
•

•

•

• ~ ~·> -· •• ·~---~~----~~-------------------------....,

perating System/3 (OS/3)

FORTRAN IV

Programmer Reference

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3)
FORTRAN IV Programmer Reference", UP-8474 Rev. 2.

This manual now covers FORTRAN IV implemented on a 90/25, 90/30, 90/308, or 90/40 system operating in a
define the file (DTF), consolidated data management (COM). or mixed mode environment.

Workstation support is also provided.

Other technical changes were made.

Additional copies may be ordered by your local Sperry Univac representative .

lllE1illl'i'k'
Library Memo

••

•

•

•

•

•

. Operating System/3 (OS/3)
r··-~-~~~·~--~···-.. ~·-~--~
I FORTRAN IV

!
Programmer Reference

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating
System/3 (OS/3) FORTRAN IV Programmer Reference", UP-8474 Rev. 2.

This update includes changes to the job control procedure for release 7 .1:

• Specification of catalog files

• Expanded explanation of parameters

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8474 Rev. 2-A. To receive the complete manual, order UP-8474 Rev. 2 .

Mailing Lists
BZ, CZ (less DE, GZ,
HA) MZ, 18U, 19U,
20U, 21 U, 75U and
76U

Mailing Lists DE, GZ, HA, 18, 19, 20,
21, 75 and 76

(Package A to UP-8474 Rev. 2,
7 pages plus Memo)

September, 1981

•

•

•

- --- ------------------

FORTRAN IV

Environment: 90/25, 30, 308, 40 Systems

H UP-8474 Rev. 2

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1980 - SPERRY CORPORATION PRINTED IN U.S.A.

•

•

•

UP-8474 Rev. 2

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Preface 1
2,3

Contents 1 thru 4
5 thru 7
8,9

PART 1
Title Page

1 1
2 thru 9

2 1 thru 7

PART2
Title Page

3 1 thru 6

4 1 thru 6

5 1 thru 28

6 1,2
3
4 thru 8

7 1 thru 24
25,26
27

8 1 thru 3

PART3
Title Page

9 1
2
3
4
4a
5

10 1 thru 4

11 1
2 thru 4
5
6 thru 15
16
17,18
19,20
21 thru 32

*New pages

SPERRY UNIVAC OS/3
FORTRAN IV

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update B - UP-8474 Rev. 2
8.0 Forward

Update
Level Part/Section

Page Update
Number Level Part/Section

Orig. 12 1 thru 46 Orig.

B 13 1 thru 3 Orig.
4 B

Orig. 5 Orig.
B

PART4

Orig. Title Page Orig.

B
Orig. Appendix A 1 thru 8 Orig.

Appendix B 1 B

Orig. 2 thru 5 Orig.

B Appendix C 1 thru 7 Orig.

Orig.
Appendix D 1 thru 5 Orig.

Orig.
.

Appendix E 1,2 B
3 A

Orig. 4 Ori11.
5 thru 7 B

Orig. 8 thru 14 Orig.

Orig. Appendix F 1thru15 Orig.

Orig. Appendix G 1 thru 14 Orig

Orig. Appendix H 1 thru 6 Orig.

B
Orig. Index 1 Orig.

2 B

Orig. 3 Orig.

B 4,5 B

Orig. 6 Orig.
7 thru 10 B

Orig.

User Comment

Orig. Sheet

Orig.
B
Orig.
B
B*
Orig.

Orig.

B
Orig.

B
Orig.
B
Orig.
B
Orig .

PSS 1
Update B

Page
Number

Update
Level

All the technical changes are denoted by an arrow r-1 in the margin. A downward pointing arrow (t l next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+ l is found. A horizontal arrow (_.l pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Preface 1

Preface

This manual is one of a series designed to instruct and guide the programmer in the use of SPERRY UNIVAC
Operating System/3 (OS/3). This manual specifically describes the OS/3 FORTRAN IV. Its intended audience is
the experienced FORTRAN programmer new to SPERRY UNIVAC operating systems, and the OS/3 in particular.

The fundamentals of FORTRAN, programmer reference, UP-7536 (current version) also is available for general
information concerning FORTRAN programming. A knowledge of that manual is assumed. It is useful in
reviewing the language; however, it does not present FORTRAN IV implementation for OS/3.

This manual is divided into the following parts:

• PART 1. FORTRAN IV PROGRAM STRUCTURE

Discusses the FORTRAN IV compiler, general structure of source programs, coding form layout, character
set, and types of data including constants, variables, and array elements used in integer and real
arithmetic.

• PART 2. FORTRAN STATEMENTS

Describes FORTRAN IV expressions and assignment statements, control statements, statements used for
functions and subroutines, specification statements, and 1/0 statements.

• PART 3. COMPILE, DEBUG, AND EXECUTE PROCEDURES

Discusses data initialization, compilation, debugging, and configuration of the execution environment.

• PART 4. APPENDIXES

Provide additional information concerning:

A Character set

B,C, D UNIT options

E FORTRAN sample job streams

F Diagnostics

G Run-time library routines

H Subroutine linkage

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Preface 2
Update B

Other current OS/3 publications, referenced in this manual, are useful to the programmer working with
FORTRAN IV.

Consolidated Data Management (COM) Environment

• System processor programmer reference, UP-8881

Lists the hardware characteristics of integer /real arithmetic.

• Screen format services concepts and facilities, UP-8802

Describes the screens and formats used on workstation terminals.

• Interactive services commands and facilities user guide/programmer reference, UP-8845

Describes the commands and operating procedure for workstation terminals.

• Editor user guide, UP-8828

Describes the interactive command language.

• System service programs (SSP) user guide, UP-8841

Describes various system utilities (librarian and linkage editor among others).

• Consolidated data management macroinstructions user guide/programmer reference, UP-8826

Describes the data management macroinstructions.

• System messages programmer/operator reference, UP-8076

Lists and describes the system console messages issued during compilation by FORTRAN IV.

• Series 90 FORTRAN mathematical library programmer reference, UP-8029

Lists the multiplication, division, and exponentiation library routines.

• Job contr'JI user guide, UP-8065

Provides information on the format and usage of job control statements and linkage editor job control
procedure call (jproc).

• Fundamentals of FORTRAN programmer reference, UP-7536

Presents general information concerning FORTRAN.

Define the File (DTF) Environment

• Data management user guide, UP-8068

Describes the data management macroinstructions.

• System service programs (SSP) user guide, UP-8062

Describes various system utilities (librarian and linkage editor among others).

•

•

•

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

• 90/30 system processor programmer reference, UP-8052

Lists the hardware characteristics of integer /real arithmetic.

• System messages programmer/operator reference, UP-8076

Preface 3
Update B

Lists and describes the system console messages issued during compilation by FORTRAN IV.

• Series 90 FORTRAN mathematical library programmer reference, UP-8029

Lists the multiplication, division, and exponentiation library routines.

• Job control user guide, UP-8065

Provides information on the format and usage of job control statements and linkage editor job control
procedure call (jproc).

• Fundamentals of FORTRAN programmer reference, UP-7536

Presents general information concerning FORTRAN .

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. FORTRAN IV PROGRAM STRUCTURE

1. INTRODUCTION

1.1. SCOPE AND PURPOSE
1.1.1. Compatibility
1.1.2. Extensions

1.2. SOURCE PROGRAMS
1.2.1. Character Set
1.2.2. FORTRAN Statements
1.2.3. Comments
1.2.4. Symbolic Names
1.2.5. Source Statement Order

1.3. SOURCE CODE GUIDELINES

1.4. STATEMENT CONVENTIONS

Contents 1

Contents

1-1
1-2
1-2

1-3
1-4
1-4
1-4
1-5
1-5

1-7

1-8

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

2. DATA TYPES

2.1. GENERAL

2.2. CONSTANTS
2.2.1. Integer Constants
2.2.2. Real Constants
2.2.3. Double Precision Constants
2.2.4. Hexadecimal Constants
2.2.5. Complex Constants
2.2.6. Logical Constants
2.2.7. Literal Constants

2.3. VARIABLES

2.4. ARRAYS
2.4.1. Array Element Reference
2.4.2. Element Position Location

PART 2. FORTRAN STATEMENTS

3. EXPRESSIONS AND ASSIGNMENT STATEMENTS

3.1. GENERAL

3.2. EXPRESSIONS
3.2.1. Arithmetic Expressions
3.2.2. Relational Expressions
3.2.3. Logical Expressions
3.2.4. Evaluation Order
3.2.5. Mixed-Mode Arithmetic
3.2.6. Arithmetic Operation User Checks
3.2.7. Implementation of Arithmetic Operations

3.3. ASSIGNMENT STATEMENTS
3.3.1. Arithmetic and Logical Assignment Statements
3.3.2. ASSIGN Statement

4. CONTROL STATEMENTS

4.1. GENERAL

4.2. ARITHMETIC IF

4.3. LOGICAL IF

4.4. UNCONDITIONAL GO TO

4.5. COMPUTED GO TO

4.6. ASSIGNED GO TO

Contents 2

2-1

2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-5

2-5

2-6
2-6
2-7

3-1

3-1
3-1
3-1
3-2
3-2
3-3
3-3
3-4

3-4
3-5
3-5

4-1

4-1

4-2

4-2

4-3

4-3

UP-8474 Rev. 2

4.7.
4.7.1.

4.8.

4.9.

4.10.

4.11.

DO

SPERRY UNIVAC OS/3
FORTRAN IV

Transfer of Control to and from a DO Range

CONTINUE

STOP

PAUSE

END

5. FUNCTIONS AND SUBROUTINES

5.1. GENERAL

5.2. PROCEDURE REFERENCE
5.2.1. Function Reference
5.2.2. Subroutine Reference (CALL Statement)

5.3. STATEMENT FUNCTION DEFINITION

5.4. SUBPROGRAM DEFINITION
5.4.1. External Functions
5.4.1.1. FUNCTION Statement
5.4.1.2. RETURN Statement
5.4.1.3. ABNORMAL Statement
5.4.2. Subroutines
5.4.2.1. SUBROUTINE Statement
5.4.2.2. Subroutine RETURN Statement
5.4.3. Multiple Entry to Function and Subroutine Subprograms

5.5. ARGUMENT SUBSTITUTION
5.5.1. Call by Value
5.5.2. Call by Name

5.6. LIBRARY PROCEDURES
5.6.1. Intrinsic Functions
5.6.2. Standard Library Functions
5.6.2.1. Specification Statement Interaction
5.6.3. Standard Library Subroutines
5.6.3.1. Arithmetic Overflow and Underflow Test (OVERFL)
5.6.3.2. Divide Check Subroutine (DVCHK)
5.6.3.3. Error Indicator Test (ERROR)
5.6.3.4. Error Indicator Setting Subroutine (ERROR1)
5.6.3.5. Indicator Setting Subroutine (SLITE)
5.6.3.6. Indicator Testing Subroutine (SLITET)
5.6.3.7. Control Information Check (SSWTCH)
5.6.3.8. Main Storage Dump Routines (DUMP and PDUMP)
5.6.3.9. EXIT Subroutine
5.6.3.10. FETCH Subroutine
5.6.3.11. LOAD Subroutine
5.6.3.12. OPSYS Subroutine

Contents 3

4-4
4-5

4-5

4-6

4-6

4-6

5-1

5-3
5-3
5-3

5-4

5-5
5-5
5-6
5-7
5-7
5-8
5-8
5-9
5-10

5-12
5-12
5-13

5-14
5-14
5-16
5-16
5-22
5-22
5-23
5-24
5-24
5-25
5-26
5-26
5-26
5-26
5-27
5-27
5-27

