
•

-·

•

Information Management
System 90 (I MS 90)
Applications

User Guide/
Programmer Reference

This Library Memo announces the release and availability of Updating Package B to "SPERRY UNIVAC Operating
System/3 (OS/3) Information Management System 90 (IMS 90) Applications User Guide/Programmer Reference",
UP-8614 Rev. 1.

Update B for release 7.1 makes several technical changes concerning the random GETUP function call, downline
load processing, batch processing, the ZZRSD and ZZHLD terminal commands, and the SWTCH transaction code.
These changes are applicable to software prior to release 7.1.

Copies of Updating Package B are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8614 Rev. 1-B. To receive the complete manual, order UP-8614 Rev. 1.

R;;-J I ;J,l'[:f BY'
,/,.-/ k-1{-. ,!..,) I

v UP32os rms c0Nu P75 11,,;; fA ~J', ~ 1":;
I

v
' -' ·; / .'):) Tf'r< 5 fi[·f: ,(;,I I j. J{t-::r:11 {'I{.: J '" -; i.,

J 1,' 7,';7

vUP. 3:c')'3

Mailing Lists
BZ, CZ and MZ

Mailing Lists 18, 18U, 19, 19U, 20, 20U, 21, 21U,
28U, 29U, 75, 75U, 76 and 76U

(Package B to UP-8614 Rev. 1, 24 pages plus Memo)

Library Memo for
UP-8614 Rev. 1-B

RELEASE DATE:

December, 1981

•

•

•

•

•

•
UD1 251 Rev.

Information Management
System 90 (IMS 90)
Applications

User Guide/Programmer
Reference

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating
System/3 (OS/3) Information Management System 90 (IMS 90) Applications User Guide/Programmer Reference",

UP-8614 Rev. 1.

Update A contains the following new or changed items for release 7.1:

• I RAM files are supported only when defined as MI RAM files.

• Hexadecimal and character values for contents of AUX-FUNCTION field in the output message header for

continuous output are changed.

• Special considerations must be made when using the input options or report address option in the
CONTINUOUS-OUTPUT-CODE field of the OMA .

• Screen formats can be displayed on the UTS 20 and on auxiliary devices .

• The UPSI byte can be used to determine edit table errors.

• The ZZOPN, ZZCLS, and ZZPCH terminal commands can be issued from the system console in single-thread

IMS90.

• In addition to cancelling the currently active transaction, the ZZCNC terminal command clears all output
queued to the source terminal.

• Three different status messages can be issued in response to the SWTCH transaction code: one for message
sent, one for message not sent, and one for message queued.

• Output from the ZST AT transaction can be sent to a tape cassette or diskette.

• The terminal status display has been changed.

• One new unrecoverable and two new recoverable ZST AT error messages are added.

• ZSTAT places a message in the OMA if it receives an unrecognized delivery notice.

Mailing Lists BZ,
CZ and MZ

Mailing Lists 18, 18U, 19, 19U, 20, 20U,
21, 21U, 28U, 29U, 75, 75U, 76 and 76U

(Package A to UP-8614 Rev. 1,
198 pages plus Memo)

Library Memo for
UP-8614 Rev. 1-A

September, 1981

• The IBM 3270 terminal is supported.

Other changes include expanded descriptions, clarifications, or corrections that apply to the software before the
current release.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requistioned by your local Sperry Univac representative. To receive only the
updating pacakage, order UP-8614 Rev. 1-A. To receive the complete manual, order UP-8614 Rev. 1.

•

•

•

•

•

•

Operating System/3 (OS/3)

Information Management

System 90 (IMS 90)
Applications

User Guide/Programmer
Reference

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3)
Information Management System 90 (IMS 90) Applications User Guide/Programmer Reference", UP-8614 Rev. 1.

This revision includes changes to program examples, IMS 90 internal tables, and new sections describing:

• File 1/0 functions;

• Cassette/diskette devices and additional auxiliary function byte settings in the OMA;

• Screen formatting services;

• The BUILD and REBUI LO function calls used to construct screen buffer or error screen formats;

• Three formats of the ZST AT transaction code used to display statistics about files, programs, transactions, and
terminals; and

• ZSTAT recoverable and unrecoverable error messages.

Additional copies may be ordered by your local Sperry Univac representative.

191:1smq:s151t"1'111t1
I

Mailing Lists
BZ, CZ and MZ

Mailing Lists 18, 18U, 19, 19U, 20, 20U, 21, 21U,
28U, 29U, 75, 75U, 76 and 76U

(Covers and 418 pages)

\ Ub"'V Memo

'----··.
!
!RELEASE DATE:

October, 1980

U01- -251 Rev, 3/73

•

•

•

~~-----~--------~-----~---- ------------

•

Information Management System 90 (IMS 90)

Applications

H UP-8614 Rev. 1

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC}, 555 Henderson Rd., King of Prussia, Pa., 19406.

©1980 - SPERRY CORPORATION
PRINTED IN U.S.A.

•

•

•

UP-8614 Rev. 1

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Preface 1

Contents 1 thru 4
5
6
7
8
8 thru 12

1 1
2 thru 5

2 1
2 thru 13
14
15 thru 20
21
22 thru 28
29
30 thru 41
42
43 thru 60
61
62 thru 73

3 1 thru 9
10
10a
11 thru 18
19 thru 21
22, 23
24, 25
26 thru 35
36
37
38
38a
39 thru 43
44
45 thru 48
49,50
51
52
53,54
55
56,57
58
59
60 thru 74
75
76 thru 79
80

*New pages **Deleted pages

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

PAGE STATUS SUMMARY

ISSUE:

RELEASE LEVEL:

Update B - UP-8614 Rev. 1

7.1 Forward

Update
Level Part/Section

Page Update
Number Level Part/Section

Orig. 81 thru 83 Orig.
84,85 A

B 86, 87 Orig.
88 A

Orig. 89 Orig.
90 A

Orig. 91 Orig.
A 92 A 6

Orig. 93 thru 95 Orig.
A 96 A
Orig. 97 thru 100 Orig.
A 101 A

102 thru 109 Orig.
A 110, 111 B
Orig. 112 A

112a A
A 113 B
Orig. 114 A
A 114a B 7

Orig. 115 B
A 116 A
Orig. 116a A
A 117,118 A Appendix A

Orig. 118a, 118b A
A 118c B Appendix B

Orig. 118d B**
A 119 A Appendix C

Orig. 120 thru 124 Orig.
125, 126 A

Orig. 126a A
A 127,128 A Appendix D

A 128a A
Orig. 129 thru 140 A Appendix E

A 140a thru 140i A
Orig. 140j B
A
Orig.

~41thru152 A
~ 52a thru 152e A

A p53, 154 A
Orig. Glossary

A 4 p thru 5 Orig.
Orig.
Orig. ~a A

A
Index

A ~.8 A

Orig. ~ thru 12 Orig.

A
Orig.
A

5 ~.2 Orig.
~ thru 6 A

Orig.
A
Orig.
B

17 B
~thru 11 A
p2, 13 Orig.
~4. 15 A

User Comment
Sheet

A
Orig.
A
Orig .

~6 Orig.

~7. '18 A
~Ba A pg A

A ~o B

PSS 1
Update B

Page
Number

20a
21,22
22a
23 thru 27
28
29 thru 32

1 thru 3
4
5 thru 13
14, 15
16 thru 18
18a
19 thru 21
22,23
24 thru 34
35

1 thru 9
10
11thru17

1, 2

1 thru 3

1 thru 7
8
9 thru 12

1 thru 6

1, 2
3,4
4a
5
6 thru 12

1thru13

1
2
3
4
5
6, 7
8
9 thru 12

Update
Level

B
A
A
A
Orig.
A

Orig.
A
Orig.
A
Orig.
Orig.
Orig.
A
Orig.
A

Orig.
B
Orig.

Orig.

Orig.

Orig.
A
Orig.

Orig.

Orig.
A
A
A
Orig.

Orig.

Orig.
A
Orig.
A
Orig.
A
Orig.
A

All the technical changes are denoted by an arrow r-J in the margin. A downward pointing arrow (t} next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+ } is found. A horizontal arrow r-J pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Preface 1

Preface

This document is one of a series describing the SPERRY UNIVAC Information Management
System 90 (IMS 90) for users of Operating System/3 (OS/3). An introduction to IMS 90,
UP-8816 (current version), provides an overview of IMS 90 software and its use. The
system support functions user guide/programmer reference, UP-8364 (current version), is
directed to systems analysts and IMS 90 administrators. It describes communications
network structuring, pre-online processing, and IMS 90 initiation, execution, and recovery
procedures. This applications user guide/programmer reference (UP-8614) is intended for
use with the systems support functions manual and is directed to IMS 90 application
programmers and terminal operators who must prepare and process user applications.
Subjects described are:

• Preparation of data definitions for use by the uniform inquiry update element
(UNIQUE) or user-written action programs

• Preparation of action programs in COBOL, RPG II, or basic assembly language (BAL)

• Preparation of edit tables for use with user-written action programs

• Terminal operation, including operation of the master terminal and user terminals

• Transaction processing via UNIQUE

• Batch transaction processing

IMS 90 users wishing to access a OMS 90 data base from action programs should read
the IMS 90/DMS 90 interface user guide/programmer reference, UP-8748 (current
version). Also available is the IMS 90 terminal user commands, UP-8741 (current version),
which is a pocket reference card.

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

PAGE STATUS SUMMARY

PREFACE

CONTENTS

1. INTRODUCTION

1.1.
1.1.1.
1 .1 .1 .1 .
1.1.1.2.
1.1.1.3.
1.1.2.
1.1.2.1.
1.1.2.2.
1.1.2.3.
1.1.2.4.
1.1.2.5.

1.2.

OVERVIEW
IMS 90 Operations

Pre-online Processing
Online Processing
Offline Processing

User Activities
Defining Data
Configuring IMS 90
Writing Action Programs
Using Uniform Inquiry Update Element (UNIQUE)
Operating Terminals

APPLICABILITY

2. DATA DEFINITION

2.1.
2.1.1.
2.1.2.

2.2.
2.2.1.
2.2.2 .

INTRODUCTION
Data Flow in IMS 90
Creating Data Definition Records

DEFINED FILE
Hierarchical Structure
Defined Records

Contents 1

Contents

1-1
1-2
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-4

1-5

2-1
2-2
2-5

2-5
2-6
2-7

UP-8614 Rev. 1

2.3.
2.3.1.
2.3.2.
2.3.2.1.
2.3.2.2.
2.3.2.3.
2.3.3.
2.3.4.
2.3.4.1.
2.3.5.
2.3.5.1.
2.3.5.2.
2.3.5.3.
2.3.5.4.
2.3.5.5.
2.3.5.6.
2.3.5.7.
2.3.5.8.
2.3.5.9.
2.3.5.10.
2.3.5.11.
2.3.5.12.
2.3.6.
2.3.6.1.
2.3.6.2.
2.3.6.3.
2.3.6.4.
2.3.6.5.
2.3.6.6.
2.3.7.
2.3.7.1.
2.3.7.2.
2.3.7.3.
2.3.7.4.
2.3.7.5.
2.3.7.6.
2.3.8.
2.3.8.1.
2.3.8.2.
2.3.8.3.
2.3.9.
2.3.9.1.
2.3.9.2.
2.3.9.3.
2.3.9.4.
2.3.10.
2.3.10.1.
2.3.10.2.

2.4.
2.4.1.
2.4.2.
2.4.3.

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

DATA DEFINITION LANGUAGE
Format Presentation and Coding Rules
Data Definition Structure

Identification Division
Data Division
Definition Division

Logical Data Record Description
Defined File Definition

DEFINED FILE Statement
Defined Record Definition

DEFINED RECORD Statement
FROM Statement
FROM CONTROL BREAK Statement
FROM REPEATING GROUP Statement
TYPE Statement
PARENT Statement
PREFIX Statement
POINTER Statement
FOLLOWS Statement
FILL KEY Statement
ALLOW ADD AND DELETE Statement
ALSO Statement

Item Definition
IDENTIFIER Statement
ITEM Statement
HIDDEN Option
MUST ADD Option
ALLOW CHANGE Option
VALUE Statement

Supplement Definition
SUPPLEMENT Statement
FROM Statement
FROM REPEATING GROUP Statement
POINTER Statement
FILL KEY Statement
ROLE IN UPDATE Statement

Subrecord Definition
Subrecord Statement
OF Statement
ALLOW ADD AND DELETE Statement

Subitem Definition
ITEM Statement
MUST ADD Option
ALLOW CHANGE Option
VALUE Statement

Subfile Definition
SUBFILE Statement
CONTAINS Statement

DATA DEFINITION EXAMPLES
Example of Simple Defined File
Example of Subfile
Example of Supplements in Defined File

Contents 2

2-11 e 2-11
2-14
2-14
2-15
2-15
2-15
2-17
2-17
2-20
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-36
2-38
2-38
2-39
2-39
2-40
2-41
2-42
2-44
2-44
2-45
2-45
2-46
2-46
2-47
2-48
2-48
2-49
2-49
2-50

2-51
2-51
2-54
2-56

e

UP-8614 Rev. 1

2.4.4.
2.4.4.1.
2.4.4.2.
2.4.4.3.
2.4.4.4.

2.5.
2.5.1.
2.5.2.
2.5.3.
2.5.4.

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Examples of Hierarchical Records in Defined Files
Hierarchical Defined Records Using Several Record Types as Source
Hierarchical Defined Records Using Repeating Group Item as Source
Hierarchical Defined Records Using Two ISAM Files as Source
Defined File Resulting from Different Logical File Sources

EXECUTING DATA DEFINITION PROCESSOR
Data Definition Processor Options
Execution Run Streams
Data Definition Processor Output Listing
Error Processing by Data Definition Processor

3. USER-WRITTEN ACTION PROGRAMS

3.1. DESCRIPTION
3.1.1. Action Program Environment
3.1.2. Transaction Structures
3.1.2.1. Simple Transaction
3.1 .2.2. External Succession
3.1.2.3. Immediate Internal Succession
3.1.2.4. Delayed Internal Succession
3.1 .2.5. Combination Structures
3.1.3. Action Program Reusability
3.1.4. Device Independent Control Expressions (DICE)

3,2. COBOL ACTION PROGRAMS
3.2.1. COBOL Action Program Sharability
3.2.2. COBOL Language Restrictions
3.2.3. Linkage Section
3.2.4. Procedure Division

3.3. RPG II ACTION PROGRAMS
3.3.1. IMS 90/RPG II Interface Areas
3.3.1.1. Input Message Area (IMA)
3.3.1.2. Program Information Block (PIB)
3.3.1 .3. Output Message Area (OMA)
3.3.1.4. Continuity Data Area (CDA)
3.3.2. User Logical Files and IMS 90 Defined Files
3.3.3. Specifications Forms for RPG II Action Programs
3.3.3.1. Control Card Specifications Form
3.3.3.2. File Description Specifications Form
3.3.3.3. Input Format Specifications Form
3.3.3.4. Calculation Specifications Form
3.3.3.5. Output Format Specifications Form
3.3.4. RPG II Action Program Restrictions

3.4. BAL ACTION PROGRAMS
3.4.1. Linkage Conventions
3.4.2. Function Requests
3.4.3. Reentrant Programming Considerations

3.5. USER-WRITTEN RESIDENT SUBPROGRAMS
3.5.1. Subprogram Reusability
3.5.2. COBOL Action Program Interface
3.5.3. BAL Action Program Interface

Contents 3

2-59
2-59
2-59
2-62
2-63

2-65
2-65
2-67
2-67
2-70

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-9
3-10
3-10

3-11
3-11
3-12
3-14
3-14

3-15
3-16
3-16
3-17
3-18
3-21
3-21
3-23
3-23
3-24
3-24
3-26
3-26
3-26

3-26
3-26
3-27
3-27

3-28
3-29
3-29
3-30

UP-8614 Rev. 1

3.6.
3.6.1.
3.6.1.1.
3.6.1.2.
3.6.1 .3.
3.6.1.4.
3.6.1 .5.
3.6.1 .6.
3.6.2.
3.6.3.
3.6.4.
3.6.5.
3.6.6.

3.7.

3.8.
3.8.1.
3.8.2.
3.8.2.1.
3.8.2.1.1.
3.8.2.1.2.
3.8.2.1 .3.
3.8.2.1.4.
3.8.2.2.
3.8.2.2.1.
3.8.2.2.2.
3.8.2.2.3.
3.8.3.
3.8.3.1.
3.8.3.1.1.
3.8.3.1.2.
3.8.3.1 .3.
3.8.3.1.4.
3.8.3.2.
3.8.3.2.1.
3.8.3.2.2.
3.8.3.2.3.
3.8.4.
3.8.4.1.
3.8.4.2.
3.8.5.
3.8.5.1.
3.8.5.2.
3.8.5.2.1.
3.8.5.2.2.
3.8.5.2.3.
3.8.5.2.4.
3.8.5.3.
3.8.5.3.1.
3.8.5.3.2.

t
3.8.5.3.3.

ACTIVATION RECORD

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Program Information Block (PIB)
STATUS-CODE
DETAILED-STATUS-CODE
SUCCESSOR-ID
TERMINATION-INDICATOR
LOCK-ROLLBACK-INDICATOR
Additional PIB Fields

Output Message Area (OMA)
Input Message Area (IMA)
Work Area (WA)
Continuity Data Area (CDA)
Defined Record Area (ORA)

LINK EDITING ACTION PROGRAMS

FILE PROCESSING
Formats and Rules for File 1/0 Functions

Indexed Files
Random Functions for Indexed Files

GET and GETUP Functions
PUT Function
INSERT Function
DELETE Function

Sequential Functions for Indexed Files
SETL Function
GET Function
ESETL Function

Relative Files
Random Functions for Relative Files

GET and GETUP Functions
PUT Function
INSERT Function
DELETE Function

Sequential Functions for Relative Files
SETL Function
GET Function
ESETL Function

Sequential Files
Sequential Input GET Function
Sequential Output PUT Function

Defined Record Management
Defined Record Management Returns to Action Program
Random File 1/0 Functions

GET and GETUP Functions
PUT Function
DELETE Function
INSERT Function

Sequential File 1/0 Functions
SETL Function
GET Function
ESETL Function

Contents 4

3-30
3-31
3-34
3-35
3-37
3-37
3-39
3-40
3-41
3-45
3-47
3-47
3-48

3-48

3-49
3-50
3-51
3-51
3-52
3-53
3-53
3-54
3-55
3-55 • 3-56
3-57
3-57
3-58
3-58
3-59
3-59
3-60
3-61
3-61
3-62
3-63
3-63
3-64
3-64
3-65
3-66
3-68
3-68
3-68
3-69
3-69
3-70
3-70
3-71
3-72 e

UP-8614 Rev. 1

• 3.8.6.
3.8.6.1.
3.8.6.2.
3.8.6.3.
3.8.7.
3.8.7.1.
3.8.7.2.
3.8.7.3.
3.8.8.
3.8.8.1.
3.8.8.2.
3.8.8.3.
3.8.8.4.
3.8.8.5.
3.8.8.6.
3.8.9.

3.9.
3.9.1.
3.9.2.

3.10.
3.10.1.
3.10.1.1.
3.10.1.2.

• 3.10.1.3.
3.10.1.4.
3.10.2.
3.10.3.

3.11.

3.12.
3.12.1.
3.12.2.
3.12.3.

3.13.
3.13.1.
3.13.1.1.
3.13.1.2.

3.14.
3.14.1.
3.14.2.
3.14.2.1.
3.14.2.2.
3.14.3.

3.15.
3.15.1 .

• 3.15.2.
3.15.3.
3.15.4.
3.15.5.

Online File Recovery
File 1/0 Error Returns
Prefix Area Format

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

COBOL Action Program Error Messages
Logical Record Lock Facility

Lock for Update
Lock for Transaction
UNLOCK Function

General File Processing Considerations
Opening and Closing of Files
Serial Use of File Descriptors
Dynamic Allocation of 1/0 Areas
File Sharing
Work and Record Areas for DAM File Access
Test Mode

Common Storage Area Files

IMPLICIT AND EXPLICIT MESSAGE OUTPUT
Transmitting Messages via SEND Function
Returns from SEND Function

PRINT TRANSACTIONS USING CONTINUOUS OUTPUT
Generating Continuous Output

Output Message Header Fields for Continuous Output
Terminating Print Transactions
Delivery Notice Scheduling
Recovery Considerations with Delivery Notice Scheduling

Output-for-Input Queueing via the SEND Function
Addressing a Screen Bypass Device

DISCONNECTING A LINE FROM AN ACTION PROGRAM

SNAPSHOT DUMP PROCESSING
Voluntary and Abnormal Termination Snaps
Call Snaps
Edited Directory for Snapshot Dumps

UTS 400 DOWNLINE LOAD CAPABILITY
User-written Downline Load Action Programs

Downline Load Initialization
Downline Load Processing

SCREEN FORMATIING SERVICES
How IMS 90 Handles Screen Formatted Messages

Contents 5
Update A

3-72
3-73
3-74
3-76
3-76
3-76
3-77
3-78
3-79
3-79
3-79
3-79
3-80
3-80
3-81
3-81

3-82
3-82
3-83

3-85
3-86
3-86
3-92
3-93
3-94
3-98
3-100

3-100

3-100
3-101
3-101
3-103

3-105
3-105
3-109
3-110

3-111
3-112a

Processing Screen Formatted Messages with COBOL and BAL Action Programs 3-113
Building a Screen Buffer (BUILD) 3-116a
Creating an Error Formatted Screen (REBUILD) 3-117

Processing Screen Formatted Messages in RPG II Action Programs 3-118a

SAMPLE COBOL ACTION PROGRAMS 3-119
Sample COBOL Program Using Previously Coded DICE Sequences 3-119
Sample COBOL Programs Performing Dialog Transaction 3-122
Continuous Output Example Using Delivery Notice Scheduling 3-128
Output-for-Input Queueing Example 3-137
Sample COBOL Program Using Screen Format Services 3-140 ~

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

3.16. SAMPLE RPG II ACTION PROGRAMS
3.16.1. ACT1 Discussion
3.16.2. ACT2 Discussion
3.16.3. Screen Formatting Example

3.17. SAMPLE BAL ACTION PROGRAM

4. GENERATING EDIT TABLES

4.1. PURPOSE

4.2. INPUT TO THE EDIT TABLE GENERATOR
4.2.1. Coding Rules
4.2.2. Input Parameters

4.3. EXECUTING EDIT.TABLE GENERATOR
4.3.1. Sample Execution Run Stream
4.3.2. Error Processing

4.4. ENTERING INPUT MESSAGES FROM TERMINAL

4.5. SAMPLE APPLICATION

5. TERMINAL OPERATION

5.1. TERMINAL 1/0 MESSAGE PROCESSING
5.1.1. Initiating Online Processing
5.1.2. Transmitting Messages from Display and Hard Copy Devices
5.1.2.1. Transmitting DICE Sequences from Hard Copy Devices
5.1.2.2. Handling Multiline Terminal Messages
5.1.3. Initiating a Transaction
5.1.4. Solicited and Unsolicited Output
5.1.5. Function Keys
5.1.6. Automatic Status Messages

5.2. TERMINAL COMMANDS
5.2.1. Standard Terminal Commands
5.2.1.1. ZZRSD (Resend)
5.2.1.2. ZZHLD (Hold)
5.2.1 .3. ZZRDY (Ready)
5.2.1.4. ZZTMD (Test Mode)
5.2.1.5. ZZNRM (Normal Mode)
5.2.1.6. ZZCNC (Cancel)
5.2.1 .7. ZZMCH (Master Terminal Change)
5.2.2. Master Terminal Commands
5.2.2.1. ZZUP (Terminal Up)
5.2.2.2. ZZDWN (Terminal Down)
5.2.2.3. ZZTST (Test Terminal)
5.2.2.4. ZZTCT (Terminal Control Table Status)
5.2.2.5. ZZAL T (Alternate Terminal Designation)
5.2.2.6. ZZCLS (Close File)
5.2.2.7. ZZOPN (Open File)
5.2.2.8. ZZBTH (Batch)

Contents 6

3-141 • 3-141
3-147
3-152

3-152e

4-1

4-1
4-1
4-2

4-5
4-5
4-6

4-8

4-9

• 5-1
5-1
5-2
5-2
5-3
5-3
5-4
5-5
5-5

5-6
5-7
5-7
5-7
5-7

5-7
5-8
5-8
5-8
5-9
5-9
5-10
5-10
5-11
5-11 • 5-13
5-14
5-15

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5.2.2.9. ZZSHD (Shutdown)
5.2.2.10. UHLT (Halt)
5.2.2.11. UPCH (Program Change)

5.3. IMS 90 TRANSACTION CODES
5.3.1. SWTCH (Terminal-to-Terminal Communication)
5.3.2. DLMSG (Displaying the Last Effective Output Message)
5.3.3. DLOAD (Downline Loading a UTS 400 Program)
5.3.3.1. Downline Load to Main Storage
5.3.3.2. Downline Load to Auxiliary Storage Device
5.3.4. ZSTAT (Displaying Statistical Information)
5.3.4.1. Controlling the Terminal
5.3.4.2. ZST AT Error Messages

5.4. GLOBAL NETWORK TERMINAL COMMANDS

6. TRANSACTION PROCESSING VIA UNIQUE

6.1. UNIQUE CONCEPT
6.1.1. UNIQUE Dialog
6.1.2. Defined Files Accessed by UNIQUE

6.2. UNIQUE COMMANDS
6.2.1. OPEN
6.2.2. CLOSE
6.2.3. DISPLAY
6.2.4. NEXT
6.2.5. DELETE
6.2.6. OK
6.2.7. CANCEL
6.2.8. ADD
6.2.8.1. Display Format
6.2.8.2. Hard Copy Format
6.2.9. CHANGE
6.2.9.1. Display Format
6.2.9.2. Hard Copy Format
6.2.10. LIST
6.2.11. MORE
6.2.12. DETAIL
6.2.13. SHOW

7. BATCH PROCESSING OF TRANSACTIONS

7.1. PURPOSE AND USES OF THE BATCH TRANSACTION PROCESSOR

7.2. PROCESSING AND OUTPUT

7.3. CONTROLLING BATCH TRANSACTION PROCESSING
7.3.1. Effect of IMS 90 Configuration Options
7.3.2 . IMS 90 Control Streams for Batch Processing
7.3.2.1: Assigning Source Module Input Files
7.3.2.2. Assigning Print Files to Batch Pseudoterminals

Contents 7
Update A

5-15
5-15
5-16

5-17
5-18
5-20
5-20a
5-21
5-21
5-22
5-29
5-30

5-31

6-1
6-1
6-3

6-4
6-5
6-7
6-7
6-10
6-11
6-12
6-13
6-14
6-14
6-20
6-22
6-22
6-24
6-25
6-31
6-33
6-34

7-1

7-1

7-5
7-5
7-6
7-6
7-7

~

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7.3.2.3. Invoking and Controlling the Batch Processor (PARAM Statements)
7.3.2.4. Embedding Source Data in the Control Stream
7.3.2.5. Sample Control Stream

7.4. PREPARING TRANSACTION INPUT FOR BATCH PROCESSOR
7.4.1. Input Message Coding
7.4.2. Handling DICE Characters

7.5. CONTROLLING BATCH PROCESSING IN OFFLINE MODE

7.6. CONTROLLING BATCH PROCESSING IN ONLINE MODE
7.6.1. ZZBTH Master Terminal Command
7.6.2. Initiating Online Batch Processing
7.6.3. Tracking Progress of Batch Processing
7.6.4. Resuming Batch Processing Once Terminated
7.6.5. Repetitive Use of Batch Mode

7.7. CONTINUOUS OUTPUT CONSIDERATIONS

7.8. BATCH PROCESSOR DIAGNOSTIC MESSAGES

7.9. RECOVERY CONSIDERATIONS

APPENDIXES

A. ·STATEMENT CONVENTIONS

B. UNIQUE LANGUAGE ELEMENTS

c. SAMPLE IMS 90 APPLICATION

C.1. PREPARING AN RPG II APPLICATION

C.2. ICAM NETWORK GENERATION

C.3. IMS 90 CONFIGURATION

C.4. COMPILING AND LINKING THE RPG II ACTION PROGRAM

C.5. IMS 90 EXECUTION

C.6. EXECUTING THE RPG II ACTION PROGRAM

D. IMS 90 INTERNAL TABLES

Contents 8

7-7 • 7-8
7-8

7-10
7-10
7-11

7-11

7-12
7-13
7-14
7-15
7-15
7-15

7-15

7-15

7-16

•
C-1

C-1

C-2

C-4

C-11

C-12

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

E. DEVICE INDEPENDENT CONTROL EXPRESSIONS

E.1. GENERAL

E.2. USING DICE TO FORMAT MESSAGES
E.2.1. Format of DICE Sequences
E.2.2. DICE Macroinstructions
E.2.3. DICE Code Generation
E.2.4. Interpretation of DICE

GLOSSARY

INDEX

USER COMMENT SHEET

FIGURES

2-1. Data Flow Between Action Programs and User Data Files
2-2. Flow of Defined Records to Action Programs via IMS 90
2-3. Data Flow Between Action Programs and Disk Storage
2-4. Data Definition Processing
2-5. Hierarchical Structure of a Defined File
2-6. Parent/Child Relationships in a Defined File
2-7. Fraternal Relationships in a Defined File
2-8. Defined Record Identifier Redefined from User Logical Record
2-9. Terminal Display of Defined Record Identifier as Column Header
2-10. Defined Record Identifiers in a Simple Defined File
2-11. Terminal Display of Column Headers and Data Items
2-12. Parent/Child Defined Record Identifiers
2-13. Terminal Displays of Column Headers and Data Items for Parent and Child Records

2-14. Overall Format of the Data Definition Structure
2-15. Logical Record Description Formats
2-16. Consolidated Format of Defined File Definition
2-17. Defined Record Definition Format
2-18. Item Definition Format
2-19. Supplement Definition Format
2-20. Subrecord Definition Format
2-21. Subitem Definition Format
2-22. Subfile Definition Format
2-23. Excerpt from a Sample Indexed State File (ST-FILE)
2-24. Defined File STATES
2-25. Subfile Definition Restricting Access to a Defined File
2-26. Indexed File with Two Logical Records for Each City (Cl-FILE)

2-27. Defined File CITIES
2-28. ST-CITY Indexed File with Two Record Types
2-29. Data Definition for the Defined File BIGCITY
2-30. STATE-RG Indexed File Containing a Repeating Group Item
2-31. BIGCITY Data Definition Derived from a Repeating Group Item

2-32. Derivation of BIGCITY Defined File from Two Distinct Files Using Pointers

Contents 9
Update A

E-1

E-1
E-4
E-4a
E-5
E-11

2-2
2-3
2-4
2-5
2-6
2-7
2-7
2-8
2-8
2-9
2-9
2-10
2-11
2-14
2-16
2-18
2-20
2-31
2-38
2-44
2-46
2-49
2-51
2-52
2-54
2-56
2-57
2-60
2-60
2-61
2-61
2-62

~

~

~

+

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Contents 10
Update A

2-33. Defined Records from the BIGCITY File as Delivered to Action Programs 2-63
2-34. Defined Records from the BIGCITY File as Listed at the Terminal by UNIQUE 2-64
2-35. Description of STATE-RECORD and CITY-RECORD in COBOL Action Program 2-64
2-36. Description of STATE-RECORD and CITY-RECORD in BAL Action Program 2-65
2-37. Execution of the Data Definition Processor (DT3DF) 2-67
2-38. Complete Data Definition Processor Output Listing 2-68
2-39. Last Page of Data Definition Processor Listing Showing COBOL Description of a Defined File

and a Subfile 2-70
2-40. Last Page of Data Definition Processor Listing from Unsuccessful Run 2-73

3-1. Action Program Environment 3-2
3-2. Simple Transaction 3-4
3-3. Dialog Transaction, External Succession 3-5
3-4. Immediate Internal Succession 3-7
3-5. Delayed Internal Succession 3-8
3-6. Dynamic Transaction Structure 3-9
3-7. Message Switching Program Specifications 3-19
3-8. COBOL and American National Standard 1974 COBOL Format for Program Information

Block (PIB) 3-32
3-9. BAL Format for PIB (ZA#DPIB DSECT) 3-33
3-10. COBOL and American National Standard 1974 COBOL Format for OMA Control Header 3-43
3-11. BAL Format for OMA Control Header (ZA#OMH DSECT) 3-43
3-12. COBOL and American National Standard 1974 COBOL Format for IMA Control Header 3-46
3-13. BAL Format for IMA Control Header (ZA#IMH DSECT) 3-46
3-14. Format of Prefix Area of Records in the Audit File (Online Recovery) 3-74
3-15. Action Program Interface with Cassette/Diskette 3-89
3-16. Portion of ICAM TCS DSECT in BAL Action Program Showing Delivery Notification Error Codes 3-97
3-17. Single-thread IMS 90 Activation Record Layout 3-102
3-18. Multithread IMS 90 Activation Record Layout 3-103
3-19. Portion of Snapshot Dump with Edited Directory 3-104
3-19A. Output Screen Format with Display Constants and Variable Data 3-112
3-19B. Input Screen Format with Display Constants and Changed Input Fields 3-112
3-20. Processing Screen Formatted Messages with COBOL and BAL Action Programs 3-114
3-20A. Processing Screen Formatted Messages with RPG II Action Programs 3-118b
3-20B. Snapshot Dump with PIB Status Code 01 (Screen Format Not Found) 3-118c
3-21. Sample Transaction Displaying Customer Record 3-119
3-22. Sample COBOL Action Program DISP 3-120
3-23. Example of DICE Sequences Filed in a COPY Library 3-122
3-24. Sample Dialog Transaction with Option Taken 3-123
3-25. Sample Dialog Transaction with Option Not Taken 3-124
3-26. Sample Dialog Transaction with Error Message 3-124
3-27. Sample COBOL Action Program ACT1 3-125
3-28. Sample COBOL Action Program ACT2 3-127
3-29. Sample COBOL Action Program Performing Continuous Output 3-130
3-30. Sample COBOL Action Program, Directing Print Transaction at Another Terminal 3-139
3-31. Sample COBOL Program Using Screen Formats 3-140a
3-32. ACTl Control Card and File Description Specifications Forms 3-142
3-33. ACT1 Input Format Specifications Form 3-143
3-34. ACT1 Calculation Specifications Form 3-143
3-35. ACT1 Output Format Specifications Form 3-145
3-36. ACT2 Control Card and File Description Specifications Forms 3-148
3-37. ACT2 Input Format Specifications Form 3-149
3-38. ACT2 Calculation Specifications Form 3-149

•

•

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

3-39. ACT2 Output Format Specifications Form
3-39A. EMPINQ, Control Card and File Description Specifications Form
3-39B. EMPINQ, Input Format Specifications Form
3-39C. EMPINQ, Calculation Specifications Form
3-39D. EMPINQ, Output Format Specifications Form
3-39E. Error Screen Format
3-40. Example of Simple Inquiry Transaction
3-41. Sample BAL Action Program

4-1. Sample Execution of Edit Table Generator
4-2. Sample Input to Edit Table Generator

5-1. Sample File Status Display
5-2. Sample Program Status Display
5-3. Sample Transaction Status Display
5-4. Sample Terminal Status Display
5-5. Sample ZSTAT HELP Output Screen Display, Page 1
5-6. Sample ZSTAT HELP Output Screen Display, Page 2
5-7. ZSTAT Menu Output Screen
5-8. Sample Menu Input Screen

6-1. Partial Listing of STATES File
6-2. Partial Listing of TOWNS File

7-1 . Example of Output Listed by Batch Transaction Processor

Contents 11
Update A

3-150
3-152a
3-152b
3-152b
3-152c
3-152d
3-152e
3-153

4-5
4-9

5-23
5-24
5-25
5-26
5-26
5-27
5-27
5-29

6-3
6-4

7-3
7-2. Sample IMS 90 Execution Run Stream for Online Batch Processing in a Multithread System 7-9
7-3. Sample UNIQUE Dialog Transaction Prepared as Input to Batch Transaction Processor 7-10

C-1. ICAM Network Generation for RPG II Action Program, LSTLIM C-2
C-2. IMS 90 Configuration for RPG II Action Program, LSTLIM C-3
C-3. Compile and Link for RPG II Action Program, LSTLIM C-4
C-4. LSTLIM Control Card and File Description Specifications Forms C-5
C-5. LSTLIM File Extension Specifications Form C-6
C-6. LSTLIM Input Format Specifications Form C-6
C-7. LSTLIM Calculation Specifications Form C-8
C-8. LSTLIM Output Format Specifications Form C-9
C-9. Execution of Configured IMS 90 C-11
C-10. Sample Screen Displays of Simple Transaction Requesting Records from STOCKS File C-12

D-1. Single-thread Thread Control Block (THCB) D-2
D-2. Single-thread and Multithread Terminal Control Table (TCT) D-4
D-3. Multithread Thread Control Block (THCB) D-6

TABLES

2-1. Data Definition Reserved Words 2-13
2-2. Compilation Time Diagnostics Unique to the IMS 90 Data Definition Processor 2-71

3-1. Summary of Required Entries for File Description Specifications Form 3-17
3-2 . File Type Specifications for Creating, Moving, and Updating the CDA 3-21

3-3. Summary of File Organizations, Access Methods, and File Types Used by RPG II
Action Programs 3-22

3-4. Allowable RPG II File Description Specifications for ISAM, IRAM, MIRAM, DAM,
and Defined Files 3-22

t

+

....

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

3-5. Allowable RPG II File Description Specifications for SAM Output Files
3-6. RPG II Control Card Specifications for RPG II Action Programs
3-7. Restricted RPG II Langauge Features
3-8. Detailed Status Codes for Invalid Requests
3-9. Summary of Action Program Termination Types
3-10. Summary of Files Supported by IMS 90 File Management
3-11. Summary of File 1/0 Function CALL Statements
3-12. SETL Parameter Choices for Indexed Files
3-13. SETL Parameter Choices for Relative Files
3-14. File Rollback
3-15. Content of Prefix Area for Records in the Audit File (Online Recovery)
3-16. Settings for Auxiliary Function Byte of Output Message Header
3-17. User Message Text for Searching Cassette/Diskette
3-18. User Message Text for Search and Positioning
3-19. Output Delivery Notice Status Codes

3-20. UNISCOPE and UTS 400 Auxiliary Device Condition Codes
3-21. Rejected Load Error Byte Definition
3-22 . Screen Format Services Support of Auxiliary Devices

4-1. Edit Table Diagnostic Messages
4-2. Description of Sample Input to Edit Table Generator

5-1. Unsolicited Output Discipline
5-2. IMS 90 Terminal Commands
5-3. ZUKLOD Action Program Messages
5-4. Responses to Interruptions of ZSTAT
5-5. ZSTAT Recoverable Error Messages
5-6. ZSTAT Unrecoverable Error Messages

7-1. Batch Transaction Processor (BTP) Diagnostic Messages

E-1. DICE Input/Output Commands, Codes, and Device Interpretation
E-2. DICE Primary Devices
E-3. DICE Usage for Auxiliary Devices

Contents 12
Update A

3-23
3-24
3-25
3-35

3-38
3-49
3-50
3-56
3-62
3-73
3-75
3-87
3-91
3-92
3-95
3-98
3-108
3-112

4-7
4-10

5-4
5-6
5-21
5-29
5-30
5-31

7-16

E-7
E-11
E-12

•

•

•

•

•

•

UP-8614 Rev. 1

1.1. OVERVIEW

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

1-1
Update A

1. Introduction

The SPERRY UNIVAC Information Management System 90 (IMS 90) is an interactive,
transaction-oriented file management system. It is interactive because it operates on the
principle that a question-and-answer dialog is maintained between the terminal operator
and IMS 90.

The basic unit of work in IMS 90 is an action. An input message, the processing of it by
one or more action programs, and at least one output message define an action.
Accordingly, a sequence of one or more related actions defines a transaction. IMS 90 is
transaction-oriented because all processing is triggered by an input message or question
that requires at least one output message or answer.

To process transactions, Sperry Univac supplies a set of action programs called the
uniform inquiry update element (UNIQUE), activated by commands from remote terminals,
as a component of IMS 90. For convenience in processing messages, you can either
employ the IMS 90 UNIQUE action programs or write your own action programs in
COBOL, report program generator II (RPG II), or basic assembly language (BAL).

IMS 90 manages user logical and defined files. User logical files are collections of logical
records created on physical devices and accessed via the standard access methods (DAM,
MIRAM, ISAM, or SAM. To access IRAM files, you must define them as MIRAM files at
configuration time.) In contrast, defined files are collections of defined records that the
defined record management component of IMS 90 composes from one or more logical disk
records according to a user-supplied data definition. You can also protect defined files by
assigning passwords. Built into the IMS 90 modular components are data verification and
protection procedures, and scheduling and queueing procedures. IMS 90 file access
techniques are compatible with existing programming and file structures. IMS 90 also
allows you to access data base management system 90 (OMS 90) data bases.

The interactive transaction processing capabilities of IMS 90 rely on its
communications/data management support. IMS 90 uses the SPERRY UNIVAC Integrated
Communications Access Method (ICAM) Transaction Control Interface (TCI) to support
terminal communications. Refer to the IMS 90 system support functions user
guide/programmer reference, UP-8364 (current version) for information about setting up a
communications interface.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

1-2

IMS 90 provides a terminal command repertoire to assist terminal operators in using
remote terminals. A master terminal command repertoire, also provided by IMS 90,
enables the master terminal operator to control terminals assigned to IMS 90 and monitor
the system.

When inquiries or updates to files are initiated from remote terminals, IMS 90 components
such as action scheduling, file management, and internal message control facilitate rapid
processing. Application, administration, and operation of the IMS 90 transaction
processing system are performed during pre-online, online, and offline processing by IMS
90 operations and user activities.

1.1 .1. IMS 90 Operations

1 .1 .1 .1 . Pre-online Processing

IMS 90 pre-online processing employs the IMS 90 utilities and processors that prepare
and tailor the system for processing transactions online. IMS 90 pre-online processing
includes:

• initialization of the named record file via the NAMEREC utility;

• definition of passwords via the same NAMEREC file utility;

• processing of user data definitions by the data definition processor;

• configuration of the online IMS 90 system from user-specified parameters; and

• generation of edit tables.

1.1.1.2. Online Processing

IMS 90 online processing employs components that control the interactive processing of
transactions.

Online processing includes:

• system startup and shutdown procedures;

• internal message control including terminal control functions;

• scheduling and loading of UNIQUE or user-written action programs;

• IMS 90 and user file management; and

• activation record control.

•

•

•

UP-8614 Rev. 1

• 1.1.1 .3. Offline Processing

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

1-3

IMS 90 offline processing handles the recovery of user files left damaged or in an
inconsistent state. It includes:

• the offline recovery utility (ZC#TRC); and

• the tape copy routine (ZC#TCP).

A more detailed description of the IMS 90 components and their roles in pre-online,
online, and offline processing is provided in the IMS 90 system support functions user
guide/programmer reference, UP-8364 (current version). System preparation functions,
startup/shutdown procedures, and recovery processing are also described in UP-8364.
Applications preparation and processing, including action programming, data definition,
edit table generation, and terminal operation, are described in this document.

1.1.2. User Activities

The most important activities you perform are defining data (required for UNIQUE, optional
for user action programs); configuring the online IMS 90 system (mandatory); writing
action programs (optional); and processing your transactions from remote terminals, using
UNIQUE or user action programs.

In addition, user activities include the following optional pre-online and offline operations:

• running the NAMEREC utility to initialize the named record file and define passwords;

• defining edit tables for input message formatting and data validation; and

• recovering user files, if necessary.

1.1.2.1. Defining Data

One of your first tasks is to define the data to be used in your IMS 90 application. To do
this, you must write a data definition if you are going to use UNIQUE or you may optionally
write one for use with your own action programs. (User action programs can also access
conventional DAM, MIRAM, IRAM, ISAM, and SAM files.) A data definition describes a
defined file, containing defined records. These defined records are redefinitions of user
logical records from existing physical files. Because the actual data for these defined
records exists as logical records in one or more user files, the defined record management
component of IMS 90 needs to know only where all parts of each defined record can be
located in your files so that it can construct the defined record when an action program
calls for it. This location information is contained in a data definition record which the data
definition processor places in the IMS 90 internal file, NAMEREC.

UP-8614 Rev. 1

1.1.2.2. Configuring IMS 90

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

1-4

The user configures the IMS 90 system by preparing the job control stream and
configurator input, and by running the configurator job. A job control proc (jproc),
IMSCONF, performs five job steps: communications control area (CCA) linkage, internal file
initialization, configuration, assembly, and online linkage.

User-specified configurator input consists of the following sections that define IMS 90
characteristics.

NETWORK TERMINAL OPTIONS ACTION FILE

GENERAL TRANSACT TIMEOUTS PROGRAM DRCRDMGT

For detailed discussion of IMS 90 configuration procedures, see the IMS 90 system
support functions user guide/programmer reference, UP-8364 (current version).

1.1.2.3. Writing Action Programs

Action programs are written to process transactions (sequences of one or more actions).
Action programs can be user-written or supplied by IMS 90. All action programs operate
under the application management component of IMS 90 to process input messages and
generate output messages.

User action programs may be written in COBOL, Report Program Generator II (RPG II), or
Basic Assembly Language (BAL). The series of action programs supplied by IMS 90 is
identified as the uniform inquiry update element (UNIQUE). No user action programming is
required if you plan to process all your transactions through UNIQUE.

1.1.2.4. Using Uniform Inquiry Update Element (UNIQUE)

The Sperry Univac supplied series of action programs called UNIQUE accesses and
updates defined files via a group of UNIQUE commands issued by the user at the terminal.
The defined record management (ORM) component of IMS 90 handles the defined file
accessing operations. Section 6 of this document provides a detailed discussion of
UNIQUE.

1.1.2.5. Operating Terminals

There are two sets of terminal commands - master and standard. Master terminal
commands control and monitor the overall system and communications network. The
standard terminal commands control message processing at the terminal. All terminal
commands begin with the letters lZ. Section 5 of this document discusses terminal
operation in detail.

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

1-5

• 1.2. APPLICABILITY

•

IMS 90 is ideally suited for inquiry/update-oriented file processing applications. Some of
the most typical applications are:

• Inventory control

• Order shipping

• Insurance

• Medical/hospital

• Interactive data collection

• Information management

• Library recall

• Warehouse management

• Computer-aided instruction

• One-time report generation

• Job shop operation

IMS 90 is especially suited to any application where ease of use, reliable performance,
and integrity in data manipulation and information management are the primary concerns .

•

•

•

UP-8614 Rev. 1

2.1. INTRODUCTION

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-1
Update A

2. Data Definition

You write a data definition to describe a defined file. IMS 90 constructs defined files from
elements of existing ISAM, MIRAM, and DAM disk files and from data base ~

subschemas according to the data definition you write and submit to the data definition
processor.

If you decide to use the IMS 90-supplied uniform inquiry update element (UNIQUE), you
must write a data definition because UNIQUE accesses user files only via defined files.
When writing your own action programs, you can use defined files or you can call on IMS
90 file management to access your conventional DAM, ISAM, MIRAM, or SAM files
directly. (To access IRAM files, you must define them as MIRAM files at configuration
time.) Your COBOL action programs can also directly access a OMS 90 data base. Refer to
the IMS 90/DMS 90 interface user guide/programmer reference, UP-8748 (current
version).

In addition to defining records and file structures in your data definition, you define
allowable functions (retrieve, modify, add, delete). The defined record management (ORM)
portion of IMS 90 file management provides strong data integrity during defined file
manipulation. Before executing any operation that changes disk files, ORM verifies that
the change is allowed and that new values are within the limits you defined in the data
definition.

IMS 90 accesses defined records by keys. For this reason, IMS 90 must construct defined
records from indexed files (ISAM or MIRAM) or a data base subschema. It can also use
nonindexed files (DAM or MIRAM), but only in combination with indexed files or a
subschema.

Because the formats for data definition are similar to COBOL data division formats, you
should have some knowledge of COBOL before you write a data definition .

-

UP-8614 Rev. 1

2.1.1. Data Flow in IMS 90

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-2

Action programs access user data files through IMS 90 file management. When a user
written action program requests a logical input record from IMS 90, the file management
component of IMS 90 issues a request for the record to OS/3 data management. Data
management, interfacing between IMS 90 and the user data file, retrieves the physical
record (or block) containing the logical record wanted, and passes the logical record to IMS
90 file management. In turn, IMS 90 file management passes the desired logical record to
the action program. Similarly, data management receives logical record output from IMS
90 and transfers physical records to the user data files. These relationships are illustrated
in Figure 2-1.

ACTION PROGRAMS IMS 90 OS/3

I
I USER-WRITTEN

LOGICAL I FILE LOGICAL PHYSICAL
USER

ACTION DATA
PROGRAMS RECORDS I MANAGEMENT RECORDS RECORDS FILES

I I DATA I_ ______ I
MANAGEMENT

Figure 2-1. Data Flow Between Action Programs and User Data Files

There also is a different type of record that can be requested by a user-written action
program - the defined record. A defined record comprises:

• all or part of a logical record from one of the user data files;

• all or parts of several logical records from the same user data file; or

• all or parts of several logical records from different user data files.

It is the ORM portion of IMS 90 file management that handles requests from action
programs for defined records. ORM determines which logical records and what parts of
them are required and from which user data files they are to be retrieved by data
management. ORM then issues the necessary calls to data management, receives the
logical records as input, and constructs the defined record that is expected by the action
program. Finally, ORM passes the defined record to the program requesting it. Figure 2-2
illustrates these activities.

•

•

•

•
UP-8614 Rev. 1

ACTION PROGRAMS

USER
WRITIEN
ACTION

PROGRAMS
OR

UNIQUE
I
I
I
I
I

------_I

DEFINED
RECORDS

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

IMS 90

1-- -----1
I_~~~---'--'

I
I
I
I

RM

LOGICAL

RECORDS

OS/3

PHYSICAL

RECORDS

Figure 2-2. Flow of Defined Records to Action Programs via IMS 90

2-3

The information ORM needs for calling logical records to construct defined records,
requested by action programs, is contained in the data definition record. When action
programs request defined records in response to some terminal input, ORM accesses the
data definition record (2.1.2) in an internal IMS 90 disk file called the named record
(NAMEREC) file.

A terminal operator who is using the commands of the UNIQUE language for file query
operations receives only defined records, displayed or listed at the terminal as specified by
the IMS 90 action programs that implement UNIQUE. Using UNIQUE, the terminal operator
accesses the user data files only through ORM. User-written action programs, on the other
hand, provide the terminal operator with defined records, obtained through ORM, or with
logical records, obtained from the user data files through the other components of IMS 90
file management. Similarly, updating information input to IMS 90 through a UNIQUE
action program is received by ORM as defined records. A user-written action program
provides both defined records to ORM and logical records to IMS 90 file management.
Action programs using both defined records and logical records, however, cannot directly
access a logical record that is accessed by the defined record. Figure 2-3 illustrates the
data flow between both types of action programs and disk storage, indicating in schematic
form the complete processing of logical and defined records.

UP-8614 Rev. 1

ACTION PROGRAMS

USER-WRITTEN.
ACTION

PROGRAM

UNIQUE

LOGICAL
RECORDS

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

IMS 90

1-------,
I I
I I
I FILE I
I MANAGEMENT I
I I
I I
I I
,-------1
I I
I I

ORM
I
I I I ______ I

NAMED
RECORD

FILE

DATA
DEFINITION
RECORDS

LOGICAL
RECORDS

LOGICAL
RECORDS

OS/3

DATA
MANAGEMENT

Figure 2-3. Data Flow Between Action Programs and Disk Storage

PHYSICAL
RECORDS

2-4

USER
DATA
FILES

The collection of defined records extracted from user data files and passed by ORM to
-.. action programs forms the defined file.

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2.1 .2. Creating Data Definition Records

2-5

The data definition records needed by DRM to access defined files are created by writing
data definitions, using the data definition language described in 2.3. These data definitions
are processed by the data definition processor which is similar to a COBOL compiler. The
data definition processor writes the patterns for all defined records and defined files into
the NAMEREC file and produces a diagnostic listing. Figure 2-4 illustrates the use of the
data definition processor to create data definition records.

DATA DATA NAMED
DEFINITION DEFINITION RECORD

SOURCE CODE PROCESSOR FILE

DATA
DEFINITION

DIAGNOSTIC
RECORD

LISTING

Figure 2-4. Data Definition Processing

2.2. DEFINED FILE

The defined file can be regarded as an indexed sequential file containing defined records
tailored to the needs of an application. The tailoring begins with preliminary offline
processing when you define to the IMS 90 data definition processor the data you want
extracted for use in your specific application. This data definition simplifies both user
action programs and UNIQUE because an action program need address only one defined
file rather than several logical files whose records have to be matched and processed
together in main storage. Defined files require no additional storage because they exist
only by description and consist of all or parts of existing user data files extracted by DRM.
The only storage space needed is disk storage space (NAMEREC file) to hold the data
definition records.

Action programmers think of a defined file as an indexed sequential file containing records
to be accessed via IMS 90 file 1/0 functions in the action program. It is possible for a
defined file to be identical to an ISAM file. Other defined files can consist of different
descriptions of the same user data file.

Terminal operators display or list defined records on the terminal. The image they see
informs them of the defined file structure that they are querying and updating .

UP-8614 Rev. 1

2.2.1. Hierarchical Structure

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-6

A defined file that contains more than one type of defined record has a hierarchical
structure in which defined records have parent, child, and fraternal relationships. In Figure
2-5, defined record A 1 is a parent to the child records 81, 82, and 83. But 81 is also a
parent to C1, C2, and C3, and 83 is a parent to C4 and C5. In addition, C4 is a parent to
01.

Fraternal records are at the same level in the hierarchy; they can have the same parent or
no parent. Thus, defined records A 1 and A2 are fraternal; 81, 82, and 83 are fraternal;
C1, C2, and C3 are fraternal; and C4 and C5 are fraternal. However, C1, C2, and C3 are
not fraternal to C4 and C5 because they have a different parent.

In practice, most defined files contain few types of defined records. This example contains
many for illustration.

Parent, child, and fraternal records must be defined in a prescribed order in the data
definition and appear in that order in the defined file. A parent record is defined first,
followed by each of the child records belonging to that parent. Each of these child records
is followed by any child record to which it is a parent. Figures 2-6 and 2-7 show the order
in which the defined records of the hierarchy shown in Figure 2-5 are defined. Figure 2-6
also illustrates the parent-child relationships in the defined file, and Figure 2-7 shows the
fraternal relationships.

Al

l
B

l l 1
Bl 62 63

l l
l 1 l l 1
Cl C2 C3 C4 C5

l
01

Figure 2-5. Hierarchical Structure of a Defined File

•

•

•

•

UP-8614 Rev. 1

Al Bl

Al Bl

Cl C2

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

C3 B2 B3 C4 01

Figure 2-6. Parent/Child Relationships in a Defined File

Cl C2 C3 B2 B3 C4 01

Figure 2-7. Fraternal Relationships in a Defined File

2.2.2. Defined Records

2-7

C5 A2

C5 A2

Defined records constitute the defined file. They contain the specific data needed by a
particular application. You describe your defined records to the data definition processor,
which processes the description for use by online IMS 90. In turn, ORM constructs the
defined records and passes them to the action program or UNIQUE. ORM constructs the
defined record containing record items in the same order specified in your defined record
description.

Each defined record contains a record identifier. Similar to data management's use of
ISAM keys to locate records, ORM uses the record identifiers to build keys that it passes to
data management. Data management then uses these keys to extract data from the user
logical data file .

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-8

The programmer describing his defined record to the data definition processor may specify
a new item name on the IDENTIFIER statement of the item definition. He also specifies the
name of the logical record from which the identifier item is being extracted. Figure 2-8
shows the derivation of the identifier from the logical record.

USER LOGICAL RECORD

ST-CODE STATE

STATE-NAME
,~

DEFINED RECORD

Figure 2-8. Defined Record Identifier Redefined from User Logical Record

The identifier item names appear on the terminal as column headers to the terminal •
operator using UNIQUE. Figure 2-9 illustrates a column header on the terminal display
screen. (Column headers are normally followed by data as shown in Figure 2-11.)

·srATE-NAME

Figure 2-9. Terminal Display of Defined Record Identifier as Column Header

Each defined record can have only one identifier, which may have up to 39 items. To the
action programmer, a defined record identifier consists of the first few items of the defined
record; however, these identifier items can come from any data field of the logical record
that is part of the key. Identifier items are arranged from left to right in major-to-minor
order. Because identifier items are derived from key fields, only records in an indexed file
or a data base subschema can supply these identifier items. Additional data items in a
defined record are derived from the same record that supplies the identifier or from other
records in conventional files or a subschema by defining supplements to the data
definition. (See 2.3.7.) Nonindexed files may be used as a source for defined records only
in combination with indexed files or subschemas. Defined record supplements may name
a key or need not name a key. Thus, they may be derived from indexed or nonindexed
files. •

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-9

The identifier associated with the defined record is used by ORM to access that record.
Figure 2-10 illustrates the derivation of a defined record identifier from one logical record
in a simple defined file.

STATE CITY

Record Key

STATE-NAME CITY-NAME

DEFINED RECORD
IDENTIFIER

USER LOGICAL RECORD

item-1

IDENTIFIER STATE-NAME FROM STATE
IDENTIFIER CITY-NAME FROM CITY

DEFINED RECORD

item-1

item-2

item-2

Figure 2-10. Defined Record Identifier in a Simple Defined File

'--v---)
SUPPLEMENT FROM
ANOTHER LOGICAL

RECORD

Figure 2-11 illustrates a defined record with item names used as column headers plus
data comprising the defined record.

*STATE-NAME
.ALABAMA

CITY-NAME
HUNTSVILLE

Figure 2-11. Terminal Display of Column Headers and Data Items

A hierarchical defined file contains two or more types of defined records that are related to
each other in a parent/child relationship. Several occurrences of the child-type record are
associated with each occurrence of the parent-type record.

The child record identifier is always longer than the parent record identifier because the
entire value of the parent identifier is repeated at the beginning of the child identifier
associated with that parent record. Hence, when listed at the terminal, those child records
appear in order immediately following the parent record.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-10

Additional items used in a child record identifier distinguish one child record occurrence
from another. Note that the portion of the child identifier that is unique to each child
record occurrence may come from a different file than the file that provided the parent
record identifier. Figure 2-12 compares the parent and child record identifiers in a
hierarchical defined file and shows their derivation from logical records in two different
indexed files.

Figure 2-13 shows the terminal display of parent/child defined record identifiers in
response to a request for the parent record or the child record. (See also Figure 2-32.)

Indexed Files

STATE-REC Logical Record E-CY-REC Logical Record

STATE-NAME I CAPITAL ENTRY ENTRY-NUMBER CITY-NAME

Key

Parent
Record

Child
Record

Parent
Record Identifier

~

STATE

STATE

IDENTIFIER STATE FROM STATE-NAME
ITEM CAPITAL
IDENTIFIER CITY FROM CITY-NAME
ITEM POPULATION FROM CITY-POP

Defined File

CAPITAL

CITY POPULATION

Key

Child Record Identifier

Figure 2-12. Parent/Child Defined Record Identifiers

CITY-POP

•

•

•

UP-8614 Rev. 1

DISPLAY ALABAMA

STATE CAPITAL

ALABAMA BIRMINGHAM

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

a. Parent record displayed

DISPLAY ALABAMA.BIRMINGHAM

CITY POPULATION

ALABAMA.BIRMINGHAM 325,000

b. Child record displayed

2-11

Figure 2-13. Terminal Displays of Column Headers and Data Items for Parent and Child Records

2.3. DATA DEFINITION LANGUAGE

The data definition language is a COBOL-like language used to describe the defined files
accessed by user action programs or UNIQUE through defined record management. Each
data definition describes one defined file in terms of one or more logical files. These may
be indexed files or a combination of indexed and nonindexed files. You can also use a ~

OMS 90 data base subschema as a source in a data definition. The data definition
language for a data definition that uses subschema records as source differs from that
described here. The syntax for such a data definition is documented in the IMS 90/DMS
90 interface user guide/programmer reference, UP-8748 (current version). Any number of
defined files can be created through multiple runs of the data definition processor.

2.3.1. Format Presentation and Coding Rules

In addition to the statement conventions presented in Appendix A, the following rules
apply to the presentation of formats in this section and the coding of input for the data
definition processor.

1. Underlined lowercase terms, such as record-description and defined-record-definition,
are names of formats detailed in subsequent illustrations .

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2. Uppercase words are all reserved words.

2-12

• All underlined uppercase words are required when the statements or clauses of
which they are a part are used.

• Uppercase words that are not underlined are optional, i.e., they may or may not
be coded in the source program.

• Uppercase words, whether underlined or not. must be spelled exactly as in the
format.

3. A user-supplied word can be any sequence of not more than 30 characters, except for
reserved words. Each character is taken from the set A through Z, 0 through 9, and
the hyphen (-). The hyphen may not appear as the first or last character in a word.

4. User words are represented in the formats by generic terms where they are initially
defined and also where they refer to previously defined user words. All references are
in the backward direction; the definition always precedes the references.

5. Alphabetic and alphanumeric literals must be enclosed by single quotes to distinguish
them from user words. Numeric literals are not enclosed by quotes.

6. Record definitions, and item definitions within them, are described in a defined file
definition in exactly the same order as the logical data they represent appear in the A.
defined file. W

7. The standard COBOL coding form should be used for coding the data definition
processor input. Certain statements must begin in margin A, as noted in the
descriptions of those statements later in this section. Margin A is column 8 of the
coding form. All other statements must begin at column 12 (margin B) or beyond.

8. Statements in the identification division and the data division are followed by periods.
Periods and semicolons are optional throughout the defined file definition and are
ignored by the data definition processor.

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-13

• A list of reserved words that must not be used as user words in the definition division of
the input to the data definition processor is presented in Table 2-1. Except for the words
DEFINITION and DIVISION, these reserved words may be used in the data division. The
COBOL reserved word list documented in the OS/3 extended COBOL supplementary
reference, UP-8059 (current version) and OS/3 American National Standard COBOL
programmer reference, UP-8613 (current version) applies to the data division of the data
definition.

Table 2-1. Data Definition Reserved Words

ADD DBS KEY-NAME ROLE

ALL DEFINED MANUAL SELECTIVE

ALLOW DEFINITION MUST SEMICOLON

ALSO DELETE NAME SET

AND DIVISION NEUTRAL SUBFILE

ARE OMS NEXT-MEMBER- SUB RECORD

POINTER
AS DUPLICATE SUPPLEMENT

OF
ASSUME FILE THROUGH • ONLY
ASSUMES FILL THRU

OWNED
BREAK FOLLOWS TO

OWNING
BY FROM TOTAL

PARENT
CALC GROUP TYPE

PASSWORD
CHANGE HIDDEN UPDATE

PERIOD
CONTAINS IDENTIFIER USING

POINTER
CONTROL IN VALUE

PREFIX
CONTROLLED IS VALUES

RECORD
CONTROLLING ITEM VIA

REPEATING
COUNT KEY WITHIN

•

UP-8614 Rev. 1

2.3.2. Data Definition Structure

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-14
Update A

A data definition contains three divisions: the identification division, the data division, and
the definition division. The identification division and the data division are intentionally
similar to the COBOL identification and data divisions. The definition division is unique to
IMS 90. The data division is used for describing the logical files from which the defined
file is to be extracted; the definition division describes the defined file.

Figure 2-14 illustrates the overall structure of the data definition. The record-description
and defined-file-definition entries are names of group formats that are expanded in
Figures 2-15 and 2-16.

IDENTIFICATION DIVISION.

PROGRAM- ID.data-def in it ion-name.

[AUTHOR.comment-entry.]

[INSTALLATION.comment-entry.]

[DATE-WRITTEN.comment-entry.]

[DATE-COMPILED.comment-entry.]

[SECURITY.comment-entry. I

[REMARKS.comment-entry. I

DATA DIVISION.

FILE SECTION.

!_!! file-name-I. record-description [record-description] .. .
[FD f i I e - name - 2. record - des c rip ti on [record - des c rip ti on) ... I ...

DEFINITION DIVISION.

defined-file-definition

Figure 2-14. Overall Format of a Data Definition

2.3.2.1. Identification Division

The identification division must begin with the reserved words IDENTIFICATION DIVISION
followed by a period and spaces to column 72. The PROGRAM-ID statement specifies the
data definition name that appears on the diagnostic listing and serves to identify the
contents of the listing. A data-definition-name is required on the PROGRAM-ID statement
following the division header. The data-definition-name must be alphanumeric and begin
with an alphabetic character. Although you may use more characters in the data
definition-name, the system uses only the first six characters to identify the object
program on the compiler listing. Therefore, it is difficult to identify your programs when
the first six characters are not unique. The first six characters of each data-definition
name within a given program library must be unique only to produce a unique object
module. Each statement must begin in margin A (column 8) of the coding form. Each
optional comment entry can contain any printable characters. If it exceeds a single line,
additional lines must begin beyond column 11 in the coding form.

•

•

•

•

UP-8614 Rev. 1

2.3.2.2. Data Division

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-15

The data division contains only a file section, in which the user logical files are described.
It is similar to the standard COBOL file section, except that it cannot contain the VALUE
clause. Other clauses are the same as in the OS/3 implementation of American National
Standard COBOL, X3.4-1968.

You may specify multiple logical files, each containing multiple logical record descriptions.

The data division must begin with the reserved words DATA DIVISION followed by a period
and spaces to column 72. DATA DIVISION, FILE SECTION, FD statements, and 01 level
record descriptions must begin in margin A. All other entries must begin beyond column
11. The expressions filename-1, filename-2, etc, may be one to seven alphanumeric
characters in length and must begin beyond column 11. The sam.e file names must be
specified by filename positional parameters in the configurator FILE section.

The record-description specification is illustrated and discussed in 2.3.3.

2.3.2.3. Definition Division

The definition division, unique to the data definition language, describes the defined file by
designating a defined file name and describing each defined record, item, supplement,
subrecord, subitem, and subfile.

The definition division must begin in margin A with the reserved words DEFINITION
DIVISION followed by a period and spaces to column 72.

The defined-file-definition is described in 2.3.4.

2.3.3. Logical Data Record Description

The logical records that constitute conventional files from which the defined file is
extracted are described in FD statements in the file section of the data division. (See
Figure 2-14.) Nonindexed files can be used as source in a data division only in
combination with indexed files.

Figure 2-15 illustrates the two formats that can be used to describe user logical records.
The formats are intentionally similar to record descriptions in a COBOL data division. The
first format copies data descriptions from an existing library; the second format describes
the logical record items from which the defined records will be formed .

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Format 1:

OI data-name-I: COPY I ibrary-name

[
REPLACING word-I BY{~ord-~ . }

1dent1f1er-I
literal-I

[' w
0

r d -
3

!_! { ~ ~ ; ~ t 1 f i e r - 2 }] J
literal-2 ···

Format 2:

level -number{data-name-2}
FILLER

[:REDEFINES data-name-3)

(:BLANK WHEN ZERO)

[: { JJLS.l } R I G HT]
JUSTIFIED

[: { IB } I S c h a r a c t e r - s t r i n g]
PICTURE

[

:OCCURS{integer-I 1J! integer-2 TIMES(DEPENDING ON
integer-2 TIMES

[{
A S C E N D I N G } K E Y I S d a t a - n am e - 5 [. d a t a - n a me - 6] . . . J
DESCENDING

[INDEXED BY index-name-I[. index-name-2] ...]

[:{U!!.C } { lll1 }] SYNCHRONIZED RIGHT

[: MAP IS integer-3 CHARACTERS]

[
: [S I G N i s] { LE AD I NG } [SEPARATE CH AR AC TE R l]

TRAILING

[USAGE I S] C 0 MP
COMi>UTATIONAL
COMP-3
COMP-4
COMPUTATIONAL-3
COMPUTATIONAL-4
DISPLAY
ill!.!_

Figure 2-15. Logical Record Description Formats

2-16

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-17

2.3.4. Defined File Definition

The defined file definition contains the defined record; item; and optional supplement,
subrecord,and subfile definitions that IMS 90 uses to construct the defined file from user
logical data files (Figure 2-16). The defined file definition is coded in the definition
division. IMS 90 requires that only one defined file be included in a data definition.

In the consolidated format for the defined file definition illustrated in Figure 2-16,
statements enclosed in solid-line rectangles are required in a data definition, and
statements enclosed in broken-line rectangles optionally can be included. Solid-line
rectangles. within broken-line rectangles indicate that the statements in the inner
rectangle must be included if the statement in the outer rectangle is included.

The rectangles within rectangles illustrate a nested structure, with the defined record and
subfile definitions subordinate to the DEFINED FILE definition and the item, supplement,
and subrecord definitions subordinate to the defined record definition. (See also Figure
2-17.) All subordinate definitions can be used repeatedly within the larger definitions.

Periods and semicolons are optional throughout the defined file definition. The statements
in each box of Figure 2-16 are described in 2.3.4.1 through 2.3.10.2.

2.3.4.1. DEFINED FILE Statement

The DEFINED FILE statement indicates the beginning of a defined file definition and
supplies a name for future reference in password definition records and action programs.
The DEFINED FILE statement must begin in margin A and be the first statement in the
definition division.

Format:

DEFINED FILE defined-ti le-name[PASSWORD]

where:

defined-file-name

Names the defined file and must be one to seven characters in length. The name
must be different from that of any logical file assigned to IMS 90. The data
definition processor truncates a defined-file-name longer than 7 characters and
uses the first seven characters for the defined-file-name. There is no error
message when truncation occurs.

PASSWORD

Specifies that defined-file-name is to be used by terminal operators as the
password in the UNIQUE OPEN command to gain access to this defined file. If
PASSWORD is omitted, terminal operators using UNIQUE can access the defined
file only if a password is defined by means of the NAMERE~ file utility .

Note that multiple passwords may be used to access a defined file and that a
password defined by means of the NAMEREC utility does not negate a password
defined in the data definition unless the passwords are the same. If access to the
defined file is to be limited to specific terminals, the PASSWORD option should
be omitted and the NAMEREC utility should be used.

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

DEFINED f.!!! defined-file-name{~)

DEFINED RECORD defined-record-name-

{

FROM stored-record-name-1 }

FROll CONTROL BREAK IN stored-record-name-2

FROM REPEATING GROUP data-name·!

(!..!f.! IS literal·! I

[PARENT IS defined-record-name-2]

(PREFl.X IS I iteral ·2]

[l POINTER IS '.tem-name-1[. item-name-2]!]

F 0 LLOWS Jd e f 1 n e d - record - name - 3 l
supp I ement - name -1 f

[U!,! KEY TO I 1 teral:l]

[
ALLOW lill !OF RECORD]

DE l E TE
Alf1JAli D 0 E l E TE

{
IDENTIFIER [1tem·name
lfEM [1 tem-name-

EJ!Q!] data-name-
2
1}

FROM] data name -

IHI ODEN I

I .!!!.l! A D D I
/ALLOW CHANGE[

[{~:t~ls1!RE}1'''"1i[{:muGH}1''"a12J[1,,.,.1 1[{:muGH}1,,.,,1 •J] J

1------- ----------
L SUPPLEMENT supplement-name-l

{
FROM stored-record-name-I }
FROM REPEATING GROUP data name-I

(POINTER IS item-name-I (.item-name 2)

lf.!l! KEY TO 1,teral·l [

[

ASSUMES l C 0 NT RO l l I NG! ROLE
CONTROLLED
NEUTRAL

IHI ODEN I

[l\!!lJ ADDI

I ALLOW CHANGE I

IN UPDATE]

2-18

I
J

[{
VALUE IS} l'teral·I [{THROUGH} l'teral·2J[·l't"al·l[·'THROUGH}l't"al·4J] ·]
VALUES ARE !m I~

[ALSO (item-al1as-l FROM] item-name-3
--(.[Item-alias 2 FROM] 1tem-name-4J

_____ ,

I
I
I
I
I
I
I
I
I
I

SUBRECORO subrecord-name-1 [Q.f subrecord-name-21

[
ALLOWJmETE (J

ADD AND OELETE\or RECORD

jitem-al1as-l FROMJ{1tem-name-l}
1 tem- a I 1 as -2

l.!!.!!i! ADD I

[ALLOW CHANGE!

L--------------------------

' -I

Figure 2-16. Consolidated Format of Defined File Definition

1
J
I

_I •

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-19

e Programming Note:

•

•

The defined file name also is used to create a record key for the data definition
record. Other references to defined file names and subfile names outside the data
definition itself include:

• keyword parameters DFILE and DDRECORD* in the ACTION section of the
configuration;

• keyword parameters FN and DDN* in the password definition input to the
NAMEREC file utility;

• the defined-file-name parameter in action program function calls to defined
record management;

• the DEFINED-FILE-NAME and DATA-DEF-REC-NAME* fields in the program
information block for COBOL action programs; and

• the ZA#PDFN and ZA#PDDRN* labels in the program information block DSECT
for BAL action programs.

Examples:

8 12

1 . DEF IN ED F I LE PAY R 0 LL PASSWORD
2. FILE PAYROLL PASSWORD
3. FILE PAYROLL

Examples 1 and 2 perform exactly the same function. The word DEFINED can be
omitted because it is not underlined in the format. The defined file name is PAYROLL,
and the password used to access the file via UNIQUE also is PAYROLL.

In example 3, PASSWORD is omitted, precluding access to the file by a terminal
operator using UNIQUE. Either a password is generated by the NAMEREC utility or
the defined file is accessed only by user action programs, not UNIQUE .

*These can be defined file names but not subfile names.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2.3.5. Defined Record Definition

2-20

The defined record definition describes the source and contents of each defined record and
the allowable operations. Figure 2-17 illustrates the format of the defined record
definition. The underlined lowercase terms (item-definition, supplement-definition, and
subrecord-definition) are names of group formats that are described in separate
subsections. Items appear in the defined record in the same order that their item
definitions appear in the defined record definition.

DEFINED RECORD defined-record-name-I

{

FROM stored-record-name-I }

FROM CONTROL BREAK IN stored-record-name-2

FROM REPEATING GROUP data-name-I
[TYPE IS literal-I]

[PARENT IS def ined-record-name-2]
[PREFIX IS literal-2]

[I P 0 I N TE R I S i t e m - n am e - I [. i t e m - n a me - 2] . . .)]
FOLLOWS {def ined-record-name-3}

supplement-name-I
[FILL KEY TO I iteral-3]

[

ALLOW {ADD } OF RECORD]
DELETE
ADD AND DELETE

item-definition [item-definition] ...
[supp I eme n t - def i n i t ion] ...

[ALSO [item-alias-I FROM] item-name-3
(,[item-alias-2 FROM] item-name-4] ...]

[subrecord-def init ion] ...

Figure 2-17. Defined Record Definition Format

2.3.5.1. DEFINED RECORD Statement

The DEFINED RECORD statement indicates the beginning of a defined record definition
and assigns a name to the record being defined. It must be the first statement following
the DEFINED FILE statement or another defined record definition and must begin in
margin A of the coding form (column 8).

Format:

DEFINED RECORD defined-record-name-I

where:

defined-record-name-I •

Is a 1- to 30-character name, unique within the data definition, that identifies
the defined record.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-21
Update A

• Examples:

•

•

8 I 2

I. DEFINED RECORD EMPLOYEE
2. RECORD EMPLOYEE

Again, both examples are the same; DEFINED is omitted in the second example
because it is not required in the format. The first defined record in the defined file,
PAYROLL, is named EMPLOYEE. If record types other than EMPLOYEE records exist
in the defined file, one or more additional DEFINED RECORD statements must be
coded in the definition division.

Programming Note:

IMS 90 accepts a maximum of 78 ITEM and IDENTIFIER statements for each defined
record.

2.3.5.2. FROM Statement

The FROM statement identifies the logical record that supplies the primary part of this
defined record. The logical record supplying the primary part must be from an indexed file.
The primary part of a defined record contains the record identifier (ISAM or MIRAM key)
and any items coming from the same logical record .

Format:

FROM stored-record-name-I

where:

stored-record-name-I

Refers to an 01 level entry in the file section of the data division.

Programming Notes:

1. The FROM statement must be the first statement following the DEFINED
RECORD statement.

2. Stored-record-name-1 must be a unique name or be fully qualified. (Rules for a
fully qualified name are the same as for a COBOL fully qualified name.)

3. Any item within stored-record-name-1 may be included in the primary part of
this defined record if:

• it meets constraints on length and usage (see 2.3.6.2); and

• its position within stored-record-name-1 comes before any item defined with
an OCCURS clause.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-22

Example: •

8 12

·DEFINED RECORD EMPLOYEE FROM EMPLOYEE-REC

In this example, the primary part of the defined record EMPLOYEE will be supplied by
the logical record EMPLOYEE-REC, which is an 01 level entry in the file section of the
data division of this data definition.

2.3.5.3. FROM CONTROL BREAK Statement

The FROM CONTROL BREAK statement specifies that the primary part of this defined
record comes from the first of a sequence of logical records, all of which contain the same
value in the leftmost characters of their record keys. In other words, the primary part of
the defined record consists of the identifier only. The typical use of the FROM CONTROL
BREAK statement is to access a specified portion of a defined file using, for example, the
FOR parameter of a UNIQUE LIST or DETAIL command. The FROM CONTROL BREAK
statement also can enable UNIQUE statistical functions to provide subtotals for subsets of
child defined records associated with occurrences of the control break.

Format:

FROM CONTROL BREAK IN stored-record-name-2

where:

stored-record-name-2
Refers to an 01 level entry in the file section of the data division. The source
record must be from an indexed file. When necessary to avoid ambiguity, stored
record-name-2 must be fully qualified.

As indexed records are read sequentially, a new occurrence of the current defined record
is generated each time a new value appears in those left-hand character positions of the
logical record key that contributes this defined record's identifier. Typically, the indexed
record that contains the identifier value (and is therefore the source of the current defined
record) also will be the source of the next occurrence of the first subordinate defined
record.

Programming Notes:

1. The FROM CONTROL BREAK statement must be the first statement following the
DEFINED RECORD statement.

2. The current defined record must be named subsequently as the parent of at least
one subordinate record. The first subordinate defined record must name stored-

•

record-name-2 as its source in a FROM statement or another FROM CONTROL •
BREAK statement.

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-23

Examples:

8 12
1. DEFINED RECORD EMPLOYEE

FROM CONTROL BREAK IN EMPLOYEE-REC
2. RECORD EMPLOYEE FROM BREAK EMPLOYEE-REC

Example 1 uses the long form of both the DEFINED RECORD and FROM CONTROL
BREAK statements; example 2 illustrates the short form, using only the underlined
reserved words in the format. Both perform the same function.

The defined record named EMPLOYEE will receive only an identifier from the logical
record, EMPLOYEE-REC, which is a 01 level entry in the data division file section of
this data definition.

2.3.5.4. FROM REPEATING GROUP Statement

The FROM REPEATING GROUP statement specifies the group item, described in the data
division with an OCCURS clause, that supplies the primary part of this defined record. This
statement must immediately follow the DEFINED RECORD statement.

Format:

FROM REPEATING GROUP data-name-1

where:

data-name-1
Refers to a data name defined in the data division with both an OCCURS clause
and a KEY clause. When necessary to avoid ambiguity, data-name-1 must be
fully qualified.

Programming Notes:

1. The logical record that contains data-name-1 must not be created by a
UNIQUE ADD command or a defined file INSERT function; otherwise, the
value of data-name-1 is binary zeros and, therefore, cannot contain a unique
key.

2. Any item within data-name-1 may be included in the primary part of this
defined record if:

•
•

it meets constraints of length and usage (see 2.3.6.2); and

its position within data-name-1 precedes any item (other than data
name-1 itself) defined as an OCCURS clause .

UP-8614 Rev. 1

Example:

8 12

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

RECORD DEPENDENTS FROM GROUP DEPENDENT-REC

2-24

In this example, the primary part of the defined record DEPENDENTS is supplied by
the repeating group item DEPENDENT-REC, which is an 02 level entry in the logical
record EMPLOYEE-REC. (See example in 2.3.5.2.) IMS 90 requires that the item
DEPENDENT-REC be described in the data division file section with both an OCCURS
clause and a KEY clause. For example:

8 12

82 DEPENDENT-REC OCCURS 5 TIMES
ASCENDING KEY IS DEP-NAME
83 DEP-NAME PIC X(l5)

2.3.5.5. TYPE Statement

The TYPE statement provides user-written action programs with an indicator identifying
the record type delivered as a result of a SETL and sequential GET function. The type
indicator is presented in the detailed status code of the program information block (PIB).
This statement is applicable only when there is more than one record type in a given
defined file and the file is being accessed by user action programs.

Format:

TYPE IS I iteral-1

where:

literal-I

Example:

Is a single alphanumeric character. It is the actual value that is delivered in the
DETAILED-STATUS-CODE field in the PIB. Each defined record type must be
assigned a unique character identification.

8 12

TYPE IS 'A'

•

•

UP-8614 Rev. 1

2.3.5.6. PARENT Statement

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-25

The PARENT statement establishes the relationship of a defined record to other defined
records in the hierarchical organization of the defined file. A defined record definition must
always contain a PARENT statement unless the record being defined is at the highest level
in the hierarchy.

Format:

PARENT IS defined-record-name-2

where:

defined-record-name-2

Refers to a defined record previously described in this data definition. It must
have been defined in the immediately preceding defined record definition or be
one of the direct ancestors of the immediately preceding defined record.

The position of defined records in the defined file reflects the order of their defined record
definitions within the defined file definition.

The first defined record definition never contains a PARENT statement. It is at the highest
level in the hierarchy and, therefore, cannot be subordinate to a parent-type record. If a
subsequent defined record definition does not contain a PARENT statement, that defined
record also is considered to be at the highest level in a hierarchy. All record types that
have no parents are considered to be fraternal.

More than one defined record definition can name the same parent. Following each
definition of a parent record, defined records subordinate to the parent record and
fraternal to each other are defined.

Programming Notes:

A defined record can be named as the parent of another defined record only if one of
four relationships exists between their sources in the logical records read from disk:

1. The source of the child record is a repeating group item occurring within the
group that is the source of the parent or one of the parent's supplements. (See
Figure 2-31.)

2. The sources of the parent record (or one of the parent's supplements) and the
child are two distinct record types (01 level entries) that exist, collated, in the
same indexed file. (See Figure 2-29.)

3. The source of the parent record is a control break that is detected while reading.
the source of the child record .

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-26

4. The source of the child record is a sequence of indexed records that exist e
somewhere entirely remote from the source of the parent or any of its
supplements. In this case, IMS 90 requires a POINTER statement in the defined
record definition for the child record. (See Figure 2-32.)

Example:

8 12

PARENT IS EMPLOYEE

In this example, the parent of the child record being defined is the previously defined
record EMPLOYEE.

2.3.5.7. PREFIX Statement

The PREFIX statement inserts an additional character or characters that are not present in
any physical record into the identifier of a defined record, thus enabling identifier values to
reflect the order of accessing or listing fraternal record types. Either the PREFIX statement
or the VALUE statement (or both) must be included for each defined record that is
fraternal to another defined record. The PREFIX statement must be used if the range of
values for the identifier items of fraternal record types overlap. This can be the case if the
records have sources in different files or in different repeating group items.

Format:

PREFIX IS literal-2

where:

literal-2

Is a constant inserted into the identifier of a fraternal-type record and must be
enclosed by single quotes.

Programming Notes:

1. The values of successively defined prefixes for fraternal record types must be in
ascending order and must also be the same length.

2. The prefix defined by this statement appears in the identifier, as seen by the
action program and· the terminal operator, of every occurrence of this defined
record. It immediately precedes the identifier item defined in the first item
definition for this defined record.

Example:

8 12

PREFIX IS 'A'

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-27

In this example, assume that the defined file PAYROLL contains three types of
records: EMPLOYEE, DEPENDENTS, and PAYDATA, with EMPLOYEE being the parent
of both DEPENDENTS and PAYDATA, and DEPENDENTS and PAYDATA being
fraternal records. When listing or accessing the file sequentially, all DEPENDENTS
child-type records for an EMPLOYEE parent-type record are delivered before any
PAYDATA records. Prefixes are identified as 'A' for DEPENDENTS records and 'B' for
PAYDATA records. Because A comes before B alphabetically, and DEPENDENTS
records occur before PAYDATA records in the defined file, the prefixes support the
requirement that successive occurrences of defined records always contain identifiers
with ascending values.

2.3.5.8. POINTER Statement

The POINTER statement defines the leftmost characters of the search key for the source of
the defined record's primary part. The POINTER statement is used only if there is a
PARENT statement for this defined record and the source of the primary part of this
defined record and its parent exist in different files or at randomly different locations
within the same file.

Format:

POINTER IS item-name-1 [,item-name-2]

• where:

•

item-name

Has been defined in a direct ancestor of this defined record.

To retrieve the primary part of this defined record, IMS 90 concatenates the values of
item-name-1, item-name-2 ... to form a character string. Then:

1. if the source of this defined record's primary part is an indexed record, that character ~
string comprises the characters to the left of the identifier items in the record key;
and

2. if the source is a repeating group item, then the leftmost characters of the character
string are used to locate the occurrence of the record that contains the source. If this
repeating group item is nested within a larger one, additional characters will be in the
pointer and will be used to locate the larger group item by its key.

Example:

8 12

POINTER IS EMP-NR

In this example, assume that the parent record is EMPLOYEE and you are defining a
child record called DEPENDENTS. The source of the primary part of DEPENDENTS is
an indexed file ordered by employee number and dependent name. The item EMP-NR
of EMPLOYEE contains the employee number that points to the appropriate
dependent records and is used to position the dependent's file.

UP-8614 Rev. 1

2.3.5.9. FOLLOWS Statement

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-28

The FOLLOWS statement specifies that the source of this defined record is to be read
sequentially following the source of a previously defined primary part or supplement in the

... same indexed file. It is required only if the source of the defined record does not follow the
source most recently mentioned in a defined record definition or supplement definition

_.. involving the same indexed file.

Format:

FOLLOWS{def ined-record-name-3}
supplement-name-I

where:

defined-record-name-3
Identifies a previous defined record so that the source of the primary part of the
current defined record sequentially follows the source of the primary part of that
defined record.

supp I emen t -name -1
Identifies a previous supplement so that the source of the primary part of the
current defined record sequentially follows the source of that supplement.

Programming Notes:

1. This statement never appears in the first defined record definition for a defined
file or when the source of the defined record is a repeating group item.

2. This statement is used only if the source of the defined record is an indexed file
already named as a source in a previous defined record definition or supplement
definition.

Example:

8 12

FOLLOWS BRAND-RCD

In this example, assume that a liquor wholesale application has a logical ISAM file
containing two types of user logical records: brand records and stock records. The file
layout is a brand record followed by corresponding stock records. The stock records
are the inventory record by unit of issue (i.e., pint, fifth, etc).

•

A defined record named BRAND-RCO has an item named SUBSTITUTE, which is a
pointer to a supplement (i.e., the brand record "JIM BEAM" could have as a
substitute "OLD CROW"). Another defined record named STOCK-RCD is defined after
BRAND-RCD. Its definition uses the statement in this example to indicate that IMS 90
should read logical file stock records that follow the "JIM BEAM" record, rather than •
the logical file stock records that· follow the "OLD CROW" record.

•

•

•

UP-8614 Rev. 1

2.3.5.10. FILL KEY Statement

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-29
Update A

The FILL KEY statement specifies the rightmost characters of an indexed record key to
differentiate between record types in an indexed logical file when they are identical for all
records of the same type.

Format:

FILL KEY TO I iteral-3

where:

I i t er a I - 3

Identifies the rightmost character or characters of the indexed file's key and must
be enclosed by single quotes.

Programming Notes:

1. The FILL KEY statement is required only if the indexed file record key is longer
than the combined length of the pointer items (if any) and the identifier· items
and if the remaining characters in the key are not all spaces (hexadecimal 40).
When creating a search key, IMS 90 fills all remaining character positions with
spaces and then moves litera/-3, if specified, into the rightmost character
positions of the record key.

The length of literal-3 following the FILL KEY clause must not be longer than the
part of the key not specified by IDENTIFIER or POINTER statements.

2. Indexed records not previously mentioned in the data definition are permitted to
intervene in the source sequence if the FILL KEY statement is present.

Example:

8 1 2

FILL KEY TO 'E'

In this example, assume there are two types of records in an indexed file being used
as a source of defined records: EMPLOYEE-REC and DEPENDENT-REC. The key to the
employee records is xxxxE, and the key to the dependent records is xxxxn. By defining
a record EMPLOYEE with the FILL KEY statement in this example, you can access the
EMPLOYEE-REC records simply by specifying a key of xxxx .

__ ...,,.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2.3.5.11. ALLOW ADD AND DELETE Statement

2-30

The ALLOW ADD AND DELETE statement permits the addition and/or deletion of
occurrences of this defined record. This statement cannot be used if the FROM CONTROL
BREAK or FROM REPEATING GROUP statement is included for this defined record.

Format:

A L LOW l A 0 0 ! 0 F R EC 0 R 0
DELETE
ADO ANO DELETE

NOTE:

The absence of these statements in a record definition disables the corresponding ·
functional capability. For example, if ALLOW ADD or ALLOW ADD AND DELETE is not
specified in the EMPLOYEE record definition, any input of the UNIQUE ADD command or
any action program issuance of the CALL INSERT function involving an EMPLOYEE record
is rejected as invalid.

Example:

8 12

ALLOW ADO ANO DELETE

This example allows the defined record EMPLOYEE (see example in 2.3.5.1) to be
added to or deleted from the defined file.

2.3.5.12. ALSO Statement

The ALSO statement specifies that the defined record is to include copies of items
described in definitions of its direct ancestors. Without the ALSO statement, these items
can be included in the defined record only by defining a supplement (by means of the
supplement definition) whose source is the same as the source of the direct ancestor
record. Note that the ALSO statement must follow the item definition and any supplement
definitions for this defined record.

Format:

ALSO [ITEM-alias-I FROM] item-name-3 [,[item-alias-2 FROM] item-name-4]

where:

item-alias

Specifies a unique name for an item within this defined file from 1 to 30
characters in length.

item-name

Refers to an item defined in an item definition within a defined record definition
for a direct ancestor of this defined record.

•

•

•

•

UP-8614 Rev. 1

Example:

8 12

ALSO EMP-NAME FROM NAME

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-31

In this example, the item EMP-NAME is included in the record being defined after the
ancestor record item, NAME.

2.3.6. Item Definition

The defined record consists of elements or items known by their item names. A separate
item definition is required to describe each item name. Figure 2-18 shows the item
definition format.

IMS 90 accepts a maximum of 78 ITEM and IDENTIFIER statements. If more·than 78 are
processed, the data definition processor issues the following message:

MAX TABLE AREA FOR ITEM STATUS IS 78.

The data definition processor then terminates by indicating that it could not create the
data definition record described .

If the items being defined are to be accessed via UNIQUE, it is important to consider
carefully the size and meaning of the item names, because these item names are used as
headings in all UNIQUE command response output. Indiscriminate assignment of item
names can result in the inefficient use of CRT display screen space and erroneous
interpretation of item contents.

t

Note that when using UNIQUE, allow one extra byte for UNIQUE to insert a tab stop ~
control character.

{
IDENTIFIER [item-name-1 FROM] data-name-1}
ITEM [item-name-2 FROM] data-name-2

[HIDDEN]

[MUST ADD]

[ALLOW CHANGE]

[{~tf*fs1~Rd literal-1 cn~:~UGH} literal-2]

[literal-3 [{~~:~UGH} literal-4]] ···]

Figure 2-18. Item Definition Format

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-32

2.3.6.1. IDENTIFIER Statement

The IDENTIFIER statement indicates the beginning of an item definition and specifies the
identifier for the defined record being described.

Format:

IDENTIFIER [item-name-I FROM] data-name-I

where:

item-name-I

Identifies the item, is 1 to 30 alphanumeric characters in length, and must be
unique within the defined file definition. This name appears as a column header
on the terminal when UNIQUE is used.

data-name-I

Refers to a data name described in the data division as a part of the logical
record or repeating group item that is the source of the primary part of this
defined record. If the source of the primary part of this defined record is a logical
record (either the FROM statement or the FROM CONTROL BREAK statement is
employed), then data-name-1 must be part of the record key of that logical
record. If the source is a repeating group item, data-name-1 must be part of the
key of that item.

Programming Notes:

1. If item-name-1 is identical to data-name-1, then item-name-1 and the word
FROM can be omitted.

2. Definitions of identifier items must precede those of all other items.

3. If more than one IDENTIFIER statement is present, items must be defined in
major-to-minor order.

Example:

8 12

IDENTIFIER EMP-NR FROM EMPL-NR
IDENTIFIER EMP-NM FROM EMPL-NAME

This example illustrates the specification of multiple IDENTIFIER statements, the first
indicating the major identifier, the second indicting a minor identifier. The value of

.... the record key in the record that is the source of this defined record is:

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-33

The sequence of items defined by the IDENTIFIER statement appears at the terminal
as a string of variable-length items separated by commas:

EMP-NR,EMP-NM

When more than one IDENTIFIER statement is used, UNIQUE uses a single item name
to refer to the entire identifier string. This item name is derived from the final
IDENTIFIER statement. If the two defined items are individually named EMP-NR and
EMP-NM, as in the example, then the item name for the combination, as seen by the
terminal operator, is simply EMP-NM.

2.3.6.2. ITEM Statement

The ITEM statement indicates the beginning of an item definition and includes in the
defined record an item described in the data division file section.

Format:

ITEM [item-name-2 FROM] data-name-2

where:

item-name-2

Identifies the item, may be 1 to 30 characters in length, and must be unique
within the defined file definition. This name appears as a column header on the
terminal when UNIQUE is used.

data-name-2

Refers to a data name described in the data division as a part of the logical
record or repeating group item that is the source of the primary part or
supplement of this defined record. Data-name-2 must never be qualified;
qualification by the name of the source is always implied.

Programming Notes:

1. If item-name-2 is identical to data-name-2, item-name-2 and the word FROM
may be omitted.

2. The item named in this statement should not exceed 72 bytes. Moreover, it
should not exceed line length minus 2 if UNIQUE is to display this item at any
terminal whose line length is shorter than 74 characters.

3. Defined record management moves the values of items to a new or updated
source record in the order in which they are defined. If data-name-2 overlaps the
source of another item (either item is a group item that contains the other), then
the second item moved covers up the first. Therefore, if either item is to be
changed, that item must be defined after the other item .

t

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-34

4. The data definition language permits a single item value on disk to be the source
of two items within the same defined record. If you attempt to update those
items to different new values, the resulting value on disk is unpredictable.

5. Data-name-2 must be one of the following:

Example:

• an elementary item with a USAGE clause value other than COMP-1 or
COMP-2; or

• a group item that can be treated as if it were an elementary alphanumeric item;
i.e., it contains only alphabetic, alphanumeric, or unsigned numeric items
whose usage is DISPLAY.

8 12

ITEM EMP-NAME FROM NAME
ITEM AGE

The items NAME and AGE from the current logical record are included in the defined
record being described. The item NAME is assigned the name EMP-NAME, and the
item age retains the name AGE.

2.3.6.3. HIDDEN Option

The HIDDEN option prevents the data item defined by the ITEM statement from being
displayed at the terminal in response to a UNIQUE command. The purpose of this option is
to allow a subsequent POINTER statement to refer to the item without allowing that item
to be displayed. The HIDDEN option has no effect on a defined record accessed by user
written action programs.

Another use of the HIDDEN clause assures the validity of a numeric field in a logical
record on which another program may later want to perform arithmetic. When you add a
defined record that does not include all fields in a logical record, binary zeros are inserted
in the missing fields. To avoid this problem, include the field in the defined record with an
ITEM statement and restrict its use with the HIDDEN clause.

Format:

HIDDEN

Programming Notes:

1. If the current item definition begins with an IDENTIFIER statement, the
specification of the HIDDEN option is ignored.

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-35

2. When a terminal operator using UNIQUE adds a defined record having an item
definition for which the HIDDEN option is specified, IMS 90 automatically inserts
spaces or zeros in the corresponding item of the record on disk. If the item is
defined as alphanumeric, IMS 90 inserts spaces; if numeric, IMS 90 inserts zeros
in the data format appropriate to the declared usage of the item.

Example:

8 12

ITEM DEP-KEY HIDDEN

Assume that DEP-KEY is a pointer to the supplemental dependent record in a
nonindexed file. There would be no value in displaying this data at a terminal.

2.3.6.4. MUST ADD Option

The MUST ADD option specifies that this item must be present and contain a valid value
for a record to be added to the defined file by the terminal operator. If defined as numeric,
the item must be nonzero; if alphanumeric, it must contain other than all spaces.

Format:

MUST ADD

Programming Notes:

1. This option has meaning only in item definitions that begin with the ITEM
statement; identifier items always must be present to add a defined record.

2. If this item is in a supplement, the ROLE IN UPDATE for that supplement should
be CONTROLLED.

3. This option is inoperative unless the ALLOW ADD statement is specified in the
defined record definition.

Example:

8 12

ITEM EMP-NAME MUST ADD

Before an EMPLOYEE record (see example in 2.3.5.1) can be added to the defined file,
the item EMP-NAME must contain a valid value. Obviously, an employee record
would be of little value without an employee name. Probably an item called AGE
would not have the MUST ADD option because the item is not critical to the record's
validity and can be added later via update .

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2.3.6.5. ALLOW CHANGE Option

2-36

The ALLOW CHANGE option permits changes to be made to the current item from the
terminal. If this option is not specified, IMS 90 refuses to carry out any requested
changes to records on disk.

Format:

ALLOW CHANGE

Programming Notes:

1. If ALLOW CHANGE is not specified and the action program calls upon the PUT
function and delivers to IMS 90 a record in which the value of this item has been
changed, IMS 90 returns control to the action program with an invalid request
indicator (003) in the program status code.

2. This option has meaning only in item definitions that begin with the ITEM
statement; identifier items cannot be changed.

3. If this item is in a supplement, the ROLE IN UPDATE for that supplement should
be CONTROLLED.

Example:

8 12

ITEM MARITAL-STATUS ALLOW CHANGE

This example specifies that the item MARITAL-STATUS can be changed in the defined
record to which it belongs.

2.3.6.6. VALUE Statement

The VALUE statement specifies the valid ranges of values an item may have when it is
being added or changed. IMS 90 checks the validity of the item when any type of update
(ADD, CHANGE, PUT, or INSERT) is requested and carries out the requested function only
if the value of the item lies within the specified ranges. If the VALUE statement is omitted,
any value consistent with the PICTURE and USAGE specified in the data division for the
source of this item is acceptable.

Format:

j V A L U E I S l 1 i t e r a I - 1 [j TH R 0 U G H l 1 i t e r a I - 2]
1VALUES ARE f 1 f

[literal-3 ~~UGHfliteral-4]

•

•

UP-8614 Rev. 1

where:

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-37

lite-ral-1, literal-2, ...
Specify the allowable values or ranges of values for an item being added or
changed. The values of literal-1, literal-2, ... must be in ascending order. Their
lengths must be exactly equal to each other and to the item named by data
name-1 or data-name-2 in the ITEM statement. Alphanumeric literals must be
enclosed in single quotes; numeric literals are not.

If the item being defined is an identifier item, IMS 90 employs the ranges specified in the
VALUE statement to recognize the defined record type. When an identifier is supplied to
IMS 90 by an action program or by a terminal operator using UNIQUE, these range tests
are applied to the string of items comprising the identifier. When IMS 90 is asked to
produce the next defined record in a sequence, it applies the range tests to the items
comprising the record key in the records read from disk. The effect of applying the VALUE
clause to an identifier item in this manner is to disable access to records with keys outside
the range specified. This could be an effective tool for file segmentation; i.e., processing A
through E, F through L, M through R. and S through Z segments of a payroll file in stages.

Programming Notes:

1. The VALUE statement must be used for fraternal record types having the same
source (i.e., their primary parts come from successive occurrences of the same
indexed record) and their value ranges must not overlap. ..-.

2. When the VALUE statement is used for fraternal record types from different
sources and the value ranges of their identifiers overlap, the PREFIX statement
must also be included.

3. The VALUE statement must be used if occurrences of an indexed record ..-.
contributing to this defined record must be distinguished from successive
occurrences of the same indexed records that do not contribute to the defined ...-
file.

Example:

8 12

ITEM HOURLY-RATE ALLOW CHANGE VALUE IS 8225 THRU 1588

In this example, the item HOURLY-RATE can be changed, but new values must fall
between 225 and 1500 or the update is rejected .

UP-8614 Rev. 1

2.3.7. Supplement Definition

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-38

IMS 90 determines the existence of a defined record by obtaining the source of its primary
part. A defined record can contain additional items from other logical records or repeating
groups. Items coming from a logical record or repeating group other than the source of the
primary part must be defined in a supplement definition. Figure 2-19 shows the format of
the supplement definition. Statements in the supplement definition must follow the same
sequence shown in Figure 2-19. The item definition shown in the format is required and
is the same as the item definition for a defined record (2.3.6 through 2.3.6.6). The item
definition for a Sl!pplement, however, cannot start with an IDENTIFIER statement; it must
begin with an ITEM statement.

SUPPLEMENT supplement-name-I

{ FROM stored-record-name-I }
FROM REPEATING GROUP data-name-I

[POINTER IS item-name-I[,item-name-2] ...]

[.u..!.! KEY TO I iteral-I]

[
AS SUM E S { C 0 NT R 0 L L I NG } R 0 L E I N UPDATE]

CONTROLLED
NEUTRAL

item-definition [item-definition} ..

Figure 2-19. Supplement Definition Format

2.3.7.1. SUPPLEMENT Statement

The SUPPLEMENT statement indicates the beginning of a supplement definition and
supplies a name for future reference within the data definition. This statement must begin
in margin A (column 8) and be the first statement in the supplement definition.

Format:

SUPPLEMENT supplement-name-I

where:

supp I emen t -name - I

Example:

Identifies the supplement, is 1 to 30 characters in length, and must be unique
within the data definition.

8 I2

SUPPLEMENT DEPENDENT

This example identifies a supplement named DEPENDENT.

•

•

UP-8614 Rev. 1

2.3.7.2. FROM Statement

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-39

The FROM statement designates the record description in the data division that describes
the source of this supplement. The FROM statement must immediately follow the
SUPPLEMENT statement.

Format:

FROM stored-record-name-1

where:

stored-record-name-1
Refers to a 01 level group item in the data division file section.

Programming Note:

Any item within stored-record-name-1 may be included in this supplement if:

• it meets constraints of length and usage (see 2.3.6.2); and

• its position within stored-record-name-1 comes before any item defined with the
OCCURS clause.

Example:

8 12

SUPPLEMENT DEPENDENT FROM DEPENDENT-RECORD

The contents of the supplement DEPENDENT are supplied by the logical record
DEPENDENT-RECORD, which is a 01 entry in the data division file section.

2.3.7.3. FROM REPEATING GROUP Statement

The FROM REPEATING GROUP statement designates the item, described in the data
division with an OCCURS clause, that is to be the source of this supplement. If used, it
must immediately follow the SUPPLEMENT statement.

Format:

FROM REPEATING GROUP data-name-1

where:

data-name-1
Refers to a data name defined in the data division with both an OCCURS clause
and a KEY clause.

t

t

UP-8614 Rev. 1

Programming Notes:

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-40

1. If data-name-1 is contained within one or two larger group items in the data
division that are also described with the OCCURS clause, IMS 90 requires those
descriptions to include the KEY clause.

2. The logical record that contains data-name-1 must not be created by a UNIQUE
ADD command or a defined file INSERT function; otherwise, the value of data
name-1 is binary zeros and therefore, cannot contain a unique key.

3. Any item within data-name-1 may be included in this supplement if:

• it meets constraints on length and usage (see 2.3.6.2); and

•

Example:

8 12

its position within data-name-1 comes before any item (other than data
name-1 itself) defined with an OCCURS clause.

SUPPLEMENT DEPENDENT FROM REPEATING GROUP DEPENDENTS

In this example, the contents of the supplement DEPENDENT are supplied by the
repeating-group item, DEPENDENTS, which is a 02 level entry in the file section of •
the data division. DEPENDENTS is described in the data division with both an
OCCURS clause and a KEY clause as follows:

8 12

82 DEPENDENTS OCCURS 5 TIMES ASCENDING KEY IS DEP-NAME
03 DEP-NAME PIC X(l5)

2.3.7.4. POINTER Statement

The POINTER statement designates the items whose values are employed to locate a
particular occurrence of this supplement's source record. This statement is required when
the source of this supplement is a repeating group item or a record in a nonindexed file.

Format:

POINTER IS item-name-1[, item-name-2] ...

where:

item-name-1, item-name-2
Refer to items previously defined in the current defined record definition or in a
direct ancestor of the current defined record. •

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-41

The values of item-name-1, item-name-2 ... are concatenated from left to right to form a
character string called the POINTER. Then, if the source of this supplement is a repeating
group item, as many right-hand characters as necessary are used to match against key
items. The remaining left-hand characters are used to create a record key. These +
characters are justified to the left when constructing a reference key for accessing an
indexed record. They are right-justified to create a relative record number in a nonindexed
file. Relative record numbers are filled to the left with binary O's. An indexed record key is
filled to the right with spaces (hexadecimal 40). Finally, the rightmost characters of an
indexed record key are made equal to literal-1 as specified in the FILL KEY statement, if
any.

