestions and questions.

18

1988 USENIX C++ Conference



Building Well-Behaved Type Relationships in C++
R. B. Murray

AT&T Bell Laboratories
Warren, New Jersey 07060

1. Introduction

The C++ programming languagel!l allows the designer of a new user-defined type to define the
conversions between that type and another type. When the arguments to a function call,
overloaded operator, or initialization don’t match a declaration exactly, the compiler can use
these conversions to coerce arguments to make them match. If exactly one declaration can be

matched using conversions, the compiler supplies the conversions automatically; otherwise it is a
compile time error.

These implicit type conversions can make it easier to write more concise code; however, they can
also create problems. The builder of a type structure is walking a thin line between supplying
enough conversions to avoid frequent explicit casts, and supplying so many conversions that
casts have to be added to resolve ambiguities. In addition, the type conversion rules of C++
make it possible for the addition of other declarations at a later time to break existing code. As
the use of C++ libraries grows, these interactions between different packages are hkely to
become more common.

This paper will begin by reviewing the existing behavior of implicit type conversions in C++.
We will then will suggest “rules of thumb” for avoiding unwanted interactions, both for the
type designer, and for the type user.

2. Review: type conversions sn C4++

In both C and C++, the compiler understands how to make certain type conversions, and will
quietly insert these conversions into the generated code when appropriate. For example, C and

C++ compilers know how to convert an int into a double; so if a compiler is presented with
the code fragment

double 4;

d = 2;
it will quietly convert the int 2 into a double before doing the assignment to d.
In C++, the designer of a user-defined type can specify conversions between that type and any
other type. This can either be a specification of how to the convert this type into some other

type, or how to convert some other type into this type. Either kind of conversion tells the

compiler how to make one type into another; the difference is in which of the two types involved
knows how to do the conversion.

2.1 Constructors

Conversion from another type From_type to a new type To_type is specified by supplying a
constructor that takes exactly one argument, either of type From_type or From_type&:
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class From_type {
//
3

class To_type {
/...
public:
To_type();
To_type(From_type&) ;

’

To_type::To_type(From_type& o)

//Do what it takes to make a From_type into this To_type
}

main(){

From_type other_thing;

To_type this_thing;

this_thing = other_thing; //To_type(From_type&) called
} .

2.2 Conversion operators

Conversion fo another type To_type from a type From_type is specified by supplying a
member function (called a conversion operator) of the form operator To_ type:

"class To_type {
/...
3

class From_type {

//

public:

operator To_type();
3

From_type::operator To_type()

//Do what it takes to make this From_type into a To_type
//This function returns the new To_type
}

main(){

From_type other_thing;

To_type this_thing;

this_thing = other_thing; //From_type::operator To_type() called
3

2.8 Function matching

The CH++ compiler will attempt to use implicit type conversions when the arguments supplied to
a function, overloaded operator, or initialization do not match any existing declaration exactly.
(For the remainder of this paper, the term “function” will be used to include overloaded
operators and initializations). The compiler may supply implicit type conversions in order to
coerce one or more of the arguments to the types expected by the function.

20
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For instance, if the function 8qrt expects an argument of type double, but the call passes an
int, the generated code will include a conversion of the int into a double and pass the

result to sqrt. This is also true in Draft Proposed ANSI Cl?; however, C++ extends this
behavior to include user defined types.

The C++ compiler will only call implicit type conversions if:
e no declaration for the function matches the argument list exactly, and
o there is exactly one such declaration for the function such that each argument either:
— matches the corresponding argument in the function declaration exactly; or

— has exactly one direct conversion that will change the argument into the type specified
by the function declaration.

If there are no function declarations that can be made to match by adding conversions, or there
are two or more, it is a compile time error.

For example:

class Orange {
//
};

class Apple {
// ...
public:
Apple();
Apple(Orange&); //convert Orange to Apple

’

overload cross;
void cross(Orange,Apple);
void cross(Apple,Apple);

nain() {
Orange navel;
Apple mcintosh;
cross(navel,mcintosh) ; //calls cross(Orange,Apple);
cross(mcintosh,mcintosh); //calls cross(Apple,Apple);

cross(mcintosh,navel); //converts navel and calls cross(Apple, Apple);

cross(navel,navel); //error: two possible conversions

};

The first two calls to cross match a declaration exactly, so no type conversions are called.
Since the third call does not match any declaration exactly, and there is no way to make an
Apple into an Orange, the third call can only be resolved by converting navel to an Apple
and calling cross(Apple,Apple). The fourth call also does not match any declaration
exactly. The compiler could convert only the second argument (which would match
cross(Orange,Apple), or it could convert both arguments (which would match
cross (Apple,Apple). Since there is no exact match, and there is not exactly one declaration
that can be made to match by supplying conversions, it is a compile time error.

8. Type conversion pitfalls

Implicit conversions can be convenient. However, if the class designer doesn’t put some thought
into their structure, they can cause troubles (in the form of compile-time errors) later. This
section looks at some of the most common problems and describes ways to avoid them.
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8.1 Multiple owner problem

This problem occurs when a conversion from S to T is necessary, and both T::T(S) (or
T::T(S&)) and S::operator T exist. We call this the multiple owner problem because there
are two ‘“‘owners’’ for the conversion S — T:

T::T(8)

> T
8::operator T()

S

(In this picture, each arrow from type S to type T indicates that an implicit type conversion
from S to T is declared.) It is never correct for both of these routines to exist.

This problem is minor because it cannot be introduced after the fact, since it requires that each
class involved knows about the other. Normally this is only true when the same set of people is
maintaining both classes, and it is therefore easily fixed by removing one of the conversions.

8.2 Ambiguous Type Structure

This error occurs when there is more than one possible set of conversions that will match the
function being called:

class Ti;
class T2;

overload func;
void func(T1);
void func(T2);

class S {

/7 ...

public:

operator T1();
operator T2();
}.

main () {
S s8;
func(s); //Error: two possible conversions
// (8->T1 or S->T2)
b
In this case, there is no func(S), and the type structure of the application allows either of two
conversions to resolve the function call:

T1 T2

S

Avoiding the structural problem is harder, because it can be introduced after the fact. The

later addition of a new type can cause existing code that depends on an implicit type conversion
to no longer compile:

22
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class Apple {
/...
public:
Apple(int);

void peel(Apple);

nain(){
peel(2); //calls peel(Apple(2));
b

The above code works, but if we later add another class that also defines peel we get a
problem:

class Orange {
// ... :
public:
Orange(int);
};

void peel(Orange);

When the new declarations (which are probably buried in a new header file) are added, all the
calls to peel that depend on the implicit conversion int — Apple will no longer compile.

This problem will become more common in the future. As software development moves toward
more aggressive reuse of code (as economics dictates that it must)’sl, the percentage of code in
an application that consists of libraries written by someone other than the application developer
will grow. This both increases the chances of an accidental name collision and reduces the
power of the victim to do anything about it (particularly if the victim does not have access to
the library source). A lot of trouble can be avoided if some thought about type structures goes
into the library design.

4. Rules for designing type structures

The structure problem arises when there are two or more conversions from the same type. If we
define the number of types that a type T can be implicitly converted to as the fanout of T, the
number of opportunities for collision from structural problems is O(fanout(T)?) . This is
because a function name collision between any two types in the fanout is a possible structure
error. So our first rule of thumb is:

Minimizge the fanout in the type structure.

