
COURSE

003
ADVANCED PROGRAMMING

prepared by the Training Section,
Electronic Computer Department

aJTLINE FOR COORSE 003

ADVANCED PROGRAMMING

The purpose of Advanced Programming Cours.e 003 is to complete the basic ,:d$scription
of the Univac System and describe the advanced programming techniques r$qui~e,d
for the prepatation of efficient data processing routines. Each student i~·~e~
qui red to have satisfactorily completed Course 002 which is concerned with ,a de
scription of the Univac central computer, and basic programming.

The subject matter of Course 003 consists of four major sections, each of which
is briefly described below3

1. Advanced Programming - This area of study covers the programming tech~iques
commonly employed in efffcient use of input-output buffers, problem reconsti
tution, item layouts, relative coding, reduction of instruction execution
times, obtaining increases in available memory space, use of service routines
for detection and correction of programmfng errors.

2. Programming for Heavy Auxiliaries - This area covers by description and illus
trative problems, programming for the heavy auxiliaries of the Univac System,
such as the Card-to-Tape Converter and the High-Speed Printer.

3. Central Computer Logic - A detailed description of the central computer's
logical construction is the subject matter of this study area. Par~icular
attention is given to the detailed analysis of how each instruction is exe"!"
cuted. The checking circuits of the Univac and the method whereby the super
visory control may be used as a programmer aid in debugging and efficiently
running data processing routines. '

4. Thesis Problem - This area consists of workshop sessions wherein each student
selects a moderately complex problem for his thesis. E~ch student will ana
lyze, flow-chart, code, and debug on the Univac System (Univac #7 - Service'
Bureau, Remington Rand Inc. , New York, New York) a problem involving from 600-
800 instructions. This thesis work is designed to provide further experience
in all phases of computer programming and -is conducted under the supervision
of the instruction staff assigned to his course.

A topical outline is presented below o The amount of time spent on each subje,ct
may vary somewhat among the different instructors and classes. Items 1 and ~
above are designated under A in the outline, 3 above is topic B, and 4 is topic C.

-1-

MONDAY:

TUESDAY:

WEDNESDAY:

THURSDAY~

FRIDAY:

A"

Bo

Ceo

Ao

B ..

CQ

A.

B ..

Co

A.

Bo

C ..

Ao

WEEK I

ANALYSIS OF COMMON CODING ERRORS
1. Types of errors and their manifestations
2~ Errors due to neglected instruction characteristics
3. Improper ,overflow counts
4. Errors in flow chart logic

. l

REVIEW AND INTRODUCTION TO CIRCUITR Y
10 Memory and word structure
20 Binary and XS-3 notation
3. Four-stage cycle of operation
4. Description of logical circuit

THESIS mOBI:.EM

DESCRIPTION OF BIeR RELATIVE CODING

TIMING AND SYNCHRONIZATION IN UNIVAC
10 Minor cycle
20 Cycling unit
3. p and t notation

elements

4. Synchronization of memory and registers
50 Maintenance of synchronization in memory to regis

ter~ register to register, and register to memory
transfers o

THESIS mOBLEM

BIOR RELATIVE CODING (CON9 T)

FOUR-STAGE CYCLE
10 Description of Chart U 102 and EBU-IOO
2" (1 time
3., ::.HSB O-E checkerS! di fferences

negative type checkers.

THES IS PROBLEM

BIeR RELATIVE CODING (CONCLUDED)

FOUR=STAGE CYCLE (CON 9 T)
10 ~ time
2. Channel selection circuits
30 Time selection circuits

T HES IS PROBLE M

SPECIAL INPUT-OUTPUT TECHNIQUES
1" Preselector
20 2-way automatic
3. Reversal
40 3~way automatic

between positive and

B. FOUR-STAGE CYCLE (CONUI)
10 Y and D time
2. Start circuit

Co THESIS PROBLEM

-2 ...

MONDAY:

TUESDAY:

WEDNESDAY:

THURSDAY;

FRIDAY:

WEEK :2

A. INPUT-OUTPUT (CONCLUDED)
1. Efficient transfe·rs for items a sub-mul tiple of 60
2. Efficient transfers for. items not a sub-mul tiple of 60
3. Variable length items

Bo TRANSFER ORDERS' - TYPE 1
10 B~ H, K as typical of 1 word transfers
20 Error indications MDS" and DS'S·

c~ THESIS PROBLEM

Ao IDENTIFICATION BLOCKS' AND RERUNS
1. Standard data tape format
2. Generalized two-way merge

B. TRANSFER ORDERS - TYPE 1 (CON'T)
10 V, W, Y, Z as typical of mUlti-word transfers
20 Interchange in V-W transfers
3" R order

C. THESIS PROBLEM

A. IDENTIFICATION BLOCKS AND RERUNS' (CON'T):
10 Generalized two-way merge (con6luded)
2" Rerun procedure for 1 output

B. TRANS'FER CRDERS' .., TYPE 2
1. on, On as typical of shifts
2. Improper shifts causing a stall
30 Extract order

C. THESIS PROBLEM

A. IDENTIFICATION BLOCKS AND RERUNS (CONCLUDED)
1. Reruns with mult.iple output

B. LOGICAL CHOICE
1. Skip and U instructions

Co THESrS PROBLEM

Ao REDUCING PROBLEM RUNNING TIME
1. Minimum latency tables

B. LOGICAL CHOICE (CONCLUDED)
10 Q and T instructions

Co THESIS PROBLEM

-3-

MONDAY:

TUESDAY:

WEDNESDAY:

THURSDAY #

FRIDAY:

WEEK 3

A. REDUCING PROBLEM RUNNI~G TIME (CON' T)
1. Minimum latency coding

Bo INTERRUPTED OPERATION
1. Qn, Tn9 9 and 9 instructions
2. Interrupted operation switch

Co THESIS PROBLEM

Ao REDUCING PROBLEM RUNNING TIME (CONCLUDE D)
l~ R-U counters
2" Straight line coding

Bo ARITHMETIC CIRCUITS
1. A and S instructions

Co THESIS PR OBLEM

A. CONSERVATION OF MEMffi Y SPACE
1. Overlays
2. Sub-dividing runs

B. ARITHMETIC CIRCUITS' (CON'T)
10 Overflow
2. A- and s~ instructions
3. l2-place addition in ~ time

Ce THESIS PROBLEM

Ao COLLATION METHOD OF SORTING

Bo ARITHMETIC CIRCUITS (CON'T)
10 Multiplication as repeated
20 P instruction

Co THESIS PROBLEM

addition

A. COLLATION METHOD OF SORTING (CONCLUDED)

B. ARITHMETIC CmCUITS (CON'T)
1. P instruction (concluded)
2. M and N instruction
30 Action of,MQC with multiplier digits not numbers

"

Co THESIS PROBLEM

-4-

MONDAY:

TUESDAY:

WEDNESDAY:

THURSDAY:

FRIDAY;

WEEK 4

A. FUNCTION TABLE SORTING

B. ARITHMETIC CmCUITS (CON'T)
1. Theory of non-r~storing division
2. D instruction

Co THESIS PROBLEM

Ao SERVICE ROUTINES
10 Classifications
2. Locator
3 0 Mark VIII

B. ARITHMETIC CIRCUITS (CON'T)

Co

Ao

B.

Co

Ao

Bo

1. D instruction (concluded)
20 D- instruction

THES IS PROBLEM

SERVICE ROUTINES (CON' T)
1. Mark VIII (con't)

ARITHMETIC CIRCUITS (CONCLUDED)
1. Periodic memory check
2. Memory clear

THESIS PROBLEM

SERVICE ROUTINES (CON'T)
1. Mark VIII (concluded)
2. AC-3
30 AC-4

INPUT-OUTPUT CIRCUITS
1. Input-output problem
20 Uniservo principles
30 Additional logical elements (thyratrons, relays,

autosyns 9 transformers, motors)

CoT HES IS PR OBLEM

Ao SERVICE ROUTINES (CON'T)
10 A~2 (line merge)
2" Herb I

Bo INPUT-OUTPUT CIRCUITS (CON'T)
10 Step-down buffering
2. 50 instruction

Co THESIS PROBLEM

",,5-

WEEK 5

MONDAY: Ae SERVICE ROUTINES (CON'T)
L. Code edit
20 Analyzer

Be INPUT-OUTPUT CIRCUITS (CON'T)
1" 5n instruction (conVt)

Co THESIS PROBLEM

TUESDAY: Ao SERVICE ROUTINES (CONvr)
I" Auto-monitors

Bo INPUT-OUTPUT CIRCUITS (CONvT)
Ie 5n instruction (concluded)
20 Low-density recording

C., THESIS PR OBLEM

WEDNESDAY: A" SERVICE ROUTINES (CONCLUDED)
10 Follower
2 Code search
3 0 Word search

Bo INPUT-OUTPUT CIRCUITS (CON'T)
I" Step-up buffering
2. In instruction

C" THESIS PROBLEM

THURSDAY: Ao HEAVY AUXILIARIES
le" Card-to-Tape Converter

B. INPUt~OUTPUT CIRCUITS (CON'T)
10 In instruction (con' t)

C. THESIS PROBLEM

FRIDAY: AI) HEAVY AUXILIARIES
1. Card ... to=Tape Converter (concluded)
20 Tape-to""Card Converter

BI) INPUT-OUTPUT CIRCUITS
10 In instruction (concl uded)
20 2n instruction

Co THESIS PROBLEM

-6-

MONDAY:

TUESDAY:

WEDNESDAY:

THURSDAY:

WEEK 6

A. HEAVY AUXILIARIES (CON'T)
1. High-speed printer

Bo INPUT-OUTPUT CIRCUITS (CON'T)
1Q 30 instruction
20 30 instruction

Co THESIS PROBLEM
1. Unityping, code-edit and analysis

Ao HEAVY AUXILIARIES (CON'T)
1. High-speed printer (con't)

B. INPUT-OUTPUT CIRCUITS (CON'T)
10 4n instruction
20 6n and 8n instructions

C. THESIS PROBLEM
10 Proof-reading
2. Computer testing

A. HEAVY AUXILIARIES (CON'T)
1. High-speed printer (con't)

B. INPUT-OUTPUT CIRCUITS (CONCLUDED)
10 50 instruction
2Q 10 instruction

C. THESIS PROBLEM
1. Computer testing

Ae HEAVY AUXILIARIES (CONCLUDED)
10 High-speed printer (concluded)

Be SUPERVISCRY CONTROL OPERATIONS
1 '" SCI' FILL
2. EMPTY
3. Clear C
40 General clear

C. THESIS PROBLEM
10 Computer testing

FRIDAY: Ao

Be SUPERVISCRY CONTROL OPERATIONS (CONCLUDED)
I. Starting and stopping Univac
20 Simple error analysis

Co THESIS PROBLEM
10 Post Mortem

-7-

ANALYSIS OF COMMON CODING ERRORS

Practical problems prepared for digital computers involve upwards of several
thousand instructions. While the UNIVAC computer is self-checking, it basi
cally detects errors in performing the indicated operation and does not
judge whether that operation, or series of operations, is correct in the
context of the complete problem. Errors may occur in these categories:

1. Improper execution of an instruction due to mechanical or elec
tronic failure of the computer.

2. Failure of the operato~ to properly initiate the problem or in
performing rerun procedures.

3. Failure of the programmer to provide coding to carry out the
assigned task.

As mentioned in the first paragraph, errors of type 1- are checked in UNIVAC
by duplication of circuits or by redundant codes (odd-even check, etc). We
need not consider them further.

Errors of type 2 are not inherently checked by the computer, and can cause
disastrous consequences if allowed to perpetuate themselves. To a large
extent these errors may be avoided by requiring the program to check opera
tor intervention. Thus, the rewinding of multiple output or input tapes with
8n orders insures that these tapes will be removed before those servos are
again called for further operations. Use of rings in those reels that con
tain permanent information during a r~n prevents the accidental destruction
of information by Supervisory Control action.

Positive checks can be incorporated in the program to insure that the correct
tapes are mounted, and in their correct order. This is the purpose of iden
tification blocks and sequence checks. Since Supervisory Control operations
are infrequent and the operator often unfamilar with the problem and its
coding, programs should be prepared in such a way as to require little opera
tor intervention; and when this is necessary, it should be of extreme sim
plicity. This is especially true in setup- and rerun procedures.

Errors of type 3 are the main concern of this section o The first concern is
how do we recognize that a coding error exists? Assuming that a normal pro
oedure has been followed, the prepared coding will have been desk-checked
(i.e., reviewed by one or more different coders), Unityped, and the Unityped
tape printed and checked against the original copy. Thus, we can assume that
the information on tape agrees with the coding sheets and that a preliminary
cheek has been performed.

A coding error may manifest itself in one or more of the following ways after
the program has been tried on the computer, or by none of them:

A. Overflow where it has not been anticipated (i.e., on A-, S-, X-,
or D- orders)

-1-

B. Closed loops producing a characteristic sound from the HSB speaker.

C. Adder alphabetic errors.

D. Improper sequence of tape movements observable by operator or pro
grammer. This includes doing 3n orders when rI is empty. In orders,
when rI is filled followed by 3n, reading a rewound tape backwards,
failure to detect end of tape information, and others.

E. Improper commands causing computer to stall.

F. Output results of test data not agreeing with pre-calculated results.

One should not always expect coding errors ~o be easily recognized, and often
the manifestation of an error may occur in a section of the problem remote from
where the error itself was made or even from the nature of the error. For ex
ample, the following error was abstrccted from a mathematical subroutine de
Signed to calculate log A. lOa = B.lO. Where is the error and how was it rec
nized?

000 11 000

001 81 000

006 K 000

007 B 104

008 03 000

009 03 000

•

026 K 000

30 060

F 119

T 036

T 037

T 038

F 118

instructions -+ memory

a--+rL
+.03000 OOOOOO~rF
..... 18835 453000 ---+ r A
if a < .18835 453000 transfer control to
line 036.

SL3 (rA) = +.35453 OOOOOO~rA

if a < .35453 000000 transfer control to
line 037.

SL3 {rA~. = + .53000 000000 --+r A
if a < .53000 000000 transfer control to
line 038 •

zero-+rL
E = 010000 000000 --+ rF

-2-

027 E 100
Q 031

m.s.d. of {log 10x)/1000~rA

if m.s.d. = 0 transfer control to line 031 • .
028 B 125 ! .ee OOOOOO--+rA

.9 000 SR9 (rA) = 0.00000 ooot ee ~rA
029 F 102 El = 111111 111000 ---:)orF

E 100 log lOx --+rA

030 00 000 Skip

031 5 118

032 A 125

033 K 000

034 01 000

035 C 100

036 B 112

037 B 113

038 B 114

039 H 100

040 A 101

041 B 100

U (R+ 1) Unconditional transfer of control to main
routine.

-1 000

C 125

B 100

Q 030

U 027

U 039

U 039

U 039

-3 000

C 101

08 000

-. 10000 000000 ---.r A
SRI (rA) =-.01000 OOOOOO~rA

+.02000 OOOOOO~rA
+.02000 000000 -+125, zero ---+rA
zero~rL

(log lOx)/lOOO ~rA

SLI (rA) = (log 10x)/100-+rA
if log 10x/100 = zero, transfer control to
line 030.

(log 10")/100 ~100, zero~rA
Unconditional transfer of control to line
027.

- log lOkI + kl~rA
Unconditional transfer of control to line
039.

- log 10k2 + k2 ---.rA
Unconditional transfer of control to line
039.

- log 10k3 + k3 ~rA
Unconditional transfer of control to line
039.

- log 10k + k --+100, rA
SR3 (rA) = -(log 10k)/1000--+rA
(b - log 10k)/1000 ---+rA

(b - log 10k)/1000-+lOl
log 10k + k --:JI> rA

SL8 (rA) = -k/lO -+rA

-3-

042 C 100 -k/10~100
N 100 ki a/10 ~rA

043 01 000 SL1 (rA) = kia~ rA
H 100

kia~100, rA
044 K 000 ki a---+rL

G 125 +003000 000000 --+ 125
045 00 000

U 010 To continue computation

The error made itself known by a second attempt to read the instruction tape.
Since this tape had been rewound with interlock, the computer stalled. How
was the coding error located? The reasoning went something like this: The
control was somehow transferred to line 000. Since this was not intentional,
it might h~ve been due to an unexpected overflow. As the problem analysis
seemed to be correct, at least as an initial assumption, the actual calcula
tion of the log in steps 010 through 025 probably did not give the overflow.
The next pOint examined was the normalization subroutine designed to calcu
~ate the zeros lying to the left of the most significant digit. The sub
routine is in lines 026 to 035. The add order in line 032 was suspect.
This order adds 1 to a counter for each zero found to the left of MSD in
log lOX. The largest number of zeros would, of course, be 11. A check show
ed that (118) was indeed correc~ (-10 000 000 000); thus, (125) must not have
been set correctly. On line 006 is an F lL9 instruction placing the constant
003 000 000 000 in rF, and the G 125 on line 044 is to place this constant in
cell 1~5--Iltus setting (ll5) to its proper initial value. The odd splitting
of the F and G was due to the original omission on the coder's part of the
resetting of 125. After recognizing the omission, he went back to make the
transfer and filled in the F-G in whatever skips were available. The error,
of course, is that the multiplication of line 042 destroys the 003 000 000 000
placed in rF, and places in its stead 31rL. Fortunately, this number caused
an overflow on line 032! The error was made on line 044 but manifested itself
by a read instruction on line 000.

Many coding errors occur because a progr.ammer has ignored or fo~otten the
peculiarities of certain UNIVAC orders. This subroutine is designed to trans
fer 30 two-word items from memory locations 301 to 360 inclusive, to memory
locations 451 to 510 inclusive. What is the error?

000 [V 301
W 45lJ

001 B 000
A 005

002 L 006
Q 004

003 C 000
U 000

004 00 000
90 000

005 000 002
000 002

006 VOO 361
WOO 511

-4-

The obvious error, of course, is that a consecutive series of 2-word items
starting at an odd memory location cannot be transferred by the V register.
In spite of the fact that the routine avoids the interchange in rV by start
ing from an odd location and transferring to an odd location, the item in
309, 310 splits across two channels and so 309 and 300 go into 459 and 450
rather than 309, 310 into 459, 460.

The following error may be more difficult to recognize, and its variants
are among the most frequent errors in editing and mathematical routines:
Memory locations 900-939 contain 40 quantities Yi (i = 0, I, 2, ••• , 39).
A quantity Zi = .0065i is computed and added to Yi (i.e., Yi + Zi --;.. Vi).

000 L 008
M 009

001 [A- 939
C 939]

002 B 001
S 010

003 C 001
K 000

004 B 009
Q 007

005 S 011
C 009

006 00 000
U 000

007 00 000
90 000

008 000 650
000 000

009 [039 000
000 000]

010 000 001
000 001

011 001 000
000 000

The error in this subroutine lies in reducing the instruction word A-O
9~ 6 00939.

It would seem to be perfectly permissible to subtract one t s from the
memory location digits successively reducing the instructions to

A-O 938 COO 938
A-O 937 COO 937

A-O 900 COO 900

But note that when the adder performs algebraic subtraction it complements
the smaller (in absolute value) and adds. Thus

-5-

A-O 939 COO 939
-00 001 000 001

A09 062' C99 062

The presence of the minus sign following the ftAtt forces complementation on
A-O 939 COO 939. A method of doing this problem involves adding the comple
ment of 1:

A-Z 939 COO 939
000 999 000 999

A-Z 938 COl 938

The 1~tt prevents a carry from adding to the minus sign. The correct program
is as follows:

000 L 008
M 009

001 A-Z 939
C 939]

002 8 001
A 010

003 C 001
K 000

004 8 009
Q 007

005 5 011
C 009

006 00 000
U 000

007 00 000
90 000

008 000 650
000 000

009 039 000
000 000]

010 O~~' 999
000 999

011 001 000
000 000

Use of overflow for control purposes has produced great simplification in
coding and decreased the running time of routines. It has also brought a
certain headache with it - improper counting. The example shown below is
a quite common error among beginning progrannners. This fragment is from a
routine that is processing 10-word items. The item counter is increased
after transferring the new item to working storage. Unfortunately. the
counter is initially set too high,. When the last item is transferred. the
counter overflows causing the next block of 6 items to be transferred into
the current block. Item 6 is thus lost in each block.

-6-

050 [Y5 (610) Ai~WS
z 600]

051 B 050
A* 055 i +l~i

052 C 050
U Transfer control to process Ar

053 B 056 Return here if o~erflow from 051
C 050 l~i

054 31 600 Tl~A
U Transfer control to process Ai

055 010 010
000 000

056 Y5 610
ZOO 600

There is a simple scheme for correctly determining the initial value of the
counter. Suppose we use the above example. After having processed the last
item of ~ block. we will transfer a useless 10-word item into working
storaye and augment the counter. which should then overflow to indicate that
a new block is to be read. The counter reading just before overflow should
then be: Y9 -660 Z 600. Initially, the counter must be Yx 610 Z 600, set to
transfer the second item into working storage. If we add once to x each time
we add 1 to the channel selection digits of the Y order, then 9-x 6-1 = 5;
therefore, x = 4 is the initial setting. This method can be easily extended
to any size item, for the case of 2-word items V99 660 W 600 is the reading
after proeessing the 30th or last item. If we use 002 002 000 000 85 the
augmenting constant, 99-x =58 and x = 41. The initial setting belng V4l
602 W 600.

What is the possible indication of the coding error in the following routine?
It is supposed to count the number of nonsignificant zeros of the number X.
(Nonsignificant zeros would be those to the left of the 6 in the example:
000 006 350 010 except the sign).

000 K 000
K 000

001 F 008
E 009

002 00 000
Q 004

003 00 000
U

004 B 010
A 011

005 C 010
B 008

006 -1 000
C 008

007 00 000
U 001

008 [010 000
000 000]

-7-

009 Quantity X

010 [000 000

011 000 000
000 000]

000 001

In this example the extractor is shifted right to examine each column success
ively. If the quantity X is zero, however, the routine will never transfer out
and becomes a closed loop.

There is yet another class of errors belonging to section 3. These are errors
Qf program logic and can be detected by an analysis of the flow chart. The
illustration is that of a two-way merge with multiple data reels for each in
put. The standard sentinel convention is assumed for each input. The two
standby block input procedure is used.

Get New A
Block

x. A

to process Al

t--~ end of A input fi Ie rout ine

to process Al

-8-

The error in this example is in the two steps following the servo switch symbol.
As two sentinel blocks are at the end of each input tape, rI must have contained
the second sentinel block and thus not a valid set of A items. The correct ver
sion would be:

$--1 rI~A H Ta--+rIH rI--+A HT8~rIII--->~i~ process

STUDENT EXERCISES.

Find the coding or logical errors in the following problems:

This is intended to be an ending routine that will read into the memory the
instructions for the next run. Assume the reading head on tape #1 is in the
correct position and fI is erased.

049
050 [B 940

L 056]
051 00 000

Q 053 ending test
052 00 000

U XXX continue witb Run 1

053 11 000
30 000

054 50 055
U 000 go to Run 2

055 Begin
Run 2

056 ZZZZZl
ZZlZZZ Sentinels

057
This is intended to be an input routine that will park the current 2-word
input item in a working storage and read in a new input block when the
current block is exhausted. It is to be entered from the main routine by
R 305 U 300. Assume generalized overflow control with an increment of
000000 000001. Also rI contains the next input block from tape 2.

300 V60 925
W 925

301 B 300
A* 306

302 C 300
U 305

-9-

303 32 925
B 307

304 C 300
00 000

305 anput
return]

306 002 002
000000

307 V60 925
W 925

This output routine i. supposed to transfer a lO-word item from an output
working storage to the current position in the output block; then write the
output block on tape after it is filled with 6 items. Assume generalized
overflow control with an increment of 000000 00000"1. Output operation is
to be accomplished in the main routine by R 430 U 426. Working storage is
600 ••• 609.

425 000000
010 010

426 B 430
A· 425

427 00 000
U 429

428 72 940
B 432

429 H 430
00 000

430 Ii' 600
Z40 940]

431 (9utput
return] .

432 y 600
Z40 940 Reset constant.

-10-

A SURVEY OF SPECIAL INPUT-OUTPUT TECHNIQUES

1. Additional methods for ~fficient ~ of !hi input buffer.

Chapter 10, Section 8, of the Univac Programming Manual describes a simple yet
completely general method of keeping rI filled for multiple input tape prob
lems. In this method each input tape requires the reserving of two blocks
within the memory and the execution of six Y-Z transfers to put the ··standby"
block into working storage position. This paper assumes the reader is com
pletely familiar with this method as described in the manual~ which is here
inafter referred to as the "two-standby" technique.

Because of its Simplicity and complete generalitY8 the two-standby technique
was described in the elementary programming manual. However, there are other
techniques, Preselector, Reversal, and Automatic method which' are of greater
efficiency and in more general use o

The Preselector Method

This method is Simple in concept and extremely conservative of memory requIre
ments and time o It is the preferred method for all problems where the selec
tion of the next item for 'processing is based solely upon the relative magni
tudes of the sequencing fields within the items. The principle will be illus
trated by the following example~

Suppose we have two files of input items to a processing run. Let us call the
files A and B. Suppose further, that these are ten-word items, six to a block:
that the items within each file are arranged in ascending sequence by a key
within each item and, further~ that the processing is always done on the item
from either file which has the smallest (in magnitude) key_

At the start of our problem we will have the first A and B block in the memory
and are concerned with what tape to read into rIo Let us write down the keys
of the twelve items q§ ~ mighl appear~

A Item Keys B Item Keys
1136 1000
1137 1010
2100 1011
2501 2050
2502 2161
2600 2163

In comparing the keys of the last A and B item of the block we note that the
A item has 8 smaller key than Bo Since the smallest item of A or B is processed
first by our routine, it is evident that A6 will be used before B6- But since
the A and B items are in ascending sequence within each file, we then know that
the A block will be exhausted before B; therefore o we should order the next A
block nowo That is o fill rI with Ao We can then begin processing Al~ A2, ---,
Bl , 82,--- with the full confidence that when A6 has been processed the new A

block is in rIo If B6 had been smallest we w,ould fi II rI wi th B items II Of
course, after rI is transferred to the appropriate empty block, the last items
must be compared again to determine what now should fill rIo

The method is simplicity itself as shown in the following flow chart:

Process Bj

l~j

Process Ai i + l~i

l·~i

The reader will note in the flow chart that if the keys of the current A and
B items are identical, an A item is selected for processing first. Then, if
A6and D6 have like keys, and A block must be read into rI since it is the A
block which is exhausted first. This can be a subtle point in some routines
and care should be taken in the treatment of the case of equal keys.

Since no standby blocks nor block transfer instructions are required, the
preselector is the best method for filling rI,when it is applicable. There
is o however, a class of problems with complex processing rules that do not
admit the preselector method in these problems because the order of reading .
tape is either not dependent solely on the original contents of the tapes, or
the order of processing the items cannot be easily determined as simply the
smallest (or largest) item key first. In these cases one of the standby
block methods, which are, completely general, must be used.

-2-

The Automatic Method EQr Two-way Input

A study of the two-standby block method previously mentioned will make evident
to the reader that one of the two standby blocks is always emptyo

The Automatic Method uses only one standby block o the other block in rI is con
sidered as the second. This method is thus somewhat more economical of memory
space than the two-standby block methode The following notation is used in the
flow chart and coding:

Ta an input file on UNISERVO a
A a block from tape a
rI register I
X designation of a standby block
Ta rI a block from tape a is read into rI

Initially, the first block from Ta is read into A and the first block of Tb is
read into B. The standby block X is filled with the second block from Til and
rI is fi lIed wi th the second block from 1b" Variable connectors a 2 and ~l are
set.

Get new
,A Block

Get new
B Block'

rI-4A

-3-

To process
new A Block

In coding the automatic method the input blocks assigned were:

A -- 940 - 999

B -- 880 - 939

X -- 820 - 879

If a new A block is needed we go to line 100, and for a new B block to line 109.

