
•

•

•

•

OS/3
Integrated Communications
Access Method (ICAM)
Technical Overview

This Library Memo announces the release and availability of the System 80 OS/3 Integrated Communications Access
Method (!CAM) Technical Overview, UP-9744 Rev. 1.

This overview is a standard library item (SLI). It is part of the standard library provided automatically with the purchase of
the product.

The integrated communications access method (ICAMl is a symbiont that handles input and output between your program
and inpuVoutput (1/0) devices tied directly to the central processor. ICAM isolates your program from the hardware,
eliminating the problems that arise in physical 1/0 control. This manual is one of a series to guide you in programming and
using ICAM with Operating System/3 (OS/3).

Changes to this document for Release 12.0 include the addition of System 80 model 15 and DCP channel support. All other
changes in this document are corrections, deletions, or expanded descriptions applicable to items present in the software
prior to this release.

Additional copies may be ordered through your Unisys representative.

Destruction Notice: This revision supersedes and replaces Operating System/3 (0$/3) Integrated Communications Access
Method (!CAM) Concepts and Facilities, UP-9744, released on Library Memo dated February 1984. Please destroy all copies
of UP-9744, its updates, and Library Memos.

Mailing Lists
MBZ, MCZ, MMZ, M28U, and
M29U

Mailing Lists
MBOO, MBOl, and MBW
(238 pages plus Memo)

Library Memo for
UP-9744 Rev. 1

October 1988

•

•

•

System 80
OS/3
Integrated
Communications
Access Method (ICAM)
Technical Overview

OS/3 Release 12.0

Priced Item

October 1988

Printed in US America
UP-9744 Rev. 1

---------- --- - --~

•

•

•

• • UNISYS

•

•

System 80
OS/3
lntergated
Communications
Access Method (ICAM)
Technical Overview

Copyright © 1988 Unisys Corporation
All rights reserved.
Unisys is a trademark of Unisys Corporation.

OS/3 Release 12.0

Priced Item

October 1988

Printed in U S America
UP-9744 Rev. 1

The names, places and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or otherwise, or that of any group or
association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and related
material disclosed herein are only furnished pursuant and subject to the terms and conditions of a
duly executed Program Product License or Agreement to purchase or lease equipment. The only
warranties made by Unisys, if any, with respect to the products described in this document are set
forth in such License or Agreement. Unisys cannot accept any financial or other responsibility that
may be the result of your use of the information in this document or software material, including
direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the User Comments form at
the back of this manual or remarks addressed directly to Unisys Corporation, to E/MSG Product
Information, P.O. Box 500, M.S. E5-114, Blue Bell, PA 19424 U.S.A.

•

•

•

•
Page Update

Part/Section Number Level

Cover

Title Page/Disclaimer

PSS iii

About This v thru ix
overview

Contents xi thru xvii

1 1 thru 3

2 1 thru 43

3 1 thru 35

4 1 thru 33

• 5 1 thru 46

6 1 thru 7

7 1 thru 13

8 1 thru 7

Appendix A 1 thru 7

Glossary 1 thru 20

Index 1 thru 6

User Comments Form

Back Cover

•
UP-9744 Rev. 1

PAGE STATUS SUMMARY
ISSUE: UP-9744 Rev.1

RELEASE 12.0 Forward

Part/Sect ion
Page

Nl.lllber
Update

Level Part/Section
Page

Number

iii

Update
Level

•

•

•

•

•

•

About This Overview

Purpose

Scope

ICAM is flexible. It works with almost any kind of terminal, common carrier, or
application. To be this flexible, ICAM has a large number of options. The main
purpose of this overview is to describe these features so you can select the ones you
need. This ov~rview, however, is only one of the manuals you need to use ICAM. The
communications documentation breaks down into three groups:

1. Documentation for selecting the communications hardware

2. Documentation for defining your network and creating the ICAM symbiont and
operating ICAM

3. Documentation for writing or selecting the programs

Refer to "Related Product Information" for a list of these documents.

Note: You must read this manual in order to understand the other !CAM manuals,
which are how-to manuals and contain a minimum of theory.

This manual gives an overview of the facilities provided by ICAM, including the
hardware supported, the types of programs supported (those written in basic assembly
language (BAL), COBOL, and RPG II), and the services provided, such as polling,
queuing, and buffering.

Audience
The intended audience is the programmer with a basic knowledge of data
communications and OS/3.

How to Use This Overview
If you are going to use ICAM, you should read this overview.

If you are writing your own communications program using either the standard
message control program (STDMCP), the direct data interface (DDI), or the
communications physical interface (CPI), this overview is required in addition to the
specified interface manual.

UP-97 44 Rev .1 v

About This Overview

If you are using Unisys supplied software, like Information Management System
(IMS), Distributed Data Processing (DDP), or Nine Thousand Remote (NTR), we
recommend you read this overview for a background in communications.

Organization

vi

The information contained in this overview is presented in three parts. Part 1
describes ICAM and the software and hardware facilities that comprise the
communications system. Part 2 describes the software modules that are common to
two or more types of ICAM interfaces. Part 3 provides appendixes that present
general reference data that can be of help in using this overview.

The structure of each part of the manual is explained as follows:

PART 1. BASIC DESCRIPTION

Section 1. Introduction

This section describes what ICAM does and the documentation available for your use.

Section 2. OS/3 Communications Software

This section describes the structure of ICAM, the capabilities and limitations of each
interface, and the functions of each of the several utility programs.

Section 3. Communications Hardware

This section describes the physical elements within the communications system, from
the remote terminal to the interface with the system processor.

PART2. ICAMSERVICES

Section 4. Line and Terminal Support

This section describes the functions of the remote device handlers in servicing line and
terminal protocol, controlling the flow of input and output, translating character
codes, formatting messages, and reporting status and error codes.

Section 5. Buffers and Queues

This section describes the functions and use of line and network buffers, activity
request packets, and input and output queues.

Section 6. Message Processing Procedure Specification (MPPS)

This section summarizes how to write a limited message processing routine within the
ICAM network.

UP-9744 Rev. 1

•

•

••

•

•

•

About This Overview

Section 7. DCA and DDP

This section introduces distributed communications architecture (DCA) and how it
provides a total system approach to communications. Also discusses support for DDP.

Section 8. Administrative Functions

This section describes the facilities for developing reports about line and terminal
usage, network buffer utilization, communications hardware facilities, and certain
other communications-related system activities.

PART 3. APPENDIXES

Appendix A. Coding Conventions

This appendix describes the format and coding conventions for macroinstructions you
use in your !CAM network definition and communications programs.

Glossary

The glossary defines !CAM and communications terms.

Related Product Information
As one of a series, this manual is designed to guide you in programming and using the
OS/3 integrated communications access method. Depending on your need, you may
wish to refer to one of the other !CAM manuals. Complete manual names, their
ordering numbers, and a general description of their contents and use follow.

Note: Throughout this overview, when we refer you to another manual, use the version
that applies to the software level at your site.

Integrated Communications Access Method (JCAM) Utilities Programming
Guide (UP-9748)

This guide describes the following !CAM utilities: ICAM device emulation system,
remote batch processing; journal utility, COBOL message control system, single-line
communications adapter (SLCA) dump routine, ICAM trace facility, !CAM edit dump,
UNIX® system access module (UNXSAM) and DCP/I'elcon load facility.

Integrated Communications Access Method (JCAM) Operations Guide
(UP-9745)

This guide describes how to define an !CAM network, submit it to system generation,
and load and operate the resulting !CAM symbiont. Many sample network definitions
are provided to make it easier to define your ICAM network.

UNIX is a registered trademark of AT&T Information Systems .

UP-97 44 Rev .1 vii

About This Overview

viii

Integrated Communications Access Method ([CAM) Standard MCP (STDMCP)
Interface Programming Guide (UP-8550)

The standard interface is a logical interface that provides a general communications
capability with message queuing and a message processing capability. This guide
provides all of the macroinstructions, programming requirements, and terminal
information you need for the standard interface.

You will need this guide only if you are writing your own communications program.
Programs that use the standard interface directly must be coded in basic assembly
language, and your system must include the OS/3 assembler.

If you write your program in COBOL, you will require the COBOL message control
system utility. You won't need this guide because the utility converts your COBOL
statements to instructions that this interface recognizes.

Integrated Communications Access Method ([CAM) Direct Data Interface
(DDI) User Guide (UP-8549)

The direct data interface commonly supports ICAM utility programs and programs
written in the RPG II language. If you are using an ICAM utility only, or your
program is written in RPG II, you won't need this guide because the utility programs
and the RPG II compiler automatically convert any requests by your program to the
proper instructions needed to work with this interface.

The direct data interface also enables you to write your own specialized
communications program. If you do this, you must take care of your own message
buffering and queuing. If you write a program to interface directly with the direct data
interface, it must be written in basic assembly language, and your system must
include the OS/3 assembler.

Integrated Communications Access Method ([CAM) Communications Physical
Interface (CPI) Programming Guide (UP-9746)

The communications physical interface requires the least amount of main storage, but
it also provides a minimum amount of support. If you use this interface, you must
have considerable knowledge of data communications because your program must
initialize the hardware, format all output messages using the appropriate protocol,
perform any required translations, acknowledge and process all input messages, and
perform all error detection and recovery procedures. In addition, your program must
be written in BAL and your system must include the OS/3 assembler.

Integrated Communications Access Method (ICAM) Programming Reference
Manual (UP-9749)

This reference summarizes the information found in the other ICAM manuals. It also
describes the optional Message Processing Procedure Specifications (MPPS). No
introductory information or examples are given; however, it is a useful document
when you are familiar with ICAM and you need a quick reference to
macroinstructions, formats, and tables.

UP-9744 Rev. 1

•

•

•

•

•

•

About This Overview

Integrated Communications Access Method (ICAM) Remote Terminal
Processor (RTP) Programming Gu,ide (UP-1004 7)

The remote terminal processor is a data communications program that permits your
Unis@s System 80 processor to function as a remote job entry terminal to one or more
IBM host processors. Using the Unisys OS/3 integrated communications access
method (!CAM) software, the remote terminal processor enables you to:

• Send jobs to an IBM host

• Transmit and receive files on tape, punched cards, or diskette

• Send messages to the central site

• Receive output data and console messages from the IBM host

Remote terminal processor operations are directed from the OS/3 system console.

NTR Utility Programming Guide (UP-9502)

The NTR system utility allows a System 80 processor to operate as a remote job
entry/batch terminal to a Unisys Series 1100 system using !CAM. The utility permits
operation of reader, printer, and punch device-dependent files. It also supports user
own-code tasks to process device-independent files (e.g., tape, disk, and paper tape) .

OS/3 • UNIX Operating System Connectivity Operating Guide (UP-14207)

OS/3 - UNIX connectivity lets the hardware running your OS/3 operating system and
the hardware running your UNIX operating system communicate with each other to
perform a variety of functions. This guide presents an overview of the connectivity
process and the program products that you can use to connect your OS/3 and UNIX
operating systems.

IBM is a registered trademark of International Business Machines Corporation .

UP-9744 Rev .1 ix

•

•

•

•

•

•

Contents

About This Overview v

PART 1. BASIC DESCRIPTION

Section 1. Introduction

Section 2. OS/3 Communications Software

UP-9744 Rev. 1

2.1. ICAM -The Software Program .. 2-1
2.1.1. ICAM Internals and Interfaces 2-1
2.1.2. Global versus Dedicated Networks .. 2-5

Dedicated Networks 2-6
Global Networks .. 2-7

2.1. 3. Static and Dynamic Sessions 2-10
2.1.4. Generating Your ICAM Symbiont (Load Module) 2-13
2.1.5. Yielding Program Control .. 2-13
2.1.6. How to Activate a Communications Program and Pass It a

Message ... 2-13
2.2. Communications User Programs ... 2-14

2.2.1. User-Written Program interfaces .. 2-15
Standard Interface and Direct Data Interface Programs 2-15
Writing Your Program in Assembly Language 2-18
Sending and Receiving Messages with the Standard Interface . . . 2-20
Sending and Receiving Messages with the Direct Data

Interface 2-23
COBOL Programs 2-26
RPG II Programs 2-27

2.2.2. Programs and Products Supplied by Unisys 2-29
Information Management System (IMS) 2-30
Remote Batch Processing (RBP) Utility 2-34
ICAM Device Emulation System (IDES) Utility 2-36
NTR Utility 2-38
IBM 3270 Emulator 2-40
OS/3 Remote Terminal Processor ... 2-40
Journal Utility 2-41
Connecting OS/3 to a UNIX System 2-42
Connecting OS/3 to a MAPPER 5 System 2-42

xi

Contents

xii

Section 3. Communications Hardware

3.1. Basic System 80 Communications System 3-1
3.2. The Terminals ... 3-2

3.2.1. Hardware - What Is a Terminal? 3-3
3.2.2. How Are Terminals Used? ... 3-7
3.2.3. Interface Characteristics - How Terminals Communicate 3-9

Message Formatting .. 3-9
Communications Direction .. 3-13
Synchronizing Transmission .. 3-16
Line Control .. 3-18
Additional Terminal Interface Characteristics 3-20

3.3. Communications Lines 3-20
3.3.1. Dedicated Circuits - Dedicated Lines and VLINEs 3-22
3.3.2. Switched Lines .. 3-24
3.3.3. Public Data Networks ... 3-26

Circuit-Switched Public Data Networks 3-27
Packet-Switched Public Data Networks 3-29

3.4. Single Line Communications Adapters 3-33
3.5. DCP Channel 3-35

PART 2. ICAM SERVICES

Section 4. Line and Terminal Support

4.1. Remote Device Handlers .. 4-1
4.2. Line Connections 4-4
4.3. Terminal Polling 4-8

4. 3.1. Polling Groups 4-9
4.3.2. Polling Interval ... 4-11
4.3.3. Polling Algorithms .. 4-13

Polling with Buffered Interactive Terminals 4-14
Polling with Unbuffered Interactive Terminals 4-20

4.4. Input and Output Devices 4-21
4.5. Formatting Your Data ... 4-23

4.6.
4.7.
4.8.

4.8.3.
4.9.

4.5.1. Device Dependent Control Characters 4-24
4.5.2. Device Independent Control Expressions 4-24

Hexadecimal Notation 4-26
DICE Macroinstructions

4.5.3. DICE Summary
Format Edit .. .
Translate Tables .. .
Status and Error Codes
4.8.1. Input Error Notification .. .
4.8.2. Output Error Notification
Terminal Statistics .. .
Output Delivery Notification Request

4-27
4-29
4-30
4-31
4-31
4-31
4-32
4-33
4-33

UP-9744 Rev. 1

•

•

•

•

•

•

Contents

Section 5. Buffers and Queues

5.1. General . 5-1
5.2. Line Buffers and VLl~E Buffers 5-3

5.2.1. Line Buffers .. 5-3
5.2.2. VLINE Line Buffers ... 5-5

5.3. Activity Request Packets .. 5-7
5.4. Network Buffers .. 5-9
5.5. Queues 5-22

5.5.1. Output Queues 5-33
5.5.2. Input Terminal Queues .. 5-34
5.5.3. Process Files .. 5-35
5.5.4. Locap Files ... 5-38

Queue Arrangement 5-40
5.5.5. Using Queues 5-41

Obtaining Messages from Terminals 5-41
Sending Messages from Programs 5-43
Distribution Lists . 5-45

5.6. Dynamic Buffer Pool Expansion .. 5-46

Section 6. Message Processing Procedure Specification (MPPS)

6.1. General ... 6-1
6.2. Message Header Examination and Manipulation 6-2
6.3. Error Recovery 6-4
6.4. Message Routing 6-6
6.5. Miscellaneous Functions ... 6-7

Section 7. DCA and DDP

7.1. Introduction TO DCA ... 7-1
7 .2. DCA Concepts .. 7-2
7 .3. Single-Node and Multinode Global Networks 7-6
7.4. ICAM Support For Distributed Data Processing 7-10

Section 8. Administrative Functions

8.1. Overview ... 8-1
8.2. The Journal Utility- Report Segment .. 8-1
8.3. The Journal Utility - Restart Segment .. 8-1
8.4. Online Diagnostic Facilities ... 8-2
8.5. System Activity Monitor 8-2

8.5.1. Input Message Rate (CIMR) 8-3
8.5.2. Ouput Message Rate (COMR) .. 8-3
8.5.3. Number of Interrupts (CINT) .. 8-4
8.5.4. Number of Sense Commands (CSEN) 8-4
8.5.5. Number of Error Commands (CERR) .. 8-4

UP-9744 Rev. 1 xiii

Contents

8.5.6. Number of No-Traffic Responses (CNOTI 8-4 • 8.5.7. Rate of Poll Interrupts (CPOL) .. 8-4
8.5.8. Rate of Bytes Transmitted (CBYTI .. 8-5

8.6. ICAM Trace Facility .. 8-5
8.7. ICAM Edit Dump ... 8-6

PART 3. APPENDIXES

Appendix A. Codin~ Conventions

A.l. Types of Macroinstructions .. A-1
A.2. Declarative and Imperative Macroinstructions . A-1

A.2.1. Positional Operands A-2
A.2.2. Keyword Operands .. A-3

A.3. Macroinstruction Coding Conventions A-3
A.4. S-Type Macroinstructions A-5

A.4.1. L-Form S-Type Macroinstruction .. A-5
A.4.2. E-Form S-Type Macroinstruction .. A-6
A.4.3. SD-Type Macroinstruction ... A-6

Glossary

Index •
User Comments Form

• xiv UP-9744 Rev. 1

•

•

•

Figures

1-1. Functions of Each Part of an OS/3 Communications System .. 1-3

2-1. The ICAM Internals .. 2-3
2-2. The ICAM Interfaces 2-4
2-3. Standard Interface Communications System .. 2-16
2-4. Direct Data Interface Communications System ... 2-17
2-5. Typical COBOL-CMCS;1CAM Environment ... 2-27
2-6. IMS in an ICAM Environment 2-32
2-7. Remote Batch Processing System .. 2-35
2-8. ICAM Device Emulation System ... 2-37
2-9. NTR Utility System 2-39
2-10. Connecting OS/3 to a MAPPER 5 System .. 2-43

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.

Basic System 80 Communications System 3-2
LITS 4000 System Connected to System 80 . 3-6
Common Message Formats ... 3-12
Public Data Network Basic Configuration 3-26
Circuit-Switched Public Data Network . 3-28
Packet-Switched Public Data Network 3-30
lnpuVOutput Microprocessor Interface within System 80 3-33

5-1. Comparision of Standard and Direct Data Interfaces ... 5-2
5-2. Activity Request Packet Statistics in a System Dump 5-8
5-3. Buffers Statistics in a System Dump 5-19
5-4. Statistics Area in a System Dump for Network Buffers 5-20
5-5. Message Characteristics 5-32

7-1. Example of Communications System and Session Path ... 7-5
7-2. Typical Host Processor Using a Single-Node Global Network .. 7-6
7-3. Multinode Global Network ... 7-8
7-4. Multinode DCA Global Network Using Telcon .. 7-9

UP-9744 Rev. 1 xv

•

•

•

• Tables

3-1. !CAM-Supported Terminals and Workstations .. 3-8
3-2. ICAM Circuit-Switched Public Data Network Support .. 3-29
3-3. ICAM Packet-Switched Public Data Network Support 3-32
34. Single Line Communications Adapters 3-34

4-1. DICE Codes and Functions ... 4-26
4-2. DICE Macroinstructions and Their Functions ... 4-28

8-1. System Activity Monitor Available Data ... 8-2

•

•
UP-9744 Rev. 1 xvii

•

•

•

•

•

•

Section 1
Introduction

The integrated communications access method (ICAM) is a symbiont that becomes an
extension of the supervisor to handle input and output between your program and
terminals tied to the central processor by a communications system. It supports
multiple user programs; however, throughout this manual, we use the singular (your
program) even though you may have several programs operating in the same ICAM
environment at the same time. In its function, ICAM is like data management, which
handles input and output between your program and inputJoutput (1/0) devices tied
directly to the central processor. Like data management, ICAM isolates your program
from the hardware, eliminating the problems arising in physical 1/0 control.

Consider what your program must do to write a record into a disk file without data
management. It must write the record in the same format as the other records in the
file, send an operation code to the correct disk unit (telling the disk drive what to do
and exactly where to put the record), then examine the sense and status bytes
returned by the disk unit to see whether errors occurred. If they did, your program
must handle them. With data management, of course, all this is taken care of for you .

A program writing a message to a terminal without ICAM has all the problems of a
program writing a record to a disk unit without data management, plus some others.
For example, your program must honor the protocols for exchanging messages
between the central processor and the terminal. Different terminals use different
protocols (for example, UNISCOPE,® universal data link control (UDLC), and binary
synchronous communication (BSC)) to send messages. With ICAM, all this is taken
care of for you.

ICAM also does some things that data management doesn't do. For example, when
your program works with data management and you want to read a record, data
management reads it in. You process the record before getting the next one. Data
never arrives faster than your program can handle it.

That's not true in a communications system. Your program controls output, but has no
control over input (except when you use the ICAM direct data interface). Most of the
time, messages come in about as fast as your program can process them. Sometimes,
however, a long time goes by between messages. ICAM allows your program to
suspend execution when no messages are arriving; otherwise, your program would
have to loop, wasting processor time, while it waits for a message.

UNISCOPE is a registered trademark of Unisys Corporation .

UP-9744 Rev. 1 1-1

Introduction

YOUR PROGRAM

DATA
MANAGEMENT

SUPERVISOR ICAM

i.~ i~

1-2

LOCAL

PERIPHERALS

CENTRAL PROCESSOR
RESOURCES

The supervisor isolates your program from the
hardware by performing the tasks that actually
control the hardware. Your program "uses' system
resources by requesting the supervisor to work
with the hardware.

REMOTE PERIPHERALS

At other times, messages arrive faster than your program can process them. ICAM
provides buffers to store the messages until your program can process them.

At its simplest, this is ICAM: a symbiont program that controls communications input
and output, temporarily storing messages when needed. Figure 1-1 shows a complete
OS/3 communications system and the functions of each element.

UP-9744 Rev. 1

•

•

•

•

•

•

,,.-- -....
to.....,,,

DATA
FILES

'-
+ ..

YOUR PROGRAM

p.

..
ICAM

I t i 1
SINGLE SINGLE
LINE LINE
COMMUNICATIONS COMMUNICATIONS
ADAPTER ADAPTER
(SLCA) (SLCA)

I \

IM,ODEMI

COMMUNICATIONS

I MODEM I

LINES

TERMINALS

Introduction

The communications user program - your program - does
all the message processing. (Your program can be one you
write or one supplied by Unisys, such as IMS, DDP, and
interactive services.) It reads the messages, processes the
data in them, updates files, and creates output messages.
It is similar to other applications programs, with the
additional capability of working with remote terminals.
Because of its additional capability, it has the additional
responsibilities of (1) working with ICAM, (2) handling
communications-related errors, and (3) providing the
security for your data files.

Thus, basically, ICAM is a message handler; it can't read
messages, process them, or update files. Your program
does that; but ICAM provides you with the
macroinstructions to allow your program to request the 1/0
services it needs and interface the communications
software with the communications hardware.

Single line communications adapters are hardware devices
that interface the central processing unit with
communications lines and also free ICAM of some of the
communications-related tasks it would otherwise have to
perform.

The communications lines are any communications medium
- telephone lines, microwave relays, satellite, etc - that
transfers messages from the communications adapter to
your terminals and vice versa.

The terminals receive and transmit data. The data can be a
count of items passing by on an assembly line, an airline
reservation, or 1000-punch card images.

Figure 1-1. Functions of Each Part of an OS/3 Communications System

UP-9744 Rev. 1 1-3

•

•

•

•

•

•

Section 2
OS/3 Communications Software

2.1. ICAM -The Software Program

The following paragraphs present an overview of !CAM, how it is organized, the two
basic kinds of networks, dedicated and global, and why you would select each type.
Also discussed is the concept of static and dynamic sessions used with global
networks. Finally, we describe how to generate an !CAM symbiont, and how your
program works with it.

2.1.1. ICAM Internals and Interfaces

So farj we've treated !CAM as a mysterious entity handling input and output between
your programs and terminals. Now let's look at what !CAM does and how it does it .

UP-9744 Rev. 1

ICAM
MODULE

YOUR

PROGRAM

COMMUNICATIONS
CONTROL

AREAS

MESSAGE
CONTROL
PROGRAM

SINGLE LINE
COMMUNICATIONS

ADAPTER

2-1

OS/3 Communications Software

2-2

It shows the same basic elements represented in Figure 1-1 except that the ICAM
module is split into two parts: the message control program and communications
control areas. The message control program contains the code that does the
processing. This code handles the communications input and output operations, the
remote device handlers, and the message processing routines. The communications
control area is a set of tables and work areas that support a single network. In this
context, a network is a group oflines and their terminals that may be a subset of all
your lines and terminals. For example, you might have a network of terminals in your
retail stores and another network in your warehouses. Each network would have its
own communications control area and the terminals in that network would be
controlled by a separate program (Figures 2-1 and 2-2). (See 2.1.2 on global versus
dedicated networks for more on the uses of communications control areas.)

Regardless of how many communications control areas are in ICAM, there is only one
message control program. Each network is supported by an interface, like the one
shown in Figure 2-1, that's a composite of its communications control area and the
message control program. In Figure 2-1, the line buffers, queues, and main storage
network buffers are in the communications control area; and the communications
physical inputloutput control system, remote device handlers, and message processing
routines are in the message control program.

ICAM has four kinds of interfaces. Figure 2-2 shows their elements, and the following
discusses their use:

1. Standard message control program interface

Called the standard interface throughout the rest of this manual, this is the most
sophisticated interface offered by ICAM. It completely isolates your programs
from the physical aspects of communications. ICAM handles input and output;
your program asks ICAM for input messages and passes it output messages. This
is the easiest interface to write programs for because almost all of your program
is devoted to message processing and very little is devoted to communications
functions. The ICAM needed for a standard interface, however, is larger than that
needed for other interfaces. You can write your program in either basic assembly
language or COBOL. If you are programming in basic assembly language, see the
!CAM Standard MCP (STDMCPJ Programming Guide (UP-8550). If you are
programming in COBOL, see the !CAM Utilities Programming Guide (UP-9748).

2. Transaction control interface

This interface is similar to the standard interface. The big difference between
them is that the transaction control interface supports the information
management system (IMS) supplied by Unisys, while the standard interface is
intended to support programs you write. Since this interface operates like the
standard interface and its primary function is to support IMS, there is little
discussion of this interface in this manual.

UP-9744 Rev. 1

•

•

•

•

•

•

OS/3 Communications Software

ICAM

Keeps track of messages
in the network buffers

D
QUEUES D

D
Prepares input messages /
for the programs and /
output messages for
transmission

Interfaces ICAM
with the hardware

YOUR PROGRAM

MAIN STORAGE
NETWORK BUFFERS

REMOTE DEVICE
HANDLERS (ROH)

....
....

....

LINE BUFFERS ~
.....____,____---......-- ~

INPUT /OUTPUT
MICROPROCESSOR

(IOMP)
(UP TO 2 IOMPs)

SINGLE LINE
COMMUNICATIONS
ADAPTER (SLCA)

(UP TO 14 PER IOMP)

MODEM

LINE
t--1

TERMINALS

Figure 2-1. The ICAM Internals

UP-9744 Rev. 1

...

If included, manipulates
message headers, routes
messages, and handles
errors

...

MESSAGE
PROCESSING

ROUTINES

DISK
NETWORK
BUFFERS

Stores input messages
until a program requests
them, and output
messages until the
remote device handlers
transmit them

Staging areas that
hold messages during
IOMP and remote
device handler
processing

2-3

l'V
.j:::,.

c
~
-....J

t
:::0
co
:"=
.......

ICAM

QUEUES

D
D
D

•

YOUR PROGRAM

MAIN STORAGE
NETWORK BUFFERS

REMOTE DEVICE
HANDLERS IRDHJ

INPUT /OUTPUT
MICROPCROCESSOR

(IOMP)

SINGLE LINE
COMMUNICATIONS

ADAPTERS
iSLCAs)

fMODEMsl

u
LINES

I

TERMINALS

STANDARD INTERFACE

,
~

'
' '

, MESSAGE
, ~ PROCESSING

~

,
ROUTINES

~
~ ~ ,

~

' ' ' ' ' ' ' ' ' ' DtSK
NETWORK
BUFFERS

I
ICAM

QUEUES

DI
D
0)

IMS I

1---<j MESSAGE
PROCESSING

ROUTINES

"" ""'

NETWORK BUFFERS

REMOTE DEVICE
HANDLERS IRDH)

INPUT /OUTPUT
MICROPCROCESSOR

(IOMP)

SINGLE LINE
COMMUNICATIONS

ADAPTERS
(SLCAs)

IMODEMsl

t.--1
LINES
I

D
~

TERMINALS

TRANSACTION
CONTROL INTERFACE

' '
' ' ' ' , l- I ', DISK

NETWORK

BUFFERS J

Figure 2-2. The ICAM Interfaces

•

I

I

I

I ICAM

I I

YOUR PROGRAM

REMOTE DEVICE
HANDLERS IRDHJ

INPUT /OUTPUT
MICROPCROCESSOR

(IOMPJ

SINGLE LINE
COMMUNICATIONS

ADAPTERS
(SLCAs)

fMODEMsl

{,;;rs

~
TERMINALS

DIRECT DATA
INTERFACE

l

ICAM

YOUR PROGRAM J

INPUT /OUTPUT
MICROPROCESSOR

(IOMP)

]_

l
SINGLE LINE

COMMUNICATIONS
ADAPTERS

(SLCAs)

IMODEMsJ

'--7
LINES

TERMINALS

COMMUNICATIONS
PHYSICAL INTERFACE

•

0
CJ)

'<;,
0
0
3
3
c
::::s c;·
Q) -o·
::::s
en
en

f
Q)
""'l
Cl>

•

•

•

OS/3 Communications Software

3. Direct data interface

This interface is a minimum configuration interface that still handles the
physical aspects of communications, but your program must direct ICAM activity.
For example, your program must request ICAM to solicit input from the
terminals, must request ICAM to send output to the terminals, and must direct
ICAM recovery if an error occurs. Direct data programs are harder to write than
standard interface programs because much of the program code directs ICAM
operations. But the direct data program has more control over the operation of
your communications system. Use the direct data interface when:

• You have special requirements that ICAM doesn't meet. With the direct data
interface, you can usually write a program that provides the special
processing that ICAM doesn't. The program is written in assembly language.

• You want to write a program in RPG II. (Note, that when you write your
program in RPG II, you don't use the direct data interface macroinstructions
- the RPG II compiler converts your instructions to the required direct data
interface instructions.)

• You use a utility requiring the direct data interface.

Details on writing an assembly language program using this interface are in the
!CAM Direct Data Interface (DD!) User Guide (UP-8549) .

4. Communications physical interface

This interface provides you with the communications physical input/output
control system that allows your program to work with the single line
communications adapters. Your program has to provide all the functions
described in this manual that ICAM provides with the other interfaces. Use the
communications physical interface only if (1) you know a great deal about
communications programming and (2) you have requirements that cannot be met
by any of the other interfaces. This manual does not describe the communications
physical interface because the knowledge needed to write a program for it is
beyond its scope. Programs are written in basic assembly language at the
physical machine level. If you decide to use this interface, see the !CAM
Communications Physical Interface (CPI) Programming Guide (UP-9746).

2.1.2. Global versus Dedicated Networks

The basic difference between dedicated and global networks is that, in a dedicated
network, the lines and terminals are dedicated (permanently assigned) to one
program at a time. A global network permits multiple programs to share the resources
of a network (lines, terminals, and files) and allows you to statically or dynamically
alter resource assignments .

UP-9744 Rev. 1 2-5

OS/3 Communications Software

You should use a dedicated network when using only a single program or when using
more than one program if:

• your programs use specific networks of terminals and never need to share a
network of terminals (at the same time); and

• your communications system has just one central processor.

Use a global network when:

• your programs need to share the same terminals; or

• your communications system has more than one central processor.

Dedicated Networks

ICAM

2-6

[

A dedicated network is one where lines and their terminals are dedicated to one
program at a time. If you have more than one program executing at a given time, you
define separate networks for each program:

PROGRAM 1 J [PROGRAM 2 J [PROGRAM 3]

COMMUNICATIONS COMMUNICATIONS COMMUNICATIONS Each network definition
creates a separate
communications control
area.

CONTROL AREA 1 CONTROL AREA 2 CONTROL AREA 3

MESSAGE CONTROL PROGRAM

Each network typically has terminals associated with a particular application.
Network 1 could be terminals for inventory control; network 2 could be terminals for
sales order entry; network 3 could be terminals for production control. Each network
can be a distinct set oflines and their terminals, or the networks can overlap with
lines and their terminals defined in two or more networks. However, only one program
at a time can use a line. But one program can use a line and its terminals for a while
and then release it for other programs to use. For example, if an inventory program
receives its data before 8 o'clock each morning, the terminals it uses can be used by a
production control program for the rest of the day.

UP-9744 Rev. 1

•

•

•

•

•

•

OS/3 Communications Software

Dedicated networks place these restrictions on your communications systems:

• Programs cannot share lines and their terminals at the same time.

• You cannot have two central processors in your communications system.

Global Networks

ICAM

ICAM's global network facility provides all of the services available to dedicated
network user. programs and, in addition, it provides the following features:

• Programs using the global network in the same computer can send messages to
each other.

• Programs in the same computer can send and receive messages from any in the
network.

• Programs in different host computers can send messages to each other.

The following global network allows multiple programs to concurrently use the same
network and hence the same terminals.

PROGRAM 1 PROGRAM 2 PROGRAM 3

GLOBAL
NETWORK

PROGRAM 4 PROGRAM 5

Because programs use the same global network, they share its lines and terminals.
Any program can receive or send messages to any terminal in the global network
regardless of how many other programs are also using that terminal. Your program
can also send messages to other programs using the same global network.

You may also concurrently operate one or more dedicated ICAM networks in the same
ICAM symbiont with a global network. The global network may also support
communications with other computers .

UP-9744 Rev. 1 2-7

OS/3 Communications Software

2-8

GLOBAL USER
PROGRAM 1

OTHER

GLOBAL USER
PROGRAM 2

ICAM SYMBIONT

DEDICATED
USER

PROGRAM 3

GLOBAL DEDICATED
NETWORK NETWORKS

COMPUTERS /):J.---:::::::~::::.._~;;;;;;;;;.-..,.-

In networks with multiple central computers, programs in your computer are able to
send and receive messages from programs in the other computers and from terminals
connected to other computers.

If you can use dedicated networks, you should. Generally, they're simpler than global
networks and use less main storage.

A major di:ff erence between global and dedicated networks is how the status of
communications lines and terminals is handled, and how the ICAM network is loaded.
In a dedicated network, this is done by the using program. In a global network, it is
performed by a special program called the global user service task (GUST). GUST
controls which ICAM network is to be loaded. It asks the operator for the name of the
network to be loaded and activates the lines used by the global network.

Unlike the rest ofICAM, which is part of the supervisor and runs in job slot zero,
GUST is a separate program running as a user job in a user job slot:

UP-9744 Rev. 1

•

•

•

•

•

•

OS/3 Communications Software

MAIN

STORAGE

PROGRAM C

PROGRAM B

GUST

PROGRAM A

ICAM

t------ -----

SUPERVISOR

USER JOB
SLOTS

JOB SLOT 0

When you bring up your global network, the ICAM symbiont is 10aded first, and then
GUST. After GUST is loaded, it sends a message to the system console asking which
global network it is to request. After the console operator supplies the name, GUST
requests the network and initializes ICAM.

After GUST requests the network name, it asks the names of the lines it is to activate.
Any line not requested at this time must be brought up using an ICAM unsolicited
type-in to mark up a line. At this point, your programs can attach themselves to ICAM
to receive and send messages.

GUST also handles recoveries from VLINE down conditions:

IF------.,.. THEN--------.,._ AND
theVLINE IS
marked down

GUST logically
releases the VLINE

the operator must
request the VLINE
using an ICAM
unsolicited type-in.

A VLINE is marked down whenever a protocol error occurs, the other host computers
do not respond, or a hardware error occurs.

Any time after GUST is brought up, the console operator activates local lines via
ICAM operator unsolicited type-ins. Once a line is connected, any program attached to
the global network can send and receive messages from terminals on that line. GUST
handles recoveries from local line-down conditions as follows:

UP-9744 Rev. 1 2-9

OS/3 Communications Software

IF -------11~ THEN--------...,.. AND

line is
logically
marked down

IF-------...
the line is
physically
marked down

GUST does nothing the line is marked up
as soon as a terminal
on the line responds to
a poll.

THEN _______ ...,.. AND

GUST logically
releases the line
and rerequests it

if the line request is
unsuccessful, the
operator is notified. He
or she can rerequest
the line at any time.

OR

if the line request is
successful, the line is
brought back up. The
console operator is not
notified that the line
was down.

When GUST is shut down by the system operator, it releases the network and sends
an ICAM cancel message to all programs attached to the network.

2.1.3. Static and Dynamic Sessions

2-10

A session is a communications path between two end users. End users are: a locap file
(a local application file representing your program), a process file, or a terminal. (A
process file is a 3-queue structure you define in your ICAM network that you can use
to temporarily store messages.) Sessions apply only to global networks.

1. Static sessions

A static session is a permanent communications path between two end users, and
you specify them in your network definition using a SESSION macro. Their
advantages are that they save you some connect time over dynamic sessions, and
you don't need to provide session establishment processing in your program. They
are also permanent for the life of a network definition. However, you may not
want to use them because, depending on the type of end user, that end user may
become unavailable to any other end user. To decide, consider the following:

• Only one session at a time can be established with a terminal. Therefore, if
you define a static session to a terminal, you cannot also establish a dynamic
session for that terminal to communicate with another end user.

UP-9744 Rev. 1

•

•

•

•

•

•

•

•

•

OS/3 Communications Software

Two sessions can be established to a process file. Therefore, if you define one
static session to a process file, you can still establish a dynamic session with
that process file. Any combination of sessions can be specified - one static
and one dynamic, both static, or both dynamic.

Any number of sessions can be specified to a locap file - in other words, to a
program.

If you use interactive services, you cannot use static sessions. You must use
dynamic sessions.

2. Dynamic sessions

Dynamic sessions are temporary communication paths established by !CAM due
to a request by your program or a terminal user. Dynamic sessions can be
established from a terminal to another end user (i.e., a locap file, process file, or
terminal), or from your program to any end user. Dynamic sessions are always
required with distributed communications architecture (DCA) networks.

Your program initiates and terminates dynamic sessions by issuing a session
establishment (SESCON) macro to !CAM. Terminal users request dynamic sessions
by means of session establishment ($$SON) commands. These commands name the
end user with which communications need to be established, as well as the identifier
of the requesting terminal; !CAM establishes the session path if possible. If the
request for session establishment is directed to your program, !CAM interrogates your
program by means of messages called control datagrams to see whether your program
is willing to accept the session. If so, the session path is established. If your program
rejects the session establishment request, the session is not established.