By avoiding multiple implicit conversions from a given type, the chances that ambiguities will
be created are minimized. This does not mean that it should be impossible for users to convert
a given type to more than one other type; the point is that no more than one of these
conversions should be smplicit. Other conversions should be normal member functions. For
example, this type structure has high fanout:
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class Thing {

/7 ...

public:

operator Another_thing();
operator Still_another_thing();
operator Yet_another_thing();

I

Rather than have implicit conversions to three other types, at most one of the types should be
chosen for implicit conversions. In this case, suppose Another_ thing was the most common
of the types involved; we should only supply a conversion operator for Another_thing:

class Thing {

/...

public:
operator Another_thing();
Still_another_thing cvt_Still another_thing();
Yet_another_ thing cvt_Yet_another_thing();

3

Conversions to Still_another_thing and Yet_another_thing will now require an
explicit call to the appropriate member function.

4.1 Simplifying conversions

Implicit type conversions are especially useful when one of the classes is an extension of the
other. This may be an extension of the domain (e.g. Complex is an extension of double), or
of the concepts (String is an extension of char#*). In these cases, the implicit conversion
between the two classes should be from the extension to the simpler class; we call this a no-
value-added conversion.

Why are no-value-added conversions better? In general, there will be more than one extension
for a given simpler class. Implicit conversions from the extensions to the simpler class will fan
in to the simpler class, which doesn’t cause ambiguities:

T_with_bell T_with_whistle T_with_widget

T

On the other hand, implicit conversions from the simpler class to the extensions (value-added)

will fan out; there can be an ambiguity as to which extension the simpler type should be
converted to:

T_with_bell T_with_whistle T_with_widget

T

Since the simpler type should not know about the extension, no-value-added conversions will be
‘conversion operators (as opposed to constructors). So the rule of thumb is:

24
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Conversion operators should provide unique conversions to simpler types (no “value
added").

4.2 Mutual conversions are OK

It may not always be obvious when one type is an extension of another. For example, consider
the relationship between a type Rational, which implements rational numbers as the quotient
of a pair of arbitrary precision integers, and the type double. Conceptually, the set of real
numbers represented by double includes all rationals. However, since the implementation of
most doubles is a fixed sized mantissa and a fixed size exponent, the set of data representable
by Rational may in fact include all the data representable by double!

For situations like this, it is often simplest to use mutual conversions; each type can be
implicitly converted to the other:

Rational::Rational (double)

-
Lt

Rational double

-

Rational::operator double()

Surprisingly enough, this structure is not necessarily bad. If a function f accepts either a
Rational or a double, any use of Rational or double will match exactly; if the function
only accepts one of these types, the conversion will be called for the other type.

4.8 If in doubt, leave it out

Every automatic type conversion opens up a new opportunity for error, either from multiple
conversions requiring an explicit cast to be added, or (more sinister) from an unintended
conversion causing the wrong function to be called when the right function declaration was
missing. The most important rule of thumb is therefore:

If an implicit conversion is not obviously necessary, leave it out.

5. Implicit conversions in user code

The user of a library needs to be aware that constructors often break the rule that implicit
conversions should be unique, no-value-added conversions. Often, at least one form of the
constructor for an extension will take, as its sole argument, the simpler type:

class T {
//
};

class T_with_bell {

//

public:
T_with_bell(T);

3

The constructor T_with_bell::T_with_bell(T) defines an implicit value-added
conversion. The designers of T_with_bell may not have intended their users to depend on
this implicit conversion; it may simply exist because there is no way to specify a constructor of
this form without also declaring an implicit conversion.

This is particularly common with constructors that take built in types. For example, a class
that provides a buffer pool might have an integer parameter to the constructor that specifies an
initial size of the pool:
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class Buffer pool {
/...
public:
Buffer_pool(int);
3

The fact that this defines an implicit conversion from 1int to Buffer_pool is just an
accident; users’ code should not depend on it. For example, if there is a function

void flush(Buffer_pool);
which fills a Buffer_pool with available things, users should not call

flush(5);

with the intention of throwing away the next five things. This code depends on the conversion
int — Buffer_pool to construct a temporary Buffer_ pool of size 5, pass it to flush,
and destroy it after the call returns. A compilation error can be introduced by the later
addition of a constructor that takes int as its only argument if there is also a name collision on
flush:

class Toilet {
// ...
public:
Toilet(int);
};

void flush(Toilet);

Now, flushing an 1int no longer works. The second example in section 3.2, where code
stopped working because an implicit conversion from 1nt to Apple was broken by the
subsequent addition of a conversion from int to Orange, is another example of this. So the
rule of thumb here is:

Avoid the use of value-added conversions, even if they happen to be available. This
is especially important for conversions from built in types.
5.1 Repairing a broken type structure

If the user of a type gets bitten by a problem in the type structure, there are two ways to repair
the problem in the users’ code.

5.1.1 Provide ezplicit conversions An ambiguity can be resolved by providing an explicit
conversion in each function call:
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class Orange {
/...
public:
Orange(int);
};

class Apple {
/...
public:
Apple(int);

»

overload peel;
void peel(Orange) ;
void peel(Apple);

nain(){
peel(Apple(2));

This has the advantage of making explicit an operation that may not have been obvious
beforehand; but it also may clutter up the code, and can be a big effort. If there are few lot of
calls involved this is probably the simplest and clearest solution.

5.1.2 Provide disambiguators An alternative is to provide a disambiguator for the function
involved:

inline void
peel(int 1)
{

peel (Apple(1));
}

Since the disambiguator is inline, there is no additional run time cost. This allows a fix to be
made in one place, as opposed to being scattered throughout the code. However, we have added
yet another inline function declarator to our headers. If there are many calls involved this is
probably the easiest solution.

6. An Ezample

As an example, we’ll consider a type structure for various kinds of numbers. The types involved
will be: '

— 1int;

— Big_1int, supporting integers of arbitrary length;

— Rational, rational numbers (implemented as a pair of Big_ints);
— double;

-— Complex, a complex number implemented as a pair of doubles.

We’ll build this type structure in two steps. The first step is to figure out what conversions
must exist, either because they are implied by constructors, or because they already exist:
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Rational Complex
A

Big int

rr

int < double

int and double are mutually convertible by the rules of C. We clearly need to initialize
Big int from an int, and it makes sense to initialize Complex from a double.

How do we initialize Rational? This is a little harder. The fact that Rational is
implemented using Big_int is really an implementation detail; you should not require the user
of Rational to know about Big_int in order to use the package. However, we can imagine
that a Rational could be initialized by ints, doubles, or Big_ints, and we supply
constructors for this:

Rational Complex

A A

Big int

=

int - double

Having understood the conversions that exist because of constructors, the second step is to
decide what simplifying (no-value-added) implicit conversions (using conversion operators) we
should supply. We avoid implicit conversions when there are points in the domain that do not
obviously map to the range; e.g. it’s not obvious how to convert a Complex to a double when
there is a nonzero imaginary part. However, there is a clear way to convert a Rational to a
double (although we should be aware of possible loss of precision or range errors). So we add
Rational: :operator double to our type structure:

Rational Complex
A
Big int
o
int double

28
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We don’t add any other downward conversions, since that would increase the fanout from
Rational. The high fanout from int and double is unavoidable (and is characteristic of
built in types).

Suppose we want to convert a Rational to an 1int or a Big int? Adding implicit
conversions from Rational would increase the fanout; but we can imagine times when these
conversions would be useful. The answer is to provide conversions that are normal member
functions, without defining an implicit conversion:

class Rational {

//

public:
Big int cvt Big int();
int cvt_int();

3.

these allow users of Rationals to get the Big_int and int equivalents by making an
explicit call.