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

6. SPECIFICATION STATEMENTS

6.1. GENERAL

6.2. ARRAY DECLARATION

6.2.1. Array Declarator

6.3. DIMENSION STATEMENT

6.4. TYPE STATEMENTS

6.4.1. Explicit Type Statements

6.4.2. IMPLICIT Statement

6.5. EQUIVALENCE STATEMENT

6.6. COMMON STATEMENT
6.6.1. COMMON/EQUIVALENCE Statement Interaction

6.7. EXTERNAL STATEMENT

6.8. PROGRAM STATEMENT

7. INPUT AND OUTPUT

7.1. GENERAL

7.2. INPUT /OUTPUT LIST
7.2.1. DO-Implied List

7.3. SEQUENTIAL FILES
7.3.1. Unformatted 1/0 Statements
7.3.1.1. END, ERR, and SCREEN Clauses
7.3.2. Formatted READ/WRITE Statements
7.3.2.1. 1/0 Compatibility Statements
7.3.3. FORMAT Statement
7.3.3.1. Field Descriptors
7.3.3.1.1. Integer Descriptor (rlw)
7.3.3.1.2. Real Descriptor - E Conversion (srEw.d)
7.3.3.1.3. Real Descriptor - F Conversion (srFw.d)
7.3.3.1.4. Double Precision Descriptor (srDw.d)
7.3.3.1.5. Logical Descriptor (rlw)
7.3.3.1.6. General Descriptor (srGw.d)
7.3.3.1.7. Hollerith Descriptor - A Conversion (rAw)
7.3.3.1.8. Hollerith Descriptor - H Conversion (wHc 1c2 ..• cw)
7.3.3.1.9. Hexadecimal Descriptor (rZw)
7.3.3.1.10. Literal Descriptor ("c1c2 ... cw')
7.3.3.1.11. Blank Descriptor (wX)
7.3.3.1.12. Record Position Descriptor (Tp)
7.3.3.1.13. Scale Factor Effects
7.3.3.2. Multiple Record Format Specification
7.3.3.3. Carriage Control Conventions
7.3.3.4. Format Interaction with 1/0 List
7.3.4. Reread Form of READ Statement
7.3.5. List-Directed Input/Output
7.3.5.1. NAMELIST Statement
7.3.5.2. Simple List-Directed Input/Output

Contents 4

6-1

6-1
6-1

6-2

6-2
6-3
6-4

6-5

6-6
6-6

6-7

6-8

7-1

7-1
7-2

7-2
7-3
7-4
7-5
7-6
7-6
7-7
7-8
7-9
7-9
7-10
7-10
7-10
7-10
7-11
7-11
7-11
7-12
7-12
7-13
7-13
7-13
7-14
7-15
7-16
7-16
7-18

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7.3.6. Auxiliary 1/0 Statements
7.3.6.1. REWIND Statement
7.3.6.2. BACKSPACE Statement
7.3.6.3. ENDFILE Statement
7.3.7. Sequential File Considerations
7.3.8. File Screen Workstation 1/0

7.4. DIRECT ACCESS FILES
7.4.1. DEFINE FILE Statement
7.4.2. Disk READ Statement
7.4.3. Disk WRITE Statement
7.4.4. Disk FIND Statement

8. DATA INITIALIZATION

8.1. GENERAL

8.2. DATA STATEMENT

8.3. BLOCK DATA SUBPROGRAM
8.3.1. BLOCK DATA Statement

PART 3. COMPILE, DEBUG, AND EXECUTE PROCEDURES

9. COMPILATION

9.1. GENERAL

9.2. FORTRAN IV COMPILERS

9.3. PARAMETER STATEMENT FORMAT
9.3.1. Compiler Arguments

9.4. STACKED COMPILATION

9.5. SOURCE CORRECTION FACILITY

9.6. CREATING A JOB CONTROL STREAM

9.7. USE OF LARGER VERSION

10. DEBUGGING

10.1. GENERAL

10.2. CONDITIONAL COMPILATION

10.3 . FORMATTED MAIN STORAGE DUMP

10.4. USE OF OPT=S

Contents 5
Update B

7-20
7-20
7-20
7-21
7-21
7-23

7-23
7-23
7-24
7-25
7-26

8-1

8-1

8-3
8-3

9-1

9-1

9-1
9-2

9-4

9-4a

9-5

9-5

10-1

10-1

10-1

10-2

t

UP-8474 Rev. 2

10.5. SUBSCRIPT CHECKING

10.6. LABEL TRACE
10.6.1. TRACE ON Statement
10.6.2. TRACE OFF Statement

SPERRY UNIVAC OS/3
FORTRAN IV

Contents 6
Update B

10-2

10-3
10-4
10-4

11. CONSOLIDATED DATA MANAGEMENT (COM) EXECUTION ENVIRONMENT
CONFIGURATION

11.1. COM RELATIONSHIP 11-1

11.2. COM-SUPPLIED CONFIGURATIONS 11-2

11.3. PROGRAMMER-DEFINED CONFIGURATIONS 11-3
11.3.1. START Statement 11-5
11.3.2. FORTRAN Unit Deffnition Procedure (UNIT) 11-5
11.3.2.1. Unit Record Definition 11-6
11.3.2.2. Tape File Definition 11-10
11.3.2.3. Disk File Definition 11-16
11.3.2.4. Workstation Unit Definition 11-21
11.3.2.5. Reread Unit Definition 11-24
11.3.2.6. Equivalent Unit Definition 11-25
11.3.3. FORTRAN Unit Definition Termination Procedure (FUNEND) 11-27
11.3.4. Error Environment Definition Procedure (ERRDEF) 11-27
11.3.5. END Statement 11-30

11.4. TYPICAL CONFIGURATION EXAMPLE 11-30

..._ 12. DEFINE THE FILE (DTF) EXECUTION ENVIRONMENT CONFIGURATION

12.1. DATA MANAGEMENT INTERFACE 12-1

12.2. DTF-SUPPLIED CONFIGURATIONS 12-2

12.3. PROGRAMMER-DEFINED CONFIGURATIONS 12-2
12.3.1. File Definition Conventions 12-3
12.3.1.1. Device Type 12-3
12.3.1.2. Record and Block Sizes 12-3
12.3.1.3. Record Formats 12-3
12.3.1.4. Buffer Allocation 12-4
12.3.1.5. File Type 12-5
12.3.2. START Statement 12-6
12.3.3. FORTRAN Initialization Procedure (FUNTAB) 12-6
12.3.4. FORTRAN Unit Definition Procedure (UNIT) 12-6
12.3.4.1. Printer File Definition 12-7
12.3.4.2. Card Input File Definition 12-10
12.3.4.2.1. Spooled Card Input File Definition 12-10
12.3.4.2.2. Data Management Card Input File Definition 12-12
12.3.4.3. Card Output File Definition 12-16
12.3.4.4. Tape File Definition 12-19
12.3.4.5. Files on Disk 12-25
12.3.4.5.1. Sequential Disk File Definition 12-25
12.3.4.5.2. Direct Access Disk File Definition 12-32
12.3.4.5.3. Combined Disk Files 12-35

•

•

•

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

12.3.4.5.3.1. Record Formats for MIRAM Disk Files
12.3.4.5.3.2. MIRAM Disk File Definition
12.3.4.6. Reread Unit Definition
12.3.4.7. Equivalent Unit Definition
12.3.5. FORTRAN Unit Definition Termination Procedure (FUNEND)
12.3.6. Error Environment Definition Procedure (ERRDEF)
12.3.7. END Statement

13. PROGRAM COLLECTION AND EXECUTION

13.1. GENERAL

13.2. LINK EDITING FORTRAN PROGRAMS
13.2.1. FORTRAN IV Supplied Modules
13.2.2. Overlay and Region Structures
13.2.3. Linkage Editor Output

13.3. EXECUTION OF FORTRAN PROGRAMS IN A CDM ENVIRONMENT
13.3.1. COM FORTRAN 1/0 Units
13.3.2. COM Pause Messages
13.3.3. COM Diagnostic Messages

13.4. EXECUTION OF FORTRAN PROGRAMS IN A DTF ENVIRONMENT
13.4.1. DTF FORTRAN 1/0 Units
13.4.2. DTF Pause Messages
13.4.3. DTF Diagnostic Messages

PART 4. APPENDIXES

A. CHARACTER SET

A.1. SOURCE PROGRAM AND INPUT DATA CHARACTERS

A.2. PRINTER GRAPHICS

B. SUMMARY OF COM UNIT OPTIONS

c. SUMMARY OF DTF UNIT OPTIONS

D. ADDITIONAL UNIT OPTIONS IN DTF ENVIRONMENT

D.1. GENERAL

D.2. CARD READER OPTIONS

D.3 . CARD PUNCH OPTIONS

D.4. TAPE FILE OPTIONS

D.5. SEQUENTIAL DISK FILE OPTION

Contents 7
Update B

12-35
12-36
12-39
12-40
12-42
12-43
12-46

13-1

13-1
13-1
13-2
13-3

13-3
13-3
13-4
13-4

13-4
13-4
13-5
13-5

A-1

A-1

D-1

D-1

D-2

D-2

D-3

+

t

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

D.6. DIRECT ACCESS DISK FILE OPTIONS

D.7. ADDITIONAL DATA MANAGEMENT DEVICES

E. FORTRAN SAMPLE JOB STREAMS

E.1. JOB CONTROL PROCEDURE

E.2. SAMPLE COMPILE-LINK-EXECUTE

E.3. SOURCE FROM DISK LIBRARY-STACKED COMPILATION

E.4. COMPILE-ASSEMBLE-LINK-EXECUTE

E.5. COMPILATIONS WITH PARAMETER OPTIONS

E.6. COMPILATION FROM A WORKSTATION TERMINAL

E.7. EXECUTION FROM A WORKSTATION USING A SCREEN FORMAT

E.8. CREATE AND COMPILE FROM A WORKSTATION USING EDT

F. COMPILE-TIME DIAGNOSTIC MESSAGES

G. RUN-TIME MODULES

G.1. FORTRAN RUN-TIME MODULES

G.2. FORTRAN IV STANDARD LIBRARY FUNCTION NAMES

H. SUBROUTINE LINKAGE

H.1. CALLING FORTRAN SUBPROGRAMS
H.1.1. Save Area
H.1.2. Required Entry Conditions
H.1.3. Exit Conditions
H.1.4. Mathematical Library
H.1.5. Compiled Subprograms

H.2. CALLING FROM FORTRAN PROGRAMS
H.2.1. Parameter List Formats
H.2.2. Label Arguments
H.2.3. Conventions

H.3. TRACEBACK INTERFACE

INDEX

USER COMMENT SHEET

FIGURES

1-1 Source Statement Order

Contents 8

D-3 • D-4

E-1

E-6

E-8

E-9

E-11

E-12

E-13

E-14

• G-1

G-1

H-1
H-1
H-2
H-3
H-3
H-4

H-4
H-4
H-5
H-5

H-5

•
1-6

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

TABLES

1-1. FORTRAN Character Set

2-1. Data Types and Optional Lengths
2-2. Relative Location of Array Elements

3-1. FORTRAN IV Operators and Evaluation Order
3-2. Result Types and Lengths for Mixed-Mode Arithmetic
3-3. Assignment Statement Conversions

5-1. FORTRAN IV Procedures
5-2. Argument Forms
5-3. Intrinsic Functions
5-4. Standard Library Functions
5-5. Standard Library Subroutines

7-1. FORMAT Statement Field Descriptors
7-2. Carriage Control Conventions
7-3. Permissible Associations of List Items

11-1. FORTRAN IV Devices and Arguments

A-1. EBCDIC Input Graphic Character Set
A-2. EBCDIC/Hollerith Cross-Reference Table
A-3. Representative EBCDIC Output Graphic Character Set

B-1. Summary of UNIT Arguments for Unit Record
B-2. Summary of UNIT Arguments for a Tape File
B-3. Summary of UNIT Arguments for a Disk File
B-4. Summary of UNIT Arguments for a Workstation
B-5. Summary of UNIT Arguments for Reread Unit
B-6. Summary of UNIT Arguments for Equivalent Unit

C-1. Summary of UNIT Arguments for Printer File
C-2. Summary of UNIT Arguments for Spooled Card Input File
C-3. Summary of UNIT Arguments for Card Input File
C-4. Summary of UNIT Arguments for Output File
C-5. Summary of UNIT Arguments for Tape File
C-6. Summary of UNIT Arguments for Sequential Disk Files
C-7. Summary of UNIT Arguments for Direct Access Disk Files
C-8. Summary of UNIT Arguments for Reread Unit
C-9. Summary of UNIT Arguments for Equivalent Unit
C-10. Summary of UNIT Arguments for MIRAM Disk Files

F-1. FORTRAN IV Compile-Time Diagnostic Messages
F-2. Operation-Type Diagnostic Messages

G-1. FORTRAN IV Run-Time Modules
G-2. FORTRAN IV Standard Library Function Names

H-1. Save Area Format
H-2. Function Types and Corresponding Registers

Contents 9

1-4

2-5
2-7

3-3
3-4
3-6

5-1
5-2
5-15
5-17
5-28

7-7
7-14
7-15

11-4

A-2
A-3
A-8

B-1
B-2
B-3
B-4
B-5
B-5

C-1
C-2
C-2
C-3
C-3
C-5
C-6
C-6
C-6
C-7

F-2
F-14

G-1
G-11

H-1
H-3

•

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

1-1
Update B

1 . Introduction

1.1. SCOPE AND PURPOSE

This Sperry Univac document describes FORTRAN IV operating in two environments: (1) the System 80
consolidated data management environment, and (2) the 90/30 define the file interface environment. When
operating in the System 80 consolidated data management (COM) environment. three changes in the run time
procedure are required; when in the 90/30 define the file (DTF) interface environment, no changes are required.