If the source of this supplement is a record in an indexed file and that record is one of a
sequence of records that contribute items to the same defined record, the POINTER t
statement is employed only if the source of this supplement is the first record of that
sequence. The values of the record keys of those records must differ only in their least
significant (rightmost) character positions, as specified by literal-1 of the FILL KEY
statement. The values of the most significant characters of the record are the same for all
records in the sequence and are determined according to the definition of the first source
in the sequence. If that is the source of a supplement rather than the primary part of this
defined record, a POINTER statement must be included in that supplement definition.

Examples:

1 .
2.

8 12

POINTER IS REC-KEY
POINTER IS EMP-NO,DEP-NAME

In the first example, assume the primary part is EMPLOYEE and the supplement is
DEPENDENT. Thus, REC-KEY contains a relative record number pointing to the logical
record in a DAM file that contains the DEPENDENT data for the particular EMPLOYEE
identifier in the primary part.

In the second example, assume the same situation except that the DEPENDENT data
comes from a repeating group item whose key is equal to DEP-NAME and which is
contained in a record with a key equal to EMP-NO.

2.3.7.5. FILL KEY Statement

The FILL KEY statement specifies the rightmost characters of a record key. It is required if
there is no POINTER statement or if the POINTER statement does not specify all the
characters of a record key, and the remaining right-hand characters must have a value
other than spaces (hexadecimal 40).

Format:

Fill KEY TO I iteral-1

UP-8614 Rev. 1

where:

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-42
Update A

literal-1

Specifies the rightmost character or characters of a record key and must be
enclosed in single quotes.

If there is no POINTER statement, the value of literal-1 must be greater than spaces
(greater than hexadecimal 40) and also greater than the value of literal-1 in the FILL KEY
statement, if any, in the immediately preceding supplement definition. This is because
each indexed record must have a record key whose value is greater than that of the record
key of the immediately preceding record in the file.

The length of literal-1 following the FILL KEY clause must not be longer than the part of
the key not specified by IDENTIFIER or POINTER statements.

Example:

8 12

Fill KEY TO 'P'

This example applies to two applications. In the first, assume that payroll and
dependent records are included in an indexed file. The EMPLOYEE record keys are

•

emp-no.~. the DEPENDENT record keys are emp-no,D, and the PAYROLL records are •
emp-no,P. By specifying FILL KEY TO 'P', no POINTER statement is necessary to
generate a pointer to the source of the supplement, PAYROLL, assuming the
EMPLOYEE record was already named as a source for this defined record.

Second, assume that the source of the supplement is a separate indexed file
containing two types of records: PAYROLL and DEPENDENT. The same principle
applies as in the first situation except that the POINTER statement is required, but
only for the first supplement.

2.3.7.6. ROLE IN UPDATE Statement

The ROLE IN UPDATE statement specifies how the source of this supplement affects or is
affected by the addition or deletion of an occurrence of this defined record.

Format:

ASSUMES~CONTROLLING~ROLE IN UPDATE
CONTROLLED
NEUTRAL

where:

CONTROLLING

Specifies that addition of an occurrence of the defined record is not to take place •
unless the corresponding occurrence of the source of this supplement already
exists. In this way, the values of the items that point to this supplement can be
validated. Deletion of the defined record is not affected.

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-43

CONTROLLED
Specifies that the occurrence of the source of this supplement is to be added or
deleted whenever an occurrence of the defined record is added or deleted. The
source of this supplement must not be a repeating group item. If the source of
this supplement already exists when addition is requested, a new occurrence of
that source will replace the old.

NEUTRAL
Indicates that the source of this supplement neither affects nor is affected by the
addition or deletion of an occurrence of the defined record. This option is
selected by default when the ROLE IN UPDATE statement is absent.

Examples:

1 .
2.
3.

8 1 2

ASSUMES CONTROLLING ROLE IN UPDATE
ASSUMES CONTROLLED
ASSUMES NEUTRAL

In the first example, assume that a primary part is an inventory record and the
supplement being defined is the vendor information pertaining to this inventory
record. The CONTROLLING option is used because normally you do not want to allow
adding of an inventory record if no vendor information is available.

In the second example, assume that a primary part is an employee record and the
supplement being defined is the payroll information pertaining to that employee. The
CONTROLLED option is specified because the adding or deleting of the employee
information always requires the corresponding adding or deleting of the payroll
information.

In the third example, assume that a primary part is a requ1s1t1on record and the
supplement being defined is from an inventory master record. The NEUTRAL option is
specified because normally you do no want the deletion or addition of a requisition
record that is of a temporary nature to affect the status of the inventory master record
that is of a permanent nature. The same effect also is obtained by omitting the ROLE
IN UPDATE statement .

UP-8614 Rev. 1

2.3.8. Subrecord Definition

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-44

Two or more variants of the same defined record can exist in the· same data definition.
They can differ in number of items included, positioning of the items, spelling of item
names (used as column headers by UNIQUE), and authorization to update. A subrecord
definition is required for each variant. The format of the subrecord definition is shown in
Figure 2-20.

SUBRECORD subrecord-name-l[QL subrecord-name-2]

[
ALLOW{AOO }OF RECORD] -- DELETE

ADO AND DELETE
[subitem-definition]

Figure 2-20. Subrecord Definition Format

All identifier items of the defined record are automatically included in each of its
subrecords. The IDENTIFIER statement is used in a subrecord definition only when a new
item name is desired. Any other item is included in the subrecord only if a subitem
definition is present.

2.3.8.1. SUBRECORD Statement

The SUBRECORD statement indicates the beginning of a subrecord definition and supplies
a name for future reference within the data definition. It must be9in in margin A (column
8).

Format:

SUBRECORO subrecord-name-1

where:

subrecord-name-1

Example:

Identifies the subrecord, is 1 to 30 characters in length, and must be unique
within the data definition.

8 12

SUBRECORD EMPLOYEE-SUB!

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-45

In this example, a variant of the defined record EMPLOYEE is defined as a subrecord
called EMPLOYEE-SUB1. A possible reason is that information on dependents is
contained in a nonindexed file, which cannot be the source of a defined record's ~
primary part, and the dependent information must be presented interspersed with
information from the defined record's primary part. This cannot be done in a defined
record. Thus, a variant of the defined record must be named in the SUBRECORD
statement.

2.3.8.2. OF Statement

The OF statement is used only when other subrecord definitions have already appeared for
a defined record. It simplifies the writing of subitem definitions when item names of
subrecord-name-1 and subrecord-name-2 are mostly the same.

Format:

UF subrecord-name-2

where:

subrecord-name-2
Refers to a previously defined subrecord within this defined record definition.

• Example:

•

8 12

SUBRECORD EMPLOYEE-SUB2 OF EMPLOYEE-SUB!

In this example, the subrecord EMPLOYEE-SUB2 is defined. The OF statement
indicates that the items that will make up EMPLOYEE-SUB2 are identified in the
definition of subrecord EMPLOYEE-SUB1.

2.3.8.3. ALLOW ADD AND DELETE Statement

The ALLOW ADD AND DELETE statement permits the addition and deletion of occurrences
of this subrecord. If this statement is not included, addition or deletion of the defined
record is not possible when it is accessed through a subfile containing this record.

Format:

AllOWlADD !OF RECORD
DELETE
ADD AND DELETE

UP-8614 Rev. 1

NOTE

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-46

The absence of these statements in a subrecord definition disables the corresponding
functional capability. For example, if ALLOW ADD or ALLOW ADD AND DELETE is not
specified in the DEPENDENT-SUB1 subrecord definition, any input of the UNIQUE ADD or
DELETE commands or any issuance of the CALL INSERT or DELETE functions involving the
EMPLOYEE-SUB1 subrecord is rejected as invalid.

Example:

8 12

ALLOW ADD AND DELETE

This example allows occurrences of the subrecord identified by the SUBRECORD
statement to be added to or deleted from the defined file.

2.3.9. Subitem Definition

The components of the subrecord correspond to items previously defined in item
definitions in the defined record definition. Except for identifier items, which are included
automatically, a subitem definition is required for each item in the subrecord. Figure 2-21
shows the format of the subitem definition.

I TE M [i t em - a I i a s - 1 F R 0 M J { i t em - n am e - 1 }
item-alias-2

[MUST ADD]

(ALLOW CHANGE]

[{
VALUE IS }literal-l[{THROUGH}literal·2]
VALUES ARE THRU

[I i t e r a I - 3 [{lM1U-G H } I i t e r a I - 4 J l · . J

Figure 2-21. Subitem Definition Format

2.3.9.1. ITEM Statement

The ITEM statement includes into the subrecord a previously identified specific item from a
preceding defined record or subrecord and optionally supplies a new name (alias) by which
the item is known within this subrecord. The ITEM statement must be the first statement
in the subitem definition.

Format:

ITEM item-alias-I FROM5item-name-1 l
1item-alias-2f •

•

•

UP-8614 Rev. 1

where:

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-47

item-alias-1

Provides a name for the subitem, is 1 to 30 characters in length, and must be
unique within the subrecord definition. If specified, this name appears as a
column header to the terminal operator accessing this subrecord through
UNIQUE.

item-name-1

Refers to an item previously defined within this defined record definition. If this
subrecord definition does not include an OF statement, the item-name-1 option
is required.

item-alias-2

Refers to a subitem named in a previous subrecord definition; that subrecord
must be defined as subrecord-name-2 in the OF statement for the current
subrecord. This option is required if the OF statement is included.

Programming Note:

If item-alias-1 is identical to item-name-1 (or item-alias-2), item-alias-1 and the word
FROM can be omitted.

Examples:

8 1 2

1. ITEM LAST-NAME
2. ITEM LNAME FROM LAST-NAME

Both examples include the item LAST-NAME that was previously defined in a record
definition or subrecord definition. Example 1 retains the same name for the item;
example 2 assigns a unique name.

2.3.9.2. MUST ADD Option

The MUST ADD option specifies that this subitem must be present and contain a valid
value in order to add an occurrence of the defined record if it is accessed via a subfile
containing this subrecord. If defined as numeric; the item must be nonzero; if
alphanumeric, it must contain other than all spaces. This option is valid only when the
ALLOW ADD or ALLOW ADD AND DELETE statement has been applied to the subrecord
definition.

Format:

MUST ADD

See 2.3.6.4 for an example.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2.3.9.3. ALLOW CHANGE Option

2-48

The ALLOW CHANGE option permits changes to be made to the current item when the
defined record is accessed through a subfile containing this subrecord.

Format:

ALLOW CHANGE

Refer to 2.3.6.5 for additional information.

2.3.9.4. VALUE Statement

The VALUE statement specifies the valid ranges of values an item may have when it is
added or changed, if the defined record is accessed through a subfile containing the
current subrecord. If the VALUE statement is omitted, any value consistent with the
PICTURE and USAGE specified in the data division for the source of this item is
acceptable.

Format:

jVALUE IS lliteral-l[!THROUGHlliteral-2]
1VALUES AREf 1THRU f

[Ii t er a I - 3 D~UG~ t er a I - 4Jl ·.
where:

literal-I. literal-2, ...

Specify the allowable values or ranges of values for a subitem being added or
changed. The values of litera/-1, literal-2, ... must be in ascending order.
Alphanumeric literals must be enclosed in single quotes; numeric literals are not.

Programming Notes:

1. The number of literals specified may not exceed 64.

2. IMS 90 will not update the defined record if the resulting value of this item is
new and is not within one of the specified ranges. Instead, the status code 003
(invalid operation) is returned in the program information block.

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-49

2.3.10. Subfile Definition

Two or more variants of the same defined file can exist in the same data definition. They
can differ in number of defined record types and in the makeup of each type of defined
record. A subfile definition is required for each additional variant. It describes a subset of a
defined file independently and provides the means of accessing subrecords. Subrecords
are accessible only via a subfile. Figure 2-22 shows the format of a subfile definition.

SUBFILE subfi le-name-l(PASSWORD)

CONTAINS{defined-record-name-1} r,{defined-record-name-2}]···
subrecord-name-1 L subrecord-name-2

Figure 2-22. Subfile Definition Format

2.3.10.1. SUBFILE Statement

The SUBFILE statement indicates the beginning of a subfile definition and supplies an
identifying name for future reference in password definition records and action programs.
This statement must begin in margin A (column 8).

Format:

SUBFILE subf i le-name-l[PASSWORD]

where:

subfi le-name-1

Identifies the subfile, is one to seven characters in length, and must be unique
among defined file and subfile names within the data definition. It also must be
different from the name of any conventional user file assigned to IMS 90. ~

PASSWORD

Specifies that subfile-name-1 is to be used as the password in the UNIQUE
OPEN command to gain access to this subfile. If PASSWORD is omitted, terminal
operators using UNIQUE can access the subfile only if a password is defined by
means of the NAMEREC file utility.

Programming Note:

Subfile names are used in the same way as defined file names within the data
definition and where reference is made to them outside the data definition. Refer to
the programming note in 2.3.4.1 .

UP-8614 Rev. 1

Example:

8 12

1. SUBFILE EMP-FILE PASSWORD
2. SUBFILE PAY-FILE

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-50

Assume a defined file has two record types, EMPLOYEE and PAYROLL. To restrict
access to the PAYROLL file, two subfiles, EMP-FILE and PAY-FILE, are defined. The
EMP-FILE can be accessed by all terminal operators, using the name of the subfile as
the password. The PAY-FILE can be accessed only by those terminals named in a
password definition submitted to the NAMEREC file utility.

2.3.10.2. CONTAINS Statement

The CONTAINS statement identifies the defined records and subrecords included in this
subfile.

Format:

C 0 NT A I N q de f i n e d - r e c o rd - name - q [, j de f i n e d - r e c o r d - name - 2 l] ...
1subrecord-name-1 f 1subrecord-name-2 f

where:

def ined-record-name-1,def ined-record-name-2, ...

Identify defined records included in this subfile.

subrecord-name-1,subrecord-name-2, ...

Identify subrecords included in this subfile.

Programming Notes:

1. No more than one entry can be included for each defined record; it can be either
the defined record name or a subrecord name.

2. Entries must be in the same order as their corresponding defined record
definitions appeared previously in the data definition.

3. Before an entry is submitted for a defined record, an entry must be submitted for
every direct ancestor of that defined record.

Example:

8 12

CONTAINS EMPLOYEE-SUB

In this example, the subfile EMP-FILE consists of just one type of defined record,
under its subrecord name EMPLOYEE-SUB.

•

•

•

•

UP-8614 Rev. 1 SPERRY UNNAC OS/3
IMS 90 APPLICATIONS

2.4. DATA DEFINITION EXAMPLES

2.4.1. Example of Simple Defined File

2-51

Data definition language used with a simple defined file named STATES is shown in
Figures 2-23 and 2-24. The STATES file is derived from ST-FILE, whose first few records
are shown in Figure 2-23. A 14-byte field at the beginning of each record contains its key.
The record is named STATE-REC and the key is named STATE-NAME.

The data definition coding is shown in Figure 2-24a. The first few records of STATES are
shown in Figure 2-24b as IMS 90 delivers them to action programs, and in Figure 2-24c
as UNIQUE lists them at terminals. Each record contains an identifier item named STATE,
and two other items named STATE-POP and CAPITAL. These names appear at terminals
as column headers.

The defined record is named STATE-RECORD. The programmer accessing the defined file,
STATES, must provide a place for the defined record to be received in his action program.
Figure 2-24d shows how a record area for STATE-RECORD is described on a coding form
in a COBOL action program. Figure 2-24e shows the same for BAL.

ALABAMAAAAAAAA03444165MONTGOMERY~22

ALASKAAAAAAAAA00302173JUNEAU~AAAAAA49

ARIZONAAAAAAAA01772484PHOENIXAAAAAAA48
ARKANSASAAAAAA01932295LITTLE ROCK~25
CALIFORNIA~l9953134SACRAMENT0~31

COLORA00AAAAAA02207259DENVERAAAAAAAA38
CONNECTICUT~03032217HARTFOROAAAAAA05

DELAWAREAAAAAA00548104DOVER~~~01

FLORIDAMMAM06789443TALLAHASSEE~27

GEORGIAAAAAAAA04589573ATLANTA6AAAAAA04

Figure 2-23. Excerpt from a Sample Indexed State File (ST-FILE)

UP-8614 Rev. 1

8 12

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

IDENTIFICATION DIVISION.
PROGRAM-ID. BASIC-DATA-DEF.
DATA DIVISION.
FILE SECTION.
FD ST-FILE.
01 STATE-REC.

02 STATE-NAME
02 STATE-POP
02 CAPITAL
02 ENTRY

DEFINITION DIVISION.

PIC X(l4).
PI C 9 (8).
PIC X(l4).
PIC 9(2).

DEFINED FILE STATES PASSWORD
DEFINED RECORD STATE-RECORD

FROM STATE-REC
IDENTIFIER STATE FROM STATE-NAME

ITEM STATE-POP
ITEM CAPITAL.

a. Definition of STATES in data definition language

ALABAMA66666AA93444165MONTGOMERY~
ALASKA6666666A99392173JUNEAU66666666
ARIZONA666666A91772484PHOENIXAA66666
ARKANSAS66666A91932295LITTLE ROCKL'.'l.6ll
CAL I FORNI A~l 995 3134SACRAMENTO~
COLORAD066666692297259DENVER66666666
CONNECTICUTL'.'l.6ll93932217HARTFORDA66666
DELAWAREA6666A99548194DOVERA66666666
FLORIDA66666AA96789443TALLAHASSEEL'.'l.6ll
GEORGIA666666694589573ATLANTA6666666

b. First block of STATES as delivered to an action program

Figure 2-24. Defined File STATES (Part 1 of 2)

2-52

UP-8614 Rev. 1

•

•

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

c. First block of STATES as listed at a terminal display by UNIQUE

8 12

IJl WORK-AREA
IJ2 STATE-RECORD.

IJ3 STATE PIC X(l4).
IJ3 STATE-POP PIC 9(8).
IJ3 CAPITAL PIC X(l4).

IJ2 S-STATE-RECORD.
IJ3 S-STATE PIC X.
IJ3 S-STATE-POP PIC X.
IJ3 S-CAPITAL PIC X.

d. Description of STATE-RECORD in COBOL action program

8 1 2

WORK DSECT WORK AREA
RECORD EQU
SN AME DS XL14 STATE NAME
SPOP DS XLS STATE POPULATION
SCAPITAl DS XL 14 STATE CAPITAL

SNAME#S DS x STATE NAME STATUS BYTE
SPOP#S DS x ST A TE POPULATION STATUS BYTE
SCAP#S DS x STATE CAPITAL STATUS BYTE

e. Description of STATE-RECORD (labeled RECORD) in BAL action program

Figure 2-24. Defined File STATES (Part 2 of 2)

2-53

UP-8614 Rev. 1

2.4.2. Example of Subfile

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-54

An example of the use of a subfile definition to restrict access to a defined file is shown in
Figure 2-25. Compare this example to the example shown in Figure 2-24. Both data
definitions deal with the same source data (the ISAM logical file ST-FILE in Figure 2-23).
Both data definitions make the defined file STATES available to action programs and, via
UNIQUE, to the terminal operator.

Where a subrecord is defined, it can be accessed only via the subfile, which must be
described in the SUBFILE and CONTAINS statements (Figure 2-25a). Figures 2-24b
through 2-24e still apply to the new data definition as well as the old, where data was
accessed via the defined file name STATES. The new data definition, however, also makes
the subfile, SUBFIL, available to action programs (including UNIQUE). Thus, b and c in
Figure 2-25 illustrate the data that can be accessed via the subfile name, SUBFIL. In this
case, only two items are delivered to the action program. Their item names, as employed
by UNIQUE, are changed from STATE and STATE-POP to NAME-OF-STATE and
POPULATION, respectively. Figures 2-25d and 2-25e show how the programmer provides
a place for subrecords to be received in a COBOL or BAL action program.

8 12

IDENTIFICATION DIVISION.
PROGRAM-ID. SUB-DEF.
DATA DIVISION.
FILE SECTION:
FD ST-FILE.
01 STATE-REC.

02 STATE-NAME
02 STATE-POP
02 CAPITAL
02 ENTRY

DEFINITION DIVISION.

PIC X(l4).
PI C 9 (8) .
PIC X(l4).
PIC 9(2).

DEFINED FILE STATES PASSWORD
DEFINED RECORD STATE-RECORD

FROM STATE-REC
IDENTIFIER STATE FROM STATE-NAME
ITEM STATE-POP
ITEM CAPITAL

SUBRECORD SUB-STATES
IDENTIFIER NAME-OF-STATE FROM STATE
ITEM POPULATION FROM STATE-POP

SUB F I LE SUB F I L PASSWORD
CONTAINS SUB-STATES.

a. Definition of STATES and SUBFIL

Figure 2-25. Subfile Definition Restricting Access to a Defined File (Part 1 of 2)

•

UP-8614 Rev. 1

•

•

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

ALABAMAA66666A03444165
ALASKA6666666A00302173
ARIZONAA66666A01772484
ARKANSASAAAAAA01932295
CALIFORNIA~l9953134

COLORA00AA666602207259
CONNECTICUT~03032217

OELAWAREAA66AA00548104
FLORIOAA66666A06789443
GEORGIAA6666AA04589573

b. First block of SUBFIL as delivered to an action program

c. First block of SUBFIL as listed at a terminal by UNIQUE

d.

WORK
SUB REC
SN AME
SPOP
SNAME#S
SPOP#S

8 12

01 WORK-AREA.
02 SUB-STATES.

03 NAME-OF-STATE PIC X(l4).
03 POPULATION PIC 9(8).

02 S-SUB-STATES.
03 S-NAME-OF-STATE PIC X.
03 S-POPULATION PIC X.

Description of SUB-STATES in COBOL action program

10 16

OSECT WORK AREA
EQU
OS Xl14 STATE NAME
OS XL8 STA TE POPULATION
OS x STA TE NAME STATUS BYTE
OS x STA TE POPULATION STATUS BY TE

e. Description of SUB-STATES (labeled SUB-REC) in BAL action program

Figure 2-25. Subfile Definition Restricting Access to a Defined Fife (Part 2 of 2)

2-55

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2.4.3. Example of Supplements in Defined File

2-56

The data definition for CITIES in Figure 2-27a illustrates the use of supplements in a
defined file. Each defined record in CITIES comes from three different logical records on
disk. Two of these come from the indexed file Cl-FILE, an excerpt of which is shown in
Figure 2-26·. Another comes from ST-FILE, shown in Figure 2-23.

The records of the indexed file Cl-FILE occur in pairs. There are two records for
ABERDEEN, two for ABILENE, etc. The first supplies the primary part of CITY-RECORD; the
second supplies a supplement. Both have record keys in the same character positions: 1
through 22. The values of these keys differ only in character position 22. The first record
contains the space character and the second record contains the number 1. These values
cause the logical records to be in ascending order and identify the type of logical record
(CITY-REC or CITY-REC-TRAILER), a necessary function in case one of the pair is missing.
IMS 90 operates on the single entity represented by the defined record. Therefore, it adds,
deletes, and displays both types of records together. If the first record is missing, the
second is ignored by IMS 90. If the second record is missing, IMS 90 supplies spaces for
the item named STATE.

The second file ST-FILE contains a single type of logical record, STATE-REC. that
contributes a supplementary part of the defined record. It is accessed by means of a
pointer. As a record in an indexed file, STATE-REC contains a record key. The pointer that
IMS 90 constructs from NAME-STATE in the CITY-REC-TRAILER logical record is used as a
search key to match against the record key STATE-NAME in the STATE-REC record. In this
way, the secondary part is located. If ST-FILE is a nonindexed file, there will be no record
key in the STATE-REC record. The pointer will be a file relative record number instead. It
still will be constructed in the same way and used for the same purpose as an indexed file
key. If IMS 90 fails to find a STATE-REC record, it supplies zeros for the item named
STATE-POP in the defined record supplement.

ABERDEEN6666666666666688264676666666
ABERDEEN6666666666666lSOUTH6DAKOTA.c:.L:.
ABILENE66666666666666688896536666666
ABILENE66666666666666lTEXAS666666666
ALAMEDA66666666666666688789686666666
ALAMEDA66666666666666lCALIFORNIA~

ALBANY6666666666666666817578l6666666
ALBANY666666666666666lNEW6YORK666666

Figure 2-26. Indexed File with Two Logical Records for Each City (Cl-FILE)

•

•

UP-8614 Rev. 1

•

•

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

8 12

IDENTIFICATION DIVISION.
PROGRAM-ID. SEC-PART-DEF.
DATA DIVISION.
FILE SECTION.
FD Cl-FILE.

0 1 CITY-REC.
02 CITY-NAME PIC X(21).

01

FD
01

02 RCD-TYPE
02 CITY-POP
02 FILLER
CITY-REC-TRAILER.
02 CITY-ID
02 TYPE-RCD
02 NAME-STATE

ST-FILE.
STATE-REC.
02 STATE-NAME
02 STATE-POP
02 CAPITAL
02 ENTRY

PIC X.
PI C 9 (7).
PIC'X(7).

PIC x (21) .
PIC x.
PIC x (14) .

PIC x (14) .
PIC 9 (8).
PIC x (14) .
PIC 9 (2) .

DEFINITION DIVISION.
DEFINED FILE CITIES
DEFINED RECORD CITY-RECORD

FR OM CI TY - REC
ALLOW ADD AND DELETE

IDENTIFIER CITY FROM CITY-NAME

ITEM CITY-POP

SUPPLEMENT CITY-PART-1

FROM CITY-REC-TRAILER
FILL KEY TO 'l' ASSUMES CONTROLLED ROLE IN UPDATE
ITEM STATE FROM NAME-STATE

SUPPLEMENT CITY-PART-2

FROM STATE-REC
POINTER IS STATE

ITEM STATE-POP.

a. Data definition of CITIES showing supplements

Figure 2-27. Defined File CITIES (Part 1 of 2)

2-57

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

.ABERDEEN~66666666660026467SOUTH6DAKOTAL'>.L',.00666257

.ABILENE666666666666660089653TEXAS666666666lll96730

.ALAMEDA666666666666660070968CALIFORNIA~l9953134

.ALBANY6666666666666660175781NEW6YORK66666604589575

b. CITIES as delivered to an action program

c. CITIES as listed at a terminal by UNIQUE

8 12

01 WORK-AREA.
02 CITY-RECORD.

03 CITY PIC x (2 1) .
03 CITY-POP PIC 9 (7).
03 STA TE PIC x (14) .
03 STATE-POP PIC 9 (8) .

02 S-CITY-RECORD.
03 S-C I TY PIC x.
03 S-CITY-POP PIC X.
03 S-STATE PIC x.
03 S-STA

0

TE-POP PIC X.

d. Description of CITY-RECORD in COBOL action program

10 16

WORK DSECT WORK AREA
CTYREC EQU
SCTYNM DS XL21
SCTYPOP OS XL7
SST ATE OS XL 14
SST POP DS XLS
SCTYNM#S DS x
SCPOP#S DS x
SSTATE#S DS x
SSTPOP#S DS x

e. Description of CITY-RECORD (labeled CTY-REC) in BAL action program

Figure 2-27. Defined Fife CITIES (Part 2 of 2)

2-58

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2.4.4. Examples of Hierarchical Records in Defined Files

2-59

Figures 2-28 through 2-32 show portions of defined files and the data definitions needed
to define:

• a logical indexed file containing two record types;

• a logical indexed file q>ntaining a repeating group item; and

• two logical indexed files.

Note that three alternative data definitions describe the same defined file taken from these
various sources. The sources themselves differ in content and organization. Nevertheless,
in these examples there is no difference in the resulting defined file that is delivered to
the action program regardless of the defined file's source, nor is there any difference in
the way the defined file appears at the terminal when accessed via UNIQUE. Actually, the
logical files can be reorganized and the defined file redefined without any change to action
programs or terminal operating procedures.

2.4.4.1. Hierarchical Defined Records Using Several Record Types as Source

Figure 2-28 illustrates the first few logical records in the indexed file, ST-CITY, from which
the defined records of the BIGCITY defined file are taken. Figure 2-29 provides the data
definition for the defined file BIGCITY, which contains records arranged in a hierarchical
structure within set occurrences.

The order of records in the BIGCITY defined file is identical to the order of their primary
parts in the logical file ST-CITY. In fact, the order of records in a defined file is derived
from the corresponding record sequence in the logical file. In this case, the source of each
parent record is followed directly by the logical source of its child records. This is just one
of several ways the sources of parent- and child-type defined records can be related in
logical files.

The resulting records defined in this data definition are delivered to the user action
program and appear at the terminal via UNIQUE, as shown in Figures 2-33, 2-34, and
2-35.

2.4.4.2. Hierarchical Defined Records Using Repeating Group Item as Source

The logical indexed file, ST-RG, shown in Figure 2-30, contains the same information as
the ST-CITY logical file (Figure 2-28), but is organized differently. Here the city information
is contained in a table within each state record. The data definition in Figure 2-31 shows
how the BIGCITY defined file would be described if its source were the logical file ST-RG.
The resulting records defined in this data definition are delivered to the user action
program and appear at the terminal via UNIQUE as shown in Figures 2-33, 2-34, and
2-35 .

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

ALABAMA6666666MONTGOMERY~

ALABAMA666666ABIRMINGHAM66666666666666683258886666666
ALABAMA6666666HUNTSVILEAA666666666666668143888A666666
ALABAMA6666666MOBILE66666666666666666668215888A666666
ALABAMA~l'Jl.MONTGOMERYA666666666666668152888A666666

ALASKAA66666666666666666666666666666666JUNEAU66666666
ALASKA66666666ANCHORAGE666666666666666688528886666666
ALASKAA6666666FAIRBANKSA6666666666666668881988l'JI.~

ALASKAA6666666JUNEAUA66666666666666666A8886888l'JI.~

ARIZONA~666666666666666666666666666PHOENIX6666666

ARIZONA6666666PHOENIXA6666666666666666A8515888AA66666
ARIZONA6666666TUCSONAN\666666666666666682488886666666
ARKANSAS6666666666666666666666666666666LITTLEAROCK~

Figure 2-28. ST-CITY Indexed File with Two Record Types

8 12

IDENTIFICATION DIVISION.
PROGRAM-ID .. BIG-CITY-DEF.
DATA DIVISION.
FILE SECTION.
FD ST-CITY.

01 STATE-REC.
02 STATE PIC
02 FILLER PIC
02 CAPITAL PIC

0 1 CITY-REC.
02 STATE PIC
02 CITY PIC
02 POPULATION PIC
02 FILLER PIC

DEFINITION DIVISION.

DEFINED FILE BIGCITY

DEFINED RECORD STATE-RECORD

FROM STATE-REC

IDENTIFIER STATE

ITEM CAPITAL

DEFINED RECORD CITY-RECORD

FROM CITY-REC

PARENT IS STATE-RECORD

IDENTIFIER CITY

ITEM POPULATION.

x (14).
x (2 5) .
x (14) .

x (14) .
x (2 5) .
9 (7) .
x (7).

Figure 2-29. Data Definition for the Defined File BIGCITY

2-60

•

UP-8614 Rev. 1

•

•

•

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

ALABAMA/\/\/\/\/\/\/\MONTGOMERY~60004

BIRMINGHAMM~M/\/\/\/\/\/\M0325000

MOBILE/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\0215000
HUNTSVILLEM~/\/\/\/\/\/\/\/\/\/\0143000

MONTGOMERYMM/\/\/\/\~M0152000

ALASKA/\/\/\/\/\/\/\/\JUNEAU~~0003

ANCHORAGE/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\0052000
FAIRBANKS~~/\/\/\/\/\/\/\/\660019000

JUNE AU/\MM/\~~~M0 0 0 6 8 0 0

ARIZONAM~MPHOENIXMMM60002

PHOENIX/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\0515000
TUCSON/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\0240000

ARKANSASMMMLITTLE6ROCK~0001

LITTLE6ROCK66M/\/\/\/\/\/\/\/\660135000

Figure 2-30. STATE-RG Indexed File Containing a Repeating Group Item

8 12

IDENTIFICATION DIVISION.

PROGRAM-ID. BIG-CITY-DEF-1 .

DATA DIVISION.

F I LE SECTION.

FD ST-RG.

0 1 STATE-REC.

02 STA TE PIC
02 CAPITAL PIC
02 COUNT PIC
02 CITY-ENTRY;

OCCURS 0 TO 5 TIMES
DEPENDING ON COUNT

x (14) .
x (14) .
9 (4) .

ASCENDING KEY IS
03 CITY

CITY.
PIC X(25).
PI C 9 (7). 03 POPULATION

DEFINITION DIVISION.
DEFINED FILE BIGCITY
DEFINED RECORD STATE-RECORD

FROM STATE-REC
IDENTIFIER STATE
ITEM CAPITAL

DEFINED RECORD CITY-RECORD
FROM REPEATING GROUP CITY-ENTRY
PARENT IS STATE-RECORD
IDENTIFIER CITY
ITEM POPULATION.

Figure 2-31. BIGCITY Data Definition Derived from a Repeating Group Item

2-61
Update A

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-62

2.4.4.3. Hierarchical Defined Records Using Two ISAM Files as Source

A third data definition of the BIGCITY defined file is given in Figure 2-32c. In this example,
the city and state records come from sources that are in two different ISAM files; the state
records come from the logical file ST-FILE, and city records come from the logical file EN
CITY. Each state record contributes a pointer that IMS 90 uses to locate the set of city
records that are its child-type records in the hierarchy. Figure 2-32 shows the relationship
of the two ISAM files to each other and to the defined file.

Figures 2-33, 2-34, and 2-35 show the resulting records defined in this data definition as
they are delivered to the user action program and as they appear at the terminal via
UNIQUE.

ALABAMA666666683444165MONTGOMERY~22

ALASKA~LLIBB382173JUNEAU6666666649

ARIZONA666666681772484PHOENIX6LL1~48

ARKANSAS~LLIB1932295LITTLE6ROCK6LL125

CALIFORNIA~l9953134SACRAMENT0~31

COLORADO~LLIB2287259DENVERA666666638

CONNECTICUT6LL103832217HARTFORD~B5

DELAWARE~00548104DOVER6LL\66666~ .,._
FLORIDAA66666686789443TALLAHASSEE6LL127\
GEORGIA666666604589573ATLANTA6LLl~04 1

a. ST-FILE, alphabetic ISAM file

I
I
I
I
I
I
I

A"" _______________________ J

@)w1LMINGTONA666666666666660885BOO
02ERIE6666666666666666L~0134000

02PHILADELPHIA666666666666628150BO

21PEORIA666666666666666~013500B

22BIRMINGHAM6666666666666660325000
22HUNTSVILLEA666666666666668143000
22MOBILE66666666666666666660215000
22MONTGOMERY6666666666666660152000
23PORTLAND~6666666666660867eee

24ST6LOUIS~6666666666668665000

25LITTLE6ROCK£ill6666666666660!3500B

b. EN-CITY, city data ordered by state entry number

8 12

IDENTIFICATION DIVISION.
PROGRAM-ID. BIG-CITY-DEF-2.
DATA DIVISION.
FILE SECTION.

01 STATE-REC.
_ 02 STATE-NAME

(

FD ST-FILE.

PIC
PIC
PIC
PIC

x (14) .
9 (8) . 02 STATE-POP

~. 02 CAPITAL
1 02 ENTRY

x (14) .
9 (2) .

: {FD : 01
I
I
I
I

EN-CITY.
E-CY-REC.
02 ENTRY-NUMBER
02 CITY-NAME
02 CITY-POP

PI C 9 (2) .
PIC X(25).
PI C 9 (7) .

DEFINITION DIVISION.
DEFINED FILE BIGCITY PASSWORD
DEFINED RECORD STATE-RECORD

FROM STATE-REC
IDENTIFIER STATE FROM STATE-NAME
ITEM CAPITAL
ITEM E~TRY HIDDEN

DEFINED RECORD CITY-RECORD
FROM E-CY-REC
PAR TE-RECORD

FROM CITY-NAME
ITEM POPULATION FROM CITY-POP.

c. Data definition for BIGCITY defined file

Figure 2-32. Derivation of B/GC/TY Defined File from Two Distinct Files Using Pointers

l------

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2.4.4.4. Defined File Resulting from Different Logical File Sources

2-63

Figure 2-33 illustrates the first defined records of the BIGCITY defined file that IMS 90
delivers in main storage to the user action program in response to a series of GET function
calls. When each GET function call is issued, all fields of a defined record plus one status
byte per field are moved to the action program.

ALABAMA~.66MONTGOMERY~

ALABAMA666666ABIRMINGHAM6666666666666660325000
ALABAMA~.66HUNTSVILLE66666666666666A0143000

ALABAMA6666666MOBILEA6666666666666666660215000
ALABAMA~.66MONTGOMERY6.666666666666660152000

ALASKAA66666.66JUNEAU6.66~

ALASKA66666666ANCHORAGEAA666666666666660052000
ALASKA66666666fAIRBANKS~A666666666660019000

ALASKA66666666JUNEAU6.666666666666666~0006800

ARIZONA6666666PHOENIX~.66

ARIZONA~.66PHOENIX6666666666666666660515000

ARIZONA6666666TUCSON66666666666666666660240000
ARKANSAS~.66LITTLE6ROCK6.66

Figure 2-33. Defined Records from the BIGCITY File as Delivered to Action Programs

Figure 2-34 is the terminal display of the BIGCITY file in response to a UNIQUE LIST
command. Note that a leading asterisk indicates a line of item names that serve as column
headers. A period indicates a line of item values that comprise an occurrence of a defined
record. Because the identifier of each city record consists of both state and city names,
UNIQUE replaces the state name with a hyphen to conserve screen space.

Figure 2-35 and 2-36 illustrate the corresponding description of the receiving space that
accommodates the parent and child defined records in the user COBOL and BAL action
programs .