We’ve avoided conversions between Complex and int or Big_int because we don’t imagine
this conversion happening very often (if it does, perhaps a version of Complex that uses int or
Big ints would be more appropriate), and can easily be done by converting to or from a
double first. Since the conversion is not obviously necessary, we leave it out.

7. Summary

The moral of the story is: use implicit type conversions carefully, and with restraint. Every
implicit type conversion has the potential for causing problems down the line. Think about the
type structure as a whole, and look for ways to avoid fanout. The use of implicit type
conversions from a simpler to a more complex type, even if the conversions are available, should
be avoided; this is especially true if the simpler type is a built in such as int.

As software economics drives us toward more ambitious reuse of code, larger and larger parts of
an application will consist of libraries written by someone other than the developer of the
application. It is the responsibility of the library developer to make sure that the type structure
provided by the library is as simple and small as is practical.
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Porting from Common Lisp with Flavors to C++
Joseph Eccles
AT&T Bell Laboratories (Cap Gemini America)

ABSTRACT

While Lisp workstations provide a wonderfully productive
development environment, they are expensive, often forcing the
choice of another target machine for deployment.” This paper
describes some of the concerns and problems faced when porting a
large (20000 line) system from the Texas Instrument Explorer
workstation to a SUN/3. In each case an object oriented language
was used, Common Lisp with Flavors on the TI and C++ on the SUN.

The emphasis here is on the differences between the two
language systems. This paper addresses the translation of Flavors
into C++ classes, the semantics of Lisp lists, and the mimicing of Lisp
dynamic binding in C++. It deals only briefly with some other
differences, such as multitasking and window systems.

1. Introduction

During the late 1970’s and early 1980’s researchers at the MIT Laboratory for
Computer Science developed a Lisp based workstation that was later commercially
developed by several companies. The highly integrated and tool rich environment
provided by these workstations makes them attractive alternatives as development
environments, especially for prototyping. These systems include capabilities for
incremental compilation or interpretation of code, the intermixing of compiled and
interpreted code, powerful tracing, debugging, and data inspection facilities, and
flexible window systems. With all their advantages, though, the expense of these
machines makes them less than ideal delivery vehicles. In addition, since several
companies are now independently continuing development of the workstations, the
programming environments are diverging, especially in the area of extensions to the
windowing system. These divergences will tend to lock an application into a single
manufacturer’s hardware.

On the other hand, UNIX has become a standard software platform for
graphics workstations, and there are several such systems with computing power
and bit-mapped graphics capability comparable to the Lisp machines. With the
addition of a portable graphics/windowing environment such as the X Window
System and the object oriented capabilities of C++ these are becoming cheaper and
more standardized alternatives.

For these reasons, we have undertaken to convert a large existing application
from the Common Lisp/Flavors language to C++ running on a UNIX workstation.
The application in question is a graphics based user interface for a network moni-
toring and control system, consisting of about 20,000 lines of code running on a
Texas Instruments Explorer II color workstation.

The remainder of this paper will focus on the differences in the two language
environments, and the difficulties encountered as a result of these differences.
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2. C++ Replacements for Common Lisp Types

The standard data types of Common Lisp are easily replaced with C++ classes
or basic data types. Simple types such as integers and characters are as easily han-
dled by either language. Other important Lisp data types require class extensions
to C++, either from existing class libraries, or specifically constructed to mimic the
Lisp programming environment. Examples of such data types are

e strings
e hash-tables
o lists.

2.1 Strings

Common Lisp has a large set of routines available for handling string and
other array like data, and user interface applications are likely use these routines
heavily. C++ can easily provide such functionality by creating a sub-class of an
existing string class!!! with the extra member functions added. Such an approach is
preferable to adding more member functions into an existing class definition, since
the changes are then cleanly layered on top of the public interface of a base class.

2.2 Hash-tables

Within Lisp applications hash tables are commonly used to map properties to
key values. They are important in Common Lisp particularly when the key values
are not integers, or when the key values are sparse. An example of the first case is
the use of string keys, where a hash table will give a great performance advantage
over exhaustive string comparisons. We are currently using a class of hash tables
with string keys'?! to handle such mappings.

2.3 Lists

While there is existing C++ support for linked list classes!!), these are not con-
sistent with the Lisp concept of a list. The biggest difference is that list classes
mentioned above are implemented as doubly linked lists. This makes both nested
lists and shared sub-lists, both of which are commonly used in Lisp programming,
impossible. As a result, we have implemented our own singly-linked list classt?l,

The singly-linked class that we created was a list of pointers, which was
necessary because the objects in the lists could potentially belong to more than one
list. Another consequence of this is that destroying a list or removing an element
should not destroy the object being pointed to; it is left to the programmer to
ensure that an object is destroyed before all references to it vanish.

Incorporated into the definition of the singly-linked list class are equivalents
of many of the Lisp list functions, such as car, cdr, and so on. As in Lisp, making
a copy of a list creates a new list pointing to the original contents: only the top
level is normally duplicated.
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3. An overview of Common Lisp/Flavors

Common Lisp/Flavors is an object oriented programming environment built
on top of Common Lisp. In addition to the standard Lisp types, such as integers,
characters, arrays, and lists, the Flavors extension allows for user defined abstract
data types. Each abstract data type, or flavor has associated with it zero or more
private data members and a public interface consisting of one or more associated
functions, or methods. A flavor may be built on top of one or more base flavors,
and will inherit all data members from these flavors.

The interaction of methods in the derived and base classes can be controlled
by the programmer to a large extent. In the default, and most commonly used
scheme, each method is divided into three components, the before method, the
primary method, and the after method. For a method defined directly for a single
class, the before, primary, and after methods are executed in order. For a derived
class that overrides the base class methods, however, things are more complex, and
the flow of execution proceeds as follows.

e The before method of the derived flavor is called, followed by that of the
parent flavor if one is defined, and so on, until all before methods in the
hierarchy have been called.

e Next the primary method for the derived flavor is executed. If none has been
explicitly defined for this flavor, it will be inherited from the parent flavor.

e Finally, the after methods are executed in the reverse order of the before
methods.

For flavors derived from several base flavors (multiple inheritance) the
sequence is more complex, but again the primary method will be inherited from the
first base flavor for which it is defined, unless it redefined for the derived flavor.
The Flavors system also provides other schemes for invoking methods, giving the
programmer control over how inheritance functions. For example, the or combina-
tion calls the method for the derived flavor if it exists, then calls the method for
its base flavor only if the first call has returned false, and so on until some method
finally returns true or it runs out of base classes. In addition to the standard com-
binations, a mechanism is also provided to allow the user to specify arbitrary com-
binations of inherited methods. While these combinations add to the power of the
language, we found that they were not necessary for our application.

4. Differences between Flavors and C++

This section is not intended to be a complete discussion of C++, but rather a
comparison of C++ with the features of Flavors discussed above. There are several
differences in the semantics of Flavors methods and C++ member functions, but
these have generally not been a problem.

e All methods act like C++ virtual member functions, that is the binding of the
function is done dynamically at run time.

e Flavors allows methods to be broken into before, primary, and after
components, while C++ has no such concept.
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e When multiple base flavors would create an ambiguity in the definition of an
inherited (primary) method, Flavors resolves the conflict by choosing the
method from the base class that was lexically first in the flavor definition. In
C++ such an ambiguity generates a syntax error at the spot where the refer-
ence was used, and all such usages must be explicitly qualified by the
programmer using the :: scope operator.

e While C++ handles the inheritance of member functions by allowing a class
to inherit an existing function from its parent class or to redefine it, Flavors
has a wide variety of ways in which a class’s methods can be combined with
those from its base flavors.