The three changes required when operating in the System 80 COM environment are:

• A new UNIT definition facility is required to define the devices and file characteristics.

•

•

New devices to be supported must be defined .

A new data access method is required. Called the consolidated access method (CAM), it is an enhancement
of the OS/3 multiple indexed random access method (MIRAM).

t

The mathematical and 1/0 libraries used in System 80 COM environment are identical with those supported in ~

the 90/30 DTF environment. All statements are identical except that a new keyword SCREEN is added to the 1/0
statements to provide support for the workstation terminal.

Regardless of the operating environment. FORTRAN IV consists of the following components:

• a compiler, that transforms programs written in an extended American National Standard FORTRAN
language into a form suitable for execution;

• a library of input/output and data formatting routines; and

• a library of commonly used mathematical functions and service routines.

The FORTRAN IV compiler accepts programs written in the FORTRAN language and produces an object module
that is suitable input to the linkage editor. Source programs may reside in the control stream or in a source
program library. A job control procedure is provided to call the compiler, allocate scratch files, and perform other
functions necessary for successful compilation. The output of the compiler must then be processed by the
linkage editor; during this processing, mathematical and 1/0 routines are taken from the FORTRAN library and
included in the executable program.

User-defined procedures, if they are required, also are included during the link-edit. These procedures are coded
in FORTRAN or in some other language (COBOL, assembly, etc.) .

The output of the linkage editor is a load module that may consist of several overlay phases. During the
execution of the object program, the overlay phases may be loaded by specific calls by FORTRAN statements, or
they may be loaded automatically by referencing a routine in an overlay that is not currently in main storage. The
load module will accept and produce ASCII files.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

During compilation, the compiler produces the following listings:

1-2

• A listing of the source program. For each diagnostic, the source statement is marked at the character for
which the diagnostic is produced.

• An error listing that contains the diagnostic messages and associated severity codes. (See Appendix F.)

• A main storage map showing the addresses allocated to the variables and arrays in the program. An
alphabetical and address sorted listing is optionally available.

Any of the listings may be suppressed by user options.

The FORTRAN IV compiler is self-initializing and up to 100 FORTRAN source programs can be processed by one
call on the compiler by job control. If a FORTRAN source statement follows an END statement in the source input
file, it is assumed that another program is to be processed, and the compiler reinitializes itself.

1 .1 .1 . Compatibility

The FORTRAN IV language includes the American National Standard FORTRAN X3.9-1966 and the IBM
System/360/370 DOS FORTRAN IV languages as subsets. Programs that conform to either of these
specifications are accepted without change. FORTRAN IV is also highly compatible with SPERRY UNIVAC Series
70 FORTRAN.

1 . 1 . 2. Extensions

The FORTRAN IV language provides many extensions to American National Standard FORTRAN, X3.9-1966.
These extensions are:

• Subscript expressions are integer or real arithmetic expressions (2.4.1).

• Arithmetic assignment statements are used to assign complex values to integer and real variables, or
integer and real values to complex variables (3.3.1).

• A literal message is permitted with the STOP and PAUSE statements (4.9 and 4.10).

• An executable END statement is provided (4.11).

• The inclusion of statement labels (preceded by the & character) in the list of actual arguments in a
subroutine call to be referenced by a RETURN statement is permitted. Thus, the subroutine can transfer
control back to designated statements in the calling program (5.4.2.1).

• The ENTRY statement permits entry into a function or subroutine subprogram at points other than the
beginning of the subprogram (5.4.3).

• Standard library routines are available: OVERFL, DVCHK, ERROR, ERROR1, SLITE, SLITET, SSWTCH,

DUMP, PDUMP, EXIT, FETCH, LOAD, and OPSYS (5.6.3).

• Arrays may have a maximum of seven dimensions (6.2.1).

• Dimension declarator subscripts are permitted in common storage (6.2.1).

• Optional length specifications for logical, integer, complex, and real variables and arrays can be declared
(6.4.1).

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

1-3

• An IMPLICIT statement is provided for user-defined implicit typing of symbolic names in a program unit
(6.4.2).

• End-of-file and error recovery are provided in READ statements (7.3.1.1).

• The applicability of the G field descriptor is extended to cover integer and logical data (7.3.3.1.6).

• Zand T format codes are provided (7.3.3.1.9 and 7.3.3.1.12).

• Special 1/0 formats and statements are provided for direct access storage devices (7.4).

• Special 1/0 statements are provided to access the workstation. READ and WRITE commands to the
workstation may be done as a unit record or full screen 1/0 (7.3.1) in a COi environment.

• The specification of hexadecimal constants in DATA statements is permitted (8.2).

• The TRACE ON and TRACE OFF statements are provided (10.6).

The FORTRAN IV language also includes several extensions to IBM System/360/370 FORTRAN IV including:

• Embedded comments (1.2.3).

• Extended exponentiation (3.2).

• Optional statement labels on arithmetic IF statements (4.2).

• Logical IF, PAUSE, and STOP statements can be terminal statements of DO loops (4.7).

• An ABNORMAL statement is provided for optimal code generation (5.4.1.3).

• The mathematical library can be referenced by generic names (5.6).

• The ability to initialize variables and arrays in type statements (6.4.1).

• The ability to use the IMPLICIT statement anywhere in the specification statement group (6.4.2).

• The elimination of the restriction that all named common blocks be the same size (6.6).

• A PROGRAM statement is provided to optionally name a main program (6.8).

• Two classes of list-directed 1/0 statements are provided (7.3.5).

• DO-implied loops in DATA statements are provided (8.2).

• The BLOCK DATA statement contains an optional name for the subprogram (8.3.1).

• Blocked and buffered input/output is provided (Sections 11 and 12).

• Extended error recovery procedures are provided for the mathematical library (H.1.4).

1.2. SOURCE PROGRAMS

General procedures to be followed in FORTRAN programming are presented in subsections 1.2.1 through 1.4.

UP-8474 Rev. 2

1.2.1. Character Set

SPERRY UNIVAC OS/3
FORTRAN IV

1-4

The character set consists of the FORTRAN character set and special characters as shown in Table 1-~. Each
character is represented in the Extended Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC co~es not
shown in the table have no graphic equivalents in the FORTRAN character set. but these characters can be
stored internally and transmitted to and from card, tape, and disk storage.

Table 1-1. FORTRAN Character Set

Alphabetics A through Z and $

FORTRAN Numerics 0 through 9
character
set Special symbols =,()+-*/.&';

Blank 6. or blank space

Extended Any characters capable of representation in EBCDIC, such as:
character
set* ri ><1%! :@#?-"

*The extended character set can change with the options selected for the system
printer (48 to 127 characters available, depending on printer model). See Appendix
A for a detailed discussion of the character set.

1 .2.2. FORTRAN Statements

'
FORTRAN statements are coded on the FORTRAN coding form. Columns 1 through 72 are used for the J'ontents
of a FORTRAN line. All characters in a line are restricted to the FORTRAN character set, except in comm nts and
literal constants. Columns 73 through 80 are ignored and may be used in any manner; the information n these
columns is printed in the source program listing, but execution of the program is not affected by this info .mation.

A statement label consists of one through five decimal digits in columns 1 through 5. The contents if these
columns for continuation lines are ignored during program compilation but are shown on the program lisf·ng and
may be used by the programmer, although a warning diagnostic is produced. Leading zeros and embed ed and
trailing blank characters are ignored in a statement label. Each statement label must be unique w thin its
program unit. A special use of column 1 is indicated by an X coded there for program debugging purpose (10.2).

!
I

Each FORTRAN statement is written in columns 7 through 72. The first line of a statement must contain~either a
zero or a blank character in column 6. A statement may be continued on one or more successive line with a
nonzero, nonblank character in column 6 for each line that is a continuation. A statement consists of o e initial
line and up to 19 continuation lines.

1.2.3. Comments
I

The compiler provides three methods of entering comments: columns 73-80 on any line, the comment ne, and
embedded comments. A comment line is indicated by the character C or * in column 1. The contents of each
commert line are shown on the program listing, but are ignored by the compiler. A semicolon in columns 7
through 71 in a FORTRAN statement line indicates that the information immediately following and wr tten on
the same line is to be treated as a comment; for example:

7

R=SQRT(A); CALCULATE SQUARE ROOT

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

1-5

A comment following a semicolon is continued on a succeeding statement line by specifying a C in column 1.

7

DO HJO 1=1,9; BEGIN ITERATION
C LOOP

The statement, SUBROUTINE SWAP (A,B), including commentary, may be written as follows:

SUBROUTINE; THIS SUBROUTINE EXCHANGES THE VALUES
!SWAP OF TWO REAL VARIABLES
2 (A, B)

A semicolon in a literal constant is a valid character and does not indicate a comment; a semicolon to the left of
column 7 does not indicate a comment. Blank cards are ignored by the compiler.

1.2.4. Symbolic Names

Symbolic names contain up to six alphanumeric characters, the first of which must be alphabetic.

A special type of symbolic name, a label parameter, is associated with the RETURN statement. It consists of the
& character immediately followed by a statement label. A label parameter can appear only in a list of actual
arguments in a CALL statement (5.2.2).

1.2.5. Source Statement Order

Figure 1-1 shows the order in which the source statements of each program unit must be written. Within each
grouping, the statements may be written in any sequence.

Every executable program contains one main program and as many subprograms as required. A main program is
a set of statements and comments that is not headed by a FUNCTION, SUBROUTINE, or BLOCK DATA statement.
Subprograms are headed by one of these statements.

A subprogram headed by a BLOCK DATA statement is a specification subprogram; one headed by a FUNCTION
or SUBROUTINE statement is a procedure subprogram. The term "program unit" is used to refer to any main
program or subprogram.

A maximum of 100 FORTRAN program units may be processed by one compiler call. All program units are
terminated with an END statement. The first statement of a main program may optionally be a PROGRAM
statement.

UP-8474 Rev. 2

LINE 1

COMMENT

ENTRY
Statement

FORMAT
Statement

NAME LIST
Statement

LINE n

NOTES:

SPERRY UNIVAC OS/3
FORTRAN IV

Program Declarators:

BLOCK DATA
FUNCTION

PROGRAM
SUBROUTINE

Specification Statements:

ABNORMAL EXTERNAL
COMMON IMPLICIT
COMPLEX INTEGER
DIMENSION LOGICAL

1-6

DOUBLE PRECISION REAL 1---------- ----- - --- - -- -- - -- - -- - -
EQUIVALENCE

1---

Statement Functions

Executable Statements:

Arithmetic assignment Logical assignment
Arithmetic IF Logical IF
ASSIGN PAUSE

DATA Assigned GO TO PRINT
Statement BACKSPACE READ

CALL PUNCH
Computed GO TO RETURN

CONTINUE REWIND

DEFINE FILE STOP

DO TRACE OFF

ENDFILE TRACE ON

FIND Unconditional GO TO
WRITE

END

1. Vertical lines demarcate statements that may be freely intermixed; for example, FORMAT statements
may appear anywhere between the program declarator (which may not exist) and the END statement.

2. Horizontal lines demarcate statements that must be in the order shown; for example, statement functions
must follow all specification statements.

3. The dotted horizontal lines indicate that EQUIVALENCE statements must follow any specification
statements that specify items to share storage; DAT A statements must follow any specification
statements that reference items to be initialized.

Figure 1-1. Source Statement Order

I

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

1.3. SOURCE CODE GUIDELINES

1-7

The FORTRAN IV compiler performs most efficiently when the source statements are in the following order:

• IMPLICIT

• ABNORMAL

• EXTERNAL

• type statements

INTEGER

REAL

COMPLEX

LOGICAL

DOUBLE PRECISION

• DIMENSION

• COMMON

• EQUIVALENCE

• DAT A statements

• Executable statements

The message:

FF850 PROGRAM REORDERED

indicates that efficiency has been lost.

Certain illegal FORTRAN DO loop constructions produce incorrect object-time results without any compile-time
diagnostics. These include:

• Use of the induction variable after satisfaction of its DO loop.

• Changing the induction variable, increment, or maximum value during a DO loop.

• Branching into the range of a DO loop without having previously branched out of it.