100 [y 820
940J Z Variable connector a (a 2 shown)

101 y 830
Z 950

102 Y 840
Z 960

103 Y 850 x-+A
'Z 970

104 Y 860
Z 980

105 Y 870
Z 990

106 3a 820 rI~X. T ---+rI
B 118 J .al

a
107 C 100

B 121
} .~ 2 108 C 109

(i) U

109 [3b 880

0 J u Variable connector ~ (~1 shown)
110 y 830

Z 890
III Y 840

Z 900
112 Y 850

X~B
Z 910

113 y 860
Z 920

114 Y 870
Z 930

~15 3b 820 r-I~Xo Tb--,) rI
B 119 .a2 116 C 100
B 120

·~1 117 C 109

CD U

118 3a 940

CD U
119 y 820

Z 940

-4-

120 3b 880

121 Y 820
U0
Z 880

The automatic method requires 22 words for; instruct ions and constants, pI us
180 words for the At B, and X input blocks. The obtaining of the next A or B
block will require either 3785 J.JiS if the block is in rI f or 13,365 Jls if the
block is in Xo If we assume a completely random reading sequence, then the
average will be 8575 ~s. Compare this to the two-standby block method de
scribed in Chapter 10, Section 8, UNIVAC PROGRAMMING MANUAL which requires 25
words of instructions and constants plus 240 words for the A and B blocks and
their standbyso The time to obtain the next block is 15,395 J.ls. Obviously,
the automatic method is superior to the method described in the programming
manual.

Reversal Method for Two-way Input

The reversal method is feasible for those cases where the volumes of the two
inputs are known to be very dissimilar. Assume the A input on tape a is very
much larger than the B input on tape bo The initial setup is to fill an A
block and a B block with the first blocks from their respective tapes, placing
the second A block in rI. The following flow ehart indicates the method of ob
taining the next A and B blocks. (The symbol Ta~rI is a shorthand notation
for the statement 1tfill rI with a block from tape at reading this tape back
wards".)

Get new
A Block

Get new
B Block

rI~A

rI~B

rI~B

T~rI .

-5-

To
new

rI---+ B

In coding the reversal method Q the A block is assumed to be in 940-999 the B
block in 880-939& If a new A block is needed, we go to line 100; and if a new
B block is needed, we go to line 101

0

100 3a 940 rI--:lo Ao Ta ~rI
U To process"A block

101 4a 880 rI~Bi Ta~rI
3b 880 rI-70Bo Tb~rI

102 3a 880 rI~BI1 Ta-+rI
U .,..- To process B block

The coding is small; 3 words~ and an additional 120 words for the A and B block
storage. The time to get the next A block is 3780 ~ while the time to get the
next B block is 10 53 seconds due to the tape reversals necessary to reposition
Tao A simple calculation shows that if the ratio of the size of the two files
is : ~ 130 0 the reversal method is faster than the two-standby block method and
requires less space than the automatic o Although the automatic method is always
faster than the reversal for a very sm'all B file" the few extra seconds required
by the reversal method may be tolerable to gain the extra 79 memory cells o

The Automatic Method for Three~way Inpu~

This method is an extension of the automatic method described for two-way input.
and uses two standby blocks in the memory with rI considered as the third o The
following brief annalysis will show that the information in the standby blocks
varies throughout the process.

Assume that initially~ the A, B, and C input blocks are filled from tapes a, b~
and ceo respectivelYq and that the two standby blocks labeled X and Yare filled
with the second blocks from tapes a and bl} respectivelyo The second C block is
in rI~

A Input B Input

BQ
x Standby

I~j
A

Y Standby

D

C Input
k

c

Suppose the A input block is exhausted first: (A shaded block indicates the
portion of that block processed)

n
t=J

x

rI

tJ

~
":~"".;:;::,:c;:::

'-

C

y

[j

the contents of X are A items~ so they are transferred to the now empty A
input block o rI is transferred to X so as to be able to order the next A
block from tape a.

X

G Q
rI

--7-

If we again exhaust the A block, we can replace it directly from rI without
disturbing the two standby blocks o If, however! the B block is exhausted
next, we fill B from the Y standby, transfer rI to Y! and order the third
B block from tape:

~
--.. -

· ••• C-=;

x

[J
rI

[J.
Thus, in this example, the standby blocks which start with A and B items soon
are changed to C and A items o Unlike the simple procedure described in the
Programming Manual where each standby block always contains only one type of
item. this method permits "floating" information in the,standbyso The attached
flow chart indicates the general solution for this methodo At the beginning,
connectors a 3. ~ 5, Yl, are set for the initial conditions already described.

Let us investigate the logic behind the flowchart by first making a table.
showing the possible configurations of Xe y~ and rI~

Configuration Contents of~

Number rI X Y

1 A B C
2 A C B
3 B A C
4 B C A
5 C B A
6 C A B

Now suppose an A block is needed; this block will always be available in either
rI, X, or Y. After placing this A block in the A input position, we might ask
ourselves: What is the new configuration? The following table shows the con~
figuration numbers resulting from the act of obtaining an A block, B block, or
C block from each of the six possible configurations~

-8-

-----I'::)
To pro
cess new·
A Block i

To pro-
ne~lo~~W

To pro
cess new
C Block

• 0'

•

· .~ . ,, __ "" "."~H"''''' ~ .. ,..... d, "" ~ " v • ,~~~

Configuration Number Transformation Table

Original Configuration after obtaining an:

A Block B Block C Block
0; I

1 1 3 S
2 2 4 6

~ 3 1 3 6
4 2 4 " S
S 1 4 S
6 2 3 6

--

Note that obtaining an A block from configurations 1 or 2 leaves these configu
rations unaltered while configurations 3Q 4~S~ and 6 are altered by obtaining
an A block o By alteration is meant a change in position of either an At B, or
C block o The connector aI, in the flow chart suffices -to obtain the next A
block when either configuration '1 or 2 exists o a 2 and a3 are the connectors
used where an A block is in X: a 2 for configuration 3, a3 for configuration 6.
Separate connectors are needed even though the A block is in X for each con
figuration since the act of moving the A block alters the position of the Band
C blocks in different ways 0 a 4 and as are connectors used when ~the A~bloek' is
in Y: U 4 for configuration 4 and as for So A similar ass'ignment of connectOrs
to configurations applies for obtaining Band C block~o These are summariized
in the following table:

Configuration Connectors
Number A B C

~,,-

1 al ~2 ')'4

2 0:1 ~4 Y2
3 (12 ~l Ys
4 a 4 ~ 1 Y3
5 as ~ 3 Y 1
6 a

3 ~ S Yl

-10-

Now that we have assigned the variable connector numbers for each configuration,
we note in the transformation table that obtaining an A block from configuration
6, for instance, will produce configuration 20 Now configuration 6 requires that
ex 3. ~ 5- and YI be set~ and the resulting configuration 20 will require connec-
tors a It' ~·4. and Y 2 to be seto Thus, the connector ex 3 must set ~ 4 and Y2
as well as ClIO This kind of reasoning makes evident the rationale behind the
flow charto

The average time required to obtain an A, B~ or C block is 11,622 ~so 387 words
of storage are required for the three input blocks, the two standby blocks, and
the coding and constants o

Summary

While it is evident from the foregoing discussion that the so-called preselection
method of keeping rI filled is superior to the standby block schemes in both
time and space requirements! there is occasionally a class of tape problems en
countered for which preselection is not suitable o For these problems, one of the
standby block methods is preferable o For two-way input the automatic method is
preferred, the reversal method being used when the second input is of very small
volume and memory space is at a premium o

For three-way input the automatic method is preferred over the two-standby block
method (Chapter 10. Sec. 8) 0 For more than three-way input wi th no great' dis
parity in the relative volumes of the inputs an extension of the two-standby
block method is superior in space and time to similar extensions in the methods
described above"

20 Arrangement of information for e'ffieient t'ransfer wi th in the computer ..

As a direct consequence of reading information in units of a block rather than
an item~ it is necessary to consider the most efficient arrangement of the items
within the block. Where the item size is one, two, or ten words in length~ the
usual sequential arrangement of an entire item followed by the next one in suc
cession clearly does not offer much room for improvement 0 In the case of one
or two-word items, minimum latency considerations might require that the order
of items in the block be rearranged from the normal one for a particular run~
but such a situation would be unusual o

The above statements follow directly from the existence of one-~ two-, and ten
word registers fortransf~rrfng information from an input block to an output
block or to working',storage as the case may beG

In dealing with twenty- and thirty-w9rd items, or four- and six-word items o the
same remarks apply with several transfers taking the place of the one required
previously@ There are cases o however o where the normal sequence of items can
be vastly improved upono Consider the twelve-word item for example o In general,
to transfer a twelve-word item from an arbitrary position in the input block to

-11 ..

working storage or to an arbitrary posi~ion in the output block requires six
V-W instruction pairs o

If this is accomplished with iterative coding, the following routine will have
to be executed six times for each item transferred:

100 V40200
101 B 100
102 C 100
103 00 000
104 010002

W 300
A* 104
U 100
U XXX to processing routine
000002

Straight line coding would offer some improvement in speed but would require 35
lines of coding per input to transfer the items to working storage and 35 lines
of coding to transfer from working storage to the output block o

The following arrangement of the twelve~word items would be far more efficient,
both with regard to memory space and execution time: (j, k is word k of item j)

Cell
200 1, 1 11/ 2 1,3 1,4 1,5 l1l6 10 7 1,8 1,9 1,10

210 2,1 20 2 211 3 29 4 2,5 2,6 2,7 2,8 2,9 2,10

220 3,1 3,2 311 3 3,,4 3,,5 3,6 3,7 30 8 3,9 3,10

230 4,1 4e 2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 4,10

240 5,1 5,2 5,3 5,4 5(f5 5,6 5,7 5,8 5~9 5,10

250 19 11 1,12 2.,11 2,12 3 11 11 31)12 4,11 4,12 5,11 5,12

For this configuration a an item transfer would require only a Y-Z and a V-W.
Using straight line coding 19 lines per input will"suffice-to transfer the
item to working storage and similarly 19 lines for the output block o The
coding necessary to accomplish the transfer of items to working storage is
illustrated below.

100 00 000
U 101

101 R 100
U 110

102 R 100
U 113

103 R 100
U 116

104 B 108
C 100

105 V 258
y 240

106 W' 250
Z' 2.00

107 00 000
U XXX to processing routine

-12-

108 R 100
U 109 constant ..

109 30 200
U XXX to preselector read

110 V 252
y 210

III W 250
Z 200

112 00 000
U XXX to processing routine

113 V 254
y 220

114 W 250
Z 200

115 00 000
U XXX to processing routine

116 V 256
y 230

117 W 250
Z 200

118 00 000
U XXX to processing routine

• Use of minimum latency coding could further improve this routine. The following
examples will illustrate further applications of this technique ..

15-Word Item

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10

3,1 3,2 3,3 3,4 3f)5 3,6 3.,7 3,8 3e9 3,10

4,1 4,2 4,3 4,4 4,,5 4,6 4,7 4,8 4,9 4,10

I,ll 1,12 1,13 1,14 2,11 2,12 20 13 2\1 14 311 11 3,12

3,13 3,14 4,11 4,12 411 13 4,14 10 15 211 15 30 15 4,15

-13-

5-Word Item

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 3,1 3,2

3,3 3,4 4,1 4,2 4,3 4,4 5,1 5,2 5,3 5,4

8,3 8,4 9,1 9,2 9,3 9,4 10,1 10 0 2 10,3 10,4

11,1 11,2 11,3 11,4 12,1 12,2 12,3 12,4 1,5 2,5

3-Word Item

1,1 1,2 2,1 2,2 3,1 3,2 4,1 4,2 5,1 5,2

11,1 11,2 12,1 12,2 13,1 13,2 1401 14,2 15,1 15,2

16,1 16,2 17,1 17,2 18,1 18,2 19,1 19,2 20,1 20,2

11,3 12,3 13,3 14,3 15 i 3 16,3 17,3 18 0 3 19,3 20,3

Thus we see that a IS-word item can always be transferred using one Y-Z, two
V-W's and one B-C. Similarlyw a five-word item can be transferred by using
two V_WIg and a B-C.

It is to be noted that input data from non-Univacso~rcesw in ge~eral. cannot be
obtained in the efficient configurations illustrated above. Therefore, the
rearrangement of the information will have to be executed by the first Univac
run on the data.

Item sizes ~, ~ multiple ~ sub-multiple of 60

Occasionally, an item size which cannot be contained an intergral number of
times within a block is desirable. Generally, this would be true where the
processing is done at less than tape time. Then, any reduction of the total
amount of tape required will reduce the overall processing time.

An obvious solution to this problem is to consider the item as being composed
of a series of sub-itemsuthe length of the sub-items being a sub-multiple of
a block. In the practical case the sub-item will be ten words in length as the
time required to move many one- or two-word sub-items negates any advantage
gained in reducing the amount of tape. For example, if the number of digits
required in an item is 420 (35 words) an item size of 40 words could be used.

-14-

Each item is then composed of four ten-word sUb-items. If it were not possible
to handle items ~ multiples or sub-multiples of a block, the item size would
have to be 60 words in length. The 40~word item thus saves 1/3 of the tape re
quired and reduces the processing time up to 1/3 depending on how much the item
processing time is under the tape time:

The following flow chart is an iterative solution to the selection of an N-word
item, W, composed of Pksub-itemsAio Each input block, At containing i' such
sub-items. The k in W is shown as a superscript since W , W~,o •• ~ Wk are, in
actuality~ fields of the item Wo

Get New
VI Item

Note: initially i = 0

=

-15-

i + l~i

k+ l----+k·

To Process
New W Item

The symbol

represents an appropriate subroutine which will obtain the next A block. The
reader should note that while it i~ not possible to use all of the input block
A for the working storage W, it is possible to use a portion of the block for
some item sizes and thereby conserving memory space. For example, consider
the possible configurations of blocks containing a forty-word item:

Block 1 Block 2 Block 3

1-1 2-3 4-1
1-----.---

1-2 2-4 4-2
1-3 3-1 4-3

1-4 3-2 '4-4

2 ... 1 3-3 5-1

2-2 3-4 5-2

(The notation j-k means the kth sub-item of the item j). Thus, only two block
configurations are possible. Now, if the working storage WI, W2, W3 , and W4
is positioned as follows with respect to the input block AI, A2, A3, A4, A5
and A6:

working storage

input block

Only twenty extra positions are necessary for the working storage W.

Although it would be desirable to have the read routine be the preselector, it
has not been found possible! up to this time, to suitably modify this technique
to make it work properly for the ttodd1t item sizes. This means that one of the
standby block methods described earlier must be employed in ordering blocks
from tape o

-16-

Item sizes]&! of fixed length o

In some large volume tape problems the variation in mInlmum required digits for
the items of a file may be very large o This case may occur when a master infor
mation file is laid outo If we allot to each 'item of the file the tape space
required for the largest possible item that can occur~ we may find that a very
large portion of the file contains ~blank~ areas causing inefficient use of the
tape and could greatly increase the processing time o

Hence. it is desirable to let each item use as little tape space as is feasible o

If this is done, then the items on the tape may be of varying lengths o This
variable item size can be easily handled by the computer by considering each
item to be composed of a variable number of sub-items. each sub-item being of
a fixed size o All that is then necessary is to read into the memory all of the
sub-items comprising an itemo The routine that selects the next sub-item from
the block (or the next block from tape) is designed in the usual manner since
the sub-item is of fixed size o

The problem next to be solved is how do we know when all of the sub=items for
a given item have been assembled? This may be done in several ways, the one
to be selected depending on the particular situationo

The first method to be described assumes that each sub-item carries the item
key word e Then, as each sub-item is selected its key word is checked for
equality with the current key word a The flow chart for this method is shown
below. A is the input block containing i' sub~items Ai e W is the working
storage which will contain the current tape a item; this item is composed of
fields Wko K stores the key word for the current input item o K is initially
set to the value of the key word of the first input itemo The key word of
each sub-item is assumed to be field Ayo

Get Next
W Item

k + l'~k i+l~i

.l~i

-17-

To Process
New W

This method assumes that two items with the same key word is not possible. It
is also inherently assumed that the space required for repeating the key word
is not unduly excessive o

Perhaps an inherently better method is to consider the sub-items of an item to
be of two kinds" The first sub-item may be thought of as a t@header tl sul) ... item
which contains the key word for the item" The remaining sub~items can be con
sidered as "trailer" sub-items o Nowo instead of requiring all sub-items to
carry the item key word, we can simply require that each sub-item have a fixed
digit position which will contain ll sayv the symbolttH t

• if the sub-item is a
header and ffrt if the sub-item is a trailer. The flowchart for selecting the
N-word item W composed of a variable number of sub-items Aie with key as Ai.