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

2-64

~~~~~~~~~~~~~~~~~~~~ 

• STATE 
• -CITY 

ALABAMA 
-BIRMINGHAM 
-HUNTSVILLE 
-MOB I LE 
-MONTGOMERY 
ALASKA 
-ANCHORAGE 
-FAIRBANKS 
-JUNEAU 
AR I ZONA 
-PHOENIX 
-TUCSON 
ARKANSAS 

CAPITAL 
POPULATION 

MONTGOMERY 
325,IHHl 
143,999 
215,999 
152,999 

JUNEAU 
52,999 
19,999 
6,899 

PHOENIX 
515,999 
249,999 

LITTLE ROCK 

Figure 2-34. Defined Records from the BIGCITY File as Listed at the Terminal by UNIQUE 

8 12 

01 WORK-AREA. 
92 STATE-RECORD. 

93 STATE PIC x ( 14) . 
93 CAPITAL PIC x ( 14) . 

92 S-STATE-RECORD. 
93 S-STATE PIC x. 
93 S-CAPITAL PIC x. 

92 CITY-RECORD. 
93 STATE PIC x ( 14) . 
93 CITY PIC x ( 2 5) . 
93 POPULATION PIC x ( 7). 

92 S-CITY-RECORD. 
93 S-STATE PIC x. 
93 S-CITY PIC x. 
93 S-POPULATION PIC x. 

Figure 2-35. Description of STATE-RECORD and CITY-RECORD in COBOL Action Program 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

10 16 

WORK DSECT WORK AREA 
ST REC EQU 
SST ATE DS x Ll4 
SCAPIT DS x Ll4 
SSTATE#S DS x 
SCAPIT#S DS x 
CITY#REC EQU 
SCSTATE DS XL 14 
SCCITY DS XL2 5 
SC POP DS XL7 
SCSTAT#S DS x 
SCCITY#S DS x 
SCPOP#S DS x 

Figure 2-36. Description of STATE-RECORD and CITY-RECORD in BAL Action Program 

2.5. EXECUTING DATA DEFINITION PROCESSOR 

2-65 

After the data definition is prepared, it must be submitted to the data definition processor 
(data definition processor), whose module name in OS/3 is DT3DF. The data definition 
processor writes a data definition record into the named record file (NAMEREC) and 
produces a diagnostic listing. Multiple defined files must be created in separate runs of the 
data definition processor but can be written to the same NAMEREC file. The data 
definition processor cannot write to the NAMEREC file while IMS 90 is accessing 
NAMEREC. The NAMEREC file must be initialized before the data definition processor is 
executed for the first time. Initialization procedures are described in the IMS 90 system 
support functions user guide/programmer reference, UP-8364 (current version). Note that 
if the NAMEREC file is reinitialized at any time, all data definitions must be recompiled. 

2.5.1. Data Definition Processor Options 

You can present parameters to the data definition processor via the optional PARAM 
statement. The format is: 

II PARAM parameter-1 [, ... ,parameter-n] 

PARAM statements should be placed immediately following the EXEC job control 
statement (/I EXEC DT3DF) in the execution job control stream. The data definition 
processor prints these on the first page of the diagnostic listing. If a PARAM statement 
format error or an illegal parameter is encountered, a system console message is produced 
and the data definition run is terminated. Only one blank precedes the P of the word 
PARAM. 

To produce a single-spaced diagnostic and source listing, you must specify the following 
PARAM statement: 

II PARAM LST=(L,S) 

t 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

2-66 

The format for the source library PARAM job control statement is: 

II PARAM IN=program-namelfile-name 

where: 

program-name 

Is a 1- to 8-character name of your source data definition program. 

file-name 

Is a 1- to 8-character name used to identify the file on which your source data 
definition program resides. This name must appear on the LFD job control 
statement you used to define this device. If the file-name is omitted, the name 
$Y$SRC is automatically supplied. 

The format of the PARAM statement for copy library input is: 

II PARAM LIN=file-name 

where: 

file-name 

Is a 1- to 8-character name used to identify the file on which your COPY library 
resides. This name must appear on the LFD job control statement you used to 
define the device. If the !He-name is omitted, the name COPY$ is automatically 
supplied. You supply the COPY element-name in your source data definition 
p~ogram via the COPY clause. 

There are no output options available for the data definition processor. (// PARAM 
OUT=(M) is specified only for a COBOL action program, never for the data definition 
processor.) 

• 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

2-67 

• 2.5.2. Execution Run Streams 

• 

• 

To execute the data definition processor, having previously allocated the NAMEREC file 
using the ZP#NRU utility or the configurator, you code and execute a job such as DATADF. 
(See sample control stream in Figure 2-37.) The main storage requirement for the data 
definition processor is 50K bytes. 

II JOB DATADF. ,C000 
II DVC 20 II LFD PRNTR 
II OPTION DUMP 
II DVC 50 II VOL DS9999 II LBL NAMEREC,DS9999 II LFD ISAMNRF 
II WORKl 
II WORK2 
II WORK3 
II EXEC DT3DF 
1$ 

source cards 

source cards 
I• 
I& 
II FIN 

Figure 2-37. Executing the Data Definition Processor (DT3DF) 

In addition to the job control and PARAM statements already discussed, the most 
important part of your input to the data definition processor is your source statements 
(2.3). Figure 2-16 provides a consolidated format of the defined file definition which can 
be used when studying the sample diagnostic listing produced by the OS/3 data definition 
processor (see Figures 2-38 and 2-39). 

2.5.3. Data Definition Processor Output Listing 

The printed output provided by the data definition processor comprises a source listing of 
the input to the data definition processor and, when the processor has successfully 
created a data definition record, a COBOL description of the defined file. Each defined 
record and subrecord is described as a COBOL group item such as required in a COBOL
written action program accessing the file. Included with each defined record description, 
the processor listing describes the item status bytes, one for each elementary item defined 
in the data definition record above it. The processor generates each item status byte data 
name by prefixing the data name of the corresponding elementary item with 'S'-. This 
provides a data name for accessing each item's status byte if a test is made for the 
completeness and validity of data transfer after retrieving a record from the defined file in 
the action program . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

2-68 

Figure 2-38 is a listing compiled by the data definition processor for the defined file • 
SECOUNT. Part 1 lists the source input. Part 2 shows the COBOL description of the 
defined file, the description of the defined record LIQUOR. and the description of the item 
status bytes. The last line of output contains the statement DATA DEFINITION COMPLETE, 
followed by compilation time figures. When a subfile definition is input to the data 
definition processor, the last pages of the output listing have the format shown in Figure 
2-39, in which a defined file and subfile (ZR and CH-ZR) are described. 

LlitoE "0, SH, 

)0)0l 
)0)0! 
)0)01 
)0)04 
)O;os 
)0)011 
)0)0, 
)OJO~ 
)0)0• 
)0)10 
30311 
)OJU 
JO)ll 
J0)l4 
JO)U 
J0'1fl 
JOJU 
JOJl~ 
00'1• 
JOJZn 
OOJzt 
OOJzz 
JOJU 
JOJh 
ooon 
00021> 
JOJZ,, 
0002~ 
JO)Zt 
JOJJO 
)0)Jl 
OOJU 
OO)Jl 
JOH4 
:>OJJS 
:>OJJfl 
JOJU 
)OJJ' 
)Q)Jt 
00)40 
J0)4l 
JOJO 
)0)0 
J0J44 
)0)45 
)0)411 
J0J4' 
)0)0 

SOURCE STATEMENT 

IDE~TIPICATlnN DIVISION, 
PRJGRAM•ID, DD'T&, 
lATA DIVISION, 
FILE SECTION, 
FD DUEIN, 
Jl LIUE-IN, 

OZ FILLE• 
OZ DUEIN•KfYo 

OJ DUEIN•NAME 
OJ DUEIN•SIZF 

02 YENOO• 
UZ QUAN-llUE-IN 

FD DUEOUT, 
Jl DUE•OUT, 

oz F ILLE• 
UZ OUEOUT·KEY, 

PIC 1 1 

PIC XIUI, 
PIC XIZI, 

PIC •121 USAGE CnMP-4, 
PIC 9121 USAGI COHP-4, 

PIC X, 

OJ DUFOUT•N&Mf PIC Xl151, 
OJ OUPUUT•SIZE PIC x121, 

OZ DUEOUT-TOTAL PIC 9111 USAGE CUMP·•. 
UZ OUEOUT·ORDER OCCURS ' TIMES, 

OJ CUSTOMER•KEY PIC X151, 
OJ QUAN.QUE.OUT PIC Xlzl, 

FD PROOFIL, 
J1 P•OD•EC, 

CIZ "UD-KEY, 
OJ PR'IO•r.AME 
OJ PRnD•SIZE 

02 PROO-TYPE 
UZ O~·MA"D 
oz DUE•IN-FLlG 
Ill DUE-OUT•FLAG 
U2 STUCk•LEYlL 
uz REUROFR•PDINT 
(;Z u~;n-nF•ISSUE 
l'Z COST 
OZ SUUTITUTE 
CJZ PROD-VENDOR 
oz FILLE• 

FD ~ENDUR, 
J1 YENOR EC, 

PIC XllSI, 
PIC XIZI, 
PIC XIZI, 
PIC 91ZI USAGE CUMP·•. 
PIC x, 
PIC x, 
PIC 9121 USAGE COMP-•, 
PIC 9121 USAGE CO~P-•, 
PIC XIZI, 
PIC 9141Yt9 USAGE CUMp-J, 
PIC XllTI, 
PIC 9121 USAGE COMP-4, 
PIC XIZll~ 

·OZ YENn-NAME PIC XIZOI, 
OZ VEND·AODR PIC XIJ51~ 

JEFINITION DIVISION, 
JEF PIED FILE SE COUNT P&S'lllOR", 
Jf'lNED ~ECORD LIQUOR FR'IM PRQOREC 

ALLOW ADD ANO DELETE 
IDENTIFIFR P•OD•NAHE 
IOENTIFIFR t•ANO FRUM PRDO•SllE 

Figure 2-38. Complete Data Definition Processor Output Listing (Part 1 of 2) 

• 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

2-69 

:1034• 
:IOHO 
:10'51 
:10)5P 
:10)5J 
:10:15• 
)0'55 
)0)5 .. 
:10)5T 
)0)51 
)0)H 
:10)•(1 
:io:iu 
:io:iu 
:io:iu 
:10:1 .. 
:IO't' 

'"'•• :io:in 
:103•• 
)0) .. 
:IO:ITll 
:10:171 
:ionr 
:IO:ln 
:10:17-
::10:17' 
:io:in 
:io:in 

ITEM PTYPE FllOM PROD-TYPE 
ALLOll CHANGE 

ALLOll CHANG! 
ITEM UNIT FROM UNIT-DF-ISSUE 

ALLOW C '4ANGF 
ITEM COST 

ALLOll C•IANGF 
SU'PLEMENT nuE-DUT·SUPP 

FllOM DUE•OUT 
ASSUMES CQNTllOLLED 
POINTER IS PllOD•NAMf, 8RAND 
ITEM DUE•OUT FROM DUfOUT•TDTAL 

ALLllll CHANGE 
SUPHEMEf\T D'Jf•IN•SU" 

FllOM DUE•IN 
ASSUl4ES CONTROLLED 

POINTER IS PllQD•NAHE lltANO 
ITEM VINDOll 

ALLOW CHANGE 
MUST ADD 

ITIM DUE•IN fllDM QUAN•DUF•IN 
ALLOW CHANGE 

SU'PLEMENT VFNDllEC 
fllOM VENORIC 

ASSU~ES CONTllOLLING 
POINTER IS YENnOll 
ITEM VEND•lllAMf 
ITEM VEND•ADDll 

THE FOCl"Wti-.r. I~ THE CJBflL DFSCRIPTlflN OF THE DEFl"'E" FILE SECflU"T 
o~ Hcnu~T, 

• • • • • * • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• l'EFl~E> P.fCO'P • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

OJ LIQJl'R 
0'< PROD·~:AHE 
Olt 9RAND 
Olt PTYPE 
Olt r,•l.HA,.D 
O<t U'llT 
O• C'lST 
O• OJE•OllT 
o• vrNou~ 
Olt ~UE•P 
0 <t vEND•'-AHE 
O• \/F.ND•ADDR 

PIC 
PIC 
PIC 
PIC 
Pit 
PIC 
Pit 
PIC 
PIC 
PIC 

'" 

XI 151, 
XIOl I, 
X(OZI, 
9IOZI 115'Gf IS C1MP-4, 
X(Oll, 
9COHV'l9 
9COZI •J5'Gf 
9(0ZI •IUGE 
9 (OZ I •J~AGt 

X(ZOI, 
XI 351, 

USAGE IS tOllP•3, 
IS C'1MP•it, 
IS COMP-4, 
IS COllP•4 1 

• THf lEFI~~" -~CURD ~Ill AUTUHATICALLY INCLl~f OlllF HATUS BYTE Ju~ EACH ELEMENTARY ITEM DEFINED AROVE 

DOHA 

flJ 5-LIQUOlt, 
O• S•PP.'ll'•NAMf 
o• s-•llA~·'D 
o• s·'fYDE 
O<t S•ON·"AND 
Olt S•UNIT 
O<t S·COST 
Olt S·DUE•OUT 
o• s-VE'IC'UR 
O• S•DUE•IN 
O• S·VfNC•NAMf 
o• s-vF>;o.aonk 

PIC x, 
Pit X, 
PIC x, 
Pit X, 
PIC x, 
Pit X, 
PIC X, 
PIC X, 
P!C x, 
Pit X, 
PIC x, 

Figure 2-38. Complete Data Definition Processor Output Listing (Part 2 of 2) 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

THE FOLLO•ING 15 TN[ CO!OL Ot5Cllll'TION OF THC DCf INCO flL[ 111, 
C'' ,,. • . . . . 

• OU INfO •lCOllO • • . . . . 
03 1111011•0 

O• lllJOJO 
O• ZllJDNll 
O• lll"L 
O• lllltlLEI 
o• Zlllf IL£2 
O• llll[ILC3 
o• llllEILt• 
O• Ziil[ Ill! 
O• lllHILH 

• THE DEFINCD 11[(0110 lllLL IUTONITICILL' 

(:' 

03 5·1UDll•O• 
o.. ~-z•uo•o 

O• 
O• 
D• 
O• 
O• 
O• 
O• 
O• 

l t't• Z foi, 

!·llUD"ll 
5-lllNL 
!·lRH ILC I 
5•llll£1LC2 
5•llllEILE3 
5·Zlll£ IL£• 
s-z•HIL£5 
5-llllEILEt 

. . . . . 
• DEF l"ED RECORD 

Ott l••O•O 
D• lll•D"R 
O• lllNL 
O• lR«O•O 

D• lllHILEI 
• TH£ DEflNEt RECORD lllLL IUTONITICILL' 

03 5•CH•llllDllaO, 
u• ! • l fiJ OJ 0 

D• s-zuo"" 
O• 5 • l II NL 
O• !-·Z••OllO 
D• 5·111HIL£1 

00~1! 

. . . . 
. . . . . 

l'IC • t05 I 
I' IC II De •• 
I' IC 11011 o 
l'IC 1130 •• 
I' IC 1130 •• 
I' IC 1130 •• 
l'IC 11JD1, 
I' IC 11 JO Io 
l'IC 1130 •• 

INCLUDE ONE 5 UT US ! TTE FOii 

I' IC •• 
I' IC I' 
I' IC 1. 
I' IC I' 
,. IC •• 
l'IC I' 
I' IC I' 
'IC •• 
P IC •• 

I' IC • 105 I 
I' IC llCI f, 
l'IC 1102 •• 
I' IC 9105 I 
I' IC 11JO1, 

I "CL UDE ONE 5 UT US e TTE FOii 

I' IC J. 
I' IC I• 

"IC I• 
I' IC I• 
I' IC I' 

2-70 

. . 
.. . . . . 

USAGE 15 CONl'•J, 

EACH EL£NC"TAllT ITCN D[f l"CO AIOVE 

. . 

. . 

EACH (L[NCNTAllT I TCOI D[f INED •eovr 

. . . . . . 

. . . . . . . . . 

Figure 2-39. Last Page of Data Definition Processor Listing Showing COBOL Description of a Defined File and a Subfile 

2.5.4. Error Processing by Data Definition Processor 

In processing your input, the data definition processor acts like a COBOL compiler; it subjects 
the entire input to scrutiny for syntactical errors and issues diagnostics. 

The data definition processor applies the rules of COBOL to the data division of the input 
and issues COBOL diagnostics for this division. The COBOL reserved word list applies to 
the data division of the input to the data definition processor as well. When processing the 
definition division, however, the data definition processor applies not only the appropriate 
standard COBOL rules, but also rules of its own. (See 2.3.1.) Detected violations of these 
rules result in the issuance of diagnostics from a set unique to the data definition 
processor. These diagnostics are listed in Table 2-2. 

Each diagnostic message contains the processor-generated line number on which the 
error occurred, the diagnostic severity code, the diagnostic number, and the diagnostic 
message text, in that order. 

• 

• 



e e 
Table 2-2. Compilation Time Diagnostics Unique to the IMS 90 Data Definition Processor (Part 1 of 2) 

Masagm S...erity 
Explanation 

Number Code 
Diagnostic Message 

Reason Rule 

139 u -SUSPEND CHECKING INVALID SOURCE Beginning at this source line, No validitY checking for 
STATEMENTS ON THIS LINE. the data definition processor syntax of data definition 

does not recognize source input source statements occurs 
as data definition language. until some succeeding 

statement is recognized. 

140 u -RESUME CHECKING SOURCE STATEMENTS Having previously issued diagnostic Error processing continues, 
ON THIS LINE. 139, the data definition processor beginning with this source 

again recognizes source input as line. 
data definition language. 

159 u REFERENCE TO insert INVALID Self-explanatory Refer to 2.3 for the rules for each 
statement. 

160 u DEFINITION IS TOO LARGE The length of the data definition Block size for the NAMER EC file 
record exceeds the blocksize specified specified with the NBLK keyword 
for the NAMER EC file. parameter of the IMSCONF jproc .... or the BLKSZE parameter of the 

ZP#NRU utility. It ranges 
between 1024 and 12,800 bytes 
but most not exceed disk track size. 

161 c CHANGE TO NEUTRAL SUPPLEMENT IS The processor has encountered the If the ALLOW CHANGE option is 
ILLEGAL. ALLOW CHANGE option specified in specified for an item, its 

a supplement for which no ROLE RO.LE IN UPDATE must be 

IN UPDATE is specified, or whose CONTROLLED. 
update ROLE is specified as NEUTRAL. 

162 c CHANGE TO CONTROLLING SUPPLEMENT The processor has encountered the If the ALLOW CHANGE option is 
IS ILLEGAL. ALLOW CHANGE option specified in a specified for an item, its 

supplement whose ROLE IN UPDATE ROLE IN UPDATE must be 
is specified as CONTROLLING. CONTROLLED. 

-
Recovery 

If preceded by another 
diagnostic for the same 
line number, recovery for 
that diagnostic will 
usually suffice, but the 
remainder of this line 
might contain another 
error. Otherwise, this 
line contains an error that 
that is not embedded in a 
recognized statement wpe. 

None required. All line• 
for which validity checking 
was skipped should be 
scanned for possible 
error, before recompiling. 

Correct the data definition 
and recompile. 

Reduce size of the data defi· 
nition record and recompile. 
The line number indicated is 
the one which caused the over· 
flow. 

Alternatively, specify a larger 
block size for the NAMEREC 
file and reconfigure. 

Correct the data definition 
and recompile. Your action 
program logic may also 
require revision. 

Correct the data definition 
and recompile. Your action 
program logic may also 
require revision. 

c ,, 
Co 
Ol -~ 
::0 
CD 
<: 

- en s:: ,, 
en m 
c.o ::0 
o~ 
)> c ,, z ,, -
c~ 
~ (") 

::lo o en z ...... en w 

N 
I 

-...J 



Table 2-2. Compilation Time Diagnostics Unique to the IMS 90 Data Definition Processor (Part 2 of 2) 

Miu..- Severity 
Expl.,•tion 

Number Code Diagnostic Menage 
Reason Rule 

163 c ADD TO NEUTRAL SUPPLEMENT IS The processor has encountered a If the MUST ADD option is 
ILLEGAL. MUST ADD statement specified for specified for an item, its 

a supplement for which no update ROLE IN UPDATE must be 
role is specified or for which CONTROLL~D. 
ASSUMES NEUTRAL ROLE IN UPDATE 
is specified. 

164 c ADO TO CONTROLLING SUPPLEMENT The processor has encounterd a Same as 163. 
IS ILLEGAL. MUST ADD statement specified in a 

supplement for which ASSUMES 
CONTROLLING ROLE IN UPDATE is 
specified. 

165 u CANNOT ADD OR DELETE CONTROL BREAK. The processor has encountered one of The ALLOW ADD AND DELETE 
three options of the ALLOW ADD AND statement cannot be specified 
DELETE statement specified for a for a defined record for 
defined record for which a FROM which FROM CONTROL BREAK 
CONTROL BREAK statement is also is also specified. 
specified. 

166 u CANNOT ADD OR DELETE REPEATING The processor has encountered one The ALLOW ADD AND DELETE 
GROUP. of the three options of the ALLOW statement cannot be specified 

ADD AND DELETE statement specified for a defined record for 
for a defined record for which a FROM which FROM REPEATING GROUP 

+ 
REPEATING GROUP statement has is also specified. 

been specified. 

167 u SEE CONSOLE FOR DMXX OS/3 ISAM has issued a numbered data None. The actual OS/3 data 
management error message to the management message number, 
system console, reflecting an error the prefix of which is "OM", 
detected during processing of the will appear at the system 
NAMER EC file by the data definition console and on the console t 
processor. output printer (COP) sheet 

for the run. 

e· e 

Recovery 

Same as 161. 

Same as•161. 

Same as 161. 

Same as 161. 

According to the nature of 
the error detected or 
reported to ISAM. Refer to 
the OS/3 system messages 
operator /programmer 
reference, UP-8076 (current 
version I and to the data 
management user guide, 
UP-8068 or programmer 
reference, UP-8159 (current 
versions). 

e 

c .,, 
Co 
O> -~ 
:xJ 
Cl> 
~ 

- CJ) s: .,, 
en m 

~~ 
)> c .,, z 
;2 < 
c=; )> 
)> (") 
:::!o 
0 CJ) 

z '
CJ) w 

"I' 
-..J 
N 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

2-73 

Definitions of diagnostic severity are as follows: 

• P (precautionary) 

No source language error detected, but an unusual or potentially undesirable 
condition noted by the data definition processor. 

• C (changed) 

A character, word, clause, entry, or statement in the source program is omitted or 
used incorrectly. To compensate for the error, the item has been changed by the data 
definition processor to avoid its deletion and reduce the probability of error 
propagation. A data definition record is not created. 

• U (uncorrectable) 

A source language error detected causing the data definition processor to delete a 
character, word, clause, entry, or statement from the source program. The compilation 
continues, but other errors may result because of the deleted item. A data definition 
record is not created. 

• S (compiler restriction exceeded) 

The compilation continues but, to generate code for the excessive items, a 
recompilation is necessary after source program modification or with more storage 
assigned to the compiler. 

Figure 2-40 shows the last page of output from an unsuccessful run of the data definition 
processor, during which it was not possible to construct the desired data definition record 
and error testing was not completed. The diagnostic messages listed happen to be limited 
to the set that is unique to the data definition processor; however, COBOL diagnostics 
would be listed in the same manner and location. 

DOPT3 COllPI~ED dV UNIVAC OS/l DATA D(FINITION PROCESSOR VCR 

LINEt SVC ERROR JI AGNOSTIC MESSAGE 

DD0b9 C 1&3 
00071 c lbl 
00077 U I bO 

AOD TO NEUTRAL SUPPLEMENT IS ILLlC.AL-. 
CHANGE 10 NEU!RAL SUPPLEllENT IS ILLEGAL, 
JEFINlllON IS 100 LARC.£. 

DOE 7StD9/ID TillC 2 S5 50 

PAGE OOODl 

IH[ OATA DEFINITION R[;:ORO COULD NOT IH CR[Al[O, ERROR ![STING WAS NOT COllPLETEO. PLEASE, CO~IHCT Ai'<O UCOllPILE. 
OOPIJ OATAO[FINlllONCOllPLETE SlART 25S50ENO 25&23 

Figure 2-40. Last Page of Data Definition Processor Listing from Unsuccessful Run 

/ 





• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-1 

3. User-Written Action Programs 

3.1. DESCRIPTION 

Action programs operate under the application management component of IMS 90; they 
process input messages and generate output messages. Action programs operate as 
subprograms to the configured IMS 90 online program. Some action programs are 
provided as a standard part of IMS 90. For example, the uniform inquiry update element 
(UNIQUE) is a series of action programs. 

You can also write your own programs for applications that cannot be implemented with 
UNIQUE. Some applications require more extensive data validation for update operations 
than UNIQUE can provide. Other applications require special output formats. These 
requirements and others are accommodated within the general framework provided for 
user-written action programs. This section describes the framework within which you 
write your own action programs. 

Action programs can be written in COBOL, RPG II, or BAL. The current versions of the 
following OS/3 documents can be referenced when preparing these programs: 

• extended COBOL supplementary reference, UP-8059 

• 1974 American National Standard COBOL programmer reference, UP-8613 

• report program generator (RPG II) programmer reference, UP-8044 

• assembler programmer reference, UP-8227 

If your action programs access a OMS 90 data base, see the current versions of the 
following manuals: 

• IMS 90/0MS 90 interface user guide/programmer reference, UP-8748 

• OMS 90 data description language user guide/programmer reference, UP-8022 

• OMS 90 data manipulation language user guide/programmer reference, UP-8036 

COBOL and BAL action programs also can call user-written resident subprograms . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.1 .1. Action Program Environment 

3-2 

An action program is scheduled for execution either because an input message is received 
that must be processed by the action program or because one action program has 
designated another action program as its immediate successor. In either situation, when 
execution of the action begins, a standard environment exists in which it carries out its 
processing. The environment is shown in Figure 3-1. 

The environment consists of certain main storage areas, each of which has a specialized 
function, and a set of standard interfaces to IMS 90 for all file input/output, message 
output, and program termination requests. 

Because of the requirement that action programs must be at least serially reusable, no 1/0 
areas or other main storage areas with varying contents can be compiled or assembled 
into an action program. When application management activates an action to process an 
input message, the variable main storage areas that are required are dynamically allocated 
from the IMS 90 main storage pool. Accordingly, when the action scheduling component 
of application management calls the action program, it passes a list of addresses of the 
dynamically allocated areas. 

Action Program 
Initiation and 
Termination 

All User File 
I /0 Functions 

Explicit 
Message 
Output 

LEGEND: 

D Required 

~=J Optional 

IMS 90 Components Called 
by Action Program 

ACTION 
SCHEDULING 

FILE 
MANAGEMENT 

INTERNAL 
MESSAGE 
CONTROL 

M'd Cannot be written into by user program 

ACTION PROGRAM 

Areas Dynamically Allocated 
_b_y__Action Scheduling 

INPUT 
MESSAGE 

AREA 

f'ROGRAM 
INFORMATION 

BLOCK 

r--- -- ---, 
I 
I 
I 

--+! 
WORK 
AREA 

I 
I 

I 
I I 

L----------.J 

I r----------. 
-1 I I I 

I I 
1 

CONTINUITY : 

I 
I 

I L..j DATAAREA I 
I I 
I 
I 

I 

I I 

L---------.J 
I r---------1 
I I 

I I 

'--I 
OUTPUT 
MESSAGE 

AREA I 
I 

L----- -----' 

L--

Figure 3-1. Action Program Environment 

Input Message Area 
contains input message 
at action program 
initiation 

Program Information 
Block used by action 
program to communicate 

internally with I MS 90 

Work Area used for file 
1/0 logical record areas 
and working storage 

Continuity Data Area 
used in dialog transactions 

Output Message Area 
contains output message 
at action program 
termination 

Defined Record Area 
used by defined record 
management if defined 
files are accessed • 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-3 

Two main storage areas are always present: the program information block and the input 
message area. The program information block is used to communicate information 
between IMS 90 functions and an action program at initiation, after 1/0 functions, and at 
termination. The input message area contains the input message that caused the action 
program to be scheduled. 

The work area, output message area, continuity data area, and defined record area are 
optional. The work area is a general-purpose area used for working storage, logical record 
areas during file 1/0 functions, or output messages sent explicitly. The output message 
area normally is used to build an output message that is sent to the originating terminal 
when the action terminates. The continuity data area is used to pass data from one action 
to another. It is saved by action scheduling at the termination of one action and restored 
upon initiation of the next action in a dialog. The defined record area is used by defined 
record management if the action program accesses defined records. It cannot be written 
into by the user program. 

The choice of the specialized main storage areas that are to be associated with a given 
action program, and what their sizes are to be, is made at configuration time and, in some 
cases, by the immediately preceding action at execution time. 

All file 1/0, explicit message output, and program termination requests made by an action 
program must be made through IMS 90 function calls. Transfer of control to a user-written 
resident subprogram also is made in this manner. 

3.1.2. Transaction Structures 

A transaction is one action or a sequence of related actions. Asimple transaction consists 
of one action; a dialog transaction consists of two or more related actions. 

, 

The structure of a transaction depends on whether that transaction is performed by a 
single action program, by more than one action program processing a single action, or by 
several actions dynamically sequenced. Transaction structures differ according to the type 
of termination specified in the action programs that process the transaction. There are four 
types of termination: 

1. Normal 

2. External succession 

3. Immediate internal succession 

4. Delayed internal succession 

The type of action program termination is specified in the termination indicator of the 
program information block (PIB). (See 3.6.1 .) 



UP-8614 Rev. 1 

3.1.2.1. Simple Transaction 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-4 

The structure of a simple transaction is shown in Figure 3-2. A message is input from a 
terminal and contains a transaction code as the first one to five characters. The 
transaction code is used to look up the name of the action program that is to process the 
input message. For each transaction code, there can be only one corresponding action 
program. More than one transaction code, however, can designate the same action 
program. Transaction codes must be defined to IMS 90 at configuration time. 

The input messge is placed on a queue for the action program until scheduling occurs. The 
scheduling process consists of allocating the main storage areas required by the action 
program from the IMS 90 main storage pool, loading the action program from a disk library 
file if it is not already resident, moving the input message from the queue into the input 
message area, and passing control to the action program. Because Figure 3-2 is a simple 
transaction with a single action program, the use of the continuity data area does not 
apply. 

INPUT OF MESSAGE 

QUEUEING BASED ON 
TRANSACTION CODE 

RESOURCES 
ALLOCATED 

EXECUTION OF 
ACTION PROGRAM 1 

.._.._~~~~...-~~~~.1.-1~NORMAL 

TRANSACTION 
TERMINATION 
SPECIFIED 

RESOURCES DEALLOCATED 

OUTPUT OF MESSAGE 

Figure 3-2. Simple Transaction 

• 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-5 

The action program accesses files by calling on IMS 90 file management to request that 
the logical or defined records be placed in the work area. The text of the output message 
is built in the output message area. The action program then requests a normal 
transaction termination. The type of termination is specified in the PIB. 

This sequence of events is called an action within IMS 90. It always begins with the input 
of a message and ends with the output of a response. The simple transaction in Figure 
3-2 consists of a single action, performed by a single action program. (An action also can 
be performed by more than one action program as shown in Figure 3-4.) 

3.1.2.2. External Succession 

IMS 90 can establish a relationship between two or more successive actions. A 
transaction that makes use of this relationship is called a dialog transaction, which can 
consist of an arbitrary number of actions. The dialog transaction in Figure 3-3 consists of 
two actions. 

INPUT OF MESSAGE 

QUEUEING BASED ON 
TRANSACTION CODE 

ALLOCATION OF 
RESOURCES 

EXECUTION OF 
ACTION PROGRAM 1 

,__.._~~~~---~~~~......_. ..... EXTERNAL 

SUCCESSION 

DEALLOCATION OF 
RESOURCES 
SAVING OF 

CONTINUITY DATA 

OUTPUT OF 
MESSAGE 1 

.SPECIFIED 

INPUT OF MESSAGE 
2 

QUEUEING BASED ON 
SUCCESSOR ID 

ALLOCATION OF 
RESOURCES 

RESTORATION OF 
CONTINUITY DATA 

EXECUTION OF 
ACTION PROGRAM 2 

.._..._~~~~---~~~~.L....l~NORMAL 

TRANSACT! ON 
TERMINATION 
SPECIFIED 

DEALLOCATION OF 
RESOURCES 

OUTPUT OF 
MESSAGE 2 

Figure 3-3. Dialog Transaction, External Succession 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-6 

The example in Figure 3-3 is the same as Figure 3-2 up to the termination of action 
program 1. The action program in Figure 3-3 specifies in the PIB the name of another 

~ action as its successor and designates the type of termination as external succession. (The 
name of an action is the same as the name of the first action program in that action.) The 
deallocation of resources occurs as in Figure 3-2 except for the continuity data area. The 
contents of the continuity data area are saved in the continuity data file before the area is 
released. When input message 2 is received, it is queued for the action designated as the 
external successor. Input message 2 is not tested for a transaction code. When the new 
action is scheduled, the saved continuity data record is read into the new continuity data 
area for action program 2. 

How is the dialog transaction (Figure 3-3) different from two successive simple 
transactions like the one in Figure 3-2? First, in Figure 3-3, input message 2 does not 
contain a transaction code. It is immediately associated with the succeeding action 
designated by action program 1. In Figure 3-2, if a second simple transaction follows the 
one shown, the input message must contain a transaction code. Second, in Figure 3-3, a 
continuity data area is used to carry information from the first action to the second action. 
The action programs need not intervene to provide the continuity. In Figure 3-2, if a 
second simple transaction follows the one shown, information from the first transaction 
cannot be passed to the second (other than through the second input message or through 
a user data file). 

The action program structures shown in Figures 3-2 and 3-3 should meet the 
requirements of most applications. For applications that require greater flexibility in the 
allocation of resources during an action, there are two additional types of action program 
succession - immediate internal succession and delayed internal succession. 

3.1.2.3. Immediate Internal Succession 

The processing within an action may consist of the execution of two or more action 
programs in sequence. Figure 3-4 illustrates the execution of two action programs in a 
single action. The process is the same as in Figure 3-2 except when action program 1 
terminates. In this situation, the action program specifies in the program information block 
the name of another action program and designates the type of information as immediate 
internal succession. This effectively provides an overlay capability. 

Action program 1 is released, but the allocated main storage areas are held and no 
message is output. Action program 2 is then acquired; it is given control and access to the 
same main storage areas (program information block, input message area, work area, 
output message area, continuity data area, and defined record area) as its predecessor. 
Action program 2 completes the processing for the action and terminates. The normal 
transaction termination results in the deallocation of resources and the output of the 
message. 

Because immediate internal succession involves only one action, all files accessed by the 
successor program must be available when the initial program is executed. This means 
that they must be specified in the configurator ACTION section for that action. 



• 

• 

UP-8614 Rev. 1 

INPUT OF MESSAGE 

QUEUEING BASED ON 
TRANSACTION CODE 

ALLOCATION OF 
RESOURCES 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

ACQUISITION OF 
ACTION PROGRAM 2 

EXECUTION OF 
ACTION PROGRAM 2 

3-7 

.._..._~~~~...-~~~~.........,~NORMAL 

TRANSACTION 
TERMINATION 

EXECUTION OF 
ACTION PROGRAM 1 

,__..__~~~~r-~~~~...._,~IMMEDIATE 

INTERNAL 
SUCCESSION 

RELEASE OF 
ACTION PROGRAM 1 

SPECIFIED 

DEALLOCATION OF 
RESOURCES 

OUTPUT 
OF 

MESSAGE 

Figure 3-4. Immediate Internal Succession 

3.1.2.4. Delayed Internal Succession 

SPECIFIED 

In some situations, main storage areas as well as action programs must be changed 
during the processing of a message. This can be the case, for example, when some 
exceptional condition that is encountered only infrequently in an input message requires a 
different program with a much larger work area to carry out the processing. 

Delayed internal succession can be used to effect this dynamic change. 

Delayed internal succession also can be used to minimize the 1/0 area requirements for 
an action. During the scheduling of an action, IMS 90 must dynamically allocate 1/0 areas 
for all files referenced in the action. If many files are accessed in processing a message, 
some frequently, some rarely, then the frequently accessed files should be specified at 
configuration time for one action, and all of the other files should be specified for another 
action. 

The first action should be scheduled to process all messages from the terminal. If in 
processing a message it encounters an exceptional condition that requires a rarely 
accessed file, the first action should terminate and designate the second action as its 
delayed internal successor. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-8 

Delayed internal succession provides the only example of an action that apparently does 
not include both an input message and an output message. Actually, the first action builds 
an output message in the output message area, but this message is not sent to the 
originating terminal. Instead, it is queued as the input message to the second action. As a 
result, the second action does not require the input of a message from the terminal. In this 
type of structure, even though there is apparently only one input message and one output 
message, internally there are two separate actions, each with an input message and 
output message. 

Note that delayed internal succession when used in single-thread IMS 90 behaves like 
immediate internal succession; that is, the output message is not queued as an input 
message to the next action but, instead, is passed immediately to the successor action 
program. 

Figure 3-5 shows a transaction that employs delayed internal succession. This example is 
the same as Figure 3-2 up to the termination of action 1. The action program specifies in 
the PIB the name of another action as its successor and designates the type of information 
as delayed internal succession. The deallocation of resources occurs as in the first action 
in Figure 3-3. The output message of action 1, however, is not output to a terminal; it is 
queued as an input message to action 2. 

When the scheduling occurs for action 2, the output message from the previous action is 
provided as the input message. In addition, the continuity data record developed in action 
1 is made available in the new continuity data area for action 2. 

INPUT OF MESSAGE 

QUEUEING BASED ON 
TRANSACTION CODE 

ALLOCATION OF 
RESOURCES 

EXECUTION OF 
ACTION PROGRAM 1 

'---'-~~~~~~~~~...___.~DELAYED 

INTERNAL 

DEALLOCATION OF 
RESOURCES 
SAVING OF 

CONTINUITY DATA 

SUCCESSION 
SPECI Fl ED 

QUEUEING BASED ON 
SUCCESSOR ID 

ALLOCATION OF 
RESOURCES 

RESTORATION OF 
CONTINUITY DATA 

EXECUTION OF 
ACTION PROGRAM 2 

'---'-~~~~~~~~~....__.~NORMAL 

TRANSACTION 
TERMINATION 

DEALLOCATION OF 
RESOURCES 

OUTPUT 
OF 

MESSAGE 

SPECIFIED 

Figure 3-5. Delayed Internal Succession • 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-9 

• 3.1.2.5. Combination Structures 

• 

Combinations of the various types of action program succession leads to great flexibility in 
the structuring of transactions. There are basically no limitations to the ways in which 
types of succession can be combined. For example, immediate internal succession, delayed 
internal succession, and, finally, external succession all can be specified in turn. 

The capability of specifying the successor identification dynamically in the PIB (versus 
prespecifying the same identification at configuration time) enables a program to develop a 
dynamic transaction structure. The structure is limited to one level of control; that is, at 
any given time, only one action program can process a given transaction. The processing, 
however, can take an arbitrary number of paths. Figure 3-6 is an example of dynamic 
transaction structure. 

TRANSACTION 

INITIATION 
- -- - -- -....-----~ 

ACTION 
PROGRAM 1 

1 

Connecting lines represent immediate internal, delayed internal, or external succession, or any combination of them. 

Figure 3-6. Dynamic Transaction Structure 



t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.1.3. Action Program Reusability 

3-10 
Update A 

Action programs can be written as serially reusable, reentrant (BAL only), or sharable 
(COBOL only). The type of reusability, as well as other attributes of action programs, must 
be defined to IMS 90 at configuration time. Programming considerations for program 
reusability are noted where applicable in the discussions on COBOL, RPG II, and BAL 
action programs. The type of reusability has little effect on processing speed in a single
thread environment; however, for effective use of multithread IMS 90, action programs 
should be either shared code (COBOL) or reentrant (BAL). (RPG II programs are serially 
reusable only.) By using shared code or reentrant action programs in a multithread 
environment, you can avoid deadlock. Action programs written in either shared code or 
reentrant code avoid the case where a serially reusable program with outstanding record 
or file locks cannot be scheduled for execution. (See 3.8.7.2 for a detailed discussion of 
deadlock.) 

3.1.4. Device Independent Control Expressions (DICE) 

User-written action programs can use either remote device hardware control characters or 
device independent control expressions (DICE) to format input and output messages via 
function codes that position the cursor, control carriage return, control forms, control line, 
feed line, and erase the screen. 

• 

ICAM automatically inserts DICE sequences into input messages. One reason for their use 
in input messages is to compare the input message with a previous output message for • 
validation. For output messages, your action program must move the 4-byte DICE 
sequence to the output message area. 

In most cases, the user configures the removal of DICE sequences from input messages by 
specifying EDIT=tablename or EDIT=c in the configurator ACTION section or by omitting 
the EDIT parameter. If EDIT=NONE is specified, the DICE sequences are not removed. 

The DICE sequence consists of the select character (10 16 ), a hexadecimal function code, 
and two hexadecimal coordinates, the first representing a row and the second, a column 
on the terminal. To set the function code, you choose the hexadecimal value equivalent to 
the operation required to format a message. 

The COBOL action programmer can specify DICE sequence values in the working-storage 
section of his action program or, if certain DICE sequences are used frequently, he may 
file his description in a COBOL copy library to be called into the action program via the 
COPY statement in his action program's working-storage section. (See Figures 3-27 and 
3-28.) 

The action programmer using 1968 American National Standard COBOL must indicate the 
hexadecimal values for the DICE sequences by supplying their multipunch equivalents. 
(See Figures 3-27 and 3-28 for examples that use multipunch written to 1968 standards.) 
The 1974 COBOL standards permit the action programmer to use the hexadecimal DICE 
values directly in the action program. The following examples illustrate three possible 
applications of hexadecimal DICE values that conform to 1974 standards. • 



• 

• 

• 

UP-8614 Rev. 1 

Example 1: 

01 DICE 
03 FIELD-1 PIC X. 
03 FIELD-2 PIC x. 
03 FIELD-3 PIC x. 
03 FIELD-4 PIC x. 

MOVE =' 10' TO FIELD-1. 
MOVE =' 03' TO FIELD-2. 
MOVE =' 01' TO FIELD-3. 
MOVE =' 01' TO FIELD-4. 

Example 2: 

03 DICE PIC X(4). 
MOVE ='10030101' TO DICE. 

Example 3: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

77 DICE PIC X(4) VALUE ='10030101' 

3-lOa 
Update A 

In a BAL action program you can use DICE macros provided by ICAM to generate DICE 
sequences inline. For an example of use of the ICAM procedure, ZO#POSC, to generate 
inline the DICE sequence for clearing the current line and repositioning of the cursor, see 
Figure 3-38. 

DICE is a more convenient method of writing COBOL and BAL action programs than using 
the device dependent editing and control codes peculiar to specific terminals. DICE usage 
and DICE codes are described in Appendix E . 



• 

• 

• 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.2. COBOL ACTION PROGRAMS 

The basic format of a COBOL action program is: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. program-name. 
(Any optional entry may be specified.) 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE:coMPUTER. 
OBJECT-COMPUTER. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
(Optional. May be used only to contain constants.) 
LINKAGE SECTION. 

3-11 

(Describes each area that is referenced in the procedure division ENTRY 
statement.) 

01 PROGRAM-INFORMATION-BLOCK 

01 INPUT-MESSAGE-AREA 

[01 WORK-AREA 

[01 OUTPUT-MESSAGE-AREA 

[01 CONTINUITY-DATA-AREA]]] 

PROCEDURE DIVISION USING PROGRAM-INFORMATION-BLOCK INPUT-MESSAGE-AREA 
[WORK-AREA[OUTPUT-MESSAGE-AREA[CONTINUITY-DATA-AREA]]]. 

3.2.1. COBOL Action Program Sharability 

A COBOL action program can be compiled with or without the shared code parameter of 
the extended COBOL compiler. The shared code parameter format for American National 
Standard 1968 COBOL is: 

II PARAM OUT=(M) 

The shared code parameter format for American National Standard 1974 COBOL is: 

II PARAM IMSCOD=YES 

Use of this parameter allows the compiler to check the program for conformance to IMS 
90 language restrictions and issue appropriate diagnostics at compile time. Using this 
option in combination with the TYPE=SHR and SHRDSIZE parameters of the configurator 
allows the programs to be run as reentrant under multithread IMS 90. 



t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-12 

3.2.2. COBOL Language Restrictions 

Use of certain COBOL language elements is restricted in action programs. The following 
restrictions enable programs to be compiled as either sharable or serially reusable: 

• IDENTIFICATION DIVISION 

• 

Do not use a function key (F#nn) as the PROGRAM-ID name, because the COBOL 
compiler treats the # symbol as invalid. If you want to use a function key to identify 
the load module, supply a valid PROGRAM-ID name in the identification division and 
then include a LOADM statement with F#nn as the load module name at link edit 
time. 

CONFIGURATION SECTION 

Special names must be omitted. 

• INPUT-OUTPUT SECTION 

The input-output section must be omitted because all 1/0 is performed by IMS 90 file 
management. 

• FILE SECTION 

The file section must be omitted. 

• WORKING-STORAGE SECTION 

The working-storage section is optional. When present, it is used only to contain 
constants; that is, all elementary items must be described with a VALUE clause. 
When you compile your action program with the shared-code parameter, COBOL flags 
only procedure statements that move data to the working-storage section. If the 
program does change these values, it must not depend upon their original value 
during a subsequent execution.* 

• PROCEDURE DIVISION 

A DECLARATIVE clause may not be included. Debugging language (EXHIBIT, TRACE) 
and segmentation (priority numbers, SEGMENT-LIMIT clause) are prohibited. 

*If the action program is to be compiled only under the serially reusable option data items within the working-storage 
section may be changed in value during execution. However, the execution of such a program must not depend upon 
values left in working storage by a previous execution. 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-13 

The following COBOL verbs, clauses, and sections are illegal in action programs. When 
compiling with the // PARAM OUT=(M) or I I PARAM IMSCOB=YES options, the ~ 
following language elements are diagnosed and deleted from the program by the compiler: 

ACCEPT 
ALTER 
CLOSE 
DECLARATIVE SECTION 
DISPLAY 
ENTRY 
EXHIBIT 
EXIT-PROGRAM 
FILE SECTION 
INPUT-OUTPUT SECTION 
INSERT 

OPEN 
READ 
READY TRACE 
RELEASE 
RESET TRACE 
RETURN 
REWRITE 
SEEK 
SEGMENT-LIMIT 
SORT 
STOP 

SYSCHAN-t 
SYS COM 
SYSCONSOLE 
SYS DATE 
SYSERR [-m] 
SYSLST 
SYS SW CH 
SYSTIME 
WRITE 

The following verbs must not have working-storage items as receiving operands. If the 
shared code parameter was used upon detection of this condition, the compiler generates 
the statement and issues a precautionary diagnostic. 

ADD 
COMPUTE 
DIVIDE 
EXAMINE (REPLACING option) 
MOVE 
MULTIPLY 

PERFORM (VARYING option) 
SEARCH (VARYING option) 
SET 
SUBTRACT 
TRANSFORM 

Normally, execution-time errors result in a CE error message and program termination. In 
an action program, execution-time errors result in a program check interrupt and a 
snapshot dump of the action program with the address of the CE message in register 1. 
The action program is terminated. For further details, refer to 3.8.6.3. 

Under multithread IMS 90, for the COBOL object program to be reentrant at CALL 
interrupts, the volatile work area used by the program must be saved and restored by the 
IMS 90 system. The size of the area (which varies between programs) is displayed in 
decimal by the printer immediately prior to the COBOL COMPILATION COMPLETE 
message. The message reads: 

SHARED CODE VOLATILE DATA AREA= nnnn BYTES 

This size is used in computing the SHRDSIZE parameter in the IMS 90 configurator. This 
message and the reentrant capability of the program is available only when the program is 
compiled with the COBOL shared-code parameter. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-14 

3.2.3. Linkage Section 

The linkage section is required. It describes areas that are made available to an action 
program when it is called by action scheduling to begin or continue the processing of an 
input message (Figure 3-1 ). The areas are allocated by action scheduling based on the 
information contained in the action control table (specified at configuration time) and 
parameters set in the program information block by the final action program in the 
preceding action (if any). The contents of areas referenced through the linkage section can 
be modified by an action program as required in the processing of an action. For each area 
referenced in the USING list at the point of entry to the action program, there must be a 
corresponding 77 or 01 level data description in the linkage section. 

The main storage areas described in the linkage section always include the program 
information block (PIB) and input message area (IMA) and may also include a work area 
(WA), an output message area (OMA), and a continuity data area (CDA). The defined 
record area is never described in the linkage section; it is used by defined record 
management (ORM) when defined files are accessed and cannot be written into by the 
action program. Main storage areas and their uses are discussed in 3.6. 

3.2.4. Procedure Division 

The procedure division header with the USING statement lists the main storage areas 
used by a COBOL action program. The parameters of the USING list are positional and 
must be coded in the prescribed order, taking care to code a dummy parameter to maintain 
this order where an optional parameter is omitted. For example, if the WORK-AREA and 
CONTINUITY-DATA-AREA parameters are not required, the procedure division starts with 
the following statement: 

PROCEDURE DIVISION USING PROGRAM-INFORMATION-BLOCK INPUT-MESSAGE-AREA D 
OUTPUT-MESSAGE-AREA. 

where: 

D 

Is a data name used as a dummy parameter for WORK-AREA to maintain the 
proper position for OUTPUT-MESSAGE-AREA. The CONTINUITY-DATA-AREA 
parameter is omitted entirely. The D must also have a corresponding 77 or 01 
level entry in the linkage section. 

A basic rule that must be followed in writing the procedure division statements of a 
COBOL action program is that no 110 operations are specified using standard COBOL 1/0 
verbs. All file operations must be requested through IMS 90 file management, using the 
CALL statement. (See 3.7.) While message input and output are generally handled 
implicitly via the input and output message areas, certain message output operations can 
be performed by making explicit requests to internal message control. (See 3.8.) These and 
other requests to IMS 90 also are made by means of the CALL statement. The basic 
format of the CALL statement as used in COBOL action programs is: 

CALL function-name [USING data-name ... ] 



• 

UP-8614 Rev. 1 

where: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-15 

function-name 

Is the name of an IMS 90 function. The IMS 90 functions are GET, GETUP, 
UNLOCK, SNAP, SUBPROG, GETLOAD, SETLOAD, PUT, DELETE, INSERT, SETL, 
ESETL, FREE, SEND, and RETURN. Function names must be enclosed by single 
quotes. 

data-name 

Is the name of an item defined in the working-storage section or linkage section. 
The level number associated with each data name need not be 01 or 77. 
However, if a dataname at a level other than 01 or 77 is given in the USING list, 
a precautionary diagnostic message (166) is printed for the statement by the 
COBOL compiler. This message is ignored. 

The CALL statement is preceded by an ENTER LINKAGE statement and followed by an 
ENTER COBOL statement. When a function is requested of IMS 90, the function is always 
carried to completion before control is returned to the statement following the CALL 
statement. Therefore, only one request can be outstanding for a given action at a given 
time. 

Program termination is requested by means of the RETURN function, whose format is: 

CALL 'RETURN' 

The CALL RETURN statement must be present at least once in an action program. The 
execution of this function results in the return of control to action scheduling and 
termination of the action program. The EXIT PROGRAM or RETURN statement must not be 
used for this purpose. When a COBOL action program is compiled without the PARAM 
OUT=(M) statement, a diagnostic message is issued by the compiler because of the ..-
absence of an EXIT PROGRAM or RETURN statement. This diagnostic should be ignored. 

3.3. RPG II ACTION PROGRAMS 

An RPG II action program is distinguished from a usual RPG II program by the letter A in 
column 74 of the RPG II control card specifications form. In this way, the RPG II compiler 
generates an RPG II program that interfaces with IMS 90 instead of data management. 

RPG II action programs operate under the application management component of IMS 90 
to process input messages and generate output messages. These programs must be 
written so that they are serially reusable. After each execution of an action program, RPG 
II resets all indicators and internal switches. Therefore, the programmer must reset all 
fields to their original values before the action program is executed again. All file 1/0 
requests are handled by IMS 90. RPG II action programs are compiled and linked offline. 
The sample RPG II action program, LSTLIM (see Appendix C), provides a detailed 
explanation of this entire process. Users should be familiar with the current version of the 
RPG II user guide, UP-8067 . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.3.1. IMS 90/RPG II Interface Areas 

3-16 

Four defined interface areas are used for control and communication of data between IMS 
90 and RPG II action programs: 

1. Input message area (IMA) 

2. Program information block (PIB) 

3. Output message area (OMA) 

4. Continuity data area (CDA) 

Unlike COBOL action programs, RPG II action programs do not use the work area. Use of 
the four interface areas depends upon the requirements of the RPG II action program. 

If the action program needs to reference a field in any of the IMS 90 interface areas, the 
interface area name preceded by a single asterisk (*) must be indicated as the device 
name in columns 40-46 of the RPG II file description specifications form (e.g., *IMA. * 
OMA. etc.). (See Figure 3-7.) It is important to remember in referencing all four data 
interface areas to reference only those fields within the interface areas that your RPG II 
action program actually use; otherwise, the field will be flagged as unreferenced in your 
RPG II program. 

3.3.1.1. Input Message Area (IMA) 

The IMA consists of a 16-byte control header plus the input message received from a 
terminal. The size of the IMA is, therefore, the input message length plus 16 bytes for the 
IMS 90 header information. In an RPG II action program, the IMA is defined as an input 
file on the file specifications form (columns 7-14) and the fields within the IMA are 
described on the input format specifications form (columns 44-58). In addition, the INSIZE 
parameter in the ACTION section of the IMS 90 configuration must specify the total IMA 
size used by an RPG II action program. 

Following normal RPG II input specification rules for the IMA header, you do not define 
fields not required by your action program; however, you must allow the first 16 bytes of 
the IMA for the header and start the first input message character in position 17. Table 
3-1 is a summary of required entries defining the IMA on the file description 
specifications form. 



• 

• 

UP-8614 Rev. 1 

Interface 
Area 

PIB 

lMA 

OMA 

CDA 

NOTE: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Table 3-1. Summary of Required Entries for File Description Specifications Form 

User-
Specified File 

Record Length file Name 
File Type Designation format 

(Columns 7-14) (Column 15) (Column 16) (Column 191 (Columns 24-27) 

See Note. 

Any l or U D F 48 

Any I or U P,S,orD F 16 + message size 

Any U or 0 Dor blank F 16 + message size 

Any I, U, or 0 P, S, D, or F data size 
blank 

3-17 

Device Name 

(Columns 40-46) 

*PlB 

*IMA 

*OMA 

*CDA 

Any user file name can be specified but lmJSl begin with an alphabetic character and must not exceed seven characters. 

3.3.1.2. Program Information Block (PIB) 

The PIB is used to pass control information between IMS 90 and the user action program. 
It is a predefined 48-byte area . 

Use of the PIB in an RPG II action program is optional. RPG II automatically performs the 
following PIB functions whether a PIB is or is not defined in an RPG II action program: 

• RPG II checks the status code returned after each 110 request. When an error 
condition exists, RPG II sets the HO indicator on and places the error status code into 
the *ERROR field. These error codes are shown in the system messages 
programmer /operator reference, UP-8076 (current version). 

• RPG II sets the abnormal termination code 'S' in the TERMINATION-INDICATOR of the 
PIB if the user does not set the HO indicator off by the end of detail calculations. 

• RPG 11 returns default value 'N' in the TERMINATION-INDICATOR of the PIB. If no 
error occurs (HO-H9 indicators set off), no abnormal termination indicator ·s· is set 
and no succession is indicated (the E, I, or D indicators set). 

The PIB is defined on the file description specifications form, and the PIB fields that are 
accessed or updated in the action program are described on either the input format 
specifications form, the output format specifications form, or both. There are two allowable 
specifications for the PIB on the file specifications form, columns 15 and 16: 

• Input, demand file (I in column 15 and D in column 16) 

• Update, demand file (U in column 15 and D in column 16) 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-18 

The input demand file specification indicates that the action program requires data from 
the PIB but does not want to change the data. The action program accesses the PIB any 
number of times during detail calculations via the READ operation. 

The update demand file specification indicates that the action program requires data from 
the PIB and wants to update the data. In this case, the action program accesses the PIB 
the same as an input demand file; however, it updates the PIB by issuing either the EXCPT 
operation in the calculations specifications or by using detail or total output specifications 
and letting the RPG II logic perform the output. 

Only PIB fields referenced by an action program are defined on the input or output 
specifications forms. Ar:iy name can be specified for a PIB field referenced in your action 
program; however, the formats and positions of the fields referenced in the action program 
must agree with their definition and position in the IMS 90 PIB. (See Table 3-1 for the 
entries required to define the PIB on the file description specifications form.) 

3.3.1.3. Output Message Area (OMA) 

The OMA consists of a 16-byte control header plus the output message built by the action 
program and sent to a terminal in response to an input message. Use of the OMA in RPG 
11 action programs is optional; however, when the OMA is used, the OUTSIZE parameter of 
the IMS 90 ACTION configuration section must indicate the size of the user's output 
message. 

The OMA can be used for multiple output messages during one action program execution. 
Also, an output message can be transmitted to a terminal other than the initiating terminal 
(e.g., message switching). To perform either of these operations, disk queueing must be 
configured for ICAM via the DISCFILE macro, and unsolicited outpout must be configured 
via the UNSOL parameter. 

If an error occurs on a CALL 'SEND' to unsolicited output, the *ERROR field in the dump 
will contain a letter 'K' and at action program termination, 'RPG036' will be displayed on 
the system console. 

When an output message is to be transmitted to a terminal other than the initiating 
terminal, output specifications for the switched message must appear before those for the 
required action termination message. Figure 3-7 illustrates the file description input 
format and output format specifications for a message switching operation. 



~ 

• 
SPE~v+uNIVAC 

• • 
RPG II 

CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS 

PROGRAM~--------------~ PROGRAMMER ----------------~ DATE ~~-----~ PAGE --- OF --- PAGES 

FOAMH 
TYPE 

~ 
PAGE 

NO. LINE 
NO 

1 2 3 5 6 

0 1 H 

FOAMF 

.... I] I 
NO. LINE 

NO 

~COMPILATION MODE INVERTED ALTERNATE 1 FORMS ALIGNMENT INDICATOR INlTlAUZATION 

" ~ :it ERRO~~::LYSIS z PAINT COLLATING [ SIGN HANDLING " FILE TRANSLATION 
GENERATE ~ " 

z 
~ DEBUG CODE 

~ z SEQUENCE r '.l" "" ~SHARED m z , m 
~ "' z z z 

~ ~ 5 OPERATOR ~ a: NOT ~ i; :5 ~ ~ NOT :5 1/0 
~ 0 "' • a: • CONTROL " USED a: NOT USED "'" USED " AREA 

;:;, 0 11'. a: 
NOT USED 

0 "a: a: a: ~ .------J 
;; 0 0 0 0 ~ 

~ 0 0 0 

- "' - "' ~ -NOT USED 
7 8 9 10 14 15 16 20 21 22 25 26 27 39 40 4142 43 44 47 48 49 

J 

FILE 
NAME 

..l 

~ 
" ,_ 
0 z 

FILE TYPE 

FILE DESIGNATION 

END OF FILE 

SEQUENCE 

FILE FORMAT 

I I I I 
BLOCK 

w ~ ~ LENGTH 

RECORD 
LENGTH 

a: 
J 

_J 

FILE PROCESSING MODE 

KEY OR RECORD 
ADDRESS FIELD LENGTH 

RECORD ADDRESS TYPE 

FILE ORGANIZATION 

> OVERFLOW 

I I 
Q INDICATOR I 

" q KEY FIELD 
< STARTING I~ 0 

LOCATION 

I 

EXTENSION OR 
LINE COUNTER 

CODE 

DEVICE 

NOT 
USED 

I 

1 2 I 3 5 I 6 17 13)14 l15 l16l17)18I19l20 23124 27128129 30131132133 34135 38139140 46147 

CONTROL CARD SPECIFICATIONS 

SUBROUTINE 

NOT USED 
PROGRAM 

IDENTIFICATION 
CCA 

NAME "' 

69 70 73 74 75 80 

_l _J J AS,WITQ-

FILE DESCRIPTION SPECIFICATIONS 
LABELS 

NAME OF 

LABEL EXIT 
OR NAME OF 
USER DEVICE 

NUMBER 
OF BYTES 

"' z IN MAIN 
STORAGE < 

TO BE RESERVED I~ 

FILE ADDITION/UNORDERED LOAD 

CYLINDER OVERFLOW 
SPACE PERCENTAGE (X10I 

NUMBER OF EXTENTS 

TAPE REWIND OPTION 

FILE CONDITIONERS 

I ~ ! INDEX I~ ~ONTINUAT!ON LINES ~ 

z 

"' FOR ISAM 
ROUTINE 

z 
3 
re 

NOT I PROGRAM 
~ I USED IDENTIFICATION 

::; 
"' OPTION ENTRY 

52 53 54 59 60 65166167168 69170171 72173 74 I 75 BO 

0,2 I : I.:.: !:~:: : : : litl I Id :_:~LB:~JJu~)~iL~A, ' ' 1 
' ' ' 

1 

' u~ I I =t • L_ __ , _ _j__LJ_~_LM__,A,L_j_ I I I I I I I I I ' I I I I I I - I ' I I I I I I ' I I I ' I I I I 

Figure 3-7. Message Switching Program Specifications (Part 1 of 2) 

c 
-0 
cX> 
en -"" ::0 
Cl> :c 

- en s:: "'O en m 
co ::0 
o~ 
~c 
-0 ~ 
!:~ 
~ ("") 

::!o o en z, 
en w 

cw 
'C I 

Q. -Ill co 
ar 
l> 



sr=e~v+uNIVAC 
RPG II 

INPUT FORMAT SPECIFICATIONS 
PROGRAM ______________ _ 

PROGRAMMER------------------ DATE-------- PAGE --- OF --- PAGES 

FORM I RECORD IDENTIFICATION FIELD DESCRIPTION 

RECORD IDENTIFICATION CODES 
FIELD LOCATION 

FIELD 

·~·t1 I 
N <;J 

~~ffi ;:I 1. .• 1 2 
••• 1 ,,, 

~ <( CD U.. a: 
I 1----~----l :£ 

0 
>= v; 

a: INDICATORS 
0"' 
"'0 

FILE 

J 9~ w 0 NOT 
> ~ u: g ::'! 0 :::!: ~ 0 

NO. LINE I NAME 
NO. 

s:: ~ ~ ...J ~a: 
U) 5 ~ e ~ 

0 0 u 
- a: -z 'cL. 0 c 

.... 0 u ~ 
0 11 W 

- 0 a: 

POSITION I~ h 11 ·POSITION I~ I§ 11 POSITION 

a: w 
w "' ... a: 

... 11~ ~ ~ e ~ ~ 
II ~ J: I-z u u U) 

FROM I TO 
ii' 
J 
< 
::; 

~ 
0 

FIELD 
NAME Jm 

JJ 
o~ 
a: J ... 
z 
0 u 

I I PROGRAM 

~" s~ USED IDENTIFICATION 

"z " ~z ~~ Oz 
~ - "' a::'.l u< QJ ... ~ JW 

~ 
:0 

~: <u w a: z 
::; u: :E 0 

5 I 617 19 20 21 24 25 26 27 28 31 38I39140141142143144 47148 51152153 58159 60161 62163 64165 66167 68169 70171 74175 80 

I 11,MA. I I I I IA.A ,I ' ' --'- ~ -1.....J....... __[_ _l 

I I , , . _l _l I __J_l__j__ _L ttl Ir,~;\~ 1M1 

_J 

..l 

11 ••• l _[__L_~+-+~ : :~:~ e~~~!~ : I : I : I : I : I : I :_:_:! : : : : : I 
I I I I I _l l 

I 1 •1 I' I I I I I I I I I ' I I I I I I I I I I I I I I I I I I I I I I I I I -T--l-T- ~ll1111l~~(1( 11111111111 ti 

sr=e~v+uNIVAC 
RPG II 

OUTPUT FORMAT SPECIFICATIONS 
PROGRAM---------------- PROGRAMMER ------------------ DATE--------- PAGE --- OF --- PAGES 

FORM a ST ACKER SELECT/ 
TYPE F"FETCH OVERFLOW 

SPACE SKIP OUTPUT INDICATORS 

1----i DATA FORMAT CODES 
COMMAS 

ZERO CODES ACTION 

TYPE H/D/T /E I I PIB/LIA NEGATIVE VALUE INDICATION BALANCE REMOVE INSERTED x 
a: NONE l CR TO PAINT PLUS SIGN 

PAGE w FIELD w 1 ± A J YES YES EDIT DATE NOT PROGRAM a: a: ... ENO y NO. LINE 
0 w ~ ~ NAME ~ ~ ' B K YES NO FIELD USED IDENTIFICATION ~ ... w w < POSITION 

NO FILE 

~ ~ 
w ~ :i' 3 ± c L NO YES ZERO 
" < 

... 
0 " IN z 

NAME :< ... ... ~ 
0 z 4 0 M NO NO SUPPRESS 

r,;+-1 " u < OUTPUT 0 0 0 ... ~ z z z i3" RECORD 
A 0 0 z z z w "' CONSTANT OR EDIT WORD 

1 2 3 5 6 7 14 15 l;6' t;;+;8' 19 20 21 22 23 24 25 26 27 28 29 30 31 32 37 38 39 40 43 44 45 70 71 74 75 80 

0 , 0~1 J i...L tI:?J 01 l_ _l__L_L--L _l_ _l_ _!_ l ...L _!_ _!_ _!_ --+--- -!---

0 2 0 l ...L ID,U;\:T~M _L A _l_ l 
0 3 0 _!_ l ...L ll1_E,S,s.A6 _l_ i'L.L _!__!_ l l _!_ _!_ 

0 • obMA l tD b!I J___.L _l _!_ ...L ...L l _!_ _!_ 

0 5 0 l 11'.IT~ J...L_d _!_ _l _!_ l ...L 
0 6 0 l J__j____j____j_ _L~_1_8 '~$S,AIG1E...L _1_S~JJ_iT...L' l _!_ 

Figure 3-7. Message Switching Program Specifications (Part 2 of 2) 

• • • 

c 
-a 
00 
Ol 
~ 

.j:> 

::0 
<» 
~ 

- CJ) s: -a 
CJ> m 

~~ 
)> c 
-a z 
-a -
c~ 
(') (') 

~ -0 0 CJ) 

z "' CJ) w 

cw 
'C I 
C. N 
Ql 0 
co 
)> 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-21 
Update A 

• 3.3.1 .4. Continuity Data Area (CDA) 

• 

• 

The CDA is used for passing data from one action program to its successor during a dialog 
transaction. Its size varies and its use is optional (3.6.5). If the CDA is used, its size is 
specified by the CDASIZE parameter of the IMS 90 configuration ACTION section. 

The CDA file is described as an input, update, or output file on the file description 
specifications form (column 15), and the fields within the file are described on the input 
format specifications form or the output format specifications form according to their use 
in the action program. Table 3-1 lists the required file description specification entries for 
the CDA. 

An RPG II action program can create, read, or update the CDA. If the action program is 
creating the CDA, it must define the CDA on the file specifications form as an output file. 
If it reads the CDA without changing any of its data, the action program must define the 
CDA as an input file on the file specifications form. When updating the CDA area and 
passing its data to the successor program, the action program must define the CDA as an 
update file on the file specifications form. When CDA is to be deleted, the action program 
moves zeros to the CONTINUITY-DATA-OUTPUT-LENGTH field in the PIB. Table 3-2 lists 
these actions. 

Table 3-2. File Type Specifications for Creating, Moving, and Updating the CDA 

File Type Specification Operation 
(Column 15) 

I (input) Reads the CDA 

U (update) Reads and updates CDA contents and passes to successor program 

0 (output) Creates the CDA 

3.3.2. User Logical Files and IMS 90 Defined Files 

RPG II action programs access user logical ISAM, MIRAM, SAM, and DAM files as well as 
IMS 90 defined files. (To access IRAM files, you must define them as MIRAM files at 
configuration time.) User logical files are data files you create via OS/3 data management. 
Defined files are files created by IMS 90 from user logical files according to user-supplied 
data definitions. (See Section 2.) 

To be used by RPG II action programs, user logical files that are not accessed by defined 
files must be identified by the FILES parc;tmeter of the configuration ACTION section. The 
FILE section of the configuration defines all logical files. Table 3-3 summarizes the file 
organization, related access methods, and file types used in an RPG II action program. 

In RPG II action programs, ISAM files and defined files are specified and processed in the 
same manner. Table 3-4 lists the allowable file description specifications for logical and 
defined files. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-22 

Table 3-3. Summary of File Organizations, Access Methods, and File Types Used by RPG II Action Programs 

File Related 
File Type 

Organization Access Method 

IMS 90 Files: 

Defined Random Input/Update/Output* 
Sequential Input/Update/Output* 

User Files: 

ISAM Random Input/Update/Output* 
Sequential, by key Input/Update/Output* 

IRAM or Indexed Random Input/Update/Output* 
MIRAM Nonindexed Random Input/Update/Output 

Sequential Input 

SAM Sequential Output 

DAM Relative Input/Update/Output 

*For output files, only ADD is allowed. 

Table 3-4. Allowable RPG II File Description Specifications for /SAM, /RAM, MIRAM, DAM, and Defined Files 

Column Title and Numbe. Specification 

Form Type (Column 6) F 

File Name (Column 7-14) User-defined name 

File Type (Column 15) I, U, or 0 

File Designation (Column 16) S, R, C, D, or P 

Format (Column 19) F 

Record Length (Column 24-27) User's record size 

Mode of Processing (Column 28) L,R, or blank 

Key Field Length (Column 29-30) 01-99 CD 
Record Address Type (Column 31) A or P 

~ R 
blank 

File Organization (Column 32) I 

~ D 
blank 

Key Field Start Position 0001-9999 CD 
(Column 35-38) 

Device (Column 40-46) Must be disk device 

File Addition (Column 66) Blank or A 

NOTES: 

CD ISAM, IRAM, MIRAM and defined files 

@ DAM files 

@ Sequential processing 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-23 

RPG II action programs can process tape or disk SAM output files. Table 3-5 lists the RPG II file 
description specifications allowed for SAM output files. 

Table 3-5. Allowable RPG II File Description Specifications for SAM Output Files 

Column Title and Number Specification 

Form Type (Column 6) F 

File Name (Column 7-14) User-defined name 

File Type (Column 15) 0 

Format (Column 19) F 

Record Length (Column 24-27) User"s record size 

Overflow Indicator (Column 33-34) May be specified for line counter files 

Line Counter (Column 39) Blank or L 

Device (Column 40-46) Must be disk or tape device 

All user files used by RPG II action programs must be defined in file description 
specifications and input/output specifications. Record descriptions of IMS 90 defined files 
used by RPG II action programs must match their descriptions in the IMS 90 configuration . 

An RPG II action program can access ISAM, DAM, MIRAM, and IMS 90 defined files in 
random mode by defining them as chained files on the file description specifications 
(column 16). 

Under IMS 90, the RPG II program retrieves one record at a time. Updating or deletion of 
the retrieved record must be done before the next record is retrieved. Records being added 
to or deleted from a file on which updating is being performed cannot be added or deleted 
between the reading and writing of a record that is being updated. The ADD or DEL 
specifications in columns 16-18 of the output format specifications perform add or delete 
functions. 

3.3.3. Specifications Forms for RPG II Action Programs 

3.3.3.1. Control Card Specifications Form 

The RPG II control specifications form identifies the action program and specifies that the 
program is to be compiled as an IMS 90 action program. Column 74 requires the letter 'A' 
and columns 75-80 require a 1- to 6-character program name beginning with an 
alphabetic character. Table 3-6 lists the entries allowable on the control card 
specifications form. (For restrictions on control card specifications, see Table 3-7.) 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Table 3-6. RPG II Control Card Specifications for RPG II Action Programs 

Column Title and Number Specification 

Form Type (Column 6) H 

Compilation Mode (Column 7) Blank. 2, 3, or 4CD 

Error Analysis Dump (Column 8) Must be blank0 

Operator Control (Column 9) Must be blank0 

Generate Debug Code (Column 15) Must be blankCi:or 1 

Inverted Print (Column 21) Blank, D, I, or J 

Alternating Collating Sequence 
(Column 26) Blank or S 

Sign Handling (Column 40) Blank. S. I. 0. or B 

Forms Alignment (Column 41) Must be blank0 

Indicator Initialization 
(Column 42) Blank or S 

File Translation (Column 43) Blank or F 

IMS 90 Action Program Indicator 
(Column 74) Must be A 

Program Identification 
(Column 75-80) Blank or program name 

NOTES: 

(D The file access method (MIRAM, ISAM, DAM) used in the 
program is not affected by this entry. This is determined by 
the IMS 90 configurator. 

@ This field is an RPG II option that is not permitted in an RPG II 
action program. 

3.3.3.2. File Description Specifications Form 

3-24 
Update A 

The file description specifications form describes the user logical files, defined files, and IMS 
90/RPG II interface areas used or referenced by an RPG II action program. Tables 3-4 and 
3-5 list the allowable file description specifications for user logical and defined files. Table 
3-1 shows the specifications required to defin.e IMS 90/RPG II interface areas as files in the 
action program. (For restrictions on file description specifications, see Table 3-7.) 

3.3.3.3. Input Format Specifications Form 

The input format specifications describe the fields within user files, defined files, or IMS 

• 

• 

90/RPG II interface areas referenced by the action program. The same rules apply for • 
coding action program input format specifications as for normal RPG II programs. (For 
restrictions on input format specifications, see Table 3-7.) 



UP-8614 Rev. 1 

• 

• 

• 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Table 3-7. Restricted RPG II Language Features 

Specifications Form Column Description 

Control card specifications 8 Error analysis dump 
9 Operator control 
41 First page forms alignment 

File description specifications 15 File type (C and D) 
16 Table and array file designation (T) CD 
20-23 Block length @ 
32 File organization: 

ADDROUT (D) G) 
Record address (blank) G) 
Additional 1/0 areas @ 
SAM tape/disk input files G) 
ISAM and MIRAM output files 

40-46 Device: 

CTLRDR 
READER 
CRP 
PUNCH 
CONSOLE 
PRINTER 

53 Labels @ 
54-59 Name of label exit option 

ffi 60-65 Size of ISAM index entry 
66 Unordered load 
67 Cylinder overflow space percentage @ 
68-69 Number of extents @ 
70 Tape rewind @ 
71-72 File conditioners (U1-U8) 

Extension specifications G) 9-10 Chaining (C1-C9) tables or arrays 

Input format specifications 19-20 Spread card feature (TR) 
42 Stacker select 

Calculation specifications 28-32 Display operation (DSPL Y) 

Output format specifications 16 Stacker select 

Telecommunications specifications - -

NOTES: 

Q) Used only with MIRAM files; must not be used with SAM input files. 

@ Ignored by RPG II compiler; must be specified in IMS 90 configuration . 

3-25 
Update A 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.3.3.4. Calculation Specifications Form 

3-26 

Operations on the files described on the file description specifications form and input or 
output format specifications forms can be specified on a calculation specifications. See 
Table 3-7 for restrictions on the use of calculation specifications. 

3.3.3.5. Output Format Specifications Form 

The output format specifications describe the complete output message on the file 
description specifications form. This output description includes DICE codes (see Appendix 
E) for screen display positioning, display headings, and data fields required by the action 

~ program. (See Figure C-8.) Output specifications also describe IMS 90/RPG II interface 
area fields referenced by the action program for use in external succession; e.g., PIB or 
CDA fields. For restrictions on the output format specifications, see Table 3-7. 

3.3.4. RPG II Action Program Restrictions 

A number of the RPG II language features are restricted from use in an action program. 
Table 3-7 lists these features and their restrictions by column number and RPG II 
specification form. 

3.4. BAL ACTION PROGRAMS 

3.4.1. Linkage Conventions 

An action program is treated as a subprogram of the IMS 90 online program and is 
activated by action scheduling using standard linkage conventions. When control is 
transferred to the action program entry point, the register contents are as follows: 

• Register 1 points to a parameter list containing (in order): 

Program information block address 

Input message area address 

Work area address (optional) 

Output message area address (optional) 

Continuity data area address (optional) 

If any of these parameters is not specified, the omission is indicated by a binary O in 
the parameter list. The position of parameters in the list is fixed. 

• 

• 

• 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-27 

• Register 13 contains the address of a 72-byte save area. The standard linkage 
conventions must be observed in the use of the save area. In particular, forward and 
backward save area links must be established to relate the save area given by register 
13. to the save area used by the action program to make requests to IMS 90. for all 
functions. 

• Register 15 contains the address of the action program entry point. 

The action program must allocate space for a 72-byte, word-aligned save area to be used 
on calls to IMS 90 for all functions. This area must be properly linked to the save area 
provided by action scheduling for an action program. In all parameter lists that are passed 
to IMS 90, the sign bit must be set in the final parameter word. Standard linkage 
conventions must be observed. 

When a continuity data area is referenced in a BAL action program, the program should 
not save addresses of items within the area from one action to another. Since the location 
of the continuity data area for a transaction can change from action to action, any saved 
addresses can thereby be invalidated. 

3.4.2. Function Requests 

An action program must not contain any direct requests to OS/3 data management. All 
file 1/0 functions must be requested through function calls in the form of CALL or 
ZG#CALL macros. (The difference between CALL and ZG#CALL is explained in 3.4.3.) 
Explicit message output, termination, and other functions also are requested in this 
manner. The format for CALL and ZG#CALL is: 

[name]jCALL ttunction-name[, (param-1, ... ,param-n)] 
1zG#CA LL f 

File 1/0 and explicit message output functions are described in 3.8 and 3.9. Termination is 
requested via the RETURN function in this format: 

ZG#CALL 'RETURN' 

Execution of the RETURN function returns control to action scheduling. 

3.4.3. Reentrant Programming Considerations 

The following rules must be observed in coding a reentrant BAL action program: 

1. Instructions must not be modified during the execution of the action program. For 
example, the length field of an MVC instruction must not be stored into the 
instruction itself. The EX instruction can be used to modify the length field or the 
MVC instruction can be built and executed in the activation record . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-28 

2. Data must not be embedded in the action program. All references to variable data 
must be made to the activation record (i.e., the program information block, input 
message area, work area, output message area, and continuity data area). DSECTs 
can be used to conveniently reference the areas in the activation record. Constant 
data can be defined in the action program. 

3. Parameter lists containing addresses that vary from request to request or containing 
addresses of parameters defined in the activation record must be built in the 
activation record. The CALL macro with the (param-1, ... ,param-n) form of the 
parameter list can be used only to make requests for which all parameters are 
defi~ed in the action program because the CALL macro generates a list of address 
constants in line for the parameter list. 

The macro ZG#CALL can be used to make requests for which some or all of the parameters 
are defined in the activation record. ZG#CALL builds a parameter list at the user-defined 
location PUST. PUST must be at least a 16-byte area beginning on a word boundary within 
the activation record, typically within the work area. The parameter list is built by 
ZG#CALL through use of a series of LA and ST instruction pairs. The ZG#CALL macro must 
be used for the RETURN function; CALL RETURN is not valid in an action program. 

The following examples illustrate the difference in the use of the CALL and ZG#CALL 
macros: 

• CALL ESETL, (INFILE) 

• INFILE is a constant defined in the action program. 

• ZG#CALL RETURN 

• No parameter list is generated. 

• ZG#CALL GET, (INFILE, RECORD, KEY) 

• INFILE is a constant defined in the action program, but RECORD and KEY are 
defined in the work area of the activation record. 

3.5. USER-WRITTEN RESIDENT SUBPROGRAMS 

BAL and COBOL action programs can call user-written resident subprograms. Thus, 
common functions, such as repetitive computations, need be coded only once, as 
subroutines, and then called by those action programs that need them. The fact that these 
subroutines are made resident guarantees their efficient use by not requiring that they be 
loaded into main storage each time they are called. They are loaded with IMS 90 during 
the start-up procedure. 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-29 

User-written subprograms can be prepared as either serially reusable or reentrant load 
modules and must be resident in main storage to be called by a COBOL or BAL action 
program. They cannot be used with RPG II action programs and are not available in a basic 
IMS 90 system. 

A subprogram cannot call on another subprogram; however, a subprogram can issue all 
the function calls supported for action programs. Information is passed to the subprogram 
from the calling action program via a parameter list. A subprogram can access only those 
files that are allocated to the calling action program. 

Subprogram use must be specified in the IMS 90 configuration via the SUBPROG 
parameter in the OPTIONS section. In addition, the subprogram name must be specified on 
the program-name parameter of the PROGRAM section and SUBPROG=YES must be 
specified in the same section. The COBOL or BAL program must then place the 
subprogram name in the SUCCESSOR-ID field of the PIB before calling the resident 
subprogram. 

In case of error in a subprogram, IMS 90 provides snapshot dumps of both the calling 
action program and the active subprogram. 

3.5.1. Subprogram Reusability 

A resident subprogram can be serially reusable or reentrant; it cannot be shared. A serially 
reusable subprogram can read and write into its own area, the calling action program, and 
the activation record. If the originating action program is reentrant, the subprogram cannot 
modify the calling program. Reentrant subprograms are executed as read-only and can 
modify only the activation record. They can modify other areas of the calling action 
program only if it is nonreentrant. 

3.5.2. COBOL Action Program Interface 

A COBOL action program calls a resident subprogram with the following sequence: 

MOVE subprogram-name TO SUCCESSOR-ID. 
ENTER LINKAGE. 
CALL 'SUBPROG' [USING data-name-1 ... data-name·n]. 
ENTER COBOL. 

where: 

data-name-1 ... data-name-n 
Refer to data items in the data division of the COBOL action program. No more 
than 12 data-names can be specified. 

A subprogram written in COBOL returns control to the calling action program as follows: 

ENTER LINKAGE 
CALL "RETURN'. 
ENTER COBOL. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.5.3. BAL Action Program Interface 

3-30 

A BAL action program or subprogram calls a resident subprogram via the following 
macroinstruction: 

jCALL lSUBPROG ,(param-1, ... ,param-n) 
1ZG#CALd 

where: 

param-1, ... ,param-n 
Refer to labels of storage locations in the BAL action program. Up to 12 
parameters can be specified. 

The calling action program must place the name of the called subprogram in the PIB at 
location ZA#PSID before issuing the ZG#CALL macro. The subprogram name must be left
justified and zero filled (X'FO') in a 6-byte area. 

When control is transferred to the called subprogram, register 1 points to the specified 
parameter list. Other register contents are as follows: 

• Register 13 points to a 72-byte save area supplied by the calling action program. The 
subprogram is responsible for saving the caller's registers. using standard save area 
linkages. If the subprogram requires working storage, the address of the working 
storage can be passed to the subprogram either in the parameter list or in a register. 

• Register 14 contains the return address. A subprogram returns control to the calling 
program via the ZG#CALL RETURN macro. 

• Register 15 contains the entry point address of the subprogram. 

• Registers 2 through 12 have the same contents as the calling program. 

• Register 0 is unpredictable. 

3.6. ACTIVATION RECORD 

The activation record is made available to the user action program after the program is 
loaded and given control by IMS 90. The activation record consists of the following areas. 
If present in a single-thread IMS 90 system, they appear in storage in the order listed: 

• Program information block (PIB) 

• Output message area (OMA) 

• Input message area (IMA) 

• Work area (WA) 



• 

• 

UP-8614 Rev. 1 

• Continuity data area (CDA) 

• Defined record area (DRA) 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-31 

In the activation record layout for multithread IMS 90, the CDA and WA precede the IMA. 
(See Figures 3-16 and 3-17.) 

Formats for PIB, OMA, and IMA headers are available to the COBOL user in the IMS 90 
copy library under the names PIB, OMA, and IMA. For American National Standard 1974 
COBOL users, these names are PIB74, OMA74, and IMA74. The BAL user accesses these 
formats by calling DSECTs as macros from the $Y$MAC system macro library or a user 
macro library. 

The ZM#DPIB macro calls the ZA#DPIB DSECT, the ZM#DOMH macro calls the ZA#OMH 
DSECT, and the ZM#DIMH macro calls the ZA#IMH DSECT. 

3.6.1. Program Information Block (PIB) 

The program information block is always present in. the activation record and is 1 ;36 bytes 
in length. It is used to communicate processing information between IMS 90 functions and 
the action program. The COBOL and BAL formats for the PIB are shown in Figures 3-8 
and 3-9. The COBOL description of the PIB is stored in the IMS 90 copy library under the 
name PIB or under the name PIB74 for American National Standard 1974 COBOL. The 
ZM#DPIB macro generates the PIB DSECT for a BAL program. The shaded area in Figure 
3-9 represents locations used only by IMS 90; a user-written BAL action program should 
never access these. 

The COBOL format PIB fields listed in Figure 3-8 are described in 3.6.1.1 through 3.6.1.6 . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-32 

01 PROGRAM-INFORMATION-BLOCK 
02 STATUS-CODE PIC 9(4) COMP-4. ~ 02 DETAILED-STATUS-CODE PIC 9 ( 4) COMP-4. 
02 RECORD-TYPE REDEFINES DETAILED-STATUS-CODE. 

03 PREDICTED-RECORD-TYPE PIC x. 
03 DELIVERED-RECORD-TYPE PIC x. 

02 SUCCESSOR-ID PIC x ( 6) . ® 
02 TERMINATION-INDICATOR PIC x. 

~i!S 02 LOCK-ROLLBACK-INDICATOR PIC x. 
02 TRANSACTION-ID. 

03 YEAR p c 9 ( 4) COMP-4. 
03 DAY p c 9 ( 4) COMP-4. © 
03 TIME p c 9 ( 9) COMP-4. ® 

02 DATA-DEF-REC-NAME p c X( 7). $~ 02 DEFINED-FILE-NAME p c x ( 7). 
02 STANDARD-MSG-LINE-LENGTH p c 9 ( 4) COMP-4. 

~ 02 STANDARD-MSG-NUMBER-LINES p c 9 ( 4) COMP-4. 
02 WORK-AREA-LENGTH p c 9 ( 4) COMP-4. 
02 CONTINUITY-DATA-INPUT-LENGTH p c 9 ( 4) COMP-4. 
02 CONTINUITY-DATA-OUTPUT· LENGTH p c 9 ( 4) COMP-4. $(i) 02 WORK-AREA-INC p c 9 ( 4) COMP-4. 
02 CONTINUITY-DATA-AREA-INC p c 9 ( 4) COMP-4. 
02 SUCCESS-UNIT-ID. 

03 TRANSACTION-DATE. 
04 YEAR PIC 99. 
84 MONTH PIC 99. 
04 DAY PIC 99. 

03 TIME-OF-DAY. 
04 HOUR PIC 99. 
84 MINUTE PIC 99. 
04 SECOND PIC 99. 

83 UN I QUE· SUFFIX PIC 999 
82 SOURCE-TERMINAL-CHARS. 

03 SOURCE-TERMINAL-TYPE PIC x. 
03 SOURCE-TERM-MSG-LINE-LENGTH PIC 9 ( 4) COMP-4. 
03 SOURCE-TERM-MSG-NUMBER-LINES PIC 9(4) COMP-4. 

t NOTES: 

CD These fields are set by action scheduling at action initiation. All other PIB fields are set to 0 at initiation. 

@ These fields determine the termination procedures and may be set by the action program prior to termination mode 
multithread. 

@ These fields also are used to return status information for 1/0 requests issued by the action program. 

® The name for this field in American National Standard 1974 COBOL is TODAY. 

® The name for this field in American National Standard 1974 COBOL is HR-MIN-SEC. 

Figure 3-8. COBOL and American National Standard 1974 COBOL Format for Program Information Block 

e 

• 

• 



• 

• 

UP-8614 Rev. 1 

ZA#OPIB 
ZA#PSC 
ZA#POSC 
ZA#PSID 
ZA#PSIND 

ZA#PSNN 
ZA#PSNA 
ZA#PSNS 
ZA#PSNI 
ZA#PSND 
ZA#PSNE 
ZA#PLRI 

ZA#PLRIN 
ZA#PLRIO 
ZA#PLRIH 
ZA#PLRIR 
ZA#PTID 
ZA#POORN 
ZA#POFN 
ZA#PMLL 
ZA#PMNL 
ZA#PWA 
ZA#PCDIN 
ZA#PCDL 
ZA#PCDO 
ZA#PWAI 
ZA#PCDI 
ZA#OTE 
ZA#TME 
ZA#UNID 
ZA#TTTYP 

ZA#TFCC 
ZA#TNON 
ZA#TWS 
ZA#TNOV 
ZA#TMLL 
ZA#TMNL 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

DSECT PROGRAM-INFORMATION-BLOCK 
OS H STATUS-CODE 
OS H DETAILED-STATUS-CODE 
OS CL6 SUCCESSOR-ID 
OS CLl TERMINATION-INDICATOR 
EQUATES FOR ZA#PSIND 
EQU C'N' NORMAL TERM 
EQU C'A' ABNORMAL TERM 
EQU C'S' ABNORMAL TERM WITH SNAP 
EQU C'I' IMMEDIATE INTERNAL SUCCESSION 
EQU c·o· DELAYED INTERNAL SUCCESSION 
EQU C'E' EXTERNAL SUCCESSION 
OS CLl LOCK-ROLLBACK-INDICATOR 
EQUATES FOR ZA#PLRI 

3-33 

EQU C'N' WRITE ROLLBACK POINT.RELEASE LOCKS 
EQU c·o· ROLLBACK UPDATES 
EQU C 'H' HOLDS LOCKS I ND 
EQU C'R' RElEASE PENDING LOCKS IND 
OS CLS TRANSACTION-ID 
OS CL7 DATA-DEF-REC-NAME 
OS CL7 DEFINED-FILE-NAME 
OS H STANOA]O-MSG-LINE-LENGTH 
OS H STANDARD-MSG-NUMBER-LINES 
OS H WORK-AREA-LENGTH 
OS H CONTINUITY-DATA-INPUT-LENGTH 
EQU CDA LEN OS/3 BASIC 
OS H CONTINUITY-DATA-OUTPUT-LENGTH 
OS H WORK-AREA-INC 
OS H CONTINUITY-OAJA-AREA-INC 
OS CL6 CURRENT DATE - YYMMDD 
OS CL6 SUCCESS-UNIT TIME - HHMMSS 
OS CL3 SUCCESS-UNIT-UNIQUE-ID 
OS CLI TERMINAL TYPE 
EQUATES FOR ZA#TTTYP 
EQU C'F' FULL FIELD CONTROL CHARACTER DEVICE 
EQU c·v· VIDEO DEVICE WITHOUT FCC 
EQU c·w· WORKSTATION 
EQU C'N' NON-VIDEO DEVICE 
OS H TERMINAL-MSG-LINE-LENGTH 
OS H TERMINAL-MSG-NUMBER-LINES 

Figure 3-9. BAL Format for P/B (ZA#DPIB DSECT) 



t 

UP-8614 Rev. 1 

3.6.1.1. STATUS-CODE 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-34 

STATUS-CODE is a half-word binary integer value returned by IMS 90 that indicates the 
completion status of a request. The status code values that can be returned are: 

Description 

Successful 
Invalid key or record number 
End of file or unallocated optional file 
Invalid request 
1/0 error 
Violation of data definition 
Internal message control error 
Screen formatting error 

Value 

0 
1 
2 
3 
4 
5 
6 
7 

In general, an invalid request status code is returned when an error is detected in a 
request by IMS 90 before the request is passed to OS/3 data management, control 
system, or ICAM. An 1/0 error status code is returned when an unrecoverable error is 
detected by data management, the control system, or ICAM. 

An error return option can be specified for each action program at configuration time. If 
the option to accept errors is chosen (ERET=YES specified to the configurator), then, 
regardless of the value of the status code, control is returned to the action program after a 
function is completed. In this case, the actjon program must include tests for all status • 
codes that are possible at the completion of the requested function. If the option to reject 
errors is chosen (or defaulted), then control is returned to the action program only if the 
status code equals 1 or 2. If any other status code is returned, control is not returned to 
the action program. 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-35 

3.6.1.2. DETAILED-STATUS-CODE 

DETAILED-STATUS-CODE is a half-word binary value returned by IMS 90 following a 
request when the status code is either an invalid request, 1/0 error, or internal message 
control error. The detailed status code supplements the status code by providing more 
detailed information concerning the error. When the status code is 1/0 error, the detailed 
status code contains either filenameC+2 or the error code and subcode returned by the 
access method. All file types except MIRAM files return a detailed status code of 
filenameC+2. MIRAM files return an error code (DM) and subcode. When the status code 
is invalid request (3) or internal message control error (6), the detailed status code is a 
binary integer. The possible values for the detailed status code for invalid request (status 
code 3) are listed in Table 3-8. Detailed status codes are interpreted differently for internal 
message control errors on explicit output message processing. (See 3.9.2.) 

Table 3-8. Detailed Status Codes for Invalid Requests (Part 1 of 2) 

Code Description Meaning 

0116 Incorrect number of parameters The number of parameter addresses contained 
in a request parameter list is inconsistent with 
the function requested. This error can result 
from the failure of BAL action programs to set 
the sign bit in the final address word in a request 
parameter list as required by standard linkage 
conventions. 

0216 Function code out of legal range This error may occur when the IMS 90 link 
module that is linked to a serially reusable or 
sharable action program is inadvertently 
written into by the action program or control 
is improperly passed from an action program 
to IMS 90. 

0316 Incorrect parameter value The parameter list address passed to IMS 90 
on a request is 0, or an address contained in 
the parameter list is 0, or the actual value of 
a parameter is incorrect. This error can also 
occur when an 1/0 area for a DAMA 
file was not half-word aligned. 

0416 Shared record not in use by this This code does not apply to user action 
transaction. program requests. 

0515 File not defined A logical or defined file named in a request 
to IMS 90 has not been defined at configuration 
time or by means of the data definition 
processor. 

0615 File not open A logical file named in a request to IMS 90 
has been closed from the master terminal (ZZCLS) 
or a logical file has been closed by data 
management as the result of an unrecoverable error . 

0716 Function invalid for type of file The function specified in a request to IMS 90 is 
not valid for the type of file named. For example, 
a SETL for a nonindexed file. 

t 

t 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-36 
Update A 

Table 3-8. Detailed Status Codes for Invalid Requests (Part 2 of 2) 

Code Description Meaning 

0816 Record(s) not locked An UNLOCK request has been made when no 
locks exist. 

0916 PUT or DELETE function not preceded The function sequence for an update operation 
by a GETUP function is not valid. 

OA16 Illegal function requested The requested function is not consistent with 
the DTF or RIB parameters in the configuration. 

0815 File not assigned to this action A logical or defined file named in a request to 
IMS 90 has not been named in the configured 
definition of the action making the request, or 
a defined file has not been dynamically named 
by the preceding action. 

oc,s Required module not included in A request has been made that requires a 
configuration. module not included in the IMS 90 load 

module at configuration time. 

0015 Capacity exceeded on INSERT function A request has been made to insert a record into 
a MIRAM or ISAM file, but insufficient space 
exists to contain the new record. 

OE1s Insufficient space in main storage User must allocate more main storage. 

OF 16 Update not permitted in configuration A request has been made to perform some update 
function, but update has been disallowed at 
configuration time. 

1016 Update suppressed for files The requested update is not permitted 
because of an 1/0 error in AUDFILE, a file 
used by online recovery. 

1115 Trace file down File recovery is not operational; only file displays 
are allowed. 

1216 Record has been locked by another Under single-thread, action program issued 
transaction (for single-thread only) either a GETUP or INSERT function on a 

record, but this record was already locked by 
some other transaction. 

The DETAILED-STATUS-CODE field has special uses under defined record management, 
described in 3.8.6.1. In the COBOL description of the PIB, DETAILED-STATUS-CODE is 
redefined as RECORD-TYPE for this purpose and the two record type bytes under the 
redefined STATUS-CODE are PREDICTED-RECORD-TYPE and DELIVERED-RECORD-TYPE. 

• PREDICTED-RECORD-TYPE is the one-byte alphanumeric indicator that specifies to 
the defined record management the type record expected from a GET, GETUP, or 
INSERT function call. It can also specify the type of the next sequential record 
expected as a result of the SETL and GET function calls. 

• DELIVERED-RECORD-TYPE is the one-byte alphanumeric indicator that specifies the 
type record actually returned by defined record management to the action program. 

• 

• 

• 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-37 

• 3.6.1.3. SUCCESSOR-ID 

• 

• 

SUCCESSOR-ID is the identification of the action program activated after the termination 
of the current action program. When either external or delayed internal succession is 
invoked, SUCCESSOR-ID must contain the name of the successor action. The required 
value must be moved to this field by the current action program if a successor is desired. 
This is a 6-byte field and the identification must be left-justified and zero filled (i.e .. X'FO'). 
No value need be specified on normal transaction termination. When the action program 
voluntarily chooses to terminate the transaction abnormally, a termination code is first 
moved to SUCCESSOR-ID. This termination code is useful in determining the cause of 
failure. If a code is specified, it is reported to the originating terminal operator (or console 
operator) after the abnormal termination occurs. 

3.6.1.4. TERMINATION-INDICATOR 

TERMINATION-INDICATOR is a 1-byte value, set by the current action program, that 
indicates the type of termination to take place for the program. The indicator has one of 
the following possible values: 

N 

A 

s 

E 

Indicates normal transaction termination. When the current action program 
terminates, messages are output and all resources including the current action 
program are released. This is the default value for the indicator. 

Indicates abnormal transaction termination. When the current action program 
terminates, IMS 90 creates and sends an error message to the originating 
terminal. All resources are released and files are rolled back, where applicable. 

Indicates abnormal transaction termination with snap dump. This option is the 
same as the A option except that, in addition, a snap dump of the action program 
and its activation record is performed. 

Indicates external succession. When the current action program terminates, 
messages are output, all resources including the current action program are 
released, and the succeeding action is scheduled when the next input message 
is received from the originating terminal. 



+ 

UP-8614 Rev. 1 

D 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-38 
Update A 

Indicates immediate internal succession. When the current action program 
terminates, no message is output, the current action program is released, the 
succeeding action program is initiated, and all areas that were referenced by the 
terminating action program are passed to its successor. Note that indiscriminate 
use of I in a multithread environment can cause deadlock. Avoid terminating with 
an I when the GETUP and SETL functions are outstanding in the current action. 

Indicates delayed internal succession. When the current action program 
terminates, no message is output. the output message is queued as input to the 
succeeding action, all resources (including the current action program) are 
released, and the succeeding action is initiated through normal scheduling 
procedures. 

When you use delayed internal succession, be sure to allocate adequate space 
for the input staging buffer via the INBUFSIZ parameter in the configurator 
GENERAL section. If insufficient buffer space is available for the successor 
program, the transaction terminates with a status code of 6 (internal message 
contr9I error) and a detailed status code of 8 (record not locked). 

A summary of the types of termination by an action program is included in Table 3-9 . 

Table 3-9. Summary of Action Program Termination Types 

Type of Termination 

Action 
Action Action 

Normal Abnormal Abnormal Transaction Termination Termination 
Program Information 

Transaction Transaction Termination With Snap 
Termination 

With Immediate With Delayed 
Block Data Items 

Termination Termination Dump 
With External 

Internal Internal 
Successor 

Successor Successor 

SUCCESSOR-ID Ignored Termination· Termination code Action Action Action 

code program name program name program name 

TERMINATION- N A s E I D 
INDICATOR 

• 

• 

• 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-38a 

The TERMINATION-INDICATOR is used to control voluntary action program termination; 
i.e., termination that occurs after the execution of the CALL 'RETURN' statement. An 
action program also can terminate involuntarily. Involuntary termination occurs when an 
abnormal condition is encountered by IMS 90 in the processing of a request issued by an 
action program. (See description of STATUS-CODE, 3.6.1.1 ). Involuntary termination also 
can occur when the execution of an action program causes a program check or when an 
execution loop within an action program continues beyond a specified time limit. When 
either of these conditions occurs, the standard abnormal termination message is sent to 
the originating user terminal and to the system console. In addition, a snap dump of the 
action program and its activation record is performed. (Refer to 3.12 for a description of 
the snap dump.) 



• 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-39 

3.6.1.5. LOCK-ROLLBACK-INDICATOR 

LOCK-ROLLBACK-INDICATOR is a 1-byte value, set by the action program, that indicates 
to action scheduling the record lock and rollback functions that are to be performed at 
action termination. The indicator is set to one of the following values: 

H 

N 

0 

R 

Causes all record locks that have been imposed in the action to be held into the 
subsequent action. 

Establishes a new rollback point in the audit file for this transaction and releases 
all locks for this transaction. This is the default value. 

Causes the rollback of all updates performed by this transaction to the previous 
rollback point, releases all locks for this transaction, and establishes a new 
rollback point in the audit file for this transaction. 

Causes the release of all locks for pending updates that have been imposed in 
the action. A record lock is pending if GETUP is done for it but no PUT function is 
issued for the record. 

R and H options are effective only when the termination indicator is set to E (external) or D 
(delayed internal). In long transactions, R and H options should be used with caution. 
Holding of locks across many actions in a multithread environment can cause deadlocks. 

The N option is useful for long-running update transactions. The N option releases all 
locks when the termination indicator is set to E (external) or D (delayed internal). It also is 
used to establish additional rollback points, to limit the range of rollback, and to cut down 
the size of the audit file. By limiting the number of updates in an action or by establishing 
additional rollback points in a long-running transaction, you can reduce the size of the 
audit file and thus save disk space. 

The 0 option is effective for N (normal), as well as E and D, and causes online file 
recovery to be activated to carry out the rollback. In the case of N (normal transaction 
termination), a new rollback point is established in the audit file . 



UP-8614 Rev. 1 

3.6.1.6. Additional PIB Fields 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-40 

The remaining COBOL format fields of the PIB contain the following information: 

• TRANSACTION-ID is the date-time stamp for the first input message of a transaction. 
It is set by action scheduling for the use of all action programs that are activated 
during the processing of a transaction. The date is given in Julian form. The time is in 
milliseconds. The TRANSACTION-DATE and TIME-OF-DAY under SUCCESS-UNIT-ID 
should be used by the action program when accurate date and time of day are 
required. 

• DATA-DEF-REC-NAME is the name of the data definition record (in the named record 
file) that contains the description of the defined file designated by DEFINED-FILE
NAME. This is a 7-byte item and the name must be left-justified and blank filled. 

When an action is scheduled, IMS 90 moves the record name specified by the 
DDRECORD parameter in the configurator ACTION section into this field and the file 
name specified by the DFILE parameter into the DEFINED-FILE-NAME field, unless 
values were left in these fields by the preceding action. If the action terminates in 
delayed internal or external succession and the successor action accesses a different 
defined file, the action program can either move the record name and file name for 
the successor action into these fields or can zero out both fields and let IMS 90 insert 
the values specified to the configurator for the successor action. If the successor 
action accesses only logical files, zeros also should be placed in both PIB fields. This • 
allows the successor action to access logical records that have contributed to the 
defined file used by the previous action. 

• DEFINED-FILE-NAME is the name of a defined file that is to be accessed. DEFINED
FILE-NAME is a 7-byte item and the name must be left-justified and blank filled. Its 
use is described under DATA-DEF-REC-NAME. 

• STANDARD-MSG-LINE-LENGTH is a half-word binary integer set by action scheduling 
that specifies the configuration-defined maximum line length for a message. 

• STANDARD-MSG-NUMBER-LINES is a half-word binary integer set by action 
scheduling that specifies the configuration-defined maximum number of lines for a 
message. 

• WORK-AREA-LENGTH is a half-word binary integer set by action scheduling that 
specifies the length of the work area allocated to the action. 

• CONTINUITY-DATA-INPUT-LENGTH is a half-word binary integer set by action 
scheduling that specifies the length of the continuity data record that was passed to 
this action by its predecessor. The continuity data record, if present, begins with the 
first byte of the continuity data area. 

• CONTINUITY-DATA-OUTPUT-LENGTH is a half-word binary integer set by action 
scheduling that specifies the length of the continuity data area allocated to the action. a 
This value determines the number of bytes in the continuity data area, starting with w 
the first byte, that are to be saved when termination with external succession or 
delayed internal succession is requested. The value is changed in the current action 
prior to termination to reduce the size of the continuity data record that is saved. 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-41 

• WORK-AREA-INC is a half-word binary integer set in the current action program. This 
value specifies the number of bytes in addition to the value specified in the action 
control table at configuration time that should be allocated for the successor of the 
current action. This is implemented in multithread only. 

• CONTINUITY-DATA-AREA-INC is a half-word binary integer set in the current action 
and is used to increment the length of the continuity data area. This increment value 
is added to the length of the saved continuity data record and compared to the length 
specified in the action control table to determine the larger, which becomes the size 
of the continuity data area for the succeeding action. 

• SUCCESS-UNIT-ID provides a data and time stamp to the user program at the 
beginning of each success unit. A success-unit is defined as an action. 

• SOURCE-TERMINAL-TYPE is a 1-byte field that contains a type code for the source 
terminal. The values set by IMS 90 are: 

Value Description 

C'F' Full field control character (FCC) device (i.e., UTS 400) 

C'V' Video device without FCC (i.e., U 100, U200) 

C'W' Workstation 

C'N' Nonvideo device (i.e., teletypewriter, batch terminal) 

• SOURCE-TERM-MSG-LINE-LENGTH is a half-word binary integer that specifies the 
number of characters per line for the source terminal. For a nonvideo device, however, this 
value is the configured line length (CH RS/LIN specification in the GENERAL section of the 
IMS 90 configuration). 

• SOURCE-TERM-MSG-NUMBER-LINES is a half-word binary integer that specifies the 
number of lines for the source terminal. For a nonvideo device, however, this value is 
the configured number of lines (LNS/MSG specification in the GENERAL section of 
the IMS 90 configuration). 

3.6.2. Output Message Area (OMA) 

The output message area is optional and has a length as specified by the OUTSIZE 
keyword parameter in the configurator ACTION section. The output message area is 
divided into a control header and an area for the message text. The message text portion 
is set to blanks at initiation. If an output message area is selected for an action and the 
action terminates normally, the message in the area is sent to the originating terminal 
unless otherwise specified. Figures 3-10 and 3-11 show the predefined COBOL and BAL 
formats for the OMA control header. The COBOL description of the OMA control header is 
available in the copy library under the name OMA or under the name OMA74 for 
American National Standard 1974 COBOL. Execution of the macro ZM#DOMH in a BAL 
action program generates the OMA DSECT. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-42 

DESTINATION-TERMINAL-ID is the identifier of the terminal to which the output message 
is to be sent. If no value is moved to this item prior to the termination of the action, the 
source terminal is assumed to be the destination terminal. The identifier must be left
justified and blank filled. The four bytes (FILLER) following this field are reserved for 
system use. 

SFS-OPTIONS is used to specify information about the screen format that is being used. If 
the first byte of the field is set to the character I. this format is to be used for the following 
input. Any other value in this field means this format is not to be used for the following 
input. 

CONTINUOUS-OUTPUT-CODE is used to identify a continuous output message, when 
continuous output is being generated. The continuous output option is described in 3.10. 

TEXT-LENGTH is a binary half-word integer that specifies the length of the output 
message text. The value specified in TEXT-LENGTH must include the length of the actual 
text plus four bytes for the length field. This value is set to the predefined output message 
text length by action scheduling at action initiation and is reduced by the action program. 
The output message text length is specified in the configuration definition of an action. If 
the value is set to zero and no explicit output message has been sent by the action 
program, a default termination message is sent to the source terminal. 

AUXILIARY-DEVICE-ID is used to specify whether the output message is to be sent to an 
auxiliary device and, if so, to identify the device. This field also can be used to specify 
additional printing options. If the output message is not to be sent to an auxiliary device, 
set the entire field to binary O's; this is the original value of the field, set by IMS 90 when 
it generates the OMA header. For example, in a COBOL action program 

MOVE LOW-VALUES TO AUXILIARY-DEVICE-ID. 

states that the output message is not to be sent to an auxiliary device, but is to be 
displayed or listed on the primary device - the destination terminal with no special options. 

On the other hand, if the output message is to be listed on an auxiliary device attached to 
the destination terminal, you must use each byte of the AUXILIARY-DEVICE-ID field. 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-43 

01 OUTPUT-MESSAGE-AREA. 
02 DESTINATION-TERMINAL- ID 
02 SFS-OPTIONS 
02 FILLER 
02 CONTINUOUS-OUTPUT-CODE 
02 TEXT-LENGTH 
02 AUXILIARY-DEVICE-ID. 

03 AUX-FUNCTION 
03 AUX-DEVICE-NO 

PI C X ( 4). 
PI C X ( 2) . 
PI C X ( 2) . 
PI C X ( 4). 
PIC 9(4) COMP-4. 

PIC X. 
PIC X. 

Figure 3-10. COBOL and American National Standard 1974 COBOL Format for OMA Control Header 

ZA#OMH DSECT 

OUTPUT MESSAGE HEADER 

ZA#ODTID OS CL4 
ZA#OSFSO OS CL2 

EQUATES FOR ZA#OSFSO 

ZA#OSFSI EQU C' I ' 

OS CL2 
ZA#CONT OS XL4 
ZA#OMHL EQU *-ZA#OMH 
ZA#OTL OS H 
ZA#OAUX OS CL2 

EQUATES FOR ZA#OAUX 

ZA#ONCOP EQU x·00· 
ZA#OCO EQU X'C3' 
ZA#OOIQ EQU X'C9' 
ZA#OHANG EQU x·o0· 
ZA#OCOP EQU X'F0' 
ZA#OCOCP EQU X' F 3' 
ZA#OPTCP EQU X'F4' 
ZA#OPCOC EQU X'F7' 

DESTINATION TERMINAL ID 
SFS OPTIONS 

INPUT FORMAT 

RESERVED FOR SYSTEM USE 
CONTINUOUS OUTPUT CODE 
OUTPUT MSG AREA HEADER LENGTH 
MESSAGE LENGTH 
AUXI LIARY-DEVICE-10 

NO COP SUPPORT REQUESTED 
CONTINUOUS OUTPUT REQ 
QUEUE AS INPUT FOR DEST: TCT 
RESERVED FOR IMS/90 SYSTEM USE 
COP OUTPUT REQUESTED 
CONTINUOUS OUTPUT TO COP 
PRINT TRANSPARENT TO COP 
CONTINUOUS OUTPUT TO COP WITH 
PRINT TRANSPARENT 

Figure 3-11. BAL Format for OMA Control Header (ZA#OMH DSECT) (Part 1 of 2) 



UP-8614 Rev. 1 

SS: 
C: 

ZA#OCSPM EQU 
ZA#ONSPM EQU 
ZA#OCSPT EQU 
ZA#ONSPT EQU 
ZA#OCIPM EQU 
ZA#ONIPM EQU 
ZA#OCIPT EQU 
ZA#ONIPT EQU 
ZA#OCSPF EQU 
ZA#ONSPF EQU 
ZA#OCSTA EQU 
ZA#ONSTA EQU 
ZA#OCSTV EQU 
ZA#ONSTV EQU 
ZA#OCSTC EQU 
ZA#ONSTC EQU 
ZA#OCIPF EQU 
ZA#ONIPF EQU 
ZA#OCITA EQU 
ZA#ONITA EQU 
ZA#OCITV EQU 
ZA#ONITV EQU 
ZA#OCTIC EQU 
ZA#ONITC EQU 
ZA#ONTRM EQU 
ZA#ONTRT EQU 
ZA#ONTSR EQU 
ZA#ONTST EQU 
ZA#ONTRA EQU 

t ZA#OCTBB EQU 
ZA#ONTBB EQU 
ZA#OCTSP EQU 
ZA#ONTSP EQU 

EQUATES 

ZA#ODIDl EQU 
ZA#ODID2 EQU 
ZA#ODID3 EQU 
ZA#ODID4 EQU 
ZA#ODID5 EQU 
ZA#ODID6 EQU 
ZA#ODID7 EQU 
ZA#ODID8 EQU 
ZA#ODID9 EQU 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-44 
Update A 

SPACE SUPPRESSION IS S: INHIBIT SPACE SUPPRESSION 
CONTINUOUS OUTPUT NC: NOT CONTINUOUS OUTPUT 

X' F 3 ' 3: C,SS,PRINT MODE 
X'Fll' 0: NC.SS, PRINT MODE 
X' F 7' 7: C,SS,PRINT TRANSPARENT 
X'F4' 4: NC.SS.PRINT TRANSPARENT 
X' F 5' 5: C,ISS,PRINT MODE 
X' F 2' 2: NC, ISS,PRINT MODE 
X' F 9' 9: C,ISS,PRINT TRANSPARENT 
X' F 6' 6: NC, I SS.PRINT TRANSPARENT 
X'Cl' A: C,SS,PRINT FORM (ESCH) 
X'Dl' J : NC.SS, PRINT FORM (ESC H) 
X'C2' B: C,SS, TRANSFER ALL ( E SC G) 
X'D2' K: NC, SS, TRANSFER ALL (ESC G), 
X'C4' D: C,SS,TRANSFER VARIABLE (ESC F) 
X'D4' M: NC.SS, TRANSFER VARIABLE (ESC F) 
X'C5' E: C,SS. TRANSFER CHANGED ( E SC E) 
X'D5' N: NC.SS, TRANSFER CHANGED ( ES C E) 
X'C6' F: C,ISS,PRINT FORM (ESCH) 
X'D6' 0: NC, ISS,PRINT FORM (ESCH) 
X'Cl' G: C,ISS,TRANSFER ALL (ESC G) 
X'D7' p: NC,ISS,TRANSFER ALL (ESC G) 
X'C8' H: C,ISS,TRANSFER VARIABLE (ESC F) 
X'D8' Q: NC,ISS,TRANSFER VARIABLE (ES C F) 
X' E 8' y: C,ISS,TRANSFER CHANGED (ESC E) 
X' F 8' 8: NC,ISS,TRANSFER CHANGED (ESC E) 
X'D9' R: C,READ MODE 
X' E 2 ' S: C,READ TRANSPARENT 
X' E 3' T: C,SEARCH AND READ MODE 
X' E 5' v: C,SEARCH AND READ TRANSPARENT 
X' E 6' W: C,REPORT ADDRESS 
X'D3' L : C,BACK ONE BLOCK 
X' E 7' X: NC.BACK ONE BLOCK 
X' E 9' Z: C,SEARCH AND POSITION 
X' E 4' U: NC.SEARCH AND POSITION 

FOR ZA#OAUX+l 

c. 1 . DEVICE AUX! 
C'2' DEVICE AUX2 
C'3' DEVICE AUX3 
C'4' DEVICE AUX4 
C'5' DEVICE AUX5 
c '6. DEVICE AUX6 
C'l' DEVICE AUX7 
C'S' DEVICE AUX8 
C'9' DEVICE AUX9 

Figure 3-11. BAL Format for OMA Control Header (ZA#OMH DSECT) (Part 2 of 2) 

• 

• 

• 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-45 

To list the output message on the COP or TP in print mode, for example, set the AUX
FUNCTION byte of this field to X'FO'; to list it in print-transparent mode, set the AUX
FUNCTION byte to X'F4'. You must also set, in the AUX-DEVICE-NO byte of the same field, 
a character in the range 1-9 (that is, X'F1' through X'F9') to identify the auxiliary device. 
This number corresponds to the logical device number appended to the AUX keyword 
parameter of the TERM declarative macro in your ICAM network definition. (See the IMS ..,_ 
90 system support functions user guide/programmer reference, UP-8364 (current 
version).) For example, in a COBOL action program, the statements 

MOVE '4' TO AUX-FUNCTION. 

MOVE '1' TO AUX-DEVICE. 

cause the output message to be sent to an auxiliary device at the primary destination 
terminal and listed in print-transparent mode; the device specified is the first auxiliary 
device configured at that terminal. Print mode, print-transparent mode, space suppression, 
and other print options are further described in 3.10.1.1 (in the context of printing 
continuous output). Table 3-16 summarizes the settings of the AUX-FUNCTION byte. 

3.6.3. Input Message Area (IMA) 

The input message area is required for all actions. Its size is specified at configuration 
with the INSIZE keyword parameter in the ACTION section. When no length is specified for 
the input message area at configuration time or the length specified is inadequate, an area 
large enough to contain the actual input message is allocated by action scheduling. This 
area contains the input message when the first and subsequent action programs of an 
action are activated. If the input entered from the terminal is a function key (5. 1.5), IMS 90 
creates a message in the format: 

F#nn 

This message is preceded by the DICE sequence: 

10010101 

This DICE sequence is present even if you specified DICE=OFF in your ICAM network 
definition. However, if you have configured input message editing (any specification except 
NO on the EDIT parameter in the ACTION section), the DICE sequence is stripped from the 
message before it is sent to your program. 

The area also contains information related to the message in a control header. When the 
input message area is larger than the actual input message plus the control header, the 
balance of the area is blank filled. The COBOL and BAL formats for the IMA control header 
are shown in Figures 3-12 and 3-13. The .COBOL description of the IMA header is 
available in the copy library under the name IMA or under the name IMA74 for American 
National Standard 1974 COBOL. Execution of the ZM#DIMH macro in a BAL action 
program generates the DSECT for the IMA header . 

+ 



UP-8614 Rev. 1 

01 

NOTES: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

INPUT-MESSAGE-AREA. 
02 SOURCE-TERMINAL-ID 
02 DATE-TIME-STAMP. 

03 YEAR 
03 DAY 
03 TIME 

02 TEXT- LENGTH 
02 AUXILIARY-DEVICE-ID. 

03 FILLER 
03 AUX-DEVICE-NO 

PIC X(4). 

PIC 9(4) COMP-4. 
PIC 9(4) COMP-4. 
PIC 9(9) COMP-4. 
PIC 9 ( 4) COMP-4. 

PIC x. 
PIC x. 

CD The name of this field in American National Standard 1974 COBOL is TODAY. 

@ The name of this field in American National Standard 1974 COBOL is HR-MIN-SEC. 

3-46 

Q) 
@ 

Figure 3-12. COBOL and American National Standard 1974 COBOL Format for /MA Control Header 

ZA#IMH DSECT 

INPUT MESSAGE HEADER 

ZA#ISTID OS CL4 SOURCE TERMINAL ID 
ZA#IDTS DS CL8 DATE/TIME STAMP 
ZA#IMHL EQU *-ZA#IMH INPUT MESSAGE AREA HEADER LENGTH 
ZA# I TL OS H TEXT LENGTH 
ZA#IDEV DS CL2 AUXILIARY-DEVICE-ID 

EQUATES FOR ZA#IDEV+l 

ZA#IDIDl EQU C' I' DEVICE=AUX I 
ZA#IDID2 EQU C'2' DEVICE=AUX 2 
ZA#IDID3 EQU C'3' DEVICE=AUX 3 
ZA#IDID4 EQU C'4' DEVICE=AUX 4 
ZA#IDID5 EQU C'5' DEVICE=AUX 5 
ZA#IDIDG EQU C'G' DEVICE=AUX 6 
ZA#IDID7 EQU c' 7' DEVICE=AUX 7 
ZA#IDID8 EQU C'S' DEVICE=AUX 8 
ZA#IDID9 EQU C'9' DEVICE=AUX 9 

Figure 3-13. BAL Format for /MA Control Header (ZA#IMH DSECT} 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-47 

• The IMA control header contains the following items: 

• 

• 

• SOURCE-TERMINAL-ID is the identifier of the terminal that originated the input 
message. 

• DATE-TIME-STAMP is the value of the date and time at which the input message was 
made available to internal message control. The date-time is provided in binary. The 
first half word of the field contains the year; the second half word contains the Julian 
day. The second word contains a sequence number unique to this input message and 
not usable for determining the time of day. 

• TEXT-LENGTH is a binary half-word integer that specifies the length of the input 
message text. The two bytes (FILLER) following the TEXT-LENGTH field are reserved 
for system use. The value specified in TEXT-LENGTH includes the length of the actual 
text plus four bytes for the length field. 

• AUXILIARY-DEVICE-ID is the number of the auxiliary device from which data is 
transmitted to the action program. 

3.6.4. Work Area (WA) 

The work area is optional for most programs; however, it is generally used by sharable or 
reentrant action programs requesting file 110 functions. The, work area is used as 
modifiable working storage for the input and output of defined records and logical data 
records via IMS 90 file management. The work area also is used for the building of output 
messages that are explicitly sent via internal message control. The length of the area is 
equal to the length specified in the action control table at configuration time plus the 
length specified as WORK-AREA-INC in the PIB by the preceding action. WORK-AREA-INC 
is not supported in single-thread IMS 90. If the WORKSIZE parameter is not specified in 
the configurator ACTION section, no work area is generated. The work area, if generated, 
is set to binary O's at initiation. 

3.6.5. Continuity Data Area (CDA) 

The continuity data area is optional. It is used to contain data that is passed from action to 
action in a dialog transaction. 

If a fixed-length continuity data area is required in a dialog transaction, the length of the 
area is specified in the action control table record for the first action by means of the 
CDASIZE parameter in the configurator ACTION section. The record is then passed from 
action to action by action scheduling without further intervention by the action programs. 

It is possible to vary the length of the continuity data area from action to action or to 
eliminate the area when the succession is made from one action to another. These 
changes are accomplished by varying the parameters that determine CDA length . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-48 

The length of the area is equal to the larger of: 

• the length specified in the action control table at configuration time for the action 
being scheduled; or 

• the length specified as CONTINUITY-DATA-INC in the PIB by the preceding action plus 
the actual length of the continuity data record saved at the termination of the 
preceding action. 

The actual length of the record saved is specified in CONTINUITY-DATA-OUTPUT-LENGTH 
in the PIB of the preceding action. The same value is made available to the succeeding 
action in the CONTINUITY-DATA-INPUT-LENGTH entry of the PIB. Either the CONTINUITY
DATA-INC specified by the preceding action or the continuity data area length specified in 
the action control table, or both, is zero. If the value in CONTINUITY-DATA-OUTPUT
LENGTH is zero when an action terminates, then no record is saved for the succeeding 
action in the continuity data file. 

The continuity data area is set to binary O's at action initiation. The continuity data record, 
if any, is then read into the area as its starting location. 

3.6.6. Defined Record Area {ORA) 

The defined record area is used by defined record management. A ORA is generated if the 
DDRECORD parameter is specified in the ACTION section of the configuration for this user 
action or if DEFINED-FILE-NAME in the PIB contained a defined file name when the action 
that named the current action as its successor terminated. The ORA is approximately 400 

~ bytes long plus four times the maximum logical record size plus two times the record key 
size. 

t 

The defined record area is not specified in the action program and cannot be written into 
by the action program. 

3.7. LINK EDITING ACTION PROGRAMS 

After you obtain a clean action program compilation, you must link it to the IMS 90 link 
module, ZF#LINK, in one job using the LINK jproc in the following format: 

II LINK action-prog-name, OUT=j(vol-ser-no,label)t 
1(RES,$Y$LOD) ~ 

This LINK jproc can be used only when the action program is compiled with the PARAM 
OUT=(M) statement or the I I PARAM IMSCOB=YES statement. This procedure produces 
a load module and places it in the IMS 90 load library for later reference. This library must 
be the same one specified on the UBL parameter of the IMSCONF jproc at configuration. 
(The default value for the UBL parameter is $Y$LOD.) 

If an action program is not compiled with either of the shared code PARAM statements, an 
ENTER statement naming the program to be linked must be included in the link stream. 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-49 
Update A 

ZF#LINK has a defined entry point for each of the IMS 90 functions that an action program 
can request. During execution, when an action program calls an IMS 90 function, control 
passes to ZF#LINK. ZF#LINK, in turn, passes control to IMS 90, which executes the 
function. After completion of the requested service, control returns from the IMS 90 
module directly to the action program at the return point designated in the function call. 

3.8. FILE PROCESSING 

IMS 90 file management makes records available to action programs for processing. In 
turn, user-written action programs issue file 1/0 functions to retrieve, insert, update, or 
delete records. IMS 90 file management supports sequential, relative, and indexed files. In 
addition, it supports defined files in an indexed file organization via defined record 
management. 

An IMS 90 action program can issue one or more 1/0 function calls: GETUP, GET, PUT, J. 
DELETE, INSERT, SETL, and ESETL. These calls are processed by SAM, DAM, ISAM, or T 
MIRAM access methods. (To access IRAM files, you must define them as MIRAM files at 
configuration time.) Table 3-10 summarizes the files supported by IMS 90. 

Table 3-10. Summary of Files Supported by IMS 90 File Management 

File Access Data Management Functions Available 

Organization Mode Access Method Through IMS 90 
File Management 

Sequential Sequential SAM/dedicated MIRAM Retrieve, Append 
(tape and disk) (write unblocked output) 

Relative Random DAM/MIRAM Retrieve', Update, 
(nonindexed) Insert, Delete 

Sequential MIRAM Retrieve 

Indexed Random ISAM/MIRAM Retrieve*, Update 
Insert, Delete 

Sequential ISAM/MIRAM Retrieve 

Indexed Random ISAM/DAM/ Retrieve*, Update, 

(Defined File) MIRAM Insert, Delete 

Sequential ISAM/DAM/ Retrieve 
MIRAM 

• Both retrieve and retrieve-with-the-intent-to-update can be requested . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-50 
Update A 

An action program may issue random or sequential 1/0 functions to indexed and relative 
files but only sequential 1/0 functions to sequential files. Table 3-11 lists the file 1/0 
functions allowed with each file organization. 

Table 3-11. Summary of File 110 Function CALL Statements 

File Organization Random Functions Sequential Functions 

Sequential GET USING file-name record-area. 
PUT USING file-name record-area. 

Relative GET USING file-name record-area record-number. SETL USING file-name position 
(non indexed) GETUP USING file-name record-area record-number. [record-numberJ.0 

PUT USING file-name record-area [record-number]. 0 GET USING file-name record-area. 
INSERT USING file-name record-area record-number. ESETL USING file-name. 
DELETE USING file-name record-area record-number. 

Indexed GET USING file-name record-area key. SETL USING file-name ROSiton 
GETUP USING file-name record-area key. [key{partial-key-count]]. 0 
PUT USING file-name record-area. GET USING file-name record-area. 
INSERT USING file-name record-area. ESETL USING file-name. 
DELETE USING file-name record-area. 

Indexed GET USING file-name record-area key. SETL USING file-name position [key]. 
(Defined File) GETUP USING file-name record-area key. GET USING file-name record-area. 

PUT USING file-name record-area. ESETL USING file-name. 
INSERT USING file-name record-area key. 
DELETE USING file-name record-area. 

+ NOTES: 

CD Sequential functions available with MIRAM, not DAM 

Required for DAM relative files 

3.8.1. Formats and Rules for File 1/0 Functions 

The four following general rules apply to file 1/0 functions: 

1. In an action program coded in extended COBOL, function requests are preceded and 
followed by ENTER statements: 

ENTER LINKAGE. 
CALL 'GET' USING file-name record-area key. 
ENTER COBOL. 

Action programs coded in 1974 American National Standard COBOL do not use 
ENTER statements. 

2. Function requests made in BAL action programs use either the CALL or the ZG#CALL 
macro. (Refer to 3.4.2 for details.) An example of a BAL function request that is 
equivalent to the preceding COBOL function call is: 

CALL GET. (file-name. record-area.key) 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-51 

3. The completion status of a function request is set in the program information block. 
Values for the status codes are listed in the description for each function. Values of 
detailed status codes are listed in Table 3-8. 

4. The positional parameters file-name, record-area, record-number, key, and position 
refer to data names in the data division of a COBOL action program or labels of 
storage locations in a BAL action program. The locations they represent contain the 
following values at the time the 1/0 function is performed: 

• File-name contains the 7-character name of the file on which the specified 
function is to be performed. This name must be left-justified and blank filled. 

• Record-area is the area to or from which a logical or defined record is to be 
moved by file management. The size of the record area must be equal to or 
greater than the size of the largest logical record it is to contain. In the case of a 
variable-length record, the record begins with the length field. COBOL 
programmers do not usually have to be aware of the length field, but they must 
include a description of this field in their description of a variable-length record 
when writing an action program. 

• Record-number is an 8-byte field containing a right-justified binary number 
identifying a record in the file. The number designates the position of the record 
relative to the beginning of the file. The first number is 1 . 

• Key contains the key value used to identify a record to be retrieved from a file or 
inserted into a file. 

• Position contains a 1-byte value designating the pos1t1on of the file at the 
completion of the SETL function. Values are listed in the description of the SETL 
function. 

3.8.2. Indexed Files 

The indexed sequential, indexed random, and multiple indexed random access methods 
(ISAM, IRAM, and MIRAM) process function calls issued by your action program to indexed 
files. With several exceptions, a key specification characterizes most file functions issued 
to indexed files. Although IMS 90 supports multiple key MIRAM files, you must use only 
the key identified in the configurator FILE section (KEYn parameter) to retrieve or update 
records. No duplicate keys are allowed on MIRAM files. Changes to alternate keys are 
allowed. 

3.8.2.1. Random Functions for Indexed Files 

The random function calls GET, GETUP, PUT, INSERT, and DELETE retrieve records with or 
without updating, write records back to a file, logically delete records, and overwrite an 
existing record or add a new record to a file . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.8.2.1.1. GET and GETUP Functions 

3-52 
Update A 

The random GET function only retrieves the record. The GETUP function retrieves the 
record for updating and temporarily locks the requested record from access by other 
transactions. Random GET and GETUP functions are not performed if the requested record 
is currently locked by a different transaction. File keys supplied as parameters in a GET or 
GETUP function locate the required record in a logical file. Any key required for a function 
need only be as long as the key field itself. 

A GET function must not be followed by a PUT or DELETE function; however, a GETUP 
function can be followed by a PUT function to update the record or a DELETE function to 
mark the record as logically deleted. A value of X'FF' in the first byte of data in the logical 
record indicates the logical deletion of that record. When a transaction requests a record 
with X'FF' in the first byte, an invalid key status code is returned. To be effective, PUT or 
DELETE functions must immediately follow the GETUP function. If other functions 
intervene, the record must be retrieved again with a GETUP function before a PUT or 
DELETE can be performed. The key field must remain unaltered until the PUT or DELETE 

~ function is completed for ISAM files or until after the GETUP function is completed for 
MIRAM files. No key parameter is given on the PUT or DELETE functions issued to indexed 
records because the key was already given in the preceding GETUP function. 

COBOL and BAL formats for the random GET and GETUP function calls and resulting 
status codes follow: 

COBOL Format: 

CALlj'GET' (USING file-name record-area key. 
1'GETUP'5 

BAL Format: 

jCALL (jGET l ,(file-name, record-area.key) 
1ZG#CALL 51GETUP) 

Status Codes: 

0 Successful 
1 Invalid key 
2 Unallocated optional file* 
3 Invalid request 
4 1/0 error 

*This code applies to MIRAM files only. 

• 

• 

• 



• 

• 

UP-8614 Rev. 1 

3.8.2.1.2. PUT Function 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-53 

The random PUT function is used with the GETUP function to write an updated record 
back to the file. A PUT function must be preceded by a GETUP function that retrieves the 
requested record for update. The first byte of nonkeyed data in a record must not be an 
X'FF'. Keys are not supplied on PUT functions issued to indexed files. 

COBOL and BAL formats for the PUT function call and resulting status codes follow: 

COBOL Format: 

CALL 'PUT' USING file-name record-area. 

BAL Format: 

§CALL tPUT, (file-name, record-area) 
1ZG#CALL~ 

Status Codes: 

0 
1 
2 
3 
4 

Successful 
Not used 
Unallocated optional file* 
Invalid request 
1/0 error 

3.8.2.1.3. INSERT Function 

The INSERT function places a new record into the file or overwrites a previously deleted 
record. This function is not preceded by a GETUP function. The first byte of nonkey data in 
the record being inserted must not contain a deleted record value of X'FF'. Any INSERT 
function using a previously deleted record slot not only removes the delete control 
character but also changes the record length field for variable-length records. Changing 
the length of a variable-length record is permitted for MIRAM files only. It is not allowed 
for ISAM files. Indexed files do not require a key parameter in the INSERT function. Their 
keys must be embedded in the record. The key of the new record must have a value that is 
different from any that already exist in the file. No additional 3 bytes of work space are 
required following the embedded key. 

COBOL and BAL formats for the random GET and GETUP function calls and resulting 
status codes follow: 

COBOL Format: 

CALL 'INSERT' USING file-name record-area: 

\ 

*This code applies to MIRAM files only. 

t 



t 

UP-8614 Rev. 1 

BAL Format: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

jCALL tlNSERT,(fi le-name, record-area) 
1zG#CALL5 

Status Codes: 

0 Successful 
1 Not used 
2 Unallocated optional file* 
3 Invalid request 
4 1/0 error 

3.8.2.1.4. DELETE Function 

3-54 

The DELETE function logically deletes a record that was retrieved for updating. This 
function must be immediately preceded by a GETUP function for a record to be deleted. If 
other functions intervene between the GETUP and DELETE functions, the GETUP function 
must be reissued before the record can be DELETED. The DELETE function changes the 
first byte of nonkey data in a record retrieved for update to X'FF' before the record is 
written to the file. The DELETE function is invalid if the first byte of nonkey data is part of 
an alternate key. 

COBOL and BAL formats for the DELETE function call and resulting status codes follow: • 

COBOL Format: 

CA L L . ' DE LE TE ' . US I NG . f i I e - name . r e co r d - a r ea : 

BAL Format: 

jCALL .. ·tDELETE, (file-name, record-area) 
1 ZG#CA L Ll 

Status Codes: 

0 
1 
2 
3 
4 

I 

Successful 
Not used 
Unallocated optional file* 
Invalid request 
1/0 error 

*This code applies to MIRAM files only. 

• 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-55 
Update A 

• 3.8.2.2. Sequential Functions for Indexed Files 

• 

• 

Sequential function calls SETL, GET, and ESETL set an indexed file into sequential mode 
and position it to a selected location in the file, retrieve records sequentially, and reset the 
indexed file from sequential mode to random mode. 

When you access an indexed file sequentially, your action program must first set the file 
into sequential mode via the SETL function. During this time, files are accessed exclusively 
by the transaction that set the mode. Requests by other transactions for sequential or 
random mode functions are queued for later processing. 

Sequential mode exists until your program requests an ESETL function or until the current 
action terminates. In either case, the indexed file returns to random mode. 

NOTE: 

Shared file access among transactions is done only in the random mode. The use of 
sequential mode by one transaction can significantly degrade the response time for other 
transactions accessing the same file. 

3.8.2.2.1. SETL Function 

The SETL function sets an indexed file into sequential mode and logically positions the file 
according to the following position values: 

Value 

B 
G 
K 
H 

Meaning 

Beginning of file 
Greater than or equal to the key supplied 
Equal to key supplied 
Greater than key supplied 

The value of the position parameter determines the logical pos1t1on of the file at 
completion of the SETL function. You can reissue the SETL function any time you wish to 
change the sequential position of the file. For ISAM files, however, you must issue an 
ESETL function before reissuing another SETL function. 

You must supply a file name and choose a position value on the SETL function for indexed 
files. Depending upon the position chosen, you may optionally supply a key parameter. In 
addition, the SETL function allows for partial key search of indexed MIRAM files. To do 
this, you supply the optional partial key count parameter. The partial key count parameter 
is the symbolic address of a one-word field containing a right-justified binary number. This 
binary number indicates the number of key argument leading bytes used for the 
positioning search. Table 3-12 explains the SETL parameter choices for indexed files . 



t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Table 3-12. SETL Parameter Choices for Indexed Files 

Parameters 

File Type Position 
File Name 

B G K H Key 

ISAM x x x x x 

Indexed IRAM x x x x 

Indexed MIRAM x x x x x x 

NOTES: 

1. The letter X means applicable to this file type. 

Partial 
Key 

x 

2. Key and partial key count are not used with position value B. 

3-56 

The COBOL and BAL formats for the SETL function call and resulting status codes follow: 

COBOL Format: 

CALL 'SETL' USING file-name position[key[part ial -key-count]]. 

BAL Format: 

§CALL {SETL,(f i le-name.position[ ,key[ ,partial -key-count]]) 
fZG#CALd 

Status Codes: 

0 Successful 
1 Invalid key 
2 Not used 
3 Invalid request 
4 1/0 error 

3.8.2.2.2. GET Function 

The sequential GET function retrieves the next logical record in sequential order unless 
the record is marked logically deleted (i.e., X'FF' in the first byte). If the record is marked 
logically deleted, th_~ GET function then retrieves the following record. File-name and 
record-area parameters are required on sequential GET functions for indexed files. The 
COBOL and BAL formats for the sequential GET function call and resulting status codes 
follow: 

COBOL Format: 

CALL 'GET' USING file-name record-area. 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 

BAL Format 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

~CALL lGET,(f ile-name,record-area) 
IZG#CALL~ 

Status Codes: 

0 Successful 
1 Not used 
2 End of file or unallocated optional file 
3 Invalid request 
4 1/0 error 

3.8.2.2.3. ESETL Function 

3-57 

The ESETL function changes the mode of indexed files from sequential back to random. If 
a file is in the sequential mode for a transaction and you do not issue an ESETL function 
before termination of the current action, IMS 90 file management resets the file to random 
mode. The ESETL function always requires a file-name parameter. The COBOL and BAL 
formats for the ESETL function call and resulting status codes follow: 

COBOL Format: 

CALL 'ESETL' USING file-name. 

BAL Format: 

~CALL tESETL,(fi le-name) 
lZG#CALd 

Status Codes: 

0 
1 and 2 
3 
4 

Successful 
Not used 
Invalid request 
1/0 error 

3.8.3. Relative Files 

The direct, indexed random, and multiple indexed random access methods (DAM, IRAM, 
and MIRAM) process function calls issued by your action program to relative files. A 
record-number parameter characterizes most file functions to relative files although record 
numbers are not always required on sequential functions to relative files . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.8.3.1. Random Functions for Relative Files 

3-58 
Update B 

The random function calls GET, GETUP, PUT, INSERT, and DELETE retrieve records with or 
without updating, write records back to a file, logically delete records, and overwrite an 
existing record or add a new record to a file. 

A DAM file must be preformatted offline before its initial use and must contain the 
maximum number of physical records to be referenced online under file management. For 
processing IRAM files, all volumes in a file must be mounted online. 

3.8.3.1.1. GET and GETUP Functions 

The random GET function only retrieves the record. The GETUP function retrieves the 
record for updating and temporarily locks the requested record from access by other 
transactions. Random GET and GETUP functions are not performed if the requested record 
is currently locked by a different transaction. When issued to relative files, the GET and 
GETUP functions must supply a record number. File relative record numbers supplied as 
parameters in a GET or GETUP function locate the required record in a logical file. All 
record number fields must be eight bytes long. 

A GET function must not be followed by a PUT or DELETE function; however, a GETUP 
function can be followed by a PUT function to update the record, or a DELETE function to 
mark the record as logically deleted. A value of X'FF' in the first byte of data in the logical 
record indicates the logical deletion of that record. When a transaction requests a record 
with X'FF' in the first byte, an invalid record number status code is returned. 

COBOL and BAL formats for the random GET and GETUP function calls and resulting 
status codes follow: 

COBOL Format: 

CALLS'GET' lUSING file-name record-area record-number. 
1'GETUP'l 

BAL Format: 

SCALL l !GET l ,(file-name, record-area, record-number) 
1ZG#CALLl 1GETUPl 

Status Codes: 

0 Successful 
1 Invalid record number 
2 Unallocated optional file* 
3 Invalid request 
4 1/0 error 

*This code applies to MIRAM files only. 

• 

• 

• 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-59 
Update A 

• 3.8.3.1.2. PUT Function 

• 

• 

The random PUT function is used with the GETUP function to write an updated record 
back to the file. A PUT function must be preceded by a GETUP function that retrieves the 
requested record for update. The first byte of nonkeyed data in a record must not be an 
X'FF'. A record-number parameter is required on the PUT function for DAM files, but is 
optional for other relative files. Nevertheless, if you omit record-number for MIRAM files, 
you must place the GETUP function immediately before the PUT function. 

COBOL and BAL formats for the PUT function call and resulting status codes follow: 

COBOL Format: 

CALL 'PUT' USING file-name record-area [record-number]. 

BAL Format: 

~CALL tPUT,(file-name,record-area [,record-number]) 
lZG#CALLf 

Status Codes: 

0 Successful 
1 Invalid record number 
2 Unallocated optional file* 
3 Invalid request 
4 1/0 error 

3.8.3.1.3. INSERT Function 

The INSERT function places a new record into the file or overwrites a previously deleted 
record. This function is not preceded by a GETUP function. The first byte of nonkey data in 
the record being inserted must not contain a deleted record value of X'FF'. For MIRAM 
files only, any INSERT function using a previously deleted record slot not only removes the 
delete control character but also changes the record length field for variable-length 
records. 

INSERT functions issued to a relative file must supply a record-number parameter. If you 
specify RCB=NO at configuration, any record you add to a relative file must be assigned a 
relative record number one higher than the last record in the file. This prevents the 
occurrence of erroneous data between the last record and the new inserted record. You 
may insert records within or beyond the limits of nonindexed MIRAM files; file extension is 
permitted. 

COBOL Format: 

CALL 'INSERT' USING Ii le-name record-area record-number. 

*This code applies to M/RAM files only. 

t 



UP-8614 Rev. 1 

BAL Format: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

JCALL i INSERT,(f i le-name, record-area, record-number) 
UG#CA LLf 

Status Codes: 

0 Successful 
1 Invalid record number 
2 Unallocated optional file* 
3 Invalid request 
4 110 error 

3.8.3.1.4. DELETE Function 

3-60 

The DELETE function logically deletes a record that was retrieved for updating. This 
function must be immediately preceded by a GETUP function for a record to be deleted. If 
other functions intervene between the GETUP and DELETE functions, the GETUP function 
must be reissued before the record can be DELETED. 

You must supply a record-number parameter on the DELETE function for DAM files; 
however, record-number parameters are optional on DELETE functions for other relative 

• 

files. The DELETE function changes the first byte of nonkey data in a record retrieved for • 
update to X'FF' before the record is written to the file. 

COBOL and BAL formats for the DELETE function call and resulting status codes follow: 

COBOL Format: 

CALL 'DELETE' USING file-name record-area [record-number]. 

BAL Format: 

JCALL lDELETE, (file-name, record-area [,record-number]) 
UG#CALLf 

Status Codes: 

0 Successful 
1 Invalid record number 
2 Unallocated optional file* 
3 Invalid request 
4 1/0 error 

• 
*This code applies to MIRAM files only. 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.8.3.2. Sequential Functions for Relative Files 

3-61 

Sequential function calls SETL, GET, and ESETL set nonindexed IRAM and MIRAM relative 
files into sequential mode and position them to a selected location in the files, retrieve 
records sequentially, and reset these relative files from sequential mode to random mode. 
Sequential functions cannot be processed by the direct access method (DAM). 

When you access an indexed file sequentially, your action program must first set the file 
into sequential mode via the SETL function. During this time, files are accessed exclusively 
by the transaction that set the mode. Requests by other transactions for sequential or 
random mode functions are queued for later processing. 

Sequential mode exists until your program requests an ESETL function or until the current 
action terminates. In either case, the indexed file returns to random mode. 

NOTE: 

Shared file access among transactions is done only in the random mode. The use of 
sequential mode by Cine transaction can significantly degrade the response time for other 
transactions accessing the same file. 

3.8.3.2.1. SETL Function 

The SETL function sets a relative file into sequential mode and logically positions the file 
according to the following position values: 

Value 

B 
G 
K 
H 

Meaning 

Beginning of file 
Greater than or equal to the record number supplied 
Equal to record number supplied 
Greater than record number supplied 

The value of the position parameter determines the logical pos1t1on of the file at 
completion of the SETL function. You can reissue the SETL function any time you wish to 
change the sequential position of the file. 

You must supply a file name and choose a position value on the SETL function for relative 
files. Depending upon the position chosen, you may optionally supply a record-number 
parameter. Table 3-13 explains the SETL parameter choices for relative files. The SETL 
function is not available for DAM files. 

t 



t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Table 3-13. SETL Parameter Choices for Relative Files 

Parameters 

File Type Position 

File Name Record 
B G K H Number 

Nonindexed IRAM x x x x 

Nonindexed MIRAM x x x x x x 

NOTES: 

1. The letter X means applicable to this file type. 
2. Record number is not used with position value B. 

3-62 

The COBOL and BAL formats for the SETL function call and resulting status codes follow: 

COBOL Format: 

CALL 'SETL' USING file-name position[record-number]. 

BAL Format: 

jCALL tSETL,(fi le-name.position[ ,record-number] 
lZG#CALLf 

Status Codes: 

0 Successful 
1 Record number 
2 Not used 
3 Invalid request 
4 1/0 error 

3.8.3.2.2. GET Function 

The sequential GET function retrieves the next logical record in sequential order unless 
the record is marked logically deleted (i.e., X'FF' in the first byte). If the record is marked 
logically deleted, the GET function then retrieves the following record. 

File-name and record-area parameters are required on sequential GET functions for 
relative files. The COBOL and BAL formats for the sequential GET function call and 
resulting status codes follow: 

COBOL Format: 

CALL 'GET' USING file-name record-area. 

• 

• 



• 

• 

UP-8614 Rev. 1 

BAL Format: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

jCALL lGET,(fi le-name.record-area) 
lzG#CA L d 

Status Codes: 

0 Successful 
1 Not used 
2 End of file or unallocated optional file 
3 Invalid request 
4 110 error 

3.8.3.2.3. ESETL Function 

3-63 

The ESETL function changes the mode of relative files from sequential back to random. If a 
file is in the sequential mode for a transaction and you do not issue an ESETL function 
before termination of the current action, IMS 90 file management resets the file to random 
mode. The ESETL function always requires a file-name parameter. The COBOL and BAL 
formats for the ESETL function call and resulting status codes follow: 

COBOL Format: 

CALL 'ESETL' USING file-name. 

BAL Format: 

jCALL tESETL,(fi le-name) 
1zG#CALL5 

Status Codes: 

0 
1 and 2 
3 
4 

Successful 
Not used 
Invalid request 
1/0 error 

3.8.4. Sequential Files 

The sequential and dedicated multiple indexed random access methods (SAM and 
dedicated MIRAM) are the only access methods that can process function calls issued by 
your action program to sequential files. Only two functions, the sequential GET and PUT, 
can be issued to sequential files. The same SAM or dedicated sequential MIRAM file 
cannot be used for both input and output. (It is defined in the configurator FILE section as 
an input file or an output file.) Files used for input may only be accessed by the sequential 
GET function. For output files, only the sequential PUT function may be used . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-64 

t 

3.8.4.1. Sequential Input GET Function 

The sequential GET function retrieves the next logical record in sequential order unless 
the record is marked logically deleted (i.e., X'FF' in the first byte). If the record is marked 
logically deleted, the GET function then retrieves the following record. The first record of a 
sequential file retrieved in an IMS 90 session is always the first record of the file. No 
record is ever read twice in a sequential file. 

File-name and record-area parameters are required on the GET function for sequential 
files. The COBOL and BAL formats for the sequential GET function call and resulting 
status codes fol low: 

COBOL Format: 

CALL 'GET' USING file-name record-area. 

BAL Format: 

JCALL tGET, (file-name, record-area) 
1ZG#CALL~ 

Status Codes: 

0 Successful 
1 Not used 
2 End of file (DAM files only) or unallocated optional file (MIRAM files only) 
3 Invalid request 
4 1/0 error 

3.8.4.2. Sequential Output PUT Function 

The sequential PUT function writes fixed- or variable-length logical records to sequential 
files on tape or disk. File-name and record-area parameters are always required on this 
function. Standard labeled tapes are assumed prepped or file space allocated for disk files 
before you issue a sequential PUT function. 

The COBOL and BAL formats for the sequential PUT function call and resulting status 
codes follow: 

COBOL Format: 

CALL 'PUT' USING file-name record-area. 

• 

• 



• 

• 

UP-8614 Rev. 1 

BAL Format: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

§CALL f PUT, (file-name, record-area) 
1ZG#CALL~ 

Status Codes: 

0 Successful 
1 Not used 
2 Unallocated optional file* 
3 Invalid request 
4 1/0 error 

3.8.5. Defined Record Management 

3-65 

Defined record management is the part of IMS 90 file management that services requests 
from action programs to retrieve and update the records of defined files. An action 
program can call upon the random access functions INSERT, GET, GETUP, PUT, and 
DELETE and also the sequential access functions SETL, GET, and ESETL. In response, IMS 
90 places defined records into and takes them from the record area you name in the 1/0 
function call. 

A transaction can access only one defined file during a given action - the file that was 
allocated before the beginning of the action. One action of a transaction can select a 
defined file that is not allocated to it and designate that the selected file be allocated to 
the succeeding action. (See the description of the DEFINED-FILE-NAME field in 3.6.1.6.) 

During a given action, a transaction can access only one defined file but can also access 
ISAM, SAM, DAM, IRAM, or MIRAM files if they are not referenced by the defined file. 
You must access standard files by using the 1/0 function calls pertaining to them. (See 
3.8.2, 3.8.3, and 3.8.4.). 

Certain rules apply to defined records and to the parameters accompanying the function 
calls for them. 

The following are parameter definitions for defined record management 1/0 function calls: 

• File-name is a data name (COBOL) or storage location (BAL) that contains the 7-byte 
defined file name or subfile name that has been assigned to this action. 

• Position is a data name or storage location containing the value B, G, or H, and 
determines which defined record is returned by the first execution of the GET call 
following the SETL function call. 

B 

G 

Retrieves the first record of the file . 

Retrieves the first record whose identifier (key) is equal to or greater than 
that specified by the key parameter. 

*This code applies to MIRAM files only. 

t 



UP-8614 Rev. 1 

H 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-66 

Retrieves the first record whose identifier is greater than that specified by 
the key parameter. 

• Key is a data name or storage location that contains the identifier of a defined record. 
The identifier follows the rules specified in the data definition for the defined file file
name. An identifier consists of one or more identifier segments. A segment must be 
delimited by an end-of-segment character (3D16), unless the segment contains the 
maximum number of characters defined for it, in which case this character is 
optional. Every segment must contain at least one character. The entire identifier 
must be delimited by an end-of-identifier character (3E16). The ignore character (3F16) 

can appear any number of times within the identifier and is always ignored. 

• Record-area is a data name or storage location that designates the area into which a 
defined record is moved by defined record management on an input function or from 
which a defined record is passed to defined record management on an output 
function call. This area must be big enough to contain the entire defined record, 
including item status bytes. 

3.8.5.1. Defined Record Management Returns to Action Program 

In response to a function call, defined record management determines the type of defined 
record (as specified in the TYPE statement of the data definition) involved in the call and 
returns the record type to the action program in the program information block. 

PREDICTED-RECORD-TYPE DELIVERED-RECORD-TYPE 

DETAILED-STATUS-CODE 
Redefined as RECORD-TYPE 

Before issuing any random GET, GETUP, or INSERT function request, the action program 
can indicate to defined record management the record type it expects to receive by placing 
it in the PREDICTED-RECORD-TYPE byte of the DETAILED-STATUS-CODE. If defined 
record management finds a value other than zero, it verifies the prediction before carrying 
out the retrieval or insertion. If the predicted type is not correct, the record involved is not 
moved; instead, a status code of 1 is returned to the calling program. If the predicted type 
is correct, the function is carried out, and the PREDICTED-RECORD-TYPE byte reverts to 
zero. The action program, therefore, can use the PREDICTED-RECORD-TYPE byte prior to 
the request to prevent an unexpected type of defined record from being moved to or from 
the record area. If the defined file contains more than one type of defined record, the 
programmer is strongly advised to use this feature. This assures that further processing 
will apply the correct defined record definition. 

• 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-67 

When you issue the sequential function calls SETL and GET, defined record management 
returns the record type of the next sequential record to your action program in the PREDICTED
RECORD-TYPE byte. If the delivered record type is the parent of the predicted record type and 
you wish to access records from a record type other than currently indicated in the PREDICTED
RECORD-TYPE byte, you can change the contents of the predicted record byte in your action 
program to equal the DELIVERED-RECORD-TYPE byte. The result is that all sets subordinate to 
the current delivered record type are skipped. When one or more records in a set have already 
been delivered, you cannot change the PREDICTED-RECORD-TYPE byte to skip over the 
remaining records of that set. 

When defined record management responds to a GET, GETUP, PUT, or INSERT function 
request, it also places a value in the status byte associated with each item of the defined 
record. (Status bytes are allocated by the data definition processor and have data names in 
the format S-item-name. See Figures 2-38 and 2-39 for sample data definition processor 
output listings showing status bytes.) These values can be tested by the action 
programmer (in COBOL programs for fixed-length records but not variable-length records) 
to check the validity of individual items in the defined record. 

The value X'80' is returned by defined record management for all functions to indicate that 
the item has been successfully delivered. 

For GET and GETUP functions, defined record management returns a value of X'40' to 
indicate that the item cannot be retrieved because it is null (nonexistent). Null items 
contain blanks if alphanumeric, zeros if numeric. If X'40' is returned for one or more items 
along with a value of zero in the status code of the PIB, it generally means that a 
supplement cannot be found via the value in the pointer item. If returned along with a 
value of 1 in the status code, it generally means that the key parameter points to a 
nonexistent primary part. 

For PUT and INSERT functions, defined record management returns a value of X'20' in the 
item status byte, along with a value of 5 in the status code of the PIB, to indicate that the 
item being changed or added does not conform to conditions specified in the data 
definition. This can be caused by any of the following: 

• the new item value does not meet VALUE statement conditions; 

• the new item value is inconsistent with the PICTURE clause in the data division; 

• a change was not permitted for this item (PUT only); or 

• no new value was entered for a MUST ADD item (INSERT only). 

If an error occurs while accessing a file before returning control to the action program, 
defined record management changes the lock-rollback-indicator to "O" . 

t 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.8.5.2. Random File 1/0 Functions 

3-68 

To access defined files randomly, you may issue the GET, GETUP, PUT, DELETE, and 
INSERT functions calls. During random access to defined files, logical record locks are 
imposed on logical records involved in the GETUP and INSERT functions. 

3.8.5.2.1. GET and GETUP Functions 

The GET and GETUP functions retrieve the record identified by the key parameter from the 
named file and place the record into the record area. A GET function cannot be followed 
by a PUT or DELETE function. The GETUP function retrieves a record for update and can 
be followed by a PUT or DELETE function. 

COBOL Format: 

CALL~'GET' tUSING file-name record-area key. 
)'GETUP'5 

BAL Format: 

~CALL t)GET t.(f i le-name, record-area.key) 
1zG#CALL51GETUP5 

Status Codes: 

0 Successful 
1 Invalid key 
2 Not used 
3 Invalid request 
4 1/0 error 
5 Violation of data definition 

3.8.5.2.2. PUT Function 

The PUT function writes a record that was retrieved for update back to the file. The PUT 
function must immediately follow the GETUP function for the record to be updated. 

COBOL Format: 

CALL 'PUT' USING file-name record-area. 

BAL Format: 

)CALL tPUT,(f i le-name, record-area) 
UG#CALd 

• 

• 



• 

• 

UP-8614 Rev. 1 

Status Codes: 

0 
1 and 2 
3 
4 
5 

Successful 
Not used 
Invalid request 
1/0 error 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Violation of data definition 

3.8.5.2.3. DELETE Function 

3-69 

The DELETE function logically deletes a record that was retrieved for update. The DELETE 
function must immediately follow the GETUP function to effectively delete the record. 

COBOL Format: 

CALL 'DELETE' USING file-name record-area. 

BAL Format: 

jCALL tDELETE,(f i le-name.record-area) 
1zG#CALd 

Status Codes: 

0 
1 and 2 
3 
4 
5 

Successful 
Not used 
Invalid request 
1/0 error 
Violation of data definition 

3.8.5.2.4. INSERT Function 

The INSERT function enters a new record into a file. The identifier value in the key 
parameter must not already exist in the file. 

COBOL Format: 

CALL 'INSERT' USING file-name record-area key. 

BAL Format: 

jCALL flNSERT,(f i le-name,record-area,key) 
1ZG#CALd 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-70 

t 

Status Codes: 

0 Successful 
1 Invalid key 
2 Not used 
3 Invalid request 
4 1/0 error 
5 Violation of data definition 

3.8.5.3. Sequential File 1/0 Functions 

To access defined files sequentially, you may issue the SETL, sequential GET, and ESETL 
function calls. 

3.8.5.3.1. SETL Function 

The SETL function sets a defined file into the sequential mode and logically positions the 
file. The position parameter is a data name or storage location that contains one of the 
following values: 

Value 

B 
G 
H 

COBOL Format: 

Meaning 

Beginning of file 
Greater than or equal to key 
Greater than key 

CALL 'SETL' USING file-name position [key]. 

BAL Format: 

jCALL lSETL,(f i le-name.position [,key]) 
1ZG#CALd 

Status Codes: 

0 Successful 
1 Invalid key 
2 Not used 
3 Invalid request 
4 1/0 error 

• 

• 



• 

• 

UP-8614 Rev. 1 

NOTES: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

1. The key parameter is omitted when the value of position is 8. 

3-71 

2. Invalid key means that the identifier is not within ·defined bounds. That is, the 
defined record type cannot be determined from the value of the identifier. This 
code is not used to indicate missing data. The successful completion (status code 
of 0) does not preclude the possibility that ensuing GET calls will yield only total 
cycles and no detail defined records. 

3.8.5.3.2. GET Function 

The GET function retrieves the next defined record in the file in sequential order. 

COBOL Format: 

CALL 'GET' USING file-name record-area. 

BAL Format: 

jCALL tGET,(fi le-name.record-area) 
1zG#CALL~ 

Status Codes: 

0 Detail cycle 
1 Invalid record type 
2 Total cycle 
3 Invalid request 
4 1/0 error 

NOTES: 

1. If a status code is 0 (detail cycle), a new defined record is returned to your action 
program. The detailed status code identifies the record type. (See 3.8.4.1.) 

2. A status code of 2 means that there are no more records in the current set. No new 
defined record is returned. The detailed status code indicates the record type of the 
completed set. A status code of 2 with a detailed status code of 0 indicates end of all 
data; there are no more sets in this defined file. 

3. After a detail record is delivered, all subordinate records are also delivered in 
response to subsequent GETs. When a set of subordinate records is empty, the 
response to the GET function that requests the first record of the set is a status code 
of 2 and a detailed status code equal to the record type of the empty set. 

4. Your action program selects the appropriate record area by interrogating the value in 
the first byte of the DETAILED-STATUS-CODE (predicted record type) returned by the 
preceding GET or SETL function. 

t 



UP-8614 Rev. 1 

3.8.5.3.3. ESETL Function 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-72 

The ESETL function changes the mode of a defined file from sequential to random. If a file 
is in the sequential mode and an ESETL function is not performed before termination, the 
file is changed to random mode at termination by IMS 90 file management. 

COBOL Format: 

CALL 'ESETL' USING file-name. 

BAL Format: 

~CALL tESETL,(fi le-name) 
1zG#CA L d 

Status Codes: 

0 
1 and 2 
3 
4 

Successful 
Not used 
Invalid request 
1/0 error 

3.8.6. Online File Recovery 

The recovery facility provides for the rollback of user data file modifications (updates, 
inserts, and deletions) that have occurred in a transaction that abnormally terminates prior 
to completion or explicitly requests rollback prior to completion. When transactions 
terminate abnormally, IMS 90 issues messages to the source terminal and system 
console. These messages are documented in the OS/3 system messages 
programmer/operator reference, UP-8076 (current version). Each IRAM, MIRAM, ISAM, or 
DAM file modified in the transaction prior to the time of rollback is returned to the logical 
state that existed before the transaction was initiated or before the last rollback point was 
recorded on the audit file. Rollback occurs automatically when needed upon abnormal 
termination and does not require any user programming. 

Rollback can be requested upon the normal termination of an action by specifying the 0 
option of the LOCK-ROLLBACK-INDICATOR in the program information block. The range of 
rollback can be limited to less than an entire update transaction by specifying the N option 
of the LOCK-ROLLBACK-INDICATOR in the program information block upon the 
termination of some intermediate action in a dialog update transaction. 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-73 

The current state of each record that is to be updated or deleted is recorded in the IMS 90 
audit file prior to the update or deletion. In addition, the identifiers inserted into the file 
are recorded prior to insertion. Information also is recorded in the audit file to mark the 
initiation and termination of each transaction that modifies a file. When rollback points are 
specified, they are also recorded on the audit file. Online file recovery uses the audit file to 
accomplish file rollback. Table 3-14 lists the specific functions performed in the rollback of 
file modifications. 

Table 3-14. File Rollback 

Functions that 
Functions Performed 

File Modification to Roll Back 
Cause Modification 

Modification 

Update GETUP, PUT GETUP (current image), 
PUT (before-image) 

Delete GETUP, DELETE INSERT (before-image) 

Insert INSERT 
GETUP (current image), 
DELETE 

3.8.6.1. File 1/0 Error Returns 

When unrecoverable 1/0 errors occur in the audit file, the source terminal operator is 
notified and a message is sent to the print file. Rollback is attempted for all existing 
transactions that have been logged in the audit file. IMS 90 prohibits any additional update 
requests (unless the LOCK=UP parameter is specified in the configurator FILE section) and 
returns an invalid request code (3) in the STATUS-CODE field of the PIB, as well as a 
binary value in the DETAILED-STATUS-CODE field. (Detailed status codes for file 1/0 
functions are listed in Table 3-8.) 



UP-8614 Rev. 1 

3.8.6.2. Prefix Area Format 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-74 

If an 1/0 error occurs on a user data file during the rollback of a file modification (updates, 
inserts, deletions), a snapshot dump is taken of the prefix area of the record being rolled 
back. Upon completion of the snapshot dump, the rollback procedure continues until 
rollbacks of all modifications made to user data files for a transaction are attempted. 

If an error occurs on the AUDCONF continuity data and audit file or the AUDFILE during 
the rollback of updates made by a transaction, the current action program name (contained 
in the prefix area of the record being rolled back) will be ZU#ROL. 

The format of the prefix area is shown in Figure 3-14. Table 3-15 describes the content of 
each field. 

0 2 3 

0 type code I flag byte transaction 
code J unused 4 

8 terminal control table address 

12 

transaction id 
16 

20 terminal id 

24 
initial action 

program name 
current action 28 

32 
program name 

36 
date and time stamp 

40 
at time of audit 

44 key length reserved for system use 

48 data length of updated record 

52 filename 

56 1 
Figure 3-14. Format of Prefix Area of Records in the Audit File (Online Recovery} 



UP-8614 Rev. 1 

• 

• 

• 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Table 3-15. Content of Prefix Area for Records in the Audit File (Online Recovery) 

Label Field Name Bytes Code Description 

ZF#RTC Type code 0 Binary Bits Set 
to 1 Meaning ---

0 Not used 
1 Not used 
3 Termination 
4 Not used 
5 Rollback point 
6 Before-image, MIRAM 
6, 7 Before-image, ISAM 
7 Before-image, DAM 

ZF#AFB Flag byte 1 Binary Bits Set 
to 1 Meaning --- ---

0 First before-image for transaction 
1 Inserted record 
2 Abnormal termination 
3 Not used 
4 MIRAM, indexed 

5-7 Not used 

ZF#ATC Transaction code 2-6 EBCDIC Configured code identifying the 
current transaction; one to five 
alphanumeric characters, left-
1ust1f1ed in field 

- - 7 - Unused 

ZF#ACT TCT address 8-11 Hexadecimal Address of terminal control table 
(TCT) for terminal originating 
this transaction. Full-word aligned 

ZF#ATRID Transaction id 12-19 Binary Data-time of init1at1on of this 
transaction, in the form 

yy-mm-dd-hh-mm-ss 

ZF#ATMID Terminal id 20-23 Hexadecimal Configured identification of network 
terminal initiating this transaction 

ZF#AIAP Initial action 24-29 EBCDIC Program-name of first action program 
program initiated for this transaction; 

one to six alphanumeric characters, 
left-1ust1fied 

ZF#ACAP Current action 30-35 EBCDIC Program-name of currently active 
program action program 

ZF#ADT Date-time 36-43 Binary Date-time of writing this record to 
of audit the audit file. in same form as 

transaction 1d 

ZF#KLIDA Key length 44--45 Binary Length of key in an indexed record; 
set to 0 for a DAM record 

ZF#CNKN - 46-47 - Reserved for system use 

ZF#DLIDA Data length 48-49 Binary Length of data portion of updated 
or record, or number of active update 

ZF#NAUT transactions 

ZF#FNM File name 50-57 EBCDIC Logical name of data file being 
accessed by current action program; 
one to seven alphanumeric characters, 
left-1ust1f1ed 

NOTES: 

3-75 
Update A 

1 . When records are written to the audit file for a UNIQUE action program, the transaction-code field contains OPEN, 
the initial-action-program field contains ZU#OPEN, and the current-action-program field contains the name of the 
UNIQUE module active at the time of audit. 

2. When the current action program is accessing a defined file, a prefix is written for each logical record involved. In 
the prefix, the file-name field contains the LF.D-name of a conventional user data file contributing a logical record 
(or part of one) to the defined record. It never contains the defined-file-name specified with the DFILE keyword. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.8.6.3. COBOL Action Program Error Messages 

3-76 

The COBOL error routine (CO@BJERR) records data in a message buffer that corresponds 
to errors contained in the canned message file. The IMS 90 user locates the message 
buffer in his dump and inspects it to find the cause of the error. The 4-byte message 
buffer, located at the address contained in general register 1 in the register save area of 
the program dump listing, contains the following: 

Byte 

0 
1-2 
3 

Hexadecimal 
Content 

5B 
nnnn 
40 

Description 

Canned message indicator ($) 
Hexadecimal message number 
End-of-table indicator (blank) 

NOTE: 

The hexadecimal message number in bytes 1 and 2 is one of the following and 
corresponds to the numbered COBOL message shown. For the text of the message, its 
meaning, and suggested. corrective action, refer to the OS/3 system messages 
programmer/operator reference, UP-8076 (current version). 

Bytes 1-2 COBOL 
Content Message 

043A CE03 
043B CE04 
043C CE05 

3.8.7. Logical Record Lock Facility 

Logical record locks are used to protect records that are in the process of being updated by 
one transaction from concurrent updating by other transactions. Either of two logical lock 
options, lock-for-update or lock-for-transaction, is selected for a DAM, ISAM, IRAM, or 

,,.. MIRAM file via the LOCK parameter of the FILE section at configuration time. 

3.8.7.1. Lock for Update 

The lock-for-update option causes a lock to be imposed on a logical record when the 
record is retrieved from the file via the GETUP function. The lock prohibits access to the 
record by other transactions until it is unlocked. It does not prohibit further access in the 
same transaction to the same record. The record is unlocked when one of the following 
events occurs in the transaction that imposed the lock: 

• The record is updated by means of the PUT or DELETE function. 

• The action in which the lock was imposed or a subsequent action terminates with the 
termination-indicator set to N (normal transaction termination), A (abnormal 
transaction termination, voluntary), or the transaction abnormally terminates 
involuntarily. 

• 

• 

• 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-77 

• The action in which the lock was imposed, or a subsequent action, terminates with 
the termination-indicator set to E (external successor) or D (delayed internal 
successor) and the lock-rollback-indicator set to R (release all locks for pending 
updates), N (establish a new rollback point), or 0 (return to an old rollback point). 

• An UNLOCK request is made for the file containing the record. 

3.8.7.2. Lock for Transaction 

The lock-for-transaction option causes a lock to be imposed on a logical record when it is 
retrieved from the file via the GETUP function or when it is inserted into the file via the 
INSERT function. The lock prohibits access to the record by other transactions until it is 
unlocked. It does not prohibit further access in the same transaction to the same record. 
The record is unlocked when one of the following events occurs in the transaction that 
imposed the lock: 

• The action in which the lock was imposed or a subsequent action terminates with the 
termination-indicator set to N (normal transaction termination), A (abnormal 
transaction termination, voluntary), S (abnormal transaction termination, voluntary, 
with snap dump), or the transaction is involuntary and abnormally terminates. 

• The action in which the lock was imposed, or a subsequent action, terminates with 
the termination-indicator set to E (external successor) or D (delayed internal 
successor) and the lock-rollback-indicator set to R (release all locks for pending 
updates). In this case, only those locks imposed as the result of GETUP requests and 
for which subsequent PUT or DELETE requests have not been issued are unlocked. 
Locks-for-transactions that fall into this category are called pending locks. If the lock
rollback-indicator is set to N or 0, all locks are released. 

• An UNLOCK request is made for the file containing the record. 

In single-thread configurations, when a transaction requests access to a locked record, the 
record is not accessed. Control returns immediately to the requesting action program with 
a status code of 3 (invalid request) and a detailed status code of 18 indicating that the 
record being accessed was locked by another transaction. 

In multithread configurations, the request for a locked record is queued until the record is 
unlocked. The record is then accessed before control returns to the requesting action 
program. 

The use of the lock-for-transaction option is closely related to the online file recovery 
feature of IMS 90. Consider an update transaction in which two records, A and B, are to 
be updated. Record A is in one file and B is in another, and, for both files, the lock-for
transaction option is specified. 

When record A is retrieved for updating (GETUP), a lock is applied. When updating is 
carried out (PUT), the lock is not released because LOCK=TR was specified at 
configuration time. Another transaction then attempts to access record A, but its request 
is queued to wait for the lock to be released. The first transaction then comes to an 
abnormal termination because it is unable to successfully update record B. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-78 

Online file recovery rolls back record A to its original state and then releases the lock. The 
second transaction then accesses the correct original version of record A. Record B is not 
updated. 

In general, lock-for-transaction in combination with online file recovery is used to ensure 
that all records that are to be updated in a transaction are either successfully updated or 
rolled back to their original state before any other transaction can access the records in 
the same order. Only files for which lock-for-transaction (i.e., LOCK=TR) or no locking (i.e., 
RECLOCK=NO) is specified can be rolled back by online file recovery. 

Since the capability exists for a transaction to lock multiple logical records and since a 
transaction must wait if it attempts to access a record that is already locked by another 
transaction, deadlock can occur in IMS 90. Deadlock can be avoided by choices made in 
the design of action programs. 

• First, deadlock does not occur if only a single record is updated in a transaction. 

• Second, deadlock does not occur if records are updated serially in a transaction (e.g., 
GETUP record A, PUT record A, GETUP record B, PUT record B, etc.) and all files for 
which updates are performed have the lock-for-update option specified. 

• Third, deadlock does not occur if all transactions that update a set of records update 
those records in the same order regardless of lock option. 

If deadlock occurs among two or more transactions as the result of improper file or action 
program design, no output other than the periodic status message will be sent back to the 
terminals that originated those transactions. A terminal operator, recognizing that output 
has not been returned in a reasonable period time, should cancel the transaction he has 
initiated. The cancel will free up all resources allocated to the transaction and may allow 
the deadlock to be broken. A sufficient number of cancellations also break the deadlock. 
This procedure is not desirable for most applications. To avoid it, the design rules must be 
followed or the user must have a clear understanding that action programs he designs 
must not reference the files in such a way as to cause deadlock. 

3.8.7.3. UNLOCK Function 

The UNLOCK function causes the release of record locks that have been imposed by file 
management for a transaction on a specific file. The UNLOCK function also makes ISAM, 
MIRAM, and IRAM files, held for a transaction pending the completion of an update, 
available for processing. 

COBOL Format: 

CALL 'UNLOCK' USING file-name. 

BAL Format: 

jCALL tUNLOCK,(filename) 
1ZG#CAL L~ 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-79 

The UNLOCK function applies to both lock-for-update and lock-for-transaction imposed on 
DAM, IRAM, MIRAM, or ISAM files within the IMS 90 job. Normally, locks are released 
implicitly within IMS 90 as the result of action or transaction termination. The UNLOCK 
function should be requested only when the normal implicit release of locks does not meet 
the requirements of the application. 

Only the locks associated with pending updates for this transaction are released. An 
update is pending after a GETUP function but before either a PUT or DELETE function 
changes the record or some other event occurrs to indicate that the update will not be 
performed. 

If the lock-for-update or lock-for-transaction option is specified for a DAM, IRAM, MIRAM, 
or ISAM file and an update of a record in that file is currently pending for a transaction, 
then an UNLOCK request from the transaction aborts the update by releasing the lock on 
the record. In the case of an ISAM file, the UNLOCK request makes the file, as well as the 
individual record, accessible for the processing of requests from other transactions. In the 
case of a DAM file, the UNLOCK request unlocks only the individual record. The file as a 