You incorporate the capability for dynamic session establishment into !CAM by
specifying the GAW AKE operand in the !CAM CCA network definition macro. Your
program must then issue a GAW AKE macro (TYPE=INPUT) to permit it to be
activated (awakened), with control datagrams passed to it; this enables your program
to accept or reject sessions.

Depending on the application, sometimes it is advantageous to have a global network
supporting both dynamic and static session terminals. Look at the following example:

UP-9744 Rev. 1 2-11

OS/3 Communications Software

2-12

DISK
FILE

COMMUNICATIONS

PROGRAM

ICAM

SLCA

SLCA

SLCA TERMINAL 6

STATIC
SESSION

TERMINALS

CCA

SESSION EU1 =(CUP1), EU2=(TRM1)
SESSION EU1 =(CUP1). EU2=(TRM2)
SESSION EU1 =(CUP1), EU2=(TRM3)
SESSION EU1 =(CUP1), EU2=(TRM4)

ENDCCA

DYNAMIC
SESSION

TERMINALS

Here, terminals 1through4 are assigned (using SESSION statements) as static
session terminals and are permanently tied up in our network. On the other hand,
terminals 5 through 7 are dynamic session terminals that are used online with the
network or offiine outside the network.

UP-9744 Rev. 1

•

•

•

•

•

•

OS/3 Communications Software

2.1.4. Generating Your ICAM Symbiont (Load Module)

You generate your ICAM symbiont (load module) by a combination of network
definition macros and system generation message control program (MCP) parameters.
The macros define the network, that is, its lines, terminals, and other resources such
as network buffers. A complete description of these macros is presented in the !CAM
Operations Guide (UP-9745). Later in this manual is a discussion of the lines,
terminals, and queues that will be helpful to you in understanding the operands
associated with these macros.

The message control program parameters name the ICAM symbiont and identify the
disk volume containing the symbiont and each single line communications adapter
associated with your network. The MCP parameters are listed in the !CAM
Operations Guide (UP-9745). A complete description of the message control program
parameters is found in the Installation Guide (UP-8839).

2.1.5. Yielding Program Control

ICAM allows you to suspend execution of your program when there are no messages
available and, when one becomes available, to automatically return control to your
program to resume processing. You can use this feature by accessing a message from
an input file, processing the message, and setting up another get request to receive
control when the next message arrives. In writing a basic assembly language program,
this feature is known as a deferred get. When writing a COBOL program, you use the
RECEIVE statement, along with a NO DATA phrase, to do other processing while
awaiting another message.

You may also use this feature when you wish your program to become dormant until
an event occurs, such as another program sending you a datagram, or a dynamic
session from a terminal or another program end user.

RPG II does not support this feature. Ifno message is available, your program must
wait.

2.1.6. How to Activate a Communications Program and Pass It a Message

ICAM provides a GAW AKE feature that permits any program anywhere in the system
to activate (awake) a communications program, optionally pass it a message called a
datagram, and give control to the activated program at a predetermined entry point.
This feature is available for global networks only, and the program that initiates the
action need not be a communication program. This feature allows you to coordinate
the activities of both a program with communications and another program without
communications. Thus, it's possible to run the noncommunications program
continuously and to activate the communications program only when needed - such as
when output is ready for transmission or at certain times of day .

UP-9744 Rev. 1 2-13

OS/3 Communications Software

To use this feature, the receiving communications program registers itself with ICAM
by issuing an input-type GAW AKE macro; the entry point where control is returned
when the program is activated is specified; and the address of a receiving work area
for datagrams is supplied if the program is to receive them.

The program initiating the activation does so by issuing an output-type GAW AKE
macro. If a datagram is to be sent, the address of the work area containing the
datagram (in the sending program) is also specified.

In addition to these requirements in your program, you must also specify the
GAW AKE operand in the CCA macro. By doing this, you automatically include the
GAW AKE software at system generation when you prepare your ICAM network.
Without distributed communications architecture (DCA), this feature applies only to
programs in the same computer node; that is, you cannot activate programs in another
computer with this feature.

2.2. Communications User Programs

2-14

Communications programs are split into two groups: user-written application
programs and programs supplied by Unisys. When you write your application
program, you can use the basic assembly language, COBOL, or RPG II. Selecting the
language depends on the ICAM interface you wish to use and your familiarity with a
particular language. The basic assembly language gives you the most control over
communications operations, whereas both COBOL and RPG II have some limitations.

In addition to the programs you write yourself, Unisys provides you with several
utility programs that perform the following major functions:

• COBOL message control system (CMCS) - Lets you write your program in
COBOL. CMCS is a module you create, using macros supplied by Unisys, and
link to your program to enable operation with the !CAM standard interface.

• Remote batch processing (RBP) - Is the method of submitting batch jobs from a
remote site.

• ICAM device emulation system (IDES) - Enables your system to emulate a 1004
card processor, a DCT 2000 data communications terminal, an IBM 2780 data
communication terminal, or an IBM 3780 terminal.

• Nine thousand remote (NTR) - Allows your system to operate as a remote job
entry batch terminal to a Series 1100 processor.

• Remote terminal processor (RTP) - Allows you to use System 80 as a remote job
entry terminal to an IBM host processor.

UP-9744 Rev. 1

•

•

•

•

•

•

OS/3 Communications Software

2.2.1. User-Written Program Interfaces

Standard Interface and Direct Data Interface Programs

Four major differences distinguish programs written for the standard interface from
those written for the direct data interface:

1. The standard interface is easier to use because your program doesn't have to
control the communications network.

2. With the standard interface, your program deals with the remote device handlers
indirectly through network buffers and queues supplied by ICAM - not directly as
with the direct data interface.

3. Standard interface programs can use both dedicated and global networks while
direct data interface programs can only interface to dedicated networks.

4. You write standard interface programs in assembly language or COBOL; direct
data interface programs must be written in assembly language or RPG II.

If you write a program that uses the direct data interface, it must initiate almost
every action ICAM takes. It must direct ICAM to receive messages, send messages,
and your program must also supply an error recovery routine. In addition, your
program receives its messages directly from the ICAM remote device handlers, line
buffer by line buffer. Hence, it must do its own message buffering.

If you write a program that uses the standard interface, ICAM automatically receives
and queues all messages as terminals send them; it also delivers them to your
program one at a time when your program requests them. It also queues outgoing
messages given to it by your program. These are sent when the destination terminal is
able to receive them (i.e., not down or busy). The standard interface also provides
built-in error recovery routines.

When you are deciding whether to use the standard or the direct data interface,
consider these points:

• It is easier to write a program for the standard interface because there's less you
have to do. With little training, any programmer familiar with basic assembly
language (BAL) noncommunications programs can write a standard interface
program. To write a direct data interface program, however, a programmer must
be well versed in communications and BAL.

• An ICAM module that supports a standard interface-program requires
considerably more main storage than one defined to support a direct data
interface program. Figure 2-3 shows the logical components supplied by ICAM
with a standard interface, and Figure 2-4 shows a direct data interface. The
standard interface has more routines, tables, and storage areas than the direct
data interface .

UP-9744 Rev. 1 2-15

05/3 Communications Software

•
USER

PROGRAM

A

ICAM

D' ,~

r
l t-+--1 MESSAGE

INPUT o: r
PROCESSING r

, i l ~~-~ AND >- - - ROUTINE
OUTPUT r (OPTIONAL)
QUEUES

D
NETWORK BUFFERS

_J

+
REMOTE
DEVICE

HANDLERS

LOCAL OR VLINE
LINE BUFFERS • • r-

•
SINGLE LINE

COMMUNICATIONS
ADAPTERS

Figure 2-3. Standard Interface Communications System

• 2-16 UP-9744 Rev. 1

•

•

•

OS/3 Communications Software

USER

PROGRAM

ICAM ~

REMOTE
DEVICE

HANDLERS

LINE
BUFFERS

SINGLE LINE
COMMUNICA-

TIONS
ADAPTER

L
I MODEM I

f

Figure 2-4. Direct Data Interface Communications Systems

• If you wish to use global networks, you must use the standard interface.

• If you want to write your programs in COBOL, you must use the standard
interface. If you want to write your programs in RPG II, you must use the direct
data interface. If you want to write your programs in basic assembly language,
use either interface.

• If you are writing your own remote device handler, it is simpler to use the direct
data interface because you can put many of the remote device handler functions
in your program, making the remote device handler easier to interface with
ICAM .

UP-9744 Rev. 1 2-17

OS/3 Communications Software

• The direct data interface is better for batch applications. It returns terminal
status data to your program that may be used in error recovery procedures. It is
also faster than the standard interface, allowing your program to receive
messages as fast as the terminal sends them.

Writing Your Program in Assembly Language

2-18

You can use assembly language to write a program that uses the standard interface or
the direct data interface. Both of these interfaces involve the use of the following three
basic functions:

• Request/ release !CAM facilities

• Send or receive messages

• Update certain !CAM tables

Before your program can do anything with !CAM, it must be linked to a network. How
it does this depends on whether you are using a dedicated or global network. If your
program uses the standard interface, you can program it to link to a dedicated or a
global network. !fit uses the direct data interface, it can only link to a dedicated
network.

A dedicated network is linked to your program when your program issues a network
request - a NETREQ macro. If the request is valid and the network is not already
assigned, !CAM assigns the network and all lines and terminals defined in it to your
program. Your program retains control of the network until it releases it. The
interface is automatically initialized, and all lines are activated and ready to use
unless you requested them not to be via the network request. In this case, your
program must issue a line request to activate each line.

At any time, your program can activate or deactivate lines or release the network. If
you deactivate a line, no traffic can flow on it. Output messages from a standard
interface program are held on queue and terminals attempting to send input are
ignored.

Your program can release a dedicated network at any time, thereby making it
available to another program. !fit is the last user of the !CAM symbiont, the symbiont
will terminate. Networks are often activated and released frequently - this releases
substantial amounts of main storage for other uses, and is often used in systems
where communications activity is carried on only at certain times of the day. If you
don't want the !CAM symbiont to terminate automatically, have the operator specify
the KEEP operand when he loads the !CAM symbiont.

A global network is owned by a special program called the global user service task
(GUST). The system operator loads and executes the GUST program, which loads the
!CAM global network. Your program gains access to the global network by issuing an
attachment request, and NATTACH macro, which is a variation of the network
request you use to connect to a dedicated network.

UP-9744 Rev. I

•

•

•

•

•

•

OS/3 Communications Software

However, because all lines and terminals belong to GUST, your program cannot
activate/deactivate lines or terminals directly - it must send a message to the operator
or you must directly request that the operator activate/deactivate certain lines.

The advantages of a global network are many, including the ability to have
communications between your programs and the ability for all your programs to
communicate with the same terminal (or other end users) concurrently. In addition,
many facilities are not available with dedicated networks, like public data network
support and distributed communications architecture.

The following figure shows three programs linked to an !CAM symbiont that includes
two dedicated rietworks and a global network. One program is linked to network 1, a
dedicated network using the standard interface. The second program is linked to
network 2, a dedicated network using the direct data interface. The third links to the
global network. Many programs can link to the global network at the same time.

Programs must
link with an
interface to obtain
communications
support.

STANDARD
INTERFACE
PROGRAM
(NETREQ)

T
ICAM I

I
STANDARD
INTERFACE

FOR
DEDICATED
NETWORK 1

/
IMODEMj

/I

NETWORK 1

UP-9744 Rev. 1

DIRECT
DATA

INTERFACE
PROGRAM
(NETREQ)

I
I

DIRECT DATA
INTERFACE FOR

DEDICATED
NETWORK 2

SINGLE LINE
COMMUNICATIONS

ADAPTERS

NETWORK 2

ONE OR MORE
STANDARD
INTERFACE
PROGRAMS
(NATTACH)

l
I
I

STANDARD
INTERFACE FOR

GLOBAL
NETWORK 3 ~-!

GLOBAL USER

--- SERVICE TASK
(GUST)

NETWORK 3

2-19

OS/3 Communications Software

After your program successfully requests a network, it can examine and, in some
cases, change certain tables internal to ICAM. Both standard and direct data interface
programs can do two functions:

1. Change the phone number for a line

This gives you the option of defining a logical line and terminal that actually
support a number of terminals with different phone numbers. By defining one
line and terminal in the network definition instead of several, you reduce the size
of the ICAM module by hundreds or thousands of bytes. You could use this
feature if you had a number of identical terminals that periodically need to
communicate with the host processor. Your program would change the phone
number for the logical line each time it wanted to send data to or receive data
from a different terminal.

2. Have ICAM give the program information on the lines and terminals in the
network

A program written for use with several networks would use this to get the names
and characteristics of the lines and terminals in a specific network.

In addition to these two functions, a standard interface program can:

• Find out how many messages are in the queues of a process file, locap file, input
terminal queue, or output queue

• Clear the messages from an output queue, process file, or locap file. The messages
are cancelled without delivering them to their destination.

• Put a hold on an output queue, process file, or remote locap file, preventing
messages from being delivered to their destinations. This function is useful if
your program is building up a file for transmission only when the file is complete.
The program then releases the messages in the output queue, process file, or
locap file for delivery.

• Transfer messages from one output queue, process file, or locap file to another
output queue, process file, or locap file

Sending and Receiving Messages with the Standard Interface

2-20

The process for sending and receiving messages in the standard interface is purposely
similar to the process of reading and writing messages from peripheral devices. Your
program must create a file with a DTFCP macro and then issue a GETCP or PUTCP
macro to receive or send a message. Compare the macros needed to read a card image
with data management and to read a message with ICAM:

UP-9744 Rev. 1

•

•

•

•

•

•

OS/3 Communications Software

CONSOLIDATED DATA MANAGEMENT

(COM) CARD FILE

CARD CDIB TRM1

DMINP CARD

ICAM DTFCP

MESSAGE FILE

DTFCP

GE TCP

TYPE=GT,
LEVEL=LOl.I,
ERRET=GETERR,
NOMAV=NOMESS

TRM1,INAREA

Notice, only one macro is specified to create the CDM card file. Consolidated data
management supplies the appropriate default values for the card file. For more
information on System 80 data management, see the Consolidated Data Management
Macroinstructions Programming Guide (UP-9979).

In the standard interface, reading and writing a message has nothing to do with
transmitting it between the terminal and the host processor. Reading a message takes
the first message in a terminal input message queue, process file, or locap file and
places it in a work area in your program. This has nothing to do with receiving a
message from a terminal and placing it on a queue. Writing a message places the
message at the bottom of an output queue, process file, or locap file. Again, this has
nothing to do with delivering the message to its final destination.

Just as the consolidated data management macros create file tables containing
information necessary to GET and PUT messages, the standard interface DTFCP
macro creates file tables. They are the major means of passing information between
your program and ICAM. For example, the tables give the source or destination of a
message, error and status codes, time and date stamps, error routine addresses, and
special function codes.

The following illustrates two programs sending and receiving messages to their
respective dedicated networks by using PUTCP and GETCP macros. A PUTCP
transfers a message from your program to ICAM (output); a GETCP transfers a
message from ICAM to your program (input) .

UP-9744 Rev. 1 2-21

05/3 Communications Software

2-22

PROGRAM 1 PROGRAM 2

PUTCP GETCP PUTCP ~ ~ GETCP

ICAM1

NETWORK 1 NETWORK 2

MESSAGE CONTROL
PROGRAM

~

..
COMMUNICATIONS

ADAPTER

L_

[MODEM]

NETWORK 1
TERMINALS

L
[MODEMj

NETWORK 2
TERMINALS

•

•

•
UP-9744 Rev. 1

•

•

•

OS/3 Communications Software

Sending and Receiving Messages with the Direct Data Interface

Receiving and sending messages in the direct data interface is totally unlike receiving
and sending messages in the standard interface. In the standard interface, your
program is isolated from the physical aspects of input and output by the network
buffering function. In the direct data interface, your program directs the operation of
the remote device handlers and performs the network buffering function itself.

The key to the use of the direct data interface is the message control table (MCT).
!CAM uses them to direct the operation of the remote device handlers, and message
control tables are used in all interfaces except the communications physical interface.
Standard interface programs are not directly involved with their use because of the
network buffering function performed by !CAM. Unlike a standard interface program,
which uses the DTFCP file tables to pass information to and from !CAM, a direct data
interface program controls many of the functions of !CAM by using the message
control table.

The remote device handlers cannot receive or transmit messages without a message
control table. When your program creates a message control table, it defines the line,
the terminal, and the auxiliary device the message is to come from or go to; it defines
the function (send or receive in batch or interactive mode) to be performed, and it
defines the program buffer the message comes from or goes to. After the remote device
handler performs the function defined, it updates the message control table with error
and status code and returns control to your program. If an error occurred, your
program must tell the remote device handlers, through the message control table, how
to recover.

Section 4.1 describes how the remote device handlers place messages in the network
buffers as the line buffers fill. Because the direct data interface doesn't have network
buffers, your program must provide program buffers with which the remote device
handlers can work. Distinct from the program buffers, you may want to provide
separate work areas to place the message in during processing .

UP-9744 Rev. 1 2-23

OS/3 Communications Software

2-24

The following illustrates input data flow:

YOUR PROGRAM

PROGRAM
BUFFER

WORK
AREA

REMOTE DEVICE HANDLER

LEGEND:

B Indicates data

SECOND LINE BUFFER

SINGLE LINE
COMMUNICATIONS

ADAPTER

REMOTE
TERMINALS

•

•

•
UP-9744 Rev. 1

•

•

•

For output, the process reverses:

UP-9744 Rev. 1

YOUR PROGRAM

PROGRAM
BUFFER

WORK
AREA

REMOTE DEVICE HANDLER

FIRST LINE BUFFER

LEGEND:

m Indicates data

SINGLE LINE
COMMUNICATIONS

ADAPTER

REMOTE
TERMINALS

OS/3 Communications Software

2-25

OS/3 Communications Software

COBOL Programs

2-26

The COBOL message control system (CMCS) is a module that you generate and link
to your COBOL program so you can communicate with remote terminals through
ICAM. The COBOL message control system module acts like a bridge between your
COBOL program and ICAM. It passes input messages from ICAM to your COBOL
program, and it passes output messages from your COBOL program to ICAM.
Figure 2-5 is a simplified diagram of a typical COBOL-CMCS/ICAM environment. It
shows how your COBOL program requests functions, like activating a
communications line, sending an output message, requesting an input message, or
deactivating a communications line. You request these functions in COBOL
terminology and the CMCS module converts your requests into the appropriate !CAM
commands. ICAM takes care of queueing your output to the proper output queues and
handles all input traffic, placing each input message on the correct input queue
according to what you specified in your network definition. When your COBOL
program requests a message from an input queue, ICAM accesses the appropriate
queue (or hierarchical queue structure) and delivers the message to CMCS - and
thereby to your COBOL program.

The information for writing COBOL communications programs is found in the 1974
American Standard COBOL Programming Reference Manual (UP-8613), the !CAM
Utilities Programming Guide (UP-9748), and the !CAM Operations Guide (UP-9745).

UP-9744 Rev. 1

•

•

•

•

•

•

RPG II Programs

05/3 Communications Software

COBOL PROGRAM ROUTINES

REQUEST RESPONSE

• INPUT MESSAGE • MESSAGE
• OUTPUT MESSAGE • STATUS
• CHANGE ENVIRONMENT • ERRORS

CMCS

STANDARD INTERFACE

ICAM

COBOL
PROGRAM

Figure 2-5. Typical COBOL-CMCS/ICAM Environment

RPG II has two communications-related commands, one to receive a message and one
to send a message. All other functions needed by a program using the direct data
interface are generated by the RPG II compiler when you compile your source code.
RPG II cannot be used for sophisticated communications applications such as message
switching. It is provided so your program can use terminals as input and output
devices the same way it uses peripheral devices such as card readers and printers .

UP-9744 Rev. 1 2-27

OS/3 Communications Software

2-28

RPG II distinguishes between batch and interactive terminals. For batch terminals,
you create input and output files the same way you would for card readers and
printers. For interactive terminals, you create combined input/output files as you
would for combined card reader/punches. For additional details, refer to the RPG II
Programming Guide (UP-8067).

RPG II offers four processing modes for batch terminals:

1. Receive only - In this mode, a data file is received from a remote terminal. The file
must be specified as an input primary file, input secondary file, or input demand
file on the file description specifications, and it must be specified as a receive file
on the telecommunications specifications. When this mode is used with a batch
terminal, the input records are usually 80-column cards.

2. Transmit only - In this mode, a data file is transmitted to a remote terminal. The
file must be specified as an output file on the file description specifications, and it
must be specified as a transmit file on the telecommunications specifications.
When this mode is used with a batch terminal, the output records are usually 80-
column cards or lines of print.

3. Transmit a file, then receive another file - In this mode, two data files are specified
for a remote terminal. The file to be transmitted must be specified as an output
file on the file description specifications and as a transmit file on the
telecommunications specifications. The file to be received must be specified as an
input file on the file description specifications and as a receive file on the tele
communications specifications. When you use this mode, your program first
processes the transmit file and then, when all data is transmitted to the remote
terminal, it processes the receive file.

4. Receive a file, then transmit a file - In this mode, two data files are specified for a
remote terminal. The file to be received must be specified as an input file on the
file description specifications and as a receive file on the telecommunications
specifications. The file to be transmitted must be specified as an output file on the
file description specifications and as a transmit file on the telecommunications
specifications. When you use this mode, your program first processes the receive
file and then, when all data is received from the remote tenninal, it processes the
transmit file.

Note that, in this mode and the transmit-a-file, then-receive-a-file mode, it is
your responsibility to design your program so that a complete file is processed for
a particular remote terminal before another file is processed. This can be done by
processing one file during the normal RPG II processing and the other file when
the last record indicator (LR) is set on. Another method would be to use demand
input and/or exception on the calculation specifications so that all the records of
one file are processed first, after which all the records of the second file are
processed.

UP-9744 Rev. 1

•

•

•

•

•

•

OS/3 Communications Software

Note also that a particular remote terminal is not limited to one input (receive)
file and one output (transmit) file when you use this mode or the transmit-a-file,
then-receive-a-file mode. You can process more than two files on a particular
remote terminal if your program is arranged so that the processing does not
overlap.

RPG II offers two processing modes for interactive terminals:

1. Transmit with reception of conversational reply

In this mode, a record is transmitted to a remote terminal and a reply is received
back from the remote terminal. The file must be specified as a combined file on
the file description specifications and as a transmit file on the telecommuni
cations specification. The file may be specified as the primary file.

2. Receive with transmittal of conversational reply

In this mode, a record is received from a remote terminal and a reply is
transmitted back to the remote terminal. The file must be specified as a combined
file on the file description specifications and as a receive file on the telecommuni
cations specifications. The file may be specified as the primary file. This mode is
used only with a BSC remote terminal (computer to computer).

2.2.2. Programs and Products Supplied by Unisys

The following is a list of programs supplied by Unisys that work with ICAM. Those
that work with ICAM in a specialized manner are called utilities. All of them except
IMS and NTR are described in the !CAM Utilities Programming Guide (UP-9748). See
the IMS Technical Overview (UP-9205) for details on IMS, and the NTR Utility
Programming Guide (UP-9502) for details on NTR.

• Information management system (IMS) - Provides a transaction processing
system (described later in this section).

• COBOL message control system utility

• Remote batch processing utility - Allows you to submit OS/3 jobs from a remote
batch terminal (described later in this section).

• ICAM device emulation system utility - Allows your host processor to appear as a
batch terminal to another host processor (described later in this section).

• Nine thousand remote (NTR) system utility - Allows you to use your processor as
a terminal to submit jobs and data files to a remote Unisys Series 1100 processor
(described later in this section) .

UP-9744 Rev. 1 2-29

OS/3 Communications Software

• Journal utility- Produces printed reports that list the text of incoming and
outgoing messages, the number of messages sent or received, and the extent to
which your network buffer and activity request packet pools were used. The
journal utility also has a feature that allows you to recover input or output
messages queued on disk when ICAM fails due to an unrecoverable disk queueing
problem.

• Single line communications adapter utility - Dumps and prints the contents of the
random access memory in a single line communications adapter. The operator
idles the line serviced by the SLCA and issues a SLCADUMP command to
initiate dumping. The command includes the channel and line identifier and
optionally an SLCA type. Dump listing is automatic.

• ICAM trace facility (ITF) - Helps locate the cause oflCAM operational problems.
It is not intended to aid users in their own troubleshooting, but as a method of
accumulating records of ICAM functions for later analysis by Unisys personnel.
ITF is loaded only when needed and has no system generation requirements
other than the system must include dynamic buffering.

• ICAM edit dump - A symbiont that dumps selected groups of !CAM tables for
diagnostic purposes.

Other jobs, including other communications programs, can execute concurrently with
any of these utilities.

In addition to the utilities, Unisys provides the following interconnect products:

• OS/3 to UNIX operating system connectivity - These features let you connect
OS/3 to a UNIX operating system. You can initiate both interactive and batch
procedures on OS/3 from the UNIX operating system, execute UNIX applications
and shell commands from OS/3, and transfer files between OS/3 and the UNIX
operating system from either operating system. The UNIX system access module
(UNXSAM), which allows you to execute UNIX applications and shell commands
from OS/3, is described in the !CAM Utilities Programming Guide (UP-9748).

• OS/3 to MAPPER® 5 Connectivity - This feature, which is described later in this
section, lets you connect OS/3 to a MAPPER 5 system. You can access its data
base or tr an sf er files from a terminal or local workstation connected to OS/3.

Information Management System (IMS)

2-30

The information management system (IMS) is a transaction-oriented file processing
system that works with ICAM in an interactive environment. You enter an inquiry at
a display or hard copy terminal, and IMS accesses your data files and responds with
one or more output messages.

MAPPER is a registered trademark and service mark of Unisys Corporation.

UP-9744 Rev. 1

•

•

•

•

•

•

OS/3 Communications Software

IMS is suited to any application requiring instant access to information. Within
moments of an inquiry, the information you request is displayed. That information is
always current because IMS updates your files at your request from the terminal.

Here's a typical IMS inquiry/response sequence. The shaded messages are the ones
your terminal operator enters; the remaining messages are the IMS responses.

tReti'tt
PLEASE GIVE CUSTOMER NAME AND ACCOUNT NUMBER;
PAli'WVl'Wte';.tAf.lo)':i"6743 j..

CREDIT RECORD FOR PAULVILLE CANDY IS;
CREDIT LIMIT; 10000 CREDIT BALANCE; 534
A/R TERMS; 30 NET 45 A/R DAYS 30 A/R DISCOUNT; .080
DO YOU WISH TO CHANGE ANY OF THIS INFORMATION?
YE$
PLEASE ENTER FIELD NAME FOLLOWED BY NEW INFORMATION;
t~eo·1:r:'·ttMt:Pr·.·::::1.2$~0

NEW CREDIT LIMIT IS 12500

You create a tailored IMS system in a configuration process you use to describe your
communications network, your files, and your applications, and to select optional
features. The result of the process is an IMS load module that handles:

• Interfacing with ICAM

• Verifying, editing, and scheduling of communications messages

• Accessing of your data files

Routines called action programs, which you write or IMS supplies, process your input
messages. When IMS receives a message, it schedules the appropriate action
programs. They examine the contents of the message, request data from your files,
prepare responses, and, if necessary, schedule additional action programs.

Figure 2-6 shows the ICAM communication path for IMS.

You can write action programs in COBOL, RPG II, or basic assembly language. The
terminal display shown earlier in this section is an example of the kind of file
processing and message formatting you can do when you write your own action
programs.

The set of action programs supplied by IMS is called the uniform inquiry update
element (UNIQUE). UNIQUE lets you retrieve, add, delete, and change records in
your files by entering simple commands from terminals .

UP-9744 Rev. 1 2-31

OS/3 Communications Software

ICAM

D
INPUT D
AND)----

OUTPUT (
QUEUES

D

ACTION PROGRAMS

1---------""'
IMS

-t- TCI INTERFACE

..
l MESSAGE

l !-+- - - PROCESSING
l_ --.! ROUTINE

l l t-J - - ---i (OPTIONAL)
r...-----., I I-' ____ _

NETWORK BUFFERS

L

I

'

REMOTE
DEVICE

HANDLERS

1

LINE BUFFERS

I
·•

t

SINGLE LINE
COMMUNICATIONS

ADAPTERS

/
IMODEMsl

7

Figure 2-6. IMS in an ICAM Environment

2-32 UP-9744 Rev. 1

•

•

•

•

•

•

OS/3 Communications Software

Here's a typical UNIQUE dialog corresponding to the earlier inquiry/response
example:

oflefJ"::cReo'i!!f
CHANGe''~i'iPAI.itvfi::te''!'cANDY

NAME ACCTNO CR LIM CR BAL A/R TERMS A/R DAYS DSCNT
PAULVILLE CANDY 6743 10000 534 30 NET 45 30 .080

***** ***** ********* *** ****

To change the credit limit, you overwrite the asterisks in the CR LIM column; the
display now looks like this:

OPEN'!':cRi:olT
CHANGe''i!PAliLVltte•,:cANDY
NAME ACCTNO CR LIM CR BAL A/R TERMS A/R DAYS DSCNT
PAULVILLE CANDY 6743 10000 534 30 NET 45 30 .080

:12500 ***** ********* *** ***
CHANGE COMPLETE

IMS supports most of the terminals supported by ICAM. Because the list of new
terminals supported with IMS is constantly growing, you should refer to the IMS
System Support Functions User Guide (UP-11907) for terminals currently supported.

You can also have IMS operate in a global network, which permits:

• Any mix of IMS and standard interface users

• IMS, standard interface, and interactive services to communicate with different
terminals on the same communications line

• Both dedicated network and global network IMS users running concurrently

• IMS, standard interface, and interactive services users to establish sessions so
that they all can use the same terminal right after each other (serially)

Details on generating IMS and on writing a network definition for an ICAM that
supports IMS are in the IMS System Support Functions User Guide (UP-11907).
Preparation and processing of IMS applications, including user action programs and
UNIQUE, are described in the IMS Action Programming in RPG II Programming
Guide (UP-9206), the IMS COBOL I Assembler Action Programs Programming Guide
(UP-9207), and the IMS Data Definition and UNIQUE User Guide (UP-9209) .

UP-9744 Rev. 1 2-33

OS/3 Communications Software

Remote Batch Processing (RBP) Utility

2-34

The remote batch processor allows you to use a batch terminal at a remote site to
submit jobs to the OS/3 supervisor and to receive output from those jobs. Users at the
remote site use the batch terminal to send a job stream to the remote batch processor.
The batch terminal can be another computer system such as a UNIX system. See the
OS I 3 - UNIX Operating System Connectivity Operating Guide (UP-14207).

Here is a sample job stream:

IRSTART RBP1 ------Logically attaches this terminal to the
IRLOGON USERA, 7476 remote batch processing system.
II JOB A ~
11 ovc 20 ~ Logs user A into the remote batch
II DST USERA,USERB processing system.
II PRNTR ~
11 ASMLG Lists users allowed to receive the output.
1$
PROGRAM START 0

I*
II FIN

IRLOGOFF ---------Logs user off.

In this example, the program to be run is embedded in the job stream. It could have
been stored in a disk file.

Except for the few commands unique to the remote batch processor, there are only a
few differences between submitting a job from a batch terminal via the remote batch
processor and submitting a job from a card reader 10 feet from the host processor. The
most important of these differences are:

• User identifications are defined at network definition. Anyone using the system
must log on with a proper identification.

• When submitting a job, you must specify the user allowed to receive copies of the
output. You can send copies of the output to as many as 23 destinations, including
the central processor.

• You can check on the status of a job submitted through the remote batch
processor from the remote terminal.

• You can have the output from a job go to another batch terminal or to a
printer/punch attached to the host processor.

Figure 2-7 shows a remote batch processing system.

UP-9744 Rev. 1

•

•

•

•

•

•

USER
JOB

l

CT DATA DIRE
INT ER FACE

\
ICAM

OS/3 Communications Software

USER USER
JOB JOB

OS/3
SUPERVISOR

REMOTE
BATCH

PROCESSOR

-------- --- --
..

REMOTE
DEVICE

HANDLERS

I I
LINE

BUFFERS

~~

,
[].

SINGLE LINE w ~a.:., ·"'Till 1'1'=-\.
lcOMMUNICA TIONS ...

"""' -=-· "' ADAPTER

NOTE:

..
The remote batch processing utility
uses the ICAM direct data interface.

P==i

~

Figure 2-7. Remote Batch Processing System

\

The !CAM Utilities Programming Guide (UP-9748) has a complete description of the
remote batch processing utility .

UP-9744 Rev. 1 2-35

OS/3 Communications Software

ICAM Device Emulation System (IDES) Utility

2-36

IDES allows System 80 to operate as a batch terminal to another computer. Use it
when you have one of these computers at a site where you need a computer acting as a
batch terminal to transmit data files. Do not confuse IDES with distributed data
processing. The processor acting as a batch terminal cannot process the messages,
switch messages to other destinations, or interrogate the data base of the other
computer.

The IDES system has four major parts:

1. A direct data interface

A direct data interface is used with a special remote device handler to emulate a
1004 card processing system, a DCT 2000 data communications terminal, an IBM
2780 data communications terminal, or an IBM 3780 terminal.

The :remote device handler uses the data code and protocol of the terminal it's
emulating. To the other computer, the computer using IDES is the terminal it
emulates. A local line, and not a VLINE, connects the two computers.

2. An IDES driver program that runs as a normal OS/3 user job

The IDES driver program controls input and output to the peripheral devices. It
does not process the messages sent between the peripheral devices and the other
host computer.

3. Peripheral devices that may be card readers, card punches, and printers

These are the input and output devices for this processor when it acts as a batch
terminal. As long as the IDES driver program is running, these peripherals are
dedicated to IDES and cannot be used by other jobs.

4. Another host computer

This is any computer that has a remote device handler (or its equivalent) to work
with a 1004 card processing system, a DCT 2000 data communications terminal,
an IBM 2780 data communications terminal, or an IBM 3780 terminal.

Figure 2-8 shows an IDES.

The !CAM Utilities Programming Guide (UP-9748) has a complete description of
IDES.

UP-9744 Rev. 1

•

•

•

•

•

• UP-9744 Rev. 1

CARD READERS,
CARD PUNCHES,

PRINTERS

DIRECT
DATA ~

DATA
MANAGEMENT

IDES
DRIVER

PROGRAM

INTERFACE ~ - - - - -

ICAM

HOST
COMPUTER

REMOTE
DEVICE

HANDLER

LINE
BUFFERS

SINGLE LINE
COMMUNICATIONS

ADAPTER

05/3 Communications Software

Figure 2-8. ICAM Device Emulation System

2-37

OS/3 Communications Software

NTR Utility

2-38

The NTR (nine thousand remote) utility, illustrated in Figure 2-9, allows a System 80
computer to act as a remote job entry terminal to a Unisys Series 1100 computer. You
use this utility to submit jobs or complete data files to the Series 1100 computer and
receive data files from it. You can also use the NTR utility to send messages between
the operator console in the System 80 computer, and the operator console in the Series
1100 computer.

The NTR utility provides the capability to write user subtasks to process data files
before they are sent to the Series 1100 computer or after they have been received from
the Series 1100 computer.

The utility runs as a normal OS/3 job and provides an IDES driver program and task
manager that enables your computer to act as a batch terminal to a Series 1100 host
processor using the !CAM direct data interface. A 2-way simultaneous
communications line (not a virtual communications line (VLINE)) is required to
connect to the Series 1100 computer. Required single line communications adapters
(SLCAs) are listed in Table 3-4.

The NTR utility's IDES driver program and task manager provide local and user
written subtask capabilities. Local subtasks are subtasks written by Unisys that
control input and output to local card readers, card punches, and the OS/3 system
console. These local tasks perform no processing of data between the local peripheral
devices and the Series 1100 host processor.

User subtasks are optional routines you write to process data files before or after
transmission or to support any peripheral device not supported by a local subtask. For
example, you might write a user subtask to control a disk drive, magnetic tape drive,
or an optical document reader.

The peripheral devices supported by local and user-written subtasks are the input and
output devices for this computer when it acts as a batch terminal to the Series 1100
computer. If you use spooling with the NTR utility, other jobs can also use these
peripherals; otherwise, the peripherals defined are dedicated to the nine thousand
remote utility.

The NTR utility is described in the NTR Utility Programming Guide (UP-9502).

UP-9744 Rev. 1

•

•

•

•

•

•

SYSTEM 80

---- --------DIRECT
DATA

ICAM

NOTE:

REMOTE
DEVICE

HANDLER

LINE
BUFFERS

INTERFACE

Shaded areas are not part of ICAM.

UP-9744 Rev. 1

OS/3 Communications Software

NTR

LOCAL LOCAL
SUBTASKS SUBTASKS

Figure 2-9. NTR Utility System

2-39

05/3 Communications Software

IBM 3270 Emulator

The 3270 emulator provides a way to connect System 80 to an IBM host system. It
allows System 80 workstation users to access application and IBM program products
running on an IBM host. The 3270 emulator:

• Acts as an IBM 3271 control unit, providing communication between System 80
and the IBM host system

• Supports standard interface user programs and System 80 local workstations
emulating IBM 3277 Model 2 display terminals

For details on the 3270 emulator, see the !CAM Standard MCP Interface (STDMCP)
Programming Guide (UP-8550).

05/3 Remote Terminal Processor

2-40

The remote terminal processor (RTP) is a data communications program that permits
your System 80 processor to function as a remote job entry terminal to one or more
IBM host processors using one of the following software systems:

• Houston automatic spooling program (HASP)

• Job entry system 2 (JES2)

• Job entry system 3 (JES3)

RTP enables you to:

• Send jobs to an IBM host

• Transmit and receive files on tape

• Transmit files from diskette

• Send messages to the central site

• Receive printer or punch output and provide printer forms control

• Communicate with the IBM console from the OS/3 console

RTP is controlled through the OS/3 system console. Simple keyins direct the operation
ofRTP. For instructions for generating and using RTP, see the !CAM Remote
Terminal Processor (RTP) User Guide (UP-8990).

UP-9744 Rev. 1

•

•

•

•

•

•

OS/3 Communications Software

Journal Utility

Journaling is the process of having ICAM create records and write them to disk or
tape. These records are the raw material from which the journal utility (a separate
program) uses to produce printed reports about your network and, if necessary,
initiate a restart process. Restart is the process of reconstruction ofICAM disk queues
if hardware problems develop.

Journaling involves:

• Adding to your ICAM network definition the macros necessary to incorporate the
journaling features

• Creating a message processing routine (MPPS) in your network definition to
specify which journal records (messages) you want to record, the name of the file
to receive the journal records, and point in time at which the records are to be
made

• Executing the journal utility to produce printed reports, or effect a restart using
restart records

The journal utility (JUST) produces printed reports that list the text of incoming and
outgoing messages, the number of messages sent or received, and the extent to which
your network buffers and activity request packet pools were used .

Should ICAM fail due to a disk problem, the journal utility allows you to recover
messages queued on disk. When you request a restart, the journal utility rebuilds the
disk message queues. Then, you perform a warm restart to resume message flow.