In creating the Lisp version of the user interface, we found that full power of
methods combination in flavors was largely unused. With rare exceptions only the
default daemon combination was used, and the exceptions were invariably tied to
the TI window system and mouse interface, which had to be rewritten in any case.
Few of the methods used had before or after methods, and of these, most fell into
three groups that are easily dealt with.

e :after :init — This is a special method that is called when a flavor is instan-
tiated, after storage for the object has been allocated and after variables have
been initialized. This is almost identical with a C++ constructor, except that a
constructor is also responsible for explicitly initializing member variables.

e :before :delete — It is common to define cleanup routines that deal explicitly
with a particular flavor within an objects inheritance hierarchy. This is like a
C++ destructor, which is invoked before the space for the object is reclaimed.

e :before :set-variable / :after :set-variable — Methods are often placed around
such variable setting routines to validate the operation or its results, or to do
additional processing implied by the operation, for instance, after setting a
background color, we might want to force a window to redraw itself. The
reason such constructs are common in Flavors, however, it that the set
methods are often automatically generated, and do nothing other than change
the value of a single variable. In C++ such functions are always explicitly
coded, and so it makes more sense to write the entire before/set/after opera-
tion as a single routine. '

In these cases the processing done in the before or after method can be
conveniently incorporated into the body of a C++ member function — into the
constructor, the destructor or another routine.

5. Lisp Control Structures

Some of the control structures provided by Common Lisp proved to be partic-
ularly difficult to deal with, because of the basic differences with the C++ language.
Of particular concern were several constructs that were heavily used in the Lisp
implementation of our system, including

e error and condition handling
e UNWIND-PROTECT clauses
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e dynamic variable scoping and binding (the LET clause).
5.1 Error and Condition Handling

The Lisp environment on the MIT derived workstations provides a powerful
error handling facility based on Lisp’s non-local branching, or THROW capability,
which is similar to the longjmp() routine in C or C++. Within this scheme an error
type is a flavor derived from the error or ferror (fatal error) flavors, which in turn
are derived from the condition flavor. The programmer may declare a handler for
a condition or set of conditions, which is in effect until the flow of control exits the
stack frame in which it is declared. When an error is detected during the execution
of a Lisp expression, an object of the appropriate flavor is instantiated, and the
stack is unwound until an appropriate handler is found. The handler may do some
local processing, and then resume execution just after the point where it was
established, or use a non-local branch to unwind the stack further.

The main problem with trying to replicate this scheme in a C++ environment
is that C++ does not interact well with the setjmp/longjmp mechanism. While the
use of the stack for automatic variable storage ensures that the memory for local
objects will be reclaimed by a longjmp, it does not allow destructors to be called,
nor does it help for objects dynamically created with the new operator. In a recent
article W. M. Miller has discussed this problem[“], and has proposed a partial solu-
tion.

The alternative to such a scheme is to propagate error conditions back from
function calls to a level where they can be intelligently handled. To do this one
must always be able to recognize an error value returned from any function. This
can be done, but it is cambersome and is a potential source of errors, and requires a
reorganization of the code from that of the original Lisp program.

There are several problems with the approach described by Miller.

e Since destructors can not be directly called by the programmer, all destruc-
tors must simply call the virtual function cleanup that does the real work.
This means that it is impossible to handle existing class libraries without

modifying them. For example, the Strings class could not be used without
changing its source.

e The constructor must be able to distinguish between automatic and dynamic
objects, so that the destructor will know when the space is not on the stack,
and so must be freed.

e The cleanup mechanism should probably not delete objects that were created
dynamically. This can be left to the programmer, with the aid of the protect
facility described in the next section.

To avoid these problems a class Clean was created as an alternative to Miller's
cleanup_obj. It maintains a stack of objects to be cleaned up, but rather than act-
ing as a base class for other objects, each Clean object keeps a pointer of type Base,
which has a virtual destructor. The only function of Base it to allow delete to
function on the pointer in the Clean object. The constructor for Clean accepts one
argument of type Base*. Thus when an objects are discarded from the stack, the
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objects pointed to are deleted, and the proper destructors are called. The destruc-
tor for Clean will also delete the object.

Objects of class Clean should always be automatic, since they do not know
how to release their own storage. The objects to be cleaned are always created
dynamically, but should not be deleted explicitly. They will be deleted when the
clean object goes out of scope. It is up to the programmer to decide which objects
should be cleaned up. Hopefully in the future error handling will be more com-
pletely integrated in with the C++ language.

5.2 UNWIND-PROTECT

The UNWIND-PROTECT mechanism is widely used in Common Lisp to han-
dle cleanup of the running environment, especially in handling error conditions.
When execution flow exits the scope of the UNWIND-PROTECT, a list of user
supplied expressions are guaranteed to be executed, whether the exit is normal or
by way of a non-local branch, including when a condition handler is invoked.

Protect is a simple class that provides a part of the UNWIND-PROTECT
functionality. Its only public interface is through a constructor and a destructor,
and thus the only legal operation is initialization. The class definition is

class protect {
void (*function)(void *[]):
void **params;
public:
protect‘void (*f)(void *[]). void *pl[])
function = f; params = p;
protect() { (*function)(params); }

The destructor for this class calls a user supplied routine with a user supplied

argument when the scope of the variable is exited. A simplified example of using
class protect follows.
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#include <iostream.h>
#include "protect.h”

char *p[] = { g
"The second parameter is the integer %d .,
(char *)5

k:

// This program will declare a protect handler within a block,
// and then exit the block. This will cause the handler to

/[ execute.
main()
{
protect(doprotect, p);
cout << "Ready to exit inner block ;
}

cout << "Done ;

void
?rotect(void *args|])

char buf[80]:

sprintf(buf, (char *)args[0]. args[1]):
cout << buf;

This is of course overly simplified since in the absence of non-local jumps such
cleanup could be handled much more directly. Obviously this mechanism is only
useful with the condition handling mechanism described above or a similar one in
place, since if the normal longjmp is used the destructor will never be called. The
example above shows how the class would generally be used, that is, for
anonymous declarations. This is possible since the object created will never be
referenced by the programmer, and since keeping a temporary variable around to
reference it would simply clutter the program and make it less readable. There
would also never be a reason to allocate such objects dynamically using the new
and delete operators, since the power of the construct lies in the automatic call of
the destructor.

There are some deficienclies with this scheme when compared with the Lisp
UNWIND-PROTECT mechanism. While UNWIND-PROTECT can execute an
arbitrary collection of Lisp expressions with access to all the variables within the
scope of its definition, the protect class executes a function with access to only
those variables in its argument array or those that are global.
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5.3 Dynamic Binding — LET

The most profound way in which Lisp differs from C or C++ is in its han-
dling of variable binding. In Lisp a symbol is treated as a run-time object that can
be manipulated, while for most other compiled language symbols are replaced in
the execution environment with constant addresses. Thus for C++ it is not possible
to change the binding of a symbol, that is, to cause a symbol to reference a
different address. In Lisp code a symbol is in effect accessed by name, and its
contents are accessed by evaluating it. The LET statement in Lisp allows the
programmer to create a new value binding by placing a new symbol with the same
name on the run-time stack, masking the original definition. The new binding is in
effect until control exits from the level at which the new binding was made, and
the stack is unwound.

Dynamic bindings are often used in Lisp for much the same purposes as
pointers are used in C or C++, and the use of symbol bindings tends to make
pointer (or LOCF') references rare in Lisp programs.

