
•

-·

•
UD 1 ·-251 Rev. Ji7 3

ATTN: CHARLIE GIBBS

01048
CAV208M45541

SPERRY UNIVAC
SUITE 906

UP 8805-A

1177 WEST HASTINGS ST
VANCOUVER BC V6E 2K3

LIAS
1974 American
National Standard COBOL

CAV
Fundamentals

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC 1974
American National Standard COBOL Fundamentals", UP-8805.

This update incorporates a minor change to the manual.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8805-A. To receive the complete manual, order UP-8805.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, BOO, A11, A12, A13, B13, 10,11,18,
18U, 19, 19U,20,20U,21,21 U,28U,29U,75,75U,76,76U,
77 and 78

Library Memo for
UP-8805-A

RELEASE

August, 1982

••

•

•

•

•
UD1--251 Rev, 3/73

SPERRY UNIVAC
SUITE 906
1177 WEST HASTINGS ST

VANCOUVER BC V6E 2K3

ATTN: CHARLIE GIBBS

0'.J2 S7
CAv2Q8M45541 UP 8805

UAS

CAV 974 American
ational Standard COBOL

This Library Memo announces the release and availability of "SPERRY UNIVAC® 1974 American National
Standard COBOL Fundamentals", UP-8805.

This manual is an easy-to-read explanation of 1974 American National Standard COBOL based on the American
National Standards Institute COBOL, ANSI X3.23-1974.

This manual describes:

• Structure of COBOL language

• Formats

• Rules

• Program organization

• Identification division

• Environment division

• Data division

• Procedure division

• Special features: table handling, data movement, sort/merge, interprogram communication, communications,
debugging, library, segmentation, program execution methods

Additional copies may be ordered by your local Sperry Univac representative.

Mailing Lists
BZ, CZ and MZ

Mailing Lists 10, 11, 18, 18U, 19, 19U, 20, 20U, 21,
21 U, 28U, 29U, 75, 75U, 76, 76U, 77 and 78

(Covers and 273 pages)

Library Memo

RELEASE DATE:

January, 1981

•

•

•

r

•

•

•
H

197 4 American National Standard
COBOL
Fundamentals

UNIVAC UP-8805

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

©1981 - SPERRY CORPORATION

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

PRINTED IN U.S.A.

•

•

•

•

•

•

UP-8805

Part/Section
Page

Number

Cover /Disclaimer

PSS 1

Acknowledgment 1

Contents 1 thru 7

1 1 thru 6

2 1 thru 21

3 1thru15

4 1,2

5 1 thru 20

6 1 thru 21
22
23 thru 36

7 1 thru 70

8 1 thru 24

9 1 thru 15

10 1 thru 7

11 1 thru 20

12 1 thru 9

13 1 thru 4

14 1 thru 4

Index 1 thru 9

User Comment
Sheet

Update
Level

Orig.

A

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.
A
Orig.

Orig .

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

PAGE STATUS SUMMARY

ISSUE: UPDATE A - UP-8805

Part/Section
Page

Number
Update

Level Part/Section

PSS, 1
Update A

Page
Number

Update
Level

All the technical changes are denoted by an arrow(-) in the margin, A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (•) is found. A horizontal arrow(-) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Acknowledgment 1

Acknowledgment

The following acknowledgment is reproduced from the American National Standard
COBOL, X3.23-1974 as requested in that publication:

"Any organization interested in reproducing the COBOL standard and specifications in
whole or in part, using ideas from this document as the basis for an instruction manual or
for any other purpose, is free to do so. However, all such organizations are requested to
reproduce the following acknowledgment paragraphs in their entirety as part of the
preface to any such publication (any organization using a short passage from this
document, such as in a book review, is requested to mention "COBOL" in
acknowledgement of the source, but need not quote the acknowledgment):

"COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

"The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Corporation), Programming for the UNIVAC® I and
II, Data Automation Systems copyrighted 1958, 1959, by Sperry Corporation; IBM
Commercial Translator Form No. F 28-8013, copyrighted 1959 by IBM; FACT, OSI
27 A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications."

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

PAGE STATUS SUMMARY

ACKNOWLEDGMENT

CONTENTS

1. INTRODUCTION

2.

1.1.

1.2.
1.2.1.

1.3.
1.3.1.
1.3.2.
1.3.3.

WHAT IS COBOL?

STRUCTURE OF COBOL LANGUAGE SPECIFICATION
Module Overview

SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL
Format
Rules
Elements

COBOL PROGRAM ORGANIZATION

2.1. IDENTIFICATION DIVISION

2.2. ENVIRONMENT DIVISION

2.3. DATA DIVISION

2.4. PROCEDURE DIVISION

2.5. COBOL CODING FORM
2.5.1. Comment Line
2.5.2. Blank Line
2.5.3 . Level Indicators/Numbers

2.6. SAMPLE PROGRAM

Contents 1

Contents

1-1

1-2
1-3

1-5
1-5
1-5
1-5

2-1

2-2

2-3

2-10

2-13
2-16
2-17

2-18

2-19

UP-8805

3.

4.

5.

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

LANGUAGE STRUCTURE

3.1. COBOL CHARACTER SET

3.2. SEPARATORS

3.3. COBOL WORDS

3.4. LITERALS

3.5. FIGURATIVE CONSTANTS

3.6. GENERAL FORMATS

3.7. SUBSCRIPTING AND INDEXING

3.8. QUALIFICATION

IDENTIFICATION DIVISION

4.1. ORGANIZATION AND STRUCTURE

4.2. CODING EXAMPLE

ENVIRONMENT DIVISION

5.1. ORGANIZATION AND STRUCTURE

5.2. SOURCE-COMPUTER AND OBJECT-COMPUTER PARAGRAPHS

5.3. SPECIAL-NAMES PARAGRAPH
5.3.1. Implementor Function Clause
5.3.2. Alphabet Name Clause
5.3.3. CURRENCY SIGN IS Clause
5.3.4. DECIMAL-POINT IS COMMA Clause

5.4. COBOL FILE ORGANIZATION AND ACCESS METHODS

5.5. FILE-CONTROL PARAGRAPH
5.5.1. Sequential Files
5.5.2. Relative Files
5.5.3. Indexed Files
5.5.4. Additional Phrases and Clauses

5.6. 1-0 CONTROL PARAGRAPH
5.6.1. RERUN Clause
5.6.2. SAME AREA Clause
5.6.3. MULTIPLE FILE Clause

5.7. CODING EXAMPLE

Contents 2

• 3-1

3-3

3-4

3-5

3-7

3-9

3-11

3-12

4-1

4-2

• 5-1

5-2

5-2
5-3
5-5
5-7
5-8

5-8

5-9
5-10
5-10
5-11
5-13

5-15
5-15
5-17
5-18

5-19 •

UP-8805

• 6.

•
7.

•

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

DATA DIVISION

6.1. FILE DESCRIPTION ENTRY
6.1.1. LABEL Clause
6.1.2. BLOCK CONTAINS Clause
6.1.3. RECORD CONTAINS Clause
6.1.4. DATA RECORDS Clause
6.1.5. CODE-SET Clause
6.1.6. LINAGE Clause

6.2. RECORD DESCRIPTION ENTRY
6.2.1. REDEFINES Clause
6.2.2. PICTURE Clause
6.2.2.1. Alphabetic and Alphanumeric Fields
6.2.2.2. Numeric Fields
6.2.2.3. Alphanumeric Edited Fields
6.2.2.4. Numeric Edited Fields
6.2.3. USAGE Clause
6.2.4. SIGN Clause
6.2.5. SYNCHRONIZED Clause
6.2.6. JUSTIFIED Clause
6.2.7. BLANK WHEN ZERO Clause
6.2.8. VALUE Clause
6.2.9. Conditional Variables
6.2.10. RENAMES Clause

6.3. LEVEL 77 ENTRY

6.4. CODING EXAMPLE

PROCEDURE DIVISION

7.1. FORMATS

7.2. EXPRESSIONS
7.2.1. Arithmetic Expressions
7.2.2. Conditional Expressions
7.2.2.1. Simple Conditions
7.2.2.2. Complex Conditions

7.3. STATEMENTS AND SENTENCES
7.3.1. Conditional Statements
7.3.2. Compiler Directing Statements
7.3.3. Imperative Statements

7.4. INPUT-OUTPUT VERBS
7.4.1. OPEN Statement
7.4.2. CLOSE Statement
7.4.3. READ Statement
7.4.4 . WRITE Statement
7.4.5. REWRITE Statement

Contents 3

6-2
6-3
6-3
6-5
6-5
6-6
6-6

6-11
6-12
6-14
6-15
6-15
6-16
6-17
6-26
6-26
6-27
6-28
6-29
6-30
6-31
6-32

6-34

6-35

7-1

7-2
7-2
7-6
7-6
7-9

7-15
J-15
7-16
7-17

7-18
7-18
7-20
7-21
7-23
7-26

UP-8805

8.

7.4.6.
7.4.7.
7.4.8.
7.4.9.
7.4.10.

7.5.
7.5.1.
7.5.2.
7.5.3.
7.5.4.
7.5.5.
7.5.6.
7.5.7.

7.6.
7.6.1.
7.6.2.
7.6.3.
7.6.4.
7.6.4.1.
7.6.4.2.
7.6.4.3.
7.6.4.4.
7.6.4.5.

7.7.
7.7.1.
7.7.2.
7.7.3.
7.7.4.
7.7.5.

7.8.
7.8.1.

7.9.

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

DELETE Statement
ST ART Statement
DISPLAY Statement
ACCEPT Statement
STOP Statement

ARITHMETIC VERBS
ROUNDED Phrase
SIZE ERROR Phrase
ADD Statement
SUBTRACT Statement
MULTIPLY Statement
DIVIDE Statement
COMPUTE Statement

DATA MOVEMENT VERBS
MOVE Statement
INSPECT Statement
STRING Statement
UNSTRING Statement

Sending Field
ALL Word
DELIMITED and COUNT Phrases
POINTER Phrase
TALL YING Phrase

PROCEDURE BRANCHING VERBS
EXIT Statement
IF Statement
GO TO Statement
ALTER Statement
PERFORM Statement

COMPILER DIRECTING VERB
USE Statement

CODING EXAMPLE

TABLE HANDLING

8.1. DEFINING TABLES
8.1.1. Table Elements
8.1.2. OCCURS Clause

8.2. REFERENCING TABLE ITEMS
8.2.1. Subscripting
8.2.2. Indexing

8.3. MULTIDIMENSIONAL TABLES

8.4. TABLE LOOKUP
8.4.1. Coding Specific Elements
8.4.2. Table Lookup with Subscripting
8.4.3. Table Lookup with Indexing

Contents 4

7-27 • 7-27
7-29
7-30
7-31

7-32
7-32
7-33
7-34
7-36
7-37
7-38
7-40

7-40
7-41
7-43
7-47
7-49
7-49
7-50
7-51
7-52
7-53

7-53
7-53 • 7-54
7-56
7-57
7-58

7-67
7-67

7-68

8-1
8-1
8-3

8-7
8-7
8-8

8-9

8-11 • 8-11
8-12
8-13

•

•

•

UP-8805

9.

8.4.3.1.
8.4.3.2.
8.4.3.3.

8.5.

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

USAGE IS INDEX Clause
SET Statement
SEARCH Statement

TABLE HANDLING EXAMPLES

SORT/MERGE

9.1. SORT /MERGE OPERATION

9.2. DEFINING SORT /MERGE FILE

9.3. SORT /MERGE STATEMENTS
9.3.1. SORT Statement
9.3.2. MERGE Statement
9.3.3. RELEASE Statement
9.3.4. RETURN Statement

9.4. SAME SORT AREA CLAUSE

9.5. SAMPLE SORT PROGRAM

9.6 . SAMPLE MERGE PROGRAM

10. INTERPROGRAM COMMUNICATION

10.1. LINKAGE SECTION

10.2. CALL STATEMENT

10.3. PROCEDURE DIVISION HEADER

10.4. CANCEL STATEMENT

10.5. EXIT PROGRAM STATEMENT

10.6. SAMPLE PROGRAM

11. COMMUNICATION

11.1. MESSAGE CONTROL SYSTEM

11.2. COBOL COMMUNICATION ENVIRONMENT

11.3. PROGRAM EXECUTION METHODS

11.4. MESSAGES AND MESSAGE SEGMENTS

11.5 . QUEUES

Contents 5

8-13
8-14
8-16

8-20

9-1

9-3

9-4
9-4
9-8
9-8
9-10

9-11

9-12

9-14

10-1

10-2

10-3

10-4

10-5

10-6

11-1

11-2

11-2

11-3

11-4

UP-8805

11.6.
11.6.1.
11.6.2.

11.7.

11.8.

11.9.

11.10.

11.11.

11.12.

12. DEBUG

12.1.

12.2.

12.3.

12.4.

12.5.

12.6.

12.7.

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

DATA DIVISION ENTRIES
Input Communication Description (CD)
Output Communication Description (CD)

ACCEPT MESSAGE COUNT STATEMENT

DISABLE STATEMENT

ENABLE STATEMENT

RECEIVE STATEMENT

SEND STATEMENT

SAMPLE PROGRAM

COMPILE TIME SWITCH

OBJECT TIME SWITCH

DEBUG-ITEM

DEBUGGING LINES

WITH DEBUGGING MODE CLAUSE

USE FOR DEBUGGING STATEMENT

SAMPLE PROGRAM

13. LIBRARY

13.1. COPY STATEMENT

13.2. COMPILER SEARCH RULES

13.3. DEBUGGING LINE REFERENCE

13.4. CODING

13.5. STORAGE ROUTINE

14. SEGMENTATION

14.1. PROGRAM ORGANIZATION

14.2. FIXED PORTION
14.2.1. Fixed Permanent Segments
14.2.2. Fixed Overlayable Segments

Contents 6

11-5 • 11-6
11-10

11-12

11-13

11-14

11-14

11-16

11-18

12-1

12-1

12-2

12-2 • 12-3

12-3

12-6

13-1

13-2

13-3

13-3

13-3

14:...1

14-1 • 14-1
14-2

•

•

•

UP-8805

14.3.

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

INDEPENDENT SEGMENTS

14.4. PROGRAM SEGMENT CLASSIFICATION
14.4.1. Segment Number
14.4.2. SEGMENT LIMIT Clause

14.5. ALTER STATEMENT RESTRICTIONS

14.6. PERFORM STATEMENT RESTRICTIONS

14.7. SORT/MERGE STATEMENT RESTRICTIONS

INDEX

USER COMMENT SHEET

FIGURES

2-1.
2-2.
2-3.

6-1.
6-2.
6-3.

7-1.
7-2.
7-3.

Flowchart for Sample COBOL Program
COBOL Reference Format
COBOL Coding Form

Page Defined by LINAGE Clause
Page Advance Controlled by Counting Lines
Page Advance Controlled by LINAGE Clause

Format 4 Flowchart for PERFORM Statement with 1 Condition
Format 4 Flowchart for PERFORM Statement with 2 Conditions
Format 4 Flowchart for PERFORM Statement with 3 Conditions

TABLES

1-1.

5-1.

6-1.
6-2.
6-3.

7-1.
7-2.
7-3.
7-4.
7-5 .

COBOL Language Processing Levels

File Status Key Values

Summary of PICTURE Symbols
Examples of PICTURE Clause Editing
PICTURE Character Precedence Chart

Combinations of Symbols in Arithmetic Expressions
Combinations of Conditions, Logical Operators, and Parentheses
Valid Conditional Statements
Valid Imperative Statements
Permissible Combinations of Operands in MOVE Statements

Contents 7

14-2

14-2
14-3
14-3

14-4

14-4

14-4

2-10
2-14
2-14

6-7
6-9
6-10

7-62
7-64
7-65

1-2

5-14

6-23
6-24
6-25

7-5
7-10
7-16
7-17
7-41

•

•

•

•

•

•

UP-8805

1.1. WHAT IS COBOL?

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

1-1

1 . Introduction

The COmmon Business Oriented Language (COBOL) is a high level programming language
predominantly used for writing business and commercial application programs.

What is it about COBOL that makes it desirable to the business community? Most
businesses come to COBOL for several reasons. Some of the reasons are because COBOL
is:

• Standarized

• Easy to interpret

• Easy to learn

• Self documenting .

Probably the major reason for the wide acceptance of COBOL is that it is designed and
updated by a committee of representatives of computer manufacturers and computer
users. The standard COBOL has been in use for more than a decade; the latest update is
American National Standard COBOL, X3.23-1974.

Any computer manufacturer that implements the standard COBOL compiler must adhere
to rules stated in the standard. This means that the COBOL language has established itself
in the data processing industry as a common programming language, understood from one
computer manufacturer to another. It, therefore, provides stability and order to computer
programming. Changing computers or programmers in a company that uses COBOL is
simplified since COBOL is common across machines. ~

Another reason COBOL is so popular in business is that it uses an English-like language
that is easily understood. Almost anyone can pick up a COBOL program and get an inkling
as to what the program is supposed to do. For instance, a typical line from a COBOL
program might be:

READ FILE-A, AT END GO TO END-ROUTINE .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

1-2

Also contributing to the order rendered by COBOL is the structure of the language. It is
broken into four easily identifiable parts called divisions. The order and content of each of
these divisions is as follows:

• IDENTIFICATION DIVISION

Here, you identify the source program, compilation listings, and other pertinent
information about the program.

• ENVIRONMENT DIVISION

In this division you describe the computer used to compile the source program and
the computer and peripheral equipment used to execute the object program.

• DATA DIVISION

This division describes all external data needed by your program as well as the
constants and work areas required by the program.

• PROCEDURE DIVISION

In this division, you specify the logical steps that the computer takes to solve your
problem.

The inherent characteristic of this structure promotes orderly programming, the offspring
of which is a program that is self-documented and thus easy to interpret.

1.2. STRUCTURE OF COBOL LANGUAGE SPECJFICATION

The American National Standard COBOL, X3.23-1974 specification is structured into a
nucleus and a number of functional processing modules. The nucleus contains language
elements for internal processing. The functional processing modules are listed in Table
1-1. Each module contains either two or three levels. Those with three levels contain a
null set at their lowest level, a low processing level (level 1), and a high processing level
(level 2). In all cases, lower levels are subsets of higher levels within the same module.

Table 1-1. COBOL Language Processing Levels

Module Level

Nucleus 2
Table handling 2
Sequential 1-0 2
Relative 1-0 2
Indexed 1-0 2
Sort/merge 2
Segmentation 2
Library 2
Debug 2
lnterprogram communication 2
Communication 2

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

1-3

1.2.1. Module Overview

• Nucleus

The nucleus contains the language elements for internal processing. This module is
divided into two levels. The Level 1 elements perform basic internal operations; i.e.,
elementary options of the various clauses and verbs. Level 2 provides more extensive
and sophisticated internal processing capabilities.

• Table handling

•

The table handling module contains the language elements necessary for:

the definition of tables;

the identification, manipulation, and use of indexes; and

reference to the items within tables.

This module is divided into two levels. Level 1 provides the ability to define fixed
length tables of up to three dimensions and to refer to items within them using either
a subscript or an index. Level 2 provides for the definition of variable-length tables. In
addition, facilities for serial and nonserial lookup are provided by the SEARCH verb
and its attendant data division clauses .

Sequential 1-0

The sequential 1-0 module contains the language elements necessary for the
definition and access of sequentially organized external files. The module is divided
into two levels. Level 1 contains the basic facilities for the definition and access of
sequential files and for the specification of checkpoints. Level 2 contains more
complete facilities for defining and accessing these files.

• Relative 1-0

•

The relative 1-0 module provides the capability of defining and accessing mass
storage files in which records are identified by relative record numbers. This module
contains a null set as its lowest level and two processing levels. Level 1 provides
basic facilities. Level 2 provides more complete facilities, including the capability of
accessing the file both randomly and sequentially in the same COBOL program.

Indexed 1-0

The indexed 1-0 module provides the capability of defining mass storage files in which
records are identified by the value of a key and accessed through an index. This
module contains a null set as its lowest level, and two processing levels. Level 1
provides basic facilities. Level 2 provides more complete facilities, including alternate
keys, and the capability of accessing the file both randomly and sequentially in the
same COBOL program.

UP-8805 SPERRY UNIVAC 1-4
FUNDAMENTALS OF 1974 ANSI COBOL

• Sort/Merge

The sort/merge module allows for the inclusion of one or more sorts in a COBOL
program and consists of a null set and two processing levels. Level 1 contains
facilities to sort a single file only; Level 2 provides extended sorting capabilities,
including a merge facility.

• Segmentation

The segmentation module provides for the overlaying at object time of procedure
division sections. This module consists of a null set and two processing levels. Level 1
provides for section segment numbers and fixed segment limits; Level 2 adds the
capability for varying the segment li1Tiit.

• Library

The library module consists of a null set and two processing levels. It provides for the
inclusion into a program of predefined COBOL text. Level 1 contains the basic COPY
verb; Level 2 adds the REPLACING phrase.

• Debug

The debug module provides a means by which the user can specify his debugging
algorithm - the conditions under which data or procedure items are monitored during
execution of the program. It consists of a null set and two processing levels. Level 1
provides a basic debugging capability, including the ability to specify selective or full
paragraph monitoring. Level 2 provides the full COBOL debugging capability.

• lnterprogram Communication

The interprogram communication module provides a facility to which a program can
communicate with one or more other programs. This module consists of a null set
and two processing levels. Level 1 provides a capability to transfer control to another
program known at compile time and the ability for both programs to have access to
certain common data items. Level 2 adds the ability to transfer control to a program
not identified at compile time as well as the ability to determine the availability of
object time main storage for the called program. The high level also provides the
capability for the release of main storage areas occupied by called programs.

• Communication

The communication module provides the ability to access, process, and create
messages or portions of messages, and to communicate through a COBOL message
control system with local and remote communication devices. This module consists of
a null set and two processing level~. Level 1 provides basic facilities to send or
receive complete messages. Level 2 provides a more sophisticated facility including
the capability to send or receive segments of a message.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

1-5

1.3. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

1.3.1. Format

A format is the specific arrangement of the elements of a clause or a statement. A clause
or a statement consists of elements as defined in 1.3.3. Throughout this document, a
format is shown adjacent to information defining the clause or statement. When more
than one specific arrangement is permitted, the format is separated into numbered
formats. Clauses must be written in the sequence given except where specifically stated in
the rules associated with a given format. (Clauses that are optional must appear in the
sequence shown if they are used.) Applications, requirements, or restrictions are shown as
rules.

1.3.2. Rules

Rules are used to define or clarify:

1. the syntax or arrangement of words or elements in a larger structure, such as a
clause or statement; or

2. the meaning or relationship of meanings of an element or set of elements in a
statement and the effect of the statement on compilation or execution .

1.3.3. Elements

Elements that make up a clause or a. statement consist of uppercase and lowercase words,
level-numbers, brackets, braces, connectives, and special characters.

• Words

•

All underlined uppercase words are called key words and are required when the
functions of which they are a part are used. Uppercase words that are not underlined
are optional to the user and may or may not be present in the source program.
Uppercase words, whether underlined or not, must be spelled correctly.

Lowercase words, in a general format. are generic terms used to represent COBOL
words, literals, PICTURE character-strings, comment-entries, or a complete syntactical
entry that must be supplied by the user. Where generic terms are repeated in a
general format, a number or letter appendage to the term serves to identify that term
for explanation or discussion.

Level-Numbers

When specific level-numbers appear in data description entry formats, the specific
level-numbers are required when such entries are used in a COBOL program. In this
document, the form 01, 02, 09 is used to indicate level-numbers 1 through 9.

UP-8805 SPERRY UNIVAC 1-6
FUNDAMENTALS OF 1974 ANSI COBOL

• Brackets and Braces

When a portion of a general format is enclosed in brackets, [], that portion may be
included or omitted at the user's choice. Braces, { } , enclosing a portion of a general
format mean a selection of one of the options contained within the braces must be
made. In both cases, a choice is indicated by vertically stacking the possibilities.
When brackets or braces enclose a portion of a format, but only one possibility is
shown, the function of the brackets or braces is to delimit that portion of the format
to which a following ellipsis applies. If an option within braces contains only reserved
words that are not key words, then the option is a default option (implicitly selected
unless one of the other options is explicityly indicated).

• Ellipsis

•

In text, the ellipsis (...) may show the omission of a portion of a source program. This
meaning becomes apparent in context. In the general formats, the ellipsis represents
the position at which repetition may occur at the user's option. The portion of the
format that may be repeated is determined as follows:

Given ... in a clause or statement format, scanning right to left, determine the]
or } immediately to the left of the ... ; continue scanning right to left and
determine the logically matching [or { . The ... applies to the words between the
determined pair of delimiters.

Format Punctuation

The punctuation characters comma and semicolon shown in some formats are
optional and may be included or omitted by the user. In the source program, these
two punctuation characters are interchangeable and either one may be used
wherever one of them is shown. Neither one may appear immediately preceding the
first clause of an entry or paragraph. If desired, a semicolon or comma may be used
between statements in the procedure division.

Paragraphs within the identification and procedure divisions, and the entries within
the environment and data divisions, must be terminated by the separator period.

• Use of Certain Special Characters

When the special characters plus sign, minus sign, greater than, less than, and equal
sign (+ - > < =) appear in a format, they are required although they are not
underlined.

The following sections of this document discuss COBOL as it is presented in American
National Standard COBOL, X3.23-1974 with descriptions and examples. The
characteristics of specific implementation are not discussed since each Sperry Univac
computer system has separate COBOL documents for this purpose.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-1

2. COBOL Program Organization

The divisional structure of a COBOL program is described in Section 1 and what, in
general, each division does. To give you a clearer picture of how a COBOL program is
organized and how the divisions interrelate, a basic COBOL program is examined in this
section.

The program input is a deck of 80-column punched cards. The first card contains a date;
all subsequent cards contain a number. After the last card is read, the program prints the
date, a message, and the sum of the numbers on the cards. The program solution to this
problem introduces you to many COBOL statements. No attempt is made to give you all
the formats and rules that apply to these statements since they are discussed in individual
sections throughout this document .

2.1. IDENTIFICATION DIVISION

Every COBOL program begins with the identification division, which names the program.
As the first entry in the division, you simply code:

IDENTIFICATION DIVISION.

This marks the start of the program. The rest of the division consists of paragraphs headed
by paragraph headers. Your program name belongs in the first paragraph headed by the
name PROGRAM-ID. So, if you want to call the program FINDSUM, you need the following
source code line:

PROGRAM-ID. FINDSUM.

The other paragraphs in the identification division are optional; they allow you to make
comments about the program. Two paragraphs are used to identify the program author
and the installation:

AUTHOR. J. PROGRAMMER.

INSTALLATION. XYZ COMPANY

NEW YORK .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-2

The entries following the headers for the identification division's optional paragraphs are •
termed comment-entries. They can be any combination of characters from the computer
character set.

The identification division of this program looks like this:

IDENTIFICATION DIVISION.

PROGRAM-ID. FINDSUM.

AUTHOR. J. PROGRAMMER.

INSTALLATION. XYZ COMPANY

NEW YORK.

2.2. ENVIRONMENT DIVISION

The environment division follows the identification division. It provides machine-dependent
information, so many of its entries are names specified by the manufacturer of the
computer you are using.

The environment division, like the identification division, is divided into paragraphs. The
paragraphs, in turn, are grouped into two sections: the CONFIGURATION SECTION and the
INPUT-OUTPUT SECTION.

The configuration section contains two paragraphs (headed by the names SOURCE- •
COMPUTER and OBJECT-COMPUTER) that designate the computers used to compile the
source program and execute the resultant object program. The computer manufacturer
(the implementor) tells you what names belong in these paragraphs. Generally, you use
the same computer name for both the SOURCE-COMPUTER and OBJECT-COMPUTER
paragraphs. Assume you plan to use the same computer for both compilation and
execution, and the implementor designates that the name COMPUT-001 represents that
computer. The configuration section, then, contains the entries:

SOURCE-COMPUTER. COMPUT-001.

OBJECT-COMPUTER. COMPUT-001.

In the other section of the environment division, the INPUT-OUTPUT SECTION, we need a
FILE-CONTROL paragraph that has two entries, one to identify the input card file and one
to identify the output print file. Two clauses are required in a file control entry - a SELECT
clause to name the file, and an ASSIGN clause to associate that file with a physical
device. We code SELECT CARDIN to assign the name CARDIN to the input file. We then
add ASSIGN TO CARD-READER to associate CARDIN with a card reader. That gives us a
complete file control entry:

SELECT CARDIN ASSIGN TO CARD-READER.

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Similarly, for the output file, we code

SELECT PRINTOUT ASSIGN TO PRINTER.

2-3

This assigns the name PRINTOUT to the print file and associates it with a printer.

The terms CARD-READER and PRINTER, like COMPUT-001, are names provided by the
implementor, so they are not the same for each computer manufacturer. (Check the
COBOL manual provided with your computer to find the appropriate implementor-name for
each type of hardware device.)

Combining the configuration section and input-output section entries, we have a complete
environment division:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. COMPUT-001.
OBJECT-COMPUTER. COMPUT-001.
INPUT-OUTPUT SECTION.
Fl LE-CONTROL.

SELECT CARDIN ASSIGN TO CARD-READER.
SELECT PRINTOUT ASSIGN TO PRINTER .

2.3. DATA DIVISION

We have named our program and described the equipment required for execution. Now, in
the data division, we describe the data the program will manipulate.

First, we provide information about the files CARDIN and PRINTOUT, including a
description of the records in each. This information belongs in the FILE SECTION, the first
section in the data division.

Each file named in a SELECT clause in the environment division (2.2) must be described
by a file description entry, identified by the letters FD in the FILE SECTION. Thus, in the
data division, we need an entry that begins

FD CARDIN

to describe the input file, and another entry that begins

FD PRINTOUT

to describe the output file .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-4

In any FD entry, we need a clause that tells whether the file has records containing labels •
that identify the file. Generally, the first record in a tape or disk file is a label record. Card
and printer files, however, cannot have label records; thus, we include the following
clause in each FD entry:

LABEL RECORDS ARE OMITTED

No other clauses are required in an FD entry but, in this example we have included two
common optional clauses:

RECORD CONTAINS 80 CHARACTERS

and

RECORD CONTANS 132 CHARACTERS

This shows that each card record has 80 characters and each printer record has 132 print
positions.

Another clause, DATA RECORD, names the records associated with the file. Let's use
CARD-INPUT to name the records in CARDIN, and PRINTLINE for the records in PRINTOUT.
The clauses, then, are

DATA RECORD IS CARD-INPUT.

in the FD CARDIN entry, and

DATA RECORD IS PRINTLINE.

in the FD PRINTOUT entry.

Immediately following each FD entry, we must describe each type of record. The record
description for CARD-INPUT is:

ll l CARD- INPUT.
ll 2 CARD-TYPE PIC X.
02 DATE.

ll 5 MONTH PIC 9 (2) .

05 DAY PIC 9 (2) .

ll 5 YEAR PIC 9 (2) .

02 ADDEND PIC 9 (3) .
ll 2 FILLER PIC x (71!).

•

Each name in the record description entry is preceded by a number, in this case 01, 02, or
05. These numbers, called level-numbers, show the hierarchical relationships of data in
COBOL records. For instance, the name following the level-number 01, CARD-INPUT, is
the most inclusive entry. You use it to reference the SO-character record as a whole. •
Names following the higher level-numbers are less inclusive; they reference only a portion
of the record.

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-5

You specify the exact number of characters referenced with the PICTURE clause,
abbreviated PIC. This clause tells the type of data referenced (X means alphanumeric, 9
means numeric) and the number of characters referenced. Thus, the entry

02 CARD-TYPE PIC X.

means that the name CARD-TYPE references one alphanumeric character; in this
instance, the first character in the record. Similarly, the entry

02 ADDEND PIC 9(3).

means that the name ADDEND references three characters (the eighth, ninth, and tenth in
the record), and the characters are numeric. The 3 in parentheses simplifies coding; you
could have entered this source line as

02 ADDEND PIC 999.

Note how easy it is to make the names meaningful. You can use English words or groups
of English words (connected by hyphens) that describe how the associated data item is
used. Just be certain to limit the length of the data-names to 30 characters.

Names followed by a PIC clause, such as CARD-TYPE and MONTH, are called elementary
items - they cannot be further subdivided. Names like CARD-INPUT and DATE, not
followed by PIC clauses, are called group items, and are always subdivided (they are
followed by group and elementary items with higher level-numbers).

Related elementary items are defined under one group item so you can reference the
contents of these elementary items at the same time. DATE, for instance, references the
6-character field that contains three elementary items - MONTH, DAY, and YEAR.

The field named CARD-TYPE identifies which record contains a date, and which records
contain a number. When CARD-TYPE equals A, the date is in character positions 2
through 7, referenced by DATE. When CARD-TYPE equals B, a number is in character
positions 8 through 10, referenced by ADDEND. Thus, the first 10 character positions of
the first input record might be

A1025796.6.L',.

(where 6 is a blank) and the first 10 character positions of the next record might be

81\t\t\t\t\t\ 2 5 5

You can see that in the first record, CARD-TYPE equals A and DATE equals 102579, but
the ADDEND field is blank. In the next record, where CARD-TYPE equals B, the opposite
occurs - ADDEND has a value (255) but DATE is equal to blanks .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-6

We do not reference the last 70 characters of the input records because they do not •
contain any information we need. We have to account for these characters, however, by
assigning them the special name FILLER. You can use this as many times as necessary to
name data items you do not reference in the program.

But we need a second record description in our program. This one immediately follows the
FD entry. We used

DATA RECORD IS PRINTLINE.

to assign a name to the records in the file. The record description for PRINTLINE, however,
is going to be a little different than that for CARD-INPUT. Instead of defining each field, we
code only one source line that defines the record as a whole, as in

el PRINTLINE PIC X (132).

We still want to show the hierarchical structure of the record, but we are going to exercise
our option to do it in the working-storage section rather than the file section. Before that,
let's take a look at the complete file section.

FILE SECTION.
FD CARDIN

RECORD CONTAINS Se CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-INPUT.

e1 CARD- INPUT.
e2 CARD-TYPE PIC x.
e2 DATE.

es MONTH PIC 9 (2).
es DAY PIC 9 (2) .
es YEAR PIC 9 (2).

e2 ADDEND PIC 9 (3) .
e2 FILLER PIC X(7e).

FD PRINTOUT
RECORD CONTAINS 132 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRINTLINE.

e1 PRINTLINE PIC X(l32).

The working-storage section is the second of the five sections that can be used in the data
division. It can be advantageous to define 1-0 records (such as PRINTLINE) in working
storage. Of course, we already defined PRINTLINE when we coded

Bl PRINTLINE PIC X(l32).

after the FD entry. That source line reserves 132 bytes of storage in an output record area.

•

We use an additional 132 bytes to also describe the record in working-storage, but we •
benefit by being able to use the VALUE clause (which has restricted availability in the file
section).

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-7

The VALUE clause allows you to assign an initial value to a data item. If we want to print
a line that looks like this:

01/25/79 THE TOTAL IS 245,238

we can use the VALUE clause in the record description to include the words THE TOTAL
IS before the number; to insert slashes (/) separating the month, day, and year; and to
initialize the spaces between the items to blanks. We define the line this way:

01 SUM-LINE.
02 FILLER PIC X(27) VALUE SPACES.
02 MONTH-OUT PIC 9 (2) .
02 FILLER PIC X VALUE "I' ..

02 DAY-OUT PIC 9 (2) .
02 FILLER PIC X VALUE "/".

02 YEAR-OUT PIC 9 (2) .
02 FILLER PIC x (2 5) VALUE SPACES.
02 MSG-OUT PIC x (12) VALUE ''THE TOTAL IS" .
02 FILLER PIC x (3) VALUE SPACES.
02 SUM-OUT PIC 999,999.
02 FILLER PIC x (50) VALUE SPACES.

Although we are describing a line for the printer, we cannot use the same record name
(PRINTLINE) as in the file section. In COBOL, each name used to reference a storage area
must be unique. (FILLER is not a unique name; thus, it cannot be referenced.)

The record in working-storage, called SUM-LINE, occupies a different 132 bytes in storage
than the record named PRINTLINE. Once we build the record in working-storage, we code
(in the procedure division, 2.4) like this:

MOVE SUM-LINE TO PRINTLINE

and then

WRITE PRINTLINE

to get the output to the printer. Each entry in SUM-LINE named FILLER has the phrase
VALUE SPACES following the PIC clause. This initializes those areas of the print line to
blanks, ensuring that the gaps between the date (MSG-OUT and SUM-OUT) will not
contain unwanted characters.

The VALUE clause associated with MSG-OUT makes MSG-OUT equal to the 12 characters
(blank is a character) between the quotation marks - THE TOTAL IS. As might be expected,
we use MONTH-OUT, DAY-OUT, and YEAR-OUT to store the date found on the first input
cards, and SUM-OUT to receive the sum of the numbers that appear on all the other
cards. The FILLER entries with VALUE "/"separate the month from the day and the day
from the year .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-8

Generally, when you write a COBOL program that produces a printed report, you want to •
include headings at the top of each printed page. If you do, you can describe headings in
working-storage in record descriptions similar to SUM-LINE. For instance, to put SAMPLE
REPORT at the top of the page, we include the following description in the working-
storage section:

01 HEADING-LINE.
02 FILLER
02 FILLER

PIC X(60) VALUE SPACES.
PIC X(13)

VALUE ' ' SAMPLE REP 0 RT ' ' .
02 FILLER PIC X(59) VALUE SPACES.

Then, as with SUM-LINE, we print this line by coding

MOVE HEADING-LINE TO PRINTLINE

and

WRITE PRINTLINE.

The line consists of 60 blank characters, followed by SAMPLE REPORT, followed by 59
blanks.

While the working-storage section is commonly used to describe records associated •
with 1-0 files, you also use working-storage to describe records that are merely data
elements and constants that have a hierarchic relationship to each other.

Only one running total is kept in this program, so we do not need a structured record to
accumulate it. Instead, we use a single elementary data item. These totals also belong in
working-storage and they are preceded by the level number 77. Thus, the accumulator
field is described this way:

77 TOTAL PIC 9(6).

There are two other sections - linkage and communication - that you can use in the data
division. Both are for specialized types of applications. They are described in Sections 10
and 11, respectively.

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-9

Combining the working-storage and file sections gives us a complete data division:

DATA DIVISION.
FILE SECTION.
FD CARDIN

RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD- INPUT.

01 CARD-INPUT.
02 CARD-TYPE PIC X.
02 DATE.

05 MONTH PIC 9 (2) .
05 DAY PIC 9 (2) .
05 YEAR PIC 9 (2) .

02 ADDEND PIC 9 (3) .
02 FILLER PIC X(70).

FD PRINTOUT
RECORD CONTAINS 132 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRINTLINE.

01 PRINTLINE PIC X(l32).
WORKING-STORAGE SECTION.
77 TOTAL PIC 9 (6).
01 SUM-LINE.

02 FILLER PIC x (2 7) VALUE SPACES.
02 MONTH-OUT PIC 9 (2) .
02 FILLER PIC x VALUE ' j I I '.

02 DAY-OUT PIC 9 (2).
02 FILLER PIC x VALUE j I I' '.

02 YEAR-OUT PIC 9 (2) .
02 FILLER PIC x (2 5) VALUE SPACES.
02 MSG-OUT PIC x (12) VALUE ''THE TOTAL
02 FILLER PIC x (3) VALUE SPACES.
02 SUM-OUT PIC 999,999.
02 FILLER PIC x (5 0) VALUE SPACES.

01 HEADING-LINE.
02 FILLER PIC X(60) VALUE SPACES.
02 FILLER PIC x (13) VALUE ''SAMPLE
02 FILLER PIC x (5 9) VALUE SPACES.

IS".

REPORT''.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2.4. PROCEDURE DIVISION

2-10

The data we want to act on is described in 2.3. In this executable portion of the program,
we code the instructions that act upon that data.

Let's review what we intend to accomplish in this program: The input is a deck of punched
cards. The first card has an A in card column 1 followed by a date, and all subsequent
cards have a B in card column 1 and numbers in columns 8, 9, and 10. We want to
calculate the sum of these numbers. Our output is a printed page that has two lines - the
first line reads SAMPLE REPORT; the second line has the date, followed by the words THE
TOTAL IS, followed by the sum we calculated.

The program logic is described as follows: We open the files and begin reading cards. If
the card contains a date, we store it in the fields called MONTH-OUT, DAY-OUT, and
YEAR-OUT and get the next card. If the card contains a number, we add it to the
intermediate storage area TOTAL and read the next card. When all the cards have been
read, we move TOTAL to SUM-OUT, write the heading line and sum line, close the files,
and end the program. A flowchart of this program is given in Figure 2-1.

START

OPENING
HOUSEKEEPING

READ
A

CARD

ADD NUMBER
TO TOTAL

MOVE DATE
TO PRINT

LINE

WRITE
HEADING

LINE

MOVE
TOTAL TO
OUTPUT

LINE

WRITE
DETAIL

LINE

CLOSING
HOUSEKEEPING

STOP

Figure 2-1. Flowchart for Sample COBOL Program

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-11

Now, we substitute COBOL statements for the blocks in the flowchart. We divide the
procedure division into paragraphs headed by paragraph-names. The statements in the
paragraphs are executed in the order you code them, unless you use a branching
statement to redirect processing to a new paragraph.

To mark the start of the program (represented by START in the flowchart), all you need is:

PROCEDURE DIVISION.

and a name for the first paragraph such as

BEGIN-JOB.

There are two things to do as opening housekeeping. First. we use the OPEN statement to
make the files CARDIN and PRINTOUT available for processing. You can't read from, or
write to, a file until you open it. Thus, the statement

OPEN INPUT CARDIN OUTPUT PRINTOUT.

opens both input and output files.

Secondly, we need to initialize the accumulator field TOTAL to zero. A simple statement
initiates the field:

MOVE ZEROS TO TOTAL.

Note that connector A is immediately above the flowchart block (READ A CARD) in Figure
2-1. The connector indicates we branch there from other points in the logic flow.
Consequently, we must label that point of the program by including a new paragraph and
paragraph header, such as

READ-CARD.

The first statement in READ-CARD

READ CARDIN AT END GO TO END-OF-JOB.

reads a record and tests for end-of-file. You use it to make the next record from CARDIN
available in CARD-INPUT, and pass control to the next statement. If no record is available
because that is the end of the file, control passes to the paragraph called END-OF-JOB
(beginning at connector B in Figure 2-1) .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-12

The next step in the logic flow is to check to see whether CARD-INPUT contains a date or •
a number to be summed (DATECARD? in Figure 2-1). This is done by testing card column
1. If it is A, the record contains the date; if it is B, the record contains a number to be
summed. The test for A or B, and the actions that result. are coded this way:

IF CARD-TYPE =''A''
MOVE MONTH TO MONTH-OUT MOVE DAY TO DAY-OUT MOVE YEAR TO YEAR-OUT.

IF CARD-TYPE=' 'B''
ADD ADDEND TO TOTAL.

When card column 1 is A, we move the date to the appropriate fields on the print line;
when it's B, we add the number to the total and store the result in TOTAL.

After taking the information we need from the card, we read the next card. We branch by
using the following statement:

GO TO READ-CARD.

This pattern of reading a card, checking for A or B, taking action, and returning for the
next card continues until all cards have been read. At that point, control passes to the
paragraph named in the AT END phrase, in this case:

END-OF-JOB.

In the end-of-job routine, we print the output, close the files, and end the program. We
code it as follows:

END-OF-JOB.
MOVE HEADING-LINE TO PRINTLINE.
WRITE PRINTLINE.
MOVE TOTAL TO SUM-OUT.
MOVE SUM-LINE TO PRINTLINE.
WR I TE PR IN TL IN E.
CLOSE CARDIN PRINTOUT.
STOP RUN.

This routine builds the print lines in HEADING-LINE and SUM-LINE, the two record
description areas we set up in working-storage; moves them to PRINTLINE (the output
record area); and writes them to the printer. The CLOSE statement closes the files and the
STOP RUN statement halts processing.

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-13

These are all the source code lines needed for this program. In 2.5, we discuss how to
enter the source lines on a COBOL coding form. First, here's a look at the complete
procedure division:

PROCEDURE DIVISION.
BEGIN-JOB.

OPEN INPUT CARDIN OUTPUT PRINTOUT.
MOVE ZEROS TO TOTAL.

READ-CARD.
READ CARDIN AT END GO TO END-OF-JOB.
IF CARD-TYPE=' 'A''

MOVE MONTH TO MONTH-OUT
MOVE DAY TO DAY-OUT
MOVE YEAR TO YEAR-OUT.

IF CARD-TYPE =''B''
ADD ADDEND TO TOTAL.

GO TO READ-CARD.
END-OF-JOB.

MOVE HEADING-LINE TO PRINTLINE.
WRITE PRINTLINE.
MOVE TOTAL TO SUM-OUT.
MOVE SUM-LINE TO PRINTLINE.
WRITE PRINTLINE.
CLOSE CARDIN PRINTOUT .
STOP RUN.

2.5. COBOL CODING FORM

When you write a COBOL program, you generally enter the source code on a COBOL
coding form to show how the code should look when it is input to the COBOL compiler.
The American National Standard COBOL describes a format (called the reference format)
for writing a COBOL source program. Because you have to follow that format when you
put the source code lines onto the medium that will be input to the compiler, it makes
sense to follow it when you write the source code onto a form.

The reference format (Figure 2-2) requires you to place certain source code in particular
character positions of a source line. You can see that the character positions are grouped
into four areas: (1) the Sequence Number Area, (2) the Indicator Area, (3) Area A, and (4)
Area B. The areas are bounded by the various margins as shown .

UP-8805

Margin
L

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Sequence Number Area

Margin
c

7

t

Margin
A

Indicator Area
Area A

Margin
B

Figure 2-2. COBOL Reference Format

Area B

Margin
R

2-14

No upper limit of characters is specified; however, the most common COBOL coding form
is designed to represent the source lines you enter on 80-column punched cards. Often,
column 72 is designated as the last column in area B, and columns 73 through 80 are
reserved for comments such as a program name or identification.

The COBOL compiler accepts the source lines as input, and produces, as output, an object
program and a listing of your source lines.

Figure 2-3 is a typical COBOL coding form; it is designed for source code entered on 80-
column punched cards. Each line on the form corresponds to one punched card. The .first
line in our program is the identification division header. A division header or section
header must be the only entry on a line, and must begin in area A (columns 8 through 11) .

On the first source card, we know we want the words IDENTIFICATION DIVISION
beginning in column 8 (or 9 or 10 or 11). You may want to label the source lines with
sequence numbers. If the program is on cards, the sequence numbers enable you to easily
resequence a deck that was dropped or find where to add hew cards.

UNIVAC CCBCL 72 80

PROGRAMMING FORM

PROGRAM ______________ PROGRAMMER ___ DATE ____ PAGE_

rr;CONT INUA TION

SEQUENCE • B TEXT IDENTIFICATION
1

NUMBER
6 7 8 1112 20 30

...
40 50 60 72 80

_l _l _l _l _l _l

_l _l _l _l _l _l

j _j_ _j_ _l _l _l

j

j _l _l ...L ...L ...L

j _j_ ...L ...L .L_L_l _l~

...L ...L ...L

~·-L _J_ • _l -~·

Figure 2-3. COBOL Coding Form

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-15

Generally, programmers assign sequence numbers in increments of 10 or 100, so
numbers are available for lines they may insert later. If we code the first source line with
the number 000010 in the sequence number area (columns 1-6), and if we use the
program identification FINDSUM to the right of area B, the complete first entry is:

8 1 2 80

000010 IDENTIFICATION DIVISION. FINDSUM

Although it is not shown in the other examples in this section, you can assume that
FINDSUM will appear in columns 73 through 79 of all source lines. In addition, the
following examples do not include the column numbers and area designations above the
coding. You can assume each example in this section begins in column 1. In coding where
sequence numbers are not used, you can assume column 8 is the leftmost column.

Paragraph headers (COBOL words that mark the start of paragraphs in the identification
and environment divisions) and paragraph-names (user-defined words that identify the
start of procedure division paragraphs) also must begin in area A. You can begin
paragraph entries on the same line as the paragraph header or paragraph-name, as in the
following coding:

000090 PROGRAM- ID. FI NDSUM.
000100 AUTHOR. J. PROGRAMMER .

You can also begin the entries in area B on the next line:

000200 FILE-CONTROL.
000210
000220
000230
000240

SELECT CARDIN
ASSIGN TO CARD-READER.

SELECT PRINTOUT
ASSIGN TO PRINTER.

Following the rules of the reference format, you can also code these lines as

000090 PROGRAM- ID.
000100 FINDSUM.
000110 AUTHOR.
000120 J. PROGRAMMER.

and

000200 FILE-CONTROL. SELECT CARDIN
000210 ASSIGN TO CARD-READER.
000220 SELECT PRINTOUT ASSIGN
000230 TO PRINTER .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-16

Note that in the first example the first SELECT entry begins on one line and continues on
the next line. The reference format permits you to continue an entry on as many lines as
you want or need, provided you start the continued lines in area B. In fact, to go to the
extreme, you could code the SELECT entry this way:

01Hl200 FI LE-CONTROL.
000210 SELECT
000220 CARDIN
000230 ASSIGN
000240 TO
000250 CARD-READER.

Words also may be continued on the next line. If you code a hyphen in the indicator area
(column 7), the first nonblank character in area B of the current line immediately follows
the last nonblank character of the preceding line. Thus, the following source lines are
equivalent:

000150
000160-
000170-

000150
000160

OPEN INPUT CARD
IN OUTPUT PRIN
TOUT.

OPEN INPUT CARDIN
OUTPUT PRINTOUT.

Now you know how to code source lines in the identification, environment, and procedure
divisions. Before explaining how to present data division entries, we will look at two types
of source lines you can use to make the source program output listing more readable -
comment lines and blank lines (2.5.1 and 2.5.2).

2.5.1. Comment Line

The first type is the comment line. On a comment line (identified by an asterisk in the
indicator area, column 7) you can write explanatory notes to the reader of the source
listing, possibly to explain a complex routine that follows or to make certain portions of the
program easy to find. Comments can appear anywhere in the source program after the
identification division header. You can write the comment in area A and area B of the line,
and you can use any characters in the computer character set.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-17

One common location to make comments is just after the identification division header,
where it is appropriate to give information about the program as a whole. For example:

000010 IDENTIFICATION DIVISION.
000020* THIS PROGRAM READS A DATE CARD.
000030* THEN A VARIABLE NUMBER OF ADDITIONAL
000040* CARDS. EACH CONTAINING A NUMBER TO BE
000050* SUMMED. THE PROGRAM OUTPUT IS A
000060* PRINTED REPORT THAT GIVES THE DATE AND
000070* THE SUM OF THE NUMBERS ON THE CARDS.
000080
000090 PROGRAM- ID. FINDSUM.

A special type of comment line allows you to print the comment on a new page in the
program listing. To do this, code a stroke rather than an asterisk in the indicator area of
the line:

000020/ THIS PROGRAM READS A DATE
000030* CARD. THEN A VARIABLE NUMBER
000040* OF ADDITIONAL CARDS, EACH ...

Although similar in purpose, a comment line isn't the same as a comment-entry. A
comment-entry must follow the header for an optional paragraph in the identification
division; a comment line can be anywhere in the source program.

2.5.2. Blank Line

The second type of source line that can improve the readability of a program listing is the
blank line - a line that has no characters from margin C through margin R. You might
want to use blank lines (or comment lines) to separate groups of logically related source
lines (such as paragraphs in the procedure division).

000100 AUTHOR.
000110 INSTALLATION.
t!00120
000130
000140

J . PR 0 GR AMMER .
XYZ COMPANY
NEW YORK.

000150 ENVIRONMENT DIVISION.

This shows how you can use a blank line to separate the identification and environment
division in a program .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2-18

You can use a blank line anywhere in the source program, except preceding a continuation
that has a hyphen character in column 7. Thus, the following is not legal:

eeesee FILE-CONTROL. SELECT STATUS
eeesie
eees2e TICS ASSIGN TO DISC.

Comment lines and blank lines are for documentation only; they appear on the program
listing but are not compiled.

2.5.3. Level Indicators/Numbers

Now, let us return to the data division. The division and section headers must, as in the
other divisions, be on a line by themselves and must begin in area A. All other data
division entries begin with one of the level indicators (FD, SD, and CD) or with a level
number (01 through 49, 66, 77, and 88).

If a data division entry begins with a level indicator or with level-number 01 or 77, you
must code the indicator or number in area A, followed by a space, and followed in area B
by the rest of the entry.

Entries are always ended by a period and a space. Thus, the "rest of the entry" in the first
source line that uses level-number 01 is CARD-INPUT and it must begin in area B. The
complete entry is coded this way:

eee2ee el CARD-INPUT.

The full entry following the first FD extends for several lines. Still, the entire entry after
the letters FD must start in area B, as follows:

eee16e FD CARDIN
eee11e RECORD CONTAINS se CHARACTERS
eee1se LABEL RECORDS ARE OMITTED
eee19e DATA RECORDS IS CARD-INPUT.

If a data description entry begins with level-numbers 02 through 49, 66, or 88, you code it
the same way you code 01 and 77 level entries or, to aid readability, you can indent it
according to level-number. Thus, you might begin an 02 level entry in column 12, an 03
level entry in column 16, an 04 level entry in column 20, etc. The CARD-INPUT record
description is written

eee2ee e 1 CARD-INPUT.
eee210 e2 CARD-TYPE PIC x.
eee22e e2 DATE.
eee2Je es MONTH PIC 9 (2) .
eee2~e es DAY PIC 9 (2) .
eee2se es YEAR PIC 9 (2) .
eee26e e2 ADDEND PIC 9 (3) .
eee21e e2 FILLER PIC X(7e).

•

•

•

•

•

•

UP-8805

Or,

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

using indentation of levels:

000200 0 1 CARD- INPUT.
000210 02 CARD-TYPE PIC x.
000220 02 DATE.
000230 05 MONTH PIC 9 (2).
000240 05 DAY PIC 9 (2) .
000250 05 YEAR PIC 9(2).
000260 02 ADDEND PIC 9 (3).
000270 02 FILLER PIC X(70).

2-19

As you can see, level-number 05 is used in place of 03 to represent the third level of the
record. Actually, after the 01 level entry, you can use any level-number up to 49 for
succeeding entries. Just be certain you use the numbers in ascending sequence. For
example, you can use 18 and 37 in place of 02 and 05, respectively.

2.6. SAMPLE PROGRAM

We have described how to develop a COBOL program and how to submit it (in reference
format) for processing. A complete program is shown as it appears on a coding form
designed to represent source lines that are entered from 80-column punched cards. Note
the use of comment lines, blank lines, and indentation of level-numbers to improve
readability of the program listing. Each line starts in card column 1; the identification
FINDSUM begins in column 73.