whole still remains accessible to other transactions. 

3.8.8. General File Processing Considerations 

3.8.8.1. Opening and Closing of Files 

All files defined in the file control table at configuration time are opened normally as a 
function of IMS 90 start-up and closed as a function of shutdown. Files also can be 
opened and closed from the master terminal via the master terminal commands, ZZOPN 
and ZZCLS. These master terminal commands cause IMS 90~file management to issue 
calls to data management to perform open and close functions. No capability exists to 
open and close files from an action program. For a detailed description of the ZZCLS and 
ZZOPN master terminal commands, see 5.2.2.6 and 5.2.2.7. 

3.8.8.2. Serial Use of File Descriptors 

Each file accessible to IMS 90 has a single file descriptor entry in the file control table. 
File management queues requests for each file and provides for servicing of the requests 
one at a time. 

3.8.8.3. Dynamic Allocation of 1/0 Areas 

1/0 areas for user data files are preallocated in multithread IMS 90. In single-thread IMS 
90, 1/0 areas are allocated when required. Action scheduling acquires 1/0 areas, when 
needed, from main storage management as a function of action initiation. At most, one 
1/0 area is allocated to a file at a given time. Once allocated, an 1/0 area can be used to 
support a number of file functions for a number of different transactions. When no 
potential or actual requests are outstanding for a file, the 1/0 area for the file is released 
by action scheduling to main storage management. 



UP-8614 Rev. 1 

3.8.8.4. File Sharing 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-80 
Update A 

All data files allocated to IMS 90 are accessible to all terminals in the configured network. 
~ An ISAM or MIRAM file (sequential mode) is allocated exclusively to an action for a series 

of sequential file operations when the SETL function is performed. It is deallocated either 
explicitly by the action by means of the ESETL function or implicitly at action termination 
by file management. 

Because of ISAM file updating procedures, such a file is exclusively allocated to a given 
transaction during the time that transaction has an update pending for the file. This 
exclusive allocation begins with the successful completion of a GETUP function and ends 
with the completion of a PUT or DELETE function to carry out the update in the same 
action or with the termination of the action, whichever comes first. 

Exclusive use is forced to end at action termination to increase the sharability of the file 
(that is, to allow queued requests to be serviced). Although exclusive use of an ISAM file 
for update purposes must end with action termination, the lock on the record being 
updated can be held from one action to another. 

If a record is retrieved with a GETUP in one action and the update is to be completed in 
the following action, the following action must again retrieve the record with a GETUP 
before updating with a PUT or DELETE. This means that two retrievals of the record are 
necessary in a multiaction update. It is more efficient to carry out updates of ISAM or 
MIRAM files in a single action. 

3.8.8.5. Work and Record Areas for DAM File Access 

If your DAM file resides on a fixed-sector disk (for example, a SPERRY UNIVAC 8416 or 
8418 Disk Subsystem), OS/3 data management requires that the length of the 1/0 area 
be some multiple of 256 bytes and half-word aligned. Moreover, to achieve device 
independence across disk subsystems, so that your program can access a DAM file on any 
disk used under OS/3, the same point holds - 1/0 areas should be multiples of 256 bytes 
in length. 

To ensure device independence in a BAL or COBOL action program that accesses DAM 
files, you should do the following: 

• If you are using a continuity data area (CDA) for record 1/0, specify its length as a 
256-byte multiple via the CDASIZE configuration parameter in the ACTION section. 

• If your program varies the length of the CDA when succession is made from one 
action to another, the increment or the new output length you set in the PIB should 
be a 256-byte multiple. 

• If the work area is used for record 1/0, specify its length as a 256-byte multiple via 
the WORKSIZE configuration parameter in the ACTION section. 

• 

• 

• 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-81 

• If you specify a different work-area size for a succeeding action that is to access a 
DAM file, the increment placed into the WORK-AREA-INC field of the PIB should be a 
multiple of 256 bytes. The work-area increment is applicable only in multithread IMS 
90. 

• The record-area parameter of any IMS 90 function call (GET, GETUP, PUT, DELETE, or 
INSERT) that your action program issues to process a DAM file must refer to an area 
whose reserved length is some multiple of 256 bytes on a half-word boundary. 

You have other considerations (such as record or block length, and the track capacity of 
the disk subsystem in use) to keep in mind in establishing work-area and record-area 
lengths for your action programs. For further details, refer to the current versions of the 
OS/3 data management user guide, UP-8068, or the data management programmer 
reference, UP-8159. 

3.8.8.6. Test Mode 

When a terminal has been put in the test mode (via the ZZTMD terminal command), any 
request to file management to change the contents ot a file are only simulated. 
Specifically, no update, delete, insert, or append functions are performed when requested. 
Control is simply returned to the requesting transaction with a successful completion 
status code. 

A terminal can be put in the test mode after completion of a transaction, i.e, when not in 
an interactive mode. To revert to normal mode, the ZZNRM terminal command is used. 
Test mode is used in the training of new terminal operators in the use of update 
transactions. All terminal entries made by the operator are the same in test mode as in 
the normal mode except that no file modifications actually occur. Test mode also is used in 
the testing of newly written or modified action programs that perform file modifications. 

3.8.9. Common Storage Area Files 

You can increase file processing efficiency by making frequently accessed ISAM files 
resident in a special common storage area (CSA). This feature is especially useful for 
maintaining vital information used by many action programs. You must have adequate 
main storage to use this feature. It is not available for basic IMS 90, and the CSA is not 
accessible through UNIQUE. 

If you specify CAFILE=YES in the configurator FILE section, the designated ISAM file is 
loaded into the common storage area at start-up time. When you issue GET, GETUP, and 
PUT function calls, IMS 90 retrieves records from and makes updates to the CSA file, 
thereby reducing disk access. If you specify CUPDATE=YES to the configurator, updates 
are made to the disk as well as to the resident file. This saves disk accesses on reads but 
not on writes. However, if you omit CUPDATE or specify CUPDATE=NO, the disk file is not 
updated until IMS 90 shutdown, when the entire CSA file is written to disk. File locking 
and recovery functions are the same for the CSA file as for a disk file. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-82 

You can access a CSA file only in random mode. You use GET, GETUP, and PUT function 
calls the same way for any ISAM file, but INSERT and DELETE functions are not valid. 
UNIQUE can access a CSA file through defined record management, but only through a 
supplement definition; you must not specify ASSUMES CONTROLLED ROLE IN UPDATE in 
the supplement definition. 

3.9. IMPLICIT AND EXPLICIT MESSAGE OUTPUT 

Normally, a message is sent to the designated logical destination from the output message 
area at action termination (CALL 'RETURN'). This is implicit output. Implicit output takes 
several forms. It can be: 

• displayed or listed on the terminal initiating the transaction (source terminal) or the 
terminal designated by the DESTINATION-TERMINAL-ID field of the OMA header; 

• listed on an auxiliary device attached to the source terminal or destination terminal; 
or 

• printed as continuous output at the source terminal or on an auxiliary device attached 
to the source terminal. 

If more than one message must be sent during an action, or if a transaction is to be 
initiated at a terminal other than a source terminal, this explicit output must be 
transmitted by means of the SEND function. 

3.9.1. Transmitting Messages via SEND Function 

The SEND function is typically used to send messages to terminals other than the 
originating terminal. This usage applies under both single and multithread IMS 90. It can 
also be used to initiate a transaction, typically a continuous output print transaction, at a 
distant terminal via output-for-input queueing (described in 3.10.2). In addition, the SEND 
function can designate the master terminal as the destination for messages without 
naming the master terminal in the program. This is useful for sending error messages to 
the master terminal when the originating terminal is not able to handle the error. 

COBOL Format: 

CALL 'SEND' USING output-message-area [master]. 

BAL Format: 

~CALL tSEND,(output-message-area[,master]) 
1zG#CALL f 



• 

• 

• 

UP-8614 Rev. 1 

where: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-83 

output-message-area 
Refers to a data-name (COBOL) or storage area (BAL) containing an output 
message header (in the format shown in Figures 3-10 and 3-11) and text. The 
output message area does not necessarily have to be the same as the OMA that 
is predefined for the action in the action control table. An output message can, 
for example, be explicitly sent from the work area allocated to an action. This 
area must be aligned on a full-word boundary. 

mas t er 
Refers to a data-name or storage location that contains the value "M" indicating 
that this message is to be sent to the master terminal. 

If the master parameter is specified, and the data name referenced in the action program 
contains the value "M", the message is sent to the master terminal. If this parameter is 
omitted, the message is sent to the terminal specified in the DESTINATION-TERMINAL-ID 
field of the OMA. If the data name referenced does not contain the value "M", an error is 
returned to the action program. This error is indicated by the value 3 (invalid request) in 
the STATUS-CODE field of the PIB and by the value 3 (incorrect parameter value) in the 
DETAILED-STATUS-CODE field of the PIB. The master parameter option is used with the 
output-for-input queueing process by placing the value "I" in the AUX-FUNCTION field of 
the OMA header. This results in the generated message being queued as input for the 
master terminal regardless of the DESTINATION-TERMINAL-ID in the OMA header . 

An output message is not sent to the designated terminal by internal message control 
until the successful termination of the current action. If the transaction is terminated 
abnormally or canceled in the current action, all output messages generated in the action 
are deleted from the output message queue and no messages are delivered. A message 
indicating the reason for termination is sent to the originating terminal. After the output 
message is moved from the output message area and written to the output message 
queue, control is returned to the statement following the CALL statement. 

If the SEND function is used frequently, disk queueing should be specified in the 
communications network definition. Refer to the IMS 90 system support functions user 
guide/programmer reference, UP-8364 (current version). If you use the SEND function, 
you must specify the UNSOL=YES parameter in the OPTIONS section of the configurator. 
To use output-for-input queueing, the CONTOUT=YES also must be configured. (See 
3.10.2.) 

3.9.2. Returns from SEND Function 

Following execution of the SEND function, IMS 90 notifies the action program of the 
success or failure of the request by placing binary values in the STATUS-CODE and 
DETAILED-STATUS-CODE fields of the program information block. If you specified 
ERET=YES to the configurator for this action program, the action program regains control 
at the instruction after the SEND function call and must interrogate these status bytes. If 
you did not specify ERET=YES, the program does not regain control in the event of 
unsuccessful completion of the SEND function and is abnormally terminated by IMS 90. A 
3-line transaction termination message is sent to the system console. Transaction 
termination messages are documented in OS/3 system messages programmer/operator 
reference, UP-8076 (current version). 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-84 
Update A 

IMS 90 returns the following values to the STATUS-CODE field of the PIB following the • 
execution of the SEND function when ERET=YES is configured: 

Status Codes: 

0 
1 and 2 
3 
4 and 5 
6 

Successful 
Not used 
Invalid request 
Not used 
Internal message control error 

When the return made to the STATUS-CODE field of the PIB is 3 (invalid request), the 
DETAILED-STATUS-CODE field contains either 2 or 3. The value 2 indicates that 
unsolicited output or continuous output was not configured or that no process files were 
generated in your ICAM CCA. The value 3 indicates a parameter error has occurred. 

When the return made to the STATUS-CODE field of the PIB is 6 (internal message control 
error), the return made to the DETAILED-STATUS-CODE field is one of the following: 

2 Destination terminal is busy or on hold. 
3 Destination terminal is down; message is queued. 
4 Invalid destination terminal or auxiliary device specification 
5 No network buffer is available in the ICAM load module. 
6 Disk error 
7 Invalid length specification 

~ IMS 90 returns the value 2 (destination terminal busy or on hold) to the DETAILED
STATUS-CODE field only when the SEND function is issued to generate output-for-input 
queueing and one of the following conditions exists: 

+ 

• Destination terminal is in interactive mode. 

• Destination terminal already has an input message on queue. 

• A ZZHLD terminal command has been entered at the destination terminal or a 
ZZDWN command for this terminal has been entered at the master terminal; 
therefore, it is logically down to IMS 90. 

• The destination terminal is marked physically down to ICAM. 

These are not permanent conditions; the output message header content is not invalid, 
and the same message may be retransmitted successfully at some later time. 

IMS 90 returns a DETAILED-STATUS-CODE of 3 when an action program attempts to send 
a message (via CALL SEND) to a destination terminal that is physically or logically down. 
The message is still queued for that terminal and is automatically transmitted when the 
terminal comes back up. If the destination terminal is down and is alternated (via the 
ZZALT command) to another terminal in the IMS network, no error is returned to the 
action program. The message is sent to the alternate terminal. If the alternate terminal is 
also down, a DETAILED-STATUS-CODE of 3 is returned to the action program. 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-85 
Update A 

When IMS 90 returns the DETAILED-STATUS-CODE value 4 (invalid destination terminal 
or auxiliary specification) after the SEND function, the content of the OMA header is not 
valid, and efforts to retransmit the output message will continue to be unsuccessful. One 
of the following errors is likely to have been made in your action program: 

• The DESTINATION-TERMINAL-ID specified in the OMA header is not a valid 
configured terminal identification. 

• The AUXILIARY-DEVICE-ID specification is invalid. 

• The AUX-FUNCTION byte contains the hexadecimal value C3, F3, or F7, indicating 
that continuous output is requested. Continuous output must be the implicit output 
from an action program requesting it; it can not be transmitted via the SEND function. 

3.10. PRINT TRANSACTIONS USING CONTINUOUS OUTPUT 

When your installation applications include a need for printing at one of your interactive 
network terminals, you can easily implement print transactions by using the optional 
continuous output feature. You can direct the printing to be done at the terminal that 
originates the print transaction or cause the printing to be initiated at a different terminal 
- which can be an unattended terminal, or even a receive-only or output-only interactive 
device . 

Continuous output is an option you select at configuration time via the CONTOUT keyword 
parameter in the OPTIONS section and is available for both multithread and single-thread 
operations (but not for basic IMS 90). It is not limited to normal interactive processing, but 
can be used in the batch processing mode - online for production or offline for testing. 
When you specify the use of continuous output at configuration time, an additional 
internal message control component is included in your IMS 90 load module by the 
configurator. 

The CONTOUT specification also causes the automatic. inclusion of IMS 90 support for 
unsolicited output. The module giving this capability is used in continuous output to 
support the ability to initiate a print transaction at a destination terminal other than the 
originating terminal. For this, you use the output-for-input-queueing feature via the SEND 
function. Use of the continuous output feature also requires a resident ICAM. 

The terminals and auxiliary devices to which continuous output can be directed by your 
printing transactions are: 

• OCT 500 Data Communications Terminals operating in teletypewriter mode 

• OCT 1000 Data Communications Terminals 

• TELETYPE* Modules 28, 33, 35, 37, and 38 

*Trademark of Teletype Corporation 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-86 

• Auxiliary devices at the UNISCOPE 100 or 200 Display Terminal or Universal Terminal 
System 400 (UTS 400). These are: 

Communications Output Printers (COPs) 

Terminal Printers (TPs) 

Model 610 Tape Cassette System (TCS) 

8406 Diskette Subsystem 

Note that these are the interactive devices supported by ICAM; the OCT 1000 operating as 
a batch (card-oriented) terminal or any other batch terminal is not usable for continuous 
output. 

In addition, ICAM supports a UTS 400 feature called screen bypass, which is addresssable 
only for output (3.10.3). 

The following paragraphs describe how you can use the continuous output option as an 
action programmer; sample action programs are presented in 3.16 to further illustrate the 
points developed here. 

3.10.1. Generating Continuous Output 

A print transaction must direct all its continuous output to the same terminal, i.e., the one 
specified in the SOURCE-TERMINAL-ID field (ZA#ISTID) of the input message area header. 
When you do not desire continuous output at the terminal initiating the transaction, you 
direct a print transaction to be initiated at another terminal, using the output-for-input
queueing feature explained in 3.10.2. 

-. Whether you are transmitting continuous output at a primary device or at an auxiliary 
attached to it, you generate only one continuous output message per action; this message 
must be your implicit output and cannot be generated via the SEND function. You are not 
restricted from using the SEND function for other unsolicited output, however, nor are you 
restricted from sending other output to the primary device via the SEND function. 

t 

3.10.1 .1. Output Message Header Fields for Continuous Output 

You specify that an output message is for continuous output by the value you send in the 
AUXILIARY-FUNCTION field (the first byte of the AUXILIARY-DEVICE-ID field) in the OMA 
header. When your continuous output is to be transmitted to a COP, TP, tape cassette, or 
diskette attached to the primary device at which your program is initiated, you must also 
set the second byte of this field (the AUX-DEVICE-NO) to specify which of the configured 
auxiliary devices is to be used for data transmission; otherwise, set the AUX-DEVICE-NO 
byte to binary 0. Table 3-16 summarizes the settings of the AUX-FUNCTION byte for 
normal and for continuous output. 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-87 

When you are transmitting to a COP, TP, cassette, or diskette auxiliary device, you can 
specify print-transparent mode. In this mode, although your output goes through the logic 
of the primary device, its format is independent of the format on the screen. Whatever 
DICE sequences you then include in your message apply to these auxiliary devices and the 
cursor return characters normally inserted by the logic of the terminal are not transmitted 
to the auxiliary interface. Thus, the length of lines written to the auxiliary device is 
independent of the line length of the screen. 

When using print-transparent mode with a UNISCOPE 100 display terminal, you should 
make sure that your output message does not exceed the capacity of the screen. If it does, 
the excess lines wrap around and overlay the first few lines originally at the top of the 
display. Since the message on the screen is the message sent to the auxiliary device, your 
transmitted result will begin with the excess lines in place of the original lines that are 
lost. The same consideration also applies to the UNISCOPE 200 and UTS 400. However, 
their larger screen capacity makes wraparound a less likely occurrence. 

In print mode you apply your DICE sequences for the screen, and the message printed on 
the auxiliary device will have the same format as the screen. For further details on print 
mode and print-transparent mode, refer to the current versions of the UNISCOPE 
programmer reference, UP-7807 and the UTS 400 programmer reference, UP-8359. 

Table 3-16. Settings for Auxiliary Function Byte of Output Message Header (Part 1 of 2) 

Devices Input/Output Options Contents of AUX-FUNCTION Field 

Space 
Inhibit Continuous Output No Continuous Output 

Primary Auxiliary Name Suppression 
Space 

Suppression Hex Character Hex Character 

x C3 c 00 

x Print Mode x F3 3 FO 0 

x F5 5 F2 2 

Print Transparent x F7 7 F4 4 

x F9 9 F6 6 

Print Form (ESC H) x C1 A 01 J 

x C6 F 06 0 

Transfer All (ESCG) x C2 B 02 K 

x C7 G 07 p 

Transfer Variable x C4 0 04 M 
(ESC F) 

x CB H DB Q 

Transfer Changed x C5 E 05 N 
(ESC El 

x E8 y F8 8 

t 



t 

t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-88 
Update A 

Table 3-16. Settings for Auxiliary Function Byte of Output Message Header (Part 2 of 2) 

Devices Input/Output Options Contents of AUX-FUNCTION Field 

Space 
Inhibit Continuous Output No Continuous Output 

Primary Auxiliary Name Space 
Suppression 

Suppression Hex Character Hex Character 

x Read D9 R 

Read Transparent E2 s 

Search and Read E3 T 

Search and Read E5 v 
Transparent 

Report Address E6 w 

Backward One D3 L E7 x 
Block 

Search and E9 z E4 u 
Position 

When you choose print or transfer options, you may either allow or inhibit space 

• 

suppression in output messages. If you do not specify the inhibit space suppression option, •. 
the remote device handler (ROH) suppresses nonsignificant spaces. If you do specify the 
inhibit space suppression option, the ROH changes all spaces to OC3 characters making it 
necessary to strap the COP or TP devices to space when they receive a OC3 character in 
the text data. 

In addition to print and print transparent options, the following print options directed to the 
UTS 400 terminal printers, cassette, or diskettes can be specified with or without the 
inhibit space suppression option. Unless the inhibit space suppression option is specified 
with each of these print options, nonsignificant spaces are suppressed. 

• Print form (ESC H) sends to the terminal printer, cassette, or diskette all of the 
unprotected characters and protected characters from the start-of-entry (SOE or home 
position) to the cursor. SpacPs are substituted for protected data. Field control 
characters (FCC) are suppressed. 

• Transfer all (ESC G) sends to the terminal printer, cassette, or diskette all characters 
from SOE to cursor including FCC sequences. 

• Transfer variable (ESC F) sends to the terminal printer, cassette, or diskette only the 
variable (unprotected) characters between the SOE and cursor including FCC 
sequences. 

• Transfer changed (ESC E) sends to the terminal printer, cassette, or diskette only the 
changed characters (or altered fields) between the SOE and the cursor including FCC 
sequences. • 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-89 

Several options are available to read and write, search, or position data on cassette and 
diskette auxiliary devices. To use these options, your action program must move both the 
desired option character code and the auxiliary device number to the AUX-FUNCTION and 
AUX-DEVICE-NO fields of the output message header respectively. Your action program 
can then issue either a SEND or RETURN function to transmit an output message to the 
auxiliary device, i.e., write a block of data to the cassette or diskette. In this way, your 
action program may also read a block of data from the cassette or diskette, display it on 
the UNISCOPE screen or position a cassette/diskette at a specific block. Note that the 
SEND function cannot be used to transmit continuous output options. 

In some cases, input from the auxiliary device may be expected as a result of output from 
your action program. Cassette/diskette input then appears on the terminal screen but is 
not transmitted to your program unless you press the transmit key at the terminal. 
Otherwise, you can set the AUTO TRANSMIT switch on the tape cassette or diskette 
system before data is transmitted from the cassette/diskette to the terminal and the input 
data is automatically supplied to your action program. When your action program receives 
input resulting from a previous output to the auxiliary device, the auxiliary device number 
from the OMA is returned to the IMA. Figure 3-15 illustrates the data flow between your 
action program and the cassette/diskette auxiliary devices. 

CASSETIE 

0 0 

DISKETIE 

0-
UNISCOPE 

OR UTS 400 

ICAM 

OUTPUT 

INPUT 

Figure 3-15. Action Program Interface with Cassette/Diskette 

IMS 90 

ACTION 
PROGRAM 

ACTION 
PROGRAM 

t 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-90 
Update A 

The output options print mode, print transparent, print form, transfer all, transfer variable, • 
and transfer changed can be used with cassette/diskette; however, the print form, transfer 
all, transfer variable, and transfer changed may be used only when the primary device is a 
UTS 400 terminal. 

There are four input options used with cassette/diskette: read, read transparent; search 
~ and read; and search and read transparent. The continuous output feature must be used 

with any of these input options: 

• The read option reads a block of data from the cassette/diskette to the terminal 
screen. When you set this option, your action program should not contain text in the 
OMA and the text length field should contain 4. 

• The read transparent option reads a block of data from the cassette/diskette, and the 
remote device handler deletes the SOE cursor sequence, carriage return codes, and 
DICE codes. If the data is transmitted to your action program, the IMA message text 
will then be identical to the OMA text originally written to the cassette/diskette. 

• The search and read option reads a block of data from the cassette/diskette only if a 
search argument specified in the message text of the OMA is satisfied. When the 
argument is satisfied, the block of data is moved to the terminal screen. Your search 
argument may be in one of three search and read modes. (See Table 3-17 for their 
formats.) When you use the search and read options, the only contents of the OMA 
message text should be the search argument in the mode you choose. 

• The search and read transparent option performs the same function as the search 
and read option except the remote device handler removes all DICE sequences, SOE 
cursor sequence, and carriage return characters from the input message. 

Two other options available for cassette/diskette on continuous and noncontinuous output 
are the search-and-position and backward-one block options. 

• The search-and-position option positions the cassette/diskette to the block requested 
in the search argument that your action program supplies in the output message text 
of the OMA. (See Table 3-18 for formats used in describing the search argument.) 
Your OMA message text may not contain any other entries. 

• The backward-one-block option repositions the cassette/diskette one block in reverse. 
The AUXILIARY-DEVICE-ID field must be set and the TEXT-LENGTH field in the OMA 
must be 4. 

• 

• 



UP-8614 Rev. 1 

• 

• 

• 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Table 3-17. User Message Text for Searching Cassette/Diskette 

Search Argument Format Search Type 

Ataaaa Mode search to position the tape to a particular 
or address and then read one block, where A, 1, or 

1taaaa a is constant, and: 
or t 

ataaaa Is the track address (1 or 2). 

aaaa 
Is the address where the tape is 
to be positioned. 

Btaaaa/c ... c Mode search to position the tape to a particular 
or address, search for a specific character string, 

2taaaa/c ... c and read one block, where B, 2, orb is constant, 
or and: 

btaaaa/c ... c t 
Is the track address (1 or 2l. 

aaaa 
Is the block address. 

c ... c 
Is the character string. Up to 
16 characters can be specified. 

Ct/c ... c Mode search to find the specified character 
or string, where C, 3, or c is constant, and: 

3t/c ... c t 
or Is the track address (1 or 2). 

ct/c ... c 
c ... c 

Is the character string. Up to 16 
characters can be specified. 

The search starts at the present 
tape position. 

Table 3-18. User Message Text for Search and Positioning 

Search Argument Format Search Type 

@taaaa Mode search to position the tape, where: 
or @, 0, or (grave accent mark) is constant, 

Otaaaa and: 
or t 

'taaaa Is the track address (1 or 2). 

ssss 
Is the address where the tape 
is to be positioned. If specified 
as 0000, the tape is rewound . 

3-91 



t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-92 
Update A 

One additional option, the report address, displays the address of the cassette/diskette • 
device on the terminal screen. Because input is expected after this action ends, the report 
address option cannot be used with the continuous output feature. The OMA TEXT-
LENGTH field must contain the value 4. 

In addition to making the required settings of the AUXILIARY-DEVICE-ID field of the OMA 
header, you also can insert into the 4-byte CONTINUOUS-OUTPUT-CODE field an optional 
alphanumeric character string that identifies the continuous output message you have 
generated. This optional code is returned by IMS 90 in the first four bytes of a 5-byte input 
message created for processing by the external successor designated by this action 
program. If you do not specify a code, the first four bytes of the input message generated 
by IMS 90 for your external successor contain binary zeros. 

The CONTINUOUS-OUTPUT-CODE field of the OMA assumes special importance when 
you use any of the four input options or the report address option. When you use these 
options, a delivery notice is returned only if it represents a delivery notice error; otherwise, 
there is no input to the successor action program until a message is transmitted from the 
screen or, in the case of a screen bypass terminal, until the auto-transmit feature is used 
to transmit the message from the cassette/diskette device. 

When using a screen bypass terminal, you must first set the control page for that terminal 
to take advantage of the auto-transmit capability. If this is not done for any of these five 
input options and a successful delivery notice is returned by the cassette/diskette device, 
the screen bypass terminal will be "hung" in interactive mode waiting for input that is • 
never sent to it. 

Because a successor action program may receive as input either a delivery notice error or 
an input message, the CONTINUOUS-OUTPUT-CODE used in the preceding continuous 
output message should be distinguishable from the first four characters of any possible 
input message being read from the cassette or diskette. In this way the successor action 
program determines what type of input message it receives (i.e. delivery notice error or 
input text) and processes it accordingly. In either case, the successor action program must 
be capable of handling both delivery notices and standard input messages. 

3.10.1.2. Terminating Print Transactions 

To continue printing, your action program terminates in external succession, naming itself 
or another action program in the SUCCESSOR-ID field of the PIB and passing (via the 
continuity data area) such information as is required to prepare the next of the continuous 
series of output messages. A program that creates a message for continuous output can 
terminate with only external succession. Immediate internal succession is not invalid but 
does not cause the output message to be sent. Any other form of succession causes IMS 
90 to abnormally terminate the transaction, and the message generated is not transmitted. 

On the other hand, the routines of your program that do not create continuous output are 
not restricted to terminating in external succession. They can use external succession or 
any other form of succession that is appropriate and typically they are routines that • 
receive control as a result of your encountering errors or conditions relating to interruption 
or resumption of the continuous printing transaction. Normal termination is appropriate 
when you have completed all printing, for example. 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.10.1.3. Delivery Notice Scheduling 

3-93 

A program named as the successor to a program that creates continuous output also must 
be prepared to accept and process the 5-byte input message created by IMS 90. The 5-
byte message indicates that ICAM has delivered your output message to its destination for 
continuous printing and has received an acknowledgement (the delivery notice) from the 
destination terminal. 

The first four bytes of this input message contain either an optional 4-byte code you 
moved into the CONTINUOUS-OUTPUT-CODE field of the OMA header before you 
terminated, or binary zeros. If you have specified lowercase-to-uppercase translation or 
editing for input messages for the action receiving this input (via the ACTION section of 
your configurator input), this 4-byte field can vary from the CONTINUOUS-OUTPUT-CODE 
field as generated in the previous OMA. 

The fifth byte of the new input message contains a value indicating the completion status 
of the output message. If the last output message was successfully delivered, you proceed 
to generate anocher or to terminate normally if you have no more to produce - possibly 
with a message output to the primary device to notify the terminal operator of the 
completion of the continuous print transaction. 

However, if you are printing continuous output on preformatted forms - paychecks, for 
example - and do not want any printable characters output after normal termination, your 
last output message should comprise null characters. The point here is that if you do not 
put out some message when you terminate normally, then IMS 90 issues one of its 
canned messages by default (ACTION COMPLETE, or TRANSACTION COMPLETE) to the 
primary device after you call the RETURN function. If your printing is not being performed 
on a COP or TP, the canned IMS 90 message is printed on your form. (You may also need 
to program similar interceptions of the error messages that IMS 90 generates under 
certain conditions.) 

When the completion status code in the fifth byte of the input message indicates 
unsuccessful output, you have a number of recovery options, depending on your 
application, that are discussed further in the following paragraphs. In planning recovery, 
however, it is important to realize the difference between polled and unpolled devices with 
respect to unsuccessful delivery notices. 

Only the OCT 1000, UNISCOPE 100 and 200, and UTS 400 terminals are polled devices 
that actually transmit an acknowledgment to ICAM. The nonpolled devices (the TELETYPE 
and OCT 500 terminals) do not do so; unless a line-down condition prevents it, a delivery 
notice is generated automatically for messages sent to these latter devices, and it always 
indicates successful output completion, regardless of the true condition of the output 
message. Only a line-down condition causes an unsuccessful completion status. 

IMS 90 always receives a successful completion status from ICAM when a message has 
been delivered to nonpolled devices and, therefore, reschedules your program with a 
successful delivery notice code in the fifth byte of the input message that it creates for 
you. For these reasons, when completing your continuous output or recovery in cases of 
nondelivery in a critical part of your printing application, you should avoid using nonpolled 
devices. 



t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.10.1.4. Recovery Considerations with Delivery Notice Scheduling 

3-94 

Recovery and restart processing are the responsibility of your action program; IMS 90 
merely gives your printing transaction the means to perform recovery by notifying you of 
the success or failure of each continuous output message. For example, your successor 
action program keeps track of your continuous output in case any restarts are necessary. 
When unsuccessful completion status is returned, you may note these occurrences and 
continue as if successful - or terminate the transaction, to be restarted at some later time 
at the appropriate point. If your continuous output is directed to an auxiliary device, you 
send a regular output message to the primary device, indicating the need for assistance. 
You might terminate with external succession, awaiting an input message from the 
terminal to trigger the continuation of your print transaction. In any case, your action 
program must be prepared to accept actual input from the destination terminal as well as 
the delivery notice input message generated by IMS 90. Your terminal operators should be 
appropriately trained in these recovery procedures. 

Both operator-entered input and delivery notice input can cause attempts to schedule your 
action program. If operator-entered input exists, IMS 90 processes that input and 
eliminates the delivery notice from the previous continuous output message. You should, 
therefore, code your action program to handle keyboard input that can end, temporarily 
break, and resume the continuous output transaction. The best way to interrupt 
continuous output is to use function keys as keyboard input. Function keys are faster to 
use because they are never locked even when all remaining keys on the terminal are 
locked. 

When a message is unsuccessfully sent to an auxiliary device, only that device is marked 
down; output can still be addressed to the primary device. Your successor action program, 
which receives the error notification, can send an error message to the primary device and 
allow input from that terminal to cause continuation of the print transaction. Your recovery 
procedure should take into account the fact that IMS 90 has canceled the output message 
from the queue. 

On the other hand, if an error occurs while your continuous output message is being sent 
to a polled primary device, it also is likely that an error message will be unsuccessfully 
delivered, and more likely that you will need help from the terminal operator or a 
technican to get the terminal in working order. In this situation, your action program might 
terminate the print transaction altogether, recording the point at which the error was 
encountered. A later initiation of this print transaction could start the printing at the point 
recorded. 

An alternative in this situation is to send an unsolicited output message to another 
terminal, indicating the error and requesting assistance. (This could be the master 
terminal.) The action program could then terminate with a null message. When the out-of
order terminal is back in operation, the operator can enter an input message from the 
reinstated terminal to activate the successor action. The operator should not enter a 
terminal command. (This is also a recommended procedure when printing at a screen 
bypass terminal.) 



• 

• 

• 

UP-8614 Rev. 1 

Condition 

Successful output 
completion 

Line down or 
disconnected. 
Message deleted 
by IMS90. 

Terminal 
marked down. 
Message deleted 
by IMS90.@ 

Auxiliary 
device down. 
Message deleted 
by IMS 90. 
Output may be 
addressed to the 
primary device. 

Missing or 
invalid destination 
or auxiliary spec. 
in header 

No ICAM 
network buffer 
available@ 

Disk error 

lnval id output 

I 
buffer length 

NOTES: 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Table 3-19. Output Delivery Notice Status Codes 

Primary Devices Addressed 
Polled Nonpolled 

UNISCOPE 
and UTS400 OCT 1000 OCT 500 TTY 

Yes Yes Yes, Yes, 
regardless regardless 
of delivery of delivery 

Yes Yes No No 

Yes Yes No No 

Yes No No No 

Yes Yes Yes Yes 

Yes Yes Yes Yes 

Yes Yes Yes Yes 

Yes Yes Yes Yes 

J 

3-95 

Corresponding 
Labels in Hexadecimal 
TCSDSECT G) Value 

TM#TDNEM 81@ 

TM#TDLNO 11 

TM#TDDNA 12 

TM#TDNAX 40© 

TM#TEDST 84® 

TM#TENBA as® 

TM#TEDER 86® 

TM#TEILG a1® 

G) A BAL action program should access the labels in the TCS DSECT instead of testing the hexadecimal values in the input 
message directly. The hexadecimal values shown in the table can change in future releases, but the DSECT labels will 
remain the same. 

@ The hexadecimal value 81, indicating successful output completion, is translated to the character A if the lowercase-to
uppercase translate option is specified for messages input to the successor action. Similarly, the hexadecimal values 84 
through 87, indicating error conditions, are translated to the characters D through G if the translate option is specified. 

@ When a terminal is marked down, input solicitation (polling) by ICAM continues automatically. When ICAM receives input 
from the down terminal, that terminal is marked up, and the input is scheduled for IMS 90. 

@ Refer to Table 3-15 for UNISCOPE and UTS 400 auxiliary device condition codes that are ORed with TM#TDNAX. 

@ If this condition exists, a user action program can try to resend the last continuous output message . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-96 
Update A 

In the fifth byte of the input message, IMS 90 provides you with the output delivery notice • 
status code it receives from ICAM. The hexadecimal values of the code are listed in Table 
3-19 or 3-20; these tables also list the corresponding labels in the ICAM transaction 
control section (TCS) DSECT, TM#TCS. If yours is a COBOL action program, you must test 
for this hexadecimal value in the fifth byte of the input message, as shown in the sample 
program PRINT in 3.15.3. 

However, a BAL action program should be coded to access the labels in a TCS DSECT it 
has generated inline for this purpose, instead of testing for the hexadecimal value directly 
in the input message. The reason for this is that these hexadecimal values (which are 
equate (EQU) values for each DSECT label) can change in future OS/3 releases (but the 
ICAM DSECT labels always remain the same). If you access the labels, you have only to 
reassemble your BAL action program with each new release to be sure that your DSECT is 
current; otherwise you must change your code and reassemble. 

Note also that if you specify TRANSLAT=YES for the action, ICAM DSECTs may not be 
used to evaluate delivery notice status codes because status codes will be changed by the 
translate routine. (See note 2 , Table 3-19.) 

You call the ICAM procedure TM#DSECT, using the operand TCS, to generate the TCS 
DSECT inline when your BAL program is assembled. Figure 3-16 shows the delivery 
notification error code labels contained in the DSECT. 

By using output delivery status codes, continuous output users can apply recovery • 
procedures when output message errors are detected at message queueing time as well 
as delivery time. Errors with hexadecimal values 84 through 87 (Table 3-19) are 
discovered at the time the output is queued. All others are detected at the time the output 
is delivered to the terminal. Reasons for output message errors are: 

• a missing or invalid destination in the output message header; 

• an invalid output buffer length in the output message header; 

• no ICAM network buffer available; or 

• a disk error occurred. 

If the no-ICAM-network-buffer-available status exists, a user action program can try to 
resend the last continuous output message. 

• 



• 

UP-8614 Rev. 1 

NOTE: 

TM#TDDNA EQU X' 12' 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

TERMINAL MARKED DOWN 
. MESSAGE HELD 

3-97 

TM#TDNAX EQU X'40' AUXILIARY DEVICE DOWN 
MESSAGE HELD 
OUTPUT CAN STILL BE SENT TO 
PRIMARY 

TM#TDDSl EQU X'Ol' UNISCOPE AUXILIARY STATUS ONE 
MESSAGE HELD 
GOOD STATUS BUT READ/WRITE 
FUNCTION INOPERATIVE 

TM#TDDS2 EQU X'02' UNISCOPE AUX STATUS TWO 
MESSAGE HELD 
PRINTER OUT OF PAPER, 
INOPERATIVE OR IN TEST MODE 

TM#TDDS3 EQU X'03' UNISCOPE AUX STATUS THREE 
. MESSAGE HELD 

TAPE CASSETTE END-OF-TAPE 
TM#TDDS4 EQU X'04' UNISCOPE AUX STATUS FOUR 

TM#TDNEM EQU X'81' 

TM#TDLNO EQU 

TM#TEDST EQU 
TM#TENBA EQU 
TM#TEDER EQU 
TM#T EI LG EQU 

X'll' 

X'84' 
X'85' 
X'86' 
X'87' 

MESSAGE HELD 
NO RESPONSE FROM DEVICE WHEN 
ATTEMPTING TO READ BLOCK OF 
TAPE 

SUCCESSFUL OUTPUT COMPLETION 

LINE DOWN/DISCONNECTED 
. MESSAGE HELD 

MISSING OR INVALID DESTINATION 
NO ICAM NETWORK BUFFER AVAILABLE 
DISK ERROR OCCURRED SERVICING SVC 
INVALID OUTPUT BUFFER LENGTH 

The contents listed with each label in the DSECT indicate that the message is being held by ICAM. 
However, IMS 90 deletes these messages from the queue. 

Figure 3-16. Portion of /CAM TCS DSECT in BAL Action Program Showing Delivery Notification Error Codes 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.10.2. Output-for-Input Queueing via the SEND Function 

3-98 

When you want to print continuous output at a terminal other than the one initiating the 
transaction, you do so by means of the output-for-input-queueing option, which causes an 
output message transmitted via the SEND function to be queued as an input message at 
the destination terminal instead of being output there. You do not transmit continuous 
output by this method but cause a transaction to be initiated at the destination terminal, 
which generates and prints continuous output. For example, the transaction you initiate at 
the originating terminal can create the records you want to be printed and write them to 
an indexed sequential file. The last stage of this transaction generates an output message 
for input queueing at the terminal where the printing is to be done; the transaction 
initiated by this input message reads the ISAM file sequentially and prints the messages 
as continuous output, using delivery notice scheduling for recovery (3.10.1.4). 

Table 3-20. UN/SCOPE and UTS 400 Auxiliary Device Condition Codes 

Hexadecimal Hexadecimal UNI SCOPE 
Auxiliary Device 

Label CD Value Value when or UTS 400 
Condition Equated ORed with Auxiliary 

to Label TM#TDNAX@ Status 

Ready (good) status TM#rDDSl 01 41 1 
but COP/TP write 
function inoperative 

Device out of paper, TM#rDDS2 02 42 2 
inoperative, or in 
test mode 

Data error on TCS TM#rDDS3 03 43 3 

Device is not TM#rDDS4 04 44 4 
responding; it 
may be disconnected, 
or a read of unwritten 
tape may have occurred. 

NOTES: 

G) Your action program should access the labels in the DSECT instead of testing the 
value directly, because the equate (EQU) value for each label in the DSECT can vary in 
future releases. The labels will always remain the same. 

@ The label TM#TDNAX represents the auxiliary-device-down condition. (Refer to Table 
3-19.) 

• 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-99 

This output message is queued as input from the destination terminal. Its text must begin 
with the transaction code that causes activation of the print transaction. The name of the 
file to be read by this transaction at the destination terminal must be specified to the 
configurator via the FILES or DFILE parameter as specified for the corresponding file in the 
ACTION section for the originating transaction, which creates the records. 

Your action issuing the SEND function directs that its output be queued as an input 
message from the destination terminal by setting the hexadecimal value C9 in the AUX
FUNCTION byte of the AUXILIARY-DEVICE-ID field of the OMA header; it does not use the 
CONTINUOUS-OUTPUT-CODE field. You must supply the configured identification of the 
terminal addressed in the DESTINATION-TERMINAL-ID field. 

If the destination terminal is in interactive mode when your SEND function is executed, or 
if it already has an outstanding input to be scheduled for it, the output message you are 
sending cannot cause input scheduling. In this event. your action program issuing the 
SEND function receives an unsuccessful STATUS CODE in the PIB on return from the 
SEND. (Refer to 3.9.2.) 

When you generate an output message and request that it be queued as input from 
another terminal, IMS 90 validates your header and the status of the destination terminal. 
Any errors encountered at this point are indicated to your originating action program by 
the returns made to the PIB after execution of the SEND function. However, any errors 
encountered in the text of the message (such as an invalid transaction code or some error 
found in the text by the print transaction scheduled to process the message at its 
destination) are reported by output to the destination terminal. The action program 
creating the output message is not informed of these errors by IMS 90. If your application 
requires such feedback to the originating terminal, you must provide for it specifically by 
instructions to the destination terminal operator or in your coding of the print transaction. 

The message generated is queued immediately to the destination terminal. Therefore, if 
your action program that directs its output to be queued as input to another terminal via 
the SEND function terminates abnormally after issuing the SEND function, the output still 
generates a new transaction. In single-thread IMS 90, only one output message is created 
in any one action. Also, an action program running under single-thread IMS 90 and 
generating this type of output message must not terminate in delayed internal succession; 
to do so causes IMS 90 to abnormally terminate the action program. External succession 
can be appropriate in certain circumstances and is allowed; however, normal termination 
is generally considered adequate. 

For a sample COBOL action program that illustrates output-for-input queueing, refer to 
3.15.4. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.10.3. Addressing a Screen Bypass Device 

3-100 

A UTS 400 screen bypass device is defined to ICAM as a logical terminal, but since it is 
physically a separate buffer that can have a telecommunications printer attached to it, it 
has no input medium. It is uniquely addressable for output and cannot be used to enter 
input. Thus, in the IMS 90 environment, the only way to access a screen bypass is to use 
the output-for-input queueing feature. That is, another terminal in the IMS 90 network can 
generate an output message via CALL SEND to be processed as input on behalf of the 
screen bypass device. The transaction initiated by that message can then be a simple 
transaction or a print transaction using continuous output. Neither interactive transactions 
or switched messages can be processed by a screen bypass device because both require 
input. 

3.11. DISCONNECTING A LINE FROM AN ACTION PROGRAM 

The line disconnect feature allows an action program to disconnect a single-station dial-in line 
following the delivery of its output message to enable another terminal to dial in on the same 
line. To use the line disconnect feature, you must include the continuous output capability in 
your configuration by specifying CONTOUT=YES in the OPTIONS section. This feature is 
available only in a dedicated ICAM network, not a global network. 

To disconnect a line after message transmission, the action program must: 

• place a continuous output flag (X'C3') in the AUX-FUNCTION byte (ZA#OAUX field) of 
the output message header; and 

• specify external succession with 'HANGUP' as the successor by setting the 
TERMINATION-INDICATOR (ZA#PSIND field) in the PIB to C'E' and the SUCCESSOR
ID (ZA#PSID field) to C'HANGUP'. 

HANGUP is an action program supplied by IMS 90 that terminates with a special code 
causing IMS 90 to issue a line release/line request sequence to ICAM to disconnect the 
line. 

After the output message is sent, no further input is required from the terminal operator. 
IMS 90 waits for ICAM notification of message delivery before scheduling the external 
successor, HANGUP. In this way, delivery of the message prior to the line disconnect is 
ensured. 

3.12. SNAPSHOT DUMP PROCESSING 

IMS 90 provides a snapshot dump under four conditions: 

• An action program voluntarily terminates by moving an ·s· into the 1-byte 
TERMINATION-INDICATOR field of the program information block (See 3.6.1.4.) 

• An action program terminates due to program check 

• An action program abnormally terminates due to timer-check (time-out due to loop in 
action program) 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-101 
Update A 

• An action program or subprogram issues a SNAP function call; i.e. a CALL 'SNAP' 
statement in a COBOL action program or the ZG#CALL macro in a BAL action 
program. 

IMS 90 places the snapshot dump in the spool file, from which it can be printed 
immediately without terminating the IMS 90 job. 

3.12.1. Voluntary and Abnormal Snaps 

Every IMS snap dump contains header conformation regarding the terminated action 
program and why it failed. 

The next section of the snap dump contains registers. Here you'll find one or two sets of 
registers depending on the reason for the snap dump. 

If you voluntarily terminated your action program by moving S to the TERMINATION
INDICATOR field of the program information block, the snap dump contains one set of 
registers. These are IMS registers. They are of little use to an action programmer. To find 
the registers belonging to your action program, you must go to relative location PIB + 40, 
where there is a full word forward pointer. This word is the address of the SAVE area that 
contains your action program's registers. Go to this address and advance three full words. 
The next full word is register 14, then 15, then registers 0-12 . 

If, on the other hand, IMS terminated your action program due to a program check or time
out, the snap dump contains two sets of registers, IMS and user action program registers. 
The user registers are labeled so they are easily identifiable. In addition, a duplicate set of 
user registers can be found at location PIB + 44 (subscript 16). At this location in the 
program information block you'll find the 16-byte program status word (PSW) indicating 
the address of the instruction immediately following the one that caused the abnormal 
termination. Also, right after the PSW are the action program's 16 registers (0-F). 

Your action program must never issue the SNAP or SNAPF supervisor macros; to do so 
causes IMS 90 to terminate. 

3.12.2. Call Snaps 

The SNAP function allows an action program to display up to six noncontiguous main 
storage areas in hexadecimal. Output is to the printer. 

COBOL Format: 

CALL 'SNAP' USING item-1 next- item-1[ ... item-6 next- item-6]. 

where: 

item-1 ... item-6 
Is the data name of the beginning of the area to be displayed. 

next - it em- 1 ... next - it em- 6 
Is the data name of the end of the area to be displayed. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-102 

BAL Format: 

ZG#CALL SNAP (start-addr-1,end-addr-l[, ... start-addr-6,end-addr-6] 

where: 

start-addr-1 ... start-addr-6 
Is the start address of the area to be displayed. 

end-addr-1 ... end-addr-6 
Is the end address of the area to be displayed. 

Example 1 (COBOL): 

8 12 

CALL 'SNAP' USING DICE-CODES END-WS 
PIB END-PIB IMA END-IMA OMA END-OMA 

Example 2 (BAL): 

10 16 

ZG#CALL SNAP, (WSTATl,WEND) 

ACTIVATION RECORD (SINGLE-THREAD IMS 90) 

PROGRAM INFORMATION BLOCK (PIB) CD ..... 

OUTPUT MESSAGE AREA (OMA) @ 0 -....-

INPUT MESSAGE AREA (IMA) @ -...... 
WORK AREA (WA) 0 ..... 

CONTINUITY DATA AREA (CDA) 0 -...... 
DEFINED-RECORD AREA (ORA) 0 © 

NOTES: 

CD Fixed-length area @ Optional area 

THREAD CONTROL 
BLOCK (THCB) 

L...- PIB 

IMA 

WA 

OMA 

CDA 

_r ORA 

.N 

T 

@ Contains 16-byte header in front of text © Used only by defined record management 

Figure 3-17. Single-Thread IMS 90 Activation Record Layout 

,l, 

r 

• 

• 

• 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

ACTIVATION RECORD (MULTITHREAD IMS 90) 

PROGRAM INFORMATION BLOCK (PIB)G) ..,_ 

OUTPUT MESSAGE AREA (OMA) 0 0 -

CONTINUITY DATA AREA (CDA) 0 ..... ....-

WORK AREA (WA) 0 ..,_ 

INPUT MESSAGE AREA (IMA) 0 ..... ....-

DEFINED RECORD AREA (DRA) 0 © ..... ..... 

NOTES: 

G) Fixed-length area @ Optional area 

3-103 

THREAD CONTROL 
BLOCK (THCB) 

b 1 
'l" 

....___, PIB 

IMA 

WA 

OMA 

CDA 

n DRA 

u 

r r 

0 Contains 16-byte header in front of text © Used only by defined record management 

Figure 3-18. Multithread IMS 90 Activation Record Layout 

3. 12.3. Edited Directory for Snapshot Dumps 

To obtain an edited directory for snapshot dumps, multithread IMS 90 users must indicate 
SNAPED=YES in the OPTIONS section of the configuration. The configurator then includes 
the module ZG#SNAPM in the input stream to the linkage editor in creating the IMS 90 
load module for online execution. If you omit the SNAPED parameter or indicate 
SNAPED=NO, the module ZG#SNAPM is not included in the IMS 90 load module and 
snapshot dumps are printed without the edited directory. 

Single-thread IMS 90 users receive as a standard feature the edited directory on all 
snapshot dumps. Figure 3-19 illustrates a portion of a snapshot dump with an edited 
directory. If BASIC=YES is specified, the termination dump is not edited . 



UP-8614 Rev. 1 

·-· I -· I • I .. 
I 

* I .. 
I 

• I 

• I 

• I .. 
I .. 
I 

* I .. 
I 

* I 

* I .. 
I 

• I 

* I 

* I • I .. 
I .. 
I .. 
I • I .. 
I .. 

c 

* I 

• I 

* I 

* I 

* I 

* I 

* I .. 
I 

* I 

* I 
c .. 

z 
I 

* I 

"' .. 
0 

I 

* I 

• I 

• I 

• I 

• I 

• I .. 
I • I • I 

• I -..... 

,... 

"' 
- a-
- 0 

' ,... CL ,... 

... ... 

... a. 

"' ... 
"" z 
"' 

... 
E 
c 
z 
z 
0 -.. ... 
c 

... ... 

... ... 

"' .... ..., 
0 ... ..., 
N 

-,... ,... 
u 

0 -I 
"' z 
c 
a: .. 
-% ... 
"' 
0 ... 
I 

:a. 
~ ... .. 
LJ 
u ... 
"' ... 
"" z 
"' 
E 
c 
a: 

"' 0 
a: 

"" z 
0 ... ... 
u 
c 

... 
z ... 
a: 
a: 
:::. 
u 

.. 
* 
"" c 
I: 

z 
0 ... ... 
c .... 
0 ... ... 
c 

.. • 

.... 
:oc .. 
z 
I 

c .... 
a: .. 

0 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

0.. 

... >--
:.: -;;:)'::> u 
U -~cu;: t
v- ~ut..;~u 
..i$ o-~-<i:: W..t 

i»:: - .. ·x~ ~ 
z cwou-a..c 
oc wacco ci-
Mw.,i ccco..i~z: 
~Q; .. -':;gc _. 
• • .. ~ z '-> 
~ W,_E..11.:)Q~ 

~~§~~~~~=~ 
i..4._..V) e,:>..-Q..CO 
Zll1 111>0ZalUU 
MV>ci....~a:o:»o 

i.JWE-Q..Ulll..1..1 
~ a. a. ~ .... c. 
c ..... zzczcz 
et.~ :J-c•o .... 
f,,0~¥,:Q..,__....,Ml.W~ 

OQ.i:t.e--z~ct~..JQ: 
cx.zo~ouzu-w.i 
Q.M30\.11111.~C ... ~ 

.;o.;ooooccoaoo 
r-.QCJCCW'\CCJ-C 
c.:rUW"lu--ccu 
ccocc::c..occc.i 
CO~UOCQUCO 
CCt.J~OC1C!;..'-J~ 
OOc:.JUCQOUOU 
oooooac:.ooc 

,.... ,...._,.... o .._,..cm ci> 

"•"""""o•-c..icti• u.0"1-ooi.1auu 
c i..w.i i...J o i...JW.. c .. 11'1 
__ ........ 0 ........ 0-0 
cccoccooc.o 
0000000000 
ooooooooco 

cccocooococYu 
O#',..,_U0,...044 
YN-UCUUOUll:i 
Q '6.11.1 Q c..., ... cw..,, .... ........ -0--::J-~ oooooocooc 
ocoo·~ocooo 
cccooocccc 

" u ... 
:i: .... 

.. 
0 

.... 
"' :::. 
c 
u 

u 

"' .... .... 
0 
0 
u 

0 
0 
c ... ... 
0 ... 

c 
a: 
0 
"W 

"" :::. ,... 
c .. 
"' 
E 
c 

"" "' 0 
a: 

"" 

.. Q 
u .... 
u ... ... .... ...... ... ... ... .... ........ 

..... 
0 c 
.... Q 
.......... 

... u 
,... Q 

... 
"' c u .... ........ 

....... .. "' N Q 
.... 0 

0 0 
C.> 0 
0 0 

a ::J 
0 0 
u Q 
0 0 

- 0 .... 0 
0 0 
0 0 

0 0 
u 0 
..... u 

u ... 

"' "' u 
... ::r 
... 0 
0 CJ 
0 0 
0 u 

0 "' 
0 "' ....... 
0 :r 

0 
0 0 
0 0 
a o 

..... 
I I 

0 .., 

"' "' "' "' ...... 
IZ a: 
IZ a: ...... 
VI Ill 
:::. ::I 

.., 
0 
:r 

"' -0 

,... 
c 

"' I: ..... ... 
"' ... .. 
m 

"" c 
z 
VI 

0 ... ..... ,., 
0 "' .... .. 
u u 
L.,; c: 
0 .. 

ID GO 
... Q .... ..., 
u "' 
u u 
u .... 
u ... 

... " ... "' 

.... "' .... ........ 
0 0 
0 0 

0 ... ,, .. 
"' 0 ... u 

... -0 u 
0 0 
0 0 

0 0 
0 0 u 0 
c t.:l 

0 
0 c 
0 c 
0 0 

0 .... 
u 0 .... ........ 
0 0 
c 0 
u t.:l 

... ., 
-7 "' 

"' "' " 0 
c 0 "' 
0 0 :r 
"' 0 ,. 

u ..., 
"' "" 0 .., "' c ... 
0 ::r 0 
0 0 
0 0 
0 0 
0 0 0 

0 
u 

,._ .._ ID 

I I "" 
0 ... 0 

VI Ill 

"' "' "" ....... c 
a: a: z 

"' 

.... 
u ... .., 

... 
0 .... 
0 .., 
u 
c;:. 
c 

c 
0 
CJ 
c 
u .... 
u 
u 

.... 
0 
u 
0 ..., 
u 
0 
u 

... ... ... ... 
Ill ... ... 
0 

... .. ,... 
:::. 

"' Q 

"' 0 ,., ... 
N ... 
... ... ... 
0 

"' c 

"' ... 
0 
0 
c 
c 
0 
0 
0 
a 

0 
c ... 
c ... 
0 

3-104 

"' ... 0 
"' :r ... ... u ... 
.... "' ... ,.., ~ ..., ... ... 

.... 
.., "' 0 ... .... 
... • c ... ... ............. 
c ~ CJ 
0 CJ c 

0 C> 0 c .,, 0 
... ,., 0 
0 • 0 

"' 0 u ... u 
u CJ .... 
u ..., ... 

............ 
"' 0 c ........... 
... 0 ... .. ...., ... 
.... u u 
0 0 0 
u '"' 0 

"' 0 "' ,... 0 
c;:. .... ..... 
u ... ... .., ... 
.. 0 0 
0 0 0 
... 0 0 

Cl "' ... c ... c 
c: 
0 .... 
0 
0 0 .::> 
c Cl 0 
Cl 0 0 

o o m 
c :r Im 

Cl "' Cl 
0 ... CJ 
c ... 
0 0 0 
n c u 
0 0 0 

.., c 0 
u 0 0 
c u 0 
0 0 0 
... ... 0 
c 0 0 
0 0 0 
0 0 ~ 

0 0 u 
"' Cl 0 c ... ... 
0 ... ... 
0 ... 
0 0 0 
0 C.J u 
0 0 0 

0 0 0 
"' , o4 u u u 
c 0 c ... ... ... 
0 c Cl 

0 .... 
C> c ... ... 
"' "' 

...... 
:r ::r 
c ..... 
:r :r '"' ..., ::r ::r 
0 0 

" ::r 

0 0 ,, " 
0 0 ,, .. 
0 u 
::r ::r 
0 0 
• ::r 

~ 0 
,, :r 
u u 
:r :r 
'-' ..., .. ,, 
0 0 
:r • 

0 0 
• :r 
0 c 
::r • 
0 0 . ,,. 
0 0 
::r • 

0 0 ,, . 
c c • • 0 0 .. " c 
u • 

... 0 ... " ... 0 ... ,, 

... u 
u :r 
... CJ 
... :r 

0 0 
0 :r 
0 c 
0 ::r 
.. Cl ... " :r Cl 
0 • 

0 0 

0 " 0 0 
0 :r 
0 0 
0 :r 
0 0 
0 :r 

0 Cl 
... c 
U ·U 
0 c ... ... 
0 c 

• 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.13. UTS 400 DOWNLINE LOAD CAPABILITY 

3-105 

The Universal Terminal System 400 (UTS 400), in an IMS 90 communications 
environment, can perform certain functions in its own processor. The UTS 400 is 
particularly useful in editing and validating IMS 90 input messages, via user-written 
COBOL, MAC 80, or PLM programs. If any errors occur in input editing or validation, they 
can be handled directly at the UTS 400, without transmitting the message to the host 
computer. 

Your UTS 400 programs must be stored in the IMS 90 load library (the library containing 
your online IMS 90 load module and action programs) from where they are downline 
loaded to the UTS 400 at your direction during online processing. You have two ways of 
downline loading the UTS 400: 

• Enter the transaction code DLOAD to activate the IMS 90 downline load action 
program ZUKLOD (5.3.3). 

• Write your own downline load action program (3.13.1 ). 

Two types of UTS 400 loads may be accomplished: a load for an immediate execution that 
is loaded directly into the UTS 400 main storage, and a load to the UTS 400 auxiliary 
storage device (a cassette or a diskette). 

To use this downline loading feature, you must generate a resident ICAM and must specify 
DLLOAD=YES in the OPTIONS section of configurator input. 

The UTS 400 terminal accepting a downline load must be a master or primary UTS 400 
station, never a slave station. 

To use the downline loading feature, you should be familiar with the description of the 
UTS 400 terminal found in the fundamentals of ICAM user guide, UP-8194 (current 
version), and with the Universal Terminal System 400 programmer reference, UP-8359 
(current version). 

3.13.1. User-written Downline Load Action Programs 

As an alternative to using the ZUKLOD downline load action program, you can write your 
own downline load action program to read blocks of UTS 400 program code from the IMS 
90 load library to a UTS 400 terminal. The user-written downline load action program 
must contain the following: 

• An 8-byte field defined for the UTS 400 load-module-name. The module-name must 
be moved into this field in the OMA that is being downline loaded before the 
SETLOAD function is called. 

• One SETLOAD function call for each downline load is required. The SETLOAD 
function must be issued before any GETLOAD function call because initialization must 
occur before a block of code can be read from a UTS 400 load module. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-106 

• GETLOAD function calls issued to read blocks of code from the UTS 400 load module 
into the data buffer in the OMA. 

• A 400-byte area defined on the word boundary in the CONTINUITY-DATA-AREA. This 
area is used as a work area by the SETLOAD and GETLOAD function calls. 

• The data-buffer and 2-byte field indicating SIZE defined in the GETLOAD function call. 
The data-buffer contains a block of code read from the load module. 

Before the GETLOAD function is called, the size field should have the length of the 
buffer area in binary format. After the return from the GETLOAD call, the size field 
will have the number of bytes actually moved into the buffer area. This number will 
also be in the binary format. 

After the GETLOAD function call, the user downline load program must: 

• Check for end-of-file (02) in the STATUS-CODE field of the PIB. 

• Process the status code in the PIB for successful completion of the GETLOAD 
function call. 

If the GETLOAD function is successful, the user downline load program should: 

• Move 'C' to the AUX-FUNCTION field (the first byte of the AUXILIARY-DEVICE-ID field) 
of the output message header. 

• Prefix the data block received from the GETLOAD function call with a proper heading 
_.. to load this block either directly into the UTS 400 main storage or to an auxiliary 

storage device. This prefixed data block becomes the text in the downline load 
program's OMA whose length can be calculated using the length returned in the SIZE 
parameter of the GETLOAD function call. 

An example of the OMA and the prefixing operations required to format the text part 
of the OMA for immediate execution might look as follows: 

01 OUTPUT-MESSAGE-AREA COPY OMA. 

02 DOWNLINE-LOAD-MESSAGE. 

03 DOWNLINE-LOAD-HEADER PIC X(6). 

03 DOWNLINE-LOAD-TEXT PIC X(1000). 

The user downline load action program should move the 6-byte prefix, 
X'1 BOE30323130', into DOWNLINE-LOAD-HEADER to provide the header information 
for loading the UTS 400 main storage. 

If the downline load is intended for the auxiliary storage device, the user action A 
program should instead move X'1313nnnnnnnn' into DOWNLINE-LOAD-HEADER. • 
Here 'nnnnnnnn' is a 4-character sequence naming the UTS 400 load program. 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-107 

• Send the message from the user-written downline load action program OMA to the 
UTS 400 terminal using the continuous output feature. 

• Terminate the downline load action program with external succession (i.e., place 'E' in 
the TERMINATION-INDICATOR of the PIB) and name the downline load action 
program as the successor. The successor action program must then be prepared to 
handle a delivery notice in the form of an input message as described in 3.10.1.4. 
This includes testing the delivery notice for error and if an error occurs, moving an 
error message to the OMA before terminating the program normally (TERMINATION
INDICATOR=N in the PIB). 

If the SETLOAD or GETLOAD function is unsuccessful and ERET=YES is included in the 
PROGRAM section of the configurator, the user downline load action program receives 
control with error indications set in the STATUS-CODE field of the PIB. For status code 
settings in this case, see status codes 3 and 4 in 3.13.1.1 and 3.13.1.2. The action 
program should then send an appropriate error message to the terminal. 

If the SETLOAD or GETLOAD function is unsuccessful and ERET=YES is not configured, 
IMS 90 cancels the transaction and sends the following message to the terminal: 

DOWN LINE LOAD ERROR. 

If the GETLOAD function returns an end-of-file condition (STATUS-CODE set to X'02' in 
the PIB), the buffer area will contain the transfer record. This is the last block that should 
be sent to the UTS 400; thus, no more GETLOAD functions should be issued for this load 
module. If the blocks of code are sent to the main storage for the immediate execution of 
the program, then when the UTS 400 terminal receives a transfer record it automatically 
transmits a response (input message) indicating whether or not the downline load was 
successful. Therefore, the user-written downline load action program should not use 
continuous output to send this last block. It should follow the same procedure as for a 
successful GETLOAD function, except it should not move 'C' into the AUX-FUNCTION field 
of the output message header. 

The successor action program will then receive in its IMA the 24-byte message header from the 
UTS 400 in the following formats: 

L..._ 24 bytes ..... J ...... 

Terminal-id Date/time Stamp Text-length unused 

4 8 2 2 

Successfu I load 

Terminal-id Date/time Stamp Text-length unused 

4 8 2 2 

Unsuccessful load 

10 01 01 01 

~ 

DICE 

10 01 01 01 

~ 

DICE 

I 

39 30 30 30 

39 30 34 * 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-108 

Table 3-21 defines the various error bit configurations (*)that can be returned in the last 
byte of the message from the UTS 400. 

Table 3-21. Rejected Load Error Byte Definition 

Bit Number* Error Type Probable Cause/Recovery 

7 Never set 

6 Always set 

5 LOADFL contents (AA16) prevents This value (AA16 ) was not cleared by a UTS 400 
loading program which had been executed previously. 

The UTS400 operator should initiate a confidence 
test from the controller or master station and, 
upon completion of the test, the load should be retried. 

4 Load addressed to a LITS 400 The load should be retried and addressed to 
slave station instead of a the LITS master station. 
master station 

3 Illegal control code The OS/3 downline load procs should prevent 
encountered in program this occurrence 

2 Block overflowed available/ If main storage is available, the UTS 400 operator 
assigned main storage should assign the appropriate storage to the 

program. The load should be retried. If main storage 
is not available, the program should be 
recompiled, addressing available storage. 

1 Start address of block is not 
in available/assigned main 
storage 

0 Addresses A and B not equal The OS/3 downline load procs should 
prevent this occurrence 

*Numbered from right to left; i.e. bit 7 is the most significant bit, bit 0 is the right-most or least significant bit. 

NOTE: 

If the user-written downline load action program is configured with EDIT=tablename or 
EDIT=c in its ACTION section (or if the EDIT parameter is omitted), the DICE characters 
X'10010101' are stripped from the message before it is sent to the action program. 

An example of the IMA might look as follows: 

01 INPUT-MESSAGE-AREA COPY IMA. 

02 UTS400-RESPONSE-MESSAGE. 

03 UTS400-RESPONSE-DICE PIC X(4). 

03 UTS400-RESPONSE PIC X(4). 

• 

• 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-109 

• The user-written downline load action program should: 

• 

• 

• Interrogate the response message and send an appropriate output message to the 
terminal indicating the success or failure of the downline load. 

• Terminate with normal termination; i.e., place 'N' in the TERMINATION-INDICATOR of 
the PIB. 

If the action program downline loads a program to a local storage device, the UTS 400 
terminal will not generate a response message after the last block of code is sent to the 
device. Therefore, the status of the downline load will not be known until the program is 
read from the local storage device into main storage. 

3.13.1.1. Downline Load Initialization 

The first function called by a downline load action program is the SETLOAD function: 

COBOL Format: 

CALL 'SETLOAD' USING !module-namet. 
1work-area ~ 

BAL Format: 

!CALL t 
1ZG#CALL~ 

SETLOAD,(module-name,work-area) 

where: 

module-name 
Is an 8-byte field containing the name of the UTS 400 program load module to be 
downline loaded. The UTS 400 program must be in the same load library as your 
action programs and the online IMS load module. 

work-area 
Is a 400-byte area defined in the CONTINUITY-DATA-AREA. This area must be 
word-aligned. 

Status Codes Detailed Status Codes 

0 0 

3 1 

3 7 

3 22 

Successful SETLOAD 

Invalid request; invalid number of parameters 

Invalid request; function invalid for type of request 

Invalid request; after the initial SETLOAD is issued, 
SETLOAD may not be issued again until the transfer 
record is received from the GETLOAD call. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-110 
Update B 

3.13.1.2. Downline Load Processing 

The GETLOAD function is called by the downline load program immediately after the 
SETLOAD function. It should be called repeatedly until end-of-file is reached for the UTS 
400 load module. 

COBOL Format: 

CALL 'GETLOAD' USINGlwork-area i· 
buffer-area 
s i z e 

BAL Format: 

SCA LL fGETLOAD, (work-area.buffer-area.size) 
lzG#CA L Lf 

where: 

work-area 
Is the area previously defined in the SETLOAD function. 

buffer-area 

s i z e 

Is the data-buffer in the OMA where the user expects a block of code from his 
load module. 

Is a 2-byte field where the length (size) of the buffer-area is stored. 

Status Codes Detailed Status Codes 

0 0 

2 0 

3 20 

3 21 

4 xx 

Successful GETLOAD 

End-of-load module (transfer record received). Note that 
end-of-file is set at the time the last block of data 
(transfer record) is passed to the action program. 

Invalid request; work-area address invalid or SETLOAD 
was not issued before GETLOAD. 

Invalid request; data buffer too small (less than 10 bytes). 

1/0 error. XX is the error code (in binary) returned by the 
OS/3 loader. Note that these error codes are explained in 
the system messages programmer I operator reference, 
UP-8076. 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.14. SCREEN FORMATTING SERVICES 

3-111 
Update B 

Screen formatting services is a method of displaying predefined formatted screens at a 
terminal. These predefined screens simplify the action programmer's output formatting job 
and can also aid the terminal operator' in his data entry procedure. IMS 90 places the 
predefined screen formats in your action programs via CALL functions in BAL and COBOL 
programs or via output format specifications in RPG II programs. You can display screen 
formats on the following devices: 

• UNISCOPE 100 (must have protection feature) 

• UNISCOPE 200 (must have protection feature) 

• UTS 400 (if operating in native mode, must have PROTECT /FCC switch set to FCC 
and control page set to XMIT VAR) 

• UTS 20 

• Workstations 

You indicate use of screen format services by including the SFS parameter in the 
OPTIONS section of your IMS 90 configuration. (See IMS system support functions user 
guide/programmer reference, UP-8364 (current version).) 

You predefine your screen formats offline from IMS 90 via the OS/3 screen format 
generator. (Refer to screen format services concepts and facilities user guide/programmer 
reference, UP-8802 (current version).) In your screen format description, you assign a 
format name to each screen format and the screen format generator (SFG) places it in the 
format library $Y$FMT. $Y$FMT is a MIRAM disk file where all the screen formats used by 
your action program reside. Only one screen format file is supported· per execution of IMS 
90. 

When you use screen formats, your IMS 90 job control stream must include a device 
assignment set for each device type using screen formatting. These device assignments 
define where the formats used by your action programs reside. You must use an LFD 
name of TC01 FMTF for the first terminal class, TC02FMTF for the second, etc. In addition, 
this job control stream must include a I /OPTION OFT=+n statement, where n specifies 
the number of device types. This number should agree with the number specified on the 
SFS configurator parameter. (See the IMS system support functions user 
guide/programmer reference, UP-8364 (current version).) 

Note that action programs using screen formatting services may not run in a batch (online 
or offline) environment; however, the IMS screen format services interface supports the 
writing of formatted screens to auxiliary devices on applicable terminals. 

You must put the AUX-DEVICE-NO field and AUXILIARY-FUNCTION field in the output 
message area header before building the screen format. You cannot specify the AUX
DEVICE-NO field with an error screen because it causes unpredictable output on the 
auxiliary device. 

Table 3-22 illustrates screen format services support of auxiliary devices. 



UP-8614 Rev. 1 

Input/Output Options 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Table 3-22. Screen Format Services Support of Auxiliary Devices 

Contents of AUX-FUNCTION 
Auxiliary Devices Field 

3-112 
Update A 

Inhibit Continuous No Continuous 
UTS 400 UNISCOPE 100/200 

Output Output Name Suppression Space 
Suppression Hex Character Hex Character Supported Not Supported Supported Not Supported 

Print Mode x F3 3 FD 0 x x 
(recommended)CIXD (recommended) 0 

x F5 5 F2 2 x x 
(recommended)CIXD (unpredictable 

output at screen 
and auxiliary 
device) 

Print x F7 7 F4 4 x GXD x 0 
Transparent 

x F9 9 F6 6 x !Jfj) x 
(unpredictable 
output at screen 
and aux1l1ary 
device) 

Print Form x Cl A DI J x © x G) 

(ESCH) 

x C6 F 06 0 x © x G) 

Transfer x C2 B 02 K x x 0 
All (recommended)G:l 
(ESCG) 

x Cl G 07 p x G) x 0 

Transfer x C4 D 04 M x © x G) 

Variable 
(ESC F) x cs H DS Q x © x G) 

Transfer x cs E 05 N X (field control x G) 
Changed characters not 
(ESC E) supported) 

x ES y FS s X (field control x 0 
characters not 
supported) 

Legend: 

G) printer - same format as screen 

@ printer - same information as screen; no carriage returns 

@ cassette/diskette - same format as screen; no field control characters 

@ cassette/diskette - same format as screen; only records unprotected fields 

@ cassette/diskette - same format as screen; records all fields and all field control characters 

@ cassette/diskette - not available 

• 

• 

• 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-112a 
Update A 

• 3.14.1. How IMS 90 Handles Screen Formatted Messages 

• 

• 

When your action program requests a screen format, IMS 90 retrieves the screen format 
you name and places it in an action program-specified buffer (usually the output message 
area (OMA)). You must reserve the first 16 bytes of your buffer area for an output 
message header. 

The screen format coordinator places the output display constants of the format into their 
respective locations within the screen buffer. These constants are always protected. IMS 
90 inserts into the format buffer the variable data you supply in your action program. 
Variable data is all the data to be displayed on the terminal except the display constants. 
Figure 3-19A shows an output screen containing display constants and variable data. 

DISPLAY 
CONSTANTS 

EMPLOYEE NUMBER: 12345678 

JOHN DOE 

123 OAK ST. 
ALLENTOWN, PENNA. 
987654 

Figure 3-19A. Output Screen Format with Display Constants and Variable Data 

Any field you define as input or both input and output in your action program is an 
unprotected field. This means that the terminal operator is free to change that field when 
making data entries on the screen format. When building your screen buffer, if you define 
a variable data field as output only, it is protected. Figure 3-198 shows an input screen 
containing the input fields (address) that the terminal operator has changed. 

DISPLAY 
CONSTANTS 

CHANGED INPUT FIELDS 

EMPLOYEE NUMBER: 12345678 

NAME: 

ADDRESS: 

JOHN DOE 

{

5753 PINE ST. 
PH I LADELPH I A, 
191 ll 3 

PENNA. 

Figure 3-198. Input Screen Format with Display Constants and Changed Input Fields 

When your action program terminates with delayed internal succession or continuous 
output, IMS 90 forces the format to be output only. Also, you must use an output only 
format for any formatted output message being switched to a terminal other than the 
source terminal. A message wait light entered to retrieve a switched message cancels any 
screen format currently effective at the terminal. Also, function keys passed to the action 
program cancel any screen format currently effective at the terminal. Your action program 
may send multiple formatted messages to the originating terminal; however, only the last 
format may be used for the subsequent input format. 



• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-113 
Update B 

When the terminal operator fills in input data on the screen format, the data entered is 
validated before IMS 90 passes control to your action program. IMS 90 first checks the 
message for terminal command input before requesting the screen format coordinator to 
validate the input message. If the input message contains a terminal command other than 
ZZRSD, IMS 90 processes it accordingly and cancels any screen format currently effective 
at the terminal. ZZRSD causes the last output message to be resent, thus retaining the 
current screen format. 

To schedule an action program to receive the formatted input data, you must terminate the 
CALL BUILD action program with external succession (E). If you terminate the CALL BUILD 
action program with normal succession, the first input field must contain a valid 
transaction code. 

If an input message contains a transaction code, in the first five bytes, IMS 90 verifies the 
code and if it is invalid, sends the input message back to the terminal and causes the 
transaction code to blink. This action does not cancel the effective screen format. 

When the input message does nt contain a terminal command or invalid transaction code 
message, IMS 90 requests the format coordinator to validate the message. If the input 
data filled in by the terminal operator is valid, IMS 90 places only that data into your 
successor action program's IMA. IMS 90 does not perform any other editing (simple 
editing or expanded input editing) on this input even if configured for the related action. 
Your action program can continue processing, possibly writing the new input to a data file. 
If there are input errors, IMS 90 allows the terminal operator to correct the inputuntil the 
retry count specified at screen format generation time is exhausted. (See screen 
formatting concepts and facilities user guide/programmer reference, UP-8802.) 

Once the retry count is exhausted, the successor action program receives control. At that 
time, the PIB contains a status code of 7 and a detailed status code of 0. (See 3.14.2.1.) 

NOTE: 

If you want to terminate with normal succession after you output an input/ output screen 
format, you must enter a valid transaction code in the first input field. 

3.14.2. Processing Screen Formatted Messages with COBOL and BAL 
Action Programs 

When you are ready to display a screen format on a terminal, your action program must 
first move the destination terminal-id into the first 4 bytes of the output message header 
and the output area length into the text length field of the output message header before 
issuing a BUILD function call statement. The output area length must be large enough to 
hold the format constructed by the screen format coordinator. To determine this value, see 
the formula described on the OUTSIZE parameter of the configurator ACTION Section in 
the system support functions user guide/programmer reference, UP-8364 (current 
version) . 

IMS 90 passes the format name you supply on the BUILD function to the screen format 
coordinator, which retrieves that screen format from the format file ($Y$FMT). IMS 90 
then places the screen format into the output area supplied by your action program. Your 
action program may add variable data to the screen format by· supplying additional 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-114 
Update A 

parameters on the CALL BUILD function. Issuing a CALL RETURN or CALL SEND then • 
sends that screen message to the terminal. The terminal operator then enters data that is 
verified and stored in your successor action program's input message area (IMA). Your 
successor action program may do further validation before processing the input data. 
Figure 3-20 illustrates message processing using the screen format services. 

NOTE: 

The LOW-VALUES figurative in COBOL is not valid output data for variable output fields in 
a CALL BUILD function. It translates to binary zeros. The HIGH-VALUES figurative 
constant, however, causes an input field to blink in a CALL REBUILD function because it 
translates to binary ones. 

SCREEN 
FORMAT ..... 

COORDINATOR 

I 
$Y$FMT 

_ _/ 
SCREEN 
FORMAT 

FILE 

ENTER 
INPUT DATA 
INTO SCREEN 
FORMAT 

.... 

CALL tUILD 

l 

USER 
ACTION 

PROGRAM (A) 

OMA 

l 
CALL REiRN/SEND 

OS/3 

IMS 90 

USER 
ACTION 

PROGRAM (B) 

IMA 

IMS 90 STORES 
ONLY INPUT 
DATA ENTRIES IN 
IMA 

Figure 3-20. Processing Screen Formatted Messages with COBOL or BAL Action Programs 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-114a 
Update B 

If you include a variable data area on the BUILD function, you may also include an output
status area large enough to hold one status byte for each variable data field. The screen 
format coordinator uses this area, when specified, to fill in error codes when it finds errors 
in the output validation of the variable data. When a validation error occurs, the screen 
format coordinator places X'FF' in the error field in your variable data area and one of the 
following field status error codes into the status byte for the invalid field. 

Output Validation 
Error Codes Cause of Error 

01 Nonnumeric keyin to a numeric field or subfield 

02 Nonalphabetic keyin to an alphabetic field or subfield 

05 Range check failure 

06 Field not in packed decimal format 

After your action program issues the BUILD function, the program information block (PIB) 
status and detailed status code fields reflect the status of the BUILD function. (See 
3.14.2.1 for status code explanations.) A status code of zero means the function call was 
successful and no output validation errors occurred; therefore, the format area (OMA) will 
contain a constructed output screen buffer . 

Once the action program has issued the BUILD function, do not change the contents of the 
output message area that contains the output header, screen format, and variable data. 
Modification of this output message area may cause unpredictable results since: 

• The information contained in the output header is used by screen format services to 
construct an appropriate screen format. 

• Screen format services rely on the format structure being the same when received at 
input time as it was when presented to the action program at BUILD function time . 



• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-115 
Update B 

To send the screen buffer contents (i.e., format and optional variable data)totheterminal, your 
action program issues a SEND or RETURN function. If this screen buffer terminal display l 
contains at least one fill-in field for data input (i.e., the format is input or input/output), this l 
screen format remains in effect at the terminal until the following input. If, however, you are not 
expecting input from the formatted screen, i.e., the terminal operator clears the screen before 
entering the next input message, you must clear the SFS-OPTIONS field in the COBOL output 
message header or the ZA#OSFSO field in the BAL output message header. Use the following 
statement in COBOL to clear the SFS-OPTIONS field: 

MOVE LOW-VALUES TO SFS-OPTIONS. 

In basic assembly language, the following statement does the same thing: 

10 16 72 

MVI ZA#OSFSO,X'OO' 

(See Figures 3-10 and 3-11.) 

Suppose the terminal operator wants to enter data from the terminal. If the data he enters 
is valid, that data is placed in the successor action program's IMA. If he enters invalid 
data, however, he is allowed to correct his entry until the retry count specified at screen 
format generation time is exhausted. In this case, IMS 90 automatically blinks the invalid 
field entered at the terminal. 

Once the retry count has been exhausted, IMS 90 schedules your successor action 
program whose IMA contains the input data entered from the terminal. The input data is 
followed by one status byte for each input field, indicating that the field is valid. When an 
input validation error is detected, one of the following field status error codes is entered in 
the status byte for the invalid field in your successor action program's IMA: 

Input Validation 
Error Codes Cause of Error 

01 Nonnumeric keyin to a numeric field or subfield 

02 Nonalphabetic keyin to an alphabetic field or subfield 

03 Correct number of characters not entered 

04 Decimal point alignment error 

05 Range check failure 

t 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-116 
Update A 

In addition, the screen format coordinator places hexadecimal F's into the invalid data 
fields in your IMA. Note that the length field in the input message header indicates only 
the length of the input data items and does not include their status bytes. Once IMS 90 
has indicated invalid fields, you may want to send a general error message to the terminal 
operator and terminate the transaction. 

Your action program can validate input data on a more detailed level than the screen 
format coordinator. When the terminal operator enters input data that your program 
determines is valid, you can issue the REBUILD function to construct an error screen 
format. Before you issue a REBUILD function call, however, your program must place the 
output area length into the output message header and replace invalid input data with 
hexadecimal F's. 

When you issue the REBUILD function, the screen format coordinator replaces any fields 
containing hexadecimal F's with the appropriate blink characters as it constructs the error 
screen format in the OMA. Finally, when your ·action program issues a subsequent 
RETURN or SEND function, the field in error blinks on the screen format at the terminal 

~ and all other fields remain unchanged. 

In summary, your BAL or COBOL action program issues two function calls to send a 
formatted output message to the terminal. The BUILD and the SEND/RETURN functions 
construct the screen buffer contents and transmit them to the terminal. 

BUILD 

ACTION 
PROGRAM 

SEND/RETURN 

The REBUILD and SEND/RETURN functions reconstruct erroneous screen buffer contents 
for transmission to the terminal. 

REBUILD 

ACTION 
PROGRAM 

SEND/RETURN 

D 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-116a 
Update A 

3.14.2.1. Building a Screen Buffer (BUILD) 

Your action program must issue a BUILD function call to construct a screen buffer in your 
action program's OMA. On return, the screen buffer always contains the display constants 
placed there by the screen format coordinator and may optionally contain variable data 
merged with the screen format. The format of the BUILD function call follows: 

COBOL Format: 

CALL 'BUILD' USING buffer-address format-name 

[variable-data data-size [output-status]]. 

BAL Format: 

{
CALL } BUILD. ( buffer-address,format-name[variable-data,data-size) 

ZG#CALL [,output-status]] 

where: 

buffer-address 

Is the address of an output area (usually the OMA) into which the constructed 
screen is placed. This area must be full-word aligned and begin with a 16-byte 
output message header with the destination terminal-id and output area length 
fields set as indicated on the OUTSIZE parameter. (See 3.14.2.) 

format-name 

Is the address of an area containing the 8-byte format name that identifies the 
desired format. 

variable-data 

Is the address of an area containing a string of variable data to be merged with 
called format. When this parameter is not specified, only the screen format 
constants are sent to the terminal as an aid to the operator entering input data. If 
you use this paramter and do not describe output fields in your action program 
(this is an input-only format), the variable-data parameter is invalid and IMS 90 
returns an error status in the PIB. There are no default values that can be 
generated by the screen format generator for output fields that can be used at 
CALL BUILD function time. Therefore, you must supply variable data for all of the 
output fields. 

If you want to have default values for some or all of your input fields, generate 
the fields as being both input and output fields, and supply output in the variable 
output data area at CALL BUILD function time. 

data-size 
Is the address of a half word containing the length of the variable data area. This 
parameter is required if you specify a variable data area . 



• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-117 
Update A 

output-status 
Is the address of the area into which the screen format coordinator places status 
errors found in the output validation of variable data. This parameter is valid only 
if the variable-data parameter is used. If omitted, output validation is not 
performed. 

If the BUILD function call is unsuccessful, no screen buffer is constructed and IMS 90 
sends one of the following status and detailed status codes to the PIB of your action 
program. 

Status 
Code 

1 

3 

3 

3 

6 

7 

7 

7 

7 

7 

7 

7 

Detailed 
Status Code Reason for Error 

3 

12 

4 

0 

1 

2 

3 

4 

5 

6 

Supplied format name could not be found 

Incorrect number of parameters 

Invalid parameter value (e.g., an address not within action 
program's activation record) 

SFS not configured 

Invalid terminal name 

Validation error; all error fields within variable data area are 
replaced by hexadecimal F's and affected field error statuses 
are set in the output-status area. 

Format area (output buffer) not large enough* 

Variable data area not large enough 

Insufficient number of terminal classes 

Variable data specified for input format 

Format width greater than screen width 

Fatal error (e.g., 1/0 error) 

3.14.2.2. Creating an Error Formatted Screen (REBUILD) 

You use the REBUILD function to construct an error screen format. The REBUILD function 
is used more effectively when your action program needs to provide more detailed input 
data validation than the screen format coordinator provides via the input validation error 
codes to the IMA (3.14.2). The format of the REBUILD function call follows: 

*When IMS 90 returns this error status, the length field in the output message header portion of your format area will 
contain the actual length required for this format. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-118 
Update A 

COBOL Format: 

.,.. CALL 'REBUILD' USING buffer-address variable-data. 

BAL Format: 

{
CALL } 
ZG#CALL 

REBUILD, (buffer-address, variable-data) 

where: 

.,.. buffer-address 

Is the address of an output area (usually the OMA) into which the constructed 
screen is placed. This area must be full-word aligned and begin with a 16-byte 
output message header as specified for the CALL BUILD function. 

variable-data 

Is the address of an area containing a string of fields including error fields into 
which the screen format coordinator or action program has placed hexadecimal 
F's. This is usually part of the IMA and contains all of the input data keyed in by 
the terminal operator. 

Before issuing a REBUILD function call to construct the error screen format, you must 

• 

place the output area length in the output message area. In addition, your program must • 
replace invalid input data fields with hexadecimal F's in the IMA. 

When you issue the REBUILD function call, the screen coordinator replaces erroneous 
input data fields (hexadecimal F's) with blink characters and constructs an error screen 
format in the OMA. A subsequent RETURN or SEND function call sends the error screen 
format to the terminal operator indicating the fields that need correction. 

If the REBUILD function call is unsuccessful, no error format is constructed and IMS 90 
sends one of the following status and detailed status codes to the PIB of your action 
program: 

Status Detailed 
Code Status Code Reason for Error 

Supplied format name could not be found 

7 1 Format area not large enough 

7 5 Format width greater than screen width 

7 6 Fatal error (e.g., 1/0 error) 

7 7 Rebuild not allowed 

7 8 Invalid field 

7 9 No error field detected • 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-11 Sa 
Update A 

• 3.14.3. Processing Screen Formatted Messages in RPG II Action Programs 

• 

• 

To use screen formatting services in your RPG II action program, you follow the same 
procedure in coding the control card and file description specification forms as you do for 
any other RPG II action program.) For example, code the letter A in column 74 of the 
control card specifications to designate an action program and identify the program as 
usual in columns 75 through 80. On the file description specification you name and 
describe the user and IMS 90 files. The input format specifications describe the IMS 90 
IMA file and user variable record fields associated with terminal input to a successor 
action program. When you enter data from the terminal and pass it to a successor action 
program, you must describe these input fields on the input format specifications. The 
calculation specifications retrieve the user record for inclusion in the screen format buffer 
(your action program's OMA). Finally, the output format specifications name the screen 
formats your action program uses and any variable data required by the screen format. 
Only one screen format is allowed for each output record. You identify the screen format 
on the first field description for each output record and follow it with the description of any 
variable data required by each named screen format. 

Although RPG II action programs normally do not use a work area, when you use screen 
formats you must specify a WORKSIZE keyword parameter in the ACTION section of the 
configuration equal to the size of the variable output data. 

When the terminal operator keys in the transaction code for your action program, IMS 90 
loads your RPG II action program, which moves variable data to the OMA. (You must allow 
16 bytes in the OMA for the header that immediately precedes the variable output data.) 
Subsequently, IMS 90 transmits the entire screen format including your variable data to 
the terminal. 

The terminal operator may then enter data, which is verified and stored in your successor 
action program's input message area (IMA). Figure 3-20A illustrates the processing of 
screen formatted messages for RPG II action programs. 

Once your action program builds the screen format, do not change the contents of the 
output message area that contains the output header, screen format, and variable data. 
Modification of this output message area may cause unpredictable results since: 

• Screen format services uses the information contained in the output header to 
construct an appropriate screen format. 

• Screen format services relies on the format structure being the same when received 
at input time as it was when presented to the action program. 

If IMS 90 cannot build the screen buffer, it sends one of the following status and detailed 
status codes to the PIB of your action program, which you can examine when you get a 
snap dump. 

Status Detailed 
Code Status Code Reason for Error 

1 Supplied format name could not be found 

3 12 SFS not configured 

t 

t 



UP-8614 Rev. 1 

Status 
Code 

6 

7 

7 

7 

7 

7 

7 

7 

Detailed 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Status Code Reason for Error 

4 Invalid terminal name 

3-118b 
Update A 

0 Validation error; all error fields within variable data area are 
replaced by hexadecimal F's. 

1 

2 

3 

4 

5 

6 

SCREEN 
FORMAT 

COORDINATOR 

SYSFMT 

SCREEN 
FORMAT 

FILE 

Format area (output buffer) not large enough 

Variable data area not large enough 

Insufficient number of terminal classes 

Variable data specified for input format 

Format width greater than screen width 

Fatal error (e.g., 110 error) 

IMS 90 

RETRIEVE SCREEN 
FORMAT NAMED ON 

OUTPUT FORMAT SPECIFICATIONS 

I 

USER 
ACTION 

PROGRAM (A) 

OMA 

-r 
INCLUDE VARIABLE 
DATA (IF ANY) ON 

OUTPUT SPECIFICATION 

TRANSMIT 
ENTIRE SCREEN 

FORMAT 

USER 
ACTION 

PROGRAM (BJ 

IMA 

T 
DEFINE 

INPUT ENTRIES 
ON INPUT FORMAT 

SPECIFICATION 

ENTER 
INPUT DATA 

INTO SCREEN 
FORMAT 

IMS 90 STORES 
ONLY INPUT 

DATA ENTRIES 
IN IMA 

Figure 3-20A. Processing Screen Formatted Messages with RPG II Action Programs 

Figure 3-208 shows a sample snap dump for an RPG II action program that requested an 
invalid screen format name. The first 2 bytes of the PIB indicate a status code of 01 16, i.e., 
supplied format name was not found. 

• 

• 

• 



• 
·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-· 1 1 

• 
1 

I H S 9 0 S N A P 0 U H P • 
1 

·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-· 
ACTION NAHE: BLACKJOO 

• 
DATE: 

CURRENT ACTION PROGRAM: BLACKJOO HRH-IO: TRH2 TRANS-IO: OU50007E02350001 TIHE: 

** ALLOCATION HAP . •• 

FROH 

------ 00009400 
000098AO 
00009868 
OOOC91190 
C00099B8 
00009A58 
cooooooo 
oooooor o 
OOOOOAOC 

TO 

U000948F 
00009863 
00009967 
0000985F 
00009A57 
OOOOBF 57 
uOc;OOZll3 
OOCOOOFF 
OOOOCACF 

CAUSE OF SNAP OUHP: 

SNAP &Y IHS AT OC"102 

REGS 0-7 uOG01510 OOOCll8AO 

REGS 8-F 6C0030FE A0001126A 

SNAP 0351100 TO 035A~8 

LENGTH 

OOOOG090 
00000014 
OOOOOlOC 
OCOOC300 
OOOCOOAO 
OCOOZ5CO 
00000174 
COOCGOl 0 
OOOCOOC4 

AREA-NAME 

FROGRAH INFORMATION BLCCK IPIBI 
INPUT MESSAGE AREA llHAI 
WORK AREA IWAI 
OUTPUT MESSAGE AREA IOHAI 
CONTINUITY DATA AREA ICOAI 
ACTION PROGRAM LOAD AREA 
THREAD CONTROL BLOCK ITHCBI 
FILE ALLOCATION HAP 
TERMINAL CONTROL TABLf ITCTI 

ACTION PROGRAM REQUESTED AbNORHAL TERMINATION 

cco13cco ocoooooc OOOD411A4 OCCC~5FO C1GC03Eb ooooo~co 

COOOCAOC 0LCC9400 OOOCOAOt COOC464S ALC04G8C 500042Db 

Status Code 

8(;/05/05 

10:18:20 

00940C~OO 0907C7FO F3F6E2[;5 ocsrioo'7E CZ350C01 OCOOLOOO OOOOOLOG OOOCDCDO • •••• RPGC36SN.&.=••••••••••••••••-035400 

009420-00000050 oooco100 GOOOOOAO oocooooo FSFDFOFS FCF5F1FO FlF7FllF8 C00000£5 •••• & •••••••••••• soo505101711L ••• V-035420 

oo911110-005ooooc 00000000 ooooocoo ooooBb2e 000009~8 00008678 0000~180 00000000 ••t••••••••••••••••••••••••••••··-035~40 

009460-0001380E 00008628 COOOOOCO OOC040FA SGOG3406 OC013CCO OOOQ3UDO 000038DC *••••••••••••••' ••••••••••••••••e-035460 

00948C-OOOOOAOC ooooocoo OCOC94CC 00000000 E3D9DllF~ CCOOC:OGC OOOCOLOC u40llOCOO •·• •• •• •• •• •• •• •• TRH2 •• ••• •• • ••• .-0351180 

0094A0-10030101 10020301 E806[1109 40C3Cl09 C4E27Allu 11011011040 FlF040110 40F94011C *••••••••YOUP CA~DS: 10 9 -03SllAO 

0094CD-11Clj0110110 110404CllO 40404040 4011011040 1104011040 110110110110 40404040 1104040110 • -0354CO 

D0911EC-10020501 llOCllCSCl 03C509110 E2C8'06E:b E21101101jQ 11040110110 llOE2110110 110110110110 *••·~ DEALER ~HO~S 2 -0 3SllEO 

009500-110110110110 110110110110 11oqo110110 110"011040 110110110110 110110110110 11040110110 1002oco1 • •••• -035500 

C09520-Cll06EllC2 03C56F40 C8C9E36F llOE2E3Cl 05Cll6FllO 11011011040 1101101002 01014040 •DOUBLE? HIT? STANO? -035520 

0095110-liOllOllOllO 110110110110 110110110110 110110110110 110110110110 1101101101j0 110110110110 110110110110 • -0355"0 

•••• 035560 TO 0358&0 SAME AS ABOVE 

Figure 3-208. Snapshot Dump with P/B Status Code 01 (Screen Format Not Found) 

.l 
c 
"tJ 

Co 
0) .... 
~ 

::ti 

~ 

- C/l s:: "tJ 
C/l m 

~~ 
)> c 
"tJ z 
"tJ -
c~ 
~ (') 

:::!o 
0 C/l z, 
C/l w 

cw 
'C I c. .... 
I» .... 
.... 00 
<1> 0 

IJl 



• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-119 
Update A 

You can construct an error screen format to notify the terminal operator when a user 
record cannot be found. To do this, you define your error screen display constants at 
screen format generation time and indicate the name of the error screen format and any 
variable fields on your output specifications format. For a good example of what is 
generated on an error screen, see Figure 3-39E. 

3.15. SAMPLE COBOL ACTION PROGRAMS 

Four transactions using COBOL action programs are described in 3.14.1 through 3.14.4 
and Figures 3-21 through 3-30. Program DISP (Figure 3-22) illustrates the use of 
previously coded DICE sequences stored in a COPY library. The DICE sequence coding is 
shown in Figure 3-23. Programs ACT1 and ACT2 (Figures 3-27 and 3-28) illustrate a 
dialog transaction, with ACT1 naming ACT2 as external successor. Figures 3-29 and 3-30 
illustrate the use of the continuous output option. PRINT (Figure 3-29) creates continuous 
output to be printed at the originating terminal and uses delivery notice scheduling for 
control and recovery. BEGIN1 (Figure 3-30) provides an example of initiating a print 
transaction via the SEND function to perform continuous output at a different terminal 
from the one originating the processing: it uses output-for-input queueing. These two 
programs are not complementary; the print transaction initiated by BEGIN 1 is not 
described, but it would necessarily be quite different in design from PRINT. 

3.15.1. Sample COBOL Program Using Previously Coded DICE Sequences 

The sample COBOL program in Figure 3-22 retrieves a record from the customer file 
(CUSTFIL) and displays it at the terminal. The program is called by the transaction code 
DISP, which also is the name of the program, and the 5-digit numeric key of the record 
desired. Figure 3-21 shows a sample input message and the corresponding output display. 

DISP 01234 
CODE CUSTOMER NAME 
01234 JOHN DOE 

ADDRESS CITY-STATE 
1212 JACKSON PHILA.,PA 

BALANCE-DUE 
358.22 

PAYMENT-DUE YR-TO-DATE VOL 
50.00 1,065.38 

Figure 3-21. Sample Transaction Displaying Customer Record 

ZIP 
1910 1 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-120 

In case of an invalid record key in the input message, or any error condition detected by • 
IMS 90, the program moves an error message to the output message area and terminates 
the transaction. 

Note that the action program DISP uses DICE, previously coded and filed in a copy library, 
for homing the cursor, clearing the screen, and repositioning the cursor to a new line. 
Figure 3-23 presents an example of the coding by which the appropriate DICE sequences 
might be prepared for entry into a specified copy library, where they would be available for 
use in an action program referencing them as DISP does (via the first 01 level COPY 
statement in its working-storage section). 

8 12 

IDENTIFICATION DIVISION. 
PROGRAM-ID. DISP. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. UNIVAC-9030. 
OBJECT-COMPUTER. UNIVAC-9030. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 CUSTFIL PIC X(7) VALUE 'CUSTFIL'. 
77 TEXT-1 PIC X(32) VALUE 'PROCESSING ERROR.STATUS CODE 
77 TEXT-2 PIC X(23) VALUE 'DETAILED STATUS CODE 
01 DICE COPY DICE. 
01 CUSHDRl. 

02 CUSHDl 
02 CUSHD2 
02 CUSHD3 
02 CUSHD4 
02 CUSHDS 

01 CUSHDR2. 
02 CUSHD6 
02 CUSHD7 
02 CUSHDB 

LINKAGE SECTION. 

PIC 
PIC 
PIC 
PIC 
PIC 

A ( 6) 
A ( 20) 
A ( 1 5) 
A ( 1 5) 
A ( 5) 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 

PIC A(lS) VALUE 
PIC A(lS) VALUE 
PIC A(lS) VALUE 

' CODE '. 
'CUSTOMER NAME 
'ADDRESS 
'CITY-STATE 
' Z I P 

BALANCE-DUE 
PAYMENT-DUE 

YR-TO-DATE VOL'. 

01 PROGRAM-INFORMATION-BLOCK COPY PIB. 
01 INPUT-MESSAGE-AREA COPY IMA. 

02 TRANSAC-CDE PIC X(4). 
02 FILLER PIC X. 
02 REC-KEY PIC X(S). 
02 REC-NO REDEFINES REC-KEY PIC 9(5). 

01 WORK-AREA. 
02 CUS-REC. 

03 COE PIC x ( 5) . 
03 NAME PIC x ( 2 0). 
03 ADDR PIC x ( 15) . 
03 CTY-STE PIC x ( 1 5) . 
03 ZIP PIC 9 ( 5) . 
03 BLNCE-DUE PIC S9(9)V99 COMP-3. 
03 DUE - IN PIC S9(9)V99 COMP-3. 
03 YTD-VOL PIC 9(6)V99. 

02 ERROR-MSGE. 
03 TX T - 1 PIC x ( 3 2) . 
03 STAT PIC 9 ( 4). 
03 TXT-2 PIC x ( 2 3) . 
03 DSTAT PIC 9 ( 4). 

Figure 3-22. Sample COBOL Action Program DISP (Part 1 of 2) 

• 

• 



UP-8614 Rev. 1 

• 

• 

8 I 2 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

OI OUTPUT-MESSAGE-AREA COPY OMA. 
02 LINE-0 PIC X(4). 
02 LINE-I PIC X(64J. 
02 CR-I PIC X(4). 
02 LINE-2. 

03 COE 
03 FILLER 
03 NAME 
03 ADDR 
03 CTY-STE 
0 3 Z IP 

02 CR-2 
02 LINE-3 
02 CR-3 
02 LINE-4. 

03 FILLER 

PIC x ( 5). 
PIC X. 
PIC x ( 2 0) . 
PIC x ( 1 5) . 
PIC x ( 15) . 
PIC x ( 5) . 
PIC x ( 4) . 
PIC X(45). 
PIC x ( 4) . 

PIC X. 
03 OUT-BAL PIC ZZZ.ZZZ.ZZ9.99. 
03 FILLER PIC X(S). 
03 OUT-DUE PIC ZZZ.ZZZ.ZZZ.99. 
03 FILLER PIC X(S). 
03 OUT-VOL PIC ZZZ,ZZZ.99. 

02 CR-4 PIC X(4). 
02 LINE-I3 PIC X(4). 

PROCEDURE DIVISION USING PROGRAM-INFORMATION-BLOCK 
INPUT-MESSAGE-AREA WORK-AREA OUTPUT-MESSAGE-AREA. 

STRT-CDE-SECT . 
MOVE CURS-COORD TO LINE-0 
MOVE CURS-HME TO LINE-I3. 
M 0 VE CR T 0 CR - I , CR - 2 . C R-3 . CR - 4 . 

CUSTOM R - F I LE - SECT . 
ENTER LINKAGE. 
CALL 'GET' USING CUSTFIL CUS-REC REC-KEY. 
ENTER COBOL. 
IF STATUS-CODE IS NOT= 0 GO TO PiOCESS-ERROR. 
MOVE CUSHDRI TO LINE-I. 
MOVE CORR CUS-REC TO LINE-2. 
MOVE CUSHDR2 TO LINE-3. 
MOVE BLNCE-DUE TO OUT-BAL. 
MOVE DUE-IN TO OUT-DUE. 
MOVE YTD-VOL TO OUT-VOL. 
GO TO NORMAL-TERM. 

PROCESS-ERROR. 
MOVE TEXT-I TO TXT-I. 
MOVE STATUS-CODE TO STAT. 
MOVE TEXT-2 TO TXT-2. 
MOVE DETAILED-STATUS-CODE TO DSTAT. 
MOVE ERROR-MSGE TO LINE-1. 
MOVE REC-KEY TO ADDR OF LINE-2. 

NORMAL -TERM. 
ENTER LINKAGE. 
CALL 'RETURN'. 
ENTER COBOL . 

Figure 3-22. Sample COBOL Action Program DISP (Part 2 of 2) 

3-121 



UP-8614 Rev. 1 

8 12 

01 DICE COPY DICE. 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

DICE SPECIAL CHARACTERS FOR PROGRAM DISP. 

3-122 

FORMS CONTROL & CLEAR. CURSOR TO ROW Y, COLUMN X. AND CLEAR 
SCREEN. X'l0030201' 
MULTIPUNCHES 12-11-9-8-1, 12-9-3. 12-9-2, 12-9-1. 

02 CURS-COORD. 
03 DICE-1 
03 ROW-Yl 
03 COL-Xl 

PIC X(2) VALUE 
PIC X(l) VALUE 
PIC X(l) VALUE 

POSITION CONTROL NEW LINE. X'l0040000'. 
MULTIPUNCHES 12-11-9-8-1. 12-9-4. 12-0-9-8-1, 12-0-9-8-1. 

77 CR PIC X(4) VALUE 

SET COORD-CURSOR TO HOME. X'lOOlOOOO'. 
MULTIPUNCHES 12-11-9-8-1, 12-9-1, 12-0-9-8-1, 12-0-9-8-1. 

77 CURS-HME PIC X(4) VALUE 

POSITION CONTROL & CLEAR- CLEAR TO END OF LINE & NEW LINE. 
x. 10050000 .. 
MULTIPUNCHES 12-11-9-8-1, 12-9-5. 12-0-9-8-1, 12-0-9-8-1. 

77 CLR-LINE PIC X(4) VALUE 

APPENDING CODE FOR UNISCOPE-100 COP. X'l2'. 
MULTIPUNCH 11-9-2. 

77 DC PIC X(l) VALUE ' '. 

START OF ENTRY CHARACTER SOE. X'lE'. 
MULTIPUNCH 11-9-8-6. 

77 SOE PIC X(l) VALUE ' 

Figure 3-23. Example of DICE Sequences Filed in a COPY library 

3.15.2. Sample COBOL Programs Performing Dialog Transaction 

The two action programs ACT1 and ACT2 (Figures 3-27 and 3-28) perform a dialog inquiry 
transaction. The initial input message and various possible input and output messages of 
the dialog transaction are shown in Figures 3-24, 3-25, and 3-26. Use of the UNISCOPE 

-. 100 display terminal is assumed. This transaction references two indexed files named 
STATE and CITY. The STATE file contains a record for each state. In each record is the 
state name, state population, and the name of the capital city. The CITY file contains a 
record for each city. In each record is the city name, city population, and state name. City 
names in the CITY file are assumed to be unique for the purposes of this example. 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-123 

The transaction is designed to provide information about a state. The operator enters the 
name of a state. In response, the state name, population, and capital name are given. 
Either the population of the capital city or termination of the transaction can then be 
requested. 

The input message (line 0) is the same for Figures 3-24, 3-25, and 3-26. S is a 
transaction code that uniquely identifies the state transaction to IMS 90. The S is followed 
by a single place to delimit it from the remaining text of the message. The name of a state 
is entered then and the message is transmitted to IMS 90. The symbol I is the cursor and 
is supplied by the hardware. 

IMS 90 associates the transaction code S with the action program ACT1. This relationship 
is established at IMS 90 configuration time. When ACT1 is initiated by action scheduling, 
the input message text is in the input message area (IMA) which is described in the 
linkage section. This area consists of a control header and a text area. The description of 
the control header is copied from the IMS 90 copy library; the descriptions of the output 
message area (OMA) control header, and the program information block (PIB) also are 
copied. 

ACT1 uses the name of the state given in the input message to obtain a record from the 
STATE file. If the record exists, the name of the state, state population, and capital name 
are placed in the OMA. The output message headings and control characters are moved to 
the OMA from the working-storage section . 

ACT1 saves the name of the capital city in the continuity data area. The contents of this 
area are automatically passed to the succeeding action program, ACT2 by IMS 90. ACT1 
designates ACT2 as its external successor. The termination code E, for external 
succession, is moved to the TERMINATION,.,fNDICATOR field in the PIB. The identification 
of the program, ACT2, is moved to the SUCCESSOR-JO field of the PIB. ACT1 terminates 
by means of a CALL 'RETURN' statement. 

The output message built by ACT1 in its OMA is sent to the originating terminal by IMS 
90 after ACT1 is terminated (lines 1-5 in Figure 3-24). 

0 
1 
2 
3 
4 

5 
6 
7 

s ALASKA 
STA TE STATE-POP CAPITAL 

ALASKA 226 '818 JUNEAU 

CAPITAL·POP7 l>NO YES 

7 ,Hen 

NOTE: 

The cursor (ii may appear at only one location on the screen at any one time. In this example, it also would have 
appeared after ALASKA when the operator entered the initial input message (line 0) and after NO upon 
transmission of the first output response built by ACT 1 (line 5). The start-of-entry character (!>) may appear at 
multiple locations. 

Figure 3-24. Sample Dialog Transaction with Option Taken 



UP-8614 Rev. 1 

0 
1 
2 
3 
4 
5 
6 

0 

S ALASKA 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

STATE STATE-POP 

ALASKA 266,000 

CAPITAL-POP? ~NO YES 
TRANSACTION COMPLETE/ 

CAPITAL 

JUNEAU 

Figure 3-25. Sample Dialog Transaction with Option Not Taken 

S ALASKA 
ERROR -STATE NAME INVALID I 

Figure 3-26. Sample Dialog Transaction with Error Message 

3-124 

• 

The output message (line 5, Figure 3-24) gives the terminal operator the option to request 
the population for the capital city of the state or to terminate the transaction. The start-of- • 
entry and cursor characters are positioned in the output message so that: 

1. If the operator wants to terminate the transaction without seeing the capital 
population, he only needs to press TRANSMIT. 

2. If the operator wants to see the capital population, he must press TAB and then 
TRANSMIT. 

The option on line 5 in Figure 3-24 is the second input message, which always results in 
the scheduling of ACT2 (Figure 3-26). When the YES option is selected by the terminal 
operator, ACT2 obtains the CITY record for the capital city named in the continuity data 
area, builds an output message containing the capital population (line 7, Figure 3-24) and 
then terminates normally. 

Lines 0 through 5 in Figure 3-25 are the same as lines 0 through 5 in Figure 3-24; 
however, the response to the option is different. The NO option is selected, and ACT2 
moves zero to the TEXT-LENGTH field in the output message area control header before 
coming to a normal termination. Since no output message text is provided by ACT2, IMS 
90 returns a standard transaction termination message to the originating terminal, as 
shown in line 6 in Figure 3-25. 

In Figure 3-26, line 0 remains the same as it was in Figures 3-24 and 3-25. However, in 
the example, no such record can be found and the state name is assumed to be invalid. 
An error message is built in the output message area. The text length of the error e 
message is moved to the TEXT-LENGTH field of the output message area control header to 
override the prespecified text length. The transaction terminates with a CALL 'RETURN' 
statement. The contents of the output message area are sent by IMS 90 to the originating 
terminal, as shown on line 1 in Figure 3-26. 



UP-8614 Rev. 1 

• 

• 

• 

8 1 2 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

IDENTIFICATION DIVISION. 
PROGRAM-ID. ACT1. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. UNIVAC-OS3. 
OBJECT-COMPUTER. UNlVAC-OS3. 
DATA DIV IS ION. 
WORKING-STORAGE SECTION. 
77 STATE PIC AC7l VALUE 'STATE'. 

3-125 
Update A 

77 ERRC1R-TEXT-LEl~GTH PIC 9(4) COi'lP-4 VALUE 34. 
01 LINE-0. 

02 DLE 
02 PCAC 
02 ROW-0 
02 COLU!iN-0 

01 L1NE-1-MSG-1A 
' CAPITAL'. 

01 LINE-5-nSG-1A. 
02 E-1 
02 SOE 
02 E-2 
02 ESC-1 
02 HT 
02 DLE 
02 FC 
02 ROW-5 
02 COLUt'iN-16 

01 LlNE-1-nSG-18 • 

PIC 
PIC 
PIC 
PIC 
PIC 

x 
x 
x 
x 
Xl39) 

XC13J 
x 
XC7J 
x 

PIC 
PIC 
PIC 
PIC 
PIC X 
PIC X 
PIC X 
PIC X 
PIC X 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 

=' 10'. 
=' 05'. 
=' 00'. 
=' 00'. 
'STATE STATE-POP 

'CAPITAL-POP? ' 
=' 1E' • 
'NO YES'. 
=' 27'. 
=' 05'. 
=' 10'. 
=' 02'. 
=' 10'. 
='OS'. 

02 E-1 PIC XC26l VALUE 'ERROR - STATE NAnE INVALID'. 
LINKAGE SECTION. 
01 PROGRA~-INFORMATIO~-BLOCK. COPY PI874. 

02 STATUS-CODE PIC 9l4l COnP-4. 
02 DETAILED-STATUS-CODE PIC 9C4J COMP-4. 
02 RECORD-TYPE REDEFINES DETAILED-STATUS-CODE. 

03 PREDICTED-RECORD-TYPE 
03 DELIVERED-RECORD-TYPE 

02 SUCCESSOR-IO 
02 TERnlNAlION-lNDICAlOR 
02 LOCK-ROLLBACK-INDICATOR 
02 TRANSACTION-ID. 

03 YEAR 
03 TODAY 
03 HR-n rr.~-st:c 

02 DATA-DEF-REC-NAME 
02 DEFINED-FILE-NAME 
02 STANDARD-MSG-LINE-LENGTH 
02 STANDAfiD-MSG-~UM6ER-LINES 
02 WORK-AREA-LENGTH 
02 CONTINUITY-DATA-INPUT-LENGTH 
02 CONTINUITY-DATA-OUTPUT-LENGTH 
02 WORK-AREA-INC 
02 CONllNUITY-DATA-AREA-lNC 

02 SUCCESS-UNIT-IO. 
03 TRANSACTION-DATE. 

04 YEM:. 
(>.:+ nDNTH 
04 TOOAY 

03 1 lilE. -OF -DAY . 
04 HOUR 
04 i'll rJUTE 
04 :3£C0r<D 

03 UNIQUE-SUFFIX 

PIC x. 
PIC x. 
PIC XC 6 J. 
PIC x. 
PIC x. 
PIC 9(4) COnP-4. 
PIC 9C4l COMP-4. 
PIC 9(9) COMP-4. 
PIC XC7J. 
PIC XC7J. 
PIC 9(4) conP-4. 
PIC 9(4) cor.P-4. 
PIC 9C4J COMP-4. 
PIC 9C4J COnP-4. 
PIC 9C4J COMP-4. 
Pre 9(4J conP-4. 
PIC 9C4l COMP-4. 

PIC 99. 
PIC 99. 
PIC 99, 

PIC 99. 
PlC 99. 
PIC 99. 
PIC ·;>99. 

Figure 3-27. Sample COBOL Action Program ACTT (Part 1 of 3) + 



UP-8614 Rev. 1 

8 1 2 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

02 SOURCE-TERFlINAL-CHARS. 
03 SOURCE-TEknINAL-TYPE PIC X:. 

3-126 
Update A 

03 SOURCE-TER~INAL-MSG-LINE-LENGfH 
03 SOURCE-TER~INAL-MSG-NLIMBER-LINES 

PIC 9(4) COMP-4. 
PIC 9(4) COMP-4. 

01 

01 

INPUT-MESSAGE-AREA. COPY IHA74. 
02 SOURCE-TER~lNAL-ID 
02 DATE-TI~E-SfAMP. 

03 YEAR 
03 TOOAY 
03 HR-i'lIN-SEC 

02 TEXT-LENGTH 
02 AUXILIARY-DEV-ID. 

03 FILLER 
03 AUX:-DEV-NO 

02 TRANSACfION-COOE 
02 FILLER 
02 STATE-NAnE-IN 
wORt'.-AREA. 

PIC X. 
PIC X:. 
PIC AC14J. 

02 STATE-NAr.E PIC A(14). 
02 STATE-POP PIC 9C8l. 
02 CAPITAL PIC AC2SJ. 
OUTPUT-MESS~GE-AREA. COPY OnA74. 
02 DESTINATION-TERM[NAL-IO 
02 SF S-OP I IONS 
02 FILLER 
02 CONTINUOUS-OUTPUT-CODE 
02 TEXT-LENGTH 
02 AUXILIARY-0EvICE-JD. 

03 A<J:(-FLJr~Cf ION 
03 AUX-DEVICE-NO 

02 LINE-0-0UT PIC XC4J. 
02 U NE-1-0UT. 

03 £~-GUT PIC XC3'?J. 

03 CONTROL-1 PIC XC4l. 
03 CONTROL-2 PIC XC4). 

02 L WE-3-0UT. 
03 FILLER PIC XX. 
03 STATE-NAME PlC AC14l. 
03 FILLER PIC XC4J. 
03 SlATE-POP PIC 99,999,999. 
03 FILLER PIC XC4J. 
03 CAPITAL PIC AC25l. 
03 co~TROL-3 PIC XC4l. 
03 CONTROL-4 PIC XC4l. 

02 LINE-5-0uT PIC XC27l. 

PIC XC4l. 

PIC 9C4l COMP-4. 
PIC 9C4l COMP-4. 
PIC 9(9) ~OMP-4. 
PIC 9C4J COnP-4. 

PIC X. 
PIC X. 

PIC 
PlC 
PIC 
PIC 
PIC 

XC4J. 
XC2l. 
xc 2). 
XC4J. 
9(4) COnP-4. 

PIC X. 
PIC X. 

01 CO~TlNUITY-DATA-AREA. 
02 CAP:TAL PIC AC2Sl. 

PROCEGURE DIVISION USING PROGRAM-lNFOR~AlION-BLOCK 
INPUT-~ESSAGE-AREA WORK-AREA OUTPUT-MESSAGE-AREA 
CON11NU1TY-DA1A-AREA. 

GET-STATE-RECORD. 
CALL 'GET' USiriG STATE WL!i'U\-AREA STATE-NA;·jf-IN. 
IF SIATUS-C00E EOUAL 1 GO TO P~OCfSS-E~ROR. 

Figure 3-27. Sample COBOL Action Program ACTT (Part 2 of 3) 

• 

• 

• 



UP-8614 Rev. 1 

• 

• 

• 

8 l 2 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

BUILD-OUTPUT-MESSAGE. 
MOVE LINE-0 TO LINE-0-0uT. 
nOVE LlNE-1-~SG-1A 10 E1-0UT. 
MOVE LINE-0 TO CONTROL-1 CONTROL-2. 
~OVE SPACES 10 LlNE-3-0UT. 
nOVE CORRESPONDING WORK-AREA TO LINE-3-0UT. 
MOVE LINE-0 TO CONTROL-3 CONTROL-4. 
~OVE LINE-S-MSG-1A TO LINE-5-0UT. 

SAVE-CONllNUlTY-DATA. 

3-126a 
Update A 

MOVE CAPITAL OF WOR~-AREA TO CAPITAL OF CONTINUITY-DATA-AREA. 
TERM-~IIH-EXTE~NAL-SUCCESSOR. 

MOVE 'E' TO TERM[NATION-INDICATOR. 
MOVE 'ACT200' 10 SUCCESSOR-JD. 
CALL I R£iUR.N' • 

Pi=iOCESS-ERRCIR. 
MOVE LINE-0 TO LINE-0-0UT. 
MOVE LlNE-1-MSG-1B TO LINE-1-0UT. 
MOVE ERROR-TEXT-LENGTH TO TEXT-LENGTH OF 00TPUT-MESSAGE-AREA. 

TERnlNATE-NORMALLY. 
CALL 'RETURN' • 

Figure 3-27. Sample COBOL Action Program ACTT (Part 3 of 3) 
t 



• 

• 

• 



UP-8614 Rev. 1 

• 

• 

• 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

8 12 

IDENT!fICATION DIVISION. 
PROGRAM-ID. ACT2. 
ENVIRONnENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. UNIVAC-OS3. 
OBJECT-COMPUTER. UNivAC-OS3. 
DATA DIVISION. 
wORKlNG-SlORAGE SECTION. 
77 CITY PIC AC7J VALUE 'CITY'. 
01 LINE-1. 

02 DLE-1 
02 PCAC-1 
02 ROW-0-1 
02 COLUi'1N-0-1 
02 DLE-·2 
02 PCAC-2 
02 ROW-0-2 
02 COLU1'1N-0-2 
02 FILLER 

LINKAGE SECl ION. 

PIG X 
PIC X 
PIC X 
PIC X 
PIC X 
PIG X 
PIG X 
PIC X 
PIC XX 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 

=' 10'. 
='OS'. 
=' 00'. 
=' 00'. 
=' 10'. 
='OS'. 
='00'. 
=' 00'. 
SPACES. 

3-127 
Update A 

01 PROGRAn-INFORMATION-BLOCK. COPY PI874. 
02 STATUS-CODE PIG 9(4) COMP-4. 
02 DETAILED-STATUS-CODE PIC 9(4) COMP-4. 
02 RECORD-TYPE REDEFINES DETAILED-STATUS-CODE. 

02 
02 
02 
02 

02 
02 
02 
02 
02 
02 
02 
02 
02 

03 PREDICTED-RECORD-TYPE PIC X. 
03 DELIVERED-RECORD-TYPE PIC X. 
SUCCESSOR-IO PIG XL6l. 
TERMINATION-INDICATOR PIC X. 
LOCK-ROLLBACK-INDICATOR PIC X. 
TRANSACT !CtN-lD. 
03 YEAK 
03 TODAY 
03 HR-MIN-SEC 
DATA-DEF-REC-NAME 
DEFINED-FILE-NAME 
STANDARD-MSG-LINE-LENGTH 
STANDARD-MSG-NUMBER-LINES 
WOR~{-AREA-LENGTH 
CONTINUITY-DATA-INPUT-LENGTH 
CONTINUITY-DATA-OUTPUT-LENGTH 
WORK-AREA- INC 
CONTINUITY-DATA-AREA-INC 
02 SUCC~SS-UNIT-IO. 

03 TRANSACTION-DATE. 
04 YEAR 
04 nONTH 
04 TOOAY 

03 TIME-OF-DAY. 
04 HOUR 
04 MlNUTE 
04 SECOND 

03 UNIQUE-SUFFIX 

PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 
PIC 

9(4) COnP-4. 
9(4) C0i'1P-4. 
9(9) COMP-4. 
xcn. 
xcn. 
9(4) COMP-4. 
9(4) COMP-4. 
9C 4 J COl'IP-4. 
9C4l COMP-4. 
9(4) COMP-4. 
9(4) COMP-4. 
9(4) COMP-4. 

PIC 99. 
PIC 99. 
PIC 99. 

PIC 99. 
PlC 99. 
PIC 99. 
PIC 999. 

02 SOURCE-TERMINAL-CHARS. 
03 SOURCE-TER~INAL-TYPE PIC X. 
03 SOURC£-TERMINAL-nSG-LINE-LENGTH 
03 SOURCE-TERMINAL-MSG-NUMBER-LINES 

PIC 9C4J COMP-4. 
PIC 9(4) COl'IP-4. 

01 INPUT-nESSAGE-AREA. COPY IRA74. 
02 SOURCE-TERnINAL-lD 
02 DATE-TlME-SfAnP. 

03 YEAR 
03 TUOAY 
03 HR-fliN-SEC 

PIG XC4). 

PIC 9(4) COi1P-4. 
PIC 9C4J COMP-4 • 
PIC 9(9) COMP-4. 

Figure 3-28. Sample COBOL Action Program ACT2 (Part 1 of 2) 
+ 



t 

UP-8614 Rev. 1 

8 

01 

01 

12 

02 TEXT-L flW fH 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

02 AUXILJARY-uEV-10. 
03 FILLER 
03 ALiX-L!EV-NO 

02 FILLER. PIC .x • 
02 NO-Pf.JP ?IC xx. 
02 FILLER PIC xx. 
02 YES PIC xxx. 
WOR~~ -Af:;EA. 
02 CITIES PIC AC25l. 
02 CITY-POP PIC 9(7J. 
02 STATE PIC AC14l. 
OUTPUT-MESSAGE-AREA. COPY OnA74. 
02 DESTlNATION-TER~lNAL-lD 
02 SF::;-oi= TI ow:; 
02 FILLER 

PIC 

PIC 
PIC 

9(4) 

x. 
x. 

x ( 4). 
xc 2). 
XC 2). 
xc 4). 

cor1P-4. 

02 CONTINUOUS-OUTPUT-CODE 
02 TEXT-LENGTH 

PIC 
PIC 
PIC 
PIC 
PIC 9C4l co.1P-4. 

02 AUX[LIARY-OEVICE-IO. 
03 AUX-FUtiCT HIN 
03 Ali.t,-·DElJICE-NO 

(l2 E-1 PIC X( 10J. 
02 CAPITAL-POP PIC 9,999,999. 

01 CONTJNUlTY-DATA-A~EA. 
02 CAPITAL PIC A(2Sl. 

PIC X. 
PIC X. 

PROCEDURE DIVISION USING PROGRAM-INFOR~ATION-BLOCK 
INPUT-~ESSAGE-AREA WORK-AREA OUTPUT-MESSAGE-AREA 
CONTINUITY-DATA-AREA. 

CHECc;-R £Si" ON:-3£. 
lF YES EQUAL 'YES' GO TO GET-CITY-RECORD. 
MOVE ZERO TO TEXT-LENGTH OF OUTPUT-MESSAGE-AREA. 
GO 10 TERMINATE-NORMALLY. 

GfT-CI fY-RECOfW. 
CALL 'GET' uSlNG CITY W(IRk-AREA CAPITAL. 

8UIL0-0uTFUT-MESSAGE. 
FlOVE LlNE-1 TO E-1. 
MOVE CITY-POP TO CAPITAL-POP. 

TERnlNATE-NORFlALLY. 
CALL ' RETURN' • 

Figure 3-28. Sample COBOL Action Program ACT2 (Part 2 of 2) 

3.15.3. Continuous Output Example Using Delivery Notice Scheduling 

3-128 
Update A 

Figure 3-29 reproduces a compiler listing of a sample COBOL action program, PRINT, 
written to illustrate a number of points relating to the use of the continuous output option. 
The primary function of PRINT is to prepare three types of output messages by processing 
customer order information entered at the terminal against an indexed file, and to cause 
these messages to be listed as continuous output at the originating terminal. A parameter 
on the initial input message can cause the printing to be sent to a COP. The routine 
performing these functions uses delivery notice scheduling to determine whether output is 
to continue or error processing is to be invoked after delivery notice of each message is 

• 

• 

received from IMS 90. So long as the output continues successfully, PRINT terminates in • 
external succession, having named itself as successor to create the next output message 
to be printed. When end-of-file is reached, PRINT terminates normally, with an output 
message to the operator that printing is completed. 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-128a 
Update A 

If an unsuccessful delivery notice is received, PRINT does not terminate immediately but 
first reports an output error to the terminal operator and allows him to control further 
output, terminating in external succession to await his reaction. He may react by breaking 
off, resuming, or terminating the transaction normally. 

When it is first activated by action scheduling as the result of the terminal operator's 
initial keyin, PRINT expects to process an input message in the following form: 

PRINT t-f i le-name t-order-number init-terminal[COP] 

where: 

PRINT 
Is the transaction code that causes PRINT to be scheduled. 

t-file-name 
Is the name of the conventional file to be accessed. As stated, the file is an 
indexed file; PRINT expects to process a file named 'ORDRFIL' and validates the 
t-file-name keyed in (line 268, Figure 3-29) . 



• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-129 
Update A 

t - order - number 

Is an order number used as a key search argument in positioning the file for 
retrieval (line 272). 

in it-terminal 

COP 

Is a configured identification to the originating terminal, used in the switching of 
output error messages to the operator (line 355). 

Is the 3-character code input by the terminal operator to designate that what is 
to be output is to be printed on the COP. Notice its use in line 302. 

On initial activation, PRINT passes control to the BEGIN-TRANS routine, which initializes 
certain fields of the continuity data area and work area and validates the name of the file 
to be processed. BEGIN-TRANS positions the file for sequential processing and, retrieving 
a record, processes it and the input message. It forms a customer record, a product record, 
or a total record (according to the path that control follows) in the output message area; 
control then passes to the CREATE-CONTINUOUS-OUTPUT routine (line 301 ). 

Here, if the terminal operator has not keyed in COP to cause the output message to be 
directed to a communications output printer, the routine moves the hexadecimal value C3 
to the AUX-FUNCTION byte of the AUXILIARY-DEVICE-ID field of the OMA header (line 
303). This causes the output message to be written as continuous output on the screen of 
the primary device. Otherwise, line 304 moves the hexadecimal value F7 to this byte, to 
cause print-transparent continuous output on a COP, and line 305 moves a 1 to the AUX
DEVICE-NO byte of the AUXILIARY-DEVICE-ID field of the OMA header to specify the COP 
relative number as defined in the ICAM generation. Line 306 moves into the 
CONTINUOUS-OUTPUT-CODE field of the OMA header a 4-character value, developed 
during processing, that will identify this output message when received in the 5-byte input 
message that IMS 90 creates for the next activation of PRINT after attempting to deliver 
the message as specified. 

After specifying external succession (line 308) and moving its own program name into the 
SUCCESSOR-ID field of the PIB (line 309), PRINT terminates to await reactivation by action 
scheduling. 

On receiving the 5-byte input message from internal message control, action scheduling 
reactivates PRINT. On examining this input message, PRINT checks the first four bytes to 
ensure that it is processing the expected input (line 348) and then proceeds to verify that t 
the delivery attempt was successful. It does this at line 336 by comparing the fifth byte of 
the input message (DEL-NOTICE-STATUS) against the value 'A'. This value, which it has 
established for the constant SUCCESSFUL-DEL-NOTICE in a 77-level entry in the working
storage section (line 10), is the translated value for a successful delivery notice status 
(hexadecimal 81) reported to IMS 90 by ICAM. If delivery was unsuccessful, PRINT does 
not attempt to determine the reason but proceeds to send an error message to the 
terminal operator. If an initiating terminal is specified, error messages are switched to that 
terminal. On successful delivery, it resumes processing . 



UP-8614 Rev. 1 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
0001S 
00016 
00017 
00018 
00019 
00020 
00021 
0002:2 
00023 
00024 
0002S 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
0003S 
00036 
00037 
00038 
00039 
00040 
00041 
00042 
00043 
00044 
0004S 
00046 
00047 
00048 
00049 
oooso 
OOOS1 
00052 
OOOS3 
00054 
00055 
00056 
00057 
OOO::i8 
00059 
00060 
00061 
00062 
00063 

+ 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

I DENT IF !CAT I-ON DIVlSION. 
PROGRAM- IO. PRINT. 
ENVIRONl'lENT DIVISION. 
CONF !GURA T ION SECT ION. 
SOURCE-COMPUTER. LiNIVAC-OS3. 
OBJECT-COFlPUTER. UNIVAC-OS3. 
DATA DIVISION. 
UOfU< I NG-STORAGE SECTION. 
77 POS-GE PIC x VALUE , G'. 
77 SUCC£SS~UL-DEL-NOTIC£ PIC x VALUE =' C1'. 
01 TOTAL-POS. 

02 DIC£-TP PIC x VALUE =, 10'. 
02 FUNC-TP PIC x VALUE =' 04'. 
02 Y-TP PIC x VALUE =' 00'. 
02 X-TP PIC x VALUE =' 33'. 

01 HEADER-LINES. 
02 ORDER-LINE. 

03 HOME-POS-CLEAR. 
OS DICE-HPC PIC x VALUE =' 10'. 
05 FLINC-HPC PIC x VALUE = J 03'. 
OS Y-HPC PIC x VALUE =' 00'. 
OS X-HPC PIC x VALUE =' 00'. 

03 MIDDLE-COL-POS. 
OS DIC£-t'iCP PIC x VALUE =' 10,. 
OS FUNC-i'IC? PIC x VALUE =' 02'. 
OS Y-MCP PIC x VALUE =' 00'. 
OS x-nCP PIC x VALUE =' 37'. 

03 P-ORDER-HEAO PIC xc 10J VALUE 'ORDER 
03 P-NWER-NO PIC 9(7). 
03 NEWLINE-3. 

OS DICE-N3 PIC x VALUE =' 10'. 
OS FUt•C-N3 PIC x VALUE =' 04'. 
OS Y-N3 PIC x VALUE =' 02'. 
OS X-N3 PIC x VALUE =' 00'. 

02 i'IAIL-LINES. 
03 P-NAriE PIC XC20L 
03 NEWL I tJE-A. 

OS DIC£-N1A PIC x VALUE =' 10'. 
OS FUt~C-N 1A PiC x VALUE =' 04'. 
05 Y-N1A PIC x VALUE ='OO·'. 
05 X-N1A PIC x '.JALUE =' 00'. 

03 P-AOC•R PIC xc 15). 
03 NEWLINE-8. 

OS DIC£-N1B PIC x VALUE =' 10'. 
OS FUt~C-N 18 PIC x VALUE =' 04'. 
OS Y-N18 PIC x VALUE =' 00'. 
OS X-N\B PIC x VALUE =' 00'. 

03 P-CI TY PIC XC15J. 
03 P-ZIP PIC X( S). 
03 NEWLINE-2. 

OS DICE-N2 PIC x VALUE =' 10' • 
05 FUNC-N:2 PIC x VALUE =' 04'. 
OS Y-N2 PIC x VALUE =' 01' • 
OS x-~a PIC x VALUE =' 00'. 

02 HEADING-LINE. 
03 PRQ(;LJC T-HEADING PIC )(( 19 j 

VALUE ' PRODUCT 
03 UN[T-COST-HEAOING PIC X(11) 

1 .. .iALUE 'UNIT-COST 
03 Ar•Our-;T-HEA0 ING PIC XC8J 

VALLIE 'A110UNT 
03 SUE TOTAL-HEADING PIC X(10J 

\iALUE 'SUBTOTAL 

n 

Figure 3-29. Sample COBOL Action Program Performing Continuous Output (Part 1 of 7) 

3-130 
Update A 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

03 SPACING 
03 TOTAL-HE~DING 
03 NfWLir<E-C. 

OS DICE-N1C 
OS F'UNC-N1C 
OS r-NiC 
05 :X:-N~C 

EHFWR-POSl 1 IOtl. 
03 DICt:-EP 
03 FtlNC-EP 
03 Y-EP 
03 X-EP 

PIC 
PIC 

PJC 
PIC 
PIC 
PIC 

PIC 
PIC 
PIC 
PIC 

x C:3 J 
X(8) 

x 
x 
x 
x 
x 
x 
x 
x 

1,1ALUE J 

VALUE 

VALUE 
VALUE 
'JALUE 
VALUE 

'JALUE 
'v'ALUE 
VALUE 
1H1LUE 

. 
I 'TOTAL 

=, ·iO I • 

= ,• 04'. 
= J 00'. 
=, 00'. 

=, ·10, • 
:::'CH'. 
=I 00' • 
=' 00'. 

3-131 
Update A 

L!NKAGf SECTION. 

00064 
00065 
0006.~ 

00067 
00068 
00069 
00070 
0007 ·1 01 
00072. 
00073 
00(;/ 4 

00075 
00076 
00077 
00078 
00079 
0008 1.) 

0008 i 
oooa·2 
00083 
000~34 
0(!085 
()•:)086 
0f)087 
0008t:l 
00089 
00(.191 . .) 

01 PROGRAFl-lNFOR~A110N-8LOCK. ccn:.. r Pl874. 

00091 
OOO'?·c: 
00093 
00094 
00095 
s:j()(j9.~ 

(10097 
OOO'?c: 
00099 
00'\00 
00 iO ·i 
0011)2 
00i03 
00104 
OOiOS 
00'.06 
00107 
00'.08 
00109 
00-.10 
001i1 
oo-. ·i2 
00 '113 0 i 
ooi: H 
00 ·i 15 
00116 
001 '17 
00 ·i 18 
00119 
00 -.20 
00121 
00-.22 
00(23 
()0'.24 
00125 

02 STAT~S-COOE PIC 9(4) cor:P-4. 
02 DET~lLED-STATUS-CODE PIC 9(4) COMP-4. 
02 RECORG-TYPE REDEFINES OETAfLED-STATUS-COOE. 

03 PREDICTED-RECORD-TYPE PlC X. 
03 DELIVERED-RECO~D-TYPE 

02 SuCCE~::;;c1R-ID 

02 TER~[NATIDN-INDICATOR 
02 LOCK-ROLLBACK-INDICATOR 

02 
02 

02 
02 
02 
02 
02 
02 

0:3 YE.;~R 

03 TCOAt 
0:3 HR.-illN-·::JEC 
DATA-DEF-REC-NAME 
DEFINED-FILE-NAME 
STANDARD-~SG-LINE-LENGTH 
STANDARD-nSG-NUHBER-LlNES 
WGR~-AREA-LENGTH 
CONTlNUlTY-DATA-lNPUT-LENGTH 
CONTINUITY-DATA-OUTPUT-LENGTH 
wORf\-AR.E1:i- l NC 
CONTINUITY-DATA-AREA-INC 
02 SuCCESS-UNll-lD. 

03 TRANSACTION-DATE. 
04 1·u1R 
04 r-,ornH 
O.:+ 1CJDAY 

03 T Ir1£-·!Jf-OAY. 
(.i4 HOUR 
04 f.[NUTE 
04 SECOND 

03 UNiQuE-SuFFIX 
02 SOURCE-TER~lNAL-CHARS. 

03 SOURCE-TERMINAL-TYPE 

Pf.C x. 
PIC X(6). 

PIC x. 
PIC x. 

PIC 9 c 4 J C011P-4. 
PIC 9(4) CO!"iP-4. 
PIC 9(9) co;·IP-4. 
PIC x1JJ. 
PIC .x~C7). 

PIC 9( 4 j COP~P-·4. 
PIC 9(4j CDilP-4. 
PIC 9(4) COr:P-4. 
PIC 9(4) C0i'1P-4. 
PIC 9(4] COr.P-4. 
PlC 9(4j CDi'1P-4. 
PIC 9(4) COnP-4. 

PIC 99. 
PIC 99. 
P1C 99. 

P1C 99. 
PIC 99. 
PlC 99. 
PIC 9'i9. 

PIC x. 
03 SOURCE-TERnlNAL-MSG-LlNE-LENGTH 
03 SOuFCE-TERM[NAL-GSG-NU~BER-LINES 

PIC 
PIC 

9(4j CCll'1P-4. 
9(4) COnP-4. 

lNPUT-~ESSAGE-AREA. COPY lMA74. 
02 SOURCE-TERMINAL-IO 
02 DATE-1 UiE-STAi1P. 

03 YEAF 
03 TODAY 
03 HR-MIN-SEC 

02 TEXT-LEt~GTH 
02 AUXILIARY-DEV-IO. 

03 FiLLER 
03 AUX-OEV-NO 

02 TR.ANS-TEXT. 
OS TRANS·-COOE 
05 FILLER 

PIC XCSJ. 
PIC X. 

PIC X(4J. 

PIC 9(4) COnP-4. 
PIC 9C4l COMP-4. 
PIC 9(9) COMF-4. 
PIC 9C4l COMP-4. 

PIC X. 
PIC X. 

Figure 3-29. Sample COBOL Action Program Performing Continuous Output (Part 2 of 7) 
+ 



UP-8614 Rev. 1 

00'.26 
00127 
00128 
00129 
OCH30 
0013'1 
0013'2 
00133 
00134 
0013S 
00136 
00137 
0013'1 
00139 
00140 
0014·1 
00'.42 
00143 
00'.44 
00145 
00146 
00-147 
00'.48 
00149 
0015(.1 
00151 
00'.5:2 
00153 
00~54 
00155 
001,56 
00157 
oo;,s8 
(i0159 
00'\6(.\ 
0016 j 
00~62 
00 fo3 
00'\64 
00165 
00'\66 
00167 
00168 
00169 
00-FU 
00171 
00172 
00173 
00'./4 
00i75 
OOQ6 
00177 
00 ',78 
00 \I 9 
OO ·rnO 
0018 j 
oo rn·2 
(.10 '83 
00'184 
(i() 185 
00 ·\86 

t 

01 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

OS T-FILE-NAME PIC XC7l. 
OS T-DRDER-NO PIC 9C7l. 
OS FILLER PIC XC1J. 
OS lNIT-TERnlNAL PIC XC4l. 
OS FiLLER PIC XC1J. 
OS AT-COP PlC XC3l. 

02 ACTION-TEXT REDEFINES TRANS-TEXT. 
OS con~AND-CODE PIC XCSJ. 
OS FiLLER PIC XC2l. 
OS A-ORDER-NO PlC 9C7J. 
OS FILLER PIC XC1Sl. 

02 DEL-NOTICE-TEXT REDEFINES TRANS-TEXT. 
OS DEL-NOfICE-COOE PIC XC4J. 
OS DEL-NOTICE-STATUS PIC X. 
OS FILLER PIC XC24J. 

wOFu:. -AREA. 
03 RECORD-AREA. 

05 RECOr\D-t(E. Y. 
07 K-ORDER-NO PIC S9C7l COMP-3. 
07 K-ORDER-ENTRY PIC 8999 COMP-3. 

OS FILLER PIC XC74J. 
03 ERROR-lND PIC X. 
OUTPUT-MESSAGE-AREA. COPY O~A74. 
02 DESTlNATION-TERnlNAL-10 
02 SFS-Of: r I ON'.3 
02 FlLLER 
02 CONTINUOuS-OUTP~T-COOE 
02 TEXT-LErWTH 

PIC 
PIC 
f' IC 
PIC 
PIC 

x ( 4). 
XC 2 J. 
x ( 2 J. 
x ( 4 j. 
9(4) COi1P-4. 

02 AUX[LIARY-DEVICE-ID. 
03 AUX-FUNCTION 
08 AUX-DEVICE-NO 

PIC X. 
PIC X. 

03 i1ESSAC;E-1. 
05 FILLER 
OS 11·-L!r\DER 
OS FILLEF 
(!S i'l-r~AdE 

OS FILLER 
OS ;·,1-ADDR 
OS FILLER 
OS 11·-CI TY 
05 r;-ZIP 
OS Fl LLE.R 

03 MESSAGE-2 REDEFINES 
Cl5 P-t: FUHW 
OS CCS r 
OS FILLER 
OS NU!""i 
OS FILLER 
05 P-SU5T0i'AL 
05 i~EXTLlNE-2 
OS FILLER 

03 dESSAGE-3 REDEFINES 
05 CuRSO~:-P0:3 
C•S il-Hn AL 
OS VALIDITY-CHA~ 

OS FILLER 

PIC X(18J. 
PlC 9C7l. 
PIC XC4J. 
P IC XC 20J. 
PIC XC4J. 
PIC XC 1SJ. 
PIC XC4J. 
PIC x.C 1Sl. 
PIC X.(5). 

PICXC114J. 
r'iE~;SAGE-1 . 

PIC XC17J. 
PIC $$,$H.99. 
PIC XL2L 
PIC ZZZ. 
P1C x;(2). 

PIC li,$5$,5$1.99. 
PIC '.<C4J. 
PIC XC1S6J. 

."'IES:;;..c,E-1. 
PIC XC4J. 
PIC 55,555,$15.99. 
P IC .::<. 

03 nESSAGf-4 REDEFINES AESSAGE-1. 
OS POSITIDN-4 PIC X(4). 
OS HEA0fR-4 PIC XC42l. 
OS ORDER-4 PIC 9C7J. 
OS FILLER PIC XL153J. 

Figure 3-29. Sample COBOL Action Program Performing Continuous Output (Part 3 of 7) 

3-132 
Update A 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 

00·187 
00188 
00189 
00 ·~9·) 
00 i 9 ·i 
oo ~·;·c: 
0(1 193 
00~94 

00 'i'.i':::i 
(it) ·":9t~ 

001·:;·7 
00 ~ 'i(~ 
(iO i'7'9 
00?0G 
C•OC'O 1 
002(12. 
00203 
00~~·:).:, 

0•:)20S 
0(>20,~ 

00207 
00208 
:)0209 
0021() 
lji')2 1 ·1 
0021:2 
00213 
00214 
002,S 
002-16 
00217 
00218 
00219 
00220 
00221 
0022£ 
00223 
00224 
0022S 
00226 
00227 
0022~ 
00229 
00230 
00231 
0023£ 
00233 
00234 
oons 
00236 
00237 
0023\:l 
00239 
00240 
00241 
00242 
00243 
00244 
0024S 
00246 
00247 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

03 nESSAGE-S REDEFINES ~ESSAGE-,. 
OS PG::;;:rrnri·-S PIC xc ). 
OS ~EADER-5 PIC XC 9J. 
OS TER.1;-r;Af1E PIC Xt: L 
OS FILLER. P IC XC 179). 

03 MESS~GE-6 REDEFINES MESSAGE-1. 
OS POSlllON-6 PlC X[4J. 
OS B~EA~-ouTFUT PIC XC53J. 

03 GESS~GE-7 REDEFINES r:IES'.3P1G£- ·i. 
OS PC.1SI 'T 1CJN-7 PE: XC4J. 
OS RiSUGE-ERROR-OuTPUT 
() ::. F :: L :_fii, 

PIC XL24J. 
PlC X( 1/8). 

03 GESSqGf-8 REDEFINES ~ESSAGE-1. 
OS POSillON-8 PlC XC4l. 
OS END-OUTPUT PIC XC23l. 
(;S FlLLE:~~. PIC X.(·i/'7'). 

03 nESSAGE-9 REOEFlNES nESSAGE-1. 
OS POSlllON-9 PIC X(4J. 
05 INPUT-ERROR-OUTPUT PIC XC32J. 

03 ~ESSAGE-10 R~DEFINES 
OS f" OE 1 TI CiN- W 
05 FILE-ERROR-OUTPUT 
OS F lL.LER 

01 CONTINUITY-DATA-AREA. 
03 CUSTOMER-RECORD. 

05 C-KEY 
OS C-ID 
05 C-NAriE 
OS C-ADDR 
05 C-CITY 
OS C-ZlP 
OS C-TOTAL 
OS FILLER 

03 PROOuCf-RECORD. 
OS P-t(EY 
05 PrtOOUCf 
OS UNIT-COST 
05 Ar10UNT 
OS SUB10TAL 
05 FILLER 

PIC X[ 170). 
r;E:3:3Ai3E-1. 

PIC :((4J. 
PIC XC42). 
PIC X( 160). 

PIC XC6J. 
PIC XCS). 
PIC XC20). 
PIC XC 1Sl. 
PIC XC15J. 
PIC XCSJ. 
PIC S9(7)W9 

PIC XC-14). 

PIC XC6). 
PIC XC17J. 
PIC S9C3)V99 
PIC s·n·i 
PIC S9C7JV99 

PIC XC47J. 

COMF-3. 

COMP-3. 
COMP-3. 
COMP-3. 

PIC 59(7) COi'IP-3. 

3-133 
Update A 

03 CURRENT-ORDER-NO 
03 CURRENT-CONT-CODE 
03 CURRENT-ENTRY-NO 
03 CURRENT-TO r AL 

REDEFINES CURRENT-ORDER-NO 
PIC 5999 COi'IP-3. 
PIC S9C7JV99 COMP-3. 
PIC XC4J. 

PIC XC4J. 

03 INlT-TERi'I 
03 DESf-TEKM 
03 COP-OUTPUT 
03 F ILE-t(EY. 

OS FILE-t(EY-1 
05 F' ILE-~~EY-2 

03 FILE-NAME 
03 INPUT-TOTAL 
03 BREM(-i10DE 
03 PidNT-bEST 

PROCEDURE DIVISION USING 

PIC XC4J. 
PIC XC3J. 

PIC S9C7J COMP-3. 
PIC S9C3J COMP-3. 
PIC XC7J. 

PIC S9C7lV99 COMP-3. 
PIC X. 
PIC XC4J. 

PROGRAM-I~FORMATION-BLUCK 
INPUT-MESSAGE-AREA 
WC!k~{-AREA 

OUTPUT-MESSAGE-AREA 
CONTINUITY-DATA-AREA. 

Figure 3-29. Sample COBOL Action Program Performing Continuous Output (Part 4 of 7) + 



UP-8614 Rev. 1 

00248 
00249 
00250 
00251 
00252 
00253 
00254 
00255 
00256 
00257 
00258 
00259 
00260 
00261 
00262 
00263 
00'264 
00265 
00266 
00267 
00268 
00269 
00270 
00271 
00272 
00273 
00274 
00275 
00276 
00277 
00278 
00279 
00280 
00281 
00282 
00283 
00284 
00285 
0021:<6 
00287 
0028(j 
00289 
0(>29\J 
0029·1 
002'7'2 
00293 
00294 
00295 
002-i6 
002~'7 
0(>2"t8 
002'?9 
003()0 
0030~ 
00302 
00303 
00304 
00305 
00306 
00307 
00308 
00309 
00310 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

EXAriINE-INPUT. 
IF TRANS-CODE EQUAL 10 'PRINT' GO 10 BEGIN-TRANS. 
IF COFlMAND-COOE EQUAL TO 'END ' GO TO END-TRANS. 
lF COMMAND-CODE EQUAL 10 'BREAK' GO TO BREAK-TRANS. 
IF COMMAND-CODE EQUAL TO 'RESUM' GO TO RESUME-TRANS. 
IF DEL-NOTICE-CODE EQUAL TO 'END ' GO TO END-OF-FILE. 
IF DEL-NOfiCE-COOE EOUAL TO CURRENT-CONT-CODE 

GO 10 DEL-NOTICE. 
MOVE 'INVALID DELIVERY NOTICE CODE 

TO INPUT-ERROR-OUTPUT. 
GO TO DEL-NOTICE-ERROR. 

BEGIN-TRANS. 
~OVE 0 TO CURRENT-ORDER-NO 
nOVE 0 TO CURRENT-ENT~Y-NO 
MOVE 0 TO FILE-KEY-~ FILE-KEY-2. 
nOVE 0 TO CURRENT-TOTAL 
MOVE 0 TO B~EAK-nOOE 
~OVE SPACES iO INlT-TERM 
MOVE SPACES TO DEST-TERM 
MOVE AT-COP TO COP-OUTPUT. 
IF T-FILE-NAnE NOT EQUAL TO 'ORDRFIL' GO TO INPUT-ERROR. 
MOVE lNIT-TERnlNAL 10 lNIT-TERi1. 
MOV~ sou~CE-TERnINAL-IO TO PRINT-DEST. 
IF T-ORDER-NO NOT EQUAL TO LOU-VALUES AND SPACES 

hOVE T-ORDER-NO TO FILE-KEY-1. 
l!O'v'E T-F 1 LE ·-t,Ai iE T 0 FI LE-NA(1E. 

POSITION-FILE. 
CALL 'SETL' USING FILE-~Ai1E FOS-GE FILE-KEY. 
IF STATUS-CGOE EQUAL TO 0 GO TO READ-RECORD. 
nLJi-,iE 'END ; 10 (:;_IRRErlT -CC1;1T-CCJDE. 
GO TO TOTAL-PROC. 

R.EAD-R.ECC1RD. 
CALL 'GET' USING FILE-NAME RECORD-AREA. 
lF STATUS-CODE E~UAL TO 1 GO 10 FILE-~RROR. 
IF STATUS-C00E GREATER THAN 2 GO TO FILE-ERROR. 
IF STATUS-CODE EOU~L TO 2 GO TO END-OF-FILE. 
IF k-ORDER-ENTRY NOT EQUAL TO 0 GO TO PROOUCT-PROC. 
~OVE RECORD-AREA TO CUSTOMER-RECORD. 
IF CUR~ENT-TOTAL NOf EOUAL TO 0 GO TO TOTAL-P~OC. 

CUS'TOi1t:R-PROC. 
MOVE C-TOfAL TO INP~T-fOTAL. 
nOVE K-ORDER-NO 'TO CURRENT-O~DER-~O. 
MOVE K-ORDER-NO TO FILE-KEY-1. 
1'10•.)E ~'.-CIR.DER-t::tHRY 10 curi,RD!T-t:.r..JT R. Y-NO. 
MOVE K-OROER-ENTRY TO FILE-KEY-2. 
ADD 1 10 FILE-KEY-2. 
MOVE HEADER-LINES TO MESSAGE-1. 
~OVE CURRENT-ORDER-NO TO ~-O~DER. 
MOVE C-NA~E TO M-NAME. 
~OVE C-ADDR 10 0-ADDR. 
MOVE C-CifY TO h-CifY. 
nOVE C-ZlP 10 ~-2JP. 
MOVE 163 TO TEXT-LE~GfH IN OUTPUT-MESSAGE-AREA. 

CREATE-CONllNUOUS-OUTPUT. 
IF COP-OUTF0T NOf EJUAL TO 'COF' 

~OVE •c· 10 AUX-~UNClION 
ELSE MOvE '7• TO AuX-FU~CTION 

nOVE i 10 AUX-DEVICE-NO. 
MOVE CUR~ENT-CONT-COOE TO CONTINUOUS-OUTPUT-CODE. 

EXTERNAL-TER~]NAllON. 

f'iOVE 'E' ro fERnir:ATIO••-IN(!ICATOR. 
~OVE 'PRlNTO' TO SUCCESSOR-ID. 
CALL 'RETURN'. 

Figure 3-29. Sample COBOL Action Program Performing Continuous Output (Part 5 of 7) 

3-134 
Update A 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 

00311 
00312 
00313 
00314 
00315 
00316 
00317 
00318 
00319 
00320 
. 00321 
00322 
00323 
00324 
00325 
00326 
00327 
00328 
00329 
00330 
00331 
00332 
00333 
00334 
00335 
00336 
00337 
00338 
00339 
00340 
00341 
00342 
00343 
00344 
00345 
00346 
00347 
00348 
00349 
00350 
00351 
00352 
00353 
00354 
00355 
00356 
00357 
00358 
00359 
00360 
00361 
0036"2 
00363 
00364 
00365 
00366 
00367 
00368 
00369 
00370 
00371 

PRODUCT-PROC. 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

MOVE K-ORDER-ENTRY TO CURRENT-ENTRY-NO. 
MOVE K-ORDER-ENTRY 10 FILE-KEY-2. 
ADD 1 TO FILE-KEY-2. 
MOVE RECORD-AREA TO PRO~UCT-RECORD. 
ADD SUBTOTAL TO CURRENT-TOTAL. 
nOVE PRODUCT TO P-BRAND. 
~OVE UNIT-COST TO COST. 
MOVE AMOUNT TO NUM. 
MOVE SUBTOTAL TO P-SuBTOTAL. 
nOVE NEWLINE-A TO NEXTLlNE-2 • 
MOVE CURRENT-CONT-CODE TO CONTINUOUS-OUTPUT-CODE. 
ROVE 54 TO TEXT-LENGTH IN OUTPUT-MESSAGE-AREA. 
GO TO CREATE-CONTINUOUS-OUTPUT. 

TOTAL-PROC. 

3-135 
Update A 

IF INPUT-TOTAL EOUAL TO 0 MOVE CURRENT-TOTAL TO INPUT-TOTAL. 
nDVE SPACE 10 VALlDlTY-CHAR. 
MOVE INPuT-TOTAL TO M-TOfAL. 
IF INPUT-TOTAL NOT EQUAL 10 CURRENT-TOTAL 

MOVE '*' TO VALIDITY-CHAR. 
nOVE TOTAL-POS 10 CURSOR-POS. 
MOVE 22 TO TEXT-LENGTH IN OUTPUT-RESSAGE-AREA. 
AOVE 0 TO CURRENT-TOTAL. 
GO TO CREATE-CONTINUOUS-OUTPUT. 

DEL-NOTICE. 
IF DEL-NOTICE-STATUS EQUAL TO SUCCESSFUL-DEL-NOTICE 

GO TO POSITION-FILE. 
OUTPUT-ERROR. 

nOVE ERROR-POSITION TO POSlTION-4. 
MOVE 'OUTPUT ERROR WHILE TRYING TO PRINT ORDERU ' TO 

HEADER-4. 
MOVE CURRENT-ORDER-NO TO ORDER-4. 
nOVE 57 TO TEXT-LENGTH IN OUTPUT-MESSAGE-AREA. 

DESTINATION-DETERMINATION. 
IF INIT-TERM NOT EQUAL TO LOW-VALUES AND SPACES AND 

SOURCE-TERMINAL-IO 
GO TO SWITCH-ERROR-MSG. 

MOVE 1 TO BREAK-MOOE. 
IF ERROR-IND EQUAL TO LOW-VALUE GO TO EXTERNAL-TERnINATION. 
IF ERROR-IND EQUAL TO 1 GO TO NOR~AL-TERMINATION. 

ABNORMAL-TERMINATION. 
MOVE 'S' TO TER~INATION-!NDICATOR. 
CALL 'RETURN' • 

SWITCH-£RrtOR-MSG. 
MOVE INIT-TER~ TO DESTINATION-TERMINAL-ID. 
CALL 'SEND' USING OUTPUT-MESSAGE-AREA. 
IF STATUS-CODE NOT EQUAL TO 0 GO 10 ABNORMAL-TERnINAlION. 

CREATE-NULL-MSG. 
nOVE LOW-VALUES 10 DESTINATION-TERMINAL-ID. 
MOVE NEWLINE-A TO POSifION-4. 
nOVE 8 10 TEXT-LENGTH JN OUTPUT-MESSAGE-AREA. 

NORMAL-TERMINATION. 
~OVE 'N' 10 TERMINATION-INDICATOR. 
CALL 'RETURN'. 

END-OF-FILE. 
MOVE 1 TO ERROR-IND. 
MOVE ERRDR-POSllION 10 POSllION-5. 
MOVE 'PRINT CO~PLETED AT ' TO HEADER-5. 
MOVE PRlNT-DEST TO TER~-NA~E. 
MOVE 31 TO TEXT-LENGTH IN OUTPUT-nESSAGE-AREA. 
GO TO DESTINA1ION-DETER~1NATION. 

Figure 3-29. Sample COBOL Action Program Performing Continuous Output (Part 6 of 7) 
t 



UP-8614 Rev. 1 

00372 
00373 
00374 
00375 
00376 
00377 
00378 
00379 
00380 
00381 
0038"2 
00383 
00384 
00385 
00386 
00387 
00388 
00389 
00390 
00391 
003'7'2 
00393 
00394 
00395 
003% 
00397 
00398 
003;;;·9 
00400 
00401 
00402 
00403 
00404 
00405 
00406 
00407 
00408 
00409 
00410 
00411 

BREAt\-TR.ANS. 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

MOVE 1 10 BREAK-~ODE. 

3-136 
Update A 

MOVE 'BREAK ENFORCED - RESunE REQUIRED TO CONTINUE PRINTING' 
TO BREAK-OUTPUT. 

MOVE 61 TO TEXT-LENGTH IN OUTPUT-MESSAGE-AREA. 
GO 10 EXTERNAL-TERnlNATION. 

RESUME-TRAN:3. 
IF BREAK-~ODE ~~UAL TO 0 GO TO RESUME-ERROR. 
MOVE 0 TO BREAK-nOOE. 
IF A-ORDER-NO E~UAL TO LOW-VALUES OR SPACES 

GO TO POSITION-FILE. 
~OVE A-ORDER-NO 10 FILE-~EY-1. 
MOVE 0 TO FILE-kEY-2. 
nOVE 0 10 CURRENT-TOTAL. 
GO TO POSITIO~-FILE. 

RESUi'1E-Er'.ROR. 
MOVt ERROR-POSITION TO POSifION-7. 
nOVE 'RESUME INVALID - 1GNORED' 10 RESUME-ER~OR-OUTPUT. 
MOVE 32 TO TEXT-LENGTH IN 0UTP0T-hESSAGE-AREA. 
GO 10 NORnAL-TERnlNATION. 

END-TRAt6. 
nOVE ERROR-POSITION 10 POSllION-8. 
MOVE 'PRINT T~ANSACTION ENDED' TO END-OUTPUT. 
~OVE 31 TO TEXT-LE~GTH IN OUTPUT-MESSAGE-AREA. 
GO TO NOR~AL-TERnfNATIGN. 

INPUT-ERROR. 
MOVE 'INPUT IN ERROR - PRINT NOT BEGUN' 

10 JNPUT-ERROR-OUTPUT. 
DEL-NOTICE-ERROR. 

NOVE 2 10 ER~DR-IND. 
MOVE ERROR-POSITION TO POSITION-9. 
nOVE 40 10 TEXT-L~NGTH IN OUTPUT-MESSAGE-AREA. 
GO TO DESTINATION-DETER~[NATION. 

FILE-ERROR. 
MOVE 2 TO ERROR-IND. 
nOVE ERROR-POSITION 10 POSlTlON-10. 
MOVE 'FILE ACCESS ERRO~ - TRANSACTION TERM[NATED' 

10 FILE-ERROR-OUTPUT. 
MOVE SO TO TEXT-LENGTH IN OUTPUT-MESSAGE-AREA. 
GO TO DES11tiATION-DETERil1NATION. 

Figure 3-29. Sample COBOL Action Program Performing Continuous Output (Part 7 of 7) 

• 

• 

• 



• 
UP-8614 Rev. 1 SPERRY UNIVAC OS/3 

IMS 90 APPLICATIONS 
3-137 
Update A 

PRINT terminates in external succession after output to the operator of a message 
informing him of unsuccessful delivery of the last continuous output message (from line 
349). It expects him to enter either the command 'RESUM' (line 252) or the command 
'END' (line 250) and is prepared to process one of these as its next reactivation. If he 
enters the command 'END' (line 396), the program terminates with normal succession. If 
he enters the command 'RESUM', the program allows him to continue printing from where 
he left off, or from an earlier order number specified as an optional parameter of the 
'RESUM' command (line 135). 

PRINT voluntarily terminates abnormally, with a SNAP dump, whenever: 

• it receives an unexpected input message on activation (line 258); 

• an attempt to access some file other than 'ORDRFIL' (line 268) after having output a 
message to the operator (line 397); 

• an unsuccessful return has been made to the STATUS-CODE field of the PIB after 
issuing the GET function to ORDRFIL (lines 275, 280) - again, after having notified 
the operator (line 405); or 

• any of its error or warning messages switched tot.he terminal operator have not been 
successfully sent (line 357). 

• 3.15 .4. Output-for-Input Queueing Example 

• 

Figure 3-30 reproduces a compiler listing of a sample COBOL action program, BEGIN1, 
that illustrates a method of directing a print transaction using continuous output to be 
initiated at another terminal, using output-for-input queueing. BEGIN1 also provides for 
notifying the operator of the originating terminal whether the print transaction has been 
successfully initiated at its destination. 

When BEGIN1 is activated at the originating terminal, it expects an input message in the 
following format (lines 61-65): 

BEGIN dest-terminal text 

where: 

BEGIN 
Is the 5-character transaction code entered by the terminal operator to activate 
BEGIN1 (specified to the configurator in the TRANSACT section). 

dest-terminal 
Is the 4-character terminal-id of the destination terminal, at which the 
continuous output print transaction is to be initiated. (This must have been 
assigned in the ICAM network definition.) 

t 



UP-8614 Rev. 1 

text 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-138 
Update A 

Is the alphanumeric text input by the originating terminal operator. This text is 
the input message expected by the print transaction that is to perform 
continuous output at the destination terminal and must begin with the 
transaction code that will cause scheduling to initiate it. 

On activation of BEGIN1 the MOVE-MESSAGE procedure forms an output message to be 
queued as input for the destination terminal: 

1. Line 94 places the dest-terminal input in the OMA header. 

2. Line 95 specifies the length of the output message, including four bytes for the TEXT
LENGTH and AUXILIARY-DEVICE-ID fields. 

3. Line 97 sets the AUXILIARY-FUNCTION field of the OMA header to the value (X'C9') 
that directs IMS 90 to queue the output message as input for the destination terminal 
(3.10.2). 

4. Line 99 transmits the explicit output message to the destination terminal via the 
t SEND function. 

If there are no errors encountered by IMS 90 in executing the SEND function, the operator 
of the originating terminal receives a message indicating that the print transaction has 
been successfully queued at the destination terminal: 

1. Lines 101 and 102 provide the text of the message output for the originating 
operator. 

2. Line 106 sets the DESTINATION-TERMINAL-ID field of the OMA header to binary 0 
and thus ensures that this message is output at the originating terminal (assumed to 
be a UNISCOPE device). 

3. Line 107 ensures that this message is output on the UNISCOPE screen instead of on 
the COP. 

BEGIN1 terminates normally, without succession. The originating terminal is now free for 
other interactive use. 

On the other hand, if IMS 90 encounters an error in queueing the message output by 
BEGIN1 as input to the destination terminal, the ERROR-PROC procedure formats an error 
message for output to the originating operator, and BEGIN1 terminates normally (lines 100 

~ and 110-115). The output message is dequeued. The operator, depending on the nature of 
the error, may reenter the original input message. · 

Although the text of the message output to the originating terminal on successful return 
~ from the SEND function (line 102) states that the transaction has begun at the destination 

terminal, this may not be true. All that has actually occurred is that the output message 

• 

• 

has been successfully queued as input from the destination terminal. If the transaction •. 
code it contains is invalid, however, or some other error intervenes, the print transaction 
does not begin. Such occurrences are not reported to the originating action program by 
IMS 90, but to the destination terminal. 



• 

• 

• 

UP-8614 Rev. 1 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
000'15 
00016 
000'17 
00018 
00019 
00020 
00021 
00022 
0002:3 
00024 
0002S 
00026 
00027 
00028 
0002'-? 
00030 
00031 
00032 
00033 
00034 
0003S 
00036 
00037 
00038 
00039 
00040 
0004'1 
00042 
00043 
00044 
00045 
00046 
00047 
00048 
00049 
00050 
00051 
00052 
00053 
00054 
oooss 
00056 
00057 
00058 
00059 
00060 
0006'\ 
00062 
00063 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

IDENTIFICATION DIVISION. 
PROGRAM-ID. BEGIN1. 
ENVIRONMENT DIVISION. 
CONFIGURA1ION SEC1ION. 
SOUKCE-COMPUTER. UN[VAC-OS3. 
OBJECT-COMPUTER. UNIVAC-053. 
DATA DIVISION. 
WORKING-SlORAGE SECllON. 
01 DICE-S£fJ. 

02 DICE-CODE 
02 FUNC-COOE 
02 Y-COORD 
02 X-·COORD 

LINKAGE SEClION. 
01 PROGRAn-INFORFlATION-BLOCK. 

PIC 
PIC 
PIC 
PIC 

coi=·y 

x 
x 
x 
x 
PI674. 

VALUE 
VALUE 
VALUE 
VALUE 

: I 10; • 
=' 01'. 
=' OC'. 
=' 00'. 

3-139 
Update A 

02 STATUS-CODE PIG 9C4l COMP-4. 
02 DETAILED-STATUS-CODE PIC 9(4) CO~P-4. 
02 RECORD-TYPE REDEFINES DE1AILED-STATUS-CODE. 

03 PREDICTED-RECORD-TYPE 
03 DELIVERED-RECORD-TYPE 

02 SUCCESSOR-IO 
02 TERnINA1ION-INDICA10R 
02 LOC~-ROLLBACK-INDICATOR 
02 TRANSAC110N-1D. 

03 YEAf\ 
03 TODAY 
03 HR-f.LN-SEC 

02 DATA-DEF-RE.C-NA11E 
02 DEFINED-FILE-NAME 
02 STANDARD-nSG-LlNE-LENGTH 
02 STANDARD-MSG-NUMBER-LINES 
02 WORK-AREA-LENGTH 
02 CONTINUITY-DATA-INPUT-LENGfH 
02 CONTINUITY-DATA-OUTPUT-LENGTH 
02 WORk-AREA-INC 
02 CONTINUITY-DATA-AREA-INC 

02 SUCCESS-UNIT-ID. 
03 TRANSACTION-DATE. 

04 Y£Ai\ 
04 i'10NTH 
04 TOOAi' 

03 T H"iE -CIF -DAY. 
04 HOUR 
04 i'J]NUTE 
04 S£C0f1[! 

03 UNIQUE-SUFFIX 
02 SOURCE-TERhINAL-CHARS. 

03 SOURCE-TERnl~AL-TYPE 
03 SOURCE-TERM[NAL-MSG-LINE-LENGTH 
03 SOURCE-TERnlNAL-nSG-NU~BER-LINES 

01 INPUT-MESSAGE-AREA. COPY If'jA74. 

PIC x. 
PIC x. 
PIC XC6J. 
PIC x. 
PIC x. 
PIC 9(4) 
PIC 9(4) 
PIC 9(9) 
PIC X( 7). 
PIC XL ll. 
PIC 9(4) 
PIC 9(4) 
PIC 9(4) 
PIC 9(4) 
PIC 9(4) 
PIC 9(4J 
PIC 9(4) 

PIC 99. 
PlC 99. 
PIC 99. 

PIC 99. 
PlC 99. 
PIC 99. 
PlC 999. 

PIC x. 
PIC 9(4) 
PIC 9(4) 

02 SOURCE-TERnINAL-ID PlC XC4l. 
02 DATE-TI~E-STAf'jf. 

COriP-4. 
CO!IP-4. 
COMP-4. 

COMP-4. 
COnP-4. 
CCll1P-4. 
COl'lP-4. 
COMP-4. 
COnP-4. 
C0l'1P-4. 

COf'lP-4. 
C0r1P-4. 

03 YEAR PIC 9C4l COMP-4. 
03 TODAY PIC .9(4) COr;P-4. 
03 HR-~lN-SEC PIC 9C9l COMP-4. 

02 TEXT-LENGTH PIC 9(4) CO~P-4. 
02 AUXlLIARY-DEv-lD. 

03 FILLER PIC X. 
03 AUx-DEV-NO PlC X. 

02 TRANS-COO€ PIC XCSJ. 
02 FlLLER PIC X. 
02 OEST-TERM PIC XC4J. 

Figure 3-30. Sample COBOL Action Program, Directing Print Transaction at Another Terminal (Part 1 of 2) 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

02 FILLER PIC X. 
02 TEXT-AREA PIC XC29J. 
W(ii=U(-AREA. 
02 00~nY PIC ~. 
OUTPUT-~ESSAGE-AREA. COPY D~A74. 
02 OESfINATION-TERMINAL-IO 
02 SF S-OPT IONS 
02 F lLLf.R 
02 CONTINUOUS-OUTPUT-CODE 
02 TEX T-·LENG TH 
02 AUXILIARY-DEVICE-ID. 

03 AUX-fiJr4C r ION 
03 AUX-~EvICE-NO 

0'2 Sf.NO-ri:-5G .. 
03 OUTPUT-TEXT PIC Xl29). 
03 FILLER PIC X(14J. 

02 BEGIN-nSG REDEFINES SEND-MSG. 
03 cui:<.:.ci:;,-·1 PIC X(4J. 
03 nSG-1 PIC XC30J. 
03 TE~(-NAnE PIC X(4J. 
03 !=iLLER PIC; KCS). 

02 ERRO~-GSG REDEFINES S~ND-~SG. 
03 Clii=o'.U1R-2 F'IC XC.:+L 
03 GSG-2 PIC XC3SJ. 
03 ERRQR-20DE PIC ZZZZ. 

p c x 
p c .X 
p ,-. x 
p c x. 
p c 9 

P IC :X .• 
nc x. 

4J. 
2J. 
2 J. 
.:+ J. 
4 .l COriP-4. 

00064 
00065 
00066 01 
00067 
00068 01 
00069 
00070 
00071 
00072 
00073 
00074 
00075 
00076 
000/7 
00078 
00079 
00080 
000:31 
00082 
000<33 
(;0('.i84 
00(18:; 
00086 
00087 
00088 
000:3'? 
(100';'0 
00(.t'?·i 
00•.)92 

PROCEOU~E DIVISION USING P~OGRAn-INFO~nATION-B~OcK 

00(1•7·3 
00094 
00(J9S 
()')(;:96 

000'7'7 
00098 
0009'7' 
oo mo 
00101 
00102 
00'103 
00104 
OO·iOS 
00106 
00107 
00108 
OO'i09 
00110 
001'\1 
00i12 
OO'i 1J 
00 ·114 
00 ·115 

JNPUT-nESSAGE-AREA 
W(l~:.r:, -·A~£ A 
OUTPUT-~ESS~GE-AREA. 

~OVE DEST-TER~ TO DESTlNATION-TER~JNAL-lD. 
SuBTRACr 11 FROG TEXT-LENGfH IN INPUT-MESSAGE-AREA 

GIVING TEXT-LENGTH JN OUTPUT-~ESS~GE-AREA 
novE 'I' TO AUX-FU~CTION. 
~OVE TEXT-AREA 10 OUTPUT-TEXT. 
CALL 'SEND' USING OUTPUT-nESSAGE-AREA. 
IF STATUS-CODE N1~1T t:.C/Li;.:il TO 0 1:JO TO ER.~:C.1f(-PRuC. 
novE DICE-S~Q TO CuRSGR-1. 
MOVE 'TRANSACTION BEGUN AT TERnINAL ' TO nSG-1 
MOVE OEST-TERn TO TER~-NAnE. 
nOVE .:+2 TO TEXT-LENGTH IN OUTPUT-MESSAGE-AREA. 

TERMINATE-ROUTINE. 
nOVE LOW-VALUES 10 DESTINATION-TER~INAL-10. 
MOVE LOW-VALUE TO AUX-FUNCfION. 
i!OVE 'N' TO ERnlNATION-INDICATOR. 
CALL 'RETURr~' • 

ERROR-PiWC. 
MOV~ DICE-SEQ TO CuRSOR-2. 
MOVE 'TRANSAClI8N NOT BEGUN DUE 10 ERROR ' 10 MSG-2. 
novE OETAILED-SfATUS-COOE TO ERROR-CODE. 
nOVE 47 TO TEXT-LENGTH IN OUTPUT-MESSAGE-AREA. 
GO TO TERMINATE-ROUTINE. 

3-140 
Update A 

Figure 3-30. Sample COBOL Action Program, Directing Print Transaction at Another Terminal (Part 2 of 2) 

3.15.5. Sample COBOL Program Using Screen Format Services 

Figure 3-31 is a compiler listing of the action program, JAMENU. This program is the first 
in a series of programs that make up an entitlement accounting system. JAMENU 
processes a password entered as input from the terminal. If the input is valid, JAMENU 
displays a menu screen. If the input isn't valid, JAMENU displays an error screen and 
terminates. 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-140a 
Update A 

Remember, before using screen formats in your action program, you must: 

• create the screen formats and store them in the screen format file ($Y$FMT) 

• specify the SFS=n parameter in the OPTIONS section of the configuration 

• specify OFT=+n in the IMS start-up job stream 

000001 IDENTlfltATION DIVISION. 
000002 
000003 PROGRAK-10. JAKENU. 
D!lOOOlf•REKARKS. PROCESS SIGNON • "ENU. 
000005•----------------------------------------------------------------· 
00000&• THIS PROGRAM PROCESSES THE SIG~ON AND SYSTEM/80 MENU * 
000001• SCREEN FOR THE ENTITLEMENT ACCOUNTING SYSTEM. • 
000008• If THE SIGNON IS FOUND TO BE VALID, THE "ENU WILL BE * 
000009• DISPLAYED. OTHERWISE, lHE ERROR OVERLAY SCREEN Will BE * 
000010• DISPLAYED ANO THE lRANSACTION TERMINATED. * 
000011•------------------------------------------------------~---------· 
OJ0012 
000013 lNVIROhMENl DIVISION. 
DOOOJlt 
000015 
oaoot& 
000017 
OOOO!b 

CONFIGURATION SECTION. 
SOURCE-CO"PUlE~. 
OBJECT-COMPUTER. 

000019 DATA DIVISION. 

~OR~lNb-STORAGE SECTION. 
77 CUST-flLENA"E 

00002U 
000021 
000022 
OJ0023 
0000216 
000025 01 
000026 
000021 
OOIJ02b 
000029 
000030 
000031 
000032 
000033 
0000316 
000035 
000030 
000037 
:100038 
OiJ0039 
DOOOlf O 01 
OOOOlfl 
0000'1~ 
OJ0043 
r:rnooqq 
OOOOlfS 
OOOOlf b 
oooo•n 
000041:> 

77 SCTL-f ILENA"E 

SCREEN-FORHAT-IOS. 
05 Sf-"ENU 
OS Sf-AOOl 
05 SF-AOD2 
05 Sf-AiJD-3 
05 SF-CHGl 
OS SF-CHG2 
05 SF-CHG-3 
05 SF-DE.LI 
05 SF-OlSl 
OS Sf-LSTl 
05 SF-WARl 
05 SF-ERR! 
05 SF-HR" 

VALIO-SUCCESSOR-Ios. 
05 p;ffNU 
05 CUST-ADO 
OS 
05 
05 
OS 
OS 
OS 

C lJ S l -C HG - 1 
CUST-CHG-2 
CUST-CHG-3 
CUST-DEL 
CUST-DlSPLAY 
CUST-LlST 

UN1VAC-OS3. 
UNI VAC-0~3 • 

PIC XCH 
PIC Xlll 

Pit XC81 
Pit XC8J 
PIC Xl8J 
PJC XC81 
PIC XC81 
PIC XC81 
PIC XC81 
PIC XISJ 
PIC Xl81 
PIC XC81 
PIC XC8J 
PIC X18J 
PIC XC8J 

PIC XCbJ 
PIC Xl6J 
PIC XCbl 
PIC XCbJ 
PIC XlbJ 
Pit X(6, 
PH. Xl6J 
PIC X 4b I 

VALUE •cusT"sT•. 
VALUE •sYSCTL·. 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
fALUE 
VALUE 
VALUE 
VALUE 
VALUE 

•JAS"ENU •. 
•JASADDl •. 
•JAIADD2 •. 
•JA5ADD3 •. 
•JA5CH61 •. 
•JASCH62 •. 
•JASCH63 •. 
•JASDELl •. 
•JAl[)lSl •. 
•JASLSTl •. 
•JASWARl •. 

•• VALUE •JASERR 
VALUE •JASTER" •. 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 

•JA,.ENU•. 
•JAAOD1•. 
•JACH61 9 e 

•JACH62• • 
•JACH63 9 

• 

VALUE •JADEL1•. 
VALUE •JADIS1•. 
VALUE •JALSTt•. 

Figure 3-31. Sample COBOL Program Using Screen Formats (Part 1 of 8) 



t 

UP-8614 Rev. 1 

OOOJCl9 
OJ035L. 
OuOiJ51 Ql 

OilOllSL 
000053 
000054 
000055 
000056 
000057 
000058 
000059 
000060 
0()0061 
000062 
00006j 
000061t 
000065 
OJ006b 
000067 
00006& 
000069 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-140b 
Update A 

05 ws-ACTI VIT y PlC XC&) VALUE •JAllARI • • 

111S-lABlE.S. 

i)S K[NU-TABLE. • 
10 FILLER 
10 FILLER 
lCJ FILLER 
10 FILLER 
10 FILLER 
10 FILLER 
10 fH.LER 
10 f ILLER 
10 FILLER 
10 FILLER 

PIC 
PlC 
PIC 
PIC 
PIC 
PlC 
PlC 
PIC 
Pit 
PIC 

)(. 9 J 

Xl91 
XC9J 
J( 19 J 
Xl9J 
Xl9J 
X(9J 
XC9J 
XC9J 
XC9J 

VALUE •utJAADOlJ•. 
VALUE 9 02JACHGJI •·. 
VALUE 9 03JACHG2l•e 
VALUE •octJACHG31 • ·• 
VALUE •u5JADEL1I•. 
VALUE •o6JADISJI•• 
VALUE •u7JALSTJI•. 
VALUE •oaJAllARlI•. 
VALUE •09JA"ENUN•. 
VALUE •10JA"ENU1•. 

as HENU-TBL REDEFINES "ENU-TASLE OCCURS 10 Tl"ES 
INOEXEO SY MENU-lNOX. 
10 "ENU-SEL PIC 9121. 
10 "ENU-NAHE PlC XC61e 
10 HENU-INO PIC Xe 

000070••····························································· 
000071• THIS IS THE ERR PROCESSING TABLE FOR R£TRIEVING ERR 
000072• MESSAGES FRO" THE SYSTE" CONTROL FILE FOR DISPLAY 
000073• WITH THE OVERLAY. 
00007tt••···········••t••············································ 
000075 as [RR-STATUS-TABLE. 
OJOJ7b 10 FILLER PIC XCltOJ 

•p1oqo212031301t11to51so6160111oeo1090z1020•. 000077 VALUE 
000078 
000079 
oooosu 
OJ008l 
000082 
000083 
000081t/ 

05 

05 

ERR-TABLE REDEFINES ERR-STATUS-TABLE OCCURS 10 Tl"ES 
INDEXED BY ERR-lNOXe 

10 ERR-CODE PIC 99. 
10 ERR-KEY PIC XX. 
NO-ERR PIC 99 VALUE 25. 

'J0085 LINKAGE SECTlON. 
00008& 01 PROGRA"-lNFOR~ATlON-bLOCK. COPY PIS. 
000087 
rJOOu88 01 
r:l00089 
OJ0090 
000091 
000092 
000093 
000091t 
OJ0095 
0000% 
0000~7 
oaooqs 01 
000099 
000100 
000101 
000102 
::IJ0103 
('JOl Olf 
GOOlO~ 

OJOlOb 
0:10107 

lNPUl-ME~SAGE-AREA. 

05 IHA-PASS-le 
10 lMA-ul~E PlC xcq1. 
10 lMA-SibNON PlC XC5Je 
10 lHA-PA~SWRD PIC XlttJ. 

05 IHA-SCREEN-REC REDEFINES lK--PASS-1. 
10 SR-cusr-NBR PIC 
JO SR-HE.NU PIC 
10 :::.R-TRSIHT Pit 
10 FILLER Pit 

lllOkK-Al<EA. 
JS !HS-PARAMETER-LIST. 

11 l.MS-FILENAHE 
10 1MS-RECORD-AREA 
10 1-.S-KEY 
10 !MS-Fll[-POSITlON 

PIC Xt7). 
PIC Xl25&J. 
PIC x11q1. 
PlC X. 

9C&J. 
99. 
x. 
xcq1. 

ID HtS-ALl>N COMP-If SYNC. 
10 lMS-SCRE~N-lU PIC Xf8Je 
10 5CREEN-SIZE PIC 9C~) CO~P SYNC. 

J~ 111A-CUNlROL-KEYo 

Figure 3-31. Sample COBOL Program Using Screen Formats (Part 2 of BJ 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 

OJOl Ob 
CJOlO'i 
!JDOllu 
JJJlll 
".100112 
iJ00113 
OJOll'I 
OJ0115 
'JJDllb 
~[)0117 

ODOllt> 
!JJ01J9 
!JJ'.)120 
(100121 
000122 
GU012j 
'.)J0124 
'.)JQl 25 
'.:JiJl2b 
000127 
:JJOl26 
r:JOD12'i 
OJ013u 
'.)00131 
OJLll 32 
DJJ13j 
CJ0134 
000135/ 
rl00l 3b 
000137 
0001313 
!JJOl 39 
'JJ01qo 
000141 Gl 
DJ0l'l2 
OJJl IL) 

OJOl'l4 DI 
rioo1q5 
OOQlqb 
!:100147 
000141) 
0;)0149 
OJDl5D 
'.}J0151 
000152 
OJ01S3 
'.)JOl 54 
!JJ0155 
Oil015b 
:JJQ157 
OiJOlSI) 
!l!lOl 59 
000160 
OJOl&l/ 

J5 
05 

OS 

iJ5 
JS 
05 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

10 CNlLI 
IO C.IHLZ-.3 
10 CNTL23 REO[FINES 

15 CN1l2 
15 CNTL.3 

ERR-STATUS 
REfJ~MAT-DA H.. 
lC' P-l'IO~Tli 

10 P-OAY 

PIC XC2). 
Pit. X(q). 

Cr-.TL2-3. 
PIC 9C2J. 
PIC XCZJ. 
PlC 99. 

PlC 99. 
PH. 99. 
PIC li9. 

PlC x. 
lJ P-YEAR 
E.RR-FLAG 
88 C:RR VALUE • 1. •2• 
bB .:.fl-ERR 
88 ~LO-ERK 

do PASSWHJ-E~h 

SCRH.N-RECORu • 
l CJ !>R-OA H 
IJ .)R-TJll!E 
SR-EKR-TE X T 

So-STAT 
PA!>SlllRU-RECo 
l:J FILLEQ 

PIC 
PIC 
PIC 
Ph. 

PIC 

VALuE •2 •• 
VALUE •3•. 
VALUE • 'f •• 

9 (b I • 
9 ( b) • 
XC50). 
)((5). 

x ( 2) • 
l'.1 PASS110?Ll PlC XC4J • 
10 PASSJRO-~EL PIC XC25)o 
lC PASSlllRD-hENU-S~L REDEFINES PASSWRD-SEL 

3-140c 
Update A 

PIC X OCCURS 25 TIME~ lNOEXEU BY PASSWRO-INOX. 
10 FILLER PlC XC331. 

JS CUST-RECORD. 

05 SClL-RECORD. 

OUTPUT-MESSAGE-AR~A. 

05 Ol"IA-lEXT 

CONTlNUllY-OATA-A~lAo 

u5 CDA-PASSWRll 
JS COA-MENU-SEL 
JS COA-PASS•RD-MENU-S[L 

PIC X OCCURS 25 
05 COA-CUST-KEY. 

10 CDA-CUST-NBR 
05 COA-ACCT-COOE 
JS PASS-FLAG 

88 PASS-lHRU 
cA P•~Sl 

EB PASS2 
88 PASS3 
1:>8 PA ~Slf 

BB PASSS 
05 CDA-STATUS-BYTl 
05 COA-PROGRAM-N,ME 

COPY CUSHIST • 

COPY SYSCTlo 

COPY OHAo 
PlC XC3r:JOOJ. 

PIC XCltJ. 
PIC Xt25J. 

REDEFINES CDA-"ENU-Sll 
TIHES. 

PIC 9tbJo 
Pie xciu. 

PIC Xo 
VALUl •1••2••3••4••5•. 
\/Alul •1•. 

VALUE ·~·. 
VALUE •3•. 
VALUE •4•. 
VALUE •s•. 

PH. < • 
PIC XC&Jo 

000162 PROCLDURE DIVISION 
00016l 

usiNb PROGWA"-lNFORMAllON-BLOCK 
INPUT-HESSAGE-AREA 
WOkK-AREA 
OUlPUT-~ESSAGE-AREA 

CONTINUITY-DATA-AREA. 

!)'.)016 .. 
~00165 

00016b 

Figure 3-31. Sample COBOL Program Using Screen Formats (Part 3 of 8) 

t 



t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-140d 
Update A 

000167 HAlN-LOOP SECTlOh. 
OJ0168••••••••••••••••••+++++++++++++++++++++++++++++++++••++++++++• 
000169• 
00017J• 
DOOl 71* 
000172• 
OJ0173• 
'.JJJl 7"* 

THE PASS FLAG IN THIS SECTION TELLS THL PROGRA" AT WHICH 
POINT lHS HAS RETURNlD CONTROL Of THE PROCESSING TO JHl 
PROGRAM, A PASS 2 FLAG HEANS THE PROGRAM HAS AL~EADY PUT 
OUT THE SCREEN AND IS NOW READY TO ACCEPT THE DATA FROH 
THAT SCREEN TO PROCESS. OTHERWISE THl PROGRA" WANTS TO 
DO THE INITIAL PROCESSING TO PUT O~T A SCREEN. 

000175••·························································· 
000176 acO-BEbIN. 
'.JObl77 If NOT PASS2 
000178 PERFOR" 
OJJ,179 lF NOT 

1 CJO-lNl HAUZE 
f.RR 

JJ01su PERFOR~ 200-BUlLO-SCREEN 
JJ0181 
'.HI0182 
000183 
))018" 
000185 
Oil018b 

t:LSE 

H;:,E 
PERFOR~ 25L-READ-~CREEN. 

PERFORM ~07-R[TURN. 

))0187••···························································· 
000188* lNITlALIZATION OF FIELUS AND FLAGS IS uONE HE.RE. 
000189* ALSO CHE:KINb IS DONE TO ~EE If THL PRUG~A" ENTERED 
000190• FROl1 A SIGN ON OR WAS CALLED FROM ANOTH[R PRObRA"• 
OJ019l* ONLY IF ENTER FRO~ A SIG~ ON DOES THE PROGRAM RETRIEVE 
OJ0192* THE PASSWORJ RECORD. OTHER ~ISE IT IS CARRIED TO CHECK 
OJJ193• VAllulTY Of MENU SELECTION. 
OJ019~•+++++++++++++++++++++++•++++++++++++++++++++++++++++++++++••• 

DJ019~ lOu-l•lTIALILE. 
OJUl9b 
JJ0197 
0J019& 
DJCU 99 
D002CJ 
000201 
:JiJ02 [12 
'JJ02C3 
OJ02 04 
'.JJOZC-5 
'.:'G02Jb 
QDD207 
OOD2Cb 
8J02U9 
JJOO:'.lu 
DJ0211 
J0021<:: 
JuOZ13 
C!JJ2h 
CJ02b 
OJD2lb 

110VE • 2. 

HOVE •o• 
110 II E COR~ P-TRAN~AtflON-UATl 

JO HIS-KEY 
HIS-FILE.NA"'[ 
SR-ERR-HXT. 

TO PAS~-flAG • 
IO ERR-fl Ab, 
TO REFORMAT-DATE• 

IF CDA-P~OGl\AM-NAP1E EQUAL LOW-VALU(S 
MOvE l'1A-PASSWRO 
MOii[ •pw• 
'1uwE SPA Ct. 
MOVE SCTL-f lllNA'1E 
'10VE WA-LOkTROL-KEY 
PEtffUfiM !lOL-Ll l 
lf ERR 

EL::OE 

MOllE 11[Nu 

MOVE •ij• 

~OVE IP1S-RECOPU-ARlA 
HOV[ PAS~WRO-S~l 

11011[ PAS!:.loiRD 

TO CNTLZ-3 
TO CNTLl 
TO lMS-RlCORO-AREA 
TO IMS-f lll:.NAHE 
TO IHS-K EY 

TO t.RR-FU.b 

10 PASSWRD-RlC 
10 CuA-Ht.NlJ-SEL 
TO COA-PASSWRD. 
TO CUA-P~ObRAM-NA"E• 

))0217••••••••••••+++++++++++++++++++++++++++++++++++++++++++++++++++ 
JJ02lb* Til MAI~ P~OCESSl~b ANQ ~UlLDING DF THL SCRll~ DATA IS DONE 
JJU21'.1* It-.. HUtE. 
O~O~ZL•++++•+++++++++++++++++++++++++++++++++++++++++++++•+++++++••+ 

:Ju2?1 2~0-8UILL-SCREEN. 
~J~222 ~0~( 111A-SOU~CE-T~~~I~AL-JO 

~JJ223 MOvE SF-KfNU 
JG0224 110vE ALL •J• 
2Ju27~ MO~[ RlFuR .. Al-DAli 

ro 
TO 
ro 
TO 

011A-DlSTINATION-TER11-IO. 
1115-SCRt.EN-J.O. 
SCREE.t.-~ECORO. 

Si<-OATE. 

Figure 3-31. Sample COBOL Program Using Screen Formats (Part 4 of 8) 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 

0JJ22b OJ0227 
':'uo220 
'.'J0229 
DJ!J2 !;:; 
000231 
(':J:J2?2. 
[1JJ233 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

MOlll P-Tl~~-JF-DAY 

l'IOllE li 
PERfOQM 5~5-9UllJ. 

IF ERQ 
PE~FORM 9~0-ERR-~(SSAuE. 

MOlfE ~[NJ 

MOllE •t• 

IO SR-TlHE. 
TO SC~t.El-.-!:»IZE • 

3-140e 
Update A 

ro Pio-SUCCESSOR-IO. 
TO PIB-lERMINATION-lNDe 

QJu23~••••++++++++++++++++++++++++++++++++++++++++++++++++++++++++++• 

~JJ23~* THl ~E~U S~Lt.CTION VALIDITY lS CHEC~EO Ht.RE 
COD23b*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

DOQ237 25;:;-REAO-SCRLE~. 

PJ023b IF CDA-PASSWRO-~(NL-SEL (SR-MENU1 NOT EQUAL 10 •1• 
nJ0239 l'tOVE •z• 10 ERR-FLAb. 

1F lRR f'J02q:i 
:JiJJ2ql 
JJ021f2 
0:1024.S 
OJDzq4 

PERFOR~ 9U~-ERR-MESSAGE 

t.Lst. 

oJJzqs•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
~J021fo* IF HE~U SlL~CTION IS VALID CONTROL IS SEl FOR NEXT STA6E. 

00~21f7••··························································· 
QJ024d 260-SEl-HENU. rJD21f9 MOVE Mt.NU-NAl'I[ CSR-MENUJ 
DJG25u HOVE MENU-IND &SR-11EhUI 
000251 HOVE SR-CUST-N~R 

:10025.2 
r:lilOO:: SJ 
Oil02~ .. 
OJ0255* 

110\IE •o• 
If SR-11Er-.U = 9 

PERFOW~ 27C-LOGOFF. 

TO PlB-~UCCESSOR-10. 
TO PlB-TlRHINAllON-INO. 
TO COA-CUST-NBRe 
TO PASS-f"LAG. 

OJD25b•++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
000257• &UlLD TERMINATION ~CkEEN 
00025S•++++++++++++++•+++t+++++++++++++++++++++++++++++++++++++++++++ 

OJ0259 270-.0GOFF. 
0J026u MOVE l~A-SOURCE-lER"lNA~-lu TO 

TO 
TO 
TO 
TO 

OHA-OlSTINATION-TlRH-10. 
IHS-S CRHN-10 • 000261 "OllE SF-TERM 

000262 HOVE ALL •o• 
0002b3 HOVE CORR P-TRANSACTION-DATE 

SCREEN-RE CORO• 
REFORMAT-DATE• 

OJ026.. MOllE REFORKAT-JATE 
OJ0265 ~OVE P-llME-OF-DAY 
00026b MOVE 12 
000261 PERFORM 5CS-BU1LD. 
000268/ 
000269 IMS-~ALLS SECTION. 
0!)0270 

'.100271 500-SElL. 
000272 ~ALL •sElL• 
000273 
0002714 
aJ027S 
00027b 
OJ0277 
Ou02 7ts 
OO:lC:: 79 
0::10280 
OJ0.281 
000282 
000283 
03028 .. 

500-E.X.1.Te 
EXIT. 

5'Jl-ESlTL. 
CALL •t.SETL• 
lf P(~-STATUS-CODE 

HOVE •1• TG 
501-EXlle 

EXIT. 

TO 
TO 

SR-DA TE• 
SR-llME. 
SCREEN-SIZE• 

USlNG IMS-FILENAME 
lH~-FILE-POSITIDN. 

USING IMS-FILENAME. 
lS GREATER THAN u 
lRR-FLAGe 

Figure 3-31. Sample COBOL Program Using Screen Formats (Part 5 of BJ 

t 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-140f 
Update A 

t 

J00l85 
0J028b 

CALL 'GEP USING IH~-FlLEhAHE 

I M!>-iH.C 01-10-A HEA 
IM~-KEY. 0002'17 

~00288 

030289 
IF Pid-~TATUS-CuOl IS 6REATE.R THAN 0 

~OVE '1' TO ERR-FLAG, 
J:J0290 5J2-E.XIT. 
QJ0291 t...xlT. 
00029<: 
~JD293 5J3-GE1UP. 
000294 CALL 'GETUP' 
QJ029!:> 

USING IMS-FILENAME 
IMS-RECORD-AREA 
IPl!>-KEY. ~JCZ 9b 

:J00297 IF Pld-$TATUS-CODE IS GREATER THAN ~ 

'J0029o MOVE 'l' TO ERR-FLAG. 
aJJ299 5:J3-LX1T. 
r'J030C 1:.XlT. 
OJD301 
OJO:s':'.'2 !:>04-PUT • 
~OCJ~3 CALL '~UJ' USING IHS-FILE~AHE 

JJOJQlf 
:JJ030~ IF 

l MS-IH:CORO-A REA• 
PIB-~TATUS-C~JE lS GRE.AT£R THAN U 

CD03Qb HOVE 'l' TOE.RR-FLAG. 
::'J0307 504-E.UT, 
000308 i::Xl T. 
000309 
~J031U••••••••••••••••••••••••••••••••••••••••••••••••••••~•••••••• 000311• CALL FOR MAIN SC~EEN FOR PROGRAM 

000312••··························································· 
000313 505-BUILD. 
OJ03lq CALL 'BUILD' USING OUTPUT-"ESSA6£-AAEA 

INS-SCREEN-IO 
SCREEN-RECORD 
SCREEN-SIZE 
S6-STAT. 

OJ0315 
'.J:JOllb 
000317 

,000318 000319 
OJD.320 
030321 
'.JJG322 000323 

lf Plb-STATUS-CODE IS GREATER 
MOVE •3• TO ERR-FLA6. 

505-~XIT. 

E.XlT. 

THAN 0 

000324••··························································· 03032)• CALL FuR ERR OVERLAY SCREEN 

00032&••·········*················································· Q00327 505-SUlLD-ER~. 
000328 CALL •suILo• USlN6 OUTPUT-"ESSA6E-AREA 

IMS-SCREEN-ID 
SR-ERR-TEXT 
SCREEN-SIZE 

000329 
!lJ033G 
000331 
000332 0003 33 
:JJ0334 000335 
00033& 
000337 
000338 
000.539 
0003110 
000341 
00031t2 
00031f3 

IF PlB-STATUS-COOE IS GREATER 
"OVE •3• TO ERR-FLA6, 

505-8LO-ERR-£XIT. 
EXIT. 

506-REBUILO, 

S6-S TAT• 
lHAN D 

CALL •REttUILD• USIN6 I"S-SCREEN-10 
IftS-RECORO-AREA• 

506-EXIT. 
EXIT. 

Figure 3-31. Sample COBOL Program Using Screen Formats (Part 6 of 8) 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 

0003ctl6 
OiJ03115 
OJ0311b 
0003111 
0003118 

501-RElURN. 
CALL •fETURN•. 

SC7-fXlT. 
EXIT. 

0003119 508-lNSERT. 
000350 CALL •tNSERT• 
000351 
000352 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

USIN& l"S-f ILENAKE 
lMS-RECiOAD-ARE• 
I KS-KEY. 

000353 
0003516 

1r PIS-STATUS-CODE lS GREATER THAN D 

OJ0355 508-EXlT. 
00035& E.X!Te 

599-SNAP. 

KOVE •1• TO ERR-FLAG. 

MOVE •s• TO PIB-TERMINATION-IND. 

3-1409 
Update A 

000351 
000358 
000359 
000360 
000361 
000362 
000363/ 

CALL •sNAP• USIN& PR06RA"-INFORMA110N-8LOCK COA-STATUS-BYTE. 
599-EXl T • 

EXIT. 

00036ct ERROR-PROCESSING 
000365• 

SECTION. 

OJ036&•••••••••••J••••••••••••••••••••+••••••••••••••••••••••••••• 
000361• ERR PROCESSING IS OON~ HER~. TiE lYPE OF ERR IS 
00036&• OEIEWMlNEO ANO A SEARCH Of THE ERR TABLE IS KADE 
000369• THE APPROPRIATE ERR MESSAGE IS RETRIEVED FROM THE 
000370• SYSTEM CONJRDL FILE ANO DISPLAY IT ON THE OVERLAY 
000371• ERR 6 IS ILLEGAL PASS WORD ERR 9 IS ILLEGAL MENU 
000372• SELECTION FOR PASSWORD OTHER ERRS CONFOWM TO l"S 
000373• STATUS ERRORS• 
0003716••··························································· 
000375 900-[RR-KESSAGE. 
ODD37b "OVE SPACE 
CJ0377 
000378 
000379 
Oil038u 
Oil0381 
0[)0382 
000383 
0003811 
000385 
00038& 
!)J0387 
000388 
000389 
000390 
000391 
000392 
000393 
0003911 
000395 
00039& 
000397 
OCJ:J398 
000399 
oooqoo 
0001101 
0001602 

"OVE SCTL-FILENAHE 
IF PASSWRO-ERR 

KOVE •5• 
MOVE b 

ELSE 
lf ~EL-(RR 

140VE 9 
ELSE 

~OVE PIB-STATUS-COOE 
HOVE 9 [M• 
P.OVE SPACE 
SEI ERR-lNOX 
SEARCH ERR-HBL£ 

AT ENO 
KOllE NO-E.RR 

~HEN ERR-COOl IERR-INOXJ IS 
KOVE ERR-KEY iERR-lNDXI 

"OWE WA-CONlROL-KEY 
PElffORtt 302-GE T. 
MOVE IKS-RECORa-AREA 
KOVE ALL •o• TO SR-ERR-TEXT. 
KOVE StERR-TEXl 
MOVE SF-ERRl 
HOVE 50 TO ~CAEEN-SlZl e 

ID lKS-RECORO-AREA 
IKS-F ll[NAP'tE 
114S-KEY. 

TO Il1S-F llENAP''E • 

TO PASS-FLAG 
TO EMR-S lATUS 

TO ERR-ST AfUS 

TO E~R-S T nu::.. 
TO CNTLl• 
TO CNTL3. 
TO le 

TO CNTL2 
EQUAL TO ERR-STATUS 

TO CHTLZ • 
TO HtS-KEY. 

JO SCTL-RECORD. 

TO SR-ERR-TEXT• 
TO IMS-SCREEN-IO. 

Figure 3-31. Sample COBOL Program Using Screen Formats (Part 7 of 8) 



t 

UP-8614 Rev. 1 

0001103 
OOOltOll 
0001105 
0001106 
0001107 
ooo .. oa 
OJO!l".!9 
OJOIH 0 
OOOlf 11 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

KOVE IKA-SOURCE-lER"INAL-ID 
PERFOR" SOS-BUILD-ERR. 
IF PASSS 

"OVE "ENU 
HOVE •N• 

ELSE 
HOH l'IENU 
HOVE •£• 
HOVE •o• 

TO 

TO 
TO 

TO 
TO 
TO 

3-140h 
Update A 

O"A-OLSlINATION-TER"-IDe 

PIS-SUCCESSOR-ID 
PIB-TERKINAIION-IND 

Plti-SUCCESSOR-10 
PlB-fERHINATION-INO 
PASS-FLAG. 

Figure 3-31. Sample COBOL Program Using Screen Formats (Part 8 of 8) 

The following discussion of the JAMENU action program assumes that you have already 
created a menu screen format called JA$MENU and filed it on the $Y$FMT screen format 
file. 

Begin executing the JAMENU program by entering the transaction code, MENU, followed 
by the password. This is considered the sign-on or first pass through JAMENU. 

;mfmz_ 
Transaction Password 
Code (5 bytes) (4 bytes) 

JAMENU uses two files (lines 22 and 23): 

1. CUSTMST file 

2. SYSCTL file 

The CUSTMST file contains customer information. The SYSCTL file contains four types of 
records: 

1 . account access records (AA) 

2. branch records (BR) 

3. error message text records (EM) 

4. password records (PW) 

Each type record is identified by a 2-byte control key field. (See lines 108-112 and 130.) 
JAMENU accesses the SYSCTL file to validate passwords and retrieve error messages for 
display on the error message screen. 

• 

• 

• 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

JAMENU performs five types of routines. It: 

1 . va I idates passwords 

2. builds menu screen 

3. validates menu selections 

4. builds error screen 

5. builds termination screen 

3-140i 
Update A 

On the first pass, JAMENU accesses the SYSCTL file to validate the password entered at 
the terminal. If the password is valid, JAMENU saves all data pertinent to that password in 
the continuity data area (line 211-216), builds the menu screen (lines 221-232), and 
terminates in external succession to itself (JAMENU). Menu screen JA$MENU follows. 

06/23/81 06:49:28 JA$MENU 

ENTITLEMENT ACCOUNTING SYSTEM 

SELECT ONE (1) OF THE FOLLOWING OPTIONS: 

1. ADD A NEW CUSTOMER RECORD. 

*2. UPDATE CUSTOMER NAME/ADDRESS INFORMATION. 

*3. UPDATE BRANCH CUSTOMER INFORMATION. 

*4. UPDATE CUSTOMER ENTITLEMENTS. 

*5. DELETE A CUSTOMER RECORD. 

*6. DISPLAY CUSTOMER INFORMATION. 

7. LIST ALL ACCOUNTS (ON THE WORKSTATION). 

8. ENTER WORKSTATION ACTIVITY RECORDS. 

9. LOGOFF SYSTEM. 

*ENTER CUSTOMER NUMBER 

MENU SELECTION: 

PLACE CURSOR HERE TO TRANSMIT [_) 

02109/81 

In the menu screen build routine (lines 221-232), the BUILD function call that actually 
calls the menu screen identifies the buffer address where IMS receives the screen format 
as the output message area (line 314); the format name as IMS-SCREEN-ID (line 315, 
defined line 105); the variable data as SCREEN-RECORD (line 316, defined lines 123-125); 
the data size as SCREEN-SIZE (line 317, defined on line 106); and, the output status as 

• SG-STAT (line 318, defined on line 127). 

Notice, all the parameters you specify on the BUILD function must be defined in f e work 
area. 

t 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-140j 
Update B 

If the BUILD function is unsuccessful, an error code 3 is moved to the ERR-FLAG (lines • 
118 and 121) indicating a build error. 

If the password is invalid on the first pass, JAMENU accesses the SYSCTL file via the EM record 
~ key for the error message record (lines 380-388), searches an error table to find the appropriate 

error message (lines 390-395), retrieves that error message (lines 396-398), builds the error 
message screen (lines 399-404), and terminates in external succession to itself (lines 408-
411 ). The password error screen follows: 

PASSWORD IS INVALID. ENTER AGAIN. 

On the second pass through JAMENU, the program tests the menu selection made, seeing if it 
is accessible to the password specified in the first pass. If the menu selection is valid for that 
password, JAMENU performs 260-SET-MENU (lines 248-255). This moves to the successor-id 
the correct program name to process the menu selection and an I to the termination-indicator. If 
the menu selection was invalid, JAME NU moves the 2 indicating selection error to ERR-FLAG, 
builds the error message screen (lines 375-411 ), and succeeds externally to itself. 

If the menu selection (customer number where applicable and menu number) was valid, 
JAMENU executes another short routine (260-SET-MENU, lines 248-254) that passes control 
to the appropriate action program to process the menu selection. This routine also checks for a 
log off menu selection (9) that bu i Ids the termination screen. Successor programs selected from 
the menu perform file operations required. When processing is complete, control returns to the 
JAMENU program via immediate internal succession and the terminal operator again receives 
the menu screen to enter another selection. 

• 

• 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-141 
Update A 

• 3.16. SAMPLE RPG II ACTION PROGRAMS 

• 

• 

The two RPG II action program examples described in this discussion implement a dialog 
inquiry transaction with external succession and use all the IMS 90 interface areas (IMA, 
PIB, OMA, and CDA). RPG II action programs do not use the work area. For an example of 
an RPG II action program that implements a simple transaction structure with only the 
IMA and OMA IMS 90 interface areas and the entire procedure for getting the action 
program online, see Appendix C. 

The RPG II action programs in Figures 3-32 through 3-39 reference the same user files ...,_ 
(STATE and CITY files) as the preceding COBOL action program examples (ACT1 and 
ACT2). The STATE file contains a record for each state; each state record contains the 
state name, state population, and capital city name. The CITY file contains a record for 
each city; each city record contains the city name, city population, and state name. 

To activate the transaction, the UNISCOPE 100 operator enters the transaction code S and 
the name of a state. If the requested state record exists, the RPG II action program (ACT1) 
places the state name, population, and capital name in the OMA with the output message 
heading and control characters. Figure 3-24 shows the results at the UNISCOPE 100. 

ACT1 saves the name of the capital city in the continuity data area (CDA). When ACT1 
designates ACT2 as its external successor and moves the program-id (ACT2) and 
termination code E to the PIB, the capital city name is automatically passed to the 
successor action program, which retrieves capital population from the CITY file . 

Following the display of requested information, the output message CAPITAL-POP? t>NO 
YES (described in the OMA) allows the user to request either the capital city population by 
pressing the TAB and then TRANSMIT keys or a termination of the transaction by pressing 
only the TRANSMIT key. 

Figure 3-24 shows the results when the capital city population is requested. The second 
action program (ACT2) obtains the CITY record for the capital city named in the CDA, 
builds an output message containing the capital population, and then terminates normally. 
Figure 3-25 shows the results when termination of the transaction is requested; i.e., no 
capital city population is requested (NO). 

3.16.1. ACT1 Discussion 

Figures 3-32 through 3-35 illustrate the RPG II specifications forms required to code 
ACT1, the first of the two action programs needed to provide information about a state 
from the STATE file. A description of each line of coding is provided . 



SPE~Y+UNIVAC 
RPG II 

CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS 

I. 

PROGRAM---------------- PROGRAMMER------------------ DATE --------- PAGE --- OF --- PAGES 

FORMH 
TYPE 

I---
PAGE 

NO LINE 
NO 

, 2 3 5 6 

PAGE 
NO 

0 , H 