Get Next
W Item

k + l~k

-18-

i+l~i

=

~~~~~W.-J 
To Process 

New W 

- . ......".,.,~.-~. ~ .. --



IDENTIFICATION BLOCKS AND RERUNS 

1. Introductory Conside!2tions 

The governing characteristic of commercial data processing problems is the 
very large amounts of information (records or items) to be fed into the com
puter. Even some of the simpler problems may involve tape files of 20 to 25 
reels per file, while large problems can demand nearly 300 reels per file. 
Most often the processing of these tape files requires that the items com
prising the file be processed in a definite sequential manner. If this is 
true, then certain precautions must be exercised to insure that these items 
~ processed in sequence. Two teChniques in common use to guarantee this 
sequential processing are identification blocks and block counts. 

The reader should bear in mind the situation encountered by an operator 
during the running of a large tape problem involving s~veral hundred reels. 
Since the contents of a reel of tape are not directly visible to the oper-
ator, a gummed label is usually attached to each reel. Now, although each 
reel has a visible identification label, what assurance have we that when 
the computer calls for the fifth reel of file A to be mounted on a Uniservo 
that the operator does indeed mount reel #5 of file A on that Uniservo? 
Or, granting that a reel bearing a visible label "Reel #5 - File Att is 
mounted on the desired Uniservo, what guarantee is there that this label is 
a correct description of the contents of the reel? These questions arise 
because of the bias of hmnan operations toward error~ Since the computer 
is self-checked in its operation, it is desirable that human intervention 
in the proceSSing chain be limited as much as possible and that such inter
vention be done in a Simple fashion, subject to check. 

Assuming, now, the correct data reel has been mounted on the desired Uniservo, 
can we rest assured that the jtems on that reel will be processed in their 
correct sequence by the computer? We can provided, again, that no operator 
intervention is aecessary. Occasionally, it is necessary for the operator 
to affect the position of the tapes mounted on the Uniservos; for example, 
if a block on Uniservo #2 was read into rI incorrectlYf the operator will 
set into SR from SCP instructions causing the block to be re-read.* If the 
number of data blocks recorded on the tapes is placed on the tape itself, 
then the computer can check that the operator did not misposition the tape. 
With this check made possible, a block of items cannot get lost in the pro
ceSSing run, nor oan a block be prooessed twioe, 

To illustrate the use of identification blocks and block counts in checking 
the human interventions mentioned above, a general two-way merge for ten
word items will be described. First however, we shall describe the stand
ard data tape format. 

* This condition will not often arise if the computer is equipped with the 
automatic re-read device. 

..1-



2. The Standard Data Ta~ Fo~ 

The first block recorded on a data tape will be the identification block of 
which the first word only will be of interest to us now.. This word is the 
reel identification number, designating the file of which this reel is a part, 
and the sequence number of the reel within the file. For our two-way merge 
the identification word has the following appearance (for the 13th reel of 
the file A): 

Following this ID block are the data blocks. If the reel is not the last 
reel of the file, there may be up to 1981 tull data blociti. Following tbe 1a.t 
data block there will be recorded a sentinel block having the following 
composition: word 00 (the first word of the block) consists of twelve Z's 
(the sentinel); word 50 also consists of twelve Z's; word 51 contains the 
number of data blocks recorded on tape plus this sentinel block. For ex
ample, if this tape contains 1981 data blocks, word 51 of the sentinel 
block looks like: 

0000000001982 

Word 59 (the last word of the block) will not consist of twelve P's. 
Following this block will be other blocks which are provided for the pos
sibility of the reruns to be described later. If the reel is the last reel 
of a file, its identification block is in the same format noted. However, 
being the last reel of a file. it may have less than 1981 full data blocks 
recorded on it. Following the ID block WIll be as many data blocks as 
needed ( 1981) to record the remaining items. If the items on the last 
reel are a multiple of six, they will exactly fill the last data block. In 
this case, the sentinel block alre~dy described will follow the last data 
block, except that word 59 of the sentinel block consists of twelve "s 
which serve to identify the last reel of a file. But if the data items are 
not a multiple of six in number, the last data block will be only partial
ly filled. In this case, a Z sentinel will be placed in the next word 
position of the partial data block, following the last word of the last 
data item. For example, if the partial block contains only three ten-
word items, word 30 will contain all Z's. In addition, the 50th word of 
the block will also be a Z sentinel; amd word 51 will contain the number 
of full data blocks on this tape, plus the partial data block. Word 59 
of this block will consist of twelve "s. In either case, following the 
partial or full sentinel block, is a second full sentinel block. 

3. Description of the Generalized Two-Way Merge 

Briefly, the generalized two-way merge problem is this: 

• Other information in the ID block is for use in re-runs. 



There are two multi-reel files, labeled for convenience, file A and B.. Each 
file consists of a series of ten-word items. the first word of each item be
ing a key word or serial number. The items iT! each file are recorded on tape 
in an ascending sequence by their key words. The reels comprising each file 
are recorded in the standard data tape format just described. The problem is 
to produce a new file, labeled C, also in standard data tape format, which 
contains every item on the A and B files~ arranged in ascending sequence by 
their key words. Two Uniservos will be allotted for each file: 

Unisel"v..Q!, 

A 
B 
C 

In this way, after reel I of file At which is mounted on Uniservo 2, has been 
processed, it is given a rewind instruction. When this tape is rewound, the 
operator will replace it with reel 3 of file A. While reel I is being rewound, 
reel 2( which has been mounted on servo 3, is processed by the computer; thus, 
the computer need not wait for the rewinding of a reel and the mounting of a 
new reel of tape. This same procedure is used for the Band C files as well. 

The complete flow chart and coding of this problem is attached. 

The following list is an explanation of the flow chart symbols. 

Ta = 
A = 
Ai = 
AU == 1 

la = 
lla = 

--.. --~ 

=====*, 

) 

Tape on Uniservo a 

A block of 6 items from Ts 

ith item (i::: 1.2, .... ,6) of A 

nth word (n = 0,1,2, ••• ,9) of Ai 

File and reel label for Ta 

Block counter for Ta 

A block from Ta is read into rI (forward read) 

Rewind Ta with interlock set 

The block C is written on T c 

Servo interchange symbol, a, which was Uniservo 
2, now becomes 3 .. Circle rotates 1800 so that 
next trip through a v which was servo 3, becomes 
2 again. 

Flow line followed by individual items 

Flow line followed for end (or start) of block 

Flow line followed for end (or start) of tape 

Flow line followed for end (or start) of file 

-3-



A brief description of the flow chart follows: 

At the start of the problem the flag indicates that the input and output Block 
counters are set to zero, and the input and output tape labels are set to one. 
At connector CI) the input file labels with their appropriateUniservo numbers 
are printed so that the operator can mount the first reel of the A file on the 
Uniservo 2, the second reel on 3, the first reel of the B file on Uniservo 4, 
the second on 5, and blanks on Uniservos 6 and 1. The~. xt step, l2iJ, is to 
write the identification block on the output tape. At 2 is condi~onal irans
fer breakpoint 10 If breakpoint 1 has been depressed, e computer will stop 

~
thiS point. If the operator then forces transfer., the computer will go to 

6 for the re-run procedure. The normal path through this breakpoint is to@. 
were the tape label for tape b is tested. If the wrong Tb has been mounted, 
the tape will be rewound with interlock, the correct label printed on Sept and 
the computer will stall on the next read until the new tape is mounted. When 
Tb is correct (or corr~ted)q the first data block is read into the memory and 
the computer goes to ~ to test the Ta label. When the first data block of 
Ta and Tb has been reJUl. thp~om~~er ~s to @ where the prese lector method 
is used to fill rIo ~~ ~QJJd the merge proper. As each output 
block C is filled, the computer goes to ~ where the output item counter is 
reset, the block written on Tc. and the output bloclc counter increased. When 
the ~l data block has been written on the tape, a Z sentinel block is written 
and (jV set to indicate the contents of rIo The output tape label, Le, is 
printed on SCP to enable the operator to label the current output tape correct
ly. Lc is then augmented for the next output reel, the output block counter, 
~c, is reset, and the output tape ,rewound with interlock. The output servos 
are then switched and the augmented tape label is written on the new output 
tape. The output operations concerned with re-runs will be discussed later. 

As each A block is exhausted, the computer goes to @ where the A input item 
counter is reset and the next A block obtained from rIo The input block 
counter, ~ at is augmented and the new input block is examined for a sentinel 
in the key word pOSition of the last item of the block. Should this be a sen
tinel block, the computer data block count, ~ at is tes·ted against t~ block 
count on the tape. If they do not agree, the next operation is at ~ where 
all tapes are rewound and the error noted on SCP. If the counts are correct, 
Ta is rewound wi th interlock' and a test is made t'o determine whether the last 
Ta has been processed. If it has not, the A input block counter is~set, the 
Ta input servos interchanged, and the Ta tape label augmented. ~~the new Ta 
label is examined as noted before. If this was the last A tape v ~ is set to 
send us later into the ending routine at @. A simi lar procedure holds for 
exhausting a B input block. 

4. Re-run Procedure 

Next, let us examine ihe procedure planned for a possible re-run. A procedure 
must be prepared by the programmer for the continuation of computation on .his 
problem in the event of a computer breakdown. It is always preferable to have 
a general re-run procedure which will be used for aD1 re-run to avoid any pos
sibility of errors on the part of the operator. ThuI, the re-run (to be ex
plained) is designed for even the extreme cases where nothing in the computer 
can be used. 

-4-



The theory of this re-run method is quite simple: We Uphotograph" the memory 
and register setup at the conclusion of each output tape. Thus, in the event 
of a computer breakdown while processing output tape k we need only restore 
the memory and reposition the tapes as they existed at the beginning of out
put tape k. At the end of output tape~l' after we have written the sentin
el block, we s~a var .. iable connector ~ in accordance with the contents of 
rI. Then, at 20 we augment the outpu tape label, Lc, and reset the output 
block counter, c. At this point, we write the entire contents of the mem
ory onto the output tape and rewind it.' 

Let us now suppose a computer breakdown or an operator error occurs, or even 
in some succeeding ~ one of the output tapes of this ~ proves unreadable. 
In all of these cases, we need only locate the memory dump recorded on the 
previous output tape. By reading this memory dump back into the computer, we 
will restore the memory to the state which existed at the beginning of the 
output tape which later proved unreadable, or during the writing of which the 
computer or operator error occurred. The input tape labels and block counters 
are used to reposition the input tapes. Hence, we have reconstructed the 
problem at the beginning of an output tape. 

If a re-run is to be done, breakpoint 1 is depressed and the last good output 
tape is read down past the sentinel blocks (a search routine is placed jn the 
output tape 10 block for this purpose).* The memory dumped on this output 
tape is then read into the computer and control transferred to the start of 
the merge routine. After writing the output tape 10 block, th~omputer stops 
on Ql where we release the breakpoint and force transfer. At ~ the input 
tape label for Ta is che~ and this tape positi~d in accordance with the 
reading of a obtained from the memory dump. At,~ the Tb label is checked 
and this tape positioned. At ~ rI is filled from the appropriate tape, 
control then being transferred~(]) to begin the reprocessing of this new 
output tape. 

* As indicated in the coding for this example, the operator will mount on 
servo 1 the last completed output tape. This tape is easily identified by 
the Lc last printed on SCP. He then does Initial Read on this tape. The 
instructions in cell 000 which set up in SR are ignored through manual 
clearing of SR. The computer then executes the instructions in cell 001 
of the 10 block which locates the memory dump at the end of this tape. 

-5-



k=l,~a=llb=Ac=O 
a=2,b=4,c=6 
La=Lb=Lc=l 

a,b,La,Lb~CP 

~ 
0-0G-0 
~ 

NORMAL 

G)-{;J-€) 8fi10 

I 
..0 
I 

01 La-+LKa-+ ~H a-~H~ G)-f;b~LH~b-7~ HI b-7t ~ 
®0 

rI-+C 

~Ta-+rlr@ 
~ @-{0 

. @1Tb--+~IrQ 



I~ 
I 
I 

L --{0 

;i.ij{+i~k l-G 
d 

~ 

I 
f
I 

G .~. ~C~+ Z---".cgHLlC+hC~Hp'---"'Cg HC---;'TCHz---"'c~ H c~Tcl*c~scPHRWD*TaTbTc B 



• I· I 0r[--l tf-----I 
15 :. )~_ rI=---?,BH6b+l~bl 

01I1~1 HrI--AH6a+l~al 

r . 
~.I "Block Count Off- l 1RWD*T ,Tb,T. 1 

II SCP I a ¥. i Rerun~ __ .----J . .. 
~ 

Lb+l~Lb 

I 
co 

I 



@1Il~ k HC~TCt{C+I-MC rGC\~~ 

II 
If U 
Ii @ II -,; l!:.=- ".~l --

II 
It 

~=4 Z-C~MZ~C~Mt,C+l"*C~F*- ~TC~ 

@-0 
~C~C~HC~TC~ 

®-G 

I 
cr-
• 



5. Coding for Generalized Two-t~ Merge 

000 R2W 007 
UMG 005 transfer control to generalized overflow 

_. ____ IJAIM'I_ ....... ,. ... ,---_. __ ._' ____ 1-
001 000 000 

000 001 ________ .. _""._M_"' __ '_ ........ A .. _ ... "'_ ... __ ................. ____ .. ,·_""j .. _OW _____________ 

002 11 000 
31 060 

003 31 120 ins t ruc"t ions ~ 000-239 
30 180 

004 81 000 
U 008 ------_ ........ -----,"'._---

005 B 007 
A- 001 

006 C 007 generalized overflow subroutine 
00 000 

OO? [ ece eee / 

eee eeeJ -----_ .... --".. .. _--_--. ..... - • __ wo __ 

(0008 F 193 
B 189 

009 E 194 
F 195 

010 E 183 
e 820 

011 B 190 
E 185 

012 F 193 
E 194 

013 C 821 
F 082 

014 B 196 
E 184 

015 H 822 
E 186 

016 e 823 
50 197 R2-way~ merge 

017 50 198 JfMOUNT ~ TAPES 
50 820 Jtt-:. Ll Axxx~ ON~ 

018 50 822 • ~ ALT ~ W/xJII ~ SCP 
50 821 R M Bxxx ~ON~ x 

019 50 823 • ~ALT~ W/xJJJ 
50 199 Jt M BLANKS~ ON 

-10-



020 50 217 
00 000 ~6Ll AND~ 1. JtJtJt 

021 R 142 • h..l 
U 141 transfer control to connector 21 

0.°22 L 000 
01 156 force transfer for rerun 

023 R 026 .al 
U 098 transfer control to connector 16 

024 R 026 .a2 

0
025 

U 065 transfer control to connector 18 

B 218 
e 026 .a3 0-0 026 reee eee 

eecJ 
®027 

eee 
00 000 

T 029 transfer control if AR >Bg 

028 [12 000 Ta~rI 
U 030] transfer control to connector 11 

029 [1-4 000 Tb~rI 
00 000] 

0)030 
B 880 

11 L 940 
031 00 000 

T 073 transfer control if A9 > B9 -
(;)032 [y 880 Ai --+ ws 

00 000] 

033 R 108 .~ 
U 106 transfer control to connector 12 

8°34 [eee eee }i+l---+i 02 eee eee] (overflow if i = 6) 
035 B 034 

A* 219 

036 e 034 
U 030 transfer control to connector 11 

037 B 220 

10°38 
C 034 l~i 

30 880 rI~A 
B 191 

039 AOI 19S JAa ell 191 +l~Aa 

·It-



040 B 930 
L 230 

041 00 000 
Q 043 transfer control if Ag = Z 

042 00 000 
U11 026 transfer control to connector 5 

043 B 931 
L 191 

044 00 000 
Q 054 transfer control if A~ = Ila 

G 
045 50 221 JlBLOCK Ii COUNT } 

50 222 Il OFF-RERUNJUl ~ SCP 
046 F 157 

B 050 
047 E 183 

H 050 
048 E 185 

H 051 
049 E 187 

e 052 

050 [00 000 
000 

O:j } -rld with ilrterlock Ta' 
051 ece eee 

cee cee T
b

, T 
052 eee eee c 

eee eee 
053 90 000 stop 

00 000 

054 [82 000 rewind with interlock Ta 
8 939J 

055 L 223 
if Al= Q 144 transfer control P 

056 K 000 
e 191 O-+~a 

057 F 183 
B 184 

058 G 184 
H 183 

059 F 224 
E 028 interchange Ta uniservos 

-12-



060 H 028 
E 054 

061 H 054 
E 065 

062 H 065 
E 068 

063 e 068 
B 189 

064 A- 225 La + l~La 
e 189 -.---' .. --... --.--.. --A .. - .... -----.--.-----r---,.--·--0065 [12 000 Ta.~rI 

18 32 880J rI~ At .Ta~ rI 
066 B 880 

L 189 
067 00 000 

Q 037 t:ransfer control Of AO-1 1 - La ·_ .. -..._ ...... _ ... _ .... _..,_ ..... _"".-.........N ... ...-...... ___ ..... ~_,~_,.. ________ ~ __ ..... ·_w .. ~ ... ___ 

068 [82 000 

069 F 216 

070 e 881 

071 50 227 

072 30 880 

073 Y 940 

074 R 108 

G 
075 [eee eee 

bl 
076 B 075 

077 e 075 

8
078 B 

15 
079 30 

228 

940 

B 226J 

E 183 

50 881 

50 189 

U 065 

00 000 

U 106 

eee cce] 

A* 219 

u 030 

e 075 

B 192 

rewind Ta with interlock 

jtTa 11 LAB:rI 
OULDt. BE--JJJ ~ SCP 
RMAxxx 
rI--+ A 

Bo~ws 
J 

.bl 
transfer control to connector 12 

j + l~j (overflow if j = 6) 

transfer control to connector 11 

l~j 
rI~B 

-13-



080 A- 195 fb+ 1--..,. Ll b 
C 192 

081 B 990 
L 230 

082 00 000 
QOl 084 transfer control if Bg = Z 

__ ,. ....... ,.. .. ______ .. 'J ....... .., ... _. __ •• _ .. , ....... ~.._ ..... ~~ •• _., .. "'~. __ ,"'~.". __ ,,_ ...... ,. ....... _ ..... __ .. ___ "' .... ___ .. _ _. 
083 00 000 

U, 026 transfer control to connector 5 --.. --.. -,'~-'·-.... --.. ..-... ____ .~_ ... __ "_ .. h'_. ____ ._ ... -.-,..-_ ... _ .. _ ....... _ ... _,_ .. __ .,.,_ ... __ ...... _. ______ 

084 B 991 
L 192 

085 00 000 
if B~ = L).b Q 087 transfer control 

__ .•• ___ .. "'_ ...... "' .. __ ._ ......... ___ ..... __ ... ";0. __ .... __ .......... ___ ... _"._. __ ,., ___ .......... "' ... 

086 00 000 
U 045 transfer control to connector 14 

087 [84 000 rewind Tb with interlock 
B 999J 

088 L 223 
if B9 = r Q 026 transfer control 6 

089 K 000 
C 192 O~L\b 

090 F 185 
B 186 

091 G 186 
H 185 

092 F 224 
E 029 

093 H 029 
E 087 interchange Tb uniservos 

094 H 087 
E 098 

095 H 098 
E 101 

096 C 101 
B 190 

097 A- 225 Lb + l~Lb 
C 190 

G098 [14 000 
16 34 940J 

099 B 940 
L 190 

-14-



100 000 000 
Q 078 transfer control if B? = Lb 

101 [84 000 
B 226 ] rewind Tb with interlock 

102 F 216 
E 185 

103 e 991 
50 991 iTb~LAB::J 104 50 227 Out.DA BE--Jll ~ sep 
50 190 Jtl¥lBxx 

105 30 940 rI~B 
U 098 

0106 [Z4 820 ·ws~ek 
B 106 ] 

107 A* 219 .k + 1--7k (overflow if k = 6) 
C 106 

~ 108[ eee eee 
eee eee] 

8109 B 229 
e 106 l--+k 

110 [56 820 e~Tc 
B 23il J f:J, c + l--+~c III A- 195 
H 231 

112 L 232 
Q 114 transfer control if c = 1981 

113 00 000 
U 108 transfer control to 0 

114 F 230 
G 820 z~c!i 

115 G 870 Z-).cg 
A- 195 

116 e 871 fj. c + I--=. c1 

0 117 
56 820 e ---+T 6 

B 930 c 

L 990 
118 F 042 

if ~ > B2 T 120 transfer control 

119 B 028 
U 121 • ~ 1 



120 B 029 • ~2 
00 000 

_.'"_· ................. _~.A. __ " ..... " .. "." .. _ .... _ ..... _ ... · .......... · ...... _ .. _ ... ~· .. _ ... A •• ~ ••••• _ •• _ ••••• ~ •• ~ .. · • •••• "" ...... _ ••• ~~ ........... ~ ••••• _ .... ~ ___ • ___ .. _. ___ _ 

121 .6 000 
e 162 

122 B 235 
E 187 

123 H 128 
F 210 

124 E 233 
e 821 

125 50 821 
50 200 

126 B 200 
A- 225 

127 e 200 
} Lc + l·_Lc 

._' ••. ".M"W." •• _.""" .. " ........ _ ........ "." ...... ".g.~" ............ ?;}l.., .... ~ .. ~"."""' .. " .............. ,Q ........... ~.A .. c ..... " ........ _ .... ~M .. • .. " ... M.,..~ ... ~ .. _._ ..... ~'''' ........ ~._._.~~ •• ,P".,,_"_'_ 
128 [eee eee . 

eee eee J 
129 A* 234 

e 128 f 3(f"·····'()'6·-_'A····'(f6'o .. ··· .. ~······"·····~··"····"." .... " ......................... , .............. " .. · .... .,,,.· .... ~ ..•.. H.····.-... · .. · •••.••• _ ......... r •• _ .... --..... --p~-.-... --.-.... ---
U 128 •• _ .. ~ ..... "~ ... _· •• _"._ •• ~" .. 'N' ....... "".· •••. ' ......... · ............. , ........ _ ............ , ........... ~ ••. ,.~,." .• '" •••••.•. "" •• ' .. _ .... " ............ " ••• _,.~~~ .• ,_ ••• ~.~ ___ ."_" _____ • __ 

131 L86 000 Rewind Tc with interlock 
B 188J 

132 F 187 
G 188 

133 H 187 
F 224 

134 E 110 
H 110 

Interchange Tc servos 135 E 116 
H 116 

136 E 131 
H 131 

137 E 141 
H 141 

138 E 152 
H 152 

139 E 153 
e 153 

140 e 142 
00 000 G 141· .. [·;;-;~;--::··-·-:~~;--·----·····~:·:-~:--;--~-:--·-------

~ 142 [ece eee 
\!.V _,~ ...... ~_ .. _""'._ .. _ .. _ ...... _.~.~_._,~.~~.~._.~.~~J.''' .. , .. ~ ............ " .. ·.~ ....... _~ .. ~.H. ____ ••...•....• , •... ~ .•... _ .... _." .... _._ .• H._ •.. _ •. __ . __ .. __ 

Q... 143 00 000 
~ U 108 transfer control to b ---.... ,..-_ ... -_ .. _--_._-_.---------------------

-16-



144 R 032 ·Y2 
U 026 transfer control to 5 

.--.-. ..................... _ .......... , ............ .......,.".. ...... '*~ • .,,, I _ ................. _ .... II.,..JiItII._~ • ..., .......... .........,.. ..... _ ... "' ... ~ ........................ Jt ....... ~ .......... ____ 

145 L 230 
Q 147 transfer control if AO = Z 1 

146 Y 880 Ai--+ ws 
U 033 

147 Y 230 Z-+rY 
00 000 

148 R 107 
U 106 tItans fer control to do z--+e~ 

149 Z 870 0 
Z-+C6 

B 231 
150 A- 195 

e 871 D,.c + 1~ eJ 
151 B 223 

e 879 ,--+~ 
152 [ 56 820 C---+Tc 

Z 820J Z---+cP 
153 [ 56 820 e~Tc 

B 187J 
154 R 126 

U 123 transfer control to do Lc~ep .. 
155 50 236 JtEND MERGE. g -+ sep 

U 046 trancfer control to RWO* tapes 
____ •• 'M ............ ~ ......... ..,. ................................ -., ............... ~-............ JII ..... - •• ......,. ........... ~........----

156 B 189 La~L 

L 191 ~a~ 
157 FlO 183 a.--+t 

00 000 
158 R 182 .8 1 

U 164 transfer control to 7 
. , .. ................ N_ ................................. " ....... JIIIUt ••• • .......................... ~ .. ~ ............................ -----

159 B 190 Lb ........ L 
L 192 ~b-+6 

160 F 185 b--+t 
00 000 9 2 161 R 182 
U 164 transfer control to 7 

162 [Cee eec ~l= 00 000 la 000 
ece eec] 2: 00 000 Ib 000 

163 00 000 
U 108 transfer to control to b 

- .............. --............ ~.,.......-~ .............. ~ ................... ....,.,.....,.. ..... 
/' 

-17-



0
164 C 237 

J 238 
165 G 239 

F 039 
166 B 239 

E 169 
167 H 169 

H 178 
168 E 172 

C 172 

169 [1 t 000 
30 820J Tt----+rI 

170 B 820 rI~C 
L 237 

171 00 000 
Q 177 transfer control if CO = L 

1 
-~-.......... ~ ., 

172 [8t 000 RWD Tt with interlock 
B 226J 

173 F 216 
E 239 

174 C. 821 
50 821 JtTt fl LABEL fl SH l 

175 50 227 ~lJLDLlBE--J~ -4 SCP 
50 237 .MLxxxl\l\l\AI\ __ 

176 00 000 
U 169 

177 K 000 
C 237 O~g 
,,~ .... 

178 [1 t 000 Tt~rI 
30 820 J rI--+C 

179 B 237 
}g + l~g A- 195 

180 H 237 
K 000 

181 B 238 
T 178 transfer control if g= D. 

~.............,. ... ". """ 
, 

182 ecce eee 
eee eecJ --

}a 183 

6
22 222 

222 222] 184 333 333 } alternat~ a 
333 333 

185 r44 444 }b 
444 44J 186 555 555 Jalternate b 
555 555 

187 e66 666 }c 
666 66J 188 III III J al ternate c 
III III 

. -18-



189 [JtM 

190 [JtM 

191 [000 

192 [000 

193 000 

194 000 

195 000 

196 .6A 

197 Jt2-

198 JtMO 

~ 

AOO 

BOO 

000 

000 

000 

000 

000 

LT6 

WAY 

UNT 

BLA 

000 

000 

011 

oooJ 

oooJ 

110 

O~o N~O 

000 

WID 

AME 

~TA 

001 

RGE 

. PES 

NKS AON 
199 

200 ~ COO 1~ ~ 
-.---.-.I!I.......-.---~.--

201 11 000 
30 100 

202 8 100 
L 009 

203 00 000 
005 

204 00 000 
U 001 

~.IIfr;s:p. 

205 21 

206 Y 

207 L 

208 

209 R2W 

210 III 

211 

212 A-

213 C 

000 

010 

008 

960 

007 

III 

000 

996 

991 

30 

Z 

U 

800 

Cll 

8 

Q 

100 

990 

990 

991 

005 

III 

991 

994 

99----=1~_~. 

-19-



214 81 000 
00 000 

215 30 960 
U 008 

216 001 060 
000 000 

217 116tJ. AND 
L\ 1. JUtJl 

218 BOO 930 
LOO 990 

219 010 010 
000 000 

220 Y40 890 
ZOO 880 

221 JtBL OCK 
L\co UNT 

222 ~OF F-R 
FRU NJtJl 

223 "'~P ~~~ 
Vi'V ~V~ 

224 101 III 
101 III 

225 000 000 
100 000 

226 "Ta flLA 
BEL ~SH 

227 OUL MB 
E-- JJJ 

228 Y40 950 
ZOO 940 

229 Z40 820 
BOO 106 

230 ZZZ ZZZ 
ZZZ ZZZ 

231 [000 000 

232 000 000 
000 000 ] 1 flc 

001 982 
233 aLA BEL 

flTc ---
234 001 000 

000 060 
235 B83 128 

500 000 
236 JtEN DflM 

ERG E.Jt 
237 

238 
\'1orking storage 

239 

-20-



6. Reruns with Two OutHut~ 

The rerun procedure for multiple outputs described below is very similar to 
the single output rerun previously described. The only complexities intro
duced are the problems of repositioning one of the output tapes and of dif
ferentiating between the output controlling the rerun and the tape that must 
be repositioned. 

The latter problem is dealt with by writing on the identification block of 
every output tape the letter identifying the output file. When the rerun is 
initiated, this information is made available to the rerun routine by the 
memory dump locator (also in the identiftcation block). 

The output tape which is not being rerun is treated as an input tape for 
repositioning purposes. 

During the repositioning, all tapes are read' into the output block of the 
file being rerun. The contents of tl!e input and the other output bloek at 
the end of the rerun routine are the same as they were at the time the mem
ory dump was written. rl is filled by the read subroutine of the normal 
instructions. 

It is to be noted that the rerun must occur at a point where the contents 
of the computer registers (except r!) are of no consequence as the rerun 
makes no provision for restoring them. (Please refer to the coding in 
SectionS.) 

Unlike the single output rerun this routine requires no breakpoint option 
to rerun. Breakpoint options represent a manual operation and, therefore, 
a possible operator error. Since one of the output tapes contains good 
information, a manual error can ruin this tape and necessitate rerunning 
from an earlier point. 

To rerun, the operator merely mounts the last good output tape of the file 
and does an initial read. If this is done correctly, no other manual op
erations are required and, therefore, no further possibility of error exists. 

rl---+ A 

A· 1 

La 

Explanatio,n of Flow Chart Symbols 

Tape mounted on Uniservo a 

A block from Ta is read into input buffer (forward) 

The block in the input buffer is transferred to A 

The ith item comprising the block A (i= 1,2, ••• , i') 

The keyword field of item Ai 

The labelldeatifyln;g the current A fi le reel being 
processed .. 

-21-



fj,a 

C~T c 

cy. C 

The number of A blocks processed on Ta. 

The C block is written on To. 

The symbol C1. is made identical with· the symbol C. 

Tape C is rewound and an interlock set preventing 
further tape motion until the tape reel is removed. 

Servo interchange symbol. a which initially read 
2 is changed to 3 and the symbol rotated 180°. 

Do operatio~s specified by subroutine Ba. 

Supervisory Control Printer 

;'22- . 



i = j = k =.i = 1 
La = Lb = Lc = Ld = 1 
~a = ~b = ~c = ~d = 0 
a = 2,b = 4,c = 6,d = 

1--.... ' ~ .. i a, b, c , d , La, L b -+ SCP 

Process Ai and Bj to form ~ 

Deposit 
D Item 

€i)--0 

~d Of?prOP1~ 
I Yes 

I /23) 

~ 
C'I , 



010_6at$-1La+l~Lat-\®r0 

I 
~ 
C\J 
I 



~b+l---+ ~b-

"Block Count Orr-Reruntt~ SCP RWD* Ta,Tb, Tc,Td 

I 
tn 
N 
I 



r-- -- 0 ! 

r >1 L~ -----+ C 1 Rerun Locator --....,.. C C~Tc 

t----iliflk + 1 ~ k I ]Il " 

® {z- ~ ~ 1 z ~ ~~~H~~c + l-~ckHc _ ~ ~c-">Scp]--@ 

C + J:---i>-LC.l fo:~ l-1EHORY~Tc ~ 

® 
[----, 

13 ~RWD* T ! r--"""!L c :-
I 

®--1Z-4C~1 1 z )C~~t: .. +._~=:-ia-11--?CM-1 C-Tc HZ->c~k3 

., ~ 1C~~RWD* Tct-0 

I 
...0 
N 

I 



®-1Ld~ D~ Knr~ Rerun Locator -+~~'Td I \@ 

!D~Td bd + l-+bd 

= 

@ f~~~~~~l~Dl'~1d~SCFt----G 
®-td + 1-7* ~ Memory~Td €) 

Z~D~ 1H 2Kr ~d+l~D Jl..'; P -+D it : -+Td 

&B RWD* Ta,Tb "End Run"~ SCP 

I r-
C\I 

I 



Tb~rI. 

'-----lIiJ1T ~ rI ..... -
a 

r = Last Good 
Output Tape 

t--~:finlt1al Read Tr~ R. 11' 

a-,----b, La, L b ~ SC'PI )I 

Memory Dump on Tr 
~ Memory 

d, Lc --+ SCP 

c, Lc ---+ SCP 

I 
co 
C\I 
I 

0-1La--LH~a-+~HI a~t~Lb-+LI 1~b-+~Hb~t r-e 
C0-1Ld~L H M-.d H d-+t I-@ 
~LC_LHAC-+~H c-+tt€) 



t-3 

<+! 
Ii 1-3 

c1" 

~ 
Ii 1-3 'i 
H c+ H 

i 
M 1:"4 Ii 

~ 
H 

i CIl 
O'Q 0 M 

I-d 
+ 
..... 

J 
O'Q 

o 

l 
O'Q 

';'29-



EFFICIENT CODING TECHNIQUES 

1. Introduction 

Many data processing applications of the UNIVAC System involve routines that are 
to be used repeatedly or which must process large volumes of data. It is fre
quently desirable to reduce the running time of these routines. This can be ac
complished by: 

1. Reducing the number of instructions executed by 
the computer. (Linear Coding) 

2. Reducing the time spent in execution of the in
dividual instructions. (Minimum Latency Coding) 

In the discussion to follow we will consider techniques to accomplish these sav
ings in time. It should be noted, however, that maximum success in reducing the 
running time of an average routine can be achieved only by increasing the amount 
of memory space devoted to the program. 

2. Linear Coding 

The instructions of a typical program can be considered to belong in one of the 
following categories: 

1. Instructions for starting and ending the program. 

2. Instructions which read and write blocks of data 
on tape. 

3. Instructions which move items to (or from) work
ing storage from (or to) data blocks. 

4. Instructions which process the item~ 

Instructions in the first category are executed only once per run and, there
fore, no effort need be exerted to optimize them. For a discussion of instruc
tions in the second category the reader is referred to the paper "A Survey of 
Input-Output TechniquesUs The following will, therefore, be restricted to a 
discussion of the instructions in categories three and four~ 

Let us assume first that a particular sequence of instructions has been devel
oped Which will process an item. There are then three choices available in the 
development of the routines which will process a block of such items. These are: 

1. Repetition of the instructions for processing an 
item with the addresses modified for each separate 
item in the block. 

2. An auxiliary routine to modify the addresses of 
the processing instructions. 

-1-



3. An auxiliary routine to transfer successive items 
into a working storage from which the item is pro
cessed .. 

Clearly the first of these alternatives will involve the execution of the fewest 
number of instructions since every instruction nair execut~d willb~ processing 
items. Note, however, that it will also require the most memory space. 

Where the available memory ~'pace does not permit using straight line processing 
instructions (method 1 above), a choice will have to be made between methods 2 
and 3. In general, it has been found more efficient to transfer items to work
ing storage than to modify processing instructions; there are some exceptions 
to this rule. These exceptions Q,oclilr ,generally' where '!odd'9 s izec items are,tc
ing processed which cannot be transferred very efficiently within the computer 
and where the processing instructions have very few references to the memory 
location of the item. 

The reader should note that straight line techniques are also available for the 
movement of items into or out of working storageo The following examples will 
illustrate this: 

Example 1: The R-U Counter 

100 R 100 
U xxx To transfer the first item 

101 R 100 
U xxx To transfer the second item 

102 R 100 
U xxx To transfer the third item 

R 100 
U xxx To transfer the last item 

B xxx 
C 100 Reset line 100 

End of block routine 

Example 2: The Function Table 

100 B 101 
A 102 

101 C 101 
U 104 

102 000000 
000004 

104 x xxx 
x xxx Transfer the first item 

108 x xxx 
x xxx Transfer the second item 

-2-



11:2 x xxx 
x xxx Transfer the third item 

x xxx 
x xxx Transfer the last item 

B xxx 
C 101 Reset line 101 

End of block routine 

Both of the methods illustrated are perfectly general although the method in 
example 1 requires more memory space than does the method of example 2. The 
number of lines of instructions exec~ted in moving each item is the same* for 
both. Example 2 has a disadvantage in some cases (as we shall see in the 
discussion on minimum latency coding) in that it requires that each set of 
coding handling successive items be stored in the memory with a fixed spacing 
between the addresses. 

A further example will aid in fixing these principles in the readervs mind. 

Example 3 

Select from the four-word stock items on Ta all those items for which the ex
pected requirements is less than the sum of the on hand and on order and write 
them on Tb. The item format is: 

where: 
SSSSSS 
RRRRRR 
HHHHHH 
000000 

SSSSSS RRRRRR 
HHHHHH 000000 
-other 
-other 

data
data-

is the stock number 
is the expected requirements 
is the on hand amount 
is the on order amount 

The coding which will process one item is in cells 800 - 803. The coding is 
shown below. 

010 F 100 
B 800 

011 E 101 
K 000 

012 B 801 
E 101 

013 C 102 
X 000 

*One line less is used in the R-U Counter than in the Function Table method 
in transferring the first item only. 

-3-



014 .6 000 

015 R xxx 

098 F 803 

099 V 800 

100 111111 

101 000000 

102 

A 102 

T 098 

B 802 

U xxx 

000000' 

000000 

Set exit of output routine 
Transfer control if OH + 00 > R 

Transfer control to output routine 

Temporary storage 

This routine requires that at least 6 lines of coding be executed for each item. 
Two extra lines must be provided for the item in case it is to be placed on the 
output tapeo A block of such items might be processed as follows: 

If linear coding were to be,used, a total of 122 ' 
lines of coding (15x8plus~the two constanta in 
cells 100 and 101) would have to be stored in the 
memory exclusive of the output routine. The to
tal instruction pairs executed per block would be 
only 90 (6x15) plus 2 for each output item. 

If an auxiliary routine were provided to modify 
the addresses of the instructions on lines 010, 
012, 098, and 099 so as to be able to process 
the succeeding items, the routine would begin 
on line 016 and might look as follows: 

016 B 010 
A* 097 

017 C 010 
B 012 

018 A 096 
C 012 

019 B 098 
A 095 

020 C 098 
B 099 

021 A 096 
C 099 

022 00 000 
U 010 

023 B 091 From overflow on line 016 
C 010 

024 B 094 
C 012 

025 V 092 
W 098 

-4-



026 
End of block routine 

. 
091 F40100 

B SOO 
092 F S03 

B S02 
093 V SOO 

U xxx 
094 B SOl 

E 101 
095 000004 

000004 
096 000004 

000000 
097 004000 

000004 

Here the total number of lines "required for storage is 27, but the total in. 
struction pairs executed per block of data is (including 4 for generalized 
overflow) 196 exclusive of 2 lines for each output item. 

A00ther alternative is to provide an iterative routine that will move items 
into a working storage, such as: 

016 V40So4 
W SOO 

017 V S06 
W S02 

olS B 016 
A* 09;' 

019 C 016 
B 017 

020 A 095 
C 017 

021 00 000 
u ala 

022 v 096 From overflow on line OlS 
W 016 

023 End of block routine 

095 004004 
000000 

096 V4oS04 
w SOo 

097 V 806 
W S02 

-5-



This method requires only 20 lines of storage. A total of 182 lines of coding 
are executed for each block of data exclusive of output. 

A last possibility is to again make use of the working storage principle, but 
uses linear coding for the routine transferring each item to the working stor
age. The following is an example using the function table technique: 

016 B 017 
A 096 

017 C 017 
U 018 

018 V 804 
W 800 

019 V 806 
W $02 

020 00 000 
U 010 

021 V 808 
W 800 

022 V 810 
W 802 

023 00 000 
U 010 

024 V 812 
W 800 

057 V 856 
W 800 

058 V 858 
W 802. 

059 00 000 
U 010 

060 B 097 
C 017 Reset line 017 

061 
End of block routine 

096 000000 
000003 

097 B 017 
A 096 

This method requires 57 lines of coding to be stored, but only 163 instruction 
pairs are executed for each block of items processed (plus 2 lines for each 
output item). 

These results are summarized in the following table~ Only the total lines for 
storage or execution required in processing a block of input items are considered. 

-6-



Method Total Lines Stored Total Lines Executed 
(excluding Gen OF) (No Output Items) 

1. Linear Coding 122 90 

2. Iterative Alteration of 27 196 
Instruction Addresses 

3. Iterative Transfer 20 182 
to Working Storage 

4. Linear Transfer to 57 163 
Working Storage 

It is generally true, as the previous discussion has pointed out, that the min
imum number of instructions to be executed per routine can be obtained by ex
changing memory space for time. The relative merits of each method discussed 
depends to a large extent on the amount of processing required for each item 
and on the item size. Where memory space is not too critical, the programmer 
would do well to investigate linear or semi-linear (methods 1 and 4 of the 
above table) techniques for reducing problem running time. 

3. Introduction To Minimum Latency 

A study of UNIVAC logic reveals that the time required to execute an instruc
tion pair falls into two categories: 

1. Time spent in actual execution of the instructions. 

2. Time spent in waiting for information to appear at 
the read out or erase gates of the memory. 

The first of these is constant and fixed by the logic of the computero The 
second of these, called latency time, depends for its duration upon the re
lation between the Time Selection Counter (TSC) and the Time Selection Digit 
(TSD) of the memory address involved. By judicious selection of memory lo
cations, the latency time or a routine can be materially reduced. 

Consider first an, instruction pair that' does 'not involve a transfer of con
trol. It is desirable to minimize the elapsed time between the selection 
of the instruction pair at address m and the selection of the next pair at 
atidress m + 1. 

If the TSD of m is k, then the ~ Time Selection Minor Cycle occurs when the 
TSC is reading k. For the instruction pair in m + 1 this will occur at a 
TSC reading of k + 1. An instruction pair cannot be executed in one minor 
cycle; therefore, the minimum time between ~ time selection will be 11 minor 
cycles: ten minor cycles to step the TSC around to k and one more to k + 1. 
If the instruction pair is not executed in this time, additional time, in 
units of ten minor cycles (one Major Cycle), will elapse before the ~ Time 
Selection Minor Cycle of m + 1. 

-7-



~TS yTO * * * * * * * * * yTS oTO * * * * * * * * * oTS aTO aTon ~TO * * * * * * 
I I I I I I I I I I I 

5' 6 7 8 9 o 1 2 3 4 5' 6 7 8 9 o 1 2 3 4 5' 6 

~TS yTO yTS oTO * * * * * * * oTS aTO aTon ~TO * * * * * * ~TS 
I I I I I I I I I 

5' 6 7 8 9 o 1 2 3 4 5' 6 7 8 9 o 1 2 3 4 5' 6 

~S yTO yTS Mo MS aTO aT~ ~O *" * * ~S 
I I I I I I I I I 

5' 6 7 8 9 o 1 2 3 4 5' 6 

*Latency Time 

7 8 9 o 1 

Total Time 31 :r.c 
Latency Time 23"M:: 

2 

Ratio L.T./Err.T. 2.9:1 

Total Time 21 M::: 
Latency Time 13 M::: 

Ratio L.T./Err.T. 1.6:1 

Total Time 11 Me 
Latency Time 3 :r.c 
Ratio L.T./Err.T .38,1 

3 4 5' 6 

0) 



The following examples will illustrate these concepts: ~see Figure 1) 

I. 025 B 056 L 057 31 MC 

2. 025 L 057 B 056 21 MC 

3. 025' L 057 B 059 11 Me 

Example 2 interchanges the instructions in example 1 which results in sub
stantial time savings. In example 3 a further increase in speed comes from 
changing the address of the B instruction. 

The critical parameters ,involved in a calculation of the latency time are: 

1. The difference between TSDvs of the address 
of the LH instruction and the instruction 
line number (n). 

2. The difference between TSDus of the address 
of the RH instruction and the instruction 
line number (m). 

3. The amount of time taken up in the actual 
execution of the Left and Right Hand In-
structions individually. . 

4. Construction of the Tables --- ---
The following will refer to a limited number of instructions which will act 
as prototypes. For each UNIVAC instruction (except tape orders) there is a 
prototype which has the same execution time. 

TABLE OF PROTOTYPE INSTRUCTIONS 

Prototype Instructions 

B B C F G H J L R E 

A A S 

K K X ·00 

U U 

T Q T 

Ox Ox -x .x ;x 

W V W 

Y Y Z 

M M N P 

D D 

-9'-



Thus"the previous examples would be written: 

1. BIB 2 
2. ,B 2 B 1 
3. B 2 B 4 

To simplify tables of latency times, references to prototype instruction 
pairs such as BB, AT, WU,·etc., will be made as illustrated above. 

EXAMPLE PROBLEM: 

Pte pare a table of latency times for the instruction pairs K Band B K. 

KB 

~ y y 0 OTS for 11 Me a a ~ ~ a. a ~ ~ 
TS TO Ton TO . A 

"' 
TO Ton TO TS TO Ton TO TS r 

I , , I ~ I I II 
0 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
~ 

oTS for 21 Me 

The earli~st time at which TS could oCcur is. at TSC 4. The last point at 
which it could occur and still leave enough time (3 Me for TO Ton and 

TO) for the instruction pair to be executed. in 11 Me is 7. If m is' 8, 9, 
0, 1, 2, or 3, then the second TS is the one that occurs and the operation 
takes 21 MC. 

Y TS for 11 Me a a B B 
~TOTon'rO 'rS 

a a 
TO Ton 

" , I I ,I • --t--'-I'!---t-I - ..... , --+--+-t-'--II---t-~+' ~-+-~ 
o 1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0 1 

~---,""y"",-. __ .J 

yTS for 21 Me 

For n between 2 and 7,the instruction takes 11 MC; and for n between 8, 9, 
o and 1, the instruction takes 21 Me. This problem is relatively simple 
since the latency time is independent of the address of the K instruction. 

STUDENT EXERCISES: 

1. An A order takes 3 Me for execution, a B order takes 1 and an X order 
takes 1. How long does it take to execute the following instruction pairs? 
(Do not forget the TO minor cycles which follows each instruction.) 

025 B 030 
026 H 058 
027 C 056 

A 056 
X 000 
B 025 

2. Prepare a table of instruction times for the prototype pair B n B m. 

-10-



PART I 

MINIMUM LATENCY 

TABLES 

-11-



Line L = [ B L + n B L + m ] 

n '2 3 Lj. 5 6 7 8 9 0 I 

8 

9 

o 
1 

2 

3 

ij. 

5 

6 

7 

8 

9 

0 

'I 

2 

3 

ij. 

5 

~+-+-~-+~~v/~ 

~+-~~~-+~--~v~ 

~+-~~-b-tt~--~~~/. 

~+-+-~~~--r-+-~~~ 

Li ne L == [A L + n A L + m ] 

21 

- 12 -

Av = 21.5 

~ 
Av = 25.5 



L i np. L = [B L + n A L + m ] 

3 

4-

5 

Line L = [ A L + n B L + m ] 

- 13 -

Av = 23.5 

Av = 23.5 



Line L = [K B L + m ] 

m = 

Av = 17 

Line L = [8 L + n K ] 

n = [!!] 
Av = 17 

Line L = [K A L + m ] 

m 

Av = 19 

Line L = [A L + n K ] 

n = 

Av = 19 

Line L = [K U L + m ] 

Av = 12.5 

- 14- -



Linp. L = [ K K 

Av :::: II 

Line L = [B L + " U L + m ] 

n 2 3 4- 5 6 7 8 9 0 I m 

8 8 18 18 18 18 18 18 18 18 18 

9 9 9 19 19 19 19 19 19 19 19 
0 10 10 10 20 20 20 2.0 20 20 20 

1 II II " II 21 21 21 21 21 21 
2 12 12 12 12 12 22 22 22 22 22 
3 13 13 Ij I) OJ 

1 i", v 13 23 23 23 23 

4- 14- 14- 14- 14- .14 lit 14 24- 24- 24-

5 15 15 15 15 15 15 15 15 25 25 
6 16 16 16 16 16 16 16 16 16 26 

7 17 17 17 17 17 17 17 17 17 17 

Line L = [A L +" U L + m ] 

2 3 4- 5 6 7 8 9 0 I 

U 10 20 20 20 20 20 .20 20 20 20 

I II II 21 21 21 21 21 21 21 21 

2 12 12 12 22 22 22 22 22 22 22 
3 13 13 13 13 23 23 23 23 23 '" ~. L';) 

4- lit 14- 14- 14- 14- 24- 21t 21t 24- 24-

5 15 15 15 15 15 15 25 25 25 25 

6 16 16 16 16 16 16 16 26 26 26 Av ~~. I 9 

7 17 17 17 17 17 17 17 17 27 27 

8 18 18 18 18 18 i8 18 18 18 2B 

9 I~ 19 19 19 19 Id 19 19 19 19 

- 15 -



a) TRANSFER 
L i ole L = [B L + n T L + m ] 

n 2 3 4- 5 6 7 8 9 0 I m 
0 10 20 20 20 20 20 20 20 20 20 

I II II 21 21 21 21 21 21 21 21 
2 12 12 12 22 22 22 22 22 22 22 
3 13 13 13 13 23 23 23 23 23 23 
4- I 4- 14- 14- 14- 14- 24- 24- 24- 24- 24-
5 15 15 15 15 15 15 25 25 25 25 
6 16 16 16 16 16 16 16 26 26' 26 
7 17 17 17 17 17 17 17 17 27 27 
8 18 18 18 18 18 13 18 18 18 28 
9 19 19 19 19 19 19 19 19 19 19 

Av = 19 

b) NO TRANSFER 

n == 

- 16 -



a) Transff3t" 

Line L = [A L+ n T L + m ] 

n 2 3 q 5 6 7 8 9 0 I m 
2 12 22 22 22 22 22 22 22 22 22 
3 13 13 23 23 23 23 23 23 23 23 
q Iq Iq Iq 2q 24- 2q 2q 2q 2q 2q 

5 15 15 15 15 25 25 25 25 25 25 
6 16 16 16 16 16 26 26 26 26 26 
7 17 17 17 17 17 17 27 27 27 27 
8 18 18 18 18 18 18 18 28 28 28 
9 19 19 19 19 19 19 19 19 29 29 

0 20 20 20 20 20 20 20 20 20 30 
I 21 21 21 21 21 21 21 21 21 21 

Av = 21 

b) NO TRANSFER 

n = 2 3 ql 51 til7 8 I 9 o 
@ 

- 17 -



a) TRANSFER 

Line L = [K T L + m ] 

m = 5' 17 8 9 

,51,: : ,71, 81, 9 I 

Av = 12.75 

b) NO TRANSFER 

- 18 -



Line L = [B L + n 0 x 

6 7 890 

6 
~r-~~-+~~~~~~ Av = 16 + X 

7 
r-+-~-r-+~~~~~ 

8 
~~+-~~-4-4~ 

9 

Line L = [0 x B L + m ] 

x 8 9 o I 2 3 q 567 

I 

2 

3 

4 

5 

6 Av = 16+x 
7 

8 

9 

- 19 -



Line L = [ A L + n 0 x ] . 

6 7 8 9 0 

,) 

V 

4 

~ 5 

6 Av = 18+ X 
7 

8 

9 

Line L = [0 x A L + m ] 

234- 5 

Av :;: 18+x 

- 20 -



x = 

[ Ox Line L = 
Line L = [ K 

L " (:l L=[O xI In. 

K ] 

Ox] 

- 21 -



Line L = [0 x U L + rn ] 

x I 2 "I 4 5 6 7 8 8 m ~ 

8 d 18 18 18 18 18 18 18 18 

3 9 9 13 19 l~ 19 19 19 13 

0 10 10 10 20 20 20 20 20 20 

I II II II II 21 II 21 21 21 

2 12 12 12 12 12 22 22 22 22 
3 13 13 13 13 13 13 23 f) ., 

L~ 2'-' .:J 

4 14 14 (4 14 14 Itt 14 24- Zit AVI = 11.5 + X 
5 15 15 15 15 15 15 15 15 25 

6 16 16 16 16 16 16 16 16 16 

7 17 17 17 17 17 17 17 17 17 

a) TRANSFER 
L i I'lP' L = [0 x T L + m ] 

x I 2 3 4. 5 6 7 8 9 m 
0 10 20 20 20 20 20 20 20 20 
I II II 21 21 21 21 21 21 21 
2 12 12 12 22 22 22 22 22 22 

3 13 IJ 13 13 23 23 23 23 23 
4 14 14 14 14 14- 24- 24- 24- 24 

5 15 15 15 15 :15 15 25 25 25 

6 16 16 16 16 16 16 16 26 26 

7 17 17 17 17 17 17 17 17 27 

8 18 18 18 18 18 18 18 18 18 

9 19 19 19 19 19 19 19 19 19 

b) NO TRANSFER 

x = _"--. ~3 _4 __ 5 __ 6 ®_21_1 _7 __ rl _9~ 

- 22 -



Line L = [Y B L + m. ] 

m = 3 I 4- 15 ®6 7 ~. 

Av = 26 

Line L = [B L + mY] 

m = 2131®1516~ 

Av = 26 

Line L = [Y A. L + m ] 

m =3®4-15~ 

Av = 28 

Line L = [A L + mY] 

m =21®14-~ 

Av = 28 

- 23 -



· Line L =; [K Y]. 

Line L =:[Y kJ 

Av = 2.1 

Line L = [Y Y] 

Av = 31 

Line L ='[Y Ox] 
line L =; [0 x Y ] 

x = 112131~15 __ . 

® ,fI' 

- 24- -



a) TRANSFER Line L = [Y T L + m ] 

m = 9 0 I 2 3 ~ 5 6 7 8 

I hl 20 21 22 L3 2~ 25 26 27 2t! ] [!!J 
Av = 22.25 

b) NO TRANSFER 

Line L = [Y U L + m ] 

m = 

Av = 20.5 

Line L = [Y W L + ~ ] 

m = 31'1®516~ 

Av = 27 

Lin~ L = [W L + n Y 1 

n = 

Av = 27 

- 25 -



Line L = [B L + n W L + m 

m 2 3 ~ 567890 

7 
1:-+---+--+-~'JTJftr~ 

8 
I--+--+---+-'-+---+"~ 

9 

o ~+-~~~-+~~W 
I r-j-J-j-J-~~~~~~ 

2 
3 

~ 

5 

6 

I--+-~-+-~~~~~r-~~ 

Line L = [ W L + n B L + m ] 

8 

9 

o 
I 

2 

3 

~ 

5 

6 

7 

2 3 ~ 567 890 

~~+-+-+--~~~~~ 

~+-+-4-~~~~~h~~~~ 

~+--+--+-~~-+~-4~~ 

~+-~~~~~--r-r-~4 

-26 -

Av = 22.5 

Av = 22.5 



Line L = [W 
\ 

L + n A L +m ] 

q. 

5. 

Line L = [ A L + n W L + m ) 

m 2 3 ~ 567890 

7 
I---I---pr.c....y" /. 

8 
I---+--+---f-&o--v. 

9 
J..--I--'-+--+--"~'7h~ 

°H-~4~~~~ 
I k-~+-+-~+-~~~ 
2 
~~~~~-+-+~~ 