000010 IDENTIFICATION DIVISION.
000020* THIS PROGRAM READS A DATE CARD,
000030* THEN A VARIABLE NUMBER OF ADDITIONAL
000040* CARDS, EACH CONTAINING A NUMBER TO BE
000050 * SUMMED. THE PROGRAM OUTPUT IS A
000060* PRINTED REPORT THAT GIVES THE DATE AND
000070* THE SUM OF THE NUMBERS ON THE CARDS.
000080
000090 PROGRAM- ID. FINDSUM.
000100 AUTHOR. J. PROGRAMMER.
000110 INSTALLATION. XYZ COMPANY
000120 NEW YORK.
000130
000140
000150 ENVIRONMENT DIVISION.
000160 CONFIGURATION SECTION.
000170 SOURCE-COMPUTER.
000180 OBJECT-COMPUTER.

COMPUT-001.
COMPUT-001.

000190 INPUT-OUTPUT SECTION.
000200 FILE-CONTROL.
000210 SELECT CARDIN ASSIGN TO CARD-READER.
000220
000230

SELECT PRINTOUT ASSIGN TO PRINTER.

F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F DSUM
F NDSUM
F NDSUM
F NDSUM
F NDSUM
F NDSUM

(continued)

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

ll ll ll 2 40
000250 DATA DIVISION.
000260 FILE SECTION.
000270****••" INPUT FILE DESCRIPTION••••••••
000280 FD CARDIN
000290 RECORD CONTAINS 80 CHARACTERS
000300 LABEL RECORDS ARE OMITTED
000310 DATA RECORD IS CARD-INPUT.
000320 01 CARD-INPUT.
ll ll ll 3 31!
ll llll 340
ll ll ll 3 51!
ll ll ll 3 61!
ll ll ll 3 71!
ll ll ll 3 81!
ll ll ll 3 8 5

02 CARD-TYPE PIC X.
02 DATE.

05 MONTH PIC 9(2).
05 DAY PIC 9(2).
ll 5 YEAR

02 ADDEND
02 FILLER

PI C 9 (2) .

PIC 9(3).
PI C X (71!).

000390****•••• OUTPUT FILE DESCRIPTION••••••••
000400 FD PRINTOUT
000410 RECORD CONTAINS 132 CHARACTERS
000420 LABEL RECORDS ARE OMITTED
000430 DATA RECORD IS PRINTLINE.
000440 Ill PRINTLINE PIC X(l32).
0004 50
000460 WORKING-STORAGE SECTION.
000470 77 TOTAL PIC 9(6).
ll llll 480
000490 Ill SUM-LINE.
ll ll ll 5 llll
ll ll ll 5 10
ll ll ll 5 11
ll ll ll 512
ll ll ll 513
ll ll ll 5 14
ll ll ll 5 21!
ll ll ll 5 31!
ll llll 540
ll ll ll 5 51!
ll ll ll 5 61!
ll ll ll 5 71!

02 FILLER
02 MONTH-OUT
02 FILLER
ll 2 DAY.- OUT
02 FILLER
02 YEAR-OUT
02 FILLER
02 MSG-OUT
02 FILLER
02 SUM-OUT
02 FILLER

000580 Ill HEADING-LINE.
ll ll ll 5 91!
llllll 600
ll ll ll 61 ll
ll ll ll 6 21!
ll ll ll 6 31!

02 FILLER
02 FILLER
02 FILLER

000640 PROCEDURE DIVISION.
000650 BEGIN-JOB.

PIC X(27)
PIC 9(2).

VALUE SPACES.

PIC X VALUE"/".
PIC 9(2).
PIC X VALUE"/''.
PIC 9(2).
PIC X(25) VALUE SPACES.
PIC X(l2) VALUE ''THE TOTAL IS''.
PIC X(3) VALUE SPACES.
PIC 999,999.
PIC X(51l) VALUE SPACES.

PIC X(61l) VALUE SPACES.
PIC X(l3) VALUE ''SAMPLE REPORT''.
PIC X(59) VALUE SPACES.

000660 OPEN INPUT CARDIN OUTPUT PRINTOUT.
000670 MOVE ZEROS TO TOTAL.

2-20

FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FI DSUM
Fl DSUM
FI DSUM
FI DSUM
FI DSUM
FI DSUM
FI DSUM
FI DSUM
FI DSUM
FI DSUM
Fl DSUM
FI DSUM
Fl DSUM
FI DSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM

(continued)

•

•

•

UP-8805

•

•

•

00680

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

00690 READ-CARD.
00700 READ CARDIN AT END GO TO END-OF-JOB.
00710**** CHECK TO SEE IF RECORD IS DATE CARD OR
00720**** NUMBER TO BE SUMMED
00730 IF CARD-TYPE= ''A''
00740 MOVE MONTH TO MONTH-OUT.
00741 MOVE DAY TO DAY-OUT.
00742 MOVE YEAR TO YEAR-OUT.
00750 IF CARD-TYPE= ''B''
00760 ADD ADDEND TO TOTAL.
00770 GO TO READ-CARD.
00780
00790 END-OF-JOB.
0080o····· BUILD AND WRITE FIRST OUTPUT LINE
00810 MOVE HEADING-LINE TO PRINTLINE.

000820 WRITE PRINTLINE.
000830*•••• BUILD AND WRITE SECOND OUTPUT LINE
000840
000850
000860

MOVE TOTAL TO SUM-OUT.
MOVE SUM-LINE TO PRINTLINE.
WRITE PRINTLINE.

000870*** CLOSE FILES AND END JOB
000880 CLOSE CARDIN PRINTOUT
000890 STOP RUN.

2-21

FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM
FINDSUM

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

3-1

3. Language Structure

3.1. COBOL CHARACTER SET

The character is the basic unit of the language. You combine characters to form the words
and separators that make up the source lines. Every column in every source line you code
must contain one of the letters, digits, or special characters from the COBOL character set.

The 51-character COBOL set consists of the 26 letters of the alphabet, the digits 0-9, and
the following 15 special characters:

Character Definition

Space (blank)

+ Plus sign

Minus sign or hyphen

* Asterisk

I Stroke (virgule)

Equal sign

$ Currency sign

Comma

Semicolon

Period

Quotation mark

UP-8805

Character

>

<

Definition

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Left parenthesis

Right parenthesis

Greater than symbol

Less than symbol

The first line of a program is often

000001 IDENTIFICATION DIVISION.

3-2

You can see that every column contains one of the 51 members of the character set.

Sometimes you have more than 51 characters to choose from. If your computer system
prints special characters not included in the COBOL character set, you can use those
characters in a comment line, comment-entry, or nonnumeric literal (3.4). For instance, if
the cent (C) and percentage (%) symbols are in the computer's character set, then the
coding statements

010350' THE RATE IS 40¢/LB.

and

07190 MOVE ''%'' TO PERCENT-SIGN.

are valid, even though neither C or % is in the COBOL character set.

Continguous characters forming COBOL words (3.3), literals (3.4), PIC clause
specifications, or comment-entries are called character-strings. For example, the coding

MOVE MONTH TO MONTH-OUT

has four character-strings (MOVE, MONTH, TO, MONTH-OUT). The character strings in

PI C 9 (3)

are PIC and 9(3).

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

The comment-entry in this INSTALLATION paragraph

INSTALLATION. XYZ COMPANY NEW YORK.

3-3

is one long character string consisting of XYZ, COMPANY, NEW YORK, and the blanks
between them. Note that MOVE, MONTH, TO, and MONTH-OUT are separate character
strings while X, Y, Z, C, 0, M, P, etc. are merely characters in one character-sting. MONTH
and MONTH-OUT are words representing particular storage areas. MOVE and TO are
COBOL reserved words (3.3) used to cause a specific operation. XYZ, COMPANY, NEW,
and YORK, on the other hand, are not COBOL words. They are part of a combination of
letters and spaces that is documentation only; they do not represent storage or convey
action.

3.2. SEPARATORS

You use separators to separate character-strings. The most common separator is the
space. Anywhere you use a space as a separator, you can use more than one space, thus
the following coding lines are equivalent:

MOVE MONTH TO MONTH-OUT
MOVE MONTH TO MONTH-OUT.

The period also is a separator. You must use a period, followed by a space, to end a
division, a paragraph, and section headers in the identification and procedure divisions and
entries in the environment and data divisions. Since COBOL is an English-like language,
you may also want to use a period to end each sentence in the identification and
procedure divisions. Thus, it's proper to code

or

MOVE SUM-LINE TO PRINTLINE
WRITE PRINTLINE
CLOSE CARDIN PRINTOUT
STOP RUN.

MOVE SUM-LINE TO PRINTLINE.
WRITE PRINTLINE.
CLOSE CARDIN PRINTOUT.
STOP RUN.

You also may punctuate your sentences with commas and semicolons, as in

MOVE SUM-LINE TO PRINTLINE;
WRITE PRINTLINE;
CLOSE CARDIN, PRINTOUT;
STOP RUN.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

3-4

Commas and semicolons are separators when immediately followed by a space. Most •
programmers don't use them because they add little to the clarity of the program; they just
made coding and keypunch errors more likely.

Quotations marks and parentheses also are separators. Quotation marks, as shown in 3.4,
delimit nonnumeric literals. Parentheses delimit subscripts, indexes, and arithmetic
expressions. (These subjects are discussed separately.)

The parentheses in PIC 9(3) are not separators. They, like all punctuation characters in a
PIC clause entry, are symbols that have a special meaning in the PIC character-string
specification (6.2.2.)

3.3. COBOL WORDS

You use English words to communicate with other people; similarly, you use COBOL
words (along with literals and other character-strings) to communicate with a COBOL
compiler. There are three types of COBOL words: (1) words you supply, (2) words specified
by the implementor (computer manufacturer), and (3) words predefined by the COBOL
language.

In general, you supply words that vary from program to program. the names of files,
records, and other data items (and the procedure division's paragraph-names) all are user
defined words.

The implementor supplies system-names. They identify the source and object computers,
physical 1-0 devices, and other aspects of the operating environment.

Predefined COBOL words are called reserved words. You already know many of them - in
Section 2 we used some in every COBOL division. Since a reserved word already has a
specific meaning in COBOL, you can't use one where a user-defined word or system name
is called for. The reserved words are listed in the current version of the programmer
reference manual.

User-defined words and system names must be comprised of not more than 30 letters,
digits, and hyphens (-) except that a hyphen may not be the first or last character. Thus,
valid words include:

MONTH-OUT

PARA25-2

Invalid words include:

-MONTH-OUT

PARA25/2$

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

A statement from the environment division in Section 2 such as

SELECT PRINTOUT ASSIGN TO PRINTER

includes all three types of COBOL words:

• SELECT, ASSIGN, and TO are reserved words

• PRINTOUT is a user-defined word

• PRINTER is the implementor's name for a printer.

3.4. LITERALS

3-5

A literal is a character-string whose value is "literally" the characters which form it. That
value may be numeric or nonnumeric.

The program described in Section 2 contains several nonnumeric literals. In the following
statement:

02 MSG-OUT PIC X (12) VALUE ''THE TOTAL IS'' .

the literal is:

THE TOTAL IS

In

02 FILLER PIC X VALUE "/".

The literal is

I

You must enclose all nonnumeric literals with quotation marks. If you want to make a
quotation mark part of the literal, code two quotation marks together. Thus,

02 LETTER PIC X (5) VALUE ''A''' 'A''' 'A''.

assigns the value A"A"A to the area referenced by LEITER.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

3-6

A nonnumeric literal may consist of up to 120 characters and include any character in the
computer's character set. If you code a nonnumeric literal that is too long for one source
line, place a hyphen in the indicator area (column 7) of the next line and code a quotation
mark as the first nonblank character in area B. The continuation starts with the character
immediately following that quotation mark. Be certain to use another quotation mark to
end the literal. For example:

rr;CONT INUA T ION

SEQUENCE • B TEXT --. IDEMTIFICA TION NUMBER
1 6 7 8 1112 20 30 '"' 50 60 72 80

J_ J_ J_ J_ J_ J_

j _j_ J_ _j_ J_ J_

j ~VE "THU~ y~__A ~ A__ML"l' L e ~ H~ A ~~Nl'IU_M,_E_&I_b LIT c_RAJ_L I.A c~ri:...io SA__.!:1l'LE

''Et> FR.o!>M ~Ne LINE~ :THE __thEJ(J_i." T~ T A ~ET -_/~_;R E_A • J_ lci.~__,!,E

J__ J__ J_ J_ J_ J_

J__ _l l

Numeric literals consist of up to 18 digits and, optionally, a plus sign or minus sign, and
one decimal point. If you include a decimal point, it must not be the rightmost character. If
you do not include a decimal point, the literal is an integer. The sign must be the leftmost
character of the literal; unsigned literals are positive.

Thus, in

ADD 1 TO COUNTER

the 1 is a numeric literal. Note that 1 is not enclosed within quotation marks. If it is, it
would be a nonnumeric literal with a value of the character 1 (rather than the number).

The following examples are valid numeric literals:

MOVE +542.8 TO OUT-AREA.

DIVIDE -0.425 BY CURR-VALUE

ADD -21436 TO TOTAL

The following literals are invalid:

MOVE 542.8- TO OUT-AREA

DIVIDE -425. BY CURR-VALUE

ADD 2143.-6 TO TOTAL

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

3.5. FIGURATIVE CONSTANTS

3-7

A figurative constant is a reserved word that replaces a literal. You are never required to
use one, but they can simplify coding. For instance, to initialize the 10-character field
FIELD-OUT to blanks, you code

MOVE ''6666666666'' TO FIELD-OUT

Or, using the figurative constant spaces to replace the nonnumeric literal
'· 6.6.6.6.6.6.6.6.6.6.' ·, you code

MOVE SPACES TO FIELD-OUT.

The word ZEROS also is a figurative constant. In Section 2, we coded

MOVE ZEROS TO TOTAL

to initialize the field TOTAL. We could have coded

MOVE 0 TO TOTAL

but ZEROS is used more often - probably because it's more readable. The terms ZEROS
and SPACES are the most common figurative constants, but several others are available .

The terms HIGH-VALUES and LOW-VALUES represent, respectively, the highest and
lowest ordinal positions in a particular computer character set. If you code

01 TABLE.
05 TABLE-ENTRY OCCURS 500 TIMES.

PIC 9(5) VALUE HIGH-VALUES.

The highest values in the computer collating sequence are placed in the 2500 characters
(500 occurrences of 5-character entries) referenced by TABLE.

You can use the word QUOTES to represent one or more of the quotation mark character
("). You cannot use this figurative constant, however, to bound nonnumeric literals. Thus,

QUOTE THE TOTAL IS QUOTE

is not a valid replacement for

"THE TOTAL IS".

The figurative constant ALL followed by a literal represents one or more of the string of
characters comprising the literal. The literal must be nonnumeric or a figurative constant
other than ALL. If it is a figurative constant, the word ALL is redundant and therefore for
readability only.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

The entry

05 AST-OUT PIC X(5) VALUE '••••••''.

can (using the ALL figurative constant) be coded

05 AST-OUT PIC X(5) VALUE ALL '' *''.

Similarly, you might find it easier to code the following

02 LETTERS-OUT PIC X(12) VALUE ''ABCABCABCABC''.

as

02 LETTERS-OUT PIC X(12) VALUE ALL ''ABC''.

3-8

The length of a figurative constant is dependent upon the data item it is associated with. If
you specify MOVE ZEROS TO TOTAL and TOTAL is defined

01 TOTAL PIC 9(9).

nine zeros are moved to TOTAL. If TOTAL is defined

01 TOTAL PIC 9(15).

fifteen zeros are moved to TOTAL. If no data item is associated with a figurative constant,
the length of the constant is one. Thus

DISPLAY QUOTES UPON CONSOLE

displays one quotation mark on the console. The following listing summarizes the
figurative constants and their values. The singular and plural forms of the constants are
equivalent; you may use them interchangeably.

Constant

SPACE
SPACES

ZERO
ZEROS
ZEROES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

Value

One or more blanks.

The numeric value 0 or one or
more of the character 0, depending
on the context.

One or more of the highest ordinal pos1t1ons in
the computer's character set collating sequence.

One or more of the lowest ordinal positions in the
computer's character set collating sequence.

•

•

•

•

•

UP-8805

Constant

QUOTE
QUOTES

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Value

One or more of the character "

3-9

ALL literal One or more of the string of characters comprising the literal.

3.6. GENERAL FORMATS

Once you know that COBOL source lines are comprised of words, literals, PIC character
strings, and comment-entries, general formats show you how to combine these elements
into a clause or statement that is meaningful. There is a general format that tells you how
to write every entry in a COBOL program.

We knew how to arrange the words

SELECT PRINTOUT ASSIGN TO PRINTER

because it is specified in the general format for file control entries. Let's look at that
format:

SELECT [OPTIONAL] file-name

ASSIGN TO implementor-name-! [implementor-name-2] ...

l.R ESE RV E I N TE GER - 1 [ARE A J]
L AREAS
[ORGANIZATION IS SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[FILE STATUS IS data-name-1].

The uppercase words are reserved words. If they are underlined (see SELECT and
ASSIGN), they are called key words and must be included in the clause or statement.
Reserved words not underlined (such as TO, IS, and MODE) are optional - you may include
them to improve readability. The lowercase words such as file-name, implementor-name-
1, integer-1, etc. are generic terms you must replace with a character-string. In the
statement

SELECT PRINTOUT ASSIGN TO PRINTER

we replaced file-name with the word PRINTOUT, and implementor-name-1 with PRINTER.

- --- ------ ---

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

3-10

Brackets [] enclose optional words, phrases, and clauses. Thus you may (as we did) omit •
OPTIONAL, implementor-name-2, and the last four clauses in the SELECT entry. When
brackets enclose more than one choice, select one or none of the choices. Thus the
following are all equivalent and valid:

RESERVE 2 AREA

RESERVE 2 AREAS

RESERVE 2

Note that the optional implementor-name-2 is followed by an ellipsis (...) An ellipsis
indicates you may repeat the option as many times as necessary, in this case providing for
an implementor-name-3, implementor-name-4, etc.

The ellipsis always refers to the option whose closing bracket or brace immediately
precedes it. Thus, the first ellipsis in

[

SAME [RECORD J AREA FOR
SORT
SORT-MERGE

file-name-1

refers to file-name-2 and means you may specify more than two file names. The second
ellipsis refers to the brackets enclosing the entire clause, indicating you may repeat the
clause as often as necessary.

Braces { } enclose a stack of options from which you must select one. For example:,

ENABLE {INPUT [TERMINAL]}cd-name WITH KEY {identifier-I}
OUTPUT I iteral-1

You must choose between INPUT and OUPUJ and between identifier-1 and literal-1. (Note
that TERMINAL is an option if you choose INPUT, but not if you choose OUTPUT).

If a single choice is enclosed in braces as in

[SAME RECORD]AREA FOR file-name-1
SORT
SORT-MERGE

I , f I I• - ,.., - 21 . ·] · •.

the enclosed word or phrase is mandatory - the braces delimit the element to which the
following ellipsis applies. Since an ellipsis refers to the immediately preceding brace, the
braces in this format indicate that the first ellipsis refers to file-name-2, not to the choice
of RECORD, SORT, or SORT-MERGE.

The leftmost margin of the general formats for the identification, environment, and data
division entries is equivalent to margin A of a source line, and the first identation is
equivalent to margin B. Statements in the procedure division begin in area B. The leftmost
margin of a procedure division general format marks the beginning of the format for a new
verb. The indented portions represent continuation of the verb.

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

3-11

3.7. SUBSCRIPTING AND INDEXING

Each COBOL word you specify must be unique; however, you do not have to assign
individual data-names to data items that you can make unique by adding a subscript, an
index, or a qualifier (3.8).

In many programs, you reference information that is in tabular form. In the following table,
we assign a data-name to each table element:

01 MONTHS-TABLE.

02 JAN PIC x (9) VALUE ' '6J ANUARY6' '.

02 FEB PIC x (9) VALUE ''MEBRUARY''.

02 MAR PIC x (9) VALUE ''MMARCHM''.

02 APR PIC x (9) VALUE ' 'MAP R I LM' ' .

02 MAY PIC x (9) VALUE ''6MMAY6M' '.

02 JUN PIC x (9) VALUE ''6MJUNEM''.

02 JUL PIC x (9) VALUE ''6MJULYM''.

02 AUG PIC x (9) VALUE ' ' MAU GU ST 6 ' ' .

02 SEP PIC x (9) VALUE ''SEPTEMBER''.

02 OCT PIC x (9) VALUE ' ' 60 C T 0 B E R6 ' ' .

02 NOV PIC x (9) VALUE ''6NOVEMBER' ' .

02 DEC PIC x (9) VALUE ''6DECEMBER' '.

We could simplify coding by assigning the same name to all table elements, as in

01 MONTHS-TABLE.

02 TAB-VAL PIC X(108).
VALUE ''6JANUARYMFEBRUARYMMARCHM
''MAPRILM6MMAV666666JUNEM6M
''MMAUGUST6SEPTEMBER60CTOBERMNOVE
''MBER6DECEMBER' '.

02 REDF-VAL REDEFINES TAB-VAL.

03 MONTH PIC X(9).

OCCURS 12 TIMES.

Each table element still is unique, because we can refer to it as MONTH plus a subscript
or index. The subscript or index tells which of the 12 occurrences of MONTH we are
referencing. Thus, MONTH (3) equals 66MARCH66 (the third occurrence of the 9-
character field MONTH). The parentheses are separators that delimit a subscript or index
from the data-name. A space between the last character of the data-name and the left
parenthesis is optional. (Subscripting and indexing are also also discussed in Section 8.)

UP-8805

3.8. QUALIFICATION

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

3-12

Another way to make a name unique is to attach a qualifier to it. A qualifier identifies a
name as being part of a particular hierarchy of names.

Qualifiers in the data division are associated with a level indicator (such as FD) or with a
level-number.

If

FD CARDIN
LABEL RECORDS ARE OMITTED.

01 INPUT PIX X(80).

and

FD TAPE IN
LABEL RECORDS ARE STANDARD.

01 INPUT PIC x (8 0) .

appear in the same program, a reference to INPUT is meaningless unless INPUT is
associated with a qualifier (CARDIN or TAPEIN). Thus, you must reference INPUT as

INPUT OF CARDIN

or

INPUT OF TAPEIN

Names associated with level-indicators are the most significant qualifiers, names
associated with level-number 01 are the next most significant, followed by level-number
02, and so on. Suppose your FD entries are:

Entry 1:

FD CARDIN
LABEL RECORDS ARE OMITTED.

01 INPUT-CARD.
02 NAME-1.

03 ADDRESS PIC x (20) .
03 CITY PIC x (18) .
03 STA TE PIC x (0 2).

02 NAME-2.
03 ADDRESS PIC X(20).
03 CI TY PIC x (18) .
03 STA TE PIC x (02).

•

•

•

•
UP-8805

Entry 2:

FD TAPE IN
LABEL RECORDS ARE

0 1 INPUT-TAPE.
02 NAME-TAPE.

03 ADDRESS
03 CITY
03 STA TE

02 NAME-2
03 ADDRESS
03 CITY
03 STA TE

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

STANDARD.

PIC x (2 0).
PIC x (18) .
PIC x (0 2).

PIC x (20).
PIC x (18) .
PIC X(02).

3-13

You can see that you have to qualify a reference to any of these 02 or 03-level data-,
names. To do so, you can use any qualifier in the same hierarchy; both

NAME-1 IN INPUT-CARD

and

NAME-1 IN CARDIN

• refer to the same data item. (Note the use of IN rather than OF - the two are equivalent.)

The term

•

NAME-1 OF INPUT-CARD OF CARDIN

also is valid, although it is not necessary, in this case, to include both qualifiers. You do
need two qualifiers, however, to reference ADDRESS. Thus,

ADDRESS OF INPUT-CARD

or

ADDRESS OF CARDIN

do not show whether you mean ADDRESS subordinate to NAME-1 or ADDRESS
subordinate to NAME-2.

The term

ADDRESS OF NAME-2.

also is insufficient .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

You need to qualify both NAME-2 and ADDRESS:

ADDRESS OF NAME-2 OF INPUT-CARD

or

ADDRESS OF NAME-2 OF CARDIN

3-14

When you use more than one qualifier, be certain each is more significant and in the
same hierarchy as the preceding qualifier.

You may qualify a data-name that is subscripted or indexed. For instance, a valid reference
is:

MONTH IN MONTHS-TABLE(3)

In the procedure division, you can (if you group your paragraphs into sections) use section
names to qualify paragraph-names. Generally, you are not required to divide your
procedure division into sections (note that this was not done in the program in Section 2)
but sometimes you must, to take advantage of some COBOL features.

You cannot use the same paragraph-name more than once in a section, but you can use a
paragraph-name in one section that is identical to a paragraph-name in a different section .
So, if your program contains

PROCEDURE DIVISION.
REGION-A-PROCESSING SECTION.

ERROR-ROUTINE.

REGION-B-PROCESSING SECTION.

ERROR-ROUTINE.

you must code a branch to the paragraph ERROR-ROUTINE such as

GO TO ERROR-ROUTINE OF REGION-A-PROCESSING

or

GO TO ERROR-ROUTINE OF REGION-B-PROCESSING

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Programmers often use qualification as a documentation tool. The term

FIRE-COVERAGE-AMT OF INSURANCE-RECD

is clearer than

INS-RECD-FIRE-COY-AMT.

3-15

In fact, you may qualify a name that does not even need to be qualified. Sometimes,
however, qualification is not permitted; these instances are noted, when applicable.

Qualification is not permitted in the identification or environment divisions .

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

4-1

4. Identification Division

4.1. ORGANIZATION AND STRUCTURE

All COBOL programs must begin with an identification division. You use it to name the
program and, at your option, tell when and where it was written, who wrote it, when it
was last compiled, and who may see it.

The identification division consists of six paragraphs; only one - the PROGRAM-ID
paragraph - is required. You must code the paragraphs in the order shown in the format.

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name .

[AUTHOR. [comment-entry] ...]

[I N S T A L L A T I 0 N . [c o mm e n t - e n t r y] . . .]

[DATE-WRITTEN. [comment-entry] ...]

[DA TE - C 0 MP I LED . [c o mm en t - e n t r y] ...]

[SECURITY. [comment-entry] ...]

In Section 2, we coded

PROGRAM-ID. FINDSUM.

to name the program FINDSUM. We could have selected any user-defined word; that is,
any combination of letters, digits, and hyphens not exceeding 30 characters. You may
prefer, however, to use a relatively short name. Although up to 30 characters is
acceptable, many operating systems disregard all but the first six to eight characters of
program-name, thus requiring those characters to be unique within your installation. If the
implementor does limit the length of program-name, characters beyond the limit are
treated as comments.

The other identification division paragraphs allow you to make comments about the
program. While it is expected you will use the DATE-WRITIEN paragraph to establish
when you wrote the program, the SECURITY paragraph to determine who may see the
program, etc. it actually doesn't make any difference what you code as comment-entries;
they are for documentation only and do not affect the compilation. Comment-entries
consist of any characters in the computer (not just COBOL) character set.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

4-2

The DATE-COMPILED paragraph is a little different than the other optional paragraphs -
its comment-entry is replaced at compilation time by the system date. For example, if your
program includes the source line

DATE-COMPILED. DATE WILL APPEAR HERE.

and you compile the program on 01 /01 /80, the actual line appears as

DATE-COMPILED. 111/111/811

Comment-entries in the other paragraphs appear on the listing exactly as you code them.

4.2. CODING EXAMPLE

Here is an example of a complete identification division:

IDENTIFICATION DIVISION.

PROGRAM-ID. EDTINV.

AU TH 0 R . J . PR 0 GR AMMER

L. PROGRAMMER.

INSTALLATION. XYZ CORP

NEW YORK.

DATE-WRITTEN. 12/15/811.

DATE-COMPILED. COMPILATION DATE.

SECURITY. CLASS 2-C.

This assigns EDTINV as the program-name. Comment-entries specify the authors, the
installation, the date the program was written, and the security classification. The system
date is placed in the DATE-COMPILED paragraph each time the program is compiled.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

5-1

5. Environment Division

5.1. ORGANIZATION AND STRUCTURE

In the environment division, you relate hardware to software; that is, you describe the
physical devices needed to compile the source program and execute the object program.
Since the environment division is hardware-related, the implementor defines much of its
content. Consequently, you may have to revise it extensively to make a program
transportable.

There are two sections in the environment division: (1) the CONFIGURATION SECTION
that describes the source and object computers and name implementor-functions,
character sets, and collating sequences; and (2) the INPUT-OUTPUT SECTION that names
the files, describes the devices that contain them, and specifies special processing
techniques. Each of the sections consists of the paragraphs shown:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry.

OBJECT-COMPUTER. object-computer-entry.

[SPECIAL-NAMES. spetial-names-entry.]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry.} ...

[1-0-CONTROL. input-output-control -entry.]

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

5.2. SOURCE-COMPUTER AND OBJECT-COMPUTER PARAGRAPHS

5-2

The computer manufacturer specifies the computer-name entries for these paragraphs.
While computer-name completes the source-computer-entry, the object-computer-entry
has two optional clauses.

The formats are:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

MEMORY SIZE

computer-name.

computer-name.

integer {WORDS }
CHARACTERS

MODULES

PROGRAM COLLATING SEQUENCE IS alphabet-name.

Many compilers regard the MEMORY SIZE option as documentation only; you use it to
specify the main storage capacity (expressed in WORDS, CHARACTERS, or MODULES) of
the object computer. If the capacity is not sufficient to run the object program, the
implementor defines what is done.

Each computer's native collating sequence determines the relative values of the members
of its character set. It is used to find the truth value of the nonnumeric comparisons in
your program. So, the expression

IF A IS LESS THAN B

is true if the value of A precedes B in the collating sequence. A collating sequence can be
associated with an alphabet-name. If you don't want to use the native collating sequence
for your program, code an alphabet-name in the PROGRAM COLLATING SEQUENCE
clause, then use the SPECIAL-NAMES paragraph (5.3) to assign that alphabet-name to a
new collating sequence. The new collating sequence replaces the native collating
sequence for the duration of your program.

5.3. SPECIAL-NAMES PARAGRAPH

The SPECIAL-NAMES paragraph enables you to name implementor functions, identify
character sets and collating sequences, select a replacement for the dollar sign, and
provide for European-style currency punctuation.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

The format is:

SPECIAL-NAMES .

• implementor-name

I S m n em o n i c - n a me [· 0 N S T A TU S ~ c o n d i t i o n - n a m e - 1 J
[.Q.!.£ STATUS!_! condition-name-2]

I S m n em o n i c - n a me [· Q££ S T A TU S !_! c o n d i t i o n - n a me - 2 J
[,ON STATUS~ condition-name-1]

ON STATUS ~ condition-name-1 [.Q.!.£ STATUS IS condition-name-2]

OFF STATUS IS condition-name-2 [,ON STATUS IS condit ion-name-1]

.alphabet-name IS STANDARD-1

NATIVE

implementor-name

I i t e r a I - 1 [{TH R 0 UGH} I i t e r a I - 2
THRU

ALSO literal-3 [,ALSO literal-4 ... r i tera l-5[{~UGH}I i tera 1-6

L ALSO literal-7 [,ALSO literal-8]

[.CURRENCY SIGN IS literal-9]

[,DECIMAL-POINT IS COMMA] .

5.3.1. Implementor Function Clause

5-3

J
J]

A common implementor function is vertical pos1t1oning of the lines on a printed page.
Often 12 positions (called channels) are available; the top of the page is associated with
channel 1, the row at the next lower page position is associated with channel 2, etc.

If the implementor names for the channels are CHAN-1, CHAN-2, etc., and you code

CHAN-1 IS TOP-OF-PAGE

in the SPECIAL-NAMES paragraph, you can use the name you selected (the mnemonic
name TOP-OF-PAGE) to position a print line.

'

Thus, when you code

WRITE HEADING-LINE AFTER ADVANCING TOP-OF-PAGE

this prints this heading-line on the row of the page associated with channel 1 .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Similarly, if you code

CHAN-12 IS BOTTOM-OF-PAGE

in the SPECIAL-NAMES paragraph and then

WRITE FOOTER AFTER ADVANCING BOTTOM-OF-PAGE

this prints FOOTER on the row associated with channel 12.

5-4

Generally, many other implementor functions are available. Another common one receives
an operator message from the console. If the implementor-name for this function is
SYSCONSOLE and you code

SYSCONSOLE IS OP-CONSOLE

you access the operator console through the mnemonic-name OP-CONSOLE. For example:

DISPLAY MY-MESSAGE UPON OP-CONSOLE

This makes the message appear on the operator console.

If the implementor-name function is a switch, depending on the implementor, you can
provide a mnemonic-name and a condition-name or just a condition-name. You must
associate each switch with at least one condition-name - a name that represents the
switch on or off status. If the implementor-name for a particular switch is SYSSWCH-5
and the MNEMONIC-NAME IS MYERROR, you could code

SYSSWCH-5 IS MYERROR, ON STATUS IS ERR-SWITCH-ON,
OFF STATUS IS ERR-SWITCH-OFF

If you want to use condition-names without mnemonic-names:

SYSSWCH-5 ON STATUS IS ERROR-SWITCH-ON, OFF STATUS IS ERROR-SWITCH-OFF.

Then, when SYSSWCH-5 is on, the conditional expression coding IF ERROR-SWITCH-ON
is true, and IF ERROR-SWITCH-OFF is false.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

5-5

5.3.2. Alphabet Name Clause

The alphabet-name you use in the SPECIAL-NAMES paragraph must also appear
elsewhere in the program. If it appears in a program collating sequence (5.2) or in the
collating sequence phrase of a sort or merge statement (9.3), alphabet-name represents a
collating sequence. If it appears in a code-set clause in a file description (FD) entry,
alphabet-name represents a character code set. In the SPECIAL-NAMES paragraph, you
associate alphabet-name with a particular collating sequence or character code set. Your
choice must be:

• STANDARD-1

The collating sequence or character code set defined in the American National
Standard Code for Information Interchange (ASCII), X3.4-1968

• NATIVE

The implementor-defined collating sequence or character code set associated with the
computer named in the OBJECT-COMPUTER paragraph

• Another collating sequence or character code set defined by the implementor

• A collating sequence you create in the SPECIAL-NAMES paragraph (this doesn't apply
to character code sets) .

If you select STANDARD-1 or an implementor-defined character code set or collating
sequence, the implementor defines the correspondence between the characters in the set
you selected and the characters in the native character set. Suppose the implementor
offers a special collating sequence to which it has assigned the name ALTERN-SEO. You
can code PROGRAM COLLATING SEQUENCE IS MY-COLL-SEQ in the OBJECT
COMPUTER paragraph and MY-COLL-SEO IS ALTERN-SEQ in the SPECIAL-NAMES
paragraph to assign the special collating sequence to your program. You create your own
collating sequence by rearranging the characters in the native sequence.

Assume the native collating sequence includes the characters in the COBOL character set
beginning with the special characters in the order listed in 3.1, followed by the letters of
the alphabet, followed by the digits 0-9. This means the space is the lowest character in
the collating sequence and 9 is the highest. (A computer character set generally is much
more lengthy than the COBOL character set but, for this example, we will assume they are
identical.)

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

5-6

You can form a new collating sequence by rearranging the characters any way you
choose. For instance, to move the comma from eighth to first in the collating sequence
and the semicolon from ninth to second, code

PROGRAM COLLATING SEQUENCE IS MY-COLL-SEQ

in the OBJECT-COMPUTER paragraph and

MY-COLL-SEQ IS'',;''

in the SPECIAL-NAMES paragraph. The order in which you code the literals ("," and ";")
specifies, in ascending sequence, the order they assume in the collating sequence. The
unspecified characters from the native collating sequence (in this example, every character
except the comma and semicolon) move to the end of the collating sequence, but retain
the same relative order. Thus, the space becomes the third lowest character, the plus sign
becomes the fourth lowest character, etc.

To move the less than symbol (<)to 11th in the collating sequence rather than 15th, code

MY-COLL-SEQ IS "6+-'/=$,;.<"

The quotation mark, which was the 11th character, becomes 12th, and the other
characters follow in order.

You may prefer to make this change by using a numeric literal to indicate the new position
of the less than symbol:

MY-COLL-SEQ IS 1 THROUGH 10 15

Another way to make the same change is:

MY-COLL-SEQ IS "6" THROUGH "." "<"

The "6" THROUGH "." refers to the 10 characters in the collating sequence beginning
with the space, ending with the period, and including all the characters between them.
The "<" means the less than symbol immediately follows the 10 characters.

The THROUGH option may specify characters in ascending or descending sequence. Thus

MY-COLL-SEQ IS ''9'' THROUGH ''6''

reverses the entire collating sequence. The ALSO option assigns the same position in the
collating sequence to more than one character.

•

•

•

•

•

•

UP-8805

The coding

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

MY-COLL-SEQ IS "!::." ALSO "+", ALSO "-"

5-7

assigns the space, the plus sign, and the minus sign to the lowest position in the collating
sequence. Note that in this sequence, the figurative constant LOW-VALUE has the value
space (the first character specified of those assigned to the lowest position).

If more than one character has the highest position in the collating sequence, HIGH
VALUE equals the last character assigned to the highest position.

You can use more than one option at a time. Thus, the coding

MY - C 0 L L - S E Q I S ' ' 0 ' ' T H R 0 U G H ' ' 9 ' ' ' ' !::.+- • I ' ') ' ' T H R U

"=" "AEFZ'' 35 "Q" 50 "Y''

changes the collating sequence to

0,1,2,3,4,5,6,7,8,9,t::.,+.-.·.1.).(,'',•,;,',$,=,

A,E,F.Z.>.<.B,C,D,G,H,Q,l,J,K,L,M,N,O,P,R,S,T,U,V,W,Y,X

To build your character sequence, the COBOL compiler reads and substitutes all literal
values including character ranges (THRU clauses) from your alphabet-name statement .

In this type of statement, the first THROUGH clause sets up the sequence for the first 10
characters of your character sequence (0-9). The next literal inserts the first five special
characters of the COBOL character code set (space through stroke). Following this, the
second THRU clause inserts special characters beginning with the right parenthesis and
moving in reverse order through the equal sign.

The next value you give is the literal "AEFZ". The compiler inserts this followed by the
literals "Q" and "Y" in positions 35 and 50. After inserting the literal "AEFZ", the
compiler uses the next values in the COBOL character code sequence (>and<) and
completes the character sequence by inserting all remaining unused characters, skipping
over the values already specified for positions 35 and 50.

5.3.3. CURRENCY SIGN IS Clause

The CURRENCY SIGN IS clause allows you to name a literal to replace the currency
symbol ($) in the PICTURE clause. The literal must be a single character. It may not be

0-9

a space

A,B,C,D,L,P,R,S,V,X,Z

*,+,-,,,.,;,(,), ",/,=

UP-8805

If you code

CURRENCY SIGN IS ''F''

the F in

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

05 TOTAL PIC F99,999.99

acts as the currency sign.

5.3.4. DECIMAL-POINT IS COMMA Clause

5-8

The DECIMAL-POINT IS COMMA clause provides for European-style currency punctuation.
If it is present, the function of the comma and period are exchanged in PICTURE character
strings and in numeric literals. For example, if you write 2, 145.67 when the DECIMAL
POINT IS COMMA clause is not present, write 2.145.67 when it is present.

5.4. COBOL FILE ORGANIZATION AND ACCESS METHODS

When you write a program that creates a data file, you have to decide how to organize the
records in the file. If it is on a tape or cards, the decision is easy - the file must be
sequential. If it is on a mass storage device such as disk, your choice depends on how the
file will be used. Sequential organization is best if most or all of the file's records are
needed each time the file is processed, and if it is convenient to access the records in the
order they were written. If only part of the file is needed each time it is processed, or if it
is preferable to access the records in a random sequence, you must use relative or
indexed organization.

The order of the records in a sequential file is established when the file is written (the first
record written as output is the first record read when the file is input). The records in
relative and indexed files, by comparison, can be written and retrieved in' any order.
Relative file records are assigned a relative ordinal position in the file indicated by the
value of a data item you designate as the relative key. The records in indexed files also are
located through use of a key field (it is called the record key and it is associated with an
index that points to the record).

Records in a sequential file must be accessed in the order they were written. You may
access the records in relative or indexed files sequentially (according to the ascending
order of the relative key or record key values, or randomly), selecting a specific record by
manipulating the value of the key field. Or you may use a third access method (the
dynamic mode) that allows you to alternate between sequential and random processing .

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

5-9

For example, suppose you have a 100-record relative file, and you want to access records
50-75 and 95-100. In dynamic mode, you set the relative key to 50 to randomly access
the 50th record, switch to sequential access (by using the NEXT phrase with the READ
verb) to retrieve records 51-75, set the relative key to 95 to access the 95th record, and
return to sequential processing to access records 96-100.

You can see why the dynamic access mode can be preferable to sequential or random
mode. If you processed this file sequentially, you would have to access every record,
starting with the first, even though you are not interested in records 1-49 and 76-94. In
random mode, you would not have to access unwanted records, but you would have to
reset the relative key before each access.

5.5. FILE-CONTROL PARAGRAPH

In the FILE-CONTROL paragraph, you name and describe each input-outpout file. The
format for a file-control-entry varies slightly depending on the file's organization. Format 1
is for sequential files, Format 2 is for relative files, and Format 3 is for indexed files.

Format 1:

SELECT [OPTIONAL] file-name

ASSIGN TO implementor-name-I [, implementor-name-2]

[
; RESERVE integer-I [AREA J]

AREAS

[; ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-I].

Format 2:

SELECT file-name

ASSIGN TO implementor-name-I [, implementor-name-2]

[
; RESERVE integer-I [AREA J]

AREAS

; ORGANIZATION IS RELATIVE

[

;ACCESS MODE IS {SEQUENTIAL

{
RANDOM } ,
DYNAMIC

[; FILE STATUS IS data-name-2] .

[.RELATIVE KEY IS data-name-I]}n
RELATIVE KEY IS data-name-I u

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Format 3:

SELECT file-name

ASSIGN TO implementor-name-1 [, implementor-name-2]

[
; R E S E RV E i n t e g e r - 1 f A R EA J]

LAREAS

; ORGANIZATION IS INDEXED

[

;ACCESS MODE IS ISEQUENTIAL]~
RANDOM
DYNAMIC

; RECORD KEY IS data-name-1

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ...

[;FILE STATUS IS data-name-3].

5.5.1. Sequential Files

For sequential files, you often name the file and associate it with a device:

SELECT TAPE-FILE ASSIGN TO TAPE.

You could include

ORGANIZATION IS SEQUENTIAL

and

ACCESS MODE IS SEQUENTIAL

5-10

as documentation, but it isn't necessary. When you describe a relative or indexed file,
however, you must use the ORGANIZATION clause and, if you want to use random or
dynamic access, the ACCESS MODE clause must be used.

5.5.2. Relative Files

For relative files, a RELATIVE KEY clause generally is required - you may omit 1t if the
access mode is sequential and you do not plan to use the START verb (7.4.7).

Unlike the record key, the relative key field cannot be part of the file's record description;
you must define it elsewhere in the data division (probably in the working-storage section)
as an unsigned integer. The value of the relative key identifies the relative ordinal position
of a record in the file (if the file has 100 records, the permissible relative key values are 1
through 100). If the file control paragraph includes

SELECT INVENTORY-FILE ASSIGN TO DISK
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS REL-KEY

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

The REL-KEY is defined in the working-storage section as

77 REL-KEY PIC 9(3).

You retrieve the 100th record in INVENTORY-FILE by coding

MOVE 100 TO REL-KEY
READ INVENTORY-FILE

5-11

If the access mode is sequential and you do not use the START verb to select a starting
record for processing, the record with relative position number 1 is the first accessed.

5.5.3. Indexed Files

For indexed files, a RECORD KEY clause completes the entry:

SELECT INVENTORY-FILE ASSIGN TO DISK
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS PART-NUMBER.

The RECORD KEY (in this example, PART-NUMBER) must be a field in the record
description for the file (it may be qualified). So, if the FD and its associated record
description are:

FD INVENTORY-FILE

01

LABEL RECORDS ARE STANDARD
DATA RECORD IS RECORD-DESC.
RECORD-DESC.
02 PART-NUMBER PIC X(6).
02 CLASS PIC x (4).
02 NAME PIC x (2 5) .
02 DESC PIC x (2 5) .

Then, the statements

MOVE ''123456'' TO PART-NUMBER
READ INVENTORY-FILE

retrieve the record from INVENTORY-FILE that has the value 123456 in the PART
NUMBER field. If the access mode was sequential, the coding

READ INVENTORY-FILE

would start the processing with the record whose PART-NUMBER field has the lowest
value .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

5-12

You may specify alternate record keys for an indexed file. If your file control paragraph
includes

SELECT DIRECTORY-FILE ASSIGN TO DISK
ORGANIZATION IS INDEXED
RECORD KEY IS NAME
ALTERNATE RECORD KEY IS PHONE

Then NAME and PHONE, which must be alphanumeric fields defined in the record
description of DIRECTORY-FILE, are each associated with an index that points to the
record. Thus, if the file is a list of employees and their phone extensions, you could access
a record using either an employee's name or phone number as the key of reference. You
identify that key in the START or READ statement.

For example:

MOVE ''SMITH'' TO NAME

and

READ DIRECTORY-FILE KEY IS NAME

retrieves the record with the name SMITH and enables you to find the corresponding
phone extension, while

MOVE ''2315'' TO PHONE

and

READ DIRECTORY-FILE KEY IS NAME

retrieves the record with phone extension 2315 and enables you to find the corresponding
employee name. If you add the phrase WITH DUPLICATES to the ALTERNATE RECORD
KEY clause, as in

ALTERNATE RECORD KEY IS PHONE WITH DUPLICATES

the value of the alternate record key field may be duplicated among records in the file. So,
in this example, WITH DUPLICATES means more than one employee may have the same
phone extension. Th.e records with duplicate key fields are accessed in the order they were
written. If you do not use WITH DUPLICATES, the value of each record's alternate record
key field must be unique. The value of the record key field always must be unique.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

5.5.4. Additional Phrases and Clauses

5-13

There are other phrases and clauses you may want to use in a file-control-entry. If your
program defines a sequential input file that isn't processed on each run - perhaps because
it's a tape needed at the end of the month but not weekly - you can notify the operating
system by inserting the word OPTIONAL before the file-name:

SELECT OPTIONAL TAPE-FILE ASSIGN TO TAPE.

If you do not code OPTIONAL before the file-name, the file must be present at run time.

The RESERVE clause is available with all file organizations. You use it if you want to
change the number of input-output areas the implementor allocates for each file. So, if the
implementor allocates two 1-0 areas for each file, you code

RESERVE 3 AREAS

to assign an extra 1-0 area to the file named in the corresponding SELECT statement. An
extra 1-0 area requires more main storage but may speed up processing.

If you include the FILE STATUS clause in your file-control entry, you can find out whether
a specific 1-0 operation for a file was successful. Immediately after the execution of an
OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or START statement (and before any
applicable USE procedure is executed), the operating system moves a code to the data
name you specify in the FILE STATUS clause. That data-name must be defined in the
working-storage or linkage section as two alphanumeric characters. The leftmost digit of
the code is known as status key 1; the rightmost digit is called status key 2.

Table 5-1 lists the possible status key values and explains what they mean. The value of
status key 2 is dependent on the value of status key 1; it provides (if necessary) more
information about the 1-0 operation. Often it is set to 0, indicating no further information
is available.

All possible status key values are shown except that status key 1 may equal 9, indicating
the 1-0 operation was unsuccessful as the result of a condition specified by the
implementor. If status key 1 is 9, the value of status key 2 is defined by the implementor.

The table indicates that if status key 1 is 0 and status key 2 is 2, the 1-0 operation was
successful, even though the record accessed has the same key field or another record in
the file. The duplicate record key is valid either because a READ statement was executed
and the key of reference equals the value of the same field in the next record (in this
example the key would have to be an alternate record key), or a WRITE or REWRITE
statement was executed and the record just written created a duplicate key value in an
alternate record key field for which the WITH DUPLICATES phrase was specified .

UP-8805

File
Status Key

1 2

Sequential 0 0

1 0

3 0

3 4

Relative 0 0

0

2 2

2 3

2 4

3 0

Indexed 0 0

0 2

0

2

2 2

2 3

2 4

3 0

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Table 5-1. File Status Key Values

Explanation

Successful 1-0

5-14

READ not completed due to AT END condition or because file described as OPTIONAL
is unavailable

Unsuccessful 1-0 due to permanent error (data check, parity error, or transmission
error)

Unsuccessful 1-0 due to boundary violation

Successful 1-0

READ not completed due to AT END condition

Unsuccessful 1-0 due to attempt to write a record that would create a duplicate
relative key

Unsuccessful 1-0 due to attempt to access a record using a relative key not associated
with any record in the file

Unsuccessful 1-0 due to attempt to write beyond the implementor-defined external
boundaries of the file

Unsucessful 1-0 due to permanent error (data check, parity error, or transmission
error)

Successful 1-0

Successful 1-0 (record accessed has duplicate key with another record in the file) (see
text)

READ not completed due to AT END condition

Unsuccessful 1-0 because (in sequential mode) attempt was made to write a record
with RECORD KEY not greater than that of previous record; or the value of RECORD
KEY was changed between execution of a READ and corresponding REWRITE
statement

Unsuccessful 1-0 due to attempt to write or rewirte a record that would create a
duplicate RECORD KEY

Unsuccesful 1-0 because no record in the file has a RECORD KEY field that matches
value specified

Unsuccessful 1-0 due to attempt to write beyond the implementor-defined external
boundaries of the file

Unsuccessful 1-0 due to permanent error (data check, parity error, or transmission
error)

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

5.6. 1-0 CONTROL PARAGRAPH

5-15

If some of your COBOL programs require longer execution times, you will want to avoid
having to rerun them from the beginning if a hardware failure, operating system error, or
some other problem halts processing before a run is completed. The 1-0 paragraph allows
you to write checkpoint records (information about the status and environment of a
program) at specified intervals during the run. Then, if something goes wrong, you can
restart the program from the point where a checkpoint was taken. The 1-0 paragraph also
provides a way to assign the same main storage area to several files, and a clause needed
for processing tapes that contain more than one file.

The format for the 1-0 CONTROL paragraph is:

1-0-CONTROL.

RERUN [ON{~ile-name-1 }]
implementor-name

EVERY IJ[END OF]{~~~~} }OF

linteger-1 RECORDS

integer-2 CLOCK-UNITS

condition-name

[; SAME[RECORD] AREA FOR file-name-3 {,file-name-4} ...] ...

[

;MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-3q

[,fi le-name-6 [POSITION integer-4]] . . . J

5.6.1. RERUN Clause

The RERUN clause specifies when and where checkpoint records are taken. The records
provide the operating system with the information it needs to restart a program at a
checkpoint. There are seven valid forms of the RERUN clause; the implementor must
provide at least one of them. Following are examples of each form.

Example 1:

RERUN EVERY END OF REEL OF TAPE-FILE

or

RERUN EVERY END OF UNIT OF DISK-FILE

A checkpoint record is written on TAPE-FILE or DISK-FILE at the end of each reel of tape
containing TAPE-FILE or at the end of each unit containing DISK-FILE (the definition of
UNIT is determined by the implementor). TAPE-FILE and DISK-FILE must be output files
with sequential organization .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Example 2:

RERUN ON OUTPUT-FILE EVERY END OF REEL OF TAPE-FILE

or

RERUN ON OUTPUT-FILE EVERY END OF UNIT OF DISK-FILE

5-16

This coding writes a checkpoint record on OUTPUT-FILE (not on TAPE-FILE or DISK-FILE)
at the end of each reel of tape containing TAPE-FILE or at the end of each unit containing
DISK-FILE. TAPE-FILE and DISK-FILE still must be sequential, but they may be either input
or output files. OUTPUT-FILE (or whatever file to which you write checkpoint records) must
be a sequential file.

Example 3:

RERUN ON IMP-UNIT EVERY END OF REEL OF TAPE-FILE

or

RERUN ON IMP-UNIT EVERY END OF UNIT OF DISK-FILE

These examples work the same as Example 2, except that the checkpoint record is written
on a device specified by the implementor (IMP-UNIT) instead of on a file you define
(OUTPUT-FILE).

Example 4:

RERUN ON IMP-UNIT EVERY 1000 RECORDS OF INV-FILE

This coding writes a checkpoint record on the implementor-specified device (IMP-UNIT)
after each 1000 records of INV-FILE are processed. I NV-FILE may be either an input or
output file with any organization or access. Whenever you select the RECORDS or CLOCK
UNITS option, you must use implementor-name.

Example 5:

RERUN ON IMP-UNIT EVERY 60 CLOCK-UNITS

A checkpoint record is written on IMP-UNIT whenever an interval of time represented by
60 CLOCK-UNITS (defined by implementor) has elapsed. You may use only one RERUN
clause that specifies the CLOCK-UNITS option.

Example 6:

RERUN ON IMP-UNIT EVERY CHECKPT-SWITCH-ON

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

5-17

A checkpoint record is written on IMP-UNIT when a switch defined in the SPECIAL
NAMES paragraph such as

CHECKPT-SWITCH ON STATUS IS CHECKPT-SWITCH-ON
OFF STATUS IS CHECKPT-SWITCH-OFF

is on. The implementor defines when the switch's status is interrogated.

Example 7:

RERUN ON CHECKPT-FILE EVERY CHECKPT-SWITCH-ON

This is the same as Example 6, except that the checkpoint record is written on CHECKPT
FILE. which must be a sequential output file.

You may specify more than one RERUN clause for a given file-name-2; however, if you
use multiple clauses with the RECORDS option or multiple clauses with the END OF REEL
or END OF UNIT option, no two of them may specify the same file-name-2.

5.6.2. SAME AREA Clause

If you want to reduce the amount of main storage needed by your program, you can use
the SAME AREA clause to assign the same main storage area to two or more files,
regardless of their organization or access. You can include more than one SAME AREA
clause in your program, but a file-name may appear in only one clause.

The coding

SAME AREA FOR TAPE-FILE DISK-FILE CARD-FILE

indicates that TAPE-FILE, DISK-FILE, and CARD-FILE share a main storage area. Only one
of the files may be open at the same time. The SAME [RECORD] AREA clause specifies
that two or more files share the same main storage area for processing the current logical
record. All of the files may be open at the same time; thus, a record in the shared area is
considered to be a record in each opened output file and in the most recently read input
file named in the clause. For example, if your program has two files defined as

FD INPUT-FILE
LABEL RECORDS ARE OMITTED.

01 IN-RECD PIC X(80).
FD OUTPUT-FILE

LABEL RECORDS ARE OMITTED.
01 OUT-RECD PIC X(80)

and you code

SAME RECORD AREA FOR INPUT-FILE OUTPUT-FILE

UP-8805

then

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

READ INPUT-FILE AT END GO TO EOJ.
WRITE OUTPUT-FILE.

is equivalent to

READ INPUT-FILE AT END GO TO EOJ.
MOVE IN-RECD TO OUT-RECD.
WRITE OUTPUT-FILE.

5-18

The MOVE statement is not needed because IN-RECD and OUT-RECD refer to the same
record area in main storage. Do not use the the same file-name in more than one SAME
RECORD AREA clause. You can include file-names that appear in a SAME AREA clause;
however, if one file named in a SAME AREA clause is included in the SAME RECORD
AREA clause, all the files named in that SAME AREA clause must appear in the SAME
RECORD AREA clause. In this situation, it is still a rule that only one file named in a
SAME AREA clause may be open, but all files named in the SAME RECORD AREA clause
that are not in the SAME AREA clause may be open.