~~~~F 
t----i

LINE
~

lll' COMPILATION MODE INVERTED ALTERNATE 1 f-OHMS ALIGNME:NT INDICATOH INITIALIZATION
< s :ii ERRO~~::L YSIS z PRINT COLLATING [StC1N HANlJLING < FILE TRANSLATION

GENERA TE
~ < 2

" z
. DE.BUG CODE z SE:.OUENCE _f ~ ¥ .. ~SHARED

er :l z 4 "' z z z
OPE RA TOR 4 a: NOT 15 s '3 '3 4 1/0

0 "'
~ 0 "' NOT ~

• er CONTROL "' , USED a: NOT USED "'"' "'"' USED "' AREA
;; 0 er - 0 Cl er er er ~.-----'
" 0

0 NOT USEl'.J
0 "'

~ 0 0 0
NOT USfD - "' - "' " -

7 8 10 14 15 1,6 20 21 22 25 26 27 39 40 41 42 43 44 47 48 49

i

FILE

NAME

FILE TYPE_

FILE DESIGNATION

ENO OF FILE

SEQUENCE

11 U~I~
f-ILE FORMAT

BLOCK
t ENG TH

Rf CORD
LENGTH

J_

FILI:: PROCESSING MOOE_

KEY OR RELOHD

ADDRESS FIELD L~NGTH

RECOR() AUORES:O: TYPE

FILE QRGAN1ZA flON

> OVERFLOW

~l~I
Q !ND!LATOH I
Cl
0 K~Y FIE LO

" 0

I

E.XTENSIONOR

L!Nf COUNTEH

CODE

DEVICE

i

NOT

us~ r1

CONTROL CARD SPECIFICATIONS

SUBROUTINE

NOT USED PROGRAM

CCA tOENTIFICATION

NAME "'
69 70 73 74 75 80

i i l6. ACT. I

FILE DESCRIPTION SPECIFICATIONS
LABELS

NAME OF

'~I
LABE.L EXIT

OR NAME Qf

USER DEVICE

ROUTINE

NUMBEH
Of- BY TES

IN MAIN

STORAGE

TO B~ RESERVED
FOH l~AM

INOE X

"' z
'.l
CD

a:
0 ,_.._ __ C_O_N_T_IN_U_A~T~IO_N_L_IN_E_S __ _,2

FILE ADDITION/UNORDERED LOAD

CYLINDER OVERFLOW

SPACE PERCENTAGE (Xlaf

z
:;,
a:

NUMBER OF EXTENTS

TAPE REWIND OPTION

Fl LE CONDITIONERS

NOT I PROGRAM
~ lusED IDENTIFICATION

s + I 1 , 13

~ OPTION ENTRY <f

S:? '.JJ 54

~;)~:~:~~ I~
5 I 6,, i3l14 l15l16l11l18 l19JW 13124 :?1J2al29 ·iolJ1JJ:.:>IJJ .14IJ5 46147 38/ 39/40 59160 65166167168 69170171 72173 74175 80

2. J In 1 I I _t 3t2 l j l *1IJ·\A.u~ ' l _, l) _t --LLL--'- -'- l _t _l __[_ l 1_-'--W +__L+-+--"-+~-t-~~~~-1
3. In.?

1- _16/J_ __J l L l _l _l____L__l... l_____._. ___l____L__j_ __ _L_.L_ __ j __ L.....L__-1...-'--'--'--L-'---4-~-+-~-L-'---'----'---'---1

-: _ _:_:~ _i~:~ --~-~~~ -~rtI : 11 : I : I : : : : : I
4-. 0"

5. 0 •

6. 0 5

+
Figure 3-32. ACT1 Control Card and File Description Specifications Forms

• • •

c ,,
Co
O> -_,..
:D
CD :c

- C/l s: ,,
en m
co :D
o~
)> c ,, z ,, -
!: ~
~ (")

::! 0
0 C/l z,
C/l w

cw
"C I
Q ~
Ill _,..
CD N

)>

•
SPE~Y+UNIVAC

• •
RPG II

INPUT FORMAT SPECIFICATIONS
PROGRAM _______________ _ PROGRAMMER _________________ _

DATE--------- PAGE --- OF --- PAGES

PAGE
NO.