3
~+-~~~~~--~

4-
J..-+--+--+--+~-4--r-+-~

5

6

- 27 -

Av = 2~.5

Av =24-.5

x

Li n~ L = [W L + n 0 x

67890

If

5

6

7

8

9

L i n~ L = [0 x w L +m]

I

2

3

It

5

6

7

d

9

7 8 9 0 I 2 3 ~ 5 6

~+-4-~-+-4~~

~+-4-~-+~~r-1--r~~

~n~~~-~-~~+-~-r~~

- 28 -

~
Av = 17 + x

Av = 17 + x

a) Transfer

b) NO TRANSFER

Line L = [W L+n W L+m]

n2 3 4- 5' 67890 I
mJ-....---r---p")l'777:777?777.77n~'777';"7'n7?l
7

8

9

o
I

2

3

4-

5
6

1---+---+---~c.L.£/

I---+---+--+-~~/~

t---t---t---t

r-T-~~-~-+~~~/h~fi~/~~

~+-~~~-4~~~~~/'~~

r-+-~4--r-+--4~--~~~

Line L = [W L + n T L + m]

n 2 3 4- 5 6 7 8 9 0 I m
I II 21 21 21 21 21 21 21 21 21

2 12 12 22 22 22 22 22 22 22 22
3 13 13 13 2'" \) 23 23 23 23 23 23

4- 14- 14- 14- Pi 24- 24- 24- 24- 24- 24-

5 15 15 15 15 15 25 25 25 25 25
6 16 16 16 16 16 16 26 26 26 26

7 17 17 17 17 17 17 17 27 27 27
8 18 18 18 18 18 18 18 18 '28 28

9 19 19 19 I J 19 19 19 19 19 2~
0 20 20 20 20 29 20 20 20 20 20

9 o I I

- 29 -

Av -== 23.5

Av = 20

L i np L [IN L + n K

n = 5 1 6 7 I.~ 1 9 1 0 "1

® ~
Av = I~

LinA L = [K W L + m

rn =

Av = I~

L i np L = [VI L + nUL + rn J

n 2 3 4- 5 6 7 8 9 0 I m
J 9 19 19 19 19 19 19 19 19 19

0 10 10 20 20 20 20 20 20 20 20

I II II II 21 21 21 21 21 21 21

2 12 12 12 12 22 22 22 22 22 22

J 13 1 r')
\J 13 13 13 23 23 '1 ,)

L.v 23 23
4- 14- 14- 14- 14- 14- 14- 24 24- 24- 24- Av WU = 18

5 15 15 15 15 15 15 15 25 25 25

6 16 16 .16 16 16 16 16 16 26 26

7 17 17 17 17 17 17 17 17 17 27
8 18 18 18 18 18 18 18 18 18 18

- 30 -

It is not generally possible or desirable to program each line of a routine in
minimum time; ther'efore, the following order of precedence should be alloted to
the sections of a data processing run.

I. Instructions which process each individual item.

2. Instructions', whd.ch conceIln-: the -transfer of blocks
into and out of the computer.

Consider the following routine which is designed to place consecutive two-word
items into temporary storage.

100 B 110 A* 109
101 C 110 U 110
102
103 tape read

routine

109 001002 000000
110 V70300 W 200
III processing
112 routine

100 B 113 A* 10~)'

101 C 113 U 113
102 tape read

routine

105 001002 000000

113 V70300 W 200
114 processing
115 routine

MAXIMUM

31
19

50 MC item

121 seconds/tape

MINIMUM

11
12

23 MC item

56 seconds/tape

-31-

Thus, the total savings obtained by changing two lines of instructioo$ is of the
order of 65 seconds per tape processed.

Practically every routine on UNIVAC makes use of generalized overflow for control
purposes$ It is, therefore, useful to have this frequently-used routine in mini
mum form. Compare the following:

000

050
051
052
053

000

008
009
010
all
012

R 052 U 050

B 052
C 052
[
000000

A 053)
U 052

-]
000001

R 012 U 008

BOlO
Call
000000

[
[

A 012
U all
000001

-]
-]

AVERAGE

10

21
21'
52 MC

MINIMUM

8

11
. .JL

31 MC

Additional tables have been prepared for instruction pairs involving multiplica
tion by a known multiplier. Because these tables are quite extensive, only the
most common instruction pairs, that is, BM and MB, are shown. However, as ex
plained below, instruction times for KM and MK prototypes can also be looked up.

The tables have been prepared in a fashion similar to that used for the other
arithmetic instructions. However, multiplication is not a fixed length operation;
the number of stages required depends on the number of additions performed during
the multiplication, which in turn, depends on the multiplier digits.

Figure 2A shows the stages required for multiplication involving no additions,
i..e .. , multiplication by zero. A sample problem is solved for the instruction
pair

B 2 M 6

in Figure 2B. This instruction pair requires 31 minor cycles, as shown. (The
multiplication stages are starred~)

If additions are involved, one minor cycle is added for each addition. Figure 2C
shows a sample problem

B 2 M 6

where the multiplier is a single digit "2~, requiring two additions. Actually,
the additions occur somewhere between M5 and M15, but they are attached to the
end for descriptive convenience.

-32-

If an instruction of the type K is involved, instead of type B, these tables may
still be used o If K occurs as a LHI, use the appropriate table for BM with n = 2.
If K occurs as a RHI, use the proper: table MB wi th m = 70

The following chart shows the number of additions required for various multiplier
digitse

Multiplier Digit

o
1,3

2,4,6
5,7,9

8

Number of Additions

o
1
2
3
4

If the mul tipl,;t:ftr c/::>otain$l: mpre than one digit, the total number of additions is
equal to the sum of the additions required for all the digits o For instance,

Multiplier

25
75

333:33333333

-33-

Number of Additions

5
6

11

A B C

Stage TSD Stage TSD Stage

TO 0 PTS 0 ~ TS
MI (Mul tiplier -.rX) I yTO I yT?
TO 2 ~TS 2 t TS
M2 3 *: TO 3 * TO
TO 4 4
M3 5 5
TO 6 * MI (Multiplier~rX) 6 * MI
M4 7 * TO 7 * TO
TO 8 ~ M2 8 * M2
M5 9 * TO 9 * TO
M6 0 * M3 0 * M3
M7 I * TO I * TO
M8 2 * M4 2 * M4
M9 3 * TO 3 *TO
MIO 4 * M5 4 *M5
MIl 5 * M6 5 * M6
Ml2 6 * M7 6 * M7
Ml3 7 * M8 7 * M8
Ml4 8 * M9 8 * M9
TO 9 * MIO 9 * MIO
Ml5 0 * MIl 0 * MIl

I * M12 I * Ml2
2 * Ml3 2 * MI3
3 * Ml4 3 * Ml4
4 * TO 4 * TO
5 * Ml5 5 * Ml5
6 aTO 6 * Al
7 aTon 7 * A2
8 PTO 8 a TO
9 9 a
0 0 ~ TO
I ~TS I ~ TS

Figure 2

PART II

MINIMJM LATENCY

TABLES

-35-

NO ADDITIONS

Line L = [B L + n M L + m]

n23 LJ.!5 67890 I
m r-Ir-r-'-I--r-~~~~~
9
~4-~-+-~~~~~hifn~

o
r-~~~--r~--r-~~~'/h~

J~4-~~.~~~~~~~
2

3

LJ.

5

6

7

8

~+-4-~--+-'~~--r-+-~~

8

9

o
J

2

3

LJ.

5

6

7

Line L = [M L + n B L + m]

2 3 LJ. 5 6 7 8 9 0 I

~~4-~~-+~~~

~+-4-~~-+~~~~//

~+-4-~~-+~--~~~

~+-4-~~-+'~--~+-4U~

ONE ADDITION

Line L = [8 L + n M L -+ m]

2 3 LJ. 567890 J
m
8

9

0

I

2

3

LJ.

5

6

7

- 36 -

Line L = [M L + n B L + m]

23 LJ.5 67890 I

811~~~~~~~

9~~~~~~~~~
O~-+-+~~4-~~~
'I--J--J--!--J.,-...J.-I---'-~~~
2

3

LJ.

5

6

7

~~4-~~-A--~+-4-~~

7

8

9

0

I

2

3

4-

5

6

3

4-

5

TWO ADDITIONSI

Line L = [B L+n M L + m] Line L = [M L+n B L + In]

2 3 LI- 5 6 7 8 9 0 I m 2 3 4- S 6 7 8 9 0 I

8

9

0

I

2

3

4-

5

6

7

THREE ADDITIONS

Line L = [B L + n M L + m] Line L = [M L + n B L + m]

- 37 -

IFOUR ADDITIONSI

Line L = [B L + n M L + m] Line L = [M L + n B L + m]

3 6
~+-+-~~-+~--~~+-~

ll. 31 7 31

IFIVE ADDITIONSI

Line L = [B L + n M L + m] Line L = [M L + n B L + m]

3

- 38 -

I SIX ADDITIONS

Line L = [B L + n M L + m] Line L = [M L + n B L + m]

SEVEN ADDITIONS I

Line L = [B L + n M L + m] L i n~ L = [M L + n B L + m]

mn 2 3 4- 5 6 7 8 9 0

2~~~~~~~
n 2 3 If 5 6 7 8 m

8

3 ~~~~ 'l:;Q'//.;;,,"/hQ'//. 9

lfr-iW~~~~~~ 0
('ffffff.'ff

5 I
+--+-~~/

6 2
I--+-+---+'~Wh~/h

7 3
I--+--+---t--........ ~ ... ~ // /

8 4-
1--+-+:'-rt--+---f.;C.~/,

9 5
~+-~A--r~~~~Q'R o 6

7'

- 39 -

I EIGHT ADD I T ION S I

Line L = [B L + n M L + m] Line L = [M L + n B L + m]

n 2 3 4: 5 6 7 8 9 0 m
I

2

3

4:

5

6 3
t---+---+---~:...::;..

7 4-
1---4---+---+-~~

8 5
I--+-~A---+-~~

9 6
~+-+-~~-+~~~~~~~

0 7

NINE ADDITIONS

Line L = [B L+n M L+m] Line L = [M L+n B L + m]

0 I n 2 3 4- 5 6 7 8 9 0 I m
8

® ® 9

0

I

2

3

4:

5

6 41
7

- 4:0 -

70 EfficieQ1 CodiJC!.9, Example

The following problem will further illustrate the use of linear and minimum la
ten.cy codinga> It:is designed as a subroutine of CII payrOlll computation" A net
pay is supplied to the routine in rAo Compute the number of bills and coins of
the vax'i,cn.lls denomi!~latio>ns required to make up a pay envelope as follows I

0 OOOOOOOxxxxx
{fo.

total

1 OOOOOOOOOOOx number of $100

2 OOOOOOOOOOOx QO QO $20

3 OOOOOOOOOOOx 00 00 $10

4 OOOOOOOOOOOx O~ eo $ 5

5 OOOOOOOOOOOx 00 " $ 1

6 OOOOOOOOOOOx 00 00 25¢

7 OOOOOOOOOOOX 09 00 10¢

8 OOOOOOOOOOOx 00 QO 5¢

9 OOOOOOOOOOOx 00 OQ l¢

103 F 116
'H 200 Amount to 200 11

104 .4 000
G 201 # $100 bills to 201 11

105 e 200
L 192 11

106 .3 000
X 000 11

107 C 142 laos digit + 143 - R. H. address 142
F 184 11

108 E 200
02 000 11

109 A' III
C 115 Uni to s digit + 130 - R. H. address 115 11

110 F 112
U 118 8

III
U 143

112 000 000
000 all

113
000 002

114
000 001

115 [8/17
]

116 000 000
001 000

117

118 E 200
K 000 21

119 P 191
31

120
C 206 *IoPo ¢ x 4 = # of quarters 11

121 X
01 11

122 K
P 193 **19 e Pe (F <i> P Q X 10/4 = # 0 f dime s) 41

123 C 207
X 11

124 K
P 189 I. Pe (LSD x 20/10/4) = # of nickels 31

125 C 208
X 11

126 K
P 190 Ie Po (LSD X 100/20/10/4) = # of pennies 31

*I.P" = Integral Part

**F. p. = Fractional Part

-42-

127 C 209
U 115 8

128

129

130 V 202
U 14G 10

131 V 173
U 140 9

132 V 154
U 140 18

133 V 175
U 140 17

134 V 170 Pick correct comb. of 10 & 20 bills
U 140 16

135 V 172
U 140 15

136 V 178
U 140 14

137 V 180
U 140 13

138 V 182
U 140 12

139 V 181
U 140 11

140 W 202
y 200 21

141 EXIT M
SUBoM

142 [w 204
U 130] 9/18

143 V 155
U 142 9

144 V 156
U 142 18

145 V 167
U 142 17

146 V 158
U 142 16

147 V 169 Pick up correct comb. of 5 & 1 bills
U 142 15

148 V 162
U 142 14

149 V 161
U 142 13

-43-

150 V

151 V

152 V

153

154

113

153

164

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

000 000

000 000

000 000

000 000

000 000

U 142

U 142

U 142

000 003

000 001

000 001

000 003

000 001

000 001

000 001

000 004

000 002

000 004

000 002

000 000

000 002

000 001

000 000

12

11

10

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

000 000

004 000

W 204

000 000

000 000

000 000

000 001

000 001

000 003

000 000

000 003

000 001

000 004

000 000

aoo 100

000 002

000 005

000 000

'U 13,0

000 025

000 000

000 000
-45-,

STUDENT. EXERCISES

le.) Cooe and time an efficient routine which will place into
rA the smallest of the 4 quantities in memory location
lOO,.;,l03~

20 Code and time an efficient routine which will add the
300 words in the memory starting at location 100 0

3~ Code. and time an efficient routine which will check a
tape. of one-w()rd items for ascending sequence Q Assume
the standard ~entinel convention is followed o

~46-

COLLATION METHOD OF
SORTING

This section assumes the reader is familiar with the general principles of
collation as described in the paper ~A Brief Description of Sorting Methods
for the Univac System." The following discussion is intended as a further
examination into the manner by which collation is achieved on the Univac.
As the intent is instructional, the methods described are fundamental ones
basic to all collation runs, but, of course, this section is not intended
as a primer of all the shop tricks employed in speeding up collation rou
tines. For simplicity in the presentation of these principles, two-way
collation will be describedo

Plates 1-5 describe a two-way collation for ten-word items. The following
symbols used in these flow charts are defined below o

T~A
a

A~Ta

A

A.
1

La

C-+Tc

2,S,/.,==

Tape mounted on Uniservo a

The next sequentially available block from Ta is
brought into the computer in a forward direction.