5.6.3. MULTIPLE FILE Clause

If you process files on a tape that contains more than one file, you must use the
MULTIPLE FILE clause to specify the relative positions on the tape of the files you need. If
a tape contains four files called FILE-1, FILE-2, FILE-3, and FILE-4, and your program
processes FILE-1 and FILE-3, you must code

MULTIPLE FILE TAPE CONTAINS FILE-1 POSITION 1
FILE-3 POSITION 3.

You may omit the POSITION clause if the files you need can be listed in consecutive order
beginning with the first on the tape. Thus, in the following example, if your program
processes FILE-1, FILE-2, and FILE-3, you can code

MULTIPLE FILE TAPE CONTAINS FILE-1,FILE-2 FILE-3.

However, if your program processes the last three files on the tape, you must code

MULTIPLE FILE TAPE CONTAINS FILE-2 POSITION 2
FILE-3 POSITION 3
FILE-4 POSITION 4

Only one file on the same tape reel may be open at the same time.

•

•

•

•

•

•

UP-8805

5.7. CODING EXAMPLE

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

5-19

Following is a sample environment division that includes many of the clauses and phrases
discussed in this section (partial data division is included to show how it relates to some of
the environment division entries):

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER.

OBJECT-COMPUTER.

COMPUT-3.

COMPUT-3.

MEMORY SIZE 50 MODULES

PROGRAM COLLATING SEQUENCE IS PROG-COLL-SEQ.

SPECIAL-NAMES.

CHAN-1 IS TO-NEXT-PAGE.

CHAN-10 IS SUBTOT-LINE.

CHAN-12 IS BOTTOM-PAGE.

SYSCONSOLE IS OP-RESPONSE.

SYSRERUN ON STATUS IS TAKE-CKPOINT OFF STATUS IS NO-CKPOINT.

PROG-COLL-SEQ IS STANDARD-I.

CURRENCY SIGN IS W .

INPUT-OUTPUT SECTION.

FI LE-CONTROL.

SELECT OPTIONAL CARD-DECK ASSIGN TO READER.

SELECT PRINTOUT ASSIGN TO PRINTER.

SELECT MASTER-FILE ASSIGN TO DISK.

ORGANIZATION IS INDEXED.

RECORD KEY IS REC-KEY.

ACCESS MODE IS DYNAMIC.

FILE STATUS IS CHECK-MASTER.

1-0-CONTROL.

RERUN ON COMPUT-FILE EVERY TAKE-CHPOINT.

DATA DIVISION.

FILE SECTION.

FD CARD-DECK

FD PRINTOUT

(continued)

UP-8805 SPERRY UNIVAC 5-20
FUNDAMENTALS OF 1974 ANSI COBOL

FD MASTER-FILE

WORKING-STORAGE SECTION.

77 CHECK-MASTER PIC X(2).

The specific effects of many of the clauses and phrases are implementor-defined.
COMPUT-3, CHAN-1, CHAN-10, CHAN-12, SYSCONSOLE, SYSRERUN, READER, DISK,
and COMPUT-FILE all are implementor-names; you will have to check the operating
system documentation to see what names you must use for similar entries.

The terms TO-NEXT-PAGE, SUBTOT-LINE, PAGE-BOITOM, and OP-RESPONSE are
mnemonic-names. Mnemonic-names are defined only in the SPECIAL-NAMES paragraph;
their meanings are implementor-defined.

The program that contains this environment division is compiled and executed on a
computer called COMPUT-3 (that computer has a main storage capacity of 50 modules).
The ASCII collating sequence replaces the COMPUT-3 native collating sequence in this
program.

Mnemonic-names are provided to allow the programmer to receive a message from the
console and to position printed output at three locations. This program takes a checkpoint
record whenever the switch SYSRERUN is tested and found to be on. In the program
PICTURE clauses, the character W represents the currency sign.

Three 1-0 files are described in the FILE-CONTROL paragraph; two of the files are always
processed; the third (CARD-DECK) may or may not be processed in a given run. CARD
DECK and PRINTOUT are sequential files. MASTER-FILE is an indexed file that is accessed
dynamically. After the execution of an 1-0 verb that references MASTER-FILE, a 2-digit
code is moved to CHECK-MASTER. That code indicates the status of the 1-0 operation just
completed for the file.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-1

6. Data Division

The data division describes the data your program processes. Data elements originate from
external files, are developed in the program, or appear in the program as constants. You
describe the data in sections, entered in this order:

DATA DIVISION.

[

FILE SECTION.

[
file-description-entry [record-description-entry] ...
sort-merge-file-description-entry {record-description-entry)

[

WORKING-STORAGE SECTION.]

[
77-1eve1-desc r i pt ion-entry] ...
record-description-entry

[

LINKAGE SECTION.

[
77 - I eve I - des c r i pt i on - e n t r y]
record-description-entry

I.COMMUNICATION SECTION.

]
L [communication-description-entry [record-description-entry]

... J
...] .

. .. J .. .]

The file section is where you describe your data files; these include file-description
entries, record-description-entries, and sort-merge-file-descriptions. The latter entries are
explained in Section 9.

The working-storage section consists of 77-level-description-entries (single data items not
related to other data items) and record-description-entries (records like those in the file
section, but not associated with a file).

The linkage and communication entries are examined in Sections 10 and 11, respectively .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6.1. FILE DESCRIPTION ENTRY

6-2

File description (FD) entries consist of a level indicator FD, a file-name, and a series of
clauses that specify the size of the file's logical and physical records, the type of file labels
used, the names of the records that comprise the file, and other related data.

The FD format is:

FD file-name

BLOCK CONTAINS [integer-1 TO] integer-2
{

RECORDS }]
CHA RAC TE RS

RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

LABEL {RECORD IS } {STANDARD}
RECORDS ARE OMITTED

[

; VALUE OF implementor-name-1 IS {data-name-1~
I i t e r a I - 1

[
• i m p I em e n t o r - n a m e - 2 I S { d a t a - n a m e - 2 } J . . .

literal·2

[
; DAT A { REC 0 RD I S } d a t a - name - 3 [, d a t a - name - 4] .. ·]

RECORDS ARE

[

; LINAGE IS {data-name-5} LINES [· WITH FOOTING AT
integer-5

[
• L I N E S A T T 0 P { ~ a t a - n a m e - 7 }] [· L I N E S A T B 0 TT 0 M

1nteger·7

{ ~ata-name-6}]j 1nteger-6

{ ~ata-name-8}] 1nteger-8

;CODE-SET IS alphabet-name].

In the environment division, SELECT statements are used to name the files and associate
them with devices. Each file-name that is the subject of a SELECT statement must also be
the subject of an FD. If you code

SELECT MASTER ASSIGN TO TAPE

in the environment division, you must code an entry that begins

FD MASTER

in the data division. The letters FD belong in area A; the rest of the entry must be in
area B.

•

•

•

•

•

UP-8805

6.1.1. LABEL Clause

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-3

The LABEL clause is required, and for good reason. It allows the operating system to check
labels to make certain you are processing the correct file. It also specifies the label you
want written on your output files. Coding

LABEL RECORDS ARE STANDARD

can complete an FD entry - nothing else is required. The STANDARD option means that
you have labeled your files and the labels conform to the implementor's standard format.
Unit record file (card reader, printer, etc.) are never labeled; most programmers label the
tape, disk, and diskette files. Depending on your operating system, the actual label is
specified in job control statements or the VALUE OF clause in the FD entry.

The entry

FD MASTER
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "PAYROLL-FILE"
VALUE OF CALC-FREQ IS PAYROLL-CALC

means the file named MASTER is labeled and the implementor assigned the names FILE
ID and CALC-FREQ to particular fields in its standard label records. In this example, the
fields contain a file label and a file payroll computation time .

When MASTER is opened as an input file, the operating system compares the label in
FILE-ID to PAYROLL-FILE. If they match, processing proceeds. The operating system also
compares the report frequency (PAYROLL-CALC in working storage) with the value in
CALC-FREQ. If these values match, processing again proceeds. Standard error procedures
are specified by the implementor.

When MASTER is opened as an output file, the operating system writes a label record for
the file. It writes PAYROLL-FILE into the FILE-ID field and the report frequency value
PAYROLL-CALC (i.e., weekly or monthly) into the CALC-FREO field.

You can qualify the data-names (like PAYROLL-CALC) that you use in VALUE OF clauses,
but you cannot subscript or index them and you cannot describe them with the USAGE IS
INDEX clause.

6.1.2. BLOCK CONTAINS Clause

In most FD entries, you need a BLOCK CONTAINS clause; it specifies the size of a physical
record. The term record refers to logical records (the groups of related data you define as
hierarchical structures in the file or working-storage sections, and treat as a unit). A
physical record (also known as a block) is a unit of data (generally one or more logical
records) as it appears on an 1-0 device. Operating systems work with physical records;
programmers work with logical records .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-4

A card file, because a card is a fixed length, is always unblocked - its logical and physical
records are the same size. Thus, you do not need a BLOCK CONTAINS clause, and the
coding

FD A-CARD-FILE
LABEL RECORDS ARE OMITTED.

is a complete entry. When tape or mass storage files are unblocked, you again omit the
BLOCK CONTAINS clause or, depending on the operating system, you code

BLOCK CONTAINS 1 RECORD

Generally, computers process tape and disk 1-0 files more efficiently when the records are
blocked; that is, when each physical record contains more than one logical record. Then,
fewer physical 1-0 operations - the movement of blocks of records (by the operating
system) from 1-0 devices to main storage - are needed. If you code

BLOCK CONTAINS 5 RECORDS

for an input file, the operating system moves five records at a time into main storage. The
file is said to have a blocking factor of five. Program logic isn't affected; a READ statement
still retrieves only one record - just as if the file was unblocked. But the number of
physical 1-0 operations is reduced by a factor of five (five READ statements are executed
before the operating system moves the next block of five records into main storage). The
blocking factor is limited by the amount of main storage available to execute the program;
the greater the blocking factor, the greater the amount of main storage needed.

You may specify the number of characters, rather than records, in a block. In fact, you
must use characters if

• in a mass storage file, more than one physical record is needed to contain a logical
record;

• the physical record contains padding - areas not part of a logical record (this depends
on the implementor); or

• the grouping of logical records implies an inaccurate physical record size.

For example, if two 100-character records always follow one 50-character record in a file,
use

BLOCK CONTAINS 250 CHARACTERS

rather than

BLOCK CONTAINS 3 RECORDS

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-5

You can specify a range for the block size by making integer-1 a minimum and integer-2 a
maximum size. Thus,

BLOCK CONTAINS 500 TO 4000 CHARACTERS

The implementor determines how the specific size of each block is calculated.

6.1.3. RECORD CONTAINS Clause

You also can specify the size of a file's logical records. The RECORD CONTAINS clause is
never required, because the size of each data record is determined by the record
description entry. But you may want to use the clause as documentation. If all records
have the same number of characters, specify that number in the clause:

RECORD CONTAINS 80 CHARACTERS

If the record length is variable, specify the minimum and maximum size. For instance, if
the record description is

01 RECD-DESC.
02 A
02 B

then the coding is

PIC X(l0).
OCCURS 1 TO 5 TIMES

DEPENDING ON THE-COUNT

RECORD CONTAINS 35 TO 135 CHARACTERS

6.1.4. DATA RECORDS Clause

PIC X(25).

The DATA RECORDS clause also is for documentation only. It names the data records
associated with the file. The names are the same as those that follow level-number 01 in
the file's record description entries. Thus, if the record description entries are

01 NAME-RECD.
02

01 ADD-RECD.
02

The coding is

DATA RECORDS ARE NAME-RECD ADD-RECD

UP-8805

6.1.5. CODE-SET Clause

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-6

The CODE-SET clause is similar to the PROGRAM COLLATING SEQUENCE clause (5.2)
except it pertains to a character code set rather than a collating sequence. When you use
the CODE-SET clause, data in the file is represented by the character code set specified by
alphabet-name, rather than the native character code set. You use the SPECIAL-NAMES
paragraph to associate alphabet-name with a specific character code set. For instance, if
you code

CODE-SET IS OUR-CODE-SET

in the FD and

OUR-CODE-SET IS STANDARD-1

in the SPECIAL-NAMES paragraphs in the environment division, the ASCII character code
set (STANDARD-1 represents ASCII) is in effect for the file.

You may not specify the CODE-SET clause for mass storage files. You must describe all
data in a file that has the CODE-SET clause as USAGE IS DISPLAY (the usage always is
displayed unless you specify otherwise) and you must describe any signed numeric data
with the SIGN IS SEPARATE clause.

6.1 .6. LINAGE Clause

When you write a program that produces printed (or display) output, you may code
logic to count print lines and determine when to advance to a new page, or you may
code a LINAGE clause to do that work for you. The LINAGE clause specifies the
number of lines on a logical page, the size of page margins, and the location of a
page footing area (Figure 6-1). If you code

FD PRINTOUT
LABEL RECORDS ARE OMITTED
LINAGE IS 54 LINES

WITH FOOTING AT 51
LINES AT TOP 3
LINES AT BOTTOM.3

01 PRINTLINE PIC X(132).

a logical page for PRINTOUT consists of 60 lines - a page body of 54 lines plus 3-line
margins at the top and bottom of the page. In addition, lines 51-54 of the page body are
considered a footing area.

•

•

•

•

•

•

UP-8805

PAGE
BODY

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-7

-~--------------------------1} ~o;RGIN

~--------------------·

}

FOOTING
AREA

'1---------------------------1} ~i;.rg,~

Figure 6-1. Page Defined by LINAGE Clause

For every file that has a LINAGE clause, the operating system generates a data item
represented by the reserved word LINAGE-COUNTER. Its value indicates the vertical
position of a print line; i.e., it counts lines for you. When the file is opened, and with each
page advance, LINAGE-COUNTER is set to 1. It is incremented during the execution of
WRITE statements for the file, until the end of the page is reached .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-8

If you assign a footing area, and you use the END-OF-PAGE phrase with the WRITE
statement, that end of the page occurs when LINAGE-COUNTER equals or exceeds the
value in the WITH FOOTING phrase. So, if the execution of

WRITE PRINTLINE AFTER ADVANCING 2 LINES
AT END-OF-PAGE PERFORM HEADING-ROUTINE

causes LINAGE-COUNTER for PRINTOUT to equal or exceed 51,

PERFORM HEADING-ROUTINE

is executed.

Generally, the imperative statement (like PERFORM HEADING-ROUTINE) includes logic
that causes a page advance, thus resetting LINAGE-COUNTER to 1. If this logic does not
exist, or if there is no footing area, the end of the page (and an automatic page advance)
occurs when there is a page overflow condition; i.e., the value in LINAGE-COUNTER is
greater than the length of the page body (in this case, 54). When automatic page overflow
occurs, the line to be printed is presented at the top of the next page.

Figures 6-2 and 6-3 show portions of similar sample programs. In Figure 6-2,
programmer logic sets up page advances; in Figure 6-3, the LINAGE clause replaces that
logic.

You can reference but not modify LINAGE-COUNTER in the procedure division. If there is
more than one LINAGE-COUNTER in the program (because more than one file is described
with a LINAGE clause), you must qualify the references by file-name:

LINAGE-COUNTER OF PRINTOUT

You do not need to specify a footing area or top and bottom margin areas. The entry

FD PRINTOUT
LABEL RECORDS ARE OMITTED
LINAGE IS 60 LINES

means a logical page for PRINTOUT has 60 lines and no footing area or top or bottom
margins. There is an automatic page advance - and LINAGE-COUNTER OF PRINTOUT is
set to 1 - whenever the value of LINAGE-COUNTER equals or exceeds 60.

•

•

•

UP-8805

•

•

•

DATA DIVISION.

FD CARDF I LE

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

LABEL RECORDS ARE OMITTED.
01 CARDRECD PIC X(80).
FD PRINTFILE

LABEL RECORDS ARE OMITTED.
01 PRINTLINE PIC X(l32).

77 LINECOUNT PI C 9 (2).

PROCEDURE DIVISION.
BEGIN.

MAIN.

OPEN INPUT CARDFILE OUTPUT PRINTFILE.
PERFORM WRITEHEADINGS.

IF LINECOUNT GREATER THAN 59 PERFORM WRITEHEADINGS .
READ CARDF I LE AT END GO TO EOJ.

6-9

WRITE PRINTLINE FROM DETAIL-LINE AFTER ADVANCING 2 LINES.
ADD 2 TO LINECOUNT.
GO TO MAIN.

WRITEHEADINGS.

EOJ.

MOVE ZEROS TO LINECOUNT.
WRITE PRINTLINE FROM HEADl AFTER ADVANCING PAGE.
WRITE PRINTLINE FROM HEAD2 AFTER ADVANCING 1 LINE.
ADD 2 TO LINECOUNT.

WRITE PRINTLINE FROM LAST-LINE AFTER ADVANCING 3 LINES .

Figure 6-2. Page Advance Controlled by Counting Lines

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

DATA DIVISION.

FD CARDF I LE
LABEL RECORDS ARE OMITTED.

111 CARDRECD PI C X (811).
FD PRINTFILE

LABEL RECORDS ARE OMITTED
LINAGE IS 611 LINES

WITH FOOTING AT 56
LINES AT TOP 5
LINES AT BOTTOM 5.

ll 1 PRINTLINE PIC X(132).

PROCEDURE DIVISION.
BEGIN.

MAIN.

OPEN INPUT CARDFILE OUTPUT PRINTFILE.
PERFORM WRITEHEADINGS.

READ CARDF I LE AT END GO TO EOJ.

WRITE PRINTLINE FROM DETAIL-LINE AFTER ADVANCING 2 LINES
AT END-OF-PAGE PERFORM WRITEHEADINGS.

GO TO MAIN.

WRITEHEADINGS.

EOJ.

WRITE PRINTLINE FROM HEAD! AFTER ADVANCING PAGE.
WRITE PRINTLINE FROM HEAD2 AFTER ADVANCING 1 LINE.

WRITE PRINTLINE FROM LAST-LINE AFTER ADVANCING 3 LINES.

Figure 6-3. Page Advance Controlled by LINAGE Clause

6-10

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6.2. RECORD DESCRIPTION ENTRY

6-11

Record description entries describe records. They are composed of data description entries
that characterize the particular data items (or fields) in the record. At least one record
description entry must follow each file description entry. In the working-storage section,
record description entries describe groups of related data items.

The file description entry is as follows:

FD CARDIN
LABEL RECORDS ARE OMITTED
DATA RECORDS IS CARD-RECD.

It is immediately followed by a record description entry beginning with

01 CARD-RECD

If the record is 80 characters long

01 CARD-RECD PIC X(80).

can be a complete record description entry. Generally, you are more specific in describing
the 80 characters. If the record contains a name, address, and phone number, the code is:

01 CARD-RECD.
02 NAME PIC x (3 0).
02 ADDRESS.

03 STREET PIC x (2 5) .
03 CI TY PIC x (15) .
03 STA TE PIC x (2).

02 PHONE.
03 EXCHANGE PIC x (3).
03 EXTENSION PIC x (4).

02 FILLER PIC x (1) .

You can now reference the various fields in the record. If the file contains more than one
type of record, a record description for each type is coded as follows:

FD CARDIN
LABEL RECORDS ARE OMITTED
DATA RECORDS ARE CARD-RECD CARD-RECD-2.

01 CARD-RECD.
02 TYPE PIC x (1) .
02 NAME PIC x (3 9).
02 ST-ADDR-1 PIC X(20).
02 ST-ADDR-2 PIC X(20).

01 CARD-RECD-2.
02 FILLER PI C X (1).
02 ST-ADDR-3 PIC X(20).
02 FILLER PIC X(59).

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-12

The CARD-RECD and CARD-RECD-2 entries share the same area of storage; thus, if you
read CARDIN and in fact read the CARD-RECD record but reference ST-ADDR-3, you get
the first 20 characters of NAME. As mentioned, record description entries are composed of
data description entries that characterize the particular fields in the record. The format for
a data description entry is:

level-number {data-name-1}
FILLER

[; REDEFINES data-name-2]

[
[
[
[
[

{;:~TURE} IS character-string]

[USAGE IS] !COMPUTATIONAL)~
COMP
DISPLAY

[SEPARATE [SIGN IS] {LEADING }
TRAILING

{
SYNCHRONIZED} LEFT]
SYNC RIGHT

{
JUSTIFIED} RIGHT]
JUST

[; BLANK WHEN ZERO]
-- --

[; VALUE IS I iteral] .

CHARACTER]]

66 data-name-1; RENAMES data-name-2 [{~~:~UGH} data-name-3 J .
88 c o n d i t i o n - n am e ; { ~ S I ! R E } I i t e r a I - 1 [{~UGH } I i t e r a I - 2 J
[I i t e r a I - 3 [{~UGH } I i t e r a I - 4 J]

6.2.1. REDEFINES Clause

Level 01 entries for the same FD implicitly redefine each other. Except for 01-, 66-, and
88-level entries in the file section for which REDEFINES clauses are not permitted, you
use the REDEFINES clause to assign more than one data description to the same storage
area. If you code

05 A PIC X(5).
05 8 REDEFINES A PIC 9(5).

A and B reference the same five characters of storage. The item that has the REDEFINES
clause (the B entry) must immediately follow the object of the REDEFINES clause (the A
entry). Both items must have the same level-number and no entry with a numerically
lower level-number may come between them. Thus, the following is not allowed:

05 A PIC X(5).
02 c.
05 8 REDEFINES A PIC X(5).

•

•

•

•

•

•

UP-8805

But the following is legal:

05 A PIC X(5).

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

05 B REDEFINES A PIC 9(5).

6-13

The REDEFINES clause often is used when describing fields that may be either numeric or
alphanumeric, depending on the record type. A storage area that may be an
alphanumberic invoice number or a numeric order number can be described as

02 INVOICE-NUMBER PI C X (6).

02 ORD-NO REDEFINES INVOICE-NUMBER PIC 9(6).

You use INVOICE-NUMBER to reference the area when it is alphanumeric and ORD-NO to
reference it when it is numeric. Both data-names in the REDEFINES clause (except level
01 entries in working storage section) must reference the same number of characters.
Thus, if the invoice number is six characters but the order number is only four, you code:

02
02

INVOICE-NUMBER PIC X(6).
ORD-NO REDEFINES INVOICE-NUMBER.
03 ORDER-NUMBER PIC 9(4).
03 FILLER PIC X(2).

The FILLER entry is used to account for the two character positions not used when the
field is numeric.

You may redefine a storage area as many times as you like, but the object of the
REDEFINES clause must be the same in each definition. if A. B, C, and D reference the
same area, the code is:

02 A PI C X (5) .
02 B REDEFINES A PIC x (5).
02 c REDEFINES A PIC x (5).
02 D REDEFINES A PIC x (5) .

not

02 A PI C X (5).
02 B REDEFINES A PIC x (5).
02 c REDEFINES B PIC x (5).

02 D REDEFINES c PIC x (5).

You may not use the VALUE clause in the description of a data item that has a
REDEFINES clause, but you may use it in the description of the object of the clause. Thus,
the following is valid:

05 ITEM PIC X(2) VALUE ''A2'' .
05 RED-ITEM REDEFINES ITEM PIC 9(2).

UP-8805

The following is not valid:

05 ITEM PIC X(2).

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

05 RED-ITEM REDEFINES ITEM PIC 9(2) VALUE "15".

6-14

The object of the REDEFINES clause cannot be described with an OCCURS or REDEFINES
clause, so

05 ITEM OCCURS 5 TIMES PIC 9(2).
05 RED-ITEM REDEFINES ITEM PIC 9(10).

is not legal. It may, however, be subordinate to an entry that contains an OCCURS or
REDEFINES clause, as in

02 CLASS OCCURS 5 TIMES.
05 ITEM-1 PIC X(2).
05 ITEM-2 PIC X(2).
05 NUM-ITEM-2 REDEFINES ITEM-2 PI C 9 (2) .

This is provided the OCCURS clause does not define an item whose size is variable (this
happens when the DEPENDING ON phrase is used with OCCURS).

In the example, ITEM-2 occurs five times, so procedure division references to it must be
subscripted or indexed. In the data division, however, ITEM-2 may not be subscripted or
indexed, so each (not just one) occurrence of ITEM-2 is redefined by NUM-ITEM-2, and
procedure division references to NUM-ITEM-2 also must be subscripted or indexed.

6.2.2. PICTURE Clause

The PICTURE clauses describe program elementary data items and provide for special
editing of items such as inserting signs or other characters or the suppression of leading
zeros. A PICTURE clause may only be specified for elementary items, and one clause must
be specified for each item.

A PICTURE clause consists of up to 30 characters used as symbols. Symbols are discussed
in previous sections and the PICTURE clause is used in many coding examples. (Note that
X in a PICTURE character-string represents any alphanumeric character from the
computer's character set; 9 represents a character that is one of the numeric digits 0-9;
while the A represents one of the 26 letters of the alphabet or the space.)

There are five categories of data items: alphabetic, alphanumeric, numeric, alphanumeric
edited, and numeric edited. These are discussed in 6.2.2.1 through 6.2.2.4.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6.2.2.1. Alphabetic and Alphanumeric Fields

6-15

An item that is alphabetic must be described with a PICTURE that is all A's and B's (for
blanks).

A PICTURE that describes an alphanumeric data item consists of all X's, or of a
combination of the X, 9, and A symbols.

6.2.2.2. Numeric Fields

Descriptions of numeric fields consist of the symbols V, P, and S in addition to 9's. The
symbol V in a PICTURE clause represents an assumed decimal point; it is not counted in
the size of the item and does not appear if the item is printed or displayed.

The coding

05 ITEM PIC 999V99

describes a 5-digit item that has two decimal places. If you omit the V, it is assumed the
decimal point is to the right of the rightmost digit; thus, it is redundant to code

05 ITEM PIC 99999V

The symbol P also indicates there is an assumed decimal point; the difference is that the
decimal point is not within the data item. Although only one V is permissible in a
PICTURE, you may use as many P's as are needed. (The use of both V and P in the same
PICTURE is redundant.)

The P symbol must appear as a continuous string to the right or left of the rest of the
PICTURE; the assumed decimal point is to the right or left of the string. Each digit position
described by a P is considered to contain the value zero. So, if you move .000012345 to
an item coded as

05 ITEM PIC PPPP99999

the ITEM will contain

1 2 3 4 5

which represents a value of

.000012345

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

If you move 12345 to an item described as

05 ITEM PIC 99999PPPP

the ITEM will contain

1 2 3 4 5

which represents a value of

123450000

6-16

The symbol S in a PICTURE means the data item is signed. The S must be the leftmost
character in the PICTURE and (like V) is not counted in the size of the data item (6.2.4).
The PICTURE in

05 ITEM PIC S9999V99

means the item is a 6-digit signed number with two decimal places.

There is no such thing as an alphabetic edited data item, but you may edit alphabetic
fields by inserting blanks. The symbol B in a PICTURE is replaced by a blank. If you move

ABCDEF

to

05 ALPHA-ITEM PIC AAABBAAA

the result is

ABCMDEF

The edited item still is categorized as alphabetic.

6.2.2.3. Alphanumeric Edited Fields

To edit alphanumeric fields, you specify that blanks (B), zeros (0), or strokes (/) are to be
inserted in the data item. If you code

05 ITEM PIC XX/XX/XX

strokes are inserted in the positions shown. If the value of DATE in

0 5 DA TE PIC 9(6)

•

••

•

•

•

•

UP-8805

is 012181, and you code

MOVE DATE TO ITEM

ITEM equals

fll/21/81

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-17

The DATE field, which is numeric, is known as the sending field; ITEM is alphanumeric
edited which is known as the receiving field.

You may insert all three characters (8,0,/) into the same item. If a sending field described
as PIC X(8) equals

AlB2C304

and the receiving field's PICTURE is

PIC XBOXXBOX/XBOXXBOX

the edited result is

A 018 02/C 030 84

6.2.2.4. Numeric Edited Fields

You edit numeric fields so they are printed or displayed in a more readable form. For
instance, you may prefer to print 43679216 and 00000025 as

43,679,216

and

25

Or you may want to insert a dollar sign and decimal point so that a field prints as one of
the following formats:

$329.95
32995

You cannot, however, use numeric edited items in arithmetic operations .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-18

Many more symbols are available for editing numeric fields than for alphabetic or
alphanumeric fields. Again, you may use B, 0, and I to insert blanks, zeros, and strokes
into data items. Additionally, you may insert commas, a currency symbol, a sign (+ or -),
the letters DB (for debit), the letters CR (for credit), or a period.

• Decimal Point (Period)

If you move

54319.27

to a field described as

05 NUM PIC 999,999.99

the edited result is

054,319.27

The period represents the decimal point. Do not use the period or comma as the last
character in a PICTURE character-string.

• Z and Asterisk

The Z and * symbols allow you to suppress leading zeros. If you move

54319.27

to a field described as

05 NUM PIC Z99,999.99

the edited result is

54,319.27

Since the value represented by Z is zero, it is replaced by a blank. The * replaces
leading zeros with an asterisk, so this change in the receiving item

05 NUM PIC *99,999.99

changes the result to

*54,319.27

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-19

The Z and * substitute a space or asterisk only if the corresponding position in the
data item is zero; otherwise, they have the same effect as the symbol 9. If the
sending field equals

943567.24

and the receiving field is described as

05 REC-FIELD PIC ZZZ,ZZZ.99

The REC-FIELD equals

943,567.24

• Zero Suppression

When you edit a field with zero suppression, unwanted commas are dropped. Thus, if
the receiving item is described as

05 REC-FIELD PIC ZZZ,ZZZ.99

and the sending field equals

129.37

the edited result is

129.37

not

,129.37

Special rules are in effect if the PICTURE is all Z's or all *'s.

If you describe a field as

05 ITEM PIC ZZZ.ZZ

or

05 ITEM PIC

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-20

and the value is zero, the entire data item is spaces or is equal to***.**. If the value
is .05, however, the data item equals .05 or ***.05, just as if the PICTURE was

05 ITEM PIC ZZZ.99

or

05 ITEM PIC ••• .99

You may not use both Z and * in the same PICTURE. If asterisk is the zero
suppression symbol, you can't use BLANK WHEN ZERO in the same data description.

• DB and CR

You include DB or CR in a PICTURE if you want those letters to appear in the
rightmost character postions of negative data items. If you move

-1,543.97

to an item described as

05 ITEM PIC 9,999.99CR

ITEM prints as

l,543.97CR

Move +1,543.97 to the same data item and CR is replaced by spaces.

• Plus and Minus Signs

The symbols + and - are similar to DB and CR, except they may occupy the rightmost
or the leftmost character position. If a sending data item is negative, the minus sign
always appears in the receiving item; if it's positive or zero, the plus sign appears only
if + is the editing symbol. For example, if you move

-3 4. 5 1

to

05 ITEM PIC -Z,ZZZ.99

or

05 ITEM PIC +Z,ZZZ.99

the edited result is

•

•

•

•

•

UP-8805

But move

+34.51

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

to the same data items and the edited results are

MM34.51

and

+6M34.51

6-21

Note that insertion of DB, CR, +, AND - depend on a number's sign, thus; the
PICTURE of the sending field should include an S.

• Currency Symbol

You can insert the currency symbol as the leftmost character of a data item. However,
a + or - may precede it. If the sending field has the value

545.29

and the receiving field is described as

05 TOTAL PIC $Z,ZZZ.99

the edited result is

$M545. 29

Two or more currency symbols, plus signs, or minus signs represent floating insertion
characters; you use this type of editing if you want the insertion character to appear
immediately to the left of the first nonzero character, rather than in a fixed position
that may be several spaces from the leftmost digit of the number. For instance, if the
sending item equals

125.39

and you describe the receiving item as

05 SALES PIC $ZZZ,ZZ9.99

or

05 SALES PIC -ZZZ,ZZ9.99

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

the edited result is

$£1.6Ml25.39

or

-£1.6M 1 2 5 . 3 9

But if you describe the receiving item as

05 SALES PIC $$$$,$$9.99

or

0 5 SA l E S P I C ---- , -- 9 . 9 9

the edited result is

$125.39

or

-125.39

6-22
Update A

• Floating Symbol

Include one more floating symbol than is needed to represent all the characters in the
data item. If the sending field equals

725.44

and the receiving item is

05 COMM PIC $$$.99

the most significant digit is truncated and the edited result is

$25.44

The data description should be

05 COMM PIC $$$$.99

Then, the edited result is

$725.44

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-23

As with Z, if you use a floating insertion character for all character positions, and the
value is zero, the data item contains spaces. But if the value is a number less than 1,
the edited result is the same as if the PICTURE was

05 ITEM PIC $$$.99

0 5 I T EM P I C --- . 9 9

or

05 ITEM PIC +++.99

Table 6-1 summarizes the PICTURE symbols and what they represent; Table 6-2 includes
examples of the various types of editing; and Table 6-3 lists the order of precedence of the
characters used as symbols in a PICTURE clause. An X at an intersection indicates the
symbol at the top of the column may precede the symbol at the left of the row. When a
symbol appears twice, the first appearance represents its use to the left of the decimal
point, and the second appearance represents its use to the right of the decimal point.

Table 6-1. Summary of PICTURE Symbols

Picture
Represents

Symbol
Picture

Represents
Symbol

A An alphabetic character or space CR Insert character CR if data
item is negative; insert

B Insert a blank or space two blanks or spaces if
value is positive or zero

p Assumed decimal point to left or
right of data item DB Insert character DB if data

item is negative; insert
s An operational sign is associated two blanks if value is

with data item positive or zero

v Assumed decimal point in data Plus(+) Insert in character position if
item data item value is positive or

zero
x An alphanumeric character

+++. . .+ If more than one consecutive
z Suppression of leading O"s plus is present, indicates

(replaced by blanks or spaces) floating sign.

Asterisk (*) Check protection (replaces Minus (-) Insert in charcter position if
leading O"s with asterisks) data item value is negative

Zero (0) Insert 0 --- ... - If more than one consecutive
minus is present, indicates

9 A numeric character floating sign.

Stroke (/) Insert stroke character Currency Insert in character position
sign ($)

Comma (.) Insert comma
$$$... $ If more than one consecutive

Period (.) Insert actual decimal point $ is present, indicates
floating currency sign.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-24

Table 6-2. Examples of PICTURE Clause Editing

Edit Procedure
Sending Field Receiving Field

Picture Data Picture Data

Alphabetic editing
Blank insertion A(5) ALPHA AAABABA ALP6H6A

Alphanumeric editing
Zero insertion X(5) GLF01 OOXXXOXX OOGLF001
Stroke insertion X(6) 112481 XX/XX/XX 11 /24/81
Blank insertion X(9) 159440701 XXXBXXBXXXX 15964460701

Numeric editing
Zero insertion 9(4) 4315 999900 431500
Stroke insertion 9(5) 32647 99/999 32/647
Blank insertion 9(5) 29141 99B999 29141
Comma insertion 9(4) 3419 9,999 3,419
Decimal point insertion 9(4)V9(2) 416375 9,999.99 4,163.75
CR insertion S9(5)V9(2) +5935198 ZZ,ZZZ.99CR 59,351.98

S9(5)V9(2) -5935198 ZZ,ZZZ.99CR 59,351.98CR
DB insertion S9(5)V9(2) +5935198 ZZ,ZZZ.99DB 59,351.98

S9(5)V9(2) -5935198 ZZ,ZZZ.99DB 59,351.98DB
Fixed plus sign S9(4)V9(2) +003978 +ZZZZ.99 +6639.78

S9(4)V9(2) -003978 +ZZZZ.99 -6639.78
S9(4)V9(2) +003978 ZZZZ.99+ 39.78+
S9(4)V9(2) -003978 ZZZZ.99+ 39.78-

Fixed minus sign S9(4)V9(2) +003978 -ZZZZ.99 39.78
S9(4)V9(2) -003978 -ZZZZ.99 -6639.78
S9(4)V9(2) +003978 ZZZZ.99- 39.78
S9(4)V9(2) -003978 ZZZZ.99- 39.78-

Fixed currency sign 9(6)V9(2) 04124578 $ZZZ,ZZZ.99 $641,245. 78
Floating plus sign S9(4)V9(2) +000009 ++.+++.++ +.09

S9(4)V9(2) 000000 ++.+++.++ 6
S9(4)V9(2) +002435 ++,+++.99 +24.35
S9(4)V9(2) -002435 ++,+++.99 -24.35

Floating minus sign S9(4)V9(2) +000009 -- --- -- .09
S9(4)V9(2) -000009 --,---.-- -.09
S9(4)V9(2) +002435 --,---.99 24.35
S9(4)V9(2) -002435 --,---.99 -24.35

Floating currency symbol S9(4)V9(2) 000147 $$,$$$.99 $1.47

•

•

•

UP-8805

•
Second
Symbol

Nonfloating B
Insertion
Symbols 0

I

+or -

+or -

CR or DB

cs

• Z or *

Z or *

Floating +or -
Insertion
Symbols +or -

cs

cs

9

AX

Other
Symbols s

v

p

p

•

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Table 6-3. PICTURE Character Precedence Chart

First Symbol

Nonfloating Floating
Insertion Symbols Insertion Symbols

+ + CR * * + +
or or or or or or or

B 0 I - - DB cs z z - - cs cs

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x

x

x x x x x x x

x x x x x x x x x

x x x x x x

x x x x x x x x

x x x x x x

x x x x x x x x

x x x x x x x x x x

x x x

x x x x x x x x x

x x x x x x x x x

6-25

Other
Symbols

A
or

9 x s v p p

x x x x

x x x x

x x x x

x x x

x

x x x x

x x x x

x x

x x

x x

x x x x x

x x

x x x

x x x

UP-8805

6.2.3. USAGE Clause

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-26

The USAGE clause specifies the form in which a data item is stored. In the format,
COMPUTATIONAL and COMP are equivalent. If a numeric data item is used in
computations, you should describe it as COMP. If you do not, the object program must
convert it to COMP format each time it is needed for a computation.

Programmers seldom code USAGE IS DISPLAY (which indicates standard data format)
because all data items not specified as COMP are assumed to be DISPLAY.

You may write the USAGE clause at the elementary or group level. At the group level, the
USAGE clause applies to each elementary item in the group and may not be contradicted
by any elementary item in the group. Thus, the following coding is not valid:

01 TOTALS USAGE IS COMPUTATIONAL.
02 A PIC 9 (5) .

02 B PIC 9 (3) USAGE IS DISPLAY.
02 c PIC 9 (8) .

This coding is valid, however:

01 TOTALS.
02 A PIC 9 (5) USAGE IS COMP.
02 B PIC 9 (3) USAGE IS DISPLAY.
02 c PIC 9 (8) USAGE IS COMP.

6.2.4. SIGN Clause

The S in a PICTURE clause indicates a numeric data item is signed. Normally, the position
and method of representation of that sign are defined by the implementor, but the SIGN
clause allows you to specify the sign's location and, if you use the SEPARATE
CHARACTER phrase, its form.

If you use a SIGN clause, but not the SEPARATE CHARACTER phrase, the sign is
associated with the first or last (LEADING or TRAILING) digit in the item, and the
implementor defines how the sign is represented. If you use the SEPARATE CHARACTER
phrase, the sign is not associated with a digit position; it's a separate character (either - or
+) preceding or following (LEADING or TRAILING) the number.

Suppose a card record has a 5-digit numeric field. If a + or - is punched preceding the
number to indicate its sign, you should describe the field as

05 AMOUNT PIC S9(5)
SIGN IS LEADING SEPARATE CHARACTER.

In this example, the S is counted in the size of the item; i.e., AMOUNT has six rather than
five character positions.

You cannot use the SIGN clause in the description of a COMPUTATIONAL item.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6.2.5. SYNCHRONIZED Clause

6-27

Main storage in some computers is organized so that it contains natural addressing
boundaries. The SYNCHRONIZED clause aligns elementary data items on these natural
boundaries. That is important, because some computers cannot perform certain operations
on data not so aligned. You never have to use the SYNCHRONIZED clause, but when you
don't, the program executes less efficiently - the compiler must generate extra instructions
that align data items not stored on proper boundaries.

The SYNCHRONIZED clause is implementor-dependent (it does not work the same way in
all operating environments). Commonly, it's included only in data descriptions of items
used in arithmetic operations or as subscripts.

You specify the SYNCHRONIZED clause (SYNC is equivalent) to ensure that an elementary
data item is aligned so that no other data item occupies any of the character positions
between the leftmost and rightmost natural boundaries containing the item. The natural
boundaries are not the same in each operating environment. Assume the word, which
consists of four character positions, represents the natural boundaries. If you code

01 GROUP.
02 A

02 B
02 c

PIC
PIC
PIC

999 COMP.
999 COMP.
999 COMP.

the items may be stored as follows:

But if you code

01 GROUP.
0 2 A

0 2 B

0 2 c

PIC
PIC
PIC

Word Word Word

IAIA IA Is Is Is le lclcl

999
999
999

COMP
COMP
COMP

SYNC LEFT.

SYNC LEFT.

SYNC LEFT.

the items are stored this way:

Word Word Word

FILLER slack bytes (f) are inserted to fill character positions that are part of a word, but are
not needed by the data item. Thus, each item may begin on a word boundary .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-28

As you might expect, the LEFT option positions the item beginning at the leftmost position
within the boundary, and the RIGHT option positions the item so it ends at the rightmost
character position within the boundary. Thus,

01 GROUP.
02 A PIC 999 SYNC RIGHT COMP.
02 B PIC 999 SYNC RIGHT COMP.
02 c PIC 999 SYNC RIGHT COMP.

is stored as

Word Word Word

I f I A I A I A I f I B I B I B I f I c I c I c

In some operating environments, you use SYNC without the LEFT or RIGHT option (the
specific positioning of the synchronized item is determined by the implementor).

If you use the SYNCHRONIZED clause in the description of an item that contains or is
subordinate to an item that contains an OCCURS clause, each occurrence of the data item
is synchronized.

6.2.6. JUSTIFIED Clause

You use the JUSTIFIED clause to make an alphabetic or alphanumeric data item right
justified. When you describe a receiving item as JUSTIFIED, the rightmost character of the
sending item is aligned with the rightmost position of the receiving item.

Normally, characters are moved one at a time, from left to right, from the sending item to
the receiving item, until the receiving item is filled.

If the sending item equals SENDING and the receiving item is described as

02 REC PIC x (9).

the the value is stored in REC as

SENDINGM

Now, if the REC description is changed to

02 REC PIC x (5).

the the value stored in A is

SENDI

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-29

The JUSTIFIED clause has the reverse effect (it moves characters to the receiving item
from right to left).

If

SENDING

is sent to an item described as

02 REC PIC X(9) JUST RIGHT.

it is stored as

MS ENDING

Now, if the description is changed to

02 REC PIC X(5) JUST RIGHT.

the value is stored as

NDING

Do not specify the JUSTIFIED clause for a data item that is numeric or for which editing is
specified.

6.2.7. BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause provides for the blanking of an item when its value is
zero. It may be specified only for an elementary item whose PICTURE is numeric or
numeric edited.

If you move zeros to

05 TOTAL PIC 999 BLANK WHEN ZERO.

the value of TOTAL becomes spaces .

UP-8805

6.2.8. VALUE Clause

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-30

The VALUE clause assigns a value to a data item. We used the VALUE clause in the
working-storage section in the program in Section 2 to define constants and to initialize
data items used in computations.

It has two formats:

Format 1:

VALUE IS literal

Format 2:

88 condition-name;
{

VALUE IS } I iteral-1
VALUES ARE

[literal-3
[{

THROUGH}
THRU

literal-4]] ...

[{
THROUGH}
THRU

literal-2]

Format 1 is not valid in the file or linkage sections; Format 2 is only valid in condition
name entries (6.2.9).

Make certain the literal in the VALUE clause is compatible with the data item PICTURE
(i.e., if the category of the item is numeric, the literal must be numeric).

Note that nonnumeric literals are enclosed by quotation marks, as in

02 CLASS PIC xx VALUE "lA".

and numeric literals are not:

02 CLASS PIC 99 VALUE 25.

A figurative constant may replace the literal. The entry initializes TOTAL to zeros:

02 TOTAL PIC 9(9)V99 VALUE ZEROS.

Do not use the VALUE clause (except in condition-name entries) in the description of an
item that contains, or is subordinate to, an item that contains an OCCURS or a REDEFINES
clause. Thus, the following is invalid:

02 CLASS OCCURS 5 TIMES.
03 DIV PIC X(2) VALUE "10''.
03 TERR PIC x (2) VALUE "2C".

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

If you wish to assign values to a table, you code

0 2 CL-VAL PIC x (2 0) VALUE ''102Cl42Bl83ElAF02C52''.
0 2 CL-REDF REDEFINES CL-VAL.

04 CLASS OCCURS 5 TIMES.
06 DIV PIC x (2).
06 TE RR PIC x (2).

6-31

You may use the VALUE clause in the description of a group item. When you do, the literal
must be nonnumeric or a figurative constant, and you may not use JUSTIFIED,
SYNCHRONIZED, COMPUTATIONAL, or VALUE in the description of any elementary item
in the group. Thus,

02 POLICY-NO
03 DIV
03 CLASS

VALUE ''003124AA21''.
PIC X(6).

PIC X(4).

the DIV is assigned an initial value of 003124 and CLASS equals AA21.

6.2.9. Conditional Variables

Conditional variables help make a program self-documenting. They allow you to assign
meaningful names to the possible values of a data item; then, in the procedure division,
use those names (called condition-names) to test its value.

You assign the names by using the VALUE clause in an 88-level entry immediately
following the conditional variable. For instance, the coding

02 MARITAL-STATUS PI C X (1) .

may have a value of 1 of 2, for single or married, respectively. You can test its value by
coding

IF MARITAL-STATUS IS EQUAL TO ''l''
IF MARITAL-STATUS IS EQUAL TO ''2''

If you make MARITAL-STATUS a conditional variable, the test can be more readable. You
use 88-level entries to assign the condition-names SINGLE to the value "1" and MARRIED
to "2":

02 MARITAL-STATUS PIC X(l).
88 SINGLE VALUE "l".
88 MARRIED VALUE "2" .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Then, testing MARITAL-STATUS is simplified:

IF SINGLE .. .
IF MARRIED .. .

6-32

when MARITAL-STATUS equals 1, the first statement is true; when it equals 2, the
second is true.

You may use Format 2 of the VALUE clause to assign a range of values to a conditional
variable. If you code

02 MONTH PIC X(2).
88 FIRST-QUARTER
88 SECOND-QUARTER
88 THIRD-QUARTER
88 FOURTH-QUARTER

VALUES
VALUES
VALUES
VALUES

ARE
ARE
ARE
ARE

.. 01" THRU "0 3 ...

.. 04 .. THRU "06 ...

. . 07' ' THRU "09 ...
"10 .. THRU .. 12 ...

and MONTH equals 05, the following is true and the range of values includes the end
values.

IF SECOND-QUARTER ...

When you use the THRU option, the literals must be in ascending sequence, and the
following is invalid:

88 FIRST-QUARTER VALUES ARE "03" THRU "01".

A condition-name, like a data-name, must be unique in the program or be made unique
through qualification and indexing or subscripting. If you code

02 CLASS OCCURS 10 TIMES PIC X(4).
88 SPECIAL-GROUP VALUE "Cl41".

SPECIAL-GROUP, like CLASS, must be subscripted, as in

IF SPECIAL-GROUP (4)

This is equivalent to coding

IF CLASS (4) IS EQUAL TO ''Cl41'' ...

If you code

02 CLASS OCCURS 10 TIMES PIC x (4).
88 SPECIAL-GROUP VALUE "Cl41".

02 TERR OCCURS 12 TIMES PIC x (4).
88 SPECIAL-GROUP VALUE "682K".

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

SPECIAL-GROUP must be qualified and subscripted, as i~

IF SPECIAL-GROUP OF TERR (6)

This is the same as

IF TERR (6) IS EQUAL TO ''682K''

6.2.10. RENAMES Clause

6-33

You use the RENAMES clause to assign alternate names to elementary items within a
record. It is similar to the REDEFINES clause (it allows you to reference data items in more
than one way) but, since it has no PICTURE clause associated with it, it does not provide
an alternate description of the items.

A REDEFINES clause may redefine an entire record. The RENAMES clause may not - it
renames only elementary items or groups of elementary items within a record. It may not
rename another entry that has a RENAMES clause, or a 77- or 88-record entry.

You write the RENAMES clauses (there may be more than one associated with each
record) immediately following the record that contains the elementary items being
renamed. It begins with level-number 66. If you code

01 RECD.
02 A
02 B
02 c

PIC X(2).

PI C X (1) .

PI C X (2) .
66 D RENAMES B.

D references the same area as B.

You use the THROUGH option (THROUGH and THRU are equivalent) to rename a group of
elementary items. If you code

01 RECD.
02 A PIC x (2) .
02 B PIC x (1) .
02 c.

03 D PIC x (3) .
03 E PIC x (2) .

02 F PIC x (2).
66 J RENAMES A THRU D.
66 K RENAMES B THRU F.
66 RENAMES C.

UP-8805

RECD is structured this way:

~A 1-s-
I I I I

J

1 ·

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

L

c

D I
I

·I
K

6-34

E F I
I

.1
J and K are group items that include elementary items A, B, and D, and B, D, E, and F,
respectively. L also is a group item, because it renames a group item· (C).

When you use THRU, the second data-name specified in the clause may not precede the
first; thus, the RENAMES clauses in the following are invalid:

01 RECD.
02 A PIC x (2) .

02 B PIC x (1) .

02 c.
03 D PIC x (3) .

03 E PIC x (2).

02 F PIC x (2) .

66 J RENAMES D THRU B.

66 K RENAMES E THRU C.

In addition, neither of the data-names specified in the THRU clause may have, or be
subordinate to, an item that has an OCCURS clause. Either data-name may be qualified.

The subject of the RENAMES clause (such as J or K in the previous example) may not be
used as a qualifier. It may be qualified only by the associated level 01, FD, CD, or SD
entries (in this case, RECD).

6.3. LEVEL 77 ENTRY

Often you need to define data items (perhaps counters, constants, or subscripts) that have
no logical relationship to other data items and do not need to be subdivided. These belong
in the working-storage section and are called noncontiguous elementary items (level 77
entries).

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

6-35

These entries consist of the level-number 77, a data-name, and a PICTURE clause or
USAGE IS INDEX clause. The other data description clauses may be used if needed. For
example, a subscript may be defined as

77 DIV-SS PI C 9 (2) COMP VALUE 1.

6.4. CODING EXAMPLE

This sample data division is used in a program that reads transactions from a tape,
updates a master inventory file, and prints a report. The bulk of the division is descriptions
(in the file section) of three files - INVENTORY-MASTER, INVENTORY-TRANS, and
PRINT-FILE. Print lines for the report are built in working-storage record areas (PRINT
AREA and TOTAL-PRINT-AREA). The working-storage section also includes two level 77
entries that accumulate totals.

The RECORD CONTAINS and DATA RECORD IS clauses are included in each FD as
documentation. The records in INVENTORY-MASTER and INVENTORY-TRANS are blocked
for efficiency. Both files have standard label records and VALUE OF clauses tell what is
expected in particular fields of the record. Printer files may not be blocked or labeled;
therefore, the FD for PRINT-FILE has no BLOCK CONTAINS clause, and specifies LABEL
RECORDS ARE OMITTED. It does include a LINAGE clause that defines the dimensions of
a logical page. The page body is 75 lines plus 5-line margins at the top and bottom. Lines
70 to 75 form a footing area .

The print areas are set up in working-storage so we can use the VALUE clause to include
literals such as PRINT-AREA and TOTAL ON HAND in TOTAL-PRINT-AREA. The VALUE
clauses in the file section are in the condition-name entries associated with the
conditional variable TRANS-TYPE. The numeric fields in PRINT-AREA and TOTAL-PRINT
AREA are described with editing symbols in the PICTURE clause to suppress printing of
leading zeros.

Data Division Coding:

DATA DIVISION.
FILE SECTION.
FD INVENTORY-MASTER

BLOCK CONTAINS 50 RECORDS
RECORD CONTAINS 68 CHARACTERS
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS ''INVEN-MSTR''
DATA RECORD IS MASTR-RECD.

01 MASTR-RECD.
02 NAME PIC x (10) .
02 PART-NO PIC x (6) .
02 DESC PIC x (2 4).
02 QTY-ON-HAND PIC 9 (9) .
02 QTY-ON-ORDER PIC 9 (9).
02 UNIT-PRICE PIC 9(8)V9(2).

(continued)

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

FD INVENTORY-TRANS
BLOCK CONTAINS 150 RECORDS
RECORD CONTAINS 10 CHARACTERS
LABEL RECORDS ARE STANDARD
VALUE OF TAPE- I DENT IS '' INVEN-TRANS''
DATA RECORD IS INVENTORY-TAPE.

01 INVENTORY-TAPE.
02 TRANS-TYPE PIC X(l).

88 ADD-TO-INVENTORY VALUE "A".

88 SUBTRACT-FROM-INVENTORY VALUE ''B''.
02 TRANS-PART-NO PIC X(6).
02 TRANS-QTY PIC 9(3).

FD PRINT-FILE
RECORD CONTAINS 132 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRINTLINE
LINAGE IS 75 LINES

WITH FOOTING AT 70
LINES AT TOP 5
LINES AT BOTTOM 5.

01 PRINTLINE PIC X(132).
WORKING-STORAGE SECTION
77 TOT-ON-HAND PIC 9 (10) COMP.
77 TOT-ON-ORDER PIC 9(10) COMP.
01 PRINT-AREA.

02 FILLER PIC X(4) VALUE ' 'PART' ' .
02 FILLER PI C X (5) VALUE SPACES.
02 PART-OUT PIC X(6).
02 FILLER PIC x (8) VALUE SPACES.
02 NAME-OUT PIC X(10).
02 FILLER PIC X(8) VALUE SPACES.
02 DESC-OUT PIC X(24).
02 FILLER PIC x (8) VALUE SPACES.
02 ON-HAND-OUT PIC ZZZ,ZZZ,ZZ9.
02 FILLER PIC x (8) VALUE SPACES.
02 ON-ORDER-OUT PIC ZZZ,ZZZ,ZZ9.
02 FILLER PIC x (8) VALUE SPACES.
02 PRICE-OUT PIC 99.
02 FILLER PIC x (9).

01 TOTAL-PRINT-AREA.
02 FILLER PIC X(30) VALUE SPACES.
02 FILLER PIC X(15) VALUE ' ' TOT AL 0 N HAN OM' ' .
02 ON-HAND-TOT PIC Z,ZZZ,ZZZ,ZZ9.
02 FILLER PIC X(15) VALUE SPACES.
02 FILLER P I C X (1 6) VA L U E ' ' T 0 TA L 0 N 0 RD E RM ' ' .
02 ON-ORDER-TOT PIC Z,ZZZ,ZZZ,ZZ9.
02 FILLER PIC X(30) VALUE SPACES.

6-36

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-1

7. Procedure Division

7.1. FORMATS

In the procedure division, you write the instructions needed to solve your problem. The
instructions manipulate data (the data described in the data division and literals).