FORM I I RECORD IDENTIFICATION

~ I I I I I RECORD IDENT"ICATION CODES I

LINE
NO

5 I 61 7

FILE

NAME

1
::::

1
".""'. u

1
POSITION

2

0

POSITION

!l~I
POSIT ION

~l~I 010 2 N

2 u

17118\19 20121 24125126\77 \28 31132\33134135 38139140141142\43144

FIELD LOCATION

FROM TO

47148 51152153

FIELD DESCRIPTION

FIELD
oc I I 0 INDICATORS
~

~ 'l
FIELD I~ Cl

w 0 I NOT I PROGRAM

NAME
oc 2 USED IDENTIFICATION

~ ~ " 82 " 0 -
2 w~ oz i oc ~ oc ~

o~ ~ oc '.l
~ ;:' z ~ w ~ :0

~~
8 ~ w oc ~

2

~ ~ 0

58159 60161 62163 64165 66167 68169 70171 74175 so

I l1~P0it1Sfuj&_AJ_ +-PJ __ L_ .L_ _ _l_ 'T.r-T,,
al.t.
tt~: l'.bi~~:~~-1iitlt~t~-

l L_l +-titt 1 1
I

+ +-.L-1 l l _____ l L _ _l +-•-•- -+-t:lst_~~1kii~rij7tj: I: I: I::: I: :~:j
g_, 1 In 'I

L-j _j LL +--+ + l. _]_ l -+ +-r- _ ___l _L _ _l

lO.~~
,.._ l\.J. lo.s II ' ' ' I (((I ((I j (I ,, · · _J~~8lll' ·Htr'H H·· ·HI

LL LI
\5

....

....
~

12 I , Io, s I I . .L_i_l_i__!_ __ L j j l j j ; l 1 l 1 1 l l l L 123

Figure 3-33. ACT1 Input Format Specifications Form

SPE~Y+UNIVAC

.L _ _!_, l I I I I I

RPG II
CALCULATION SPECIFICATIONS

PROGRAM----------------- PROGRAMMER ------------------ DATE --------- PAGE --- OF --- PAGES

FORM c CONDITIONS CALCULATION

~ ~ INDICATORS RESULT FIELD
~ >OC

RESULTING
INDICATORS

PAGE
NO.

1 2 I 3

LINE
NO.

w !!!
-'5
5 ~ AND AND

~6
8 .J I- I- l-

o 0 0
~ ~ ~
z z z
9 10 J1 12 13 14 15116117118

FACTOR 1 OPERATION I FACTOR 2

27128 32133

ARITHMETIC

:;; 0

;i
01--~-~-
~ 1-2

FIELD NAME
LENGTH

;i_ LOOKUP
::t iFACTOA 2) IS

::t HIGH LOW EQUAL

42143 48)49 51 ls2lsJ !>4 ss 56 57 ss 59lso

COMMENTS
PROGRAM

IDENTIFICATION

7417·, ,~I
I

I I I

I I I I I I I I I t I

13
·1 : !•:•: lei : 114~1111111:1:~==~ : : : f::A:l:~=T~T= : : : : I : : : : : I : : 111

24 : I : I : : : : : : : : : : : : : : I 1

Figure 3-34. ACT1 Calculation Specifications Form

c
"'ti
00
CJ)
"'" :c
~

- en s:: "'ti en m

~~
l>c
"'ti z
;g <
-)>
~("')
::!a o en z,
enw

lcw '8. !.
Ill~ I iD w
)>

UP-8614 Rev. 1

Explanation of Figure 3-32:

Line Explanation

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

3-144
Update A

1 In column 74, the letter A indicates that this RPG II program is an action
program. In columns 75-80, ACT1 is the name of the action program.

2 The primary input file is one fixed-length record - the IMS 90 IMA.

3 The PIB is specified as an update file.

4 The OMA is specified as an output file.

5 The logical file (STATE) is specified as an indexed chained disk file containing
fixed-length records (47 bytes) processed randomly by alphanumeric keys 14
bytes long beginning in position 1 of the record.

6 The CDA is specified as an output file and its contents, capital city name
(CAPITL), are passed to the successor program, ACT2.

~ Explanation of Figure 3-33:

Line Explanation

7, 8 The IMA contains the state name in pos1t1ons 19 through 32. The header
information in positions 1 through 16 of the record is not referenced nor is the
transaction code in position 17; however, space must be allotted for them in the
IMA. Because header information and transaction code fields are not referenced,
they are not specified on the input format specifications form. This avoids the
occurrence of a flag for an unreferenced field. The transaction code (S) is
specified in the TRANSACT section of the IMS 90 configurator and is used at the
UNISCOPE 100 to load the action program for use in the transaction.

9-12 The records of the STATE disk file contain the state name (1-14), state
population (15-22), and state capital (23-47).

Explanation of Figure 3-33:

Line Explanation

13 The state name placed in the IMA is used as the key for the CHAIN operation to
access the STATE disk file. Indicator 20 is set on if the state name is not found
in the STATE file.

•

•

•

•
SPE~V+UNIVAC

• •
RPG II

OUTPUT FORMAT SPECIFICATIONS
PROGRAM--------------- PROGRAMMER ------------------ DATE--------~ PAGE ___ OF --- PAGES

PAGE
NO.

FOAMD STACKER SELECT/
~ f:fETCH OVERFLOW

LINE
NO.

TYPE H/0/T /E

FILE
NAME

SPACE I SKIP OUTPUT INDICATORS

1 l
AND AND

~
< ..

0
z
z

FIELD
NAME ~

<

"' z

~
"'

DATA FORMAT

PIB/LIR

END
P051TION

IN
OUTPUT
RECORD

CODES COMMAS I ZERO
NCGATIVE VALUE INDICATION INSEATE BALANCE

NONE CA D TO PRINT

A YES YES
YES NO
NO YES

D M NO NO

CONSTANT OR EDIT WOAD

CODES I ACTION

REMOVE
PLUS SIGN

EDIT DATE
FIELD

ZERO
SUPPRESS

NOT
USED

PROGRAM
IDENTIFICATION

+~.Lt.
14 15 16 17 5 I 61 7 74175 80 37138139140 70171

! 1 I l
:.:

1
1 1 1 , 1 , li-Wlt11 1 1 1 ·· L_I_: : 111 : :2j Ix> :

1
:a:zs:oo,oa,, , , ..

1
L_l

bl.,~·, l~ob~U:inMISG~L__l_,, it~ 11T--r . J

43144145

+

15~2
/bl , lo, 3

2 '0

0

0

o· __l

_i_J I 14.41 l'i$;-CAiT,EJ I I I I I I I I 1STAl,E1-:Pi'

...1

+-----1 l l L l__ 1 __ l__L-+--+---i-- I I I I I I I I I I I I I I I
...l ...L _l ! l 1 l I I I I I

Figure 3-35. ACT1 Output Format Specifications Form (Part 1 of 2)

c ,,
Co
en
"" ::0

~

- C/l :!!:: ,,
C/l m

~~
~c
'"ti~
'< n)>
)> (')

:::!o
0 C/l z
C/l w

cw
'O I a.
D> "" 1D U1

)>

SPE~V+UNIVAC
PROGRAM _______________ _

PAGE
NO.

FORMD STACKER SELECT/

~ F:~::~:~D~~~:LOW
SPACE

LINE
NO FILE

NAME

~,a:

r;t;ti~ ~
~

SKIP

a:
~
~

<

RPG II
OUTPUT FORMAT SPECIFICATIONS

PROGRAMMER ------------------ DATE--------~ PAGE --- OF --- PAGES

~
0
z

OUTPUT INDICATORS

II
AND AND

~I I I~

FIELD

NAME

a:
~

<
~
z
<
m

DATA FORMAT

P1B/UR

END
PO~!TIQN

IN
OUTPUT
RECORD

::!'.
COMMAS ZERO 1-c_o_,_~__.;. __

==.c:..:.:;...c.==-c.:.;=..c..c=.j INSERTED ~~~~~~~ X p~~~~~GEN
)ES

~~ ~;~ YNE~ y ED~~E~~TE

4 ::r D M

NO YES l ZERO
NO NO r SUPPRESS

NOT
USED

PROGRAM
IDENTIFICATION

m

5 I 61 7

0

19 20!21 22L~l24l25\~l21\2s\~1JolJ1IJ2
CONSTANT OR EDIT WOAD

43144145 J7 I 3Bl 39l40 70171 74175 00

+ JJ,IT.
34t::k 3$1t 1

".

30 L.

ol ... _J +l--• k: ll;~~:~: ~I I I 8~nu 1t jj 1f'.~::nr~~ :l,?~~~~t~:~:~~,1::: 1:::::,
-+--.t-------l----1-~_l________L__J___.1_ Jtt" ~!tL-L.L~L_L~L~-LL L~.

+

37.~
2'~1 , lo.•
3q I , In >

0
1':1A£Ll:i 1215 I I I I I I I I I I I I I I I J I I IL .J.

I , l-1-1 lotp,I;& .1 ' ' ,JD, 111 :t~-~Z}t-~-
1 I l-1·1 101 I I I I I 1_1J.t-t-l--- ·-.--......- JL

+-+~-_L__J l 1 t-

-+.- L . .L.l 1 1 l

_l J _J__ LLLLLl I _L_:~~' I:::::: I::: I: :::-j l .1_l ,Ol L'~Ai.C..l"z. _l_.L...i_,

401 , In• .1 I I - I - I I 0 I I I I I L I I I I I ~ L.+-+-+--J. .+--+- +--+ -J- __L . Ll 1 L ~ _ _l _1.1.IJ_f iEt~.l_ _l__l_LLL....L~ I

Figure 3-35. ACTT Output Format Specifications Form (Part 2 of 2)

• • •

c
"'Cl
Cxi
O>
.j>.

:0
(I)

:c:

- en s:: "'Cl en m
co :0
0 :0 -<
}> c
"'Cl z
~<
("') }>
}> ("')

:::!o
Oen z '-..
enw

cw
'O I c.
m .j>.
; a>

}>

•

•

•

UP-8614 Rev. 1

Explanation of Figure 3-35:

Line Explanation

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

3-147
Update A

14-31 If the state name is found, it is displayed, as well as the state population and
capital. Lines 14-25 clear the UNISCOPE 100 screen, set up the header titles,
and provide for the data requested. After line positioning with DICE output
function codes (lines 26 and 27), lines 28-31 set up the output message,
CAPITAL-POP? ~NO YES, and set the tab control characters after the message.
In addition, the program requests the terminal operator to indicate whether the
capital city population is to be displayed. If capital city population is requested, a
preformatted answer (YES) is transmitted. This appears in the IMA of the
successor program (Figure 3-36, line 7 of ACT2) and is compared with the literal
'YES' on the calculation specifications form of ACT2. The hexadecimal values
shown in this example are ICAM DICE functions or communications control
characters. (See the fundamentals of ICAM user guide, UP-8194, current
version.)

32-35 If the state name is not found, an error message is displayed. These lines. set up
the DICE control characters and the error message.

36-37 If the state name is found, the capital city name is passed to the successor
program (ACT2) in the CDA where it is read and used to find capital city
population from the CITY file .

38-40 If the state name is found, the successor name (ACT2) is moved to the PIS and
an E is moved into the PIS to indicate external succession.

3.16.2. ACT2 Discussion

ACT2 examines the response made by the UNISCOPE 100 terminal operator. If the
operator requests that the state capital population be displayed, a CHAIN operation is
executed on the CITY file (Figure 3-38, line 14). The capital city name contained in the
CDA is used as the key (Figure 3-37, line 11). When the capital city name is matched in
the CITY file, the capital city population is displayed on the UNISCOPE 100 (Figure 3-39,
line 20). If the terminal operator does not request the capital population, the output
message length is set to zero (Figure 3-39, line 16). In either case, termination is normal.

Figures 3-36 through 3-39 illustrate the specifications forms required to code ACT2, the
second action program, which accesses the CITY file for capital population. A line-by-line
description is provided .

t

t

sr=e~v+uNIVAC
RPG II

CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
PROGRAM---------------- PROGRAMMER ------------------ DATE --------- PAGE ___ OF --- PAGES

FORMH

~
PAGE

NO LINE:
NO

213

COMPILA1 ION MQ[)f
"~-----z EAR QR ANALYSIS
~ ~ lJUMP .: ,_,£r\ith4TE

~ ~ ~ OPERATOR ; Df BU(J C()O~
~ ~ ~ CONTROL ;:: ----~
M o :- q:
N o :: '\JOT USED ""

NOT US[:J

"
INVl:RHD

z PRINT

~
:Si NOT

USED

" z
~

~

I
0

ALTERNATE f-UHl;.15 AL 11J"Ml::r\,T

lJJl l A TIN(, S1{,r\ HAN[lL 1r1,1(, ;{_

1NDICA f{)k 1'\j1 flALIZATION

f llf THANSLATION

~! UUI: (!:_ :§ ~ ;t_ ;t_

I, 2 z 2
r;t: 'l <I'. <'.f c _J ...J ...J
CJJ :r: en :i::i

~ ~ § 6
MHUSEO

~ - U'J "'-

NOT
USED

~SHARED
5 1/0
CD AREA

~ r---l
20121122 25126127 39l40 41 42 43144 47148149

CONTROL CARD SPECIFICATIONS

r\JOT USED

SUBROUTINE

CCA
NAME

PROGRAM

IDENTIFICATION

69170 73174175 80 51617 8 9_ 10 14 15l16

I. [I [0 i 1 I l JI] I I I I I I I I I I I I TI I I : I . I llAJACl,2, I I

PAGE

NO

~~~~F 
1-----i 

LINE 
NO 

1 2 I 3 ~1 I 6 I 1 

FIU 

NAMf_ 

F II: T YPt 

010 ~ u 
U I 
0 ~ 

FILL DESl(,NATl(Jl\J 

END Of Fil t 

SI: OU[!\,CI 

~I: 

f llt f-OHMA 1 

HL Q( K 

l ! N(,lH 

1jI14I1'iIl6I11I1b / 1~1 I .'O )j I }4 

2. ~1-~I-'"--f..l-u'E_JJ-J\12.A_l I~- l lfi--1 1 1 3. 0 2 F l,Ifl1SG1 - 0 Fl l j l 

"-+. L 0 "--'- '- Cib.J.IJ:l&T I F 
5. I 0 I • I F Cl.'li_'(LJ_ l f c --- FlJ_/f h 

Ht CQH[J 

lf-1\;(,T'-i 

rill PHDCf~')1NlJ 'M•'.J!-

Kl Y •,).-.' Hl .. (lH' 1 

Ar )[J H ~ S~ r It l [J I f f\J1, l H 

H l t,r_1fH~ il.[J[ll;[ S'.:> 1 YP! 

Fil t QH(,ANl?A 1 l(lr\i 

> •lVtrlfl'lW 

Tl (J 1r~ IJl1.A f(Jll 

' x " - Cl 0 t< f '; f If-! [J 

"' '.:>TA r~ TI i\J\ 
0 

11r Al illN 

~- x TFNSl'JN OH 

I l'H t OUNTEH 

LOOf 

[)E:_ VICE:_ 

/71.ml;><;J lCJI 31l'l2!3J l4]JS lHI J~l4u 

2.4 
,3,5 
25! j 

l /f1~:Z.SiAll L 

l I 

.L 

.~JMA l I 

~OMA 1 

*.CDA 
roJ$K 

-16147 

NUT 

lJ<;ll! 

FILE DESCRIPTION SPECIFICATIONS 
LABE: LS 

NAME QJ.. 

l ASH tXIT 

OH NAME OF 

USH-\ Ul VICf 

f\JUMBEH 

Of HYHS 

IN MAIN "' z 
STORA(,l I"' 

TO Hf HlSE:HVEO ~ 

ROU11Nf-
FOH ISA\11 

~ 

0 
~1~:~~-c-o-N-Tl_N_U_A~~~,O-N~L-IN_E_S~~--1~ 

INUt. X 

OPTION ENTRY 

FILE ADDITION/UNORDERED LOAD 

CYLINDER OVERFLOW 
SPACE PERCENTAGE (X101 

NUMBER OF EXTENTS 

TAPE REWIND OPTION 

FILE CONDITIONERS 

NOT I PROGRAM 
~ I USEDJ IDENTIFICATION 

~ 

:,Jf'iJI~ 59160 6t>l66l67l68 69170171 72173 74175 BO 

j l l l 

l l l_ _l j,_ 

L l __ l 1 l _Ll : l l l__ 

_L_j_ ___ 1 _j_ __ J__ L_J_ ..L _ _L~-l..-+--1--1~~--~+-~-+-~~~~~ .... 

-+-"++-'-~J.__J_~ 

j l 

LL c+::_~:j:~l~:1u-~ttl : I : :::-J 
Figure 3-36. ACT2 Control Card and File Description Specifications Forms 

.: •• • 

c 
-0 

00 
O> -
""' ::0 
(1) 

:< 

- (f) s:: -0 rn m 
co ::0 
o~ 
:i> c 
-0 z 
~< n :i> 
:i> () 
:::!o 
0 (f) 
z '
(f) w 

cw 
"C I a.-
Ill ""' <D ex> 

:i> 



• 
SPE~V1}-UNIVAC 

• • 
RPG II 

INPUT FORMAT SPECIFICATIONS 
PROGRAM---------------~ 

PROGRAMMER _________________ _ 
DATE--------- PAGE ___ OF --- PAGES 

FOAM I I RECORD IDENTIFICATION I 
~ I I I I I RECORD IDENTIFICATION CODES 

PAGE 

NO. I LINE 

NO. 

5 I 6 I 7 

FILE 
NAME 

POSITION 

s.101 ~ z . ~ 

. ~ :r 
z u u 

POSIT JON POSITION 

~l~I blo ~ ~ 
z u 

24125126127128 31132133134135 38139140141142 (43144 

FIELD LOCATION 

FROM TO 

47148 51152153 

FIELD DESCRIPTION 

FJELD 
a: 
0"' 

INDICATORS 

"'0 
~ ~~ 

FIELD I~ en 
~ u: 0 I NOT I PROGRAM 

NAME ~a 8Q USED IDENTIFICATION 

~ ~ 
oz " o~ ~z w ... oz 

a:~ r - a:~ 

"' a: :5 ... u~ o~ 

z >- r ~w 'S ~ 
~~ 

8 
~ u w a: z 

" 
~ 

" ~ 0 

58159 60161 62163 64165 66(67 68169 70171 74175 80 

b.r-T 
..... rr.l.t-

8.FE3 Cl. - . 

. ~ ~: l f i~''i Ht~---~L~-. t j j f : .::: I l+H f ~-~-~ L 

2 ~$~~ j J:f I ' I ' I J ::I : : ~ .. : : : : w~t: :tu ~.~1lt!t,Jurtr~2" .. ~I~;f~j J~: - ~~ 
' I I I I I I 'd I IQ3l,-~-~ tttt~++-+_l_LUL++-+-10. 0 5 

I\. , ~· 

SPE~v+uNIVAC 

l ....L 

.l-+.J LL+--+++ 1 L l L l LL+-+~+- .. L .LL~ .Zislt_At',I ;ti- _l_j ....L 

Figure 3-37. ACT2 Input Format Specifications Form 

RPG II 
CALCULATION SPECIFICATIONS 

PROGRAM _______________ _ 
PROGRAMMER ------------------ DATE --------- PAGE --- OF ___ PAGES 

12. 
13. 
lit 

..... 

PAGE 

NO 

1 2 

..l. 

~~~~c 
1----i

LINE
NO

3 s 6

O..LI c

0 2 c

O..L3 c

CONDITIONS

u! INDICATORS

>"

AL AL
w~
~a:

J~
0 "]

~6
~J
u

I b 0 0
z z ~ z z z R

7 B 9 10 11 12 13 14 15 16

id!
10
ljg

CALCULATION RESULTING

RESULT FIELD I NOi CA TORS

"' ARITHMETIC
z
Q t;; 0 ... ~

COMPARE
PROGRAM

FIELD u;; 0 COMMENTS IDENTIFICATION FACTOR 1 OPERATION FACTOR 2 NAME ii' ~ LENGTH 1>2 1<2 1 ~2
J ~
< ~ LOOKUP " ~ - r (FACTOR 21 IS :;:
o r HIGH LOW EOUAU

17 18 27 28 32 33 42 43 48 49 51 52 53 54 55 56 57 58 59 60 74 75 80

YE.fu ____l__L-.L.__ CQt:-'1£_ ~_X,C.,$ I ..l ...L._l__l l 10 ..l .L ..l. l

·l .L :&_E.LAiD.L C~"QA-:IA ..l l ..l..L J.
CiAPJl.T,L, i r1-1 A.1I.1N ICI:T~ .l_J__l .J.. .L l ..l .L l ii .L ..l. ..l .1.

Figure 3-38. ACT2 Calculation Specifications Form

c
-0
cl>
~

""'
w

-(/)
~ -0
C/lm

~~
)> c
~~
c~
~ (")

::lo
0 (/)
z '(/) w

cw
"C I
Q. _.

Q) ""' c; co
)>

+

t

sr=e~v+uNIVAC
PROGRAM

FOAMO

~ ~--T_:Y_P_E _H_/0:-/:'.:T'.:/E---,

STACKER SELECT/
F;FETCH OVERFLOW

PAGE
NO LINE

NO FILE
NAME

SPACE

PROGRAMMER

SKIP OUTPUT INDICATORS

1 1
ANO ANO

w ~

g ~
~ ~

~ ~ b
z

FIELD
NAME

"'
u <(

DATA FORMAT I
P/B/U

ENO I
I

POSITION

IN
OUTPUT
RECORD

DATE

......
L CODES -

(NEGATIVE VALUE INDICATION

NONE CA -

~
1 A J
2 B K
3 c L r 4 0 M

UTS 700 RPG II
OUTPUT FORMAT SPECIFICATIONS

PAGE OF PAGES

COMMAS
ZERO CODES ACTION

INSERTED
BALANCE REMOVE
TO PRINT x

PLUS SIGN
YES YES

y
EDIT DATE I NOT I PROGRAM

YES NO FIELD USED IDENTIFICATION
NO YES z ZERO
NO NO SUPPRESS

z
1 213 slsl1 2122

glz
~ ~
8 m CONSTANT OR EDIT WOAD

37138139140 43144145 70171 74175 1:1>

1'5. 0 1 _L_l__l__j__ I
''· O 2 I _J_

17. 0 3
--L......L

IS • • o t>R _L ')(."~'l,o,a~_l_Q_QQ,01,o,o,~o,01aotf.,o,L/,o, 1 , 1, I , , , I 1 i.__.__._~
·- o I o.s

ful 1 j•1•1 !oj 1 1 1 I 1 1 1 j I I I +L~ -- ++ I I I I I I I I _J___j__-+-+-~--L j L+-+- l _j___L_J___J___L_j__l_j___[__Ll__J_ __l__J I I I I I I I I I I I

Figure 3-39. ACT2 Output Format Specifications Form

• • •

c
"'D
en
O>
~

~

::0

~

- en s: "'D en m

~~
)> c
"'Dz "'D _

'< n)>
)> (')

:::!o
Oen
z 'en w

cw
'&. .!..
Q) (11 ;o
)>

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

3-151
Update A

• Explanation of Figure 3-36:

•

•

Line Explanation

1 ACT2 is the name of the action program (columns 75-80). The letter A in column
74 indicates that this is an action program.

2 The primary input file is one record - the IMS 90 IMA.

3 The OMA is specified as an output file.

4 The CDA is specified as a demand input file.

5 The logical file (CITY) is specified as an ISAM chained disk file containing fixed
length records (46 bytes) processed randomly by alphanumeric keys 25 bytes
long beginning in position 1 of the record. Labels are standard.

Explanation of Figure 3-37:

Line Explanation

6, 7 Only one field of the IMA is used. The header information (1-16) is not used .

8, 9 The records of the CITY file contain the capital population in positions 26-32.

1 O, 11 The CDA contains, in positions 1-25, the state capital which was passed to ACT2
by ACT1.

Explanation of Figure 3-38:

Line Explanation

12 The terminal operator reply is checked to see if it was YES.

13 If the reply is YES, the CDA containing the capital city name is read.

14 The capital population is then retrieved from the CITY file .

UP-8614 Rev. 1

.... Explanation of Figure 3-39:

Line Explanation

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

15, 16 If the reply is not YES, the output message length is set to zero.

3-152
Update A

.... 17, 20 If the reply is YES, the capital population is displayed. Line 19 sets up the DICE
control characters.

ACT1 and ACT2 illustrate passing capital city name in the STATE logical file from one
action program to another as a key to retrieve capital city population requested from the
CITY logical file.

3.16.3. Screen Formatting Example

The following program, EMPINQ, is an action program that processes screen formatted
messages. When the terminal operator keys in the IMS 90 transaction code followed by an
8-digit employee number, the program retrieves the employee's record from a disk file and
displays the name and address on a predefined screen format. When an employee number
is not found in the file, another screen format displays an error message. Figures 3-39A
through 3-390 show the specification forms required to code action program EMPINQ .

.... Here is an explanation of Figures 3-39A through 390:

Line Explanation

Columns 74-80 indicate that this program is an action program named EMPINQ.

2 Line 2 defines the IMS 90 IMA file named SCRNIN. SCRNIN is the input primary
file and contains fixed-length records. The record length of 27 bytes consists of
16 bytes for the IMA header, 2 bytes for the transaction code, 1 blank byte, and
8 bytes for the employee number.

3 Line 3 defines the user disk file, EMPFILE, which contains employee records as
an input chained file (IC In columns 15 and 16), meaning that records are
processed randomly from an indexed sequential file (I in column 32). EMPFILE
records are fixed in length at 100 bytes and blocked 100 bytes. Column 30
indicates an 8-byte key field (employee number) is used to access this file
randomly (column 28), using a record address (A in column 31). The 8-byte key
starts in byte 1 of the record (column 38). The file is stored on a disk device
(column 40-46) and has standard labels (S in column 53).

4 Line 4 defined the IMS 90 OMA file name SCRNOUT as an output file (0 in
column 15) with fixed-length records (F in column 19). The record length of 103
bytes consists of 16 bytes for the OMA header, 8 bytes for the employee number,
and the remaining 79 bytes for the name and address of the employee.

•

•

•

....

• • •
SPE~V+UNIVAC

RPG II
CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

PROGRAM---------------- PROGRAMMER ------------------ DATE-------- PAGE __ I_ OF _!f__ PAGES

~~:~H
PAGE 1-----i
NO

213

LINE
NO

D, 1 H

~~~~F 

... f]I 
NO. LINE 

NO 

n tj. . 

5 16 17 

~ 4. • .• 

~ 
!.!..! 

0.1 

0 I. I IF 

011• IF 

j 1 ,o. IF 

UD1·1166 Rev. 4-78 

COMPILATION MOOE :W: INVERTED 
~ PRINT 

lit GENERATE ..Jr--
~-'-'------1 ~ DEBUG CODE : 

OPERATOR ..J O NOT 
CONTROL : ~ USED 

--------< 0 NOT USED :::::. 
NOT USED .- 0 

FORMS ALIGNMENT INDICATOR INITIALIZATION 

:W: :w: :W: :W: FILE TRANSLATION 
Z SIGN HANDLING z Z z 
< < ~ < 
..J ..J ..J ..J 
m BINARY SE AA CH m m m I NOT 
a: NOT a: IC It USED 
~ USED NOT USED 0 0 0 

~ 
Z SHARED 
~ 1/0 
• AREA 
c or--

10 14 16 16 20 21122 25126127 30131132 47148149 

I 1 II I _J_ 

CONTROL CARD SPECIFICATIONS 

NOT USED 

.L.J..-L.J.. 

69170 

CCA 
NAME 

PROGRAM 

80 

I I I IAIE,N,P:!NGJ 

FILE DESCRIPTION SPECIFICATIONS 
FILE TYPE 

FILE DESIGNATION 

ENO OF FILE 

SEQUENCE 

FILE FILE FORMAT 

NAME 

~I I U~I~ BLOCK 
LENGTH 

13114115116117118119120 23124 

FILE PROCESSING MODE 

KEY OR RECORD 
ADDRESS FIELD LENGTH 

RECORD ADDRESS TYPE 

FILE ORGANIZATION 

> OVERFLOW 

RECORD 
Q INDICATOR 

"' LENGTH 9 KEY FIELD 

"' " STARTING ::; 0 
LOCATION I w 

27128129 30131132133 34135 38139140 

EXTENSION OR 
LINE COUNTER 

CODE 

DEVICE 

46147 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I L__j____J___[_i _ 

LABELS 

NAME OF 
NOT 

1~1 
LABEL EXIT 

USED OR NAME OF 
USER DEVICE 

ROUTINE 

OPTION 

NUMBER 
OF BYTES 

IN MAIN 
STORAGE 

TO BE RESERVED 
FOR ISAM 

INDEX 

ENTRY 

FILE ADDITION/UNORDERED LOAD 

CYLINDER OVERFLOW 
SPACE PERCENTAGE (X10l 

z 
3 
er. 

NUMBER OF EXTENTS 

TAPE REWIND OPTION 

FILE CONDITIONERS 

NOT I PROGRAM 
~ I USED IDENTIFICATION 

5 

59160 65166167(68 69170171 72173 74175 BO 

4 

111 : 11 : I : I : 

Figure 3-39A. EMPINQ Control Card and File Description Specifications Form 

I 

c .,, 
a, 
CD .. 
~ 

::0 

~ 

-en :!: .,, 
en m 
CD ::0 
o~ 
)> c .,, z 
;:i1 < 
c=; ~ 
~ -o o en z, 
en w 

cw 
-0 I a. .. 
"' 01 ... ,,,, 
CD Ill 

)> 



+ 

+ 

~ /3 

.... 

SPE~v+uNIVAC RPG II 

PROGRAM ______________ _ 
PROGRAMMER_~~~~~~~~~~~~~~~~-

DATE IN~~J F9R~A~ s~_:~1F1CATIONS 

PAGE 
NO. 

FORM I RECORD IDENTIFICATION 
TYPE ~ RECORD IDENTIFICATION CODES 

LINE 
NO. 

FILE 
NAME 

z 
0 

ffi 
I-u POSITION 

I-' r 0 0 a: 
z - < 
II t".'! :t: z u u 

2 

•os1T10N I~ I e I; 
11 ~ :t 
z u u 

POSITION 

5,o z -
II ~ 
z u 

1 2 I 3 6 I 6 I 7 24125126.127128 31132133134135 JBl39140l41 l42 l43l44 

11111-+--W 
,--1_ I I I I I I I 

FIELD LOCATION 

FROM TO 

47148 51 IS2ISJ 

FIELD DESCRIPTION 

FIELD 

NAME 

_, 
w 

ii: _,"' _,_, 
0.:. a:_, 
I-
z 
0 u 

a: 
Ow 
wo 
9 u! 

0 '!:! ~ 
~" a: z 
"z §g 
~z a:., :c -
u" 0-' 
I- :c _,w 
cU w a: 
:i; ;;: 

FIELD 
INDICATORS 

I 
"' ~~ <g 

~ 
w .. z Na: 

i 0 

68159 60161 62163 64165 66167 68169 70171 

NOT I PROGRAM 
USED IDENTIFICATION 

74175 80 

' ' ' 

Figure 3-398. EMPINQ Input Format Specifications Form 

SPE~v+wNIVAC RPG II 
CALCULATION SPECIFICATIONS 

PROGRAM-------------- PROGRAMMER----------~-~---- DATE -------- PAGE _.3_ OF _±_ PAGES 

FORMC CONDITIONS CALCULATION RESULTING 

~ 
_, INDICATORS RESULT FIELD INDICATORS 

~IC 

1 1 ARITHMETIC "'" w 

"'5 ~ t; . - 0 
PAGE 53 I-:> PROGRAM 

0 a COMPARE COMMENTS NO. LINE ~J FACTOR 1 OPERATION FACTOR 2 NAME FIELD IDENTIFICATION 
NO. ~ _, LENGTH I? < i>il 1<211-2 _, ~ 

< _, 
LOOKUP 

~ ! ~ ~ 
:I < - :c (FACTOR 21 IS trl II 

z z 0 :c HIGH LOW ]BiJAL R 
1 2 3 5 • 1 8 8 10 11 12 13 14 15 16 17 18 27 28 32 33 42 43 48 49 51 52 53 54 56 66 57 68 59 60 74 76 80 

l_i •_._ c rq IE.~ Ir , U,tlJIJ.,L lf..M.0_,f,I, L £ _l 1 ru _l _1 _l _1 J 
0 I c I ...L ...Ll l l I I 

. 0 I c 1 l...L ...L ...L l ...Ll I I 

Figure 3-39C. EMPINQ Calculation Specifications Form 

• • • 

c 
"'ll a, 
CJ) -~ 
:JJ 
CD 
:c: 

-en s:: "'ll 
cnm 
<D :JJ 
o~ 
)> c 
"'ll z ,,_ 
c ); 
~ (') 
=! 0 
0 CJ) z, 
CJ) w 

cw 
'8. !. 
Ill U1 .. "' CD O" 
)> 



t 

If-. 
-s. 

'"· r1.. 

'~ l'j: 
tQ 
et 
~ 

i~ 

t 

• • 
SPE~V+UNIVAC 

• 
RPG II 

OUTPUT FORMAT SPECIFICATIONS 
PROGRAM~~~~~~~~~~~~~~~ PROGRAMMER DATE PAGE_±_ OF___±_ PAGES 

FOAM a STACKER SELECT/ 
SPACE SKIP OUTPUT INDICATORS 

~ F•FETCH OVERFLOW 
DATA FORMAT CODES ZERO CODES ACTION 

I I P/B/LIR 
COMMAS 

BALANCE TYPE H/O/T /E NEGATIVE VALUE INDICATION INSERTED x REMOVE 

a: NONE CR - TO PRINT PLUS SIGN 
PAGE .. a: FIELD "' 1 A J YES YES EDIT DATE NOT PROGRAM 
NO. ~"' "' NAME 

... ENO y 
IDENTIFICATION LINE ..... a: ffi ~ ~ POSITION 2 B K YES NO FIELD USED 

NO. FILE 

~ 
I-+- = ~ 0 :;: 0 " 

3 c L NO YES ZERO .. IN z 
NAME ~ "' < ... ... 15 

0 z 4 0 M NO NO SUPPRESS ., 
" < OUTPUT 

R 0 0 t: ; z z ~ RECORD z z 0 " 

*' +T.-
z "' ., CONSTANT OR EDIT WORD 

I 2 3 5 8 1 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31 32 37 38 39 40 43 44 45 70 71 74 75 80 

_L •1.1 0 lf..c. .IUoo.,u.u_ lo loi I b. b_ l J_ I 

0 2 0 I l ,I(,] ' .LWF~ f=JM;r. I l ...L 

0 3 0 I li;;,ftf,P .N ,UM l iM ...1 .J. J_ ...L _J_ J I .. 1 ...L 

0 • 0 J itlf,A,Mi;. J,M ...L J_ _J__J__J. I ...L 

.,. 0 I $,LQ,i; ,f.J: l .iJ.A ...1 J_ I ...L 

0 • 0 I _J_ II' .J'.,Y,ST...1. J_B_.4 ...1 .J. J_ ...1 I .1 J 1 _J_ _j ...l....l._l_ 

0 1 0 J_ _J_ inl p lL 03 J_ I _i ...J._j_ 

_J ••• 0 _,_J_ ...1 ID _J_ lo I B_~ J_ l I _i _i 

.,._,_ 0 _J_ I ...1 _i ...1...1...L .J. J. ,K,~ ',i;,~,Q.O ,RIF,MJ:,,1 
I I I I I I I _J_ _i _J_ 

1 0 0 J_ e;~u.M _i .a.4 _l I 

1 I 0 _,_J_ J_ l I 

1 2 0 I I _l___LL J_ .J._i_i_i...J.1-1...J....J._i_l__il_J_ij_i_J _J _i 

1 3_J_ 0 I _J_...J. _J_J J_ _i _J_ 1-1...J....1 I I I j _J _J .J. .J. 

_J I 4 0 _J I _J _J_...J. J_ _J_ J_1_J. I I _J_ _J_ _J _J_...J. 

1 I 0 J_ J_ l I I 

1 • 0 J_ _J_ _J _i J_ J_ I 

1 1 0 I J _l I _i 

1 • 0 I J_ ....L ...1 J I 

I I 0 I J J_ I _J_ _i 

2 0 0 J_ J ...1 ...1 ....L -1....1. 
UDl-llH REV. 2-76 

Figure 3-390. EMPINQ, Output Format Specifications Form 

c 
-p 
m ... 
.i:-

~ 
!C 

- CJ) 
3:: "ti 
C/l m 

8~ 
)> c 
"ti z 
"ti -c: ): 
~ (') 

:::! 0 
0 CJ) z-..... 
CJ) w 

cw 
'8. .!.. 
QI UI 
.. N 
<D n 
)> 



t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3-152d 
Update A 

Line Explanation 

5-6 The IMA file SCRNIN includes an 8-byte employee number entered as an input 
field from the terminal. Columns 15 and 16 indicate that no retrieval sequence is 
required for this record type in relation to other record types in the file. There are 
two record types on input. The first record type is shown by the 01 indicator 
(columns 19-20). Indicator 01 is set on when the terminal operator enters the 
employee number. 

7-12 These lines define the disk record for the chain file EMPFILE. When the CHAIN 
operation occurs (line 13) and the employee record is found, the record
identifying indicator 02 (column 19-20) is turned on. 

13 The CHAIN operation retrieves the employee record using the employee number 
as a key. When the record is found in the disk file, indicator 02 is set on. When 
the record is not found, indicator 99 is set on. 

14-20 Line 14 defines the IMS 90 OMA file as a detail type output record (0 in column 
15). If indicators 01 and 02 are on, IMS 90 sends the screen format INFOFMT 
and the name, street, city, state, and zip code of the employee (variable fields 
described on lines 15 through 20) to the terminal. The end position of employee 
number is 24 because the OMA header uses the first 16 bytes and the employee 
number is 8 bytes long. The K7 in columns 42 and 43 indicates the number of 

• 

characters contained in the format name (INFOFMT) that is defined as a constant • 
in columns 46-52. 

21-23 Line 21 defines the error screen format as a detail type record. If the employee 
number is not found in the disk file, RPG II sets indicator 99 on and IMS 90 
sends the error screen format ERRORFMT to the terminal. KS in columns 42 and 
43 indicates the number of characters contained in the format name 
(ERRORFMT) that is defined as a constant in columns 46-53. Line 23 defines the 
variable data field of the employee number that follows the 16-byte output 
message header. 

Both screen formats INFORFMT and ERRORFMT must be constructed separately at screen 
format generation time. This process defines the display constants, including the error 
message NOT FOUND IN FILE, which is itself a display constant. The RPG II action 
program then must supply the exact variable data needed by the screen formats. 

Figure 3-19A shows the results of the complete output screen format (INFOFMT) 
containing display constants (shaded fields) and the variable data supplied by this action 

..._ program. Figure 3-39E shows an example of the error screen generated when an 
employee record cannot be found. Display constants are shaded. 

87654321 

Figure 3-39£. Error Screen Format 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

3.17. SAMPLE BAL ACTION PROGRAM 

3-152e 
Update A 

The sample user-written action program in Figure 3-40 processes a simple inquiry 
transaction. A sample input message and the corresponding output message are shown in 

Figure 3-40. 

The file referenced in this transaction is the STATE file of the examples in 3.14. The 
transaction retrieves and displays the name of the capital city when the state name is 

given as input. 

~ IMS 90 associates the transaction code C with the action program ACT3 in Figure 3-41. 
ACT3 uses the name of the state given in the input message as a key to obtain a record 
from the STATE file. If the record does not exist, an error message is displayed. 

C ALASKA 
CAPITAL: JUNEAU 

~ Figure 3-40. Example of Simple Inquiry Transaction 



• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 

10 16 

TITLE 'IMS STATE 
PRINT NOGEN 

ACT3 START 0 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

CAPITAL ACTION PROGRAM' 

ACTION PROGRAM ENTRY POINT 
* ALLOCATE REGISTERS TO COVER: 

USING *.R2 
USING ZA#DPIB,R3 
USING ZA#IMH,R4 
USING WORK.RS 
USING ZA#OMH.R6 

* INITIALIZE 
STM 

LR 

LM 

14,12,12(13) 

R2,Rl5 

R3,R6,0(Rl) 

THIS ACTION PROGRAM 
THE PROGRAM INFORMATION BLOCK 
THE INPUT MESSAGE AREA 
THE WORK AREA 
THE OUTPUT MESSAGE AREA 

SAVE ACTION SCHEDULING REGISTERS 
RD$ CONTAINS SAVE AREA ADDRESS WHEN 
CONTROL IS RECEIVED BY 
ACTION PROGRAM. 
ESTABLISH ADDRESSABILITY FOR ACTION 
PROGRAM. RF$ CONTAINS ENTRY POINT 
ADDRESS WHEN CONTROL IS RECEIVED 
BY ACTION PROGRAM. 
ESTABLISH ADDRESSABILITY FOR 
ACTIVATION RECORD. R1$ CONTAINS 
PARAMETER LIST ADDRESS WHEN CONTROL 
IS RECEIVED BY 
ACTION PROGRAM. 

LA R10.SAVEAREA GET ADDRESS OF ACT3 SAVE AREA 
ST Rl0,8(,Rl3) SET FORWARD POINTER FROM ACTION 

SCHEDULING SAVE AREA 
ST Rl3,4(,Rl0) SET BACKWARD POINTER TO ACTION 

SCHEDULING SAVE AREA 
LR Rl3,Rl0 MAKE ACT3 SAVE AREA THE CURRENT 

SAVE AREA 
* GET STATE RECORD FROM FILE USING STATE NAME KEY IN INPUT MESSAGE 

ZG#CALL GET.(STATE,RECORD,SNKEY) ISSUE CALL TO IMS 90 
CLI ZA#PSC+l,0 TEST STATUS CODE RETURNED IN PROGRAM 

INFORMATION BLOCK BY IMS 90 
BNE ERROR NON-ZERO MEANS ERROR 

* BU I LO OUTPUT MESSAGE 
MVC OUTTEXT(4),NEWLINE PUT DEVICE INDEPENDENT CONTROL 

CHARACTERS INTO MESSAGE TO CLEAR 
TO END OF LINE AND POSITION TO 
BEGINNING OF NEXT LINE 

MVC OUTTEXT+4(L'MSGCON1).MSGCON1 PUT TEXT CONSTANT INTO 
MESSAGE 

3-153 
Update A 

MVC OUTTEXT+4+L'MSGCON1(L'SCAPITAL),SCAPITAL PUT CAPITAL NAME 
INTO MESSAGE 

B TERM 
* PROCESS ERROR 

Figure 3-41. Sample BAL Action Program (Part 1 of 2) 



UP-8614 Rev. 1 

10 

ERROR MVC 

CL 1 
BNE 

16 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

OUTTEXT(4) ,NEWLINE 

ZA#PSC+l, I 
IOERROR 

CLEAR TO END OF LINE 
TO BEGINNING OF NEXT 
TEST STATUS CODE 

ONE MEANS INVALID KEY 

3-154 
Update A 

AND POSITION 
LINE 

MVC OUTTEXT+4 ( L 'MSGCON2) ,MSGCON2 PUT' INVALID STATE NAME' 
INTO MESSAGE 

B TERM 
IOERROR MVC OUTTEXT+4 ( L 'MSGCON3), MSGCON3 PUT '10 ERROR' INTO 

MESSAGE 
' TERMINATE EXECUTION OF ACTION PROGRAM BY RETURN CALL TO IMS 90. 
' THE DEFAULT TERMINATION INDICATOR IN THE PROGRAM 
' INFORMATION BLOCK IS 'N' FOR NORMAL TRANSACTION TERMINATION. 
' THE DESTINATION TERMINAL ID IN THE OUTPUT MESSAGE AREA HEADER IS 
' SET TO THE DEFAULT VALUE OF THE ORIGINATING TERMINAL AND THE TEXT 
' LENGTH IS SET TO THE CONFIGURATION STANDARD LENGTH. 
TERM ZG#CALL RETURN 

EJECT 
' CONSTANTS 
STATE DC 
MSGCON I DC 

CL?' STATE' 
C'CAPITAL' 

MSGCON2 DC C'INVALID STATE NAME' 
MSGCON3 DC C' I /0 ERROR' 

ISAM FILE NAME 

NEWLINE ZO#POSC,0,0 ICAM PROCEDURE TO GENERATE DICE SEQUENCE FOR 
NEW LINE CONTROL WITH CLEAR 

EJECT 
' ACTIVATION RECORD DEFINITION 

ZM#DIMH 
TC ODE OS x TRANSACTION CODE 

OS x SPACE 
SNKEY OS XL4 STA TE NAME KEY 

EJECT 
WORK DSECT WORK AREA 
RECORD EQU 
SN AME OS XL14 STA TE NAME 
SPOP OS Xl8 STA TE POPULATION 
SCAPITAL OS XL 2 5 ST A TE CAPITAL 
SAVEAREA OS IBA REGISTER SAVE AREA 
PLIST OS 4A PARAMETER LIST REFERENCE BY ZG#CALL MACRO 

EJECT 
ZM#DOMH OMA CONTROL HEADER 

OUT TEXT OS XL42 OUTPUT MESSAGE TEXT AREA 
REGEQU THIS PROC DEFINES MNEMONIC REGISTER NAMES 
END 

Figure 3-41. Sample BAL Action Program (Part 2 of 2) 

• 

• 

• 



• 

UP-8614 Rev. 1 

4.1. PURPOSE 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

4-1 

4. Generating Edit Tables 

The validity of input data is a major concern in an online system. Writing validation 
procedures in an action program, however, can be a complicated and time-consuming 
process. This process can be greatly simplified by means of an offline IMS 90 utility 
program, the edit table generator (ZH#EDT), available under single-thread and multithread 
IMS 90 but not basic IMS 90. The edit table generator offers a convenient means for 
converting freeform input received from terminal operators into fixed formats required by 
action programs and checking this input for types of data, value ranges, and presence of 
required fields. 

The output of the edit table generator is written to the named record (NAMEREC) file, from 
where it is loaded at the appropriate time by applications management. Each edit table is 
associated with a particular action at configuration time by means of the EDIT parameter 
in an ACTION section. The edit table utility can be run either before or after configuration, 
but the NAMEREC file must be previously initialized. 

4.2. INPUT TO EDIT TABLE GENERATOR 

Input to the edit table generator is in the form of keyword parameters that define the edit 
table, each field of the input message to be edited, and the edit criteria for each field. 

4.2.1. Coding Rules 

The following rules apply to the coding of input to the edit table generator. Note that the 
statement conventions in Appendix A also apply. 

1. Input cards must contain sequence numbers in columns 77 through 80. Input cards 
must be presented in ascending order. The lowest permissible sequence number is 
0001. 

2. Parameters can be coded in any columns between 1 and 76. Blanks are ignored and 
are permitted anywhere in the edit table definition . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

4-2 

3. Specifications for an edit table and for each field can span more than one line. 
However, a keyword and its value must be contained on one line. 

4. A new edit table specification must start on a new line. Each field need not begin on 
a new line. 

5. The field separator character specified by the SEP keyword parameter must be used 
as the field separator throughout the edit table specification, as well as the input 
message to be edited. Double separator characters indicate the end of the edit 
definition. A new edit table can establish a different separator character. 

6. The SEP, ETAB, and KEY parameters must be coded in the prescribed order; the 
remaining keyword parameters can be specified in any order. SEP and ETAB are 
coded once for each edit table. The remaining parameters are repeated for each field 
in the input message to be edited. 

7. Numeric values are positive unless preceded by a minus sign (-). The plus sign (+) is 
not permitted in numeric values. 

4.2.2. Input Parameters 

The character specified by the SEP parameter is used as the separator. 

Format: 

SEP=separator-character 
ETAB=tab I ename 
KEY=jkey~o~d t 

lpos1t1on\ 
LEN=field- length 
POS=starting-posit ion 
[FIL=f i I I-character] 

[JUS=~-~] 
[MAN~~~f] 
[MAX =ma x i mum - v a I u e] 

r::={tff m-u 1 "] 

where: 

SEP=separator-character 
Specifies the field separator character for both the edit table definition and the 
input message to be edited. It can not be a blank, equal sign, or minus sign. This 
parameter is required, must be the first entry on the first line of the edit table 
definition, and can be specified only once per edit table. • 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

4-3 

ETAB=tab I ename 

KEY 

Identifies the edit table and must immediately follow the SEP parameter. This 
specification associates the edit table with an action at configuration, via the 
EDIT=tablename option in the ACTION section. 

The tablename must be 2 to 7 alphanumeric characters, the first of which must 
be alphabetic. 

Identifies the input message field for which edit criteria are specified in 
subsequent parameters and must be the first parameter specified for each field. 
The edit table generator associates all subsequent specifications with this field 
until another KEY parameter is encountered. 

Input message fields can be positional or keyword. Positional fields are defined 
by a numeric specification in the KEY parameter (e.g., KEY=1 ). Keyword fields 
are defined by an alphanumeric specification (e.g., KEY=AMT). Positional fields 
must precede keyword fields and must be specified in order, beginning with 1. 
Once a keyword field is defined, all additional fields must be keyword; positional 
fields are no longer accepted for the current edit table. 

KEY=keyword 
Specifies a 1- to 3-character alphanumeric identification, the first character 
of which must be alphabetic, for a keyword field in the input message . 
Keyword fields must be entered at the terminal in the form keyword data. 
Once a keyword field is identified in the edit table definition, all subsequent 
fields must be defined as keyword fields. 

KEY=position 
Specifies the relative position of the field as it appears in the input message. 
Positional fields must be defined in numeric order, starting with 1. The first 
field in an input message is always the transaction code, and this must 
always be specified as a positional field. 

LEN=f ield-length 
Specifies the length of the edited field as required by the action program and is a 
required parameter. A maximum of 255 characters can be specified for 
alphanumeric fields and four characters (one full word) for binary fields. Ten 
characters is the maximum length for numeric fields unless both MIN and MAX 
parameters are specified for this field. If a numeric field is identified in the action 
program as packed decimal, up to 16 characters can be specified. 

NOTES: 

1. If the field-length is larger than the width of the screen on which data is to be 
entered, //vi.:;, 90 removes the DICE code at the end of each line of terminal input and 
replaces it with a blank character. These additional blank characters must be provided 
for in the action program and included in the field-length specified by the LEN 
parameter . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

4-4 

2. The length specified for both binary (TYP=B) and packed (TYP=P) fields must equal 9 
the length for each binary or packed item in the input message. For example, if a field 
is defined as packed with a LEN=3 then a number keyed in at the terminal cannot be 
1000 or greater. This will cause an error stating your input field is too large, even 
though 1000 may be represented in a packed field in 3 bytes. 

3. If the transaction code (the first field in the input message) is less than five 
characters, the terminal operator must key in a space before entering the separator 
character for the next field. The space is included in the field-length specified by the 
LEN parameter. For example, if the transaction code is PAY, the operator must key in 
PAY 6,. and the LEN parameter must be specified as LEN-4. 

The length of the first field can be greater than five characters, but only the first five 
characters are used in the transaction code. The LEN parameter should specify the 
actual length of the field. 

POS=starting-position 
Specifies the starting position of this field as it appears in the edited message 
and is a required parameter. The first field starts at 0. The maximum permissible 
specification is 32, 767. 

F I L= f i I I - ch a r a c t e r 

Optionally specifies the fill character to be inserted in the edited field when the 
field as input from the terminal is less than the field-length specified by the LEN • 
parameter. The default fill character is 0. If spaces (X'40') are desired as fill 
characters, this parameter can be coded as either FIL= or FIL=.6; i.e., a space 
can be included or omitted before the separator character for the next field. 
Binary fields are always filled with binary zeros; therefore, this parameter is 
ignored if specified for a binary field. 

JUS=L 

Specifies left justification of this field in the edited message. Binary and packed 
fields are always right-justified; therefore, this parameter is ignored if specified 
for a binary field. 

JUS=R 
Specifies right justification of this field in the edited message and is the default 
assumption. 

MAN=I 
Specifies that this field is not mandatory in the edited message in order for input 
to be acceptable. 

MAN=Y 
Specifies that this field is mandatory in the edited message. 

MAX=maximum-value 
Specifies the maximum value allowed for the field in the input message. This 
parameter is applicable only to numeric fields. The highest value that can be 
specified is 231-1. The number of characters in this value must not exceed the 
length specified by the LEN parameter. 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

4-5 

MIN=minimum-value 

TYP 

Specifies the minimum value allowed for the field in the input message. This 
parameter is applicable only to numeric fields. The lowest value that can be 
specified is -(231-1 ). The number of characters in this value must not exceed the 
length specified by the LEN parameter. 

Specifies the type of data to be contained in the edited field. 

TYP=A 
Specifies alphabetic data. A field defined to the editor as alphabetic is 
treated as an alphanumeric field. 

TYP=B 
Specifies binary data. 

TYP=I 
Specifies alphanumeric data. 

TYP=N 
Specifies numeric data. 

TYP=P 
Specifies packed decimal data . 

4.3. EXECUTING EDIT TABLE GENERATOR 

4.3.1. Sample Execution Run Stream 

Once input parameters describing the edit table format are specified on cards and the 
NAMEREC file has been initialized, the ZH#EDT edit table generator utility can be executed 
using the control stream illustrated in Figure 4-1. 

11 JOB ADD EDT,, A000 
II ave 20 II LFD PRNTR 
II OPTION DUMP 
II ave 50 II VOL DS9999 II LBL NAMEREC,DS9999 II LFD NAMEREC 
II EXEC ZH#EDT 
1$ 

source cards 

source cards 
I• 
I& 
I I F IN 

Figure 4-1. Sample Execution of Edit Table Generator 



t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

4-6 
Update A 

Note that the LFD name of the NAMEREC file is NAMEREC, not ISAMNRF as must be • 
specified for the NAMEREC file utility and the data definition processor. 

If the input definition is acceptable, the generated edit table is written to the NAMEREC 
file and the following message is issued: 

tablename ADDED 

If the edit table has the same name as a table already existing in the NAMEREC file, the 
new edit table replaces the existing table, and the following messsage is issued: 

TABLE ADDED, DUPLICATE DELETED 

If errors cause rejection of the edit table, the following message is issued: 

tablename REJECTED 

Another way to determine edit table errors is to look at the UPSI byte. The following UPSI 
byte values pertain to the edit table error status: 

UPSI Byte Contents Meaning 

00 No errors 

40 Warning. ZH#EDT continues processing edit table input parameters 
but no edit table is built. 

80 Fatal error. Edit table processing terminates. 

4.3.2. Error Processing 

When the edit table generator encounters a file 1/0 error or certain types of input errors, 
it terminates and prints a message in the output listing. The resulting value in the UPSI 
byte is 80. Most types of input errors do not cause termination. Processing and validation 
continues, but an error message is printed and the edit table is rejected. Input 
specifications for the edit table generator are not printed in the output listing. This type of 
error results in an UPSI byte value of 40. 

If an 1/0 error occurs while reading input to the edit table generator, the following 
message is issued, and the program terminates with an UPSI byte value of 80: 

INPUT READ ERROR, SCAN TERMINATED 

If an error occurs while opening, reading, or closing the named record file, the following 
error message is issued and the program terminates with an UPSI byte value of 80: 

FILE ERROR. SCAN TERMINATED 

• 

• 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

4-6a 
Update A 

• Errors in the input statements are reported in the following format: 

• 

• 

nnnn cc error-message-text 

where: 

nnnn 

cc 

Is the sequence number in columns 77 through 80 of the card containing the 

error. 

Is the column number of the beginning of the input text that is in error. This 
column number is suppressed if the error is detected during final validation of all 
parameters for a given field. 

error-message-text 
Is the description of the error as listed in Table 4-1 . 



• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

4-7 
Update A 

An example of an input statement error and the resultant error message is as follows: 

Input: 

SEP=,ETAB=EDIT1 ,KEY=1,LEN=5,POS=O, JUS=X,MAN=Y 0002 

Error message: 

0002 39 JUSTIFICATION ILLEGAL 

Table 4-1 lists alphabetically the message texts inserted into the input statement error 
message. In each case, processing continues, unless otherwise indicated in the 
explanation column. 

Table 4-1. Edit Table Diagnostic Messages (Part 1 of 2) 

Error Message Text Explanation 

B TYPE LENGTH GR THAN 4 Four characters (one full word) is maximum 

CARDS NOT IN SEQUENCE Scan terminated. run aborted* 

DIGIT MUST BE NUMERIC The value specified for the LEN. MAX. or 
MIN parameter was not a numeric value . 

DOUBLE SEPARATOR MISSING Warning only; end-of-file encountered while 
searching for separator 

DUPLICATE NAME Duplicate name for nonpositional field 

FIELD NOT ACCEPTED, KEYS STARTED Positional parameters not allowed after 
nonpositionals started 

FIELD NOT IN SEQUENCE Positional parameters must be in sequence 

FILLER MUST BE SINGLE CHARACTER Self-explanatory 

ILLEGAL FIELD TYPE Only A. B, M, N, or P accepted 

INVALID MAN SPECIFICATION Only Y or N accepted 

INVALID NAME Name too long or contains invalid characters 

INVALID SEPARATOR Scan terminated, run aborted; = and - are not 
allowed as separators* 

JUSTIFICATION ILLEGAL Only R or L accepted 

KEYWORD ETAB MISSING Self-explanatory 

KEYWORD INVALID Self-explanatory 

KEYWORD KEY = MISSING Self-explanatory 

KEYWORD SEP= MISSING Scan terminated, run aborted* 

LEN OR POS EXCEEDS MAX Maximum length is 255; maximum position is 
32,767 

*These errors set the UPSI byte to 80; all other errors in this table result in an UPSI byte value of 40. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

4-8 
Update A 

Table 4-1. Edit Table Diagnostic Messages (Part 2 of 2) 

Error Message Text Explanation 

LEN OR POS MISSING Required parameters 

LEN ZERO A zero value was specified for the LEN 
parameter 
Value must be greater than zero 

MAX OR MIN ABSOLUTE VALUE TOO LARGE 231_ 1 is largest absolute value allowed 

MAX VALUE LESS THAN MIN The value specified for the MAX parameter 
is less than the value specified for the MIN 
parameter 

N TYPE LENGTH GR THAN 10 Ten characters is maximum unless MAX and 
MIN both specified 

NO DEFAULT FOR THIS FIELD Parameter value must be specified 

NO FIELDS DEFINED Empty table not allowed 

P TYPE LENGTH GR THAN 16 Sixteen characters maximum for packed 
decimal field 

REPEATED FIELD Parameter already specified 

SEPARATOR CHARACTER MISSING Self-explanatory 

SEQUENCE NUMBER NOT NUMERIC Scan terminated, run aborted* 

= SIGN MUST FOLLOW KEYWORD Self-explanatory 

TOO MANY FIELDS Scan terminated, run aborted; output buffer 
overflow* 

xxx OVERLAPS yyy Warning only; overlapping fields permitted 

*These errors set the UPSI byte to 80; all other errors in this table result in an UPSI byte value of 40. 

4.4. ENTERING INPUT MESSAGES FROM TERMINAL 

When an input message for which an edit table has been generated is entered from the 
terminal, it is processed by an IMS 90 component called the expanded input editor. The 
following considerations apply to the entering of these input messages. 

• The transaction code must be the initial field of the message. The first field of the 
edited message at execution time may be two characters or longer; however, if the 
first field is longer than five characters, only the first five characters are used as the 
transaction code to schedule the action programs. 

• Positional fields begin with the first nonblank character and extend to the next 
separator. Positional fields must appear in the input message in the same order as 
specified in the edit table definition. If a positional field is omitted, a separator 
character must be entered to indicate its position. Positional field editing is terminated 
when all positional fields have been edited, when a keyword field is encountered, or 
when end of data has been reached. A positional field may not contain an equal sign. 

• Keywords must be followed by an equal sign with no intervening blanks. Data starts 
immediately after the equal sign and extends to the next field separator. 

• 

• 

• 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

4-9 

• Numeric values are positive unless preceded by a minus sign. The plus sign(+) is an 
invalid character. 

• Error messages are displayed on the first line of the display terminal; therefore, it is 
recommended that input messages be started on the second line so that the input is 
not erased by an error message. 

• If fields are continued from one line to another, IMS 90 removes the DICE code at the 
end of each line and replaces it with a blank character, which is sent to the action 
program as part of the data. Fields that do not exceed the width of the screen should 
always be entered on one line. If a field exceeds the screen width and must be 
continued from one line to another, the terminal operator should avoid splitting a 
word between lines, and the action program should provide for the additional blank 
characters. 

• If the terminal input ends with a positional parameter (no keyword parameters are 
specified), the separator character must end the input message; otherwise, the input 
message could be partially deleted. A correct terminal entry is: 

INFOR,BIOLOGY,CLASS2,MARY J. BLISS, 

4.5. SAMPLE APPLICATION 

Figure 4-2 and Table 4-2 describe sample input to the edit table generator for an accounts 
receivable application where the edited input is to be delivered to the action program in 
the following format: 

f~~TR_~_DN-S~~
5

~~~~~NA-M~E~~--J::~__.'S~~~~A-D-D-RE_S_S~--1:~1--
6

~
5

-A_M_O_U_N_T_
6

L
9

~-N-~-~_:_ER~-'
SEP=.ETAB=EDIT1,KEY=l,LEN=5, POS=0, MAN=Y,
KEY=2, LEN=20, POS=5, FIL=, JUS=L ,MAN=Y,
KEY=3, LEN=40, POS=25, FIL= , JUS=L,
KEY=AMT, LEN=4, POS=65, Ml N=l000, TYP=B .MAN=Y, FI L=0, JUS=R,
KEY=SN, LEN=6, POS=69, FIL=, JUS=R,,

Figure 4-2. Sample Input to Edit Table Generator

IL
fr

77 80
0001
0002
0003
0004
0005

UP-8614 Rev. 1

Line Parameter

SEP=,

ETAB=EDIT1

KEY=1

LEN=5

POS=O

MAN=Y

2 KEY=2

LEN=20

POS=5

FIL=

JUS=L

MAN=Y

3 KEY=3

LEN=40

POS=25

FIL=

JUS=L

4 KEY=AMT

LEN=4

POS=65

MIN=1000

TYP=B

MAN=Y

FIL=O

JUS=R

5 KEY=SN

LEN=6

POS=69

FIL=

JUS=R

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Table 4-2. Description of Sample Input to Edit Table Generator

Explanation

4--10

The field separator is a comma for both the edit specification and input from the terminal.

The edit table name is EDIT1 .

The first field described is positional. It must be the first field in the input message. This
field is always the transaction-id.

The edited field is five characters long.

In the edited message the field begins in position O.

The field must be present for the message to be acceptable.

The field is positional. It must be the second field in the input message.

The edited field is 20 characters long.

In the edited message the field begins in position 5.

The field is to be blank filled in the edited message.

The field is to be left-justified in the edited message.

The field must be present for the message to be acceptable.

The field is positional. It must be the third field in the input message.

The edited field is 40 characters long.

In the edited message the field begins in position 25.

The field is to blank filled in the edited message.

The field is to be left-justified in the edited message.

The field is a keyword field. AMT=n must be specified in the input message.

The edited field is three characters long.

In the edited message the field begins in position 65.

The minimum level allowed for the message to be acceptable is $10.00 (entered as 1000).

In the edited message the field is to be converted to binary.

The field must be present for the message to be acceptable.

The field is to be zero filled in the edit message. (This parameter could have been
omitted.)

The field is to be right-justified in the edited message. (This parameter could have been
omitted.)

The field is a keyword field.

The edited field is six characters long.

In the edited message, the field begins in position 68.

The field is to be blank filled in the edited message.

The field is to be right-justified in the edited message. (This parameter could have been
omitted.)

End of edit definition.

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

4-11

The following examples represent freeform input from the terminal and the resulting
messages sent to the action program in accordance with the specifications in the edit
table generated for this application or, in case of error, the output message displayed at
the terminal. Note that in these examples, the 4-character binary field specified for the
AMT entry is represented by an underlined, 4-hexadecimal-digit field. Spaces between
each delimiter and the first character of the next field are ignored.

Terminal Input:

PAYMT, JOHN D. SMITH, 1112 BREEZE DR. PHILA. PA. 19160,
AMT=2500,SN=123456

Edited Message:

PAYMT JOHN6.D.6.SMITH6.6.6.6.6.6.6.11126.BREEZE6.DR.6.PHILA.6.PA.6.19160

6.6.6.6.6.6.6.6.09C41 23456

Terminal Input:

PAYMT,JOHN D. SMITH,,SN=123456,AMT=2500

Edited Message:

PA YMT JOH ND.D .6.S M ITHD.6.b,6.
6.6.b,6.6.6.6.6.6.6.6.6.6.09C41 23456

Explanation:

The address field was not specified as mandatory in the edit table input and is
omitted here; an additional comma is coded in its position. The AMT and SN fields are
keyword fields and need not be entered in the order defined in the edit table input.

Terminal Input:

PAYMT ,JOHN D. SMITH,1112 BREEZE DR. PHILA. PA.19160,
AMT=2500,SN=123456

Output Message:

ILLEGAL INPUT

Explanation:

The transaction code field is longer than the LEN specification .

UP-8614 Rev. 1

Terminal Input:

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

PAYMT,JOHN D. SMITH, 1112 BREEZE DR. PHILA. PA. 19160,
AMT=700,SN=123456

Output Message:

AMT IS BELOW MIN

Explanation:

Edit table specifies AMT must be at least 1000

Terminal Input:

4-12

PAYMT, JOHN D. SMITH, 1112 BREEZE DR. PHILA. PA. 19160,SN=l 23456

Output Message:

AMT MISSING

Explanation:

AMT was specified as mandatory. •

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-1

5. Terminal Operation

5.1. TERMINAL 1/0 MESSAGE PROCESSING

IMS 90 terminal operation is concerned with the transmitting and receiving of messages.
For every message transmitted by the terminal operator, there is always at least one
output response. Input messages are of two types - transaction messages and terminal
commands.

Transaction messages are related to action programs, both IMS 90 and user-supplied.
Because several actions can be linked together to form a transaction, each transaction can
include a series of input and output messages. Each transaction is initiated by a 1- to 5-
character transaction code .

When you use the uniform inquiry update element (UNIQUE), file processing transactions
are performed by means of UNIQUE commands. (See Section 6.) The OPEN command is
the transaction code that initiates UNIQUE processing.

File processing functions also can be performed by user-written action programs via user
defined transaction codes and embedded messages. IMS 90 also provides transaction
codes for communicating between terminals (SWTCH), displaying the last valid output
message (DLMSG) for recovery purposes, downline loading user programs to a UTS 400
terminal (DLOAD}, and displaying statistical information (ZSTAT). ~

Administrative and control functions are handled by IMS 90 terminal commands. Master
terminal commands allow overall monitoring of the system and control of the
communications network, while standard terminal commands perform administrative and
operational functions for the individual terminal. All terminal commands start with the
letters ZZ.

5.1.1. Initiating Online Processing

After the IMS 90 start-up procedure has been performed, as detailed in the IMS 90 system
support functions user guide/programmer reference, UP-8364 (current version), the
message IMS READY appears on each terminal that is in a ready state, unless you have
chosen, by configuration, the option of not receiving the IMS READY message. The
terminal operator can then begin transmitting messages. This message appears only once,
at start-up time. Terminals coming online at a later time do not receive IMS READY unless
they are marked down at the time IMS 90 is initiated.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5.1.2. Transmitting Messages from Display and Hard Copy Devices

5-2

When commands and other messages are issued from a display device, the terminal
operator must enter the message and press the TRANSMIT key. If input is from a hard
copy device (e.g., SPERRY UNIVAC OCT 500 Data Communications Terminal or a
teletypewriter), an end-of-text (ETX) character must follow the last character of the
message. In both cases, commands and transaction codes must be entered in uppercase if
the translate option has not been configured.

When a hard copy device is used, characters or messages erroneously entered can be
deleted through the use of control characters. The control characters are:

Function

Delete a character

Delete a message

Control
Character

H

x

More than one character can be deleted by entering the H consecutively as many times as
there are characters to be deleted.

5.1.2.1. Transmitting DICE Sequences from Hard Copy Devices

On hard copy devices, device-independent control expression (DICE) sequences are
transmitted to action programs by means of the carriage return key and the line feed key.

Before keying in the UNIQUE command OK or CANCEL to execute or cancel an ADD,
CHANGE, or DELETE transaction on a hard copy device, the operator must press the
carriage return key and the line feed key. This is necessary because UNIQUE expects to
receive the DICE sequence before an OK or CANCEL command. If the operator does not
press these keys before transmitting an OK or CANCEL command, IMS 90 cancels the
transaction and returns an INPUT ALTERED message to the terminal. (If this occurs, the
operator reenters the UNIQUE update operation.)

On the other hand, whether the operator should or should not press these keys before
keying input for a user-written action program depends upon whether editing of input
messages has been specified for the action at configuration time and what the action
program expects to receive as input. If no editing has been specified and the keys are
pressed, IMS 90 passes the 4-byte DICE sequence to the action program that receives
control to be processed. If input editing has been specified, the DICE sequence is stripped
entirely (except for the (CR) DICE sequence, which is replaced by a blank). The action
program must be able to accept such characters in the input, and the terminal operator
must be appropriately instructed.

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-3
Update A

• 5.1.2.2. Handling Multiline Terminal Messages

•

•

When keying in an input message at the terminal, the carriage return (CR) DICE sequence +
(1004000016) is replaced by one blank character (4016), unless the carriage return DICE
sequence precedes valid input text or unless the EDIT=NONE parameter is specified in the
ACTION section of the configuration. If the carriage return sequence precedes valid input
text, it is deleted completely. If NONE is specified, the input message is transmitted to the
action program unedited. t
For example, if the word "END" is divided between two lines at the terminal in this
manner:

__________________ EN (CR)

D

the resulting message in the input message area (IMA) of the action program would be:

__________________ EN~D

This example emphasizes that the best approach to multiline message composition is to
use the carriage return between words to avoid embedded spaces in the resulting
message transmitted to the IMA. Note that UNIQUE rejects fields that are divided across
two lines. Consequently, you should avoid splitting fields in messages that use more than
one line .

5.1.3. Initiating a Transaction

The first input message of a transaction must contain a 1- to 5-character transaction code
beginning with the first character of the message. If the transaction code is less than five
characters in length, it must be followed by a blank. If the input message begins with a ZZ,
it is interpreted as a terminal command to be processed by IMS 90.

Transaction codes OPEN, SWTCH, DLMSG, DLOAD, and ZSTAT initiate IMS 90 action
programs and are reserved. Any other transaction code must be defined to the system at
configuration time in a TRANSACT section or it will be rejected as invalid input. In a dialog
transaction, all input messages after the first are not examined for a transaction code and,
in fact, may contain any characters in the first one to five positions except for ZZ.

Transactions can be initiated only from terminals and not from the system console. A
transaction can be initiated by a function key if the function key has been defined at
configuration in a TRANSACT section. A transaction can be initiated only when the
previous transaction or terminal command has been resolved in its entirety. If a
transaction code is entered prior to the resolution of the previous input, it is treated as
unrecognizable input and is ignored.

When an output message requires an input response, that response must be transmitted
prior to the initiation of another transaction .

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5.1.4. Solicited and Unsolicited Output

5-4
Update A

The initial output received at a terminal in response to an input from the terminal is called
solicited output. Solicited output is unconditionally transmitted when it becomes available.

Unsolicited output is any output other than the initial response to a message from the
same terminal. It is available only if specified at configuration. There are two types of
unsolicited output:

• Additional output to the initiating terminal after the original output (i.e., segmented
output). When the volume of output is greater than the screen size of the initiating
terminal, it must be transmitted in segments.

• Output received at a terminal as a result of an input from another terminal (i.e.,
switched output).

To avoid the possibility of unsolicited output conflicting with the terminal operator's efforts
(e.g., developing a screen of data for input), IMS 90 warns the terminal operator of
pending unsolicited output via an unsolicited output indicator as listed in Table 5-1.

Table 5-1. Unsolicited Output Discipline

Display Devices Hard Copy Devices

Unsolicited Message
/CMW*

output indicator waiting light

Acceptance Press message Transmit bell
response waiting light key. Press CTRL G.

Press CTRL C.

*The unsolicited output indicator to a hard copy device is a 4-character message
defined by the MSGWAIT keyword parameter of the TERM macro in the CCA
definition. The default is /CMW. Refer to the ICAM network definition and
operations user guide, UP-8947 (current version).

When output is segmented, the unsolicited output indicator is displayed prior to each
segment. The operator must accept all segmented output.

If the unsolicited output indicator is displayed to notify the terminal operator of the
availability of a message sent from another terminal, the operator can ignore the signal
and transmit an input message, or he can accept the unsolicited switched message by
pressing the message waiting key on display devices or by pressing simultaneously the
CTRL and G followed by the CTRL and C keys (ETX) on hard copy devices.

If more unsolicited messages are waiting, the unsolicited output indicator is sent again
and the operator can again ignore the signal or accept the message.

•

•

The switched output indicator will appear at a terminal only if that terminal is not in .-
interactive mode, unless UNSOL=ACTION is specified to the configurator in the TERMINAL
section.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-5
Update A

• When handling segmented or switched output, it is advisable to indicate output disk
queueing in the ICAM network definition.

•

•

5 .1 .5. Function Keys

Function keys F1 through F4 on the UNISCOPE display terminal F1 through F22 on the
UTS 400 terminal and F1 through F33 on the IBM 3270 terminal provide a fast, efficient ..,_
method of accessing user-written action programs. A function key can be used in either of
two ways - as a transaction code or as a response to an output message. A function key
used as a transaction code must be defined to the configurator in the TRANSACT section.
A function key used as an input response is defined in the action program.

The same function key can be used for both purposes. If the terminal is in interactive
mode, the function key calls in the successor action program identified in the previous
action. If the terminal is not in interactive mode, the function key is interpreted as a
transaction code.

Function keys can be entered from a hard copy terminal by keying in F#nn, where nn is 01
through 33.

5.1.6. Automatic Status Messages

One of the following automatic status messages is output by IMS 90 (multithread only) to
notify a terminal operator of the status of the last input message. The appropriate status
message is sent to the terminal periodically until the end of the current action:

Automatic Status Message

INPUT IN QUEUE

INPUT IN PROCESS

ROLLBACK IN PROCESS

Meaning

IMS 90 has received the input message but has not
yet delivered it to the action program.

The action program has received the input message
and is processing it.

The action program has terminated abnormally, and
the updated user data files are being restored to the
last rollback point.

At any point after the first status message, the terminal operator can cancel the current
transaction via the ZZCNC command (5.2.1.6). Any input other than the ZZCNC command
transmitted prior to the response output message is ignored .

UP-8614 Rev. 1

5.2. TERMINAL COMMANDS

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-6
Update A

Terminal commands are used for various administrative, operational, and control
functions. Master terminal commands are used to control the overall system and the
communications network, while standard terminal commands are used by the individual
terminal operator to control the flow of messages at his terminal. All terminal commands
begin with the characters ZZ. Table 5-2 summarizes the master and standard terminal
commands supported by basic, single-thread, and multithread IMS 90. They are described
in 5.2.1 and 5.2.2.

Table 5-2. IMS 90 Terminal Commands

Master/
IMS 90

Command
Standard

Function
Basic Single-Thread Multithread

ZZALT Master Designates an alternate terminal No Yes Yes

ZZBTH Master Initiates and controls batch processing of No Yes Yes
transactions in online mode from the master terminal
(Refer to 7 .6.1)

ZZCLS Master Closes files from master terminal Yes Yes Yes

ZZCNC Standard Cancels the current transaction Yes Yes Yes

ZZDWN Master Closes a terminal down from master terminal Yes Yes Yes

ZZHLD Standard Suspends output to a terminal temporarily not Yes Yes Yes
ready to receive it

ZZHLT Master Causes immediate shutdown of activity from Yes Yes Yes*
master terminal or system console*

ZZMCH Standard Changes master terminal No Yes Yes

ZZNRM Standard Reverts to normal mode after terminal has been Yes Yes Yes
in test mode (ZZTMD)

ZZOPN Master Opens files from the master terminal Yes Yes Yes

ZZPCH Master Permits IMS 90 to load recompiled action programs No Yes Yes

ZZRDY Standard Reports that terminal is now ready for output Yes Yes Yes
suspended by ZZHLD command

ZZRSD Standard Causes last initial response message to be retransmitted No Yes Yes

ZZSHD Master Causes orderly cessation of IMS 90 from master Yes Yes Yes*
terminal or system console*

ZZTCT Master Obtains status of terminal control table from master Yes Yes Yes
terminal

ZZTMD Standard Places a terminal in test mode Yes Yes Yes

ZZTST Master Tests whether a terminal on network is able to No Yes Yes
receive output

ZZUP Master Brings terminal online from master terminal Yes Yes Yes

*If OPCOM:YES has been specified to the configurator in the OPTIONS section, the multithread IMS 90 user has the option of sending
this master terminal command from the system console at any time. This command should be keyed in as an unsolicited message
to the I MS 90 job.

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-7
Update B

• 5.2.1. Standard Terminal Commands

•

•

Standard terminal commands can be submitted from any terminal and are used at the.
operator's discretion to control transmittal, testing, and cancellation of messages. They are
discussed in 5.2.1.1 through 5.2.1.6.

5.2.1.1. ZZRSD {Resend)

The ZZRSD command directs IMS 90 to retransmit the last transaction-oriented output
message displayed at the calling terminal. Terminal command responses cannot be resent
except for ZZCNC, ZZCLS, ZZOPN, and (multihead) ZZTST. Once a new input message (other ~
than the ZZRSD terminal command) is initiated, the preceding output message cannot be
retransmitted, and the response NO MSG IN QUEUE is displayed. The ZZRSD command can be
initiated only when there is no unresolved input message; it is allowed for only one
retransmission of an output message. It is not available if RESEND=NO is specified to the
configurator in the OPTIONS section.

5.2.1.2. ZZHLD (Hold)

The ZZHLD command directs IMS 90 to suspend all output to the initiating terminal until a
ZZRDY command is submitted. This command can be initiated only when there is no unresolved
input. You may not use the ZZHLD command at a local workstation because it locks the
workstation. A typical situation for use of the ZZHLD command is if the ribbon broke or the paper
jammed on the hard copy device.

On the UNISCOPE 100 and 200 display terminals, the operator must press the WAIT switch to
allow subsequent input after transmitting the ZZHLD terminal command; this means that the
WAIT switch must be pressed before transmitting the ZZRDY command to resume receiving
output. On UTS 400 terminal; the operator must press the KBOARD UNLOCK switch before
transmitting the ZZRDY command to resume receiving output.

5.2.1.3. ZZRDY (Ready)

The ZZRDY command directs IMS 90 to release the hold state on the initiating terminal
and to transmit output as it becomes available. This command is valid only if initiated
while the terminal is in the hold state; if submitted at any other time, it has no effect.

5.2.1.4. ZZTMD (Test Mode)

The ZZTMD terminal command directs IMS 90 to place the initiating terminal in test mode.
When a terminal is in the test mode, there is no physical alteration of data files; any
command to alter a data file (ADD. DELETE. CHANGE) is simulated. The uses of the
ZZTMD command are:

1. to allow new or revised action programs to be tested and debugged without risking
the compromise of online files; and

2. to permit training of terminal operators without causing actual update transactions to
be made against user files.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-8
Update A

When the session of testing or training is completed, the command ZZNRM is issued to •
revert to normal operating mode. Neither the ZZTMD nor the ZZNRM command can be
issued while the initiating terminal is operating in interactive mode; that is, in the midst of
a transaction.

5.2.1.5. ZZNRM (Normal Mode)

The ZZNRM command directs IMS 90 to return the initiating terminal to normal mode,
thus enabling alteration of data files as authorized. This command is valid only if initiated
while the terminal is in the test mode. If submitted at any other time, it has no effect.

5.2.1.6. ZZCNC (Cancel)

The ZZCNC terminal command directs IMS 90 to cancel the transaction currently active. It
does not cancel a terminal command. This command is used most often to break deadlock
situations under multithread IMS 90 operations. It also clears all output queued to this
terminal. It is not a command that the master terminal issues on behalf of another
terminal, but must be initiated by the terminal experiencing the deadlock.

Once an input has been sent, the ZZCNC command cannot be transmitted until at least
one output message has been sent to the terminal. The output message can be a response
message or an automatic status message.

5.2.1.7. ZZMCH (Master Terminal Change)

If the master terminal is down, a new master terminal can be designated by issuing the
ZZMCH terminal command. The ZZMCH command can be entered from any terminal. If the
old master terminal becomes operable again during the IMS 90 session, it can be
reactivated as a network terminal but not as the master terminal (unless the ZZMCH
command is used again). The format of the ZZMCH command is:

ZZMCH terminal- id

where:

terminal-id

Is the configured symbolic identification of the new master terminal.

If the command is processed successfully, the following response is transmitted to the
terminal that initiated the command:

NEW MASTER TERMINAL IS terminal-id

If the master terminal is not down, the response is:

INVALID MASTER TERMINAL COMMAND

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-9
Update A

• If the named terminal is not identified in the network definition, the following response is
sent:

•

•

TERMINAL terminal-id CANNOT BE FOUND

NOTE:

The ZZMCH command can be entered only from a configured terminal (not the system
console).

5.2.2. Master Terminal Commands

Master terminal commands enable privileged control and monitoring of the IMS 90
system. Master terminal commands must be submitted from the master terminal with two
exceptions: ZZHLT and ZZSHD.

The ZZHLT and ZZSHD commands can be entered from the system console or master
workstation (if present) in a multithread system if OPCOM=YES is configured. Master
terminal commands submitted from a regular terminal are rejected as invalid.

An IMS job may have a master workstation associated with it either by means of job
control or initiation of that job from a workstation. In either case, enter unsolicited keyins
from the system console or the job's master workstation. This applies to multithread
systems when OPCOM=YES is configured and to single-thread systems when the console
is configured as the master terminal. Responses are always sent to the job's master
workstation, if present, and are only sent to the console if the job has no master
workstation or if it has been logged off.

The master terminal commands are described in 5.2.2.1 through 5.2.2.12.

5.2.2.1. ZZUP (Terminal Up)

The terminal-up command directs IMS 90 to enable a terminal that has previously been
disabled. The typical situation for the use of this command is when a terminal, that has
been inoperable and placed in the disabled state by the terminal-down command, becomes
operable.

Format:

ZZUP terminal - id

where:

terminal-id
Is the configured symbolic identification of the specified terminal.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5.2.2.2. ZZDWN (Terminal Down)

5-10
Update A

The terminal-down command directs IMS 90 to disable a specified terminal. A typical
situation for the use of this command is to logically disable a terminal that is
malfunctioning. A terminal that is physically down is marked logically down by means of
the ZZDWN command. Othewise, a degradation in polling can result, causing longer
response times for active terminals.

Format:

ZZDWN terminal-id

where

terminal-id

Is the configured symbolic identification of the specified terminal.

NOTE:

It is possible to inadvertently disable the master terminal by specifying the terminal-id of
the master terminal itself. To remedy this, control of the network can be transferred to a
regular terminal by means of the ZZMCH command (5.2.2.8). In a multithread system, an
orderly shutdown (ZZSHD, see 5.2.1. 7) can be directed from the system console if this
option is configured.

5.2.2.3. ZZTST (Test Terminal)

The test terminal command directs IMS 90 to transmit a message to a specified terminal.
Upon receipt of the response, the master terminal is advised whether or not the test was
successful. If the terminal being tested was disabled earlier using the ZZDWN command,
the response message to the master terminal will indicate that the test was unsuccessful.
The ZZTST master terminal command is used to determine whether a production terminal
is able to receive solicited or unsolicited output. To use this command, you must specify
the UNSOL=YES in the OPTIONS section input to the configurator. The ZZTST command is
not available in basic IMS 90.

Format:

ZZTST terminal- id

where:

terminal-id

Is the configured symbolic identification of the specified terminal.

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-11
Update A

• 5.2.2.4. ZZTCT (Terminal Control Table Status)

•

•

The terminal control table status command directs IMS 90 to output to the master terminal
the current status of the specified terminal. This output includes status of the terminal (up
or down), outstanding activity, and volume and type of traffic since startup.

Format:

ZZTCT terminal-id

where:

terminal-id

Is the configured symbolic identification of the specified terminal.

In response to the ZZTCT terminal command, the following message is sent to the master
terminal:

STATUS OF terminal-id{UP }:nnnnMSG;nnnn TRAN;nnnn TRM CMD: ALT=name
OWN
HLD
TEST

where:

nnnn

Is the number of messages, transactions, or terminal commands.

name

Is the name of the alternate terminal, if specified.

5.2.2.5. ZZALT (Alternate Terminal Designation)

The ZZALT master terminal command directs IMS 90 to assign an alternate terminal for a
designated terminal. Once the alternate terminal is assigned, switched output messages
destined for the original terminal are rerouted to the alternate termjnal whenever the
original terminal is physically or logically down. Solicited and nonswitched messages are
not affected. When the original terminal becomes operational again, message alternation
is discontinued. The ZZALT command also can be used, without the alternate terminal-id,
to restore the original terminal. Restrictions on the use of this command are:

• UNSOL=YES must have been specified in the OPTIONS section of configurator input.

• If the alternate terminal is physically or logically down, the switched messages are
written on the original terminal's queue .

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-12

•

•

Only one level of alternation is permitted; i.e., if B is designated as an alternate
terminal to A. and C is designated as an alternate terminal to B, switched messages
for A are sent to B, not C. However, the ZZALT command can be entered again to
designate C as an alternate terminal to A, overriding the first ZZALT command. The
ZZTCT master terminal command can be used to determine what alternate terminal is
in effect.

Test messages generated by the ZZTST command in single thread are not directed to
the alternate terminal.

The format of the ZZALT command for naming an alternate terminal is:

ZZALT terminal- id.alt-terminal- id

where:

terminal-id
Is the configured symbolic identification of the original terminal.

alt-terminal-id
Is the configured symbolic identification of the alternate terminal to which traffic
is to be routed.

If successful, the response is:

terminal-id IS ALTERNATED TO alt-terminal-id

The format of the ZZALT command for restoring an alternated terminal is:

ZZALT terminal-id

where:

terminal-id
Is the configured symbolic identification of the restored terminal.

If successful, the response is:

terminal-id IS RESTORED

If unsolicited output has not been configured, the following response is transmitted:

INVALID MASTER TERMINAL COMMAND

If an identified terminal is not in the network, the response is:

terminal-id CANNOT BE FOUND

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-13

• 5.2.2.6. ZZCLS (Close File)

•

•

The close file command directs IMS 90 to close the file specified. Terminal operators are
informed of this action only on submission of input that results in an attempt to access the
closed file. The ZZCLS command cannot be directed to a defined file. Also, no comments
or characters may follow the file name.

Format:

ZZCLS f i I ename

where:

filename

Is the configuration-specified file name for the file that is to be closed.

When the ZZCLS master terminal command is issued and no currently open transactions
have updated the file, IMS 90 issues a CLOSE macroinstruction to data management and
sends the following message to the master terminal operator:

filename CLOSED

When currently open transactions are updating the file indicated in the ZZCLS command,
IMS 90 sends the following message to the master terminal:

filename - - IN USE BY terminal-name t
where:

filename
Identifies the file being used.

terminal-name
Identifies the terminal currently accessing the file specified in the ZZCLS
command.

Once the terminal that was accessing the file ends the transaction, the master terminal
operator must reissue the ZZCLS command to close the file.

Any new user of this file after the ZZCLS command is accepted receives file close status;
i.e., the value 3 in the STATUS-CODE field of the PIB and the value 6 in the DETAILED
STATUS-CODE. Current users of the file, if any, are allowed to access the file.

On the other hand, if the terminal operator keys in a wrong filename in the ZZCLS
command, IMS 90 issues the following message to the master terminal:

filename NOT CONFIGURED

When an attempt is made to close a common storage file, IMS 90 issues the following
message to the master terminal:

filename INVALID FUNCTION FOR CDA FILE

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-14
Update A

If an error occurs during the closing of the specified file, IMS 90 issues the following •
message to the master terminal:

filename CLOSE ERROR DMnn

In addition, the data management error code is displayed and further access to the file is
inhibited.

NOTES:

1. When ZZCLS is issued to a sequential output file, the EXTEND parameter in the LFD
job control statement for this file must be included to resume with the nex~ ascending
record number after ZZOPN.

2. The ZZCLS command cannot be issued to a common storage area file.

5.2.2.7. ZZOPN (Open File)

The open file command directs IMS 90 to open a specified file previously closed via the
ZZCLS master terminal. No comments or characters may follow the file name.

Format:

ZZOPN filename

where:

filename
Is the configuration-specified file name for the file.

If the operator keys in an invalid filename on the ZZOPN master terminal command, IMS
90 issues the following message to the master terminal:

l'ilename NOT CONFIGURED

When a file cannot be opened because of a conflict of access rights, IMS 90 issues the
following message at the master terminal:

_. filename CANNOT OPEN WITH ACCESS SPECIFIED

If an error occurs during the opening of the specified file, IMS 90 issues the following
message to the master terminal:

filename OPEN ERROR DMnn

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-15
Update A

• where:

•

•

nn

NOTES:

Specifies the data management error code. Refer to the OS/3 system messages
programmer /operator reference, UP-8076 (current version).

1. When ZZOPN is issued to a sequential output file, the EXTEND parameter in the LFD
job control statement for this file must be included to resume with the next ascending
record number after ZZOPN.

2. The ZZOPN command cannot be issued to a common storage area file.

5.2.2.8. ZZBTH (Batch)

The ZZBTH master terminal command initiates and controls batch transaction processing
in the online mode. See Section 7 for the format of this command and details of its use.

5.2.2.9. ZZSHD (Shutdown)

The shutdown command causes IMS 90 to terminate gracefully. The initiation of new
transactions is inhibited, but transactions previously initiated can continue processing. Any
new transactions are not accepted, and a shutdown indicator is sent to terminals
attempting to start new transactions. All terminal commands are accepted. Once there are
no longer any outstanding transactions or a shutdown time-out has expired, whichever
comes first, IMS 90 terminates. Any transactions not completed at that point are rolled
back. Shutdown time-out is 180 seconds for single-thread and five times the action time
out value for multithread (the value given in the ACTION parameter of the configurator
TIMEOUTS section).

The following message is sent to terminals attempting to enter transactions after the
ZZSHD terminal command has been transmitted:

SHUTDOWN IN PROCESS

5.2.2.10. ZZHLT (Halt)

The halt command terminates IMS 90 immediately and is used only for emergencies. No
notification is delivered to terminal operators, and transactions in process are not rolled
back. File recovery is usually required after this type of termination, using either the offline
recovery utility or the warm restart option at the next IMS 90 execution .

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5.2.2.11. ZZPCH (Program Change)

5-16

The program change master terminal command is used for debugging action programs. It
allows the programmer to execute an action program online, recompile the action
program, and then execute the new version.

When the ZZPCH command is issued, IMS 90 locates the disk address of the new version
of the designated program and substitutes it for the disk address of the previous version of
the program. Then, when the action program is requested, IMS 90 loads the new version.
You also can issue the ZZPCH command to allow IMS 90 to find an action program not in
the load library at start-up time. In either case, the program must be identified in the
PROGRAM section at configuration and must not be configured as resident.

Format:

ZZPCH program-name

where:

program-name
Specifies the name of the action program changed or updated.

Before issuing the ZZPCH terminal command, the programmer must replace the old
version of the action program with the new version in the IMS 90 load library. Then after
issuing the ZZPCH command, you can execute the new action program.

The ZZPCH terminal command should not be used for resident subprograms. If you issue a
ZZPCH command for a resident subprogram, the first call to the resident subprogram from
an action program cancels the transaction and IMS 90 issues the following error message:

program-name IS A SUBPROGRAM - CANNOT BE RELOADED

In multithread IMS 90, if the named action program is being used by another terminal, the
following message is issued:

PROGRAM program-name IN USE

The operator should wait until the action program is not in use and reissue the ZZPCH
command. The new action program can be loaded only when the current action program is
not in use.

The size of the new action program can not exceed the size specified in the MAXSIZE
parameter of the configurator ACTION section. If the new size does exceed the MAXSIZE
value, IMS 90 cancels the transaction and issues the following error message:

PROGRAM SIZE EXCEEDS SPECIFIED MAXSIZE

•

•

The ZZPCH master terminal command can not be issued for basic IMS 90. If you issue a •
ZZPCH master terminal command under basic IMS 90, IMS 90 issues the following
message:

ZZPCH NOT CONFIGURED

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-17
Update A

If the action program to be changed is not configured; i.e., was never specified in the
PROGRAM section of the configurator, IMS 90 issues the following message:

PROGRAM program-name NOT CONFIGURED

If, in the ZZPCH command, you fail to enter the name of the action program to be changed,
IMS 90 issues the following message:

PROGRAM NAME MISSING FOR ZZPCH COMMAND

The terminal operator must reenter the ZZPCH terminal command to supply the action
program name.

If the operation of loading the new action program is unsuccessful, IMS 90 issues the
following message:

PROGRAM program-name LOAD ERROR

If the ZZPCH command is successful, IMS 90 issues the following message:

PROGRAM program-name MARKED RELOADABLE VERSION yymmdd hhmmss

where:

program-name
Specifies the name of the action program containing the changes.

yymmdd
Specifies (in the format year, month, and day) the date of the new action
program version being executed.

hhmmss
Specifies the clock time (by hour, minutes, and seconds) of the new action
program version being executed.

5.3. IMS 90 TRANSACTION CODES

The transaction codes SWTCH, DLMSG, DLOAD, and ZSTAT can be entered by the
terminal operator to initiate special-purpose transactions performed by IMS 90 action
programs. The SWTCH transaction code initiates terminal-to-terminal communication.
DLMSG retrieves the last valid output message from a terminal. The DLOAD transaction
code initiates the downline loading of UTS 400 programs from the host system to a UTS
400 terminal system .

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-18
Update A

5.3.1. SWTCH (Terminal-to-Terminal Communication)

IMS 90 allows communication between terminals; however, excessive use of this feature
degrades performance because the system is not designed to be used as a message
switcher. Terminal-to-terminal communication is initiated via the SWTCH transaction code
in the following format:

SWTCH.6lMAST n (;Mmessage-text
terminal-id
ALL

where:

MAST

Transmits the message-text to the master terminal regardless of the configured
symbolic identification of the master.

terminal-id-n

ALL

Is the configured symbolic identification of the destination terminal.

Transmits the message to every terminal in the IMS 90 network. This parameter
is used only when SWTCH is issued from the master terminal; it cannot be used
in a single-thread system if the console is the master terminal.

The SWTCH transaction code must be followed by at least one blank. A comma must
separate each terminal identification, which can have no intervening blanks. The
semicolon denotes the end of the list of destination terminals and the beginning of the
message text. The message text is sent exactly as it is keyed in, starting with the first
position after the semicolon.

Each valid destination terminal receives the message (unsolicited output) in the following
format:

FROM source-terminal-id-n. message text

where:

source-terminal-id-n

Is the configured symbolic identification of the source terminal.

The source terminal receives a status message indicating whether the message has been
successfully queued to all destination terminals. If success is not complete, errors or
exceptions are noted. Each destination terminal specified must be valid; that is, configured
as part of the IMS 90 network. The source terminal is also informed if any destination
terminals are down. The message is queued even if the destination terminal is physically
or logically down.

If the destination terminal is down and alternated (via the ZZALT command), the message
is sent automatically to the alternate terminal. The source terminal is not informed that
the destination terminal is down. If the alternate terminal is also down, the source
terminal is informed that the destination terminal is down.

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

• Three different status messages may be issued:

i.
I

•

MSG SENT

MSG NOT SENT INVALID DEST.terminal-id-n, ...

MSG QUEUED. TERMINAL DOWN.terminal-id-n

Example 1:

Input at source terminal (TRM2):

SWTCH TRM1 ,TRM4; THIS IS THE TEXT.

Output at source terminal:

MSG SENT.

Output at destination terminal:

FROM TRM2. THIS IS THE TEXT.

5-1 Sa
Update A

•

•

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Example 2:

Input at source terminal (TRM1, the master terminal):

SWTCH ALL; THIS IS THE MESSAGE.

Output at source terminal (TRM 1):

MSG SENT.

Output at all configured terminals except the source (master) terminal:

FROM TRM1. THIS IS THE MESSAGE.

Example 3:

Input at source terminal (TRM4):

SWTCH TRM1, TRM2, TRM3, TRM5, TRM7; THIS IS THE MESSAGE.

Output at source terminal:

MSG NOT SENT. INVALID DEST.TRM3

MSG QUEUED. TERMINAL DOWN.TRM2

Output at destination terminals (TRM1, TRM5, TRM7):

FROM TRM4. THIS IS THE MESSAGE.

NOTE:

5-19
Update A

TRM2 can receive the switched message when the terminal comes up.

Example 4:

TRM2 is down and alternated to TRM3. TRM3 is not down.

Input at source terminal (TRM 1):

SWTCH TRM2; THIS IS THE MESSAGE.

Output at source terminal (TRM1):

MSG SENT.

Output at terminal (TRM3):

FROM TRM1. THIS IS THE MESSAGE.

t

UP-8614 Rev. 1

Example 5:

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

TRM2 is down and alternated to TRM3. TRM3 is also down.

Output at source terminal:

MSG QUEUED TERMINAL DOWN TRM2

NOTE:

The message is on the queue of the terminal TRM3.

5-20
Update B

Use of the SWTCH transaction code requires specification of the UNSOL=YES parameter in the
OPTIONS section of the configurator. Messages switched to or from the master terminal can
only be done if the master terminal is configured as a terminal and not as the console. If the
unsolicited output indicator is displayed (this is the message-waiting indicator on a UNI SCOPE
100 display terminal) to notify the operator of the availability of a message switched from
another terminal, the terminal operator can ignore this signal and initiate input or accept the
switched message. (See 5.1.4.)

In addition, generate an ICAM network that supports unsolicited ouput. For more details, see
the IMS system support functions user guide/programmer reference, UP-8364 (current
version).

5.3.2. DLMSG (Displaying the last Effective Output Message)

When the cold or warm start-up option is specified at IMS 90 initiation, IMS 90 appends
the transaction code DLMSG to the IMS READY message. By pressing the transmit key,
each terminal operator can retrieve the last valid output message in the terminal output
message file (TOMFILE) for the terminal. This determines how far rollback of the files
accessed by that terminal has gone so that production can be appropriately resumed.

The same transaction code, DLMSG, can be entered during online operations to display
the last "effective" output message at the origining terminal; i.e., all updates performed
since the output message was first generated (if any) have since been rolled back or can
be rolled back.

The DLMSG transaction code can be transmitted with a configured terminal-id as a
following operand. This retrieves the last valid message output at the specified terminal
and displays it at the originating terminal.

The format of the DLMSG transaction code is:

DLMSG[L:derminal-id]

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-20a
Update B

• where:

•

•

terminal-id
Is the configured symbolic identification of the specified terminal.

If the named terminal cannot be found in the terminal control table (TCT), the following
diagnostic is issued to the originating terminal:

INVALID TERMINAL-ID

If no message is found in the TOMFILE for the named terminal, the following message is
issued:

SUBFILE IS EMPTY

If an 1/0 error occurs while the TOMFILE is being read, the following diagnostic message
is issued:

**** 1/0 ERROR ON TOMFILE ****

**** NO MESSAGE RETRIEVED ****

5.3.3. DLOAD (Downline Loading a UTS 400 Program)

The IMS 90-supplied downline load action program, ZUKLOD, enables users to downline
load UTS 400 programs from the IMS 90 load library to a UTS 400 terminal. ZUKLOD is
activated by the transaction code DLOAD. The format is:

DLOAD program-name[,aux-device-no,prog-id]

where:

program-name
Is the 8-byte name of the load module to be downline loaded.

aux-device-no
Is the auxiliary device number of the auxiliary storage device (cassette or diskette
subsystem). This number must be between 1 and 9 inclusive.

pro g - id
Is the name of the program being downline loaded to either a cassette or a
diskette. Only alphanumeric characters (A through Z and 0 through 9) may be
used. Prog-id may be a maximum of 4 characters long.

The optional entries are used for downline loading to a peripheral device. If these optional
entries are not used, the default loading is directed to the UTS 400 memory .

•

•

••

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-21
Update A

On initial activation, the ZUKLOD action program issues the function call, SETLOAD. The
SETLOAD function prepares a work area defined within the CDA for use by the GETLOAD
function. Following the call to the SETLOAD function, ZUKLOD calls the GETLOAD
function, which provides a block of code from the UTS 400 program load module. This
code is prefixed with proper header information and sent as an output message to the UTS
400 terminal using the continuous output feature with external succession. The same
action program (ZUKLOD) is rescheduled to continue issuing GETLOAD functions.

5.3.3.1. Downline Load to Main Storage

After the last block of code is sent to the UTS 400 terminal, the terminal transmits a
response message indicating whether or not the downline load was successful. After
ZUKLOD terminates normally, a message is displayed indicating the success or error of
downline loading. These messages are listed in Table 5-3. All messages are displayed at
the UTS 400 terminal requesting the downline load except DELIVERY NOTICE ERROR,
which is displayed at the IMS 90 master terminal.

NOTE:

If the UTS 400 program is to be executed directly after a successful downline load, it is
responsible for capturing the successful load message at the UTS 400 entry point
'TEXTCM'. If the UTS 400 program does not consider this entry point, the master or
primary screen and file control characters will be cleared and the successful load message
displayed.

Table 5-3. ZUKLOD Action Program Messages

Message Meaning

DELIVERY NOTICE ERROR ON UTS 400 An error occurred when the operator tried to send a block of data to the UTS
TERMINAL: nn 400. The letters nn represent a two-character hexadecimal delivery notice error

code. (See Tables 3-19 and 3-20 for a description of the error code.)

LOAD ERROR ENCOUNTERED FROM

SUCCESSFUL LOAD

A host system read error has occurred, reading a block of data from the load
library. nn = system loader error code. See OS/3 system messages
programmer /operator reference, UP-8076 (current version).

The program has loaded successfully.
1--------------+-----------------------·-------'

UTS 400 LOAD ERROR BIT(S) n [&n]

INVALID CHARACTER IN OFFLINE

BAD AUX NUMBER

See Table 3-16 in 3.13.1 for a description of load error bits.

Only alphanumeric characters A through Z and 0 through 9 are allowed for
name of program being downline loaded to a cassette/diskette. Reenter the
DLOAD transaction code using corrected program name.

Only the numbers 1 through 9 are valid for the one-character auxiliary-device
number.

5.3.3.2. Downline Load to Auxiliary Storage Device

Unlike a downline load to main storage, the UTS 400 terminal does not generate a
response message after the last block of code is sent to the auxiliary storage device.
Hence, the status of the downline load is not known until the program is read from the
auxiliary storage device into main storage.

t

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5.3.4. ZSTAT (Displaying Statistical Information)

5-22
Update A

The ZSTAT transaction displays the current status of all files, programs, transactions, and
terminals in an IMS 90 network. If you use the I I PARAM RESTART statement at IMS 90
start-up time (for multithread only) after you have previously shut down normally, you can
accumulate these same statistics for multiple sessions.

You can enter the ZSTAT transaction code only from a configured master terminal. You
can't use ZSTAT in a single-thread system in which the console is the master terminal.

When using ZSTAT on a UTS 400 device, you must enter VAR on the control page
transmit function, XMIT, to indicate transfer of all variable information and field control
characters associated with the variable data. Also, you must set the FCC/PROTECT switch
to the FCC position.

Issue the ZSTAT transaction code in the following format:

ZSTAT[{:~~p[,CONT] [,AUXn] [,TCSassss]}]

where:

n

Is the auxiliary device identification.

a

Is the cassette/diskette track address.

s s s s

Is the cassette/diskette starting position.

You can issue the ZSTAT transaction code in three ways:

1. The ZSTAT ALL [,CONT] [,AUXn] [,TCSassss] format allows a choice of displaying
statistics for all files, programs, transactions, and terminals in noncontinuous or
continuous output modes to the primary output device and the auxiliary output device.
When using continuous output and an auxiliary device, you must configure
CONTOUT=YES. If ZSTAT ALL is entered without the optional parameters,
noncontinuous output mode is assumed and the output is displayed on the primary
device only.

2. The ZSTAT HELP format displays the ZSTAT parameters with an explanation of each
on the primary device only. You can then either terminate or continue processing
ZSTAT.

3. The ZSTAT transaction code entered alone at the terminal displays a menu which

•

•

allows you to select the statistical information you desire and indicate continuous •
output and an auxiliary device number ID.

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-22a
Update A

Because ZSTAT produces a menu screen that contains protected fields, only display
devices that have a screen protection feature can use the menu form of the ZSTAT
transaction code. Hard copy devices or display devices not having the screen protection
feature can only use the ZSTAT ALL form of the transaction code.

When you enter ZSTAT ALL, the resulting output is a display of all the current files,
programs, transactions, and terminals in the IMS 90 network. Each of these items starts a
new page of output. Figures 5-1 through 5-4 show sample noncontinuous mode output
displays for each item. The ZSTAT format does not produce menu screen output.
Therefore, if you wish to indicate continuous output and an auxiliary device ID, you must
enter the CONT and AUXn parameters with the ZSTAT transaction code. If the auxiliary
device is a cassette or diskette, the TCS parameter must follow the AUX parameter.

The file status display contains the following information:

• File name (maximum of 13 eight-character names)

• File status

OPEN

CLSD (CLOSED)

IS INVALID

•

•

•

•

•

•

UP-8614 Rev. 1

• File type

MRAM (MIRAM)

ISAM

DAMR

SAM

SAT

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

PRNT (batch printer file)

• Number of file accesses

• Number of file updates

• Total number of accesses and updates for all files.

[MORE]
F I LE STAT TYPE ACCESSES

F I LE 1 OPEN MRAM 1 5
FILE2 CLSD SAM 936
FILE3 OPEN SAM 842
FILE4 IS INVALID
F I LE 5 CLSD ISAM 2117 9
FILES CLSD DAMR 111811

TOTALS 4952

Figure 5-1. Sample File Status Display

The program status display gives the following information:

• Program name

• Program status

UP

DOWN

IS INVALID

79/118/28

5-23
Update A

17:115:32
UPDATES

3
772
624

1192
293

2884

...