Same as above, except the tape moves in a back
ward direction

The block from Ta (consists of 6 items)

The ith item of A (i = 1, 2, ... , 6). The items in
a block are numbered from top to bottom.

The keyword of Ai

The label in the identification block of Ta

The kth C item (k = 1, 2, ... , 6)

The collation of 6 C items

The C block is written on Ic

Sentinels; The following collation sequence applies
j < A~ < 2 < = for all A~

The flow charts assume that the input tape to be sorted is in the standard
data tape format described in the section on identification blocks and re
runs. This input tape is assumed to be mounted on T5 but any other servo
will do (except Tl or T2 unless these servos are also changed).

The instructions are assumed to be in the memory.

At the start of the problem certain counters and variable connectors are
set which will be described as they are encounteredQ Next, an "S" sentin
el is placed in the key word position of a block, -{: S-+Af r- ' and this

block is written twice on the fir$t output tapes, Tl and T2. This is necessary
since these tapes will later be read backwards and the sentinel blocks are there
fore needed to indicate the front erid of the tapese

At "Tape labeV,!,. SCP ~, the routine requests the operator to type in the desired

input tape label, La. The first block on T5 is then read into the computer and
t11e lable recordect on tape is compared with the label typed in by the operator.
If the labels do not ag~ee, T5 is rewound with interlock 9 and the tape label and
typed labe~ ar~ printed on SCP~ If.the operator finds that he h~s typed incor~
rectI y, hH?y force tuna .. transfer~o at breakpoint 1. The rOtltine will then re
tyrn ~o ~ and allow ~imt9 type the correct label. If the input tape w~s in
cq!:rectl Y labeled, . he may mOllnt .~e correct »pe, forc. e transfer on breakpoint 1
and the routine will return to ~. When ~ is reached we are assured that the
input tape to be sorted is the appropriat~ one. The tape label, La, suitably
modified to indicate that the items are sorted, will be placed on the final out
put tape.

The logical operations between (0 and 6Q) are commonly referred to as the "in
ternal sort"e The purpose of the inter~ sort is to place the items of each
block in order and then (in two-way collation) to split this input into two
nearly equa~ piles.

At C1) the first data block from 15 is read into the computer. This block is
called UA 99

:' its individual items are Al, A2 , .. "., A6' anyone of which is iden
tified by Ai. N(;:xt, the key word of the last A item of the block is compared
with a Z sentinel for the end of tape teste If this is not the last block on
the input tape, the items of A are arranged in ascending sequence by one of the
methods to be described later. This ordered A block is written on Tm (m = 1,
ini tiall y); one is added to f::., which is the input block counter; and since the
variable connector aI' is set, t~ output tape designation is Chan. ged from servo
I to 2" Control is returned to ~ whence it follows that each block from T5 has
its individual items ordered and IS then written on either Tl or T2 0 When the
first sentinel block 0~5 is read, ~. e posi ti.oD of the last valid (nonsentinel)
item is determined at~. Then at 4 the remaining item positions are filled
wi th Z sentinels!, variable connector 2 is set~ and control is transferred to @
where the block is sorted and written on the current output tape.

At ~ the number of blocks to be sorted 9 a , is examinedo The purpose of this
examination is to-determine whether the first Uexternal sort" or merging will be
in ~scending or d~scendi~g order. Since the final output should be in ascending
s~quence, the first merge must be an ascending one if the number of data passes
required is odd and it must be a descending one if the data passes required are
even. This fact is clarified in the following table which shows that each exter
nal pass over the data changes its sequence~ The number of data passes can be
obtained Aom the block counter ll,. If the block counter is such that control is
sent to \ZJ the~xternal sort is set to do an ascending merge; but if control is
transferred to ~), a descending merge is set up_

-2-

Cumul.ative Consecutive Input Input Sequence Consecutive Output Type of Output
Data Passes Blocks in Sequence Required Where Blocks in Sequence Sequence for

Total Data Passes Total Data Passes
CX:Id Even CX:Id Even

1 1 *A *A 2 A D
2 2 A D 4 D A
3 -A D A 8 A D
4 8 A D 16 D A
5 16 D A 32 A D
6 32 A D 64 D A
7 64 D A 128 A D
8 128 A D 256 D A
9 256 D A 512 A D I

(\')

10 512 A D 1024 D A
,

11 1024 D 2048 A

* Fixed because of ascending internal sort

When the items are arranged in ascending fashion from the top of the block to
the bottom,~they are in descendi~g sequence from bgtton to top~ Ii ~s ~he~e
fore possible to perform a descending merge first when the internal sort pro
duced an ascending sequence for the items in a block. To avoid confusion the
item positions in the block are always numbered from top to bottom (AI, ,A2, ••• ,
A6 for ten-word items). To pick up the items from the bottom, the external
pass counters, i and j, are set to 6; the additive constant,~, necessary to
alter i and j for the next item is set to -1; the constant, L, to which i and
j are compared to determine when the last item of a block has been used is set
to 1; and n, the reset for i and j, is set to 6 0 Note in this routine the
above is the normal ~etup of the counters. Only if the first external merge
is an ascending one ,and ~en only. on the fi,rst pass, are,tl:te cO'::ln1;e~s. ,sf?t to
the values indicated at~. In either case, we first go to subio~tine 1 where
sentinels are plaqed 6n the two output tapes and,' after setting the counters
appropriately, transfer control to@ where the external sort proper begins.

As indicated at 0, an input tape containing only'one or't1JVo bl~ck5 to be sort
ed must be given special treatment~ Consider the case for only o~e block of
data. (This mustjb~ a partial block since the first block containing sentinels
on T 5 was count~d 1n&).. ~. rst, we note that the block ,i. s . ~.'lreadY sorted, but
without the ID block. At 24 this single data block is read back into the com
puter; control is sent to su routine 4 where the ID bl6ck'is ·Wii~ten on Te •
Control is returned to the current ~oop; the data block is wtittenon Te along
with a full sentinel block; the tapes are rewound and then th~ rout~ne is stopped.

If ther. ~ .were only t. wo blOCkS .. Of .. dat.a, cO .. ntrol .. w .. O .. UId b .. ~ t .. rans.fe .. rr. ed ... tg .S.Ub~tin.e.
4 where the labe+. is. placed 01}, the output t?pe and the y~q:'i~e",~onnectgr W is ,
set since only one merge is necessary. After, returning to \Zj, an ~as6ending merge
is performed. It should be noted that subroutine 1 is not entered; hence, no sen
t~nels are placed at the top of the output tape.

The following is a description of the merge:

At @ the external collation begins. External collation is merely a succession
of "two-way titapet9, merges which are actually successive merges for many strings of
blocks. The merges alternate with each complete pass between ascending and de
scending sequence. The prime problem in external collation is the determination
of the end of a data string~ In the desirable case, the strings all consist of
the same number of blocks. This number is called the string iengtho By counting
each block merged and comparing this count with the string length counter, the
end of the string is easily determined. For all strings to be of equal length,
the number of data blocks to be sorted must be a power of twoo Usually, this
does not occur and therefore strings of partial length will be encountered. As
shown in the following example, these partial strings are always at the beginning
or the end of a tape.

-4-

Internal
~ --.s ort --1'\

--x x
x x
x x
x x
x x
x x
x x
x x
x x
x x
x x

(11xx ~ (1x (nxx x x (~. ~ x x x x
x x x x x x

Q) xx ~ x (» xx ~ xx
g' xx ~ g' xx ~ xx
~ ~ xx ~ xx ~ xx
01 xx g xx en xx g xx
.~ x x :.8 x x.~ x x:.8 x x
-g ~ xx -g ~ xx
~ xx ~ ~ xx ~ xx
~ xx ~ xx ~ xx ~ xx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x0J: x x
x

x x
x x

x x
x x

x x x x x
x x x

Input

x Represents a data block
All merging is done by the items within each string
Strings of blocks are spaced to differentiat~ between strings

-5-

x
x
x

(» x
01 X H
(»

X ~

01 X
C X ·rl

'"0 X C
(» x u
(/)

X <
X

X

X

X

X

X

X

X

X

X

X

X

X

X

x

Output

The end of partial strings at the front of a tape can be detected by the
reading-in of a sentinel_block recorded at the ~ront of the tape. The
length (number of blocks) of the strings at the back end of the tape may
be obtained by counting the number of blocks written. Since only the count
for the last string is necessary, this is a feasible procedure.

Initially, the block counters for input,~a and ~.b, and the output block
counter~c are set to zero. The input string length, R, is set to one
(one block"strings). The input tapes, Ta and Tb, are set to read Tl and
T2 , respectiVely, and the output tapes Tc ~nd Td are set to T3 and T4.

At @ the two-standby block PI'9CedUre f.or reacl~ng information from.Jape is

set up. The first data block fro~ t a is read into A (1- A~- Ts b sigl}ifies

~ backward read). The second block from Ta is read into the A standby block,
A. The first block from Tb is read into B, the second Tb block is read into
rio Y, which indi£ates the location to which the block in rl2riill be trans
ferred, is set to B, the B standby block.

At OJ) , the variable connector ® is encountered. The connector was set to
~l i~the first merge is to be a descending one and to ~ 2 if it is to be
ascendings At ~ the item with the greatest keyword is selected and sent to
working storage. At ~ the item with the smallest keyword is selected. In
either case, we go to subroutine 2, where the last item selected is sent to
the current output position, Ck. Note that the output block, C, is always
filled from the top_ Also note, that when each C block is written on the
current output tape, T@, a count is kept by adding one to~c. After return
ing from subroutine 2, the next input item is obtained to replace the one just
put in the output blockdo Whenever an input block is exhausted, control is
transferred to either ~ or ~. These routines set up the two-standby
block read routine so as to make available the next A or B block, as required.
In subroutine 3, we find the read routine itself.

Upon returning from subroutine 3, the appropriate input block counter, ~a or
~b, is increased by one, and the new A or B block is obtained from the stand
by position. As mentioned before, the end of an input string is indicated by
either the input block counter becoming equal to the string length counter, R,
or the presence of an S sentinel in the block just transferred into A or B
from the standby block position.

Since at least one block of data must be present on both Ta and Tb for the
first external merge, it is necessary to consider the end of an input string
of exactly R blocks. When an input block from one input tape is processed
completely, say the A input. ~a is increased by one for the block just pro
cessed and the next A block is brought from the standby block, A, into posi
tion A. Next, the input block just obtained is examined for sentinels. If

-6-

none are presenti it means the end of T~ has not yet been reached. Assuming
this is the caSE~, the block counter ~a 1S compared with the string kngth R.
If we have reached the end of a string, control is transferred to ~. Since
E, is set initially, we will set variable connectors ~ and E() to ~2 and
y 2. Control is returned to @ to send out the rema1ning B items of the
?tring. When the. B string is completely processed, ~b = R and control is
transferred to@,theendofstringoperations.Herethe input ~n output
block counters are reset; the end of string connectors (() ct) ® . are
reset; and the output tape switched. The routine then returns to 11 to
merge the next strings.

At some time the ~nd-of-tape condition will be obtainedo This condition sig
nals end of input'string as well. Consider the case where the end of Ta is
re~ched first •. C?ntrol is sent,to .~ .where t~e contents of E are p~aced in
the~keyword posltlon of A6.(A1 1f t~ls 1S the f1rst external merge be1ng done
i l1 ascending sequence) • I f an ascending merge is being done F= 99 = to, other
wise E = /.. 92 is then set and control transferred to @. 'The /. or = in Aj
and the new variable connector settings force all the remaining B items of the
current string onto the output tape. Two conditions may then arise: 1) This
is the last string on Tb; or 2) There is just one more string left.

In the first cas~ an S sentinel block will be read on Tb and ~trol will be
transferred to ~. Since 92 is set, control is shunted to ~, the end of
tape operations. If ~ is set this was the last data pass and the data is
completely so~d. Therefore Z sentinels are written on To and all tapes are
rewound. If ~ is still'~et, th~re is at least one more data pass. In this

'case, the i.nput item counters are reset. -{ 0 : C ~ determines which is the
f;

current output tape. If this were Tc ' for ins~ance~ ~a is set to the differ
ence between the length of a complete output string (2R) and the actual length
of the last output string. Since it is impossible to have a partial string on
back of both output tapes,~b is reset to zerO G The end of tape and end of
string connectors are reset, and then the servos are interchanged so that the
output tapes for this merge are the input tapes for the next. At @ the
contents of E and F are interchanged, since the type of merge (ascending or
descending) will be change~ The variable connector ~ serves to alternate
the setting of <D ~ At @t the input string length counter, R, is doubled
since the output strings of the just completed merge are now the input strings.
If the new input "string length is greater than or equal to half the number of
input blocks, the next merge is the last, in which case the tape label is re
corded on the next output tape and ® set to write Z sentinels on T@ at the
end of the next pass.

If this is not the last merge pass 9 then the new output tapes must be posi
tioned past the two sentinel blocks. Since the two-standby block reading
scheme is employed 9 the reading heads must be at the front of Ta and Tb.

-7-

But, because of the slightly different rates of acceleration and deceleration
for reading backward and writing forward, it is necessary to read one block
forward if writing is to be done following a backward read. This is the pur
pose of rewinding Te before recording the ID block. Thus, instead of re-re
cording sentinE!l blocks on the new output tapes, the tapes are repositioned
with their read-write heads forward of the sentinels.

The variable connector CB) is employed only in the exceptional case when the
first merge is an ascending one and we were consequently selecting ~ms from
the top to the bottom of the input ~ckso If this were the case, ~ was
set, and control is tranSferred. to ~ to reset ~ counters to their normal
form" In eithe'r case, we eventually return to Q5V where the next pass is
startedo

This explains the case where the last strings on Ta and Tb were reached at
the same time" In the case where the end of Ta~ and the end of the current,
but not the last~ B string is reached, there is one rema~' ing B string to
merge with no A stringo Reaching the end of Ta causes G ,~, ~ to be
set as in the first condition described. After the last lock of toe B string
is processed, a sentinel~o. ck wil~not be read into position B. SiB ~b= R,
control is transferred Q2) where y29 previously set, sends us ~~, the
end of string operationso From there control is transferred to ~ to begin
merging the new B string with the supposed A string. The t or the = in Ag
forces all the B items onto the output tape~ntil the Tb sentinel block is
obtained" Then co~ol is transferred to ~, and since G2 is still set
and from there to ~ 9 the end of tape operationso

2... Two ~ethods fa!. .Eerformi!29, inte~.!. Collation

Two methods in common use will be described as means for sorting internally
a block of items into an ascending sequenceo The first of these methods is
a general one and is nearly identical with the external collation technique.
The flow chart'attached displays this method as adapted for two-word items o

The essence of the method consists of dividing the input data exactly in half
and then considering it as composed of one-item strings and finally merging
the one-item strings of each half together to form two-item strings. These
two-item strings are then merged to form four-item strings and the process
continues in like manner until all items are in single sorted stringo

The problem of partial strings which is encountered in external collation
is easily avoided here since there are 30 two-word items per block and, as
32 = 25 , we can simply attach two = sentinel items to the end of our block
when it is in the memory and sort 32 items o The sentinels will end up at
the end of the sorted items and may then be omitted when the block is
written on the output tapeso This is a feasible scheme in internal colla
tionS! since the amount of time required in handling the two dummy items is
relatively smallo It should also be noted that it is not necessary to

-8-

change the merging from ascending to descending at the end of each pass since
the front of the merged items is just as readily accessible as the end of the
items. This, of course, is not the case in external collation where the first
items merged are separated 2 minutes (tape rewind time for t tape) in time
from the last i.tems mergedo Since the last items merged in external sorting
are immediately available to the computer, efficiency dictates that the tapes
be read backwards.

The block of 30 A items to be sorted are read into the memory and a pair of
= sentinels are positioned below the last item 9 making a total of 32 items.