The procedure division consists of:

1. Statements - Syntactically correct combinations of words and symbols beginning with
a COBOL verb. The statements are joined to form:

2. Sentences - One or more statements ending with a period and space .

3. Paragraphs - One or more sentences from a paragraph (although, technically a
paragraph may consist of a paragraph-name and no sentences).

4. Sections - Not required but in the procedure division you can group paragraphs into
sections. In fact, to take advantage of such features as declaratives and segmentation,
you must use sections.

The procedure division is organized based on one of the following two formats.

Format 1:

PROCEDURE DIVISION [USING data-name-1 [,data-name-2) ...].

[

DECLARATIVES.
·{section-name SECTION [segment-number]. declarative-sentence}

[paragraph-name. [sentence) ...] ...
END DECLARATIVES.

{
section-name SECTION [segment-number].}···
[paragraph-name. [sentence] ...) ...

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Format 2:

PROCEDURE DIVISION [USING data-name-1 [,data-name-2] ...].

{paragraph-name. [sentence] ...) ...

7-2

You cannot mix formats. If you group some paragraphs into sections, you must group all
paragraphs into sections.

Declarative sections are executed only in special situations that may or may not arise
during program execution. USE statements (7.8.1) within the sections define those
situations.

When you use declaratives, they must be at the beginning of the procedure division,
preceded by the key word DECLARATIVES and followed by the key words END
DECLARATIVES. Program execution begins with the first statement of the procedure
division after the declaratives.

7.2. EXPRESSIONS

COBOL expressions are meaningful combinations of data-names, literals, and operators
that reduce to a single value. There are two types of expressions: arithmetic and
conditional. Arithmetic expressions reduce to a single numeric value; conditional
expressions reduce to a single truth value (true or false).

7.2.1. Arithmetic Expressions

You use arithmetic expressions as operands in arithmetic statements or conditional
expressions. There are five types:

1. Identifiers of numeric elementary items. An identifier is a data-name plus any
qualifiers, subscripts, or indexes needed to make that data-name unique. For example:

0 1 IN-RECD.
05 SUBTOT PIC 9 (9).

05 FIN TOT PIC 9 (9) .

05 TYPE PIC 9.

01 OUT-RECD.
05 SUBTOT PIC 9 (9) .

05 FINTOT PIC 9 (9) .

The data-name TYPE is unique and this is an identifier. The data-names SUBTOT and
FINTOT, however, are not unique; thus, to be identifiers they must be qualified as in

SUBTOT OF IN-RECD

or

FINTOT OF OUT-RECD

•

•

•

,--------------

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2. Numeric literals. For example:

75

3. Identifiers and literals separated by arithmetic operators:

TRANS-AMOUNT + 15

4. Arithmetic expressions enclosed in parentheses:

(TRANS-AMOUNT+ 15)

5. Two or more arithmetic expressions separated by arithmetic operators:

(TRANS-AMOUNT+ 15) * 2.5

7-3

Five binary and two unary arithmetic operators are valid operators in arithmetic
expressions.

The binary operators are:

+ Addition

Subtraction

* Multiplication

I Division

** Exponentiation

The unary operators are:

+ Multiplication by +1

Multiplication by -1

A space must precede and follow an arithmetic operator.

A unary operator may precede any arithmetic expression.

Arithmetic expressions are evaluated, from left to right, in this order:

1st - Unary plus and minus

2nd - Exponentiation

3rd - Multiplication and division

4th - Addition and subtraction

UP-8805

Thus:

4+5*3-2**3

Equals

4+5*3-8

Which equals

4 + 15 - 8

Which equals

19 - 8

Which equals

11

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-4

You can clarify arithmetic expressions (or change the order in which their elements are
evaluated) by using parentheses. Elements within parentheses are evaluated first.
Although it is evaluated in the same way, the expression in the previous example is easier
to read when written as

4 + (5 • 3) - (2 •• 3)

When you change the location of the parentheses, you change the order in which the
elements are evaluated, thus changing the value of the expression.

Thus:

(4 + 5) • (3 - 2 •• 3)

Equals

9 • (3 - 8)

Which equals

9 • - 5

Which equals

- 45

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-5

When parentheses are nested within other parentheses, the evaluation proceeds from the
innermost to the outermost set. Note the order of evaluation of this expression:

22+(18-12)+ *5)-40
22 + + (36 • 5) - 40

2 2 + 6 + ~111rnnitaffi~lllJ
r,11111m1i1111 + 1 8 0 - 4 0

tll!'llllll!llii\ - 4 0

'l'•llllli$1tilll
168

- 40

Expressions must begin with a left parenthesis, a unary operator, or a variable (an
identifier or literal), and end with a right parenthesis or a variable. Each left parenthesis
must have, and be to the left of, a corresponding right parenthesis.

Table 7-1 summarizes how operators, variables, and parentheses are combined to form
arithmetic expressions. P indicates a permissible combination; an I indicates an invalid
combination.

Table 7-1. Combination of Symbols in Arithmetic Expressions

Second Symbol
First

Symbol
Variable * I ** - + Unary+ or - (I

Variable I p I I p

* I ** + - p I p p I

Unary+ or - p I I p I

(p I p p I

I I p I I p

Thus, a varial:;>le such as SUBTOT may be followed only by *, /, **, -, or + or (provided
there is a corresponding left parenthesis) a right parenthesis. Thus, the following are valid
arithmetic expressions:

SUBTOT + (.25 * RATE)
(- FINTOT I .05)
- . 0 6 - - . 0 6 * RA TE
A** B

Invalid expressions are as follows:

+ - .06 • 5

(SUBTOT + (.25 • RATE)
SUBTOT FINTOT + 3
- 21 (SUBTOT I .05)

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-6

7.2.2. Conditional Expressions

You use conditional expressions in IF, PERFORM, and SEARCH statements to control
program branching (control goes one way if the expression is true, another way if it is
false). There are two categories of conditional expressions: simple and complex.

7.2.2.1. Simple Conditions

One simple condition is called a relation condition; it is the comparison of two operands,
each represented by an identifier, a literal, or the value resulting from an arithmetic
expression. The format is:

{

identifier-I } IS [NOT] GREATER THA

literal-I IS [NOT] LESS THAN

arithmetic-expression-I IS [NOT] lQ.!!!.h TO

NOTE:

IS [NOT]>

IS [NOT] <
IS [NOT]

{

identifier-2 l
literal-2

arithmetic - expression - 2

The required relational characters >, <, and = are not underlined to avoid confusion with
other symbols such as ~ (greater than or equal to).

The first operand is the subject of the condition; the second is the object. The subject and
object may not both be literals.

The operator between the operands (called relational operator) specifies the type of
comparison. Each reserved word comprising the relational operator must be preceded and
followed by a space.

When you use NOT in relational operators, the condition tested for is exactly opposite to
what is true when NOT is not present. For instance:

IF DAMAGE NOT= I000

then

DAMAGE >or < I000

is true, but

DAMAGE I000

is false.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-7

When both operands are numeric, their algebraic values are compared; the number of
digits in the operands and their USAGE need not be the same. Thus,

1 2

is equal to

12.BB

Unsigned numeric operands are considered positive. Zero is considered a unique value
regardless of the sign.

When both operands are nonnumeric (alphabetic, alphanumeric, alphanumeric edited,
numeric edited) or when just one is numeric (it must be an integer), the comparison is
based on the program collating sequence. A character that precedes another in the
collating sequence is considered less than that character.

When the operands are the same size, the comparison begins with the leftmost characters
and continues until a pair of unequal characters are encountered (then the operand
containing the character that is higher in the collating sequence is considered greater). If
no unequal characters are found, the operands are equal. The expression

''BIT'' GREATER THAN ''BIG''

is true if T follows G in the collating sequence.

When the operands are of unequal size, spaces are added to the smaller operand until the
operands are the same size. For instance, the expression

''FORT'' LESS THAN ''FORTH''

is equivalent to

'' FORT6'' LESS THAN ''FORTH''

and is true if 6. precedes H in the collating sequence.

Another simple condition is the condition-name condition which is another way of
expressing a relational condition. The rules for both are the same. The difference is that
instead of using two operands, as you do in a relational condition comparison, you only
have to give the condition-name in a condition-name comparison, such as

IF condition-name

or

IF NOT condition-name

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-8

When the comparison takes place, the condition-name is compared to a conditional
variable and, if the two are equal, the comparison is true. To use this type of comparison
you must assign a value to the condition-name and indicate the conditional variable
associated with the condition-name. This is done by using 88-level entries under a data
item. The 88-level entries, assigned a value with the VALUE clause, are the condition
names and the data item is the conditional variable. The condition-name comparison is a
good way to assign descriptive names to some otherwise unclear test conditions making a
program easier to read. (For more detail and examples, see 6.2.9).

Another condition that can be tested in the procedure division is the switch-status
condition. This tests the status of an implementor-defined switch which is either on or off.
The implementor-defined switch is identified in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION by an implementor-name and a condition-name (see 5.3). The
result of a switch-status condition test is true if the switch is set to the specified position
corresponding to the condition-name.

Another type of simple condition is the class condition; it determines whether an operand
is numeric (consists entirely of the characters 0-9) or alphabetic (consists entirely of the
letters of the alphabet and the space). The format is:

identifier IS [NOT]{NUMERIC }
ALPHABETIC

You cannot use the NUMERIC test for an item described in its PICTURE clause as
alphabetic, or for a group item composed of elementary items whose PICTURE clauses
contain the S symbol. Similarly, you cannot use the ALPHABETIC test for an item
described as numeric.

When you don't use S in the PICTURE clause of an item, it tests as numeric only if its
contents are numeric and no operational sign is present. When S is in the PICTURE
clause, the item tests as numeric only when its contents are numeric and a valid
operational sign is present. The + and - symbols are the valid signs for items described
with the SIGN IS SEPARATE clause; otherwise, the implementor defines what constitutes
a valid sign.

Another simple condition (the sign condition) determines whether an arithmetic expression
is less than (NEGATIVE), greater than (POSITIVE), or equal to zero. The format is:

arithmetic-expression is [NOT]{POSITIVE)
NEGATIVE

ZERO

•

•

•

.....-------------------- ----

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

The arithmetic expression must reference at least one variable; thus,

2 + 3 • 5 POSITIVE

is not a valid expression, but

2 + 3 • COUNTER POSITIVE

is valid.

7.2.2.2. Complex Conditions

7-9

Complex conditions use the logical connectors AND or OR to combine conditions, or the
logical operator NOT to negate conditions. An expression that combines conditions with
the AND operator is true if both conditions are true, and false if one or both of the
conditions are false. If you use OR, the expression is true if one or both of the conditions
are true, and false if both conditions are false. The NOT operator reverses truth values; the
expression is true if the condition that is negated is false, and false if it is true.

In other words:

and

and

TRUE AND TRUE = TRUE
TRUE AND FALSE = FALSE
FALSE AND FALSE = FALSE

TRUE OR TRUE = TRUE
TRUE OR FALSE = TRUE
FALSE OR FALSE = FALSE

NOT (TRUE AND TRUE) = FALSE
NOT (TRUE AND FALSE) = TRUE
NOT (TRUE OR FALSE) = FALSE

One type of complex condition, negated simple conditions, effects the opposite truth value
for simple conditions. Its format is:

NOT simple-condition

UP-8805

So, if the simple condition

A = B

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

is true, the negated simple condition

NOT A B

is false

7-10

When conditions include AND or OR, they are called combined conditions. The format is:

con d i t i on ({ ~: D v on d i t i on) ...

In the format, condition may be a

• simple condition;

• negated simple condition;

• combined condition;

• negated combined condition (NOT followed by a combined condition enclosed within
parentheses); or

• permissible combinations of the preceding as defined in Table 7-2. (The table also
shows the ways you may parenthesize conditions and logical operators.)

Table 7-2. Combinations of Conditions, Logical Operators, and Parentheses

Location in In a left-to-right sequence of elements:

conditional
Given the following expression Element (when not Element (when not

element: first) may be last) may be
immediately immediately

First Last preceded by only: followed by only:

Simple condition Yes Yes OR, NOT, AND, (OR, AND,)

OR or AND No No simple-condition,) Simple condition,
NOT, (

NOT Yes No OR, AND, (Simple condition, (

(Yes No OR, NOT, AND, (Simple condition,
NOT,(

) No Yes Simple condition,) OR, AND,)

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-11

Often you can abbreviate combined relation conditions. If simple relation conditions
combined with AND or OR have the same subject, you omit the subject in all but the first
condition. For instance, you can write either

A B AND A > c
A B AND > c

And you can write either

A > B AND A < C AND A = D OR A NOT E

A > B AND < c AND = D OR NOT E

If both the relational operator and the subject are repeated you may drop all but the first
occurrence of both of them:

A = B AND A = C

This equals

A = B AND c

Also:

A > B AND A > C AND A > D AND A > E

This equals

A > B AND C AND D AND E

Note that you can omit the relational operator only when the immediately preceding
operator is the same:

A > B OR A > C AND A D OR A E OR A NOT > F

The abbreviation is:

A > B OR C AND = D OR E OR NOT > F

The word NOT can be confusing in an expression, because sometimes it is part of a
relational operator and sometimes it is a logical operator:

NOT A NOT = B

The first NOT is a logical operator and the second is part of the relational operator NOT=.
The rule is that if NOT is followed by EQUAL(=), GREATER (>), or LESS (<) it is part of a
relational operator; otherwise, it is a logical operator indicating an opposite truth value for
the condition.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-12

When you negate combined conditions, use parentheses to show that the negation applies
to more than the immediately following simple condition. To negate

A NOT = B AND = C

you must code

NOT (A NOT B AND c)

rather than

NOT A NOT = B AND = C

And the latter is equivalent to

NOT (A NOT= 8) AND (A= C)

Not.e the difference in the evaluation of the expressions.

If the simple conditions A NOT = B and A = C are both false, the expression

NOT (A NOT = B AND A = C)

is evaluated as

NOT ((false) AND (false))

or

NOT (false)

or true.

But the expression

NOT A NOT = B AND A C

is evaluated as

NOT (false) AND (false)

or

true AND false

or false.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-13

As with arithmetic expressions, you can change the order of evaluation of complex
conditions by using parentheses. Conditions within parentheses are evaluated first, and,
within nested parentheses, the evaluation proceeds from the innermost to the outermost
sets of parentheses.

When you do not use parentheses, or when parenthesized conditions are at the same level
of inclusiveness, complex conditions are evaluated in this order:

1. Values are established for arithmetic expressions.

2. Truth values for simple conditions are established in the following order:

a. Relation (following the expansion of any abbreviated conditions)

b. Class

c. Condition-name (88-level entries)

d. Switch-status (switch defined in SPECIAL-NAMES paragraph)

e. Sign

3. Truth values are established for negated simple conditions .

4. Truth values are established for combined conditions, with AND logical operators
taking precedence over OR.

5. Truth values are established for negated combined conditions.

When parentheses do not completely specify the sequence of evaluation, the order of
evaluation of operations on the same hierarchical level is from left to right.

Following are examples of abbreviated combined relation conditions and their expanded
equivalents, evaluated to arrive at truth values. Assume for all examples that A= 8, B =
5, C = 12, and D = 10.

Example 1:

If the abbreviated condition is

A > B AND NOT < C OR D

the expanded equivalent is

((A > B) AND (A NOT < C)) OR (A NOT < D)

This equals

(true AND false) OR (false)
false OR false
fa I s e

--- ---------------------------------
UP-8805

Example 2:

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

If the abbreviated condition is

A NOT EQUAL B OR C

The expanded equivalent is

(A NOT EQUAL B) OR (A NOT EQUAL C)

This equals

true OR true
t rue

Example 3:

If the abbreviated condition is

NOT A = B OR C

The expanded equivalent is

(NOT (A= B)) OR (A= C)

This equals

(NOT false) OR false
true OR false
t rue

Example 4:

If the abbreviated condition is

NOT (A > B OR < C)

The expanded equivalent is

NOT ((A> B) OR (A< C))

This equals

NOT (true OR true)
NOT (true)
fa I s e

7-14

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Example 5:

If the abbreviated condition is

NOT (A NOT > B AND C AND NOT D)

The expanded equivalent is

NOT ((((A NOT> B) AND (A NOT> C)) AND (NOT (A NOT> D))))

This equals

NOT (((false AND true) AND (NOT true)))

NOT ((false AND false))

NOT (false)

t rue

7.3. STATEMENTS AND SENTENCES

7-15

Statements are the basic functional components of COBOL procedures. Just as clauses
make up sentences in normal English, statements make up COBOL sentences. There are
three types of statements: conditional, compiler-directing, and imperative .

7.3.1. Conditional Statements

Conditional statements specify that truth values of conditional expressions are to be found,
and the truth values determine how the program proceeds. For instance, when the
following is executed:

IF LINE-COUNT> 56 PERFORM HEADING-ROUTINE
ELSE G 0 T 0 MA I N

the truth value of the expression

LINE-COUNT> 56

determines where control passes. When the expression is true, control passes' to

PERFORM HEADING-ROUTINE

When the expression is false, control passes to

GO TO MAIN

Within the IF statement, the PERFORM HEADING-ROUTINE and GO TO MAIN are
imperative statements. (See 7.3.3.)

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-16

Table 7-3 lists the COBOL verb and required phrases that constitute valid conditional
statements. Note that except for the IF and SEARCH verbs, these verbs form conditional
statements only when used with the phrases listed in the table. Thus, if you use ADD
without the SIZE ERROR option, the statement is not conditional.

Table 7-3. Valid Conditional Statements

Verb Required Phrase

ADD SIZE ERROR

CALL OVERFLOW

COMPUTE SIZE ERROR

DELETE INVALID KEY

DIVIDE SIZE ERROR

IF

MULTIPLY SIZE ERROR

READ AT END or INVALID KEY

RECEIVE NO DATA

RETURN AT END

REWRITE INVALID KEY

SEARCH

START INVALID KEY

STRING OVERFLOW

SUBTRACT SIZE ERROR

UNSTRING OVERFLOW

WRITE INVALID KEY or END-OF-PAGE

7.3.2. Compiler Directing Statements

Compiler directing statements direct the compiler to take specific actions during
compilation. They consist of a compiler directing verb (COPY or USE) and its operands. For
example:

COPY MASTR-RECORD OF POLICY-LIB

This is a compiler directing statement. It directs the compiler to insert source code
(MASTR-RECORD) taken from an external library named POLICY-LIB.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7.3.3. Imperative Statements

7-17

Statements that are not conditional or compiler directing are imperative statements. They
indicate specific unconditional actions to be taken by the object program.

Table 7-4 lists the COBOL verbs used for constructing valid imperative statements and
shows the verb/phrase combinations that are invalid. The phrases shown must be
excluded from the statement if the associated verb is also in the statement.

Table 7-4. Valid Imperative Statements

Verb Excluded Phrase Verb Excluded Phrase

ACCEPT MULTIPLY SIZE ERROR

ADD SIZE ERROR OPEN

ALTER PERFORM

CALL ON OVERFLOW READ AT END or INVALID KEY

CANCEL RECEIVE NO DATA

CLOSE RELEASE

COMPUTE SIZE ERROR REWRITE INVALID KEY

DELETE INVALID KEY SEND

DISABLE SET

DISPLAY SORT

DIVIDE SIZE ERROR START INVALID KEY

ENABLE STOP

EXIT STRING ON OVERFLOW

GO SUBTRACT SIZE ERROR

INSPECT UNSTRING ON OVERFLOW

MERGE WRITE INVALID KEY or END-OF-PAGE

MOVE

An imperative statement may consist of a sequence of imperative statements:

IF INDICATOR= ''YES''

ADD 1 TO TOTAL

MOVE ''NO'' TO INDICATOR

GO TO MAIN .

The last three lines of code are considered one imperative statement.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-18

7.4. INPUT-OUTPUT VERBS

FD entries in the data division describe the input-output files and the SELECT statement in
the environment division associates the files with external devices. In the procedure
division, input-output verbs control the flow of data between main storage and the devices;
that is, to read data from, or put data into, the files.

The input-output verbs described in 7.4.1 through 7.4.10 are OPEN, CLOSE, READ,
WRITE, REWRITE, DELETE, START, DISPLAY, ACCEPT and STOP (literal). Other input
output verbs are discussed in Section 11: DISABLE (11.8), ENABLE (11.9), RECEIVE
(11.10), and SEND (11.11).

7.4.1. OPEN Statement

OPEN statements prepare files for processing. The preparation needed (checking labels,
ensuring physical presence of files, etc.) varies from implementor to implementor. What is
important is that you must open a file before you use input-output verbs such as READ,
WRITE, and REWRITE to access it.

OPEN statements also allow you to access the file's record areas (the areas defined by the
01-level records that follow FD entries). Note that making a file record area available does
not release or obtain its first data record - to do that you need an input-output verb such
as READ.

The format for the OPEN statement is:

0 p ENI I Np u T f i I e - name - 1 f.R Ev ER s ED l [· f i I e - name - 2 rR Ev ER s ED l] ...) ...
Lw1TH NO REWINDj LWITH NO ~

OUTPUT file-name-3[WITH NO REWINDJ(.file-name-4[WITH NO REWIND]] ...

!....:..Q_ file-name-5[,file-name-6] ...

EXTEND f i le-name-7[,f i le-name-8] ...

When you open files, you must specify whether they are used as input, output, 1-0, or
extend.

Opening files as 1-0 allows you to access or replace existing records on mass storage
devices. 1-0 files act as input files when you read records and output files when you store
the updated records (using the REWRITE verb) in their original record positions in the files.

In the following coding sequence DISK-FILE is opened as 1-0, and the first record is read
and moved to NEW-RECD. During processing, appropriate changes are made to NEW
RECD, and the updated record is written to the same location on the disk as the record
just read.

OPEN I -0 DISK-Fl LE.

READ DISK-FILE INTO NEW-RECD AT END GO TO EOJ.

} """; "'
REWRITE DISK-FILE FROM NEW-RECD.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-19

The file descriptions for files you open as input or 1-0 must be the same as when the files
were created.

When you use the OUTPUT option, successful completion of an OPEN statement prepares
for new file creation. At that point, the file contains no data records. You move records
into the file using input-output verbs such as WRITE.

Normally, OPEN statements position files at their beginning. Options available for tape
files, however, allow you to position files at their end.

The EXTEND option is for adding records at the end of existing sequential files:

OPEN EXTEND MASTER-FILE

This positions MASTER-FILE immediately following its last record. Then, use WRITE
statements to add records as if the file was opened in output mode. Do not extend a file
that is on a tape containing more than one file.

You can read sequential files backwards (that is, beginning with the last record and ending
with the first) by opening them reversed. You cannot use the REVERSED option for files
contained on more than one reel or unit, or on devices for which the term rewinding is not
applicable. (The specific definition of a reel or unit in your environment is given by the
implementor.) If you code the following

OPEN INPUT MASTER REVERSED

the first READ statement for MASTER retrieves the last record in the file, and subsequent
READ statements obtain the file's records in reverse order.

The NO REWIND option also is valid only for tape files. You use it to open files already
positioned at their beginning, perhaps because the preceding file on the same reel has just
been closed with NO REWIND option. When you code:

OPEN INPUT MASTER WITH NO REWIND

the OPEN statement does not reposition the file (MASTER).

With the OPEN statement, you can open as many files as you want regardless of their use,
organization, or access. So, if your program uses five files you might code

OPEN INPUT FILE-I FILE-2
OUTPUT FILE-3 FILE-4
1-0 FILE-5 .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-20

7.4.2. CLOSE Statement

When you want to access files, you open them; similarly, when you finish using files, you
must close them. CLOSE statements initiate closing operations specified by the
implementor, including any applicable ending label processing. The format is:

~ tile-name-l~~}LWITH NO ~J~[tile-name-2~~}Lw1TH NO REWIND~~···
UNIT FOR REMOVAL UNIT FOR REMOVAL
~- -~

WITH{NO REWIND} WITH{NO REWIND}
LOCK LOCK

As in the OPEN statement, one CLOSE statement may close more than one file. Unlike the
OPEN statement, you do not have to specify whether the files are input, output, 1-0, or
extend.

Once you close a file, you may not use any of the input-output verbs that access it without
first using an OPEN statement to reopen it. You may open and close a file as often as you
like. Just be certain you only access files that are in open mode and that all files are in
close mode when program execution ends.

If you close a file and you want to be certain that you do not inadvertently reopen it during
the same run unit, you close it WITH LOCK:

CLOSE MASTER WITH LOCK

When this is executed, the statement OPEN INPUT MASTER is invalid. Generally,
statements like either CLOSE THE-FILE or CLOSE THE-FILE WITH LOCK are sufficient for
closing files; however, when the files are on reel or unit devices, special options allow you
to control reel switching and rewinding.

The CLOSE or CLOSE WITH LOCK statement, as part of closing operations, normally
repositions files at their beginning. If you want the file to remain in its current position,
use the CLOSE verb with the NO REWIND option.

When you process sequential files contained on more than one reel or unit (tape files as
an example), the implementor makes certain that when one reel ends, the next record is
read from, or written to, another reel. This switch to the next reel is automatic (you don't
have to include extra coding). You can use the REEL option (REEL and UNIT are equivalent)
of the CLOSE statement to control the switching yourself.

For instance, suppose you are reading a file called MASTER that is contained on two reels.
Before completing processing of the first reel, you want to skip to the second reel. If you
code

CLOSE MASTER REEL

•

•

•

.....--------·----------

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

the reel swap procedures are executed and the next statement

READ MASTER

7-21

retrieves the first record on the second reel. The CLOSE statement with the REEL option
does not close a file; MASTER remains in open mode, but the first reel of MASTER is in
effect closed (it is repositioned at its beginning and cannot be accessed again unless the
file is closed and then reopened).

If you don't plan to reaccess the first reel, you can add FOR REMOVAL to the CLOSE REEL
statement:

CLOSE MASTER REEL FOR REMOVAL.

This logically removes the reel from the run unit, thus freeing a tape drive for use in other
run units.

If you close a reel WITH NO REWIND, it is not repositioned.

Remember, when you have finished processing the last reel of a multireel file, you must
close the file usihg a CLOSE statement without the REEL option .

7.4.3. READ Statement

READ statements retrieve records from files. For sequential access, the READ statement
retrieves the next record in sequence. For random access, the READ statement retrieves a
record specified by the value of a key field. The format is:

READ file-name [NEXT] RECORD [INTO identifier]

[; AT~ imperative-statement]

[; KEY IS data-name]

[; INVALID KEY imperative-statement]

Successful execution of a READ statement releases a record into the file's record area.
The INTO option, provided all the records are the same length, moves the record to a work
area, usually in working-storage. If you define MASTER as follows

FD MASTER-FILE

LABEL RECORDS ARE OMITTED.

01 MASTER-RECD PIC X(l0fl).

And an area in working-storage as

fll MASTER-WORK PI C X (1 fl fl) .

UP-8805

The statement

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

READ MASTER-FILE INTO MASTER-WORK

7-22

puts the record in both the record area (MASTER-RECD) and the work area (MASTER
WORK) just as if you coded

READ MASTER-FILE.
MOVE MASTER-RECD TO MASTER-WORK.

The record is moved from the record area to the work area according to the rules for the
MOVE statement (7.6.1) without the CORRESPONDING phrase. If execution of a READ
statement is unsuccessful, the move does not occur and the contents of the record area
are undefined.

When you access files sequentially, you must provide a path of control for the program to
take when you execute a READ statement and no records remain in the file. You may use
the AT END option to specify that path. For example, execute

READ MASTER-FILE INTO MASTER-WORK
AT END GO TO EOJ

This will, when no next record exists in MASTER-FILE, transfer control to the paragraph
labeled EOJ. Once the AT END condition is recognized, you cannot read the file unless you
first close and then reopen it.

If you do not use the AT END option, you must provide, in the declaratives portion of the
procedure division, a USE procedure (7.8.2) that is executed when input-output operations
for the file are unsuccessful such as an attempt to sequentially read a file that is at its
end.

When you read files randomly, records are retrieved according to the values of RELATIVE
KEY fields associated with relative files, or RECORD KEY values associated with indexed
files. You must use the INVALID KEY option of the READ statement to provide a path of
control for the program to take when you execute a READ statement and the value of the
applicable key does not match any record in the file. For example, the relative key for a
relative file is defined as follows:

77 REL-KEY PI C 9 (5) .

When

READ MASTER-FILE INTO MASTER-WORK
INVALID KEY GO TO NO-RECD-FOUND

is executed, no record in MASTER-FILE has a key value that matches the value of REL
KEY, control passes to the paragraph labeled NO-RECD-FOUND.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-23

The dynamic access method described in 5.4 allows you to alternate between sequential
and random processing of relative or indexed files. When you want to read randomly, you
specify the desired record by placing a value in the relative key data item (for a relative
fiel) or in the record key data item (for an indexed file) and then issue the READ statement
with the INVALID KEY option (unless there is an applicable USE procedure). For example,
if the value of the relative key associated with MASTER is 5, then

READ MASTER INVALID KEY PERFORM ERROR-PARA

retrieves the fifth record in the file. If the next READ statement executed for the file is
coded with the NEXT option,

READ MASTER NEXT AT END GO TO EDF-MASTER

the value of the relative key automatically is incremented by 1 and the next record in
sequence is retrieved (in this case, the sixth record in the file).

You use the KEY IS phrase for random access of indexed files. The data-name you used in
the KEY IS phrase of the READ statement may be a RECORD KEY or an ALTERNATE
RECORD KEY. If you code

ALTERNATE RECORD KEY IS POLICY-NO

in the FILE-CONTROL paragraph in the environment division, the code

READ MASTER KEY IS POLICY-NO
INVALID KEY GO TO ERROR-PARA

retrieves the record whose POLICY-NO field equals the current value of POLICY-NO. When
you don't use the KEY IS phrase, records are retrieved from indexed files based on the
current value of the record key.

7.4.4. WRITE Statement

Write statements put records into output or 1-0 files. Format:

WRITE record-name[FROM identifier][; INVALID KEY imperative-statement]

~
BEFORE} ADVANCING{{identifier-2}rLINE]~
AFTER integer LLINES

{
mnemonic-name}
PAGE

[AT { ~ - 0 F - PAGE} imp e rat i v e - statement]

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-24

The FROM option for the WRITE statement is similar to the INTO option for the READ •
statement. While the INTO option moves records from record areas to work areas, the
FROM option moves records from work areas to record areas. If you define an output file
as

FD MASTER -0 UT
LABEL RECORDS ARE OMITTED.

01 MASTR-RECD PIC X(90).

And a work area as

01 WORK-OUTPUT PIC X(90).

The statement

WRITE MASTR-RECD FROM WORK-OUTPUT

has the same effect as

MOVE WORK-OUTPUT TO MASTR-RECD
WRITE MASTR-RECD

After successful execution of a WRITE statement, the record is no longer available in the •
record area (unless the file is named in a SAME RECORD AREA clause). But, if you use
the FROM option, the record remains available in the work area.

For printer-destined files, WRITE statements control the vertical positioning of lines. You
can write a line before or after advancing either to a certain number of lines, to a specific
spot on a page, or to a new page. If you use the BEFORE option, the line is written before
the output device is repositioned; if you use the AFTER option, the line is written after the
device is repositioned. If you omit the ADVANCING phrase, the WRITE statement is
executed as if you coded ADVANCING 1 LINE.

In the format, integer or identifier-2 (which must represent an integer) specifies the
number of lines the device is to be repositioned. It may be zero.

You define mnemonic-name in the SPECIAL-NAMES paragraph (5.3) of the environment
division. It is associated with a particular feature specified by the implementor.

You use the PAGE option to write records before or after the device is repositioned to a
new page. A LINAGE clause (6.1.6), if present, specifies where the next page begins. If
you do not use the LINAGE clause, the implementor defines where the next page begins.

The END OF PAGE (EOP is equivalent) option is valid only if a LINAGE clause is associated
with the file. It specifies an imperative statement executed at the end of a page.

When you write records to relative files, and the access is sequential, the first record is •
assigned relative value 1, the second record relative value 2, etc. There is no need to
specify a relative key, but if you do, it's updated appropriately as WRITE statements are
executed.

•

•

'

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-25

When the access mode is random or dynamic, relative file records are associated with
relative key values that specify their ordinal position in the file. If

77 REL-KEY PI C 9 (4) .

is the relative key associated with

FD MSTR-OUT

you code

LABEL RECORDS ARE STANDARD.
01 MSTR-RECD PIC X(90).

MOVE 12 TO REL-KEY.
WRITE MSTR-RECD INVALID KEY GO TO ERROR-PARA.

This stores the record in the twelfth ordinal position in the file.

If you do not provide an appropriate USE procedure, the INVALID KEY option is required on
a WRITE statement referencing a relative file. In the absence of the USE procedure, the
INVALID KEY option indicates what should be done when a WRITE statement is
unsuccessf u I.

In this situation, the statement GO TO ERROR-PARA is executed. If you use the FILE
STATUS clause in the environment division, the status key values identify the specific
cause of the INVALID KEY condition.

For indexed files, when the access is sequential, you must write records in the ascending
order of their RECORD KEY values. Remember that unlike a relative key, a record key is a
field within the record. You must make sure the key field value in each new record is
greater than the key field value in the previous record.

When the access for an indexed file is random or dynamic, you can write the records in
ariy order. Again, you must use the INVALID KEY option to specify the action taken if a
WRITE statement is unsuccessful, and again the status key values associated with the file
indicate the cause of unsuccessful WRITE statements. If you code RECORD KEY IS POL
NO in the environment division, and define the corresponding indexed file in the data
division as

FD MASTER-OUT

Then,

LABEL RECORDS ARE STANDARD.
01 MASTER-RECD.

02 POL-NO
02 FILLER

PIC 9(6).
PIC X(l44).

WRITE MASTER-RECD INVALID KEY GO TO ERRORS

writes a record with a record key equal to the current value of POL-NO.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-26

In addition to putting records into new files, WRITE statements add records to existing •
sequential files opened in EXTEND mode, and existing relative and indexed files opened in
1-0 mode. Be certain the records you add to files opened as 1-0 have unique relative key or
record key values. If you want to replace existing records in files opened as 1-0, use the
REWRITE statement (7.4.5).

7.4.5. REWRITE Statement

While WRITE statements allow you to put new records into files, REWRITE statements
allow you to replace records already existing in files. The format shows that the REWRITE
statement is similar to the WRITE statement. It has the FROM option to permit writing
from a work area and the INVALID KEY option to pass control to an imperative statement
when it is unsuccessful:

REWRITE record-name[FROM identifier][; INVALID KEY imperative-statement)

You can rewrite records only to mass storage files opened in 1-0 mode. If the access is
sequential, you must read the record to be replaced, then rewrite the new record without
executing any other input-output statements for the file between the READ and REWRITE
statements. If the indexed file is opened as 1-0:

FD PAYROLL
LABEL RECORDS ARE STANDARD.
01 PAY-RECD PIC X(l00).

You define a work area as follows:

0 1 WORK-PAY.
02 A PIC x (2 5) .
02 B PIC x (2 5) .
02 c PIC x (2 5) .
02 D PIC x (2 5) .

Then you code

READ PAYROLL INTO WORK-PAY AT END GO TO EOJ

to obtain the record with the current RECORD KEY value, then you make changes in
WORK-PAY.

Finally, you code

REWRITE PAY-RECD FROM WORK-PAY
INVALID KEY GO TO ERROR

•

to replace the record in the file. The new record and the record being replaced must have •
the same number of characters.

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-27

The INVALID KEY phrase is required for indexed files in any access mode, and for relative
files accessed randomly or dynamically, if no associated USE procedure is specified. The
INVALID KEY phrase must not be specified for relative files accessed sequentially and for
sequential files.

If the access is random or dynamic, you do not necessarily have to read a specific record
before you use the REWRITE statement to replace it. The REWRITE statement replaces the
record with the key value equal to the current value of the relative key or record key
associated with the file.

7.4.6. DELETE Statement

DELETE statements are similar to REWRITE statements; the difference is they logically
delete rather than replace records on mass storage files. The format:

DELETE file-name RECORD[; INVALID KEY imperative-statement]

The file affected must be open in 1-0 mode, and its organization must be relative or
indexed.

As with the REWRITE statement, if the access is sequential, you must first read the file,
and then (without executing any intervening input-output statements that reference the
file) use the DELETE statement to remove the record just read. You must not use the
INVALID KEY phrase when you access files sequentially.

If the access is random or dynamic, the DELETE statement removes the record with the
key value equal to the current value of the relative key or record key associated with the
file. You must use the INVALID KEY phrase (again, unless you specify an applicable USE
procedure). If you execute a DELETE statement and the file does not contain the record
specified by the key, the imperative statement associated with the INVALID KEY phrase is
executed.

If the relative key associated with the file MASTER is called REL-KEY, the following
statements delete relative record number 215 from the file. If MASTER does not have a
relative record number 215, PERFORM ERRORS is executed.

MOVE 215 TO REL-KEY.
DELETE MASTER INVALID KEY PERFORM ERRORS.

7.4.7. START Statement

The START statement is used to position relative or indexed files somewhere other than at
their beginning. The OPEN statement positions files so that the first read accesses relative
record number 1 (if the file has relative organization) or the record with the lowest
RECORD KEY value (if the file has indexed organization). When you want to read a file
sequentially and do not want to begin with the file's first record, use the START statement
to reposition the file. The START statement does not access a file; it determines which
record is retrieved by the next READ statement.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-28

For example, if you want to begin reading a relative file called INVEN-FILE at record 25, •
and RELATIVE KEY is REL-KEY you code

OPEN INPUT INVEN-FILE.
MOVE 25 TO REL-KEY.
START INVEN-FILE.
READ INVEN-FILE AT END GO TO EOJ.

When RECORD KEY is EMPL-NO and you want to begin reading an indexed file called
PAYROLL at the record whose key value is 413697, you code

OPEN INPUT PAYROLL.
MOVE 413697 TO EMPL-NO.
START PAYROLL.
READ PAYROLL AT END GO TO EOJ.

The format for the START statement is:

START file-name EY IS EQUAL TO
IS
IS GREATER THAN
IS >
IS NOT LESS THAN
IS NOT <

data-name

[; INVALID KEY imperative-statement]

The file must be open in input or 1-0 mode when the START statement is executed. The
access must be sequential or dynamic. Data-name, if used, must be the relative key
associated with relative files, or one of the record keys associated with indexed files. Thus,
the key of the first record you read is equal to, greater than, or not less than the current
value of the relative key or one of the record keys.

If you do not use the KEY phrase, as in our examples, the relational operator "IS EQUAL
TO" is assumed.

You must use the KEY IS phrase to sequentially read an indexed file based on an alternate
record key. If you code

ALTERNATE RECORD KEY IS PHONE-NO

in the FILE-CONTROL paragraph, and you want to begin reading MASTER at the record
with PHONE-NO equal to 2314, code

OPEN INPUT MASTER.
MOVE 2314 TO PHONE-NO.
START MASTER KEY IS EQUAL TO PHONE-NO.
READ MASTER AT END GO TO EOJ.

•

•

•

•

• -

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-29

For indexed file, the data-name in the KEY phrase of a START statement may be a data
item that is subordinate to a record key, provided it has the same leftmost character as the
record key. For example, if

RECORD KEY IS EMPL-NO

and the record is defined in the FD as

01 PAY-RECD.
02 EMPL-NO.

03 EMPL-CLASS PIC X(4).
03 EMPL-CODE PIC X(6).

02 FILLER PIC X(90).

Then the following is valid:

START PAYROLL KEY GREATER THAN EMPL-CLASS

7.4.8. DISPLAY Statement

DISPLAY statements move small amounts of data to hardware devices such as printers,
terminals, or console devices. The format:

DISPLAY{ id en ti fie r - 1} [· id en t if i er - 2]
literal-1 literal-1

[UPON mnemonic-name]

The output of a DISPLAY statement is not associated with a file. You name the specific
data you want to appear on the device. One common use of the DISPLAY statement is to
send a message to the computer operator. For instance, if the run unit processes the same
tape twice, the code

DISPLAY ''TAPE 253 RUNS TWICE'' UPON CONSOLE

alerts the operator not to remove the tape the first time it rewinds.

Literals in the format can be nonnumeric literals, unsigned integers, or any figurative
constant except ALL.

The implementor specifies what hardware devices receive data and how much data each
receives. The implementor also specifies, in the SPECIAL-NAMES paragraph in the
environment division, the names used to associate mnemonic-names with hardware
devices. If the implementor's name for a specific terminal is TXR-343, and you code

TXR-343 IS TERM-I

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

in the SPECIAL-NAMES paragraph, then

DISPLAY ''END OF PROGRAM'' UPON TERM-I

makes END OF PROGRAM appear on that terminal.

7-30

If you use the DISPLAY statement without the UPON phrase, the data appears on the
implementor's standard display device.

7.4.9. ACCEPT Statement

ACCEPT statements retrieve small amounts of data from specified hardware devices. They
also provide a way for you to retrieve the system date and time. Two formats are available:

Format 1:

ACCEPT identifier [FROM mnemonic-name]

Format 2:

ACCEPT identifier-FROM/DATE)
DAY
TIME

You use the SPECIAL-NAMES paragraph in the environment division to associate a
mnemonic-name with a device. As with the DISPLAY statement, the implementor defines
the devices that send data and the amount of data each may send.

It's common to use ACCEPT statements to receive data from the computer operator. For
instance, you might code

77 OPR-REPLY PIC X.

in the data division, and the following sequence of instructions in the procedure division:

DISPLAY "KEY IN RUN CYCLE, W FOR WEEKLY. M FOR MONTHLY" UPON CONSOLE.
ACCEPT OPR-REPLY FROM CONSOLE.
IF OPR-REPLY ''W'' GO TO WEEKLY.
IF OPR-REPLY = ''M'' GO TO MONTHLY.

If you use the ACCEPT statement without the FROM phrase, data is received from the
implementor's standard device.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Format 2 allows you to accept from the system date, day, and time .

7-31

• DATE consists of six digits that express the date in year, month, day order. Thus, July
1, 1968 is 680701 .

• DAY consists of five digits (a two-digit year and a three-digit ordinal day). July 1,
1968 is expressed as 68183.

• TIME consists of eight digits representing the hours, minutes, seconds, hundredths of
seconds past midnight. For instance, midnight is expressed as 00000000. Thus, 2:41
p.m. is 14410000 and the maximum value is 23595999 (one-hundredth of a second
before midnight).

To receive DATE, DAY, and TIME you may code the following in the data division

77 THE-DATE
77 THE-DAY
77 THE-TIME

PIC 9(6).
PI C 9 (5) .

PIC 9(8).

and the following in the procedure division

ACCEPT THE-DATE FROM DATE.
ACCEPT THE-DAY FROM DAY.
ACCEPT THE-TIME FROM TIME .

7.4.10. STOP Statement

You use STOP statements to temporarily or permanently stop execution of the object
program. The format is:

STOP{ RUN }
I i t e r a I

The STOP RUN option permanently stops execution of the object program. If you use it in a
series of imperative statements, it should be the last statement:

IF:COUNT = 50
MOVE "E" TO IND
WRITE FINAL-LINE
STOP RUN.

The STOP literal option works like a DISPLAY statement, except it requires a response by
the operator, thus temporarily suspending processing .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-32

The literal, as with the DISPLAY statement, may be a nonnumeric literal, an unsigned •
integer, or any figurative constant except ALL. Generally, the literal gives the operator
some information or requests some action from the operator. For example:

STOP ''PLEAfE MOUNT MONTHLY REPORT FORM ON PRINTER'' UPON CONSOLE.
WRITE ''MONTHLY REPORT'' AFTER ADVANCING PAGE.

The STOP statement displays a message requesting the operator to mount a preprinted
form on the printer. When the operator resumes execution, the next statement, which is
the WRITE statement, is executed.

7.5. ARITHMETIC VERBS

The arithmetic verbs (ADD, SUBTRCT, MULTIPLY, DIVIDE, and COMPUTE) allow you to
perform basic calculations on data. Operands for the calculations may be numeric literals
or elementary data items defined in the data division as numeric. You may not use
numeric edited items as operands in calculations; however, data items that store results,
such as those following the word GIVING in arithmetic statements or preceding the equal
sign in COMPUTE statements, may be numeric edited.

The data descriptions of operands do not have to be the same; any adjustments needed
are made for you. For example, if you add two lines

05 A PIC 999.99.
05 B PIC 99.9 COMP.

A is converted to COMP usage and decimal point alignment is supplied.

No operand may consist of more than 18 digits. In addition, the composite of operands (the
hypothetical data item resulting from superimposing all a statement's operands on their
decimal points) must not be more than 18 digits. For example, the composite of operands
of 2.15 and 37.6 (39.75) has four digit positions (3; 2 and 7; 1 and 6; and 5).

7.5.1. ROUNDED Phrase

The ROUNDED phrase rounds off the results of arithmetic statements. When you specify
rounding, the last fractional digit is increased by 1 if the excess digit is 5 or greater.

Of course, results are rounded only when the fraction requires more decimal places than
you specified in the PICTURE clause of the resultant data item. If the result of a calculation
is 6.38 and is to be stored in a data item whose PICTURE clause is

PIC 999.9

It is stored as follows if rounding is specified:

00 6. 4 •

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

But if the PICTURE clause is

PIC 999.99

it is stored as

006.38

If the PICTURE clause is

PIC 999.9

7-33

and you do not specify the ROUNDED phrase, the last digit is truncated. Thus, in the
example, the result is stored as

0 0 6. 3

7.5.2. SIZE ERROR Phrase

When the result of a calculation exceeds the largest value that can be contained in the
resultant data item, a size error condition exists. If you use the SIZE ERROR phrase
following an arithmetic statement, the object program won't store results in areas that are
too small. Thus, if the data item you designate for storing a result is defined as

A PIC 99.

and the result is 347, there is a size error. If you used the SIZE ERROR phrase, the value
of A is not changed, and the imperative statement associated with the SIZE ERROR phrase
is executed.

If a calculation has more than one resultant data item, arithmetic operations are
completed for results that can be stored, but not for results that cause a size error
condition. Assume your working-storage section includes:

77

77

77
77

A

B

c
D

PIC 999 COMP.
PIC 999 COMP.
PIC 999.
PIC 9999.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-34

You want to add A to B and store the result in both C and D. Also assume A = 800, •
B = 300, C = 0, and D = 0. If you code

ADD A, B GIVING C, D

ON SIZE ERROR PERFORM TOO-BIG.

the result (1100) is too big to be stored in C, but may be stored in D. Since you used the
SIZE ERROR phrase, C is unaffected (it remains equal to 0) and the operation is completed
with respect to D (it equals 1100). Then, the imperative statement PERFORM TOO-BIG is
executed. If no SIZE ERROR phrase is specified, D still equals 1100, but the value of C is
unpredictable. Also, division by zero can cause the SIZE ERROR condition.

7.5.3. ADD Statement

You use ADD statements to sum two or more operands and store the results. There are
three formats:

Format 1:

ADD{identifier-1}[· identifier-2] ... TO identifier-m [ROUNDED]
literal-I , literal-2

[.identifier-n[ROUNDEDJ] ... [;ON SIZE ERROR imperative-statement]

Format 2:

A D D { i d e n t i f i e r - I } , { i d e n t i f i e r - 2 } , [i d e n t i f i e r - 3] . . .
literal-I literial-2 literal-3

GIVING identifer-m[ROUNDEDJ[.identifier-n[ROUNDEDJ)

[;ON~ ERROR imperative-statement]

Format 3:

ADD{CORRESPONDING}ident if ier-I TO ident ifer-2[ROUNDED]

CORR

[;ON~ ERROR imperative-statement]

Formats 1 and 2 work almost the same way; the difference is that the result of a Format 1
ADD is addecj to the current value of identifier-m, but the result of a Format 2 ADD
replaces the current value of identifier-m.

If A, B, and C all equal 5, and you code

ADD A B TO C

the sum of A and B (10) is added to the value of C (5). Thus, the value 15 is stored in C .

•

•

•

•

•

UP-8805

But if you code

ADD A B GIVING C

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-35

the sum of A and B (10) replaces the value of C (5). Thus, the value 1 O is stored in C.

Format 2 requires at least two operands to the left of GIVING. Thus,

ADD 5 GIVING TOTAL

is invalid (and illogical). But you can set TOTAL to 5 by coding

MOVE 5 TO TOTAL

You can, however, use Format 1 and code

ADD 5 TO TOTAL

This increases the current value of TOTAL by 5.

You can use ADD statements to sum more than two operands, and you can store the
result in more than one identifier:

ADD 3 4 5 6 TO SUBTOT FINTOT

This adds 18 to the current value of SUBTOT and to the current value of FINTOT.

The coding

ADD 3 4 5 6 GIVING SUBTOT FINTOT

replaces the values of SUBTOT and FINTOT with 18.

In Format 3, identifier-1 and identifier-2 refer to group items. The ADD CORRESPONDING
(CORR is equivalent) statement adds the values of elementary numeric items subordinate
to identifier-1 to similar items of identifier-2 that have the same name (excluding FILLER
items). If you code the following in the data division

0 1 SUBTOT.
02 A PIC 9 (5) COMP.
02 c PIC 9 (5) COMP.
02 FILLER PI C X (5).
02 E PIC 9 (5) COMP.

0 1 FINTOT.
02 A PIC 9 (5) COMP.
02 B PIC 9 (5) COMP.
02 c PIC 9 (5) COMP.
02 FILLER PI C X (5).

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-36

\

the statement

ADD CORRESPONDING SUBTOT TO FINTOT

adds the current value of A of SUBTOT to A of FINTOT, and C of SUBTOT to C of FINTOT.
But E of SUBTOT is not affected because there is no E in FINTOT. Similarly, B of FINTOT is
not affected because there is no B in SUBTOT.

You can use the ROUNDED phrase (7.5.1) following selected results and the SIZE ERROR
phrase (7.5.2) following selected statements. When you round one result in a statement,
you do not necessarily have to round all the results. For example, the following is a valid
statement:

ADD A BC TO SUBTOT ROUNDED FINTOT

ON SIZE ERROR GO TO TOO-BIG

The sum of A, B, and C is added to SUBTOT, and the result is rounded. The same sum is
added to FINTOT, but any decimal places not specified in the PICTURE clause are
truncated rather than rounded. If the result is too big to be stored in SUBTOT or FINTOT,
control is transferred to the paragraph labeled TOO-BIG.

7.5.4. SUBTRACT Statement

You use SUBTRACT statements to perform subtraction operations and store the results. As
with the ADD statement, there are three formats:

Format 1:

SUBTRACT{identifier-1}[· identifier-2] ... FROM identifer-m [ROUNDED]
literal-1 • literal-2

[. identifier-n[ROUNDEDJ] ... [;ON SIZE ERROR imperative-statement]

Format 2:

SUB TRAC J { i dent i f e r - 1} [· i dent i f e r - 2] . . . FR OM{ id en t i f e r - m}
literal-1 • literal-2 literal-m

GIVING identifer-n[ROUNDEDJ[. identifer-o[ROUNDEDJ]

[;ON SIZE ERROR imperative-statement]

Format 3:

SUBTRACT{CORRESPONDING}identifer-1 FROM identifier-2[ROUNDED]

CORR

[; ON SIZE ERROR imperative-statement]

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-37

The results in Format 1 of the subtractions are stored in the data items from which the
operands are subtracted. The operands preceding FROM are added, and the sum is
subtracted from the current value of identifier-m.

In Format 2, the results are stored in separate data items. Again, the operands preceding
FROM are added, and the result is subtracted from identifier-m (or literal-m), but the result
is stored in identifier-n and the value of identifier-m is unchanged.

Assume A = 5, B = 5, and C = 15:

SUBTRACT A B FROM C

This subtracts 10 from 15 and stores the result (5) in C. Executing the following stores the
result (5) in D and leaves C equal to 15.

SUBTRACT A B FROM C GIVING D

The Format 3 SUBTRACT statement is similar to the Format 3 ADD statement; it subtracts
items subordinate to identifier-1 from items with the same name in identifier-2, storing
the result in the items subordinate to identifier-2. If you code the following in the data
division

"1 TOTALS .

"2 A PIC 9 (7) COMP.

"2 B PIC 9 (7) COMP.

" 1
TOTALS-2.

"2 A PIC 9 (7) COMP.

"2 B PIC 9 (7) COMP.

the statement

SUBTRACT CORR TOTALS FROM TOTALS-2

subtracts A of TOTALS from A of TOTALS-2, storing the result in A of TOTALS-2, and
subtracts B of TOTALS from B of TOTALS-2, storing the result in B of TOTALS-2.

7.5.5. MULTIPLY Statement

MULTIPLY statements multiply data items and store the results. Two formats are
applicable:

Format 1:

MULTIPLY{ident if ier-l}BY ident if ier-2[ROUNDED]
I i t e r a I - 1

[. identifier-3[ROUNDEDJ] ... [;ON Bl! ERROR imperative-statement]

UP-8805

Format 2:

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

MU LT I P LY { i d en t i f i e r - I} BY { i de n t i f i e r - 2 }G I V I NG i den t i f i e r - 4 [R 0 UN D ED]

literal-I literal-2

7-38

[. identifier-5[ROUNDEDJ] ... [; ON SIZE ERROR imperative-statement]

The products can be stored in place of the multipliers or in separate data items. For
example, if A = 3, 8 5, and C = 7, then

MULTIPLY A BY B C

stores the value 15 in 8, and 21 in C; however,

MULTIPLY A BY B GIVING C, D

stores the value 15 in both C and D and 8 remains equal to 5.

7.5.6. DIVIDE Statement

DIVIDE statements are used to divide one data item into others, and store the results
including (at your option) any remainder. The five formats are:

Format 1:

DIVIDE{identif ier-I}INTO identif ier-2[ROUNDED]

literal-I

[. identifier-3[ROUNDEDJ] ... [; ON SIZE ERROR imperative-statement]

Format 2:

DIVIDE{identif ier-I}INTO{identif ier-2}GIVING identifier-3[ROUNDED]

literal-I literal-2

[. identifier-4[ROUNDEDJ] ... [; ON SIZE ERROR imperative-statement]

Format 3:

DIVIDE{identif ier-I}BY{ident if ier-2}GIVING ident ifer-3[ROUNDED]
literal-I literal-2

[. i·dentifer-4[ROUNDEDJ] ... [;ON SIZE ERROR imperative-statement]

Format 4:

D I V I DE { i d en t i f i e r - I } I NT O{ i d e n t i f i e r - 2} G I V I NG i de n t i f i e r - 3 [R 0 UN D ED]
literal-I literal-2

REMAINDER identif ier-4[; ON~ ERROR imperative-statement]

--

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Format 5:

DIVIDE{identifier-l}BY{identifier-2}GIVING identifier-3[ROUNDED]
literal-! literal-2

REMAINDER identi f ier-4[; ON SIZE ERROR imperative-statement]

7-39

Formats· 1 and 2 divide the first operand into the second operand; Format 1 stores the
quotient in the dividend and Format 2 stores it in a separate data item following GIVING. If
A= 5 and B = 10

DIVIDE A INTO B

stores the result (2) in B, while

DIVIDE A INTO B GIVING C

stores the 2 in C, leaving B equal to 10.