These constructions are forbidden (see 4.7), although no explicit compile-time diagnostic is provided.

Some coding sequences or habits give rise to more efficient object code, such as the following:

•

•

Use simple variables (not in COMMON or EQUIVALENCE) for frequently used induction variables and
subscripts.

Significantly faster code is generated for short DO loops that contain no branches outside the loop in which
the induction variable is used only in subscripts.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

1-8

•

•

•

•

•

The best code is generated for subscripts in the form C*i±k, where i is an integer variable and c Jnd k are
I

optional integer constants. i
I
!

When a generalized subscript contains a constant term, write it at the righthand end (i.e., in the form i±k,
I

where i is an integer expression and k is an integer constant).
1

Use logical IF statements instead of arithmetic IF statements for conditional branching. Thel term IF
(A.EQ.B) GO TO 1 O is superior to IF (A-B) 11, 10, 11 followed by 11 CONTINUE. I

When possible, avoid the use of an EQUIVALENCE for any variable in a freqently used COMM1N .

When possible in multidimension arrays, use dimensions that equal exact powers of 2 as thel leftmost
dimension; i.e .. an array (2, 10) is prefereable to an array (10, 2).

If the programmer writes logical expressions so that the truth or falsity of the expression can be determi~ed early
in left-to-right reading of the expression, time can be saved. For example, if L is usually false, then vftrite

I

L .AND. A+B .GT. 25

instead of:

A+B . GT . 2 5 . AND. L

Although mixed arithmetic is a convenient feature of the FORTRAN language, too great a use r it may
significantly slow down a program. For example, if a fixed-point variable occurs in many mixed expres ions, you
should create a floating-point variable that has the same value. This is easily done with an as ignment A
statement of the form: W

Al=I
i

1.4. STATEMENT CONVENTIONS I

Conventions used to illustrate FORTRAN statements in Sections 1 through 9 are presented througJut these
sections. Conventions for illustrating statements in assembler language in Sections 10, 11, anf 12 and
Appendixes D and E are as follows: 1

• Capital letters, parentheses (}, and punctuation marks (except braces, brackets, and ellipses~must be
coded exactly as shown. An ellipsis (a series of three periods) indicates the presence of a variabl number

of entries.

• Lowercase letters and terms represent information supplied by the user.

• Information within braces { } represents necessary entries, one of which must be chosen.

• Information within brackets [] (including commas) represents optional entries that are included t omitted
depending on program requirements. Braces within brackets signify that one of the entries must ie chosen
if that operand is included. I

• Underlined parameters are selected automatically when a parameter is omitted. These are calle~ defaults.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

• Some defaults are dependent on entries selected in other arguments. For example:

[
FRECSIZE=1k J]

88;if FMODE=STD
168;1f FMODE=BINARY

• The notation

FRECS I ZE*4

1-9

specified as a default for an argument other than FRECSIZE, indicates that the default value for this
argument consists of the value specified for the FRECSIZE argument, multiplied by 4. This default value
should be used only as a default; it should not be specified as a predefinition argument.

UP-8474 Rev. 2

2.1. GENERAL

SPERRY UNIVAC OS/3
FORTRAN IV

2-1

2. Data Types

The data types available in FORTRAN IV are integer, real, double precision, complex, logical, hexadecimal, and
literal. For additional information concerning FORTRAN data types, refer to the "Writing a FORTRAN Program"
section of the fundamentals of FORTRAN programmer reference. Data types are categorized by their
manipulation with the FORTRAN program; e.g., data may appear as constants, variables, or elements of an array.
Each of these categories is explained in this section (2.2, 2.3, and 2.4, respectively). Additional information on
the hardware characteristics of integer and real arithmetic is included in the discussion of the arithmetic section
in the system processor programmer reference.

2.2. CONSTANTS

A constant is an arithmetic, logical, or literal value defined by its representation in the souce program. Once
defined, a constant must not be redefined during program execution. An arithmetic constant is said to be signed
if it is written with a plus or a minus sign, and an unsigned constant is treated as a positive value. Constants are
represented internally using 8-bit bytes organized as single units, groups of two (half words), groups of four
(words), and groups of eight (double words).

2.2.1. Integer Constants

An integer constant consists of an optional sign followed by a string of decimal digits with no decimal point. An
integer constant may have a maximum of 10 digits. If the value of the constant is positive, it may be preceded by
a plus sign; if the value is negative, it must be preceded by a minus sign; for example:

-365
100000000

An integer constant has the following 4-byte representation in storage:

integer

0 1 7 8 15 16

Byte 1 Byte 2 Byte 3

23 24 31

Byte 4

UP-8474 Rev. 2

where:

s

SPERRY UNIVAC OS/3
FORTRAN IV

Is the sign bit (0 indicates positive; 1 indicates negative).

integer
Is a 31-bit binary integer, in twos complement representation.

The maximum absolute value for an integer is 2, 147,483,647 (231-1).

2.2.2. Real Constants

A real constant may be written as:

2-2

• A basic real constant: an optionally signed string of up to seven significant digits with a decimal point
preceding, embedded in, or following the string; for example:

-1701.001

• A basic real constant followed by a decimal exponent; the decimal exponent is expressed by the letter E
followed by an optionally signed integer constant with a maximum of two significant digits; for example:

170.1 E-03

• An integer constant followed by a decimal exponent; if the integer portion exceeds the permitted seven
digits, truncation of the excess rightmost digits results; for example:

+1701 E-4

17010E-5

Real constants occupy one word (four bytes) of storage in normalized floating-point representation. The format is:

s
characteristic fraction

0 1 7 8 15 16 23 24 31

Byte 1 Byte 2 Byte 3 Byte 4

where:

s
Is the sign bit.

characteristic
Is the exponent portion of the real number in seven bits; it is derived from the power of 16 by which
the fraction must be multiplied to give the real value; the characteristic is stored as an excess 64
number.

fraction

Is six hexadecimal digits representing the fractional part of the real value. The radix point is between
bits 7 and 8.

The maximum range for a real constant is from approximately 10-18 through 101s. It may have the value O where
the fraction is identically binary 0.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

2.2.3. Double Precision Constants

2-3

A double precision constant is similar to a real constant. except that it may contain up to 16 significant digits. It
is written as a basic real constant or an integer constant followed by a double precision exponent; a double
precision exponent is expressed by the letter D followed by an optionally signed integer constant with a
maximum of two significant digits; for example:

-.180018201840012

A double precision constant may also be written as an optionally signed string of more than seven significant
digits with a decimal point preceding, embedded in, or following the string.

A double precision constant is stored like a real constant, except that two words (eight bytes) of storage are used:

l

characteristic fraction)

0 7 8 15 16 23 24 31

Byte 1 Byte 2 Byte 3 Byte4

32 39 40 47 48 55 56 63

Byte 5 Byte 6 Byte 7 Byte8

A double precision constant may range in value from approximately 10-18 through 1075, or it may have the value O.

2.2.4. Hexadecimal Constants

Hexadecimal constants are written as the letter Z followed by any combination of up to 32 hexadecimal digits;
the hexadecimal digits and their equivalents are:

Hexadecimal Digits Decimal Equivalents Binary Representation

0 0 0000

1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

(continued)

UP-8474 Rev. 2

Hexadecimal Digits

8

9

A

B

c

D

E

F

SPERRY UNIVAC OS/3
FORTRAN IV

Decimal Equivalents

8

9

10

11

12

13

14

15

2-4

Binary Representation

1000

1001

1010

1011

1100

1101

1110

1111

Hexadecimal constants can be used only to initialize variables or arrays in specification or initialization
statements. The maximum number of digits used for initialization is determined by the type of data associated
with the constant. If the number of digits specified exceeds the maximum, the leftmost digits are truncated. If
less than the maximum are specified, hexadecimal O's are padded on the left. Two hexadecimal digits occupy
one byte in main storage. Some examples of hexadecimal constants are:

Hexadecimal Binary
Constant Equivalent

ZF9 1111 1001
ZA8 1010 1000
ZC5 11000101

2.2.5. Complex Constants

A complex constant consists of an ordered pair of real constants or double precision constants, each of which
may be signed, separated by a comma, and enclosed in a set of parentheses. The first portion of the complex
constant is the real part, and the second is the imaginary part of the complex value. For example, (3.1415, 182.)
and (314D-2,-18.2D1) are valid complex constants.

Complex constants are stored in either two or four words, depending on whether a double precision constant
appears. The presence of a double precision constant within the parentheses causes the other constant to be
treated as double precision, thus forming a double precision complex constant of 16 bytes. Integer constants in
this context are converted to real constants by the compiler. For example:

(10,500+7)
(10,10)
CALL A (10,10)
CALL A ((10,10))

2.2.6. Logical Constants

becomes (10.o o+o,500+11
(10.0 E+O, 10.0 E+O)
CALL A (10,10)
CALL A ((10.0, 10.0))

Logical constants specify the logical values .TRUE. or .FALSE. and occupy one word in storage. The value
.FALSE. has a binary representation of 0; .TRUE. has an internal representation of X'FF'.

UP-8474 Rev. 2

2.2.7. Literal Constants

SPERRY UNIVAC OS/3
FORTRAN IV

2-5

A literal constant consists of 1 to 255 characters from the FORTRAN character set (Table 1-1). Each character in
the string requires one byte of storage. Two methods of writing literal constants are:

1. as a Hollerith constant in the form wHc1c2 ••• cw where w is an unsigned integer constant and c represents a
character; or

2. as a character string enclosed in apostrophes:'c1c2 .•• ew' (if the apostrophe occurs in the string, it is
represented by doubling that character).

The literal DO NOT is represented by 'DO NOT' or 6HDO NOT. The literal DON'T is represented by 'DON'T or
5HDONT.

2.3. VARIABLES

A variable is represented by a symbolic name (1.2.4) that identifies a single value. A variable is associated with a
data type, and in FORTRAN IV there is both a standard and an optional length specification that determines the
number of bytes assigned in main storage (Table 2-1).

Table 2-1. Data Types and Optional Lengths

FORTRAN Standard Length Optional Length
Name Data Type in Bytes Data Type in Bytes

Integer Int eger*4 4 lnteger*2 2

Real Re al*4 4 Rea1*8 8

Double precision Do uble precision 8 None

Complex Co mplex*8 8 Complex*16 16

Logical Lo gica1*4 4 Logical*1 1

The data type associated with a variable is determined by either the explicit type declaration statements (6.4.1),
by the IMPLICIT statement (6.4.2), or by the variable name used. Names beginning with the letters I, J, K, L, M,
or N are assumed to represent integer values; names beginning with all other letters or $ are assumed to
represent real values.

To prevent confusion where the length can differ, the complete data type appears in this document; a reference
to 16-byte complex data appears as complex*16. A reference to logical data without any length specification
refers to logical*4 data. The optional specification for real data is real*8, the equivalent of double precision
representation.

Variables of the double precision type have only a standard length. There is no variable type associated with
literal or hexadecimal data. The optional length described may be specified in either the explicit type statements
or the IMPLICIT statement.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

2-6

The internal representation of the values is identical with that described for the proper constant type, with the
exception of integer*2 and logical*1 where there are no corresponding constants. The integer*2 variable or array
element occupies two bytes, with the sign stored in the most significant bit:

integer

0 7 8 15

Byte 1 Byte 2

The maximum value for the integer*2 type is 32767 (215-1). The hardware does not provide overflow indications
if the integer*2 is exceeded; therefore, significant numeric bits can propagate into the sign bit.

Example:

The following program prints the value -32768, with no indication of arithmetic overflow.

7

INTEGER• 2 1/32767/,J/l/,K
K=l+J
PRINT 10,K

The logical*1 variable or array element occupies one byte in main storage. The value .FALSE. has a binary
representation of zero; .TRUE. is nonzero and is usually X'FF'.

2.4. ARRAYS

An array is an ordered set of values. Each value is called by array element, and the entire set is identified by a
symbolic name called an array name. An array is described by an array declarator (Section 6). In FORTRAN IV,
the array can be declared as having a maximum of seven dimensions.

The form of the array declarator is dependent on the number of dimensions as shown in Table 2-2. For instance,
an array named AGO with three dimensions, each four elements in size, has the declarator AGO (4,4,4). AGO is
the array name, and the numbers in the parentheses are dimension declarators. Each dimension declarator must
be an unsigned integer constant, except when a dimension is adjustable. In this case, the dimension declarator
must be an integer variable with a length of four bytes.