~
~~~ 

- -- ••• 10 .-

Anyone of the first 16 items is labeled 'Ai where i = 1, 2, ••• , 16. The 
last 16 items are also labeled A, but anyone of these is indicated by Aj 
where j = 17, 18,0.09 320 T~ inpgt string counters are fla and llb, while 
the string length is R. At ~~ Al (the superscript 0 designates the key 
word of the item) is compared with AX7 the smallest being stored as the 
output item C c' The string counter I:l a or ~ b is increased (which one de
pends on whic~ item was the smallest) and tested against the string length 
R. When an input string is exhausted, variable connectors are set to force 
into C the remaining items~ the other string" At the end of both strings 
control i.s transferred to ~ where i is tested against 17. If the test 
indicates inequality, there are more strings to merge and control is re
turned to 00 If i = l7 g then the last string in each set of 16 items 
has merged., The input string leng~h, R~ is examined. If R = 16, then a 
32-item string has just been produced and C contains the sorted A blocke 
If this is not the case 9 R is doubled and i, j9 k are reset and the 32 C 
items become a new set of 32 A itemso Ai and Aj are defined as above and 
the merging is repeated" 

It is apparent that the method just described is a perfectly general one 
and is adaptable to any item size" It is, however, a lengthy one, and 
the following method is generally used for larger item sizes" The method 
is illustrated by coding it for ten-word items. The input block is assumed 
to be in 700-759 and the sorted items (ascending sequence)will be stored in 
cells 640=699., 

The basis of the method is quite simplee The first item of the block is 
selected and compared with each of the remaining items of the block" The 
routine assumes that the input block is already in ascending sequence and 
so assumes Al w~ll be placed in 640 9 A2 in 650~"D'" A6 in 690, unless 

-9-



~ 

lIa=lIb = 0 

R=i=k=1 

j = 17 . ell ,·rf3'i'·y.~.:8:1 

8 .! A,_lIS! .@ .! ,+1-, H'b"-:-+--("',::1-® 

0--{E) 

~ 'lwS_Ckl ·lk+I+_k~ 

~ 

~ 

~ 

®---0 

10 



otherwise instructed. The first item, AI' is selected and compared to all the 
remaining items, Ai., The routine then aads ten to the assumed output destina
tion of Al for every Ai which is found to be less than or equal to AI. At the 
same time ten is subtracted from the assumed destination of each such Ai
After testing all Ai against AI' the address of the output item, in which Al 
is to be stored? is known~ For example, if the sequence of the input item 
codes is 

Item Code 

Al 176 

A2 21 
A3 87 
A4 9 
A5 930 

A6 21 

Al will be stored in cell 680. A2 is then compared with the remaining Ai 
(i = 3, 4, 5~ 6) in a similar maDner. Thus, ~2 is stored in 660. 

The following coding example is the heart of the Internal Sort for ten~word 
items: 

020 L 700 

021 B 710 

022 B 070 

023 C 070 

024 A 061 

025 B 720 

Input Block 
Output Block 

T 025 

S 061 

B 041 

C 041 

T 029 

---------
026 B 071 

S 061 
027 C 071 

B 041 

700, ••• ,759 
640, ••• ,699 

-11-



028 A 061 C 041 

029 B 730 T 033 

._--- -
030 B 072 

031 C 072 

032 A 061 

033 B 740 

-- - ---
034 B 073 

035 C 073 

036 A 061 

037 B 750 

038 B 074 

039 C 074 

040 A 061 

041 [Y 700 

042 B40070 

043 C 041 

044 A 062 

S 061 

B 041 

C 041 

T 037 

S 061 

B 041 

C 041 

T 041 

S 061 

B 041 

C 041 

Z 649 
L 71cl 

B 046 

G 046 

045 B 042 A* 064 

046 C 042 U 021 

061 000000 000010 

062 000000 000004 

-12-



063 

064 010001 000010 

. 
070 y 710 

Z 
071 Y 720 

Z 
072 Y 730 

Z 670 
07:? Y 740 

Z 680 
074 Y 750 

Z 690 

-13-



11 = l1a= I1b~l1c=O 

a -I, b=2, c=3, d=14, k=1 

m=l, r=14,9=C, R~I 

.a l

l .Yi .8,. V, "E, .11j 

'~I .7] I ·8, .. cp, 

26 ) • I 

~ 

~ ~ \5;~--•. ~~) 

T 5 WRONG 

NT 

~--~~----~'~(26 

La WRONG 

~--------~--------~'~(25 

~ RWD* T5 H rl - A f-----..0 

PLATE I 



l - ~ - ~ 
~ 

- -

>" ~ ro ro 

C\J 

UJ 
I-

~ 
- a.. 
-

~ 

t 
I" 

CD lID 

....J 

~ CD 

.0 
I-

CD l 
:: 

Ul 

::;= 

t 
<.-

t .0 
I-

ID 

1< VI 

«l 
I-

l 
" 

< 

8 ~ I 



~ ®---{I) 

N .~ © .® 

~ G-----® 
~ .~ @.A 

PLATE 3 

16 



RWO* Ta , Tb,ToTd "OUTPUT ON Tel" - SCP 

~ 

2R-!J.c_!J.a 

2R -!J.c-!J.b 

~! b-w.s,H I d-bH !w.s l - d H E-w.sIH F- E Hw.s, - F ~ 

~ 

~ 

PLATE IJ 



UJ 
I-

~ 
Q.. 



SERVICE ROUTINES 

Ie Introduction 

The service routinE~s are designed to be a practical aid to the programmer 
and to improve his efficiency in the use of the computer. The routines of 
interest here fall into two catagories, correctors and diagnostic routines. 

The corrector routines are ~rk VIII,' which is a manual corrector operat
ing from the Supervisory Control, and AC-2, AC-3, and AC-4, which are auto
matic correctors proceeding from pseudo-instructions on tape. 

In the class of diagnostic routines we have the Codedit, Codecheck, and the 
Analyser which prepare, in edited form, the input coding and also to some 
extent an analysis of the codingo In addition, there exist a series of rou
tines known as the Automonitor Routines which give a detailed account of 
the actual running of a program. 

These routines, with the addition of certain more specialized service rou
tines and some of the engineering test routines make up the service routines' 
tape which is generally available at every computer. Proper use of the serv
ice routines will nlaterially decrease the amount of programmer and computer 
time spent on program checks and revisions e 



20 1Qcator 

The Locator is always the first routine on the service routines tape. Its 
function is to read into the computer any of the routines which follow it. 

After an initial rE~ad is performed,· the Locator prints out WHAT BLOCK and 
sets up a 10 instruction o Type in a word in the form 000 000 OOB where 
BBBB is the block humber of the routine desired. The Locator will in effect 
perform an initial read on the routine desired and stop prior to transfer
ring control to line 000 of that routine o To proceed with the desired rou
tine 9 merely hit the start bar~ 

If the block number of the desired routine is not known, depress breakpoint 
a at the start of the routine. Force transfer when QO sets up in the static 
register. The SCP (set at normal) will print out the block number of each 
service routine on the tapeQ 

The service routinE~s tape is normally mounted on servo one. If it is used 
on any other servo g1 force transfer on breakpoint one after the initial read. 
The SCP will print out 9 SERVO UOOOOO e Type in the servo number of the 
servo used in the form SSSSSSSSSSSS and the Locator will make the necessary 
modifications in itself and in the particular service routine desired. 



THE CORRECTORS 

3. ~ Ylll, 

It, is sometimes nec:essary for a programmer to assemble a tape from a group of 
tapes or make corr,~ctions on an existing tapee These operations occur most 
frequently during the ftdebuggingU stage of programming. In order to avoid a 
great deal of duplicated effort and to simplify these operations, we make use 
of the MARK V~II service routine o 

The MARK VIII routine operates from control words typed in from the Supervi
sory Control. Its basic operation is to copy a tape or a portion 6f a tape 
onto another tape.*' 

Two types of manual control are exercised by the programmer. These are Break
point Options (BKPr), and type-ins as set up by the routine. 

Breakpgint Options 

To use these options depress the appropriate breakpoint selector switch and 
force transfer when the computer stops on that breakpoint number. 

After the reading of the MARK VIII instructions or at any time after a Clear C 
operation, there are two breakpoint options available: 

~ ~ - Change .Q.f. Servos: MARK VIII (except when the special methods, de ... 
scribed below are used) normally copies from servo 2 to servo 3. To use any 
other servos, force transfer on BKPT 10 The SCPwill print 9servoU00044 and 
set up a 10 m instruction. Type in a word of the form IIIIIIOOOOOO where I is 
the input servo number and 0 is the output servo number. 

BKPT 1 - Change 2f Write Densit~: To change the write density from IOO/inch to 
20/inch or from 20/inch to 100 inch, force transfer on BKPT 7. The write den
sity is not changed by the Clear C operation. After the routine changes the 
write density, it prints out the new density as follow5i~ 

730100A00036 

530100A00036 
or 

20!inch 

100/inch 

*NOTE: The procedure for correcting a tape on Univac requires that the entire 
tape be recopied inasmuch as a new block inserted in the midst of other 

'information will render the following block unreadable due to the posi
tion of the erase head and the differences in the servois read and write 
acceleration times Q 

-3-



Control ~-~ 

After breakpoint options, if any, have been exercised, the SCP prints out 
.6blockillmitE) At this point there are the following operations which may 
be executed at the programmerOs discretion: 

a e Skip through a tape 

b" Copy a tape 

c~ Correct a tape 

de Merge tapes 

Skipping Through A Tape: There are two methods available, special and 
regular. 

Special Metho<i,.. After the SCP types out ",6block~lmi t f type in a 
word'as YSOOOOOOBBBB, where S is the servo number and BBBB is the 
number of blocks to be skipped. 

_Regular Methoci. After the SCP types out.6bloc;~lmi t, type in a 
word as OOOOOOOOBBBB, the SCP will then print out 83next90rder. Type 
in SSSSSSSSSSSS and the operation will be executed., When either of 
these methods is employed the first word of every skipped block is 
printed out on the SCP. (A switch on the Supervisory Control may be 
set to skip these printouts.) In either case the control is trans
ferred to the beginning of MARK VIII againo 

Copying oS. ~z There are two methods available, special and regular. 

Special Method!~~ After o6blockfllmit appears on the sep, type, in 
ZXYOOOOOBBBB~ where X is the input servo, Y is the output servo, and 
BBBB is the number of blocks to be copied", 
Regular Methodoo After Q6block&lmit'9 type in OOOOOOOOBBBB,where BBBB 
is the number of blocks on the tape to be copiede The SCP will then 
print out 83next90rder!j) and set up a type in. Type in ZZZZZZZZZZZZ. 

Correcting ~ Tape. 

After .6block~lmit is printed, type in 00000000BB8B, where BBBB is the 
number of blocks on the tape to be copied. The SCP will then print out 
83next90rder. Type in the block and word number of the first word to be 
corrected as follows: 00BBBBOOOOWW 9 where BBBB is the block number and WW 
is the word number o (The first block is 0001, but the first word in the 
block is 00 0 ) The SCP will print out the old word and set up a type in. 

-4-



Type in the new w()rd. The SCP will then again type out 83next90rder. Type 
in the next block and word number and proceed as above until all the correc
tions have been entered. After the last correction, type in ZZZZZZZZZZZZ 
instead of a block and word number, and the routine will then complete the 
copying operation and proceed to the ending routine. The corrections must 
be in sequence by block number, but not necessarily by word number. 

Merging Tapes 

Tape merging is executed by a series of the above operations, taking advan
tage of the fact that it is not necessary to rewind the tapes. 

Ending Routine 

Upon completion of the copy or correct operations, the computer prints 
500038900end~ To rewind the input tape, hit the start bar once. (To avoid 
rewinding the input set up a skip instruction in the static register when 
the rewind instruction appears on the next ~ timee) The computer will stop 
with a U 044 set up in the static register. Hit the start bar once to read 
the output tape bclckward a number of blocks equal to the block limi t ..l!ll 
typed in. To change this block limit, skip the U 044 and type in, when 
called for, the number of blocks desired to be read back as 000000008B8B. 
The SCP will print the first word of every block read backwards. Upon com
pletion of the backward reads, the computer will rewind the output tape. 

When using the MARK VIII routine, the programmer should note that at any 
time a Clear C operation starts the routine anew, except for changes in 
write density and servo. Should manual intervention be necessary, it is 
useful to know thalt the input block in the memory is at 100 - 159 0 

",,5-



FROM LOCATOR 

FROM CLEAR C 

B,W ORDER 

SPECIAL ORDER 

CHANGE SERVOS 

SKIP ORDER 

COpy ORDER 

CORRECT ORDER 

COpy B-1 BLOCKS FROM 

TYPE IN BLOCK LIMIT N 

SKIP ORDER 

SKIP H BLOCKS ON INPUT TAPE, PRINT
ING THE FIRST WORD OF EACH BLOCK 

COpy ORDER 

COPY TO N BLOCKS FROM THE 
INPUT TO THE OUTPUT TAPE 

Rwd* INPUT 

READ OUTPUT TAPE BACK N BLOCKS, PRINT
ING THE FIRST WORD OF EACH BLOCK 

SKIP SR 

TYPE IN BLOCK LIMIT N 

Rwd* OUTPUT 

INPUT TO OUTPUT TAPE I -I 
PRINT WORD W 
OF BLOCK B 

TYPE IN CORRECTION FOR 
WORD W OF BLOCK B 

FLCM CHART MK V II I 



000 [61 000 

001 L 003 

002 R 060 

003 Yii030 

004 F 05~) 

005 50 012 

006 B 080 

007 R 09~) 

008 R 086 

009 50 041 

010 B 08:2 

011 L 042 

012 .6BLOC 

013 B 096 

014 R 098 

R 000 ] 

B 001 

Ql 051 

Z 090 

Q7 048 

10 080 

T 025 

U 094 

F 055 

10·082 

T 032' 

T 021 

K.~LMIT 

Q 017 

U 097 

CODING .EQB. ~ ll!l 

Rewind Service Routine Tape 
000000 U OOl~ 000 

Force Transfer for Servo Change 

]
Tr.ansfer Read and Write Orders to 
Working Storage 

Force Transfer to Change Write Density 

.6BLOC Kfl LMIT -7 SCP 
000000 OOXXXX --+ 080 (Block Limit) 

Transfer Control if Special Order 

Transfer Control to Read First Block 

83NEXT 90RDER~ SCP 
Next Order ~ 082 

Transfer Control if this is a Copy Order 

Transfer Control if this is a Skip Order 

Transfer Control if this is the Incorrect 
Block 

Transfer Control to Write Current Block 

-7.., 



U 094 

016 H 096 
U 013 

017 L 003~ 

B 082 
018 T 000 

;6 037 

019 E 082 
A 035 

020 
U 085 

021 B 036 
L 080 

022 50 100 
Q 000 

023 R 095 
U 094 

024 A 036 
U 022 

025 H 082 
05 000 

026 A 080 
C 084 

027 E 080 
H 080 

028 R 0601 
U 052 

029 YZZ030 
Z 090 

030 R 095 
U 094 

Transfer Control to Read Next Block 

Increase Block Counter 

Transfer Control if this is the Last Block 

Fabricated Corrector Instructions~085 

First Word of Input Block~ SCP 
Transfer Control if Last Block 

Transfer Control to Read Next Block 

Increase Block Counter 

Prepare Servo Change Control 

Prepare Block Limit 

Transfer Control to Servo Change Routine 

Transfer Read, Write, and Block Control 
to WS 

Transfer Control to Read First Block 

-8-



031 L 029 

032 L 080 

033 

034 

[73 100 

[ 12 000 

035 50 lOa 

036 000000 

037 [ 53 100 

038 50 038 

039 [82 000 

040 101111 

041 83NEXT 

042 9SERVO 

043 50 012 

044 B 080 

045 23 000 

046 50 100 

047 S 036 

U 010 

U 013 

A 036 ] 

30 100] 

10 100 

000001 

A 036 ] 

900END 

U 042 ] 

111111 

9CRDER 

U 044 

10 080 

L 036 

30 100 

Q 041 

U 045 

Transfer Control to Copy Test 

Transfer Control to Finish Copying 

Write Last Block 

500038 900END ~ SCP 
Stop 

Rewind Input Tape 
Transfer Control to Test Output Tape Option 

,,6BLOC KL1 LMIT --+ SCP 
000000 OOXXXX --+-. 080 (Block Limit) 

First Word of Input Block---. SCP 
Transfer Control if Last Block 

Decrease Block Counter 

-9-



048 B 037 
F 033 

049 G 037 
C 033 

050 50 037 Present Write Density ---+ SCP 
U 003 

051 50 04~~ 9SERVO U 00044 --+ SCP 
10 084 IIIIII 000000 -'084 (Input-Output Servos) 

052 F 040 
B 084 

053 E 034 
H 034 

054 E 039 
Ii 039 

055 B 084 
J61111 

056 E 037' 
H 037 

057 E 03:::1 
H 033 

058 E 0'41 
H 04J. 

059 E 04:1 
H 045 

-10-



EXAMPLE PROBLEM)' f.Qi .MMi!S V I I I 

Problem 1= 

BJlks 1 through 15 of tape A~tape 0 

Blks 13 through 17 of tape B --+ tape D 

Blks 1 through 5 of tape C~ tape 0, correcting 

Blk 1 word 07 

Blk 3 word 05 

Skip through 0 to test its readability 

Solution 

Assume tapes A, B, C, D are mounted on servos 2, 3, 4, and 5 and that the MARK 
VIII is in the memory" The operatoris actions are: 

Ie Type in Z25 000 000 015 

2~, Hit start bar to rewind tape A 

3. Clear Cand hit start bar 

4. Type in Y30 000 000 012 

5" Type in '235 000 bOO 005 

6 0 Hit start bar to rewind tape B 

7" Set brkpQt I, clear C, and hit start bar 

8. Force transfer, release brkpUt 1, and hit start bar 

9 0 Type in 444 444 555 555 

lOa, Type in 000 000 000 005 

11. Type in 000 001 000 007 

12. Type in correction for blk 1 word 07 of tape C 

13., Type in 000 003 000 005 

-11-' 



14. Type in correc:tion for blk 3 word 05 of tape C 

15. Type in ZZZ ZZZ ZZZ 'ZZZ 

16... Hi t start bar to rewind tape C, 

170 Clear SR to ZE~ros and hit start bar 

18 41 Type in 000 000 000 025 

Problem .2,= 

Blks 1 through 2 of tape A ~ C 

Blks 1 through 5 of ·tape B~ C 

Blk 3 of tape A~ C 

Blks; 8 through 19 of tape B ~ C 

Skip through C t'o test its readability and copy at 20!inch 
for printing~ 

Solution 

Assume A, B, and two blanks are on servos 2, 3, 4, and 5. The operator's actions 
are: 

leo Type in 224 000 000 002 

2. Clear C and hit start bar 

3e Type .in 234 000 000 005 

40 Clear C and hit start bar 

5('1 Type in Z24 000 000 001 

6 0 Hit start bar to rewind tape A 

7. Clear C and hit start bar 

8. Type in Y30 000 000 002 

-12-



9. Type in 234 000 000 012 

10. Hit start bar to rewind tape B 

11. Clear SH to zeros and hit start bar 

12. Type in 000 000 000 020 

13. Clear C, set brkp't 7, drop interlock on T4, hit start bar 

14. Force transfer, release brkp't 7, and hit start bar 

15. Type in 245 000 000 020 

16. Hit start bar 

17. Hit start bar 

-13-



4. AC-3 

Autocorrector 3 is a single purpose routine designed to perform tape correction 
only. AC-3 has several features which serve in reducing the possibility of 
clerical errors as well as programmer and computer time .. 

Unlike "MARK VIII, which operates from Supervisory Control type-ins, the AC-3 
is tape controlled. Thus, when only tape correction is to be done and when a 
large number of corrections are to be made, the AC-3 is more conservative of 
Univac time than the MARK VIII. In addition to the value of tape controlled 
operation, the AC-3 has several other features designed as a programmer con
venience. They are: 

a. The corrections need not be recorded on the control 
tape in block number sequence as Ae-3 sorts the 
corrections before they are applied" 

b. Before each correction is actually applied, it can 
ei ther be printed on the SCP or wri tterhon a tape, 
providing a permanent record of the corrections is 
made .. 

c. In conjunction with item b, options are available 
for making minor corrections to the control tape 
information" 

The control tape which is mounted on Uniservo 4 consists of a series of two
word items in the following format: 

OOB BBB 000 OWW 
eee cee eec eee 

Where BBBB is the number of the block to be corrected .( 1 ~"BBBB ~ 2000) , 
WW is the word within that block to be corrected (00 < ww < 59)j and 
eee eee cee eee is the correction for that word.. For example, if word 51 
of block 27 is to be changed from BOO 301 COO 397 to BOO 351 HOO 397 the 
correction item would be 

000 027 000 051 
BOO 351 HOO 397 

A maximum of 329 correction items can be handled at one time with Ae-3111 To 
mark the end of the correction list on tape 4, the sentinel ZZZ ZZZZZZ ZZZ 
must follow the last correction item.. The remaining information following 
the sentinel in the block is ignored by AC-3. 

The operating instructions for Ae-3 are listed below. 

1.. The tapes to be mounted are as follows 
Uniservo 

1 
2 
3 

4 
5 

-14-

Tape 
Service routine containing Ae-3 
Tape to be corrected (see 3) 
Blank tape for corrected output 
(see 3) 
Ae-3 control tape 
Blank tape for the correction 
listing if option under step 3 
is to be exercised 



2. Initial read Ac-3 through use of Service Routine Locator. Computer 
will stop after first block of AC-3 is in the memory, 

3. Several conditional transfer breakpoint options are now available: 

a. To print the AC-3 operating instructions depress breakpoint 
zero, set the SCP selector switch to normal, and operate the 
start baro 

The computer will stop on a QO. Force transfer and operate 
the start bar0 The AC-3 operating instructions will print 
on SCP and the computer will stop again on QO. At this 
point QO should be released and other options, if they are 
to be exercised, should have their appropriate breakpoint 
buttons depressed. Operate start bar to continueo 

b. To modify the Uniservos assigned to the tape to be corrected 
and the blank to contain the corrected version depress break
point one and operate the start bar. 

The computer will stop on a Ql. Release breakpoint one, 
force transfer and operate the start bar. Computer will 
print 

In Out Servo 
and stall on an input ready. Type in the new Uniservo 

i'designations in the following form 

xxx xxx yyy yyy 

where X is the input servo and Y is the output servo. The 
computer will automatically modify the appropriate instruc
tions and continue. 

Co To have the correction list written on tape 5 depress break
point 3 and operate the start bar. This option will be ex
ercised when step 5 is reachedo 

4. The computer will then print out 
block limit 

and stall on an input ready. Type in the number of blocks on the 
"tape to be corrected" in this format 

000 000 OOX XXX (1 < XXXX < 2000) 

5. If breakpoint 3 has been depressed, computer will stop on Q3. Re
lease breakpoint 3 and force transfero If the correction list is 
known to be correct (e.g. no errors in unityping), the SCP output 
selector switch should be placed on skip to conServe computer time. 
Operate the start bar to continue with AC-3. 

If an SCP output is desired, the print selector switch should be 
set to check and the margins set for 39 digits. 

-15-



6. When the corrections have been applied, the computer will rewind all 
tapes and stop. 

7. If the option for writing the corrections on tape 5 has been exe~
cised, the uniprinter settings should be 

a. Print selector switch set to check 

b. Margins set for 36 digits 

Occasionally it may be desirable to modify the correction information on the 
control tape without the necessity of retyping it or doing a MARK VIII correc
tion. This, of course, could arise when an error in listing the corrections 
has been made or in unitypingG To expediate this correction of the control 
tape, a set of additional breakpoint options have been provided. These break
points, if option is to be exercised, should be set on step 3 above. 

To modify a correction, depress the appropriate breakpoint listed below. 

a. To modify the block and word number of a 
correction depress breakpoint four. 

b. To modify the correction itself depress 
breakpoint five. 

c. To skip this correction entirely depress 
breakpoint six. 

When the computer is about to apply a correction, it will print the old word, 
the block and word number, and the new word, and will then stop on the appro
priate breakpoint. Operate the start bar each time the computer stops on the 
breakpoint until the correction to be modified is printed out. Then for mod
ifications a and b above, force transfer, release the breakpoint and operate 
the start bar. The computer will stall on an input ready. Then 

a. To modify the block and word number, type in the 
new block and word number in the same format as 
on the control tape. This new block number must 
not be less than the replaced block number nor 
larger than the block number of the correction 
item to follow (this may require scanning the 
list of corrections manually). 

b. To change the correction itself, type in the new 
correction. If both a block and word number and 
its correction are to be changed, both breakpoints 
four and five must be used. 

For skipping a correction simply force transfer, release the breakpoint and 
operate the start bar. 

AC-3 may be rerun at any time by operating the clear C switch. This causes 
the input, output, and control tapes to be rewounde Tape 5 will not be rewound. 

A schematic flov~ chart of AC-3 is appended. 

-16-



FROM LOCATOR 

-. 
FROM CLEAR C ~ 

PRINT 
OPERATING 

INSTRUCTIONS 

IS THIS CORRECTION 
A SENTINEL? 

NO 

SELECT CORRECTION 
WITH LOWEST REMAINING 

BLOCK NUMBER B 

CHANGE 
INPUT-OUTPUT 1-1 __ ~ 

SERVOS 

COpy TO N BLOCKS FROM 
THE I HPUT TO THE OUTPUT TAPE 

COPY TO B-1 BLOCKS FROM 
THE I NPUl TO THE OUTPUT TAPE 

WRITE ON T5 OLD WORD, 
BLOCK AND WORD HUMBER, 

AND HEW WORD 

TYPE IN BLOCK LIMIT N 

READ OUTPUT TAPE 
BACK N BLOCKS 

PRINT OLD WORD 
BLOCK AND WORD 

NUMBER AND 
NEW WORD 

FT 

READ ALL 
CORRECT! ONS 

INTO 
MEMORY 

SELECT CORRECTION 
WITH LOWEST 

BLOCK NUMBER B 

~ 
RWO* CONTROL 

HPE 

TYPE IN NEW 
BLOCK AND 

WORD NUMBER 

RWD INPUT AND 
OUTPUT TAPES 

TYPE IN 
NEW 

CORRECTION 

MAKE CORRECTION 

FL,;W CdABT AC-3 



SERVICE ROUTINES 

003 

Like AC-3~ the Autocorrector 4 is a single purpose routine designed to per
form tape correction onlYQ The distinguishing feature of AC-4 over the 
Mark VIII and AG-3 is that it provides a check on the corrections to be ef
fected o As in AC-3 9 the correction items are recorded on a control tape 
and thus computer time is conserved o 

The control tape consists of a series of three-word items having the follow
irAg formatg 

OOB BBB 000 OWW 

xxx xxx XXX xxx 

ece ece eec GGe 

Where BBBB is the number of the block to be corrected (1.s BBBB < 2000), WN 
is the word wi thin the block to be cox'rected (00 < WN ~, 59) 9 XXX ,XXX XXX XXX 
is the lncorrect word and Gee occ ece cec is the correct wordo For example, 
if word 51 of block. 27 is to be corrected from BOO 301 COO 397 to BOO 351 
HOC 397 the correction item would beg 

000 027 000 051 

BOO 301 COO 397 

BOO 351 HOO 397 

Following the last corre~tion item will be the sent:lnel word ZZZ ZZl Z'ZZ ZZZo 
The remaining information in the correction data block will be ingnored o 

The (corl'action i terns must be rceeorded on the control tape in ascendi.ng order 
by block number o 

BrieflY9 the mode of operation of AC=4 is thi.SJ8 the tape to be corrected is 
copied onto '0 blank output tape until an incorrrect block is located Cil The 
word to be corrected is then compared wIth the word the programmer expected 
to be there g as indicated by the second word of the correction itemo If they 
agxee g the correction is made by replaclng that word of the input tape by the 
third word of the correction item and the prOlCe~s is; X"epe:a:ted for the next 
correction itemo If the comparison show~ al disagreement, it may indicate 
ei theJI~ an error in listing the block and word number or in the unltypi.ng of 

..,18-



where X is the input servo and Y is the output ser
vO o The computer will automatically modify the ap
propriate instructions and continue o 

4. The computer will then prin.t 

Block Limit 

and stall on an input readyo Type in the number' of blocks 
on the "tape to be corrected" in this format~ 

000 000 OOX xxx (1 < XXXX < 2000) 

50 The computer will then proceed with corrections 9 comparing 
word two of the correction item with the word in the desig
na.ted location before the correction is made o Step 8 11 below, 
will cover the operation when discrepancies are detected o 

6 0 When all correcti.ons have been applled\-) the input tapes will 
be' rewound o The output tape will be read backwards to check 
its legibility and then rewound o 

70 AC-4 may be restarted at any tim~ by clearing Co 

80 If, during the application ~f the correction list 9 a discrep
ancy is found between the second word of the correction item 
and the word in the designated location9 the following infor
mation will print on SCP and the computer will stop: 

Block and word number 
The word occupying that locatlon 
The word expected to be in that location 
The word to be put in that locati.on 

If the AC..,4 operating inst.ructions are desired\} depress QO 
Sind operate the Start Bare The rcomputer will stop on a QOo 
Force transfer g release the breakpoint and operate the 
Start Bare The operating instructions will be printed on 
~P and the computer will again stopo 

Se!veral options are now ~vailable g 

Ao To disregard the discrepancy sod proceed with the 
correction9 depress breakpoint two 9 and operate the 
Start Baro The computer will stop on a Q20 Force 
transfer, release the breakpoint and operate the 
Start Bare 



B. To change the block or word number, depress breakpoint 
three and operate the Start Bare The computer will 
stop on a Q3. Force transfer, release. the breakpoint, 
and operate the Start Bar. The computer will print on 
SCP 

New Blk, Word 

and stall on an input readyo Type in the new block 
and word numbere This new block number must not be 
less than the old one·nor greater than the block nu~ 
ber for the next correction item. The computer will 
apply this new correction and continue in normal 
operation. 

c. To skip this correction 9 simply operate the Start Bar. 

-21-



I'\) 
I'\) 

FROM 
LOCATOR 

FROM 
CLEAR C 

SELECT NEXT COR
RECTION ITEM FOR 

BLOCK B WORD W 

COpy TO BLOCK 
N FROM TH E INPUT 

TO THE OUTPUT 

RWD* CONTROL 
AND INPUT 

TAPES 

IGNORE 
DISCREPANCY 

II 

COPY TO BLOCK B-1 
FROM THE INPUT I .. I 
TO THE OUTPUT 

N 

SKIP THIS 
CORRECTION 

TO CORRECT 
B AltO W 

TYPE IN NEW BLOCK AND 
WORD NUMBER, BW 

TYPE IN 
BLOCK LIMIT N 

MAKE 
CORRECTION 

2 

2 

FLOW CHART 
FOR AC-ll 



6. MA-2 

Occasionally, it is desirable to merge the data from two tapes on a word-by
word basis as contrasted to the block merging accomplished by the Mark VIII. 
Examples of this might be: 

a. copying a subroutine into a master routine where the 
subroutine does not take up an intergral number of 
blocks o 

b./correcting tapes on which words have been left out 
or extra words addedo 

c. merging data from two tapes where block-by-block 
merge is not feasible. 

The Automatic Line Merge, MA-29 is a service routine designed for this pur
pose. Certain other features have been included in MA-2 to increase its 
flexibility and usefulness. 

The basic operation of MA-2 is to transfer words from one or two input tapes 
designated A and B to an output tape Ce The uniservos for A, B, and Care 
specified by an :initial control word. This contror' word and the control words 
following it are normally unityped onto a control tape which is mounted on 
uniservo~ although a breakpoint option may be exercised to use another 
uniser~o to have the control words typed in manually through SCKo Other 
breakpoint options are available for minor corrections of the control words 
which are printed.on the-SCP before they are executedo 

There are three different types of control words which MA-2 recognizeso The 
first of these must be the first control word received by MA-2. It is called 
an initial control word and has the following format 

ABC 000 000 000 

where A and B are the two input uniservo numbers (use zero for B if there is 
only one input) and C the output uniservoe An initial instruction causes the 
MA-2 tape instructions to be appropriately adjusted. 

The second type of control word is a pseudo instruction instructing MA-2 to 
perform one of the five following operations: 

1. f~ N words from tape A or B to C~ 
2. Skip N words on tape A or Bo 
3. fill tape C with'N tOspecialu wordse 
4. Add the next N words from the control tape 