Other uses of LET are harder to deal with, though. Lisp supports scoping of
variables dynamically as well as lexically. That is, while C or C++ define the
scope of a variable to be the block in which it was defined, and all nested blocks
within that block lexically (as read), a dynamically scoped, or special Lisp variable
may be accessed by any code that runs while the symbol is on the stack. In a
single-tasking environment this is equivalent to temporarily changing the value of
a global variable, although the "global" variable may not be accessible to all parts
of the program. In a multitasking system the effect is like having a separate set of
global variables for any execution stack that declares one.

Frequently the programmer will use this to avoid passing extra arguments to
functions. For example, when a task is associated with a particular window, that
window is bound to the symbol *standard-out put*, which is the default target for
the common output routines. Often such a usage can be eliminated by replacing
ordinary function definitions with method or member function definitions for an
appropriate class.

It would certainly be possible to create a replacement for Lisp dynamic bind-
ing in a C++ environment — for instance using a symbol class with the appropriate
properties — it is not clear that the gains would be sufficient to justify the added
complexity.

6. Other Problems

There are two additional sets of differences that had to be dealt with in the
process of accomplishing this port. The first is multitasking, which was exten-
sively used in the Lisp version, and the second is the programming interface to the
window system. These two areas are strongly interconnected.
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6.1 Window System

For a user interface the window system is a primary concern, since it
provides all interaction with the user — both output and input. Unfortunately,
window systems also tend to be the least portable part of the environment for any
program that uses one. While this is starting to change with the development of
standards such as X11, the window system dependent code is still hardest part to
move from one target environment to another. X11 is the target window system
for this application, in part because of its growing status as an industry standard.

The window system provided by the Lisp machine environment is tightly
integrated with the operating system and all standard applications. It is built on
top of Flavors, with each type of window defined as a flavor, and options, such as
title bars and scrolling, defined as a mix-in flavor which can be added to another
window type. The set of predefined flavors is rich, and user defined window types
are most often just trivial combinations of these.

Compared with this, X11 is poor in features, providing just the basic support
for manipulation of simple windows. To use X11 effectively it is necessary to have
additional layers of functionality built on top as a toolkit. Unfortunately the Xt
toolkit provided with X11 has several problems. It is cuambersome to extend and
use, largely because it tries to provide an object oriented interface using C. This
results in code that is difficult to read and debug.

6.2 Multitasking

A multiwindow user interface requires something akin to multitasking opera-
tion, since there are multiple input sources, each of which can independently
require processing. In the Lisp machine environment it is common to provide a
separate running process for each window displayed, so that operations in one win-
dow won't interfere with the functioning of other windows. However, the Lisp
concept of a process is different from the UNIX one. A Lisp process is lightweight,
that is it shares a global address space with all other processes, and maintains a
separate stack for local variables. In the UNIX case, processes have completely
separate address spaces, and communication between processes occurs only through
well defined facilities, such as shared memory and message queues.

The task library for C++ by J. E. Shopirol®! provides the capability to create
multiple tasks, or execution control threads, within a single UNIX' process.
Unfortunately, the real time task system did not interact well with X11, and was
abandoned.

While multitasking seems like a natural approach to handling multiple
sources of input, it is not really necessary for the implementation of a multiwin-
dow user interface. In an event driven system like X11, handling routines can be
called to process each event as it is detected. As long as no handler retains control
for to long a period of time the effect is like multitasking. It is only necessary then
to allow the reading of other input sources, such as IPC messages from other
processes, to be intermixed with window events. This approach is now being
investigated.
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7. Summary

To date the port of the Lisp version of the user interface is currently about 30
percent complete. Those parts dealing with the creation and initialization of the
major internal data structure — a directed graph[“] — and those for the parsing and
execution of keyboard commands have been recoded in C++. If we ignore the extra
C++ support needed to define Lisp lists, and so on, there seems to be little

difference in source code size for the two versions. The most troublesome part
remaining is the interface to X11.
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Abstract

There are many 4GLs on the market which allow interfacing with C in order to provide added
functionality. This paper describes the author’s experiences in developing a prototype for a shift
management and time recording system ( STMS ), which has been completed and delivered,
using the combination of C++ and a 4GL (in this case Seachange). The paper describes the
use of classes and inheritance to abstract the functionality provided by the 4GL. The first part
of this paper illustrates how the hybrid of C++ and a 4GL allows development of the final
product by a system of incremental replacement. Incremental replacement is a systematic
method of re-implementing the abstract classes which interface with the 4GL features, in C++
in order to remove dependencies on the 4GL. This allows the development of a final C++
product as a further development of the prototype rather than a lengthy rewrite. The next part
of the paper describes the use of the concepts of services, sets, inheritance, interaction objects
and interface classes to produce an abstraction of the 4GL. This section is illustrated with
examples from the shift management system. The final part of the paper briefly discusses the
performance constraints giving some metrics of using C++ with a 4GL.

1. INTRODUCTION

This paper is based on the prototype development of a rota management system STMS.
STMS is a shift and time management system for use in a hospital working environment.
The system is used for keeping employee information, planning and scheduling work
rotas and also for daily updates of information such as absences, changes to shifts,
overtime and pay calculation by way of data transfer to other systems. The target hospital
environments are characterized by large numbers of employees with differing jobs,
working schedules and in many cases, employees work in more than one department during
a single day. In addition to this several working weeks were in operation for the hospitals
concerned - Five and a half day week, six day week and five day week.
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Several constraints were to be taken into account when choosing the means of
development for the prototype.

> The prototype was to be completed and delivered in two months. This meant
that development time was of prime importance.

> Also due to time constraints it would not be possible to produce a 'throw-away’
prototype - a prototype with the look and feel of the end product but which would
be re-coded for speed and space optimization.

> Secondly it should be possible to extend the system to work with various windows
packages and other user oriented interfaces. It should also be possible to
reimplement sections and add extra functionality without requiring changes to
existing functionality.

> Finally certain implementation restrictions were applied. It should be portable
among the range of machines used in the hospitals - mainly pc’s running Dos or
Unix.

Due to these restrictions and others to be described later a hybrid of C++ and a Fourth
Generation Language (or 4GL), in this case Seachange from Thomson Computers of
England, were chosen as the means of development for this prototype.

In the next section I will discuss the merits and demerits of using 4GLs and C++.

2. PROTOTYPING WITH 4GLS.

There are no standard definitions for the various generations of languages,
however here is a simple explanation. ‘

Martin [1] defines a Fourth Generation Language or 4GL as a non-procedural end-user
oriented language. Programming is achieved by specifying the solution directly rather than
as a set of functions or procedures giving an algorithm to find the solution. ( For a good
overview and comparison of 4GL’s see ref. [2]). The knowledge required to find a
solution is built into the 4GL itself and the effectiveness of this solution relies on the scope
and efficiency of the 4GL’s set of predefined functions, which tend to be directed toward
a narrow range of problems. This form of programming was intended to give the power of
a conventional language to non technical computer end-users allowing applications to be
produced in fractions of the development time required by conventional languages.

4GL systems currently in commercial use tend to be a set of tools comprising a database
management system, screen and report generators and some limited form of procedural
language allowing procedures to be composed from the 4GL’s set of functions.

4GL’s- usually allow some form of interactive task specification in addition to
programming through the language supplied. Common examples of 4GL systems
include dBase, Focus, Oracle, Ramis II and Seachange.

The main advantages of using a 4GL are speed of development time and small learning
curves. Interactive generators allow the building of the overall structure of the application
and its associated data representation in a matter of hours. The development time advantage
however, quickly deteriorates as the programmer desires to achieve some effect outside of
the range of the 4GL.
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Other inherent disadvantages include :-

> Royalties and runtime license costs. Unlike conventional languages it is
customary to for developers intending to market the application to have to pay a
run time license fee to the 4GL distributor for each copy sold.