2.4.1. Array Element Reference

Any element in an array may be referenced by using the array name, followed by parenthesized subscripts in the
format:

array name (s,,s,. ... ,sn)

UP-8474 Rev. 2

where:

s

n

SPERRY UNIVAC 05/3
FORTRAN IV

2-7

May be any integer or real arithmetic expression. The arithmetic expression must be evaluated
during execution as an integer greater than 0. Each subscript is evaluated in accordance with the
standard rules for evaluating mixed-mode expressions (Section 3).

Must correspond to the total number of subscripts in the declarator.

In an EQUIVALENCE statement, the number of subscripts may be either one (where the correspondence of
elements is determined by the location of array elements as in 2.4.2) or the number of subscripts in the array
declarator.

2.4.2. Element Position Location

General expressions for locating the position of an array element relative to its first element are given in Table
2-2. In this table, the first byte of the array is relative location 0; the letters a,b, ... ,g refer to the value of a
subscript expression in an array element reference; the letters A.B, ... ,G refer to the values of the dimension
declarators; and the m is a multiplier determined by the number of bytes of storage required for each array
element.

Table 2-2. Relative location of Array Elements

Number of Declarato r Subscript Relative Location of Element
Dimensions Form Form in the Array

(A) (a) (a-l)•m
2 (A,B) (a,b) ((a-1 l+A• (b-1)) •m

3 (A,B,C) (a,b,c) ((a-1)+A•(b-1)+A•B•(c-1)) •m

7 (A,B,C,D,E,F,G) (a,b,c,d,e.f,g) ((a-l)+A•(b-l)+A•B•(c-1)+
... +A•B•C•D•E•F •(g-1))•m

Examples:

If an array declarator is AG0(17), if the element referenced is AG0(4), and if the array is real, then the
location of the first byte of the fourth element relative to the beginning of the array is found with the
expression (a-1)*m. In this case, (4-1)*4=12, or the first byte of that element, is the twelfth from the
beginning of the array.

If AGO is declared as AG0(9, 10, 11) and the element to be located is AG0(3,4,5), then the calculation is
((2)+9*(3)+9*10*(4))*4, or location 1556.

UP-8474 Rev. 2

3.1. GENERAL

SPERRY UNIVAC OS/3
FORTRAN IV

3-1

3. Expressions and
Assignment Statements

This section discusses the use of expressions in FORTRAN IV programming and describes the assignment
statements. For additional information, refer to the "FORTRAN Expressions" and "Assignment Statements"
sections of the fundamentals of FORTRAN programmer reference.

3.2. EXPRESSIONS

An expression is a group of one or more elements and operators that is evaluated as a single value during
execution. Three different classes of expressions are evaluated: arithmetic, relational, arid logical expressions.
Each of these expressions, as well as the order of evaluation, mixed-mode arithmetic, and user checks on
arithmetic operations, is discussed in 3.2.1 through 3.2.7.

3.2.1. Arithmetic Expressions

An arithmetic expression is constructed as a numeric constant, a variable name, an array element reference, a
function reference, or combinations of these by using arithmetic operators. An arithmetic expression is always
evaluated as a numeric value.

3.2.2. Relational Expressions

A relational expression, actually a subset of logical expressions, consists of two arithmetic expressions separated
by a relational operator. The expression is evaluated at execution as a .TRUE. or .FALSE. statement. No complex
type of arithmetic expression may be used in a relational expression; however, the other types may be mixed in
any combination.

When mixed-mode arithmetic comparisons are made, the priority of the data type is:

Data Type

Real*B (double precision)
Real*4
lnteger*4
lnteger*2

Priority

1
2
3
4

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

3-2

The expression with the lowest priority is converted to the type of the higher priority, and the comparison is
made. For example, if the relational expression consists of an integer expression and a real expression, the
integer is converted to a real*4 type before the comparison is made.

The result of a relational expression is always logical*4 type.

3.2.3. Logical Expressions

A logical expression is:

• a relational expression, a logical constant, a logical variable reference, a logical array element reference, a
logical function reference, or a logical expression in parentheses;

• a logical or relational expression preceded by the .NOT. operator; or

• two logical or relational expressions separated by .AND. or .OR ..

If both operands of a logical expression are of the logical*1 type, then the result is of logical*1 type; otherwise,
the result is the logical*4 type.

3.2.4. Evaluation Order

An expression is evaluated by the priority of the operators in Table 3-1 and then calculated as follows:

1. This process begins with the leftmost operator.

2. If no parentheses intervene, the current operator is compared with the operator on its right. If the priority
of the current operator is greater than or equal to the priority of the next operator, the current operation is
performed and the result becomes the operand of the prior operator. Otherwise, the next operator becomes
the current operator, and this step is repeated, using it for comparison.

3. Upon encountering the right end of an expression, remaining operations are performed from right to left.

4. Sequential exponentiation is performed from right to left. For example, X**Y**Z is evaluated as X**(Y**Z).

5. Sequential integer division is performed from left to right. For example, I/ J/K is evaluated as (I/ J)/K.

6. Expressions in parentheses are treated as single operands and evaluated first. starting with the innermost
parenthesized expression, before continuing the left-to-right comparisons.

In addition to these listed rules, the order in which operations are performed may be slightly affected by
optimization. For example:

• Logical expressions are not always completely evaluated; once the value is known. evaluation ceases.

•

Thus, for

IF (A .GT. B .OR. C .LT. FUNC(X)) GO TO 10

If A is greater than B, control is transferred to statement 10 immediately, because the expression must be
.TRUE .. The function FUNC is not referenced.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table 3-1. FORTRAN IV Operators and Evaluation Order

Operation Operator Order of Priority

Function evaluation f(x) 1

Exponentiation ** 2

Multiplication *
3

Division I

Addition or unary plus +
4

Subtraction or unary mi nus -

Greater than .GT.

Greater than or equal to .GE .

Less than . LT.

5
Less than or equal to .LE.

Equal to .EQ.

Not equal to .NE.

Logical negation .NOT. 6

Logical product .AND. 7

Logical sum .OR. 8

3.2.5. Mixed-Mode Arithmetic

3-3

Mixed-mode arithmetic occurs when an operation is performed on two operands that are not the same type. The
type and length of the result are shown in Table 3-2 for the arithmetic operators, including exponentiation.

3.2.6. Arithmetic Operation User Checks

The following subroutine calls enable the programmer to check the evaluation of an arithmetic expression:

• CALL DVCHK(i)

Used to check for a division by zero after the division has been executed.

• CALL OVERFL(i)

Executed after an arithmetic operation to check for an overflow or underflow condition.

• CALL ERROR1 and CALL ERROR(i)

Routines used to set and test an indicator.

See 5.6.3 for more information on these subroutines.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table 3-2. Result Types and Lengths for Mixed-Mode Arithmetic

First Operand: Type I Length)

Integer Integer Real Real Complex Complex

(2) (4) (4) (8) (8) (16)

Integer Integer Integer Real Real Complex Complex

(2) (4) (4) (4) (8) (8) (16)

Integer Integer Integer Real Real Complex Complex

(4) (4) (4) (4) (8) (8) (16)

Second Real Real Real Real Real Complex Complex

Operand:
(4) (4) (4) (4) (8) (8) (16)

Type
Real Real Real Real Real Complex Complex (Length)

(8) (8) (8) (8) (8) (16) (16)

Complex Complex Complex Complex Complex Complex Complex

(8) (8) (8) (8) (16) (8) (16)

Complex Complex Complex Complex Complex Complex Complex

(16) (16) (16) (16) (16) (16) (16)

3.2.7. Implementation of Arithmetic Operations

3-4

When the compiler generates object code for arithmetic and logical expressions, most of the FORTRAN
operations are performed by using inline instructions. The size or complexity of some operations can cause the
compiler to generate calls to routines provided in the FORTRAN IV library.

Multiplication and division involving complex variables and array elements are performed by library routines.
Exponentiation operations are performed by a library routine, except for cases involving integer or real bases
raised to an integer constant power, where inline multiplications are generated.

These library routines are completely described in the Series 90 FORTRAN mathematical library programmer
reference.

3.3 ASSIGNMENT STATEMENTS

A value is assigned to a variable or an array element by executing an assignment statement. This value is the
current value until the variable or array element is redefined. There are three possible assignment statements:
the arithmetic and logical (described in 3.3.1) and the ASSIGN statement (3.3.2).

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

3-5

3.3.1. Arithmetic and Logical Assignment Statements

Format:

v=e

where:

v

e

Is any type of arithmetic expression for an arithmetic assignment statement or a logical expression
for logical assignment statements.

Is any type of arithmetic expression for an arithmetic assignment statement or a logical expression
for logical assignment statements.

Description:

The arithmetic or logical assignment statement assigns a single value to a variable or array element. The =
operator is read as "is replaced by" as in "AMR is replaced by 8.19" for AMR=8.19.

For all data types, except logical, Table 3-3 demonstrates the conversion of the expression to the type of
the receiving variable represented by v. Combinations of arithmetic and logical types are illegal. No
conversion takes place in logical evaluations except where e is logical*4 and vis logical*1. In this case, the
low order three bytes of e are ignored. The conversions are accomplished by intrinsic functions (5.6.1).

3.3.2. ASSIGN Statement

Format:

ASSIGN k TO

where:

k

Is a statement label in the same program unit as the ASSIGN statement and is the label of another
executable statement.

Is the name of an integer*4 variable.

Description:

The ASSIGN statement permits an integer variable name to represent a statement label; the variable name
can then be used in the assigned GO TO statement. Once the integer variable name has been assigned a
value by the ASSIGN statement, it can be used for no other purpose until it is redefined. For instance, it
cannot be used in an arithmetic expression unless its value is redefined by an arithmetic assignment
statement or a READ statement.

UP-8474 Rev. 2

Data
Types lnteger•2

lnteger•2 None

Integer **
linteger•4)

Real ***
(real•4)

Double ***
v

precision

Complex ***
(complex•8)

Complex*16 ***

SPERRY UNIVAC OS/3
FORTRAN IV

Table 3-3. Assignment Statement Conversions

e

Integer Real Double

linteger•4) (real•4) Precision
(real•Sl

* * *

None IFIX(e) IFIX
(SNGL(e))

FLOAT(e) None SNGL(e)

DFLOAT(e) DBLE(e) None

CMPLX(FLOAT CMPLX CMPLX(SNGL
(e),0.0) (e,0.0) (e),0.0)

DCMPLX(DFLOAT DCMPLX(DBLE DCMPLX
(e),0.0) (e),0.0) (e,0.0)

3-6

Complex
(complex•Sl Complex•16

. *

IFIX IFIX(SNGL
(REAL(e)) (DREAL(e)))

REAL(e) SNGL
(DREAL(e))

DBLE DREAL(e)
(REAL(e))

None CMPLX(SNGL
(REAL(e)),SNGL
(AIMAG(e)))

DCMPLX(DBLE None
(REAL(e)),DBLE
(AIMAG(e)))

*Processing for integer•2 is identical with that for integer, except that the high order 16 bits of integer•4 are truncated.

**The sign is extended.

***e is treated as an integer•4.

NOTE:

See Table 5-3 for the definitions of these intrinsic functions.

UP-8474 Rev. 2

4.1. GENERAL

SPERRY UNIVAC OS/3
FORTRAN IV

4-1

4. Control Statements

Control statements are executable statements that modify the normal sequence of program execution. The
control statements used in FORTRAN IV are identical in function with those described in the "Control
Statements" section of the fundamentals of FORTRAN programmer reference.

4.2. ARITHMETIC IF

Format:

where:

e

Is any integer, real, or double precision arithmetic expression; complex is not permitted.

k

Is a statement label in the same program unit as the arithmetic IF control statement.

Description:

If the arithmetic expression value is negative, control is passed to the statement with the k
1

statement
label; if the value is zero, k2 receives control; and if the value is positive, k3 receives control. If any label is
omitted, control is passed to the next executable statement following the IF statement when the conditions
for the missing label are met. Trailing commas may be omitted when labels are not specified.

Note that the internal representation of real and double precision values is an approximation. One of these
types could be stored internally as a nonzero approximation of zero.

Examples:

5 7

5 IF(l-1)10,20
6 IF(X-Y)l5
7 IF(BETA-1.5) .. 20

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

4-2

Statement 5 indicates that control is to be transferred to the statement labeled 10 if I is less than 1, to the
statement labeled 20 if I equals 1, or to the next statement following 5 if I is greater than 1.

Statement 6 transfers control to statement 15 if Y is greater than X; otherwise, control is transferred to the

next executable statement.