Format 3 divides the second operand into the first operand, and stores the result in a
separate data item. If A = 5 and B = 10

DIVIDE A BY B GIVING C

stores .5 in C. A remains equal to 5.

Formats 4 and 5 are identical to Formats 2 and 3, respectively, except they permit only
one GIVING operand and provide for storing a remainder. You find the remainder of a
divide operation by subtracting the product of the quotient and the divisor from the
dividend. If you code

77 A PIC 999 COMP.
77 B PIC 999 COMP.
77 C PIC 999 COMP.
77 REM PIC 99.

in the data division, and A = 5, B = 9, and C = 0, execution of

DIVIDE A INTO B GIVING C REMAINDER REM

stores 1 in C and 4 in REM.

You may round a result and still store a remainder:

77 A PIC
77 B PIC

99 COMP.
99 COMP.

77 C PIC 99 COMP .
77 REM PIC 99.

- -------------------------------....

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-40

This is coded in the data division, and A = 3, B = 11, and C = 0. The statement

DIVIDE B BY A GIVING C ROUNDED REMAINDER REM

rounds the result (3.666) to 4, and stores it in C; but, when calculating the remainder,
truncates the result to 3 (just as if you omitted the ROUNDED phrase). Thus, the
remainder is the product of the result (3) and the divisor (3) subtracted from the dividend
(11). So, after execution of the statement, A = 3, B = 11, C = 4, and REM = 2.

If you use the SIZE ERROR phrase with Formats 4 and 5, and a size error occurs on the
quotient, both identifier-3 and identifier-4 remain unchanged. If the size error occurs on
the remainder, the quotient is stored in identifier-3, but identifier-4 remains unchanged.

7.5.7. COMPUTE Statement

You use COMPUTE statements to assign the values of arithmetic expressions to one or
more data items. COMPUTE statements allow you to add, subtract, multiply, and divide in
one statement, thus reducing the number of lines of code needed. The format:

COMPUTE identif ier-l[ROUNDEDJ[. identif ier-2[ROUNDEDJ] ... =
arithmetic-.expression[; ON SIZE ERROR imperative-statement]

•

The identifiers that represent results may be elementary numeric or elementary numeric •
edited data items. If you code

77 A

77 B
77 c
77 D

77 E

PIC 99 COMP.
PIC 99 COMP.
PIC 99 COMP.
PIC 999.
PIC ZZ9.

in the data division, if A = 5, B = 6, and C = 15, then

COMPUTE D E = (A • B) - C

stores 015 in D and 15 in E.

Note that coding this statement using simple arithmetic verbs requires two statements:

MULTIPLY A BY B GIVING TEMP.
SUBTRACT C FROM TEMP GIVING D, E.

7.6. DATA MOVEMENT VERBS

The data movement verbs are MOVE, INSPECT, STRING, and UNSTRING. They move and
manipulate data. Descriptions for each are included in 7.6.1 through 7.6.4. •

•

•

•

UP-8805

7.6.1. MOVE Statement

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-41

MOVE statements transfer data from one data item to one or more others. Two formats
are used:

Format 1:

MOVE {identifier-I} TO identifier-2 [, identifier-3] ...

I i t e r a I

Format 2:

MOVE {CORRESPONDING} ident if ier-1 TO ident if ier-2

CORR

The identifier or literal to the left of TO is the sending item and the identifiers to the right
of TO are receiving items. A successful MOVE makes the value of the receiving items
equal to the value of the sending item, without affecting the value of the sending item. So,
if A = 5, execution of the following coding makes A, B, and C all equal to 5.

MOVEATOB,C.

As described in the discussion of the PICTURE clause (6.2.2), there are five types of
elementary data items: alphabetic, alphanumeric, numeric, alphanumeric edited, and
numeric edited. Table 7-5 lists the valid combinations of sending and receiving elementary
items in MOVE statements. The figurative constant ZERO is category numeric, SPACE is
category alphabetic, and the other figurative constants are alphanumeric.

Table 7-5. Permissible Combinations of Operands in MOVE Statements

Category of Receiving Data Item
Category of

Sending Alphanumeric Edited Numeric Integer
Data Item Alphabetic Alphanumeric

Numeric Noninteger
Numeric Edited

Alphabetic Yes Yes No

Alphanumeric Yes Yes Yes

Alphanumeric Edited Yes Yes No

Integer No Yes Yes
Numeric

Non integer No No Yes

Numeric Edited No Yes No

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-42

Alphanumeric items are mostly moved to alphanumeric or alphanumeric edited items, and •
numeric items to numeric or numeric edit~d items. But, as shown in Table 7-5, other
types of MOVE statements are permissible.

If the receiving item is described as alphanumeric or alphanumeric edited as in

A PIC x (5) .

and the sending item is signed numeric

B PIC s 9 (5) .

the sign is not moved. So, if B equals +43775

MOVE B TO A

makes A equal to 43775, with no sign, regardless of whether the sign of B is stored as
part of another digit or as a separate character.

When the receiving item is a signed numeric item, and the sending item is an unsigned
numeric item or an alphanumeric item, a positive sign is generated for the receiving item.

When the receiving item is unsigned numeric, the absolute value of the sending item is
moved and any sign is dropped. •

If either the sending item, the receiving item, or both are group items, the MOVE is treated
as if it were an alphanumeric to alphanumeric elementary move and no consideration is
given to the types of individual elementary items within the group.

Format 2 MOVE moves are similar to ADD or SUBTRACT actions that use the
CORRESPONDING phrase. ldentifier-1 and identifier-2 must be group items. You move
items of one group to items of the other group that have the same name. If you code

0 1 GROUP-!.
02 A PIC x (7) .

02 B PIC x (5) .

02 c PIC x (5) .

01 GROUP-2.
02 A PIC x (7).

02 PIC x (9) .

02 c PIC x (5) .

in the data division, the statement

MOVE CORR GROUP-1 TO GROUP-2

is equivalent to

MOVE A OF GROUP-! TO A OF GROUP-2.
MOVE C OF GROUP-1 TO C OF GROUP-2.

----------------------------------·---·----······

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7.6.2. INSPECT Statement

7-43

INSPECT statements tally and replace occurrences of characters in a data item. There are
three formats: the first tallies characters, the second replaces characters, and the third
both tallies and replaces characters.

Format 1:

INSPECT ident if ier-1 TALLYING

{

, i d{e ~{t{i; ~ ~ r -
2

}F {O ~~en t i f i e r - 3} l [{ B EF 0 RE} I N I T I AL { i ~en t i f i e r - 4 }] } ... } ...
LEADING I 1teral-l AFTER I iteral-2

CHARACTERS

This format counts occurrences of specified characters in identifier-1 and stores the count
in identifier-2. You can count all the characters in identifier-1 or just specific characters.

INSPECT THE-WORD TALLYING

THE-COUNT FOR CHARACTERS

This tallies the number of characters in THE-WORD, and stores that number in THE
COUNT .

INSPECT THE-WORD TALLYING

THE-COUNT FOR ALL ''R''

This coding tallies the number of R's in THE-WORD and stores that number in THE
COUNT. Thus, if THE-WORD equals TERRITORY, THE-COUNT equals 3.

The LEADING option is for counting contiguous occurrences of a specific character or
characters at the beginning of a word. For instance, the number of leading R's in
TERRITORY is 0, because the first letter is not an R. The number of leading T's in
TERRITORY is 1. Although there is another T in TERRITORY, it is not contiguous
(immediately adjacent) to the first T.

The BEFORE and AFTER options allow you to inspect portions of a word, such as all the
characters before the first (INITIAL) L or after the first X. For instance, if you code

INSPECT THE-WORD TALLYING

THE-COUNT FOR LEADING ''XLO'' AFTER INITIAL ''Q''

If THE-WORD equals XLOLQXLOXLOQR, THE-COUNT equals 2 (representing the two
contiguous occurrences of XLO immediately following the first 0) .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Format 2:

Note that in Format 2 there are two ways to use the REPLACING option.

INSPECT identif ier-1 REPLACING

CHARACTERS BY{ident if ier-6}[{BEFORE}
I iteral-4 AFTER

INITIAL {identifier-7}]
literal-5

I
. {~ 11· { i d e n t i f i e r - 5 } BY { i d e n t i f i e r - 6} i· . · i · ..

LEADING I iteral-3 I iteral-4
FIRST

-- [{BEFORE} INITIAL {identifier-7}]
AFTER I iteral-5

7-44

The first method replaces all characters in identifier-1 with the character represented by
identifier-6 or literal-4. Generally, you use the BEFORE or AFTER phrase with this option;
otherwise, it's just like the MOVE statement.

Note that in the following coding the shorter second line has the same effect as the first.

INSPECT NAME REPLACING CHARACTERS BY SPACE

MOVE SPACES TO NAME

The next statement, however, is more common:

INSPECT NAME REPLACING
CHARACTERS BY SPACE AFTER INITIAL ''.''

It affects only the characters in NAME to the right of the first comma.

You also can replace specific characters in identifier-1. The ALL and LEADING options
work the same way as in Format 1. The FIRST option refers to the first occurrence of a
character in identifier-1. If A = OPLPLZ459, the coding

INSPECT A REPLACING FIRST ''PL'' BY ''XR''

changes A to OXRPLZ459. Again, you can use the BEFORE or AFTER phrase to indicate
the inspection begins before or after the initial occurrence of a character or characters.

If the literal named in a BEFORE phrase does not occur at all in identifier-1, the inspection
continues as if the BEFORE phrase was not in the statement. If there is no occurrence in
identifier-1 of the literal named in the AFTER phrase, no changes are made in identifier-1.
Thus, if A = XXXZYR, the following coding changes A to ZZZZYR.

INSPECT A REPLACING
ALL "X" BY "Z" BEFORE INITIAL "L"

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Also, the following leaves A equal to XXXZYR:

INSPECT A REPLACING

ALL "X" BY "Z" AFTER INITIAL "L"

Some other examples:

INSPECT WORK REPLACING

ALL ''A'' BY ''G'' BEFORE INITIAL ''X''

If WORD = ARXAX, it's changed to GRXAX.

If WORD = HANDAX, it's changed to HGNDGX.

INSPECT WORD REPLACING

CHARACTERS BY ''B'' BEFORE INITIAL ''A''

If WORD = 12L.XZABCD, it's changed to BBBBBABCD.

If WORD = 1439C, it's unchanged because there's no A in WORD.

INSPECT WORD REPLACING

LEADING ''AAA'' BY ''BBB'' AFTER INITIAL ''F''

If WORD = AFAAAABBCD, it's changed to AFBBBABBCD.

If WORD = AAAFAAABB, it's changed to AAAFBBBBB.

7-45

More than one character or characters can be replaced in a word. For instance:

INSPECT A REPLACING ALL "Q" BY "Z", "X" BY "R"

This changes A from LMQZXPQRX to LMZZRPZRR.

If you use the BEFORE or AFTER phrase when replacing more than one literal, the phrase
applies only to one change:

I NS PE CT WORD REP LAC I NG ALL ' ' X ' ' BY ' ' Y ' '

"B" BY "Z", "W" BY "Q" AFTER INITIAL "R"

In this example, the AFTER INITIAL "R" applies only to replacing "W" by "Q". Thus, if
WORD = YZACDWBR, it is changed to YZACDWZR. If WORD = XMWXMBRXW, the
change is to YMWYMZRYQ .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Format 3:

INSPECT IDENTIFIER-I TALLYING

I
, id en t i f i e r - 2 F 0 RI, I {!!:l } { i dent i f i e r - 3 }j 1· ~ · 1 · ..

LEADING I iteral-1

CHARACTERS

[{
BEFORE} INITIAL {identifier-4}]
AFTER I iteral-2

REPLACING

CHARACTERS!_! {identifier-6}[{BEFORE} INITIAL {identifier-7}]
literal-4 AFTER literal-5

I
, l!!:J:. l/' { i dent i f i e r - 5} BY { i dent i f i e r - 6 }1· . · 1 · ..

LEADING I iteral-3 I iteral-4

FIRST

-- [{BEFORE} INITIAL {identifier-7}]
AFTER literal-5

7-46

This format is simply a combination of Formats 1 and 2; you can both tally and replace
characters in identifier-1. Here are some examples:

Example 3a:

INSPECT WORD TALLYING COUNT FOR CHARACTERS

AFTER INITIAL ''J'', REPLACING ALL ''A'' BY ''B''

1. WORD = ADJECTIVE to BDJECTIVE and COUNT = 6.

2. WORD = JACK to JBCK and COUNT = 3.

3. WORD = JUJMAB to JUJMBB and COUNT = 5.

Example 3b:

INSPECT WORD TALLYING COUNT FOR ALL ''L''

REPLACING LEADING "A" BY "E" AFTER INITIAL "L"

1. WORD = CALLAR remains CALLAR and COUNT = 2.

2. WORD = SALAMI to SALEMI and COUNT = 1.

3. WORD = LATTER to LETTER and COUNT = 1.

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-47

• Example 3c

•

•

INSPECT WORD TALLYING COUNT FOR LEADING ''XX''

REPLACING FIRST ''2'' BY ''3'' AFTER INITIAL ''TOT''

1. WORD = ALXX2TOT323 to ALXX2TOT333 and COUNT = 0.

2. WORD= XXXXXXX23TOT remains XXXXXXX23TOT and COUNT= 3.

3. WORD = X12TOT2TOTX12 to X12TOT3TOTX12 and COUNT = 0.

The TALLYING data item must be a numeric data item. The usage of all other data items
must be DISPLAY. Literals in the formats must be non numeric.

7.6.3. STRING Statement

STRING statements combine characters from two or more data items into a single data
item.

Format:

STRING {identifier-1}[· identifier-2] ... DELIMITED BY {identifier-3}
literal-1 , literal-2 literal-3

SIZE

[

, { i d e n t i f i e r - 4 } [· i d e n t i f i e r · 5] . . . D EL I M I TE D B Y
literal-4 , literal-5 _

INTO ident if ier-7 [WITH POINTER identif ier-8]

[,ON OVERFLOW imperative-statement]

{ identifier-6}~
literal-6
SIZE

Literals and identifiers left of DELIMITED are sending items; characters from sending items
are combined to form the receiving item following INTO.

You can move all the characters (or selected characters) from the sending items. The SIZE
option moves all the characters. If A = HIGH and B = WAY, the following coding makes C
equal HIGHWAY.

STRING A, B DELIMITED BY SIZE INTO C

To move selected characters, you specify a literal or identifier that delimits the move. For
instance, if the delimiter is G, only characters in each sending item to the left of G are
included in the move. Thus, if A= HIGH and B = LIGHT, the following makes C equal HILi.

STRING A, B DELIMITED BY ''G'' INTO C

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-48

Sending items represented by identifiers, such as A and B in these examples, must be •
described as USAGE IS DISPLAY and, if numeric, must be described as integers with no
P's in the PICTURE clause. Literals that are sending items must be nonnumeric. Receiving
items, such as C in the examples, must be elementary alphanumeric data items described
without editing symbols or the JUSTIFIED clause.

If the character-string formed from the sending items has fewer character positions than
the receiving item, the unaffected character positions keep the value t~ey had before
execution of the STRING statement. So, if A = XXX, B = YYY, and C = ZZZZZZ:ZZZ, the
following code changes C to XXXYYYZZZ.

STRING A B DELIMITED BY SIZE INTO C

If the character-string formed from the sending items has more character positions than
.the receiving item, the move ends when the receiving item is filled; then the imperative
statement associated with the ON OVERFLOW phrase is executed. If there is no ON
OVERFLOW phrase, control passes to the next statement.

You use the POINTER phrase to indicate the character position in the receiving item into
which data is moved. Thus, just as the values of some rightmost characters in the
receiving item may not change, the values of a given number of leftmost character
positions also may not change. If A= XXX, B = YYY, C = ZZZ:ZZZZZZ, and CHAR-POS = 3,
the following code changes C to ZZXXXYYYZ, and CHAR-POS = 9.

STRING A B DELIMITED BY SIZE
INTO C WITH POINTER CHAR-POS

Pointers, such as CHAR-POS, must be described as elementary integers large enough to
contain a value equal to the number of character positions in the receiving item, plus 1.
The value of a pointer is incremented by 1 each time a character is moved from a sending
item to the receiving item. If you don't use the WITH POINTER phrase, the first character
from the first sending item is moved to the leftmost character position of the receiving
item.

If you set a pointer improperly, that is, if you give it a value that is less than 1 or greater
than the number of character positions in the receiving item, execution of a STRING
statement causes an overflow condition. Control passes to the next statement or, if
specified, to the imperative statement associated with the ON OVERFLOW phrase.

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-49

• 7.6.4. UNSTRING Statement

•

UNSTRING statements, as you might expect, have an effect opposite to that of STRING
statements; they move characters from a single sending field to multiple receiving fields.
The format is:

UNSTRING identifier-1

rDELIMITED BY [ALL]{identifier-1}(· OR [~]{identifier-3}] ... J
L literal-1 literal-2

INTO identifier-4 [, DELIMITER IN identifier-SJ[, COUNT IN identifier-6]

[. identifier-7 [. DELIMITER IN identifier-BJ[, COUNT IN identifier-91] ...

[WITH POINTER identifier-lB][TALLYING IN identifier-11]

[, ON OVERFLOW imperative-statement]

7.6.4.1. Sending Field

The sending field, represented by identifier-1, immediately follows the UNSTRING verb. Its
characters are moved to the receiving fields (identifier-4, identifier-7, etc.) following INTO.
The number of characters moved depends on the number of characters in the receiving
fields. If A is described as PIC X(4) and B as PIC X(5), and WORD = HIGHLIGHT, then

UNSTRING WORD INTO A B

moves four characters (HIGH) to A. and five characters (LIGHT) to B. If A description is PIC
X(6) and B is PIC X(3), the same statement makes A = HIGHLI and B = GHT.

You must describe the sending field as alphanumeric. You describe the receiving fields as
alphabetic (without the B symbol), alphanumberic, or numeric (without the P symbol). The
USAGE of the receiving field must be DISPLAY. Each literal must be a nonnumeric literal.

As with the STRING statement, you may specify characters that delimit the move. Then,
characters in the sending field preceding the first occurrence of the delimiter are moved to
the first receiving field (unless the receiving field is filled before a delimiter is
encountered) and characters between the first and second occurrence of the delimiter are
moved to the second receiving field, etc.

Thus, if WORD = HIGHLIGHT, and A and B are described as

02 A PIC X(3).

02 B PIC X(3).

the statement

UNSTRING WORD DELIMITED BY ''GH'' INTO A, B

• makes A = HIL. and B = LIL..

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-50

If the number of characters preceding the first delimiter is less than the number of •
characters in the first receiving field, the unaffected character positions in the receiving
field are ;zero or space filled, depending on whether the item is numeric or nonnumeric. If
WORD = HIGHLIGHT and A and B are described as

02 A PIC X(4) VALUE . ·xxxx·'.
02 B PIC X(5) VALUE ''ZZZZZ''.

then

UN ST R I NG WORD DEL IM I TED BY ' ' G ' ' I NT 0 A, B

makes A = Hl.6.6 and B = U.6.6. Similarly, if WORD
division includes

77 A PIC 9(5) VALUE ZEROS.

77 B PIC 9(5) VALUE ZEROS.

77 C PIC 9(5) VALUE ZEROS.

then

UN ST RI NG WORD DEL IM I TED BY ' ' X ' ' I NT 0 A , B, C

makes A = 00045, B = 09732, and C = 00043.

You may specify more than one delimiter. For instance,

"45X9732X43", and the data

UN ST R I NG WORD DEL IM I TED BY ' ' X ' ' 0 R ' ' Y ' ' 0 R ' ' Z ' ' I NT 0 A, B

This stops the examination of WORD whenever an X, Y, or Z is encountered.

So, if WORD = ABCYDZ, A = ABC and B = D.

7.6.4.2. ALL Word

The word ALL before a delimiter means one or more contiguous occurrences of the
delimiter are considered to be one occurrence. Suppose WORD= MMMXXNNN and A and
B are defined as

02 A PIC X(3).

02 B PIC X(3).

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-51

• If you code

•

•

UNSTRING WORD DELIMITED BY ALL ''X'' INTO A B

the XX is considered to be one occurrence of the delimiter, and A = MMM and B = NNN.
But if you do not use ALL, as in

UN ST R I NG WORD DEL IM I TED BY ' ' X' ' I NT 0 A B

XX is two occurrences of the delimiter; thus, after MMM is moved to A, there are no
characters before the next delimiter to be moved to B and B is space (or zero) filled
according to the description of the field.

7.6.4.3. DELIMITED and COUNT Phrases

You may use the DELIMITER IN and COUNT IN phrases only if you used the DELIMITED BY
phrase. Identifiers associated with DELIMITER IN phrases receive the delimiting characters
that caused data to be moved to the current receiving item. Identifiers associated with
COUNT IN phrases show the number of characters moved to the current receiving item. If
WORD = HIGHWAYS

UN ST R I NG WORD DE L I M I TED BY ' ' G H ' ' 0 R ' ' S ' '

INTO A DELIMITER IN A-DELS COUNT IN A-COUNT

INTO B DELIMITER IN B-DELS COUNT IN B-COUNT

This makes A = HI, A-DELS = GH, A-COUNT= 2, B = WAY, B-DELS = S, and B-COUNT
= 3. If you specify DELIMITER IN, and the delimiting condition is the end of the sending
item, the identifier associated with DELIMITER IN equals spaces. So, if WORD =
HIGHWAYS

UNSTRING WORD DELIMITED BY ''GH''

INTO A DELIMITER IN A-DELS COUNT IN A-COUNT

INTO B DELIMITER IN B-DELS COUNT IN B-COUNT

Thus, A= HI, A-DELS = GH, A-COUNT= 2, B =WAYS, B-DELS =blanks, and B-COUNT
= 4.

You must describe identifiers associated with DELIMITER IN as alphanumeric; identifiers
associated with COUNT IN must represent integers .

UP-8805

7.6.4.4. POINTER Phrase

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-52

The POINTER phrase allows you to begin examination of the sending field at any character
position. For example, if WORD = XL459S243 and the data division includes the following
coding

02 A PIC 9(5).

02 B PIC 9(5).

02 POINT PIC 9(2).

then

MOVE 3 TO POINT.

UN ST R I NG WORD DEL IM I TED BY ' ' S ' ' I NT 0 A , B

WITH POINTER POINT

makes the examination of WORD begin at the third character position; thus, A = 00459
and B = 00243. The pointer, which must be an integer, is incremented by 1 as each
character in the sending item is examined.

If you set the pointer improperly (if you make it less than 1 or greater than the number of
characters in the sending item) or if characters remain in the sending item after all the
receiving items are filled, an overflow condition exists. Then, the imperative statement
associated with the ON OVERFLOW phrase is executed or, if the ON OVERFLOW phrase is
not specified, control passes to the next statement. If WORD = HIGHWAYS and the data
division includes

02 A PIC X(4).

02 B PIC X(3).

then

UNSTRING WORD INTO A, B

ON OVERFLOW GO TO SEND-LARGE

makes A= HIGH and B =WAY. Since the S from the sending field isn't sent, an overflow
condition exists, and control passes to SEND-LARGE.

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-53

• 7.6.4.5. TALLYING Phrase

•

•

The TALL YING phrase provides a count of the receiving items into which data is moved.
You must initialize the TALLYING data item before the execution of an UNSTRING
statement. Thus, if word = PASSWORD, and the data division includes

77 A PIC X(4).

77 B PIC x (4).

77 c PIC x (3) VALUE "XYZ".

77 D PIC 9 (2) .

then

MOVE ZEROS TO D

UNSTRING WORD INTO A, B, c
TALLYING IN D

makes A = PASS, B = WORD, C = XYZ (unchanged), and D = 2.

7.7. PROCEDURE BRANCHING VERBS

Normally, procedure division statements are executed consecutively in the order of
appearance. The procedure branching verbs (EXIT, IF, GO TO, ALTER, and PERFORM)
change the normal sequence of operation; they cause the control to branch to a line in the
program other than the next executable statement.

7. 7 .1 . EXIT Statement

EXIT statements are not executable; they're used only to serve as common end points for a
series of procedures. For example:

AA-MAIN.

IF GO TO AA-EXIT.

AA-TYPE-1.

IF ... GO TO AA-EXIT .

(continued)

UP-8805

AA-TYPE-1.

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

IF ... GO TO AA-EXIT.

AA-EXIT.
EXIT.

7-54

Several paragraphs may branch to the same point - a paragraph called AA-EXIT that
serves solely as an exit point for a series of related procedures. Of course, the paragraphs
could branch to another paragraph elsewhere in the program, or even to a paragraph that
contains no statements. Thus, the EXIT statement isn't needed; it's normally used for a
common exit of a subroutine.

When you use EXIT, it must, as in the example, be the only statement in a sentence that
is the only sentence in a paragraph.

7.7.2. IF Statement

•

IF statements call for the evaluation of conditional expressions. Subsequent action of the •
program depends on whether the value of an expression is true or false. The format is:

!._! condition;{statement-1 }{; ELSE statement-2 }
NEXT SENTENCE ; ELSE NEXT SENTENCE
~- -~ ~-

The IF statement is used in examples throughout this manual, particularly in the
discussion of conditional expressions (7.2.2). In those examples, imperative statements
immediately following the condition provide the actions taken when the expressions are
true. In

IF A> B ADD A TO.TOTAL.

the value of A is added to the value of TOTAL, provided A is greater than B. Otherwise,
control passes immediately to the next sentence.

You use the ELSE phrase to specify actions taken when conditional expressions are false.
Adding the ELSE phrase to the sentence

IF A> B ADD A TO TOTAL

ELSE MOVE A TO C.

means that if A is not greater than B, A is not added to TOTAL; instead, MOVE A TO C is
executed. •

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-55

You can use the NEXT SENTENCE phrase rather than an imperative statement for either
the true or false condition:

Example 1:

IF A> B NEXT SENTENCE

ELSE MOVE A TO C.

Example 2:

IF A> B ADD A TO TOTAL
ELSE NEXT SENTENCE.

The first example transfers control to the next executable sentence when the condition is
true; the second example does so when the condition is false.

Of course, in the second example, the NEXT SENTENCE phrase really is redundant, and
you may omit the phrase, if you end the first line with a period. You generally associate
the NEXT SENTENCE phrase with false conditions only when IF statements are nested;
that is, when statement-1 or statement-2 in the format contains another IF statement:

IF A > B

IF C > D GO TO MAIN
ELSE NEXT SENTENCE

ELSE GO TO EOJ.

In this example, when IF statements are nested, each ELSE phrase, from left to right, is
paired with the closest preceding IF phrase that isn't already paired with an ELSE. Thus,
the first (from the left) ELSE phrase (ELSE NEXT SENTENCE) is paired with the closest
preceding IF (IF C > D) and the second ELSE phrase (ELSE GO TO EOJ) is paired with the
closest preceding IF not already paired with an ELSE (IF A> B). So, if A> B is false, the
corresponding ELSE phrase (GO TO EOJ) is executed; but if A > B is true, then C > D
must be evaluated. If it is also true, GO TO MAIN is executed. But if it is false, control
passes to the next sentence.

Many levels of nesting are possible. Programmers generally use indentation of statements
to make the IF-ELSE pairings easy to follow:

IF A> B
IF C > D

IF E > F
I F G > H MOVE 1 T 0 I ND
ELSE GO TO Z

ELSE NEXT SENTENCE
ELSE PERFORM Ql

ELSE GO TO EOJ .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-56

Each IF begins in the same source code column as its corresponding ELSE phrase. The IF .~
phrases are evaluated, in order, until one is found to be false. Then, the corresponding
ELSE phrase is executed, and control passes to the next sentence. In this example, MOVE
1 TO IND is executed only if A > B, C > D, E > F, and G > H all are true.

7.7.3. GO TO Statement

You use GO TO statements to transfer control to paragraphs or sections in the procedure
division. There are two formats:

Format 1:

GO TO [procedure-name-I]

Format 2:

GO TO procedure-name-I [, procedure-name-2] ... , procedure-name-n
DEPENDING ON identifier

Procedure-names are section-names or paragraph-names (which may be qualified by
section-names).

Format 1 transfers control to the paragraph or section named in the statement. For
example:

GO TO MAIN

This transfers control to the paragraph or section called MAIN.

Format 2 transfers control to a procedure-name based on the value of an identifier. The
identifier should have an integer value that corresponds to the position in the GO TO
statement of one of the procedure-names. Procedure-name-1 is in position 1, procedure
name-2 is in position 2, etc. Thus

GO TO A B C DEPENDING ON NUM

transfers control to A if NUM = 1, to B if NUM = 2, and to C if NUM = 3. If NUM isn't
equal to 1, 2, or 3, control passes to the next statement.

You can name the same procedure more than once in a Format 2 GO TO statement:

GO TO A B B A A DEPENDING ON NUM

This transfers control to A if NUM = 1, 4, or 5, and to B if NUM = /. or 3.

•

A Format 1 GO TO statement that does not specify a procedure-name is valid only if it is •
executed after an ALTER statement (7.7.4) that references it. This type of GO TO
statement must be the only statement in a paragraph.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-57

• 7.7.4. ALTER Statement

•

•

ALTER statements change procedure-names referenced by Format 1 GO TO statements.
The format is:

ALTER procedure-name-I TO [PROCEED TO] procedure-name-2

[. procedure-name-3 TO [PROCEED TO] procedure-name-4]

The procedure-names must be paragraph-names. The paragraph named to the left of TO
PROCEED TO must consist solely of a Format 1 GO TO statement. The ALTER statement
modifies that GO TO statement so that it refers to the paragraph named to the right of TO
PROCEED TO:

ALTER MAIN TO PROCEED TO B

This in effect changes the paragraph

MAIN.

GO TO A.

to

MAIN .

GO TO B.

This stands for all subsequent executions of MAIN, unless MAIN is referenced by another
ALTER statement that changes the destination again.

The GO TO statement in the paragraph referenced by ALTER does not have to specify a
procedure-name. Thus, in the example, MAIN can be coded

MAIN.

GO TO.

The coding

ALTER MAIN TO PROCEED TO B

still, in effect, changes the paragraph to

MAIN.

GO TO B .

UP-8805 SPERRY UNIVAC 7-58
FUNDAMENTALS OF 1974 ANSI COBOL

7.7.5. PERFORM Statement

PERFORM statements transfer control to a series of procedures and, once the procedures
are executed, return control to the statement following the PERFORM statement. There
are four formats:

Format 1:

PERFORM procedure-name-I [{~UGH} procedure-name-2]

Format 2:

PERFORM procedure-name-I [{THROUGH} procedure-name-2]{identifier-I} TIMES
THRU integer-I

Format 3:

PERFORM procedure-name-I [{~UGH} procedure-name-2] UNTIL condition-I

Format 4:

PERFORM procedure-name-I [{~UGH} procedure-name-2]

VARYING {identif ier-2} FROM {identif ier-3}
index-name-I index-name-2

literal-I

BY {ident if ier-4} UNTIL condition-I
I i t e r a I - 3

AFTER {identifier-5}
index-name-3

FROM {identif ier-6}
index-name-4
literal-3

!! {identifier-7} UNTIL condition-2
I i t er a I - 4

AFTER {identifier-8} FROM {identifier-9}
index-name-5 index-name-6

literal-5

BY {identif ier-I0} UNTIL condition-3
literal-6

The simplest PERFORM executes one paragraph or section.

For example:

PERFORM A

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-59

If A is a section, this executes all the paragraphs in the section. If A is a paragraph, it
executes only the sentences in the paragraph. After the procedures are executed, control
passes to the statement following the PERFORM statement. For example, in the code

MAIN-PARA SECTION.
CARDIN.

READ CARDFILE AT END GO TO EOJ.
PERFORM FIND-CARD-TYPE.
GO TO MAIN-PARA.

FIND-CARD-TYPE SECTION.

CHECK-IND.
I F IND EQUAL TO
I F IND EQUAL TO
I F IND EQUAL TO

A.

B.

C .

FIND-CARD-TYPE-EXIT.
EXIT.

END-JOB SECTION.
EOJ.

the sentence

PERFORM FIND-CARD-TYPE

"A"
, , B"
.. c"

GO TO A.
GO TO B.
GO TO c.

executes the paragraphs CHECK-IND, A, B, C, and FIND-CARD-TYPE-EXIT, then returns
control to GO TO MAIN-PARA. Of course, it is possible not all the paragraphs (or all the
statements in each paragraph) will be executed. If, in CHECK-IND, the conditional
statement

IF IND EQUAL TO ''C''

is true, control branches to C and A and B aren't executed .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-60

The procedures performed are executed beginning with the first statement in the first •
paragraph. You must make certain execution of the procedures ends with the last
statement in the last paragraph; otherwise, control is never returned to the statement
following the PERFORM statement.

The THROUGH option allows you to specify a series of paragraphs or sections to be
executed:

PERFORM FIND-CARD-TYPE

This could be written as

PERFORM CHECK-IND THROUGH FIND-CARD-TYPE-EXIT

If you use the THROUGH option and either procedure is in the declaratives portion of the
program, the other procedure must also be in the declaratives portion.

Format 2 executes the paragraphs or sections a specified number of times before
returning control to the statement following the PERFORM statement. You code

PERFORM READ-ROUTINE COUNTER TIMES

to consecutively execute READ-ROUTINE the number of times indicated by the value of
COUNTER. COUNTER must represent a positive integer; if it is negative, or zero, control •
passes immediately to the statement following the PERFORM statement, without
executing READ-ROUTINE.

If the value of COUNTER changes during execution of READ-ROUTINE, the operation of
the PERFORM statement is not affected; if COUNTER equals 5 when control passes to the
PERFORM statement, READ-ROUTINE is executed five times regardless of any change in
COUNTER.

Format 3 executes the procedures until a specified condition is true. The paragraphs or
sections are executed once each time that condition is tested and found to be false. If you
code

PERFORM MAIN THROUGH FIND-COST UNTIL TOTAL> LIMIT

and the condition TOTAL> LIMIT is false, the procedures MAIN THROUGH FIND-COST are
executed once, and the condition is tested again. This cycle continues until the condition is
true. If the condition is true the first time it is tested, control passes immediately to the
statement following the PERFORM statement.

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-61

Format 4 PERFORM statements generally are used for table handling routines; they allow
you to vary the values of indexes and subscripts before each execution of a procedure. For
instance, to find the average value of the items in this single-level table:

01 PREMIUM-TABLE.

05 PREM OCCURS 15 TIMES PIC 9(7) COMP.

You could code as follows:

PREM-LOOP-SETUP.

MOVE 1 TO PREM-SS.

PREM-LOOP.

ADD PREM (PREM-SS) TO TOTAL.

ADD 1 TO PREM-SS.

IF PREM-SS> 15 GO TO PREM-CALC

ELSE GO TO PREM-LOOP.

PREM-CA LC.

DIVIDE TOTAL BY 15 GIVING AVERGE.

The term PREM-SS is a subscript. This routine adds the value of each occurrence of
PREM, stores the total value in TOTAL, and divides by 15 to find the average value, which
is stored in AVERGE. Using a Format 4 PERFORM statement, you could code the routine
as follows:

PERFORM PREM-LOOP VARYING PREM-SS FROM 1 BY 1

UNTIL PREM-SS> 15.

GO TO PREM-CALC.

PREM-LOOP.

ADD PREM (PREM-SS) TO TOTAL.

PREM-CALC.

DIVIDE TOTAL BY 15 GIVING AVERGE.

Execution proceeds as follows:

1. The identifier in the VARYING phrase (PREM-SS) is set to the value specified in the
FROM phrase.

2.

3.

4.

5.

The condition (PREM-SS > 15) is tested. Because it's false, the procedure (PREM
LOOP) is executed once. Thus, the first occurrence of PREM is added to TOTAL.

PREM-SS is incremented by 1, the value specified in the BY phrase.

The condition is tested again and (because it is still false) PREM-LOOP is executed
again, this time adding the value of the second occurrence of PREM to TOTAL.

The loop is repeated 15 times until PREM-SS > 15 is true; then, control passes to GO
TO PREM-CALC.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-62

Note that we tested the subscript for a value greater than (rather than equal to) 15. That's •
because the condition is tested immediately after the identifier is incremented. If EQUAL
TO were used, the procedure would be executed only 14 times.

Figure 7-1 is a flowchart that summarizes the execution of a Format 4 PERFORM
statement that has one condition.

ENTRANCE

Set identifier-2 equal to
current FROM value

TRUE
Condition-1 i----~EXIT

FALSE

Execute procedure-name-1
THAU procedure-name-2

Augment identifier-2 with
current BY value

Figure 7-1. Format 4 Flowchart for PERFORM Statement with 1 Condition

When you work with 2-level tables, you vary two identifiers or indexes. To find the
average of the values in the following

01 PREM-TABLE.

05 PREM-CLASS OCCURS 3 TIMES
INDEXED BY CLASS- INDEX.

10 PREM OCCURS 15 TIMES PIC 9(7)
INDEXED BY PREM-INDEX.

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-63

• you code

•

•

PERFORM PREM-LOOP VARYING CLASS-INDEX FROM 1 BY 1

UNTIL CLASS-INDEX:> 3 AFTER PREM-INDEX FROM 1

BY 1 UNTIL PREM-INDEX> 15.

GO TO PREM-CALC.

PREM-LOOP.

ADD PREM (CLASS-INDEX. PREM-INDEX) TO TOTAL.

PREM-CALC.

DIVIDE TOTAL BY 45 GIVING AVERGE.

Execution proceeds this way:

1. CLASS-INDEX and PREM-INDEX are set to their FROM values (1).

2. Condition-1 and condition-2 are tested, in order. Because they are false, PREM-LOOP
is executed once; thus, PREM (1, 1) is added to TOTAL.

3. PREM-INDEX, but not CLASS-INDEX, is incremented by its BY value (1).

4. Condition-2 (PREM-INDEX> 15) is tested. Because it's false, PREM-LOOP is executed
again, this time adding PREM (1, 2) to TOTAL.

5. The incrementing of PREM-INDEX and testing of condition-2 continues until
condition-2 is true. At that time, PREM (1, 15) has just been added to TOTAL.

6. PREM-INDEX is reset to its FROM value (1) and CLASS-INDEX is incremented by its
BY value (1). Condition-1 is tested and, because it's false, PREM-LOOP is executed.
This adds PREM (2, 1) to TOTAL.

7. The cycle continues as before, until condition-2 is true again. Thus, PREM (2, 2),
PREM (2, 3), PREM (2, 4) ... PREM (2, 15) are added to TOTAL.

8. The cycle repeats for PREM (3, 1), PREM (3, 2) ... PREM (3, 15).

9. Control passes to GO TO PREM-CALC.

Thus you can see that identifier-5 or index-name-3 in the format goes through a complete
cycle each time identifier-2 or index-name-1 is varied. Also note that Format 4 works the
same way whether you use subscripting or indexing. In the first example, when
subscripting is used, the setting of the identifier to its FROM value is the equivalent of

MOVE 1 TO PREM-SS

However, when indexing is used, it is the same as

SET CLASS-INDEX PREM-INDEX TO 1

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Similarly, incrementing subscripts by the BY value is the same as

ADD 1 TO PREM-SS

but incrementing PREM-INDEX and CLASS-INDEX is equivalent to

SET PREM-INDEX UP BY 1

and

SET CLASS-INDEX UP BY 1

7-64

Figure 7-2 summarizes execution of a Format 4 PERFORM statement that has two
conditions.

ENTRANCE

Set identifier-2 and
identifier-5

to current FROM values

Condition-1

FALSE

Condition-2

FALSE

Execute procedure-name-1
THR U procedure-name-2

Augment identifier-5 with
current BY value

TRUE .,._. ____ EXIT

TRUE

Set identifier-5 to its
current FROM value

Augment identifier-2 with
current BY value

Figure 7-2. Format 4 Flowchart for PERFORM Statement with 2 Conditions

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-65

Using PERFORM statements to manipulate 3-level tables works the same way as for 2-
level tables, except that identifier-8 in the format goes through a complete cycle each time
identifier-5 is augmented by identifier-7 or literal-4, which in turn goes through a
complete cycle each time identifier-2 is varied. The operation of a Format 4 PERFORM
having three conditions is summarized in Figure 7-3.

ENTRANCE

1

Set identifier-2, identifier-5,
identifier-8 to

current FROM values

l
TRUE

Condition-1 EXIT

rALSE

rC TRUE
Condition-2

lFALSE

rC TRUE
Condition-3

TFALSE

Execute procedure-name-1 Set identifier-8 to its Set identifier-5 to its
THAU procedure-name-2 current FROM value current FROM value

J

._ Augment identifier-8 with Augment identifier-5 with Augment identifier-2 with
current BY value current BY value current BY value

Figure 7-3. Format 4 Flowchart for PERFORM Statement with 3 Conditions

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

7-66

The sequence of statements a PERFORM statement refers to may include another •
PERFORM statement, but the sequence of procedures associated with the included
PERFORM statement must either be totally included in, or totally excluded from, the logical
sequence referred to by the first PERFORM statement. Additionally, two such perform
statements have the same exit point. For example:

X.

A.
D.

F.
J .
M.

PERFORM A THRU M.

PERFORM F THRU J.

The PERFORM statement in D is valid because it references procedures totally within the
range of procedures referenced by the perform in X. Changing the PERFORM statement in
D to

PERFORM F THRU M

is invalid because the included PERFORM statement shares an exit point with the first
PERFORM statement.

The following example

X.

A.
D.

H.
M.
F.
J .

PERFORM A THRU M.

PERFORM F THRU J.

is valid because it references procedures totally outside of the range of procedures
referenced by the first PERFORM statement.

•

•

•
UP-8805 SPERRY UNIVAC

FUNDAMENTALS OF 1974 ANSI COBOL
7-67

Procedures may be referenced by more than one PERFORM statement in the program. For
instance, the following is a valid use of PERFORM statements:

x.

A.

D.

H.
M.
F.

J .

PERFORM H THRU J.

PERFORM M THRU J.

PERFORM H THRU F.

7.8. COMPILER DIRECTING VERB

The compiler directing verb USE directs the compiler to take a specific action at compile
time.

7 .8.1. USE Statement

USE statements allow you to specify procedures that are executed when there are system
input-output errors. These procedures are in addition to the standard ones provided by

• your operating system's input-output control system.

•

Additionally, USE statements may provide procedures to process end-of-file conditions or
file key specification errors, if the AT END or INVALID KEY phrase is not specified in the
associated input-output statement. The format:

~ AFTER STANDARD {EXCEPTION} PROCEDURE
ERROR

ON lfile-name-1
INPUT
OUTPUT
I -0

EXTEND

In this format, ERROR and EXCEPTION are equivalent.

I . I ;i • - ,.., - 2 I .. · i ·
The USE statements belong in the declaratives section, immediately following section
headers. The error handling procedures follow the USE statements. Note that USE
statements themselves are never executed; they merely define the conditions under which
the procedures that follow are executed. The procedures may apply to specific files, or to
all files opened in either INPUT, OUTPUT, 1-0, or EXTEND mode .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

For instance, you code

DECLARATIVES.
OUT-ERR SECTION. USE AFTER STANDARD ERROR PROCEDURE ON OUTPUT.
PARA.

DISPLAY ''OUTPUT ERROR ON'' ID-FIELD UPON CONSOLE.
END DECLARATIVES.

7-68

If, during execution of your program, there is an error associated with any of your
program's output files, the system's standard input-output procedures are executed, then
the paragraph called PARA is executed (the message OUTPUT ERROR ON followed by the
value of the field called ID-FIELD appears on the console).

Statements in USE procedures may not reference nondeclarative procedures, and no
statements (except PERFORM) in the nondeclarative portion may reference procedures
associated with a USE statement.

After execution of a USE procedure, control is returned to the invoking routine.

7.9. CODING EXAMPLE

Some of the features of a procedure division taken from a payroll program are included in

•

this sample coding. The program reads a file of employees, prints a payroll check for each .-~
employee, and produces a payroll report.

The section in the declaratives portion of the procedure division defines what is done if
there is a system error during processing of PAY-FILE. The message PAYROLL FILE
ERROR appears on the system console.

The BEGIN-JOB section opens files, initializes data fields, and retrieves the system date.

The MAIN-LOOP section reads employee records and determines whether the employees
are part time or full time. When employees are full time, the routine determines whether
they're exempt or non-exempt. And when employees are non-exempt, the routine
determ~nes whether they worked overtime. The routine then directs execution of sections
appropriate to the employee's status, writes a check and a line on the report, and returns
for the next record.

The end of job section (EOJ) adds the totals line to the report, closes files, and ends
processing.

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Procedure Division Coding:

PROCEDURE DIVISION.
DECLARATIVES.
PAY-FILE-ERROR SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON PAY-FILE.
ERR-ROUT.

DISPLAY "PAYROLL FILE ERROR" UPON CONSOLE.
END DECLARATIVES.
BEGIN-JOB SECTION.
HOUSEKEEP-ROUT.

OPEN INPUT PAY-FILE OUTPUT CHECK-FILE REPORT-FILE.
MOVE ZEROS TO PT-TOTAL EXEMPT-TOTAL NON-EXEMPT-TOTAL

OT-TOTAL PT-HOURS OT-TOT-HOURS TOT-CHECKS.
MOVE SPACES TO PAY-WORK CHECK-WORK PAY-REPT-WORK

PAY-REPT-WORK-2.
ACCEPT RUN-DATE FROM DATE.

MAIN-LOOP SECTION.
FULL-ROUT.

READ PAY-FILE INTO PAY-WORK AT END GO TO EOJ.
IF FULL-TIME

IF NON-EXEMPT
IF OVERTIME-PAY PERFORM CALC-NON-EXEMPT

PERFORM CALC-OVERTIME
ELSE PERFORM CALC-NON-EXEMPT

ELSE PERFORM CALC-EXEMPT
ELSE PERFORM CALC-PART-TIME.
PERFORM WRITE-REPORT THRU WRITE-CHECK.
GO TO MAIN-LOOP.

CALC-PART-TIME SECTION.
PART-ROUT.

COMPUTE PT-PAY= PT-RATE • PT-HRS-WORKED.
MOVE PT-PAY TO CHECK-AMOUNT.
ADD PT-PAY TO PT-TOTAL.
ADD PT-HRS-WORKED TO PT-HOURS.

CALC-EXEMPT SECTION.
EXEMPT- ROUT.

MOVE WEEKLY-PAY TO-CHECK-AMOUNT.
ADD WEEKLY-PAY TO EXEMPT-TOTAL.

CALC-NON-EXEMPT SECTION.
NON-EXEMPT-ROUT.

COMPUTE REG-PAY = REG-RATE • HOURS-WORKED.
MOVE REG-PAY TO CHECK-AMOUNT.
ADD REG-PAY TO NON-EXEMPT-TOTAL.

CALC-OVERTIME SECTION .

7-69

(continued)

UP-8805

OVERTIME-ROUT.

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

SUBTRACT 40 FROM HOURS-WORKED GIVING OT-HOURS.
DIVIDE 2 INTO REG-RATE GIVING OT-RATE.
COMPUTE OT-PAY= OT-RATE * OT-HOURS.
ADD OT-PAY TO OT-TOTAL.
ADD OT-HOURS TO OT-TOT-HOURS.
ADD OT-PAY TO REG-PAY, NON-EXEMPT-TOTAL.
MOVE REG-PAY TO CHECK-AMOUNT.

WRITE-REPORT SECTION.
REPORT-ROUT.

MOVE LAST-NAME TO REPORT-NAME.
MOVE CHECK-AMOUNT TO REPT-CHECK-AMOUNT.
ADD CHECK-AMOUNT TO TOT-CHECKS.
WRITE PAY-REPT FROM PAY-REPT-WORK.

WRITE-CHECK SECTION.
CHECK-ROUT.

MOVE NAME TO NAME-OUT.
MOVE CHECK-AMOUNT TO CHECK-AMOUNT-OUT.
WRITE CHECK-RECD FROM CHECK-WORK.

EOJ SECTION.
FINISH-ROUT.

MOVE PT-TOTAL TO REPT-PT-TOTAL.
MOVE EXEMPT-TOTAL TO REPT-EXEMPT-TOTAL.
MOVE NON-EXEMPT-TOTAL TO REPT-NON-EXEMPT-TOTAL.
MOVE OT-TOTAL TO REPT-OT-TOTAL.
MOVE PT-HOURS TO REPT-PT-HOURS.
MOVE OT-TOT-HOURS TO REPT-OT-TOT-HOURS.
MOVE RUN-DATE TO REPT-RUN-DATE~

WRITE PAY-REPT FROM PAY-REPT-WORK-2.
CtOSE PAY-FILE CHECK-FILE REPORT-FILE.
DlSPLAY ''END OF PAYROLL RUN'' UPON CONSOLE.
STOP RUN.

7-70

•

•

•

•

•

•

UP-8805

8.1. DEFINING TABLES

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-1

8. Table Handling

Tables consist of functionally related, contiguous data items arranged in some logically
meaningful order. For example, the following listing of the months of the year is a table.

1
2
3
4
5
6
7
8
9

10
11
12

JANUARY
FEBRUARY
MARCH
APRIL
MAY
JUNE
JULY
AUGUST
SEPTEMBER
OCTOBER
NOVEMBER
DECEMBER

8.1.1. Table Elements

Each month is contained in a table element associated with a relative position in the table.
The month table has 12 elements, one for each month, and each element has its own
unique position within the table.

To create the month table in your COBOL program you assign a data-name which is
common to all the elements in the table. This data-name is then used along with the
relative number of the element you wish to access. For instance, data-narne (6) would be
used to access the month of JUNE. You can use a subscript or index to indicate the
relative position of the desired element within the table.

To define tables in a COBOL program, you use OCCURS clauses (8.1.2) to specify the
number of times the table items (in this example, the months of the year) are repeated.
You include the specific table data (i.e., JANUARY, FEBRUARY, ...) in your COBOL source
code or (particularly if your tables are long or likely to need changes frequently) you read
the data from an external device when the program is executed.

UP-8805

You

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

use VALUE clauses to include the data in the COBOL source code:

0 1 TABLE-OF-MONTHS.

03 TABLE-ENTRIES.

05 F LLER p c x (9) VALUE ' 'JANUARY

05 F LL ER p c x (9) VALUE ''FEBRUARY

05 F LLER p c x (9) VALUE ' 'MARCH

05 F LLER p c x (9) VALUE "APRIL

05 F LLER p c x (9) VALUE ' 'MAY

05 F LLER p c x (9) VALUE "JUNE

05 F LLER p c x (9) VALUE ' 'JULY

05 F LLER p c x (9) VALUE ''AUGUST

05 F LL ER p c x (9) VALUE ''SEPTEMBER''.

05 F LLER p c x (9) VALUE ''OCTOBER

05 F LLER p c x (9) VALUE ''NOVEMBER

05 F LLER p c x (9) VALUE ''DECEMBER

03 FILLER REDEFINES TABLE-ENTRIES.

05 MONTH OCCURS 12 TIMES

INDEXED BY MONTH-INDEX PI C X (9).

8-2

Since VALUE clauses are invalid in data description entries that either contain an
OCCURS clause or are subordinate to entries containing an OCCURS clause, we cannot
use an OCCURS clause with TABLE-OF-MONTHS or TABLE-ENTRIES. Instead, we redefine

•

that table area and include an OCCURS clause in the description of the data-name used in •
the redefinition. That data-name (MONTH) plus a subscript (8.2.1) or index (8.2.2) that
defines the element's relative position in the table (1 through 12) references an individual
table element. Note that all table items must be the same length; thus, all months are
space-filled to the length of the longest name, SEPTEMBER.

To retrieve the table of months from an external device such as disk, you define a storage
area to contain it:

01 TABLE-OF-MONTHS.

03 TABLE-ENTRIES OCCURS 12 TIMES

INDEXED BY MONTH-INDEX.

05 MONTH PI C X (9) .

This coding describes 12 contiguous occurrences of the 9-character data-name called
MONTH, just as in the previous table. This time, however, you do not include the specific
table values. If the table is in a file called DISK-FILE, a READ statement such as

READ DISK-FILE INTO TABLE-OF-MONTHS

transfers the values - the names of the months - from the disk to your storage area.
Again, you reference the individual table elements by using MONTH plus a subscript or
index.

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-3

• 8.1 .2. OCCURS Clause

•

•

The OCCURS clause specifies the number of times individual table elements are repeated,
and provides information needed for subscripting and indexing. There are two formats for
the OCCURS clause:

Format 1:

OCCURS integer-I TIMES

[{
ASCENDING } KEY IS
DESCENDING

data-name-2 [,data-name-3]

[INDEXED BY in(ex-name-I [, index-name-2] ...]

Format 2:

OCCURS integer-I .!_Q integer-2 TIMES DEPENDING ON data-name-I

[{
A S C E N D I N G } K E Y I S d a t a - n a m e - 2 [, d a t a - n a me - 3] . . ·] . . .
DESCENDING

[INDEXED BY in(ex-name-I [, index-name-2] ...]

Format 1 defines fixed-length tables. If you code as follows

05 RATE OCCURS 50 TIMES PIC 9(5) .

the table element is repeated 50 times; thus, the table has 250 characters (50 occurrences
of the 5-character elementary item called RATE).

You may use the OCCURS clause with group items:

05 RATE OCCURS 50 TIMES.
07 A-RATE PIC 9(5).
07 B-RATE PIC 9(5).

This describes 500 characters (50 occurrences of A-RATE followed by B-RATE).

Format 2 defines variable-length tables. The values (integer-1 and integer-2) specified
preceding the word DEPENDING define the limits of the table; the value of the data item
immediately following DEPENDING (data-name-1) defines the specific size of the table at a
given time. Thus:

0I TABLE.
05 LENGTH-INDICATOR PIC.9(2).
05 ENTRIES OCCURS I TO 50 TIMES

DEPENDING ON LENGTH-INDICATOR
PI C X (5) .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-4

This coding defines a table containing from 1 to 50 five-character entries. depending on •
the value of LENGTH-INDICATOR. So, when LENGTH-INDICATOR equals 20, the table has
20 entries, when LENGTH-INDICATOR equals 40, the table has 40 entries, etc. You must
be certain that LENGTH-INDICATOR is never less than the table's lower limit (integer-1) or
greater than its upper limit (integer-2).

An important item to note is that when the group item TABLE in the example is
referenced, the current value of LENGTH-INDICATOR is used to determine the actual
length of TABLE. This means it is the programmer's responsibility to set data-name-1 to
the correct value before accessing a table or the previous value of data-name-1 is used.
So far as this example is concerned, before any operation on the group item TABLE takes
place, the programmer should be certain the value of LENGTH-INDICATOR represents the
current number of occurences of the table elements.

To further clarify this point, this second example is presented:

ll l WORK-AREA.
ll 2 COUNT PIC 9 (2) .
ll 2 ELEMENT-I PIC x (5).
ll 2 ELEMENT-2 PIC x (5).
ll 2 ELEMENT-3 PIC x (5).

Ill TABLE.

05 LENGTH-INDICATOR PIC 9(2).
05 ENTRIES PIC X(5)

OCCURS 1 TO 51! TIMES
DEPENDING ON LENGTH

INDICATOR.