Note that the journal utility processes records gathered by ICAM, but the utility
operates independently of ICAM, i.e., it does not require an ICAM environment.

To obtain printed reports, three journal utility statements are at your command. Each
statement is associated with a report. For example, one statement (BSTAT) gives you
a printed report on the extent of network buffer and activity request packet usage.
These statements are placed in your job control stream, as is the statement for a
restart. Details of these statements and examples of their use are found in the !CAM
Utilities Programming Guide (UP-9748).

There are five different types of journal records you can create. The record types and
the JRNINIT suboperands of the CCA macro that create them are:

1. Journal records - Each of these records contains the text of a message sent or
received, the time and date the journal record was created, and other related
information. Messages are written to a journal file at the request of a message
processing routine (MPPS) you incorporate into the ICAM network.

2. ODNR records - ODNR (output delivery notice request) records are message
dequeueing notices. ICAM writes these to a journal file when a message is
dequeued for delivery to a terminal or other user program .

UP-9744 Rev. 1 2-41

OS/3 Communications Software

3. Line and terminal performance records - These records contain the total number
of messages sent or received by each terminal on a line and the number of times
each terminal was polled.

4. Buff er statistics records - These records contain the number of network buffers
used and the frequency they were used. Also listed is the activity request packet
size and frequency the packets were used.

5. Restart records - These records contain a copy of each message as it was queued
to disk. If ICAM fails due to a disk message queueing problem, the journal utility
can be used to reconstruct the ICAM disk message queue. You then perform a
warm restart to resume message flow.

Connecting OS/3 to a UNIX System

OS/3 to UNIX operating system connectivity enables you to connect a UNIX system to
an OS/3 system over a communications line. This allows UNIX users access to both
batch and interactive procedures from the UNIX system. You can also execute UNIX
applications and shell commands from OS/3 and transfer files between the two
operating systems.

Refer to the OS I 3 - UNIX Operating System Connectivity Operating Guide (UP-14207)
for details.

Connecting OS/3 to a MAPPER 5 System

2-42

The OS/3 to MAPPER 5 connectivity program product allows you to sign on to OS/3
from an OS/3 terminal or workstation and access a MAPPER 5 system. Thus, when a
communications line is installed between the MAPPER 5 system and the OS/3 system,
you can use the data base and transfer files from the MAPPER 5 system from an OS/3
terminal or workstation just as though you were directly connected to the MAPPER 5
system.

When you configure your ICAM global network for MAPPER 5, you must specify the
MAPPER 5 inverted remote device line handler; i.e., specify DEVICE=(MAP5RDH) on
the ICAM LINE macro for the communications line that connects the MAPPER 5
system and OS/3.

Define the MAPPER 5 system as a U200 terminal; that is, specify:

LINE DEVICE=(MAPSRDH)
TERM FEATURES=(U200,screen-size)

You can configure your ICAM global network to support multiple lines with multiple
terminals on the same line. This permits concurrent access of the MAPPER 5 system
by OS/3 workstations or terminals.

UP-9744 Rev. 1

•

•

•

•

•

•

DISK

OS/3 Communications Software

Figure 2-10 shows how an OS/3 workstation or terminal operator signs on to an OS/3
ICAM global network that uses the MAPPER 5 remote device handler. The
MAPPER 5 inverted remote device handler acts as a traffic manager and provides a
passthrough function between the terminal and the MAPPER 5 system.

LOCAL WORKSTATIONS

OS/3
SYSTEM 80

MAPPER 5
INVERTED

REMOTE DEVICE HANDLER

ICAM
GLOBAL NETWORK

TERMINALS

SYNCHRONOUS
COMMUNICATIONS

LINE

Figure 2-10. Connecting 05/3 to a MAPPER 5 System

MAPPER 5
SYSTEM

MAPPER 5

DATA
BASE

UP-9744 Rev. 1 2-43

•

•

•

•

•

•

Section 3
Communications Hardware

3.1. Basic System 80 Communications System
Up to this point, we have talked about communications software. Now, we will briefly
discuss the communications hardware and its relationship with the software.
Specifically, we will cover the terminals, lines, and the communications software.

Let's start with a discussion of the essential communications components of the
smallest System 80. In this basic communications system (Figure 3-1) we have:

• Terminals - at least one on each communications line

• Four modems to support two communications lines

• Two single line communications adapters

Terminals are devices that allow you to talk to your computer. They can be as large as
an entire computer system or as small as a typewriter device.

Modems are devices used to interface a computer or terminal to a telephone line.
Modems convert binary signals used by your computer and terminals to a form of
linear signal that can be carried on a telephone line - a modulated carrier wave.
(Modem is an abbreviation for modulator/demodulator.)

A single line communications adapter (SLCA) is required for each communications
line connected to a System 80. During input the SLCA converts the serial data (bits)
coming from a modem and assembles it into character form before transferring it to
the computer. During output, the SLCA converts parallel data (bytes) to serial data
and passes it to the modem for output to the communications line.

Within System 80, the input/output microprocessor coordinates all the input/output
operations between each SLCA and the processor and handles the peripheral devices
that make up your computer configuration, such as tape units, disk units, and card
readers.

We have just described a minimum System 80 supporting only two communications
lines. This system can be enhanced to support up to six additional communications
lines, that is, up to eight lines. The largest System 80 provides up to 2 input/output
microprocessor channels and each channel can support up to 14 SLCAs, that is, up to
28 communications lines .

UP-9744 Rev. 1 3-1

Communications Hardware

WORKSTATIONS

NOTE:

ICAM
SUPPORTED
TERMINALS

INPUT /OUTPUT
MICROPROCESSOR

SLCA SLCA

SLCA means single line communications adapter.

Figure 3-1. Basic System 80 Communications System

3.2. The Terminals

3-2

A terminal is any input or output device that works with a computer through a
communications line. The differences between a terminal and a local computer
peripheral (like a printer or disk drive) aren't very great. A terminal has a few extra
circuits, allowing it to work in a communications system, but the differences between
it and a local peripheral end there. A peripheral is made into a terminal by adding
communications interface circuits.

UP-9744 Rev. 1

•

•

•

.-----------------------------

•

•

•

Communications Hardware

From the ICAM point of view, the communications interface is the important feature
of a terminal because it's the part that works with ICAM. To your programs, however,
the communications interface is invisible. To them, a terminal is an input/output
device put to a particular use. We'll look at terminals from these two viewpoints: first,
your program; then, ICAM.

Unfortunately, we can't use any one terminal as a typical example. Too many different
terminals exist with different interface characteristics, different hardware, and
different uses. Unless we describe the particular terminal you're using and the use
you're putting it to, a description of a particular terminal isn't much help. What we
give here describes idealized characteristics of a terminal. Before you can write a
program or create ICAM, you must read the manual that comes with your terminal to
see how your terminal uses these characteristics.

3.2.1. Hardware - What is a Terminal?

CENTRAL
COMPUTER

A terminal is any device capable of receiving or sending data over a communications
line. Many terminals are the same as the peripheral devices that have been used for
years: printers, disk drives, card readers, magnetic tape drives, diskette drives,
keyboards, and cathode-ray tubes. Then there is the equipment normally used only in
terminals, like paper tape punches and readers, cassette tape systems, graphics
plotters, and cash registers. Whatever input and output equipment you have in your
terminals, they must use digital signals .

Many remote locations combine two or more input and output devices to create a
terminal system. The Universal Terminal System 40 Single Station pictured here
combines a diskette subsystem, a printer, and a magnetic stripe reader to create a
single terminal system.

SYSTEM 80

TERMINAL SYSTEM

8406 DISKETTE
SUBSYSTEM

0797 PRINTER

UP-9744 Rev. 1 3-3

Communications Hardware

3-4

A terminal system has another attribute - intelligence. Many terminals are now small
computers, capable of running programs either in support of their communications
role or to support offiine batch jobs. For example, the UTS 40 single station system
could run a program that edits messages or sorts data before they're sent to the
central computer. Or it could run a payroll job that has nothing to do with
communications. Larger computers, such as your system, can run communications
jobs and noncommunications jobs concurrently.

The preceding paragraph brings up two points. First, your computer can also be
considered a terminal. Like the UTS 40 single station, it has a processor, it has
several input and output devices, and it can send and receive messages. ICAM sets
your computer off from the rest of the terminals in your network. As the following
subsections show, ICAM acts like a traffic cop. It controls when a terminal can send a
message and when a message can go to a terminal.

SYSTEM 80

The second point is the idea of distributed processing - distributing the processing of
your data. Instead of having one or two large central computers doing most of your
processing, we can add a series of intelligent terminals. Not only do these terminals
cost less, but they can process your work more efficiently since they can be set up at
key locations to meet your local needs.

For example, let's say you're using your communications system for sales order entry.
Your clerks fill out order forms at a UTS 40 single station, and the UTS 40 handles
the formatting of the screen and the editing of the data. If you don't do it at the
terminal, then you must do it at the host computer. If the host computer does the
formatting and editing, then there's less time for the processing only it can do.

One big advantage of distributed processing is letting the host computer concentrate
on message processing without getting tied down in the details of communications.
Another advantage is that you spread your data base among several computers, often
making data access faster and more responsive. As we said earlier about setting up
the terminals at key locations - consider a warehouse having a computer dedicated to

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

keep inventory records up-to-date. When someone at the warehouse needs inventory
information, it's right there. People in other parts of the company still get inventory
information from the warehouse computer through a communications system.

Instead of a master-slave relationship among terminals as shown for the UTS 40
single station, the communications line can be connected to a terminal system
consisting of a control unit with attached terminals. Input and output devices and any
intelligence of a terminal are transparent to ICAM. ICAM works with the terminal
control unit, not directly with the device:

YOUR
PROGRAM ICAM

TERMINAL
CONTROLLER

The concept of the remote control unit with attached terminals is implemented with
the Universal Terminal System 4020 (UTS 4020) and 4040 (UTS 4040) Cluster
Controllers. You can connect many UTS 20W or UTS 40W terminal workstations and
peripheral devices to these cluster controllers shown in Figure 3-2.

The cluster controller is a device that can control the inputloutput operations of
numerous interactive terminals and peripherals. It is microprocessor-based and
programmable. It controls both interactive communications and peripheral operations
between the host processor and the display terminal workstations.

Writing to a terminal is like mailing a letter. You, through your program, write the
message and put an address on it. Then you mail it by giving it to ICAM, and ICAM
delivers the message to the right location. But just as the post office delivers mail to a
mail room and not to individual departments within a company, !CAM delivers
messages to a terminal controller and not to individual output devices or a processor.

When you write your programs, you must keep the hardware of the terminal in mind.
In some cases, you must supply the control characters needed by the device, like
screen format characters or forms control characters. (ICAM provides device
independent control expressions (DICE) to ease this problem.) Also, whatever
processing your program does must complement the processing done by the terminal.

UP-9744 Rev. 1 3-5

Communications Hardware

CENTRAL
COMPUTER

SYSTEM 80

1 COMMUNICATION LINE

~ UTS 4020/4040
~ CLUSTER CONTROLLER

UTS 20W I 40W WORKSTATIONS ·WITH PERIPHERALS

Figure 3-2. UTS 4000 System Connected to System 80

3-6

•

•

PERIPHERALS

•
UP-9744 Rev. 1

.-------------------

•

•

•

Communications Hardware

3.2.2. How Are Terminals Used?

Terminals are often separated into several categories based on use. Unfortunately,
these categories are ill defined; a few terminals don't fit in any category, and many
terminals fit in two or more. Keeping this in mind, here are the categories:

• Real-time terminals - Usually these are monitoring or process control
instruments. A terminal that monitors air pollution would be real time, as would
one that controls a heating plant. ICAM works with real-time terminals as long
as they produce digital signals.

• Interactive terminals - These terminals allow you to carry on a conversation with
a program in the host computer. Normally, you enter a message and the program
responds with one. For example:

HOST:
USER:
HOST:
USER:
HOST:

HOST:

HOST:
USER:
HOST:
USER:

WHAT INFORMATION DO YOU WANT TO WORK WITH?
CREDIT

PLEASE ENTER CUSTOMER NAME AND ACCOUNT NUMBER;
PAULVILLE CANDY _6743

CREDIT RECORD FOR PAULVILLE CANDY IS;

CRED!T LIMIT; 10,000 CREDIT BALANCE; 534
A/R TERMS; 30 NET 45 A/R DAYS 30 A/R DISCOUNT; .080

DO YOU WISH TO CHANGE ANY OF THIS INFORMATION?
YES

PLEASE ENTER FIELD NAME FOLLOWED BY NEW INFORMATION;
CREDIT LIMIT; 12,500

The basic interactive terminal almost always has a keyboard for entering data or
messages and a printer or a cathode-ray tube for displaying them. Onto this, any
number of auxiliary devices can be added. Many of these may be batch devices,
such as tape cassette systems, printers, or paper tape readers/punches.

• Batch terminals - These terminals send and receive large amounts of data at a
time. The data could be the code for a program or the data for a program. Unlike
interactive terminals, batch terminals are rarely used conversationally.

The type of terminal tends to have some effect on ICAM. Real-time and interactive
terminals typically send short messages with a few seconds to minutes between them.
Batch terminals typically send long messages, often consecutively. When you create
the ICAM line buffers (see 5.4), you must take the length and frequency of the
messages into account .

UP-9744 Rev. 1 3-7

Communications Hardware

3-8

Interactive terminals attached to a distributed communications processor (DCP) in a
Unisys DCA network are supported by the ICAM standard (STDMCP) interface and
the transaction control interface (TCI) for IMS interface. Batch terminals are only
supported by the ICAM standard interface.

Table 3-1 summarizes the interactive and batch terminal system supported by ICAM.

Table 3-1. !CAM-Supported Terminals and Workstations

Terminals

Interactive Environment

UNISCOPE 100, 200

UTS 400

UTS 4000
UTS 20 Single Station (not programmable)
UTS 40 Single Station (programmable)
SVT 1120
UTS 4020 Cluster Controller with UTS 20W or 40W Workstations
UTS 4040 Cluster Controller with UTS 20W or UTS 40W Workstations

UTS 10 (character/teletypewriter mode)

IBM 3270 Terminal System (3271 controller)

TELETYPE® Models 33, 35, 37

UTS 200 (local workstation)

UTS 20 (remote workstation)

UTS 30 (remote workstation)

UTS 400 (local workstation)

UTS 40 (remote workstation)

Batch Environment

IBM 2780/3780/3741

UOS 2000 (IBM 3741 or 2780 emulation mode)

TELETYPE is a registered service mark of Teletype Corporation.

UP-9744 Rev. 1

•

•

•
---~--""'~" _______ _.

•

•

•

Communications Hardware

3.2.3. Interface Characteristics - How Terminals Communicate

Terminals communicate in different ways. They format their messages differently,
encode them differently, and transmit them differently. It's here that ICAM conforms
to your terminals. As we look at the interlace characteristics, you should realize
they're like items on a menu. Any one terminal uses some, but not all, of these
characteristics. Even with a particular terminal, its interlace characteristics aren't
necessarily fixed. The BC/7 terminal-minicomputer, for instance, can act like a
DCT 1000 terminal, a DCT 2000 terminal, a 1004 card processing terminal, a
9200/9300 terminal, an IBM 2780 terminal, a HASP terminal, or as itself. Because of
this, we can't describe typical terminal interlace characteristics any more than we can
describe a typical meal.

Also, your computer must match the characteristics of the terminals it works with. If a
terminal formats and transmits its messages in a certain way, then so must your
computer. It's the job of ICAM and the single line communications adapter to handle
the interlace characteristics for your computer. Most of these characteristics do not
affect your programs in any way.

Message Formatting

One of the most important characteristics of a terminal is the way it formats
messages. At the heart of every message is the text, which may be a program
instruction, like OPEN CUSTOMER FILE, or it may be program data, like H8954 12
BRASS BEDS 1 75.95. Text is like a letter; it requires an envelope before it is sent.
Within this envelope, there are framing characters. Most of your terminals send a
message with two framing characters. The first character, which is optional, is the
start-of-text character (STX) preceding the text. Following the text is always the end
of-text character (ETX). So the minimum message formats with the framing
characters look like this:

text EOT
or

STX text ETX

Our sample texts now look like this:

OPEN CUSTOMER FILE ETX
or

STX H8954 12 BRASS BEDS 175.95 ETX

Terminals using these formats are usually unbuffered - that is, they cannot
temporarily store a message before transmitting or displaying it. These terminals
transmit or receive one character at a time. As ICAM receives the message, it stores
each character in a buffer until it has the complete message; for example:

UP-9744 Rev. 1 3-9

Communications Hardware

3-10

Transmission from
Terminal ICAM Buffer

l [srxJ o] PJ E} NJ L] c] u] s] rj o l Mj Ej Rj L JF

x_J J ST

0

p

E

N

c

u

s

T

0

M

E

R

L

E

x

NOTE:

1J Lj Ej ETXj

The symbol !:::. represents space characters transmitted as part of the message.

Unbuffered terminals have limited capabilities. You can't edit a message before
sending it. It's difficult, but not impossible, to have more than one unbuffered terminal
on a line. The solution is to put buffers into terminals. When it's buffered, a terminal
adds more framing characters to the basic STX text ETX format. The first character in
the header is the start of header (SOH). Most Unisys terminals then place a
3-character terminal address following the SOH. The address consists of:

• Remote identifier (rid), which identifies a group of terminals

• Station identifier (sid), which identifies a particular terminal in a f 'P

• Device identifier (did), which identifies a particular input or outp1 _ Lkvice on a
terminal

More is said about the terminal address in 4.3.

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

A typical message header looks like this:

SOH rid sid did

The text is still preceded by a start-of-text character. But now, control information
may be inserted in the text. For example, the UTS 400 terminal sends the location of
the cursor before the text of the message. The format of the cursor location is:

ESC VT Y X SI

where:

ESC (escape)

VT

y

x

SI

Specifies that the following characters are part of a control sequence.

Specifies that the next two characters are the cursor address.

Is the Y coordinate identifying the horizontal line (or row) on the screen
where the cursor is placed.

Is the X coordinate identifying the vertical column on the screen where the
cursor is placed .

Indicates the end of the cursor address sequence.

This is an example of only one type of control information used by one kind of
terminal. Other terminals place control information relevant to their hardware in the
text.

Batch terminals generally send messages in blocks. To separate the blocks of text,
they use an end-of-transmission block (ETB) character. One way to do this is to start
each block with the start-of-text character and end it with an ETB character. Batch
terminals do not require a terminal address (rid, sid, did). In this format, each
message has three parts - a header, one or more blocks of text, and an end-of
transmission character, as shown here:

Header End of transmission

SOH STX control-info text ETB STX text ETX EQT

block block

UP-9744 Rev. 1 3-11

Communications Hardware

3-12

Unit separate (US) characters are also used to separate blocks:

Header End of transmission

--SOH STX control-info text US text ETX EOT

block block

As ICAM receives each block, it puts it in a buffer:

Figure 3-3 summarizes the message formats.

Transmission from
Terminal ICAM Buffer

STX F I L E ETX EQT

Second Block

Figure 3-3. Common Message Formats

Looking at Figure 3-3, we can examine some of the message formats - going from the
simple to the complex.

The simplest message is a string of individually transmitted characters comprising
the text followed by an end-of-transmission character.

text EOT

More common is a message in which the text is flanked by a start-of-text character
and an end-of-text character.

STX text ETX

Some terminals prefix the start-of-text character with the address of the terminal. The
address consists of a remote identifier, a station identifier, and a device identifier.

rid sid did STX text EQT

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

More sophisticated terminals prefix the text with a header composed of a start-of
header character and the address of the terminal. The terminal frames each block of
text with a start-of-text and an end-of-text character. The text consists of control
information and the text itself. An end-of-transmission character appears at the end of
the message.

SOH rid sid did STX control-info text ETX STX text ETX EOT

Another way of blocking messages is to separate each block of text with a unit
separator. In some formats, the end-of-transmission character isn't needed, and the
message ends with an end-of-text character.

SOH rid sid did STX control-info text US text US text ETX

On output, your programs write the text and provide the control information. ICAM
takes this core and builds the rest of the message around it, adding the header, start
of-text character, end-of-transmission character, and whatever else the format
requires. On input, ICAM strips this away and gives your program the text and
control information.

Communications Direction

So far, we've talked about terminals as if they all send and receive. While most do,
some are send-only and others are receive-only. Among the terminals that send and
receive, a few can do both at the same time. Based on the directions of
communications possible, there are three types of terminals:

1. One-way (simplex) terminals - Either send or receive but not both. You might, for
example, want a terminal on a loading dock for printing shipping orders. Because
your program isn't interested in receiving messages from the loading dock, a
receive-only printer is installed. A picture of a simplex operation could look like:

UP-9744 Rev. 1

The only difference between this terminal and one that sends and receives is this
one doesn't have the circuitry for sending messages. A send-only terminal is just
the opposite: It doesn't have the circuitry to receive messages .

3-13

Communications Hardware

3-14

2. Two-way alternate (half-duplex) terminals - Receive and send, but not both at the
same time. They're like a citizen's band radio. When you send, the circuitry is tied
up and the terminal can't receive. When you receive, the circuitry is again tied up
and you can't send. Most terminals are 2-way simultaneous. You can use a half
duplex terminal as a simplex terminal by not using its send or receive
capabilities. A picture of a 2-way alternate operation could look like:

3. Two-way simultaneous terminals (also called duplex or full-duplex terminals) -
Send and receive simultaneously. Basically, they combine the circuitry of a
receive-only terminal and a send-only terminal into a single unit that receives on
one line and sends on another. The 2-way simultaneous terminals send and
receive messages faster than 2-way alternate terminals even when they use
identical lines. This is because acknowledgment signals can be received on one
channel while data is sent on the other. This saves time because the line doesn't
need to be turned around each time to acknowledge a message. A picture of a 2-
way simultaneous operation might look like:

When most terminals send a message, they expect the host computer to return an
acknowledgment and vice versa. With a 2-way alternate terminal, the circuits
must be turned around before an acknowledgment is made. The process is:

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

SEND MESSAGE

TURN
CIRCUITS AROUND

RECEIVE MESSAGE OR ACKNOWLEDGMENT

TURN
CIRCUITS AROUND

SEND MESSAGE

~ AND SO ON

Looking at this picture, we see that every time the circuits are turned around, it
wastes time. With 2-way simultaneous terminals, the circuits need not be turned
around, and the tum-around time is used to send messages.

ICAM controls the communications direction with the terminals. It simply needs to
know what kind of terminals you're using. When you generate ICAM, you must
declare a terminal as either half-duplex or duplex. Simplex terminals are declared as
half-duplex since your system is designed to accommodate more sophisticated
transmission .

UP-9744 Rev. 1 3-15

Communications Hardware

The 2-way alternate and 2-way simultaneous terminals are indistinguishable to your
programs. If you have simplex terminals, then your programs can only send to a
receive-only terminal or receive from a send-only terminal.

Synchronizing Transmission

Another problem is synchronizing transmission between the terminals and the host
computer. Without getting too deeply into the technicalities of synchronization, the
problem is actually two related problems. First, terminals send messages in bits that
may last for a millisecond or less. If the sending terminal is slightly out of
synchronization' with the receiving terminal (remember the host computer is a
terminal), bits are lost. The following illustration shows two devices that are
synchronized.

ff

~ 1 ___ n ... ___
SENDING RECEIVING
TERMINAL TERMINAL

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0

1 1 0 1 0 1 1 0 0

0 0 0 1 0 l 0 0 1 0 0

3-16 UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

Second, if the receiving terminal misses one or more bits, possibly because of line
interference, it can't tell which bits belong to which character because a typical
transmission is just a string of bits without markers between characters. For example:

SENDING

I JOE IS HERE

RECEIVING

I JOE I H E

Here, since there are no markers, the receiving terminal does not know where the first
word starts or last word ends. JOE could be a fragment or the entire word, as well as I,
H,andE.

One method of synchronizing terminals is misleadingly called asynchronous
transmission.

Asynchronous doesn't mean the terminals aren't synchronized - it means that each
character is synchronized rather than entire blocks of characters as in synchronous
transmission .

When you send the character in an asynchronous system, a start and a stop bit are
added to each character by the hardware. Whenever the receiver detects a start bit, it
knows that a character is coming in, and it knows when to look for the next bit. In this
manner, the sender and the receiver are synchronized. Most terminals using
asynchronous transmission also follow the last bit in each character with a stop bit.
So, ifthe letters E and X were sent asynchronously in ASCII, the line transmission
might look like this:

1 0 0 0 1 0 1 1 0 1 1 0 0 0

l3omsl 20 I 20 I 20 I 20 I 20 I 20 I 20 I 20 I 20 I 30 I 20 I 20 I 20 I 20 I 20 I 20 I 20 I 20 I 20 I 30 I
2 3 4

Code Representing E

LEGEND:

SP Stop bit
ST Start bit

7 8 SP

Parity
Bit

3 4 5 6 7

Code Representing X

8 SP

Parity
Bit

What distinguishes the stop bit from any other bit is its duration; it lasts 30
milliseconds while every other bit lasts 20 milliseconds. There are other ways of using
asynchronous transmission. The start bit can be no longer than any other bit or the
stop bit can be eliminated entirely. Normally, asynchronous transmission is associated
with short data transfers such as queries and acknowledgments .

UP-9744 Rev. 1 3-17

Communications Hardware

The other way of synchronizing terminals is through synchronous transmission.
Terminals using this method are more sophisticated than asynchronous terminals.
Once the sender synchronizes with the receiver, they remain synchronized for up to
hundreds of bits. Entire messages or blocks of messages are transmitted before the
terminals need resynchronization.

In synchronous transmission, two or more synchronizing (sync) characters precede
message transmission. When the receiver and sender recognize they are
synchronized, message traffic begins. A message with the text EXECUTE might look
like this in synchronous transmission:

sync sync sync sync SCH rid sid did STX E x E c u T E ETX EOT

The single line communications adapters handle synchronization for the host
computer. IC.AM needs to know whether you are using asynchronous or synchronous
transmission, but it has no role in synchronizing transmission. Synchronization has no
effect on your programs.

Line Control

3-18

Line control is a major terminal interface characteristic. At any given moment, a line
is used to either receive messages from a terminal or send them to a terminal. The
host computer and terminal can't send at the same time. If they try, both of the
messages are lost. The solution is to let the host computer control message flow on a
line. ICAM, through the communications hardware, determines whether a line is set
for receiving messages from or sending messages to the host computer. As with every
other terminal interface characteristic, there's more than one way of controlling a line.

The first is called uncontrolled. ICAM controls the direction of message flow, but it
doesn't control when the terminal sends - hence, the name uncontrolled. Normally,
unbuffered, asynchronous terminals are uncontrolled lines.

In an uncontrolled system, ICAM constantly has the line ready to receive messages
from the terminal except when the host computer is actually sending to the terminal.
In other words, you, at the terminal, can send a message to the host computer any
time it's not sending to you. If you try sending a message when the host computer is
sending, the message is ignored because the line is set the wrong way.

Uncontrolled lines make multiterminal lines impractical. This leads us to the second
method of controlling a line, appropriately called controlled. Just as uncontrolled
refers to when a terminal can send, so does controlled. Put simply, on a controlled line,
terminals speak only when spoken to.

The heart of a controlled system is a set of rules - protocols - governing all
transmissions between the host computer and a terminal. While protocols vary from
terminal to terminal, the basic rule of all of them is that the host computer initiates
all traffic on the line through the use of polls. A poll, which is a message sent by the
host computer to a terminal, requires a response from the terminal.

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

Most protocols have at least the following kinds of polls:

• A status poll asks a terminal its status. Typical responses might be the
equivalents of"I'm busy"; "I have a problem and cannot accept any messages";
"My diskette drive is down"; or "I can accept a message". Status polls establish
what devices in a terminal are up or down and whether the terminal can accept a
message.

• A traffic poll asks a terminal to send any messages it has ready to send. The
terminal sends either a message or a response saying it has no messages.

• A retransmission request poll asks a terminal to retransmit the last message it
sent. Let's look at how polling works between ICAM and a UTS 400 terminal. For
details of UTS 400 protocol and poll formats, see the UTS 400 Programmer
Reference (UP-8359).

ICAM starts by sending a general poll to all the terminals on the line:

SOH 1 Pp ETX

SOHlPpDLEl
ETX

SOHlapSTX
text ETX

SOH 1 a p ETX

Response

SOH 1 a p STX text ETX

EOT EOT ETX

SOH 1 a p DLE 1 STX
text ETX

Description

The poll consists of five characters: a start-of-header
character, a 3-character address, and an end-of-text character.
Even though the poll doesn't have any special characters, a
terminal understands it means, 'Does any terminal have a
message to send?"

The terminal with the address 1 a p responds by sending this
message.

Once ICAM has the message, it returns with a poll
acknowledging the receipt of the message and asking if any
terminal has another message.

In this case, no more messages are waiting, so the multiplexer
on the line responds with a no-traffic message.

Because there is an output message waiting, ICAM sends a
message to the terminal with the address 1 a p.

ICAM sends out a poll asking the terminal if the message was
received without error.

The terminal then responds with a positive acknowledgment
and a new message.

Terminals on controlled lines usually have internal buffers to hold messages until
!CAM polls them. Normally, these terminals send synchronously .

UP-9744 Rev. 1 3-19

Communications Hardware

For 2-way simultaneous terminals, line control (through polling) establishes terminal
status and acknowledges messages. The terminal and host computer can send
simultaneously; one sends messages (and acknowledgments) down one channel of a
line as the other acknowledges messages (and sends other messages) on the other
channel of the line. The advantage of2-way simultaneous terminals over 2-way
alternate terminals is the line doesn't have to be reversed after each message or poll,
saving considerable time. However, it doubles the circuitry and the cost for the
equipment must be weighed against telephone line usage charges.

MESSAGES AND ACKNOWLEDGEMENTS

(TWO CHANNELS)
LINE---------------

MESSAGES AND ACKNOWLEDGEMENTS

Additional Terminal Interface Characteristics

In addition to the interface characteristics discussed in the previous subsections, two
more affect terminal interfaces in a communications system. The first is the
transmission rate, measured in bits per second, at which the terminal sends or
receives. Unless you're working with an exceptionally fast terminal, the
communications hardware takes care of this. If you have a very fast terminal, you
should declare extra buffers (see Section 5). The way a terminal encodes its messages
is the other interface characteristic. Most of the newer terminals use 7-bit ASCII code
established by the American National Standards Institute (ANSI). Another is 8-bit
EBCDIC, which your computer uses internally. When a terminal uses any supported
code but EBCDIC, ICAM performs the translation from that code to EBCDIC.

To work with a terminal, ICAM uses a routine called a remote device handler written
to match the interface characteristics of the terminal. The remote device handler
takes care of message formatting, line control, and code translation. Because each
terminal is different, each remote device handler is different. ICAM has built into it
the remote device handlers for the terminals listed in the next paragraph. If you
decide to use a terminal not on the list, its interface characteristics must be the same
as one of the terminals on the list, or you'll have to write your own remote device
handler to support it. For more on remote device handlers, see 4.1.

3.3. Communications Lines

3-20

Throughout this section, we've used the word line without really defining what it is.
That's because a line is merely the communications link between a host computer and
a terminal that allows them to exchange messages. You'll notice that the definition
ignores the mechanics of establishing a line - you can do that by stringing wires
between your host computer and terminals, by using the phone system, or by using a
satellite relay. A line is not the communications hardware that establishes a circuit
capable of carrying a message. Rather, it's a logical idea saying that a host computer
and a terminal are somehow tied together and can communicate.

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

We aren't going to look very hard at lines, primarily because the way you establish
them doesn't have much effect on your software or your hardware. But we will look at
those ways communications lines influence !CAM.

To have a line between a computer and terminal, there must be a circuit tying them
together. The simplest kind of circuit is established by stringing wires between the
computer and terminal. Over distances ofless than a few tens or hundreds of miles,
this is probably the way your circuits are established. But stringing wires is expensive,
and the signal must be boosted every few miles. This problem is eliminated by sending
messages via high frequency microwaves between a series of relay transmitters or,
more recently, through communications satellites.

If your terminals and host computer are close together - less than 2000 or 3000 feet -
you can set up your own lines by connecting them with cables. Beyond short distances,
the cost of stringing the cables and obtaining the rights-of-way becomes prohibitive. At
this point, you use the facilities of a common carrier, a company whose business is to
provide communications services. Until a few years ago, the telephone and telegraph
companies were the only existing common carriers, and they're still the biggest. In the
last decade or so, however, these common carriers were joined by a number of new
companies specializing in computer communications.

All the common carriers tie available circuits together to create one circuit connecting
your computer and terminals. Often, the circuits combine different types of
communications facilities, as in this example:

LOS ANGELES

""'

UP-9744 Rev. 1

TELEPHONE
TOLL OFFICE

LOCAL
CENTRAL

TELEPHONE
OFFICE

,,

"' ill

11'1
I •,11
NEW YORK

3-21

Communications Hardware

Most books on communications cover the circuit hardware in detail. From an overall
perspective of data communications, this is important. From the perspective of
software, it's not. Neither ICAM nor your programs are any more aware of the
physical circuit than you are when you make a phone call. The common carriers offer
three basic kinds of service: dedicated circuits, switched circuits, and public data
networks.

3.3.1. Dedicated Circuits - Dedicated Lines and VLINEs

3-22

Dedicated circuits - also called dedicated lines, private lines, and leased lines - are the
simplest to understand. In this case, either you or a common carrier creates a
permanent circuit that's always ready to carry your messages. As long as the
equipment on both ends of the circuit is turned on, the line is established. An example
of the use of a dedicated circuit is this UTS 40 single station terminal, which is always
connected and ready to operate:

DISKETTE
SUBSYSTEM

MODEM

DEDICATED
COMMUNICATIONS
LINE

MODEM

PRINTER

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

One special use of a dedicated circuit is a VLINE. VLINEs are used to connect ICAM
global networks located in different computers. They are also used to connect an
ICAM global network to a public data network (PDN). Dedicated circuits used in this
way always operate in 2-way simultaneous-(full-duplex) mode.

The term VLINE or virtual line comes from the way the circuit is used (that is, many
logical circuits can be carried on a single dedicated circuit) not how the line is
physically constructed.

INPUT.
AND

OUTPUT
QUEUES

D
D
D

NOTE:

HOST COMPUTER 1
PROGRAM

PROGRAM

-woR~ -,- -wo~
AREA

1
AREA

ICAM

REMOTE
DEVICE

HANDLERS

VLINE LINE
BUFFERS

SINGLE LINE
COMMUNICATIONS

ADAPTER

INPUT
AND

OUTPUT
QUEUES

D

HOST COMPUTER 2
PROGRAM

PROGRAM

;ooK- -,- -w0R'K
AREA

1
AREA

ICAM

D ---NETWORK BUFFERS

D

VLINE

REMOTE
DEVICE

HANDLERS

VLINE LINE

BUFFERS

SINGLE LINE
COMMUNICATIONS

ADAPTER

Additional global elements are introduced in subsequent subsections.

UP-9744 Rev. 1 3-23

Communications Hardware

ICAM uses the following protocols with VLINEs:

• X.25 link access procedure defined by the Committee Consultative International
Telephone et Telegraphic

• X.25 link access procedure B defined by the Committee Consultative
International Telephone et Telegraphic

• Universal Data Link Control Asynchronous Balanced Mode described in the
Universal Data Link Control General Description (UP-8554).

3.3.2. Switched Lines

3-24

Circuit connections over switched lines are established each time you want to connect
a terminal to your host computer. If you use the telephone system, the telephone
company's switching equipment connects available circuits to give you a line. You use
the circuits until you hang up. When you do that, the circuit is broken and is available
to other users. The next time you call the same location, you will probably get different
circuits. A typical switched-line network is:

I• •I
SITE A

@
LINE SWITCHING

CENTER

I• •I

SITE B

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

In most respects, dedicated and switched circuits work the same. Both tie your host
computer directly to your terminals (or to another computer), giving the host computer
control over the communications system. With both, the transmission rate of the line
must be the same or greater than the transmission rate of your terminals. Also, the
communications direction of the circuit must support the communications direction of
your terminals: 2-way alternate circuits for simplex* and 2-way alternate terminals
(no common carrier offers simplex circuits), and 2-way simultaneous circuits for 2-way
simultaneous terminals.

Some major differences exist between dedicated and switched circuits:

• Because different circuits are used each time a switched circuit is established, you
never know what circuit quality will be. To give an example, sometimes when you
make a phone call, you get a poor connection. While this causes you
inconvenience, when this happens in data communications, the messages often
become unintelligible. With dedicated lines, you always know the characteristics
of your circuits. Also, with dedicated circuits, you can use equipment designed for
data communications rather than for voice transmission - although you'll pay
extra. You can't do this with switched circuits.

• If you need to use a line for short periods only, it's normally less expensive to use
switched circuits. If you need a line for large parts of a day, it's less expensive to
use dedicated circuits.

• With dedicated circuits, the line is always established, so there's no problem with
connecting the circuits. With switched circuits, the line is reestablished each time
it's used. This is done three ways:

1. The computer operator dials out to the terminal.

2. Automatic equipment in the communications hardware dials out to the
terminal.

3. The terminal operator dials into the processor.

If you use either a dedicated or switched circuit, it ties your host processor to your
terminals so they transmit directly to each other without an intermediary. It's like
talking on the phone - your words go directly to the person on the other end.

• Simplex means data always flows in one direction only. A 2-way alternate terminal means that data flow alternates

in both directions as necessary .

UP-9744 Rev. 1 3-25

Communications Hardware

A drawing of a network using either kind of circuit would look like this:

3.3.3. Public Data Networks

DTE

3-26

In many countries, the government or private companies provide data
communications network services that can be used by any organization willing to
subscribe to the service. These services are called public data networks (PDN s). User
equipment that accesses a PDN is called data terminating equipment (DTE). A DTE
can be a computer, a programmable terminal controller, or an intelligent terminal.
Within the PDN, the equipment that interfaces the data terminating equipment is
called the data circuit terminating equipment (DCE). A DCE can be a data set, a
modem, or any other equipment that provides the functions needed to transfer data
between the DCE and the DTE. See Figure 3-4.

Two types of PDN s are supported by ICAM: circuit-switched and packet-switched.
However, they must reside in separate load modules if both are going to be used.

PUBLIC DAT A NETWORK

DCE DATA FLOW DCE DTE
AND

CONTROL

Figure 3-4. Public Data Network Basic Configuration

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

When a user of a circuit-switched PDN sends data to another end user, a temporary
dedicated connection is established within the PDN. The data is sent in much the
same way as over a leased line except that the line is connected only when necessary
and it is disconnected when there is no more traffic. Usually, this connection can be
established quickly.

In a packet-switched PDN, messages are broken into packets and then sent to their
destination. Packets are blocks of data contained in a defined format with a maximum
size that includes a header. The header controls the destination of the packet and
identifies the sender. At the receiving end, the messages are reassembled from the
packets by the PDN and sent to the receiving data terminal equipment. This process
is known as packet assembler/disassembler (PAD).