> Runtime Limitations. Applications produced by 4GL'’s are generally a lot slower
than those produced from conventional languages.[2] Other runtime limitations are
enforced by the 4GL system itself - the use of certain keys in the application,
the enforcement of certain screen styles and in some cases (dBase & Seachange)
only records from one file may be displayed on the screen at time.

> Language constraints. The 4GL systems supplied, due to their market, tend to be
intuitive rather than concise, rigorously defined languages. Procedural
components are often lacking in functionality or resort to old structure forms
(such as single line conditional branches etc.) As the language is often proprietary
to the company developing it, 4GL’s don’t have the advantages of conventional
languages with their larger user bases, independent research and conferences,
and the competitive multi-company language development. This reason also
contributes to the performance failings of 4GL’s. With a lower user base, there is less
incentive to provide complex optimisations in the application generators provided
with these packages.

> A major problem for developers is that of disposable prototypes. For
commercial or performance reasons, software developers may wish to develop
their final product in a general purpose programming language such as C or C++.
There are two common approaches to this task. One alternative is to convert the
4GL application to the target language using one of the 4GL converter products
available such as the 4GL to C converters. However the source code produced by
these is not easily maintained.
The other approach is to rewrite the system from scratch with the prototype being
used solely as a guide to the appearance of the final product. This approach is
wasteful of the time spent developing the original prototype.

In order to resolve some of these problems, many 4GL's allow interfacing with a
conventional language such as C. Seachange is one such 4GL and this was a major
consideration for its choice. ‘

3. PROTOTYPING WITH C++

Object-oriented programming in general, and C++ in particular has many features
which hasten the development time of large systems. Data hiding, data abstraction and
inheritance allow a modular implementation and a close mapping of design to
implementation. Using the data abstraction features allows rewriting and extension of
features without a rippling of the changes required throughout the system. C++ in
particular has the advantage of combining the philosophy of object-oriented programming
with speed and space efficient executables. The advantages of using C++ are obvious to
proponents of Object-Oriented programming.
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However development time for C++ systems, although fast, is of several orders of
magnitude greater than that using a 4GL.

4. PROTOTYPING WITH A HYBRID OF C++ AND 4GL.

Using a hybrid of C++ and a 4GL provides a compromise which removes many of
the problems associated with prototyping solely by 4GL’s or C++. By combining the
speed of development of a 4GL and the object-oriented features of C++, a prototyping
system is obtained which produces easily maintained and extended prototypes. The
modularity and maintainability of C++ allows the production of an easily maintained
and extended system. Production of a prototype can be tailored to available time and
functional requirements. Time critical or frequently used portions of the application may
be coded in C++ for efficiency, while large portions of the application may be developed
speedily through the use of screen generators etc.

One may argue that interfacing a language such as C to a 4GL would produce the
same effect. However the concepts of object-oriented programming allow the production
of a system which is independent of the quirks of the particular 4GL.

By using data abstraction and inheritance, it is possible to design a set of interface
classes which abstract the dependencies on the 4GL. Each service required from the 4GL
is interfaced to C++ by a clearly defined class (or class hierarchy) representing the service.
All dependencies on the 4GL are hiddenin these interface classes, and subsequent changes
require only the modification of these classes. All further usage of a 4GL feature is provided
by the associated interface classes. Specialized handling of particular files and other
application objects can be provided by inheritance from these classes.

This system of interfacing allows the extension or re-lmplementanon of the
apphcaﬂon by incremental replacement. Any particular service can be re-implemented or
extended in isolation without affecting the overall product. Services can be replaced on
a service by service basis eventually , if so desired, leading to a production version system
implemented totally in C++. In particular each change may be made while maintaining an
up to date working product. Other possibilities are adding on different types of user
interface (such as windows packages), natural language interfaces or replacing file
systems or structure.

This system of incremental replacement ensures that prototypes can be developed
as a working starting point for the final product rather than as an initial disposable
imitation.

5. STMS DEVELOPMENT

STMS was implemented using the hybrid scheme described above. In order to
explain how Seachange interfaces to C++ it is necessary to understand the organization of
this 4GL.

5.1 Seachange organisation.

Seachange, following the typical organization for 4GL’s, provides a set of tools in
an integrated environment. These tools consist of a database generator, screen generator,
menu generator and report generator with a Quick C style environment surrounding this.
Each of the components for an application may be specified through interactive sessions
with Seachange which in turn generates 4GL language files and compiles them, or by
writing the 4GL. language files directly. These files include ways of specifying fields in
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records, options available in forms, actions to be taken on certain menu options being
chosen, and screen layout. In addition to these components ’trigger’ files may be
specified - files of actions to be taken upon certain events happening. An example follows
overleaf.

when removing with employee.s

remove from absences.f index absence_key =
absence_key: employee_number

remove from hours.f index hours_key =
hours_key: employee_number

adjust
display "Removing cross references”

This set of actions causes the records of a particular employee for attendance hours
and absences to be removed from their associated file whenever the employee is removed
from the database.

At certain points C functions may be called from within Seachange either directly,
as in menu options or form options, or indirectly - by way of triggers, upon moving
form one field to another or as a set of actions to call when starting or finishing a form
or menu. Within the C program the current menu, form, records etc. may be
interrogated or modified through a setof C libraries provided with Seachange.

From the C or C++ end functions are called by way sending a message to a message
handler associated with the given form or menu. The message, organized as three null
terminated strings is dispatched to the associated handler with the strings representing
the name of the form or menu, the name of the function to call and a single string as a
parameter to the function. From the C++ or C programmers point of view, this is quite
similar to message handling in MS-Windows.

From the C end it is also possible to modify a function table which contains pointers
to functions for the standard operations - validation of data types in fields, adding arecord
etc.

5.2 Interface Classes.

The C++ interface to Seachange was organized as a system of several fundamental
services, each being represented as an interface class hierarchy. These services represented
as a file interface, a database interface, a screen interface (at low level - e.g. fonts, boxes
etc.), a form interface and menu and trigger interfaces. The database interface, as distinct
from the file service provides meansto locate global Seachange variables, to which file
a certain key refers and other non-file specific actions and operations. All interface
classes use constructors and destructors where necessary. This avoids the need to call
any library functions directly for cleanup or initialization. The following example is
taken from the menu service.
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class menu {
char name[13];
int is_loaded;

DB_VALUE (*old_dispatcher)(char*,char* char*);

public:

menu(char *); // Create menu from menu file.

~menu();
void run();

void set_dispatcher(auto DB_VALUE (*)(char* char* char*));

void restore_dispatcher();
)i

StartUp(Q)
{

menu main_menu("title"); // Load top level menu

main_menu.set_dispatcher(main_processing);

main_menu.run(); // Run menu

}

class form {
protected:

struct SCF_subform fdef;
struct SCF_functions *ffns;
struct SCF_footnote *fft;

public:

form(char *, dispatch_fn_ptr);
form(); // Current form being run
~form();

void set_rmfn{remove_fn_ptr);
char *run(); //Run form

k

This simple service provides all menu handling required by applications. The menu
is created using the 4GL menu file, the dispatcher is set up and the menu is run. By
re- implementing the menu constructor it would be possible to replace the user input with
a windowing system or a natural language interface without requiring changes to the rest
of the program.