In this example if you want to move WORK-AREA to TABLE, you must first initialize the
LENGTH-INDICATOR to the current number of occurrences of ENTRIES before you issue a
MOVE. This could be done in the following manner:

MOVE 3 TO LENGTH-INDICATOR

MOVE WORK-AREA TO TABLE

If the first MOVE statement is omitted, which means LENGTH-INDICATOR is not
initialized, the length of the receiving data item is determined by whatever the value of
LENGTH-INDICATOR happens to be. This could jeopardize the original intent of the MOVE
operation.

You do not have to define the data-name following DEPENDING within the same record as
the table it is controlling (as in the example). But when you do, it must precede the data
name that has the OCCURS clause. Thus, the following coding is invalid:

Ill TABLE.
05 ENTRIES OCCURS 1 TO 51! TIMES

DEPENDING ON LENGTH-INDICATOR
PI C X (5) .

05 LENGTH-INDICATOR PIC 9(2).

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-5

When you use a Format 2 OCCURS clause in a data description entry, the entry may only
be followed (within the same record description) by data description entries that are
subordinate to it. Thus, the following coding is valid:

01 TABLE.
05 A-TOTS OCCURS 10 TO 25 TIMES

DEPENDING ON COUNT.
10 A-SUB-1 PIC 9(8).
10 A-SUB-2 PIC 9(8).

The following coding, however, is invalid:

01 TABLE.
05 A-TOTS OCCURS 10 TO 25 TIMES

DEPENDING ON COUNT.
10 A-SUB-1 PIC 9(8).
10 A-SUB-2 PIC 9(8).

05 B-TOTS PIC 9(16).

If you want to reference a table with a SEARCH ALL statement (8.4.3.3) (it executes faster
than a SEARCH statement), you must arrange the table's elements in sequence according
to the values of a key field. The ASCENDING/DESCENDING KEY phrase describes that
sequence; it indicates the table elements are in ascending (if you code ASCENDING) or
descending (if you code DESCENDING) sequence according to the values of specific fields
(represented by data-name-2, data-name-3, etc.). Since the fields must be part of the
table, they must be the subject of the OCCURS clause or subordinate to the subject of the
OCCURS clause.

The ASCENDING KEY phrase in the following coding means the 50 values of TYPE-1 are
arranged in ascending sequence:

01 A-RECD.
02 CLASS-A PIC 9(10).
02 RATE OCCURS 50 TIMES

ASCENDING KEY IS TYPE-1.
03 TYPE-1 PIC 9 (5) .
03 TYPE-2 PI C 9 (5) .

In the coding, TYPE-1 (1) is less than TYPE-1 (2), TYPE-1 (2) is less than TYPE-1 (3), etc.

The data-name TYPE-1 is valid in the KEY phrase because it is subordinate to RATE - the
subject of the OCCURS clause. You could not use CLASS-A in the KEY phrase, because it
is not a table element .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

In this example,

01 SAMPLE
03 TYPE: OCCURS 25 TIMES

ASCENDING KEY IS TYPE.
05 DIVISION PIC X(5).
05 CLASS PIC X(3).
05 CATEGORY PIC X(7).

8-6

the subject of the OCCURS clause (TYPE) is the data-name used in the KEY phrase. Note
that

ASCENDING KEY IS DIVISION, CLASS, CATEGORY

is equivalent to

ASCENDING KEY IS TYPE

Some other valid KEY phrases for this example, depending on the arrangement of your
data, include

ASCENDING KEY IS CLASS
ASCENDING KEY IS CATEGORY, DIVISION
DESCENDING KEY IS DIVISION, CLASS
DESCENDING KEY IS CATEGORY

When the data-names in the KEY phrase are subordinate to the subject of the OCCURS
clause (such as DIVISION, CLASS, and CATEGORY), none of them may contain an
OCCURS clause and there must not be any entry containing an OCCURS clause between
any of them and the subject (TYPE) of the OCCURS clause.

If you want to use indexing to reference the subject of an OCCURS clause and its
subordinante items, you must use the INDEXED BY phrase (it associates an index with a
specific table). Thus, in the TABLE-OF-MONTHS (8.1.1), the coding

INDEXED BY MONTH-INDEX

associates the index named MONTH-INDEX with the table.

Do not use OCCURS clauses to describe data items that have level-numbers 01, 66, 77, or
88; and do not use them to describe an item whose size is variable (that is, an item that
has a subordinate item described with a Format 2 OCCURS clause).

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8.2. REFERENCING TABLE ITEMS

8-7

Individual table items are referenced by adding subscripts or indexes to data-names
described with OCCURS clauses. The subscripts or indexes represent occurrence numbers
of table elements. For example, to reference a specific entry in the TABLE-OF-MONTHS,
you code

MONTH (9)

where 9 is a subscript representing the ninth occurrence of MONTH in TABLE-OF
MONTHS. Thus, MONTH (9) equals

SEPTEMBER.

(Note that subscripts and indexes must be enclosed in parentheses.) Since an index
(MONTH-INDEX) is associated with TABLE-OF-MONTHS, you also get the value
SEPTEMBER by referencing MONTH (MONTH-INDEX), provided you set the value of
MONTH-INDEX to 9. Methods of setting indexes are described in (8.4.3.2).

8.2.1. Subscripting

Subscripts reference individual elements from tables of like elements that do not have
individual data-names. The format for subscripting is:

{
d a t a - n am e } (s u b s c r i p t - 1 [, s u b s c r i p t - 2 [, s u b s c r i p t - 3)])

condition-name

Subscripts must be integers - either a numeric literal that is an integer or a data-name
that represents an integer. So, when SS equals 9,

MONTH (9)

and

MONTH (SS)

reference the same table element.

Data-names used as subscripts are not associated with particular tables; you can use
them as subscripts when referencing any table in the program. Such data-names may be
qualified, but not subscripted.

The lowest possible subscript value is 1; the highest is equivalent to the maximum number
of occurrences of the item as specified in the associated OCCURS clause. Thus, MONTH in
the TABLE-OF-MONTHS may be subscripted by the integers 1 through 12 .

You can sign a subscript, but the sign must be positive.

UP-8805

8.2.2. Indexing

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-8

You use indexing, like subscripting, to reference individual elements within tables of like
elements that do not have individual data-names. You associate an index-name (like
MONTH-INDEX in the TABLE-OF-MONTHS) with a table by specifying it in an INDEXED BY
phrase of the OCCURS clause. The value of an index corresponds to an occurrence
number of an element in the associated table; the manner of that correspondence is
determined by the implementor.

Here is the general format for indexing:

{
data-name }({index-name-I[{+) I iteral-2]}
condition-name I iteral-1

[
, { i n d, ex - name - 2 [{ ±) I i t e r a I - 4]} [· { i n de x - name - 3 [{ ±) I i t e r a I - 6] }]])

literal-3 literal-5

Before you use an index-name to reference a table element, you must initialize it with a
SET, SEARCH ALL, or PERFORM statement:

SET MONTH-INDEX TO 1

This initializes MONTH-INDEX to a value that corresponds to an occurrence number of 1.
Then you can reference the table element with direct indexing (using an index-name like a
subscript):

MONTH (MONTH- INDEX)

Another format is relative indexing (using an index-name plus a displacement value):

MONTH (MONTH-INDEX+ 3)

The displacement value, which must be an unsigned integer, increases or decreases the
occurrence number associated with the index. Thus, if MONTH-INDEX is set to 1,

MONTH (MONTH-INDEX+ 3)

references the fourth occurrence of MONTH. Similarly, if MONTH-INDEX is set to 12,

MONTH (MONTH-INDEX - 4)

references the eighth occurrence of MONTH.

Make certain the occurrence value resulting from relative indexing is at least 1 and is no
more than the maximum number of occurrences of the item as specified in the OCCURS
clause.

Using literal-1, literal-3, and literal-5 in the format is functionally equivalent to using
subscripting.

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-9

• 8.3. MULTIDIMENSIONAL TABLES

•

•

The tables described so far have one dimension. You can, however, code tables that have
up to three dimensions. For example:

01 TABLE.
03 DIVISION OCCURS 2 TIMES

INDEXED BY DIV-INDEX.
05 DEPARTMENT OCCURS 3 TIMES

INDEXED BY DEPT-INDEX.
07 CLASS PIC X(l).
07 CATEGORY OCCURS 5 TIMES

INDEXED BY CAT-INDEX PIC X(2).

A reference to the third occurrence of CATEGORY, or CATEGORY (3), is meaningless
without an indication of the DEPARTMENT and DIVISION with which CATEGORY is
associated. So, to reference an occurrence of CATEGORY, you must include three
subscripts or indexes:

CATEGORY (2, 1, 3)

Thus, the third occurrence of CATEGORY within the first occurrence of DEPARTMENT
within the second occurrence of DIVISION. Similarly, a reference to DEPARTMENT
includes two levels of subscripting or indexing:

DEPARTMENT (DIV-INDEX, DEPT-INDEX)

A reference to CLASS also requires two levels of subscripting or indexing to indicate the
DEPARTMENT and DIVISION it is associated with.

You must write multiple subscripts or indexes in the order of successively less inclusive
dimensions of the table. Thus,

CATEGORY (3, 1, 2)

is invalid because it references a nonexistent third occurrence of DIVISION.

The commas between the indexes or subscripts are optional, as is the space between the
data-name and the left or right parenthesis.

When you use subscripting to reference multidimensional table elements, you may mix
subscripts that are literals with subscripts that are data-names.

Suppose you want to use subscripting to reference items from the following table:

01 TABLE.
03 CLASS OCCURS 12 TIMES .

05 RATE OCCURS 30 TIMES.
07 LIMIT OCCURS 10 TIMES PIC 9(7).

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-10

You can reference the third occurrence of LIMIT within the 15th occurrence of RATE •. -.
within the sixth occurrence of CLASS several ways. For example (assume CLASS-SS,
RATE-SS, and LIMIT-SS are elementary data items with the integer values 6, 15, and 3,
respectively):

LIMIT (6, 15, 3)

LIMIT (CLASS-SS, 15, 3)

LIMIT (CLASS-SS, 15, LIMIT-SS)

LIMIT (CLASS-SS, RATE-SS, LIMIT-SS)

As you can see, all references to LIMIT have three subscripts, because LIMIT is the
innermost level of a 3-level table. Similarly, references to RATE contain two subscripts, as
in RATE (5, 18) or RATE (CLASS-SS, RATE-SS). References to CLASS have just one
subscript, as in CLASS (4) or CLASS (CLASS-SS).

In the next example, table elements are referenced with the indexes CLASS-INDEX, RATE
INDEX, and LIMIT-INDEX.

01 TABLE.

03 CLASS OCCURS 12 TIMES

INDEXED BY CLASS-INDEX.

05 RATE OCCURS 30 TIMES

INDEXED BY RATE-INDEX.

07 LIMIT OCCURS 10 TIMES

INDEXED BY LIMIT-INDEX PIC 9(7).

You reference an occurrence of LIMIT as:

LIMIT (CLASS-INDEX. RATE-INDEX, LIMIT-INDEX)

An occurrence of RATE as:

RATE (CLASS-INDEX, RATE-INDEX)

An occurrence of CLASS as:

CLASS (CLASS-INDEX)

Or, you can mix index-names and literals:

LIMIT (CLASS-INDEX, 5, 7)

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-11

• 8.4. TABLE LOOKUP

•

•

8.4.1. Coding Specific Elements

In the data division, you define tables and identify index-names associated with levels of
tables. Now, in the procedure division, you code the statements that access the specific
elements you need. Often you only need one statement. For instance, if your program
includes the TABLE-OF-MONTHS and you want your program to print the name of the
current month as the last word in a heading line such as:

PRODUCTION REPORT FOR

you code

MOVE MONTH (MONTH-IN) TO MONTH-OUT.

Assume MONTH-OUT represents the last data item in the heading line and MONTH-IN is
an integer from 1 to 12 that is read from an input record. Then, if the value of MONTH-IN
is 11, the heading line reads

PRODUCTION REPORT FOR NOVEMBER

You can see that using MONTH-IN as a subscript is simpler than testing for each month
separately:

IF MONTH-IN

IF MONTH-IN

IF MONTH-IN

1 MOVE ''JANUARY'' TO MONTH-OUT.

2 MOVE ''FEBRUARY'' TO MONTH-OUT.

3 MOVE ''MARCH'' TO MONTH-OUT.

IF MONTH-IN= 12 MOVE "DECEMBER" TO MONTH-OUT.

When you use subscripting in routines that search a table for a specific element, you
generally code a loop that accesses a table element and checks to see if it is the one
needed; if it isn't, the routine increments the subscript and branches back to access the
next element. When you use indexing, however, the SEARCH statement does the loop
processing for you .

UP-8805 SPERRY UNIVAC
.FUNDAMENTALS OF 1974 ANSI COBOL

8.4.2. Table Lookup with Subscripting

Suppose your data division contains the following entries:

77 COUNT PI C 9 (2).

01 TABLE.
02 I NV-TABLE.

03 FILLER PIC 9 (5) VALUE ''15095''.
03 FILLER PIC 9 (5) VALUE ''26418' ..
03 FILLER PIC 9 (5) VALUE "09901".
03 FILLER PIC 9 (5) VALUE '' 18123' ..
03 FILLER PIC 9 (5) VALUE ''42008''.
03 FILLER PIC 9 (5) VALUE "12221".
03 FILLER PIC 9 (5) VALUE ''24068''.
03 FILLER PIC 9 (5) VALUE ''51595' ..
03 FILLER PIC 9 (5) VALUE "72219".
03 FILLER PIC 9 (5) VALUE "77645".

02 FILLER REDEFINES I NV-TABLE.
03 ENTRIES OCCURS 10 TIMES

INDEXED BY I NV-INDEX.
04 PART PI C 9 (2) .
04 STOCK PIC 9(3).

8-12

Then the following routine finds the amount of stock (STOCK) for a particular part (PART):

LOOP.

MOVE 1 TO COUNT.

IF INPUT-PART IS EQUAL TO PART (COUNT)
MOVE STOCK (COUNT) TO PRINTLINE
WRITE PRINTOUT
GO TO ...

ELSE ADD 1 TO COUNT.
IF COUNT IS GREATER THAN 10 GO TO NO-MATCH
ELSE GO TO LOOP.

The table elements, beginning with the first, are examined until the part number from an
input record (INPUT-PART) matches the part number (PART) of a table entry. When it does,
the corresponding stock amount (STOCK) is printed. Thus, if INPUT-PART equals 15, 095
appears on the printout. If all 10 table entries are examined and INPUT-PART and PART
(COUNT) never match, control passes to an error routine called NO-MATCH.

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-13

• 8.4.3. Table lookup with Indexing

•

•

To do the same processing as in 8.4.2 using indexing, you use the SET statement (8.4.3.2)
to initialize INV-INDEX, then a SEARCH statement (8.4.3.3) to search the table for the
element that has a part number equal to the one in the input record. Thus, if INPUT-PART
equals 15

SET INV-INDEX TO 1.

SEARCH ENTRIES AT END GO TO NO-MATCH.

WHEN INPUT-PART IS EQUAL TO PART (INV-INDEX)

MOVE STOCK (INV-INDEX) TO PRINTLINE

WRITE PRINTOUT.

Executing this coding prints 095 on the report. Again, if INPUT-PART never equals PART
(INV-INDEX), control passes to NO-MATCH.

8.4.3.1. USAGE IS INDEX Clause

The USAGE IS INDEX clause allows the definition of elementary items that can be used to
save index values. The items are called index data items. When you describe an index data
item such as

77 SAVE-INDEX USAGE IS INDEX .

you cannot include the PICTURE, VALUE, SYNCHRONIZED, JUSTIFIED, or BLANK WHEN
ZERO clauses. The item (in this example SAVE-INDEX) simply contains a value that
corresponds to an occurrence number of a table element. You establish that value by
setting the index data items equal to the value of an index named in an INDEXED BY
phrase of an OCCURS clause. For instance, if MONTH-INDEX is associated with a table,
then

SET SAVE-INDEX TO MONTH-INDEX

makes SAVE-INDEX equal to the current value of MONTH-INDEX. Thus, the actual value
and method of representing an index is determined by the implementor. Then you can
change the value of MONTH-INDEX and eventually, if necessary, restore it to its original
value by executing the coding

SET MONTH-INDEX TO SAVE-INDEX

You can write the USAGE IS INDEX clause at any level. If you write it at the group level,
each elementary item in the group is an index data item, but the group itself cannot be
referenced as an index data item. For example, if you code

01 A USAGE IS INDEX.

02 B .
02 c.
02 D.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-14

then B, C, and D are index data 'items. But A is not; thus, the following is invalid:

SET A TO MONTH-INDEX

Index data items can be part of groups referred to in a MOVE statement. No conversion of
the item occurs.

8.4.3.2. SET Statement

SET statements manipulate the values of indexes. There are two formats:

Format 1:

SET

Format 2:

{
identifier-I [,identifier-2]

ind.ex-name-I [, index-name-2] : : : } TO lident if ier-3)
index-name-3

integer-I

SET index-name-I [, index-name-2] ... {UP BY } {identifier-I}
DOWN BY i n t e g e r - I

•

You use Format 1 to initialize the values of index-names, index data items, or integer data •
items. Index-names represent indexes defined in the INDEXED BY clause for a table; index
data items are elementary data items described with the USAGE IS INDEX clause; and
integer data items are elementary data items defined as integers.

The items initialized by SET statements are called receiving items and are coded to the left
of the word TO in the format. The items to the right of TO are called sending items
because their values are transferred to the receiving items, either directly, as if a simple
MOVE statement were in effect, or after a conversion takes place to put the value into a
format appropriate to the receiving item.

Sending items can be index-names, index data items, and integer data items (same as for
receiving items) or they can be integers. However, you may or may not be able to use all
four types of sending items, depending on the type of receiving item. The valid
combinations of sending and receiving items are identitied in the following listing:

If Receiving
Item (item to
left of TO) is

index-name

index data items

integer data item

Combinations of Receiving and Sending Items

Can Sending Item (item to right of TO) be:

index-name index data item integer data item integer

Yes Yes Yes Yes

Yes Yes No No

Yes No No No •

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-15

As you can see, when an index-name is the receiving item, you can use any of the four
types of sending items. If the sending item is an index data item or if it is an index-name
related to the same table as the receiving index-name, no conversion takes place as the
value of the sending item is transferred to the receiving item (otherwise, a conversion is
necessary). For example, if the sending item is an integer, the index-name is converted to
a value that refers to the table element that corresponds to the occurrence number
referenced by the integer (if the integer is signed, it must be positive). If MONTH-INDEX is
associated with a table, the coding

SET MONTH-INDEX TO 1

sets it to a value corresponding to an occurrence number of 1.

When an index data item is the receiving item, you can set it equal to either the contents
of an index-name or of another index data item; no conversion takes place in either case.
You cannot set the value of an index data item to an integer or an integer data item. This
statement

SET HOLD-INDEX TO RATE-INDEX

stores the current value of RATE-INDEX in the index data item called HOLD-INDEX.

If you use an integer data item as the receiving item, the sending item must be an index
name. The value of the integer data item is converted to an occurrence number that
corresponds to the value of the index-name. In this example,

S E T TAB - N UM B TO .RA TE - I ND EX

the integer data item TAB-NUMB is set to an occurrence value that corresponds to the
value of the index-name RATE-INDEX.

The Format 2 SET statements increment (if UP BY is used) or decrement (if DOWN BY is
used) index-names by a value that corresponds to the number of occurrences represented
by the value of identifier-1 or integer-1.

ldentifier-1 must be described as an elementary numeric integer. lnteger-1 may be signed
(you may set an index up or down by a negative number).

In the following example, the index-names RATE-INDEX and CLASS-INDEX are initialized
by a Format 1 SET statement, then incremented by a Format 2 SET statement.

SET RATE-INDEX TO 1.

SET CLASS-INDEX TO 3.

SET RATE-INDEX CLASS-INDEX UP By 1.

After these statements are executed, RATE-INDEX corresponds to an occurrence value of
2, and CLASS-INDEX corresponds to an occurrence value of 4 .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8.4.3.3. SEARCH Statement

8-16

SEARCH statements examine individual table elements until predetermined conditions are
true or until all table elements have been examined. There are two formats.

Format 1:

SEARCH identifier-I [VARYING {~dentifier-2}]
index-name-I

[;AT~ imperative-statement-I]

WHEN condition-I

{
imperative-statement-2}

NEXT SENTENCE

[WHEN con d i t i on - 2
{

imperative-statement-3}] ...
NEXT SENTENCE

Format 2:

SEARCH ALL identifier-I [; AT ~ imperative-statement-I]

; WHEN{ d a ta - name - I { I S EQUAL
IS =

condition-name-I

[

ND {data-name-2 {:~ EQUAL

condition-name-2

{
imperative-statement-2}

NEXT SENTENCE

If you code the following:

l
i de n t i f i e r - 3 l}
literal-I

arithmetic-expression-I

t o} I i d en t i f i e r - 4)~ ...
I i t e r a I - 2

arithmetic-expression-2

05 EMPLOYEE OCCURS I00 TIMES INDEXED BY EMP-INDEX.

06 EMP-NO PIC 9(3).

06 EMP-NAME PIC X(25).

A basic SEARCH statement such as follows examines the table elements in EMPLOYEE.

SEARCH EMP LOVE E

WHEN NUM = EMP-NO (EMP-INDEX)

MOVE EMP-NAME (EMP-INDEX) TO NAME-OUT.

•

•

The search begins with the element referenced by the current setting of the first (or only)
index-name in the associated INDEXED BY phrase (in this case, EMP-INDEX). So, if EMP
INDEX is set to 1, the search begins with EMPLOYEE (1). The table elements are examined
one at a time, in sequence; i.e., EMPLOYEE (1), EMPLOYEE (2), ... EMPLOYEE (100), until
NUM = EMP-NO (EMP-INDEX) or until EMPLOYEE (100) is tested and found not to satisfy •
the condition NUM = EMP-NO (EMP-INDEX).

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-17

The conditions you use can be any conditions described as conditional expressions (7.2.2).
You can specify more than one condition.

After each table element is examined, the occurrence number represented by the index
name is incremented by 1. Other index-names assigned in the associated INDEXED BY
phrase are not incremented. After the search, the index-name remains set at the
occurrence that caused the condition to be true.

Thus, if

NUM = EMP-NO (EMP-INDEX)

is true when EMP-INDEX is 60, EMP-INDEX equals 60 when the search is completed.

The search ends when one of the specified conditions is true or when the at-end-condition
occurs. The appropriate imperative statement is executed and control passes to the next
executable statement following the SEARCH statement, unless you direct control
elsewhere by ending your imperative statement with a GO TO instruction. If an at-end
condition occurs and you did not use the AT END phrase in your SEARCH statement,
control passes to the next executable statement following the SEARCH statement.

The VARYING phrase manipulates indexes. If the index-name in the VARYING phrase is
the same as one that appears in the table's INDEXED BY phrase, then that index-name is
used in the search operation. So, if your table is described as

05 EMPLOYEE OCCURS 100 TIMES
INDEXED BY EMP-INDEX NAME-INDEX.
06 EMP-NO PIC 9(3).
06 EMP-NAME PIC X(25).

and you want to increment NAME-INDEX rather than EMP-INDEX during the search, you
code

SEARCH EMPLOYEE VARYING NAME-INDEX ...

and the current value of EMP-INDEX is unchanged by the search operation.

If the index-name in the VARYING phrase is associated with a different table, the first (or
only) index-name associated with the table to be searched (EMP-INDEX in the example) is
used in the search operation (just as if you did not use the VARYING phrase), and the
occurrence number represented by the index-name specified in the VARYING phrase is
incremented by the same amount as (and at the same time as) the index-name used in the
search .

UP-8805

Thus, if you code

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

SEARCH EMPLOYEE VARYING TABLE-INDEX

8-18

to search the table described in the previous example, EMP-INDEX is used for the search
and TABLE-INDEX is incremented by the same amount as, and at the same time as, EMP
INDEX. Thus, if EMP-INDEX and TABLE-INDEX are equal before the search, they are still
equal after the search.

If you specify identifier-2 in the VARYING phrase, the first (or only) index-name associated
with the table to be searched is again used in the search operation and, if identifier-2 is
an index data item, the index-name and the index data item are incremented by the same
amount and at the same time. If identifier-2 represents an elementary item that is an
integer, it is incremented by the value 1 at the same time as index-name is incremented.

If your data division includes

77 HOLD-INDEX USAGE IS INDEX.

01 TABLE-I.
03 RATE-TABLE OCCURS 75 TIMES

INDEXED BY RATE-INDEX.
05 RATE-CAT PIC X(5).
05 RATE-NUM PIC 9(7)V9(2).

you can search RATE-TABLE by coding

SEARCH RATE-TABLE VARYING HOLD-INDEX
AT END GO TO CALC-ROUTINE
WHEN RATE-CAT (RATE-INDEX)= CARD-CAT

MOVE RATE-NUM (RATE-INDEX) TO CURRENT-RATE
WHEN RATE-CAT (RATE-INDEX)= CARD-CANC-CAT

PERFORM CANC-ROUTINE.

The entries in RATE-TABLE are examined beginning with RATE-TABLE (1) and continue in
a serial manner until either the end of the table is reached, causing execution of the
statement associated with AT END (GO TO CALC-ROUTINE), or until the condition
specified for either of the WHEN phrases is true, causing (in this case) execution of MOVE
RATE-NUM (RATE-INDEX) TO CURRENT-RATE or PERFORM CANC-ROUTINE.

As each successive entry in the table is examined, the occurrence numbers associated
with both RATE-INDEX and HOLD-INDEX are incremented. HOLD-INDEX is an elementary
data item described with the USAGE IS INDEX clause. After execution of the statement
associated with either of the WHEN phrases, control passes to the next executable
statement following the SEARCH statement.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-19

Format 2 SEARCH statements provide for nonserial searches; that is, the table elements
are not examined in sequence beginning with the element referenced by the current index
setting. Instead, the initial setting of the index used in the search operation is ignored and
the setting is varied during the search in a manner specified by the implementor. The
purpose is to reduce the number of table accesses needed to find the element that makes
the specified conditions true.

The nonserial search is possible only if table elements are arranged in sequence according
to the values of key fields. You identify these fields in the ASCENDING/DESCENDING KEY
phrase of the OCCURS clause that describes the table being searched.

The WHEN phrase differs from Format 1 in that instead of providing several conditions to
test, any of which would end the search if true, it includes only one WHEN phrase that
may test several conditions, all of which must be true to end the search.

If you describe a table as

05 RATE-TABLE OCCURS 50 TIMES
ASCENDING KEY IS RATE-CAT RATE-DIV
INDEXED BY RATE-INDEX.
10 RATE-CAT PIC X(3).
10 RATE-DIV PIC X(5).

you can search it with a SEARCH ALL statement such as

SEARCH ALL RATE-TABLE
AT END GO TO NOHIT-ROUTINE
WHEN RATE-CAT (RATE-INDEX)= CARD-CAT
AND RATE-DIV (RATE-INDEX)= CARD-DIV
PERFORM TABLE-HIT-ROUTINE.

Since the initial value of RATE-INDEX is ignored, you do not have to set it before the
search. The search continues until both conditions specified in the WHEN phrase are true
for a specific setting of RATE-INDEX; then, the imperative statement PERFORM TABLE
HIT-ROUTINE is executed and control passes to the statement following the SEARCH
statement {again, unless you direct control elsewhere by ending your imperative statement
with a GO TO statement).

If no index setting makes the conditions true, the imperative statement specified in the AT
END phrase is executed {in this case passing control to NOHIT-ROUTINE). If no AT END
phrase is specified, control passes to the statement following the SEARCH statement.

In the WHEN phrase, the data-names {or condition-names associated with the data-names)
you use must be named in the ASCENDING/DESCENDING KEY phrase associated with
the table. Any condition-names referenced must have only a single value. ldentifier-2,
identifier-3, or identifiers specified in arithmetic-expression-1 or arithmetic-expression-2
must not be referenced in the KEY phrase or be indexed by the first index-name
associated with the table .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

8-20

You cannot use a data-name from an ASCENDING/DESCENDING KEY phrase unless you •
also use all the preceding data-names in the same KEY phrase. Thus, in the example,
RATE-CAT must be included in the WHEN phrase if RATE-DIV. is used. The reverse,
however, is not true; you may use RATE-CAT without RATE-DIV.

You cannot use the VARYING phrase with Format 2; thus, the index-name used in the
search operation always is the first (or only) index-name that appears in the INDEXED BY
phrase for the table. As the value of that index-name changes during the search, the
values of other index-names associated with the table remain unchanged. After the search
operation, the index-name remains set at the occurrence that makes the conditons true. If
no setting makes the conditions true, the final setting of the index-name is unpredictable.

The results of SEARCH ALL operations are predictable only when the table data is
arranged in the order described by its assoicated ASCENDING/DESCENDING KEY phrase,
and the contents of the keys referenced in the WHEN phrase are sufficient to identify a
unique table element.

8.5. TABLE HANDLING EXAMPLES

The two table handling .~xamples included accomplish the same task - the first using
indexing; the second using subscripting.

A table (STUDENT-TABLE) in the program is accessed two ways. First, a routine (GPA- •
LOOP) checks each entry in the table and prints the social security number field
(STUDENT-SS-NO) of any entry that has a grade point average field (STUDENT-GPA) equal
to 3.50 or more. A second routine (READ-CARD) reads a card that has a social security
number field (CARD-SS-NO) and, using the SEARCH verb, looks in the table for a
matching social security number (STUDENT-SS-NO). When there is a match, the social
security number (STUDENT-SS-NO) and grade point average (STUDENT-GPA) are printed.
Otherwise, the words INVALID INPUT are printed.

A card deck used as input to these programs might include the following data:

151325164
159440701
161250524
146325214
158413022
132546589
162054785
144320205

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

• The printed output then, is as follows:

•

•

159440701
161250524
168232051
162054785
132458797

151325164
159440701
161250524
146325214
INVALID INPUT
132546589
162054785
144320205

3.40
3.67
3.85
3.00

2.47
3.65
3.12

The table handling routines using indexing and subscripting follow:

Table handling using indexing:

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
BBB22
00023
00024

IDENTIFICATION DIVISION .
XINDEX. PROGRAM-ID.

AUTHOR. FUNDS OF COBOL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNIVAC-OS3.
OBJECT-COMPUTER. UNIVAC-OS3.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CARD-FILE, ASSIGN TO CARDREADER-CDRDR-F.
SELECT PRINT-FILE, ASSIGN TO PRINTER-PTR-FC.

DATA DIVISION.
FILE SECTION.
FD CARD-FILE

LABEL RECORDS ARE OMITTED
RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS CARD-RECORD.

01 CARD-RECORD.
05 CARD-SS-NO
05 FILLER

FD PRINT-FILE

PI C X (9).

PIC X(71).

LABEL RECORDS ARE OMITTED
RECORD CONTAINS 20 CHARACTERS
DATA RECORD IS PRINT-LINE .

8-21

(continued)

UP-8805

1Hl025
00026
00027
00028
00029
00030
00031
00032
000 3 3
00034
00035
00036
01l ll 3 7
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
000 5 5
00056
00057
00058
000 59
00060
00061
00062
llllll6 3
ll01l6 4
ll llll 6 5
ll llll 6 6
0006 7
llllll 6 8
llllll6 9
01lll70
llll ll 71
01lll7 2
llll ll7 3

ll l

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

PRINT-LINE.
ll 5 PRINT-SS-NO PIC x (9) .
ll 5 FILLER PIC x (7).
ll 5 PRINT-GPA PIC 9.99.

WORKING-STORAGE SECTION.
77 STUDHH-SUB PIC 9 (2) USAGE COMPUTATIONAL.
ll l STUDENT-TABLE.

ll 5 TABLE-ENTRIES.
1 ll FILLER PIC 9 (12) VALUE 159440701367.
10 FILLER PIC 9 (12) VALUE 144320205312.
l ll FILLER PIC 9 (12) VALUE 132546589247.
1 ll FILLER PIC 9 (12) VALUE 161250524385.
10 FILLER PIC 9 (12) VALUE 168232051375.
l ll FILLER PIC 9 (12) VALUE 162054785365.
l ll FILLER PIC 9 (12) VALUE 158423021247.
l ll FILLER PIC 9 (1 2) VALUE 151325164340.
10 FILLER PIC 9 (12) VALUE 132458797376.
10 FILLER PIC 9 (12) VALUE 14632521431lll.

05 FILLER REDEFINES TABLE-ENTRIES.
10 TABLE-OF-STUDENTS OCCURS lll TIMES

8-22

INDEXED BY STUDENT-INDEX.
15 STUDENT-SS-NO
15 STUDENT-GPA

PROCEDURE DIVISION.
START-PROG.

PI C 9 (9) .

PIC 9(l)V9(2).

OPEN INPUT CARD-FILE, OUTPUT PRINT-FILE.
MOVE SPACES TO PRINT-LINE.

FIND-HIGH-GPA.
SET STUDENT-INDEX TO 1.

GPA-LOOP.
IF STUDENT-GPA (STUDENT-INDEX) IS NOT LESS THAN 3.50

MOVE STUDENT-SS-NO (STUDENT-INDEX) TO PRINT-SS-NO
WRITE PRINT-LINE AFTER ADVANCING 2 LINES
MOVE SPACES TO PRINT-LINE.

IF STUDENT-INDEX IS EQUAL TO lll NEXT SENTENCE
ELSE SET STUDENT-INDEX UP BY 1, GO TO GPA-LOOP.
MOVE ''' ' ' ' ' '' TO PRINT-LINE.

WRITE PRINT-LINE AFTER ADVANCING 3 LINES.
MOVE SPACES TO PRINT-LINE.

READ-CARDS.
READ CARD-FILE, AT END GO TO END-OF-JOB.
SET STUDENT-INDEX TO 1.
SEARCH TABLE-OF-STUDENTS, AT END PERFORM NOHIT

WHEN STUDENT-SS-NO (STUDENT-INDEX) IS EQUAL TO CARD-SS-NO
MOVE STUDENT-SS-NO (STUDENT-INDEX) TO PRINT-SS-NO
MOVE STUDENT-GPA (STUDENT-INDEX) TO PRINT-GPA
WRITE PRINT-LINE AFTER ADVANCING 2 LINES
MOVE SPACES TO PRINT-LINE.

GO TO READ-CARDS.

(continued)

•

•

•

•

•

•

UP-8805

'>1

00074
00075
00076
00077
00078
00079
00080

NOHIT.

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

MOVE ''INVALID INPUT'' TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING 2 LINES.
MOVE SPACES TO PRINT-LINE.

END-OF-JOB.
CLOSE CARD-FILE, PRINT-FILE.
STOP RUN.

Table handling using subscripting:

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
0 026

027
028
029
030
031
032
033
034
035
036
037
038

IDENTIFICATION DIVISION.
PR 0 GR AM - I D. SSC RI PT .
AUTHOR. FUNDS OF COBOL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNIVAC-OS3.
OBJECT-COMPUTER. UNIVAC-OS3.
INPUT-OUTPUT SECTION.
FI LE-CONTROL.

SELECT CARD-FILE, ASSIGN TO CARDREADER-CDRDR-F.
SELECT PRINT-FILE, ASSIGN TO PRINTER-PTR-FC.

DATA DIVISION.
FILE SECTION.
FD CARD-FILE

LABEL RECORDS ARE OMITTED
RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS CARD-RECORD.

01 CARD-RECORD.
05 CARD-SS-NO
05 FILLER

FD PRINT-FILE

PIC X(9).
PIC X(71).

LABEL RECORDS ARE OMITTED
RECORD CONTAINS 20 CHARACTERS
DATA RECORD IS PRINT-LINE.

01 PRINT-LINE.
05 PRINT-SS-NO
05 FILLER

PIC X(9).
PIC X(7).

05 PRINT-GPA PIC 9.99.
WORKING-STORAGE SECTION.
77 STUDENT- SUB PIC 9 (2)
01 STUDENT-TABLE.

05 TABLE-ENTRIES.
10 FILLER PIC 9 (12)
10 FILLER PIC 9 (12)
10 FILLER PIC 9 (12)
10 FILLER PIC 9 (12)
10 FILLER PIC 9 (12)
10 FILLER PIC 9 (12)

USAGE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

COMPUTATIONAL.

159440701367.
144320205312.
132546589247.
161250524385.
168232051375.
162054785365.

8-23

(continued)

UP-8805

00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081

05

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

10 FILLER PIC 9 (12) VALUE
10 FILLER PIC 9 (12) VALUE
10 FILLER PIC 9 (12) VALUE
10 FILLER PIC 9 (12) VALUE
FILLER REDEFINES TABLE-ENTRIES.
10 TABLE-OF-STUDENTS OCCURS

8-24

158423021247.
151325164340.
132458707376.
146325214300.

10 TIMES
INDEXED BY STUDENT- INDEX.

1 5 STUDENT-SS-NO
15 STUDENT-GPA

PROCEDURE DIVISION.
START-PROG.

PIC 9 (9) .
PIC 9(l)V9(2).

OPEN INPUT CARD-FILE, OUTPUT PRINT-FILE.
MOVE SPACES TO PRINT-LINE.
MOVE 1 TO STUDENT-SUB.

GPA-LOOP.
IF STUDENT-GPA (STUDENT-SUB) IS NOT LESS THAN 3.50

MOVE STUDENT-SS-NO (STUDENT-SUB) TO PRINT-SS-NO
WRITE PRINT-LINE AFTER ADVANCING 2 LINES
MOVE SPACES TO PRINT-LINE.

IF STUDENT-SUB IS EQUAL TO 10 NEXT SENTENCE
ELSE ADD 1 TO STUDENT-SUB, GO TO GPA-LOOP.
MOVE "* • • • *" TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING 3 LINES.
MOVE SPACES TO PRINT-LINE.

READ-CARDS.
READ CARD-FILE, AT END GO TO END-OF-JOB.
MOVE 1 TO STUDENT-SUB.

LOOP.
IF STUDENT-SUB IS EQUAL TO 11 GO TO NOHIT.
IF STUDENT-SS-NO (STUDENT-SUB) IS EQUAL TO CARD-SS-NO
MOVE STUDENT-SS-NO (STUDENT-SUB) TO PRINT-SS-NO
MOVE STUDENT-GPA (STUDENT-SUB) TO PRINT-GPA
WRITE PRINT-LINE AFTER ADVANCING 2 LINES
ELSE ADD 1 TO STUDENT-SUB, TO TO LOOP.
GO TO READ-CARDS.

NOHIT.
MOVE ''INVALID INPUT'' TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING 2:LINES.
MOVE SPACES TO PRINT-LINE.
GO TO READ-CARDS.

END-OF-JOB.
CLOSE CARD-FILE, PRINT-FILE.
STOP RUN.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9-1

9. Sort/Merge

When solving data processing problems, you often need to rearrange records into a
particular order. Many operating systems provide you with a utility program to accomplish
this task outside of your COBOL program. By using the COBOL sort/merge feature,
however, you can solve this problem with instructions included inside your program. The
instructions allow you to sort (rearrange the sequence of records in a file or files) or merge
(combine two or more identically sequenced files) one or more times within a given
execution of the program.

You can code your sort/merge operation in one of two ways:

1 . Code one statement that

provides the input records;

sorts or merges them; and

creates a sorted or merged output file.

2. Specify your own sort/merge input and output procedures, applying some special
processing to the individual records before and after sorting or after merging.

When you use the sort/merge feature, you must define a sort/merge file that functions as
a work file; it receives the records from the file or files that are to be sorted or merged and
(when the sort/merge operation is completed) is the source of the rearranged records
passed to an output file.

9.1. SORT/MERGE OPERATION

SORT or MERGE statements in the procedure division identify the sort/merge work files
used, the key fields on which records are sorted or merged, the collating sequences used,
and either (1) the names of the files that contain the records you want to sort or merge
and the file that is to receive the reordered records, or (2) the names of the paragraphs
that contain your input and output procedures .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9-2

When SORT or MERGE statements are executed, the following general sequence of •
procedures occurs:

• The records become input for the sort/merge operation, either from the file or files
you specified in the USING option of the SORT or MERGE statement, or as a result of
the input procedure you coded for the sort statement. The sort/merge operation
moves the records to the sort/merge work file.

• The records are sorted or merged according to the keys and collating sequence you
selected.

• The records, in their new sequence, are moved from the sort/merge work file to the
output file you designated either in the GIVING option of the SORT or MERGE
statement, or as a result of output procedure.

• The operation of the SORT or MERGE statement terminates and control passes to the
next statement in the program.

Suppose you want to resequence an input card file based on ascending values of card
columns 1 and 2 (call that field SORT-KEY). The sort operation, triggered by the SORT
statement, looks like the following:

INPUT FILE

SORT-KEY
FIELD

03

05

01

SORT/MERGE
WORK FILE

SORT/MERGE
OPERATION

05

04

03

02

01

OUTPUT FILE

The sort/merge operation moves the input records to the sort/merge work file, sorts them
in ascending SORT-KEY sequence, and punches output records in the new sequence .

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9-3

• 9.2. DEFINING SORT /MERGE FILE

•

•

You must identify sort/merge files in the FILE-CONTROL paragraph of the environment
division, and describe them in the FILE SECTION of the data division - just as you did for
the input-output files. The entries are a little different, however, because sort/merge files
are work files; thus, the optional clauses that apply specifically to input and output
processing are invalid.

In the FILE-CONTROL paragraph, the sort/merge files are named and associated with
storage mediums. The format is:

SELECT file-name ASSIGN TO implementor-name-1[, implementor-name-2] ...

The SELECT clause names the file; the ASSIGN clause associates the file with a storage
medium. Each file-name must be unique and must be named in a corresponding sort or
merge file description (SD) entry in the data division. That entry is similar to the file
description (FD) entries you code for input-output files. The format is:

SD file-name
[;RECORD CONTAINS[integer-1 TO] integer-2 CHARACTERS]

[
;DATA{RECORD IS } data-nam~l [,data-name-2] ...]·

RECORDS ARE

The level indicator SD identifies the beginning of the sort/merge work file description and
is immediately followed by a file-name that must match a file-name in a SELECT clause.
One or more record description entries always must follow the sort/merge file description
entry.

The two optional clauses shown are for documentation only; however, if you use the
RECORD CONTAINS clause to specify record size, the size you specify must match the
actual size of the records as described in the record descriptions associated with the SD.
Use integer-2 by itself to specify the record size if all the records in the file are the same
size. If the file consists of variable length records, specify the smallest (integer-1) and
largest (integer-2) size record.

The DATA RECORDS clause names the records in the file. The names must be the same
as in the 01 level number record descriptions associated with the SD.

The following is coded in the environment division and the data division:

1. Environment Division

FI LE-CONTROL.
SELECT MY-SORT-FILE ASSIGN TO DISC.
SELECT BEFORE-THE-SORT ASSIGN TO TAPE.
SELECT AFTER-THE-SORT ASSIGN TO TAPE .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

2. Data Division

FILE SECTION.
SD MY-SORT-FILE

01

FD

01
FD

01

RECORD CONTAINS 95 CHARACTERS
DATA RECORD IS MY-SORT-RECORD.

MY-SORT-RECORD.
02 SORT-KEY PIC x (5) .
02 FILLER PIC x (90).

BEFORE-THE-SORT
LABEL RECORDS ARE OMITTED.
BEFORE-SORT-RECORD PIC X(95).
AFTER-THE-SORT
LABEL RECORDS ARE OMITTED.
AFTER-SORT-RECORD PIC X(95).

9-4

The sort/merge work file is called MY-SORT-FILE and is assigned to a device with
implementor-name DISC. It consists of 95-character records called MY-SORT-RECORD. An
input-output file containing the unsorted records (BEFORE-THE-SORT) and another file to
receive the sorted records (AFTER-THE-SORT) also are identified. Note that the file records
of the input-output and the sort/merge work file records must be the same size. Both
input-output files are assigned to a device with implementor-name TAPE.

9.3. SORT /MERGE STATEMENTS

There are four statements you can use when you code a sort/merge operation in the
procedure division. You always use either a SORT or MERGE statement and, if you specify
your own input and output procedures, you use the RELEASE and RETURN statements.
These statements are described in 9.3 .. 1 through 9.3.4.

9.3.1. SORT Statement

SORT statements rearrange the sequence of records in a file or files. The format is:

SORT f i le-name-1 ON {ASCENDING} KEY data-name-1 [,data-name-2]
DESCENDING

[
0 N { A S C E N D I N G } K E Y d a t a - n a m e - 3 [, d a t a - n a m e - 4] . . ·] . . .

DESCENDING

[COLLATING SEQEUNCE IS alphabet-name]

{

INPUT PROCEDURE IS section-name-l[{~UGH}

USING f i le-name-2 [,f i le-name-3] ...

{

OUTPUT PROCEDURE IS section-name-3[{~UGH} section-name-4J}

GIVING fi le-name-4

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9-5

• File-name-1 is the name of the sort/merge work file described in a sort/merge file
description (SD) entry. File-name-2, file-name-3, etc. represent the files to be sorted; file
name-4 receives the reordered records.

•

•

Although the resequencing of records is based on the values of fields in input files
records, sort keys are identified as fields in sort/merge work file records. So, to sort the
file

FD PAY-FILE
LABEL RECORDS ARE OMITTED.

81 PAY-RECORD.
82 EMPL-NO PIC X(5).
82 FILLER PIC X(98).

into EMPL-NO sequence, a field must be described in the sort/merge work file record that
corresponds to EMPL-NO:

SD SORT-FILE
81 SORT-RECD.

82 EMPL-SORT
82 FILLER

PI C X (5).
PIC X(98).

Now you can use EMPL-SORT as the sort key .

Sort keys are named in the ASCENDING/DESCENDING KEY clause of SORT statements.
As expected, the ASCENDING phrase is for sequencing records from the lowest to the
highest values of the key fields and the DESCENDING phrase is for sequencing records
from the highest to the lowest values of the key fields.

If more than one key is used, they must be specified in decreasing order of significance. If
you describe the sort/merge work file as

SD MY-SORT FI LE.
81 SORT-RECD.

82 A PIC x (7) .

82 B PIC x (3) .

82 c PIC x (5) .

82 FILLER PIC X(88).

and you want the sort to be based first on the ascending values of the field B, second on
the descending values of field A, and third on the ascending values of field C, code as
follows:

SORT MY-SORT-FILE
~N ASCENDING KEY B
ON DESCENDING KEY A
ON ASCENDING KEY C ...

If the SD file has more than one record description, you need to describe the keys in only
one of them. The keys cannot be variable length data items.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9-6

You can write input and output procedures that transfer records to and from the •
sort/merge work file, or you can code USING and GIVING phrases that transfer them
automatically. Remember that you must describe the input-output files in data division file
description (FD) entries, not sort/merge file description (SD) entries, and the input-output
file records must be the same size as the sort/merge work file records.

When you use the USING or GIVING phrases, make sure the associated input-output files
are not open when the SORT statement is executed. The sort/merge operation
automatically opens and closes the input files as needed, including performing all implicit
functions such as the execution of any associated USE procedures. When the sort/merge
operation is completed, the files are closed as if a CLOSE statement, without optional
phrases, was executed for each file.

If the input and output files are

FD BEFORE-THE SORT
LABEL-RECORDS ARE OM I TT ED.

0 1 BEFORE-SORT-RECORD PIC X(95).
FD AFTER-THE-SORT

LABEL RECORDS ARE OMITTED.
81 AFTER-SORT-RECORD PIC x (9 5) .

and the sort/merge work file is

then

SD MY-SORT-FILE.
81 MY-SORT-RECORD.

82 SORT-KEY PIC X(5).
82 FILLER PIC X(98).

SORT MY-SORT-FILE
ON ASCENDING KEY SORT-KEY
USING BEFORE-THE SORT
GIVING AFTER-THE-SORT.

thus opens the files, moves the records from BEFORE-THE-SORT to MY-SORT-FILE, sorts
them, moves the sorted record to AFTER-THE-SORT, and closes the files.

Note that none of the key data items can be described by an entry that contains an
OCCURS clause, or is subordinate to an entry that contains an OCCURS clause.

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9-7

• You code input procedures in one or more contiguous sections that are used exclusively as
an input procedure for an associated sort operation. You identify these sections in the
INPUT PROCEDURE phrase. Do not pass control to any point in the input procedure except
via a SORT statement and do not code any statement, including SORT and MERGE
statements, within the input procedure that passes control to a point outside the
procedure.

In the input procedure, use OPEN and READ statements to obtain the records from input
files. Process the records as needed, and then use the RELEASE statement to transfer the
records to the sort operation. When all input records are released, close the input files
with a CLOSE statement, which normally ends the input procedure. The actual sorting
does not begin until the last statement in the input procedure is executed. At that point, all
of the records transferred by the execution of the RELEASE statement, are contained in
the sort/merge work file.

When coding the output procedure, use the OUTPUT PROCEDURE phrase to indicate the
section or sections that contain it. As with input procedures, the sections must be
contiguous and must be used only for the sort operation; you cannot pass control to the
sections containing the output procedure except by execution of an associated SORT
statement, and the output procedure cannot transfer control to points outside the
procedure.

NOTE:

• In both input and output procedures, COBOL statements that may cause a transfer of
control to the declaratives (OPEN, READ, WRITE, etc.) are permitted

•

Output procedures normally include OPEN, RETURN (9.3.4), WRITE, and CLOSE
statements to open the output file, obtain the ordered records from the sort operation,
write the records, and when all records are written, close the output file. As you obtain
the records from the sort/merge work file, you can apply special processing as needed.
You cannot use SORT or MERGE statements in output procedures.

SORT operations may have multiple input files, but only one is required. You may name
only one output file. In the SORT statement, you cannot repeat a file-name or specify more
than one file from a multiple file reel.

If you want your sort operation to be guided by a collating sequence other than the
program collating sequence (5.2), specify a collating sequence in the alphabet-name
clause of the SPECIAL-NAMES paragraph and reference the alphabet-name in the
COLLATING SEQUENCE phrase of the SORT statement. The new collating sequence is in
effect only for that SORT statement .

UP-8805

9.3.2. MERGE Statement

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9-8

MERGE statements combine two or more files that already are identically sequenced.
Although you can use SORT statements to merge files, MERGE statements execute faster.
The format is:

MERGE f i le-name-1 ON
{

ASCENDING }
DESCENDING

{
ASCENDING }
DESCENDING

KEY data-name-1 [,data-name-2] ...

KEY data-name-3 [,data-name-4] .. -J···
[COLLATING SEQUENCE IS alphabet-name]

USING file-name-2, file-name-3 [,file-name-4] ...

f 0 UT PUT P RO C E DU R E I S s e c t i o n - n am e - 1 [{ ~UGH } s e c t i o n - n am e - 2] l
lGIVING f i le-name-5

The coding for MERGE statements is almost identical to that for SORT statements. There
are two differences:

1. MERGE statements require more than one input file.

2. When using merge statements, you cannot code your own input procedure; you must
name the input files in a USING phrase.

If you code

MERGE MY-SORT-FILE
ON ASCENDING KEY MY-SORT-KEY-1 MY-SORT-KEY-2
USING INFILE-1 INFILE-2
GIVING OUT-FILE.

the records in INFILE-1 and INFILE-2 are merged together into a new file - OUT-FILE.
INFILE-1, INFILE-2, and OUT-FILE are described in FD entries in the data division; MY
SORT-FILE is described in a data division SD entry; and MY-SORT-KEY-1 and MY-SORT
KEY-2 are data items named in the record description associated with MY-SORT-FILE.

9.3.3. RELEASE Statement

You use RELEASE statements in input procedures associated with SORT statements to
transfer records to the initial phase of a sort operation. The format is:

RELEASE record-name[FROM identifier]

The execution of a RELEASE statement releases the record named by record-name to the
sorting operation. Record-name, which may be qualified, must be associated with a

•

•

sort/merge work file description (SD) entry. Note, however, that it is your responsibility to •
move what you want to sort - usually a record from an input file - to record-name.

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9-9

For example, suppose you want to read a card file. Select all records that have a 1 in card
column 80 (we'll assign card column 80 the data-name CC-80), and include the records in
an output file sorted according to the keys specified in the SORT statement (not shown).
For example:

INPUT-PROCEDURE SECTION.
IN- PROC.

READ CARD-FILE AT END GO TO END-IN-PROC.
IF CC-SB IS EQUAL TO "l"

MOVE CARD-RECORD TO SORT-RECORD
ELSE GO TO IN-PROC.
RELEASE SORT-RECORD.
GO TO IN-PROC.

END-IN-PROC.

As you can see, the contents of the record area (CARD-RECORD) for the card file are
moved to the record area (SORT-RECORD) associated with the sort/merge work file, then
released to the sort operation.

You can avoid coding MOVE statements in input procedures by using the FROM option of
the RELEASE statement. When you use the FROM phrase, the contents of an identifier are
moved to record-name, then the contents of record-name are released to the sort
operation. Record-name and identifier in the format must not refer to the same storage
area. The move takes place according to the rules specified for the MOVE statement
without the CORRESPONDING phrase. Coding the example using the FROM option looks
like this:

INPUT-PROCEDURE SECTION.
IN- PROC.

READ CARD-FILE AT END GO TO END-IN-PROC.
IF CC-BB IS EQUAL TO "l"

RELEASE SORT-RECORD FROM CARD-RECORD.
GO TO IN-PROC.

END-IN-PROC.

After execution of a RELEASE statement with the FROM option, you can still access the
data area associated with identifier, but you cannot access the data area associated with
record-name unless you named the associated sort/merge work file in a SAME RECORD
AREA clause (9.4). In that case, you can still access the data in record-name and in the
record area of other files referenced in your SAME RECORD AREA clause.

When control passes from an input procedure, the associated sort/merge work file
consists of all those records placed in it by the execution of RELEASE statements .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9.3.4. RETURN Statement

9-10

RETURN statements are similar to RELEASE statements, but they are associated with
output procedures rather than input procedures. You use them to return records one by
one, in sequence, from the storage area where the sorting or merging takes place to the
record area associated with the sort/merge work file (SD) entry. Then you can move the
record from the SD file to your output file. The format is:

RETURN file-name RECORD [INTO identifier]; AT END imperative-statement

You must describe file-name in a sort/merge file description (SD) entry.

You can use MOVE statements to move your records from the SD file to your output file,
or you can use the INTO phrase of the RETURN statement to move them automatically.
(Again, the records are moved according to the rules for the MOVE statement without the
CORRESPONDING phrase.)

The following example uses the RETURN statement without the INTO option:

OUTPUT-PROCEDURE SECTION.
OUT-PROC.

RETURN THE-SORTED-RECORD AT END GO TO END-OUT-PROC.
MOVE THE-SORTED-RECORD TO PRINT-RECORD.
WRITE PRINT-RECORD.
GO TO OUT-PROC.

END-OUT-PROC.

The term THE-SORTED-RECORD is the name of the record area associated with the
sort/merge work file. The sorted record is moved from the sort/merge work file to an
output area called PRINT-RECORD, and then printed. When a RETURN statement is
executed and no more records remain in the sort/merge area, the AT END statement is
executed and control passes to the SORT or MERGE statement that initiated the output
procedure.

To do the same processing using the INTO option, you code the output procedure as
follows:

OUTPUT-PROCEDURE SECTION.
OUT-PROC.