Circuit-switched PDN s require the sending equipment to wait until a circuit
connection is complete before message transmission can begin. Packet-switched PDN s
allow message transmission to begin immediately, because all of the packets of each
message are held by the PDN until the receiving data terminal equipment successfully
receives it.

In addition to the way in which data is transmitted, circuit switching and packet
switching have some other significant differences. One of these is the way PDN s
charge for service. Circuit-switched PDN s usually charge for the time that a circuit is
connected (connect time). Packet-switched PDN s charge only for the number of
packets that they transfer .

Circuit-Switched Public Data Networks

Circuit-switched PDN s provide dedicated connections between a host processor used
as data terminal equipment and other data terminal equipment (such as a terminal)
when message traffic is flowing between them. (See Figure 3-5.) Only one circuit
switched link can be used between System 80 processors.

When a message is ready to be sent, a circuit is quickly established through the PDN
and transmission begins. When the transmission ends and the delay for tariff
optimization expires, the physical connection is cleared. When a new message is ready
to be sent, a new connection is established.

A circuit can be connected or disconnected in a fraction of a second. This is much less
time than required with dialed facilities. Therefore, single circuit-switched links are
shared to provide concurrent communications between a host and a number of
terminals.

Figure 3-5 illustrates how the same communications link within a circuit-switched
PDN can be shared by more than one set of data terminal equipment. In the top half
of the illustration, a message is sent between host processor A (DTE A) and terminal
B (DTE B). The PDN establishes the connection between the two DTEs, the data is
sent, and the call is cleared. Now DTE A can send more messages to DTE B or it can
send a message to DTE C .

UP-9744 Rev. 1 '3-27

Communications Hardware

SYSTEM 80
PUBLIC DATA NETWORK TERMINALS

DTE A

DTE A

3-28

DATA

DTE B ~TERMINAL

DATA
EQUIPMENT

.,._. TERMINAL
EQUIPMENT

CONNECTION BETWEEN
DTE A AND DTE B

~-------- .. --
ALTERNATE
LINKS

DTE C
(GROUPED)

LINKS
DATA CIRCUIT
TERMINATING

EQUIPMENT (DCEs)

DTE B

----- CONNECTION BETWEEN
DTE A AND DTE C

DTE C

Figure 3-5. Circuit-Switched Public Data Network

You can have many terminals connected to the PDN; and this could cause busy
conditions on incoming calls due to sharing of the link between the host processor and
the PDN. You solve this problem by having several links between your host processor
DTE and the PDN DCE. This capability is shown as a series of dashed lines in the
figure.

These links may be addressed individually or as a group. To complete a connection,
the called PDN DCE automatically selects an unused link when the call is directed to
a group. Your DTE automatically selects an unused link when it sends a message.

The specifications for the currently supported circuit-switched networks are given in
Table 3-2.

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

Table 3-2. ICAM Circuit-Switched Public Data Network Support

PON Physical Protocol Country ICAM SLCA
Name Interface of Origin Interface Required

DATEX-L RS-232-C UNI SCOPE Germany STDMCP F2788-02
and F3794
Autodial

NORDIC RS-232-C X.21 Denmark, DMI, F-2798-00
Finland, STDMCP,
Norway, TMI
Sweden

Packet-Switched Public Data Networks

Packet-switched PDN s consist of switching nodes and high speed digital
communications trunks (Figure 3-6). Under OS/3, ICAM acts as an interface between
your program in your computer (the data terminal equipment or DTE) and the packet
switched PDN node (the data circuit terminating equipment or DCE).

ICAM allows users to establish sessions and transfer data between end users in
different computers using OS/3. Dynamic sessions are supported between the
following end users:

• Local user program to remote user program - Programs using the ICAM standard
interface or IMS programs in a local OS/3 system can establish or disestablish
sessions with similar programs in a remote computer using OS/3. In addition,
they can make use of the distributed data processing (DDP) functions. (See 7.4.)

• Local terminal to remote user program - Terminals attached to a local System 80
computer can establish or disestablish sessions with a user program using the
standard interface or an IMS program located in a remote computer.

• Local user program to remote terminal - Programs using the ICAM standard
interface or IMS programs can establish or disestablish sessions with terminals
in a remote computer running OS/3.

Sessions are not supported between the following end users:

• Terminal to remote terminal

• Terminal to remote process file

• Terminal to remote interactive services (locap file)

In addition, packet-switched PDN support requires the use of an ICAM global
network. The 32-byte packet size is not supported, and the packet
assembler/dissambler (PAD) is not supported .

UP-9744 Rev. 1 3-29

Cf)
w
0

c
~

t
:::0
CD
:<
......

I

USER I c
PROGRAMS A

M

SUBSCRIBER

LEGEND

D
T
E

LOGICAL
TRUNK/

PHYSICAL
VLINE

-----SWITCHED VIRTUAL CIRCUIT (SVC)

D
c
E

----- PERMANENT VIRTUAL CIRCUIT (PVC)

•

)\

I \
/ j, --

I
"'-......1'

\ I

\1

SUBSCRIBER

PUBLIC DATA
NETWORK CONTROL

\'
\"' '--. --\ --
~--- ~-· --~_). 4

PDN "' //1 '><./
J. .")<. "' 11111(:

NETWORK
CONTROL

/
...................... /

?'----- I
/ ----

/ --/

// / PUBLIC
V DATA

PUBLIC DAT A NETWORK
HIGH SPEED DIGIT AL

COMMUNICATION TRUNKS

D
c
E

D
c
E

Figure 3-6. Packet-Switched Public Data Network

•

D I Jl:SER T
~ PROGRAMS

E

SUBSCRIBER
LOGICAL
TRUNK/

PHYSICAL
VLINE

llJ~ USER
PROGRAMS

SUBSCRIBER
LOGICAL
TRUNK/
PHYSICAL
VLINE

•

(")
0
3
3
c
:::s c;·
I»
!:!:.
0
:::s
en
:::c
I»
""'&

~
""'&
Cl)

•

•

•

Communications Hardware

A virtual circuit is a connection between two end users of a packet-switched PDN for
2-way simultaneous exchange of data. Virtual circuits are established and normally
held for the duration of the data exchange between two end users. Transmitted data is
broken into fixed size packets like this:

Cl
,,__~NETWORK i-----~1NETWORK

q L NODE c=J

'\PACKETS~
NODE

When a virtual circuit is terminated, sessions assigned to that circuit terminate
abnormally.

Each packet contains a network-defined header that identifies the virtual circuit,
thereby identifying the sender and the receiver of the information. The packet
switched PDN controls the number of packets it accepts for transmission from the
data terminal equipment; the data terminal equipment controls the number of
packets it accepts from the PDN. These controls are by virtual circuit. They are
implemented by ICAM in the data terminal equipment and by the PDN data circuit
terminating equipment.

ICAM can support many active virtual circuits at the same time to different remote
data terminal equipments:

Two kinds of virtual circuits exist in packet-switched PDNs:

• Switched virtual circuits

• Permanent virtual circuits

Switched virtual circuits are established dynamically through call requests by ICAM
when your program requests that a session be opened with another end user. Circuits
are closed on request by your program .

UP-9744 Rev. 1 3-31

Communications Hardware

3-32

Permanent virtual circuits are established by agreement with the PDN when you
subscribe to the service. These provide fixed virtual circuits between two end users.

Up to 4095 virtual circuits can be specified to share a single link between ICAM and a
packet-switched PDN. However, the number that can be used is limited by tariff and
buffer constraints.

ICAM provides two types of network access controls for PDNs. The first allows you to
specify a virtual circuit as input only, output only, or both input and output. That is, a
virtual circuit can be used to handle only incoming calls, only outgoing calls, or both.

The second type of network access control is the closed user group. A closed user group
allows you tO form a private network within a packet-switched PDN. You can
designate data terminal equipment with associated virtual circuits as belonging to a
closed circuit group. This provides an additional level of security within the PDN.

The specifications for currently supported packet-switched PDN s are given in
Table 3-3. In addition, the Universal Terminal Systems 4020 CUTS 4020) and 4040
CUTS 4040) Cluster Controller are supported for DATEX-P, TRANSPAC, and PSS.

Table 3-3. ICAM Packet-Switched Public Data Network Support

PON Physical Protocol Country ICAM SLCA
Name Interface of Origin Interface Required

DATAPAC RS-232C X.25 Canada STDMCP F2798-00
user, DDP,
IMS

DATEX-P RS-232C X.25 Germany STDMCP F2798-00
user, DDP,
IMS

DDX-P RS-232C X.25 Japan STDMCP F2798-00
user, DDP,
IMS

PSS RS-232C X.25 United STDMCP F2798-00
Kingdom user, DDP,

IMS

TRANSPAC RS-232C X.25 France STDMCP F2798-00
user, DDP,
IMS

IBERPAC RS-232C X.25 Spain STDMCP F2798-00
user, DDP,
IMS

UP-9744 Rev. 1

•

•

•

•

•

•

Communications Hardware

3.4. Single Line Communications Adapters
The basic System 80 communications system supports two single line communications
adapters to coordinate data transfer, status, and commands on a per line basis. An
optional inputloutput {I/0) microprocessor extends the capability of the System 80
communications system. It provides support for six additional single line
communications adapters to support up to eight lines.

The System 80 models 8, 10, 15, and 20 support up to two I/O microprocessors, and
each one can support up to 14 single line communications adapters. Thus these
System 80 processors can support up to 28 communications lines.

Figure 3-7 shows the relationship between the I/O processor and the System 80
central processor.

r--------,
1 SIX ADDITIONAL

I I SINGLE LINE
I COMMUNICATIONS
I ADAPTERS
L---------....1

I
r----------,
I SINGLE LINE I
I COMMUNICATIONS
I ADAPTERS r
L--------- _ _J

INPUT /OUTPUT
MICROPROCESSOR

COMMUNICATIONS
ATTACHMENT

SYSTEM 80
CENTRAL PROCESSOR

INPUT /OUTPUT
MICROPROCESSOR
(MODEL 8 ONLY)

Figure 3-7. Input/Output Microprocessor Interface within System 80

The inputloutput microprocessor is the interface between the single line
communications adapter and central processor. All communications operations are
handled by the inputloutput microprocessor for single line communications adapters
in systems with more than the basic two.

Some of the functions performed by a single line communications adapter are:

• On input, it assembles bit-serial code from the communications line into
characters for the processor.

• It disassembles characters from the processor into bit-serial for the
communications line on output.

• It establishes character synchronization on synchronous lines.

• It activates and deactivates communications lines as instructed by ICAM .

UP-9744 Rev. 1 3-33

<tJ w

"""'

c
""O
..0
"'-I

t
:;u
ro
:"'=

•

Feature
Number

F2899-02

F2788-03

F2788-04

F2788-05

F2798--00

F2799--00

F2799-01

F2986-02

F2986-05

F2798-06

Interface
Specification

..

RS-232

MIL-STD-188

RS-232

MIL-STD-188

RS-232

RS-232

Mll-STD-188

CCITT V.35

CCITT V.35

RS-232

Table 3-4. Sinlle Line Communlclltion1 Adapters

Transmission Half Duplex (HD) A sync/ Bit/
Rate (bits/s) Full Duplex (FD) Sync Byte

. ---·

9600 HD Sync Byte
4800 FD

9600 HD Sync Byte
4800 FD

9600 HD Sync Byte
9600 FD

9600 HD Sync Byte
9600 FD

19200 HD Sync Bit
9600 FD

9600 HD A sync Byte
4800 FD

9800 HD Async Byte
4800 FD

56000 FD Sync Bit

56000 HD Sync Byte
56000 FD

19200 HD Sync Byte

•

Protocol Microcode
(See notes) Name 4

1 CMM1

1 CMM1

NTR NTR1

NTR NTR1

2 UDLC

3 CMM2

3 CMM2

5 BITS

NTR NTR5

UNI SCOPE UNl3A

>; 1-:3 1-:3
(1) ::r' $l)
~ (1) O"'
~ ~CD
(1) ~ 1" ::s s- Cll = C""t'" (")
.... 0 Cll < ::s rt
(1) rt- Cll

=::;; s· s:-
'< i::: (1)

o~~
i::: «"'
§"o-~ ::s (1) >;

~ s· ~
::ti aq rt
::s (1) :i;"
~><l
0 'd 5..
::s § Cll
(1) ~o
'< (1),

0 i::i.. Cll
i::: ~ s·
::s ~U.S..
ig '< (1)

~~:::..: ::s ::s Cll (1)

g:. 5 g
(1) e.. a s- ~a
O"' n § ,_.o
!D ~ t;·

E.. ~ rt-
'< 0
0 ::s
i::: Cll
>; $l)

c:::: i::i..
::s .§
.... rt-
~ (1)

Cll ;;!

~
~-

~

•

(")
0
3
3
c = c:;·

~-0 = rn
::c
Q) ...
~ ...
ft)

•

•

•

Communications Hardware

3.5. DCP Channel
System 80 models 8-20 support a high-speed selector channel interface to a DCP front
end processor .

UP-9744 Rev. 1 3-35

•

•

•

•

•

•

Section 4
Line and Terminal Support

4.1. Remote Device Handlers
When we talk about the ICAM line and terminal support, we're really talking about
what its remote device handlers do. They are the link between the software and the
hardware. These routines:

• Service line/terminal protocol

• Handle all input and output

• Translate the code of your messages from the EBCDIC code used in the computer
to whatever line codes your terminals use; that is:

•

Output: your program - EBCDIC - line code - terminal

Input: your program - EBCDIC - line code - terminal

Help your programs provide control information for formatting your messages
through the device independent control expressions (DICE) and format edit

• Provide for error recovery occurring during input or output

The relationship of your program with the remote device handlers depends on the
interface it uses. In the communications physical interface, the remote device handlers
don't even exist, and your program must perform the handler functions. A level above,
in the direct data interface, remote device handlers exist, but without any network
buffers between them and your program. The relationship looks like this:

UP-9744 Rev. 1 4-1

Line and Terminal Support

4-2

INPUT

THE REMOTE DEVICE HANDLERS
PUT THE MESSAGES DIRECTLY
INTO A WORK AREA IN YOUR
PROGRAM.

THE REMOTE DEVICE HANDLERS
TAKE THE MESSAGES FROM THE
LINE BUFFERS, STRIP OFF
THE ENVELOPES, TRANSLATE
THE CODE, CHANGE THE
FORMAT CHARACTERS INTO
DICE, AND PUT THE MESSAGES

INTO THE WORK AREA.

WHEN THE MESSAGES COME INTO
THE PROCESSOR, THE LINE
BUFFERS TEMPORARILY HOLD
THEM.

PROGRAM

-woRK 1
1
-W"o"RK-

AREA AREA

OUTPUT

THE REMOTE DEVICE HANDLERS
TAKE THE MESSAGES DIRECTLY
FROM A WORK AREA IN YOUR
PROGRAM.

-- DIRECT DATA INTERFACE

ICAM

REMOTE
DEVICE

HANDLERS

LINE
BUFFERS

-

THE REMOTE DEVICE HANDLERS
TAKE THE MESSAGES FROM THE
WORK AREA. ADD ENVELOPES,
TRANSLATE THE CODE, CHANGE
DICE INTO FORMAT INSTRUCTIONS,
AND PUT THE MESSAGES IN THE
LINE BUFFERS.

THE LINE BUFFERS ARE THE FINAL
STAGING AREA BEFORE THE MESSAGES
GO TO THE TERMINALS.

FROM TERMINALS TO TERMINALS

(No program, regardless of the interface it uses, works directly with the remote device
handlers. In the direct data interface, all communication between a program and any
routine in ICAM is through an ICAM routine called the direct data interface
controller.)

In the standard interface, network buffers separate the remote device handlers and
your programs.

UP-9744 Rev. 1

•

•

•

•

•

•

INPUT

ICAM PUTS THE MESSAGES INTO
WORK AREAS IN YOUR PROGRAM.

PROGRAM

~oR~ -,- -wo~
AREA I AREA

Line and Terminal Support

OUTPUT

ICAM TAKES MESSAGES OUT OF THE
WORK AREAS IN YOUR PROGRAM
AND PUTS THEM IN THE
NETWORK BUFFERS.

--- STANDARD (STDMCP) INTERFACE

THE NETWORK BUFFERS HOLD INCOMING ICAM THE NETWORK BUFFERS HOLD OUTGOING
MESSAGES UNTIL THE REMOTE DEVICE
HANDLERS CAN PROCESS THEM.

MESSAGES UNTIL YOUR PROGRAM
REQUESTS THEM.

NETWORK BUFFERS

REMOTE
DEVICE
HANDLERS*

LINE
BUFFERS*

FROM TERMINALS TO TERMINALS

• The remote device handlers and line buffers work the same as in the direct data interface except that they move data
into and out of network buffers instead of work areas in your program .

UP-9744 Rev. 1 4-3

Line and Terminal Support

The network buffers literally protect your programs from the problems of input and
output. If your program is using the direct data interface, it must initiate any required
error recovery during input or output; ICAM initiates error recovery for standard
interface users. Under the direct data interface, your program must specifically
request the remote device handlers to read or write a message to the terminals; under
the standard interface, ICAM handles all input and output. As we said before, the
direct data interface gives your programs more control over the communications
system, but the standard interface makes the job of writing programs much easier.

We've been talking about remote device handlers as if they're a standard set of
routines. Actually, each one is a group of subroutines put together to support the
characteristics of the terminals on a single communications line. A remote device
handler for a line with a DCT 1000 terminal attached differs substantially from one
for a line with an IBM 2780 terminal. Two slightly different sets of code support a
UNISCOPE terminal capable of displaying 960 characters and one capable of
displaying 1024 characters. Because each terminal needs different support from the
remote device handlers, each line must have terminals with similiar characteristics on
it. You can mix DCT 1000, UNISCOPE, UTS 400, and UTS 4000 terminals on the
same line, but you can't mix UNISCOPE and teletypewriter terminals on the same
communications line. When you describe your communications system for ICAM
generation, most of your effort probably will go towards describing the characteristics
of your terminals so the remote device handlers can support them. If you use
terminals that ICAM doesn't support, you must write your own remote device handler
to support them. For more information on this, see the !CAM Interfacing a Remote
Device Handler Programmer Reference (UP-8424).

4.2. Line Connections

4-4

The remote device handlers provide the control needed to initiate the lines for sending
messages. All the other characteristics oflines - like 2-way alternate/2-way
simultaneous, asynchronous/synchronous, and line speed - are hardware features
controlled by the single line communications adapter.

Connecting the lines is a 2-step process.

First, ICAM must be asked to support the line by having the line requested. With
dedicated networks, your program can request that all lines be activated
automatically when it requests the network, or it can request each line individually
once the ICAM network is loaded. With global networks, the system operator requests
lines by commands typed in from the system console once both ICAM and GUST are
loaded. Once a line is requested, ICAM prepares the single line communications
adapter to support each line by loading it with the commands and data it needs.

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

The second step of the line connection procedure is establishing the circuit. This is
done in one of four ways, depending on the type of line:

1. Dedicated lines - Dedicated lines are the simplest of the four because there's no
dialing required.

COMMUNI
CATIONS
ADAPTER

MODEM 1-1-.Z-M MODEM

When the line request is made, the communications hardware establishes the
circuit. If the circuit can't be established (probably because a modem is turned
off), ICAM notifies both your program and the system operator.

2. Automatic dialing lines - When the line request is made, the single line
communications adapter establishes the circuit using the automatic dialing unit.
If the circuit is busy or there's no answer, ICAM notifies your program and the
system operator that the circuit wasn't established.

SINGLE
LINE
COMMUNI
CATIONS
ADAPTER

AUTOMATIC
DIALING

UNIT

MODEM 1-1-.Z-r-t MODEM

3. Manual dialing - With manual dialing, the line request generates an operator
message telling the system operator to make the call. After trying, the operator
tells ICAM from the system console whether or not the call was successful. If it
wasn't, ICAM does not notify your program. The remote device handler doesn't
begin polling the terminals on the line until the system operator notifies ICAM
that the circuit is established .

UP-9744 Rev. 1 4-5

Line and Terminal Support

4-6

SINGLE
LINE
COMMUNI
CATIONS
ADAPTER

4. Unattended answering - Unattended answering differs from other methods of line
connection because it's the only one where the terminal operator establishes the
circuit by dialing the host computer. As with the other methods, however, the line
must be requested before the terminal operator makes the call. Except for direct
data interface programs, ICAM doesn't notify your program when the circuit is
established. Your program must periodically check input queues to see whether
any messages have been received or issue a deferred request (e.g., a deferred
GETCP) and yield control to ICAM. In this case, ICAM gives your program
control at the address you specify in the deferred request when a message is
received.

SINGLE
LINE
COM MUNI- MODEMl-!~r-t-1 MODEM
CATIONS
ADAPTER

Once the circuit is established, the remote device handler begins polling the terminals
(provided they're pollable). Any time all the terminals are marked down, ICAM
logically marks the line down. The only effect of this is that the normal polling
sequence stops, and ICAM begins to perform a slow poll of the terminals. (As
described in 4.3, this happens with any terminal that's marked down.) Once any
terminal responds to a poll, ICAM marks the line up.

If the line has uncontrolled - nonpollable - terminals, the remote device handlers put
up a read for input once the circuit is established. Because there are no polls, the line
cannot be logically marked down.

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

The line connection is broken by one of three events:

1. A line release is issued. - In dedicated networks, your program releases the lines.
In global networks, the system operator requests line releases via commands
typed in at the system console. When the line release is made, the single line
communications adapter for that line breaks the circuit and ICAM marks the line
down. In global networks, ICAM notifies all programs linked to it that the line is
down. This is the proper method of breaking a line connection.

2. Someone hangs up the phoM on a 1witched liM. - Because this breaks the circuit,
ICAM physically marks the line down. The status code for this is different from
the logical line-down status code cauted by terminals not answering polls. To
recover in a dedicated network. your Procram must logically release the line and
then rerequest it. Thia is aut.omatic in '1obal networks.

3. A hardware error occurw. • BecaUlll thia brukl the circuit. ICAM physically
marks the line down, u it would if' 10meone hanp up the telephone. (ICAM can't
distinguish between the two.) Recovery procedures are the same.

You should avoid breaking the line connections by haneing up the phone because
ICAM cannot distinguish between this and a hardware error. If the phone is hung up,
the connection isn't needed and shouldn't be reconneeted. If a hardware error occurs,
you should try to reconnect the line if pouible. To avoid the entire problem of whether.
or not a line should be reconnected, you can wie the following procedures:

• In dedicated networks

UP-9744 Rev. 1

IF

your program wants to
release the line,

your terminal operator
wants to release the line,

your system operator wants
to release a line,

a physical line down
condition occurs and you
follow these procedures,

it releue1 the line.

the operator 1end1 a message to your
prolftDl, instructing it to
release the line.

the operator can use any terminal
connected to ICAM to send your
program a message, requesting it to
release the liM.

your program knows a hardware
error has happened. It logically
releases the line and rerequests it. If
the line isn't reconnected, your
program sends an error message to the
system console .

4-7

Line and Terminal Support

• In global networks

IF

your program wants to
release a line,

your terminal operator
wants to release a line,

your system operator wants
to release a line,

a physical line-down
condition occurs,

THEN

it sends a message to the system
console, telling the system operator
to tell GUST to release the line.

the operator sends a message to your
program instructing it to release the
line. Your program then sends a message to
the system console, telling the system
operator to tell GUST to release the line.

the operator sends a message to
GUST, telling it to release the line.

your program knows a hardware error has
occured but takes no action. ICAM has tried
to reconnect the line and failed, and has
informed the system operator of the
hardware error.

4.3. Terminal Polling

48

Polling is explained in "Line Control" in Section 3, but we'll summarize what it does
here. Polling is a method of controlling transmission on a line supporting one or more
controlled terminals so that (1) only one device transmits at any one time and (2) the
host computer is ready to receive the messages the terminals send.

The remote device handlers control polling. They poll the terminals, asking them:

• If they have messages to send

• The status of their inputloutput devices (up, down, busy)

• To retransmit messages garbled during transmission

The remote device handlers and terminals acknowledge the successful receipt of
messages.

The following discusses the three factors controlling polling:

1. How you group the terminals into polling groups

2. Polling interval

3. The polling algorithms of the remote device handlers

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

4.3.1. Polling Groups

When a line has more than one terminal on it, there are three ways to arrange the
terminals. One is to have multiple drops off the line, which is like a party line. Each
terminal hears every message and poll, but responds only to those addressed to it.

HOST COMPUTER

®
Another way is to have a multiplexer connect several terminals to a single drop on a
line. The multiplexer passes only those messages addressed to a particular terminal to
that terminal.

HOST COMPUTER

UP-9744 Rev. 1 4-9

Line and Terminal Support

4-10

And you can combine the two methods:

Each drop on a line, whether it's to a single terminal or several terminals connected by
a multiplexer, forms a separate polling group. For example:

~-[//Jill lfilt1Jl\
HOST COMPUTER ~~ ~~

POLLING GROUP 1 POLLING GROUP 2
TERMINAL 1 TERMINAL 2

MULTIPLEXER

~El J111
~
POLLING GROUP 3

TERMINAL 3

POLLING GROUP 4
TERMINAL 4

TERMINAL 5

TERMINAL 6

Wt1 J~I
~

A drop could contain multiple terminals without a multiplexer. In this situation, there
can be multiple poll groups.

The remote device handler polls each polling group separately, a subject further
discussed in the next two subsections, 4.3.2 and 4.3.3.

In Section 3, we talked about the terminal addresses. There, we said the address
consists of a remote identifier (rid), a station identifier (sid), and a device identifier
(did). The remote identifier corresponds to a polling group, and the station identifier
corresponds to individual terminals in the polling group. (The device identifier
corresponds to individual devices connected to a terminal and is explained in 4.4.) The
terminals in a polling group share the same remote identifier, and each terminal in
the polling group has a unique station identifier. Look in your terminal manuals for
the permissible addresses for your terminals.

If the terminals in the previous illustration are UTS 4000 terminals, their addresses
could be:

UP-9744 Rev. 1

•

•

•

•

•

•

rid=21 rid=22 rid=24
sid=51 sid=51 sid=51

Line and Terminal Support

CLUSTER
CONTROLLER

POLLING GROUP 4
TERMINAL 3

TERMINAL 4 sid=51

~Kl ;]Ill
rid=23

TERMINAL 5 sid=52

HOST COMPUTER
@?#Yb

·POLLING GROUP 1 POLLING GROUP 2 POLLING GROUP 3
TERMINAL 1 TERMINAL 2 TERMINAL 6

Each polling group has a different remote identifier. Terminals 3, 4, and 5 share the
same remote identifier because they're in the same polling group. Terminals 1, 2, 3,
and 6 can have the same station identifier because they're in different polling groups.
Terminals 3, 4, and 5 must have different station identifiers because they're in the
same polling group.

Whenever ICAM sends a message on a line, all the terminals on the line receive the
address portion of the message. If this address is not recognized, the terminal ignores
it. It's as if the terminals are part of a conference call. Each hears everything that is
said but acts only if specifically addressed.

4.3.2. Polling Interval

rid=23
sid=53

The polling interval is the time between polling sequences within a polling group. (For
examples of polling sequences, see the next subsection, 4.3.3.) When you define the
network, you specify a polling interval for each polling group that may be 1/10 second,
1/5 second, 1/2 second, 1 second, or any integer value up to 255 seconds. Once the line
is connected, the remote device handler polls each polling group at the interval
specified. (The DCT 500 terminal is an exception - see "Polling with Unbuffered
Interactive Terminals" later in this section.)

Because polling groups can have different polling intervals, the remote device
handlers can poll some more often than others. You can give polling groups different
priorities. Groups polled more often can send and receive messages more often .

UP-9744 Rev. 1 4-11

Line and Terminal Support

4-12

If you have the following intervals for your polling groups:

HOST COMPUTER

rid=21
INTERVAL=l

SECOND

rid=22

INTERVAL=l

SECOND

rid=23

INTERNAL=0.5

SECOND

MULTIPLEXER

then the remote device handler polls them in the following order:

Seconds Polling Groups Polled

0 none

0.5 rid=23

1 rid=21,rid=22,rid=23

1.5 rid=23

2 rid=21,rid=22,rid=23,rid=24

2.5 rid=23

3 rid=21, rid=22, rid=23

3.5 rid=23

4 rid=21,rid=22,rid=23,rid=24

rid=24
INTERVAL=2

SECONDS

D
~§PL

This polling scheme is the ideal; a number of factors affect the actual polling intervals.
Of these, the polling algorithms discussed in the next subsection (4.3.3) are the most
important. The rest are discussed here.

When the remote device handler sends out a poll, it expects a response of some kind,
even ifthe polling group terminals don't have any messages to send. It waits a specific
amount of time (you determine the interval at network definition) for a response. If
none comes, time-out occurs. The remote device handler retries the poll several times
(again, you specify how many times) at the normal polling interval. If the terminals
still don't respond, either the terminals were turned off, they suffered hardware

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

failures, or the rid/sid/did is incorrect. In any case, further polling at the normal
interval wastes processor time. The remote device handler begins slow polling the poll
group every minute to minute-and-a-half (depending on the type of terminal) in case
one of the terminals becomes capable of sending a message. When one of them does,
the remote device handler resumes polling at the normal polling interval. (If the
remote device handler is slow polling every poll group on a line, ICAM logically marks
the line down. When any terminal answers a poll, ICAM marks the line up.) If your
terminals or remote workstations are connected to a UNISCOPE or remote
workstation line, you can specify the slow polling interval when you define the polling
group.

Another factor influencing the polling rate is the number of network buffers available.
If all the network buffers are full, incoming messages could be lost because there isn't
any place to hold them. The remote device handlers stop polling to solicit input (and/or
inhibit output from your program) when the number of buffers containing messages
reaches a threshold value (which you specify at network definition). After a large
number of the network buffers are emptied, the remote device handlers resume
normal polling. (See the network buff er description, 5.4, for more on the threshold
value.)

If you use the standard interface, you can affect the polling interval with the inhibit
feature, which allows your programs to carry on a one-to-one conversation with a
terminal. After an inhibited terminal sends in a message, the remote device handler
stops polling it until your program responds to the message. Normal polling then
resumes until the next message from the inhibited terminal, when polling again
ceases until the program responds. You specify inhibit on a terminal basis - that is,
you inhibit the polling of one terminal on a line without affecting the polling of the
other terminals on the line. The inhibited terminal, however, must be the only
terminal in its poll group. If there are other terminals in the poll group, the remote
device handler continues to poll the group even ifthe inhibited terminal is waiting for
a response. When the group is polled, the inhibited terminal can send a message
before it receives a response.

The last factor affecting the polling interval is the nature of the direct data interface.
You'll remember that, if you use this interface, no messages can come from a terminal
until your program requests input. Another way of putting it is that the remote device
handlers don't begin polling a line until your program requests input. When your
program requests input, the remote device handler polls normally until a terminal
sends a message. At this point, polling stops until your program requests more input.
If there is more than one polling group on a line, it's possible that some groups are
never polled because the first groups polled always have input. You should avoid more
than one poll group per line if you use the direct data interface.

4.3.3. Polling Algorithms

A polling algorithm is the method used by a remote device handler to control
transmission on a line. The following two subsections describe the polling algorithms
for !CAM-supported interactive terminals. Because each batch terminal has a unique
polling algorithm, this manual doesn't describe their algorithms. You should check the
terminal manuals for their algorithms .

UP-9744 Rev. 1 4-13

Line and Terminal Support

Polling with Buffered Interactive Terminals

4-14

The protocol used with the buffered interactive terminals is complicated. The UTS
4000 protocol, for instance, has 27 rules governing its interaction with the host
computer, and the other protocols are similarly complex. But each protocol follows five
basic rules:

1. A terminal must respond to an error-free poll.

2. The host computer must acknowledge messages a terminal sends in response to a
poll, except for the no-traffic response.

3. A terminal will not send two consecutive messages containing text. It does not
respond with a message to a poll that includes the acknowledgment to the
previous message.

4. Upon sending to a terminal, the host computer must poll the terminal to verify
proper receipt of the message.

5. Unless polling is inhibited for some reason, the host computer polls each polling
group at the interval specified when you define your ICAM network.

For the first two examples, we'll look at polling with a polling group containing a
single terminal.

Host Computer Terminal

1. SOH 1 P p ETX BCC
2. SOH 1 a p STX text ETX BCC
3. SOH 1 P p OLE 1 ETX BCC
4. EOT EQT ETX BCC
5. SOH 1 a p STX text ETX BCC
6. SOH 1 P p ETX BCC
7. SOH 1 a p OLE 1 ETX BCC
8. SOH 1 P p OLE 1 ETX BCC
9. EOT EOT ETX BCC

This example shows the simplest kind of polling for buffered interactive terminals:
The polling group contains only one terminal, and no errors occurred during
transmission by either party. The following explains each poll and response:

1. The host computer sends a general poll asking for input from the polling group
with the rid of 1.

2. The single terminal in the group replies with a message containing text.

3. The host computer acknowledges the successful receipt of the message and asks
for more input.

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

4. The terminal replies that it has no messages waiting (the no-traffic response). It
must give this reply regardless of whether it has a message waiting or not. You'll
remember that one of the rules of protocol says that no terminal can send two
consecutive messages containing text.

5. The host computer now sends a message containing text to the terminal.

6. The host computer follows up its text message with a poll requesting input.

7. The terminal has no messages to send, but it acknowledges the successful
reception of the text message.

8. The host computer acknowledges the reception of the previous response and asks
for more input.

9. The terminal sends a no-traffic response.

You may have noticed that the addresses in most of the polls from the host computer
don't match the addresses in the responses from the terminal. These are general polls;
the remote identifier matches that of the polling group, but the station identifier is
general. Any terminal in the polling group can respond to a general poll. In polling
groups with just one terminal, only that terminal responds. In polling groups with
several terminals, however, any one can respond. (The multiplexer controls which
terminal responds to a poll.) This way, the remote device handler doesn't have to poll
each terminal in a polling group. It continues to poll until it gets a no-traffic response,
meaning that none of the terminals in the group has a message ready to send.

EXAMPLE

SUMMARY OF gids:

rid=20 16 sid=S0 16 did=7016

.._ _____ __,1--------+-- ALL GROUPS

I
DEST I NAT ION

BLUEBELL

'--------+--ALL TERMINALS IN ONE GROUP

1
STATION
U100#2

STATION ONLY

DEVICE
COP

Note: The rid, sid, did address trio may make use of a general identifier (gid).
This gid may be used in place of the rid, sid, or did. For the rid, a gid =
2016 is recognized by all remote stations as its rid. For the sid, a gid = 5016
is recognized by all terminals at an installation. For the did, a gid = 7016
merely addresses the station without selecting an auxiliary device.

The one case in the previous example where the host computer uses a specific address
is when it has output to go to the terminal. Whenever the host computer has output, it
uses the specific address of the terminal that's to receive the message .

UP-9744 Rev. 1 4-15

Line and Terminal Support

4-16

The nine steps given here are a single polling sequence for one polling group. The
majority of the steps just give the terminal permission to send messages and
acknowledge the receipt of messages. If you have a number of polling groups and your
remote device handlers reside in the host computer, then a substantial amount of
computer time is spent polling. This doesn't include the time it takes the single line
communications adapter to turn the line around after each poll or response. Given
these considerations, you can make the most efficient use of your communications
system by having as few polling groups per line as possible, and by specifying the
highest polling interval you can without backing messages up at your terminals.

If your remote device handlers are standard handlers provided by Unisys, these
suggestions aren't as important. But if you are providing your own unique handlers,
remember that the single line communications adapter has a limited amount of
processing power, and it can become saturated. When it does, response time goes up.

Another problem that will become clearer later is that it's possible to lock up your
system just by polling. Let's say you have five polling groups on a line, and each
polling session takes 2 seconds. The fastest polling interval possible under these
circumstances is 10 seconds, regardless of the polling interval you specified at network
definition. Response time in these circumstances can easily be close to half a minute
or more, as the following shows:

Time between the instant the terminal
operator hit the transmit key and the
instant the terminal was polled:

Time message sits in a network buffer
waiting to be processed by the program:

Processing time:

Time message sits in a network buffer
waiting to be sent:

Total:

10.0 seconds

2.0 seconds

0.5 second

11.0 seconds

23.5 seconds

Normally, polling works so fast that you never notice waiting time. If your response
time is slow, however, you might check whether you're overloading the
communications system with polling. To do this, check the network buffer statistics
(5.4.) to see whether the network buffers are filling faster than they're emptying. If
not, the problem may be the number of polling groups. To test this, reduce the number
of polling groups you have on a line by turning off the terminals in one or more groups.
Then use the remaining polling groups to send in the same number of messages as all
the groups normally do. By using this strategy, the message volume remains the
same, but the polling volume is reduced. If the response time improves, examine ways
of reducing the number of polling groups.

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

The previous example showed an errorless polling sequence. When an error occurs,
the poll is retried several times. (You specify the number ofretries at network
definition.) If the problem disappears, normal polling resumes. But, if the problem
continues, the remote device handler assumes the terminal was turned off or suffered
a hardware failure. The terminal is marked down and receives no output until it sends
input.

When all terminals in a polling group are down, the polling interval becomes a minute
to a minute-and-a-half. Once any terminal of the polling group responds to a poll,
normal polling resumes for the entire group. Output to terminals still down, however,
is not sent until they send input.

The following polling sequences show error recovery.

Host Computer Terminal

1. SOH 1 Pp ETX BCC ---------
2. No response
3. SOH 1 Pp ETX BCC ---------
4. EOT EOT ETX BCC

Explanation of the polling sequence:

1. The host computer sends a general poll requesting input .

2. The lack of response means that an error occurred during the transmission of
either the poll or the response. (The remote device handlers treat any
transmission error, even if it's only a parity error, as a no-response condition.)

3. The host computer retries the poll.

4. The reception of the no-traffic message from the terminal means error recovery
was successful.

This polling sequence shows a more complex error recovery:

Host Computer Terminal

1. SOH 1 a p STX text ETX BCC
2. SOH 1 P p ETX BCC
3. No response

4. SOH 1 P p ETX BCC
5. No response
6. SOH 1 P p ETX BCC
7. ------- SOH 1 a p DLE 1 ETX BCC
8. SOH 1 P p DLE 1 ETX BCC
9. No response
10. SOH 1 P p ETX BCC
11. ------- SOH 1 a p DLE ENQ ETX BCC

UP-9744 Rev. 1 4-17

Line and Terminal Support

4-18

Host Computer Termir>al

12. SOH 1 a p OLE NAK ETX BCC -------
13. SOH 1 a p OLE 1 ETX BCC
14. SOH 1 P p DLE 1 ETX BCC
15. -------- EOT EOT ETX BCC

Explanation of the polling sequence:

1. Host computer sends a message to the terminal.

2. It then sends a general poll requesting input from the terminal. At the least, it
expects an acknowledgment that the message it sent was successfully received.

3. The host computer doesn't get a response, meaning that either the poll or the
response got garbled in transmission.

4. The host computer repeats the general poll.

5. There is still no response.

6. The host computer retries the general poll.

7. The terminal responds with an acknowledgment of the message sent at 1.

8. The host computer sends an acknowledgment as part of a poll for input. It
expects either a message or a no-traffic response.