In another example, this time taken from the form service, it is possible to see the role
of inheritance in interface classes. Note: types prefixed with the letters "SC" refer to
Seachange underlying types.
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// Inside the menu dispatcher

if (strcmp(menu_message,"run_form") == 0)
{

form frm(param,form_processing);
frm.set_rmfn(delete_func);

frm.run();

return;

]

In this example all Seachange constructs are hidden within the private and protected
parts of the class. Two constructors are provided :- the first constructor supplying the
pointer to the dispatcher function and a string representing the environment in which
the form is to be run, which is subsequently parsed by the form constructor. (This is
necessary as Seachange only allows one parameter to be passed through the dispatcher.)
The second constructor, when called within the dispatcher environment, gives a object
representing the current form. A more specialized form is derived from this providing one
constructor, only for use as within the dispatched environment. This autosrc_form forces
the form, upon startup to locate all the records in the associated file and display the first
one.

class autosrc_form : form {
public:

autosrc_form();

|

// Inside the form dispatcher

if (strcemp(form_message,"automatic_search”) == 0)
{
autosrc_form cr_form;
return 1;

)

5.3 Interaction objects

In many cases communication between distinct interface classes of a given service,
thatis interface classes belonging to the sane service which are not derived from a common
base class, takes place through the use of interaction objects based on underlying

Seachange types.
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What are interaction objects ?

It is often desirable for two or more classes to communicate some of their private
information. This can be achieved by making one class a friend of another or by providing
member access functions for one or more of the classes. However under either of these
two methods, the consumer of the information must know about all the types which
will communicate with it. An alternative to this is to allow the creation and consumption
of interaction objects. One class produces an object for consumption by another class as
ameans to communicate information. The objects themselves have no functionality
except to serve as packets for information passing. The scheme basically goes as follows:-

> Object Producer knows how to produce objects of type L
> Object Consumer uses objects of type I to produce some service.

> Therefore any new class introduced to the system can use Consumer’s services by
providing objects of type L.

In the case of STMS these interaction objects can be provided by some of
Seachange’s underlying types. Some of the underlying types provide ready-made
interaction objects which are created and returned by the 4GL C interface functions (
and hence available to the interface classes). As long as the restriction that only the interface
classes manipulate these objects is applied , system flexibility is maintained.

The following examples are taken from the file service which consists of a record, file
and index classes. In each case the interaction objects SC_record and SC_file are passed
as pointers. Each class can be constructed from the appropriate interaction object and may
also be cast to the interaction object.

class record

{

protected:

SC_record *rec_ptr;

short create_flag;

public:

record(SC_file*);

record(SC_record *);

~record();

void set_field(int ,long );  // Overloaded functions
void set_field(int , double ); // To set field values
void set_field(int , char* );

void get_field(int, long& ); // Overloaded functions
void get_field(int , double& ); // To get field values
void get_field(int , char* );

operator SC_record*() { return rec_ptr; }
|
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A record may be constructed from the underlying Seachange types SC_record, or
SC_file, and may be cast to a SC_record*. Constructing a record from a
(SC_record*) creates an object representing the database record and allows easy access
through the set_field and get_field functions. Creating a record with an SC_file* creates
arecord ( and allocates space for it) compatible with the file or index which generates the
SC_file*.

class file
(
protected:
struct SC_file * file_ptr;
int reference_count; // Number of references to this file
int *reference_addr;
file( file &); // create a reference to existing file
SCreckey this_key;
public:
file(SC_file *);
file(char * , iomode );
~file();
operator SC_file*();
B
In the case of files, a file can be constructed from the interaction object SC_file, or
by specifying the filename and mode of i/o. A third constructor is provided for use by
objects derived from file.

An index is considered to be a file with a particular index. This index corresponds to
searching a file in a given order based on some key. A file object may have several indexes,
hence the need for reference counting within the file object.

Each of these objects can be constructed from a SC_file*, or cast to a SC_file*.

class index : public file
(
SC_scanstate *scst;
SC_index *inx;

public: .
record kval; // record for key value
" index(file& rtf,int inxno = 0);
index(char* nm,iomode iom,int inxno = 0);
index(SC_file * fl, int inxno = 0);
~index();
int find(FINDCOND);  // finds record for reading,updating etc.
int firstrec();
int nextrec(); // failure returns zero
perator SC_file*() ( return file_ptr; )
b
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In these cases interaction objects narrows the dependencies between the interface
classes of a service. Construction of files, indexes and records takes place on the basis of
a subset of the available information. In addition to tais messages received and returned
by the dispatchers are passed in the form of these interaciion objects. This allows for a more
efficient solution for the application. L.e. files, indexes and records only need to be
created if the information and services given by the interface class are to be used. In all
other cases the smaller interaction object pointer is passed around.

5.4. Sets.

The concept of sets allows collections of anonymous objects to be manipulated, either
individually or as a collection.

In STMS a variant on sets is used to manipulat: a group of records retrieved from
searching an index, entry into a form or querying a form. Sets of records can be opened
for navigation, application of functions to the current item or all items, and for inspection.
In STMS an initial action is supplied to the working set indicating whether the current set
is to be used, discarded or a copy of the current set is to be used. The set may be extended
or reduced by addition or deletion of keys to the respective records.

A function can be applied to the current object with a "vararg" style parameter list.
This parameter list is a list of arguments which are passed to every invocation of the
function on a set object. The return value from this function is dictates the movement
within the set - whether the next invocation of the function is applied to the next, previous,
first or last item. If the movement cannot be achieved or a SET_QUIT message is
passed back, the collective processing finishes.

class working_set {

public:

working_set(wks_init wki); //Initial action

~working_set(); .

void to_all(auto set_move (*f)(formé& record&,SCreckey* PRMLIST), ...);
void exec(auto set_move (*f)(form& record&,SCrecky* PRMLIST), ...);
// Insertion and deletion

void add_all(index&); // Add all keys retrieved by a index

void add(SCreckey& rk);

void del();

// Current status

void current_record(recordé&);

// Navigation
int first();
int lastQ);

|5
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For example displaying all records in the set in sequence on a form could be
accomplished as follows.

show_item(formé& cr_form, record& rec, SCreckey *key_ptr)

{
;;'_fonn.show( rec);
(

form current_form;
working_set wk;

wk.to_all( show_item );
)

In producing a prototype for STMS other C++ features such as references and function
and operator overloading also proved to be of value, resulting in a neater product.

6. PERFORMANCE CONSTRAINTS AND METRICS

The hybrid of C++ and 4GL proved to be effective for prototyping this type of
application. The resulting design is maintainable, flexible and extendible. The following are
a few points worth mentioning.

> Code size. The sources ranto 90K of C++and 88K of 4GL script for the completed
application.

> Development time. The project was completed and delivered with two person
months, with no overrun.

> Learning curve. The learning curve from scratch for the 4GL and its C interface ran
to about one week.

> Performance. The gain in performance was slight in many cases. This is
attributable to two things. Firstly the interface classes all eventually use 4GL
features resulting in the overall system being constrained by the 4GL
performance. Secondly the application itself is mainly i/o bound both in terms of
disk manipulation and user i/o.

> Extensibility. In several cases, forms and reports were re-implemented in C++. These
cases proved to be speedy to re-implement (several hours) and gave large
performance gains in the respective cases.

7. CONCLUSIONS

This project was by no means perfect. Several areas could be improved. One particular
area is sets. These are currently restricted to Form environments, however by generalising
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the concept of sets, a further data abstraction could be provided for filing systems etc.
However these misgivings aside, I believe this strategy provides a speedy, efficient means
for providing extensible, flexible prototypes.