RETURN THE-SORTED-RECORD INTO PRINT-RECORD
AT END GO TO END-OUT-PROC.

WRITE PRINT-RECORD.
GO TO OUT-PROC.

END-OUT- PROC.

In this example, each record returned to the sort/merge work file record area
automatically is moved to the output area called PRINT-RECORD.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9-11

When a RETURN statement is executed, the next record, in the order specified by the keys
listed in the SORT or MERGE statement. is moved to the sort/merge work file record area.
As mentioned, if no next logical record exists when the RETURN statement is executed,
the AT END condition occurs. At this point, the contents of the SD record area are
undefined. You must code your output procedure so that no attempt is made to execute a
RETURN statement after an AT END phrase is executed during the same output procedure.

If you define the records of the sort/merge work file with more than one record
description, the records automatically share the same area in storage. After a RETURN
statement is executed, the contents of any data items which lie beyond the range of the
record just returned are undefined. Do not use the INTO phrase when the SD file contains
variable length records.

9.4. SAME SORT AREA CLAUSE

The SAME SORT AREA clauses, like SAME RECORD AREA clauses (5.6.2), allow you to
assign the same main storage area to more than one file, regardless of their orgnaization
or access. The format is:

[
;SAME{SORT } AREA FOR file-name-1 { ,file-name-2) ...]···

SORT-MERGE

The clauses SORT and SORT-MERGE are equivalent.

You may select both sort/merge work files and input-output files to share the main
storage area, with these restrictions:

• at least one of the files must be a sort/merge work file;

• more than one sort/merge work file may appear in the same SAME SORT AREA
clause;

• the same sort/merge work file may not appear in more than one SAME SORT AREA
clause; and

• input-output files may appear in more than one SAME SORT AREA clause.

Sorting or merging operations for any of the sort/merge files you name in a given SAME.
SORT AREA clause take place in the same area of main storage, and that area may be
reused for an indefinite number of sorts or merges.

Additionally, storage assigned to input-output files you named in that given SAME SORT
AREA clause is allocated for the sorting and merging operation on an as-needed basis by
the implementor. Be certain, though, that your input-output files are not open during
execution of a sort or merge operation that may use that storage .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

9-12

Note that any input-output files you name in a SAME SORT AREA clause do not share
storage with each other unless named in a SAME AREA or SAME RECORD AREA (5.6.2)
clause. If you do use a SAME AREA clause and one or more of the files you name in it
also appears in a SAME SORT AREA clause, then all the files in the SAME AREA clause
must be included in the SAME SORT AREA clause.

You may name a sort/merge work file in a SAME RECORD AREA clause. When you do,
the rules for the clause still apply as described in 5.6.2.

In this example, any sort or merge procedures using either SORT-FILE-1 or SORT-FILE-2
are executed in an area of main storage reserved for the two sort files. If more main
storage is needed to execute the procedure, storage assigned to INPUT-FILE-1 is used:

1-0-CONTROL.
SAMF. SORT AREA FOR SORT-FILE-I SORT-FILE-2 INPUT-FILE-I.

9.5. SAMPLE SORT PROGRAM

This sample program reads a name and address card file, selects all records that have a
state field equal to PA, sorts the selected records in ascending sequence according to last
name, and prints an output file. Input and output procedures transfer the records to and
from the sort operation.

Here is a listing of the cards in CARD-FILE:

ANDERSON AL LEN 452 MAIN STREET PH I LA PA
SMITH ROBERT 21 LINCOLN DRIVE ALTOONA PA
JONES FRED 547 HIGH STREET TRENTON NJ
BROWN ROGER 11 OLD FORGE DRIVE WAYNE PA
ROGERS THEODORE 66 SUNSET DRIVE JOHNSTOWN PA
THOMPSON FRANKLIN 413 APPLE STREET HARRISBURGPA
LEONARD GEORGE MARKET STREET CHESTER PA
GRANT HOWARD 34 ELMWOOD DRIVE CAMDEN NJ
HENDERSON ISSAC J. 21 AVON GROVE LANE BLUE BELL PA
THOMAS JOHN 16 GRANT BLVD. DEVON PA
TERRY KEVIN 219 ADAMS DRIVE BERWICK PA
THORN LAWRENCE 29 VAIRO BLVD. BRYN MAWR PA
CARTER MICHAEL 1405 SECOND AVE. PAOLI PA
DRAKE EDWARD 451 WASHINGTON ST. PATERSON NJ
FRANKS CARL 25 FIRST AVfNUE NORRISTOWNPA
/*

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Here is the printed output of the program:

ANDERSON AL LEN 452 MAIN STREET PHILA PA
BROWN ROGER 11 OLD FORGE DRIVE WAYNE PA
CARTER MICHAEL 1405 SECOND AVE. PAOLI PA
FRANKS CARL 25 FIRST AVENUE NORRISTOWNPA
HENDERSON ISSAC J. 21 AVON GROVE LANE BLUE BELL PA
LEONARD GEORGE MARKET STREET CHESTER PA
ROGERS THEODORE 66 SUNSET DRIVE JOHNSTOWN PA
SMITH ROBERT 21 LINCOLN DRIVE ALTOONA PA
TERRY KEVIN 219 ADAMS DRIVE BERWICK PA
THOMAS JOHN 16 GRANT BLVD. DEVON PA
THOMPSON FRANKLIN 413 APPLE STREET HARRISBURGPA
THORN LAWRENCE 29 VAIRO BLVD. BRYN MAWR PA

Here is the complete SORT program:

001010 IDENTIFICATION DIVISION.
001020 PROGRAM-ID.
001030 AUTHOR.

SRTEXAMP.
FUNDS OF COBOL.

001040 ENVIRONMENT DIVISION.
001050 CONFIGURATION SECTION.
001060 SOURCE-COMPUTER. UNIVAC-OS3 .
001070 OBJECT-COMPUTER. UNIVAC-OS3.
001080 INPUT-OUTPUT SECTION.
001090 FILE-CONTROL.

9-13

0 0 0 0 l
0 0 0 0 2
000 03
00004
00 00 5
0 00 06
00 0 07
0 00 08
0 00 09
0 0 010
0 0 011
0 0 012
0 0 013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032

001100 SELECT CARD-FILE.ASSIGN TO CARDREADER-CDRDR-F.
001110
001120

SELECT MY-SORT-FILE, ASSIGN TO DISC-MYSRT-F.
SELECT PRINT-FILE, ASSIGN TO PRINTER-PTR-FC.

001130 DATA DIVISION.
001140 FILE SECTION.
001150 FD
001160
001170
001180
001190 01
001200 SD
001210
001220
001230 01
001240
001250
001260 FD
001270

CARD-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS CARD-RECORD.
CARD-RECORD PIC X(80).
MY-SORT-FILE
RECORD-CONTAINS 52 CHARACTERS
DATA RECORD IS MY-SORT-RECORD.
MY-SORT-RECORD.
05 MY-SORT-KEY-LAST-NAME
05 FILLER
PRINT-FILE
LABEL RECORDS ARE OMITTED

001280 RECORD CONTAINS 52 CHARACTERS
001290 DATA RECORD IS PRINT-LINE.
001300 01 PRINT-LINE PIC X(52).
003010 WORKING-STORAGE SECTION.
003020 01 HOLD-CARD-AREA.

PIC X(UJ).
PIC X(42).

(continued)

UP-8805

00033
00034
000 3 5
000 3 6
000 3 7
00038
000 3 9
00040
0 0 0 41
00042
00043
00044
00045
00046
0004 7
00048
00049
00050
00051
000 5 2
80853
08854
80055
000 5 6
00857
080 5 8
80859
08060
80861
00062
88863
80064
080 6 5
000 6 6
80067
80868
80069
88878
8 00 71
00072

803838
083848
80 30 5 0
083860
00 307 0
083888

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

85 PRINT-CARD-AREA.
10 PRINT-CARD-LAST-NAME
18 PRINT-CARD-FIRST-NAME
10 PRINT-CARD-STREET-ADDRESS
10 PRINT-CARD-CITY
18 PRINT-CARD-STATE

003098 85 FILLER
885818 PROCEDURE DIVISION.
885820 START-PROG.

PI C X (10) .
PIC X(l0).
PIC X(28).
PIC X(l8).
PIC X(82).
PIC X(28).

OPEN INPUT CARD-FILE, OUTPUT PRINT-FILE.
SORT MY-SORT-FILE

ON ASCENDING KEY MY-SORT-KEY-LAST-NAME

9-14

005038
08 584 0
085858
885060
085878
805888

INPUT PROCEDURE IS IN-PROC THRU IN-PROC-EXIT
OUTPUT PROCEDURE IS OUT-PROC THRU OUT-PROC-EXIT.

GO TO END-PROG.
085890 IN-PROC SECTION.
885895 IN-PROC-ROUTINE.
08 5108
805110
885120
005138
085140
8 0 515 0
885168

READ CARD-FILE INTO HOLD-CARD-AREA
AT END GO TO IN-PROC-EXIT.

IF PRINT-CARD-STATE IS EQUAL TO "PA"
MOVE PRINT-CARD-AREA TO MY-SORT-RECORD
ELSE GO TO IN-PROC-ROUTINE.

RELEASE MY-SORT-RECORD.
GO TO IN-PROC-ROUTINE.

085178 IN-PROC-EXIT SECTION.
805175 END-OF-IN-PROC.
885180 EXIT.
005190 OUT-PROC SECTION.
085195 OUT-PROC-ROUTINE.
805208
085218
085220
805230
085248

RETURN MY-SORT-FILE RECORD AT END GO TO OUT-PROC-EXIT.
MOVE MY-SORT-RECORD TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING 1 LINES.
MOVE SPACES TO PRINT-LINE.
GO TO OUT-PROC-ROUTINE.

805250 OUT-PROC-EXIT SECTION.
885255 END-OF-OUT PROC.
885268 EXIT.
885278 END-PROG.
085288
085298

CLOSE CARD-FILE, PRINT-FILE.
STOP RUN.

9.6. SAMPLE MERGE PROGRAM

This sample program takes two name and address files similar to the one created in the
sort program example (9.5) and merges them together to create one combined file. The
records in the files already are in sequence before the program executes.

IDENTIFICATION DIVISION.
PROGRAM-ID. MERGEXMP.

(continued)

•

•

•

UP-8805

•

•

•

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNIVAC-OS3.
OBJECT-COMPUTER. UNIVAC-OS3.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT NAMEFIL-1 ASSIGN TO TAPE-FILl-F.
SELECT NAMEFIL-2 ASSIGN TO TAPE-FIL2-F.
SELECT MY-SORT-FILE ASSIGN TO DISC-SRTl-F.
SELECT TAP-OUT-FILE ASSIGN TO TAPE-POUT-F.

DATA DIVISION.
FILE SECTION.
FD NAMEFIL-1

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 52 CHARACTERS
DATA RECORD IS NAMEREC-1.

01 NAMEREC-1.
02 LAST-NAME-1
02 FIRST-NAME-1
02 STREET-ADDRESS-!
02 CITY-1
02 STATE-1

PIC X(le).
PIC X(l0).
PIC X(20).
PIC X(le).
PI C X (2) .

FD NAMEFIL-2 LABEL RECORDS ARE STANDARD
RECORD CONTAINS 52 CHARACTERS
DATA RECORD IS NAMEREC-2.

01 NAMEREC-2.
02 LAST-NAME-2
02 FIRST-NAME-2
02 STREET-ADDRESS-2
02 CITY-2
02 STATE-2

SD MY-SORT-FILE

PIC X(le).
PIC X(le).
PIC X(20).
PIC X(le).
PIC X(2).

RECORD CONTAINS 52 CHARACTERS
DATA RECORD IS MY-SORT-RECORD.

01 MY-SORT-RECORD.
02 MY-SORT-KEY-LAST-NAME PIC X(le).
02 FILLER PIC X(42).

FD TAP-OUT-FILE
LABEL RECORDS ARE STANDARD
RECORD CONTAINS 52 CHARACTERS
DATA RECORD IS TAP-OUT-RECORD.

01 TAP-OUT-RECORD PIC X(52).
PROCEDURE DIVISION.
START-PROG.

MERGE MY-SORT-FILE
ON ASCENDING KEY MY-SORT-KEY-LAST-NAME
USING NAMEFIL-1 NAMEFIL-2
GIVING TAP-OUT-FIL .

END-PROG.
STOP RUN.

9-15

•

•

•

.---------~-----·-·--

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

10-1

10. lnterprogram Communication

One way to solve a complex data processing problem is to break it down into several
smaller, more manageable problems. The interprogram communication module allows you
to combine separately-compiled but logically-coordinated programs for execution as a
single run unit. The programs communicate with each other, initiating transfers of control
and providing references for common data.

To use interprogram communication, you need to understand the terms calling program
and called program. A calling program contains a CALL statement instruction (see 10.2)
that transfers control to another program. That other ·program is referred to as the called
program. For example, if program A transfers control to program B, A is a calling program
and B is a called program. If program B, in turn, transfers control to program C, B is still a
called program with respect to A, but is a calling program with respect to C.

You may, in your CALL statements, identify data items to be passed from the calling to the
called program. In the called program, you identify those data items in the procedure
division header (10.3) and describe them in the linkage section (10.1).

10.1. LINKAGE SECTION

You must include a linkage section in called programs that need to reference data passed
from a calling program. The linkage section follows the file and working-storage sections
in the data division. It consists of record description entries and noncontiguous elementary
items originally described in the calling program in the file, working-storage,
communication, or linkage section (only if the calling program is also a called program).
You include only those items from the calling program that are needed by the called
program.

In the procedure division, you can reference these data items only if you name them as
operands in the USING phrase of the procedure division header (or if they are subordinate
to such operands). Moreover, the CALL statement in the calling program must specify a
USING phrase.

No space is allocated in the called program for the data items you name in the linkage
section. Procedure division references to the items are resolved at object time by equating
the reference in the called program to the location used in the calling program. In the case
of index-names, no such correspondence is established. Index-names in the called and
calling programs always refer to separate indexes.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

The format for the linkage section is:

LINKAGE SECTION

[
7 7 - I eve I - d e s c r i p t i on - en t r y]

record-description-entry

10-2

Note that its structure is the same as that for the working-storage section. As in working
storage, you use 77-level description entries to describe noncontiguous elementary items.
Each description begins with level-number 77 and is followed by a data-name and either a
PICTURE clause or a USAGE IS INDEX clause. Other data description clauses, except the
initial VALUE clause, are optional; you use them, if needed, to complete the item
description.

Again, you group data elements that have a definite hierarchic relationship to each other
into records according to the rule for the formation of record descriptions (6.2). You can
use any record description clause except the VALUE clause; it is invalid in the linkage
section except in condition-name (level 88) entries.

Each record-name or 77-level data-name in the linkage section must be unique within the
program. They cannot be qualified.

10.2. CALL STATEMENT

•

You use CALL statements in calling programs to pass control to called programs. The •
format is:

CALL {identifier-l}[USING data-name-1 [,data-name-2] ... J
I i t e r a I - 1

[;ON OVERFLOW imperative-statement]

Literal-1 or identifier-1 represents the name of the called program. Literal-1, if used, must
be a nonnumeric literal. ldentifier-1, if used, must be an alphanumeric data item whose
value can be a program name.

If you want some data from the calling program to be available to the called program, you
must name that data in the USING phrase. Furthermore, in the procedure division header
in the called program, you must include a corresponding USING phrase that defines the
same number of operands and the same number of character positions as the USING
phrase in the CALL statement.

Each of the operands you include in the CALL statement's USING phrase must be defined
in the calling program's file, working-storage, communication, or linkage section (only if
the calling program is also a called program), and must have a level number of 01 or 77.
You can qualify data-name-1, data-name-2, etc, only when they reference data items
defined in the file or communication section.

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

10-3

You use the ON OVERFLOW phrase if you are not certain whether enough object time
main storage will be available for the program you call. If you use the ON OVERFLOW
phrase, and there is insufficient main storage when the CALL statement is executed, no
action is taken, and the associated imperative statement is executed. If there is insufficient
main storage and you did not specify the ON OVERFLOW phrase, the effects of the CALL
statement are defined by the implementor.

A called program is in its initial state the first time it is called within a run unit and the
first time it is called after execution of a CANCEL (10.4) that names the called program. On
all other calls, the called program is in its last-used state. This incudes all data fields, the
status and postiioning of all files, and all alterable switch settings.

You can use CALL statements anywhere within a segmented program (Section 14); the
implementor makes certain the program logic flow is maintained. Thus, when a CALL
statement appears in an independent segment, that segment is in its last-used state when
the EXIT PROGRAM statement (10.5) of the called program returns control to it.

You can include CALL statements in called programs; however, the called progam must
not contain a CALL statement that directly or indirectly calls the calling program.

In this CALL statement:

CALL COBPROG USING REC-COUNT COBRECD

ON OVERFLOW PERFORM OVERFLOW-ROUTINE

the calling program transfers control to the program called COBPROG. The data-names
REC-COUNT and · COBRECD reference data items in the calling program that will be
available to the called program. If there is not enough main storage for COBPROG at
execution time, the imperative statement PERFORM OVFLOW-ROUTINE is executed.

10.3. PROCEDURE DIVISION HEADER

The format for a procedure division header in a called program is:

PROCEDURE DIVISION [USING data-name-1 [,data-name-2] ... J.

If the CALL statement in the calling program contains a USING phrase and you want the
called program to access data from the calling program, you need a USING phrase in the
procedure division header.

You must define data-name-1, data-name-2, etc, in the linkage section of the called
program, and you must assign them a 01 or 77 level number. The procedure division of
the called program may reference data-name-1, data-name-2, etc; any data items
subordinate to these data-names; and any associated condition-names and index-names .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

10-4

When you include the USING phrase in both the CALL statement of the calling program •
and the procedure division header of the called program, the corresponding operands of
the two phrases refer to a single set of data that is equally available to both the called and
calling programs. The operands you name in the USING phrase of the called program
functionally redefine the storage area referenced by the operands named in the USING
phrase of the calling program. Each group of operands must define the same number of
character positions, but the names of the operands can be different.

In the following example, A and X refer to the same set of data, Band Y refer to the same
set of data, and C and 2 refer to the same set of data:

In the calling program:

CALL PROGA USING A,B,C.

In the called program (PROGA):

PROCEDURE DIVISION USING X,Y,Z.

You cannot use a data-name more than once in the USING phrase of the procedure
division header of the called program; however, you can use a given data-name more than
once in the same USING phrase of a CALL statement.

10.4. CANCEL STATEMENT

You use CANCEL statements to release main storage areas occupied by called programs.
The format is:

CANCEL {identifier-1} [,identifier-2] ...
literal-1 ,literal-2

Literal-1, literal-2, etc, represent nonnumeric literals. ldentifier-1. identifier-2, etc, are
alphanumeric data items whose values can be program names. The literals or identifiers
you specify must not refer to any program that has been called and has not yet executed
an EXIT PROGRAM statement.

Once a CANCEL statement is executed, the named program ceases to have any logical
relationship to the run unit, and the main storage area it occupied is made available to the
operating system. You can reestablish a logical relationship to canceled programs only by
executing a subsequent CALL statement. In such an instance, the called program is in its
initial state.

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

10-5

CANCEL statements are ignored and control passes to the next statement if the CANCEL
statement names a program that has not been called in the run unit or names a program
that has already been canceled (and has not been named in a subsequent CALL
statement).

The statement

CANCEL CALDPRO

in a calling program that releases the main storage reserved for the called program,
CALDPRO. If a CALL CALDPRO statement is executed subsequently in the calling program,
CALDPRO is available in the initial state.

10.5. EXIT PROGRAM STATEMENT

EXIT PROGRAM statements are used to mark the logical end of called programs. The
format is:

EXIT PROGRAM.

You must code the EXIT PROGRAM statement in a sentence by itself, and that sentence
must be the only sentence in the paragraph. When an EXIT PROGRAM statement is
executed in a called program, control passes to the calling program. An EXIT PROGRAM
statement in a program that is not called is treated as if it were an EXIT statement (7.7.1).

10.6. SAMPLE PROGRAM

In this sample program, the calling program, PROGA, reads a deck of computer cards and,
depending on the value of card column 1, may transfer control to the called program,
PROGB.

If card column 1 is equal to A, PROGA adds 1 to a counter and then reads the next card. If
card column 1 is not equal to A, PROGA transfers control to PROGB. As part of the
transfer, two storage areas defined in PROGA (the card record and an end of file indicator)
are made available to PROGB. PROGB checks card column 1, adds 1 to a counter if it finds
the value B, and then returns control to PROGA.

When the last input card is read in PROGA, an Xis moved to the end-of-file indicator, and
PROGA prints a total of the number of input cards that had an A in card column 1; then
transfers control to PROGB, which prints the number of cards that had a B in column 1.
Note that PROGB checks the end-of-file indicator passed from PROGA and, finding the
value X (indicated by the condition-name THIS-IS-LAST-ENTRY), branches to the end-of
job routine in PROGB. Control returns to PROGA to stop the run. Here are the programs:

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Calling Program (PROGA):

IDENTIFICATION DIVISION.
PROGRAM-ID. PROGA.
ENVIRONMENT DIVISION.
CONFIGURATION.SECTION.
SOURCE-COMPUTER. UNIVAC-OS3.
OBJECT-COMPUTER. UNIVAC-OS3.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CARDFILE, ASSIGN TO CARDREADER-CDR-F.
SELECT PRINTFILE, ASSIGN TO PRINTER-PTR-FC.

DATA DIVISION.
FILE SECTION.
FD CARDFILE

LABEL RECORDS ARE OMITTED
RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS CARDREC.

01 CARDRECD.
03 CARD- I ND PIC x (1) .
03 FILLER PIC x (79).

FD PRINTFILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 15 CHARACTERS
DATA RECORD IS PRINTLINE.

0 1 PRINTLINE.
05 PRINT-MSG PIC X(l5).
05 PRINT-TOTAL PIC ZZZZ9.

WORKING-STORAGE SECTION.
77 EOJ-IND PIC X(l).
77 A-COUNTER PIC 9(5).
PROCEDURE DIVISION.
HOUSEKEEP I NG.

OPEN INPUT CARDFILE, OUTPUT PRINTFILE.
MOVE ZEROS TO A-COUNTER.
MOVE SPACES TO EOJ-IND.

READ-ROUTINE.
READ CARDFILE, AT END GO TO END-OF-JOB.
IF CARD-IN= 'A'.

ADD 1 TO A-COUNTER
ELSE CALL PROGB USING EOJ-IND, CARDRECD.

GO TO READ-ROUTINE.
END-OF-JOB.

MOVE A-COUNTER TO PRINT-TOTAL.
MOVE ' A TOTAL TO PRINT-MSG.
WRITE PRINTLINE.
MOVE 'X' TO EOJ-IND.
CALL PROGB USING EOJ-IND, CARDRECD.
CLOSE CARDFILE, PRINTFILE.
DISPLAY ••••• END OF PROGRAM
STOP RUN.

10-6

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAl\.lENTALS OF 1974 ANSI COBOL

• Called Program (PROGB):

•

•

IDENTIFICATION DIVISION.
PROGRAM-ID. PROGB.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNIVAC-OS3.
OBJECT-COMPUTER. UNIVAC-OS3.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PR-FILE, ASSIGN TO PRINTER-PTR-FC.
DATA DIVISION.
FILE-SECTION.
FD PR-FILE

RECORD CONTAINS 15 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRINTLINE.

01 PR-LINE.
05 PRINT-MSG PIC X(lll).
05 PRINT-TOTAL PIC ZZZZ9.

WORKING-STORAGE SECTION.
77 B-COUNTER PIC 9(5) VALUE ZERO.
LINKAGE SECTION .
77 END-OF-JOB- IND PI C X (1) .

88 THIS-IS-LAST-ENTRY VALUE 'X'.
01 CARDRECORD.

03 CARD-IND
03 FILLER

PI C X (1).
PIC X(79).

PROCEDURE DIVISION USING END-OF-JOB-IND, CARDRECORD.
START-PROG.

EOJ.

IF TH1S-IS-LAST-ENTRY-GO TO EOJ.
IF CARD-IND= 'B'

ADD 1 TO B-COUNTER.
GO TO RET~RN-PARA.

OPEN OUTPUT PR-FILE.
MOVE B-COUNTER TO PRINT-TOTAL.
MOVE ' B-TOTAL ' TO PRINT-MSG.
WR I TE PR - LINE.
CLOSE PR-FILE.

RETURN-PARA.
EXIT PROGRAM .

10-7

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11.

11-1

Communication

The COBOL communication allows you to access, process, and create messages or
portions of messages by communicating, through a message control system (MCS), with
local and remote communication devices.

11.1. MESSAGE CONTROL SYSTEM

If you write COBOL programs that use the communication facility, your operating
environment includes a message control system that has three main functions:

• to act as an interface between COBOL object programs and a network of
communication devices (in much the same manner as an operating system acts as an
interface between COBOL programs and peripheral devices such as card readers,
magnetic tape, mass storage devices, and printers);

• to perform communication line discipline (including such tasks as dial-up, polling, and
synchronization); and

• to perform device-dependent tasks (such as character translation and insertion of
control characters, so that you can write COBOL programs that are device
independent).

You, as a COBOL programmer, do not have to be concerned with the latter two functions
of the MCS. The MCS places messages from communication devices into input queues to
await disposition by your COBOL object program, and places output messages from your
program into output queues to await transmission to communication devices. The symbolic
names of the queues, the message sources, and the message destinations all are
predefined to the MCS so you can reference them in your programs. When your programs
are executed, the MCS performs all actions to update the various queues as required .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11.2. COBOL COMMUNICATION ENVIRONMENT

11-2

You establish the interface between your COBOL object program and the MCS and
between the MCS and the communication devices by including a communication
description (CD) and associated clauses in the communication section of the data division.
You control those interfaces using statements in the procedure division. SEND statements,
RECEIVE statements, and ACCEPT statements with the COUNT phrase send data, receive
data, or interrogate the status of queues. ENABLE and DISABLE statements control the
interface between the MCS and the communication devices, directing the MCS to logically
establish or break the connection between the device and a specified portion of the MCS
queue structure. The method of handling the physical connection is a function of the MCS.

The COBOL communication environment is summarized in the following diagram:

COBOL Program

RECEIVE

RECEIVE

SEND

SEND

i3
~
i::
0

·.g_
·;:
1;l

"' 0
i::
0

·;:;

"' .~
i::
:i

E
E
0
(.)

A
COBO LIM CS

Interface

Message Control System
(MCS)

11.3. PROGRAM EXECUTION METHODS

w
_J

ClJ
<(
(/)

Ci
LI:i
_J

ClJ
<(
z
w

A

Communication
Devices

MCS/Communication Device
Interface

There are two ways to schedule COBOL communication object programs for execution: (1)
through the normal means available in the program's operating environment, such as job
control language; or (2) by the MCS. The difference between the two methods is that
scheduling by the MCS moves the symbolic queue and subqueue names into the
appropriate fields in the CD; scheduling by job control moves spaces to those fields.

•

•

•

......---------------~~------

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-3

• If you plan to schedule communication programs through the normal means available in
your operating environment, you can use three statements in your program to determine
what messages, if any, are available in the input queues:

•

•

• the ACCEPT statement with the COUNT phrase;

• the RECEIVE statement with a NO DATA phrase; and

• the RECEIVE statement without a NO DATA phrase.

In the latter case, a program wait is implied if no data is available.

You use MCS invocation if you want to schedule communication programs only when
there is work available for it to do. For this type of scheduling, your program must include
a CD that specifies the FOR INITIAL INPUT clause.

The MCS determines the COBOL object program needed to process an available message,
then schedules that program for execution. Before the program is executed, the MCS
places symbolic queue and subqueue names into the appropriate fields in the CD
associated with the FOR INITIAL INPUT clause.

Note that you can test these fields to determine how the program was scheduled. If the
fields contain spaces, job control statements scheduled the program. If they do not contain
spaces, the MCS scheduled the COBOL object program and replaced the spaces with the
symbolic name of the queue containing the message to be processed. You can then
retrieve that message by executing a RECEIVE statement directed to the CD associated
with the FOR INITIAL INPUT clause.

11.4. MESSAGES AND MESSAGE SEGMENTS

Messages comprise the fundamental, but not necessarily the most elementary, units of
data to be processed in a COBOL communication environment. They consist of some
arbitrary amount of information, usually character data, whose beginning and end are
defined or implied.

You may divide messages into smaller units of data called message segments, which are
separated within messages by end of segment indicators (ESI). Messages consisting of one
or more segments are separated from other messages by end of message indicators (EMI).
Similarly, groups of messages are separated from each other by end of group indicators
(EGI).

When your COBOL object program receives a message or message segment, the MCS
updates a specified area of the associated CD to indicate if an ESI, EMI or EGI was sent
with the messge (but not as part of the message text). When your COBOL object program
sends a message or message segment, you must specify ESI, EMI or EGI, if needed, in the
SEND statement. Thus, the presence of these logical indicators is recognized and specified
by both the MCS and the COBOL object program .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-4

Of the indicators, EGI is the most inclusive and ESI is the least inclusive. Thus, the •
existence of an EGI implies the existence of EMI and ESI, and the existence of an EMI
implies the existence of ESI.

11.5. QUEUES

Queues form the data buffers between your COBOL object program and the MCS. They
consist of the messages being sent to or being received from communication devices.
Input queues are logically separate from output queues.

The MCS places or removes only complete messages in or from queues. So, for example,
if your program executes a RECEIVE statement with the SEGMENT phrase, the MCS does
not pass the message segment to your program until the entire message is available in the
input queue. Similarly, the MCS does not transfer messages or message segments to
communication devices until the complete message is in the output queue. The number of
messages that exist in a given queue reflects only the number of complete messages that
exist in the queue.

The process that places messages into queues is called enqueueing. Dequeueing is the
process that removes messages from queues.

It is possible that the MCS will receive a message for your program before it is executed.
When that happens, the MCS enqueues the message in the proper input queue, where it
remains until your program requests dequeueing (by issuance of a RECEIVE statement).

It is also possible that your program will send messages that will not be transmitted to a
communication device until after the program terminates. This could happen either
because the data transfer between the queue and the device was inhibited, or because
your program created messages faster than the device could receive them.

Depending on your operating environment, you may, before you run a program, be able to
tell the MCS how to select the queues that will hold your messages. You might, for
example, specify that all messages from a given source be placed in a given input queue,
and that all messages to be sent to a given destination be placed in a given output queue.
Dequeueing often is done on a first in, first out basis. However, through prior
specifications to the MCS, you can set up a priority system for dequeueing.

You can exercise even more control of enqueueing and dequeueing through use of a
hierarchy of input queues defined to the MCS. The available queues, in order of
decreasing significance, are named queue, subqueue-1, subqueue-2, and subqueue-3.

Following is an example of a queue hierarchy. Queues and subqueues are named with
letters A through 0. Messages are named with letters according to their source (X, Y, or
Z), and with a sequential number.

•

•

•

•

•

UP-8805

QUEUE

SUBQUEUE (1)

SUBQUEUE (2)

SUBQUEUE (3)

MESSAGE

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

A

B·

D

H J L

Z1 X3 X1 Z6 Y7
X2 X4 Y3 Z7 YB

XS Y5 Y6
Z5

11-5

c

F

M N

Y1 X6 Z2
Y2 Z3

Z4
Y4

Let's assume messages are placed in the various queues according to the contents of a
specified data field in each message. Also assume that when RECEIVE statements that
dont't specify a given subqueue level are executed, the MCS chooses the subqueue from
that level in alphabetical order. For example, if your program executes a RECEIVE
statement associated with a CD that specifies queue A and no subqueues, message Z1 is
retrieved.

That's because the MCS chose (in alphabetical order) B for subqueue-1, D for subqueue-2
and H for subqueue-3. Other examples:

1. A RECEIVE statement associated with a CD that specifies queue A and subqueue-C
retrieves message Y7 .

2. A RECEIVE statement associated with a CD that specifies queue A, subqueue-1 B and
subqueue-2E returns message X1.

3. A RECEIVE statement associated with a CD that specefies queue A, subqueue-1 C,
subqueue-2G, and subqueue-3N yields message X6.

Of course, the MCS in your operating environment may perform dequeueing based on
some criteria other than alphabetical order.

For output, you specify only the destination or destinations of the message, and the MCS
places the message in the proper output queue structure. Note there is no one-to-one
relationship between communication devices and sources or destinations; i.e., a source or
destination may consist of one or more physical devices. The devices that comprise a
source or destination are predefined to the MCS.

11.6. DATA DIVISION ENTRIES

When you use the communication module, you have to include communication
descriptions (CDs) ir:t the communication section of your program's data division to define
the interface area between the program and the MCS. This interface area gives you
informtion about the message being handled; however, the information is provided by the
MCS (it does not come from the terminal as part of the message). There are separate
formats for input and output CDs .

UP-8805 SPERRY UNIVAC

FUNDAMENTALS OF 1974 ANSI COBOL
11-6

11.6.1. Input Communication Description (CD)

You define input CDs by coding selected clauses that associate data-names with fields in
the CD area, or by coding a string of 11 data-names which, taken in order, correspond to
the 11 fields in a CD area. Here is the format:

CD cd-name;
FOR [INITIAL] INPUT [; SYMBOLIC QUEUE IS data-name-1]

[; SYMBOLIC SUB-QUEUE-1 IS data-name-2]

[; SYMBOLIC SUB-QUEUE-2 IS data-name-3]

[; SYMBOLIC SUB-QUEUE-3 IS data-name-4]

[; MESSAGE DATE IS data-name-5]

[; MESSAGE TIME IS data-name-6]

[; SYMBOLIC SOURCE IS data-name-7]

[; TEXT LENGTH IS data-name-8]

[; END KEY IS data-name-9]

[; STATUS KEY IS data-name-111]

[; MESSAGE COUNT IS data-name-11]

[data-name-1, data-name-2, ... , data-name-11]

•

If your CD definition is written as a string of 11 data-names, each data-name must be
unique within the CD. Within the string, you may replace any data-name with the reserved •
word FILLER.

If your CD area isn't defined as clauses or as a string of 11 data-names, you must define it
using a level 01 data description entry that describes an 87-character record.

No matter how you define your CD area, you may redefine it as many times as you want
using 01 level record descriptions, each defining 87-character records. However, you can
·use VALUE clauses only in the first redefinition.

If you want the MCS to schedule your program, your input CD must include the INITIAL
option. As explained in 11.3, MCS invocation moves the symbolic names of the queue
structure that demanded the activity to the fields referenced by data-name-1 through data
name-4 of the CD associated with the INITIAL clause; otherwise, those fields are initialized
to spaces. The symbolic names are inserted or the initialization-to-spaces is completed
before the first procedure division statement is executed.

When your program is scheduled by the MCS, data-name-1 through data-name-4 are
filled, but the rest of the CD (represented by data-name-5 through data-name-11) is not
updated until the execution of a RECEIVE statement for the CD.

Only one CD in your program may specify the INITIAL option. Do not include a CD with the
INITIAL option in programs that specify the USING phrase of the procedure division header
(i.e., in a called program). The results are undefined if the MCS attempts to schedule a •
program that does not have an input CD with the INITIAL option.

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-7

The CD area, whether you define it with clauses or with the list of 11 data-names,
consists of 87 contiguous standard data format characters and has an implicit description
equivalent to the following:

Implicit Description Comment

01 data-name-0. CD NAME

02 data-name-1. PICTURE x (1 2) . SYMBOLIC QUEUE

02 data-name-2 PICTURE x (1 2) . SYMBOLIC SUB-QUEUE-1

02 data-name-3 PICTURE x (12) . SYMBOLIC SUB-QUEUE-2

02 data-name-4 PICTURE x (12) . SYMBOLIC SUB-QUEUE-3

02 data-name-5 PICTURE 9(06). MESSAGE DATE

02 data-name-6 PICTURE 9 (08). MESSAGE TIME

02 data-name-7 PICTURE x (12) . SYMBOLIC SOURCE

02 data-name-8 PICTURE 9 (0 4). TEXT LENGTH

02 data-name-9 PICTURE x. END TEXT

02 data-name-10 PICTURE xx. STATUS KEY

02 data-name-11 PICTURE 9 (0 6). MESSAGE COUNT

NOTE:

The comment entry is not part of the description.

Data-name-1 through data-name-4 represent the hierarchy of queues as described in
11.5. Before you code RECEIVE statements in your program, you tell the MCS where to
find the desired message by moving symbolic names for the appropriate queues to these
data-names. The symbolic names must follow the rules for the formation of system
names, and must be previously defined to the MCS. If you do not specify all the subqueues
(data-name-2 through data-name-4), the MCS determines the message or message
segment accessed. The field representing any subqueue not specified must contain spaces
before the RECEIVE statement is executed. When you do specify subqueues, you must also
specify all higher queue levels.

After the execution of a RECEIVE statement, data-name-1 through data-name-4 contain
the symbolic names of all the levels of the queue structure that contained the message.

Given the following partial CD description,

CD EXAMP; FOR INPUT

SYMBOLIC QUEUE IS SYM-QUEUE

SYMBOLIC SUB-QUEUE-1 IS SYM-Q-1

SYMBOLIC SUB-QUEUE-2 IS SYM-Q-2

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

you might, for example, code

MOVE Q-A TO SYM-QUEUE

MOVE SUB-Q-A TO SYM-Q-1

MOVE SPACES TO SYM-Q-2, SYM-Q-3

11-8

before the RECEIVE statement. The MCS, then, determines the appropriate subqueue-2
and subqueue-3 from which to retrieve the message and, after the RECEIVE statement is
executed, moves the symbolic names for those subqueues to SYM-Q-2 and SYM-0-3.

As with data-name-1 through data-name-4, data-name-5 through data-name-9 are
updated by the MCS only when RECEIVE statements are executed.

Data-name-5 and data-name-6 contain the date and time, respectively, that the MCS
recognizes that the message is complete. The date is in YYMMDD (year, month, day)
format; the time is in HHMMSSTI (hours, minutes, seconds, hundredths of a second)
format.

In data-name-7, you find the symbolic name of the communication terminal that sent the
message. If the name is not known to the MCS, data-name-7 equals spaces.

You test data-name-8 to learn the number of character positions filled by the execution of
the RECEIVE statement.

Data-name-9, the end key indicator, is set as follows:

• to 3, if an end of group indicator (EGI) is detected;

• to 2, if an end of message indicator (EMI) is detected;

• to 1, if an end of segment indicator (ESI) is detected (and the RECEIVE SEGMENT
phrase is specified); or

• to 0, if less than a message (if RECEIVE MESSAGE is specified) or less than a
message segment (if RECEIVE SEGMENT is specified) is transferred.

When more than one of these conditions is satisfied simultaneously, data-name-9 is set
according to the condition with the highest number. Thus, if both EMI and EGI are
detected, data-name-9 equals 3.

You test data-name-10 to find the status condition of the previously executed RECEIVE,
ACCEPT MESSAGE COUNT, ENABLE INPUT, or DISABLE INPUT statement. The following
table explains possible status key codes and their meanings:

•

•

•

•

•

•

UP-8805

w
;:::
w
u
w
c:

x

x

NOTE:

1-
z
:::>
0
u
w
(!)
<(
U)
U)
w
~

Ii:
w
u
u
<(

x

x

x

x

x

:J
I- <(
:::> z a.. -
z~
- c:
ww
....I 1-
co .r:.
<(....
z ·~
w -

x

x

x

I- ~
:::> ·-
0... E z ~

- ~
w
....I :J
co 0
<(.r:.
en .'!::::: - ;;:
0-

x

x

x

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

~ =-
0... "'
z ·= - E w ~
....I Ql co
<(.r:.
en .'!::::: - ;;:
0-

x

w
0
0
u
>w
~

U)
:::> s
U)

00

FUNCTION

No error detected. Action completed.

11-9

20 One or more queues or subqueues unknown. No action taken.

x 20 The source is unknown. No action taken.

x 40 Password invalid. No enabling disabling action taken.

An X on a line in a statement column indicates the associated code shown for that line is possible for that statement.

The MCS updates data-name-11 only when ACCEPT statements with the COUNT phrase
are executed. You use it to find out how many complete messages are in the queue
structure specified in data-name-1 through data-name-4 .

Following is an example of how you can code a Format 1 CD:

CD CDEXAM; FOR INITIAL INPUT

SYM-Q, SYM-Q-1, SYM-Q-2, SYM-Q-3, MSG-DATE

MSG-TIME, SYM-SRG, FILLER, FILLER, STAT-KEY, MSG-CT

The name of this CD is CDEXAM. Since the INITIAL option is used, the program that
includes this CD definition may be scheduled for execution by the MCS. The queue
structure for this CD is represented by the names SYM-Q, SYM-Q-1, SYM-Q-2, and SYM
Q-3.

The message date and time are in fields referenced by the data-names MSG-DATE and
MSG-TIME. The symbolic name of the terminal that sends a message received from the
queue structure defined in this CD is referenced by SYM-SRC.

The reserved word FILLER is used for text length and end key. Since complete input
messages of fixed length are always received, it is not necessary to reference these fields.
The data-names STAT-KEY and MSG-CT reference the status key and the message count .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11.6.2. Output Communication Description (CD)

11-10

You use this format to describe CD areas used for output. The CD information is not sent
to the terminal; it constitutes communication between your program and the MCS about
the message being handled. The format is:

CD cd-name; FOR OUTPUT

[; DESTINATION COUNT IS data-name-I]

[; TEXT LENGTH IS data-name-2]

[; STATUS KEY IS data-name-3]

DESTINATION TABLE OCCURS integer-2 TIMES J
[;INDEXED BY index-name-I [,index-name-2] ... J

[; ERROR-KEY IS data-name-4]

[
[; SYMBOLIC DESTINATION IS data-name-5].

The size of the CD output area depends on the number of message destinations. The first
10 characters of the area (the destination count, text length, and status key) are followed
by 13-character destination table entries. So, if there are three destinations in the
destination table, the CD area has 10 plus 13 times 3 or 49 characters. If you don't use
the DESTINATION TABLE OCCURS clause, one ERROR KEY and one SYMBOLIC
DESTINATION area are assumed. This produces a 23-character area.

•

Use of the clauses gives you a CD record with an implicit description equivalent to the •
following:

Implicit Description Comment

0I data-name-0. CD NAME

02 data-name-I PICTURE 9 (04). DESTINATION COUNT

02 data-name-2 PICTURE 9 (04). TEXT LENGTH

02 data-name-3 PICTURE xx. STATUS KEY

02 data-name OCCURS integer-2 TIMES. DESTINATION TABLE

03 data-name-4 PICTURE X. ERROR KEY

03 data-name-5 PICTURE x (I 2) . SYMBOLIC DESTINATION

NOTE:

The comment entry is not part of the description.

If you don't use any of the optional clauses, you must describe the CD area with a level 01
data description entry. As with input CDs, you can redefine output CDs as often as you
want (even if clauses are used for the orginal definition) using level 01 record descriptions.
Again, you can use VALUE clauses in only the first redefinition.

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-11

You use data-name-1 to tell the MCS how many of the destinations represented by data
name-5 are affected when SEND, ENABLE OUTPUT, or DISABLE OUTPUT statements are
executed. So, for example, if data-name-1 equals 4 and the CD has 15 occurrences of
data-name-5, only the first 4 of these occurrences (or destinations) are affected by the
execution of, for example, a SEND statement. You must make certain that, when one of
the three statements mentioned is executed, the value of data-name-1 is within the range
of 1 and the number of occurrences of destination table entries.

When a SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement is executed, and the
value of data-name-1 is not within that range, an error condition is indicated and
execution of the statement is terminated. You use data-name-2 to tell the MCS the
number of leftmost character positions being transferred from the identifier associated
with a SEND statement.

The status key, represented by data-name-3, is similar to the status key in an input CD.
You test it to find the status condition of the previously executed SEND, ENABLE OUTPUT,
or DISABLE OUTPUT statement. The possible status key codes are explained in the
following chart. An X on a line in a statement column indicates the associated code shown
for that line is possible for that statement.

w
I- I- Cl
::::l ::::l 0
a.. a.. u
I- I-
::::l ::::l >- FUNCTION

0 w
0 ~

w UJ Cf)JJ CD ::::l
Cl CD <{ ~ z <{
w z Cf)

I-
Cf) w Ci Cf)

x x x 00 No error detected. Action complete.

x 10 One or more destinatinos are disabled. Action completed.

x x x 20 One or more destinations unknown. Action completed for known destinations; no action
taken for unknown destinations. Error key (data-name-4) indicates error or unknown.

x x x 30 Content of destination count (data-name-1) invalid. No action taken.

x x 40 Password invalid. No enabling or disabling action taken.

x 50 Text length (data-name-2) greater than length of (sending field). No action taken.

x 60 Partial segment with either zero text length or no sending area specified. No action taken.

After a SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement is executed the error key
data item is set to 0, unless the value of data-name-5 was not defined to the MCS. In that
case, the error key code is set to 1 and the status key code (data-name-3) is set to 20.

The destinations referenced by data-name-5 must be previously defined to the MCS. The
names must follow the rules for the formation of system-names .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-12

If the CD has more than one destination specified, you may refer to data-name-4 and data- •
name-5 only by subscripting or indexing. If there is only one destination you may not use
subscripting or indexing when referencing these fields.

Following is an example of an output:

CD CDOUT; FOR OUTPUT

DESTINATION COUNT IS DEST-CT

TEXT LENGTH IS TXT-LTH

STATUS KEY IS ST-KEY

DESTINATION TABLE OCCURS 3 TIMES

ERROR-KEY IS ERR-KEY

SYMBOLIC DESTINATION IS SYMDEST.

The name of this output CD is CDOUT. DEST-CT references the number of the table
entries affected when the next statement associated with the CD is executed.

The number of characters in a message sent to the MCS from an identifier associated with
a SEND statement is referenced by TEXT-LTH. The value of ST-KEY tells you the status of
the previously executed SEND, ENABLE, OUTPUT, or DISABLE OUTPUT statement.

There are at most three destinations and associated error keys, represented by ERR-KEY
and SYM-DEST, at any given time when a SEND, ENABLE OUTPUT, or DISABLE OUTPUT •
statement is executed. When you reference ERR-KEY and SYM-DEST they must be
subscripted.

11.7. ACCEPT MESSAGE COUNT STATEMENT

You use ACCEPT MESSAGE COUNT statements to find how many complete messages are
available in a particular input queue. The format is:

ACCEPT CD-name MESSAGE COUNT

The queue tested is referenced by data-name-1 through data-name-4 of the input CD
named. When ACCEPT MESSAGE COUNT statements are executed, data-name-2 through
data-name-4 of the CD may contain spaces, but data-name-1 must contain the name of a
symbolic queue known to the MCS. Any symbolic subqueues (data-name-2 through data
name-4) you specify also must contain names known to the MCS.

After an ACCEPT MESSAGE COUNT statement is executed you find how many messages
are available by testing data-name-11 of the CD. Testing data-name-10 of the CD tells you
whether the ACCEPT MESSAGE COUNT statement executed successfully.

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-13

• Given the following CD definition

•

•

CD CDEXAM; FOR INPUT

SYMBOLIC QUEUE IS SYM-Q:

you code

SYMBOLIC SUB-QUEUE-1 IS SUB-Q-1

STATUS KEY IS STAT-KEY

MESSAGE COUNT IS MSG-COUNT.

ACCEPT CDEXAM MESSAGE COUNT

to find how many messages are in the queue SYM-0, SUB-Q-1. That number is available
in the field referenced by MSG-COUNT. The value of STAT-KEY tells you if the ACCEPT
statement executed successfully.

11.8. DISABLE STATEMENT

DISABLE statements logically break the connection between the MCS and specified
sources or destinations. The format is:

DISABLE {INPUT [TERMINAL]}cd-name WITH KEY {identif ier-1}
OUTPUT I iteral -1

You use INPUT TERMINAL to disconnect the logical path between a specific source
terminal and all queues and subqueues. You move the name of the terminal you want to
logically deactivate to data-name-7 (SYMBOLIC SOURCE) of the area referenced by cd
name in the format. The contents of any other data fields in the same CD area are not
meaningful when DISABLE INPUT TERMINAL statements are executed.

If you specify the INPUT phrase without the optional word TERMINAL, you disconnect the
logical paths for all the sources associated with the queues and subqueues of the area
referenced by cd-name.

The OUTPUT phrase similarly deactivates the logical paths between the output queues and
the destinations specified by data-name-5 of the CD area specified.

Literal-1 or identifier-1 must match the system password (a 1-to-10-alphanumeric
character name known to the MCS). If it does not match, the DISABLE statement is not
executed and the value of the STATUS KEY in the area referenced by cd-name is updated.

When the MCS and the specified sources or destinations are logically disconnected or are
to be handled by some other means external to the program, the DISABLE statement is
not required in the program .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-14

The execution of DISABLE statements causes the logical disconnection only when the •
affected sources or destinations are inactive. It never causes the remaining portion of a
me3sage to be terminated during transmission to or from a terminal.

DISABLE statements do not affect the logical path for the transfer of data between your
COBOL program and the MCS.

Here is ·an example of a DISABLE statement:

DISABLE INPUT TERMINAL CD-EXAM WITH KEY PASS-WORD

Execution of this statement logically inhibits the transfer of data between the terminal
identified by data-name-7 of CD-EXAM, and the input queues. PASS-WORD is defined in
the working-storage section as alphanumeric characters. Its value must be the same as
that of the system password previously specified to the MCS.

11.9. ENABLE STATEMENT

ENABLE statements work like DISABLE statements except they establish, rather than
break, the logical connection between the MCS and communication devices. The format is:

ENABLE {INPUT [TERMINAL]}cd-name WITH KEY {identifier-!}
OUTPUT I iteral-1

The use of the INPUT, TERMINAL, OUTPUT, and KEY phrases, and the rules of statement
operation, are the same for ENABLE statements as for DISABLE statements.

Here is an example of an ENABLE statement:

ENABLE OUTPUT CDOUT WITH KEY PASS-WORD

Execution of this statement provides a logical connection between the MCS and the
destinations referenced by data-name-5 of the output CD called CDOUT. You define PASS
WORD in the working storage section as alphanumeric characters. Its value must be the
same as that of the system password previously specified to the MCS.

11.10. RECEIVE STATEMENT

RECEIVE statements transfer messages or portions of messages from input queues to your
program. In addition, they cause the MCS to update the appropriate input CD area in your
program's communication section. Here is the format:

RECEIVE cd-name {MESSAGE} INTO identif ier-1 [; NO DATA imperative-statement]
SEGMENT

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-15

The queue structure containing the message to be received is identified by data-name-1
through data-name-4 of the area referenced by cd-name. When RECEIVE statements are
executed, the messages, message segments, or portions of messages or segments are
transferred to the area referenced by identifier-1 and aligned to the left without space fill.
Control then passes to the next executable statement.

If no message is available in the appropriate queue structure when the RECEIVE statement
is executed, one of the following occurs:

1. If the NO DATA phrase is specified, the RECEIVE operation is considered complete,
and the imperative statements in the NO DATA phrase are executed.

2. If the NO DATA phrase is not specified, execution of the object program is suspended
until data becomes available.

If one of the queues or subqueues is unknown to the MCS, control passes to the next
executable statement, whether or not the NO DATA phrase is specified.

When you specify RECEIVE SEGMENT, and an end-of-message indicator (EMI) or end-of
group indicator (EGI) is associated with the text being transferred, the existence of an end
of-segment indicator (ESI) is implied and the text is treated as a message segment.

When you specify RECEIVE MESSAGE, ESls associated with the text are ignored .

If the length of the message or message segment is greater than that of the area
referenced by identifier-1, you must execute multiple RECEVE statements to get the entire
message or segment into your program. Once the execution of a RECEIVE statement
returns a portion of a message, only subsequent execution of RECEIVE statements in that
run unit can return the remaining portion of the message. Once a STOP RUN statement is
executed, the disposition of the remaining portion of a message partially obtained in the
run unit is defined by the implementor.

Here is an example of a RECEIVE statement:

RECEIVE CDEXAM MESSAGE INTO REC-MSG;

NO DATA GO TO ABC.

The queue structure from which the message is retrieved 1s identified in data-name-1
through data-name-4 of CDEXAM. If no message is available when this statement is
executed, control passes to the paragraph named ABC. REC-MSG is defined in the
working-storage section .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11.11. SEND STATEMENT

11-16

SEND statements transfer your messages, or portions of messages, to output queues
maintained by the MCS. They also may tell the MCS when a complete segment, message,
or group of messages has been sent. and provide information about the vertical positioning
of the messages on output devices.

There are two formats you can use for SEND statements:

Format 1:

SEND cd-name FROM identifier-1

Format 2:

SEND cd-name [FROM identifier-1] {WITH identifier-2}
WITH ESI

WITH EMI

WITH EGI

~
~E} ADVANC 1 NG l{I: ::::::;,, -fG: ::,])~

{
mnemonic-name}

. PAGE

You replace cd-name in the format with the name of the output CD associated with the
destinations of your messages. Your message, before it is sent to the MCS, is contained in
identifier-1. You move the length of the message, or portion of it that you wish to send to
the MCS, to data-name-2 (TEXT LENGTH) before the SEND statement is executed. Once a
complete message is received in an output _queue, the MCS transmits it to the appropriate
communication devices.

When you use Format 2, you can specify ESI, EMI, or EGI to tell the MCS that a segment,
message, or. group of message is complete. (See 11.4).

You may also specify the delimiting indicators via identifier-2. If you set identifier-2 to 1, it
indicates a segment is complete; if you set it to 2, it means a message is complete; and if
you set it to 3, it indicates a group of messages is complete.

If you specify identifier-2 and it equals any character other than 1, 2, or 3, no indicator is
implied. In this event, you must specify identifier-1; otherwise, an error is indicated by the
value of the status key field (data-name-3) of the associated CD and no data is transferred.

You use the ADVANCING phrase to control the vertical positioning of messages or
message segments on a communication device. If vertical positioning is not applicable on
the device, or if identifier-2 is not equal to 1, 2, or 3, (and you don't use ESI, EMI, or EGI),
the MCS ignores the ADVANCING phrase.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-17

You repos1t1on messages or message segments on the communication device vertically
downward according to the number of lines you specify, either as an integer number
(replacing integer in the format), or as the integer value of identifier-3. If you use the
BEFORE phrase, the message is written to the device before the repositioning; if you use
the AFTER phrase, the message is written after the repositioning.

If you want to advance to a new page before or after a message is outputted, you use the
PAGE phrase. If you specify the PAGE phrase and page has no meaning in relation to the
communication device, the vertical positioning is the same as if you had coded (BEFORE or
AFTER) ADVANCING 1 LINE.

If you do not use the ADVANCING phrase and vertical positioning is applicable for the
device, the default value AFTER ADVANCING 1 LINE is assumed.

If you define a mnemonic-name in the SPECIAL-NAMES paragraph, and you use the
ADVANCING mnemonic-name option, messages are positioned according to the rules
specified by the implementor for that communication device.

When SEND statements are executed, the MCS reads the text length field (data-name-2)
of cd-name to see how many characters you want to transfer from identifier-1 to the
output queue. If the text length field is equal to zero, or if it is equal to a number greater
than the size of identifier-1, no data is transferred. In the latter case, an error is indicated
by the value of the status key field (data-name-3) of cd-name .