Statement 7 transfers control to statement 20 when BETA is greater than 1.5.

4.3. LOGICAL IF

Format:

IF (e) s

where:

e
Is any logical expression (3.2.3).

s
Is any executable statement except a DO, END, or another logical IF statement.

Description:

The logical IF statement allows the execution of a statement to be dependent on the truth of a logical

expression.

Examples:

5 7

IF(A.AND.B)GO TO 28
IF(C.GT.D) WRITE (18)C

If both A and B are TRUE, the GO TO statement is executed, and control passes to statement 20. If either A
or B is FALSE, the GO TO statement is ignored and control is transferred to the next executable statement.

The WRITE statement in the second example is executed if the value represented by C is greater than that
represented by D. Otherwise, control passes to the next executable statement below the IF statement.

4.4. UNCONDITIONAL GO TO

Format:

GO TO k

where:

k
Is the statement label of an executable statement in the same program unit.

Description:

The unconditional GO TO statement provides an unconditional transfer of control to the statement with the

label specified.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

4-3

4.5. COMPUTED GO TO

Format:

where:

k
Is a statement label of an executable statement in the same program unit.

Is an integer variable that must be defined by using an arithmetic assignment or a READ statement
before the execution of the GO TO control statement. The comma preceding i is optional.

Description:

The computed GO TO control statement permits the transfer of control to a label whose position in the GO
TO control statement equals the value of an integer variable. For instance, if the value of the integer
variable is 3, control is transferred to the third statement label in the computed GO TO control statement. If
the integer variable is negative, is equal to 0, or is greater than the number of statement labels in the
control statement, control is transferred to the next executable statement following the computed GO TO
statement.

Example:

7

GO TO (15,25,35,45), ITEM

When the value of the integer variable ITEM is 4, control is transferred to statement 45; when the value of
ITEM is 1, control is transferred to 15; and so on. Any value other than 1 through 4 results in control being
transferred to the next executable statement following the GO TO statement.

4.6. ASSIGNED GO TO

Format:

where:

k

Is the name of a 4-byte integer variable that must be defined by an ASSIGN statement.

Is the statement label of an executable statement within the same program unit as the assigned GO
TO control statement; the parenthesized list of labels and the preceding comma are optional and may
be omitted. The list aids in defining the flow of the control to the compiler. This list, therefore, aids
the compiler in diagnosing errors and often provides significantly better code generation. When used,
the label list must contain all possible destination labels.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

4-4

Description:

The assigned GO TO control statement transfers program control to the statement labeled with the current
value represented by an integer variable.

Example:

7

GO TO K5, (10,13,15,17,18,21)

When the current value of the integer variable K5 is associated with one of the statement labels in
parentheses, control is transferred to the statement with that label. The value of the integer variable can be
defined only by the ASSIGN statement (3.3.2). When the list of statement labels (10, 13, 15, 17, 18, 21) is
omitted from the assigned GO TO control statement, control is still transferred to the statement label
associated with the value of the integer variable K5.

4.7. DO

Format:

D 0 n i =m1 • m2 , m3

where:

n

m,

Is the statement label of the terminal statement of the DO loop which must follow the DO statement.
but which cannot be another DO statement.

Is the control variable, which is an integer variable that may be referenced, but not redefined, within
the DO range.

Is the initial parameter, the value of which is assigned to the control variable before the first
execution of the DO loop; this value should be less than or equal to the value of m2 .

Is the terminal parameter; it is compared to the control variable after each execution of the DO loop;
when the value of the control variable is greater than the value of m2, the DO control statement is
satisfied and control passes out of the DO range.

Is the incrementing parameter; its value is added to the control variable i after each execution of the
DO loop and before the comparison of m2 and the control variable i. When this parameter is omitted,
1 is assumed to be the increment value.

Description:

The DO control statement initiates and controls the repeated execution of the group of statements within
the DO range, which extends from the first executable statement following the DO control statement to the
terminal statement.

For a DO statement, the compiler generates two blocks of executable code:

• in the position of the DO statement, a block that defines the control variable to the value of the initial
parameter; and

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

4-5

• between the terminal statement of the DO loop and the statement following it, a DO control block.
Here, the control variable is incremented and tested, and program execution is resumed by either
exiting or reentering the DO range.

If no control statements are present in the DO range, the loop will be executed

+l

times by the action of the DO control block. A control statement can prevent the execution of the DO
control block; for example, the loop

5 7

DO 18 l=l, 10

18 IF(A.GT.B)IF(C)2D,3D

may be executed 10 times, unless the condition

(A.GT .B) .AND. (C.GT .D)

occurs, which prevents the execution of the DO control block and causes premature loop exit.

Either integer constants or integer variable names may be used as parameters for the DO control
statement; variables used as parameters may not be redefined within the DO range. The index variable of
the DO loop should be considered to be undefined when the loop is exhausted.

4. 7 .1 . Transfers of Control to and from a DO Range

In FORTRAN IV programs, program control can always be transferred out of a DO loop without satisfying the DO
control statement parameters. However, control can be transferred into a DO range only from the extended DO
range, which consists of those statements executed between the transfer out of the innermost DO of a
completely nested DO loop and the transfer back into the DO loop range. For a more complete explanation of the
DO control statement. refer to the "Control Statements" section of the fundamentals of FORTRAN programmer
reference.

4.8. CONTINUE

Format:

CONTINUE

Description:

The CONTINUE control statement can serve as a terminal statement of a DO range. It produces no coding
and may be used anywhere in the program, subject to the ordering in Figure 1-1, without affecting the
logical program execution. When used as the terminal statement of a DO range, the CONTINUE control
statement must be labeled.

UP-8474 Rev. 2

4.9. STOP

Formats:

STOP
STOP n
STOP'a'

where:

n

SPERRY UNIVAC OS/3
FORTRAN IV

4-6

Is a message in the form of an unsigned decimal integer constant of not more than five digits.

a
Is a message in the form of a literal of not more than 243 characters enclosed in apostrophes.

Description:

The STOP control statement terminates job step execution and returns program control to the operating
system, indicating the logical end of the program. When a STOP n or a STOP 'a' is executed, a display is
always produced at the job's diagnostic device (13.3.3).

4.10. PAUSE

Formats:

PAUSE
PAUSE n
PAUSE'a'

where:

n
Is a message in the form of an unsigned decimal integer constant of not more than five digits.

a
Is a message in the form of a literal of not more than 243 characters enclosed in apostrophes.

Description:

The PAUSE control statement halts execution of the program and produces a display. The operator has the
choice of allowing the program to proceed to the next executable statement or to cancel the job.

4.11. END

Format:

END

Description:

The END control statement is an executable statement indicating the physical end of a program unit; it may e
not have a statement label. When the END statement is executed in a main program it is interpreted as a
STOP control statement (4.9). When executed in a subroutine or function subprogram, the END statement
is equivalent to a RETURN statement (5.4.1.2).

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

5-1

5. Functions and Subroutines

5.1. GENERAL

When a calculation or series of calculations is required repeatedly in a FORTRAN program, the statements used
to perform the calculations can be coded once as a procedure. This procedure can be referenced each time the
calculations are to be performed. Procedures, as explained here and described in the "Procedures and Procedure
Subprograms" section of the fundamentals of FORTRAN programmer reference, are categorized by:

• whether the procedure coding is inserted inline by the compiler each time the procedure is referenced, or
whether the procedure is compiled separately as a subprogram;

• whether the procedure is referenced by a subroutine CALL statement or by a function reference; and

• whether the procedure is written by the user or supplied with the FORTRAN IV library.

Table 5-1 lists the procedures and shows their relationships within these categories.

Table 5-1. FORTRAN IV Procedures

Procedure
Coding lnline Referenced Code
or Subprogram By Source

Statement Subprogram Function User
function reference

External Subprogram Function User

function reference

Intrinsic lnline* Function Sperry

function reference Univac

Standard Subprogram Function Sperry

library reference Univac
function

Subroutine Subprogram CALL User
statement

Standard Subprogram CALL Sperry

library statement Univac

subroutine

*Some of the larger intrinsic functions are external subprograms.
They are marked with G) in Table 5-3.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

5-2

Functions are procedures referenced in expressions within FORTRAN statements. They always have at least one
argument, they always return the value associated with their name when they are executed, and they return
control to the expression within the referencing statement. The functions are:

• Statement functions

• External functions

• Intrinsic functions

• Standard library functions

Only statement functions and external functions are coded by the user ..

Subroutines are procedures coded as subprograms; when they are referenced, control is transferred to the
subroutine, it is executed, and the control is then returned to the statement following the subroutine reference.
Subroutines are either user-coded or supplied as standard library subroutines. Subroutines differ from functions
in the method of referencing the procedure, in that multiple values or no value can be returned, and in the
method by which control is returned to the referencing program unit.

Functions always transfer a value associated with the function name, but subroutines do not. When value
transfers are made by subroutines, they are accomplished by redefining arguments or common storage.
Arguments are included as part of the procedure definition; these are dummy arguments. Arguments are also
specified in the procedure reference; these are actual arguments. Substitutions of actual for dummy arguments
are made when the procedure is referenced at execution time.

The actual arguments in the procedure reference must correspond to the dummy arguments in the procedure
definition. They must correspond in number, data type (except for literals), and order. The argument forms
permitted for actual arguments in the user-coded procedures are shown in Table 5-2.

Table 5-2. Argument Forms

Form of Actual Arguments
Statement External

Subroutines
Functions Functions

Variable name Yes Yes Yes

Expression Yes Yes Yes

Function reference Yes Yes Yes

Array element name Yes Yes Yes

Array name No Yes Yes

Literal constant No Yes Yes

Label parameter No No Yes
(statement label
preceded by &)

External procedure name No Yes Yes

NOTE:

External procedure names appearing as actual arguments must be declared
in an EXTERNAL statement (6.7) or referenced previously in a CALL
statement or function reference.

UP-8474 Rev. 2

5.2. PROCEDURE REFERENCE

SPERRY UNIVAC OS/3
FORTRAN IV

5-3

Depending on whether the procedure is a function or a subroutine (Table 5-1), it is referenced by either the
function reference or the subroutine CALL statement.

5.2.1. Function Reference

Statement functions, external functions, intrinsic functions, and standard library functions are all referenced in
expressions with the general function reference format:

f(a 1 ,a 2 , ••• ,an)

where:

a

Is the symbolic name used to identify the user-coded function in its function definition, or supplied as
the function name of an intrinsic or library function.

Represents an actual argument; at least one is required.

Actual arguments must agree in type, number, and order with the dummy arguments in the function definition,
but actual argument types are not restricted by the data type of the function name. The forms permitted for
actual arguments are shown in Table 5-2 for statement functions and external functions, in Table 5-3 for
intrinsic functions, and in Table 5-4 for standard library functions.

Examples:

7

CZ=CBRT(SUZU)+CARA+YAM
MA IC O=N 0 RT** J AWA - INT (KS , AB L , R 1)

In the first statement, the standard library function CBRT is referenced. In the next line, a user-coded
statement function, INT, is referenced, and three actual arguments are included in the function reference.
An integer type value is returned to the referencing expression, although the actual arguments are both
integer and real types. This is because the function name is an integer variable name, and the value type ·
returned by the statement function is determined by the function name.

5.2.2. Subroutine Reference (CALL Statement)

All subroutines, whether written by the user or supplied with the compiler, are referenced with the CALL
statement.

Format:

CALL s(a,,a,, ... ,a nl

UP-8474 Rev. 2

where:

s

a

SPERRY UNIVAC OS/3
FORTRAN IV

5-4

Is the symbolic name of the subroutine as defined by the user or as supplied with the standard library
subroutines.

Is an actual argument. The use of a statement label preceded by an ampersand is allowed (5.4.2.2).
The argument list is optional and must be enclosed in parentheses when used.

Description:

The CALL statement is used to transfer control to the subroutine specified by the name. The maximum
number of actual arguments permitted is 255; the allowed forms are listed in Table 5-2.

Example:

7

CALL PGNUM
CALL ERROR(INER)
CALL SUB(X,Y,&19,FUNC,&29)

Three subroutines are referenced by the calls in the example. In the first CALL statement, control is
transferred to the subroutine PGNUM. When the next line is executed, the standard library subroutine
ERROR is called; the actual argument INER is specified. The last line in the example references the
subroutine SUB; among the arguments are two statement labels, & 10 and &20, which provide an optional
method of returning control from the subroutine explained in 5.4.2.2.