9. Nothing comes in from the terminal.

10. The host computer retries the poll from 8 without the acknowledgment.

11. The terminal responds with a request for an acknowledgment for its
acknowledgment in message 7. It never got the host computer acknowledgment
from message 8.

12. The host computer asks for an acknowledgment of its poll.

13. The terminal sends an acknowledgment.

14. The host computer acknowledges the acknowledgment and asks for input.

15. The terminal sends a no-traffic response, ending this polling sequence.

The polling sequence changes when a polling group contains more than one terminal.
Now any terminal can respond to a general poll. Because the host processor
acknowledges a terminal response with a general poll, polling continues as long as any
terminal has input. The following example is based on the polling group shown:

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

HOST COMPUTER

Host Compu~er Terminal

1. SOH 2 P p ETX BCC
2. ---------- SOH 2 a p STX text ETX BCC
3. SOH 2 P p DLE 1 ETX BCC
4. -------- SOH 2 c p STX text ETX BCC
5. SOH 2 P p DLE 1 ETX BCC
6. -------- SOH 2 d p STX text ETX BCC
7. SOH 2 P p DLE 1 ETX BCC
8. -------- EOT EOT ETX BCC

Explanation of the polling sequence:

1. General poll requesting input from the polling group with the rid of 2.

2. The terminal with rid=2, sid=a responds with text.

3. The host computer acknowledges the reception of the message and requests
further input.

4. The terminal with rid=2, sid=c responds with text .

UP-9744 Rev. 1 4-19

Line and Terminal Support

5. The host computer acknowledges the reception of the message and requests
further input.

6. The terminal with rid=2, sid=d responds with text.

7. The host computer acknowledges the reception of the message and requests
further input.

8. One of the terminals responds with a no-traffic message.

In this example, the total polling sequence is fairly short. If one or more terminals are
dumping files from mass storage devices, however, the polling sequence continues
until all the files are sent. The other polling groups are locked out because the
computer wouldn't be polling them. You should take care that this situation doesn't
occur.

Polling with Unbuffered Interactive Terminals

4-20

!CAM supports the DCT 500 as an interactive terminal. Its lack of buffers forces the
operator to wait until !CAM polls the terminal before entering a message. When
polled, the terminal CLEAR TO SEND light goes on, and the operator must begin
entering the message within a few seconds or wait until the next poll.

With the DCT 500, the polling interval gives the time after a poll that the remote
device handler waits for input before polling another terminal. The polling interval is
not, as it is with buffered terminals, the time between polls. Let's say you have this
terminal arrangement:

HOST COMPUTER

rid=l
sid=a
INTERVAL=3 SECONDS

rid=2
sid=a
INTERVAL=3 SECONDS

rid=3
sid=a
INTERVAL=3 SECONDS

UP-9744 Rev. 1

-- -

•

•

•

•

•

•

Line and Terminal Support

When the remote device handler polls the first terminal rid=l, sid=a, the terminal
operator has 3 seconds to enter the first character of the message. Once the remote
device handler receives that character, it accepts more characters until it receives an
end-of-text character or until 8 minutes goes by with fewer than seven characters
entered (that is, the terminal times out). If the terminal times out, the remote device
handler treats what was received up to that point as the complete message.

The remote device handler polls the next terminal after the first terminal times out or
finishes sending a message. The minimum time between successive polls of the same
terminal is the number of terminals on the line times the polling interval. For the line
shown, the time is 3*3=9 seconds. If two terminals send messages, one taking 30
seconds to enter and the other 50 seconds, the time between polls of the first terminal
is 30+50+3=83 seconds. (3 is the polling interval of the terminal without a message.)

Two of the concerns of buffered interactive polling don't exist with DCT 500 polling:

1. There is no error recovery. - If a message is garbled in transmission, there's no
back-up copy in the terminal's buffer. The remote device handler discardsway
messages with errors without notifying the operator. Direct data interface
programs are notified of the error, but standard interface programs are not.

2. DCT 500 terminals cannot be multiplexed. - Each polling group contains just one
terminal.

4.4. Input and Output Devices
All !CAM-supported terminals have primary input and output devices. On interactive
terminals, the primary input device is always a keyboard; the primary output device is
either a printer or a CRT screen (video screen). On batch terminals, the primary input
device is typically a card reader but can be a diskette drive; the primary output device
is a printer. In addition to the primary devices, most terminals also support one or
more auxiliary I/O devices, such as tape cassette systems, diskette drives, printers,
card readers/punches, and paper tape readers/punches.

A terminal address, you'll remember, consists of three characters: a remote identifier
(rid), a station identifier (sid), and a device identifier (did). The device identifier
identifies a particular I/O device. The following example shows how it works:

rid=1
8406 DISKETTE sid=a

___ s_u_s_s_v_s_T_E_M ___ did=,

UP-9744 Rev. 1

rid=1
__ M_A_S_T_E_R_ST_A_T_1o_N_ .. sid=a

rid=1
sid=a

'-----0-79_8_PR_l_N_TE_R ___ did=S

4-21

Line and Terminal Support

4-22

The primary input and output devices (the keyboard and CRT) don't have their own
device identifiers. Just as there are general remote identifiers and general station
identifiers, there are general device identifiers. When a general device identifier is
used, the message either comes from or goes to a primary I/O device. Auxiliary devices
have their own device identifiers. The illustration shows the 8406 diskette subsystem
with a device identifier of 1. What it doesn't show is that the diskette subsystem
actually has device identifiers 1 through 4. A diskette subsystem holds two diskettes,
each of which has separate read and separate write heads. In effect, the system has
four I/O devices, and each gets a separate device identifier. The 0798 printer is
simpler because it has only one device and gets a single device identifier, 5.

The following paragraphs summarize the functions !CAM supports with each input
and output device.

• Printers - !CAM supports printers through the device independent control
expressions described in 4.5.

• CRTs (video screens) - !CAM supports CRTs through the device independent
control expressions described in 4.5.

• Keyboards - In addition to passing messages entered through a terminal keyboad
to your program, !CAM informs your program if a function key was used to
generate the message. The function keys are special keys on the UNISCOPE,
UTS 400, and UTS 4000 terminals that generate 1-character messages. These
messages have no inherent meaning; different programs interpret them
differently. One program might interpret a message generated by function key 1
to mean, "Display complete customer file on the screen'"- and another program
might interpret it to mean, "'The following messages deal with inventory."

• Tape cassette systems - You can send the following commands to a tape cassette
system:

•

•

•

Backspace one block.

Search tape cassette for the key given in the message text.

Report current address from the tape cassette.

Read a block.

Write a block.

Diskette systems - !CAM support for the diskette system is similar to that
provided for the tape cassette system.

Paper tape readers/punches - Your program can either read or write a block of
data from the paper tape reader/punch.

Card readers/punches - Your program can request that a card either be read or
punched.

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

When a message comes in from any terminal device other than the primary input
device, ICAM reports this to your program and gives it the device identifier of the
device.

The functions described here for each input and output device are available with any
terminal supporting the device. For information on how to use them, see the ICAM
user guide for the interface that you're using.

4.5. Formatting Your Data
Formatting your data simply means telling your system what you want your output to
look like. There are three methods for formatting your data:

• Device dependent control characters (4.5.1)

• Device independent control expressions (4.5.2)

• Format edit (4.6)

To illustrate the three types of formatting, let's assume you have a message and you
want to output it to three different terminals in your network: a DCT 500, a UTS 400,
and a teletypewriter .

TERMINAL 1
DCT 500

YOUR MESSAGE

[~- /// ;1J
~

;sr~

TERMINAL 2
UTS 40

TERMINAL 3
TELETYPEWRITER

Since they are different types of terminals, they have different control characters
directing formatting. Let's look at how you would use each of the three types of
formatting to send the same message to your terminals .

UP-9744 Rev. 1 4-23

Line and Terminal Support

4.5.1. Device Dependent Control Characters

USER
PROGRAM

LEGEND:

With device dependent formatting, you must embed unique control characters for each
type of terminal you're sending the message to.

TEXT

OUTPUT TEXT AND CONTROL CHARACTERS

REMOTE
DEVICE

HANDLERS
TEXT

TEXT

TEXT

TEXT

UTS 40

OCT 500

TELETYPEWRITER

Terminal-oriented
Control characters

In this case, you'll need one set of control characters for your UTS 40, one for your
DCT 500, and another for your teletypewriter.

This can become complicated because the control characters representing certain
functions for one terminal can be entirely different for another terminal. The way to
simplify this process is by using device independent control expressions (DICE).

4.5.2. Device Independent Control Expressions

4-24

Device independent control expressions (DICE), which you place in your output
message, are 4-character expressions that format the message for each terminal
your're sending to.

The format of DICE is changed by the remote device handler into control characters
for each destination terminal. This eliminates the need to include control characters
for each terminal because the remote device handler interprets the sequence into the
unique code of the terminal you're sending to. The DICE sequences never appear on
your terminal; you see only the message itself.

UP-9744 Rev. 1

•

•

•

•

•

•

USER
PROGRAM

LEGEND:

USER PROGRAM
OUTPUT TEXT

WITH DICE

m DICE characters

REMOTE
DEVICE

HANDLERS

Line and Terminal Support

OUTPUT TEXT WITH
CONTROL CHARACTERS

TEXT

TEXT

UTS 40

DCT 500

TELETYPEWRITER

Terminal-oriented
Control characters

To use DICE on input, you can designate an ON or OFF state by specifying the DICE=
operand of the TERM macro when you define your network. The default is
DICE=(ON), which tells the remote device handler to create input DICE sequences
according to your terminal cursor movements. This is particularly useful when you are
receiving messages from one terminal and switching them to another terminal. If you
specify DICE=(OFF), the remote device handler does not convert format control
characters into DICE sequences for your program.

There are two ways to write DICE sequences:

• Hexadecimal notation (EBCDIC)

• DICE macroinstructions

The following two subsections describe both of these methods .

UP-9744 Rev. 1 4-25

Line and Terminal Support

Hexadecimal Notation

4-26

When using a hexadecimal notation, DICE sequences are presented in a 4-byte
format:

where:

OLE

OLE FUNCTION m FIELD n FIELD
HEX 10 CODE

Is the data link escape control character and always marks the beginning of
a DICE sequence. This EBCDIC character has the hexadecimal value of 10.

FUNCTION CODE
Is always the second byte of a DICE sequence and contains the DICE
operation code. On output, the remote device handler analyzes and converts
this code into control characters to perform a certain function at your
destination terminals. When your message is sent, it is formatted according
to these control characters.

The function codes for DICE operations are contained in Table 4-1.

Note: Table 4-1 gives the DICE functions for UN/SCOPE formatting only.
For formatting other types of terminals, consult the appropriate
terminal hardware manual.

m FIELD and n FIELD

Code
(Hex.)

01

02

03

04

Are operands of the function code that represent the horizontal (m) and
vertical (n) coordinates for screen formatting.

Table 4-1. DICE Codes and Functions

Function Interpretation

Set coordinates Move cursor to row m and column n.

Forms control Move cursor to row m and column n.

Forms control with clear Move cursor to row m and column n, and erase
(unprotected) unprotected display.

New line control Move cursor to beginning of next line and then m
lines down and n columns to the right.

continued

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

Table 4-1. DICE Codes and Functions (cont.)

Code
(Hex.) Function Interpretation

05 New line control with Move cursor to beginning of next line and then m
clear lines down and n columns to the right, erasing the

display between the start and end positions.

06 Current position control Move cursor m lines down and n columns to the
right.

07 Current position control Insert n 'significant' spaces (DC3 characters).
with clear

08 Beginning of current Move cursor to start of current line and then m lines
line control down and n columns to the right.

09 Set tab stop Set a tab stop at row m and column n.

OA Forms control with clear Move cursor to row m and column n, and erase
(protected and unprotected) display.

OB Erase line Erase to end of line.

DICE Macroinstructions

DICE macros operate the same way as the hexadecimally written DICE codes, but
they are easier to use because they eliminate the tedious hexadecimal coding.

DICE macros are easily recognized because they include the prefix ZO#, a mnemonic
suffix, and two decimal numbers. When these macros are assembled, they expand into
the 4-byte format of the hexadecimally coded DICE sequences.

Table 4-2 lists DICE macros along with their corresponding function codes and their
meanings .

UP-9744 Rev. 1 4-27

Line and Terminal Support

Table 4-2. DICE Macroinstructions and Their Functions • DICE
Macro Code Function Interpretation

ZO#COORD 01 Set coordinates Move cursor to row m and
column n.

ZO#FORM 02 Forms control Move cursor to row m and
column n.

ZO#FORMC 03 Forms control with Move cursor to row m and
clear (unprotected) column n, and erase

(unprotected) display.

ZO#POS 04 New line control Move cursor to beginning of
next line and then m iines
down and n columns to the
right.

ZO#POSC 05 New line control Move cusor to beginning of
with clear next line and then m lines

down and n columns to the
right, erasing the display
between the start and end
positions. • ZO#CUR 06 Current position Move cursor m lines down and

control n columns to the right.

ZO#CURC 07 Current position Insert n significant spaces (DC3
control with clear characters).

ZO#BEG 08 Beginning of current Move cursor to start of current
line control line and then m lines down and

n columns to the right.

ZO#TABS 09 Set tab stop Set a tab stop at row m and
column n.

ZO#FORMA OA Forms control with Move cursor to row m and
clear (protected column n, and erase display
and unprotected)

ZO#ERSLN OB Erase line Erase to end of line.

• 4-28 UP-9744 Rev. 1

•

•

•

Line and Terminal Support

4.5.3. DICE Summary

This subsection summarizes the DICE functions and the three classes of terminals
ICAM works with: CRT terminals, character-oriented printer terminals, and page
printing terminals. For the details of DICE, you should turn to the ICAM interface
user guide for the interface you are using.

CRT Terminals

• Input - DICE gives locations of text on the screen.

• Output

Move cursor to row m and column n.

Move cursor m rows down and n columns to the right.

Clear screen.

Insert spaces.

Set tabs.

Character-Oriented Printer Terminals

• Input - Form feeds, carriage returns, and line feeds in the message.

• Output

Carriage return and line feeds.

Advance m lines and n columns to the right.

Advance to line m, column n.

Page Printing Terminals

• Input - Indicates end of input record.

• Output

Advance m lines.

Advance 1 line.

Advance to top of form .

UP-9744 Rev. 1 4-29

Line and Terminal Support

4.6. Format Edit

4-30

In 4.5, we looked at DICE to simplify message formatting. The optional format edit
feature simplifies message formatting even further. With it, you specify a network
definition:

• Terminal line width - When this value is reached, the remote device handler
causes the terminal to advance to the beginning of the next line.

• Number of lines per page - When this value is reached, the remote device handler
causes the terminal to advance to the beginning of the next page.

• One or two editing codes - When the remote device handler encounters either one,
it causes the terminal to advance to the beginning of the next line.

Instead of specifying the line widths and page lengths, you can use the following
defaults:

• DCT 475, 500, and 1000 - 132 characters per line, 54 lines per page

• Teletypewriters - 72 characters per line, and no limit on number of lines per page

• UNISCOPE and UTS 400 terminals - Either 64 or 80 characters per line and no
limit on number oflines per page

In the following example, we have input assembler constants to a format edit network
whose specification was a default of 80 characters to a UTS 400 screen.

Input:

TEXT DC C' WHEN WE TALK ABOUT !CAM LINE AND TERMINAL SUPPORT WE X00800000
ARE REALLY TALKING ABOUT WHAT THE REMOTE DEVICE HANDLER' 00810000

DC C'S DO. THEY ARE THE LINK BETWEEN THE SOFTWARE AND THE HX00820000
ARDWARE. THESE ROUTINES: -OPEN AND CLOSE LINES AND HANDX00830000
LE ALL INPUT AND OUTPUT: -TRANSLATE THE CODE OF YOUR M' 00840000

DC C'ESSAGES FROM EBCDIC USED IN THE COMPUTER TO WHATEVER CX00850000
ODE YOUR TERMINAL USES: -HELP YOUR PROGRAMS PROVIDE COX00860000
NTROL INFORMATION FOR FORMATTING YOUR MESSAGES THROUGH ' 00870000

DC C'DEVICE CONTROL EXPRESSIONS(DICE) AND FORMAT EDIT -ANX00880000
D PROVIDE FOR ERROR RECOVERY DURING INPUT AND OUTPUT. TX00890000
HE RELATIONSHIP OF YOUR PROGRAM WITH THE REMOTE DEVICE 1 00900000

DC C'HANDLERS ... ' 00910000

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

Output:

WHEN WE TALK ABOUT !CAM LINE AND TERMINAL SUPPORT WE ARE REALLY TALKING
ABOUT WHAT THE REMOTE DEVICE HANDLERS DO. THEY ARE THE LINK BETWEEN THE
SOFTWARE AND THE HARDWARE. THESE ROUTINES: -OPEN AND CLOSE LINES AND
HANDLE ALL INPUT AND OUTPUT:; -TRANSLATE THE CODE OF YOUR MESSAGES
FROM EBCDIC USED IN THE COMPUTER TO WHATEVER CODE YOUR TERMINAL USES:;
-HELP YOUR PROGRAMS PROVIDE CONTROL INFORMATION FOR FORMATTING YOUR
MESSAGES THROUGH DEVICE CONTROL EXPRESSIONS[DICE] AND FORMAT EDIT:;
-AND PROVIDE FOR ERROR RECOVERY DURING INPUT AND OUTPUT. THE
RELATIONSHIP OF YOUR PROGRAM WITH THE REMOTE DEVICE HANDLERS ...

For the details of using format edit, see the current version of the !CAM Operations
Guide (UP-9745).

4. 7. Translate Tables
The remote device handlers translate your messages from EBCDIC, used by the host
computer, to whatever code is used by your terminals. ICAM supplies standard
translation tables for the terminals that it supports. There may be times, however,
when you want to supply your own translation table or modify one of the ICAM
standard translation tables. For example, if you attached a special printer to a
terminal, it has special codes to control printing. You can supply a translation table for
the remote device handler to convert certain EBCDIC characters to the print codes.
For example, if your program uses the percentage sign(%) to mean skip to the top of
the next page, the remote device handler converts it to the appropriate print code.

4.8. Status and Error Codes
The remote device handlers report certain error and status codes to your program.
Because the information given your program depends on the interface used, the
following subsections are summaries. For details on getting and using these codes, go
to the appropriate ICAM interface manual.

4.8.1. Input Error Notification

ICAM does not inform standard interface programs of any input errors. When they
occur, the remote device handler takes care of them. If an error results in marking
down the last terminal on the line, your program gets a logical line-down notification.
(See the discussion of line connection errors in 4.2.) You can use a message processing
routine (see Section 6, especially 6.3) to inform your program of many input errors.
ICAM informs direct data interface programs of any input error that occurs .

UP-97 44 Rev. 1 4-31

Line and Terminal Support

Input errors break down into three broad classifications:

• Hardware errors -The remote device handlers do not attempt recovery. ICAM
breaks the circuit and notifies your program and system operator.

• Transmission errors - These occur if a terminal does not respond to a poll or a
parity error occurs. In both cases, the remote device handler retries the poll that
led to the error. If the error still occurs after several retries, the remote device
handler marks the terminal down. (See "Polling with Buffered Interactive
Terminals" earlier in this section for a description of error recovery with polling.
The process is similar with most buffered batch terminals.)

• Invalid framing characters - The remote device handlers successfully received a
message but the framing characters are invalid. One possibility is that the
terminal address is not one declared at network definition. If the terminal is
buffered, the remote device handler asks the terminal to retransmit the message;
if the terminal is unbuffered, the remote device handler throws the message away
and no error recovery is attempted. Another possibility is that the header is
unreadable. Again, the remote device handler attempts recovery with buffered
terminals but not with unbuffered terminals. If recovery isn't successful after
several retries, ICAM marks the terminal down.

4.8.2. Output Error Notification

4-32

As with input messages, ICAM gives the direct data interface program the most
information on the status of output messages. Standard interface programs, however,
can learn the status of an output message through the output delivery notification
request feature. But ICAM notifies the standard interface program only whether or
not the output is successfully delivered. You can use a message processing routine (see
Section 6, especially 6.3) to inform your standard interface program of the details of
output errors.

The remote device handlers inform the direct data interface program of the following
output error conditions:

• The message was successfully delivered.

• The message was not successfully delivered. - For standard interface programs,
this status is given only after the retries are exhausted. For direct data interface
programs, this status is given after each retry because the programs must request
subsequent retries. Also, the direct data interface programs get this status
broken down into the following categories for UNISCOPE, UTS 400, and UTS
4000 terminals:

Single line communications adapter reported an error.

No acknowledgment came from the terminal.

Error occurred in the tape cassette system.

UP-9744 Rev. 1

•

•

•

•

•

•

Line and Terminal Support

For DCT 1000 terminals only, the status can be:

Prolonged busy signal

For teletypewriters, DCT 475, DCT 500, and UTS 10 terminals, you can get:

Error during output to primary device, or else a break was received during
output

For batch terminals, the unsuccessful output status is not qualified.

• If output was not successful during a write to an auxiliary device, this is reported
to your program.

• The line was logically marked down.

4.8.3. Terminal Statistics

At network definition, you can request ICAM to keep statistics on each terminal.
These statistics give you:

• Total number of messages received

• Total number of times the remote device handler requested input
retransmissions

• Total number of messages transmitted to the terminals

• Total number of times the terminals requested the remote device handler to
retransmit output

• Total number of polls sent out by the remote device handler

• Total number of times the terminals replied to polls with the no-traffic response

4.9. Output Delivery Notification Request
ICAM provides an optional feature called output delivery notification request
(ODNR) that notifies your program when a message it sent was delivered. This
feature is available for standard interface programs and IMS.

Your program uses this feature by setting a field and supplying a message identifier in
the output DTFCP before issuing the output request. When the message is delivered,
your program receives control at a location it specified. At this time, the identifier and
status (message delivered or error status) is returned in general registers. Details on
how to use output delivery notification request notice is provided in the !CAM
Standard MCP (STDMCP) Interface Programming Guide (UP-8550) .

UP-9744 Rev. 1 4-33

•

•

•

•

•

•

Section 5
Buffers and Queues

5.1. General
The network buffers and queues are the heart of the standard and transaction control
interfaces. They isolate the programs of both interfaces from the physical problems of
communications. Direct data interface programs, by contrast, work directly with the
remote device handlers and direct input, output, and error recovery. Figure 5-1
compares a standard and a direct data interface system.

In the following discussions, buffers and queues may be determined to reside in main
storage or on disk according to the application requirements. If on ciisk, they may be
defined as disk-buffered files or disk-queued files. For example, a disk-buffered file is
required for input when ICAM is used with IMS. A disk-queued file is used for input
and output with the standard interface and may be used for output with IMS. The
advantages and disadvantages of each are discussed in more detail in 5.4.

Even though the major part of this section deals with network buffers and queues, it
also covers two related subjects: lineNLINE buffers (5.2) and activity request packets
(5.3). You should read these subsections regardless of the interface you use .

UP-9744 Rev. 1 5-1

Buffers and Queues

D
INPUT D
AND

OUTPUT D
QUEUES

D

PROGRAM

•
ICAM ,

l
l

_j

l
l l l r-r--t--- -

I

NETWORK BUFFERS

l
REMOTE
DEVICE

HANDLERS

LOCAL OR VLINE
LINE BUFFERS

j

'

SINGLE LINE
COMMUNICATIONS

ADAPTERS

STANDARD INTERFACE

ICAM

PROGRAM

REMOTE
DEVICE

HANDLERS

LINE
BUFFERS

SINGLE LINE
COMMUNICA

TIONS
ADAPTERS

DIRECT DATA
INTERFACE

Figure 5-1. Comparison of Standard and Direct Data Interfaces

5-2

•

•

•
UP-9744 Rev. 1

•

•

•

Buffers and Queues

5.2. Line Buffers and VLINE Line Buffers
ICAM creates special buffer areas to temporarily store message data as it is
transferred from a single line communications adapter to main storage on input and
while it is waiting to be transferred to a single line communications adapter on output.
These areas are called line buffers. If a line buffer works in conjunction with a VLINE,
the line buffer is called a VLINE line buffer.

5.2.1. Line Buffers

For most terminals, ICAM creates two equal-sized line buffers for each line in your
network to use as input and output staging areas. During input, the single line
communications adapter fills the first line buffer byte by byte with the incoming
message. If the message doesn't fit into the first line buffer, the communications
adapter begins filling the second line buffer. As it does so, the remote device handler
processes the contents of the first line buffer and puts it in a network buffer:

SINGLE LINE
COMMUNICATIONS

ADAPTER

1st LINE BUFFER

REMOTE
DEVICE

HANDLER
NETWORK

BUFFER

If more of the message remains after filling the second line buffer, the
communications adapter switches back to the first line buffer and overwrites its
contents. Meanwhile, the remote device handler begins to process the contents of the
second line buff er:

SINGLE LINE
COMMUNICATIONS

ADAPTER

1st LINE BUFFER

REMOTE
DEVICE

HANDLER
NETWORK
BUFFER

Alternating between line buffers continues until the entire message is received .

UP-9744 Rev. 1 5-3

Buffers and Queues

5-4

During output, the process reverses and the remote device handler fills the line
buffers with the outgoing message:

SINGLE LINE
COMMUNICATIONS

ADAPTER

1st LINE BUFFER

REMOTE
DEVICE

HANDLER NETWORK

BUFFER

If a line buffer fills faster than the remote device handler can process its contents, part
of a message is lost. The longer a line buffer is, the more time a remote device handler
has to process its contents. !CAM supplies default lengths for line buffers based on
how the line is used. It bases the line buffer length for lines supporting batch
terminals on message size (it knows the message size when you specify the kind of
terminal you have), and you cannot change the line buffer length.

!CAM supplies a default line buffer length for interactive terminals based on
transmission rate. It uses transmission rate because, with interactive terminals,
message size varies a lot. CA message may only be a few characters on part of a display
screen or it may be the entire screen including format control characters.)

You specify line buffer length on the LINE macro when you define your !CAM
network. Refer to the !CAM Operations Guide (UP-9745) for details.

You should specify a line buffer size for UNISCOPE, UTS 400, UTS 4000, and
teletypewriter terminals CUTS 10) because the default sizes specified for these
interactive terminals are only minimum sizes that will always work. They use a
minimum amount of storage, but they are not optimum sizes from a performance
standpoint. Larger sizes up to one half of message size may be used; however, we
recommend that you do not specify line buffer sizes greater than 128 words (512
bytes). This is because lengthy !CAM processing can interfere with the timely
dispatching of other tasks in the system. If you have a mixed !CAM system of
teletypewriter, UNISCOPE, UTS 400, or UTS 4000 terminals, we recommend you use
the same line buffer size for all lines.

Local workstations are the only interactive terminals that do not follow normal line
buffer use. They have a single line buffer that must be large enough to hold complete
messages including format information. Decrease the size only if the largest message
including format information is less than the default length; otherwise, increase the
length as appropriate. This may be necessary if screen format services are being used
by IMS and the text contains many FCC sequences.

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

5.2.2. VLINE Line Buffers

VLINE line buffers are input and output staging areas in main storage that !CAM
creates to temporarily store messages as they are sent and received over a virtual line
(VLINE). VLINE is the name for a dedicated circuit that connects your computer to
another computer or to a public data network. The protocols used on VLINEs dictate
that messages must be sent in segments or packets, and that each packet is a separate
message framed according to the protocol used.

Each VLINE line buff er holds one packet, and they are not used in pairs and toggled
the way line buffers are for most lines. They are used (much like network buffers)
from a pool of VLINE line buffers established at network generation time. !CAM
acquires them from the VLINE line buff er pool as needed and releases them back to
the pool when they are no longer needed. The following figure shows how one network
buff er might relate to several VLINE buffers to make up one message.

MESSAGE
HEADER
PREFIX

FRAME

__.. FRAME
TEXT

...,.
TEXT

r-+- FRAME TEXT
FRAME

NETWORK BUFFER TEXT
FRAME

FRAME
VLINE LINE BUFFERS
CONTAINING PACKETS

At network generation, you declare the number, size, and threshold value of the
VLINE line buffers. While there is no formula for calculating these values, the
following are some considerations:

• Number - Specifies the number of VLINE line buffers. The greater the traffic over
the VLINE, the greater the number ofVLINE line buffers you should declare.

• Size - You declare the amount of text, in words, each packet contains. ICAM
automatically sizes the VLINE line buffers large enough to contain the amount of
text plus message frames. If the VLINE connects to a public data network, the
size must be the text size used by the network. If the VLINE connects directly to
another host computer, the text size must match in the two hosts.

• Threshold value -The threshold value sets the number ofVLINE line buffers held
in reserve. When all but this number of VLINE line buffers are in use, !CAM
slows the traffic rate until more VLINE line buffers become free. You can't lose a
message because all the VLINE line buffers are in use .

UP-9744 Rev. l 5-5

Buffers and Queues

5-6

The software and hardware elements associated with VLINEs are shown in the
following illustration.

INPUT
AND

OUTPUT
QUEUES

D
D
D

NOTE:

HOST COMPUTER 1
PROGRAM

PROGRAM

-woRK - ,- -woR'K
AREA I AREA

ICAM

REMOTE
DEVICE

HANDLERS

VLINE LINE
BUFFERS

SINGLE LINE
COMMUNICATIONS

ADAPTER

INPUT
AND

OUTPUT
QUEUES

D
D
D

VLINE

Additional global elements are introduced in subsequent subsections.

HOST COMPUTER 2
PROGRAM

PROGRAM

-- ------
WORK : WORK
AREA AREA

ICAM

- NETWORK BUFFERS

REMOTE
DEVICE

HANDLERS

VLINE LINE

SUFFERS

SINGLE LINE
COMMUNICATIONS

ADAPTER

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

5.3. Activity Request Packets
Activity request packets are work areas used by the ICAM routines. You have no
control over their use, nor does their use affect the arrangement of your network. We
mention them only because, at network definition, you must declare the number
needed. The !CAM Operations Guide (UP-9745), contains the formula used to
determine the number.

If you request it to, ICAM keeps statistics on activity request packet usage. The
statistics are almost identical to those kept on network buffer usage (5.4). They tell
you the followin?':

• Number of times activity request packet requests were rejected - ICAM rejects
requests when all activity request packets are in use and an ICAM routine needs
one. In most cases, ICAM terminates when an activity request packet request
must be denied. If the statistics ever show a reject request, redefine your network
with more activity request packets.

• Total number of times any number of activity request packets were available -
The statistics give the number of times none were available, the number of times
one was available, the number of times two were available, and so forth, up to the
number of activity request packets in the system.

You get the activity request packet statistics by dumping the system or by using the
journal utility. Both methods give the same statistics, but they're easier to obtain with
journaling. See the !CAM Utilities Programming Guide (UP-9748) and the !CAM
Operations Guide (UP-9745) for formats and procedures of journaling.

Figure 5-2 shows the format of the statistics area in a system dump .

UP-9744 Rev. 1 5-7

Buffers and Queues

WORD
0

5-8

4

5

6

7

8

9

10

11

12

13

14

15

N-1

1 L CONTROL INFORMATION

"'
~

------------------------------.--------------------------------
I

NO. ACTIVITY REQUEST : NO. ACTIVITY REQUEST PACKETS
PACKETS CREATED : CURRENTLY AVAILABLE

------------------------------~-------------------------------·

CONTROL INFORMATION

NO. OF REJECTED REQUESTS

NO. OF TIMES 0 ACTIVITY REQUEST PACKETS WERE AVAILABLE

NO. OF TIMES 1 ACTIVITY REQUEST PACKET WAS AVAILABLE

NO. OF TIMES 2 ACTIVITY REQUEST PACKETS WERE AVAILABLE

NO. OF TIMES 3 ACTIVITY REQUEST PACKETS WERE AVAILABLE

~ '1"
NO. OF TIMES N-9 ACTIVITY REQUEST PACKETS WERE AVAILABLE

Figure 5-2. Activity Request Packet Statistics in a System Dump

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

5.4. Network Buffers
The network buffers are areas in main storage used for two purposes. They hold
messages as ICAM processes them, and they store messages that cannot be
immediately sent to their destination (main storage queuing). The processing is
minimal. Remote device handlers place input messages in the network buffers as they
process them, and take output messages from the network buffers to prepare them for
transmission.

SINGLE LINE
COMMUNICATIONS

ADAPTER

SINGLE LINE
COMMUNICATIONS

ADAPTER

1st LINE BUFFER

2nd LINE BUFFER

1st LINE BUFFER

2nd LINE BUFFER

REMOTE
DEVICE
HANDLER

REMOTE
DEVICE
HANDLER

NETWORK
BUFFER

NETWORK
BUFFER

Once the messages are in the network buffers, message processing routines, if any,
process the messages, then they are queued. As Section 6 describes in detail, the
message processing routines handle transmission errors, examine message headers
(beginning of messages), and route messages to different destinations.

Normally, messages reside in the network buffers for short periods of time, measured
in fractions of a second, before going to their destination. ICAM must store messages
in the network buffers, however, under three circumstances:

1. !CAM delivers input messages to programs only when the programs request input.

UP-9744 Rev. 1

On an average, programs must request input as fast or faster than !CAM receives
the input from the terminals. Otherwise, a continuously growing backlog of
messages is created, filling the network buffers. But programs may temporarily
request input slower than ICAM receives input messages, creating a small
backup .

5-9

Buffers and Queues

5-10

FROM TERMINALS

REMOTE
DEVICE

HANDLERS

INPUT MESSAGE
BACKLOG

PROGRAM

!CAM stores these input messages in the network buffers until the programs
request them.

2. !CAM sends output messages to the terminals as soon as it can. Physical
constraints on the transmission speed of messages can create a backlog. For
example, a 1000-byte message takes about 30 seconds to send over a line capable
of transmitting 300 bits per second. Your programs, operating much faster, can
create many output messages in this time. Normally, they should not create
output messages faster than !CAM can send the messages to the terminals.
Otherwise, a continuously growing backlog of messages is created, filling the
network buffers. But programs may temporarily create output messages faster
than !CAM sends them, creating a small backlog.

TO TERMINALS

REMOTE
DEVICE

HANDLERS
PROGRAM

!CAM stores these output messages in the network buffers until it can send them
to the terminals.

3. If a program is inoperative or a terminal is down, !CAM stores any messages for it
in the network buffers. Unlike the previous cases, the backlog created can last for
seconds or minutes and can continue to grow during that time.

When you define the network, you create a pool of network buffers by declaring its
characteristics: the type of buffering (main storage or disk), the size of the network
buffers, and the number of network buffers. So many factors affect the network buffer
pool, we can't give hard and fast rules for declaring the characteristics. Instead, we
recommend you use the guidelines in this subsection to estimate the characteristics.
Then, define your network, regularly check the network buffer statistics, and change
the characteristics as needed.

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

Deciding between main storage and disk queuing is basically a matter of examining
the trade-offs:

MAIN STORAGE QUEUEING

COMMUNICATIONS
USER

PROGRAM

MAIN STORAGE

UP-9744 Rev. 1

REMOTE
DEVICE
HANDLER

DISK QUEUEING

COMMUNICATIONS
USER

PROGRAM

REMOTE
DEVICE
HANDLER

Advantage

!CAM processing 10-15 percent
faster than with disk
buffering

Disadvantages

• Many bytes of main storage committed to
the network buffers. A modest network
buff er pool of twenty 1020-byte buffers
requires 20.4K bytes of main storage.

• If the system crashes, all messages in
network buffers are lost.

• Not good for message storage because many
extra network buffers needed, requiring
more main storage

DISK
BUFFERS

Advantages

• Few main storage buffers
needed, meaning little main
storage committed to the
network buffers

• If the system crashes, all
messages in disk buffers are
saved.

• Good for message storage
because disk file containing
network buffers can hold as
many network buffers as
needed

Disadvantage

ICAM processing 10-15 percent
slower than with main storage
queuing

5-11

Buffers and Queues

5-12

If you have large messages, we recommend disk queuing. When messages of 1000
bytes or more are stored in main storage buffers, large amounts of main storage are
needlessly tied up. This problem doesn't occur with disk queuing.

You can mix main storage and disk queuing. Messages associated with one queue can
go to main storage buffers, and messages associated with another queue can go to disk
buffers.

By using disk queuing, you can store messages for later transmission, perhaps when
line rates are cheaper. Your programs send messages to queues associated with disk
buffers, wher~ they're stored until the lines are activated. ICAM then reads the
messages from disk and transmits them.

When declaring the network buffer size, you must make it at least large enough to
hold a message header prefix supplied by ICAM and part of a message. The network
buffer format looks like this:

FROM ICAM

NETWORK BUFFER

MESSAGE HEADER
PREFIX

MESSAGE
FROM COMMUNICATION USER
PROGRAM (OUTPUT) OR REMOTE
DEVICE HANDLER (INPUT)

The message header prefix contains information used by ICAM, like the message
origin and destination.

Often, network buffers do not hold complete messages. When a message is too large
for a single network buffer, ICAM segments it and places it in two or more network
buffers. ICAM prefixes each network buffer containing a message segment other than
the first with a smaller segment prefix as shown here:

UP-9744 Rev. 1

•

•

•

•

•

•

MESSAGE HEADER
PREFIX

FIRST MESSAGE
SEGMENT

SEGMENT PREFIX

SECOND MESSAGE
SEGMENT

SEGMENT PREFIX

Nth MESSAGE
SEGMENT

Buffers and Queues

The actual sizes of the message header prefix and segment prefix vary according to
the type of interface you use, whether you use disk or main storage queuing, and if you
require journaling. The size of the message header can range from 88to120 bytes
depending on your system, while the segment prefix can range from 12 to 16 bytes.
You specify the size you need in the BUFFERS macro, as discussed in the !CAM
Operations Guide (UP-9745).

The size of the message area in your network buffers depends on several factors:

• Disk queuing - With disk queuing, we recommend that each network buffer be
large enough to hold any size message without segmentation. This way, ICAM
reads or writes a message from the disk file in a single input or output operation.
Otherwise, ICAM reads or writes each segment of a message in a separate input
or output operation. Each input or output operation increases the ICAM
processing time on that message by 10 to 15 percent.

If your largest messages are 2000-byte messages from interactive terminals, you
don't use journaling, and assuming a 100-byte message header prefix size, the
network buffer size is:

100 bytes (message header prefix)
+2000 bytes (message size)

2100 bytes or 525 words

Note: Network buffer size is declared in words not bytes. If the number of bytes is
not an even multiple of 4, round it up to the nearest multiple of 4, divide
by 4, and declare that many words.

• Main storage queuing - With main storage queuing, we recommend that each
network buffer be large enough to hold all but your largest messages. This doesn't
affect ICAM processing time, but it holds down the total number of network
buffers, reducing the amount of main storage used.

UP-9744 Rev. 1

If 30 percent of your messages are 80 bytes long, 30 percent are 133 bytes long, 35
percent are 200 bytes long, and 5 percent are 1000 bytes long, you should create
network buffers capable of holding 200 bytes of message because most of your
messages are that size or smaller. With journaling and a message header prefix
ofll2 bytes, network buffer size is 312 bytes or 78 words .