It is worth noting that it proved to be quite trivial to interface C++ to systems designed
for C. By implementing all package dependencies through interface classes, all further
coding was achieved in C++ with no dependencies on outside libraries and packages.

Finally experiences showed that C++ with its rich set of constructs is as much at home
producing applications which were formerly the domain of languages such as COBOL, as
it is for producing systems software. This hybrid development provides a useful
compromise between using application generators for prototyping and prototyping in a
conventional language.
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Open Dialogue:
Using an Extensible Retained Object Workspace to Support a UIMS

Andrew Schulert and Kate Erf
Apollo Computer Inc.!

Introduction

Open Dialogue (TM) is a User Interface Management System (UIMS) written in C++. In general, its
object-oriented design maps well onto the features of its implementation language. However, the goals
of Open Dialogue required us to introduce features outside of the language that would more naturally
have been incorporated into the language. The most significant of these were the ability to save and
restore a collection of objects (retained object workspace) and the ability for application developers to
add behavior to objects without recompiling existing binaries (extensibility). This paper discusses the
goals of Open Dialogue, explains the difficulties in realizing these goals, and describes how they were
addressed in the design. It concludes with a summary of possible implications for C++.

Open Dialogue Overview

Open Dialogue is based on a previous product, Domain/Dialogue (TM), that is written in Pascal, and
runs only on Apollo systems [7]. The two primary of goals of Open Dialogue above and beyond
Domain/Dialogue were that it be portable and that it be extensible. We considered C as an implemen-
tation language because of the need for portability. However, C was not adequate. Both
Domain/Dialogue and Open Dialogue have an object-oriented design. We were able to maintain that
design when implementing Domain/Dialogue, but only because there was a small group of developers,
all of whom understood the conventions to be followed. This was not the case with Open Dialogue,
since customers had to be able to extend it themselves. We chose C++ as an implementation language
because of the additional support it provided for object-oriented programming.

A user interface management system allows a user interface to be described separately from its associ-
ated application. Encapsulating the interaction between the user and the application in the UIMS has
several advantages as follows:

o It is possible to provide tools for defining the user interface that are more appropriate than
conventional programming languages.

o It is possible to define multiple interfaces to a single application.

! Andrew Schulent is now at On Technology, Inc.
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o Rapid prototyping is encouraged by allowing the user interface to be changed without
affecting the application.

Other advantages of this approach and issues related to it are given in other papers [5, 9].

Open Dialogue allows a user interface to be described declaratively, as a set of interrelated objects that
cooperate to interact with the user, transform the data passing between the user and application, and
coordinate the sharing of control with the application. Developing an application with Open Dialogue
involves following a sequence of steps to design, implement and refine the interface. We will illustrate
this process with a simple example called "square.”

The first step in creating the interface is to determine how it will look and behave. Square displays a
field into which the user can enter a number, an area called a label where the square of the number is
displayed, and a button that can be selected to exit the application. Figure 1 shows this interface.

field 4.3

1abel | |18.490000

button EXIT

Figure 1. SQUARE -- A Program for Computing Squares.

The second step is to define the set of objects that are needed to support this interface. It is useful to
divide Open Dialogue objects into three categories. Inferaction objects interact with the user to
acquire commands and data, and to display results. The interaction objects in square are the field into
which the user types, the label that displays the result, and the exit button. Application objects manage
the passing of control and data between Open Dialogue and the application. Square has two applica-
tion objects: one of these objects calls an application subroutine to compute the square of a number,
and the other returns to the application when the user wishes to exit from it. Finally, it is often the case
that the form of data that is most convenient for the user is not the form that is most convenient for the
application. Transformation objects transform data from a type convenient for the user to a type more
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suited for the application. In the case of square, the user enters and expects to see strings, but the
application expects floating point numbers. There are two transformation objects to convert the data
appropriately-- one to convert a string to a double and one to convert a double to a string.

Each Open Dialogue object takes a set of input values and provides a set of output values. An inter-
face is constructed by connecting appropriate input and output values. Figure 2 shows a schematic of
the set of objects used in the interface for square.

]
'
String_to_Double )y,

F—
X1l = +—Double_to_String YA Application

: :
| !

~-Gued— Ry —
: |
| L}
] ]

Interaction : Transformer ' Application
Objects Objects Objects

Figure 2. Schematic Representation of Square.

Figure 3 shows the development environment provided by Open Dialogue. This figure is drawn
to show the similarity between Open Dialogue and the model given by Tanner and Buxton [9).
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Figure 3. Development Environment Provided by Open Dialogue.

Open Dialogue comes with a standard set of primitives (primitive library) implemented as C++
classes. The user interface designer describes the primitives needed for a specific interface in a textual
interface specification. This is compiled by the Open Dialogue parser into a compiled interface
specification. At run time the application uses the run-time library to display and manage the user

interface.

The set of primitives provided by Open Dialogue may not be sufficient for all applications. For exam-
ple, in square the application writer might prefer an altemate way of having the user enter a number,
such as a graphical dial. The application could achieve this by calling X library routines directly, but
that would preclude the advantages of a UIMS. Consequently Open Dialogue allows customers to
extend the standard set of primitives by creating new classes. So, for instance, a dial primitive can be
added by the developer and used not only in square, but also in other interfaces.
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In addition to defining new classes it may be desirable in some cases to implement new behavior for
existing graphic object classes. For instance, Open Dialogue graphic objects, such as menus and fields,
have member functions that return the amount of screen space they would like. However, they cannot
request that the space be in a particular aspect ratio. One could imagine adding a new layout manager
that took aspect ratio into account. In addition to adding the new layout manager class, one would also
like to implement a default implementation of the aspect ratio member function for all existing classes.

A second type of extensibility within Open Dialogue is the ability to add new interface definition tools.
One can imagine many alternatives to the parser for defining interfaces. For this reason, Open Dialo-
gue allows the construction of new tools that can either generate new or modify existing compiled
interface definitions. One possibility is a schematic editor that displays an interface in a form similar to
Figure 2 and allows the user to establish connections visually.

A new interface definition tool might also require adding behavior to existing classes. For instance, in
the case of a schematic editor, one might want a class-specific visual representation of the object. The
editor can provide defaults for existing classes (e.g. a box with input and output arrows) and then allow
new classes that are aware of the editor to implement their own representations that look more realis-
tic.

There are two aspects of Open Dialogue that were difficult to implement in C++. Allowing an inter-
face to be defined separately from the application requires a retained object workspace. Second,
allowing developers to add new primitives and tools requires extensibility, including the ability to add
new behavior for existing classes without access to the source code for those classes.

Open Dialogue Design
This section discusses how Open Dialogue was designed to address the issues raised above.

Retained Object Workspace

We considered three alternatives for saving and restoring objects. The first was the use of save and
restore member functions. This requires each class to supply its own procedures for saving to a file
and restoring from a file. This allows the member function for a specific class to recursively copy all
referenced objects by invoking their respective save and restore member functions. This is the
approach taken by Andrew [6] and by OOPS [4]. It is also the approach we took with
Domain/Dialogue.

The advantage of this approach is that it is very general. It places no restrictions on the format of
object data. It also allows the save and restore procedures to take into account the semantics of the
data. Gorlen, in his discussion of OOPS, gives the example of a hash table that compacts itself when
being saved. The disadvantage of this approach is that it requires these two member functions to be
implemented for all classes and to be updated with each change to the object structure. Adding a new
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member variable requires updating three different places: the class definition, the save member func-
tion, and the restore member function, This is tedious and error-prone.!

The other alternatives we considered both avoid the need for class-specific save and restore procedures
by proposing that a single procedure be written to handle all objects. This can be done <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>