5.3. STATEMENT FUNCTION DEFINITION

The user-coded functions are the statement functions and the external functions. External functions are coded
as subprograms, as described in 5.4. Statement functions, however, are user-coded procedures that are defined
using only one FORTRAN statement. Statement functions require at least one argument and return one value to
the referencing statement. They are referenced with the function reference described in 5.2.1. After the
evaluation of the statement function, control is returned to the expression within the referencing statement.

Format:

f(a,,a 2 , ••• ,a nl=e

where:

Is the symbolic function name assigned to the procedure.

a
Is a dummy argument consisting of a variable name.

e
Is a limited arithmetic or logical expression.

UP-8474 Rev. 2

Description:

SPERRY UNIVAC OS/3
FORTRAN IV

5-5

The statement function definition statement defines a function that may be referenced in a subsequent
expression. The statement function definition statement must precede all executable statements in the
program unit and must follow all specification statements (Figure 1-1). Note that a reference to another
function is permitted, but if such a reference is made to a statement function, that statement function must
have been previously defined in the program unit. For example, the following Example 1 is permitted but
Example 2 is not:

Example 1:

7

QU (A)= 2.B*SQRT (A)
AYR (A,8,PNT) = A**8+QU (PNT)

Example 2:

AYR (A,8,PNT) = A**8+QU (PNT)
QU (A)= 2.B*SQRT (A)

The type of the value returned by the statement function is determined by the statement function name
according to the rules for variables described in 2.3, or it's type if specified by a type statement (6.4) in the
same program. Note that it is the function name, not the type of the arguments or of the expression, which
determines the value type returned by the statement function, and that the function name cannot be
referenced from other subprograms.

Dummy argument names in the statement function definition may appear as variable names in the same
program unit. A maximum of 255 arguments may appear in the definition.

A limited expression is an arithmetic or logical expression that cannot contain a reference to another
statement function unless that function was previously defined. If the statement function being defined
appears in an external function or a subroutine, the expression cannot contain a symbolic name identical
with an entry name in the same subprogram.

5.4. SUBPROGRAM DEFINITION

Of the three user-coded procedures - statement functions, external functions, and subroutines - the latter two
are coded as subprograms.

5 .4 .1 . External Functions

An external function is a user-coded function procedure requiring more than one FORTRAN statement for its
definition. External functions require at least one argument and return at least one value to the referencing
statement. They are referenced with the function reference (5.2.1). After evaluation of the external function,
control is returned to the expression within the referencing statement, where computation continues, using the
value associated with the function name.

An external function is defined by coding the required FORTRAN statements as a subprogram that begins with a
FUNCTION statement (5.4.1 .1) and ends with an END statement (4.11).

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

5-6

The external function returns a value of the type determined by the function or entry name, not by the data types
of the arguments. The data type of the function name is decided by the first letter of the external function name,
a type statement (6.4) in the same program unit as the FUNCTION declaration, or in the type specification in the
FUNCTION statement.

Multiple entry into an external function is provided by the ENTRY statement (5.4.3).

5.4.1.1. FUNCTION Statement

Format:

where:

*S

a

Is an optional type specification used to determine the data type of the symbolic name f, and
therefore of the value returned by the external function; when this specification is omitted, the type is
determined by a type statement in the same program unit or by the implicit type of the external
function name. The permissible types are INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and
LOGICAL.

Is the symbolic name identifying the procedure; routines supplied by Sperry Univac reserve the dollar
sign as the third character of the function name. The name, or an ENTRY name, must be assigned a
value by using a READ or assignment statement to define the function value.

Is an optional length specification for the symbolic function name (1.2.4). This option may be used
only when the type option is used and the type specified is not DOUBLE PRECISION.

Is a dummy argument that may be a variable name, an array name, or a procedure name; variable
names may be enclosed in slashes to use the call-by-name method of argument substitution (5.5.2).

Description:

The FUNCTION statement defines an external function and must be the first statement of the subprogram
coded to define the external function.

Examples:

7

INTEGER FUNCTION XX1•2 (A)

RETURN
END

FUNCTION YYl (B,C,D,H)

RETURN
END

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

5-7

In the examples, two external function subprograms are outlined. In the first, the value returned is defined
as a 2-byte integer. The second subprogram returns a 4-byte real value unless, in the same program unit,
the type of the external function name YY1 is specified as another data type.

5.4.1.2. RETURN Statement

Format:

RE TU RN

Description:

The RETURN statement causes control to be transferred from the subprogram used to define the external
function (or subroutine as explained in 5.4.2.2) to the program unit that referenced the subprogram.

5.4.1.3. ABNORMAL Statement

One of the functions of the FORTRAN IV compiler is to increase efficiency by eliminating computational
redundancies in a statement sequence such as:

X=A*B+C
Y=FUNC(A)
Z=S IN (A*B)

The A*B is considered to be a common subexpression. The statements are usually evaluated as:

TEMP=A*B
X=TEMP+C
Y=FUNC(A)
Z=SIN(TEMP)

Other computational redundancies may be generated by the compiler and then eliminated while expanding the
array element location function (Table 2-2). However, if the function FUNC redefines the value of its argument A,
the reordering produces unexpected results. Functions that cause such undesirable side effects are known as
abnormal functions and should be identified to the compiler.

A function is considered abnormal if it:

• redefines the value of an argument or of an entity declared in common storage (as discussed in the
preceding paragraph);

• contains an input/output statement (such as a function that prints its results); or

• does not always produce the same function value when given identical arguments (such as a function that
saves values between successive references).

Format:

ABNORMAL f 1 ,f 2 , ••• ,fn

UP-8474 Rev. 2

where:

SPERRY UNIVAC OS/3
FORTRAN IV

Is the name of an abnormal function.

Description:

The ABNORMAL statement identifies abnormal functions.

5-8

When a program unit contains no ABNORMAL statement, all referenced functions are considered
abnormal, except for the standard library functions (Table 5-4). In an ABNORMAL statement, all listed
functions are considered abnormal; any other functions encountered are considered normal. An
ABNORMAL statement without a list specifies that all functions are normal.

An abnormal function is permitted to cause side effects affecting other statements, as in the preceding
example, but the function should not impact the same statement or expression. For example,

A(I)=I *F (I)

will, in general, cause unpredictable results if the function F is abnormal.

5.4.2. Subroutines

User-coded subroutines are procedures that, like external functions, are separately compiled as subprograms.
Unlike function subprograms, however, subroutines:

• do not require arguments;

• do not necessarily return a value to the referencing program unit;

• have no data type associated with the subroutine name;

• are defined with the SUBROUTINE statement (5.4.2.1);

• are referenced with the CALL statement (5.2.2); and

• return control to the first executable statement after the CALL statement, or they can return control to a
selected statement label in the referencing program unit (5.4.2.2).

Subroutines may have a maximum of 255 arguments; the argument forms permited are shown in Table 5-2.
Multiply entry into a subroutine is permitted (5.4.3). Subroutines are always considered to be abnormal.

5.4.2.1. SUBROUTINE Statement

SUBROUTINE s(a,,a 2 , ... ,a 0)

UP-8474 Rev. 2

where:

s

a

SPERRY UNIVAC OS/3
FORTRAN IV

5-9

Is a symbolic name identifying the subroutine. Avoid the use of the dollar sign as the third character
of the subroutine name, since this convention is used in naming system routines. This name cannot
appear elsewhere in the subprogram.

Is a dummy argument. The argument list is optional; when it is used, it is enclosed in parentheses.
Each specification may be a variable name, an array name, a procedure name, or an asterisk.
Variable names may be enclosed in slashes to specify the call-by-name method of argument
substitution (5.5.2).

Description:

The SUBROUTINE statement defines the subroutine and must be the first statement of the subprogram.

An asterisk in the dummy argument list signifies that the corresponding actual argument is a label
parameter preceded by an ampersand to provide an optional method of returning control to the referencing
program unit.

5.4.2.2. Subroutine RETURN Statement

Format:

RETURN
or

RE TU RN

where:

Is a positive integer constant or variable; this specification points to a label parameter in the actual
argument list of the CALL statement.

Description:

The RETURN statement always returns control to the first executable statement following the CALL
statement unless the optional integer specification is used. This option is not available when the RETURN
statement is used to return control from an external function procedure.

The optional method of returning control from an external subroutine requires the use of the label
parameter specification (signaled by an ampersand) in the actual argument list of the CALL statement, the
use of an asterisk in the corresponding dummy argument in the SUBROUTINE statement. and the integer·
specification of the RETURN statement. If integer = n, the statement RETURN n causes control to be
returned to the statement in the main program labeled with the nth label parameter in the actual argument
list of the CALL statement.

UP-8474 Rev. 2

Examples:

7

SPERRY UNIVAC 05/3
FORTRAN IV

CALL SUB(X,&100,Y,&110,&120)

SUBROUTINE SUB(A,*,B,*,*)

RETURN 2

RETURN

RETURN 3

RETURN
END

5-10

The subroutine SUB is entered when the CALL statement is executed. Control is returned to differing parts
of the calling program, depending on which RETURN statement is executed in the procedure definition.

If the first RETURN statement is executed, control is returned to the statement labeled 110 in the calling
program. This occurs because the integer option of the RETURN statement is used and the value of the
integer is 2; control is returned to the second label parameter in the CALL statement, &110.

If the second RETURN statement is executed, control returns to the executable statement immediately
following the CALL statement; if the third is executed, control goes to statement 120; if the fourth, to
statement 100.

When the value of the integer is less than 1 or greater than the number of asterisks, control is returned to
the statement following the CALL statement.

5.4.3. Multiple Entry to Function and Subroutine Subprograms

Alternate entry points to external functions and subroutines are provided by the ENTRY statement.

Format:

ENTRY e(a,,a2 •... ,a nl

UP-8474 Rev. 2

where:

e

a

SPERRY UNIVAC OS/3
FORTRAN IV

Is a symbolic name that identifies the procedure entry point.

5-11

Is a dummy argument corresponding to an actual argument, if any, in order, number, and type.

Description:

Arguments are optional for entry into a subroutine. At least one argument is required for entry into a
function. Any dummy argument may be enclosed in slashes (5.5.2).

An ENTRY statement is nonexecutable and does not affect the normal sequence of statement execution. It
defines only those formal arguments in its list; other formal arguments not defined by the ENTRY
statement and used in the subprogram must have been defined by a previous reference to the subprogram.

ENTRY statements in a FUNCTION subprogram must define functions of the same type as that defined by
the FUNCTION statement. Regardless of which ENTRY statement is used, the value of the function is
defined by the last executed assignment of a value to the name of the function given in the FUNCTION
statement. ENTRY-point names are never used to return results to the calling program.

The following rules apply to the ENTRY statement:

1. Avoid the use of the dollar sign as the third character for the ENTRY name specification, since this is
the convention for system routines.

2. An entry name must not occur anywhere in the subprogram except in the ENTRY statement.

3. The same dummy arguments can be specified in more than one entry; the number of dummy
arguments may differ at different entry points.

4. An ENTRY into an external function subprogram must specify at least one argument.

5. Only those arguments specified in the argument list of an ENTRY statement are initialized; other
arguments are retained from previous function or entry references. Either the function name or at
least one entry name must be assigned a value in the function subprogram.

6. The asterisk must not be used as a dummy argument in an ENTRY statement of a function.

7. A procedure subprogram, whether an external function or a subroutine, must not reference itself or
any of its entry points.

8. Adjustable dimension arrays that appear in an ENTRY statement must also appear in the FUNCTION
or SUBROUTINE statement.

9. The type of the entry name must match that of the function name.

10. An ENTRY statement that contains a dummy argument must occur before the argument is used
unless the argument also occurs in the FUNCTION or SUBROUTINE statement.

UP-8474 Rev. 2

Example:

7

SPERRY UNIVAC OS/3
FORTRAN IV

FUNCTION ENTl(X,Y,Z,A)

ENTRY ENT2 (X)

ENT l=Y I A + Z ** X
RETURN

END

5-12

The function may be called with four variables by the name ENT1, or with one variable by the name ENT2.

5.5. ARGUMENT SUBSTITUTION

When a procedure is called, the actual arguments, if any, are substituted for the dummy arguments in the

procedure receiving control. FORTRAN IV provides three methods of argument substitution:

• Call by value

• Call by name (or address)

• Symbolic substitution

5.5.1. Call by Value

The call-by-value method of argument substitution is the standard method of argument substitution when the
dummy arguments in SUBROUTINE, FUNCTION, and ENTRY statements are simple variables. For the procedure

reference

CALL A(B,C,D)

and the procedure definition

SUBROUTINE A(X,Y,Z)

the compiler generates a calling sequence for the CALL or FUNCTION reference, and a prologue for the
SUBROUTINE, FUNCTION, or ENTRY statement. The calling sequence consists of a transfer of control to the start
of the procedure and a list of main storage addresses where the actual arguments may be found. The prologue
contains instructions that perform the argument substitution. In the preceding example, the prologue performs
actions analogous to the FORTRAN statements X=B, Y=C, and Z=D.