5-13

Buffers and Queues

5-14

With buffers of this size, it takes four network buffers to hold a 1000-byte
message. The first buffer holds 200 bytes; the second, 288 bytes; the third, 288
bytes; and the fourth, 224 bytes. For example:

Buffer 1 Buffer 2 Buffer 3 Buffer 4

112 bytes (message header prefix) 16 bytes (prefix) 16 bytes (prefix) 16 bytes (prefix)
+200 bytes (message size) +288 bytes (message) +288 bytes (message) 224 bytes (remaining portion

312 bytes 304 304 240
of message)

• Batch terminals - With batch terminals, each network buffer must be large
enough to hold the largest record used by your batch terminals.

If your batch terminals use 80-byte input records from a card reader and 133-byte
output records to a printer, you base your network buffer size on the 133-byte
output records. With journaling, assuming a message header prefix size of 112
bytes, the network buff er size is:

112 bytes (message header prefix)
+133 bytes (record size)

245 bytes or 60 words

Interactive terminals don't impose any additional network buffer sizing
considerations.

Deciding on the number of main storage network buffers needed is more difficult than
deciding on their size because it's usually harder to estimate message flow than
average message size. The first step is deciding whether to use main storage or disk
queuing. You create a pool of main storage buffers either way. But in main storage
queuing, the main storage buffers act as both holding and processing areas, while in
disk queuing, the main storage buffers act only as processing areas. We'll show how to
determine the number of main storage buffers needed with both types of network
queuing, starting with main storage queuing.

Main storage queuing requires enough main storage buffers to hold all the messages
ICAM has at a given time. Because backups usually occur on output and not input,
calculate the number of output messages your programs create in a time interval (for
example, a minute), subtract the maximum number of messages sent to the terminals
in that interval, and add an insurance factor to give yourself some cushion.

Determining the number of messages your programs create is an estimate probably
unique to your system. Part of it depends on the type of applications. Batch
applications, for example, typically create more messages than interactive systems
(although interactive messages are usually larger and may require more network
buffers). Another part depends on the number of users. More users usually mean more
messages. And another part depends on the type of lines and terminals.

UP-9744 Rev. 1

•

•

•

......---------·~----------

•

•

•

Buffers and Queues

Your programs shouldn't continuously create more messages than can be sent because
a large backlog of messages is inefficient. From these considerations, you need two
numbers: the average and maximum number of messages. We'll show how to use them
later.

To determine message number, consider:

• Your applications

Are they batch or interactive?

Do they create large or small messages?

Do they create many or few messages?

How many different applications are there and how do these considerations
vary with each of them?

• The users

Are there many or few of them?

Do they use the communications system in the same way?

Do they use the communications system at the same time?

Do they use the communications system for long or short periods?

• The equipment

How fast do your lines transmit messages?

How fast do your terminals receive messages?

How much do these vary between different lines and terminals?

How many terminals on different lines?

Determining the maximum number of messages each single line communications
adapter sends is reasonably simple.

On a given line, it's the smaller of two numbers: the line speed or the terminal
speed. If a line transmits at 2400 bits per second and the terminal receives at
4500 bits per second, use the 2400 bits per second. Remember, for multiterminal
lines, one terminal at a time receives messages. If you have six terminals on a
line capable ofreceiving 300 bits per second and the line transmits 300 bits per
second, only 300 bits per second can be transmitted over that line. Also, most
lines and terminals receive and send messages. If your terminals send as many
messages as they receive, the number of output messages sent over a line is half
the theoretical maximum .

UP-9744 Rev. 1 5-15

Buffers and Queues

5-16

To determine the number of output messages sent, consider:

• How fast do your lines transmit messages?

• How fast do your terminals receive messages?

• Do you have more than one terminal per line?

• What's the mixture of output to input messages?

• How long does it take to send a message?

• How much time does polling require? How do these considerations vary from line
to line?

Determining the insurance factor means judging the number of network buffers
needed to hold messages for long periods (anywhere from seconds to hours). Part of
this is the difference between the maximum number of messages created and the
maximum number of messages sent to the terminal in a given interval. For example,
if your programs generate a maximum of one hundred 80-byte output messages a
minute and send them over three lines rated at 300 bits per second each, your
calculation looks like this:

100 messages per minute
x 80 bytes each
8,000 bytes per minute

---2L..!L. bits per byte
64,000 bits per minute

300 bits per second
~ seconds per minute
18,000 bits per minute
~the number of Lines
54,000 bits per minute on all lines

64,000 bits to send
-54,000 bits that can be sent
10,000 bits that must be buffered

@8 bits per word

1,250 bytes to be buffered
@80 bytes to the message

16 messages to be buffered

The first calculation gives the number
of bits to be transmitted.

The second calculation gives the total
number of bits the communications
adapter can send per minute. (The 300
per second assumes the Lines transmit as
many input as output messages.)

The third calculation gives the difference
in messages, between the number of messages
that can be sent. You must create enough
buffers to hold the difference.

You need 16 network buffers to handle a 1-minute backlog, 32 network buffers to
handle a 2-minute backlog, and so forth. You cannot continue at this rate for long. To
clear a 1-minute backlog, only 69 messages can be created in the next minute. Thus,
85 messages a minute is the most that can be created without creating a backlog.

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

At this point, you're ready to use the average and maximum number of messages you
calculated before. If the average output load is 25 messages per minute for 3 lines, you
need 8 network buffers to handle the average load (3 to hold messages as the
communications adapter outputs them, 3 to hold input messages, and 2 just in case).
You also need enough to hold the backlog as the maximum number of messages is
reached. If you never create messages at the maximum rate for more than 2 minutes,
you need an additional 32 network buffers for a total of 40. For 80-byte messages, you
devote at least 6400 bytes of main storage to network buffers. (Remember, the
network buffers also hold message header prefixes.)

The insurance factor calculations do not take into account messages held in the
network buffers for down terminals and programs. These messages may reside in the
network buffers for long periods of time, increasing the number of network buffers
needed. To avoi<!l this problem, use disk queuing, the alternate destination capability
(described near the end of this section), the intercept queue capability (described near
the end of this section), or a message processing routine (described in Section 6).

To determine an insurance factor, consider:

• What's the difference between the maximum and average number of output
messages created?

• How fast are messages sent to the terminals?

• Are messages held in main storage buffers for down terminals and programs?

Disk queuing requires enough main storage buffers to hold only the messages ICAM
processes at a giiven time. Messages reside in main storage buffers just long enough to
be processed, wcitten to disk, read from disk, or transmitted. The last is the problem
because it takes somewhere between a fraction of a second and several seconds while
the others are much faster. You must create at least one main storage buffer. In
general, howevell', the system works fastest if you create one main storage buffer for
each line plus a few additional main storage buffers. For example, if you have three
lines, create five or six main storage buffers. You don't declare the number of network
buffers in the disk file. ICAM creates as many network buffers in the file as it needs.

Whether you use main storage or disk queuing, create extra network buffers when in
doubt. When you. look at the buffer statistics described later, you'll see how many are
not used and then you can reduce their number.

On the other hand, creating too few network buffers degrades ICAM processing with
disk queuing and causes messages to be lost in main storage queuing. The following
shows what happens ifthe network buffers fill with main storage queuing and ICAM
receives a message from a program or terminal.

UP-9744 Rev. 1 5-17

Buffers and Queues

5-18

IF: Every network buffer contains a message or message segment

AND----------THEN

your program tries sending
a message

a message is received from
an uncontrolled terminal

a message is received from a
controlled terminal

ICAM rejects the message and notifies
your program. Your program should resend
the message.

ICAM ignores the message. No retry is made.
Neither your program nor your terminal is
notified that the message is lost.

ICAM rejects the message but asks the
terminal to resend it in case a network buffer
becomes free. After five unsuccessful retries,
the message is lost. Neither your program
nor your terminal is notified that the
message is lost.

An optional network buffer threshold capability lets you create at network definition a
network buff er reserve. It serves two purposes:

1. When all network buffers except the reserve fill, ICAM stops soliciting input from
the terminals and empties network buffers by sending their messages to the
terminals and programs. After a substantial portion of the network buffers
empty, ICAM resumes soliciting input. Without the threshold capability, ICAM
does not stop soliciting input when the network buffers fill. The network buffers
empty when input slows, but messages may be lost.

2. Even though ICAM stops soliciting input when the network buffers fill, controlled
terminals, uncontrolled terminals, and programs that were sent output can give
ICAM new messages to hold. The network buffer reserve gives you a margin,
although the reserve may fill faster than network buffers are emptied.

With the network buffer statistics, which you request ICAM to keep at network
definition, you monitor the use of your main storage buffers. They tell you:

• Number of times network buffer requests were deferred - ICAM defers buffer
requests when all network buffers are full and one of its own routines requests a
buffer. A deferred buffer request does not result in the loss of any messages.

• Number of times network buffer requests were rejected - ICAM rejects buffer
requests when all network buffers are full and either a terminal or a program
tries to send a message.

• Total number of times any given number of network buffers were available - The
statistics give the number of times none were available; the number of times one
was available; the number of times two were available; and so forth, up to the
number of main storage buffers available.

UP-9744 Rev. 1

•

•

•

......-------------------

•

•

•

WORD
0

4

5

6

7

8

9

10

11

12

13

14

15

Buffers and Queues

You get the buffer statistics by either dumping the system or using the journal utility.
Both methods give the same statistics, but they're easier to see with journaling. In this
section, we'll show the statistics as they appear in a system dump; see the current
versions of the !CAM Utilities Programming Guide (UP-9748) and the !CAM
Operations Guide (UP-97 45) for journaling formats and procedures.

The format of the statistics in a system dump (Figure 5-3) is seven words of control
information followed by several counters. The first gives the number of deferred
requests; the next, rejected requests; and then one word for each network buffer,
showing how often that many network buffers were available. Figure 5-4 is an
example of a buffer statistics area. Message flow in this system was particularly heavy
and frequently overloaded the buffer pool. Buffer requests were rejected 562 times
(23216). A good portion of the rejected requests probably involved lost messages. No
buffers were available 616 times (26816). The threshold value for this system is five
network buffers. By adding up the number of times five or fewer buffers were
available, we see that the threshold was exceeded 1823 times (72F 16). Each time it
was, system performance dropped substantially.

The user of this system should redefine the network and increase the number of
network buffers.

CONTROL INFORMATION

--------------------------------~--------------------------------I NO. BUFFERS CURRENTLY I

NO. BUFFERS CREATED
I

AVAILABLE I ________________________________ J ________________________________

CONTROL INFORMATION

NO. OF DEFERRED REQUESTS

NO. OF REJECTED REQUESTS

NO. OF TIMES 0 BUFFERS WERE AVAILABLE

NO. OF TIMES 1 BUFFER WAS AVAILABLE

NO. OF TIMES 2 BUFFERS WERE AVAILABLE

NO. OF TIMES 3 BUFFERS WERE AVAILABLE

N-1 r-----N-O-.~O-F_T_I_M_E_S~N---1-B_U_F_F_E_R_S_W_E_R_E~A-V_A_I-LA_B_L_E--------~r

Figure 5-3. Buffers Statistics in a System Dump

UP-9744 Rev. 1 5-19

Buffers and Queues

NUMBER OF TIMES THERE WERE ZERO
....------- BUFFERS LEFT IN THE POOL

AFTER A BUFFER WAS OBTAINED

NUMBER OF DEFERRED REQUESTS

THRESHOLD

NUMBER OF BUFFERS GENERATED

NUMBER CURRENTLY AVAILABLE
START OF 10-WORD
CONTROL FIELD

eeeeeeee .
oeeeeue eoseee1e eeeeeeeJ
eoeoe134 eeeeeeos eoeeeeSE

eo1oco-oeoeoe62 oeeooeJF eeeooeog eoeeooe1 eeoeeees eeeeooe2 eeoeeee2
001orn-oeeoeee1 0 o o o e' 1 oeeeoeo2 oeoeeoo1 oeeeeee1 ooeeooo2 08000001 ooooeeoJ
001100-00000001 ee eee1 eeoooee1 ooooeee1 eeeoeee2 oeoeeee1 eeeeeee2 eeeoeoe1
001120-eeoeooo oooeeoo2 ooeeoeo1 eeeeeeo1 oeeeeeo1 eeeeoeo2 oeeeoe2e eoeeeo4A
001140-000 eGo ~~~~ eoeoeee1 eeeeeee1 oeeeeee2 eeeeee1c 6F7F7E5A

. A.

.................

.

NUMBER OF REJECTED REQUESTS

NUMBER OF TIMES THERE WERE
38 BUFFERS IN THE POOL

NUMBER OF TIMES THERE WERE
39 BUFFERS LEFT IN THE POOL
AFTER A BUFFER WAS OBTAINED

AFTER A BUFFER WAS OBTAINED

5-20

Figure 5-4. Statistics Area in a System Dump for Network Buffers

The final network buffers topic is what happens to a message in a network buff er
when an error occurs during input or output. Input errors are either hardware failures
or line buffer failures. In the latter case, the line buffer is too small and parts of the
message are lost. (See 5.2.) When either error occurs, the following happens:

Error occurs;
input stops.

~
Remote device handler
requests the terminal to

/ retransmit the message.~
If retransmission is If retransmission is not successful,
successful, complete as much of the message received
message is put in a before the error occured is put in a
network buffer. Normal network buffer. For hardware
processing resumes. errors, terminal is marked down.

If retransmission isn't successful, ICAM discards the message fragment in the
network buffer, unless you: have a message processing routine. It can then decide
whether to cancel the message, send it to a program or terminal (if a successful EOM
was received), and/or send error messages to a program or terminal.

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

During output, hardware failures and line buffer failures can occur, plus two new
errors: message truncation and terminal down. Message truncation happens when the
message is too long for the terminal to handle and must be truncated. This is the only
output error for which the message, although truncated, goes to the terminal.
Terminal down is not strictly speaking an error, but it prevents the message from
going to the terminal and is treated like an error.

The sequence of events for output errors is different from input errors. When an error
occurs, the remote device handler tries to retransmit the message (except for
truncated messages). For example:

IF -------AND -------.-THEN

retransmission is
successful

ORIF

retransmission is
not successful

a message
processing
routine exists,
OR
alternate destination
is specified,
OR
intercept queue
is specified.

normal processing continues.

it may decide how to handle
the error.

message is sent to alternate
destination.

message is put on intercept
queue.

The recovery options are hierarchical. A message processing routine takes precedence
over alternate destinations, which, in turn, take precedence over intercept queues.

The functions of each are:

• Message processing routine, if present, receives control after every output. If an
error occurred, an error message is sent to a program, terminal, or intercept
queue.

• An alternate destination is another terminal, a locap file, or a process file that the
message goes to when the primary terminal is unavailable.

• An intercept queue is a queue of messages intended for a terminal that's marked
down. The messages remain on the intercept queue until a communications
program releases them or until the terminal is marked up. The messages then go
to the terminal.

UP-9744 Rev. 1 5-21

Buffers and Queues

5.5. Queues

5-22

A queue is a set of messages having a common destination. In many ways, queues are
the major feature of the standard interface because they allow you to group your
messages into distinct sets. Consequently, your programs - or each routine in your
program - can specialize by processing just one message type.

Ultimately, queues determine the destination of a message. When a message is placed
on an input queue, it goes to a program; when a message is placed on an output queue,
it goes to a remote device handler and from there to a terminal.

INPUT
QUEUE

PROGRAM

NETWORK BUFFERS

REMOTE
DEVICE

HANDLERS

OUTPUT
QUEUE

Physically, a queue is a set of messages linked together in the network buffers. A
queue control table points to the location of the first and last messages in a queue.
Fields in the message header of the network buff er prefixes link the intervening
messages.

UP-9744 Rev. 1

•

•

•

•

•

•

QUEUE

CONTROL

TABLE

POINTER TO 1st MESSAGE

POINTER TO LAST MESSAGE

Buffers and Queues

_ BEGINNING OF
QUEUE

- - END OF QUEUE

ICAM places new messages at the end of queues. It takes messages from the
beginning of queues. Thus, queues operate on a first-in, first-out basis .

INPUT
QUEUE

PROGRAM

t
I

UP-9744 Rev. 1

OUTPUT
QUEUE

T __ I T

I

t

OUTPUT
QUEUE

PROGRAM

~

INPUT
QUEUE

r-----
_________ "']

•
INPUT

QUEUE

t

5-23

Buffers and Queues

5-24

When you define your network, you need to define two systems of queues:

1. Queues that support your terminals (output queues) - When your program sends a
message, it issues an output request - a PUTCP, for instance - and releases
control to !CAM. !CAM performs any further processing needed and places the
message on an output queue that relates to a destination. There are two kinds of
output queues:

• Line queues - A line queue is an output queue that services some or all of the
terminals on one communications line. You specify a line queue in the LINE
macro when you define your network.

Note: Do not specify a line queue if you are using a global network.

• Terminal queues - A terminal queue is an individual output queue
established for each terminal on a line. We highly recommend terminal
queues for all systems. You specify terminal queues in the TERM macro
when you define your network.

The following illustration shows the difference between line and terminal queues
for output, and how each is used to service terminals:

UP-9744 Rev. 1

•

•

•

•

•

I

LINE OUTPUT

QUEUE

I

Buffers and Queues

l
TERMINAL

1
TERMINAL

2
TERMINAL

3
TERMINAL

n

NOTE:

Do not use line output queues with a global network.

It is possible to mix line output queues and terminal output queues on the same
communications line. You do this by specifying a line queue in the LINE macro
and specifying an output queue in the TERM macro for each of those terminals
you want to have its own queue.

2. Queues that support your programs (input queues) - Like terminals, each program
receiving messages is associated with an input queue. But there are a number of
differences. ICAM has three types of input queues:

• Input terminal queues (described in detail in 5.5.2)

• Process files (described in detail in 5.5.3)

• Locap files (available only with global networks)

UP-9744 Rev. 1 5-25

Buffers and Queues

5-26

You can also associate a single program with multiple input queues. You can arrange
these input queues in a number of ways, which we'll look at in the following
paragraphs.

Let's start with the simplest input queue arrangement, one for a single application
communications system. All messages contain similar types of data and need similar
processing. Examples would be an inventory control system or a sales order entry
system. Whatever the application, one program does the processing. You could use a
single input queue or one for each terminal:

PROGRAM

INPUT
QUEUE

This arrangement is available
only with process files and
locap files.

UP-9744 Rev. 1

•

•

•
--~---····-··-------~

•

•

•

INPUT
QUEUE

PROGRAM

INPUT
QUEUE

INPUT
QUEUE

Buffers and Queues

This arrangement is available
with all types of input
queues.

Now, let's add a second application. One program can handle both applications if it
has separate routines for each application. One way of arranging the program is to
have a root phase that reads the messages, sorts them, and passes them to the correct
routine:

ROOT
PHASE

SALES
ORDER
ENTRY

INPUT
QUEUE

INVENTORY
CONTROL

This arrangement is available
only with process files and
locap files. If each terminal
has its own input queue, input
terminal queues can be used.

In this, as in the following examples, each terminal can have its own input queue .

UP-9744 Rev. 1 5-27

Buffers and Queues

Or each routine can read messages from its own input queue:

INPUT
QUEUE

SALES
ORDER
ENTRY
ROUTINE

INVENTORY
CONTROL
ROUTINE

INPUT
QUEUE

Shared queue must be a
process file or locap file.
Individual queue can be
any type of input queue.

Or you can have two separate programs with their own input queues:

SALES
ORDER
ENTRY

PROGRAM

INPUT
QUEUE

T

" "' J.

D
~=-

a
~

5-28

INVENTORY
CONTROL
PROGRAM

I
INPUT
QUEUE

t
a I·,' , :

0\f@L~~'=-
~

Shared queue must be
a process file or
locap file. Individual
queue can be any type
of input queue.

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

So far, the examples show messages from each terminal going to a single input queue.
Many times, this is what happens: the terminals using inventory control are in the
warehouses, and the terminals using sales order entry are in the sales office. But the
sales personnel may need to know what the inventory levels are, and the stock clerks
may need to know what is ordered. A message processing routine (Section 6) can sort
the messages from terminals and route them to the proper input queue:

SALES
ORDER
ENTRY

PROGRAM

1
INPUT

QUEUE

1

~

D
!

I I
I I

~

INVENTORY
CONTROL
PROGRAM

I
INPUT
QUEUE

J
MESSAGE

PROCESSING

ROUTINE

!t

a
~~=-

~

This arrange ment is
y with

and
available onl
process files
locap files.

i
~1 J

~~

We'll look at other ways of using queues when we look at the different types of queues
later .

UP-9744 Rev. 1 5-29

Buffers and Q1Jeues

5-30

With most queue types, you have the option of giving messages a high, medium, or low
priority. Messages with higher priorities go to the destination before messages with
lower priorities. To give your messages different priorities, you create queues with
multiple levels:

HIGH
PRIORITY ~
MESSAGES

MEDIUM
PRIORITY
MESSAGES

LOW
PRIORITY .__..
MESSAGES

HIGH
LEVEL
QUEUE

MEDIUM
LEVEL

QUEUE

LOW
LEVEL
QUEUE

Multilevel queues act as normal queues. Everything said of queues in this section
holds for multilevel queues except the order in which messages leave multilevel
queues. With a single-level queue, messages leave in the order in which they arrived.
With a multilevel queue, messages leave according to their priority. Messages are
taken from the high level queue first. Ifit is empty, messages are taken from the
medium level queue. If both the medium and high level queues are empty, messages
are taken from the low level queue. Within a single level of a multilevel queue set,
messages normally are taken on a first-in, first-out basis.

Only a program or a message processing routine places messages in multilevel queues
on any level other than the lowest level created. Messages go to different levels, as
shown here:

If a message comes from a:

program

message processing routine

terminal (without message
processing routine)

distribution list

Then the queue level is:

level specified by the program. Default is the
lowest level queue created.

level specified by message processing routine.
Default is the lowest level queue created.

lowest level queue created.

lowest level queue created.

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

As implied in the preceding paragraph, you do not have to create all three levels of a
multilevel queue set. Because most of the types of queues have multilevel queuing, we
give you the option of creating one, two, or three levels of queues. With a single level
queue, all messages (regardless of their priority) enter and leave the queue on a first
in, first-out basis. With two queue levels, low priority messages go to the lower level
queue and high priority messages go to the higher level queue. Medium priority
messages go to either level queue, depending on the levels created. This table shows
where messages go, with different level queues created:

If you create these
queue levels:

Low

Low,medium

Medium

Medium, high

High

Low, medium, high

And you give your messages a
priority, they go to the following
queue levels:

Low Medium High
Priority Priority Priority

Low Low Low

Low Medium Medium

Medium Medium Medium

Medium Medium High

High High High

Low Medium High

If you don't give your message a priority, it goes into the lowest queue level created.

Figure 5-5 lists the possible characteristics shared by messages in a queue. Priority
and network queuing have already been discussed. Message classification is a more
complex concept than the other because it depends on your use of the queue and not
on any of its inherent characteristics .

UP-9744 Rev. 1 5-31

Buffers and Queues

5-32

THE MESSAGES IN A QUEUE HAVE THREE
MAJOR CHARACTERISTICS:

l
PRIORITY

HIGH:

OR

Messages in the queue
have a high priority
and are accessed befdre
any messages with medium
or low priorities.

MEDIUM:

OR

LOW:

OR

Messages in the queue
have a medium priority
and are accessed after
high priority messages
but before low priority
messages.

Messages in the queue
have a low priority
and are accessed after
all high and medium
priority messages have
been accessed.

NONE:

Messages in the queue
have no special
priority.

I

J
NETWORK
QUEUEING

MAIN STORAGE QUEUEING:

OR

Messages in the queue
are held in main storage
network buffers.

DISK QUEUEING:

Messages in the queue
are held in disk
queue files.

Figure 5-5. Message Characteristics

i
MESSAGE

CLASSIFICATION

ORIGIN:

Messages in the queue
come from the same
origin, a particular
line or terminal.

AND/OR

DESTINATION:

Messages in the queue
go to the same destination,
a particular line or
terminal.

AND/OR

APPLICATION:

Messages in the queue
contain similar types
of data and need similar
processing.

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

5.5.1. Output Queues

ICAM supports multilevel or single-level output queues. They may reside in main
storage or on disk. Messages may come from one or many origins and go to one or
more terminals on a line.

TERMINAL

PROGRAM

[

TERMINAL
DISTRIBUTION -+---1~ OUTPUT QUEUE
LIST

MESSAGE PROCESSING
ROUTINE MESSAGE

PROCESSING
ROUTINE

ICAM has just one type of output queue. As described in the general queue discussion
(5.5), each terminal receiving messages must be associated with an output queue,
although terminals on the same line can share an output queue.

PROGRAM A PROGRAM B

HIGH HIGH

OUTPUT --- ----
QUEUE FOR OUTPUT
TERMINALS MEDIUM MEDIUM QUEUE FOR

1 AND 2 TERMINAL 3 --- -----
LOW LOW

TERMINAL 1 TERMINAL 2 TERMINAL 3

UP-9744 Rev. 1 5-33

Buffers and Queues

5.5.2. Input Terminal Queues

5-34

Input terminal queues are defined on the INPUT operand of the TERM macro. They
are single-level queues and may reside in main storage or on disk. Messages come
from a single terminal.

TERMINAL------~ INPUT TERMINAL QUEUE ------ PROGRAM

Input terminal queues are the simplest type of queue. Each input terminal queue
queues messages from and relates to a single terminal. Because they are single level
queues, all messages have the same priority. Messages leave a queue in the order they
enter it.

Although messages in a queue come from a single terminal, depending upon which
programs issue an input request, they could go to any number of destinations. Thus, it
is important that you coordinate your programs carefully if several are coded to access
the same input terminal queue.

PROGRAM A

I

PROGRAM B

I
ROUTINE I ROUTINE

1 I 2

~

INPUT
TERMINAL

QUEUE

f
I , '

' , '
I ~[0~:
'1~
\~_:"" I ~ --

PROGRAM C

1

Since the first program to access a message on a queue removes it from the queue, we
do not recommend more than one destination. It would be impossible to predict which
program or routine will get a particular message. Instead, we suggest that all
messages in an input terminal queue go to a single destination, as shown here:

UP-9744 Rev. 1

•

•

•

•

•

•

PROGRAM A

INPUT
TERMINAL

QUEUE

ROUTINE
B

INPUT

TERMINAL
QUEUE

ROUTINE
c

INPUT
TERMINAL

QUEUE

INPUT

TERMINAL
QUEUE

Buffers and Queues

PROGRAM D

INPUT
TERMINAL

QUEUE

I

If the messages in an input terminal queue go to the same destination, chances are
they are part of the same application.

5.5.3. Process Files

Process files support multilevel or single-level queuing. They may be located in main
storage or on disk. Messages come from one or many origins, and the messages may be
accessed from one or many locations.

TERMINAL

PROGRAM

DISTRIBUTION --- PROCESS FILE__.. PROGRAM

LIST

MESSAGE

PROCESSING

ROUTINE

A process file is a set of up to three queues that your program or !CAM can use to
store messages until they are accessed by your program. They are probably the most
complicated of the queues. Messages can come from many places, as shown here:

UP-9744 Rev. 1 5-35

Buffers and Queues

5-36

PROGRAM PROGRAM

,,,
J

~

.........
PROCESS

FILE
PROCESS

FILE

............ PROCESS
FILE

I

l
MESSAGE

PROCESSING

ROUTINE

And messages in a process file can go to any number of destinations:

PROGRAM A

PROGRAM B

ROUTINE
1

ROUTINE
2

t
PROCESS

FILE

PROGRAM C

As with the input terminal queues, you must carefully coordinate your programs if you
let more than one program access the same process file queue because it's impossible
to predict which program 'or routine will get a particular message.

Like all queues, except the input terminal queues, you may create multiqueue process
files. Unlike any other queue types, however, you use multilevel process files in one of
two ways: as a single queue with two or three priority levels or as two or three
separate single-level queues.

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

PROGRAM PROGRAM PROGRAM PROGRAM

A ~

~,

HIGH HIGH
LEVEL LEVEL ~
QUEUE QUEUE

MEDIUM MEDIUM
LEVEL 0 R LEVEL-
QUEUE QUEUE

LOW LOW
LEVEL LEVEL ~

QUEUE QUEUE

You access the levels of a process file separately when each level contains messages
that are somehow different. They may come from different origins, go to different
destinations, or need different processing.

A program can write a message to a process file and later read it from the process file:

UP-9744 Rev. 1

MESSAGES
FROM OTHER
PROGRAMS AND
TERMINALS

PROGRAM

~

+

HIGH HIGH

1----- - ------
MEDIUM MEDIUM

1-------- ~-----

LOW

PROCESS
FILES

LOW

5-37

Buffers and Queues

Used this way, a process file is like a memo pad. Let's say your program generates
price quotes for your salesmen. Occasionally, it has system-related messages to send
(for example, SYSTEM WILL SHUT DOWN AT 3:00 PM FOR MAINTENANCE) that
you don't want to appear in the middle of a price quote. Your program can put these
messages in a process file and, at the end of each price quote, read the messages in the
process file and send them to the terminals. When used as a memo file, you should use
disk queuing with the process file so main storage buffers are not tied up.

5.5.4. Locap Files

5-38

Programs use locap files (from local applications) to attach to a global network. At
ICAM generation, you create one or more locap files and assign passwords. Any
program can attach to any locap file by issuing the correct password. The result is that
programs can dynamically attach or detach themselves from ICAM as needed. A locap
file can support only one program at a time.

Let's say you have several communications programs. Those that need ICA...1\1
constantly can have their own locap files. Others can share locap files.

Besides being a means for a program to attach to ICAM, a locap file can also have a
set of priority input queues similar to those used with a process file.

Your program may read a message from a specific queue level, or it may do a general
read, in which case a message is read from the top of the highest priority queue
containing messages.

Any program attached to a locap file can read messages from the locap file queues.

UP-9744 Rev. 1

•

•

•

•

•

Buffers and Queues

Messages to locap file queues come from the same sources as messages for process
files:

Note:

TERMINALS

PROGRAMS

DISTRIBUTION
LISTS

MESSAGE PROCESSING
ROUTINES

PROGRAM
ATTACHED TO

1----LOCAP QUEUES ----... LOCAP FI LE
(See note.)

Your program cannot place messages on the queues of the locap file to which it is connected .

UP-9744 Rev. 1 5-39

Buffers and Queues

Queue Arrangements

The most important fact of global queue arrangement is that messages can be placed
on queues in any node but can be read from queues only in the local node. Let's say
you have the following queue arrangement in a multinode environment.

NODE A NODE B

"-~~PR_O_G_R_A_M~A~~~ll ~~~-PR_O_G_R_A_M~B~~__.
I
I
I
I
I
I
I

PROGRAM C

5-40

PROCESS
FILE

LO CAP
A

QUEUES

LO CAP
B

QUEUES

PROCESS
FILE

I
I
I

LO CAP
c

QUEUES 1

OUTPUT
QUEUES

1

2
I

VLINE

OUTPUT
QUEUES

2

Any of the three programs can write messages to any queue in the system except the
queues of the lo cap file to which they're atttached. Program C cannot read messages
from either process file in node A. Similarly, output queues for a terminal must be in
the node in which the termnal is attached. Think of it this way: you can push a
message from one node to another by writing it to a queue in another node, but you
can't pull it from one node to another by reading it from a queue in another node.

During network defintion, you may define static sessions that specify which programs
and terminals can send messages to which queues. Whether the message comes from
a program or terminal, the allowable destinations are the same:

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

MESSAGE SOURCE:
PROGRAM OR
TERMINAL

5.5.5. Using Queues

LOCAP QUEUES

TERMINALS (OUTPUT QUEUES)

The primary point to keep in mind as you design your queue system is that it must
allow messages to be sent between programs and terminals that you want to
communicate with each other. After that, several other points influence the details of
your queue system:

• Do messages have different priorities?

• Do you want messages from different origins to have different queues?

• Do you want line or terminal queuing?

Let's start by looking at the queue arrangements for messages corning from terminals.
The big factor here is that you must decide at network definition where messages from
a particular terminal are to go. If messages of a terminal are to always go to a
particular program or terminal, specify that destination at network definition .

Obtaining Messages from Terminals

To access messages sent from a terminal and placed on queue by ICAM, your program
specifies the name of an input terminal queue, process file, or locap file. Note that
each terminal must have its own input terminal queue while any number of terminals
can share process file or locap file queues:

TERMINAL

TERMINAL

INPUT TERMINAL QUEUE]1------
• J PROGRAM

------.-INPUT TERMINAL QUEUE

OR

TERMINAL J
TERMINAL

-----•~ PROCESS FI LE ------------ PROGRAM

OR

TERMINAL J
TERMINAL

1------•.,_. LOCAP Fl LE ---------- PROGRAM

UP-9744 Rev. 1 5-41

Buffers and Queues

5-42

You can specify that the input from any terminal is to be placed on any process file or
locap file:

TERMINAL
PROCESS FILE Ji---------• • PROGRAM

TERMINAL LOCAP FILE

To send messages of one terminal to another terminal, specify the other terminal
name as the destination. ICAM puts the messages in the correct output queue:

TERMINAL A-----~ OUTPUT QUEUE ----------1~ TERMINAL B

If messages of a terminal are to go to several destinations, you must:

1. specify a message processing routine as the destination (Section 6); and

2. put the message destination (input terminal queue, process file, locap file, or
terminal) or its type in the header (beginning) of each message from the terminal.

When the message processing routine receives the messages, it routes them to the
proper destination, based on the information in the message header. (See 6.4 for
details of message processing routine message routing.)

-[

PROCESS FI LE --- PROGRAM
MESSAGE

TERMINAL----- PROCESSING LOCAP FILE---~ PROGRAM

ROUTINE

OUTPUT QUEUE--~ TERMINAL

Also, use a message processing routine to send messages to different priority queues
within a process file, locap file, or output queue:

TERMINAL ·---------;~

TERMINAL -------•

Process File or
Locap File

HIGH

r LEVEL l
QUEUE

~RE;~:S~~NG ---t ~E~~M j- PROGRAM
ROUTINE QUEUE

LOW
LEVEL
QUEUE

MESSAGE
PROCESSING
ROUTINE

Output Queue

HIGH

----4~- ~~~M r-· TERMINAL
QUEUE

LOW
LEVEL
QUEUE

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

Sending Messages from Programs

Sending a message from a program is easier to visualize than receiving a message
from a terminal because a program specifies for each output message its own
destination and priority. You do not need a message processing routine to route
messages to different destinations and put them in different priority levels in a
process file, locap file, or output queue.

To send a message to another program, a program specifies as the message
destination the name of a process file or locap file used by the other program. (A
program cannot place a message in an input terminal queue.) The program can also
give the message a priority; if it doesn't, the message goes in the lowest queue level
created for the process file or locap file.

PROGRAM A

UP-9744 Rev. 1

Process File

HIGH
LEVEL
QUEUE

MEDIUM
LEVEL
QUEUE

LOW
LEVEL
QUEUE

Locap File

HIGH
LEVEL
QUEUE

MEDIUM
LEVEL
QUEUE

LOW
LEVEL
QUEUE

PROGRAM B

5-43

Buffers and Queues

5-44

To send a message to a terminal, a program specifies the terminal name as the
destination. It can also give the message a priority; if it doesn't, the message goes in
the lowest queue level created for the terminal output queue. ICAM places the
message in the correct output queue:

PROGRAM

Output Queue

HIGH
LEVEL
QUEUE

MEDIUM
LEVEL
QUEUE

LOW
LEVEL
QUEUE

TERMINAL

If, at network definition, you associate the terminal with a message processing
routine, the message is processed by the message processing routine that queues it to
the appropriate output queue.

PROGRAM
MESSAGE
PROCESSING
ROUTINE -f

PROCESS FILE

- OUTPUT QUEUE LOCAP FILE

OUTPUT QUEUE

Distribution lists are aids for sending messages; they are lists of two or more
destinations: process files, other distribution lists, locap files, or terminals to which a
single message is to be sent. Use them to send a message to multiple destinations. For
example, you might want every program or all terminals in sales offices to receive a
particular message. With a distribution list, you send the message once and it goes to
each destination listed. Both programs and message processing routines use
distribution lists.

MESSAGE -f
PROCESSINT DISTRIBUTION LIST
ROUTINE

PROGRAM

PROCESS FILE

LOCAP FILE

OUTPUT QUEUE

UP-9744 Rev. 1

•

•

•

•

•

•

Buffers and Queues

Distribution Lists

When you write a communications program in BAL or COBOL, you can use a
distribution list (DLIST) to send the same message to two or more destinations. By
using the DLIST, you can save both processing time and coding instructions.

ICAM

DUST term-1, term-2, term-3

\

TERMINAL 1 TERMINAL 2 TERMINAL 3

When you write your program in basic assembly language, you can specify your
distribution list at either ICAM network definition time or directly in your
communications program as follows:

• Network definition - When many of your communications programs use the same
network, you should specify the DLIST in your network definition. Once it is
defined, it is permanent for the duration of the network. When you write your
communications program, you need only ref er to the label, thus saving coding
instructions and also processing time.

• Communications program - When your destinations are frequently changing or if
you forgot to include some at ICAM generation time, ICAM provides you with this
alternate method. Regardless of when you specify the DLIST, the result is the
same - you save coding and processing time. When you write your
communications program in COBOL, the distribution lists are specified at ICAM
generation time. You refer to these destinations in the COBOL message control
system module and in the communication section of your COBOL program. For
more information about the DLIST macro, see the !CAM Standard MCP
(STDMCP) Interface Programming Guide (UP-8550).

• Utilities - When you write your program in RPG II, the distribution lists are
defined on the FILE DESCRIPTION and OUTPUT SPECIFICATION forms.
However, they are not referred to as DLIST but as output devices. See the RPG 11
Programming Guide (UP-8067) for more information .

UP-9744 Rev. 1 5-45

Buffers and Queues

5.6. Dynamic Buffer Pool Expansion

5-46

The ICAM dynamic buffer pool expansion feature lets you use the OS/3 dynamic
buffer management facility to expand ICAM buffer pools as needed. The OS/3
dynamic buff er pool management facility dynamically allocates extra main storage to
system routines as they need it. For some ICAM functions this facility is required; for
others it is optional. By acquiring main storage dynamically, ICAM can continue
processing after previously allocated buffers are filled.

The ICAM functions that use dynamic buffer management are:

• Dynamic buffer pool expansion

• Dynamic session establishment

• ICAM trace facility (ITF)

• Public data network support

The OS/3 dynamic buffer pool expansion feature is automatically included unless you
specify BPOOLEXP=NO in the MCP portion of the COMMCT section at OS/3 system
generation. You can control the amount buff er pools are expanded by specifying a
percentage in the EXPFACT operand of the ICAM BUFFERS macro.

UP-9744 Rev. 1

•

•

•

•

•

•

Section 6
Message Processing Procedure
Specification (MPPS)

6.1. General

The MPPS macroinstructions allow you to write message processing routines that
perform limited processing. They process input messages after they go into the
network buffers but before they go to your program. Output messages are processed
after they go into the network buffers but before they go to the remote device
handlers. MPPS is fully described in the !CAM Reference Manual (UP-9749).