(.or SCK) to tape C. 
5. Read tape C backwards to test its readability, 

also, print the total number of blocks on the 
tape, the first word of each block, and then 
rewind the tape with interlocko 

-23= 



These pseudo instructions are in the following format 

C is a control digit specifying one of the five operations noted above. 
In particular if 

c == Z A copy operation is to be performed 
C :: Y A skip operation is to be performed 
C :: F A fill operation is to be performed 
C = A An add operation is to be performed 
C = B A read back operation is to be performed 

Si is the input·tape and it will be either the letter A or B for those 
operations requiring an input tape. 

So is the output tape. It is always the letter C for those operations 
requiring an output tape. 

T is of significance only when a fill operation is to be done. In 
these cases it will be a digit specifying the kind of "special" word 
to be used in the fill operation. If 

T == a 
T == 1 
T = 2 

The fill word is 000 000 000 000 
The fill word is tit ttt ttl itt 
The fill word is ZZZ ZZZ ZZZ ZZz 

as many as seven other fill words may be sp~cified by in§erting the 
additional fill words in words 13 to 19 of block 3 of MA-2. If this 
is done, T has the range 0 < T < 9. Nei ther Si nor So need be spec
ified on a fill operation. 

Together specify the number of words affected by the pseudo instruc
tion.' If the number of words to be affected are less than 60, 
BBBB = 0 ,and 00 < LL :5. 59, while if the number 'of words are 60 or 
more BBBB = number of 60 word multiples and LL = remaining words. 
For example, ,if the number o~ words, N, ar~ 

N == 15 
N == 75 
N = 120 

Then LL == 15 and BBBB :: 0000 
Then LL =. 15 and BBBB := 0001 
Then LL = 00 and BBBB ::: 0002 

The third type of control word is the normal Univac instruction. That is, 
if a control word (exclusive of the initial control word which is the servo 
designator) does not have as its left-most digit the letter Z, Y, F, A, or 
B it is treated as a Univac instruction and executed. In particular a 
control word 

620 000 900 000 

-24-



will cause tape 2 to be rewound and Univac stopped. Do not expect the con
tents of the working registers to remain unaltered between the execution of 
successive cont~ol words. This means a control word sequence 

LOO 500 BOO 900 
000 000 QOO 051 

will not produce the expected result of comparing (500) and (900) for equali
ty. 

The operating instructions for MA-2 are: 

1. Tapes to be mounted are -as follows 

Uniservo 
1 

Tape 
Service routine containing MA-2 
Control tape (if options under 
steps 3b and c are not exercised) 
Input tape A 

4 

A 
B 

c 

Input tape B (if a second input is 
used) 
Blank tape for output 

2. Initial read MA-2 through use of Service Routine Locator. 
Computer will stop after the first block of MA-2 is in the 
memory. Depress breakpoint seven o 

3. Several conditional transfer breakpoint options are now 
available: 

a. To print the MA-2 operating instructions 
depress breakpoint zerop set the SCP se
lector switch to normal, and operate the 
Start Bar. 

The computer, will stop on a QOo Force 
transfer and operate the Start Biro The 
MA-2 operating instructions will print on 
SCP and the computer will again stop on 
QO. At this point QO should be released 
and other options 9 if they are to be ex
ercised, should have their appropriate 
breakpoint buttons depressedo Operate 
the Start Bar to continue. 

b. To modify the uniservo assigned to the 
control tape~ which is normally #4, de
press breakpoint one and operate the Start 
Bar. 

The computer will stop on a Ql. Force 
transfer, release breakpoint one, and 

... 25-



operate the Start Bar. The computer will print 
on SCp, 

TTTTTTTTTTTT 

and stall on an input readyo Type in the new 
uniservo designation for the control tape in 
this form: 

'XXXXXXXXXXXX 

where X is the uniservo number. The computer 
will automatically modify the appropriate in~ 
structions and continue. 

c. To modify MA-2 for manual operation through 
the SCK, depress brekkpoint three and operate 
the S tart Bar. 

The computer will stop on a Q3. Force transfer, 
release breakpoint three and operate the Start 
Bar. The manual operation of MA-2 is described 
in step 4b. 

4. The computer will then begin the word-by-word merging in the 
following manner, depending on whether,or not the manual op
tion of 3c was exercised: 

a. If the control tape is used, the merging pro
ceeds automatically with MA-2 selecting its 
instructions from the control tape o Just be
fore each order is executed,it is printed on the 
SCP thus providing a permanent record of the 
cOrrections is madeo The merging i~ stopped 
only by a 90000 instruction on the control 
tape. 

b., If the manual option has been exercised, the 
computer will print on the SCP 

ABC 

and stall on an input ready$ Type in the 
initial control word (servo specifications). 
The computer will modify the appropriate tape 
instructions and stall 'again on an input readyo 
Type in the next instruction. The computer 
will continue calling for instructions until a 
90 000 instruction is supplied. 

5. The routine' may be rerun at any time by clearing C. Oc
casionally, it may be desirable to modify the instructions 

-26-



on the control tape without the necessity of retyping it or 
doing a Mark VIII correction. This could, of course, arise 
when an error in listing the instructions or in unityping 
them has been made. A set of additional breakpoint options 
have been incorporated in MA-2 to facilitate the modifica
tion of the control tapeo These breakpoints~ if their op
tions are to be exercised, should be set on step 3 above: 

a. To insert an instruction, depress breakpoint 
four. Each time the computer stops on a Q4 
operate the Start Bar until the instruction 
just printed on SCP is the one in front of 
which a new instruction is to be-inserted: 
When this occurs, force transfer, release 
Q4 (unless further insertions are to be made), 
and operate the Start Bar. 

The computer will print 

INSERT 

and stall on an input ready. Type in the 
additional order. 

b. To change an instruction, depress breakpoint 
five. Operate the Start Bar each time the 
computer stops on -8 Q5 until the instruction 
to be changed has ju.t been printed on SCP. 
then force transfer, release Q5 (unle$s 
further instruction changes are to be made), 
and operate the Start Bar. 

The computer will print 

CHANGE 

and stall on an input ready. Type in the 
corrected instruction. 

c. TO,delete an instruction, depress breakpoint 
six. Operate the Start Bar each time the com
puter stops on a Q6 until the instruction to 
be deleted has just been printed on the SCP. 
When this occurs, force transfer, release Q6 
(unless further deletions are to be made), 
and operate the Start Bar. 

The computer will print 

DELETE 

and pass on to the next instruction. 

-27-



Certain instruction errors are automatically detected by MA-2: 

a~ If a partially filled output block is still in 
the computer at the time a B instruction (read 
output tape backwards) is received p the com
puter prints 

Te BKS xxxx 
OUTPUT BLOCK 
NOT FULL 
Hyy 5zz UOOIO? 

where xxxx is the total number of blocks on C 
and zz + 1 is the number of words in the par
tially filled output block o The computer will 
stop on a Q70 If the remainder of the block is 
to be filled with zeros, simply operate the 
Start Barolf other corrective action isnec
essary, force-transfer 9 set one of the break
points listed in the error conditions noted 
~b~ve, and operate the Start Bar~ The compu
ter will stop on the selected breakpoint and 
the operations discussed in the preyious para
graph should be followedo 

b. If a copy or skip order is supplied to MA.,,2 
without listing the input servo 9 the computer 
will print 

ERROR SET BP 

andstopo Set one of the breakpoints 49 5 p 

or 6 and operate the St.art Bar o The computer 
will stop on the selected bI'eakpoint and the 
6petations discus~ed for that breakpoint 
should be followedo 

The following examples will illustrate the use of MA-2: 

Example 1 

Prepare an output tape, C, containing the 
following parts of input tapes A and B: 

BLK 1 W 00 to BLK 2 W 16 
BLK 1 W 10 to BLK 1 W 19 
BLK 2 W 17 to BLK 2 W 59 
BLK 2 W 00 to BLK 2 W 49 

from A 
from B 
from A 
from B 

Let tapes A, B9 and C (blank) be mounted on 
servos 29 39 and 59 respectivelyo The con
trol tape (or manual type-ins) would then 
contain 

=28= 



Instructions 

235 000 000 000 
lAC 017 000 001 
YBO 010 000 000 
ZBC 010 000 000 
ZAC 043 000 000 
YBO 040 000 000 
ZBC 050 000 000 
620 000 630 000 
BO.o ()OQ.,OOO 000 
900 000 000 000 

Example 2 

Explanation 

A =: T 29 B :: T 3 ,C = T 5 
Copy 77 words from A to C 
Skip 10 words on B 
Copy 10 wordsf?;om B to C 
Copy 43 words from A to C 
Skip 40 words from B to C 
Copy 50 words fromB to C 
Rewind A and B 
Read C back and rewind 
Stop 

.Tape A-contains 4 blockso The first 6 words are 
heading) the remainder is datao Transform the 
heading into an identification block filling the 
remainder of the block with zeroso Follow this 
1D block with the data placing Z sentinels after 
the data and add two sentinel blockso 

Let tape A be mounted on servo 2 and a bl.nkp C, 
be mounted on servo 50 The control tape would 
then contain 

Instructions Explanation 

205 000 000 000 
ZAC 006 000 000 
FOO 054 000 000 
ZAC 054 000 003 
FOO 206'000 002 
BOO 000 000 000 
620 000'900 000 

Example 3 

A := T2, C :: T5 
Copy 6 words from A to C 
Fill C with 54 words of zerQ8 
Copy 234 words from A to C 
Fill C with 126 sentinel words 
Read C back and rewind 
Rewind A and stop 

Tape A is a unityped program tape, 2 blocks in 
lengtho In proofreading the unityping it was 
found that words 33 and 34 of block 2 were left 
out, and everything beyond these word$, there= 
fore, has been shifted~ the last two words be= 
ing zeroo These words should be BOO 220 LOO 
135 and AOO 235 TOO 120 respectivelyo Tape B 

=29= 



is a,19 block program tape. Word 12 of block 10 
of tapeBis to be corrected to read BOO 110 HOD 
132. Tape A is to replace that part of tape B 
from word 20 of block 15 to word 19 of block 17. 
In addition, a block of ignores is to be att~ched 
to the completed program tapeo 

Let tapes A and B be mounted on servos 2 and 3 and 
a blank tape, C, be mounted on 3 0 The control tape 
contents are: 

Instructions 

235 000 000 000 
ZBC012 000 010 
YBO 001 000 000, 
ADO 001 000 000 
BOO 110 HOO 132 
ZBC 007 000 005 
YBO 000 000,002 
ZAC 033 000'001 
AOO 002 OOOiOOO 
BOO 220 LaO', 135 
ADO 235 TOO 120 
ZAC 025 000 000 
ZBC 040 000,. 002 
Faa 100 000 001 
620 000 630 000 
BOO 000 000 000 
900 000 000 000 

7. HERB I 

Explanation 

A ~.: T 2' B:: T39 C =: T5 
Copy 612 words from B to C 
Skip the word to be corrected 
Add 1 word .to C 
Word to be added 
Copy 307 words from B to C 
Skip 120 words on B 
Copy 93 words from A to C 
Add 2 words to C 
Word to be added 
Word to be added 
Copy 25 words from A to C 
Copy 160 words from B to C 
Fill C with 60 ignore words 
Rewind A and B 
Read C back and rewind 
Stop 

HERB 1 is a single purpose routine designed to automatically compare for 
identity the contents of two tapesQ Whenever the routine finds a discrep
ancy, the two words and their block and word number is printed on SCPo An 
option is provided for producing an output tape that is a synthesis of the 
input tapes. 

There are a number of computer operations that may warrant the use of an 
auto-comparator such as HERB 10 Some of these are listed below: 

a. as a check on the manual operations of MK VIII such 
as ,copying a tape or correcting a tape. 

b. as a means of spotlighting the differences between 
two supposed identical routineso 

c. as a means of verifying the accuracy of a duplicated 
unityping job and at the same time providing a cor
rected output. 

-30-



The opera-ting instructions for HERB I are listed below 

1. The service routine tape is mounted on Uniservo 1. 
The two tapes to be compared are mounted on servos 
A and B (any servos may be used). If an output 
tape is desired, mount a b~ank tape on servo Co 

2. Set the SCP Selector Switch on computer digito Set 
the margins for 

a) No output tapeg 39 digits 
b) Output tape: 52 digits 

3. Initial read Herb I through use of the Service 
Routine Locator. Computer will stop with the 
first block of HERB I in the memory. 

4. If the output tape feature is desired, set break
points 4 and 5. 

5. Operate Start Bar. 

6. Computer will stall on an input readyo Type in a 
control word in the following format: 

AAA BBB CGG xxx 

where A and B are the uniservo numbers of the two 
tapes to be compared~ C is the uniservo number of 
the desired tape (C ~ 0 if no output tape option 
is being used), and xxx is the number of blocks on 
the input tapes to be compared. 

7. The computer-will begin comparing A and B word-by
word for identityo If C ~ 0, the routine will copy 
each A word passing the identity test onto the out
put tape. The operation of the routine when a dis
crepancy between A and B is detected is covered in 
step 10. 

8. When the two input tapes have been compared the 
desired number of blocks, the input and output (if 
used) tapes are rewound and the computer stopped. 

9. To rerun at any time clear Co This will cause A, 
Band C (if used) to be rewound and the routine 
will pick up at step 6. 

10. In case a discrepancy between A and B is encounter
ed by the routine 9 three words will be printed on 
SCP in the following sequence: 

-31-



1. word from tape A 
2. block and word number 

of the discrepancy 
3. word from tape B 

if the output tape option is not being used, the 
routine returns to the comparison of the remain
ing words on the input tapes. 

If an output tape option is used, the computer 
will stop on breakpoint 4 after the printouto 
The following options are now available: 

a. To allow the A word to appear on the 
output tape, operate the Start Bar. 
The computer will stop on breakpoint 
5. Operate the Start Baro The A 
word will again be printed on SCP. 

b. To allow the B word to appear on the 
output tape, operate the Start Bar. 
The computer will stop on breakpoint 
5. Force transfer and operate the 
Start Bar. The B word will again be 
printed on SCP. 

c. To allow a new word to appear on the 
output tape, ,force transfer and op
erate the Start Bar. , The computer 
will stall on a type in. Type in 
the desired word. 

After one of the above options have been exercised, 
the computer will continue with the comparisons. 

-32-



PROGRAMMING MANUAL FOR THE 
HIGH-SPEED PRINTER 

1. General Characteristics 

The Remington Rand High-Speed Printer converts information stored in 
the form of magnetic pulses (the Univac XS-3 code) into a visible 
printed recordo The speed of conversion is much greater than anything 
heretofore commercially availableo Some general characteristic of the 
printer are listed below: 

Characters printed per line 
Lines printed per minute, 
optional at 

Horizontal character spacing 
Vertical character spacing, 

optional at 
Number of different printable 
characters 

Printing format control 

130 

200, 400Q or 600 
10 per inch 

6, 3, or 2 per inch 

51 
plug board and paper loop 

In brief, the High-Speed Printer operates in the following fashiono 
Coded data is read from the magnetic tape in groups of 120 digits call~ 
ed blockettesu Each blockette is stored in a memory with the data 
being in the same coded form as on the tapeo A continuously revolving 
shaft, on which are mounted the 130 typewheels (actually 65 double 
wheels), also carries a commutator which Causes to be generated se
quentially the code for each of the characters on the typewheelso 
This coded representation is sent to a 120 place comparator which also 
receives in the same code the contents of the 120 place memoryo When
ever agreement occurs, which may, of course, be in many places of the 
comparator at once, Signals leave those places on separate wires. 

Opposite each typewheel there is a hammer which can be driven against 
ito The paper, with an inked ribbon or special carbon paper in front 
of it, passes between the typewheels and hammers, and it is by making 
a hammer dtive the local portion of the paper against a typewheel that 
printing is achievedo 

- 1 -



The comparator output signals mentioned above ultimately release the 
energy which drives the hammers. Before doing so however f they pass 
through a plugboard by means of which they can be routed to any de
sired hammer. Thus any memory position can be made to print out in 
any print position. 

Time is allowed for one complete typewheel revolution so that every 
character in the memory has a chance to print. Then the paper is 
spaced~ a new blockette of information is read in and the cycle re
peated. 

Physically, the High-Speed Printer is composed of four units: the 
Uniservo, the Printer Unit, the Memory Unit, and the Power Supply 
Unit. These units are interconnected by means of cableso Figure 1 
is a picture of the printer. . 

The above description of the printer implied that the magnetic tape 
input must be in blockette form. On the middle right quarter of the 
Univac Supervisory Control Pane~ is a series of ten Block Sub
Divider Buttons. Each button corresponds to a Uniservo. When one 
or more buttons are depressed, each block written on the correspond
ing Uniservos will be in blockette form. That is, the computer will 
automatically interrupt the· write instructi.ons for those Uniservos 
for a short period after each multiple of 120 digits has been written~ 
Thus each block of 720 characters. will be composed of 6 sets of 120 
character blockettes, a small blank space appearing between each 
blockette. 

Since the Tape-To-Card Converter ~lso requires magnetic tape record
ed in blockette form, but at a somewhat different spacing for its 
efficient operation, the-Block Sub-Divider Buttons for Uniservos 
1, 2, 3, 4, 5, 6, 7 contain the appropriate delays for High-Speed 
Printer tapes while the buttons for Uniservos 8, 9, - have delays 
appropriate for the Tape-To-Card Convertero 

To prepare High-Speed Printer tapes on the Univac, the programmer 
need merely depress the Block Sub-Divider Button corresponding to 
the Uniservo he has selected from among those listed above to re
ceive this output. All write orders for these Uniservos should be 
5n m's. Because of the extra space needed between blockettes, a 
1500' reel of tape can contain up to 7500 blockettes (= 1250 blocks)G 
In making time estimates, the programmer should note that because 
of the reduced number of blocks there are fewer starts and StOPSi and 
thus a full tape recorded in High-Speed Printer blockettes can be 
made by the computer in 3.5 minutes~ 

- 2 -



20 Printing Format Control Features 

In addition to the ability to print the contents of a memory location 
anywhere on the page, the High-Speed Printer also possesses several 
other highly useful editing facilitieso 

Zero Suppressione It is frequently desirable to suppress the print
ing of zeros to the left of the first significant (non-zero) digit in 
a resulto It may be required to do this in several areas along a line 
of printingo By means of the plug board on the printer u this may auto
matically be done in as many as 18 independent arbitrary areas(or 
fields} 0 

Fast Feedo On many forms there will frequently be areas where no 
printing is to occuro Rather than step through these areas a line at 
a time without printing anything, which would not only be slow but 
would also require putting "blank" blockettes of information on the 
tape q thus wasting tape and computer time as well o the paper can be 
continuously moved at high speed from one printing area to the nexto 
This operation is known as "Fast Feeding" 0 It is controlled by means 
of a punched paper loop which is placed on the printer and moves in 
synchronism with the papero The Fast Feed can be started by means of 
~lther a hole punched in the paper loop (in a certain channel) or by 
any of several special coded combinations written on the magnetic 
tapeo It is stopped by sensing the appropriate punched holes on the 
paper loopo 

Multilineo Normally the contents of the memory (one blockette or 120 
digits) is printed out on a single line o By means of the "Multiline" 
symbol q placed at the beginning of a blockette of information, and in 
conjunction with the plugboard a a blockette can be broken up and 
printed out in as many as six consecuti~e lineso This feature may 
permit great savings of tapea An obvious use is in name-and-address 
printingo 

- 3 -



Multiple Printing o By means of the plugboard, the contents of a 
memory location can be printed in not just one but in two or 
three places across the lineo In addition, if the High-Speed 
Printer is operating in Multiline, the additional printings do 
not even have to be on the same line (subject to certain re
strictions to be discussed later). Of course o no more than 
130 characters can be printed on anyone line. 

30 Wiring For Single Line Printing 

For printing of this nature; no Multiline v Multiple Printing, 
or Zero Suppression; only the top panel of the plugboard is in
volved o The complete plugboard is shown in Figure 3 0 The 
first 5 columns of holes on the left of the top panel of the 
plugboard are numbered 1-24, 25-48,~ 0 0 9 97--120 0 These 
holes are connected to the comparator output lines and are in 
one-to-one correspondence with the 120 positions of the memoryo 
In the next section of the plugboard to the right9 there are 130 
pairs of holes Q each pair corresponding to a printing positiona 
The two holes of a pair are vertically one above the other and 
are internally connected togethero (The reason for using two 
holes is to have a free one into which a second jumper can be 
put so that the comparator signal can be sent to more than one 
pointo This is necessary in Multiple and Multiline Printingo) 

It is only necessary now to connect by means of jumpers the set 
of 120 holes, corresponding to the memory locations g to the set 
of 130 pairs of holes (that is, to one hole in each pair) cor
responding to the hammers or printing positionso This can be 
done in one-to-one or any other desired patterno If it is not 
required to print certain memory locations, or if it is known 
that certain locations will always contain non-printing charact
ers, these may be left unplugged. 

For most purposes, 6, 8, or 10 inch jumpers will be found besta 
Short jumpers make for a tight, neat-looking board but have 
the disadvantage that it becomes difficult to enter the heart of 
a heavily plugged-up area to change or add a jumper. 

For electrical reasons only, it is necessary to place a few 
jumpers in the Multiline section of the plugboard even though no 
Multiline Printing is to be doneo Connect (upper panel): 

- 4 -



32A to 33F 
33A to 34A 
338 to 348 
33C to 34C 
33D to 34D 
33E to 34E 

There is one more thing that must be done before the board can be 
used. The.bottom four holes of the 16th column of the board deter
mine the line spacingv ioeo, whether single space, double space or 
triple s'paceo A jumper is plugged from the bottom hole (marked 
"out") to anyone of the three above (marked "l"v "2", "3" and 
corresponding to single space, double space and triple space, re
spectively) • 

40 Modes of Operation 

Under normal operation, the High-Speed Printer will stop printing 
(and reading tape) whenever a blockette is read which contains the 
printer stop symbol E (1 11 0000) 0 The blockette containing the 
stop symbol is completely read into the memory but is not printed. 
If a blockette is read into the memory which contains a printer 
breakpoint symbol P (0 11 0001) and the breakpoint switch is in the 
b'reakpoint position, the printer interprets the (3 as a z::.. The 
blockette containing the f3 or l can be printed it desired o 

When the "Print, No Read - Read, No Print" switch is placed in the 
.tRead, No Print" position o the printer will read a tape without 
printing until a stop or breakpoint symbol is' ettcountered o It is 
also possible to skip down a tape in either the forward or back
ward direction and stop when a Fast Feed I symbol <0 01 1111), 
printer stop. or breakpoint symbol is encountered o 

There are 63 possible UNIVAC code combinations, only 51 of which 
appear as characters on the typewheels of the High-Speed Printer. 
The other 12 characters are normally not printed and are either 
completely ignored or serve as editing symbols, such as the stop 
and breakpoint mentioned above. 

At certain times, howeverQ it may be desirable to have a visual 
record of all the characters on the tape including the normally 
non-printing oneso This can be done by operating the Computer 
Digit switcho The effect of this is to cause each bloekette to 
print out in two lines. 

- 5 -



On the first line only the normal printing characters appearo On 
the second line Q any normally non-printing symbols which may be 
present in the blockette will print, and only such symbols. They 
will print as regular characters and can b~ identified by the 
following table. 

Pulse Code Name Computer Digit 
Print-Out 

1 00 0000 Ignore 5 

o 00 0001 Space 6 

o 01 0000 Multiline E 

1 01 1110 ¢ C 

o 01 1111 Fast Feed I D 

0 10 0000 Tab N 

1 10 0001 Tab 0 

1 10 0010 Fast Feed II P 

o 10 1111 Fast Feed III M 

1 11 0000 Stop V 

o 11 0001 Breakpoint W 

o 11 1110 Fast Feed IV T 

Note that in each pair of lines comprlslng a blockette o one and only 
one character should be printed in every column. 

50 Zero Suppression 

Zero suppression is controlled by the lower panel of the plugboard. 
As mentioned previouslYQ up to 18 fields of arbitrary length may be 
employed o 

- 6 -



It should be remembered that the zeros are suppressed on read-in 
to the memoryo not on print-out, so that the way in which the 
memory is plugged to the printing positions must be borne in mindo 

Single Line Printing Onlyo The holes in columns 26 through 31 on 
the lower panel of the plugboard (PB II) are numbered 1 to 120 and 
correspond to the 120 positions of the memoryo or the 120 digits 
coming from the tapeo To start a zero suppression field in "normal" 
or Single Line Printing, plug from the hole corresponding to the 
address where the first zero is to be deleted (if present) to the 
first of the 18 numbered holes in column 25 {hole 25A) 0 Then plug 
from hole 23A Qabeled "Start (SL)")9 to hole 24Ao If there is to 
be more than one field to undergo zero suppression, plug the start
ing positions of the successive fields to the 2nd, 3rd, 4th, etco 
holes in column 25 and then plug 23B to 24B, 23C to 24C, etc. 

To end each fie1d g plug from the address corresponding to the last 
zero to be deleted (if everything has been zero up to that point g 

of course) to successive holes in column 320 Then plug 33A to 34A o 
and if several fields are to undergo zero suppression, plug 33B to 
34B g 33C to 34C v etco 

The fact that the High-Speed Printer can be run in either "Mu1ti
linetll or '~Single Lin'e" (Normal) fashion has already been discussed o 

Since these two modes of operation g both of which may occur in a 
run, in general produce different formats, it may be desirable to 
observe one set of zero fields on single line printing and a 
different set when on Multiline. There are three possible cases 
to con.sider o 

Fields for Single Line and Multiline Printing different. To do 
this g plug the fields for Single Line Printing as described above. 
They will not be observed when the printer is on Multiline. For 
the Multiline fields Q plug the starting positions successively to 
holes 25R g 25Qv 25P t etco (working upwards) 0 Then plug 23S to 24S 
(Labeled teStart (ML) '9) 9 23R to 24R, etc. o terminating one hole be
low the topmost hole plugged in column 25 (in the Multiline group). 

Plug the ending positions for the Multiline fields into holes 32RQ 

32Q Q 32P g etco, again working upward, and then plug 33S to 34S, 
33R to 34R Q etc oo terminating, as before, one hole below the top 
hole plugged in column 32. The Multiline fields will not be ob
served when the printer is on Single Line • 

.... 7 -



Fields for Single Line and Multiline identical. If the fields to 
undergo zero suppression are exactly the "same, that is, occupy the 
same positions in the blockette, for Single Line and Multiline, the 
plugging is simplified. Plug the fields as for Single Line. Then 
run a jumper from the first unused hole in column 23 to the hole 
marked "Start (ML) tt which is 24S. Likewise, run a jumper from the 
first unused hole in column 33 to "End (ML" , hole 34So All the 
fields will now be observed both on "Normal and Multiline printing. 

Some fields common to Single Line and Multiline. When only some of 
the zero suppression fields are common to both Multiline and Single 
Line Printing while others are distinct to one or the other, the 
situation is somewhat more complex. Here "Y" jumpers must be used 
for the common fields. The stem of the tty" is plugged into the 
address location and then one fork is plugged in with the upper 
<Single Line) group in column 25 (or 32) and the other fork is 
plugged to the lower (Multiline) section of column 25 (or 32)0 The 
other (non-common) fields are plugged as before. The jumpers between 
columns 23 and 24 and between columris 33 ~nd 34 are run as previouslyo 

Two more points with respect to Zero Suppression should be noted: 

1. If one Zero Suppression field follows another 
immediately (e.g., 22-37, 38-51), the ending 
point of the first field need not be plugged. 

2. If a single digit field is to undergo zero 
suppression, a "Y" jumper must be used. The 
stem of the tty" is plugged into the address 
location and one fork goes to column 25 (start) 
while the other goes to 32 (end) 0 If the single 
digit field is followed immediately by another 
field (as in algebraic sign followed by number) 
then, as stated above, the ending of the single 
digit field need not be plugged and a straight 
jumper can be used ( to plug the start)~ 

6. Fast Feed 

There are four magnetic tape symbols which may be used to initiate a 
Fast Feed. They are: 

- 8 -



Pulse Code Name Modified Unityper I and 
Unityper II Symbol 

o 01 1111 FF I @l 

1 10 0001 FF II I 
o 10 1111 FF III ? 

o 11 1110 FF IV = 

The Fast Feed symbol used is not printed and it will be observed 
as a Fast Feed instruction only if it is placed in the first digit 
position of a blockette. The fast-feeding is accomplished before 
the blockette containing the symbol is printed. 

As mentioned in Section 4, it is desirable that the first block
ette of a new form (or form group) should employ an FF I: other
wise there is no restriction on which Fast Feed symbols are used o 

When started, a Fast Feed will continue feeding paper without 
printing or reading until a hole is encountered in that channel of 
the Paper Control Loop corresponding to the Fast Feed symbol (e.g., 
a Fast Feed started by a FF II symbol is stopped only by encounter
ing a hole in channel 2 of the Paper Control Loop). A Fast Feed 
can also be started by punching a hole in channel 5 of the Paper 
Control Loop. This type of Fast Feed is stopped only by a hole 