When the communication device that is to receive your message is oriented to a fixed line
size (printer, display screen, card punch, etc.), the messages or message segments begin
at the leftmost character position of the physical line, and all unused character positions to
the right are space-filled. If the message is longer than the physical line size, the excess
characters continue at the leftmost character position of the next line.

When the communication device that is to receive your message is oriented to handle
variable length messages (paper tape punch, another computer, etc.), the message or
message segments begin on the next available character position of the device.

Note that you can use Format 1 to send a portion of a message to the MCS without the
indicators or vertical positioning information you use for Format 2. Also note, however,
that no message is transferred by the MCS to a communication device unless the final
portion of the message is sent by a Format 2 statement that specifies EGI, EMI, or
identifier-2. Thus, the statement

SEND CDOUT FROM MSG-HOLDER

Standing alone, this statement does not send a message to an output device, because the
MCS has no way of knowing whether it received a complete message. The MCS releases
that message only after subsequent execution in the same run unit of a Format 2 SEND
statement for CDOUT .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-18

During the execution of the run unit, the disposition of a portion of a message not •
terminated by an EMI or EGI is undefined. Once a STOP RUN is executed, any portion of a
message transferred from the run unit via a SEND statement (but not terminated by an
EMI or EGI) is purged from the system.

The following sequence of statements illustrates the use of both formats of the SEND
verb:

SEND CDOUT FROM MSG.

IF CONDITION-A,

SEND CDOUT FROM MSG-1.

IF CONDITION-B,

SEND CDOUT FROM MSG-2.

IF CONDITION-C,

SEND CDOUT FROM MSG-3.

SEND CDOUT WITH EMI

AFTER ADVANCING 2 LINES.

In this example, a message is constructed that may have only one part (the characters
passed from MSG) or may have as many as four parts, depending on the value of
CONDITION-A, CONDITION-B, and CONDITION-C. Since the size of the complete message
is unknown until all conditions are tested, the end-of-message indicator and the vertical .~
positioning information are sent to CDOUT separately, after all portions of the complete
message are received by the MCS.

11.12. SAMPLE PROGRAM

Foll'owing is a sample program that uses the communication module. This program
receives messages from a 1-level queue structure; writes these messages to an output
file; and (for every message correctly received) sends back the message MESSAGE
RECEIVED.

The 1-level queue structure, which is a symbolic queue with no subqueues, is defined in
the COMMUNICATION SECTION of the program as MAIN-0. The initialization of MAIN-0
is done in the MAIN SECTION by moving the symbolic queue name EXAM-0 into the
MAIN-Q. Then MCS, using predefined criteria, determines the proper message to be
transferred from the MAIN-0 to the area STORAGE-MESSAGE defined in working storage.

When a message is received properly, it is written from the STORAGE-MESSAGE area to
the output file FILEA. After this, the message MESSAGE RECEIVED, which is stored in
SEND-MSG, is transmitted via the SEND statement to the symbolic destination OUT
TERM. This symbolic destination is defined in the COMMUNICATION SECTION. The
program continues to receive input messages until the contents indicate the end of input
(in which case the program is terminated).

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

11-19

This program also tests the validity of input and output message transmission by testing
the code contained in the STATUS KEY. The status keys, one for input messages and one
for output, are indicated in the COMMUNICATION SECTION. If the STATUS KEY contains
00, the message is valid and no error processing is done. Otherwise; an error message
like QUEUE NAME ERROR is displayed indicating the nature of the transmission difficulty.
These validity tests are done after the execution of the ENABLE, RECEIVE, and SEND
statements.

One item to note is that VALUE clauses are specified in the redefinition of the output CD
description to intialize the DESTINATION COUNT, TEXT LENGTH, and SYMBOLIC
DESTINATION fields.

Communication Module Program:

000100 IDENTIFICATION DIVISION.
000200 PROGRAM- ID, COMMEX.
000300 ENVIRONMENT DIVISION.
000400 CONFIGURATION SECTION.
000500 SOURCE-COMPUTER. UNIVAC-VS9.
000600
000700 OBJECT-COMPUTER. UNIVAC-VS9.
000800 INPUT-OUTPUT SECTION.
000900 FILE-CONTROL.
001000 SELECT FILEA ASSIGN TO DISK-DCDOl-F .
001100 DATA DIVISION.
001200
001300
001400
001500

FILE SECTION.
FD FILEA LABEL RECORDS STANDARD.
01 RECA PIC X(50).
WORKING-STORAGE SECTION.

001600 77
001700
002000
002100
002200
002300
002400
002500

01
02
02
02
02
02

SEND-MSG PIC X(l6)
VALUE ''MESSAGE RECEIVED''.

STORE-MESSAGE.
MSG-TYPE PIC 9(4).
DIV-NO PIC 9(3).
PART-NO PIC X(l0).
WAREHOUSE-NO PIC X(7).
FILLER PIC X(26).

002600 COMMUNICATION SECTION.
002700 CD
002800
002900

CD·EXAM-IN FOR INPUT
SYMBOLIC QUEUE IS MAIN-Q
STATUS KEY IS IN-STAT-KEY.

003000 CD CD-EXAM-OUT FOR OUTPUT.
003100 01 REDEF-OUT.
003200 02 DEST-CT PIC 9(4) VALUE 1.
003300 02 OUT-TXT-LNGTH PIC 9(4) VALUE 16.
003400 02 OUT-STAT-KEY PIC XX VALUE SPACES.
003500 02 MSG-DEST.
003600
003700

03
03

MSG-ERR-KEY PIC X VALUE SPACE.
SYM-DEST PIC X(l2) VALUE ''CUT-TERM''.

(continued)

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

003800 PROCEDURE DIVISION.
004800 MAIN SECTION.
004900
005000
005100
005200
005300
005400
005500
005600
005700
005800
005900
005900
006100
006200
006300
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500
007600
007700
007800
007900
008000
008100
008200
008300
008400
008500
008600

BEGIN-PROG.
OPEN OUTPUT FILEA.
MOVE ''EXAM-Q'' TO MAIN-Q.
ENABLE INPUT CD-EXAM-IN WITH KEY ''EXAM-PASS''.
IF IN-STAT-KEY NOT EQUAL ZEROS

GO TO ERR-RTN-1.
ENABLE OUTPUT CD-EXAM-OUT WITH KEY ''EXAM-OK''.
IF OUT-STAT-KEY NOT EQUAL ZEROS

GO TO ERR-RTN-2.
REC-SEND.

RECEIVE CD-EXAM-IN MESSAGE INTO STORE-MESSAGE.
IF IN-STAT-KEY= ··oo··

WRITE RECA FROM STORE-MESSAGE
ELSE

GO TO ERR-RTN-3.
SEND CD-EXAM-OUT FROM SEND-MSG WITH EMI.
IF MSG-TYPE= 9999

GO TO EOJ.
IF OUT-STAT-KEY= ZEROS

GO TO REC-SEND
ELSE

DISPLAY ''OUT-STAT-KEY='' OUT-STAT-KEY
ERROR ON SEND STATEMENT''.

GO TO EOJ.
ERR-RTN-1.

IF IN-STAT-KEY EQUAL 40
DI SPLAY ' ' I NP UT CD PASSWORD ERR 0 R ' '

ELSE
DISPLAY ''QUEUE NAME ERROR''.

GO TO EOJ.
ERR-RTN-2.

IF OUT-STAT-KEY= 40
DISPLAY ''OUTPUT CD PASSWORD ERROR''

ELSE
DISPLAY ''DESTINATION ERROR''.

GO TO EOJ.
ERR-RTN-3.

DISPLAY ''QUEUE UNKOWN ON RECEIVE STATEMENT''.
0118700 EOJ.
009300 CLOSE FILEA.
0119 4011 STOP RUN.

11-20

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

12-1

12. Debug

The debug module helps you find errors during the execution of an object program. It
allows you to code special routines executed each time control transfers to a specific
procedure, each time the value of a data item changes, or under other conditions you
designate. You include debug routines in sections immediately following the declaratives
header in the procedure division.

12.1. COMPILE TIME SWITCH

A compile time switch lets you control whether your debugging code affects a particular
compilation. You set it by including or excluding the WITH DEBUGGING MODE clause
(12.5) in the SOURCE-COMPUTER paragraph. When the clause is present, all debugging
sections and debugging lines (12.4) in the program are compiled. When it is not present,
all debugging sections and debugging lines are compiled as if they were comment lines.

12.2. OBJECT TIME SWITCH

When you execute a program that includes the WITH DEBUGGING MODE clause, you use
an object time switch to activate or deactivate the debugging code for that particular run.
This switch is controlled outside the COBOL environment; it cannot be addressed in your
program.

If you set the object time switch on at execution time, the debugging lines (12.4) and
debugging sections (12.6) are executed. If you set it off, the debugging sections are not
executed as if they were not present. The object time switch has no effect on execution of
debugging lines.

The object time switch has no effect at run time if you do not specify the WITH
DEBUGGING MODE clause in the source program at compile time .

UP-8805

12.3. DEBUG-ITEM

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

12-2

DEBUG-ITEM represents a special register associated with the execution of a debug
routine. One DEBUG-ITEM is automatically allocated for programs that use the debug
module. You reference DEBUG-ITEM only in debugging sections (12.6). Its implicit
description is as follows:

0 1 DEBUG-ITEM
02 DEBUG-LINE PICTURE IS x (6) .

02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-NAME PICTURE IS x (3 0).
02 FILLER PICTURE IS X(VALUE SPACE.
02 DEBUG-SUB- I PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS x VALUE SPACE.
02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-CONTENTS PICTURE IS X (n) .

The name DEBUG-ITEM and the names of its subordinate data items are reserved words.
Before each execution of any of the program's debugging sections, spaces are moved to
DEBUG-ITEM, then the subordinate data items are updated. The updating proceeds
according to the rules for the MOVE statement, except that a move to DEBUG-CONTENTS
is treated as an alphanumeric-to-alphanumeric elementary move with no conversion of
data from one form of internal representation to another.

DEBUG-LINE identifies a particular source statement (the method of that identification is
defined by the implementor); DEBUG-NAME gives you the first 30 characters of the name
(procedure-name, file-name, etc.) that caused execution of the debugging section; and
DEBUG-CONTENTS gives you additional information about why a particular debugging
section was executed.

The relationship between these subordinate data items and the conditions that caused the
execution of a debugging section is explained more fully in section 12.6.

All qualifiers of the name in DEBUG-NAME are separated by IN or OF. If the name is
subscripted or indexed, the subscripts or indexes are not included in DEBUG-NAME.
Instead, the occurrence number of each level is entered in DEBUG-SUB-1, DEBUG-SUB-2,
and DEBUG-SUB-3, respectively, as needed.

12.4. DEBUGGING LINES

You identify source code lines as debugging lines by coding a D in the indicator area
(column 7) of the line. You must place all debugging lines in the program after the
OBJECT-COMPUTER paragraph. You should write the debugging lines so that a
syntactically correct program is formed with or without the debugging lines being
considered as comment lines.

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

12-3

• 12.5. WITH DEBUGGING MODE CLAUSE

•

•

When you debug your program, you need to include the WITH DEBUGGING MODE clause
in your SOURCE-COMPUTER paragraph. As mentioned, the WITH DEBUGGING MODE
clause controls the compile time switch that determines whether or not debugging lines
and debugging sections are compiled as comment lines. The format is:

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE].

As you can see, the clause WITH DEBUGGING MODE, if needed, immediately follows the
computer name. For example, if you code

SOURCE-COMPUTER. UNIVAC-OSJ WITH DEBUGGING MODE.

all debugging sections and debugging lines in the program are compiled; they are not
treated as comments.

12.6. USE FOR DEBUGGING STATEMENT

The debugging sections are coded immediately following the declaratives header in the
procedure division. In each debugging section, you must have a USE FOR DEBUGGING
statement to define the conditions that cause the execution of that particular section. The
format is:

section-name SECTION [segment-number].

USE FOR DEBUGGING ON lcd-name-1
[ALL REFERENCE OF]
file-name-1
procedure-name-1
ALL PROCEDURES

[

cd-name-2
[ALL REFERENCES OF]
file-name-2
procedure-name-2
ALL PROCEDURES

• cd-name-1

If you specify cd-name-1, the associated debugging section is executed after any
ENABLE, DISABLE, SEND, RECEIVE, or ACCEPT MESSAGE COUNT statement that
references cd-name-1 is executed.

Before the debugging section is executed, DEBUG-ITEM is updated so that (1)
DEBUG-LINE identifies the source statement that references cd-name-1, (2) DEBUG
NAME contains the name of cd-name-1, and (3) DEBUG-CONTENTS contains the
contents of the CD area associated with cd-name-1 .

UP-8805 SPERRY UNIVAC 12-4
FUNDAMENTALS OF 1974 ANSI COBOL

• identifier-1

You use identifier-1 when you want the debugging section executed either every time
identifier-1 is referenced (if you specify the ALL REFERENCES OF phrase), or every
time identifier-1 is both referenced and changed in value (if you do not specify the
ALL REFERENCES OF phrase).

A debugging section that contains a USE FOR DEBUGGING clause that specifies
identifier-1 also is executed:

1. Immediately before the execution of a WRITE or REWRITE statement that
explicitly references identifier-1, and after the execution of any implicit move
resulting from the presence of an associated FROM phrase.

2. Immediately after each initialization, modification, or evaluation of identifier-1
(when identifier-1 is referenced by a VARYING, AFTER, or UNTIL phrase
associated with a PERFORM statement).

3. Immediately before control is transferred by the execution of a GO TO statement
with a DEPENDING ON phrase, and also prior to the execution of any debugging
section associated with the procedure-name to which control is transferred by
that GO TO statement.

When the description of identifier-1 contains an OCCURS clause or is subordinate to
an entry that contains an OCCURS clause, do not include the normally-required
subscripting or indexing.

When identifier-1 causes a debugging section to be executed, DEBUG-ITEM is
updated so that DEBUG-LINE identifies the source statement that references
identifier-1, DEBUG-NAME contains the name of identifier-1, and DEBUG-CONTENTS
contains the value of identifier-1 when control passed to the debugging section.

• file-name-1

You use file-name-1 if you want the debugging section executed after the execution
of an OPEN, CLOSE, DELETE, or START statement that references file-name-1, or
after the execution of any READ statement for file-name-1 (after any other specified
USE procedure) that does not result in the execution of an associated AT END or
INVALID KEY imperative statement.

Before a debugging section associated with file-name-1 is executed: (1) DEBUG-ITEM
is updated (so that DEBUG-LINE identifies the source statement that referenced file
name-1); (2) DEBUG-NAME contains the name of file-name-1; and (3) DEBUG
CONTENTS contains spaces (unless a READ statement was executed, so in that case
it contains the entire record read).

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

12-5

• • procedure-name-1

•

•

When you use procedure-name-1, the debugging section is executed immediately
before each execution of the procedure named, or immediately after the execution of
an ALTER statement which references procedure-name-1. You must not define
procedure-name-1 in a debugging section.

• ALL PROCEDURES

If you want the debugging section executed before execution of every procedure in
the program (except for those appearing within a debugging section), you can use the
ALL PROCEDURES phrase. You may include the phrase only once in a program.
When you do use it, you cannot specify procedure-name-1 in any USE FOR
DEBUGGING statement.

When a procedure-name causes the execution of a debugging section, the effect on
DEBUG-ITEM depends on the procedure involved. The following rules apply:

1. If the first execution of the first nondeclarative procedure causes execution of the
debugging section: (a) DEBUG-LINE identifies the first statement of the
procedure; (b) DEBUG-NAME contains the name of the procedure; and (c)
DEBUG-CONTENTS contains the literal START PROGRAM.

2. If a reference to procedure-name-1 in an ALTER statement causes execution of
the debugging section: (a) DEBUG-LINE identifies the ALTER statement; (b)
DEBUG-NAME contains procedure-name-1; and (c) DEBUG-CONTENTS contains
the applicable procedure-name associated with the TO phrase of the ALTER
statement.

3. If the transfer of control associated with a GO TO statement causes execution of
a debugging section: (a) DEBUG-LINE identifies the GO TO statement; (b)
DEBUG-NAME contains procedure-name-1; and (c) DEBUG-CONTENTS contains
spaces.

4. If a reference to procedure-name-1 in the INPUT or OUTPUT phrase of a SORT or
MERGE statement causes execution of a debugging section: (a) DEBUG-LINE
identifies the SORT or MERGE statement that references procedure-name-1; (b)
DEBUG-NAME contains procedure-name-1; and (c) DEBUG-CONTENTS contains;
(i) the literal SORT INPUT if the reference is in the INPUT phrase of a SORT
statement; (ii) SORT OUTPUT if it is in the OUTPUT phrase of a SORT statement;
or (iii) MERGE OUTPUT if it is in the OUTPUT phrase of a MERGE statement.

5. If the transfer of control associated with a PERFORM statement causes execution
of the debugging section: (a) DEBUG-LINE identifies the PERFORM statement
that references procedure-name-1; (b) DEBUG-NAME contains procedure-name-
1; and (c) DEBUG-CONTENTS contains the literal PERFORM LOOP .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

12-6

6. If procedure-name-1 is a USE procedure that is to be executed: (a) DEBUG-LINE •
identifies the statement that causes execution of the USE procedure; (b) DEBUG-
NAME contains procedure-name; and (c) DEBUG-CONTENTS contains the literal
USE PROCEDURE.

7. If an implicit transfer of control from the previous sequential ·paragraph to
procedure-name-1 causes execution of a debugging setion: (a) DEBUG-LINE
identifies the previous statement; (b) DEBUG-NAME contains procedure-name-1,
and (c) DEBUG-CONTENTS contains the literal FALL THROUGH.

Everything that applies to cd-name-1, identifier-1, procedure-name-1, and file-name-1 in
the format applies equally to cd-name-2, identifier-2, procedure-name-2, and file-name-2
in the format. You may use any given cd-name, identifier, procedure-name, or file-name in
only one USE FOR DEBUGGING statement and only once in that statement. If you use any
of the above as a qualifier, that does not count as a reference with respect to debugging.

All your debugging sections must appear together immediately after the declaratives
header. Except in the USE FOR DEBUGGING statement itself, you cannot reference
nondeclarative procedures within the debugging section. In addition, the statements that
are not in debugging sections cannot reference procedure-names defined within
debugging sections. If you want to include coding in one debugging section (other than in
the USE FOR DEBUGGING statement itself) that references a procedure-name in another
debugging section, you must do so using a PERFORM statement.

No debugging sections are executed more than once for a specific operand as a result of •
the execution of a single statement, regardless of the number of times that operand is
explicitly specified. However, if you use a PERFORM statement with a phrase (such as
VARYING or UNTIL) that causes successive executions of a referenced procedure, the
associated debugging section is executed each time the procedure is executed. For
purposes of debugging, each individual occurrence of an imperative verb within an
imperative statement is considered a separate statement.

12.7. SAMPLE PROGRAM

Suppose you want to use debug to monitor the input communication description (CD) in
the communication sample program (11.13). You code the program as shown in the
following sample. Note that the programs are identical, except that the phrase WITH
DEBUGGING MODE is added to the SOURCE-COMPUTER paragraph, and debugging lines
(identified by a D in column 7) are added throughout the program.

The debugging section is executed after the execution of any ENABLE, DISABLE, SEND,
RECEIVE, or ACCEPT MESSAGE COUNT statement that references CD-EXAM-IN (the cd
name specified in the USE FOR DEBUGGING statement).

In this program, CD-EXAM-IN is referenced by an ENABLE and RECEIVE statement and
CD-EXAM-OUT is referenced by an ENABLE and SEND. The debugging section counts the
number of times CD-EXAM-IN is referenced and the number of times CD-EXAM-OUT is •
referenced. At the end of the program, two counters are compared for equality.

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

12-7

Of course, you probably would not use the debug module to monitor such an elementary
program, but you can apply the principles shown here to more complex problems.

Sample Debug Program:

0 0 0 100
0 0 0 2 0 0
000300
000400
0 0 0 5 0 0
000 6 00
000 700
0 0 0 8 0 0
0 0 0 900
0 0 10 0 0
0 0 1100
0 012 0 0
0 013 0 0
0 0 140 0
0 015 0 0
0 016 0 0
0 0170 0 D
0 018 0 0 D
0 019 00 D
0 0 2 0 00
0 0 2 10 0
0 0 2 2 0 0
0 0 2 3 0 0
0 0 2 4 0 0
0 0 2 5 0 0
002600
0 0 2 700
002800
0 0 2 9 0 0
0 0 3 0 00
0 0 3 10 0
0 0 3 2 0 0
0 0 3 3 0 0
0 0 3 4 0 0
003500
0 0 3 6 0 0
0 0 3 7 0 0
0 0 3 8 0 0
0 0 3 9 0 0
004000
0 0 410 0

IDENTIFICATION DIVISION.
PROGRAM-ID, COMMEX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNIVAC-VS9.

WITH DEBUGGING MODE.
OBJECT-COMPUTER. UNIVAC-VS9.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILEA ASSIGN TO DISK-DCD01-F.
DATA DIVISION.
FILE SECTION.
FD FILEA LABEL RECORDS STANDARD.
01 RECA PIC X(50).
WORKING-STORAGE SECTION.
77 SEND-MSG PIC X(16)
77 VALUE "MESSAGE RECEIVED".
77 CTR-1 PIC 9(3) VALUE ZEROS.
77 CTR-2 PIC 9(3) VALUE ZEROS .
01 STORE-MESSAGE.

02 MSG-TYPE PIC 9(4).
02 DIV-NO PIC 9(3).
02 PART-NO PIC X(10).
02 WAREHOUSE-NO PIC X(7).
02 FILLER PIC X(26).

COMMUNICATION SECTION.
CD CD-EXAM-IN FOR INPUT

SYMBOLIC QUEUE IS MAIN-Q
STATUS KEY IS IN-STAT-KEY.

CD CD-EXAM-OUT FOR OUTPUT.
01 REDEF-OUT.

02 DEST-CT PIC 9(4) VALUE 1.
02 OUT-TXT-LNGTH PIC 9(4) VALUE 16.
02 OUT-STAT-KEY PIC XX VALUE SPACES.
02 MSG- DEST.

03 MSG-ERR-KEY PIC X VALUE SPACE.
03 SYM-DEST PIC X(12) VALUE ''CUT-TERM''.

PROCEDURE DIVISION.
DECLARATIVES.
THE-DEBUG SECTION.

USE FOR DEBUGGING ON CD-EXAM-IN CD-EXAM-OUT .

(continued)

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

00421Hl DEB-1.
004300 IF DEBUG-NAME= ''CD-EXAM-IN''
004400
004500
004600
004700
004800
004900
005000
005100
005200
005300
005400
005500
005600
005700
005800
005900
005900
006100
006200
006300
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500
007600
007700
007800
007900
008000
008100
008200
008300
008 400
008500
008600
008700

ADD TOCTR-1
ELSE

ADD TO CTR-2.
END DECLARATIVES.
MAIN SECTION.
BEGIN-PROG.

OPEN OUTPUT FILEA.
MOVE ''EXAM-Q'' TO MAIN-Q.
ENABLE INPUT CD-EXAM-IN WITH KEY "EXAM-PASS".
IF IN-STAT-KEY NOT EQUAL ZEROS

GO TO ERR-RTN-1.
ENABLE OUTPUT CD-EXAM-OUT WITH KEY ''EXAM-OK''.
IF OUT-STAT-KEY NOT EQUAL ZEROS

GO TO ERR-RTN-2.
REC-SEND.

RECEIVE CO-EXAM-IN MESSAGE INTO STORE-MESSAGE.
IF IN-STAT-KEY=' '00''

WRITE RECA FROM STORE-MESSAGE
ELSE

GO TO ERR-RTN-3.
SEND CD-EXAM-OUT FROM SEND-MSG WITH EMI.
IF MSG-TYPE= 9999

GO TO EOJ.
IF OUT-STAT-KEY= ZEROS

GO TO REC-SEND
ELSE

DISPLAY ''OUT-STAT-KEY='' OUT-STAT-KEY
ERROR ON SEND STATEMENT''.

GO TO EOJ.
ERR-RTN-1.

IF IN-STAT-KEY EQUAL 40
0 I SPLAY ''INPUT CD PASSWORD ERROR''

ELSE
DISPLAY "QUEUE NAME ERROR".

GO TO EOJ.
ERR-RTN-2.

IF OUT-STAT-KEY= 40
DISPLAY ''OUTPUT CD PASSWORD ERROR''

El SE
DISPLAY ''DESTINATION ERROR''.

GO TO EOJ.
ERR-RTN-3.

DISPLAY ''QUEUE UNKOWN ON RECEIVE STATEMENT''.
EOJ.

12-8

•

•

•
(continued)

UP-8805

• 008800D
008900D
009000D
009100D
009200D
009300
009400

•

•

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

IF CTR-1 = CTR-2
NEXT SENTENCE

ELSE
DISPLAY ' 'CTR - 1 CTR - 1 .
DISPLAY ' 'CTR - 2 CTR-2.

CLOSE FI LEA.
STOP RUN.

12-9

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

13.

13-1

Library

You often write source code lines in one COBOL program that are identical to source code
lines you want to include in another program. If you use the library module, you can code
frequently-used source text once, and store it in a library so that it is available to all
COBOL programs in the operating environment. Then, when you write a program, you can
represent selected library text with COPY statements (13.1) replaced at compile time by
the desired code from the library. During this copying process, you can replace given
literals, identifiers, words, or groups of words in the library text with alternate text.

The method of placing text in a COBOL library is defined by the implementor. Your library
text must conform to the rules for COBOL reference format (2.5) and, when you supply
alternate text, the replacement text words automatically are placed in your source program
according to the rules for reference format.

13.1. COPY STATEMENT

COPY statements allow you to insert text from a COBOL library into your source program.
You can use them anywhere in your program that a character string or a separator can be
used, except within another COPY statement. Here is the format:

COPY text-name [{~:} I ibrary-name J

[

REPLACING{'{= =pseudo-text-1= =}BY{= =pseudo-text-2= =}} ..]
identifier-I identifier-2
literal-1 literal-2
word-1 word-2

If there is more than one COBOL library in your operating environment, you use the OF or
IN library-name phrase to identify the particular library that contains the text (identified by
text-name) you want inserted in your program when it is compiled. The text-name within a
library must be unique.

You must precede COPY statements with a space and end them with a period. When
COPY statements are executed, the entire statement, beginning with the reserved word
COPY and ending with the period, inclusive, is replaced by the contents of text-name.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

13-2

If you do not use the REPLACING phrase, the text from the COBOL library is copied into •
your program unchanged. If you do use the REPLACING phrase, you can alter the text so
that certain changes are made as it is moved from the library to your program. Specifically,
each matched occurrence of pseudo-text-1, identifier-1, literal-1, and word-1 (any single
COBOL word) in the library text is replaced by the corresponding pseudo-text-2, identifier-
2, literal-2, or word-2.

13.2. COMPILER SEARCH RULES

There are several general rules you need to know about how the compiler searches for
these matched occurrences. In the matching process, an occurrence of any of the
following in pseudo-text-1 or in the library text is treated as a single space:

• Each occurrence of a comma or semicolon (unless pseudo-text-1 consists solely of a
comma or semicolon).

• Each sequence of one or more spaces.

• Any comment line.

The matching operation proceeds as follows:

• Any separator comma, semicolon, or spaces preceding the leftmost word in the library
text you select is immediately copied into your source program.

• Starting with the leftmost library text word and the first pseudo-text-1, identifier-1,
word-1, or literal-1 you coded in the REPLACING phrase, the entire REPLACING
phrase operand preceding the word BY is compared to an equivalent number of
contiguous library text words.

• If there is no match, the comparison is made with the next (if any) operand you coded
to the left of BY. This continues with each pseudo-text-1, identifier-1, word-1, or
literal-1 until there is no next successive REPLACING operand, or until there is a
match.

• In the former case, the leftmost library text word is copied into the program, the next
successive library text word is then considered leftmost, and the comparison cycle
starts again.

• When there is a match, the appropriate pseudo-text-2, identifier-2, word-2, or literal-2
is copied into the source program; the library text word to the right of the last word
included in the match becomes the leftmost library text-word; and the comparison
cycle starts again with the first pseudo-text-1, identifier-1, word-1, or literal-1 that
you coded.

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

13-3

• This comparison continues until the rightmost text word in your library text has either
participated in a match or been considered as a leftmost library text word and
participated in a complete comparison cycle.

You may not code pseudo-text-1 so that it consists solely of spaces or comment lines.
Additionally, it may not be null. Pseudo-text-2, however, can be null.

13.3. DEBUGGING LINE REFERENCE

If you have debugging lines (12.4) within your library text, the D in the indicator area is
- ignored for purposes of matching. If a debugging line in your program includes a COPY

statement, the library text you copy is, with one exception, compiled as though it were
specified on debugging lines. The exception is that comment lines in the library text
appear as comment lines in your program. You cannot use debugging lines within pseudo
text-1, but they are permitted within pseudo-text-2.

Note that the syntactic correctness of your library text cannot be independently
determined, just as the syntactic correctness of your entire COBOL source program cannot
be determined until all your COPY statements are processed.

13.4. CODING

The COPY statement often is used in the SOURCE-COMPUTER and OBJECT-COMPUTER
paragraphs. If you code

SOURCE-COMPUTER.

OBJECT-COMPUTER.

COPY SRCCOM.

COPY OBJCOM.

in all your COBOL programs, the computer-names stored in text-names SRCCOM and
OBJCOM are copied into the programs. If you want to run the programs on a different
computer, you have to change the computer-names only once (in the COBOL library, not in
all your programs).

13.5. STORAGE ROUTINE

You may want to use the library to store routines you use frequently in the procedure
division. For instance, you might place the following in the library:

OPEN INPUT THE-FILE OUTPUT PRINT-FILE.

READ THE-FILE AT END GO TO END-JOB.

Then, in the appropriate location in your program, you code

COPY 0-R-ROUTINE OF COB-LIB-1

REPLACING THE-FILE BY CARD-FILE.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

This statement is compiled as:

OPEN INPUT CARD-FILE OUTPUT PRINT-FILE.

READ CARD-FILE AT END GO TO END-JOB.

13-4

The 0-R-ROUTINE phrase corresponds to text-name in the format; COB-LIB--1
corresponds to library-name in the format.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

14.

14-1

Segmentation

If main storage is a critical concern in your operating environment, you can use the
segmentation facility to conserve main storage by controlling how much main storage is
actually used at program execution time. This is accomplished by having only part of the
entire program reside in main storage at execution time. And as the nonresident sections
are needed they are brought into main storage overlaying certain resident sections.

To make this overlay mechanism work you have to indicate, in the source code, which
parts of the program always reside in main storage and which of the parts can be overlaid.
The COBOL segmentation facility only applies to the executable parts of a program and
therefore you can segment only in the procedure division .

The final product of segmentation is object program segments that can or cannot be
overlaid, which means that a program takes up less main storage space at execution time
because the entire program is not resident during execution.

14.1. PROGRAM ORGANIZATION

When you segment your program, you must divide the entire procedure division into
sections, and designate each section as belonging to a fixed permanent segment (14.2.1),
a fixed overlayable segment (14.2.2), or an independent segment (14.3). You classify these
sections based on logic requirements, frequency of use, and relationship to other sections.

14.2. FIXED PORTION

You classify sections (14.4) as part of the fixed portion of the object program if they must
logically be in main storage during the entire execution of the program. You can have two
types of segments in the fixed_ portion: (1) fixed permanent segments and (2) fixed
overlayable segments. You control the number of fixed permanent and fixed overlayable
segments in the program by using the SEGMENT-LIMIT clause (14.4.2) in the environment
division.

14.2.1. Fixed Permanent Segments

Fixed permanent segments cannot be overlaid by any other part of the program and are
always in main storage during the execution of the program.

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

14-2

14.2.2. Fixed Overlayable Segments

Fixed overlayable segments can be overlaid by other segments, but they are logically
treated as if they were always in main storage. Such segments, when accessed, are
always made available in their last-used state.

14.3. INDEPENDENT SEGMENTS

Independent segments can overlay (and can be overlaid by) fixed overlayable segments or
other independent segments. The first time you transfer control (either implicitly or
explicitly) to a given independent segment in your program, it is made available in its
initial state. On subsequent transfers of control, it is in its initial state:

• When it receives control as the result of the implicit transfer of control between
consecutive statements from a segment with a different segment-number. For
example, this could happen if the sequence of program execution goes from a section
in a fixed segment to the next consecutive section that is an independent segment.

•

•

When it receives control as the result of the implicit transfer of control between a
SORT or MERGE statement you coded in a segment with a different segment-number,
and the associated input or output procedure in that independent segment. For
example, a SORT statement in a fixed overlayable segment could reference its
associated input procedure that is in an independent segment.

When it receives control explicitly from a segment with a different segment-number,
unless the EXIT PROGRAM statement causes the transfer. For example, a GO TO
statement in a fixed segment could reference a procedure name in an independent
segment. It is in its last used state.

• When it receives control as the result of the implicit transfer of control from a
segment with a different segment-number (except the two implicit transfers of control
noted in the previous paragraph). For example, a PERFORM exit that is in a fixed
overlayable segment could return control to the statement following the PERFORM
statement that is in an independent segment.

• When it receives control as the result of the explicit transfer of control because an
EXIT PROGRAM statement was executed. For example, a called program could return
control via the EXIT PROGRAM statement to the calling program's independent
segment that contains the original CALL statement.

14.4. PROGRAM SEGMENT CLASSIFICATION

You classify program segments as fixed permanent, fixed overlayable, or independent by
assigning segment numbers (14.4.1) to your sections in the procedure division, and by
using the SEGMENT-LIMIT clause (14.4.2) in the OBJECT-COMPUTER paragraph of the
environment division.

•

•

•

•

•

•

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

14-3

Generally, fixed permanent segments are sections you need for reference at all times, or
sections you refer to frequently. You should classify less frequently used sections as fixed
overlayable segments, and occasionally used sections as independent segments.

14.4.1. Segment Number

You classify sections in your program by including a segment-number in the section
header as follows:

section-name SECTION [segment-number].

You assign a segment-number of 0 through 49 if you want the section to belong to the
fixed portion of your object program. Sections in the declaratives must be in the fixed
portion (segment-number less than 50). If you want the section to be part of an
independent segment, you assign a segment-number of 50 through 99. You generally
assign more frequently used sections lower segment-numbers than less frequently used
sections.

Sections that have the same segment-number are considered part of the same segment;
threrefore, you should assign the same segment-number to sections that frequently
communicate with each other. Sections that have the same segment-number do not have
to be grouped together in the source program .

If you do not include a segment-number in the section header, the segment-number is
assumed to be 0.

14.4.2. SEGMENT LIMIT Clause

The SEGMENT-LIMIT clause allows you to classify some program segments as fixed
overlayable. It appears in the OBJECT-COMPUTER paragraph and has the following
format:

[,SEGMENT-LIMIT~ segment-number]

You replace segment-number with an integer from 1 through 49.

When you use this clause, segments having segment-numbers from 0 up to (but not
including) the segment limit are considered fixed permanent segments, and segments with
segment-numbers from the segment limit through 49 are considered fixed overlayable
segments.

When you do not use the SEGMENT-LIMIT clause, all segments having segment-numbers
from 1 through 49 are considered fixed permanent segments .

UP-8805 SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

14.5. ALTER STATEMENT RESTRICTIONS

14-4

When you alter a GO TO statement in an independent segment you must code the ALTER
statement in the same segment. All other uses of the ALTER statement are valid and
performed even if the GO TO statement to which the ALTER statement refers is in a fixed
overlayable segment.

14.6. PERFORM STATEMENT RESTRICTIONS

When you use PERFORM statements in segmented programs, the range of the statement
is restricted.

PERFORM statements in sections that are not in independent segments may have, within
their range, sections and paragraphs that are wholly contained in one or more
nonindependent segments, or sections and paragraphs that are wholly contained in a
single independent segment.

PERFORM statements that are in an independent segment may have, within their range,
sections and paragraphs that are wholly contained in one or more nonindependent
segments, or sections and paragraphs wholly contained in the same independent segment
as the PERFORM statement.

14.7. SORT/MERGE STATEMENT RESTRICTIONS

When you use SORT or MERGE statements in sections that are not in independent
segments, input procedures referenced by SORT statements and output procedures
referenced by SORT or MERGE statements must appear totally within nonindependent
segments or totally within a single independent segment.

When you use SORT or MERGE statements in independent segments, input procedures
referenced by SORT statements and output procedures referenced by the SORT or MERGE
statements must appear totally within nonindependent segments or totally within the
same independent segment as the SORT or MERGE statement.

•

•

•

UP-8805

•

Term

A

ACCEPT MESSAGE COUNT statement

ACCEPT statement

Access methods

• ADD statement

ALL word

Alphabetic fields

Alphabet-name clause

Alphanumeric fields

ALTER statement
description
restrictions

Arithmetic
expressions
symbols
verbs

Asterisk symbol

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Reference Page Term

11.7 11-12 Binary operators

7.4.9 7-30 Blank line, coding form

5.4 5-8 BLANK WHEN ZERO clause

7.5.3 7-34 BLOCK CONTAINS clause

7.4.4.2 7-50 Brackets and braces

6.2.2.1 6-15 Branching verbs

5.3.2 5-5

6.2.2.1 6-15

7.7.4 7-57
14.5 14-4

7.2 7-2
Table 7-1 7-5
7.5 7-32

6.2.2.4 6-18

Index 1

Index

Reference Page

B

7.2.l 7-3

2.5.2 2-17

6.2.7 6-29

6.1.2 6-3

1.3.3 1-6

7.7 7-53

UP-8805

Term

c

CALL statement

Called program

CANCEL statement

CD entry
input
output

Character set

Clauses

CLOSE statement

COBOL language processing labels

COBOL language structure
character set
constants, figurative
formats
indexing
literals
qualification
separators
subscripting
words, COBOL

COBOL program general description
coding form
data division
environment division
identification division
procedure division
sample program
See also sample programs.

CODE-SET clause

Coding, library

Coding examples

Coding form, COBOL
blank line
comment line
form
level indicators
numbers

Comment-entries

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Reference Page Term

Comment lines, coding form

Communications
communication environment

10.2 10-2 data division entries
input description

Section 10 message control system
messages and segments

10.4 10-4 output description
program execution methods
queues

11.6.1 11-6 sam pie program
11.6.2 11-10 See also communications statements.

3.1 3-1 Communications statements
ACCEPT MESSAGE COUNT statement

5.5.4 5-13 DISABLE statement
ENABLE statement

7.4.2 7-20 RESERVE statement
SEND statement

Table 1-1 1-2 See also communications.

3.1 3-1
Compile time switch

3.5 3-7 Compiler directing statements
3.6 3-9
3.7 3-11 Compiler directing verbs
3.4 3-5
3.8 3-12 Compiler search rules
3.2 3-3
3.7 3-11 Complex conditions
3.3 3-3

COMPUTE statement

2.5 2-13 Conditional
2.3 2-3 complex expressions
2.2 2-2 sim pie expressions
2.1 2-1 -~ statements
2.4 2-10
2.6 2-19 variables

Conditions
6.1.5 6-6 complex

13.1 13-1
simple

See sample
Constants, figurative

programs. COPY statement

2.5.2 2-17
COUNT phrase

2.5.1 2-16 Credit symbol (CR)
Fig. 2-3 2-14
2.5.3 2-18 CURRENCY SIGN IS clause
2.5.3 2-18

2.1 2-2
Currency symbol

Index 2

Reference Page •
2.5.1 2-16

11.2 11-2
11.6 11-5
11.6. l 11-6
11.1 11-1
11.4 11-3
11.6.2 11-10
11.3 11-2
11.5 11-4
11.12 11-18

11.7 11-12
11.8 11-13
11.9 11-14
11.10 11-14
11.11 11-16

12.1 12-1

7.3.2 7-16 • 7.8 7-67

13.2 13-2

7.2.2.2 7-9

7.5.7 7-40

7.2.2.2 7-9
7.2.2.1 7-6
7.3.1 7-15
Table 7-3 7-16
6.2.9 6-31

7.2.2.2 7-9
7.2.2.1 7-6

3.5 3-7

13.1 13-1

7.6.4.3 7-51

6.2.2.4 6-20

5.3.3 5-7 • 6.2.2.4 6-21

UP-8805

• Term

D

Data division
file description entry
level 77 entry
record description entry
sample program

Data division entries, communications

Data movement verbs

DATA RECORDS clause

Debit symbol (DB)

Debug
compile-time switch
DEBUG-ITEM register
debugging lines
object-time switch
sample program

• USE FOR DEBUGGING statement
WITH DEBUGGING MODE clause

DEBUG-ITEM

Debugging line reference, library

DECIMAL-POINT IS COMMA clause

Decimal point symbol

DELETE statement

DELIMITED phrase

DISABLE statement

DISPLAY statement

DIVIDE statement

•

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Reference Page Term

E

Edited fields
6.1 6-2 alphanumeric edited
6.3 6-34 numeric edited
6.2 6-11
6.4 6-35 Elements

coding
11.6 11-5 definition

general description
7.6 7-40

Ellipsis
6.1.4 6-5

ENABLE statement
6.2.2.4 6-20

Entry, data division
file description (FD)

12.l 12-1 level 77
12.3 12-2 record description
12.4 12-2 See also data division.
12.2 12-1
12.7 12-6 Environment, communications
12.6 12-3
12.5 12-3 Environment division

access methods
12.3 12-2 FILE CONTROL paragraph

file organization
13.3 13-3 1-0-CONTROL paragraph

OBJECT-COMPUTER paragraph
5.3.4 5-8 organization

sample program
6.2.2.4 6-18 SOURCE-COMPUTER paragraph

SPECIAL-NAMES paragraph
7.4.6 7-27 structures

7.6.4.3 7-51 Evaluation

11.8 11-13 Execution methods, communications

7.4.8 7-29 EXIT PROGRAM statement

7.5.6 7-38 EXIT statement

Exponentiation

Expressions
arithmetic
conditional
description

Index 3 ,

Reference Page

6.2.2.3 6-16
6.2.2.3 6-16

8.4.1 8-11
8.1.1 8-1
1.3.3 1-5

1.3.3 1-6

11.9 11-14

6.1 6-2
6.3 6-34
6.2 6-11

11.2 11-2

5.4 5-8
5.5 5-9
5.4 5-8
5.6 5-15
5.2 5-2
5.1 5-1
5.7 5-19
5.2 5-2
5.3 5-2
5.1 5-1

7.2.l 7-3

11.3 11-2

10.5 10-5

7.7.l 7-53

7.2.l 7-3

7.2.l 7-2
7.2.2 7-6
7.2 7-2

UP-8805

Term

F

Fields

Figurative constants

File
definition, sort/merge
description (FD)
organization, environment division
status key values

FILE-CONTROL paragraph
clauses
indexed files
phrases
relative files
sequential files

Files, environment division
indexed
relative
sequential

Fixed portion
description
overlayable segments
permanent segments

Floating symbol

Format
general description
language structure
procedure division
punctuation
See also sample programs.

G

GO TO statement

H

Header, procedure division

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Reference Page Term

See record Identification division
description organization/ structure
entry fields. sample program

3.5 3-7 Identifiers

IF statement
9.2 9-3
6.1 6-2 Imperative statements
5.4 5-8
Table 5-1 5-14

Implementor clause

5.5.4 5-13 Independent segments
5.5.3 5-11
5.5.4 5-13 Indexed files
5.5.2 5-10
5.5.l 5-10 Indexing

language structure
table handling

5.5.3 5-11
5.5.2 5-10
5.5.l 5-10

Input communications description (CD)

14.2 14-1 INSPECT statement
14.2.2 14-2
14.2.l 14-1 lnterprogram communication

CALL statement
6.2.2.4 6-22 CANCEL statement

EXIT PROGRAM statement
linkage section

1.3.1 1-5 procedure division header
3.6 3-9 sample program
7.1 7-1
1.3.3 1--:6 1-0-CONTROL paragraph

description
MULTIPLE FILE clause
RERUN clause
SAME AREA clause

1/0 verbs, procedure division

Item referencing, table
7.7.3 7-56

10.3 10-3

Index 4

Reference Page •
4.1 4-1
4.2 4-2

7.2.1 7-3

7.7.2 7-54

7.3.3 7-17
Table 7-4 7-17

5.3.1 5-3

14.3 14-3

5.5.3 5-11

3.6 3-9
8.2.2 8-8
8.4.3 8-13 • 8.5 8-20

11.6.1 11-6

7.6.2 7-43

10.2 10-2
10.4 10-4
10.5 10-5
10.1 10-1
10.3 10-3
10.6 10-5

5.6 5-15
5.6.3 5-18
5.6.l 5-15
5.6.2 5-17

7.4 7-18

8.2 8-7

•

UP-8805

• Term

J

JUSTIFIED clause

K

Key values, file status

•
L

LABEL clause

Language structure
See also COBOL language.

Level indicators, coding form

Level-numbers

Level 77 entry

Levels, processing

Library • coding
compiler search rules
COPY statement
debugging line reference
storage routine

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Reference Page Term

LINAGE clause
page advance control
page definition

6.2.6 6-23
description

Line counting

Lines

Linkage section, interprogram
communication

Literals

Logical operators

Table 5-1 5-14

Merge

MERGE statement

Messages, communications
control system
segments

6.1.1 6-3 Minus/plus sign symbols

M

3.6 3-9 Module overview, COBOL language

2.5.3 2-18
MOVE statement

description

1.3.3 1-5
operand combinations

2.5.3 2-18 Multidimensional tables

6.3 6-34 MULTIPLE FILE clause

1.2 1-2 MULTIPLY statement

13.4 13-3
13.2 13-2
13.l 13-1
13.3 13-3
13.5 13-3

Index 5

Reference Page

Fig. 6-3 6-10
Fig. 6-1 6-7
6.1.6 6-6

Fig. 6.2 6-9

See coding forms.

10.1 10-1

3.4 3-5

Table 7-2 7-10

See sort/merge.

9.3.2 9-8

11.1 11-1
11.4 11-3

6.2.2.4 6-20

1.2.l 1-3

7.6.l 7-41
Table 7-5 7-41

8.3 8-9

5.6.3 5-17

7.5.5 7-37

UP-8805

Term

N

Notations

Nucleus

Null set

Numbers, coding form

Numeric fields

Numeric literals

0

OBJECT-COMPUTER paragraph

Object time switch

OCCURS clause

OPEN statement

Operation, sort/merge

Operators
binary
unary

Organization, identification division

Output communications description (CD)

Overlayable fixed segments

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Reference Page Term

p

1.3 1-5 Page advance
counting line control

1.2.l 1-3 LINAGE clause control

1.2 1-2 Page definition, LINAGE clause

2.5.3 2-18 Paragraphs
description

6.2.2.2 6-15 See also environment division.
6.2.2.4 6-17

Parenthesis
7.2.l 7-3

PERFORM statement
description
flowcharts

restrictions

Permanent fixed segments

Phrases

PICTURE clause
alphabetic fields
alphanumeric edited fields
alphanumeric fields
character precedence chart
description

5.2 5-2 editing examples
numeric edited fields

12.2 12-1 numeric fields
symbol summary

8.1.2 8-3 Plus/minus sign symbols

7.4.l 7-18 POINTER phrase

9.1 9-1 Procedure branching verbs

Procedure division 7.2.l 7-3
arithmetic verbs 7.2.l 7-3 branching verbs

4.1 4-1 compiler directing verbs
data movement verbs

11.6.2 11-10 expressions
formats

14.2.2 14-2 header
input/output verbs
sample program
statement/ sentences

Procedure division header, interprogram
communication

Index 6

Reference Page •
Fig. 6-2 6-9
Fig. 6-3 6-10

Fig. 6-1 6-7

2.1 2-1

Table 7-2 7-10

7.7.5 7-58
Fig. 7-1 7-62
Fig. 7-2 7-64
Fig. 7-3 7-65
14.6 14-4

14.2.l 14-1

5.5.4 5-13 •
6.2.2.1 6-15
6.2.2.3 6-16
6.2.2.1 6-15
Table 6-3 6-25
6.2.2 6-14
Table 6-2 6-24
6.2.2.4 6-17
6.2.2.2 6-15
Table 6-1 6-23

6.2.2.4 6-20

7.6.4.4 7-52

7.7 7-53

7.5 7-32
7.7 7-53
7.8 7-67
7.6 7-40
7.2 7-2
7.1 7-1
10.3 10-3
7.4 7-18
7.9 7-68 • 7.3 7-15

10.3 10-3

UP-8805

• Term

Processing levels

Program
execution
organization

Program segment classification
description
segment number

Q

• Qualification

Queues

R

READ statement

RECEIVE statement

RECORD CONTAINS clause

Record description entry fields
alphabetic
alphanumeric
alphanumeric edited
description
numeric

• numeric edited

REDEFINES clause

Reference format

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Reference

Table 1-1

11.3
14.l

14.4
14.4.l

3.8

11.5

7.4.3

11.10

6.1.3

6.2.2.1

Page

1-2

11-2
14-1

14-2
14-3

3-12

11-4

7-21

11-14

6-5

6-15

Term

Relative files

RELEASE statement

RENAMES clause

RERUN clause

RESERVE statement

RETURN statement

REWRITE statement

ROUNDED phrase

Rules, COBOL

SAME AREA clause

SAME SORT AREA clause

Sample programs
COBOL language
communications
data division
debug
environment division
flowchart
identification division

s

6.2.2.1 6-15 interprogram communications
6.2.2.3 6-16 merge
6.2 6-11 procedure division
6.2.2.2 6-15 sort
6.2.2.4 6-17 table handling

6.2.l 6-12 Search rules, compiler

Fig. 2-2 2-14 SEARCH statement

Index 7

Reference Page

5.5.2 5-10

9.3.3 9-8

6.2.10 6-33

5.6.l 5-15

11.10 11-14

9.3.4 9-10

7.4.5 7-26

7.5.l 7-32

1.3 1-5

5.6.2 5-17

9.4 9-11

2.6 2-19
11.12 11-18
6.4 6-35
12.7 12-6
5.7 5-19
Fig. 2-1 2-10
4.2 4-2
10.6 10-6
9.6 9-13
7.9 7-68
9.5 9-12
8.5 8-20

13.2 13-2

8.4.3.3 8-16

UP-8805

Term

SEGMENT-LIM IT clause

Segmentation
fixed portion
independent segments
program organization
program segment classification
statement restrictions

Segments

SEND statement

Sending field

Separators

Sequential files

SET statement

SIGN clause

Simple conditions

SIZE ERROR phrase

SORT statement

Sort/merge
file definition
operation
SAME SORT AREA clause
sample merge program
sample sort program
See also sort/merge statements.

Sort/merge statements
MERGE statement
RELEASE statement
restrictions
RETURN statement
SORT statement
See also sort/merge.

SOURCE-COMPUTER paragraph

Special characters

SPECIAL-NAMES paragraph
alphabet-name clause
CURRENCY SIGN IS clause
DECIMAL-POINT IS COMMA clause
implementor clause

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Reference Page Term

14.4.2 14-3 Special register

Specification structure, COBOL
14.2 14-1
14.3 14-2 START statement
14.l 14-1
14.4 14-2 Statement restrictions
14.5 14-4 ALTER statement
14.6 14-4 PERFORM statement
14.7 14-4 sort/merge

11.4 11-3 Statements/ sentences
compiler directing

11.11 11-16 conditional
imperative

7.6.4.l 7-49
STOP statement

3.2 3-3
Storage routine, library

5.5.1 5-10
STRING statement

8.4.3.2 8-14
Subscripting

6.2.4 6-26 description
table handling

7.2.2.1 7-6

7.5.2 7-33
SUBTRACT statement

9.3.1 9-4
Symbols

arithmetic expressions
9.2 9-3 description
9.1 9-1
9.4 9-11 PICTURE clause
9.6 9-12
9.5 9-12 SYNCHRONIZED clause

9.3.2 9-8
9.3.3 9-8
14.7 14-4
9.3.4 9-10
9.3.1 9-4

5.2 5-2

1.3.3 1-6

5.3.2 5-5
5.3.3 5-7
5.3.4 5-8
5.3.1 5-3

Index 8

Reference Page •
12.3 12-2

1.2 1-2

7.4.7 7-27

14.5 14-4
14.6 14-4
14.7 14-4

7.3.2 7-16
7.3.1 7-15
7.3.3 7-17

7.4.10 7-31

13.5 13-3

7.6.3 7-47

3.7 3-11
8.2.1 8-7 • 8.4.2 8-12
8.5 8-20

7.5.4 7-36

Table 7-1 7-5
1.3 1-5
6.2.2.4 6-17
Table 6-1 6-23

6.2.5 6-27

•

UP-8805

• Term

T

Table handling
element coding
element definition
examples
indexing

item referencing
multidimensional tables
OCCURS clause
sample programs
SEARCH statement
SET statement
subscripting

' table definition
table lookup
USAGE IS INDEX clause

Table lookup

• coding specific elements
description
indexing
subscripting

TALLY I NG phrase

u

Unary operators

UNSTRING statement

USAGE clause

USAGE IS INDEX clause

USE FOR DEBUGGING statement

USE statement • .

SPERRY UNIVAC
FUNDAMENTALS OF 1974 ANSI COBOL

Reference Page Term

Valid statements
8.4.1 8-11 conditional
8.1.1 8-1 imperative
8.5 8-20
8.2.2 8-8 VALUE clause
8.4.3 8-13
8.2 8-7 Variables, conditional
8.3 8-9
8.1.2 8-3 Verbs, procedure division
8.5 8-20 arithmetic
8.4.3.3 8-16 branching
8.4.3.2 8-14 compiler directing
8.2.1 8-7 data movement
8.4.2 8-12 input/output
8.5 8-20
8.1 8-1
8.4 8-11
8.4.3.1 8-13

8.4.1 8-11
8.4 8-11
8.4.3 8-13
8.4.2 8-12

7.6.4.5 7-53

WITH DEBUGGING MODE clause

v

w

Words, COBOL language structure

WRITE statement

7.2.l 7-3

7.6.4 7-49

6.2.3 6-26

8.4.3.1 8-13 z
12.6 12-3

7.8.1 7-67
Z symbol

Zero suppression symbol

Index 9

Reference Page

Table 7-3
Table 7-4

6.2.8

6.2.9

7.5
7.7
7.8
7.6
7.4

12.5

3.3
1.3.3

7.4.4

6.2.2.4

6.2.2.4

7-16
7-17

6-30

6-31

7-32
7-53
7-67
7-40
7-18

12-3

3-4
1-5

7-23

6-18

6-19

---~ ------~------

•

•

•

I
I
I
I •1
I
I
I
I
I
I
I
I
I
I
I
I
I

Q) I
c:

gi I

·~I ul
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I .I
I
I
I
I
I

sr->Er-«¥1>= UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

•

•
--------------------------------------~---- ~---------

I
I
I

•l
I
I
I
I
I
I
I
I
I

•

SPE~Y+UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving

subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

• I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FOLD I --!

•
FOLD

111111 NO POSTAGE :

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATIN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

NECESSARY
IF MAILED

IN THE
UNITED STATES

•

·-