UP-9744 Rev. 1

PROGRAM

NETWORK
BUFFERS

REMOTE
DEVICE

HANDLER

MESSAGE TRAFFIC

MESSAGE
PROCESSING

ROUTINE

This diagram shows the flow of
events for input messages. For
output messages, the flow reverses.

6-1

Message Processing Procedure Specification (MPPS)

Even though message processing routines are optional, you should use them for the
following reasons:

1. They allow !CAM to do some preprocessing and postprocessing of messages,
thereby relieving your programs of these tasks. Time and date stamps may be put
in message headers, and certain fields in the message header may be checked for
validity. (See 6.2 for a complete definition of message header.)

2. They give you some control over transmission errors. Normally, !CAM handles all
transmission errors without informing your programs or terminal operators that
the errors occurred. You can use message processing routines to direct the
disposition of messages associated with transmission errors and to inform your
programs and terminal operators of the errors.

3. The message processing routines can route messages to their destinations, based
on the information placed in the message header by your program or terminal
operator.

6.2. Message Header Examination and Manipulation

6-2

The message processing routines can examine and manipulate message headers.
Expanding a message, we break it into two parts:

MESSAGE

MESSAGE HEADER MESSAGE TEXT

The message header is like the heading of a letter. It contains whatever information
you want presented for all messages in a standard format: message source, message
destination, message type, date, time, and so forth. The message text contains the
information being transmitted and is like the body of a letter. A typical message for a
stock brokerage might look like this:

MESSAGE
HEADER

MESSAGE
TEXT

BUYd0011607/13/79410:35dNYC6#6BH6BUYd1006SY6LIMIT637dACCT6AG3147

UP-9744 Rev. 1

•

•

•

•

•

•

Message Processing Procedure Specification (MPPS)

The message header contains the following data:

MESSAGE
TYPE

SOURCE NAME

DATE DESTINATION
STAMP NAME

BUYd0011d07/13/79d10:35dNYCd#dBH

t t t
SEQUENCE TIME END·OF·ADDRESS CEOA)

NUMBER STAMP CHARACTER

All data in the message header is optional, as in the message header itself. Although
message processing routines can add certain data to the message headers, such as the
date and time, you're responsible for their format. The message header is an integral
part of the message you create.

Message processing routines can look for or insert the following kinds of information:

• Time and date stamp - If you request it, message processing routines insert time
and date stamps in the message headers of input and output messages:

•

UP-9744 Rev. 1

time and date stamp
time and date stamp

ddddddddddddddddBUYd0011dNYCd#dBH
BUYd0011d13:27d07/13/79dNYCd#dBH

The date stamp is either Gregorian format (usually mm/dd/yy or dd/mm/yy) or
Julian format (yyddd). The date is also available to standard interface programs
through the file tables or to any program through standard commands in the
language in which it is written.

The time stamp format is hh:mm, with values ranging from 00:00 to 23:59. The
time is also available to standard interface programs in the file tables or to any
program through standard commands in the language in which it is written. (For
example, GETIME in the basic assembly language or ACCEPT identifier FROM
TIME in COBOL.)

For the time or date of each message to appear in the journal, the time and date
stamp must be used.

Message sequence - For input, the message processing routines verify the
sequence number placed in the message header by the terminal operator. If the
sequence number is incorrect, a bad sequence flag is set.

For output, the message processing routines place a sequence number in the
message header. The sequence numbers are incremented by terminal. In other
words, the first message to a particular terminal is message 1 and the nth
message to the same terminal is message n, regardless of how many messages go
to other terminals .

6-3

Message Processing Procedure Specification (MPPS)

• Message type - The message processing routines separate messages into two or
more types to allow different processing on each type. You set up one or more
fields in the message header containing the message type:

-[

BUYA0011A07/13/79A10:35ANYCA#ABH
Message type field

SELLA0241A07/13/79A13:47AATLA#ABH

• Routing information - The message processing routines route input messages to a
queue named in destination field:

BUYA0011A07/13/79A10:35ANYCA#ABH
Destination name

SELLA0241A07/13/79A13:47AATLA#ABH

•
• Message source - The message processing routines verify that the source name put

in the message header is the correct source name. If it isn't, the invalid source
flag is set.

6.3. Error Recovery
You can use the message processing routines to recover from the following errors:

• Transmission errors

Line error

Terminal or auxiliary device error

• Journal utility errors

Journal staging area threshold value reached

Journal record staging error

• Message header errors

Invalid destination name

Incorrect but valid source name

No destination name

Incorrect and invalid source name

UP-9744 Rev. 1

•

•

•

•

•

•

Message Processing Procedure Specification (MPPS)

• Sequence number errors

Sequence number of incoming message was not placed in message header
prefix

Sequence number of outgoing message was not placed in message header
prefix

Incorrect sequence number in incoming message header

End of header

No room for insertion

Your options for recovering from any of these errors are the same. First, the message
processing routine can send error messages to any or all of the following:

ERROR
MESSAGE

DISTRIBUTION LIST
LOCAP FILE

-----+- PROCESS FI LE
OUTPUT QUEUE
SOURCE TERMINAL

Note: Error messages cannot go to the system console .

The error messages can say anything you want and go to as many destinations as
needed. For example, you might send a message to a program when a terminal or
auxiliary device error prevents the program's message from going to a terminal:

TERMINAL AUXILIARY DEVICE ERROR. MESSAGE FOLLOWS.

In addition to sending an error message, the message processing routine can either
cancel the message or route it to a destination. If you choose to route the message, an
incoming message goes to one of the following destinations:

MESSAGE

DISTRIBUTION LIST
LOCAP FILE
PROCESS FILE
OUTPUT QUEUE
ALTERNATE DESTINATION
SOURCE TERMINAL

An outgoing message goes to one of the following destinations:

UP-9744 Rev. 1

LOCAP FILE
PROCESS FILE

MESSAGE -----+-OUTPUT QUEUE
ALTERNATE DESTINATION

INTERCEPT QUEUE

6-5

Message Processing Procedure Specification (MPPS)

6.4. Message Routing

6-6

The message processing routines can use either the message type or destination field
in a message header to route messages to their destination. Depending on your needs,
the field used doesn't necessarily matter.

The message processing routines use the destination field for routing only with
incoming messages. To use it, a terminal operator writes a message header with one
or more destinations listed:

BUYA0011A07/13/79A10:35ANYCAWASHAATLALAAPHILA#ABH
t t t t t DESTINATIONS

The terminal operator can list as destinations distribution lists and any type of queue
except terminal input queues and intercept queues:

----{

DISTRIBUTION LIST

MESSAGE LOCAP FILE
PROCESS FILE
OUTPUT QUEUE

If the message type determines the destination, then you can use the destination
name to route messages by their type:

0011A07/13/79A10:35ABUYA#ABH

t
DESTINATION

BUY must be the name of an output queue, process file, locap file, or distribution list.

Incoming messages can be routed by the message type. The end effect is the same as
with routing on a destination name. Instead of naming a destination, the message
type controls branching within a message processing routine:

UP-9744 Rev. 1

•

•

\

•

•

•

•

Message Processing Procedure Specification (MPPS)

Route message to
program 1.

Route message to
program 2.

Route message to
terminal 1 .

Route message to
terminal 2.

The message processing routine can send the message to any of these destinations:

6.5. Miscellaneous Functions

DISTRIBUTION LIST
LOCAP FILE
PROCESS FILE
OUTPUT QUEUE
ALTERNATE DESTINATION
SOURCE TERMINAL

Message processing routines can perform several additional functions:

• They can be used to journal messages.

• They can make the remote device handlers try to retransmit output messages
when an error occurs during the initial transmission.

• They can limit the number of messages received from a single terminal when the
terminal is polled .

UP-9744 Rev. 1 6-7

•

•

•

•

•

•

Section 7
DCAand DDP

7 .1. Introduction to DCA
Distributed communications architecture (DCA) provides a uniform structure for
implementing communications networks. The key to providing this structure for
current and future enhancements is the concept of distributed intelligence. As
minicomputers and intelligent terminals become available, we can introduce
intelligence into the communications network. This intelligence is often in the form of
a front-end processor. Front-end processors relieve the host processor of some of the
communications load. Distributed communications architecture defines the concepts
for a total system approach to data communications.

Specifically, distributed communications architecture:

• Provides the logical structure of paired layers of processing components

• Provides a set of protocols and interfaces for exchanging commands and data

• Establishes a common access method for the logical interface to the
communications system

• Provides a common network control capability that is part of the network, but
separate from the host processor

In OS/3, the physical protocol is a bit serial line discipline called universal data link
control (UDLC). UDLC is a Unisys standard protocol. This physical protocol is
supported by a special single line communications adapter (F2798-00). The SLCA is a
down-line-loaded microprocessor-based communications adapter.

The common access method to UDLC lines in OS/3 System 80 systems is an enhanced
version ofICAM. OS 1100 uses Communications Management System (CMS) for 1100
Series systems .

UP-9744 Rev. 1 7-1

DCAand DDP

7.2. DCA Concepts

11

11

:

11

7-2

In a total systems environment, distributed communications architecture separates
the communications system from the applications environment. This makes the host
processor independent from the communications network and permits connection of
different kinds of processors and operating systems. This relationship is shown as
follows:

APPLICATIONS
ENVIRONMENT

A

COMMUNICATIONS
SYSTEM

CNETIJORK)

An applications environment may contain:

APPLICATIONS
ENVIRONMENT

B

• End users (EU s) - End users are user programs and terminals.

• Communications system users (CSU s) - Communications system users are
programs written for the user, such as IMS or interactive services.

These are shown in the following illustration.

APPLICATIONS
ENVIRONMENT

A

APPLICATIONS SYSTEM A 1

EU I I CSU

APPLICATIONS SYSTEM A2

EU I I CSU

APPLICATIONS SYSTEM A3

EU I I CSU

11

11
1--

11

COMMUNICATIONS
SYSTEM

cs 1--

11

'

11

11

APPLICATIONS
ENVIRONMENT

8

APPLICATIONS SYSTEM 81

EU I I CSU

APPLICATIONS SYSTEM 82

EU I I CSU

APPLICATIONS SYSTEM 83

EU I I CSU

I !

11

11

UP-9744 Rev. 1

•

•

•

•

•

•

DCAand DDP

A communications system usually consists of a termination system (TS) and a
transport network (TN).

A termination system acts like a bridge between an applications system and a
communications system. When a transport network is used, it provides the logical
ports into the transport network through which the communications system user
establishes logical connections called sessions.

Not all communications systems need a transport network. Such is the case in a
homogeneous communications system where two processors use OS/3; for example, a
System 80 processor linked to another System 80 processor. The following illustation
shows a termination system that doesn't require a transport network.

APPLICATIONS
SYSTEM

EU

TERMINATION
SYSTEM

TRANSMISSION

FACILITY

TERMINATION
SYSTEM

APPLICATIONS
SYSTEM

EU

A transport network transfers units of data between paired termination systems. It
regulates the flow of data, selects the circuits, and segments messages into
transmission buffers.

The following illustration shows a simplified communications system with a transport
network.

UP-9744 Rev. 1

APPLICATIONS
SYSTEM

EU

COMMUNICATIONS SYSTEM

TERMINATION
SYSTEM

TRANSPORT
NETWORK

TRANSMISSION

FACILITY

TERMINATION
SYSTEM

TRANSPORT
NETWORK

APPLICATIONS
SYSTEM

EU

7-3

DCAand DDP

7-4

Transport networks are required when different kinds of host processors using
different operating systems are connected together in a heterogeneous environment.
Figure 7-1 shows a communications system environment with a transport network. All
of the layers of control are shown. The figure also shows a session path that might be
established between end users. No attempt is made to explain the layers of control
within the transport network or termination system, because they are completely
transparent to the end user. Detailed information regarding DCA is contained in the
Distributed Communications Architecture System Description (UP-8469).

In distributed communications architecture, hardware and software are configured so
that the communications system achieves independence from the applications system.
The termination system provided by ICAM permits this independence.

UP-9744 Rev. 1

•

•

•

•

c
0
M
M
u
N
I

c
A

T

0
N

• s

s
y

s
T

E

M

•

TERMINATION
SYSTEM

TN BOUNDARY

ffiAA,.,ITT {
NETWORK

ffiAA .. OITT {
NETWORK

8888

PM

------------------------,

DUG

I
I
I
I
I

I
I
I
I

l APPLICATIONS
SYSTEM

8 8 8

PM

\

TC

RTC

DUC

'--------------------------,
TRANSPORT
NETWORK _.._

T R D

C T u
c c

I APPLICATIONS
SYSTEM

l TERMINATION

J SYSTEM

PM

CS BOUNDARY

Figure 7-1. Example of Communications System and Session Path

UP-9744 Rev. 1

DCAand DDP

APPLICATIONS
SYSTEM _.._

}

APPLICATIONS
SYSTEM

7-5

DCAand DDP

7 .3. Single-Node and Multinode Global Networks

7-6

Global networks can be used in a single computer environment and in an environment
where multiple computers are present. In a multicomputer environment, !CAM
provides DCA support.

• Single-node global network - A single-node global network functions in a single
computer. You can use a global network to pass data from one local program to
another local program, and between any local program and the terminals and
process files defined in the global network.

In addition, you can:

Connect workstations directly to interactive services (a system program that
handles workstation input and output on a data management level)

Define any !CAM supported terminal to make it function like a workstation
with interactive services

When you define a global network that uses interactive services, you must specify
that the demand mode interface (DMI) is used. See the !CAM Operations Guide
(UP-9745) for details on how to do this.

Figure 7-2 illustrates a typical single-node global network.

IMS
USER

PROGRAMS

TCI STDMCP DMI

ICAM

SLCA

TERMINALS

INTERACTIVE
SERVICES

WORKSTATIONS

PROGRAMS

SYSTEM
SOFTWARE

Figure 7-2. Typical Host Processor Using a Single-Node Global Network

UP-9744 Rev. 1

•

•

•

•

•

•

DCAand DDP

• Multinode global network - A multinode global network supports more than one
host processor.

A DCA multinode network permits local-user-program-to-remote-user-program
sessions as well as local-terminal and local-user-program-to-remote-terminal
sessions. Terminals can also communicate with local or remote interactive
services, with local or remote IMS, and can use the distributed data processing
(DDP) command language to transfer files and records from one computer node to
another. DCA networks also support public data networks.

To create a DCA multinode environment, define a DCA global network in each
computer node. In each global DCA network definition, define the local and the
remote resuurces that you will use. Your programs must be written in assembly
language only. The COBOL communications control system (CMCS) is not
supported in a DCA network because it requires static sessions.

VLINEs that connect the computer nodes use asynchronous balanced mode
(ABM) universal data link control (UDLC) protocol.

Figure 7-3 illustrates a multinode global network.

As shown in Figure 7-4, a DCA network may include a distributed communications
processor (DCP) as an intermediate or remote node. If a distributed communications
processor is included in the network configuration, Telcon software for the DCP must
be generated on a Series 1100 system. (Refer to the Series 1100 Telcon Installation
Guide (UP-9956) and the Series 1100 Telcon Primary Mode Operator Reference
(UP-9256.) The Telcon software can then be transferred to the OS/3 system using
utilities for subsequent cross-channel or downline loading. (Refer to the !CAM
Operations Guide (UP-9745) and the !CAM Utilities Programming Guide (UP-9748).)

UP-9744 Rev. 1 7-7

DCAand DDP

USER
PROGRAM•

IMS

DDP

SYSTEM 80 HOST A

STDMCP

TCI

DMI

SYSTEM 80 HOST B

USER
PROGRAM• STDMCP

IMS TCI

DDP DMI

ICAM

SLCA 1-----tf LOCAL)
ONE LINE' TERMINALS

SYSTEM 80

SINGLE

SLCA j..- LINE
COMMUNICATIONS
ADAPTER

,v
'i.. -'i'

/"
1

VIRTUAL) PUBLIC

JI LINE OR PON DATA
(VLINE) NETWORK

' ,,,,.
) ... , "
"

SLCA

SYSTEM 80

SLCA LOCAL
ONE LINE TERMINALS

ICAM

• User-written programs use the ICAM standard interface (STDMCP). IMS uses the transaction control interface (TCI).
Distributed data processing (DDP) requires the demand mode interface (DMI and DCA).

Figure 7-3. Multinode Global Network

7-8 UP-9744 Rev. I

•

•

•

•

•

•

OS/3 SYSTEM 80
HOST PROCESSOR

ICAM

SLCA
LOCAL

TERMINALS

DCP
1100
HOST

PROCESSOR

CMS
1100

DCP
CHANNEL CHANNEL CMS

TERMINALS

Legend

CA Communications adapter
FEP Front-end processor
RC Remote concentrator

CA

ICAM

VLINE
(UDLC)

OS/3 SERIES 90
HOST PROCESSOR

SLCA Single line communications adapter

1100

Figure 7-4. Multinode DCA Global Network Using Telcon

UP-9744 Rev. 1

DCAand DDP

1100
HOST

PROCESSOR

7-9

DCAand DDP

7 .4. ICAM Support for Distributed Data Processing

7-10

ICAM supports four distributed data_processing (DDP) facilities:

• DDP file access

• DDP transfer facility

• IMS-DDP transaction facility

• OS/3 to UNIX file transfer facility

The DDP file access enables your application programs to access and process files
residing on remote systems. It also enables your application programs to communicate
with application programs in remote systems.

DDP file access provides two functions:

• Remote file processing between systems using OS/3

• Program-to-program communications

Remote file processing enables your application programs to access disk data files
located on other OS/3 systems in the DDP network. This is done by adding a host
identifier parameter to the device assignment (// DVC) job control statement. When
the local applications program is executed, the host-identifier parameter tells OS/3
where the file is located in the DDP network. OS/3 to UNIX file transfer does not
support remote file processing.

Remotely accessed files can be cataloged in multiple host with the file residing in only
one of them. This permits access from several computers and is advantageous in
applications, such as an inventory control, where a master file is constantly being
updated, processed, and maintained, and it is not desirable to maintain separate
copies at each site.

Program-to-program communications enables you to write basic assembly language
(BAL) programs to communicate with similar programs in remote systems.
Communications between these programs is called a conversation, and conversing
programs can transfer data from one host to another host, elaborate on the data, and
then send it back to the original host if necessary. OS/3 to UNIX file transfer does not
support program-to-program communications.

A program that initiates a conversation is called the primary program and the
initiated program in the remote host is called the surrogate program. Primary and
surrogate programs can reverse roles as many times as desired, and up to 255
surrogate programs can be initiated by a single primary program.

UP-9744 Rev. 1

•

•

•

•

•

•

DCAand DDP

Conversations carried on between programs may be either simple or complex. A
simple conversation is one that takes place between two programs in one direction
only, and the primary/surrogate relationship never changes. For example, a primary
program in system A activates a surrogate program in system B and provides it with
data to be processed. The surrogate program performs the required processing, e.g.,
updating files, but it does not return the processed data to the primary program in
system A because it is the surrogate program.

A complex conversation allows communicating programs to reverse the
primary/surrogate relationship and also allows more than two programs to be involved
in the conversation. For example, a primary program in system A sends data for
processing to system•B. System A then assumes surrogate status. After processing the
data, system B assumes primary status and sends the results back to the program in
system A.

Both simple and complex conversations require the same basic functions: open
communications to the remote program, transfer data, and terminate the conversation
when it is no longer required. Complex conversations require additional functions to
allow the surrogate program to respond to the primary program and to accomplish
role reversal when necessary. Unisys provides special DDP macroinstructions to
implement all of these functions.

The DDP transfer facility enables you to distribute your jobs and files among multiple,
separately-located computer systems .

Historically, remote batch and job entry systems were limited to a master computer at
a central site providing job facilities for slave computers physically located at a central
site or connected to it by communications lines. Although this mode of operation is
supported, the DDP transfer facility extends this interaction in both directions, with
the communicating hosts recognizing each other as peers.

The DDP transfer facility allows you to view each host in your DDP network as an
available resource for scheduling and executing work. Using simple commands, you
can distribute jobs and transfer files within the DDP network without concern for the
intricacies of hardware systems, software systems, and communications protocols.
OS/3 to UNIX file transfer does not support job distribution.

So long as sufficient resources exist at a site, the DDP transfer facility allows you to:

• Create a file on any host in the DDP network

• Copy a file from any host in the DDP network to another host

• Remove a file from a host

• Send a job control stream to a host

• Run a job control stream on a host

• Terminate a job already submitted

UP-9744 Rev. 1 7-11

DCAand DDP

7-12

• Request a standard function of a host's operating system

• Receive output from an executed job or send the output to another host

• Interrogate the status of a job, file, command, host, or user in the DDP system

• Send a message to an operator or user in another host

OS/3 to UNIX file transfer is a pairing of DDP transfer facility and IS/5000. It lets you:

• Create a file on any host in the DDP-IS/5000 network

• Copy a file from any host in the DDP-IS/5000 network to another host

• Remove a file from a host

The IMS DDP transaction facility allows you to easily define and perform remote
transaction processing. Specifically, it supports the transfer of transactions from one
IMS to another IMS, using the Unisys Distributed Communications Architecture.

This facility supports the following features:

• Transaction routing - Simple or dialog transactions can be routed on a DDP
network. A simple transaction is a single-request and single-response exchange; a
dialog transaction is composed of a series of request-response exchanges.

Routing mechanisms underlying the transfer of transactions from one transaction
processing system to another within IMSTF are of the following types:

Directory routing - Directory routing of a transaction is accomplished
through a transaction ID directory. The transaction ID directory contains a
list of valid transaction codes and associated information. This information
determines if a transaction is to be processed locally or remotely. If the
latter, a message of appropriate format is created and sent to the
destination. Otherwise, processing proceeds as usual in the local
environment. There is no need to change IMS action programs to use
directory routing.

Operator routing - A terminal operator can cause a transaction to be routed
to a remote system by adding a previously defined special character to the
beginning of the input message. After validation of the special character, the
rest of processing is similar to directory routing. This makes it possible to
perform transactions with the same transaction code on both local and
remote systems. For example, UNIQUE (UNiform InQuiry Upd ctte Element)
transactions can be processed at a remote system by adding the appropriate
special character to the OPEN command (e.g., *OPEN), or at a local system
by omitting the special character.

UP-9744 Rev. 1

•

•

•

•

•

•

•

DCAand DDP

Program routing - Program routing allows action programs written in
COBOL or basic assembly language (BAL) to determine where a transaction
is to be processed. The action program identifies the remote system in its
output message header, generates a message for delivery to the remote
system, and issues an ACTIVATE function call to initiate the transaction.
The action program processing the transaction on the remote system returns
a message to the originating action program or its successor.

Remote transaction processing - Transactions routed to a remote IMS system can
be processed by UNIQUE or action programs written in COBOL, RPG II or BAL.
Remote transactions are processed in the same way as local transactions. Most
IMS features are available for remote transactions, including the use of formatted
screen displays through screen format services.

Distributed data processing functions only in a DCA global environment, and when
you define your network, you must specify a locap file for DDP. DDP also makes use of
the !CAM DMI interface .

UP-9744 Rev. 1 7-13

•

•

•

•

•

•

Section 8
Administrative Functions

8.1. Overview
In addition to providing you with the means for fulfilling your data communications
requirements, ICAM also provides some optional administrative functions. These
functions include collecting statistical data regarding the lines and terminals in your
network and creating checkpoint records needed to restart ICAM in case of a software
or hardware failure. The journal utility program is supported only in the standard and
the transaction control interfaces. If you are using either the direct data or
communications physical interfaces, you must write your own journal utility.

8.2. Journal Utility - Report Segment
The journal utility reporting facility can produce a summary report, a statistical
report, or a report containing summary and statistical information selected optionally
for a given set of conditions. The utility uses records created during the
communications session by the ICAM administrative function Gournaling). The utility
itself does not require any interfaces or an ICAM environment. The summary report
shows the line and terminal usage within ICAM. The statistical report shows the
network buff er utilization data and the ARP network buff er utilization data.

Since the journal utility records are generated by ICAM, the journaling feature must
have been specified at network definition time. The !CAM Operations Guide
(UP-9745) shows the journaling parameters required at ICAM generation time, while
the !CAM Utilities Programming Guide (UP-9748), describes the journaling utility
and the reports it produces.

8.3. Journal Utility - Restart Segment
As we mentioned earlier, the journal utility can reconstruct the messages in case of a
system hardware or software failure so that !CAM can be restarted. Reconstruction
only involves complete messages; any incomplete messages must be reprocessed after
the recovery operation .

UP-9744 Rev. 1 8-1

Administrative Functions

8.4. Online Diagnostic Facilities
The online diagnostic and maintenance programs are supplied by Unisys to be used by
maintenance engineers to locate the system hardware failure in peripheral
subsystems supported by OS/3. The operator, however, may use these same programs
to verify that the communications equipment is working. For a description of these
programs, see the System 80 Operator Maintenance Guide (UP-8915).

8.5. System Activity Monitor

8-2

The system activity monitor, commonly known as SAM, is a system utility run as a
symbiont that records and checks the activity of your system.

SAM is intended for the system administrator and installation manager to help detect
bottlenecks, optimize production job mixes, and identify and change variables
influencing system performance.

After SAM produces its report, the information can then be applied to certain system
parameters achieving system optimization. Table 8-1 describes some of the
information obtainable with the system activity monitor utility.

SAM is described in the System Activity Monitor Programming Guide (UP-9983).

Parameter

CIMR

COMR

CINT

CSEN

CERR

CNOT

CPOL

CBYT

Table 8-1. System Activity Monitor Available Data

Description

Indicates number of times per second communications by port were received by ICAM.

Indicates number of times per second communications by port were transmitted by ICAM

Indicates number of interrupts serviced from respective port

Indicates number of sense commands issued by ICAM requesting further status information
regarding interrupt marked as bad status completion

Indicates number of error conditions (time-outs, negative acknowledgments (DLE-NAK), or reply
requests (DLE-ENO)) by port

Indicates number of no-traffic responses received by port

Indicates the number of polling interrupts per second

Indicates the number of bytes per second transmitted over the communications line

UP-9744 Rev. 1

•

•

•

•

•

•

Administrative Functions

The item readings under the communications class measure the activity of your
communications system. They are:

• Input message rate

• Output message rate

• Number of interrupts

• Number of sense commands

• Number of error conditions

• Number of no-traffic responses

• Rate of poll interrupts

• Rate of bytes transmitted

8.5.1. Input Message Rate (CIMR)

This value tells you the number of times per second that communications by port were
received by ICAM during the specified interval. You can use this value to measure
input message traffic in your communications system. For example, suppose that your
communications system is configured with six terminals on each port on your system.
A high input message rate may mean that there is too much message traffic for one
port to service efficiently. By modifying your communications system (using more
ports and with only two terminals per port), you can reduce the amount of message
traffic over any one port and thus increase communication efficiency. Conversely, with
a 6-terminal-per-port configuration, a low input message rate will signify a lack of
message traffic. In this case, you may want to increase the number of terminals per
port to more efficiently use each port.

8.5.2. Output Message Rate (COMR)

This value tells you the number of times per second that communications by port were
transmitted from ICAM during the specified interval. A high output message rate may
mean that the number of terminals per port in your system is too high, resulting in a
high rate of message traffic. By installing more ports and redistributing the number of
terminals per port, you can reduce message traffic and increase communication
efficiency .

UP-9744 Rev. 1 8-3

Administrative Functions

8.5.3. Number of Interrupts (CINT)

This value tells you the number of interrupts that were serviced from the respective
port during the specified interval. You can use this value to see which users are
running jobs requiring substantial interrupt processing. For example, if the users on
port 1 of a system were running a large number of I/O dependent jobs over the
specified interval, a high number of interrupts would be serviced from port 1. If I/O
dependent jobs from other ports were being run at the same time, a large amount of
WAIT time would result since the jobs in the system would be I/O bound. One way to
remedy this problem would be to tell the users on port 1 to run their I/O dependent
jobs at another time, and run other jobs in their place. As a result, interrupt
processing can be reduced and system efficiency increased.

8.5.4. Number of Sense Commands (CSEN)

This value tells you the number of sense commands that were issued by ICAM
requesting further status information regarding an interrupt marked as a bad status
completion. Sense commands are issued in response to error conditions and request
status information from the system communication hardware. Therefore, a high
number of sense commands indicates that there are a number of error conditions
resulting from malfunctioning communications hardware.

8.5.5. Number of Error Commands (CERR)

This value tells you the number of error conditions (time-outs, negative
acknowledgments, or reply requests) by port that occur during the specified interval.
These error conditions indicate that there are transmission problems resulting from
hardware malfunctions associated with the respective port. This value is provided
only for ports handling UNISCOPE devices.

8.5.6. Number of No-Traffic Responses (CNOT)

This value tells you the number of no-traffic responses received by port during the
specified interval. You can use this value to determine whether the terminals on your
system are being used efficiently. For example, a high number of no-traffic responses
from a particular port may mean that certain terminals on the port are not being used
during much of the specified interval. In this case, you may want to reschedule extra
work for this time interval to ensure a more efficient use of your system.

8.5.7. Rate of Poll Interrupts (CPOL)

8-4

This value tells you the rate per second of polling interrupts. Each terminal is polled
to determine operational readiness and status, and to avoid contentions. For an idle
period with a 1-second polling rate, the CPOL and the CNOT values equal a rate of 1.

UP-9744 Rev. 1

•

•

•

•

•

•

Administrative Functions

8.5.8. Rate of Bytes Transmitted (CBYT)

This value tells you the number of bytes per second transmitted over the
communications line. This value, in addition to the message text, includes the
message byte count and all control and command bytes associated with line protocols.
With the CBYT value, you can determine line utilization, where line utilization equals
the ratio of total bytes transferred to the baud rate of the line.

8.6. ICAM Trace Facility
The ICAM trace facility provides a simplified way to monitor the operation of ICAM in
a real life environment. It is a symbiont designed as a problem-solving tool to be
loaded and used only as needed. Therefore, the diagnostic capability requires no main
storage when ICAM is functioning normally and its monitoring capabilities are not
needed. The trace facility has no ICAM network definition (CCA) requirements and
the only OS/3 system generation requirement is that the system must include dynamic
buffering.

Although the trace facility is a diagnostic tool, it was not designed for users to do their
own troubleshooting. It is a tool to be used by both customers and Unisys personnel to
accumulate records ofICAM functions for use by Unisys personnel on site or later by
software development personnel.

You load the trace facility and specify the categories and number of trace events you
want recorded. The trace facility acquires an area in main storage to save the trace
events so that they can be analyzed later.

Four commands are supported:

• ENABLE - Specifies categories to be monitored

• DISABLE - Tums off specified category tracing or terminates tracing

• STATUS - Displays categories currently active

• HELP - Prints formats of all trace commands on the system console

Each category monitors critical points in a major area of ICAM. The categories
supported are:

• PHYSICAL - Physical inputJoutput control system (PIOCS)

• LOGICAL - Distributed communications architecture (DCA) structures

• NETWORK - Public data networks

• QUEUER - ICAM queueing

• CONTROL - ICAM activity control

UP-9744 Rev. 1 8-5

Administrative Functions

You can specify one or all of the categories. However, if you have a problem with
ICAM and you need to send a dump to Unisys for analysis, we recommend you specify
only the categories where trouble is suspected.

Details on how to use the ICAM trace facility are provided in the !CAM Utilities
Programming Guide (UP-9748).

8.7. ICAM Edit Dump

8-6

The ICAM edit dump (IED) utility is a symbiont that dumps selected groups ofICAM
tables for diagnostic purposes. It supplements the OS/3 system dump (SYSDUMP).

'

You can use the edit dump to snapshot ICAM while it is running or any time ICAM
has a program exception. When you take both an edit dump and a system dump, run
the edit dump before the system dump.

The ICAM tables that you can dump are:

• General information tables

ICAM general information table

GUST general information table

Activity control queues

CCA address table

• Line link table

• ITFtrace

• ICAM task control blocks

MCP task control block

Subtask task control block

• CCA control section

• ARP buff er pool

• Network buff er pool

• UDUCT (DCA data unit control table) buffer pool

• Link buff er pool

• Destination table

UP-9744 Rev. 1

•

•

•

•

•

•

Administrative Functions

• End user tables

Communication user programs

Line vector table

Terminal control table

Process file

Distribution list

• Hexadecimal dump of CCA

• RIM (remote interface manager) queues

• Session analysis (session control entries)

To load the edit dump utility, type in:

!ED

at the system console.

The console screen displays three messages in series. You must respond to each
message before the next message is displayed. Edit dump executes after you respond
to the last message.

Refer to the !CAM Utilities Programming Guide (UP-9748) for instructions on how to
use the ICAM edit dump .

UP-9744 Rev. 1 8-7

•

•

•

•

•

•

Appendix A
Coding Conventions

A.1. Types of Macroinstructions
There are three types of macros available. They are:

• Declarative

• Imperative

• S-type

Declarative macros create nonexecutable code (tables, queues, interface areas, etc.) in
your program or in ICAM. They also tell the OS/3 system generation process which
ICAM modules to include in the ICAM message control program to support your
communications system. All of the macros in your ICAM network definition are
declarative (e.g., CCA, LINE, TERM). Only a few of the ICAM macros you use in your
program are declarative (e.g., DTFCP, DLIST) .

The imperative macros generate executable code sequences in a program. They
request supervisor services or direct the operation of your program. Some ICAM
imperative macros are: PUTCP, GETCP, and QDEPTH.

S-type macros let you separate the executable portion of a macro from the parameter
list portion. This lets you save storage by creating fewer copies of the parameter
portion when you call the same macros many times in your program.

A.2. Declarative and Imperative Macroinstructions
The general format of declarative and imperative macros is:

LABEL dOPERATIONd OPERAND

symbolic· macro operands
name mnemonic

A symbolic name can appear in the label field. It can have a maximum of eight
characters and must begin with an alphabetic character. If used, it must begin in
column 1 .

UP-9744 Rev. 1 A-1

Coding Conventions

The appropriate macro mnemonic must appear in the operation field to identify the
operation or service requested. At least one space must separate the operation field
from the label field and the operand field.

When operands are specified in the operand field, they must be positional or keyword
operands as required by the particular function. This field optionally begins in column
16. If the operation field is more than five characters, a space must be inserted before
the operand begins. If the operand field is to have a continuation on the succeeding
line, place any nonnull character in column 72 and continue the operands or comment
starting in column 16.

You must follow the assembler rules regarding blank columns and continuation of the
operand field.

Do not separate operands by using spaces; you must use commas.

A.2.1. Positional Operands

A-2

You must write positional operands in the order specified in the operand field, and
they must be separated by commas. When a positional operand is omitted, the comma
must be retained to indicate the omission, except in the case of omitted trailing
operands.

Example

The TRMREP macro has three mandatory positional operands
(line-name, terminal-name, workarea-address) and one optional operand
(FIELDS=CALL).

Format

LABEL AOPERATIONA OPERAND

[symbol l TRMREP line·name,terminal-name,workarea-address
[,FIELDS=CALL]

Using some arbitrary symbols (tags), you could write this macro:

LABEL1 TRMREP LNE1,TRM1,TRWA

LABEL2 TRMREP LNE1,TRM1,TRWA,FIELDS=(666-5708)

UP-9744 Rev. 1

•

•

•

•

•

•

Coding Conventions

A.2.2. Keyword Operands

A keyword operand consists of a word or a code immediately followed by an equal sign,
which is, in tum, followed by a specification. Keyword operands can be written in any
order in the operand field. Commas are required only to separate operands.

Example

The DTFCP macro has one mandatory keyword operand (TYPE) and six optional
keyword operands (UNIT, LEVEL, NOMA V, ERRET, DATIME, and NOTLST).

Format

LABEL tioPERAT IONll

[symbol] DTFCP

OPERAND

TYPE=GT
[,UN IT=LI NE l

, LEVEL={ {ow }
MEDIUM
HIGH
AVAIL

[,NOMAV=symboll
C,ERRET=symboll
[,DATIME=YESl
[,NOTLST=symbol]

Again, using arbitrary symbols, you could write this macro:

DTFCP TYPE=GT,UNIT=LINE,LEVEL=HIGH
DTFCP TYPE=GT
DTFCP TYPE=GT,UNIT=LINE,NOMAV=NOHIT,ERRET=ERR1
DTFCP TYPE=GT,LEVEL=AVAIL,NOMAV=NOHIT,DATIME=YES

A.3. Macroinstruction Coding Conventions
The conventions used to delineate macros are:

• Capital letters, commas, parentheses, and equal signs must be coded exactly as
shown.

UP-97 44 Rev. 1

Examples

R

ALL
(1)

SIZE=

A-3

Coding Conventions

A-4

• Lowercase letters and words are generic terms representing information that you
must supply. Such lowercase terms may contain hyphens and acronyms (for
readability).

Examples

name
start-addr
number-of-bytes
param-1
ccb-name

• Information contained within braces implies a choice of entries - one of which
must be chosen, unless the operand is surrounded by brackets or one of the
choices is shaded (i.e., a default).

Examples

{
JnPIJ t''a'r¢a }
(1)

• Information contained within brackets represents optional entries that
(depending upon program requirements) are included or omitted. Braces within
brackets (with no default) signify that one of the specified entries must be chosen
ifthat operand is to be included.

Examples

[,entry-number]
[, R l

[, ERROR=symbo l l

[, IJA IT=YES l

, I ccb-name)
ALL

(1)

• An ellipsis (series of three periods) indicates the presence of a variable number of
entries.

Example

ccb-name-1, ..• ,ccb-name-n

UP-9744 Rev. 1

•

•

•

•

•

•

Coding Conventions

• An operand may consist of a sublist of parameters called suboperands, which are
separated by commas. If a suboperand is omitted, the comma must be retained,
except in the case of trailing suboperands.

Example

NET1 CCA TYPE=(GBL,,NODB),PASSWORD=ABC···

sublist

• An operand that has a list of entries may have a default that is supplied by the
operating system when you do not specify the operand. When a default
specification occurs in the format delineation, it is printed on a shaded
background.

Example

A.4. S-Type Macroinstructions
You can save main storage and simplify your program by using S-type macros. If you
need to use the same macro many times and only a few (or none) of the fields vary, you
may specify the L-form of the S-type macro to create a separate reusable copy of the
parameter list. You should specify the parameter list in the declarative portion of your
program because it contains no executable code. You then specify as many E-form S
type macros as you need. Each E-form macro creates executable code, and you should
place these in the executable portion of your program. Each E-form macro you specify
points to the common parameter list. Your program modifies the parameter list as
necessary prior to each call of the macro.

Not all ICAM macros have the S-type feature. However, you can recognize S-type
macros because they all use the MF keyword operand.

A.4.1. L-Form S-Type Macroinstruction

The L-form S-type macro generates a parameter list at the place the macro is
encountered. When you code your program, you should place L-form S-type macros
among your define constant (DC) or define storage (DS) statements because they do
not receive control and contain no executable code. The format of the L-form S-type
macro is:

LABEL AOPERATIONA OPERAND

symbol operation MF=L

UP-9744 Rev. 1 A-5

Coding Conventions

Label

symbol

Is a required entry because it becomes the label of the generated parameter
list.