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

• Program type

RE-ENT

SERIAL

SHARED (multithread only)

• Resident program

YES

NO

• Subprogram

YES

NO

• Number of program accesses

• Number of program loads

• Total number of accesses and loads for all programs

[MORE]
PROGRAM STAT TYPE RES SUB
PROGRAM! UP SHARED YES YES
PROGRAM2 DOWN RE-ENT YES NO
PROGRAM3 UP RE-ENT YES NO
PROGRAM4 UP SERIAL NO NO
TOTALS

Figure 5-2. Sample Program Status Display

The transaction status display information includes:

• Transaction name

• Transaction status (IS INVALID)

• Number of transaction accesses

• Total number of accesses for all transactions

79/08/28
ACCESSES

5 Hl0

351
72

5523

5-24
Update A

17:06:15
LOADED

5100

72

5172

•

•

•

•

•

•

UP-8614 Rev. 1

TRANSACT

TRNSl
TRNS2
TRNS3
TRNS4

TOTALS

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

[MORE] 79/08/28

ACCESSES

50
1230
4789

IS INVALID

6069

Figure 5-3. Sample Transaction Status Display

Terminal information in the terminal status display is:

• Terminal ID

• Terminal status

DNP(physically down)

DNL(logically down)

HLD(hold mode)

TMD(test mode)

UP

• Current transaction code

• Alternate terminal identification (if any)

17:05:32

5-25
Update A

• Number of input messages processed by this terminal during the current session

• Number of output messages sent to this terminal during the current session

• Number of transactions executed by this terminal during the current session

• Number of terminal commands executed at this terminal during the current session

• Total number of slots available (for global networks only) or number of additional
terminals that will be allowed to sign on via $$SON command

• Total number of input messages for all terminals with active sessions

• Total number of output messages for all terminals with active sessions

• Total number of transactions executed for all terminals with active sessions

• Total number of terminal commands executed for all terminals with active sessions.

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 5-26
IMS 90 APPLICATIONS Update A

r
[MORE] 80/06/05 08:25:03

TERM STAT TRANSCODE ALT IN-MSGS OUT-MSGS TRANSACTS COMMANDS
TRMB UP ZSTAT TRMl 100 95 33 105
TRMl ON P 6 5 5
TRM2 HLD 20 8 7 8

TOTALS 3 SLOTS 126 108 45 114

-
Figure 5-4. Sample Terminal Status Display

ZSTAT HELP keyed in at the terminal first displays the ZSTAT positional parameters and
their meaning. (See Figure 5-5.)

I
ZSTAT POSITIONAL PARAMETERS

ALL A STATUS REPORT FOR THE FILES, PROGRAMS, TRANSACTIONS AND TERMINALS
,CONT - SPECIFIES CONTINUOUS OUTPUT MODE.

(CAN ONLY BE USED WITH THE ALL PARAMETER)
,AUXN - SPECIFIES OUTPUT TO THE PRIMARY DEVICE AND AUXILIARY DEVICE N.

(CAN ONLY BE USED WITH THE ALL PARAMETER)
.TCSASSSS - SPECIFIES OUTPUT TO PRIMARY AND CASSETTE/DISKETTE

(A IS TRACK ADDRESS, SSSS IS START POSITION OF CASSETTE/DISKETTE)
IF NO POSITIONAL PARAMETERS ARE SPECIFIED, THE OPERATOR WILL RECEIVE A MENU

SCREEN TO SOLICIT STATISTICAL INFORMATION REQUIRED. SEE NEXT PAGE FOR
KEYWORD AND VALID INPUTS.

NEXT PAGE t:>_VESlt> NO

Figure 5-5. Sample ZSTAT HELP Output Screen Display, Page 1

•

•

•

•
UP-8614 Rev. 1 SPERRY UNIVAC OS/3

IMS 90 APPLICATIONS
5-27
Update A

To respond YES, press TRANSMIT. The second HELP screen then displays the choice of
keyword parameter values available for each status display. (See Figure 5-6.) To respond
NO, press TAB and then TRANSMIT.

KEYWORDS AND VALID INPUTS
FILES=NONE/ALL/OPEN/CLOSE/NAME-LIST
PROGRAMS=NONE/ALL/NAME-LIST
TRANSACTIONS=NONE/ALL/NAME-LIST
TERMINALS=NONE/ALL/INT/NAME-LIST
NONE : NO STATISTICAL INFORMATION REQUESTED (DEFAULT IF BLANK)
OPEN : STATISTICAL INFO. FOR OPEN FILES ONLY
CLOSE : STATISTICAL INFO. FOR CLOSED FILES ONLY
INT : STATISTICAL INFO. FOR INTERACTIVE TERMINALS ONLY
ALL : STATISTICAL INFO. FOR ALL ITEMS OF THE GIVEN FUNCTION
NAME-LIST : STATISTICAL INFO. FOR THE SPECIFIED NAMES ONLY

CONTINUE PROCESSING ZSTAT~YES~NO

--
Figure 5-6. Sample ZSTAT HELP Output Screen Display, Page 2

- -

If you respond YES at the end of the second HELP screen, the menu screen is displayed.
• (See Figure 5-8.)

•

If ZSTAT is keyed in with no other parameters, a menu screen is displayed for soliciting
further information. (See Figure 5-7.) This menu allows you to specify the parameters you
want for files, programs, transactions, and terminals in addition to continuous output and
auxiliary device number ID. When ready to enter the keyword parameters, continuous
output reply, or auxiliary device ID number on the screen, you can arrive at the space
following each equal size or question by pressing the tab key. Do not use the carriage
return key (CR) or space bar when skipping from field to field. Instead, use the TAB key.

Figure 5-7. ZSTAT Menu Output Screen

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-28

You enter a parameter value for each item on the menu including a response to the
continuous output and auxiliary device question. The parameter values for each item on
the menu follow:

FILES=~r;~:ED l
~file-name-I ist~

PRDGRAMS=l~,,m-••mo-I ;,,(

TRANSACTIDNS=l~,,,,_,,mo- I;,,!

TERMINALS={!~~ {

term-name- I ist~
where:

NONE
Means no statistical information requested.

OPEN
Means information is requested for open files only.

CLOSED
Means information is requested for closed files only.

ALL

Means information for all files, programs, transaction, or terminals is requested.

name-list

INT

y

•

Requests information for the files, programs, transactions, or terminals named in
the list. A name cannot be split across two lines.

Requests information for interactive terminals only.

Means continuous output is requested .

Means no continuous output is requested.

Means supply a 1-digit auxiliary device ID number.

•

•

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-29
Update A

Figure 5-8 illustrates a sample menu input screen. As a result of entering choices on the
menu screen, you receive status displays similar to Figures 5-1 through 5-4. This ZSTAT
format allows you to be more selective of status information. Also, note that when you
make errors in spelling on the menu (e.g., FLIE4) you will receive an invalid message in
your resulting status display. (See Figure 5-1 .)

NOTE:

You may enter a maximum of 13 eight-character file names and 13 eight-character
program names, 18 fi~e-character transaction codes, and 22 four-character terminal
names.

F I LES= F I L E 1 , F I L E 2 , F I L E 3 . F L I E 4 , F I L E 5 , F I L E 6

PROGRAMS=PROGRAM1,PROGRAM2,PROGRAM3,PROGRAM4

TRANSACTIONS=TRNS1,TRNS2,TRNS3,TRNS4

TERMINALS=ALL

CONTINUOUS OUTPUT? (REPLY Y/N AT UNDERLINE) Y

AUX DEVICE ID NUMBER (REPLY AT UNDERLINE) 3
IF CASSETTE/DISKETTE. ENTER TRACK ADDRESSS & STARTING POSITION? ____ _

Figure 5-8. Sample Menu Input Screen

5.3.4.1. Controlling the Terminal

When continuous output is used, the terminal operator usually does not have control of
the terminal except in two cases:

1. when ICAM detects an error from the auxiliary device and returns an error delivery
notice to ZSTAT and ZSTAT sends an error message to the primary device; or

2. when you press function key 1, 2, 3, or 4 during processing to interrupt continuous
output of statistics

Table 5-4 indicates the functions performed when one of the function keys is pressed.

Master Terminal Entry

Transmit Key

Function Key 1 *

Function Key 2*

Function Key 3*

Function Key 4*

ZSTAT (with optional
parameters, if any)

Table 5-4. Responses to Interruptions of ZSTAT

Function Performed

Continue processing output messages.

Break processing and prompt terminal operator again.

Resume processing. ZSTAT reinitializes itself to its state before interruption and
retransmits the previous message's output status message.

End of processing; ZSTAT terminates.

Resume processing at next function.

ZSTAT starts again.

*Key in F#01, F#02, F#03, or F#04 if no function key is available.

t

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-30
Update A

When you press function keys, IMS 90 accepts from ICAM either the function key code or
the delivery notice (whichever comes first) and passes the first accepted code to ZSTAT via
the IMA. Repeated use of the function key eventually produces the results needed by
ZSTAT.

Any other replies to an interruption of continous output causes the message INVALID
RESPONSE, PLEASE TRY AGAIN to be sent to the primary device.

These function key responses are also valid in noncontinuous output mode. When a user
types in ZSTAT ALL with noncontinuous output, the only way the user can stop the ZSTAT
transaction from giving all the status information is by using function key 3 to terminate or
function key 4 to resume at the next function.

5.3.4.2. ZSTAT Error Messages

ZSTAT generates error messages when ICAM returns an error delivery notice. To
determine which error message to issue, ZSTAT tests the specific ICAM delivery notice. If
ZSTAT receives an unrecognizable delivery notice, a snap dump is generated in which the
OMA contains the message UNRECOGNIZED DELIVERY NOTICE, and a transaction
termination message is sent to the source terminal. If this problem occurs, you should
contact your local Sperry Univac representative.

Tables 5-5 and 5-6 show ZSTAT recoverable and nonrecoverable error messages and
explain their causes and responses.

Table 5-5. ZSTAT Recoverable Error Messages (Part 1 of 2)

ZSTAT Error Message

READY GOOD STATUS BUT TERMINAL PRINTER
WRITE FUNCTION INOPERATIVE REPLY F2 OR
F4 (RESUME) OR F3 (END)

TERMINATE PRINTER OUT OF PAPER,
INOPERATIVE, OR IN TEXT MODE REPLY
F2 OR F4 (RESUME) OR F3 (END)

DEVICE NOT RESPONDING - MAY BE
DISCONNECTED REPLY F2 OR F4 (RESUME)
OR F3 (END)

DISK ERROR - REPLY F2 OR F4 (RESUME)
OR F3 (END)

NO ICAM NETWORK BUFFERS AVAILABLE -
REPLY F2 OR F4 (RESUME) OR F3 (END)

01 CONTINUOUS OUTPUT NOT CONFIGURED. DO
YOU WISH TO CONTINUE USING
NONCONTINUOUS OUTPUT (Y /N)?

Explanation

If F2* or F4* is entered, ZSTAT tries to resend the original
message. If F3* is entered, ZSTAT terminates.

Same

Same

Same

If F2* or F4* is entered, ZSTAT tries 15 more times to output a
terminal status message and then prompts the user again. If
F3* is entered, ZSTAT terminates.

The user requested continuous output mode but the CONT
parameter was specified without the CONTOUT=YES parameter
in the configurator OPTIONS section.

*F2, F3, and F4 are abbreviations for function key 2, 3, or 4; thus, a reply of F2, F3, or F4 means press function key 2,
3, or 4 at the terminal.

•

•

•

!•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Table 5-5. ZSTAT Recoverable Error Messages (Part 2 of 2)

ZSTAT Error Message Explanation

02 AN AUXILIARY DEVICE WAS REQUESTED The user requested an auxiliary device

5-31
Update A

without the
AND NOT CONFIGURED. DO YOU CONTOUT=YES parameter in the configurator OPTIONS section.
WISH TO CONTINUE WITHOUT AN
AUXILIARY DEVICE (REPLY Y /N)?

03 AUX-DEVICE ID INVALID, PLEASE INPUT The user keyed in an invalid auxiliary device ID. The correct 2-
VALID ID I> 1 - digit numeric auxiliary device ID must be entered.

04 INVALID TRACK ADDRESS. PLEASE The track address for cassette/diskette is invalid. Enter the
INPUT VALID TRACK ADDRESS I> - correct address.

05 INVALID STARTING POSITION. The starting position for cassette/diskette is invalid. Enter a
PLEASE INPUT VALID STARTING correct starting position.
POSITION I> ----

Table 5-6. ZSTAT Unrecoverable Error Messages

ZSTAT Error Message Explanation

NOT MASTER TERMINAL ZSTAT was not issued from the master terminal.

INVALID INPUT PARAMETER One of the ZSTAT positional parameters is incorrect in the ZST AT ALL format.
Auxiliary device number is invalid or CONTOUT=YES was not configured but was
requested.

DATA ERROR ON TCS An error was found while data was being sent to the cassette/diskette. Retry ZSTAT.
If failure persists, check the condition of the cassette/ diskette and associated
hardware.

CASSETTE/DISKETTE NOT The cassette/diskette device was not powered up and in the ready state. The user
RESPONDING. ZSTAT should check the hardware device.
TERMINATED

5.4. GLOBAL NETWORK TERMINAL COMMANDS

IMS 90 can interface ICAM global networks. After you configure IMS 90 and write the
global network definition, IMS 90 at start-up issues ICAM macros to attach IMS 90 to the
global network you described. Once this interface exists, without redialing, a terminal
operator can attach his terminal to IMS 90. This terminal-to-IMS 90 interface is called a
dynamic session. The terminal operator initiates a dynamic session by keying in:

$$SON terminal-idprogram-name

where:

terminal-id

Is the terminal name specified on the label of the TERM macro in the network
definition.

+

UP-8614 Rev. 1

program-name

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

5-32
Update A

Is the name of the IMS 90 program specified on the label of the LOCAP macro in
the network definition. No space is permitted between terminal-id and program
name.

Example:

$$SON TRM11MS9

After issuing the $$SON command, the terminal operator receives the following
responses:

SPERRY UNIVAC DCA NETWORK, LEVEL n.n NODE ID xxxx

SESSION PATH OPEN (after session is initiated)

or

SESSION PATH CLOSED (if the session is rejected)

SESSION PATH OPEN means that you have successfully signed onto IMS 90. Note that
the SESSION PATH OPEN is used instead of the IMS READY message. SESSION PATH
CLOSED means that the sign-on was unsuccessful. This could be because IMS 90 was not

•

loaded into the system or IMS 90 itself did not have enough terminal resources to accept •
the sign-on command; the terminal tables within IMS 90 could not accommodate another
terminal. These terminal resources are controlled by the TERMS keyword in the
configurator NETWORK section.

To terminate the dynamic session and detach the terminal from the IMS 90, the terminal
operator issues the following command:

$$SOFF

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-1

6. Transaction Processing via UNIQUE

6.1. UNIQUE CONCEPT

The uniform inquiry update element (UNIQUE) is a set of action programs provided by
Sperry Univac that perform file retrieval and updating functions through the use of
commands from the terminal.

UNIQUE accesses data files through defined record management (ORM). Thus, the user
must define the data structure (files, records) and the allowable operations (retrieve,
modify, add, delete) by submitting a data definition for each defined file to the data
definition processor. (See Section 2.)

• IMS 90 provides a password capability for UNIQUE users through both the data definitions
processor and the PASSWORD function parameter of the NAMEREC file utility. Access to
defined files and subfiles can be restricted to specific terminals by means of the
NAMEREC utility which is described in detail in the IMS 90 system support functions user
guide/programmer reference, UP-8364 (current version).

•

6.1.1. UNIQUE Dialog

A UNIQUE dialog consists of a series of commands and responses dealing with a
particular defined file. Dialogs with different defined files can be combined to form a
UNIQUE transaction.

The response to a UNIQUE command is based on:

• the command itself;

• additional text in the command message;

• the contents of the file being accessed; and

• the previous commands processed during this dialog.

The actual words used in a dialog comprise the UNIQUE lexicon. (See Appendix B.) The
UNIQUE syntax is described in the examples supporting the command explanations.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

UNIQUE uses the following commands:

• OPEN

6-2

Initiates a dialog with a defined file. The initial OPEN command, or an OPEN
. command issued after a CLOSE command (or after the ZZCNC terminal command),

functions as a transaction code and initiates a UNIQUE transaction. A subsequent
OPEN command starts a new dialog with a different defined file but does not initiate
a new transaction.

• CLOSE

Terminates a transaction.

• DISPLAY

Causes a specified record to be displayed at the terminal.

• LIST

Displays certain records or parts of records at the terminal; can also display the
results of statistical functions.

• DETAIL

Interrupts the processing of the previous LIST command to obtain a different or more
detailed listing.

• SHOW

Displays the format of the defined file being accessed and the most recent LIST,
DETAIL, ADD, DISPLAY, DELETE, and CHANGE commands.

• MORE

Requests the next screenful of information according to the previous UST, DETAIL, or
SHOW command.

• ADD

Enables the terminal operator to add a record to the file.

• CHANGE

Enables the terminal operator to change values in a record.

• DELETE

•

•

Displays a specified record, which can then be deleted by keying in the OK command. •

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-3

• OK

Completes the function indicated by the previous command - ADD, DELETE, or
CHANGE.

• CANCEL

Cancels the most recent (current) update command - ADD, DELETE, or CHANGE.

• NEXT

Selects the next identifier from the most recent DISPLAY, ADD, CHANGE, or DELETE
command and performs the same function.

6.1.2. Defined Files Accessed by UNIQUE

The defined files partially shown in Figures 6-1 and 6-2 are referenced in the discussion
of UNIQUE commands that follows. The STATES file is a simple defined file; the TOWNS
file is a hierarchical defined file.

The file listings presented in both illustrations correspond to the format used by UNIQUE
when displaying records in response to the LIST command. The asterisk (*) indicates a
header line containing names that serve as column headers. The period (.) indicates a
detail line containing values stored in the file.

Each record in the STATES file contains the name of the state, the state population, and
the capital city. The name of the state serves as the record identifier.

*STATE STATE-POP CAPITAL

ALABAMA 3,444,165 MONTGOMERY
ALASKA 302,173 JUN EAU
ARIZONA 1,772,484 PHOENIX
ARKANSAS 1,923,295 LITTLE ROCK
CALIFORNIA 19,953,134 SACRAMENTO
COLORADO 2,207,259 DENVER
CONNECTICUT 3,032,217 HARTFORD
DELAWARE 598' 104 DOVER
FLORIDA 6,789,443 TALLAHASSEE
GEORGIA 4,589,573 ATLANTA

Figure 6-1. Partial Listing of STATES File

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-4
Update A

Three types of records comprise the TOWNS file: state, county, and town records. Figure •
6-2 represents these records as displayed in response to a LIST command. The state
record contains the name of the state, the governor, and the capital city. For each state
record, there are one or more county records for each county record, one or more town
records. The county record contains the name of the county and the county seat. The town
record contains the town name, the mayor's name, and the population.

. STA TE GOVERNOR CAPITAL . -COUNTY COUNTY-SEAT . - -TOWN MAYOR PO PU LA
ALABAMA WRIGHT.GEORGE MONTGOMERY
-BREWSTER RIVERTON
- - LEWIS BROWN.HENRY 8,746
- -MOREHEAD ARCHER.ROBERT 14,350
--RIVERTON JOHNSON.ALAN 38,623
- -WI NS LOW TURLEY.PAUL 5. 17.5
-CARSON HOWELL
--HOWELL SMITH.FRANKLIN 7,960
- - SCHUYLER LAWSON.PHILLIP 11,482
-CLARK HICKSVILLE

Figure 6-2. Partial Listing of TOWNS File •

Each record in a file has an identifier. Records are ordered on these identifiers. The
identifier of the first record in the STATES file (Figure 6-1) is ALABAMA, the second is
ALASKA, etc. The first record in the TOWNS file (Figure 6-2) is a state record and its
identifier is ALABAMA. The identifier of the second record (the first county record) is
ALABAMA, BREWSTER; the third, a town record, is ALABAMA, BREWSTER, LEWIS.

Notice in the county records shown in Figure 6-2 (BREWSTER, CARSON, CLARK) that the
ALABAMA is replaced by a hyphen (-). This serves to reduce the amount of space occupied
on the screen. Similarly, the ALABAMA, BREWSTER part of each town record's identifier
is replaced by two hyphens (- -).

Note that when UNIQUE adds or changes a defined record, it sets the sign of any new
value for a packed decimal item to hexadecimal F instead of C.

6.2. UNIQUE COMMANDS

The data manipulating commands provided by UNIQUE, with examples of their use, are
described in 6.2.1 through 6.2.13. The examples intentionally follow in succession as in a
stream of commands and are numbered consecutively throughout the discussion. In order
to highlight each new input or output message in the examples, previously issued
commands and responses remaining on the screen are shaded. •

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-5

The format for most commands is the same whether the input is on a display device or a
hard copy device. The examples given with these commands are for a display device. The
formats for the ADD and CHANGE commands, however, vary for display and hard copy
devices. Both formats, their parameters, and examples of their use are provided for these
commands.

When keying in UNIQUE commands at the terminal, the following general rules apply.
Specific rules for individual commands are noted where applicable.

1. Parameters are separated from the UNIQUE command and from each other by spaces.

2. In identifiers, values, and specifications, alphanumeric item-names and literals
containing blanks or special characters must be enclosed by apostrophes. These
special characters include comma (,), semicolon (;), leading hyphen(-), and apostrophe
('). By convention, the apostrophe is represented by a pair of apostrophes if it is used
as a character in an item. For example, the value O'Brien would be entered as
'O"Brien'.

3. Numeric literals must not be enclosed by apostrophes.

4. Decimal points and commas must appear where appropriate in numeric values.

6.2.1. OPEN

The OPEN command denotes the beginning of a UNIQUE dialog and designates the
password of the file that the user intends to query or update during this dialog. This
command can be issued at any time during a transaction to access a different file. Issuing
another OPEN command during a transaction does not initiate a new transaction but starts
a new dialog with a different file.

The OPEN command and one other UNIQUE command can be transmitted together to
improve throughput. (See example 2.)

Format:

OPEN password

where:

password
Is an alias for a defined file or is the actual defined file or subfile name defined
by the data definition processor.

UP-8614 Rev. 1

Example 1:

Input

OPEN STATES

Output

OPEN COMPLETE

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

77/12127 15:47:89

6-6

The OPEN command initiates the transaction and makes the STATES fite accessible to
the terminal operator.

Example 2:

Input

OPEN STATES
DISPLAY ALASKA

Output

STATE STATE-POP CAPITAL

In this example, the OPEN command transmitted opens the STATES file and displays •
the first state record (ALASKA). The OPEN COMPLETE message is not sent to the
terminal.

•

•

UP-8614 Rev. 1

6.2.2. CLOSE

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-7

The CLOSE command terminates the UNIQUE transaction. No UNIQUE commands are
then recognized until another OPEN command is issued.

Format:

CLOSE

NOTE:

The CLOSE command is not required to terminate a dialog. Issuing another OPEN
command terminates access to the file, then immediately provides access to the new file.

Example:

Input

r
CLOSE

Output

r -CLOSE COMPLETE 77/12/27 15:48:15

-
6.2.3. DISPLAY

The DISPLAY command causes the specified record to be displayed at the terminal.
Column headings, as well as values, are displayed. The column headings are obtained
from the IDENTIFIER and ITEM statements of the data definition.

Format:

DISPLAY identif ier-1 [; identifier-2) ...

UP-8614 Rev. 1

where:

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-8

identifier-I

Indicates a specific record. Hyphens (- -) are used as ditto characters when
portions of an identifier are repeated in a subsequent identifier or a subsequent
command. (See example 2.)

identifier-2

Designates another record. This record is not displayed, however, unless the
NEXT command follows this DISPLAY command.

In response to a DISPLAY command, UNIQUE displays the record specified by the first
identifier. If more identifiers are specified in the DISPLAY command, the records
corresponding to the other identifiers are displayed, one at a time, by using the NEXT
command. The DISPLAY command and ensuing NEXT commands can be mixed with other,
intervening commands that do not alter the effect of the NEXT command. Other
commands that can appear prior to the NEXT command are LIST, MORE, DETAIL, or
SHOW.

Example 1:

Input

OPEN TOWNS
DISPLAY ALABAMA.CARSON

Output

COUNTY COUNTY-SEAT
ALABAMA.CARSON HOWELL

The DISPLAY command presents the data from the record identified by
ALABAMA.CARSON in the TOWNS file.

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Example 2:

Input

DISPLAY --SCHUYLER

Output

., ,, __
TOWN MAYOR PO PU LA
ALABAMA.CARSON.SCHUYLER LAWSON.PHILLIP 11,482

6-9

The terminal operator uses the ditto characters (- -) to indicate that
ALABAMA,CARSON from the previous DISPLAY should be used for the first part of
the town identifier.

It is not necessary to issue another OPEN for the TOWNS file. The OPEN from
example 1 is still in effect.

Example 3:

Input

Output

OPEN STATES
DISPLAY ALASKA; FLORIDA

STA TE
ALASKA

STATE-POP CAPITAL
302,173 JUNEAU · t>NEXTI

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-10

The OPEN causes UNIQUE to close the TOWNS file and allow access to the STATES
file. The DISPLAY command requests UNIQUE to display the information from the
record whose identifier is ALASKA. The embedded NEXT command is the result of
multiple identifiers in the DISPLAY command. To display the record associated with
the next identifier, FLORIDA, the operator presses the TRANSMIT key. If the
embedded NEXT command is not transmitted at this time, it can be specified later, as
long as a DELETE, ADD, or CHANGE command (or another DISPLAY) does not
intervene.

6.2.4. NEXT

The NEXT command selects the next identifier from the most recent DISPLAY, DELETE,
ADD, or CHANGE command. The function performed on the identified record is determined
by that previous command.

Format:

NEXT

Example 1:

Input

r
NEXT

Output

..
STA TE
FLOR I DA

STATE-POP
6,789,443

CAPITAL
TALLAHASSEE

The preceding command was DISPLAY ALASKA; FLORIDA. Since the ALASKA record
already has been displayed, NEXT requests the display of the FLORIDA record.

•

•

•

UP-8.614 Rev. 1

Example 2:

Input

NEXT

Output

.. .
DISPLAY COMPLETE

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

77/I2/27

6-11

I5:49:23

There are no more identifiers outstanding from the previous DISPLAY command;
therefore, the DISPLAY COMPLETE message is sent.

6.2.5. DELETE

The DELETE command gives the terminal operator the ability to delete a record after
viewing the information in the record. UNIQUE displays the specified record in response to
the DELETE command. To effect the deletion, the terminal operator must key in the OK
command. If he decides not to delete the record, he should key in the CANCEL command.

Format:

DELETE identifier-I [: identifier-2) ...

where:

identifier-I
Designates a specific record. Ditto characters (- -) can replace portions of the
identifier.

identifier-2
Designates another record in the file. This record is displayed when the NEXT
command is specified.

The DELETE command places the terminal in an update state. While the terminal is in this
state, no other UNIQUE commands are accepted except OK or CANCEL. The following
example illustrates.

UP-8614 Rev. 1

Example:

Input

DELETE DIST/COLUMBIA

Output

STATE STATE-POP
DIST/COLUMBIA 756,510

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

CAPITAL

The item CAPITAL for this record has no value.

6.2.6. OK

6-12

The OK command executes the function associated with the previous command. It is used
only with the DELETE, ADD, or CHANGE command. Upon successful completion of that
function, UNIQUE establishes a new rollback point for the current transaction.

Format:

OK

Example:

Input

OK

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-13

• Output

•

•

(

• DELETE COMPLETE 77/12/27 15:53:23

Because the previous command was DELETE, the OK command requests UNIQUE to
perform the deletion of the DIST /COLUMBIA record.

6.2.7. CANCEL

The CANCEL command requests UNIQUE to cancel the previous update command
(DELETE, ADD, or CHANGE); thus, the file remains as it was before that update command.

Format:

CANCEL

Example:

Input

(

DELETE ALABAMA; ALASKA

-
Output

STA TE
ALABAMA

STATE-POP
3,444,165

-

CAPITAL
MONTGOMERY

I

-

UP-8614 Rev. 1

Input

CANCEL

Output

DELETE CANCELED

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

77/12127 15:55:04 [>NEXT!

6-14
Update A

This sequence of inputs and outputs results in no change to the file. The terminal
operator now can enter NEXT to initiate the delete sequence for the ALASKA record.

6.2.8. ADD

The ADD command initiates a series of inputs and UNIQUE responses by which a record
can be added to the file. There are two formats for this command - the display format and
the hard copy format.

When using the IBM 3270 display station under UNIQUE, your command input or
responses to UNIQUE messages must be in hard copy format rather than display format.
The reason for this is the IBM 3270 display station transmits a whole screen of data to the
UNIQUE program instead of a data field limited by a start-of-entry (I>) symbol and the
cursor.

Upon successful completion of the ADD function, UNIQUE establishes a new rollback point
for the current transaction.

The ADD command places the terminal in an update state. While the terminal is in this
state, no UNIQUE commands are accepted except OK or CANCEL.

6.2.8.1. Display Format

Format:

ADD identifier-l[;identifier-2] ...

where:

identifier-!

Is the record designation. Ditto characters (- -) can replace portions of the
identifier.

•

•

•

•

•

•

UP-8614 Rev. 1

identifier-2

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-15
Update A

Is another record designation. The update format for this record is displayed
when the NEXT command is entered.

In response to the ADD command, UNIQUE sends to the terminal the item names (column
headers) and update formats of the items associated with the specified record. The
terminal operator can depress the tab key to advance the cursor to the beginning of each
update format. (Note that an extra character position is provided for the sign of numeric
items.) The terminal operator overwrites the update formats with values and then
transmits the modified screen. If UNIQUE finds no errors, it adds the new record to the file
and sends an ADD COMPLETE message to the terminal. If errors are discovered, UNIQUE
sends the column headers, update formats, and either valid values or error notations back
to the terminal for further modification by the terminal operator.

At any time during this sequence, the terminal operator can key in the CANCEL command
instead of overwriting the update formats with values. The ADD command is then
canceled.

Example 1:

Input

ADD DIST/COLUMBIA

Output

Input

C>STATE
DIST/COLUMBIA

STATE-POP
• • * • • • ••

' '

CAPITAL
< >

UP-8614 Rev. 1

Output

Input

Output

ADD COMP LE TE

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

77/12/27 15:58:54

6-16

< >

The asterisks (*)under STATE-POP and under CAPITAL constitute the update formats.
The characters (< >) at the end of the output aid the terminal operator in placing the
cursor in subsequent input; that is, the operator should place the cursor between the
two special characters (< >) after overwriting the desired items. This ensures that the
entire message is transmitted.

The question marks (?) in the second output tell the operator that the value keyed in
for STATE-POP is invalid (the period should be a comma). After the operator corrects
the item in the third input UNIQUE adds the record to the file and notifies the
operator in the third output message.

•

•

•

•

UP-8614 Rev. 1

Example 2:

Input

ADD COLORADO

Output

Input

t>STATE
COLORADO

Output

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

STATE-POP CAPITAL
* • • • • • ••

' '

<>

6-17

<>

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-18

t

Input

Output

ADD COMPLETE 77/12/27 16:82:33

Example 2 demonstrates an ADD sequence in which the terminal operator attempts
to add a state record without giving a value to STATE-POP. The exclamation points in
the second output indicate that the STATE-POP item was defined as a MUST ADD
item in the data definition for this file. The operator must supply a value for STATE
POP before this record can be added.

NOTE:

If a numeric item to be added begins with a decimal point, the terminal operator must
key in the decimal point, even if the new value is zero.

If the operator enters the OK command during an ADD sequence, UNIQUE adds the
designated record with all the valid items. Any invalid items except those identified as
MUST ADD in the data definition. The ADD command is canceled if the MUST ADD items
are not valid. (See example 3.)

Example 3:

Input

[ADD llSSOURI

•

UP-8614 Rev. 1

Output

r>STATE
MISSOURI

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

STATE-POP CAPITAL
• • • • • * ••

' '

6-18a

<>

•

•

UP-8614 Rev. 1

Input

Output

Input

OK

Output

ADD COMPLETE

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

77/12/27 16:03:40

6-19

<>

This example demonstrates the use of the OK command with the display format ADD
command. The OK command (input 3) causes UNIQUE to add the MISSOURI record,
which supplies values to the valid items. In this case, the STATE-POP item contains
the value 4,583,000, and the CAPITAL item contains the null value .

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-20

6.2.8.2. Hard Copy Format

Basic Format:

ADD identifier item-name=value[;[item-name=]value] ...

General Format:

ADD identifier[;] ... [item-name=]value[[;) ... ,[item-name=]value] ...

NOTE:

The general format is an expanded form of the basic format.

where:

identifier
Is the record designation. (See the DISPLAY command, 6.2.3.)

item-name
Names an item. An item name can be any name, other than an identifier name,
that appears as a column header in a DISPLAY command. The equal sign must
be coded immediately after each item name. The item names need not be coded
in the order of their appearance in the display record.

Item names can be omitted, in which case they are inferred from the position of
the value in the input message. The positions of values are determined from the
last specified item name, forward in a consecutive manner. If no item names are
specified, positional locations are assumed from the first item after the identifier.
Any consecutive item that is not to be updated can be omitted by coding a
semicolon (;) in its positional location.

value
Is the value to be stored in item-name. All values, except the last, must be
followed immediately by a semicolon (;).

In response to this command, UNIQUE displays the item names and values specified in the
command, along with the identifier of the record. If the terminal operator is satisfied with
the new record, he keys in OK, thus effecting the addition of this record to the file. If he
decides not to add the record, he keys in the CANCEL command.

In response to the hard copy format ADD command, UNIQUE also displays error notations
when invalid item names or conditions are discovered. It displays invalid item names
showing location in the input message, the invalid name, and the associated values.
UNIQUE formats and displays all acceptable input for visual verification. The terminal
operator can then decide to cancel the command or to correct the errors.

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-21

The operator makes corrections by entering a new input message with either the item
name and value (for example, NAME-5=VALUE-5), or just the value (for examples,
;;;;VALUE-5) that is to be respecified. The operator does not enter the ADD command again
when he is respecifying. UNIQUE responds by displaying all the original output, with the
respecified values replacing the values in error. The terminal operator then keys in OK to
effect the update, or CANCEL to cancel the entire ADD command.

NOTE:

The hard copy format may also be used with display devices.

Example 1:

Input ADD DIST/COLUMBIA STATE-POP=756.510

Output STATE STATE-POP
DIST/COLUMBIA ??,???,???

Input STATE-POP=756,510

Output ~ STATE
1 DIST/COLUMBIA

STATE-POP
756,510

Input OK

Output ADD COMP LE TE 77/12/27 16:05:05

This example illustrates the use of the basic hard copy format with only one value
specified. The question marks in the first output message indicate that the value
keyed in for STATE-POP is invalid (because it contains a decimal point). The corrected
value is entered, and the OK command is issued to add the record to the file.

Example 2:

Input
~

Output l
Input

Output

Input

Output

OPEN TOWNS
ADD ALABAMA.CLARK, THURMONT POPULA=l6,767

TOWN MAYOR POP ULA
ALABAMA.CLARK.THURMONT!!!!!!!!!!!!!! 16:767

MAYOR=BAKER,RICHARD

TOWN MAYOR
ALABAMA.CLARK, THURMONT BAKER.RICHARD

OK

ADD COMPLETE 77112127 16:06:13

PO PU LA
16,767

The exclamation points marks under the MAYOR item name indicate that a value for
that item must be included to add a town record to the file .

t

UP-8614 Rev. 1

6.2.9. CHANGE

SPERRY UNIVAC OS/3
.IMS 90 APPLICATIONS

6-22
Update A

The CHANGE command initiates a series of inputs and UNIQUE responses which change a
record in the file. Like the ADD command, the CHANGE command has two formats - the
display format and the hard copy format.

When using the IBM 3270 display station under UNIQUE, your command input or
responses to UNIQUE messages must be in hard copy format rather than display format.
The reason for this is the IBM 3270 display station transmits a whole screen of data to the
UNIQUE program instead of a data field limited by a start-of-entry (D.) symbol and the
cursor.

Upon successful completion of the CHANGE function, UNIQUE establishes a new rollback
point for the current transaction.

The CHANGE command places the terminal in an update state. While the terminal is in
this state, no UNIQUE commands are accepted except OK or CANCEL.

6.2.9.1. Display Format

Format:

CHANGE identifier-l[;identifier-2] ...

where:

identifier·!

Is the record designation. (See DISPLAY command, 6.2.3, for further
explanation.)

identifier-2

Designates another record in the file.

In response to the CHANGE command, UNIQUE sends to the terminal the item names that
serve as column headers, the old values, and the update formats of the items associated
with the specified record. The terminal operator can depress the tab key to advance the
cursor to the beginning of each update format. (Note that an extra character position is
provided for the sign of numeric items.) The terminal operator overwrites the update
formats with the associated new values and then transmits the modified screen. If
UNIQUE finds no errors, the modified record replaces the old record in the file and the
terminal operator is notified.

If errors are discovered, UNIQUE returns the item names, old values, update formats, and
either valid new values or error notations to the terminal for further modification by the
terminal operator.

•

•

At any time during this sequence, the operator can enter the CANCEL command to cancel
the CHANGE command instead of overwriting the update formats with values. The •
operator can instead key in the OK command to make changes to all valid items. Items for
which invalid values have been specified remain unchanged in the file.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-23
Update A

• NOTE:

•

•

If a numeric item to be changed begins with a decimal point, the terminal oprator must
key in the decimal point, even if the new value is zero.

Example:

Input

~ CHANGE ALABAMA,BREWSTER,LEWIS

Output

TOWN MAYOR
ALABAMA.BREWSTER.LEWIS BROWN.HENRY

Input

Output

CHANGE COMPLETE 77/12/27

PO PU LA
8,746 <>

9,000 <l>

16:09:01

The absence of asterisks under TOWN in the first output indicates that the operator
cannot change that item. Items that cannot be changed contain blanks instead of
asterisks in the update format line.

UP-8614 Rev. 1

6.2.9.2. Hard Copy Format

Basic Format:

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

CHANGE identifier item-name=value[;[item-name=]value] ...

General Format:

6-24

CHANGE identifier[;] ... [item-name=]value[[;] ... ,[item-name=]value] ...

NOTE:

The general format is an expanded form of the simple format.

where:

identifier
Is the record designator. (See DISPLAY command, 6.2.3.)

item-name
Names an item. An item name can be any name, other than an identifier name,
that appears as a column header in a DISPLAY command. The equal sign must
be coded immediately after each item name. The item names need not be coded

•

in the order of their appearance in the displayed record. •

Item names can be omitted, in which case they are inferred from the position of
the value in the input message. The positions of values are determined from the
last specified item-name forward in a consecutive manner. If no item names are
specified, positional locations are assumed from the first item after the identifier.
Any consecutive item that is not to be updated is omitted by coding a semicolon
(;) in its positional location.

value
Is the new value to replace the old value in item-name. All values, except the
last, must be followed immediately by a semicolon (;).

In response to this command, UNIQUE displays the item names, original values, and
values specified in the command, along with the identifier of the record. If the terminal
operator is satisfied with the new record, he must key in OK to change this record in the
file. If he decides not to change the record, he keys in the CANCEL command.

In response to the hard copy format CHANGE command, UNIQUE also displays error
notations when invalid item names or conditions are discovered. UNIQUE displays invalid
item names showing location in the input message, the invalid name, and the associated
values. UNIQUE formats and displays all acceptable input for visual verification. The
terminal operator can then decide to cancel the command or to correct the errors.

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-25

Corrections are made by entering a new input message with either the item-name and
value (for example, NAME-5=VALUE-5), or just the value (for example, ;;;;VALUE-5) that is
to be respecified. The operator does not key in the CHANGE command again when he is
respecifying. UNIQUE responds by displaying all the original output, plus the respecified
values displayed beneath the item names and old values for items previously in error. The
terminal operator must then key in OK to effect the update, or CANCEL to cancel the
entire CHANGE command.

NOTE:

The hard copy format also is used with display devices.

Example:

Input CHANGE ALABAMA.BREWSTER.MOREHEAD ;14,725

Output TOWN
ALABAMA.BREWSTER.MOREHEAD

Input OK

Output CHANGE COMPLETE 77/12/27

PO PU LA
14,359
14,725

16:99:57

In the first input, the item POPULA is inferred from the position of the value, based
on the preceding semicolon. An OK command requests UNIQUE to go ahead with the
valid change. The resulting new record then changes only the POPULA item.

6.2.10. LIST

The LIST command selects certain records or parts of records for listing at the terminal
based on the text of the command. It can also display the results of arithmetic expressions
and statistical functions.

LIST parameters are positional; if used, they must be specified in the order shown in the
format.

Format:

LIST [[display-content-spec][IF selection-criteria];] ...
[FOR identif ier-l][J::~~Rlidentifier-2]

[statistical-function [item-name-1 (,item-name-2) ...]) ...

UP-8614 Rev. 1

where:

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-26

display-content-spec

Indicates the elements of the selected records that are to be displayed. The
display content specification can be:

• record-name - the name that represents the entire record;

• ALL - all items of the record (functionally equivalent to record-name)

• subrecord name - a name that represents a subset of items in a record

• item-names - identifying individual items in the selected record

IF selection-criteria

Indicates which records are to be selected on the basis of conditional
expressions. A simple conditional expression is a comparison between an item
and another item or a literal value. The comparison operators are:

EQ or= Equal to

NE Not equal to

GT or> Greater than

GE Greater than or equal to

LT or< Less than

LE Less than or equal to

If the item is compared to a nonnumeric literal, the literal can have the same
number of characters as the item or it can be shorter. If it is shorter, UNIQUE
compares the characters in the literal with the same number of characters in the
item, starting from the left. The remaining characters in the item are ignored. For
example, the command LIST MAYOR='STAN' would select all mayors' names
beginning with the letters STAN.

A conditional expression can be negated by preceding it with the word NOT.
Conditional expressions also can be combined by Boolean operators (AND.OR)
into more complex conditional expressions. Within a conditional expression, NOT
is first evaluated, then AND, finally OR. The order of evaluation is changed by the
use of parentheses.

FOR identifier-I

Restricts the output of the LIST command to a subset of the file. The record
specified by identifier-1 and all subordinate records to that record are then
considered for listing.

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-27

JA FT ER t i den t i f i e r - 2
1FROM ~

Indicates the first record to be considered for listing. The FROM clause starts
with the record specified by identifier-2 and lists all selected records, including
the one specified by identifier-2. The AFTER clause lists all selected records after
the record specified, not including the one specified by identifier-2.

statistical-function [item-name-1 [,item-name-2) ...]

Requests the calculation and display of the results of certain statistical functions.
Statistical functions are performed at all levels. The specifications for statistical
function include:

AVG
Calculates and displays the average of the numeric items from the
records selected.

COUNT
Displays the number of occurrences of records that meet the selection
criteria. No item name is specified.

MAX

MIN

Finds and displays the maximum value of the numeric items from the
records selected and the identifier of the particular record in which it is
found .

Finds and displays the minimum value of the numeric items from the
records selected and the identifier of the particular record in which it is
found.

TOTAL

item-name

Accumulates and displays the value of the numeric items from the
records selected.

Names a numeric item. Item-name can be any name, other than an identifier
name, that appears as a column header for this record type, so long as its values
are defined to be numeric.

UNIQUE saves the text of the LIST command. This allows the terminal operator to reuse
corresponding portions of the last LIST command to construct another LIST command.

When the defined file contains several types of defined records, the user specifies the
display-content-spec and/or IF selection-criteria (delimited by the semicolon) separately for
each type of defined record.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-28

LIST parameters are positional; if used, they must be specified in the order shown in the
command format, and in the same order in which their corresponding defined records
were defined. This then is the order in which the different types of defined records appear
on the screen in response to the LIST command. UNIQUE uses the position of parameters,
indicated by the semicolons, to determine the defined record to which the parameters
apply. (See examples 2, 4, and the example for the DETAIL command, 6.2.12.)

Example 1:

Input

OPEN STATES
LIST STATE.CAPITAL IF STATE-POP< 500,000;

Output

STATE
ALASKA
NEVADA
VERMONT
WYOMING

CAPITAL
JUNEAU
CARSON CITY
MONT PEL I ER
CHEYENNE

l>ENO LIST-,

The OPEN command makes the STATES file accessible. The LIST command requests
the STATE and CAPITAL item names and values to be listed for those records in
which the value of the STATE-POP item is less than 500,000. Note that they required
final semicolon (;).

The END LIST status indication is displayed on the final screen of listed information.
Another instance when END LIST occurs without data is when a defined file was
accessed and the physical file used to create the defined record was closed via the
ZZCLS command.

•

•

•

UP-8614 Rev. 1

Example 2:

Input

OPEN TOWNS

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

LIST STATE-RECORD; COUNTY-RECORD; TOWN-RECORD;

Output

!>MORE

STATE GOVERNOR CAPITAL
-COUNTY COUNTY SEAT
--TOWN MAYOR POPU LA
ALABAMA WRIGHT.GEORGE MONTGOMERY
-BREWSTER RIVERTOWN
- - LEW IS BROWN.HENRY 9,080
--MOREHEAD WILSON, JAMES 14,350
--RIVERTON JOHNSON.ALAN 38,623
--WINSLOW TURLEY.PAUL 5. 17 5
-CARSON HOWELL
--HOWELL SMITH.FRANKLIN 7,960
--SCHUYLER LAWSON, PHILLIP 11,482
-CLARK HICKSVILLE
--ARDLEY LEE.JOHN 3. 610
- -BLACKSTONE MORLEY, DAN I EL 26,504

6-29

LI ST I

This LIST command applies to the TOWNS file since that is the presently accessible
file. The display-content-spec is a list of record names. The order of the record names
is the order in which they are listed and must coincide with the order in which they
are defined in the data definition.

This request is not satisfied in a single screen; that is, more state, county, and town
records exist in the file. Therefore, a MORE LIST status indication is sent to the
terminal operator. He requests the next screenful by keying in the MORE command .

UP-8614 Rev. 1

Example 3:

Input

LIST

Output

STA TE
- COUNTY
- -TOWN
ALABAMA
- BREWSTER
- - LEWIS
--MOREHEAD
--RIVERTON
- -WINSLOW
-CARSON
- -HOWELL
--SCHUYLER
-CLARK
- -ARD LEY
--BLACKSTONE

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

GOVERNOR CAPITAL
COUNTY SEAT

MAYOR PO PU LA

l>MO RE

WRIGHT.GEORGE MONTGOMERY
RIVERTON

BROWN.HENRY 9. tHHJ
WILSON, JAMES 14,350
JOHNSON.ALAN 38,623
TURLEY.PAUL 5. 17 5

HOWELL
SMITH, FRANKLIN 7,960
LAWSON.PHILLIP 11,482

HICKSVILLE
LEE.JOHN 3,610
MORLEY.DANIEL 26,504

6-30

LIST I

Note that LIST with no further text requests the entire file to be listed. In this case,
the LIST command keyed in produces the same output as example 2.

Example 4:

Input

LIST ;COUNTY-RECORD; FOR OHIO TOTAL POPULA COUNT

•

•

•

UP-8614 Rev. 1

Output

OHIO . -COUNTY
- ALBE RMA R LE

-ALBERMARLE:
-CHARLES

-CHARLES:
-DUQUESNE

-DUQUESNE:
-GREENE

-GREENE:
-LA SALLE

-LA SALLE:
-MONROE

-MONROE:
OHIO

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

COUNTY - SEAT
HIGGINS

COUNT TOWN=4 TOTAL
AVALON

COUNT T OWN=l 7 TOTAL
BRADFORD

COUNT TOWN=3 TOTAL
ROBBINSVILLE

COUNT TOWN=5 TOTAL
EVERETT

COUNT TOWN=l 2 TOTAL
LORETTA

COUNT TOWN=21 TOTAL
COUNT COUNTY= 6 COUNT
TOTAL POPULA= 1,192,543

6-31

I> END LI ST --,

POPULA= 10,759

POPULA= 263,850

PO PU LA= 25,643

PO PU LA= 37,262

PO PU LA= 184,595

PO PU LA= 670,434
TOWN= 62

The display-content-spec for this LIST command requests the listing of only the
county records from the TOWNS file. The first semicolon (;) indicates that no detail
from the STATE record is desired. This semicolon is used to indicate omission; record
names must appear in the order in which they have been described in the data
definition. Also, the listing is restricted to those county records whose identifiers
begin with OHIO (that is, those counties that are in the state of OHIO), as requested
in the FOR clause.

Total lines also are produced because the terminal operator requests the total of the
item POPULA and the count of town records and county records. Total lines are
indicated by the number sign (#). In addition to the totals of POPULA for each county,
a grand total for the state is automatically calculated. Similarly, the number of town
records for the entire state is calculated, along with the number of town records for
each county and the number of counties in Ohio.

6.2.11. MORE

The MORE command requests the next screenful of information according to the previous
LIST or DETAIL command.

Format:

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-32

The DETAIL and LIST options indicate which of the previous commands (LIST or DETAIL) e
that UNIQUE is to continue processing to provide the next screen of information. If only
MORE is keyed in, UNIQUE outputs a screen in response to the last LIST or DETAIL
command entered by the terminal operator.

Example:

Input

!>MORE LIST I

Output

!>MORE LI ST I . STA TE GOVERNOR CAPITAL . -COUNTY COUNTY SEAT . - -TOWN MAYOR PO PU LA
ALABAMA WRIGHT.GEORGE MONTGOMERY
-DAWSON HILLSIDE
--HILLSIDE BLACKBURN.JOHN 73,564
--JACKSONVILLE LINDEN.HERBERT 36,356
-FLETCHER CRESCENT CI TY
--CRESCENT CI TY JARMAN.STANTON 51,420
--HAPSBURG WILLIAMS.JAMES 8,950

UNIQUE anticipates the request by the operator to send more LIST information by
supplying the MORE UST phrase as part of its output (example 3 of LIST, 6.2.10).
Thus, the terminal operator need only press the transmit button on the display device
to input the MORE command. The data that is found between the start-of-message
character (I>) and the cursor (1) is transmitted to UNIQUE. Thus, UNIQUE receives the
message MORE LIST and supplies the next screenful of information.

•

•

•

UP-8614 Rev. 1

6.2.12. DETAIL

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-33

The DETAIL command interrupts the processing of the previous LIST command to request
the processing of a higher priority list. This command is especially useful for nesting list
requirements.

Format:

DETAIL [[display-content-spec][IF selection-criteria];] ...

[FOR identifier-1]

o::~~R~ identifier-2]

[statistical-function [item-name-1 [,item-name-2] .•.]] ...

See LIST command, 6.2.10, for explanation of the parameters.

The DETAIL command is identical to the LIST command, except that its text is retained
separately from that of the LIST command and may be used repeatedly. This means that a
different listing operation can be accomplished with a DETAIL command without
destroying the content specification, selection criteria, or position within the file of the
previous LIST command.

Example:

Input

LIST ALL;ALL;

Output

L>MO RE LI ST I

STA TE GOVERNOR CAPITAL

-COUNTY COUNTY - SEAT
ALABAMA WRIGHT ,GEORGE MONTGOMERY
- BREWSTER RIVERTON
-CARSON HOWELL
-CLARK HICKSVILLE
-DAWSON HILLSIDE
-FLETCHER CRESCENT CITY

UP-8614 Rev. 1

Input

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

DETAIL TOWN-RECORD; FOR ALABAMA.CLARK

Output

ALABAMA.CLARK
- -TOWN
- -ARD LEY
--BLACKSTONE
--HICKSVILLE
- - LONGTREE
- - POUGH TON
--RIVERSIDE

MAYOR
LEE.JOHN
MQRLEY, DAN I EL
GREEN.WILLIAM
BLAKE.EDWARD
HOLLOWAY.STEPHEN
BROOKE, JAMES

[>END
POP ULA

3 '610
26,504
32,454

5,761
6,822

15,666

6-34

DETAIL I

In this example, the terminal operator uses the DETAIL command to interrupt the
listing of states and counties to obtain a more detailed listing of the towns in a
particular county. The MORE command at this point requests the next screen from
the LIST command, since the DETAIL command has completed its processing.

6.2.13. SHOW

The SHOW command provides the terminal operator with a capsule data description of the
defined file that is being accessed. This includes item names and subrecord names and
their attributes. The command also informs the user about the most recent LIST and
DETAIL operations. In addition, the SHOW command lists any DISPLAY command or any
update command (ADD display format, CHANGE display format, or DELETE) having
outstanding, unprocessed identifiers awaiting the entry of a NEXT command. These
commands are listed, each followed by its unprocessed identifiers in their order of entry.

Format:

SHOW

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

6-35
Update A

UNIQUE uses the following symbols to format the output display in response to the SHOW

command:

Symbol Meaning

An identifier

A A value must be supplied for an ADD command.

* A new value can be supplied for a CHANGE command.

A value must be supplied for an ADD command, and a new value can be
supplied for a CHANGE command.

D A new value cannot be supplied for a CHANGE command.

Example:

Input

SHOW I

Output

C>END SHOW
TOWNS

. STATE-RECORD ST A TE GOVERNOR CAPITAL
II II II II II II II

•••••••• * •••• *
. COUNTY-RECORD COUNTY COUNTY-SEAT

11111111111111
.

. TOWN-RECORD TOWN MAYOR PO PU LA
11111111111111

••••••••••••• *
LIST ALL; ALL;
DE TA I L ; ; TOWN - REC 0 RD; FOR ALABAMA, CLARK

The SHOW command displays the password TOWNS for the presently accessible file
and lists the records STATE, COUNTY, and TOWN with the items they contain, and
appropriate update formats for those items. The l's indicate an identifier for STATE,
COUNTY, or TOWN. The asterisks indicate that new values can be supplied for
GOVERNOR, CAPITAL, COUNTY-SEAT, MAYOR, and POPULA on a CHANGE
command. In addition, the SHOW command displays the most recent LIST and
DETAIL commands and their current parameters.

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7-1

7. Batch Processing of Transactions

7.1. PURPOSE AND USES OF BATCH TRANSACTION PROCESSOR

The batch processor is an optional component of IMS 90 that can be added to any single
thread or multithread configuration having adequate main storage and other resources. It
is not available to the user of basic IMS 90. You include batch transaction processing by
specifying the BATCH parameter in the NETWORK section of the configurator. The batch
processor enables you to input transactions in card format, instead of through a display
terminal; its output is directed to the printer or a printer file. Batched transactions can be
processed online (that is, concurrently with routine production operations involving the
normal terminal communications network) or offline, when no terminal network need be
configured or active.

You can submit transactions to the batch processor either from card images filed in disk
source modules or from card images included as embedded data in the job control stream
at IMS 90 start-up. In neither case is it necessary to allocate a card reader to the IMS 90
job.

A primary use of the batch transaction processor is to display a file in print at the end of a
day's production, as a data base administrator, for example, might need to do to review in
detail the state of a file after massive update activity. It also is useful for obtaining a hard
copy listing of the data contained in a defined file or subfile - an activity that is not
practical in normal operations from a display terminal.

Another important use of the batch transaction processor is to test new UNIQUE-based file
query and update dialogs, designed for routine use at production terminals, as well as to
test new user-written action programs that your operators initiate as transactions during
normal production. Printed output listed by the batch processor reproduces all input and
output messages, as well as unsolicited output, and thus provides you with a permanent,
hard-copy record of each transaction.

7.2. PROCESSING AND OUTPUT

Batched transactions are processed as if they originate from one or more actual terminals;
the batch processor responds to one or a number of pseudoterminals created by the IMS
90 configurator and lists output on a print file that is assigned to each pseudoterminal.
This output is a step-by-step record of each transaction initiated.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7-2

Immediately after each input message, the batch processor prints the output message A
issued by the action program - with the exception of immediate or delayed internal •
succession. All input messages and output messages generated from one batch input
source module (that is, from one batch pseudoterminal) are listed in the same print file
and are not mixed with messages from any other source module.

For UNIQUE dialogs initiated as batch transactions, the batch transaction processor lists
what is normally seen as output by the terminal operator, formatted as it would appear on
the remote terminal. In this case, each input message is printed above the output message
response and starts in column 1. The SOE (start of entry) character and the cursor are not
represented. Terminal diagnostic and error messages are included in the output listing.
There is no identification of any part of the output listing with a specific batch
pseudoterminal.

Figure 7-1 illustrates an output listing created by the batch transaction processor for a
UNIQUE dialog that opens a defined file to list its contents. The input messages include an
OPEN, a LIST, six MORE LIST commands, and a CLOSE.

The output message that follows the **IMS READY** output message contains the name
of the source input module, BATCHIN, and the name of the file, IN, on which it resides.
These are specified in the PARAM IN statement that immediately precedes it. (Automatic
status messages - INPUT IN PROCESS, INPUT IN QUEUE, and ROLLBACK IN PROCESS -
are never sent to a batch pseudoterminal.)

The first input message, OPEN CUSTOMR, initiates the UNIQUE transaction; its response
is the OPEN COMPLETE output message normally returned to the originating terminal. The
output message in response to the LIST command is the first screenful of data records
from the defined file, CUSTOMR; the entire file is listed by the response to the fifth MORE
LIST command, as indicated by the END LIST response above the seventh output message.
The next MORE LIST command, therefore, produces the normal error return displayed
next, and the CLOSE command is followed by the routine CLOSE COMPLETE output
message.

For readability of the output listing, the input messages shown in Figure 7-1 are punched
beginning in column 10. This is feasible because all of them are UNIQUE commands, and
UNIQUE allows this measure of free-form input. Normally, input messages begin in
column 1.

In normal nonbatch operations, when a user-written action program terminates in delayed
internal succession, no message is sent to the terminal operator; what otherwise would be
the output message is queued by IMS 90 as input to the succeeding action and not
displayed. For immediate internal succession, no message is sent to the operator or
queued. Instead, IMS 90 makes the input and output message areas in main storage
available to the successor action program. In batch operations, the message is not listed
by the batch processor as either an output or an input message. With immediate or
delayed internal succession, the next message the batch transaction processor lists is the
output message from the succeeding action.

•

UP-8614 Rev. 1

•• l'°'S READY ••

II PARAM IN•BATCHINllN

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

READING SOURCE MODULE B1TCHIN FROM FILE IN

OPEN CUSTOMR

OPEN COMPLETE 78101-.107

LI ST

• cusr-TD NAME
BALANCE-DUE DUE-IN-\laLUE

• A AO AD ANY BUM
o.oo n.oo

• BRSTL BRANNON'S BA~
o.oo n.oo

• CAIFS CARRIAGE. TAVFRN
o.oo n.oo

• CLJf".D CLOVER LEAF
o.oo n.ou

MORE LIST

• cusT- JD NAME
BAU NCE-DUE UUE-IN-V&LUE

• CR6HA CRE"ST PUB
o.oo no OU

• CUlflA CUMBERLAND C1 UB
o.oo n. 0 O

• DElNS DEW DROP INN
76.25 no Ou

• FAILA FARRAH'S OEN
o.oo no OU

MORE LIST

• cusr-10 NAME
BALANCE-DUE DUE-IN-VALUE

• HA6rR HANOVER HOUSF
Q,OO noOO

• J02~C JOCKEYS JOIN;
OoOO no OD

o LA7HB LAST CHANCE ~ALOON

OoOO noOO
o L02PR LOGAN LIQUOR~

o.oo n.oo

ADDRESS
YTD-VOLUME

BOWERY
o.oo

86 TUMBLE LA•
o.oo

137 ELM ST
o.oo

.J s MEADOW 0 R •
1 ,896.2'1

ADDRESS
YTD-\IOLUME

6 HIGHLAND AVE
o.oo

111 BAY A \IE o
a.oo

t 3 lllITEFALL ST
76025

I 6 LI ON
2'13o19

ADDRESS
YTn-VOLUME

ALLEY

66 FOUNTAIN RD
o.oo

70 WINNER CIR•
o.oo

72 HOPE BLVD•
o.oo

71 BARREL ROAl'l
o.on

7-3

MORE
CITY-STATE

NEW YORK 1 M•Y•

PEMBROKE, P••

MORE
CITY-STATF

CREST CITY, PA

PORTS IDE, No Jo

LJGHTHOUSf 1 PA

HILLSIDE, PA

HORE
CJTY-STATF

GRAFTON, f.J.Jo

STRAITA\otAY, PA

GOtNGVILLf 1 PA

POTTSBURG, PAo

Figure 7-1. Example of Output Listed by Batch Transaction Processor (Part 1 of 2)

LIST
ZIP I

10010

16513

08613

161 61

LIST
ZIP

16331

08131

16217

I 631'1

LIST
71P

0812'1

16519

161 1 1

16'120

UP-8614 Rev. 1

MORE LIST

• cusT-10 NAME
BALANCE-DUE DUE-IN-VaLUE

• L02SC LOST CLIPPER
O.OO noOO

• PEIPS PERRY'S PUB -o.oo n.oo
• RElpA RED LANTERN

75.35 n.oo
• R J&trL RITTER'S ROOc;T

o.oo n.oo

MORE LI ST

• cusT-ID NAME
BALANCE-DUE DUE-IN-VALUE

• RO 1 rs ROYAL NI GHTC1 UB
89060 noOO

• SHlcA SHAMROCK PAL4CE
o.oo n.oo

• SUSMH SUPPER CLUB
OoOO no OU

• TOIFR TOWNHOUSE CA~E
o.oo n.oo

MORE LIST

• cusT-10 NAME
BALANCE-DUE UUE-IN-V&LUE

• TR2HS TRYTON TOWER
25.83 n.oo

• W09PL WOODEN NICKEr
OoOO noOO

• YOIRA YOUR DEMISE
OoOO noOO

• YYOYY HOT SHOT
o.oo ~.oo

MORE LIST

ILLEGAL MORE COMMAND

CLOSE CUSTOMR

CLOSE COMPLETE 78101.107

I•

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Al)ORESS
YTD-VOLUME

25 SAIL CJRCLE
o.oo

162 PLANK STo
o.oo

15 BACK ALLEY
1s.Js

'16 CHICKEN LA•
o.oo

ADDRESS
YTD-VOLUME

1l.f7 CASTLF. ST•
A9o60

121 CLANCY AVE
o.oo

57 MAIN HWY•
o.oo

19 FRENCH
o.oo

ADDRESS
YTD-VOLUME

RO.

23A HIGH Slo
25.83

q3 BIJfFALO LA•
o.oo

100 REST AVEo
o.oo

JOLLY ROAD
o.oo

7-4

MORE LI ST
CITY-STATF ZIP

HARROR, NoJ• 0830'1

PERRYVILLl""1 PA 16212

LfGALTOWN, NoJ 08'112

BARNYARD, PA• 16013

MORE LI ST
CITY-STATE ZIP

BLUEBLOOD, PA 0 16310

IRISHTOWN, PA. 16225

OVERTON, ~.J. 08015

SPURNBURG, PA. 166 11

END LI ST
c r TY-sT A Tf. ZIP

TINKERTOW~, PA 16663

MINTBURG 1 PAo 16621

BOOTHILL1 MDo 106'10

Bt.UE 8ELL.PAo 19000

ERROR LI ST

Figure 7-1. Example of Output listed by Batch Transaction Processor (Part 2 of 2)
.e

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7-5

Unsolicited, output can 'be generated in any online batch-initiated transaction. This is the
result of issuing the SEND function call in a user-written action program or including a
SWTCH transaction in your input. Unsolicited output in offline mode is not supported. In
the online batch mode, if its destination is one or more online active terminals, unsolicited
output is routed as for any other unsolicited output.

Unsolicited output destined for another batch pseudoterminal is not supported. Unsolicited
output addressed to the originating pseudoterminal is listed on its own print file. An online
terminal must not send unsolicited output to a batch pseudoterminal.

Transaction types processed in batch mode, online or offline, include the following:

• UNIQUE dialogs - Initiated by the OPEN command and comprising any of the UNIQUE
command repertoire

• Other transactions - Initiated by a 5-character transaction code (typically, these
activate user-written action programs)

• Two of the standard terminal commands (ZZTMD and ZZNRM). The ZZHLD, ZZRDY,
ZZCNC, and ZZRSD terminal commands have no useful role in a batch transaction
environment

• SWTCH transaction - For terminal-to-terminal communication .

No batch input message should include any of the master terminal commands; these are
not allowed because the batch pseudoterminals may not be master terminals.

7.3. CONTROLLING BATCH TRANSACTION PROCESSING

Control of batch transaction processing begins with the specification of batch processing
in the IMS 90 configuration. Certain modifications to the IMS 90 execution run stream
also are needed.

Batch transactions can be processed in offline or online modes. Control of offline
processing is essentially a matter of the order in which source input is presented in the
control stream (7.5); whereas the ZZBTH master terminal command gives the online user
considerable flexibility in determining when batch processing is to begin and end, and in
specifying which input is to be processed and in what order (7.6).

7.3.1. Effect of IMS 90 Configuration Options

When considering how to control batch processing, you should first review the description
of the BATCH keyword parameter in the NETWORK section of your input to the IMS 90
configurator. This is the parameter that adds the batch processing modules to your IMS 90
system .

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7-6

When you have specified that the batch processor is to be configured using this keyword,
the IMS 90 configurator generates one or more batch pseudoterminals, depending on the
specification of the BATCH keyword parameter. If BATCH=YES is specified, one
pseudoterminal is generated and assigned the terminal id BTH1. When the BATCH=n
specification is used, the configurator generates the number of pseudoterminals
designated by n; the terminal ids are BTH1 , ... ,BTH4.

In a single-thread IMS 90 system, you process only one batch input source module or
embedded data set at a time; the specification BATCH=YES and BATCH=1 are equally
valid. In a multithread IMS 90 configuration, on the other hand, although you still process
only one embedded data set at a time, you can process simultaneously up to the maximum
number (n) of batch input source modules. This means that, if you have specified
BATCH=3 to the IMS 90 configurator, you can process up to three source modules at one
time, or one embedded data set and up to two source modules. In online mode, which you
control by issuing the ZZBTH master terminal command, the number of ZZBTH commands
that can be active simultaneously is likewise limited by the maximum number specified by
the BATCH configurator keyword parameter. (The ZZBTH command is described in 7.6.1.)

7.3.2. IMS 90 Control Streams for Batch Processing

You have four areas of concern in coding the IMS 90 execution run stream when you are
running batch transactions:

1. assigning source module input files;

2. assigning printer files;

3. inserting PARAM statements to control the batch processor (these must always follow
any other PARAM statements present); and

4. embedding sets of input source data in the control stream.

7.3.2.1. Assigning Source Module Input Files

Unless all batched transactions are to be represented by data sets embedded in the control
stream, you must name and create one or more source modules, containing the card
images of your input messages, and place these modules in a disk library file. Each input
disk file contains several modules. In the control steam, you must assign these source
module input files to the IMS 90 execution job, using OS/3 job control conventions. The
LFD-names of these input files are used in the PARAM IN statements described in 7.3.2.3.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

e 7.3.2.2. Assigning Print Files to Batch Pseudoterminals

7-7

A print file must be assigned to each batch pseudoterminal that the IMS 90 configurator
has been directed to generate by your specification of the BATCH configurator keyword
parameter. The LFD-names expected by the batch processor for these print files are:

terminal-id print file LFD-name

BTH1 PRNTR1

BTH2 PRNTR2

BTH3 PRNTR3

BTH4 PRNTR4

Again, the assignment of these files follows OS/3 job control conventions.

7.3.2.3. Invoking and Controlling Batch Processor (PARAM Statements)

Batch processor parameter statements always follow any other PARAM statements in an
IMS 90 execution run stream. If there are no other PARAM statements in a single-thread
IMS 90 run stream, batch processor parameter statements immediately follow the EXEC
statement. In the run stream for a multithread IMS 90 load module, the PARAM BATCH
statement immediately follows the PARAM START or PARAM RESTART statement. if there
are no other PARAM statements to be plac.ed there. Optional PARAM IN statements
indicating source module input files to be processed (if any), immediately follow the
PARAM BATCH or PARAM BA statement.

PARAM BATCH format:

II PARAM~::TCH~=i'~FLINEt
ONLINE ~

where:

BA

\

Is the alternate, short form of the BATCH keyword parameter.

Specifies that the configured batch processor is not to be invoked during this
execution of IMS 90 and causes the main storage allotted to batch subroutines to
be released for other uses by IMS 90.

OFFLINE
Specifies that batched transactions are to be processed in offline mode; that is,
without an active terminal network.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7-8

ONLINE
Specifies that batched transactions are to be processed in online mode. This
mode requires a communications network, including at least the master terminal,
to be configured and active. Batch processing is controlled by the ZZBTH master
terminal command.

If you have· created and filed batch input source modules, you insert into the control
stream PARAM IN statements for those that are to be processed, following the PARAM
BATCH statement. There may be any number of PARAM IN statements (or none), and the
order in which they appear in the control stream is your option. If sets of batch input card
images are embedded in the control stream, these may be interspersed freely among the
PARAM IN statements in whatever order you want.

PARAM IN format:

II PARAM IN=module-namelfi le-name

where:

module-name
Is a 1- to 8-character name of a source module containing card images of input
messages to be processed by the batch transaction processor. This module
resides in the disk file named by the file-name parameter.

file-name
Is the 1- to 8-character name of the disk file on which the source module
resides. The file-name parameter must match the LFD-name specified in a job
control statement assigning the file to the current execution of IMS 90.

Is a separator between the module-name and file-name parameters and must be
coded as shown. It cannot be preceded by a blank, nor be followed by a blank.

7.3.2.4. Embedding Source Data in Control S1ream

At your option, you embed sets of card images of input messages in the batch processor
control stream, following OS/3 job control conventions. These can be interspersed freely
among the PARAM IN statements (Figure 7-2). However, for better performance in
multithread batch processing, you should group all embedded data sets last, behind (after)
all your PARAM IN statements.

7.3.2.5. Sample Control Stream

Figure 7-2 illustrates a control stream for executing a multithread IMS 90 system for
online batch transaction processing. Note that the arbitrary LFD-name of the input source
file (SRFILE), assigned in a DVC-LFD job control sequence, is repeated in the two PARAM
IN statements later in the control steam; one PARAM IN statement calls for processing of
transactions in a module of SRFILE named TEST. The other statement refers to a module
in this file named PROD. This example assumes that BATCH=4 is specified in the
NETWORK section input to the IMS 90 configurator (the number of printer files assigned
to the job indicates this).

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 7-9
IMS 90 APPLICATIONS

4

II JOB IMS BATCH,, 36EE8

II DVC 5£1 II VOL 123456 II LBL NAMER EC II L FD NAMER EC

II DVC 5 £1 II VOL 123456 II LBL AUDF I LE II LFD AUDF IL E~(D
II DVC 5 £1 II VOL 123456 II LBL CONDA TA II LFD CONDA TA
II DVC 5 £1 II VOL 123456 II LBL TCIDTF II LFD TCIOTF .. INIT}
II DVC 5 £1 II VOL 123456 II LBL DQFILEl II LFD DQ FI LE 1 , , IN IT @
II DVC 5 £1 II VOL 123456 II LBL DQFILE2 II LFD DQFILE2,,INIT
II DVC 5 £1 II VOL 123456 II LBL DQFILE3 II L FD DQFILE3,,INIT

:(@
II DVC 5£1 II VOL 123456 II LBL DQFILE4 II LFD SRFILE

:(@
II DVC 20 II LFO PRNTR1
II DVC 2£1 II LFD PRNTR2
II DVC 2£1 II LFD PRNTR3 @)
II DVC 2£1 II LFD PRNTR4
l&I OPTION DUMP
II EXEC ZQ#IMS,LOAD,1@
11 PA RAM START (j)
II PARAM BA=ONLINE
II PA RAM I N=TEST ISRF I LE
1$

:(@
I

I I•)@
II PA RAM I N=PRODISRF I LE (
1$

:(®
I*
I&
II FIN

NOTES:

CD A single-thread IMS 90 system uses the AUDCONF file in lieu of these.

@ Not required for offline batch mode, which does not use a terminal network.

@ Assign user data files

@ Assign source module input files referenced in ZZBTH master terminal commands.

@) Assign printer files; one for each batch pseudoterminal created by the configurator. Equal in number to the number
specified in the BATCH configurator keyword.

@ The program name on the EXEC statement must match the LOADM parameter specification on the IMSCONF jproc
at configuration. The default name for multithread IMS 90 is ZQ#IMS; the default name for single-thread IMS 90 is
ZS#IMS.

(j)

®
®

For offline mode, code this as I I PARAM BA=OFFLINE.

Batch input cards

Param IN statements, or embedded data sets, or both, are required for affine batch mode. Data sets may be freely
interspersed among PARAM IN statements. These are optional in online batch mode and when present are
processed through one or more ZZBTH*(,All) master terminal commands. If absent in online batch mo), the
module-name.filename form of the ZZBTH command is used to specify all input source modules to be processed.

Figure 7-2. Sample IMS 90 Execution Run Stream for Online Batch Processing in a Multithr 'P.m

t

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

..

7.4. PREPARING TRANSACTION INPUT FOR BATCH PROCESSOR

7-10
Update B

Input for the batch processor is in the form of card images, either filed on disk or included as
embedded data sets in the IMS 90 execution run stream. This capability provides the flexibility
needed for batch testing as well as for standard batch production runs. Note that action
programs using screen formatting services may not run in a batch (online or offline)
environment.

7.4.1. Input Message Coding

Each input message is punched into a card, or as many as 18 cards; messages are
grouped in the sequence in which the operator enters them at the terminal. The batch
processor takes input message text from card image columns 1 through 71. (Individual
messages longer than 71 characters are continued onto the next card by coding a
nonblank character in column 72; coding on the continuation card begins in column 1.) Up
to 17 continuation cards are allowed, giving a maximum length of 1346 bytes for any one
message. Columns 73 through 80 are reserved for sequence numbers which are not
required or processed. Both input message text and device independent control
expressions (DICE) are in EBCDIC code.

When coding UNIQUE dialogs for batch transaction processing, you use the hard copy
format of the ADD and CHANGE commands to avoid the laborious preparation of DICE
sequences necessary if you use the display format.

When coding an input message for a user action program that does not allow free-form
placement of data characters, you code data in specific card columns. The SWTCH
transaction, on the other hand, must always be coded beginning in input card column 1
because this is the position expected by the SWTCH action program.

Figure 7-3 illustrates a sample UNIQUE dialog transaction prepared as input for batch
processing, comprising 10 input messages and followed by two SWTCH transactions for
sending unsolicited output to active online terminals. These card images constitute an
embedded data set for inclusion in the control stream. Notice that no delimiter is required
to separate the UNIQUE dialog from the SWTCH transaction code that follows it (the
CLOSE command serves this purpose) and that nothing is used to mark the beginning or
end of the source module. Notice also the handling of continuation for the input message
that contains more than 71 characters.

OPEN CUSTOMR
LIST
MORE LIST
MORE LIST
MORE LIST
MORE LIST
DISPLAY LA7HB
DETAIL CUST-ID IF NAME GT .LOGAN LIQUORS .AFTER .LAST CHANCE SAL*
OON .

lli
ORE DETAIL

OSE
TCH Tl,T2 THIS IS A MESSAGE
TCH T3.Hl THIS IS A MESSAGE

Figure 7-3. Sample UNIQUE Dialog Transaction Prepared as Input to Batch Transaction Processor

•

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7.4.2. Handling DICE Characters

7-11

The characters used in DICE sequences that certain user-written action programs employ
to format output messages are written as hexadecimal symbol pairs (using EBCDIC
characters) in input messages prepared as batched transactions. To eliminate the
requirement that the hexadecimal codes be multipunched, the batch processor employs a
shift character (the I character, multipunch 11-7-8) to designate that all EBCDIC
characters following it are to be treated as hexadecimal digits (0-9,A-F) until another I
character is scanned. Each pair of hexadecimal digits is converted to a single byte before
being passed to the batch processor. Two I symbols in succession are converted to a
single I. For example, the following EBCDIC sequence in an input message:

I 10040000 --, YES I 0571 I

is transmitted to the processor as the following:

NOTE:

The first four bytes are the DICE sequence for position control to new line on a CRT
device.

When the batch processor encounters DICE control sequences or the ESC (escape)
character (27 16) in an output message area, it strips them before printing the message.
This corresponds to the online handling of DICE codes and hardware characters which are
not displayed on the terminal. An OMA could look as follows:

..._.,,...., ..._.,,....,.__,._,,
DICE Control Sequence Message Text Dice Control Sequence Msg. Text ESC HT Msg.

Text

The print lines of this message after batch processing looks as follows:

First line: ABCDEF

Second line: GHI

Note the deletion of DICE control sequences and the ESC character (27 16) and HT
(horizontal tab, 05 16).

7.5. CONTROLLING BATCH PROCESSING IN OFFLINE MODE

Because IMS 90 executes without a communications network in offline batch mode, there
is no possibility of controlling batch processing via the master terminal. Batch input source
files are assigned with statements in the IMS 90 execution run stream.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7-12

The BATCH=OFFLINE parameter statement is followed by IN parameter cards and/or
embedded data sets of input card images; data sets are freely interspersed. The order in
which these appear in the streams is the order in which the batched transactions they
represent are processed. Listed output is ordered by the batch processor automatically.
You can only indirectly control its order by the sequence in which you submit your input
and, in a multithread IMS 90 system, by the number of batch pseudoterminals you have
generated via the BATCH configurator parameter.

7.6. CONTROLLING BATCH PROCESSING IN ONLINE MODE

IMS 90 requires an active communications network in the online batch processing mode.
This requirement allows close control of batch processing from the master terminal, using
the ZZBTH master terminal command to specify which source modules are to be processed
and when.

Batch processing that is conducted in online mode during normal production hours, when
the regular operating terminals are busy, should be expected to downgrade performance.
For this reason, online batch processing should be invoked during slow periods or prior to
shutdown. An alternative is to invoke online batch mode during nonproductive time,
perhaps configuring a special network consisting of the master terminal alone.

Another factor affecting online batch performance is the number of batch modules being
processed concurrently in a multithread IMS 90 system. The fewer the modules, the better
the performance. The maximum number that can be processed concurrently is determined
by the number specified with the BATCH configurator keyword, but the master terminal
operator controls the number of modules that are submitted simultaneously to the batch
processor (within the maximum limit) by his timing of the ZZBTH command.

You assign batch input source files and printer files with job control statements in the IMS
90 execution run stream. Following the PARAM START statement, you submit PARAM
BATCH=ONLINE, optionally followed by PARAM IN statements and embedded data sets.
No batch processing is performed until the first ZZBTH master terminal command is
entered. Note that PARAM IN statements or embedded data are appropriate only if you use
the ZZBTH *[,ALL] form of the ZZBTH master terminal command to control batch
processing in online mode. The module-name,file-name form of the ZZBTH command does
not take source input from the control stream.

If you want to list the output printed by the batch processor before the termination of the
IMS 90, you must instruct the system console operator to invoke the output writer by
entering PR BU; if any print files are ready, printing will begin immediately. The purpose of
entering the BU (burst mode) parameter is to avoid the normal printing of the IMS 90 job's
log file first. If only one printer is available, a spooling supervisor should be configured at
system installation time. (This is necessary because a nonspooling supervisor prints the
output as soon as it is generated by the batch processor.) Another consideration in a
multithread system is that the system console operator cannot be reached via the IMS 90
master terminal, although it is at this terminal that the operator controlling the batch
processing online ascertains that processing has been completed for one or more modules
and that the results are ready to be printed, if desired. •

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7-13

The function, format, and parameters of the ZZBTH master terminal command and how to
use it in controlling batch processing in online mode are described in 7.6.1 through 7.6.5.

7.6.1. ZZBTH Master Terminal Command

The ZZBTH terminal command is entered at the master terminal to initiate and control the
batch transaction processor in online mode. Parameters are available to specify the source
of input messages for each execution of the command, to control sequential progress
through control stream input, and to terminate, suspend, or resume the batch transaction
processing currently in progress.

Format:

ZZBTHlmodule-name,file-namei
' [• ALL]
CANCEL
PAUSE
RESUME

where:

module-name

Is a 1- to 8-character name of the source module that contains the card images
of input messages to be processed by the batch transaction processor in online
mode. When this module-name.file-name form of the ZZBTH command is used,
the batch processor does not seek the input source module in the job control
stream, but locates it in the file named by the second parameter, file-name.

file-name

Is a 1- to 8-character name of the file on which the foregoing source module
resides. The file-name parameter must match the LFD-name specified in a job
control statement assigning the file to the current execution of IMS 90.

Specifies that the next PARAM IN card or the next set of embedded data
encountered in the IMS 90 command stream represents the source of input
messages for this execution of the ZZBTH command. When this execution of the
ZBTH command is the first for the current execution of IMS 90, the PARAM IN
card or embedded data set used by the batch processor is the first one
encountered in the run stream. If the current execution of the ZZBTH * command
is not the first for the job, the card or embedded data set selected from the run
stream is one occurring after the one used as the source of input messages
processed by the immediately preceding ZZBTH * command .

UP-8614 Rev. 1

ALL

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7-14

Specifies that the entire run stream will be processed, starting with the next
source of input messages (represented by the * parameter specified with this
execution of the ZZBTH * command). If the optional ALL parameter is omitted,
processing of the run stream input stops when the next PARAM IN card or set of
embedded data is processed. If a subsequent source module is represented in the
run stream, therefore, you must enter another ZZBTH * [,ALL] command to
process it.

CANCEL

Specifies that all batch transaction processing currently in progress is to
terminate. Processing of each transaction ceases with the issue of the current
output message to the print file, and the print file is closed. File modifications
made since the beginning of the current transaction are not rolled back. The
batch processor substitutes a ZZCNC terminal input command for the next
expected input message.

PAUSE
Specifies that all batch transaction processing currently in progress is to be
suspended. Processing of each transaction ceases with the issue of the current
output message to the print file, but the print file is not closed.

RESUME
Specifies that all batch processing temporarily suspended by the preceding
ZZBTH PAUSE command is to resume from the suspended state.

7.6.2. Initiating Online Batch Processing

When the ZZBTH command is entered at the master terminal and the batch processor
recognizes batch input, the message BATCH INITIATED is output to the master terminal,
and processing begins.

With single-thread IMS 90, only one ZZBTH command can be entered at a time;
transaction processing in response to it must be completed before another ZZBTH
command can be entered. In a multithread IMS 90 system, on the other hand, several
ZZBTH commands can be processed simultaneously, up to the maximum number specified
by the BATCH configurator keyword.

If the master terminal operator attempts to enter a ZZBTH command in excess of the
maximum number of batch modules that can be processed concurrently (or a single-thread
operator enters a second command before the processing of the current command is
done), IMS 90 responds with the following diagnostic message:

TOO MANY ZZBTH COMMANDS ENTERED - COMMAND IGNORED

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7.6.3. Tracking Progress of Batch Processing

7-15

To determine when a batch run is complete, or to keep track of the processing of batch
modules, the master terminal operator at any time can enter the ZZTCT master terminal
command to access the terminal control table generated for any batch pseudoterminal,
and specify the batch terminal id desired (BTH1 , ... ,BTH4). The ZZTCT command provides
the master terminal with a report of the activity outstanding at the specified terminal. (See
5.2.2.4.)

7.6.4. Resuming Batch Processing Once Terminated

Issuing the ZZBTH CANCEL command terminates only the ongoing batch processing; the
transaction processing that has been accomplished is listed. There is nothing to prevent
reprocessing the same modules or to prevent batch processing from being performed on
other source modules. You can continue by issuing the appropriate ZZBTH command after
having received the response to the ZZBifH CANCEL command in effect. The response to
the ZZBTH CANCEL command is the message:

BATCH PROCESSING CANCELLED

The effect of issuing a ZZBTH *[,ALL] command after you have issued a ZZBTH CANCEL
command is to read the control stream at the next data set present. If you issue the ZZBTH
module-name, file-name form of the command, the specified module is processed from its
beginning, not from where processing ceased if this was the module being processed
when you issued ZZBTH CANCEL.

7.6.5. Repetitive Use of Batch Mode

There is no feature in the batch transaction processor that checks whether your files have
been processed by the same input - in fact, batch mode facilitates reprocessing with
repetitive use of the same input. This enables you to use the same program at the end of
each day to list the state of your files and to review the day's activity.

7.7. CONTINUOUS OUTPUT CONSIDERATIONS

Output delivery notification to a batch pseudoterminal is always generated as successful
by the batch transaction processor. A program using output-for-input queueing can be
testing in batch mode, but it is not reasonable to perform continuous output by this means
in a batch production run.

7.8. BATCH PROCESSOR DIAGNOSTIC MESSAGES

In addition to the diagnostic and error messages normally output by IMS 90 to the
operator at a production terminal (which the batch processor includes in the output listing
for each batch pseudoterminal), the batch processor generates a set of its own messages .
These it sends to the master terminal or includes in the output listing for the batch
pseudoterminal, as appropriate. Table 7-1 lists the texts of these messages, describes
their causes, and indicates the corrective action that can be taken.

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7.9. RECOVERY CONSIDERATIONS

7-16

When recovery is invoked for batch processing, either cold or warm restart, the user
enters a DLMSG input transaction via cards to the batch processor. One card is supplied
for each batch terminal. For single-thread IMS 90, only one card is required. Using the
printed output from this transaction (DLMSG), the user can decide what portion of his
input batch module was processed before the system aborted. From this information the
user can reconstruct his batch input card deck or use the librarian to edit a source library
input message module.

An example of a warm restart batch input for a single-thread batch system is:

/$
DLMSG BTHl
I•

For warm restart, the before images for the files are restored at the start of the last
transaction completed.

Table 7-1. Batch Transaction Processor (BTP) Diagnostic Messages (Part 1 of 2)

Menage Text Description or Cause Corrective Action

BATCH INPUT MODULE BTP attempts to access a non-existent input Check that module name is correct and that input
READ ERROR module; or an 1/0 error has occurred; or the messages are indeed contained. Otherwise. action

module contains no input messages. as for hardware error.

INVALID BATCH The control stream contains an incorrect Correct the PARAM card. Refer to 7.3.2.3.
PARAMCARD PARAM card.

PRINTER FILE ERROR This message is sent to the master terminal Check that the file exists and that the LFD-name
when a printer file cannot be opened or an is correct. Otherwise, action as for hardware error.
unrecoverable hardware error occurs.

READING SOURCE This message is printed upon successfully None
MODULE module-name opening the source input module file.
FROM FILE
file-name

SOURCE MODULE This message is printed if the batch input Ensure that the source module exists in the file.
module-name IN module is not in the library file.
FI LE file-name
NOT FOUND

READ ERROR ON An 1/0 error occurs while the BTP is As for hardware error
MODULE module-name reading the batch input module.
FILE file-name

TOO MANY CONTINUATION The BTP has encountered more than 17 Restrict each input message to the maximum number
CARDS continuation cards. of cards: 18. Refer to 7.4.1.

HEX CHARACTER ERROR The BTP prints this message to the right Revise coding between shift characters to
of the input card image when an EBCDIC represent hexadecimal codes; see 7 .4.2.
character other than 0-9 or A-Fis coded
between two input shift characters.

HEX CHARACTER PAIRS The BTP prints this message to the right Revise coding between--, shift characters to
INCOMPLETE of the input card image when the EBCDIC represent hexadecimal pairs; see 7 .4.2.

characters coded between two-7shift
characters are within the set 0-9 or
A-F but are odd in number.

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

7-17

Table 7-1. Batch Transaction Processor (BTP) Diagnostic Messages (Part 2 of 2)

Message T&Kt Description or Cause Corrective Action

BATCH NOT CONFIGURED - Output to master terminal in response to a If batch processing of transactions is intended,
COMMAND IGNORED ZZBTH command entered when BATCH=NO specify the BATCH keyword to the IMS 90

has been specified or the BATCH keyword configurator according to 7.3.1.1.
is omitted from the NETWORK section
of input to I MS 90 configurator.

BATCH=NOSPECIFIED IN Output to master terminal in response to a Specify the intended PARAM BA statement
PARAM CARD -COMMAND ZZBTH command entered when batch in the IMS 90 run stream according to
IGNORED processing has been specified to the IMS 90 7.3.2.3.

configurator but the PARAM BA statement
ha• been omitted from the IMS 90 run
stream or PARAM BA=NO is specified.

INVALID ZZBTH PARAMETERS Output to master terminal in response to a Reenter ZZBTH command with parameters
- COMMAND IGNORED ZZBTH command entered with incorrect conforming to those documented in 7 .6.1.

parameters (syntax error).

TOO MANY ZZBTH COMMANDS Output to master terminal in response to a Defer reentry of the ZZBTH command until
ENTERED - COMMAND ZZBTH command entered in excess of the response to the ZZTCT command indicates
IGNORED number which may be processed at one time that processing is again possible (7 .6.3).

is this configuration. In a single-thread
IMS 90 system, only one ZZBTH command
may be active at one time; entry of a
second must be deferreduuntil conpletion
of processing for the current command.
In a multithread system, the number of
commands that may be processed simultaneously
is linited by the maximum number specified

withtthe BATCH configurator keyword .

BATCH PROCESSING Normal response to successful ZZBTH None required. Batch processing may be
CANCELLED CANCEL command; only the batch reinitiated during this execution of IMS 90

processing currently in progress by entering an appropriate ZZBTH command
terminates. (7.6.4).

ALREADY READING BATCH Output to master terminal in response to a Defer reentry of the ZZBTH command until
CONTROL STREAM DATA ZZBTH command entered before the processing response to a ZZTCT command indicates
SET - COMMAND IGNORED of a data set in the control stream has been that the current processing of a control

completed by the current ZZBTH command. stream data set is complete (7 .6.3).
Only one data set may be processed at a time;
while one is being processed, no further
PAR AM IN statements may be processed.

BATCH RESUMED Normal response to successful ZZBTH RESUME None required.
command.

BATCH INITIATED Normal response to successful start of batch None required.
processing with the ZZBTH command.

ZZBTH PARAMETER Output to master terminal in response to a Check for correct parameter information
PROCESSING ERROR ZZBTH command when an input module is and reissue command.

missing, the end of control stream input is
accessed, and so forth.

BATCH PROCESSOR NOT Output to master terminal in response to a Do not reenter ZZBTH RESUME command until
IN PAUSE - COMMAND ZZBTH RESUME command entered when BTP is in a pause state: that is, until after
IGNORED the BTP is not in a pause state. receipt of normal response to ZZBTH PAUSE

command.

BATCH PROCESSOR NOT Output to master terminal in response to a None required.

RUNNING - COMMAND ZZBTH PAUSE or ZZBTH CANCEL
IGNORED command when the BTP is not running or has

completed processing.

BATCH PROCESSOR IN Normal response to a successful entry of the None required. The only valid commands following

PAUSE STATE ZZBTH PAUSE command. the ZZBTH PAUSE commands are the ZZBTH RESUME
or the ZZBTH CANCEL command .

•

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

A-1

Appendix A. Statement Conventions

Throughout this document, certain conventions are observed for formats for user-supplied
statements and commands. General rules with examples pertaining to these conventions
follow.

• Capital letters and punctuation marks (except braces, brackets, and ellipses) must be
coded exactly as shown. For example:

•

CALL 'GET' USING file-name record-area record-number.

is coded:

CALL 'GET'.USING CUSTFIL CUS-REC REC-KEY.

Lowercase words that are not underlined represent information to be supplied by the
user. For example:

ZZTCT terminal-id

is entered on the terminal as:

ZZTCT TRMl

• Information within braces~ l represents necessary entries, one of which must be
chosen.

For example:

jCALL ljGET l.(fi lename,
1ZG#CALL 51GETUP5

record-area, record-number)

is coded:

ZG#CALL GET.(STATE.RECORD.SNKEY)

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

A-2

• Information within brackets [], including commas and semicolons, represents optional
entries that are included or omitted, depending on program requirements. Braces
within brackets indicate that one of the entries must be chosen if that operand is
included. For example:

is coded:

JUS=L

• Default parameter specifications are indicated by shading. For example, if no TYP
parameter is specified as input to the edit table generator, the M is supplied, meaning
alphanumeric type data is expected for the designated file.

• An ellipsis (...) indicates the presence of a variable number of entries. For example:

SWTCH6 terminal-id-n, ... ;66message-text

is entered at the terminal as:

SWTCH TRM1,TRM2,TRM4,TRM6; THIS IS THE UPDATE FILE:

• A delta (D.) indicates the presence of a space as shown in the example.

Statement conventions and coding rules specific to individual functions are described
where applicable throughout this document.

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Appendix B.

B-1

UNIQUE Language
Elements

The standard lexicon for UNIQUE is automatically defined at configuration time. This
appendix lists the elements of this language and how they are used by UNIQUE.

Language Element Description

Commands

OPEN Begins a dialog

CLOS£ Terminates a dialog

DISPLAY Displays a record in a file

DELETE Deletes a record in a file

OK Finalizes update operation

CANCEL Cancels current update operation

ADD Inserts a record into a file

CHANGE Changes a record in a file

NEXT Processes the next record, as mentioned in preceding command

LIST Lists records from a file

MORE Continues processing previous LIST or DETAIL command output

DETAIL Performs secondary listing operation

SHOW Displays information about current dialog

UP-8614 Rev. 1

Language Element

()

$

CR

AND

OR

NOT

EQ

NE

GT

GE

LT

LE

TOTAL

COUNT

MAX

MIN

AVG

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Description

Punctuation

Semicolon. Used to delimit identifiers and LIST requests

Single quote or apostrophe. Used to indicate special character in identifiers

Ditto character. Used to copy parts of previous commands

B-2

Comma. Used to separate segments of identifiers and also used in the editing of numbers

Set symbol. Used to set data values, in update commands (hard copy format)

Decimal point. Used to indicate decimal places

Parentheses. Used in arithmetic expressions in LIST command

Dollar sign. Used to designate dollar values

Credit symbol. Used to indicate a negative money amount

Logical Operators*

Intersection operator

Union operator

Negation operator

Equals operator

Not equals operator

Greater-than operator

Greater-than-or-equal-to operator

Less-than operator

Less-than-or-equal-to operator

Statistical Functions*

Total operation

Count operation

Maximum operation

Minimum operation

Average operation

*Used in LIST command

UP-8614 Rev. 1

• Language Element

FOR

FROM

AFTER

IF

ALL

COMPLETE

END

NO

PASSWORD

INVALID

ILLEGAL

COMMAND

• MESSAGE

RECORD

TOO BIG

IDENT.

EOM

DATATYPE

1/0

ERROR

BAD

DATA

EXISTS

•

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

Description

LIST Keywords

Restricts output from LIST command

Specifies records to be listed

Specifies records to be listed

Initiates selection criteria in LIST command

Specifies records to be listed

Status Indications

Reports successful completion of a request

Indicates the end of the LIST or DETAIL output

Used in error messages (e.g., NO RECORD)

Used in error messages in response to OPEN command

Used in error messages (e.g., INVALID COMMAND)

Used in error messages (e.g., ILLEGAL. IDENT.)

Used in error messages

Used in error messages

Used in error messages

Used in error messages (e.g., RECORD TOO BIG)

Used in error messages to convey information concerning identifiers

B-3

Used in error messages to indicate the end of some input was unexpected (e.g., INVALID EOM)

Used in error messages

Used in error messages (e.g., 110 ERROR)

Used in error messages

Used in error messages

Used in error messages to indicate an inconsistency between the value of an item and its description
(e.g., BAD DATA)

Used in error messages

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

C-1

Appendix C. Sample IMS 90 Application

C.1. PREPARING AN RPG 11 APPLICATION

This appendix is the step-by-step procedure for preparing an IMS 90 application using an
RPG II action program. The example action program (LSTLIM) accesses an ISAM file
(STOCKS) and is activated by entering the transaction code STK at the terminal.

The processing steps used to prepare the system for online RPG II action program
execution are as follows:

1. ICAM network generation

2. IMS 90 configuration

3. File space allocation

4. User logical file creation

5. RPG II action program compilation

6. RPG II action program linkage

7. IMS 90 execution

ICAM network generation must precede IMS 90 configuration. Action program compilation
must precede linkage. All steps must be completed before IMS 90 execution, but
otherwise, except as noted, may be done in any order.

In this sample application, steps 3 and 4 are assumed complete; i.e., the disk space has
already been allocated and the user logical file has been created.

C.2. ICAM NETWORK GENERATION

The first step is to generate the ICAM network for the action program, LSTLIM. Figure C-1
shows the ICAM specifications for a resident transaction control interface (TCI) network .

UP-8614 Rev. 1

COMMCT
TC I 1

LN El
TRMl
TRM2
TRM3
TRM4
PIHl 1
DQFILEl
TC I DTF

END
II FIN

10 16

SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

CCA TYPE=(TC I),PASSWORD=RPGIMS90,FEATURES=(TRACEMAX)
BUFFERS 10,128,l,ARP=35
LINE DEVICE=(UNISCOPE),TYPE=(2400,SYNC,SWCH), 10=08

C-2

TERM ADDR=(28,51) ,FEATURES=(U200),LOW=DQFILE1,MEDIUM=MAIN,HIGH=MAIN
TERM ADDR=(28,52),FEATURES=(U200),LOW=DQFILE1,MEDIUM=MAIN,HIGH=MAIN
TE RM ADD R= (2 9 . 5 3) . FEATURES=(U 2 0 0) . l OW=DQ F I l E 1 . MED I UM=MA IN , H I G H=MA IN
TERM ADDR=(29,54),FEATURES=(U200),LOW=DQFILE1,MEDIUM=MAIN,HIGH=MAIN
PRC S l OW=D Q F I l E 1
DI SC F I l E F I l ED I V=8
DISCFILE MSGSIZE=2048
ENDCCA
MCP MCPNAME=C5

CA CH= (0 8 , TC I 1 , 0 1)

Figure C-1. /CAM Network Generation for RPG II Action Program, LSTLIM

The ICAM network name (CCA label) is TCl1. This name must agree with the CCA name
specified in the NETWORK section of the IMS 90 configuration (Figure C-2). In addition,
the password RPGIMS90 must also agree with the password indicated in the NETWORK
section of the IMS 90 configuration.

The ICAM network (Figure C-1) describes one line with four UNISCOPE 200 terminals,
each having three queues. The output queueing file is DOFILE1, and TCIDTF is the input
buffer file. The name of the ICAM symbiont (MCPNAME) is C5, and the communications
adapter port number of 08 is associated with this network in the CACH parameter.

The system console operator places the card deck shown in Figure C-2 in the card reader
and types in the following commands one at a time:

RU SG$PARAM
RU SG$COMMK

After the SG$PARAM module is executed, the operator types in the second command to
execute the SG$COMMK module. This produces the ICAM symbiont and places it in the
YLOD library.

C.3. IMS 90 CONFIGURATION

The second step is IMS 90 configuration. Figure C-2 shows the IMS 90 configuration used
for the LSTLIM action program.

•

•

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

II JOB IMSCONF,,14000,14000
11 IMS C 0 NF Z CNF =MT , CC A= TC I 1 , L 0 A OM= I S 1 , I N I T = (I)
I&
II FIN
NETWORK CONFID=4 NAME=TCll PASSWORD=RPGIMS90
GENERAL
OPTIONS
FI LE

TERMINAL
TERMINAL

UNSOL=YES
STOCKS FILETYPE=ISAM
BLKSIZE=87
RECSIZE=80
IOROUT=ADDRTR
KEYLEN=3
KEYLOC=0
IOREG=(8)
KEYARG=STOCKS
IOAREAl=STOCKS
TYPEFLE=RANSEQ
TRMl MASTER=YES
TRM2

TERMINAL TRM3
TERMINAL
ACTION
TRANSACT
PROGRAM
II FIN

TRM4
LSTLIM EDIT=# FILES=STOCKS
STK ACTION=LSTLIM
LSTLIM ERET=YES

INSIZE=27 OUTSIZE=960

Figure C-2. IMS 90 Configuration for RPG II Action Program, LSTLIM

C-3

The IMSCONF jproc calls five subordinate procedures that generate the control streams
necessary to perform the IMS 90 configuration. The IMSCONF jproc specifies a
multithread IMS 90 with a CCA named TCll, an online IMS 90 load module named ISl,
and file space initialized for NAMEREC, AUDFILE, and CONDATA IMS 90 files (INT=(I)).

The NETWORK section of this configuration identifies the IMS 90 system records for the
NAMEREC file, and names the CCA network and password in agreement with the ICAM
generation specifications (TCll and RPGIMS90).

The GENERAL section is optional.

The OPTIONS section specifies unsolicited output, i.e., the SEND function and SWTCH
command can be used. RPG II uses the SEND function in the action program, LSTLIM,
since multiple screens may be transmitted.

The FILE section describes the user logical file used by the RPG II action program, LSTLIM.
The user logical file is STOCKS. This name must agree with the LFD card on the device
assignment for the user logical file (see Figure C-9).

The TERMINAL section names four terminals with TRM1 as the master terminal. These
names must agree with the terminal names on the ICAM generation (Figure C-1) .

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

C-4

The action section names the RPG II action program. This name must agree with the
linked load module name (Figure C-3). If you anticipate the transmission of multiple blanks
in a screen of data, you should use the EDIT=c parameter in the ACTION section where c
indicates some infrequently used special character. Otherwise, multiple blanks are
removed by the IMS 90 editing process. Do not use EDIT=NONE. RPG II cannot process
the incoming DICE codes. The user logical file, STOCKS, is to be referenced and used by
the LSTLIM action program. The INSIZE parameter must be used for all RPG ,II action
programs and the value must be equal to the record size specified on the file description
specifications form for the IMA.

The TRANSACT section specifies the transaction code of STK, which must agree with the
transaction code keyed in by the terminal operator at RPG II action program execution
time.

Finally, the PROGRAM section names the action program and specifies that control is
returned to LSTLIM if an error occurs.

C.4. COMPILING AND LINKING THE RPG II ACTION PROGRAM

To compile and link the RPG II action program, use the simple RPG and LINK jprocs shown
in Figure C-3.

II JOB RPGACT
II RPG
1$

(action program)

1·
II LINK LSTLIM.OUT=(RES.YLOD)
I&
II FIN

Figure C-3. Compile and Link for RPG II Action Program, LSTLIM

Note that in linking the RPG II action program object module, the name of the load library
where the action program load module is stored (YLOD) must agree with the library
name (YLOD by default) on the LBL parameter of the IMSCONF jproc.

Figure C-4 through C-8 show the specifications forms required to code action program
LSTLIM, which accesses the STOCKS file for records within the lower and upper limits
keyed in by the terminal operator. A line-by-line description also is provided.

I.

2.
3.
4.

- e e

UNIVAC
RPG II

CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
PROGRAM ~--------------~ PROGRAMMER ------------------ OATE -------- PAGE --- OF --- PAGES

CONTROL CARD SPECIFICATIONS
FORMH ll COMPILA110N MOOE INVERTED ALTERNATE L FORMS ALIGNMENT INDICATOR INITIALIZATION

< SUBROUTINE
TYPE 5 ~ ERRO~~~:L YSIS z PRINT COLLATING [SIGN HANDLING ~ FILE TRANSLATION

!--- GENERATE < z
< ~ ~ SEQUENCE J s < < < ~SHARED PAGE "' z z DE BUG CODE "' "' z z z NOT USED

PROGRAM

NO LINE
a: <{ ~

OPERATOR < " NOT ~ 15 s 5 5 < 1/0 IDENTIFICATION
0 a: •! ~ 0 NOT ~ CCA

NO ., er ii COl\ITROL ~ USED " NOT USED "'"' "'"' USED o:i AREA NAME .,,
;;, o " ~ NOT USED 0 " " " " ~ ,------J ;; o ~ J NOT USED

0 ~ 0 0 0 0

"' - .,, ~ -
1 2 3 5 6 7 8 9 10 14 15 16 20 21 22 25 26 27 39 40 41 42 43 44 47 48 49 69 70 73 74 75 80

0 1 H IJ_ J. J_ J_ J_ IA L s:-r L_l,~

FILE DESCRIPTION SPECIFICATIONS

~~~~F 
FILE TYPE FILE PROCESSING MOOE E XTENStON OR LABELS FILE AOOITION/UNOAOEAEO LOAD 

FILE DESIGNATION KEY OR RECORD LINE COUNTER CYLINDER OVERFLOW 
t--- END OF FILE ADDRESS f1ELD LENGTH CODE SPACE PERCENTAGE !X10l 

NUMBER 

SEQUENCE RECORD ADDRESS TYPE NAME OF 
OF BYTES NUMBER OF EXTENTS 

IN MAIN " PAGE FILE FILE FORMAT FILE ORGANIZATION NOT LABEL EXIT z TAPE REWIND OPTION 
NO NAME USED OR NAME OF 

STORAGE .. 
LINE ... > OVERFLOW z TO BE RESERVED a:: FILE CONDITIONERS 
NO ~ 3 " " Q INDICATOR DEVICE .;; USER DEVICE 

FOR ISAM 
BLOCK RECORD ~ x "' 

ROUTINE a: 
NOT PROGRAM lNOEX 0 :;) ii LENGTH LENGTH ;.. 0 q KEY FIELD z "' USED IDENTIFICATION ... " 3 :;) 

0 .;; 0 > 
~ 

~ ;:: .. STARTING ~ CONTINUATION LINES 
z ii: w ;r.:;:: 

< " 0 ;, ii 5 
LOCATION " OPTION ENTRY 

1 2 3 5 6 7 13 14 15 16 17 18 19 20 23 24 
" 28 "' 30 31 32 33 34 35 38 39 40 46 47 52 53 54 59 60 65 66 67 68 69 70 71 72 73 74 75 80 

0 1 F H.l:PJ,UT tlJ:e F J_ .2, 1 27 t-L - _L . _...L_J__...J. ~IM.A J_ J_ 

0 2 • $~'3 ItD F l ,B,o ,8.o ILi .::i. Al I 'D1I,SK, J_ J_ 

0 3 • ~u:-CP.lu;-r ~ F J<'.{Oif- B.Qd ~l911.A ...L -1. J_ .l 

Figure C-4. LSTL/M Control Card and File Description Specifications Forms 

c 
"ti 
Co 
Ol 
~ 

""' ::c 
CD 
:c: 

- CJ) 
:!!:: "ti 
CJ> m 

~~ 
)> c 
-oz 
fl < 
- )> 
~ (') 

::! 0 
0 CJ) z, 
CJ) w 

(') 
I 

(11 



5. 

SJ=E~v+uNIVAC 
RPG II 

FILE EXTENSION AND LINE COUNTER SPECIFICATIONS 

PROGRAM---------------
PROGRAMMER _________________ _ DATE ________ _ 

PAGE ___ OF --- PAGES 

~~~~E 
RECORD SEQUENCE

OF CHAINING FILE

t---
NUMBER OF THE

N CHAINING FIELD PAGE N

NO <
LINE ..
NO ~

~ ~
FROM

FILE NAME
u

, , 3 5 6 7 8 9 10 11 18 19

•..1. • • -1. J_

SJ=E~v+uNIVAC
PROGRAM ______________ _

I- ALTERNATING FORMAT
<

I-,.
a: <
~ w

,.
NUMBER

NUMBER
a:

OF LENGTH cf
u TABLE

LENGTH ~
TO TABLE OR OF ENTRIES

OF !;;(~ OR
ENTRIES :J OF < FILE NAME ARRAY NAME

PEA
PER TABLE

ENTRY C ~
ARRAY

ENTRY
I-..