sensed in channel 6. This "Loop Controlled tt Fast Feed is useful 
in taking care of "overflow" from one form to the next. A Loop 
Controlled Fast Feed is never started until the first digit of the 
blockette currently being read is sensed. If this should be a 
Fast Feed symbol, it takes precedence over the channel 5 hole; i.e., 
the magnetic tape controlled Fast Feed is obeyed, the Loop Control
led Fast Feed is ignoredo 

A special punch with sprocket hole aligning keys is used in pre
paring the Paper Loop Control tape. To punch the start of a 
Fast Feed, punch a hole in channel 5 on the line corresponding to 
the first line to be skipped. To stop the Fast Feed, punch a hole 
on the line where the first line of printing is to occur after the 
Fast Feed. Channel 6 is used for stopping if the Fast Feed was 
started with a channel 5 hole. Channell, 2, 3, or 4 is used for 
a tape-started Fast Feed. 

- 9 -



The longest loop the High-Speed Printer can handle is 22 inch
es; the shortest is 11 incheso Of course, the punching for one 
form can be repeated several times, if desired, <and if the form 
is eleven inches long or less). Indeed, this is preferable 
since greater loop life will resulto 

There are two restrictions that must be observed in the use of 
Fast Feed: 

10 A Fast Feed, whether loop or tape started, must 
always cause at least one line to be skipped. 

2" A channel 5 hole should never be punched on the same 
line with any other hole. 

During a Fast Feed operation, the paper is moved at a rate of 
20tt /second, or, in other words, 7200 lines per minute~ 

7. Multiline Printing 

The Multiline symbol ~ <0 01 0000) is used to put the High-Speed 
Printer into the Multiline mode of operation. It should be 
placed in the first digit position of the blockette to be multi
lined, unless there is a Fast Feed symbol required too, in which 
case the Fast Feed symbol is placed first, the Multiline symbol 
second. 

The printer returns to normal operation at the end of each multi
lined blockette so that even if consecutive blockettes are to be 
done in Multiline, a new Multilirte symbol must be placed in each. 
The Multiline symbol will not be printed. 

Multiline operation is entirely a function of the plugboard and 
the plugging operations may be broken into three groups: 

- 10 -



10 Selecting the number of lines in which a blockette 
is to be printed. 

2. Selecting the memory positions which are to be 
printed on each lineo 

30 Selecting the printing location on each line for 
each charactero 

Selection of the number of lines. This plugging consists of 
four steps and only the upper right hand section of the plug
board is under concern. 

10 Run a jumper from the hole marked "Home" (33F) 
to the hole in column 32 Q counting down from the topu 
the number of rows corresponding to the number of 
lines into which the blockettes are to be divided in 
Multiline" 

20 For rows above the hole selected in (l)Q run jumpers 
between corresponding holes in columns 32 and 33" 

30 For rows includina and below the hole selected in (l)u 
run jumpers between corresponding holes in columns 33 
and 34v down to and including row E~ 

40 If the number of lines selected is 2 to 69 connect 
holes 32S and 32T (marked 'tOne Linen) with a jumper; 
if the number of lines selected is Iv omit the jumper 
between these two holeso 

The following examples will illustrate the required plugging: 

Example 1: Four line printing 
10 Connect 33F to 320 
20 Connect 32A to 33A; 32B to 33B; 

32C to 33C 
30 Connect 330 to 340; 33E to 34E 
4() Connect 32S to 32T 

Example 2~ One line printing 
1. Connect 33F to 32A 
2. No plugging required 
3. Connect 33A to 34A; 33B to 34B; 

33C to 34C; 330 to 340 
33E to 34E 

40 No plugging required 

= 11 = 



Example 3: Six line printing 
1. Connect 33F to 32F 
20 Connect 32A to 33A; 328 to 338 

32C to 33C; 32D to 33D 
32E to 33E 

30 No plugging required 
40 Connect 32S to 32T 

Selection of the memory locations to be printed on each line. 
In Multiline work th'ere is a set of 15 relays brought into play, 
different ones of which can be energized on different lines under 
the control of the plugboard. Further, by plugging the memory 
locations to the conta~ts of these relays, the characters to be 
printed out on each line can be selected simply by the relays 
which have been chosen to be energized for each line. 

Each relay has 12 contacts and thus can handle 12 digits. The 
first step, then, is to decide how many relays are required to 
print each line and to plug them accordingly. To avoid con
fusion, relays shoul~ be chosen sequentially. Thus, if 40 digits 
are to be printed on the first line, 48 digits on the second 
line and 6 digits on the third line, relays 1, 2, 3, and 4 (room 
for a total of 48 digits) should be plugged to operate on the 
first line; 5, 6 Q 7, and 8 should be plugged for the second line, 
and relay 9 for the third line. 

This is accomplished as' follows (see upper right hand portion of 
the plugboard): Holes 32G, H, I, J, K, and L (labeled ttML Counter, 
1, 2, 3, 4, 5, 6ft

, respectively) give output signals in turn when 
the printer is on line 1, 2, 3, etce, of a Multiline operation. 
Holes 33G and 34F (internally connected together), 33H and 34G, 
331 and 34H, .. 0, 33U and 34T are pairs of holes going to the 15 
relays coils in order. They are labeled 1 to 15 on the plugboard. 
To operate relay 1 on line 1, run a jumper between holes 32G and 
34F. Then to also pick up relays 2, 3, and 4 on line 1, as re
quired in the example, run jumpers between 33G and 34G, 33H and 34H, 
and 331 and 341. This, of course, could be extended if more relays 
were required to be picked up on line 1. (As many as 10 relays 
may be used on any given line. This gives sufficient contacts--
120, to handle the entire memory.) 

For line 2, again assuming four relays are to be picked up, plug 
32H (line 2 output) to 34J (relay 5 coil). Then plug 33K to 34K, 
33L to 34L and 33M to 34M. 

-12-



On line 3, only one relay is assumed required. Pick this up 
by connecting 321 to 34N. 

One important rule should now be not~d: If, on any given line 
in a Multiline operation, zero, one, or two relays are used, 
then a resistor must be plugged in on that line. This is easily 
done by running a jumper--

a. From the unu~ed hole in ,the pair corresponding 
to the second relay in the chain (if 2 relays 
are used), or 

b. From the unused hole in the pair corresponding 
to the single relay (if only one relay is used), 
or 

c. From the line output hole itself (holes 32G to L) 
if no relays are used (i.e., nothing is to print 
on that particular line) to one of the six holes 
in the section marked "Resistors" (holes 32M to R). 

Thus, in the example above, since only one relay is used on 
line 3, a jumper should be run from hole 330 to 32M. Note 
carefully that this plugging of resistors applies only to the 
lines within the group size selected for the Multiline opera
tion. Thus, in the above example, where a 3 line Multiline 
was assumed, nothing at all, need be plugged to the last three 
output lines (32J, K, and L) since they will never be excited. 
This should not be confused with the situation where, say, in 
a 4 line Multiline it is not desired to print anything on line 
2. Here, no relay need be connected to line 2, but a resistor 
should be. 

Having wired up the relay coils, the next step is to send the 
memory locations (actually, comparator outputs) to the proper 
relay contacts. The 180 relay contacts (12X15) go to 180 pairs 
of holes which are located in columns 17 through 31 in the 
upper plugboard panel. One column represents the contacts for' 
one relay. 

Now, unless the run is exclusively Multiline, the plugboard 
will have already been wired for Single Line Printing, as 
described in Section 3. That is, the holes in columns 1 
through 5 (labeled ttFrom Comparator") will be wired to the 

-13-



paired holes in columns 6 through 16 (labeled "To Single 
Lines Relays"). Thus, each memory location can, in general, 
be picked up from the unused hole in the pair here. If 
certain memory locations do not print in Single Line work 
(and are to print in Multiline work), or if there is to be no 
Single Line Printing at all, then the memory locations must 
be picked up from the first five columns directly. It is 
then simply a question of taking those memory locations which 
are to print on the first line and plugging them sequentially 
to the relays which have been assigned to the first line, and 
similarly for the other lines. Remember that the holes cor
responding to the relay contacts are paired. 

As an example, suppose the first 40 memory locations are to 
print in Single Line Printing in positions 1-40. Then hole 
lA would have been plugged to 6A, IB to 6C, lC to 6E, ..• , 
2P to 9G. Now suppose these same 40 memory locations are 
also to print on line 1 of a Multili~e operation. The first 
4 relays (columns 17, 18, 19, and 20) would have been allo
cated for this purpose. Then the plugging would be: 6B to 
17A, 60 to 17C, 6F to 17E, .•. , 9H to 2OG. Notice that 
many contacts on the fourth relay are unused. Information 
to print on line 2 would be plugged starting with the iift~ 
relay (column 21). 

Selection of the printing location for each character. 
The other sides of the Multiline relay contacts go to a set 
of 180 pairs of holes on the lower plugboard panel (columns 
7 through 21). Again, each column corresponds to a relay. 
Thus, column 17 on the upper panel is the "input" side of 
relay 1, while column 7 on the lower panel is the "output" 
side of the same relay. The individual holes in the 
columns are likewise in one-to-one correspondence. Thus, 
a comparator signal entering the first (or second) hole in 
column 17 of the top panel will appear at the first (and 
second) hole in column 7 of the bottom panel when relay 1 
is energized (i.e., on line one). 

The first five columns and the first ten holes of the 
sixth column on the lower panel (making 130 holes in all) 
are connected one-to-one to the 130 thyratrons which drive 
the printing hammers. The procedure now is to connect 
the line 1 relay outputs (however many relays may be used 
for line 1) to the thyratron holes in the manner desired. 
Now on line 2, some of the characters may need to be 

-14-



printed ino as yeto unused positfonso These are plugged directly to 
the corresponding thyratrons o Other characters (or more properly~ 
memory locations) may need to be.printed in positions already print
ed on line 10 To do thiso plug from these particular holes in the 
line 2 relay output set to those unused holes of the pairs of the 
line 1 relay output o where the other hole of the pair is already 
plugged to the desired thyratrono · 

A similar procedure is followed for line 3 and the following lines Q 

There will always be a free hole in a relay output pair into which 
a jumper from an output on a later line can be plugged to achieve 
printing in the same position as the earlier lineo 

As an example of the above pluggingo consider the following exercise: · 

Print the first three memory locations in the first 
three print positions on line 1; the next four memory 
locations in the first four positions on line 2; and 
the next 5 memory locations in the first five posi-
tions of line 30 

It is assumed that the first Multiline relay has been assigned for 
line 10 the second for line 20 and the third for line 30 Furthero 
that the comparator outputs have been picked up and are plugged 
into o in order 0 l7Ao 17Co l7Eo 18Ao 18Co 18Eo 18Go 19Aq 19C o 19Eq 
19Go and 191 (all on the lower panel).. The required plugging then 
is (all on the lower panel): 

7A to lAo 7C to IBo 7E to IC 
8A to 78 0 8C to 70q 8E to 7Fo 8G to 10 
9A to 8Bo 9C to 80q 9E to 8Fa 9G to 8Ho 91 to IE 

8.. _Multiple Printing 

(line 1) 
(I ine 2) 
(I ine 3) 

,Plugging procedure for Single Line operation o By means of the paired 
holes in the section of the upper panel marked uTo Single Line Relaysttv 
a memory location can be readily printed out as many as three times on 
a line .. 

- 15 -



to do this o simply plug from the unused hole in the first position 
chosen to one of the paired holes (preferably the top) in the 
second place where printing is desiredo If triplicating is re
quired o run a jumper from the unused hole of the second position 
to the third positiono 

Example: Print the-contents of the first 
memory location in positions 10 
610 and 121. 

Plug lA to 6A 
6B to llA 

lIB to 16A 

If some of the memory positions for Single Line Printing are common 
to Multiline Printing also o it is desirable to do the Multiple 
plugging for Single Line firsto then the last unused hole in a pair 
may be connected to the Multiline relayso 

Plugging procedure f6r Multiline operationo In Multiline work o a 
character cannot only be printed out 3 times on a given lineo but 
then can be printed out up to 3 times again on any other line in 
the groupo This is done by 1~chain pluggingtQ, as noted above o in 
the .fTo Multiline RelaystQ section of the plugboardo By connecting 
the output to contacts on relays (or a single relay), which close 
on the same line, the digit may be printed up to 3 times on that 
same lineo Then by extending the chain -of plugging to relays 
which close on other lines g the same character may be repeated on 
those lines o On the lower panel o the positioning of the characters 
on the line is taken care of as in regular Multiline work (dis
cussed in Section 7)0 

Example: Print out memory location I in 
positions I and 61 on Single Line 
operation.· On Multiline operation 
print out memory location 1 in 
positions 10 25, and 49 on line 10 
and in positions 25 and 49 on line 
2. 

Assume relay 1 is energized on line 10 and relay 2 on line 20 Then 
the plugging is o by panel: 

= 16 = 



On the upper panel Q plug IA to 6A 
6B to llA 

lIB to l7A 
l7B to l7C 
170 to 17E 
17F to l8A 
l8B to l8C 

On the lower panel~ plug 7A to IA 
7C to 2A 
7E to 3A 
8A to 7D 
8C to 7F 

Note that by this method it is possible to have, at most, 
180 print=outs from one blockette in Multiline, since there 
are only 180 relay contacts. However, there is complete 
flexibility in the positioning of the information on each 
line and, of course, complete independence between Single 
Line and Multiline Printing. 

There is another system for doing multiple printing on 
Multiline which allows the entire memory to be triplicated, 
if desired (i. eo~ produce as many as 360 print-outs from 
one blockette)0 However Q in using this method there must be 
no Single Line work at allor, if Single Line operation does 
occur, one must accept the same duplicating or triplicating 
pattern as is plugged for the Multiline work. 

This system is particularly useful where each line of the 
Multiline group is printed directly under the line above 
and the group as a whole is duplicated or triplicated across 
the pageo This system is used as follows~ 

10 Plug for straight Multiline work as in Section 7, 
ignoring the Multiple Printing problem (ioeo, simply 
plugging for one printing) 0 

20 On the lower panel 0 in the ttFrom Multiline Relays" 
section, outputs going to the same print position 
on different lines will have been chain plugged 
together and run to one set of thyratron holes o 

However, each of the outputs for the last line will 
have a free holeo If only duplicating of the group 
is required, run straight jumpers from these free 
holes to the appropriate thyratron holes. If 

-17-



triplicating is required, tty'9' jumpers are 
used to connect each free output hole to 
two thyratrons o 

Example~ Print the first memory location 
on line 10 the second memory 
location on line 2 and the third 
on line 3 D On all three lines 
the printing is to be in tripli
cate 9 printing in columns 1, 49, 
and 970 (Use the first Multiline 
relay on line 10 the second on 
line 2 and the third on line 3 0 ) 

On the upper panel, plug lA to 17A 
IB to 18A 
lC to 19A 

On the lower panel o plug 7A to lA 
8A to 7B 
9A to 8B 
9B to 3A and SA (tty" jumper) 

Note that if the printer should go into Single Line Printing 
and if something were plugged to print (on Single Line) in 
either positions l~ 49, or 97 1 it would print in all three 
positions. This might be all right but, if independently 
some other memory location should be plugged to another of 
these three points, there would be trouble. (The printer 
would stop with a Print Check Error.) Thus g great care must 
be exercised in using this method of Multiple Printing if 
Single Line operation can also occur in the run o 

9. Checking Features 

The error detection circuits on the High-Speed Printer may 
be considered in the three sections through which information 
recorded on tape is printed~ 1- reading of data from tape, 
2- storage of data in the memory, and 3- printing of the 
memoryo 

-18-



Error detection in reading tape. Each digit read from tape 
is given a binary bit count. If the number of binary ones 
present is odd the character has been read from tape cor
rectly. If an even count is detected, the remainder of the 
blockette is read, but the Odd-Even Check Error is set and 
the printer stops. Nothing is printed. 

Further, each blockette read from tape must contain exactly 
120 digits a If a blockette is longer or shorter than 120 
digits, the printer will set the 120 Check Error and stop. 
Nothing will be printed. 

Error detection in storage. Each of the digits coming from 
the tape is placed in the proper position in the memory by 
virtue of the set of 120 address lines, which are sequen
tially excited by the function table which decodes the Main 
(or Address) Counter. If an address line should fail to 
rise to the signal level when it is supposed to, the corres
ponding digit coming from tape could not enter the memorYe 
The Address Check circuits look for this and g if an address 
line should fail to be excited at the proper time, the 
Address Check Error is set and the printer stopped. 

Error detection in printing. The fundamental checking of 
the printing is done by means of the group of 130 check 
thyratrons working in conjunction with the All-Out Detector. 
At the end of each print cycle, all 130 check thyratrons 
should be extinguished and the All-Out Detector looks for 
this. If some column fails to print when it should or prints 
an incorrect character, its check thyratron will be on when 
probed. This causes the machine to stop with the Print Check 
Error set. 

The determination of whether all check thyratrons have been 
extinguished or not is made by a circuit called the All-Out 
Detector. If this circuit should fail in a certain way, a 
steady All-Out signal would be given and printing error would 
fail to stop the machineo To guard against this, the All-Out 
Detector is itself checked every line and, if not functioning 
properlyo the printer will stop with the All-Out Detector 
Error seto 

In addition to the major checking circuits described above, 
there are other checks applied to the control circuits and 
paper feed mechanism to ensure complete accuracy of printing. 
The description of these checks requires a detailed under
standing of the printer logic. 

-19--



10. Example Problem 

As an example of simple plugging for the High-Speed Printer, suppose 
a series of paychecks are to be printed. The desired check format is 
shown in Figure 4. The blockette layout is shown in Figure 5. The 
simple nature of this example permits us to do Multiline Printing only, 
with one blockette per check. An explanation of the net pay field in 
the blockette is called forQ It is obviously desirable that the 
amount of the check be printed in as unalterable a manner as possible. 
This is easily done if, say, twenty dollars and fifty cents is printed 
as $20.50 and not as (assuming pay up to $999 0 99 is permitted) $ 20.50 
which would be the result from simple zero suppression~ Thus, the net 
pay field is assumed to be pre-edited by the UNIVAC when it is inserted 
in the blockette. Thus, the above example would appear as _$2050 in 
the blockette. 

A. Selection of the Number of Lines (6line Multiline): 

Plug (Upper Panel) 

32F to 33F 
32A to 33A 
32B to 33B 
32C to 33C 
320 to 330 
32E to 33E 
32S to 32T 

B. Selection of the Multiline Relays: 

Line Relays Plug (Upper Panel) 

1 1\l2 q 3 32G to 34F 
33G to 34G 
33H to 34H 

2 none 32H to 32M 
3 4

11
5 321 to 341 

33J to 34J 
33K to 32N 

-20-



4 6 11 70 80 9 32J to 34K 
33L to 34L 
33M to 34M 
33N to 34N 

5 10\111 32K to 340 
33P to 34P 
33Q to 320 

6 12\113\114 32L to 34Q 
33R to 34R 
335 to 345 

C. Comparator Outputs (Memory Locations) to Relay Contacts: 

Line Field Plug (Upper Panel) 

1 check number IB to l7A 
17B to 185 

lC to 17C 
17D to l8U 

10 to 17E 
l7F to 18W 

IE to 17G 
17H to 19A 

IF to 171 
17J to 19C 

IG to 17K 
17L to 19E 

net pay 2B to, 17M 
2C to 170 
20 to 17Q 
2E to 175 
40 to 17U (decimal pt) 
2F to 17W 
2G to 18A 

date IN to IBC 
18D to 19G 

10 to 18E 
18F to 191 

3B to 100 (dash) 
18H to 19K 

1P to 181 
18J to 19M 

lQ to 18K 
18L to 190 

-21-



48 to IBM (dash) 
18N to 19Q 

1R to 180 
18P to 195 

IS to 18Q 
l8H to 19U 

3 regular pay 20 to 20A 
2P to 20C 
2Q to 20E 

l7V to 200 (decimal pt) 
2R to 201 
25 to 20K 

withholding tax 3H to 20M 
31 to 200 
3J to 200 

20H to 205 (decimal pt) 
3K to 20U 
3L to 20W 

bond deduction 3U to 21A 
3V to 21C 

2m to 21E (decimal pt) 
3W to 21G 
3X to 211 

overtime pay 2T to 22A 
2U to 22C 
2V to 22E 

21F to 22G (decimal pt) 
2W to 221 
2X to 22K 

FICA tax 3M to 22M 
3N to 220 

228 to 22Q (decimal pt) 
30 to 225 
3P to 22U 

insurance 41 to 22W 
4J to 23A 

22R to 23C (decimal pt) 
4K to 23E 
4L to 23G 

name 5A to 231 
58 to 23K 
5C to 23M 
5D to 230 
5E to 23Q 
5F to 235 
5G to 23U 

.. 22-



SH to 23W 
SI to 24A 
SJ to 24C 
SK to 24E 
SL to 24G 
5M to 241 
SN to 24K 
SO to 24M 
SP to 240 
SQ to 24Q 
SR to 245 
S5 to 24U 
ST to 24tv 
SU to ,,'25A 
SV to' 2SC 
5W to 25E 
5X to 25G 

net pay I7N to 251 
I7P to 25K 
17R to 25M 
I7T to 250 

4C to 25Q (decimal pt) 
I7X to 2S5 
l8B to 25U 

S medical pay 3C to 26A 
3D to 26C 
3E to. 26E 

25R to 26G (decimal pt) 
3F to 261 
3G to 26K 

union dues 3E to 26M 
3F to 260 

26H to 26Q (decimal pt) 
3G to 265 
3H to 26U 

other ded o 3Q to 26W 
3R to 27A 

26R to 27C (decimal pt) 
35 to 27E 
3T to 27G 

6 first adjustment lH to 28A 
II to 28C 
lJ to 28E 

27D to 28G (decimal pt) 
lK to 281 
lL to 28K 

second adjustment IT to 28M 

-23,-



lU to 280 
IV to 28Q 

28H to 285 (decimal pt) 
lW to 28U 
IX to 28W 

third adjustment 2H to 29A 
2I to 29C 
2J to 29E 

28T to 29G 
2K to 29I 
2L to 29K 

badge number 4M to 29M 
4N to 290 
40 to 29Q 
4P to 295 
4Q to 29U 
4R to 29W 
45 to 30A 
4T to 30C 

40 From Relay Contacts to Print Positions 

Line Field Plug (Lower Panel) 
1 check number 7A to lKI1 85 to 35 

7C to lL!] 8U to 3T 
7E to lMo 8W to 3U 
7G to IN!] 9A to 3V 
7I to lOa 9C to 3W 
7K to lP o 9E to 3X 

net pay 7M to 2D 
70 to 2E 
7Q to 2F 
75 to 2G 
7U to 2H 
7W to 2I 
8A to 2J 

date 8C to 25 0 9G to 5X 
8E to 2Ta 9I to 6A 
8G to 2U, 9K to 68 
8I to 2Vo 9M to 6C 
8K to 2W\I 90 to 6D 
8M to 2X II 9Q to 6E 
80 to 3A

l1 9S to 6F 
8Q to 38

11 
9U to 6G 

3 regular pay lOA to 78 
lOC to 7D 

-24-



10E to 7F 
lOG to 7H 
101 to 7J 
10K to 7L 

withholding tax 10M to 7X 
100 to 8B 
10Q to 2K 
lOS to 2L 
IOU to 2M 
lOW to 2N 

bond deduction 11A to 8N 
11C to 8P 
lIE to 8R 
11G to 3C 
III to 3D 

4 overtime pay 12A to lOB 
12C to 100 
12E to 10F 
12G to 10H 
121 to 10J 
12K to 10L 

FICA tax 12M to lOP 
120 to lOR 
12Q to lOT 
12S to 10V 
12U to lOX 

insurance 12W to lIB 
13A to 110 
13C to 11F 
13E to 11H 
13G to 11J 

name 131 to 4E 
13K to 4F 
13M to 4G 
130 to 4H 
13Q to 41 
13S to 4J 
13U to 4K 
l3W to 4L 
14A to 4M 
14C to 4N 
14E to 40 
l4G to 4P 
141 to 4Q 
14K to 4R 
14M to 4S 
140 to 4T 

-25-



14Q to 4U 
145 to 4V 
14U to 4W 
14W to 4X 
15A to 5A 
15C to 58 
15E to 5C 
15G to 5D 

net pay 151 to 5W 
15K to 9H 
15M to 9J 
150 to 9L 
15Q to 9N 
155 to 9P 
15U to 9R 

5 medic,a1 pay 16A to 128 
16C to 12D 
16E to 12F 
16G to 12H 
161 to 12J 
16K to 12L 

union dues 16M to 12N 
160 to 12P 
16Q to 12R 
165 to, 12T 
16U to 12V 

other deductions 16W to 12X 
17A to 138 
17C to 13D 
17E to 13F 
17G to 13H 

6 first adjustment 18A to 12K 
lac to lQ 
18E to lR 
18G to IS 
181 to IT 
18K to 10 

second adjustment IBM to 2A 
180 to 2C 
18Q to 7N 
185 to 7P 
18U to 7R 
18W to 75 

third adjustment 19A to 16P 
19C to 16T 

-26-



19E to 16V 
19G to 20 
191 to 2P 
19K to 2Q 

badge number 19M to 8T 
190 to 8V 
19Q to 8X 
19S to 98 
19U to 90 
19W to 9F 
20A to 4A 
20C to 48 

5. Zero Suppression 
Plug (Lower Panel) 

Start Zero Fields End Zero Fields 
261 to 25R, 23R to 24R 26L to 32R, 33R to 34R 
27A to 25QI1 23Q to 24Q 270 to 32QI1 33Q to 34Q 
27M to 25P I1 23P to 24P 27P to 32Po 33P to 34P 
27S to 250, 230 to 240 28C to 320 9 330 to 340 
280 to 25N I1 23N to 24N 28H to 32N

I1 33N to 34N 
28K to 25M, 23M to 34M 280 to 32M, 33M to 34M, 
28P to 25L o 23L to 34L 28T to 32Lo 33L to 34L 
29A to 25K o 23K to 34K 290 to 32Ko 33K to 34K 
29E to 25J\l 23J to 34J 29H to 32J o 33J to 34J 
291 to 251 0 231 to 341 29L to 321 11 331 to 341 
29Q to 25H o 23H to 34H 29T to 32Ho 33H to 341 
30A to 25G o 23S to 34S 300 to 32G 9 335 to 34S 

6. Line Spacing 

Plug (Upper Panel) 
l6X to l6U 

, -27-



COLUMNS 

• 

• 

10 20 30 11-0 50 

YOUR EARNINGS RECORD 

CHECK NO.: .... 1 __ -" 

EARNINGS 

NET I"Ay:r- DATE: ... 1 ___ .... 

..---...... 
REG.I"Ay: ... 1 __ -" 

OVERTIME: :1 ==:::! 
MEDICAL: 

ADJUSTMENTS: 0 ~ 

DEDUCTIONS 
WITHHLDG.TAXd I 

FICA TAX:F ~ 
UNION DUES: c:::::J 

BOND: 

INSR: 

OTHER: 

Dc=J Dc:=) 

ADJUSTMENT EXPLANATIONS: 
1 • OVERPAYMENT 3 • EXPENSE ACCOUNT 

2 • UNDERI"AYMENT. 4 • COMI"ANY STORE 

Figure ij 

60 80 90 100 110 

CHECK NO.~~ ____ ~ 

:r: 
~ 

~ ... 
::! 
~ 

" , e 
. ~ 

-~ ~ 
Q. 

120 

DATE =:J 

PAY TO THE ORDER OF: I -~ ,THE AMOUNT: ---_J 

BADGE NO. :1 --] 

ON THE ACCOUNT OF 

TI-I E B LAN K CO., INC. , N • Y • , N • Y • 

Treasurer 

PR1NT WHEEL POSITIONS 

131 
I 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

u 
y 

w 
x 





00 01 10 II 

0000 

0001 , 

0010 - . . . 

0011 0 , ) + 

0100 I A J / 

0101 2 B K S 

0110 3 C L T 

0111 4 0 M U 

1000 5 E N V 

lOCH 6 F 0 W 

1010 7 G P X 

1011 8 H 0 Y 

1100 9 I R Z 

1101 , # $ % 

1110 & 1ft 

IIII ( 

PRINTING CHARACTERS AND THEIR PULSE CODES FOR 
THE HIGH-SPEED PRINTER 

Figure 2 



2 

31 0 :0 I 
~ [0 : - I 
5 I 
6 [0: 
7 

8 [ : 

9 [ : 

2 

I" :VE~TI ME: PAY: ] 

I 

:. I 
BADGE'~UH:~~ :'-=r~~ 0 : OJ 

FIGURE 5 



CHANGES .1.N UNIPR INTER A!iI2 UNITYPER llQ .EllltlS. ~-CHARACTER .QQQ£ 

.EQ!l PROCESS ING OF 12aI6. .EQE l!lQtl S'PEED PRINTER 

1. Keyboard for Supervisory Control and Unityper 1 

The keyboard and the decoding unit have been changed to allow the typing 
onto magnetic tape of any of the 63 pulse code combinations. All indica
tions of upper and lower case have been removed from the keyboard and 
also one of the duplicate numeric sections, namely that one over the al
phabetic portion. More resistors have been added in the decoding unit to 
allow for the decoding of 63 characters where previously only 51 were de
coded. No other changes in the Unityper have been made. The changes are 
illustrated by the accompanying figure and table o 

2. Printer Dolly ~ Uniprinter 

A new switch has been added on the inside which has two positions: Uprint" 
and tfstall ff • This switch affects only the twelve new pulse code 
combinations. 

In the ffstall" position, when one of the new characters enters the printer, 
the printer stops. The operator determines the character by looking at 
the neon lights and prints manually any character he desires, after which 
the printer automatically proceeds. 

If the s~itch is in the "print" position, then when one of the new charac
ters is encountered, a ";" (semi-colon) is printed in lower case operation 
or a ":" (colon) in upper case operation. 

One additional change is that the tab operation is indicated by printing a 
"vu in the computer digit mode of operation. 

3. Typing-lll Qf Information ~ the Uniprinter 

The Uniprinter operates in the same fashion as before. 
operator must remember that to make the printer Q~shift 
press the "$" key; to perform the "unshift" operation, 
"7" key; and to perform a "single 'shift" operation, he 
"%" key. 

-1-

The programmer and 
lock", he must de
he must depress the 
must depress the 



~ UNIVAC PULSE 90DE 

MODIFIED UNIPRINTER 

PULSE CODE MODIFIED UNIPRINTER I Normal -- Compo 
AND S.C. KEYBOARD L I U' Digit 

Case Case._ 

1 00 0000 i ignore x 

o 00 0001 II space space 

o 00 0010 - .- --
1 00 0011 0 0 ) 0 

o 00 0100 1 1 . t 1 

1 00 0101 2 2 " 2 

1 00 0110 3 3 # 3 

o 00 0111 4 4 $ 4 

o 00 1000 9 5 % 5 

1 00 1001 6 6 * 6 

1 00 1010 7 7 & 7 

o 00 1011 8 8 v 
~ 

1 00 1100 9 '9 ( 9 

o 00 1101 
, 

; : ; * 
o 00 1110 & ; .. . . , * 
1 00 1111 ( ; .. ; . . * 

Table 1 - Part. 1 

. ';'2-



MODIFIED UNIPRINTER 

PULSE CODE 
MODIFIED UNITYPER I Normal Comp. 

AND S.C. KEYBOARD L U Digit 
Case Case 

o 01 0000 r Car. Ret. ! 
1 01 0001 ., , , t 

I 

1 01 0010 • . • • 

a 01 0011 ; ; : ; 

! 
1 01 0100 A a A A 

o 01 0101 B b B B 

a 01 0110 C c C C 

1 01 0111 D d D D 

1 01 1000 E e E E 

a 01 1001 F f F F 

o 01 1010 G g G G 

1 01 1011 H h H H 

a 01 1100 I i I I 

1 01 1101 # ; · ; · * 
1 01 1110 ¢ ; .. ; .. * 
o 01 1111 @ .. ' : , - . ,. * 

Table 1 - Part 2 

-3-



PULSE CODE 

o 10 0000 

1 10 0001 

1 10 0010. 

o 10 0011 

1 10 0100 

o 10 0101 

o 10 0110 

1 10 0111 

1 10 1000 

o 10 1001 

o 10 1010 

1 10 1011 

o 10 1100 

1 10 1101 

1 10 1110 

o 10 1111 

MODIFIED UNITYPER I 
AND S. C. KEYBOARD 

t 

tt 

1 

) 

J 

K 

L 

M 

N 

o 
P 

Q 

R 

$ 

* 
? 

Table 1 - Part 3 

-4-

MODIFIED UNIPRINTER 
Normal '! 

Comp. I 
L U Digit 

Case Case I 
tab-----+--v--l 

; : 

j J 

k K 

1 L 

m M 

n N 

o o 

p p 

q Q 

r R 

shift lock 

,; 

unshift 

J 

K 

L 

M 

N 

o 

P 

Q 

R 

z 

8 

~* , 
~* 
;i 

* 



I 
~ 
i1 
I' 
i'l 
i! 
; 

,I 

" 

~ 
~ ~, 

r, 

i 

MODIFIED UNIPRINTER 

PULSE CODE MODIFIED UNITYPER I Normal 
AND S.C. KEYBOARD L l U 

.-....... ;.,"'""- ...tIII!!'~~"""'··~1'!;":·-·-·;~:::'~-:'~~'~GJIIi·"!""-::, ... rt Case ~~,U 

1 11 0000 l: Prine Stop 

a 11 0001 ~ Prine Bkpt. 

a 11 0010 . . . . , . 
1 11 0011 + + @ 

a 11 0100 I I ? 

1 11 0101 5 s 5 

1 11 0110 T t T 

a 11 0111 U u U 

a 11 1000 V v V 

1 11 1001 W w W 

1 11 1010 X x X 

a 11 1011 y Y y 

1 11 1100 Z z Z 

0 11 1101 % single shift 

o 11 1110 = ; :; 

1 11 1111 

Table 1 - Part 4 

* With the switch on "print", these are the characters that will 
be printed; on ff s tall n , the printer stops. 

-5-

Comp. 
Digit 

Stop 

y 

; 

+ 

/ 
5 

r 

U 

V 

W 

X 

y 

Z 

-
; 

* 

* 



P=l~~~~~H~~41~[Jn nOD 0 
WCJ~~GJlJwW~LJ~LJLJ LJ~t:J LJI ~ l; 0 

I Loopl·· ~INr I ~1 
2 I 'STOP i BACK 

, ' SPACE 

~ tJ [] G G [:J [:J GSB 5J ~~~E [:J :~~ E] [J [J . 
[ SPACE . II. CONlROL BAR. J [J 

B New Keyboard 

Old Keyboard 

Fig" 1 - Changes in Keyboard of Uni typer I and Supervisory Control 

8 
\0 
» 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06