Operand

MF=L

Specifies this is an L-form S-type macro and a parameter list is
required.

A.4.2. E-Form S-Type Macroinstruction

The E-form S-type macro creates an executable instruction that points to a previously
generated parameter list. Normally it points to a parameter list created by an L-form
S-type macro. However, you can generate the parameter list any way you want to. The
format of the E-form S-type macro is:

LABEL llOPERATIONll OPERAND

[symbol l operation MF= { CE,parameter-l ist)}
(1)

Operands

parameter-list

(1)

Specifies the symbolic address of a parameter list associated with this
macro.

Specifies general register 1 contains the address of the parameter list
associated with this macro.

A.4.3. SD-Type Macroinstruction

A-6

The SD-type macro is an extension of the S-type macro. It provides a form of the MF
operand that generates a description of the data structures associated with the macro.
For example, you use it to obtain a listing of a parameter list.

In addition, you use this form to create DSECTs of the macro called that vary only
with the first character of each symbolic label. The format of the SD-type macro is:

LABEL liOPERATIONll OPERAND

[symbol l operation

UP-9744 Rev. 1

•

•

•

....---------------~----------------

•

•

•

Coding Conventions

Operands

UP-9744 Rev. 1

MF=D
Specifies a DSECT statement is to precede the actual data description.

prefix· code
Is a 1-character prefix that is appended to all labels generated by the
macro. If you omit this operand, the prefix-code defaults to the
letter I. To suppress the prefix character, you specify an asterisk (*) .

A-7

•

•

•

•

•

•

Glossary

A

This glossary contains definitions of many terms peculiar to ICAM and
communications programming.

ABM (asynchronous balanced mode)

ACK

ACON

An operational mode of universal data link control (UDLC). In this mode, either of two
UDLC combined stations can initiate transmission to the other without requiring
permission from the other combined station. This mode provides highly efficient
communications and equal control capability to the two combined stations on a point
to-point link.

The affirmative reply character response required in certain message disciplines and
message switching procedures to acknowledge receipt of a message. ACK is an
acceptable reply to indicate that line conditions and the status of messages are
normal .

An address constant

ARP (activity request packet)

ASCII

ASR

A series of constants and formatted storage locations for communication requests and
parameters between modules and/or user programs

American Standard Code for Information Interchange

Automatic send/receive unit usually related with TELETYPE equipment for
automatic operation as opposed to keyboard send/receive (KSR)

asynchronous (nonsynchronous)
A method of transmission or a type of equipment that uses essential timing
information in each character transmitted

UP-9744 Rev. 1 Glossary-1

Glossary

B
batch mode

baud

A means of communicating with data communications terminals in which messages
are sent consecutively from or to the terminal without individual polling of each
message

A unit of modulation rate used in data transmission to signify the number of discrete
signal events per second

BCC (block check character)
An error checking character that is typically the exclusive OR of all characters in a
blocked message

BCW (buffer control word)
Word located in privileged low-order main storage that contains current buffer
address and character count for input and output messages

bit-oriented procedures

bps

The recently developed data link protocols whose data granularity is at the bit level
rather than at the character or byte level, as with previous protocols such as ISO basic
mode or UNISCOPE terminal protocol. Also implied by the term are the
characteristics offull-duplex, mixed terminal connections and high efficiency. These
procedures include, among others, HDLC, ADCCP, and SDLC.

Bits per second

BSC (binary synchronous communications)
An IBM-developed protocol for synchronous transmission of binary-coded data. One of
the first protocols to allow for transparent text transmission.

buffer(ing)
A temporary storage area used to collect and contain data while it is being received
from, or prior to its transfer to, a communication line. Buffering the data, as it is
called, is a method of compensating for the difference in speed between the
transmission rate of the communications line and the transfer rate of the processor
channel.

buffer control

Glossary-2

A routine that supplies and makes the most efficient use of data storage areas
allocated to each CCA under the control of ICAM

UP-9744 Rev. 1

•

•

•

..------------------------

•

•

•

Glossary

c
CCA (communication control area)

A software element generated dynamically in the main storage load area for a
predefined network after execution of the NETREQ macroinstruction. In the ICAM
system, this area is created by the network definition macroinstructions.

CCR (channel control routine)
A software module of the ICAM system that has as primary function the generation,
execution, and completion status determination of all I/O functions to be presented to
the communications hardware. The interaction of the CCR makes it unnecessary for
the user to have to distinguish between the characteristics of a communications device
and the characteristics of the line to which the device is connected.

CCW (channel command word)
Control word used by the hardware in giving commands to the channel and locating
data areas

CDM (consolidated data management)

channel

The name of the System 80 data management system

A path along which data is sent or received. The central processing unit has two types
of channels: selector and multiplexer

character code conversion
Character-by-character translation from one character code convention (e.g., EBCDIC,
ASCII, or XS-3) to another

checkpoint
A point in a program routine or subroutine at which the status of the program or
equipment is determined. The program may be rerun from this checkpoint by using a
recovery procedure.

circuit switching

clocking

CMCS

In public data network, providing a dedicated connection between two data terminal
equipment (DTEs) for the period of message transmission. The connection is then
cleared until the next message is ready for transmission. Protocol is in accordance
with the CCITT X.21 standard.

Timing that requires a series of fixed intervals

COBOL message control system

CNC (communications network controller)
A software module of ICAM, with the major function of controlling message traffic
entering/leaving the system in such a way as to avoid overload connections

UP-9744 Rev. 1 Glossary-3

Glossary

communications dispatcher
A module or routine that controls SIO function execution, packet checks, and chaining

communications multiplexer module
A module that contains the hardware required to service line adapter input to
multiplexer channels

communications program
A program written by the user to process communications applications. The program
uses a predefined set of macroinstructions within the applications program coding to
control all the nf)cessary I/O functions for message traffic via communications lines.

completion mask
A mask sent with CPIOCP that is used in masking out the completion returns from
the CCR

compression

connect

The process of removing blanks from text. Compression is used to shorten messages
that are to be transmitted in order to increase line performance.

A routine that is common to all handlers and is responsible for line connection. The
connect routine issues turn-on and dial commands to the channel control routine.

COP (communications output printer)
An auxiliary printer for display terminals

CPIOCP (Communications physical input/output control packet)

CPIOCS

A software routine containing the necessary information for driving the single line
communications adapter through the CPIOCS.

Communications physical inputloutput control system

CS (communications system)
The total environment over which DCA controls the logical structure as well as the
interfaces and protocols. Logically, the communications system encompasses the
transport network (TN) and all the connected termination systems, but not the
communications system users and their end users that attach to it.

CSU (communications system user)

cursor

Glossary-4

The applications-related control structure, external to DCA, that interfaces to the
communications system through one or more ports. Communications system users
control one or more end users, directing data and commands to and from them.

A symbol used to indicate the position of the next character entry on an alphanumeric
display terminal

UP-9744 Rev. 1

•

•

•

•

•

•

D
data

Glossary

A representation of facts, concepts, or instructions in a formalized manner suitable for
communication, interpretation, or processing by human or automatic means

datagram
A communications program or a noncommunications program can activate a yielded
communications program by means of a GAW AKE macroinstruction. At this time, the
program issuing the GAWAKE macroinstruction can send a message, called a
datagram, to the program being activated.

DCA (distributed communications architecture)
The Unisys architecture that draws together all aspects of the communications
products by defining a set oflogical concepts and a set of rules (protocols and
interfaces) and guidelines to be used in applying the concepts in the design of
hardware, software, and network products.

DCE (data circuit terminating equipment)

DCT475

DCT500

DCTIOOO

DCT2000

The carrier equipment in a public data network

A DCT 500 Series data communications terminal that operates in TTY mode and has
no auxiliary devices

An unbuffered, asynchronous keyboard/printer data communications terminal

A fully buffered, incremental printer terminal with optional keyboard

A printer/reader/punch available also as a printer terminal

DDI (direct data interface)
An ICAM interface that provides communications capability in a minimum
configuration. The user program interfaces directly with the remote device handlers
via a message control table.

decompression

dequeue

The process of inserting blanks into a text that has been compressed. The insertion of
the blanks is done in such a format as to restore the text to its original content.

The process of removing entries from a queue

UP-9744 Rev. 1 Glossary-5

Glossary

demand mode interface
The system interface that supports both distributed data processing and 08/3
interactive services

device statistics log
A record that keeps a count of various device errors, total messages sent and received,
and other device type statistics. The device statistics log is kept in a user's
communications control area, maintained by device handlers, and structured by line.

DICE (device independent control expression)

did

A 4-character sequence found in the text portion of a communications message that
can control the function and position ofremote terminal devices

Device identification (See also rid, sid.)

distribution list (DLIST)
A list of destinations for messages that consists of terminal, process file, or Locap file
symbolic names. The list is created by a DLIST macroinstruction whose operands are
the symbolic names of the destinations.

DTE (data terminating equipment)
User equipment that accesses a public data network

DTFCP (define the file xx)
A declarative macroinstruction specifically identifying the nature of a given file for an
input or output device identified by xx, where CP specifies a communications program
file

DUST (deferred user service task)
A module that is activated by nonmessage service requests to control the activity
between elements of the ICAM system and the user program initiating the request.
LNEREQ is an example of a nonmessage request.

dynamic session

Glossary-6

Data transfer between paired end users defined within user programs or between
paired terminals dynamically

UP-9744 Rev. 1

•

•

•

•

•

•

Glossary

E
EBCDIC

Extended Binary Coded Decimal Interchange Code

ENQ (enquiry)

EOF

Used as a request for a response to obtain identification or an indication of station
status. Transmitted as part of an initialization sequence (line bid) in point-to-point
operation and as the final character of a selection or polling sequence in multipoint
operation

End of file

EOM (end of message)
Last character in a blocked message. In EBCDIC, the code is 1916•

EOT (end of transmission)
Indicates the end of a transmission, which may include one or more messages, and
resets all stations on the line to control mode (unless it erroneously occurs within a
transmission block). EOT is also transmitted as a negative response to a polling
sequence.

error detection and correction

ETB

A hardware or software module capable of detecting, identifying, and correcting data
errors occurring during transmission. Most often, the modules initiate a procedure to
retransmit the data in an attempt to correct the erroneous data transmission.

End of transmission block

ETX (end of text)
A character that signals the end of text in a blocked message; an 0316 in both ASCII
and EBCDIC

EU (end user)
With distributed communications architecture (DCA) these are the sources and sinks
of information across the network. Physically they are the programs, devices, and/or
operators that generate and receive the data transmitted over a DCA communications
system. They may not be the ultimate users of the information, but are those users
closest to the communications system itself; hence their existence, if not their
characteristics, is defined within the architecture. Collections of end users are under
the control of communications system users (CSU) who interface to one or more logical
ports.

extended sequence
Term used in describing the condition that exists when a device is busy (e.g., a printer
on a display terminal). The terminal is busy during this time .

UP-97 44 Rev. 1 Glossary-7

Glossary

F

flag

G

A binary indicator set by hardware or software to convey status information for a
given circumstance, value, path, etc.

GUST (global user service task)

H
header

I
IA

A system task that controls all resources in a global environment

That part of a message containing the information for controlling and directing the
text portion of the message in its various routings (destination or process queues)

Interrupt answering

ICAM (integrated communications access method)
A generalized software package and set of prescribed procedures affording the
programmer multiple levels of interface to remote devices and data files/queues

IDES (ICAM device emulation system)
Permits use of System 80 in extended tasks through emulation ofremote terminals

immediate return line

IMS

interface

Glossary-8

A control bit in an activity request packet that causes transfer of control immediately
back to the user program without initiating an I/O sequence. The I/O is released for
execution when the first packet with the bit reset is received.

Information management system (IMS). A software product facilitating the
development and installation of online, transaction-oriented, data base management
applications under OS/3.

The logical unit (hardware or software) functioning as the interconnecting link
between two systems or devices of different characteristics. For example, a data
communications subsystem forms the common boundary between the modem and the
input channel to a computer.

UP-9744 Rev. 1

•

•

•

•

•

•

inteITUpt

J
journal

K

Glossary

The means by which the central processor temporarily suspends hardware execution
of one task to perform another. Interrupt processing gives a computer the power to
carry out simultaneous operations and still recognize priority conditions, thereby
increasing the overall efficiency of the system.

Immediate return line

A historical file of complete messages or message segments that is kept by the user's
message processing procedure specifications

KSR (keyboard send and receive)

L
LCT

line

A telecommunication industry standard for a terminal device that produces a
typewritten copy of the message to be sent or received. A number following the letters
KSR identifies a specific model equipped with certain features or characteristics.

Line control table

A dedicated or switched telephone communications path between two modems

line control table
A table of entries, created by execution of the LINE macroinstruction, used for
controlling and processing message traffic to or from the associated line queues

locap (local application) file

logging

Specifies the queues necessary to permit program-to-program transfer, whether local
or remote, and supplies the name and type of program that other applications may
address for access

The action of keeping a journal

UP-9744 Rev. 1 Glossary-9

Glossary

logical subchannel
A data path from one node (computer) to another node. It may be linked through one
or more network processors or packet switching networks routing data through this
subchannel from a source node to a destination node. Only one session can be
established through one logical subchannel.

LRC Oongitudinal redundancy character)
Same as the block check character (BCC)

M
machine/program check

The hardware interrupt generated when a particular type of hardware or software
error occurs

macro definition

MCT

A method of generalizing a set of instructions, a program, or a routine that can be
particularized for a given application by selecting a series of optional parameters in a
macroinstruction that calls upon it

Message control table

memory protect

message

A method of supplying an immunity to illegal access. For instance, in !CAM, access to
the communications control area is permitted only by the supervisor and the !CAM
modules

The binary-coded data or information exchanged over communication lines between
two or more terminals. A message usually is composed of three parts:

1. Header - may contain any or all of the following: data source, destinations,
timing, date, routing, transmission signals, and synchronization controls

2. Body - the data or information to be communicated

3. Ending - a control character to indicate end of message

message control table
An activity request packet for direct data interface and higher level interfaces

message logging

Glossary-10

The process of recording message activity in a history file that can later be used by
accounting and diagnostic routines. Logging usually refers to the header data of a
journal file.

UP-9744 Rev. 1

•

•

•

•

•

•

Glossary

message retrieval
A means of accessing a message, other than the next message available for processing,
after it is placed in a queue

message switching
The general classification of a switching system in which the destination addresses of
messages are included as a portion of the message itself (normally the leading
character or header)

modem (data set)

module

An instrument used by the common carrier to modulate communications signals,
transmit them, and demodulate the signals when receiving them

A segment of hardware or software that is, in itself, a separate and complete logical
entity but is normally combined or linked with other modules before it can operate
functionally. As an example, an assembler turns out an object module that usually is
linked with other object modules to form a load module that becomes the executable
program.

monitoring
The action ofreporting various conditions at selected decision points in device
handlers. The conditions reported are kept in a monitor area that is accessible by a
maintenance program. Monitoring is performed while the handlers are servicing their
various devices .

MPPS (message processing procedure specification)
A set of macroinstructions that the user specifies in a given sequence for analyzing
and controlling incoming and outgoing messages on a line or lines, provided the
messages contain the same characteristics

multi drop
Several drops or connections (such as multiple terminals) on a communications line

multiplex
To interleave two or more messages on a single channel or line

multiplexer channel
I/O channel that can concurrently service many low-speed subchannels

MUST (message user service task)
An interface service, activated by GETCP/PUTCP requests, to control the transfer of
data between !CAM elements and the user program

mux subchannel
A physical connection on a multiplexer channel to which a control unit may be
connected

UP-9744 Rev. 1 Glossary-11

Glossary

N
node

NTR

0
OS/3

overrun

p

Defines a computer as an element in a multicomputer communications network

An ICAM utility that enables remote batch processing to a Unisys Series 1100 data
processing system. The utility permits type-in operation for standard reader, punch,
printer, and device-dependent peripherals, as well as user-own-code programs, to
handle device independent peripherals such as tape and disk.

A sophisticated, multitasking operating system with extended capabilities to meet the
needs of simplex or complex processing environments

The indicator that is set when the channel does not acknowledge receipt of a data byte
or send a data byte when requested during a specified time period

packet switching
In a public data network, the sharing of physical resources (links and facilities) among
many users of a public data network. On demand or at subscription time, a virtual
circuit is established between the host processor and the remote node for the exchange
of information. The public data network controls when the data is transmitted, the
size and format of data frames sent across the link, and error procedures in
accordance with the CCITT X.25 international recommendation.

password
A means of verifying the right of a user program to access a computer system or files
associated with the system

PCI (program-controlled interrupt)
One of the three interrupt conditions that cause control to be passed to the CCR. This
interrupt is used to indicate that a buffer is exhausted, either empty or full, or that an
additional buffer may be required to continue processing a message.

PDN (public data network)

Glossary-12

A network that includes new or future transmission facilities supplied by a PI'T or
common carrier for transferring data (as opposed to use of the telephone network for
this purpose). PDNs can be packet switched, digital switched, or some combination of
both. (See also X.25.)

UP-9744 Rev. 1

•

•

•

•

•

•

POLL

Glossary

The message sent across a specified line to a terminal or group of terminals to solicit
input or status

polling group

port

A group of terminals that can be accessed by a single poll since they have the same
rid. For example, all stations on a communications line that recognize the rid and sid
of a poll message. Each station in such a group will recognize a general rid as its rid
address and a general sid as its sid address. A poll containing a general rid, general
sid, and general did is called a general poll. Another form of general poll is one
containing a specific rid, general sid, and general did.

A logical path between a local node and the final destination in the destination node

pre/postqueuing

probe

An action performed by the !CAM message user service task. It concerns the collection
(prequeuing) of text segments into a complete message before giving the message to
the communications network controller for destination or process file queuing.
Postqueuing is the removal of text segments from a queued message.

A message sent to a remote device that provides coordination with the device so that
the device remains online

process file
A set of queues defined for a network that then points to the input files placed on
those queues

protected format

protocol

A feature that provides a means of protecting selected data fields on a terminal from
operator alterations. In other words, there are character fields that are protected and
cannot be altered.

A set of rules defining the structure, content, sequencing procedures, and error
detection and recovery techniques for the transmission of data. A protocol is also used
to establish, maintain, and control communications between two corresponding levels
in a level hierarchy. Normally implies the sending and receiving of unique command
and response messages or message headers. (Contrast with interface.)

PVC (permanent virtual circuit)
A logical path between host and remote node. This path differs from a switched virtual
circuit (SVC) in that it is statically established at subscription time .

LJp.9744 Rev. 1 Glossary-13

Glossary

Q
queue(ing)

The sequencing of messages in a storage medium by placing the addresses of related
messages in an individual file according to a common destination

queue, delayed or held
A queue permitting messages to be queued but inhibiting the queue from transmission
of its data, regardless of the destination of the messages until released

queue, intercept
A queue assigned to a particular terminal because the terminal is temporarily
overloaded and cannot accept more traffic. The terminal would retain exclusive use of
the assigned queue for the time it remained overloaded. Traffic for active terminals
using the original queue can continue to have messages processed.

queuing, line
Assigning messages to a specified line queue serving one or more terminals

queuing, message
Staging and linking message segments in a main storage or a disk storage area
associated with a designated CCA

queuing, priority control
A control permitting messages to be processed in a sequence other than in the
sequence of arrival in the system

queuing, terminal
Assigning messages to a specific terminal

R
RBP (remote batch processing)

Type of processing where batch type jobs are submitted (and optionally receive back
output) from a remote site card reader, printer, or punch. The RBP is also the name of
an ICAM utility program that performs this service.

RDH (remote device handler)
A program to control and direct message traffic being sent to and received from
terminal, sharing a common set of characteristics

response time

Glossary-14

The time, set by hardware or software timers, in which a reply or a response is
expected to an inquiry or other message transmission. Expiration of the response time
usually results in the execution of a procedure for dealing with an abnormal condition.

UP-9744 Rev. 1

•

•

•

•

•

•

Glossary

rid, sid, did

route

RPGil

s
SAT

segment

A hierarchy or series of identifiers structured to identify a terminal or group of
terminals in a telecommunications net~ork

rid is an acronym for remote identifier. A transmission code assigned to a location
where a terminal or number of terminals reside. This is the first level of host processor
addressing (rid, sid, and then did).

sid is an acronym for station identifier, a transmission code assigned an individual
terminal. This is the second level of host processor addressing (rid, sid, and then did).

did is an acronym for device identifier. A transmission code assigned to a peripheral
device to identify it for the terminal or host. This is the third level of host processor
addressing (rid, sid, and then did).

The path that a message, or data, follows from the point at which transmission begins
until the arrival at a final destination

A programming language that uses preprinted formats to generate reports. The
language provides extended processing capabilities for data handling.

System access technique for disk files

A portion of a message generally the size of a network buff er

selector channel
An 110 channel that handles a single high-speed subsystem

session, session path

sid

The logical path through the complete network from one end user to another that
includes both the port session and transport network session as well as any internal
associations within the CSU environment.

A unique station identifier presented to the processor by a remote site during the
initialization of that site (See rid, sid, did.)

SOE (start of entry)
A hardware or software character that identifies the beginning of the area to be
transmitted to the processor or to the auxiliary interface from a display terminal

UP-9744 Rev. 1 Glossary-15

Glossary

SOH (start of header)
A character signaling the start of header for a blocked message

SOM (start of message)
First character in a blocked message; usually the same as the SOH character

static session
Data transfer between fixed, paired, end users defined at network definition time

status, hardware
An indicator or set of indicators that displays the state of a particular device or
function

status, software

STX

A byte or set of bytes that receives a value denoting the state of a particular device of
function

Start-of-text character

subscriber

SVC

In a public data network, any remote node using a public data network

A privileged instruction that produces a hardware interrupt, thus giving control to the
supervisor, which, in turn, processes the request for service

switched virtual circuit
In a packet-switched public data network, it is a dynamically established logical path
between a host computer and a remote node.

switching

symbiont

As in message switching, switching is the routing or directing of messages through a
central system to their final destinations.

Syrnbionts are software modules that can be called by systems console and
workstation commands or through job control statements. They are controlled by the
supervisor portion of the executive system and do not occupy job slots. They can access
input/output devices and files and effect multiple I/O functions. They are normally
executed in response to a user request. ICAM is a symbiont.

sync (synchronization character)
Receipt of this character synchronizes a modern for the data following

Glossary-16 UP-9744 Rev. 1

•

•

•

•

•

•

Glossary

synchronous

SYS GEN

A method of transmission or a type of equipment in which sending and receiving units
are synchronized by periodically exchanging sync characters prior to the actual
movement of data. This method precludes insertion of timing information in each
character, as required in asynchronous transmissions.

The creation of a computer operating system as performed by a systems analyst. The
output of a SYSGEN program is a working executive.

system program
A software program provided by Unisys

T
TCI

An interactive interface designed especially for IMS applications

TCS (tape cassette subsystem)

terminal

An auxiliary magnetic tape system for a display terminal.

One of many names given to data input or output equipment or facilities at one end of
a communications channel

terminal table

text

A compilation of entries, resulting from the execution of TERM macro instructions,
used for controlling message traffic to and from terminals using queues.

The character transmission to or from a remote device minus any header or framing
characters

TN (transport network)

toggling

The logical architectural entity that is responsible for the transfer of network data
units between the various attached termination systems. Note that network control,
while physically in the network processors, is not within separate termination systems
of the transport network.

To switch or alternate between two or more work areas (buffers) to obtain or output a
complete message. While the receiving program or routine (local) is processing the
data of an already filled buffer, the sending routine (remote) is filling the alternate
buffer. When both routines are finished processing, the switching (toggling) occurs.
Efficiency of processing is increased since the sending routine never has to wait for the
receiving buff er to be emptied .

UP-9744 Rev. 1 Glossary-17

Glossary

TP
A designation for a terminal printer auxiliary device connected to a display terminal

traffic summary log
A record of message traffic through the network or on a line

transaction
In a real-time mode of operation, each sequence of one input message from a terminal
followed by one output response from a host constitutes one transaction.

transaction control interface
Interactive inquiry/response interface for IMS

transaction terminal table
An activity request table for the transaction control interface

translation
The exchange of character sets of one binary code for those of another; for example, a
translation from EBCDIC to ASCII. The exchange also is called code conversion.

transmission
The electrical transfer of a signal, message, or other form of information from one
location to another

TS (termination system)

trunk

Term used with distributed communications architecture. A collection of associated
communication system ports, including an applications management services (AMS)
port and central process unit (CPU). Association can be by physical constraint (that is,
all in one box) or logical (that is, belonging to the same virtual machine).

A logical path between a host processor and a packet-switched public data network.
There is one DTE address for each trunk.

A designation for teletypewriters

turnaround time

Glossary-18

The time required to reverse the direction of transmission on a half-duplex carrier
facility. During a turnaround operation, which is controlled by the data set, the facility
is not available for transmission in either direction.

UP-9744 Rev. 1

•

•

•

•

•

•

Glossary

u
UDLC (universal data link control)

Unisys bit-oriented line protocol implementation that handles HDLC, ADCCP, and
SDLC protocols as subsets

unattended answering
The ability of a communications receiver to accept incoming traffic without human
intervention; the counterpart of automatic dialing

UNISCOPE
A display terminal that includes keyboard and CRT

user program

UTS400

A software program provided by the user (See communication program.)

UTS 400 Universal Terminal System. A general purpose, microprocessor-based
remote display terminal

UTS400TE

UTS4000

v

UTS 400 Text Editor. A special purpose microprocessor-based remote terminal
designed for the printing and publishing industry

A family of terminals and cluster controllers. They include the UTS 20 and UTS 40
terminals and UTS 20W and UTS 40W workstations connected to UTS 4020 or
UTS 4040 cluster controllers.

virtual line

VLINE

The hardware connecting two nodes directly or connecting one node to a network
processor or packet switching network. Each virtual line can support up to 4096
logical subchannels.

See virtual line .

UP-9744 Rev. 1 Glossary-19

Glossary

x
X.25

Glossary-20

The CC ITT recommendation for interfacing to packet-switched PDN s. This standard
is in three parts:

Level 1: X.21 (digital) X.21 bis (modem); the electrical interface to the line
terminating unit

Level 2: Line protocol from the customer's equipment (DTE) to the exchange (DCE).
This is one of the HDLC Codes of Practice.

Level 3: Call access protocol to establish, maintain, and control virtual calls to and
from the network

UP-9744 Rev. 1

•

•

•
---'------------~

•

•

•

Index

A

activate a communications program and pass
a message, 2-13

activity request packets (ARP)
description, 5-7
statistics in a dump, (figure) 5-8

addressing terminal
description, 3-10
general identification, 4-14
I/O devices, 4-21
polling, 4-8
rid, sid, did, 4-10

asynchronous balanced mode, 7-7, (figure)
7-8

B

basic assembly language
function, 2-18
user-written program interface, 2-15

bit
start, 3-17
stop, 3-17

buffers, line
function, 5-3
length defaults, 5-4
terminal requirements, 5-4
VLINE, 5-5

buffers, network
description, 5-9
disk queueing, 5-12
function, 5-9
insurance factor, 5-16
I/O errors, 5-20
main storage queuing, 5-10
message storage, 5-9
MPPS interaction, 6-1
number, 5-14
obtaining statistics, 5-17, (figure) 5-19
size, 5-12
threshold capability, 5-18

UP-9744 Rev. 1

c
CDM, See consolidated data management.
circuit-switched public data network, 3-27,

(figure) 3-28, (table) 3-29
circuits

dedicated, 3-22
dedicated vs switched, 3-24
permanent virtual, 3-31
switched, 3-24
switched virtual, 3-31
virtual, 3-23, 3-31

closed user group, 3-32
COBOL

CMCS/ICAM environment, (figure) 2-27
message control system (CMCS), 2-14
programs, 2-26
user-written program interface, 2-15

coding conventions, A-1
communications adapter, single line

description, 3-2
synchronization, 3-18
types available, (table) 3-34

communications lines, 3-20
communications physical interface

function, 2-5
general, (figure) 2-4

communications systems
ICAM, (figure) 1-3
queue arrangement, 5-22

communications user programs
Unisys supplied, 2-29
user-written, 2-15

concepts of distributed communications
architecture, 7-2

consolidated data management, 2-21

lndex-1

Index

D

data circuit terminating equipment, 3-26,
(figure) 3-27

data terminal equipment, 3-26,
(figure) 3-28

data/time stamp, 6-3
DAT AP AC Canadian public data network

(table) 3-32
DATEX-P German public data networks

(table) 3-32
DCT 500, DCT 524

description, 4-20
disadvantages, 4-21
error notification, 4-31

DCT 1000, error notification, 4-32
DDX-P Japanese public data network

(table) 3-32
dedicated circuits, 3-22
demand mode interface, 7-6
device dependent control characters, 4-23
device independent control expressions

(DICE)
description, 4-24
DICE macroinstructions, 4-27, (table)

4-28
hexadecimal notation codes and functions,

(table) 4-26
summary, 4-29

device types, input/output, 4-21
DICE, See device independent control

expressions.
direct data interface (DDI)

change line phone number, 2-20
contrast with standard interface, 5-1,

(figure) 5-2
error notification, input, 4-31
error notification, output, 4-32
function, 2-5
general, (figure) 2-4
logical components of ICAM, (figure) 2-4,

2-17
message sending and receiving, 2-23
polling interval, 4-12
program buffers, 2-23
relationship with RDH, 4-1
standard interface, comparison with

2-15
user-written programs, 2-15

lndex-2

distributed communications architecture
CDCA)

concepts, 7-2
description, 7-1
multinode networks, 7-6

distributed communications processor,
(figure) 7-9

E

error notification
input, 4-31
output, 4-32

error recovery, MPPS, 6-4
errors

F

journal utility, 6-4
message header, 6-4
sequence number, 6-5
transmission, 6-4

files
disk-buffered 5-1
disk-queued, 5-1

format edit 4-30
formatting your data device dependent

control characters, 4-24

7-7,

device independent control expressions
4-24

general description, 4-23

G

GA WAKE
operand, 2-11
use, 2-13

global networks
comparison with dedicated, 2-5
description, 2-7
single node, 2-7
multinode, 2-7
shared with dedicated networks, 2-7
use of GUST, 2-8

global user service task (GUST)
request/release ICAM facilities, 2-8

use with global networks, 2-8

UP-9744 Rev. 1

•

•

•

•

•

•

H

hardware, communications
communications adapter, single line, 3-33
communications lines, 3-20
description, 3-1
System 80, 3-1
terminals, 3-3

hexadecimal notation, for DICE, 4-26

IBERPAC public data network, (table) 3-32
IBM 3270 emulator, 2-40
ICAM

communications system, OS/3
(figure) 1-3

definition, 1-1
internals and interfaces, 2-1
similarity to data management, 1-1
software program, 2-1
supported terminals, (table) 3-8
symbiont, 2-13
symbiont definition, 1-2

ICAM declarative/imperative macros
DTFCP, 2-21
GETCP, 2-21
PUTCP, 2-21

ICAM device emulation system (IDES) utility
components, 2-36, (figure) 2-37

ICAM edit dump, 8-6
ICAM trace facility, 8-5
information management system (IMS),

2-30, (figure) 2-32
input/output microprocessor

description, 3-2, 3-3
System 80, 3-33
System 80 interface, (figure) 3-33

interfaces
communications physical, 2-5
direct data, 2-5
standard message control program, 2-2
transaction control, 2-2

UP-9744 Rev. 1

J

journal utility
description, 8-1
report segment, 8-1
restart segment, 8-1

L

languages
basic assembly language, 2-18
COBOL, 2-26
RPGII, 2-27

line connections
broken, 4-7
procedure, 4-4
reconnecting broken lines, 4-7

line control methods
controlled, 3-18
protocols, 3-18
uncontrolled, 3-18

line queuing, 5-24
lines

automatic dialing, 4-5
dedicated, 4-5
manual dialing, 4-5
unattended answering, 4-6

LOCAPfiles
description, 5-38
end users, 2-10
sending messages from programs, 5-43

M

macroinstructions
coding conventions, A-3
cross reference, (table) B-1,
format, A-2
keyword operands, A-3
positional operands, A-2
S-TYPE, A-5
SD-TYPE, A-6
types, A-1

maintenance, diagnostic facilities, 8-2
MAPPER 5 system

programs supplied, 2-29
connecting to OS/3, 2-42, (figure) 2-3

Index

lndex-3

Index

message
buff er stored, 5-9
characteristics, (figure) 5-29
delivery notification, 4-33
input, 5-9
output, 5-10

message formatting characters
BCC - block check character, 4-14
EOT - end of transmission character, 3-11
ESC - escape character, 3-11
ETB - end-of-transmission block character

3-11
ETX - end-of-text character, 3-9
SI - shift in, 3-11
SOH - start of header, 3-11
STX- start-of-text character, 3-9
US - unit separator, 3-12
VT - vertical tab, 3-11

message control table, 2-23
message header

MPPS effects, 6-2
prefix, 5-12

message processing procedure specification
(MPPS)

analyzing message headers, 6-3
error recovery, 6-4
function and use, 6-1
macroinstructions, 6-1
message sequence, 6-3
message source, 6-4
message type, 6-4
miscellaneous functions, 6-7
routing information, 6-6

modems, 3-1
multinode global networks, 7-6
multiplexer, polling groups, 4-9

N

network, dedicated
comparison to global, 2-5
definition, 2-6
limitations, 2-6
reconnecting broken lines, 4-7

network, global
comparison to dedicated, 2-5
definition, 2-7
reconnecting broken lines, 4-7

lndex-4

networks, circuit-switched public data, 3-27
networks, global vs dedicated, 2-5
nine thousand remote (NTR) system utility

components, 2-38, (figure) 2-39

0

output delivery notification request, 4-33

p

packet-switched public data network, 3-29,
(table) 3-32

polling, terminal
algorithms, 4-13
buffered interactive, 4-14
description, 4-8
efficiency, 4-16
errors and error recovery, 4-17
groups, 4-8, 4-9, 4-18
interval, 4-11
speed, 4-16
unbuffered interactive, 4-20

program activation (GAWAKE), 2-13
protocol

buffered interactive terminals, 4-13
polling, 3-18
terminal support, 4-1

PSS United Kingdom, (table) 3-32
public data network

Canadian (DATAPAC), (table) 3-32
circuit-switched, 3-27, (figure) 3-28
Denmark, Finland, Sweden, Norway

(NORDIC), 3-28
French (TRANSPAC), (table) 3-32
general description, 3-26, (figure) 3-26
German (DATEX-L), (table) 3-29
German (DATEX-P), (table) 3-32
IBERPAC, (table) 3-32
Japanese (DDX-P), (table) 3-32
packet-switched, 3-29, (figure) 3-30
United Kingdom (PSS), (table) 3-32

UP-9744 Rev. 1

•

•

•

•

•

•

Q
queuing, disk

advantages/disadvantages, 5-11
recommendations for interactive, 5-13

queuing, main storage
advantages/disadvantages, 5-11

description, 5-11
recommendations, 5-12

queues associated with a program or
terminal, 5-22

description, 5-22
function, 5-1
input queue arrangement, 5-22
messages sent from programs, 5-42
messages sent from terminals, 5-41
priorities, 5-31
types, 5-31
use of line or terminal, 5-24

queues, program
description, 5-25
process files, 5-35

queues, terminal

R

description, 5-22
output, 5-33

remote batch processing (RBP) utility
components, 2-34, (figure) 2-35

remote device handler (RDH)
function, 4-1
line buffers, 5-3
MPPS interaction, 6-1
polling, 4-8
status and error codes, 4-31
translate tables, 4-31

remote job entry, 2-34
remote terminal processor (RTP), 2-14
remote workstations, (table) 3-1, 3-8
routing, MPPS message, 6-6
RPG II

batch processing, 2-28
interactive processing, 2-28
user-written program interface, 2-15

UP-9744 Rev. 1

s
session

definition, 2-10
dynamic, 2-10
establishment (SESCON macro), 2-11
static, 2-10

single-line communications adapter, 3-33,
(table) 3-34

slow polling, 4-13

Index

standard interface buffers and queues, 5-1
change line phone number, 2-20
contrast with DDI, 5-1, (figure) 5-2
contrast with direct data interface, 2-15
dynamic session capability, 2-11
global networks, 2-7
logical components of !CAM, (figure) 2-16
message sending and receiving, 2-20
network buffers, 4-3
polling inhibit feature, 4-13
RDH interaction, 4-2

standard message control program
(STDMCP), 2-2

status and error codes, 4-31
switched lines, 3-24
switched virtual circuits, 3-31
synchronizing transmission

asynchronous, 3-17
synchronous, 3-16

system activity monitor
description, 8-2
input message rate (CIMR), 8-3
number of error commands (CERR), 8-4
number of interrupts (CINT), 8-4
number of no-traffic responses (CNOT),

8-4
number of sense commands (CSEN), 8-4
output message rate (COMR), 8-3
rate of bytes transmitted (CBYT), 8-5
rate of poll interrupts (CPOL), 8-4

System 80 basic communications system
components, 3-1, (figure) 3-2
single-line communications adapter, 3-33,

(table) 3-34

lndex-5

Index

T

Telcon network, 7-7, (figure) 7 -9
terminal

additional terminal interfaces, 3-20
addressing, 3-10
controller, 3-5
distributed data processing, 3-4
description, 3-2
hardware, 3-3
interface characteristics, 3-9
line control, 3-18
message formatting, 3-9
queuing, 5-22
statistics, function, 4-33
synchronizing transmission, 3-16
uses, 3-7

terminal, batch, 5-14
terminal communications direction

1-way (simplex), 3-13
2-way alternate (half-duplex), 3-14
2-way simultaneous (full duplex), 3-14

terminals supported, (table) 3-8
threshold, 5-18
transaction control interface (TCI)

buffers and queues, 5-1
function, 2-2
general, (figure) 2-4
RDH interaction, 4-1

translate tables, 4-31
TRANSPAC French public data network

(table) 3-32
types ofmacroinstructions, A-1

lndex-6

u
universal data link control (UDLC), 7-7,

(figure) 7-4, 7-9
universal terminal system 4000 (UTS 4000),

(figure) 3-6
utility programs

COBOL message control system (CMCS),
2-14

ICAM device emulation system (IDES)
2-14

nine thousand remote (NTR), 2-14
remote batch processing (RBP), 2-14
remote terminal processor (RTP), 2-14

UNIX operating system, 2-30, 2-42

v
VLINE

y

description, 3-22
elements, 5-6
protocols, 3-24
use, 7-6

yield, program control, 2-13

UP-9744 Rev. 1

•

•

•
-- ,,, ____ , _______ ~

•

•

•

• UNISYS

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines. and mail. (No postage is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

FOLD

II II II
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation
E/MSG Product Information Development
PO Box 500 - ES-114
Blue Bell, PA 19422-9990

1 ••• 111.1 ••• 1 •• 1 •• 1.1 •• 1.11.1 •• 1.1 •• 1.1 .. 11 •••• 1.1.1

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

_,

•

•

•

•

•

•