RECORD
OR ARRAY NAME a ; a §

< ~ , ,. ,, 32 33 35 36 39 40 42 43 44 45 46 51 52 54 55

IAR'<'. J_ \Cl 18.d J_

Figure C-5. LSTLIM File Extension Specifications Form

FILE EXTENSION SPECIFICATIONS

w
u
~ PROGRAM COMMENTS
:J IDENTIFICATION
0
w
~

a
<

56 57 58 74 75 80

i -1. J

RPG II
INPUT FORMAT SPECIFICATIONS

PROGRAMMER DATE --------- PAGE ___ OF --- PAGES

FT~~~ I RECORD IDENTIFICATION FIELD DESCRIPTION

PAGE

11
1 I FILE

NO I LINE I NAME
NO 0

RECORD IDENT!FICATION CODES
FIELD LOCATION

POSITION ~l~l I POSITION 1~1~11 POSITION l~I~ m
24125126127128 31 l32IJJIJ4IJ5 38139140141142143144 47148 51152(53

FIELD
NAME

FIELD
a: I 0 I INDICATORS

~ s
~

0 I a:

~5 <.'.l § " o- z oz
a:~ i a:

~ a: :'i
I- :: ~ ~ z :J

~~ < ~
z

8 ,. ~ 0

58159 60161 62163 64165 66167 68169 70171

· 1.....,•-1• l~I •1 I 1MWQLL__l__L_J_u -+ l_~ l .L - _1 - _ _L _ -+---L-----+-

NOT I PROGRAM
USED l~ENTIFICATION

74175 80

l-'+--1---l -'--~-t--+-+_j_L_L++++-1---'---L I I I I I I I 1-1 . I I 1-1-1 I =i .. I - ' ·1 I I I I I I I I I I I I • I I I I I

--'- --'-- I I I I I I I 1 J__+-+-1--.J. __ L_J __ I I I I I I I I 1-1-q 'I I' •1-1• 'I 1-' 'I 1 I I I I 1 I I I I -~

,AAJ 102 J_

J_ _J_

_l

Figure C-6. LSTLIM Input Format Specifications Form

e e e

c
"'O
00
Ol
~ ..,.
::0

~

- en s:: "'O en m
CD ::0
o~
)> c
"'Oz

;:J1 < n l>
l> n
::!o
Oen
z 'en w

n
I

Ol

UP-8614 Rev. 1 SPERRY UNIVAC OS/3
IMS 90 APPLICATIONS

C-7

• Figure C-4:

•

•

Line Explanation

1 The program is an action program named LSTLIM.

2 The primary input file is INPUT and is the IMS 90 IMA consisting of one record
27 bytes long.

3 STOCKS is an indexed disk logical file processed by limits using the SETLL
operation (see Figure C-7, Line 12).

4 Output will go to the IMS 90 OMA, 904 bytes long, including ten 80-byte records
and 104 bytes for headers and control characters.

Figure C-5:

Line Explanation

5 ARY is defined as an array having 10 entries of 80 characters each.

Figure C-6:

Line Explanation

6-8 The input record format is defined. The first 16 bytes contain the IMA header.
Bytes 17 through 20 contain the 3-character transaction code (STK) followed by
a blank. This transaction code must also be specified in the TRANSACT section of
the IMS 90 configuration (Figure C-2). The header information and transaction
code are not referenced in this action program. Bytes 21, 22, and 23 contain the
starting stock symbol (lower limit of the search). Bytes 25, 26, and 27 contain the
ending stock symbol (upper limit of the search).

9-11 The logical file disk records are each 80 bytes long with a key (the stock symbol)
in the first three bytes .

ST=E~Y+LINIVAC
PROGRAM--------------- PROGRAMMER------------------

RPG II
CALCULATION SPECIFICATIONS

DATE ----~---- PAGE --- DF --- PAGES

FORM c CONDITIONS CALCULATION

~ ~ 1·NOICATQAS RESULT FIELD

~

RE SUL TING
INDICATORS

ARITHMETIC

PAGE
NO LINE

NO

AND AND

~
0

~
z

1 213 15116117118

12. L_h-'--t-c +--'--f-+-1~l-+
13. I . I •. ,.

+-+-+-~-+--•--+---'-

FACTOR 1 OPERATION

27128 32133

FACTOR 2 NAME

42143

FIELD
LENGTH

COMPARE

»2 I 10 I 1-2

LOOKUP

!FACTOR 21 IS

HIGH I LOW IEOUAL
48149 s11s21sJl54 ss 56 fl7 sa 59l6o

COMMENTS
PROGRAM

IDENTIFICATION

74175 80

14. ~3-Ltc~~ _j_ --'--+-+-1----L-+-

15. I I I 0 I. I - j _J __ +-+-+-'-+- L

lb
1'7

.l -l--.1.----1""~ J ! I ! I ! I I I I

l

0 ••

L _ _l_ __ l___L ___l_________L_J._ __ L _l I ! I ...J___L___J.__

-. IB
19 : : : : I : : : : :

I - L...L.L.J. L . .L ~~- L 1. +-+--•e-~--+-~
l _l__L L. L. L...L.J. _ _J___j__ __l _ l L__l__J__ LL _J___l-+--+-+--~1--~~~-+--~~~~~~~~~~~

2.o
L_1_J_.J.1L j___J__ _ _l_ __ l.L__l.L J.LLL_l _ _Ll I

21

22 '~'!....!_ __ ~ c - .l__l__i__ __ L-1____l______L__L_ 1 .1 1 L .L - ~--L _ _l_ - l_ _ _l_ ___l_---l-_L-!-....l__..!-_j_j__l__J___LJ__j__-'--_l_L....1__L__l___.L-1---'--L...J'---'---L-

23 1 2 C _.!_b~"f>1 l J 1 j 1 l J L 1 L J ___)

2L./ 1 3 c -/~L;R_E1E.J....\, LL _j__J__ L .L J_

25 1 4 C _ l__l_L_l__l_ - L _ .L_j _ _L_ _ _l _ l -L_L_j_ .l___l

2b 1 I 5 o c

Figure C-7. LSTLIM Calculation Specifications Form

• • •

c
~

00
m
~

""' ::c
~

- en s:: ~ en m

~~
)> c
~z
;:i;1 < -)>
~(")
:::! 0 o en
z " en w

en
'&.~
Q)

iD
)>

e e e

SPE~v+uNIVAC
RPG II

OUTPUT FORMAT SPECIFICATIONS
PROGRAM--------------~ PROGRAMMER ----------------~~ DATE--------- PAGE ___ CJF --- PAGES

PAGE

NO

~~~~D F:;~$~!~~i~~~~w SPACE I SKIP 

t------i TYPE HIO/T/E 

LINE 
NO FILE 

NAME 

:i!la: 
r;t;;tol~ ~ 
~ 

~ 
~ I>-

0 
z 

OUTPUT INDICATORS 

l 
AND 

... 
0 
z 

l 
AND 

... 
0 z 

5 I 61 7 

0 

19 20l21 22l~L4l2sl~l21l2al~IJOIJtlJ2 

Fl ELD 
NAME ~ 

DATA FORMAT 

P/8/UR 

END 
ct I POSITION "I IN ~ OUTPUT 
CD RECORD 
<O 

37138139140 43144145 

CODES 
COMMAS 

ZERO CODES ACTION 

NEGATIVE VALUE INDICATION 
INSERTED 

BALANCE REMOVE 
NONE j CA 1 TO PRINT x 

PLUS SIGN 
, I A J YES YES y EDIT DAT~ I 2 l B ± K YES NO FIELD 

3 I c L NO YES z ZERO 

• I D I M NO NO SUPPRESS 

CONSTANT QA EDIT WORD 

u: ' : I 0 r::~:Ll~: ~ 111 : I : I ~~ 11111 t--~-~-~: : 111 : : : 11 : : : : : : I I I I I I I I I I I I I I I I I I I I 
0 

0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ,2,ol IX, I , I 0101302.0 l 1' 

NOT 
USED 

I PROGRAM 
IDENTIFICATION 

I: 1-:-: 1°1: :- : : : : : 1111-H~ti 1111ti11::: ~: 111: :3:11::~:;:~!1:L:':::: : : : : : : : : : : : : : : l I I 0 

I I l-1 - I I 0 1 I I I I I I I I I I I I I -1--L+-W I I I I I -'--'--'--
01 ... ~ 

ol 1 1 1 I 1 1 --1. L -'-+--+ I I I I -

I I 

' iE:x.cJ-\ALl-1.G_E ' 
l-1 I 1°1 I I I lm~+H--1--L-l-_L +-+-+-+f-

ol , _l 

AR1Y1 I I 

-++' L-+-
~ 

_1l10,41 ~, 1 ,1,0,0,303,0,1,',, , , 1 1,,,,,, 1 1 I 1 1 I 1, 1 I 
1cto6· 1 1 I L_J_ l-1 -L._L.LJ.__L_l__j__[~~~~~~~,__,,__~~'-1r--<~~~~-. 

'--'-+---'--'-- +~_J__J__j_l__J_ -'--4++ ++-1-1-.i .++++- 1----

I I 1·1-1 1°1 I I I I I I 1+-++-++-LL 1 

Figure C-8. LSTLIM Output Format Specifications Form 

c 
"ti 
00 
a> _. 
.i::. 
:::0 

~ 

(") 
I 

<O 



UP-8614 Rev. 1 

Figure C-7: 

Line Explanation 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

C-10 

12 The starting point is set to the lower limit entered by the terminal operator. 

13 The array index is set to 1. 

16 A record is read from the disk file. If end-of-file has been reached, indicator 20 is 
set on. 

17 If the key is beyond the upper limit entered by the terminal operator, indicator 20 
is set on. 

18 A record is moved to the array. 

19 The array index is incremented. 

20 If the array is full, indicator 30 is set on. 

21, 22 If the array is full, it is displayed using the EXCPT operation and the index is 
reset to 1. 

23 If there are more records to process, the program returns to LOOP. 

25, 26 If there are no more records to process, a test is made to determine whether the • 
array is partially full. If it contains any records, the last screen is displayed. 

Figure C-8: 

Line Explanation 

27, 28 The output record is defined. Exception output is used where the array is full or 
when a last partial screen is reached. 

29 The first 16 positions contain the OMA header, which is unreferenced in this 
program. Positions 17-20 contain a DICE output control functions that positions 
the cursor at line 2, position 1. (See the current version of the ICAM user guide, 
UP-8194). 

30-36 Heading information is displayed. 

37 The cursor is positioned at line 3, position 1. 

38 The 800-character array is displayed using "blank after". 



• 

UP-8614 Rev. 1 

C.5. IMS 90 EXECUTION 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

C-11 

Finally, the IMS 90 load module IS1 is executed. Figure C-9 shows the job stream 
required to execute IMS 90 (IMS 90 start-up). Do not confuse this execution of the 
configured IMS 90 load module with execution of the RPG II action program. Remember, 
the action program LSTLIM is executed whenever the transaction code STK and new lower 
and upper limits are keyed in at the terminal for a search of the STOCKS file. 

NOTE: 

The operator must load /CAM by typing in the MCPNAME (C5 in this case) on. the system .-
console before executing the IMS 90 load module. 

The first device assignments are for the printer, IMS 90 files, and user logical file. Note 
that after the first run the EXT cards should be removed. The next device assignments are 
for allocating space for disk queue files. Ultimately, the EXEC statement executes the 
configured IMS 90 load module IS1. Note also that the name on the EXEC statement must 
agree with the name on the LOADM parameter of the IMSCONF jproc. 

II JOB IMS,, 14000, 14000, 4 
II DVC 20 II LFD PRNTR 
II DVC 64 II VOL REL050 II LBL NAMER EC II LFD NAME REC 
II DVC 64 II VOL REL050 II LB L AUDFILE II LFD AUDFILE 
II DVC 64 II VOL REL050 II LB L CONDA TA II LFD CONDATA 
II DVC 64 II VOL REL050 II LB L DISCl II LFD STOCKS 
II DVC 64 II VOL REL050 

* II EXT ST,C,,CYL,5 
II LBL DQFILEl II LFD DQFILEl,,INIT 
II DVC 64 II VOL REL050 

* II EXT ST,C,O,BLK, (256,600) 
II LBL TCIDTF II LFD TCIDTF,2,INIT 
II OPTION DUMP 
II EXEC IS 1 
I& 
II FIN 

*Remove this card after first run. 

Figure C-9. Execution of Configured IMS 90 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

C.6. EXECUTING THE RPG II ACTION PROGRAM 

C-12 

By following this step-by-step process from ICAM network generation to IMS 90 execution, 
the user prepares the system for the online execution of RPG II action program. 

The RPG II action program LSTLIM displays the records of an indexed user logical file 
between the limits specified by the terminal operator. Each UNISCOPE 200 screen 
contains 10 records except the last screen, which may contain fewer records. 

LSTLIM references two IMS 90 interface areas, the IMA and OMA as well as one user 
logical disk file, STOCKS, configured as an ISAM sequential file. The STOCKS file contains 
stock market information which is accessed by a 3-character stock symbol (alphanumeric 
key). 

The terminal operator executes the LSTLIM action program when he enters the configured 
transaction code (STK) followed by a 3-character key for the lower limit and a 3-character 
key for the upper limit. Records from the STOCKS file within the requested limits are 
displayed in sequence by key, 10 at a time, until the upper limit is reached. 

Figure C-10 shows the user's transaction code, STK, the lower and upper key limits 
requested from the STOCKS logical file (line 1 ), and the 10-record screen display from a 
full array (lines 3-12, screen 1) and from a partially filled array (lines 2-5, screen 2). 

When more records exist for the specified key range, the MESSAGE WAIT indicator lights 
at the terminal, and the user must press the MESSAGE WAITING key to receive the 
additional records within the specified limits. 

1 STK BAM NWA 
2 SYMBOL NAME RANGE PRICE CHANGE %CHANGE EXCHANGE 
3 BAM AAACO 11- 27 25 1/2 + 1/4 +8. 9 NYSE 
4 BGH BBBCO 6- 39 38 1/4 +2 +5. 5 OTC 
5 CAU cccco 46-181 176 3/4 +1 1/4 +8. 7 NYSE 
6 CAT DDDCO 18-69 58 1/4 +3 3/8 +6.1 NYSE 
7 OAP EE ECO 1- 4 3 1/2 + 1/4 +7.6 OTC 
8 DEC FF FCO 2- 5 ! 4 9 9.9 NYSE 
9 EA GGGCO 5- 16 15 + 3/8 +2.5 AMEX 
10 EEC HHHCO 23- 42 37 1/8 + 1/2 +l. 3 NYSE 
11 FOR I I I CO 4- 14 19 3/8 + 5/8 +6. 4 OTC 
12 GEN JJJCO 1- 3/4 1/8 -14. 2 OTC 

1 SYMBOL NAME RANGE PRICE CHANGE %CHANGE EXCHANGE 
2 HWP KKKCO 2 2- 56 47 5/8 - 718 -1. 8 NYSE 
3 MAN L LLCO 5 8-12 9 114 718 5/8 -9. 5 NYSE 
4 MIC MMMCO 158-272 269 +7 +2. 6 NYSE 
5 NWA NNNCO 1- 3 2 7/8 + 1/2 +21." OTC 

Figure C-10. Sample Screen Displays of Simple Transaction Requesting Records From STOCKS File 

e 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

0-1 

Appendix D. IMS 90 Internal Tables 

The following single-thread and multithread IMS 90 internal thread control blocks (THCB) 
and terminal control tables (TCT), Figures D-1 through D-3, may be used with an edited 
snap dump to further assist the user in determining and solving software problems. 

The snap dump lists areas such as the PIB, IMA, WA, OMA, CDA, THCB, and TCT. By 
examining the following figures, the user can associate the single-thread or multithread 
DSECT for thread control blocks or terminal control tables with those areas shown in the 
snap dump . 



UP-8614 Rev. 1 

t 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

ZTIDTHC8 DSECT 

• 
• IHREAO CONTROL BLOCK I SYST[H INFQqMATION BLOCK 

• 
• THREAD CONTROL SECTION 

• • • INSERTED EQu•s TO HATCH OS/7 NAPIES 

• 
ZTllP IBA EQU 
ZTIHPIBA OS 
Z Till KA EQU 
ZT_.tlPIA OS 
ZTITWA ECU 
ZTltlllA OS 
ZTITOKA EOU 
2Ttt10PIA OS 
ZTITCDA EOU 
ZTltlCDA OS 
ZTITORPIA EOU 
ZTIHORA OS 
ZTll:IDRE C EOU 
ZTIHDDRA OS 
ZTISUBFL EOU 
ZTIHOFA OS 
ZTITf AH EQU 
2TIHF AH OS 
ZTltlNUPlf EQU 
ZTITATA EQU 
ZTIHATA DS 
ZTITPTA EQU 
ZTIHPTA OS 
ZTITPTU OS 
ZTITTTA EQJ 
ZTIHTTA OS 
Z TIHIOAV OS 
2TfHPLA D~ 

ZTIHl!IOP OS 

• • EQUATES 
ZBISOLSH EOU 
ZBl>OLAS EQJ 

• 
A 

• 
A 

• 
A 

• 
A 

• 
A 

• 
A 

• 
f 

• 
F 

• 
XL 16 
•-ZTIHFAPI 

• 
f 

• 
F 
F 

• 
f 
F 
F 
F 

PROGRAH INFORHATION a .. oCK ADOR 

INPUT MESSAGE AREA AJuR 

WORK AREA AODR 

OUTPUT MESSAGE AREA AODR 

CONTINUITY OAT A AREA ADDR 

DEFINED RECORD AREA ADOR 

uATA DEfI NIT ION RECORD AllDR 

DEFINED f ILE/ SUSF ILE PKT ADDR 

FILE AL LO CATI ON 11 AP 
FILE ALLOCATION HAP -ENGTH 

ACTlOM CONTROL REC PTR 

PROG CONTROL TABLE REC PlR 

TER~ CONTROL TAa REC PTR 
START Of VARIAB .. E 1/0 AREA 
PROiRAH LOAD AREA ADDRESS 
BYPASS INTERRUPT QUEUE PTR 

FOR lST BYTE Of ZTIHSlwP 
x• oa • SHUTDOWN IN PROCESS 

AUTJHAT IC STA Tus l'Oif• 

D-2 

ZBISOLCO EQU 
Z!!ISOLST ECU 

x. 02. 
x •1JJ. 

ZZUP/ZZO•N COHHAr.D OUTSTANDING 
SHUTDOWN TIMER 

• 
ZTIHBIQ~ OS XLl 
ZAIUSER EOU • 
ZHUSER DC "•o• 
• 
• Pili ST AL•AYS BE ON 

• • • • • 
ZTITlND [QU • 
ZTIHIND OS K .. l 

• 
• [QUATES FOR ZTIHINO 

• 
ZTIHillSP EQU IC• 80 • 
ZTIHlNER EOU x ·-:· 
ZH>llNDl EOU J(. 2!). 
ZTltHNEO EOU I(. 10. 
ZTIHlNEX EQU X'G8' 
ZTIHI NCN EQU I(. Q't. 

ZUtllNlR f~U x•o2• 
ZT.,UNUP EOU x•o1• 
• 
ZTISY IND OS XL 1 
ZTIILlST !:OU x•ao• 
Z TIJOMRil ~QU x. 110. 
Z T HR SD ~cu JC. 20• 
ZHJTOUT EOU x. lC:. 
ZTIESET~ EQU x. :l8. 
ZTIJ;;[JX ECU I( '04. USE THE 
ZTIZZOPN EQU x•oz• lNuICATES 
Z TIPS SK OS 9f 

• 
• FILE MA~AGEHENI ENTRIES 

• 
lTITFC 
ZTIHf C 

• 
lQU 
DS 

• 
F 

BYPASSED I'llTERRlJ>T QUi.UE LENGTH 

USER Fi.. AG 

ODD BYTE BOUNDARY 

bO - I/O HA:> OCClJRREO 
40 - INIT UL SETT ING FOR USER 
GO - IMS ACTIU 

- cour. T FOR TOTAL TIHE 

Col'ITROL lNOI CA TORS 

SNAP INDICATOR 
ERROR RETUR'I 
DELAYED li'<TERr.AL suc:ES SION 
EXPLICIT OUTPUT 
(X TE RI'< Al SUCCESSION 
CANCELLEil 
IN TE RN Al R EO UE ST T 0 f I LE HGMT 

UPDATE PE RFOR MEO BY THIS ACTION 

CONTROL I NolCATORS 
lNTERIWPT LIST IF SET . IF C.N INDI (.A TES READ FROM TOMf OLE . RC:SEN::> = NO 
USER TIPH. OUT 

TEXT IN 01'1A ALTHOUGH TR ANS WAS CNC 
TO •RITE ZZOPll TE RH. RECORD 

iH TE :I OF PARAMS 
BYTE 5 : FUNCTION CODE 

Figure D-1. Single-thread Thread Control Block (THCBJ (Part 1 of 2) 

• 



UP-8614 Rev. 1 

• 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

ZTITUPDA EQU 
ZTIHUPDA DS 
ZTITCR EQU 
ZTIHRPLA OS 
ZTtTFllA EQU 
ZTIHFllA OS 
ZTIClKSL OS 
ZTIClKCA OS 

• • SAVE ARE AS 

• • • 
ZTIHsADH DS 
ZTIHSAill OS 

• 

• 
F 

• 
F .. 
3A 
A 
A 

l&F 
18F 

UNPROTECTED ClTF ADDR 

PARAll LIST AODR 

Fl LE KGKJ WORK ARE A 
TCT AOClR OF OHS RUN-UNIT 
OKS - [)HCA ADDRESS 

DATA llANAGEllENT SAVE AREA 
INTERNAL REQUEST SAVE AREA 

• SySTEll INFORKATION SECTION 

• 
ZBISTIOT OS 
ZB ISACT DS 
ZBISPCT DS 
ZBISFCTI OS 
ZBISOCTl OS 
ZBISAVAL OS 
ZBISTCS OS 
ZBISIKB DS 
ZBISlOAE DS 
ZBISKLL DS 
ZBISllNL OS 
ZBISillB1.. OS 
ZBISTOF DS 
ZBISOLOF OS 

• 

F 
F 
F 
F 
F 
F 
F 
F 
F 
H 
H 
H 
XL 1 
XL 1 

• EQUATES FOR ZBISOLDF 
ZBISOLUP EQU x•eo• 
ZBISOLAl EQU x·~o· 

• 
ZBISOLRD EOU 
ZB ISOLSU EQU 
ZBISOL Tll EOU 
ZBISOLTA EOU 
ZB ISOLT 1 EQU 
ZBISOLTE EOU 

• 

x• 20 • 
x•10• 
x•oe• 
J(. 0'1. 
x•oz• 
x. 01 • 

OS OF 

• 
ZBIFL61 OS X 
ZBISlRIN EOU x•eo• 
ZBITCRSH EQU 1•110• 
ZBITlXT EQU X•20' 
ZBIFL62 OS X 
iifHOllUP -[(fu ___ -x • 80 • 

ZBITOllEll EOU x•o1• 
ZBITOllNT EQU x•oz• 
ZBIFL63 OS X 
ZBIINDCL EQU x•o1• 
ZBIINDllA EOU x•o2• 
ZBIINDCD ECU x•olj• 
ZBIFL6'1 OS X 
ZBIIllSDll EQU x•ao• 
ZBIOllSDu EQU x•110• 
ZPIDllSRU EQU x•20• 
ZBIIllSNA fQU x•10• 
ZBID"SNA EOU x•oe• 
ZBIFLGS DS Xl..1 
ZBISFSEN EQU x•20• 
ZBIGLB EQU x•oe• 
ZBIDED EQU x•olj• 

ZBILPCT 
ZBl~A: T 
ZBILAD 
ZBlllLST 

ZCICCA 
zc•~ocAP 
ZOITHFIN 
ZTIHLEN 
ZTfTLEN 

DS XL3 
DS F 
OS F 
OS F 
OS 
OS 
OS 
OS 
DS 
EQU 
EQU 
CSECT 
E.JECT 
ENO 

ri 
Xl..2 
F 
F 
JF 
•-ZTIO THCB 
ZllHLEN 

DllS 
IMS 
OHS 
OHS 
IMS 
OHS 

TRANSACTION CODE TAllLE 
ACTION CONTROL UBLE 
PROGRAK CONTROL TABLE 
FILE CONTROL TABLE INDEX 

DEF FILE CONTROL lABLE 
AVAILABLE LIST ADDRESS 
TERH. CONTROL SECTION 
INPUT HES SAGE BUFFER 
l /0 ARE A ENO ADDR 

STANDARD MESSAGE LINE LENGTH 
SlANOARO MESSAGE NUKBER OF LINES 
INPUT MESSAGE Bl.FFER LENGTH 

• USER TIKEOUT FLAG 
CONTROL lfllDICATORS FOR AUDIT 

UPDATING PERKl TTED 
AUDIT llOClULE INC...uDED 

IBEF lllAGESo TR FILESI 
ROLLBACK PROGRAK I FILE DOWN 
SUPPRESS UPDATES 

BEFORE IMAGES TRACED 
AFTER I HAGES TRACED 
lNPJT MESSAGES JRACEO 
I /O ERROR TRACE FILE 

• FLAG l OF SIA RTUP 
• STARTUP ACTIVE 
.URCF ILE:CRAS H 
.HRCF ILE: EXT 

.FLAG FOR TOllF ILE 
• TOKFILE CONFIGURED 

• ERROR ON TOii FILE 
• DO NOT IRACE TOHFILE 

.f LAG FOR TYPE OF RESTART 

.s JART:CLE AN 

.s TART=llAR II 

.START :COLD 
FLAG BYIE 
HAS HADE A REQUEST TO OHS 
HAS lEllllINAHO 
RUN-UNll EXISTS 
NOT ALLOWED ACCESS TO DllS 
IS NOT THERE 

SFS ENAB;,,ED 
GLOB AL NE HIO RK 
[)[[)lCATECl NETioiOllK 

UNUSED 
LAST PCT ADDRESS 
LAST ACT ADDRESS 
LAST LOAD AREA ADDRESS 
INTLIST=N WALUE 
UNUSED 

CCA NAiil 
LOCAP NAii E 
• THIS TAG HUST S.lAY AT END 

LENGH; OF THCB 

Figure D-1. Single-thread Thread Control Block (THCBJ (Part 2 of 2) 

0-3 



UP-8614 Rev. 1 

ZC1DTCT DSECT 
• 
ZC1LINK OS 
ZCaTID OS 
ZC1TAL os 
• 
ZC1TALT OS 
ZCaTTTA os 

r 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

•••• TERMINAL CONTROL TABLE RECORD •••• 

xi.~ 

ACT LINK TO NEXT TCT IN QUEUE 
TERMINAL 10 

r 

r 
r 

REL ADDR ALTERNATE TCT (OS/~I 

REL AoOR SOUHCE rcT IOS/~I 

REL ADDR ALTERNATE TCT IOS/31 
CORRESPONDING TTT ADDRlSS 

• OS/~ USES zCaTQS b ZC•TIC (N PLACE or ZC•TTA 
ORG 

ZC1TQS DS 
ZC1TIC OS 
• 
ZCaTESR OS 
ZC1TCOL OS 
ZC1TTCH 05 
ZCaTCH EQU 
ZC1TLN OS 
ZC1TTST OS 
ZC1TST EQU 

zc•TTTA 
H 
H 

r 
H 
H 
ZC•TTCM 
XLI 
XLS 
ZCITTST 

D(SPL TO ICAH TERMINAL TABLE 
TOTAL TRANSACTION INPUTS 

SUCC ACT REL ADOR - ROLLBACK 
CONTINUITY DATA LENGTH 
TERMINAL COMMAND COUNT 
OSI~ TAG 
LINE NU148ER 
STATUS BYTES 
OS/~ TAG 

• EQUATES fOR zC1TTST/7CaTST 
• 
ZCaTTLST EQU 
ZC1TTTHD EQU 
ZC1TTUH EQU 
ZC1TTDWN EQU 
ZC1TTHLO EQU 
ZCITTUT EQU 
ZC1THWR EQU 
ZCaTHTC EQU 
ZC1TOHW EQU 

• 
ZCaTSTI EQU 

x•so• 
x •'to• 
x•20• 
x •to• 
x•oa• 
x •o .. • 
X•02 1 

x •01. 
X•Ot• 

ZC•TST+ I• I 

LAST TCT 
TEST MOOE 
URGENT MESSAGE, ACTION 
TEHMINAL DOWN 
HOLD TERMINAL 
URGENT TERMINAL 

~~G ~AIT (FOR ZZTSTI RECEIVED 
HwRITE FOR ZZTST ISINLGE THREAD! 
OUTSTANDING MWRITE (HULT( THREAul 

EQUATES FOR ZC•TSTI 

ZC1TTIH EQU x•so• INTERACTIVE HOOF 
ZCaTTHT EQU x •'to• MASTER TERMINAL 
ZC1TALTS EQU x•20• AL TERNA TE TEriH SPECIFIED 
ZCaTTRC EQU X• I 0' ROLLBACK COMPLETE 
ZC1TTHWS EQU x•oe• IHS SENT HSG WAIT 
ZC1TTBTH EQU X•Olf' BATCH TERMINAL 
ZCaTTRP EQU x•o2• ROLLBACK IN PROCESS 
ZC1TTHS EQU X •OJ' MSG TO oRJG TENM SENT 
• 
ZC1TST2 Ewu ZC•TSTl+l,I 
ZC1TPRSF EQU ZC•TST2 
• 

EQUATES FOR ZC•TST2 
• 
ZCaTTUNS EQU 
ZC1TTREL EQU 
ZCaTPRHQ EQU 
ZCaTPRHP EQU 
ZC1TTSTA EQU 
ZCaTCONT EQU 
ZC•TDELN EQU 
ZCaTOIQ EQU 

• 
ZCaTST3 EQU 

• EQUATES 

ZCaTTDR EQU 
ZCaTTQNE EQU 
ZCaTHDRS EQU 
ZCaTIDN EQU 
ZC1TIGH EQU 
ZC1COIP EQU 
ZCaTNROY EQU 
ZC1TUNAC EQU 
• 

x•eo• 
x• 'to• 
x•20• 
x • 10• 
x•oe• 
X •O't' 
x•o2• 
x •01 • 

HWRITE ISSUED FROH ZO•UNSHT MODULE 
RELEASE BUFFER AT HWRITE COHPL 
MSG IN QUEUE 
HSG IN PROCESS 
SEND AUTO STATUS MESSAGE 

CONTINUOUS OUTPUT REQUESTED 
DEL NOTICE - ACTION TO BE SCHED 
OUTPUT GENERATED FOR INPUT QUfU(NG 

ZC•TST2+ I, I 

FOR ZC•TSTJ 

x•eo• 
x •'to• 
X•2o• 
x • 10• 
x•oe• 
x 1 0'1' 
x•o2• 
X•Ol' 

DISCONNECT REQUESTED CS/Tl 
TERMINA1.'S LOW QUEUE NOT EMPTY 
OUTPUT HEADER SAVlO 
INTERNAL DELIVERY NOTICE 
IHS GENERATED ERRUR HSb 
CONTINUOUS OUTPUT IN PHOCESS CH/Tl 
NO IHS READY HSG TO THIS TERMINAL 

SEND UNSOLICITED OUTPUT jNOICATuR 
FOR SwlTCHED M~SSAGES AT ACTloN END 

ZC1TST~ EwU ZC•TST3+!,1 
EQUATES FOR ZC•TST~ 

ZCaERMEX EQU 
ZC1SFSRB EQU 
ZCaABTDY EQU 

x•eo• AIM GENERATED ERPOH HSb, 
x·~o· RE~UILD ALLOWED 8Y AIP 
x•zo• ABORT DYNAMIC SESSION 

Figure D-2. Single-thread and Multithread Terminal Control Table (TCT) (Part 1 of 2) 

D-4 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 D-5 
IMS 90 APPLICATIONS 

ZCaOYhlO EQU )( 1 10• ABORT TER" •INOOW 
ZCaSIGN EQU X•08• SIGN ON FOR OYNA"IC SESSION 
ZC•TSTS EQU ZC•TST~+I, I OHS FLAbS 
ZC•IHPRT EQU x•eo• ISSUED IHPACT FOR ACTION 
ZCaOEPRT EQU x•~o· ACTION JSSUF'O DEPART 
ZC•DHSUP EQU X•ZO• ISSUED DSM OPEN FUR UPDATE 
ZC•OMSOR EQU x•to• OHS REQUEST VIA OoRoHo 
ZCaDMSRD EQU x•oe• DMS FORCED DEPAPT WITH ROLLBACK 
ZCaDHSUB EQU x•o~· D"S RUN UNIT UNBOUND 
• * THE FOLLOWING STATUS BYT[ TAGS ARE NOT CL[AR[O WHEN A GLOBAL 
• NETWORK DYNAMIC TERMINAL DOES A ''SOFF 
• ZCITTLST 
* ZCITTUl 
• • • 
• • 
• 

ZC#Tl>ll 
ZCllhROY 
ZC#TU.,AC 
ZCUTTlil 

OS x 

ZCaTQE OS F 
ZCaPRFT OS F 
ZCaPQCNT OS H 
ZCaHQCNT OS XLI 

UNUSE 0 

CANCEL LINK 
DISPL TO PROCESS FILE TABLE 
PROCESS QUEUE COUNT 

LAST JCAH SVC 
ZC•TDELS OS XLI 
ZCaLQCNT OS H 

DELIVERY NOTICE STATUS 
LOW QUEUE COUNT 

zc.TJN OS H 
zc.Toc os H 
ZCaTON OS F 
ZCalBF OS H 
ZCalML OS H 
ZCaDBF OS H 
ZCaOHL OS H 

TOTAL INPUT COUNT 
TOTAL OUTPUT COUNT 
TIMER LINK 
DISPL TO IST SLOT or INPUT MSG 
INPUT MESSAGE LENGTH 
DISPL TO IST SLOT OF' OUTPUT HSb 
OUTPUT MESSAGE LENGTH 

OS/3 SINGLE THREAD 
ZCaCOSEQ OS H 

svSTEH USES ZC•COSE~ FOR CIO SEQUENCE COUNT 
CIO SEQ COUNT IOS/3 SoTol 

• 
ZCaTBF EQU ZC•COSEQ 
ZCaTML OS H 
ZCaTOELC DS XL~ 

ZC•SFSTC OS A 
ZCaSFSFN OS CL8 
ZCaSESID OS F 
ZCaTTRID OS CL8 
ZCaTRID EQU zc•TTRJD OS/~ TAG 

TIMER BUFFER ADOR IOS/3 HoTol 
TIMER HlSSAGE LENGTH IOS/3 HoT•J 
USER CONTINUOUS OUTPUT CUOE 

SFS TERHJNAL CLASS ENTRY AuOR 
srs FORMU NAME 
SESSION ID 

TRANS ID <INITIAL DATE/TiHEI 

ZC1DLCNT DS H IMC DEAOLOC~ DlTECTJON COUNT 
ZCaTCB OS A THREAD CONTROL BLOCK ADDR 
ZCaTLI 05 ~F TRANS LOCK INDICATOR 
ZCaTAUM 05 ~F' AUDITED UPDATE MAP 
••• ZC•TLI ANO Zc•TAUM MuST AGREE WITH lT•TNUMF IN THE THC8 
ZCaTTEXT OS CLS TRA~SLATEo TERM CHO/TRANS CODE 
ZC•TCODE EQU zc•TTExT OS/~ TAG 
ZC•TDDRC Os CLI DOR NAH~ JD CHAR (HIGH BYTE. x•FO•J 
••• THE ABOVE FIELD IS DrFJNED IN OS/~ BUT NOT TAGGED 
ZC1TDDRN OS CL7 DATA DEF REC NAME 
ZCaTDFN OS CL7 DEFINED FILt NAME 
ZCoTES 05 F SUCC ACT RECORD RELATIVE AUOR 
• HULTl•TrlREAD SYSTEMS USE zc•ES & ZC•tDC IN PLACE OF Zt•TES 

ZCaES 
ZCaCDL 

ORG Zc•TES 
DS H 
OS H 

ZCaWA I DS H 
ZCaCD I OS H 
ZCaTTTN OS XLI 

DS XLI 
ZCaTINT DS H 

Succ ACT RECORD RELATl~E AUDR 
CONTINUITY DATA LENGTH 

WORK· AREA I NC 
CONTINUITY DATA AREA INC 
TCT RECORD NUMBER 
UNUSED 

MULTl·TrlREAD USES 
TOTAL TRANSACTION INPUTS 

zC•COR & ZC•CES INSTEAD OF LC•TTTN & ZC•Tl~T 
ORG ZC•TTTN 

ZCaCDR DS H TCT RECORD ~UMBf R 
ZCaCES llS H succ ACT REL ADDR • ROLLBACK 
ZCaSCFR OS .XL~ COUNT FIELD FOR ROLLBACK 
• 
ZCaTTIR 05 XLI TERM IND FOR ACTIO" PRUG USING ROLLBACK 
ZCaTJR Ei.iU zc•TTIR OS/~ TAG 

ORG zc•TJR 
ZCaTRWA DS F TRACE ~ORK AREA 
ZCaFBPA DS H . FIRST BLOCK or PART I Tl ON 
ZC•CBPA 05 H • CURRE~•TLY ACCESSED BLOCK 
ZCaLBPA 05 H . LAST RLOCI< OF PARTITION 
ZCaNRBCB OS H •• or RrHoBYTES IN CURR, BLOCK 
• 
ZCaTLNAH os CL~ LINE NAME 

ZCaTLEN EQU •·ZCaOTCT 
&SYSECT CSlCT 

ENO 

Figure D-2. Single-thread and Multithread Terminal Control Table (TCT) (Part 2 of 2) 



UP-8614 Rev. 1 

t 

ZTllHHCB DSECT 
ZTITHQPT OS 
ZTINTHCB OS 
ZTIJHURF OS 
ZTITHRDF OS 
ZTIDWAIJ OS 
ZTIRE6RS DS 
ZTIIEC83 OS 

• • • 
ZTITHSVR DS 
ZTITHRAO OS 
ZTITPIBA OS 
ZTITIMA OS 
ZTITWA OS 
ZTITOHA OS 
ZTITCOA OS 
ZTIToRMA OS 
ZTIDDREC OS 
ZTISUBFL OS 
ZTITfAH OS 
ZT ITllUHF EQU 
ZltTATA OS 
ZTITPU OS 
ZTITPTAl OS 
ZTIITTA OS 
ZTITIMB OS 
ZTtlEDIJ OS 
ZTITRID OS 
ZTITIND OS 

• • • • • • 
• • • • • • 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

f 
f 
x 
x 
DX 
x 
x 

F 
F 

•-ZTITFAH 
A 
A 
F 
A 
A 
A 
CLI 
XLl 

• NEXl THREAll IN QUEUE POINTER 
• NEXT THR EAil FOR SCHEDULING 
• URGENT FLAG D - ROUTINE 
• THREAD READY FLAG I - READY 

BIT D IhITUL THREAD llAl T FLAG - lolU T 
BIT 1 RESTORE REGISTER FLAG D - yES 
BIT D CANCEL FLAG 1 - CANCEL 
BIT l OUTPUl MESSAGE GENERATED BY ZGIHTHSO 
BIT 3 INTERNAL CANCEL INITIATED 
BIT 1 lECB FLAG 1 - 311DRO 

• THREAD SAVE AREA REGISTER 
• THREAD RETURN ADDRESS 

PROGRAH INFORIUTION BLOCK ADDR 
INPUT MESSAGE AREA ADDR 
llORK AREA ADDR 
OUTPUT HESSAGE AREA ADDR 
CONTINUITY DATA AREA ACOR 
DEFI NEC RECORD A REA ADDR 
DATA DEFINITION RECORD AD~ 

DEFINED FILE sue-FILE OESC ADOR 
FILE l~LOCATION HA? 
FILE ALLOCAlION HAP LENGTH 
AC Tl ON CONTROL TABLE REC ORD ADDR 
PROGRAH CONTROL TAoLE RECORD ADDR 

TERHINAL CONTROL TABLE 
INPUT MSG BUFFER ADOR 
EDIT TABLE ACOR 

RECORD ADDR 

TR ANS ACT ION ID 
CONTROL INDICATORS 
BIT D TERMINATION TYPE D NORMAL 

1 ABNOR"AL 
Bll 2 ERROR RETURN 0 NO 

1 YES 
BIT 3-~ IhlERNAL HESS.AGE CONTROL: 

DO END ACTION DR END TRANSACTIOt4 
01 EXPLICIT OUTPUT 
10 DELAYED lN 1ERNAL SUCCESS IOI< 
11 CANCE LL ED 

BIT 5 INTERt<AL REOUE ST INDIC FOR FH 
D NO 
l YES 

• BIT b OUTPUT IN PROCESS 
• BIT 1 OUTPUT WAITED 
ZTtTERI OS X ERROR CODE NUHBER 
ZTITES OS H RELATIVE ACT RECOR~ ADDR 
• FILE HANAGEHENT ENTRIES 
• PARAHETER LIST FOR SUBTASK 
ZTITBA DS A BEGIN ADDR 
ZTITRPLA OS A REQUEST PARM LIST AODR 
ZTITFC OS A BYTE 0 - I OF PARAHS IN LIST 
• BYTE 3 - FUNCTION CODE 
ZTITUPDA OS A UNPROTECTED DTF AODR 
ZTITCR DS A COVER REG 
* OTHER 
ZTITFllA OS lA llORK ARE A 
ZTITSAVl OS llA SAVE AREA 1 
ZTITSAV2 OS llA 
ZTtSAVS EDU ZTITSAV2 SAVE AREA S 
ZTISAVEb EQU ZTISAVS•-0 

OS 7F •o• 
ZTITSAV• DS 18A SAVE AREA ' 
ZTITSAV3 OS llA SAVE AREA 3 
ZAIPSSK DS ~F 

ZTITFLA OS F REQUIRED BY IRAH 
ZTITFI DS F APPL.HANA&. 
ZTITFZ DS F FLAG BYTE 
ZTISYINO EQU ll1Tf2 FLAGS 
ZTITOHRO EQU X'llO" INDICATES TOH READ 
ZTIZZOPN EDU x•o11• INDICATES TO WRITE ZZOPN TERH. RECORD 
ZTIDHSL OS A JCT ADDR OF OHS RUN-UNIT 
ZTIOHCA OS A OHS - OHCA ADDRESS 
ZTISlBA OS F SIB ADDRESS 

OS OF 
ZTITLEN EQU •-ZTIOTHCB LENGlH Of CONTROL BLOCK 
&SYSECT CSECT 

ENO 

Figure 0-3. Multithread Thread Control Block (THCBJ 

D-6 



• 

•• 

UP-8614 Rev. 1 

E.1. GENERAL 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-1 

Appendix E. Device Independent 
Control Expressions 

You use device independent control expressions (DICE sequences) to format input and 
output messages being handled by your action program. These codes are needed to control 
various operations, such as cursor positioning and carriage return, on a terminal screen. 

Appendix E supplies all DICE sequences and their interpretations, describes how to use 
them in formatting your messages in your action programs, and discusses the DICE 
macroinstructions you can use in BAL user action programs to create the DICE sequences . 

E.2. USING DICE TO FORMAT MESSAGES 

For output, your action program can use either of two methods to control the format of a 
message displayed at a terminal. 

1. By embedding format control characters, the message text is directed to each specific 
terminal. Obviously, if you do this, your program must include a different formatting 
routine for each type of terminal; this is illustrated in the following diagram: 

t 



t 

UP-8614 Rev. 1 

USER 
PROGRAM 

LEGEND: 

Terminal-Oriented 
Control Characters 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

OUTPUT TEXT AND CONTROL CHARACTERS 

REMOTE 
DEVICE 

HANDLERS 
TEXT 

E-2 

2. By embedding DICE sequences, the control of format for various types of terminals 
and auxiliary devices is simplified. The remote device handler (ROH) converts DICE 
sequences to control characters for each destination terminal. Some of the control 
character functions are: 

• line feed - cursor movement to the first space of a new line; 

• form feed - cursor to the home position of a new page; 

• carriage return - cursor to the beginning of the same line; or 

• cursor movement to a specific row and column on a display. 

You can place DICE sequence anywhere in a message to accomplish the control you 
want. As you can see by the following illustration, formatting is easier when you use 
DICE. 

• 

• 

-. 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-3 
Update A 

OUTPUT TEXT AND DICE 

USER 
PROGRAM 

REMOTE 
DEVICE 

HANDLERS 

LEGEND: 

lill 

Terminal-Oriented 
Control Characters 

m DICE Characters 

For input, control characters received in a message are converted into DICE sequences by 
the RDH. For certain terminals, your program can analyze these DICE sequences to 
determine cursor position. In addition, input DICE is handy for message switch application 
because control characters in each input message are converted to DICE sequences. The 
RDH converts these sequences into the appropriate control characters for the destination 
terminal. 

You can turn DICE on or off at network definition time with the DICE operand on to the TERM 
macroi nstruction. 

The default is DICE=(ON). 

1. DICE=(ON) tells RDHs to create input DICE according to your input terminal cursor 
movements; DICE are created automatically. 

For UNISCOPE 100/200, UTS 400, and UTS 4000, the ICAM remote device handler 
passes the start of text character (STX) to your program as the first byte of data. For 
example, in a message containing a start of entry character (RS), the following data is 
received in the text portion of your input work area: 

S E V Y 
T S T 
x c 

X N S R 
U I S rest-of-text 
L 



~------------------------ --- -----

t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-4 
Update A 

End of text characters (ETX) are always removed by the remote device handlers; they 
are never supplied to your program as text. 

2. DICE=(OFF) tells the RDHs not to create input DICE. 

For UNISCOPE 100/200, UTS 400, and UTS 4000, the start of text character (STX) is 
suppressed by the remote device handler, and control character sequences are 
converted to DICE sequences. For example, in a message containing a start of entry 
character (RS), the following text is received in the text portion of your work area: 

4-character-dice-sequence R 
s 

rest-of-text 

End of text characters (ETX) are always removed by the remote device handlers; they 
are never supplied to your program as text. 

See the OS/3 fundamentals of ICAM, UP-8194 (current version), for a detailed example of 
input DICE creation. 

E.2.1. Format of DICE Sequences 

The format of a DICE sequence is as follows: 

Format: 

where: 

select 
character 

function 
code 

m fie Id n f i e I d 

select character 

Is a hexadecimal character (1016) designating the start of a DICE sequence. This 
character, a data link escape (OLE) control character in EBCDIC, must be used 
only to designate the start of a DICE sequence. 

function code 

Defines the device control sequence that is recognized by the RDHs on input. On 
output, this code is a 1-byte field defining the operation to be performed on the 
text message. DICE function codes are listed in Table E-1. 

m field and n field 

These fields are treated as parameters to the DICE function code; their actual 
definition varies and is determined by the individual DICE macroinstruction. 
Generally, m relates to vertical positioning and n applies to horizontal 
positioning. 

• 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-4a 
Update A 

These fields may be expressed in absolute values (ma and n al or relative 
displacement values (m r and n r) in Table E-1. The absolute values align the text 
message to the actual location (row and column) on a page or screen. The 
relative displacement values give a relative location from the present position of 
the cursor, e.g., move cursor 2 rows down and to column 1. If you choose to use 
DICE macroinstructions, these parameters must be specified. 

E.2.2. DICE Macroinstructions 

DICE macroinstructions let you create DICE sequences (DICE constants) in the same way 
you would create constants in your program; when the assembler expands a DICE 
macroinstruction, your program creates a constant at that location. 

On output, when your program is ready to send a message, it moves the DICE constants 
created from the DICE macroinstructions into the appropriate places in your message 
before it issues the output request. The RDH converts the DICE constants into the 
corresponding control characters to produce the necessary positioning. 

On input, DICE sequences are automatically created by the RDHs unless you specify the 
DICE=(OFF) parameter in your network definition. Table 2-5 lists the DICE 
macroinstructions, function code generated, and m and n coordinates as they apply to 
particular devices on input and output. t 



• I 

• 

• 



• 

• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-5 
Update A 

You must specify m and n coordinates in your program according to the absolute and 
relative values expressed in Table E-1. ma and n a are absolute values of m and n; m rand 
n rare relative displacements of m and n. For CRT terminals, the home position is (ma. n n) 
= (1, 1 ). For character- or page-oriented devices that allow position to top of form, the top
of-form position is (m a',n al = (1, 1 ). 

• Absolute Positions 

• 

Absolute positions of ma and n a may range as follows: 

m a ranges 1 to r 

where: 

r = maximum number of rows (CRT), or maximum number of lines per page. 

n a ranges 1 to c 

where: 

c = maximum number of columns (CRT), or maximum number of character 
positions per line. 

Relative Displacement 

Relative displacements of mr and nr may begin at zero and range to the bottom and 
right margin of the screen or page. 

If a value of m or n falls outside of the legal range, that value of m or n will cause the 
following action: 

ma or n a = 0 is interpreted as m a or n a = 1 

Specifying an absolute or relative value for m or n that is greater than the screen or page 
size causes unpredictable results. ..,_ 

E.2.3. DICE Code Generation 

Macroinstructions are provided to generate the DICE codes. 

Format: 

LABEL LIOPERATIONLI OPERAND 

[symbol) dice-macroinstruct ion m.n 



t 

UP-8614 Rev. 1 

Label: 

[symbol] 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-6 

An optional alphanumeric character string, from one to eight characters long, that 
identifies the specific instruction line. 

Operation: 

dice-macroinstruction 

You specify the appropriate name from the macroinstruction column of Table E-1 
for the desired DICE sequence. 

Positional Parameter 1: 

m 

A decimal number (0 to 255) indicating the number of lines or rows the terminal 
should advance before starting output of the message (Table E-1 ). 

Positional Parameter 2: 

n 

A decimal number (0 to 255) indicating the number of spaces or columns to the right 
the terminal should space before starting output of the message (Table E-1 ). 

Examples: 

10 16 

1. NEWLINE ZO#POS e.e 
2. COORDI ZO#COORD 5,19 

1. This DICE sequence causes movement to a new line. 

2. New text will be started at line 5, column 10 due to this DICE. 

• 

• 

• 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-7 

Table E-1. DICE lnput/Ouput Commands, Codes, and Device Interpretation (Part 1 of 4) 

DICE 
Macro

instruction 

ZO#COORD 

ZO#FORM 

Function 

Set coordinates 

Forms control 

ZO#FORMC Forms control 
with clear 
unprotected 
data 

Function 
Code 1/0 m n 

Character
oriented 

Devices0 
CRT Devices 

Page Printing 
Devices 

Communications 
Output Printer 

(COP)Q) Value 

0216 

I m n Not used 
N 
p 
u 
T 

I- -1- - I- -1- - - - - - -
0 m n Action is 
U a a optional.CD 
T 
p 
u 
T 

I 01 01 Form feed 
N 
p 
u 
T 

(n is Not 
Interpreted) 

m and n represent Not used 
the start-of-entry 
(SOE) cursor 
coordinates. 

---------1---------
Move cursor to row ~ction is optional. 
m and column n. 

Not used Not used 

Not used 

Action is optional.CD 

Not used 

1-- -- - ---------------- --------------------
m n Form feed, Move cursor to row Top of form and Form feed, line feed, 

a a carriage return, m and column n. advance to line m and advance to 
0 
u 
T and advance to (m-1 line feeds) line m and column 
p line m and n (m-1 line feeds 
u column n (m-1 and n-1 spaces to the 
T line feeds and right) 

n-1 spaces to 
the right) 

I - - Not used Not used Not used Not used 
N 
p 
u 
T 

1-- - - -------------,----..., ---------)--------------
0 m n Action is Move cursor to row Action is optionalCD Action is optional. CD 
U a a optional.CD m and column n, 
T and clear unpro-
p tected data to 
U end of screen. 
T 

t 



UP-8614 Rev. 1 

DICE 
Macro-

instruction 

ZO#POS 

ZO#POSC 

ZO#CUR 

ZO#CURC 

t 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-8 

Table E-1. DICE lnput!Ouput Commands, Codes, and Device Interpretation (Part 2 of 4) 

Function Character- Page Printing Communications 
Function Code 1/0 m n oriented CRT Devices Devices Output Printer 

Value Devices0 (n is Not (COP)(!) 
Interpreted) 

New line control 0415 I 00 00 Carriage return, Cursor return Not used Not used 
N line feed 
p 
u 
T - _, --I- - ------- --------- 1--------- ----- ---- - -
0 m n Carriage return, Move cursor to Advance (m+ 1) Line feed, followed 
u r r line feed, fol- beginning of next lines. by m line feeds and 
T lowed by m line line. Then move n spaces to the 
p feeds and n cursor m lines right. 
u spaces to the down and n col-
T right. umns to the right 

New line control 0516 I - - Not used Not used Not used Not used 
with clear N 

p 
u 
T 

1---i -- - _, ------- t--------- ------- ---------
0 m n Carriage return, Same as 0416 ex- Advance (m+ 1) Line feed, followed 
u r r line feed, fol- cept area between lines. by m line feeds and 
T lowed by m line start and end posi- n spaces to the right 
p feeds and n lions is cleared. 
u spaces to the 
T right 

Current position 0616 I 01 00 Line feed Not used End of input card Not used 
control N 

p 
u 
T 

1-- _, -- _ _, ______ _, ________ _, -------- ----------
0 m n m line feeds Move cursor m lines Advance m lines. Insert n spaces if 
u r r and n spaces to down and n columns nonsignificant space 
T the right to the right. suppression is allowed. 
p If not, insert n DC3 
u characters; m is not 
T interpreted. 0 

Current position 0716 I - - Not used Not used Not used Not used 
control N 
with clear p 

u 
T 

1-- - - -------- t-----------1---------- -----------
0 m n m line feeds Insert n spaces if Advance m lines. Insert n spaces if 
u r r and n spaces to nonsignificant space nonsignificant space 
T the right suppression is suppression is allowed. 
p allowed. If not, insert If not, insert n DC3 
u n DC3 characters; m characters; m is not 
T is not interpreted. 0 interpreted. 0 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-9 

Table E-1. DICE lnput/Ouput Commands, Codes, and Device Interpretation (Part 3 of 4) 

DICE 
Macro

instruction 

ZO#BEG 

ZO#TABS 

Function 

Beginning 
of current 
line control 

Set tab stop 
at an 
absolute 
position 4 

ZO#FORMA Forms control 
with clear; 
protected/ 
unprotected 
data 

ZO#ERSLN Erase to 
end of line 

Function 
Code 1/0 m n 

Character
oriented 

Devices0 
CRT Devices 

Page Printing 
Devices 

Communications 
Output Printer 

(COP)Q) Value 

I 00 00 Carriage return Not used 
N 
p 
u 
T 

(n is Not 
Interpreted) 

Not used Not used 

1-- t--+-+--- - -I - ------+------- t----------
0 m n Carriage return Move cursor to Advance m lines. 
U r r followed by m beginning of current 

m line feeds and n 
spaces to the right. 

T line feeds and line. Then move 
p n spaces to the cursor m lines down 
u 
T 

right and n columns to 
the right. 

I - - Not used 
N 
p 
u 
T 
-r--- ------
0 m n No line feed, 
U a a space to right. 
T 
p 
u 
T 

I - - Not used 
N 
p 
u 
T 

f-- - - ------

0 m n Action is 
U a a optional.© 
T 
p 
u 
T 

I - - Not used 
N 
p 
u 
T 

Not used Not used Not used 

-------t--------- ----------
Set tab stop at row Advance m lines. Not used 
m and column n. 

Not used Not used Not used 

-------- ----------------
Move cursor to row Action is optional.C: Action is optional.0 
m and column n 
and clear pro-
tected/ unprotected 
data to end of 
screen. 

Not used Not used Not used 

1-- -1--1-- ---- 1------ --- ------------------! 
0 m 
U a 
T 
p 
u 
T 

n No action 
a 

Cursor does not 
move. Unprotected 
data to the end of a 
line or to the end 
of the first unpro
tected field is 
cleared, whichever 
comes first. 

Advance 0 lines. Not used 

t 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 E-10 
IMS 90 APPLICATIONS 

Table E-1. DICE lnput/Ouput Commands, Codes, and Device Interpretation (Part 4 of 4) e 
NOTES: 

(i) Most character-oriented terminals can be strapped to handle the carriage return (CR) character and the line feed 
(LF) character as follows: 

t 

• CR 

1. print mechanism moves to beginning of the same line; or 

2. print mechanism moves to the beginning of the same line followed by a line feed. 

• LF 

1. line feed (no column change); or 

2. line feed followed by return of the print mechanism to the beginning of the new line. 

To achieve device independence between terminal types, the character-oriented terminals must use the first option 
for CR and the first option for LF if the device macroinstruction is ZO#CUR or ZO#BEG. 

The first option should be used if the character-oriented terminals are a part of a message switch environment. 

Certain terminals do not have a form feed capability (i.e., some TTY terminals). For these terminals, the DICE 
expressions that specify form feed will result in line feed instead. 

@ The set coordinates macroinstruction (ZO#COORD) or the forms control with clear macroinstruction (ZO#FORMC), 
when acted upon by character-oriented or page-printing terminals, will vary in its action, depending on the usage 
of the DICE keyword parameter of the TERM macroinstruction at network definition time: 

TERM ...• DICE=(~FORMS l) . · · · 
1NEWLINE 5 

If FORMS is specified, the set coordinates macroinstruction will be interpreted as the forms control 
macro instruction. 

If NEWLINE is specified, the set coordinates macroinstruction and the forms control with clear macroinstruction 
will result in a carriage return, line feed for character-oriented terminals, or advance one line for page-oriented 
terminals; m and n are not interpreted. 

If the, p1cE parameter is not specified, the default option will be to NEWLINE. 

@ The UNISCOPE display terminal suppresses nonsignificant spaces on each line (except for the line containing the 
cursor) when text is transmitted to the processor or printed locally on the COP or TP. 

Your program may send data to the UNISCOPE screen containing significant blank segments that include the last 
column of the screen. If this data is transmitted from the terminal to the processor or is printed locally on the COP 
or TP, the blank segments must consist of nonspace characters that are nondisplayable. The DC3 character meets 
these qualifications. The ICAM interface provides your program with the capability to prevent nonsignificant space 
suppression on the UNISCOPE dispaly terminal. The "current position control with clear" is the only DICE 
macroinstruction that can be used to perform a clear function if your program is preventing nonsignificant space 
suppression. 

NOTE: 

The ASCII-to-EBCDIC translation table is modified so that the DC3 character is translated to space 4016 for input 
from the UNISCOPE display terminal. 

@ When using DICE function code 09 16 for setting a tab stop, m=O and n=O will result in a tab stop being placed at 
the current cursor location (no cursor positioning is performed). This applies to UNISCOPE aand UTS 400 devices 
only. For TTYs and OCT 500 terminals. a space character is inserted. 

If m or n is greater than the maximum allowable m or n, action will vary depending on the remote terminal: 

• UNISCOPE display terminals-wraparound will occur on screen. 

• Character-oriented terminals-will give different results depending on the characteristics of the device . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-11 

e E.2.4. Interpretation OF DICE 

• 

• 

When using DICE, your program does not need to be aware of the terminal type. A 
particular DICE denotes the same positioning on any terminal. There are some exceptions 
that result from limitations of the terminal. 

The interpretation of a DICE by the ROH is controlled by the following factors: 

1. DICE function code 

2. DICE m and n fields 

3. The terminal involved 

4. The particular device on the terminal being used. 

The ICAM RDHs currently provide device-independent support for three classes of remote 
terminal devices: 

1. Hard copy character-oriented devices, such as the SPERRY UNIVAC Data 
Communications Terminal 475 (OCT 475), Data Communications Terminal 500 (OCT 
500), Data Communications Terminal 524 (OCT 524), and Data Communications 
Terminal 1000 (OCT 1000), and TELETYPE* teletypewriter models 28, 32, 33, 35, 37 . 

2. Hard copy page printer type device, such as the SPERRY UNIVAC 1004 Card 
Processor System, Data Communications Terminal 2000 (OCT 2000), and 9200/9300 
Systems, and the IBM 2780. 

3. CRT-type terminals, such as the UNISCOPE 100 and 200 and the UTS 400 Display 
Terminals. 

Table E-2 defines the primary output device and the primary input device for each terminal 
type. 

Table E-2. DICE Primary Devices 

Terminal Type 
Primary Output Primary Input 

Device Device 

Character-oriented terminals Printer Keyboard 

Page printing terminals Printer Card reader 

CRT terminals Screen Keyboard 

*Trademark of Teletype Corporation 

t 



t 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

E-12 

In addition to the specified primary devices, each terminal has the ability to support one or 
more auxiliary devices. The auxiliary devices suggested by each terminal are listed in Table 
E-3. 

Table E-3. DICE Usage for Auxiliary Devices 

Remote Terminals Auxiliary Device DICE Usage 

UNISCOPE Tape cassette (TCS) DICE is applied to the COP. CD 
Communications output printer (COP) 
800 terminal printer (TP) 

OCT 1000 Card reader/card punch DICE is applied as if the 
Paper tape reader /punch output/input is to/from 

the primary device, even 
OCT 500/TIY Paper tape reader /punch through it is for the auxiliary 

device.@ 
OCT 524 Tape cassette (TCS) in paper tape 

read and write only 

Batch terminals Punch DICE is used for end of 
network buffer sentinel. 
No forms control action is 
taken. 

NOTES: 

CD If the print transparent option is not used, DICE is applied to the UNISCOPE screen even through the output is sent 
to an auxiliary device of the UNISCOPE terminal. In this case, the format of the data printed on the COP or TP is 
identical to the screen format. Nonsignificant space suppression by the UNISCOPE terminal may have to be 
prevented to keep the formats identical. 

The full capability of DICE cannot be applied to to the COP because of hardware characteristics. All data to a 
UNISCOPE auxiliary device passes through the UNISCOPE terminal. When DICE is applied to the COP, the use of 
print transparent mode means that no carriage returns are transferred to the COP. Line feeds and form feeds take 
a storage position in the UNISCOPE storage and are nondisplayable. These characters are passed to the COP 
where: 

• an LF causes a line feed followed by return of the print mechanism to the beginning of the new line; and 

• an FF causes a page eject and positioning of the print mechanism at the beginning of the first line of the 
form. 

The COP has no tabbing capability. 

These characteristics are reflected in the interpretation of DICE output function codes for the COP as shown in Table E-2. 

For messages sent to a UNISCOPE auxiliary device with transparent transfer, the cursor to home (ESC e) sequence is 
inserted at the beginning of the text by the ROH. 

See 3-3 for more detailed information on the usage of DICE when applied to the COP. 

The control characters that are generated from the DICE macroinstructions are always created for the primary 
device of a character-oriented device, even though your program is sending to an auxiliary device. The message 
and these control characters (carriage returns, line feeds, form feeds, and spaces) will be punched/written by the 
output auxiliary device that was specified by your program or was switch-selected by the terminal operator. If the 
punched/written data is later read by the terminal's input auxiliary device, the carriage returns, line feeds, and 
form feeds are converted to input DICE as specified in Table E-1. 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 1 

Glossary 

A 

action 
The basic unit of work in IMS 90. An action consists of message input, the processing 
of the message by one or more action programs that may access data files, and the 
output of at least one message. 

action program 
An independent, relocatable program defined to IMS 90 and conforming to the 
programming conventions established by IMS 90. One or more action programs may 
be executed in an action. 

action scheduling 
A component of application management that initiates and terminates an action 
program and dynamically allocates required and optional main storage areas used by 
an action program. 

activation record 
The working storage area used by a specific action program to process messages and 
transmit information begween IMS 90 and the action program. The activation record 
must include the program information block (PIB} and the input message area (IMA) 
and may optionally include the output message area (OMA), work area (WA), 
continuity data area (CDA), and defined record area (ORA). 

application management 
The major component of IMS 90 that controls the execution of action programs and 
includes action scheduling and file management. 

automatic status messages 
Messages automatically generated by multithread IMS 90 to notify the terminal 
operator of the status of the last input message. 

auxiliary-device-function 
A 1-byte field within the auxiliary-device-ID field of the OMA which specifies auxiliary 
information about this output message. For example, the message is being sent to an 
auxiliary device or is handled as continuous output. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 2 

auxiliary-device-ID 
A 2-byte field in the OMA which indicates auxiliary information about this output 
message (auxiliary-device-function) and to which device (auxiliary-device-number) the 
message is to be sent if the first byte indicates it is being sent to an auxiliary device. 

auxiliary-device-number 
A 1-byte field within the auxiliary-device-ID field of the OMA which specifies the 
device number that corresponds to the logical device number in the CCA network 
definition. 

auxiliary output device 

B 

The two auxiliary output devices supported by IMS 90 for communications are the 
communications output printer (COP) and terminal printer (TP). 

batch transaction processing 
A method of processing groups of transactions entered from cards or a source library 
file instead of an online terminal. This method is useful for testing if an online 
terminal or ICAM is not available, or for performing batches of transactions overnight. 

batch transaction processor 

c 

An optional component of single and multithread IMS 90 which enables transactions 
to be entered via cards or source library file instead of a display terminal and 
transmits output to the printer file. 

common storage area (CSA) 
An area in main storage containing one or more resident ISAM files, called CSA files. 
Action programs retriev~ data from and make updates to the CSA file instead of a disk 
ISAM file, thus reducing disk access. 

communications control area (CCA) 
A collection of tables that describe the ICAM communications network. 

configuration 
The process by which the available IMS 90 software is tailored so that tr.e resultant 
IMS 90 package satisfies the needs specified by the user and reflects the user's 
hardware and software environment. 

continuity data area (CDA) 
An optional main storage area in the activation record in which user-defined data is A 
automatically passed from action to action in a transaction. The continuity data is • 
written to the continuity data file at the termination of an action and read into main 
storage when the successor action is scheduled. 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 3 

continuous output 

D 

A continuous series of output messages transmitted to a terminal without intervening 
input messages. 

data definition language 
A COBOL-like language used to describe defined files accessed by user action 
programs or UNIQUE through defined record management. 

data definition processor 
That module of IMS 90 that processes the data definition and writes a data definition 
record into the named record file. 

data definition record 
A record in the named record (NAMEREC) file that contains the description of a 
defined file and related subfiles and is used by defined record management to access 
that defined file or those subfiles. 

data name 
A word that names an entry in the data division of a data definition or COBOL action 
program. 

defined file 
A sequence of defined records in order by their identifiers. 

defined file name 
Name of defined file. 

defined record 
A sequence of items obtained from IMS 90 by UNIQUE and other action programs 
with the execution of a single function call. It is displayed at the terminal by UNIQUE 
in response to a single operator command. IMS 90 composes the record dynamically 
from one or more disk records, according to a user-supplied data definition. 

defined record area 
An optional main storage area in the activation record used by the defined record 
management portion of IMS 90 if defined files are accessed. 

defined record management 
That module of IMS 90 which retrieves and/or updates defined records for action 
programs. 

defined record name 
That name that identifies a particular type of defined record in a defined file . 

defined record supplement 
Additional items from logical records or repeating groups, other than the source of the 
primary part, that complete a defined record. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 4 

definition division • 
The third division in the input to the data definition processor. This division describes 
the defined files and the defined records. 

delayed internal succession 
A method of succesion in which one action builds an output message in the OMA 
and queues it as an input message to a second action without sending the output 
message to the originating terminal. 

delivery notice scheduling 
The scheduling of a successor action program to receive a 5-byte IMS 90 
acknowledgement message (delivery notice) indicating that an output message has 
been successfully or unsuccessfully delivered to its destination for continuous 
printing. 

detail line 
An output line containing values associated with the item names from the header 
line. The values are from the file being accessed. 

detailed status code 
A 2-byte binary value returned by IMS 90 following a request when the status code 
indicates invalid request, 1/0 error, or internal message control error. The detailed 
status code supplements the status code by giving more detailed information. 

device-independent-control-expression 
A 4-byte control sequence used in formatting messages at a terminal and consisting 
of the select character (1016), a hexadecimal function code, and two hexadecimal 
coordinates defining row and column positions on a terminal. 

dialog 
Interaction between a terminal operator and IMS 90 consisting of a sequence of 
logically related input and output messages. When UNIQUE is used, it begins with an 
OPEN and ends with a CLOSE or another OPEN. 

dialog transaction 
A transaction that consists of two or more actions. See also external succession. 

disk overflow 
The staging and linking of input messages to disk when the main storage queue has 
become saturated. 

display content 
In the LIST or DETAIL command, a list of item names, subrecord names, or arithmetic 
expressions that indicate to UNIQUE what items or values to display at the terminal. 

display format command 
An input/output message structure especially suited for a cathode ray tube (CRT) type 
device. 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 5 

ditto mechanism 
A shorthand means used in UNIQUE commands to identify a defined record by 
referring to part of the identifier of a previously identified defined record or to specify 
LIST or DETAIL parameters by referring to the appropriate part of the previous UST or 
DETAIL command. 

downline load 

E 

A process of obtaining programs from a load library and then sending them to the 
UTS 400 memory, cassette, or diskette. 

edit table generator 
An offline IMS 90 utility program that writes a record in the named record 
(NAMEREC) file that contains the user's definition of how online freeform terminal 
input is converted into fixed formats required by action programs. The edit table 
generator also checks input for data types, value ranges, and the presence of required 
fields. 

explicit output message 
Output messages sent via the CALL SEND function . 

external succession 

F 

A method of succession in which an action program terminates by requesting that an 
output message be sent to the originating terminal and a specified action program be 
scheduled to proces the next input message form that terminal. Information in the 
predecessor's CDA is passed to the successor. 

file 110 functions 
Those functions such as retrieval, insertion, deletion, update, and write, which are 
supported by the file management component of IMS 90. 

file management 
That IMS 90 component that issues requests to data management for user logical 
records required by action programs. File management interfaces with both action 
programs and data management, and provides services such as record locking, 
recovery, error processing, etc. 

function key 
A key on a UNISCOPE display terminal or UTS 400 terminal that is converted to a text 
input message. It can be used as a transaction code if the terminal is not in 
interactive mode or as a response to an output message to be passed on to a 
successive action program if the terminal is in interactive mode. 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 6 

H 

hard copy format command 
An input/output dialog structure especially suited for a teletypewriter device. 

header line 
An output line containing item names that serve as column headers. 

hierarchical structure 
In IMS 90, a file structure with more than one type of record having one or more 
levels of subordinate records. The relationships between record types are parent, 
child, and fraternal. 

identifier 
The string of characters that is keyed in by a terminal operator to select a particular 
occurrence of a defined record. 

immediate internal succession 
A method of succession in which the first action program indicates the name of a 
succeeding action program without issuing an output message or deallocating main 
storage areas. The second action program then uses the same main storage areas to 
complete and terminate action processing. 

implicit output message 
A message in the OMA when the CALL RETURN function is requested at action 
termination. 

IMSCONF 
A job procedure which generates and executes control streams that configure IMS 90 
using the user configuration specifications as input. 

input message area 
A required main storage area in the activation record consisting of a 16-byte control 
header and the variable length input message. 

inquiry operation 
An operation that retrieves and displays records from a file. The UNIQUE commands 
DISPLAY, LIST, MORE, and DETAIL are inquiry commands. 

integer 
A numeric literal that does not include any character positions to the right of the 
assumed decimal point. 

interactive mode 
The state of a terminal while a dialog transaction is in progress. Input messages do 
not contain transaction codes. 

• 



• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 7 

interactive processing 

A method of information processing that involves a dialog between a terminal 
operator and IMS 90. 

internal message control (IMC) 

The IMS 90 component that controls message input/output processing and terminal 
command processing for action programs and IMS 90. 

item 

K 

key 

A consecutive string of data bytes that is treated as a single entity by display, 
validation, and arithmetic functions. It appears in every occurrence of the type of 
record that contains it, in the same position, and with the same usage characteristics 
as specified in the data definition. The name of the item is displayed by UNIQUE as a 
column header when the item appears at a terminal. 

One or more items contained in a record or in a repeating group item occurrence that 
distinguish that occurrence from all others in the same file or table. The key also 
determines where a new occurrence is to be inserted in an existing sequence of 
records or repeating group item occurrence. 

keyword parameter 

L 

A parameter whose specification is identified by its name, rather than by its position 
in the operand field. 

locked record 
A logical record which, by specification of the LOCK parameter at configuration time, 
is protected while being updated from being concurrently updated by another 
transaction. 

lock-rollback-indicator 
A 1-byte value in the PIB which is set by the action program to select the record lock 
and rollback functions of IMS 90 action scheduling. 

logical record 
The actual record that exists physically on a user data file and accessed by standard 
access methods (DAM, SAM, MIRAM, IRAM, and ISAM) . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 8 

M 

main storage queueing 
The process whereby messages are staged and linked in main storage. 

mandatory configuration parameter 
A parameter whose specification is required because omission of the specification 
renders IMS 90 inoperable. 

master terminal 
A control terminal used in monitoring IMS 90 and in controlling the IMS 90 
communications network. In single-thread IMS 90, the master terminal may be the 
console. 

multithread IMS 90 
The capability of concurrently processing actions that come from different terminals. 

N 

named record file (NAMEREC) 

0 

An internal IMS 90 file containing configuration tables, data definition records, edit 
tables, and password definitions. 

offline processing 
The operations that recover damaged or inconsistent user files. 

online processing 
The operations (such as startup/shutdown, internal message control, UNIQUE or user 
action program execution, and file management) that process transactions 
interactively. 

output delivery notice status code 
The hexadecimal value provided by IMS 90 in the fifth byte of the input message to 
inform continuous output user of the status of the last output message. 

output message area 
An optional main storage area in the activation record consisting of a control header 
and area for output message text. · 

output-for-input queueing 
The operation of generating an output message via the SEND function to be 
scheduled as an input message on a terminal other than the initiating terminal. 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 9 

p 

password 
An installation-defined name that is associated with a specific defined file or subfile 
for security purposes. 

prefix 
One or more characters that are not a part of the record key that is stored on a disk, 
but which the terminal operator must key in as part of the identifier of a defined 
record. These characters are used to distinguish fraternal record types where the 
ranges of the values of the record keys overlap. 

pre-online processing 
The operations of IMS 90 utilities and processors (e.g., the NAMEREC utility, data 
definition processor, and configurator) that prepare and configure the system for 
transaction processing. 

primary part 
Those items of a defined record, including the identifier, that come from the record 
occurrence or repeating group item occurrence that is located by the identifier. The 
primary part rriust exist and is always the first part of the defined record to be read. 

print mode 
A form of output printing in which what appears on an auxiliary device is the same as 
what appears on the screen of the primary device. 

print transparent mode 
A form of output printing to an auxiliary device which is independent of the hardware 
limitations of the remote terminal screen. 

program information block (PIB) 
A required, predefined 48-byte main storage area within the activation record used to 
pass control information between IMS 90 and the user action program. 

pseudoterminal 

R 

A virtual terminal created by the IMS 90 configurator for use in batch transaction 
processing. 

record type 
The specific defined record layout when there are several possible record layouts in 
the same defined file . 



UP-8614 Rev. 1 

reentrant code 

SPERRY UNNAC OS/3 
IMS 90 APPLICATIONS 

Glossary 10 

Shared code that is not self-modifying allowing concurrent use by several threads. 

repeating group item 
An item for which an OCCURS clause appears in the data division. 

resident subprogram 

s 

A user-written program that resides in main storage, is called by an action program or 
another subprogram, and returns control to the calling program. 

screen format services 
A method of displaying predefined formatted screens at a terminal. IMS 90 places the 
screen formats into the action program's OMA when a BUILD function call is issued. 

selection criteria 
In the LIST and DETAIL commands, conditional expressions that determine which 
records are to be displayed in response to these commands. 

serially reusable 
A program that, when it is in main storage, can be executed by another thread after 
the current thread has terminated its use. • 

shared code 
Code whose self-modification observes certain restrictions enabling action scheduling 
to switch the use of that code from one thread to another whenever a function 
request is made. This effectively allows concurrent use by several threads. 

simple transaction 
A transaction that consists of a single action. 

single-thread 
The capability of processing a single action at a time, from initiation to termination of 
the action program. 

solicited message 
A message that is a reply to previous input 

standard terminal 
A production terminal used for entering commands and receiving messages during 
transaction processing. 

statistical function 
Functions provided by the UNIQUE UST command to derive totals, record counts, 
averages, minimums, and maximums. • 



• 

• 

• 

UP-8614 Rev. 1 

status code 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 11 

A 2-byte binary integer value in the PIB indicating the completion status of a request. 
This code is interpreted differently for file 1/0 functions and explicit message output. 

stored record name 
The name of a group item in the data division that describes the logical record source 
of the defined record. 

subfile 
In a defined file, a subset of defined records or subrecords that provides an alternative 
and more restrictive access than the defined file. 

subprogram 
A separately compiled module that is called by an action program or another 
subprogram. It can either be linked with the calling program or made resident, in 
which case it can be either reentrant or serially reuseable. It performs functions 
common to two or more action programs. 

subrecord 
A variant of a defined record, that allows alternative and more restrictive access. 

subrecord name 
The name of a subrecord that provides an alternative to defined record name in the 
content clause of the LIST command . 

success unit 
The sequence of actions over which record locks are held starting witti the input of a 
message or a rollback point, and ending with the next rollback point or transaction 
termination. 

succession 
The mechanism that provides the dynamic sequencing of action programs in a 
transaction. Immediate internal succession provides the linkage between two action 
programs in an action with no modification in resource allocation. Delayed internal 
succession provides the linkage between two actions with the output message from 
the first action queued as input to the successor action. External succession provides 
the linkage between actions in a transaction, with messages sent to and from the 
initiating terminal. 

successor-ID 
A 6-byte field in the PIB indicating the name of the action program to be activated 
when the current action program terminates. 

suffix 
A string of characters that occupies the least significant character pos1t1ons of a 
record key as stored in disk. These characters are not included in the identifier keyed 
in by the terminal operator; therefore, they must be literally added by ORM. They are 
specified in the FILL KEY statement . 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 12 

supplement 
Those additional items of a defined record that come from a record or a repeating 
group item occurrence that is different from the source of the primary part. The 
source of the supplement is located by a pointer that is constructed from one or more 
items of the primary part or of previously read supplements. 

supplement name 
The name that identifies a supplement within a data definition 

T 

terminal commands 
There are standard and master terminal commands. Standard terminal commands 
may be issued from any terminal to control the flow of messages at the terminal. 
Master terminal commands may be used only at the master terminal to control the 
overall system and communications network. 

terminal control table (TCT) 
Describes the terminal and transaction environment and the program status. 

termination indicator 
A 1-byte value in the PIB which indicates the type of termination for the current 
action program 

test mode 
A terminal state in which there is no physical alteration to data files; file updates are 
simulated. 

thread 
A unit of control for the sequence of events needed to complete the processing of an 
action. 

total line 
An output line containing line names, their requested totals, and other statistical 
functions. 

transaction 
A sequence of one or more actions that are related through delayed internal or 
external succession. 

transaction code 
One to five alphanumeric characters, with the first character alphabetic, used to 
identtfy and initiate a transaction. 

' 
transaction control interface (TCI) 

An interactive communications interface designed for IMS 90. 

transaction terminal table 
A table used to pass information between IMS 90 and ICAM. 

• 

• 



• 

• 

UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Glossary 13 

transaction ID 
The unique date-item stamp of the initial input message in a transaction 

u 
uniform inquiry data element (UNIQUE) 

A set of action programs supplied by Sperry Univac that retrieves and updates data in 
files. 

UNIQUE commands 
A series of commands that facilitate the manipulation of defined files. 

unsolicited output 
All messages that are not responses to previous input (e.g., requests from one 
terminal to be transmitted to another terminal). 

update format 
A format, displayed by UNIQUE, that reveals to the terminal operator certain 
characteristics of each item that can be updated. These characteristics include length 
and decimal placement. 

update operation 

v 

An operation that causes a record in a file to be deleted, added, or changed. The 
UNIQUE commands DELETE, ADD, and CHANGE are update commands. 

validity test 

w 

An acceptance test performed by defined record management on new item values 
when a defined record is added or updated. The new item value is compared to 
ranges that have been specified in VALUE statements in the data definition. 

work area (WA) 
An optional main storage area within the activation record generally used by sharable 
or reentrant action programs for file 1/0 logical record areas and working storage . 



• 

• 

• 



UP-8614 Rev. 1 

• 

Term 

A 
Action 

definition 
delayed internal succession 
external succession 
immediate internal succession 
simple transaction 

• Action program 
accessing data files 
BAL 
COBOL 
environment 
IMS 90 transactions 
reusability 
RPG II 
transaction structure 

Action scheduling 

Activation record 

ADD command (UNIQUE) 

ALLOW ADD AND DELETE statement 
defined record definition 
subrecord definition 

ALLOW CHANGE option 
item definition 
subitem definition 

ALSO statement 

Alternate terminal command (ZZALT) 

• Application management 

Audit file 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Reference Page Term 

AUX-FUNCTION byte, OMA 
continuous output 
line disconnect 

1.1 1-1 output-for-input queueing 
3.1.2.4 3-7 settings 
3.1.2.2 3-5 
3.1.2.3 3-6 Auxiliary device 
3.1.2.1 3-4 condition codes 

continuous output 
implicit output 

2.1.l 2-2 normal output 
3.4 3-26 
3.2 3-11 AUXILIARY-DEVICE-ID field, OMA 
3.1.1 3-2 continuous output 
5.3 5-17 normal output 
3.1.3 3-10 output-for-input queueing 
3.3 3-15 
3.1.2 3-3 

3.1.1 3-2 

3.6 3-30 

6.2.8 6-14 

2.3.5.11 2-30 
2.3.8.3 2-45 

2.3.6.5 2-36 
2.3.9.3 2-48 BAL action program 

example 

2.3.5.12 2-30 function requests 
linkage conventions 

B 

5.2.2.5 5-11 reentrant program considerations 
subprogram interface 

3.1.l 3-2 terminating 

3.8.7 3-76 Basic assembly language program 

Index 1 

Index 

Reference Page 

3.10.1.l 3-86 
3.11 3-100 
3.10.2 3-98 
Table 3-16 3-87 

Table 3-20 3-98 
3.10.1.l 3-86 
3.9 3-82 
3.6.2 3-41 

3.10.1.l 3-86 
3.6.2 3-41 
3.10.2 3-98 

3.4 3-26 
3.4.2 3-27 
3.4.1 3-26 
3.4.3 3-27 
3.5.3 3-30 
3.4.2 3-27 

See BAL action 
program. 



UP-8614 Rev. 1 

Term 

BATCH parameter statement 

Batch transaction processor 
diagnostic messages 
input messages 
invoking 
offline mode 
online mode 
output 
parameter statements 
processing 

Build function call 

c 
CALL macro 

CALL statement 

CANCEL command (UNIQUE) 

Cassette/diskette 
action program interface 
auxiliary function byte settings 
message text for searching 
message test for search and 

positioning 

CHANGE command (UNIQUE) 

Change master terminal command (ZZMCH) 

CLOSE command (UNIQUE) 

COBOL action program 
compiling 
examples 
format 
function calls 
linkage section 
link editing 
procedure division 
restrictions 
screen format services 

terminating 
working-storage section 

Coding rules 
BAL action program 
batch transaction processor 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Reference Page Term 

7.3.2 7-6 COBOL action program 
data definition processor 
edit table generator 

Table 7-1 7-16 file 1/0 functions 
7.4.1 7-10 general 
7.3.2.3 7-7 
7.5 7-11 Commands, UNIQUE 
7.6 7-12 
7.2 7-1 Communications output printer (COP) 
7.3.2 7-6 auxiliary device condition codes 
7.2 7-1 continuous output 

implicit output 
3.14.2.1 3-116a normal output 

Common storage area files 

Condition codes, auxiliary device 

Conditional expression, LIST command 

3.4.2 3-27 CONTAINS statement 
3.4.3 3-27 

Continuity data area (CDA) 
3.2.4 3-14 delayed internal succession 

description 
6.2.7 6-13 external succession 

function 
length 

3.10.1.1 3-87 
Table 3-16 3-87 Continuous output 
Table 3-17 3-91 delivery notice scheduling 

devices supported 
Table 3-18 3-92 example action programs 

6.2.9 6-22 implicit output 
line disconnect 

5.2.1.7 5-8 output-for-input queueing 
SEND function 

6.2.2 6-7 terminating 

Control block 
3.2 3-11 multithread 
3.14 3-111 single-thread 
3.2 3-11 
3.8 3-49 Control characters, hard copy device 
3.2.3 3-14 
3.7 3-48 Control table, single- and multithread 
3.2.4 3-14 terminal 
3.2.2 3-12 
3.15.5 3-140 COPY library 
Fig. 3-31 3-140a COBOL action program 
3.2.4 3-14 data definition execution 
3.2.2 3-12 DICE sequences 

IMA control header 
OMA control header 

3.4.1 3-26 PIB 
7.4.1 7-10 

Index 2 
Update A 

Reference 

3.2.2 
2.3.l 
4.2.1 
3.8.l 
Appendix A 

6.2 

Page 

3-12 
2-11 
4-1 
3-50 

6-4 

Table 3-20 3-98 
3.10.1.1 3-86 
3.9 3-82 
3.6.2 3-41 

3.8.9 3-81 

Table 3-20 3-98 

6.2.10 6-25 

2.3.10.2 2-50 

3.1.2.4 3-7 
3.3.1.4 3-21 
3.1.2.2 3-5 
3.1.1 3-2 
3.6.5 3-47 

3.10.1.3 3-93 
3.10 3-85 
3.15.1 3-119 
3.15.2 3-122 
3.9 3-82 
3.11 3-100 
3.10.2 3-98 
3.9.l 3-82 
3.10.1.2 3-92 

Fig. D-3 D-6 
Fig. D-1 D-2 

5.1.2 5-2 

Fig. D-2 D-4 

3.2 3-11 
2.5.1 2-65 
Fig. 3-23 3-122 
Fig. 3-12 3-46 
Fig. 3-10 3-43 
Fig. 3-8 3-32 

• 

• 

• 



UP-8614 Rev. 1 

• Term 

D 

DAM files 
data definition source 
functions supported 
random file functions 

Data base management system 90 (DMS 90) 

DATA-DEF-REC-NAME field, PIB 

Data definition 
data division 
definition division 
examples 
identification division 
language 
NAMEREC file 
overview 
processor 

structure 

• Data definition language 

Data definition processor 
coding rules 
error processing 
execution 
options 
output listing 
run streams 

Data definition record 
creating 
retrieved by DRM 

Data files, accessing 

DCT 500 Data Communications Terminal 
continuous output 
output delivery notice 

DCT 1000 Data Communications Terminal 
continuous output 
output delivery notice 

Defined file definition 

DEFINED-FILE-NAME field, PIB 

• DEFINED FILE statement 

Defined files 
access by action programs 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Reference Page Term 

accessed by UNIQUE 
data definition processor 

output listing 
description 

2.3.3 2-15 examples 

Table 3-10 3-49 hierarchical structure 

3.8.3 3-57 
Defined record 

See DMS 90 accessing 

data base. derivation from logical records 
description in data definition 

3.6.1.6 3-40 relationships 

Defined record area 

2.3.2.2 2-15 description 

2.3.2.3 2-15 function 

2.4 2-51 
2.3.2.l 2-14 Defined record definition 

2.3 2-11 
2.5 2-65 Defined record identifier 

2.1 2-1 
See data Defined record management (DRM) 

definition data flow 

processor. overview 

2.3.2 2-14 random file functions 
returns to action program 

2.3 2-11 sequential file functions 

DEFINED RECORD statement 

2.3.l 2-11 
2.5.4 2-70 Delayed internal succession 

2.5.2 2-67 batch transaction processing 

2.5.1 2-65 TERMINATION-INDICATOR, PIB 

2.5.3 2-67 transaction structure 

2.5.2 2-67 
DELETE command (UNIQUE) 

2.1.2 2-5 DELETE function 

2.1.l 2-2 indexed files 
parameters 

2.1.l 2-3 random file functions, DRM 
random files 
sequential file functions, DRM 

3.10 3-85 
3.10.1.3 3-93 DELIVERED-RECORD-TYPE byte 

Delivery notice scheduling 

3.10 3-85 auxiliary device condition codes 

3.10.1.3 3-93 continuous output 
example action program 

2.3.4 2-17 recovery considerations 
status codes 

3.6.1.6 3-40 
Destination terminal 

2.3.4.l 2-17 auxiliary device 
implicit output 
output-for-input queueing 

2.1 2-1 SEND function returns 

Index 3 

Reference Page 

6.1.2 6-3 

Fig. 2-38 2-68 
2.2 2-5 
2.4 2-51 
2.2.l 2-6 

2.1.l 2-2 
2.2.2 2-7 
2.2.2 2-7 
2.2.l 2-6 

3.6.6 3-48 
3.1.l 3-3 

2.3.5 2-20 

2.2.2 2-7 

2.1.l 2-2 
2.1 2-1 
3.8.6.l 3-66 
3.8.5.2 3-68 
3.8.5.3 3-70 

2.3.5.l 2-20 

7.2 7-1 
3.6.1.4 3-37 
3.1.2.4 3-7 

6.2.5 6-11 

3.8.2.1.4 3-54 
3.8.3.1.4 3-60 
3.8.3.1.4 3-60 
3.8.5.2 3-68 
3.8.5.3 3-70 

3.8.5.l 3-66 

Table 3-20 3-98 
3.10.1.3 3-93 
3.1.15.3 3-128 
3.10.1.4 3-94 
Table 3-19 3-95 

3.6.2 3-41 
3.9 3-82 
3.10.2 3-98 
3.9.2 3-83 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Index 4 
Update A 

------------------------------------~ ... - ... 
--·----·----.-___... 



UP-8614 Rev. 1 

• Term 

ESETL function 
defined files 
indexed files 
random files 

ETAB keyword, edit table generator 

Expanded input editor 

Explicit output 

External succession 
continuous output 
line disconnect 
TERMINATION-INDICATOR, PIB 
transaction structure 

• F 

FIL keyword, edit table generator 

File closing 

File descriptors 

File 1/0 functions 
defined files 

formats and rules 
indexed files 
1/0 error returns 
random files 

File management, IMS 90 
access methods supported 
data flow 

File opening 

File recovery, online 

File sharing 

• FILL KEY statement 
defined record definition 
supplement definition 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Reference Page Term 

FOLLOWS statement 
3.8.5.3.3 3-72 
3.8.2.2.3 3-57 Fraternal defined records 
3.8.3.2.3 3-63 

Freeform input, editing 
4.2.2 4-3 

4.4 4-8 FROM CONTROL BREAK statement 

3.9.l 3-81 FROM REPEATING GROUP statement 
defined record definition 
supplement definition 

3.10.1.2 3-87 
3.11 3-101 FROM statement 
3.6.1.4 3-37 defined record definition 
3.1.2.2 3-5 supplement definition 

Function keys 
entering from terminal 
input message format 

Function requests 
CALL macro 
CALL statement 
RETURN function 
SEND function 
SNAP function 

4.2.2 4-4 
SUBPROG function 

3.8.8.l 3-79 
ZG#CALL macro 

3.8.8.2 3-79 

3.8.5 3-56 
3.8.5.2 3-68 
3.8.5.3 3-70 
3.8.l 3-50 
3.8.2 3-51 
3.8.6.l 3-73 
3.8.3 3-57 
3.8.4 3-65 G 

GET/GETUP function 
3.8 3-49 indexed files 
2.1.l 2-2 random file functions, ORM 

random files 
3.8.8.l 3-79 relative files 

sequential file functions, DRM 
3.8.6 3-72 sequential files 

sequential, relative files 
3.8.8.4 3-80 

GETLOAD function 

2.3.5.10 2-29 
2.3.7 .5 2-41 Global network terminal commands 

Index 5 

Reference Page 

2.3.5.9 2-28 

2.2.l 2-6 

See edit table 
generator. 

2.3.5.3 2-22 

2.3.5.4 2-23 
2.3.7 .3 2-39 

2.3.5.2 2-21 
2.3.7 .2 2-39 

5.1.5 5-5 
3.5.2 3-26 

3.5.2 3-29 
3.5.3 3-30 
3.5.3 3-30 
3.9.l 3-82 
3.12.2 3-101 
3.5.2 3-29 
3.5.3 3-30 
3.4.2 3-27 

3.8.2.1.l 3-52 
3.8.2.l 3-51 
3.8.5.2.l 3-68 
3.8.3.1.l 3-58 
3.8.4.l 3-64 
3.8.5.3.2 3-71 
3.8.3.2.2 3-62 

3.13.l 3-105 
3.13.1.2 3-110 

5.4 5-31 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Index 6 
Update A 

---------------------------·~·--··· .. 



UP-8614 Rev. 1 

• Term 

J 

JUS keyword, edit table generator 

K 
KEY keyword, edit table generator 

L 

LEN keyword, edit table generator 

• Lexicon, UNIQUE 

Line disconnect 

Link editing action programs 

Linkage conventions 
BAL action program 
BAL subprogram 
COBOL action program 
COBOL subprogram 

LIST command (UNIQUE) 

Load error byte definition 

·Lock-for-transaction 

LOCK-ROLLBACK-INDICATOR, PIB 
description 
online recovery 

Locks, logical record 

Logical files 
data flow 
source in data definition 

• Logical record lock 

Logical records 
accessing 
described in data definition 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Reference Page Term 

M 
4.2.2 4-4 Main storage areas 

activation record 
dynamically allocated 

MAN keyword, edit table generator 

Master terminal commands 

MAX keyword, edit table generator 

Message switching 
4.2.2 4-3 

MIN keyword, edit table generator 

MIRAM files 
indexed file functions 
relative file functions 
sequential file functions 

4.2.2 4-3 
MORE command (UNIQUE) 

Appendix B Multiline terminal message handling 

3.11 3-100 MUST ADD option 
item definition 

3.7 3-48 subitem definition 

3.4.1 3-26 
3.5.3 3-30 
3.2.3 3-14 
3.5.2 3-29 N 

6.2.10 6-25 Named record (NAMEREC) file 
data definition records 

Table 3-21 3-108 edit tables 

3.8.7.2 3-77 NEXT command (UNIQUE) 

Normal termination 
3.6.1.5 3-39 
3.8.6 3-72 

3.8.7 3-76 

2.1.l 2-2 
2.3 2-11 

3.8.8 3-76 

2.1.1 2-2 
2.3.3 2-15 

Index 7 
Update A 

Reference 

3.6 
3.1.1 

4.2.2 

5.2.2 

4.2.2 

5.3.1 

4.2.2 

3.8.2 
3.8.3 
3.8.4 

6.2.11 

5.1.2.2 

2.3.6.4 
2.3.9.2 

2.5 
4.1 

6.2.4 

3.6.1.4 

Page 

3-30 
3-3 

4-4 

5-5 

4-4 

5-18 

4-5 

3-51 
3-57 
3~63 

6-31 

5-3 

2-35 
2-47 

2-65 
4-1 

6-10 

3-37 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Index 8 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 Index 9 

IMS 90 APPLICATIONS Update A 

• Term Reference Page Term Reference Page 

R IMS 90 configuration Fig. C-2 C-3 
interface areas 3.3.1 3-16 

REBUILD function call 3.14.3 3-118a restrictions 3.3.4 3-26 
. 

snapshot dump (screen not found) Fig. 3-20B 3-118c 

Record locking 3.8.7 3-76 specifications forms 3.3.3 3-23 

RECORD-TYPE field, PIB 3.8.5.1 3-66 

Recovery, online 3.8.6 3-72 

Reentrant program 3.4.3 3-27 

Register contents 
s 

BAL action program 3.4.1 3-26 
BAL subprogram 3.5.3 3-30 SAM files 

snapshot dumps 3.12.1 3-101 functions supported Table 3-10 3-49 
1/0 functions 3.8.4 3-63 

Repeating group item 
example 2.4.4.2 2-59 Screen bypass device 3.10.3 3-100 

FROM REPEATING GROUP statement 2.3.5.4 2-23 
2.3.7.3 2-39 

Screen formatting services 
BUILD function call 3.14.2.l 3-116 

Reserved words, data definition Table 2-1 2-13 
3.14.2 3-113 

COBOL and BAL action programs 3.15.5 3-140 

• Resident subprogram See subprogram, description 3.14 3-111 

user-written. 
3.14.1 3-112a 

example, COBOL Fig. 3-31 3-140a 

RETURN function 
REBUILD function call 3.14.2.2 3-118a 

BAL action program 3.4.2 3-27 RPG II action programs 3.14.3 3-118b 

BAL subprogram 3.5.3 3-30 support of auxiliary devices Table 3-22 3-112 

COBOL action program 3.4.2 3-27 
COBOL subprogram 3.5.2 3-29 Segmented output 5.1.4 5-4 

Reusability 
SEND function 

action program 3.1.3 3-10 
batch transaction processing 7.2 7-1 

reentrant BAL program 3.4.3 3-27 
description and format 3.9.1 3-82 

subprogram 3.5.1 3-28 
output-for-input queueing 3.10.2 3-98 
returns from 3.9.2 3-83 

ROLE IN UPDATE statement 2.3.7 .6 2-42 SEP keyword, edit table generator 4.2.2 4-2 

Rollback 
LOCK-ROLLBACK-INDICATOR, PIB 3.6.1.5 3-39 Sequential access method See SAM files. 

online recovery 3.8.6 3-72 
prefix area format 3.8.6.2 3-74 SETL function 

defined files 3.8.5.3.1 3-70 

RPG II action program 
indexed files 3.8.2.2.1 3-55 

compile and link Fig. C-3 C-4 relative files 3.8.3.2.1 3-61 

examples Fig. 3-31 3-140a 
Fig. 3-32 3-142 SETLOAD function 3.13.1 3-105 

Fig. 3-33 3-143 
3.13.l.1 3-109 

Fig. 3-34 3-143 
Fig. 3-35 3-145 SHOW command (UNIQUE) 6.2.13 6-34 

• 
Fig. 3-36 3-148 
Fig. 3-37 3-149 Shutdown command (ZZSHD) 5.2.2.9 5-15 

Fig. 3-38 3-149 
Fig. 3-39 3-150 Single-thread processing Appendix D 

execution Fig. C-9 C-11 
files, logical and defined 3.3.2 3-21 SNAP function 3.12.2 3-101 

ICAM network generation Fig. C-1 C-2 



UP-8614 Rev. 1 SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Index 10 
Update A 



UP-8614 Rev. 1 

• Term 

Test mode 
description 
ZZTMD terminal command 

Transaction 
definition 
dialog 
IMS 90 
initiating 
rollback 
simple 
structure 

Transaction code 
action scheduling 
entering from terminal 
function keys 
IMS 90 

Transaction control section (TCS) DSECT 
auxiliary device condition codes 
delivery notice scheduling 
delivery notice status codes 
listing 

• Transaction processing 
batch 
description 
UNIQUE 

Transaction structures 
combination 
delayed internal succession 
external succession 
immediate internal succession 
simple 

TYP keyword, edit table generator 

TYPE statement 

u 
Uniform inquiry update element 

UNIQUE 

• accessing data files 
commands 
concept 
dialog 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Reference Page Term 

UNISCOPE display terminal 
3.8.8.6 3-81 auxiliary device condition codes 
5.2.1.4 5-7 continuous output 

function keys 
output delivery notice 

1.1 1-1 
3.1.2.2 3-5 Universal Terminal System 400 (UTS 400) 
5.3 5-17 
5.1.3 5-3 
3.6.1.5 3-39 Unsolicited output 
3.1.2.1 3-4 batch transaction processing 
3.1.2 3-3 description 

Update state, terminal 
3.1.2.l 3-4 
5.1.3 5-3 UPSI byte, edit table errors 
5.1.5 5-5 
5.3 5-17 User data files, accessing 

User-written action program 
Table 3-20 3-98 
3.10.1.4 3-94 
Table 3-19 3-95 User-written subprograms 
Fig. 3-16 3-97 

UTS 400 terminal 
7.2 7-1 auxiliary device condition codes 
1.1 1-1 continuous output 
6.2 6-4 DLOAD transaction code 

downline loading 

3.1.2.5 3-9 function keys 
3.1.2.4 3-7 screen bypass device 
3.1.2.2 3-5 
3.1.2.3 3-6 
3.1.2.1 3-4 

4.2.2 4-5 

2.3.5.5 2-24 

v 
VALUE statement 

item definition 
subitem definition 

See UNIQUE. 

2.1.1 2-3 
6.2 6-4 
6.1 6-1 
6.1.1 6-1 

Index 11 
Update A 

Reference Page 

Table 3-20 3-98 
3.10 3-85 
5.1.5 5-5 
3.10.1.3 3-93 

See UTS 400 
terminal. 

7.2 7-1 
5.1.4 5-4 

6.2.8 6-14 

4.3.1 4-6 

2.1.1 2-2 

See action 
programs. 

See subprograms, 
user-written. 

Table 3-20 3-98 
3.10 3-85 
5.3.3 5-20a 
3.13 3-105 
5.3.3 5-20 
5.1.5 5-5 
3.10.3 3-100 

2.3.6.6 2-36 
2.3.9.4 2-48 



UP-8614 Rev. 1 

Term 

w 
Work area 

description 
function 
length 

z 
ZG#CALL macro. BAL action program 

ZH#EDT utility 

ZSTAT transaction code 
description 
error messages 
file status display screen 
function key operation 
HELP screen, page 1 
HELP screen, page 2 
menu, input screen 
menu, output screen 
program status display screen 
recoverable errors 
terminal status display screen 
transaction status display screen 
unrecoverable errors 

SPERRY UNIVAC OS/3 
IMS 90 APPLICATIONS 

Reference Page Term 

ZUKLOD downline load action program 

ZZALT master terminal command 
3.6.4 3-47 
3.1.1 3-3 ZZBTH master terminal command 
3.6.1.6 3-40 

ZZCLS master terminal command 

ZZCNC terminal command 

ZZDWN master terminal command 

ZZHLD terminal command 

ZZHLT master terminal command 

ZZNRM terminal command 

3.4.2 3-27 ZZOPN master terminal command 
3.4.3 3-27 

ZZPCH master terminal command 
See edit table 
generator. ZZRDY terminal command 

ZZRSD terminal command 
5.3.4 5-22 
5.3.4.2 5-30 ZZSHD master terminal command 
Fig. 5-1 5-23 
5.3.4. l 5-29 ZZTCT master terminal command 
Fig. 5-5 5-26 batch processing use 
Fig. 5-6 5-27 function and format 
Fig. 5-8 5-29 
Fig. 5-7 5-27 ZZTMD terminal command 
Fig. 5-2 5-24 
Table 5-5 5-30 ZZTST master terminal command 
Fig. 5-4 5-26 
Fig. 5-3 5-25 ZZUP master terminal command 
Table 5-6 5-31 

Index 12 
Update A 

Reference 

5.3.3 

5.2.2.5 

5.2.2.8 
7.6.1 

5.2.2.6 

5.2.1.6 

5.2.2.2 

5.2.1.2 

5.2.2.10 

5.2.1.5 

5.2.2.7 

5.2.2.11 

5.2.1.3 

5.2.1.l 

5.2.2.9 

7.6.3 
5.2.2.4 

5.2.1.4 

5.2.2.3 

5.2.2.1 

Page • 
5-20a 

5-11 

5-15 
7-13 

5-13 

5-8 

5-10 

5-7 

5-15 

5-8 

5-14 

5-15 

5-7 

5-7 • 5-15 

7-15 
5-11 

5-7 

5-10 

5-9 

• 



• 

ai c 

"" c 

-~ 

• 

S?E~Y+UNIVAC 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 

subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.J (Update No.J 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

(") 
c 

• 

~. 

• 



• 

ai 
c: 

• 

1 
I SPE~Y+UNIVAC 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 
subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

-~-:-------------------------------------------------
FOLD 

• 

• 



• 

• 

I 
I Sr->E~v+uNIVAC 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 
subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From; 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD ---------------------------------------------------

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATIN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

FOLD 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

-

•• 