This technique allows the dummy arguments to be referenced in the procedure body as though they were simple
variables local to the procedure. When a RETURN statement is encountered, an epilogue is executed. An e
epilogue is a coding sequence that transmits the values of the dummy arguments to the calling program; thus,

statements analogous to B=X, C=Y, and D=Z are executed.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

5-13

The compiler generates a prologue and an epilogue for each SUBROUTINE, FUNCTION, and ENTRY statement.
The RETURN statement causes the execution of the epilogue associated with the last prologue that was
executed. Thus, in the following example, subrountine 1 on the left is treated as though it were written like
subroutine 2 on the right.

Subroutine 1 Subroutine 2

SUBROUTINE A(B) SUBROUTINE A
B=actual argument
ASSIGN 11HHJ00 TO
GO TO 100001

100000 actual argument=B
RETURN

100001 CONTINUE

ENTRY C(D) GO TO 100002
ENTRY C
D=actual argument
ASSIGN 100003 TO
GO TO 100002

100003 actual argument=D
RETURN

100002 CONT I NUE

;PROLOGUE START

;PROLOGUE END
;EPILOGUE START
;EPILOGUE END

;JUMP OVER ENTRY STATEMENT
;PROLOGUE START

;PROLOGUE END
;EPILOGUE START
;EPILOGUE END

RETURN GO TO 1(100000, 100003)

5.5.2. Call by Name

The call-by-name method of argument substitution is the standard method of argument substitutuion when the
dummy arguments in SUBROUTINE, FUNCTION, or ENTRY statements are declared to be arrays or procedure
names. In these cases, the prologue copies the address of the actual argument into the procedure. Thereafter,
the code generated for the array references in the procedure must retrieve the address of the array prior to
accessing the array for computational purposes. See 6.2.1 for additional information on array declarator
processing. As an option, the user may specify this method of argument substitution for simple variables by
enclosing the dummy argument in slashes:

SUBROUTINE A(B,/C/,D)

In most cases, the choice is arbitrary, but special cases exist and can cause differing results:

CALL SQUARE (B,B)

SUBROUTINE SQUARE (X,Y)

e Here, the introduction of slashes around X and Y will cause different results.

UP-8474 Rev. 2

5.6. LIBRARY PROCEDURES

SPERRY UNIVAC OS/3
FORTRAN IV

The three classes of procedures that are available to the FORTRAN programmer are:

• Intrinsic functions

5-14

Invoked with a function reference and usually associated with highly machine-dependent procedures or
non-FORTRAN capabilities, such as processing a variable-length argument list (5.6.1).

• Standard library functions

Invoked with a function reference and provided for evaluation of common mathematical functions in the
areas of trigonometry, logarithms, roots, etc. While these procedures could be written in the FORTRAN
language, they are provided in a library (in assembly language output form) in order to optimize accuracy,
size, and performance (5.6.2).

• Standard library subroutines

Invoked with the CALL statement. They are associated with the operating environment of the program and
perform functions such as checking external switches, loading overlay phases, etc. (5.6.3).

FORTRAN IV provides nearly 100 intrinsic and standard library functions, many highly similar; for example, six
functions are provided to determine the absolute value of an argument, differing only in the types of their
arguments and function values.

To reduce the difficulty of remembering so many names and the risk of clerical errors in programming,
FORTRAN IV provides generic function reference. These similar functions can be referenced by a single name
called the generic name which, in this case, is ABS. Existing programs can reference the library using the
member names of the generic class (ABS, IABS, JABS, DABS, CABS, and CDABS).

The names and properties of these functions are known to the compiler. When a function reference using a
generic name is encountered, the compiler generates a reference to the proper member of the generic set by
examining the types of the arguments. Generic reference is not provided for library subroutines or for user-coded
procedures.

5.6.1. Intrinsic Functions

The intrinsic functions supplied with the compiler are listed in Table 5-3. Intrinsic functions are referenced with
the function reference described in 5.2.1. After evaluation of the function, the function value is returned to the
referencing statement at the expression containing the function reference.

UP-8474 Rev. 2

Generic
Name

ABS

CABS

AINT

INT

MOD

1MAX ~
MAXO

1 MIN ~
MINO

NOTES:

SPERRY UNIVAC OS/3
FORTRAN IV

Table 5-3. Intrinsic Functions (Part 1 of 2)

'

Number
Member

Use
Arguments

Function
Name

Determine the 1 ABS
absolute value IABS
of the argument JABS

DABS

Determine the 1 CABS CD
absolute value CDABS CD
of the argument

Truncation; 1 AINT
eliminate the DINT

fractional
portion of argument

Truncation; 1 INT

eliminate the !DINT

fractional

portion of argument

Remaindering; 2 JMOD
defined as a1 -[x] a2, (Argument 2 AMOD

where [x] is the greatest must be MOD

integer whose magnitude nonzero.) DMOD

does not exceed the
magnitude of a1 /a 2 and
whose sign is the same

as a1/a 2

Select the largest ;;;.2 JM A XO CD
value AMA XO C2>

AMAXl CD
1MAX

MAXO CD f CD
MAXl (2)
DMAXl CD

Select the smallest ;;;.2 JMINO CD
value AMINO (2)

AMINl CD
1 MIN

MINO ~~
MINl C2>
DMIN1 CD

Convert argument 1 FLOAT OJ
from integer DFLOAT (2)

to real or HFLOAT (2)
double precision DH FLOT (2)

Convert argument 1 !FIX (2)

from real to HFIX (2)

integer

CD This function is an external procedure supplied in the FORTRAN IV library.

@ This function is accessible only through its member name.

5-15

Member Member
Argument Function

Type Type

Real•4 Real•4
lnteger•4 lnteger•4

lnteger•2 lnteger•2

Double precision Double precision

Complex•8 Real•4
Complex•16 Double precision

Real•4 Real•4

Double precision Dout..le precision

Real•4 lnteger•4

Double precision lnteger•4

lnteger•2 Integer• 2

Real•4 Real •4
lnteger•4 Integer •4

Double precision Double precision

lnteger•2 Integer• 2

lnteger•4 Real•4

Real•4 Real•4

Integer •4 I nteger•4

Real •4 lnteger•4

Double precision Double precision

lnteger•2 lnteger•2

lnteger•4 Real•4

Real•4 Real•4

I nteger•4 lnteger•4

Real•4 lnteger•4

Double precision Double precision

lnteger•4 Real•4

lnteger•4 Double precision

lnteger•2 Real•4

Integer •2 Double percision

Real•4 lnteger•4

Real•4 Integer• 2

UP-8474 Rev. 2

Generic

Name

SIGN

DIM

SNGL

REAL

AIMAG
IMAG

DBLE

CMPLX

CON JG

SPERRY UNIVAC OS/3
FORTRAN IV

Table 5-3. Intrinsic Functions (Part 2 of 2)

Member
Number

Function Use
Arguments

Name

Replace the algebraic 2 JSIGN

sign of the first SIGN

argument with the sign ISIGN

of the second argument DSIGN

Positive difference; 2 JDIM

subtract the smaller DIM

of the two arguments IDIM

from the first argument DDIM

Convert double precision 1 SNGL

to real CSNGL

Get rea I part of a 1 REAL

complex number DR EAL

Get imaginary part of 1 IMAG

a complex number AIMAG
DIMAG

Convert from rea I to 1 DBLE

double precision COBLE

Convert two real 2 CMPLX

arguments to a DCMPLX

complex number

Get conjugate of 1 CON JG

a complex number DCONJG

5.6.2. Standard Library Functions

5-16

Member Member
Argument Function

Type Type

lnteger•2 Integer• 2

Real•4 Real•4

lnteger•4 lnteger•4

Double precision Double precision

lnteger•2 lnteger•2

Real•4 Real•4

lnteger•4 lnteger•4

Double precision Double precision

Double precision Real•4

Complex•16 Complex•8

Complex•8 Real•4

Complex•16 Double precision

Complex•8 Real•4

Complex•16 Double precision

Real•4 Double precision

Complex•8 Complex•16

Real•4 Complex•8

Double precision Complex•16

Complex•8 Complex•8
Complex• 16 Complex•16

The standard library functions (Table 5-4) are function subprograms supplied with the compiler. They are
accessed with a function reference (5.2.1) and return control to the referencing program unit within the
expression of the referencing statement. Detailed information on performance, size, and mathematical methods
is available in the Series 90 FORTRAN mathematical library programmer reference.

5.6.2.1. Specification Statement Interaction

This section describes the effects of listing the name of an intrinsic or standard library function in a type
statement in a FORTRAN IV compilation. An ABNORMAL or EXTERNAL statement causes no special effect.

Normally, FORTRAN IV uses a name in the form ILF#xx to reference a standard library function (or an intrinsic
function being used as a subroutine argument). If the name of the standard library function appears in a type
statement, this function will not be treated as a standard library function. It will be called via its actual name, and
no warning diagnostics for its argument will be generated.

A type statement is useful when calling a routine other than the standard library routine. For example, if a REAL A
SQRT statement appears in a program, the FORTRAN IV compiler generates calls to SQRT rather than ILF#30. W
This permits linkage to a user's SQRT function.

A list of standard function names and their corresponding ILF#xx names is included in Appendix G.

e e
Table 5-4. Standard Library Functions (Part 1 of 5)

General Generic Member Mathematical
Artument

Operation Name Na ma Definition
Number Type Rang,

Trigonometric SIN 1 real•4 /x/<12
18

.111

(in radians)

v=sinlx)

DSIN 1 real•S /x/<1250111

(In radians)

SIN

CSIN 1 complex •8 /x 1/<12
18

1TI

(in radians) 1•21..;;; 174.673
v=s1nlz)

CDSIN 1 complex• 16 lx 11 <12
50

1T1

(in radians) lx 2 /..;;; 174.673

cos 1 real•4 /xl<12
18

1TI

(in radians)

rcoslx)

DCOS 1 reat•8 /x/<12
50 m

(in radians)

cos
ccos 1 complex•8 lx 11 < 12 18 111

(in radians) /x2 /..;;; 174 673

rcoslz)

cocos 1 comp1ex•16 /x 11<12
50

1T1

(in radians) lx2 /..;;; 174.673

TAN 1 real•4 /xi< 12 18
.IT)

(in radians)

TAN v=tanlx)

DTAN 1 real•8 /xi< 1250 IT)

(in radians)

{COT AN l 1 real•4 /x/<!12 18 111

COT (in radians)

{ COTAN l v=cotan(x)
COT

{ DCOTAN} /xi <1250 .111 1 real•S

DCOT (in radians)

NOTES:

1. M = 1663 ·11-16-6) for real•4 and 1663·(1-16-141 tor real •8

2. z is a complex number of the form x
1

+ x
2

i

Function Value
Type and

Rang,

real•4

-1..;;;y..;;;1

real•S

-1..;;; y..;;; 1

complex•8

-M..;;;v,.v 2 ..;;;M

complex•16

-M ..;;;v 1.v 2 .,;;;M

real•4

-1..;;;y..;;;1

real•8

-1..;;;y..;;;1

complex•8

-M..;;;v 1. v2 ..;;;M

complex•16

-M..;;; v 1.v2 ..;;;M

real•4

-M..;;; v .,;;;M

real•8

-M.,;;; v .,;;;M

real•4

-M.,;;; v .,;;;M

real•8

-M..;;; y .,;;;M

e
c
'"O

~
" """ ::0

~

""

(/)

~
::0

.,, :0
0 -<
::0 i
i~
-o <o

(/)

' w

U'I
!..

"

Table 5-4. Standard Library Functions (Part 2 of 5)

Gener•I Generic Member Mothemmtical
Argument

Operation Name Name Definition
Number Type Range

Trigonometric { ASIN } 1 real•4 Ix I..: 1

lcont.l

}
ARSIN

I ASIN
ARSIN

y=arcsin(x)

IDASIN l 1 real•S Ix 1..: 1

DARSIN

{ ACOS } 1 real•4 Ix I..: 1

I ACOS }
ARCOS

ARCOS
y=arccos(x)

{DACOS } 1 real•S Ix I .;;; 1

DA RC OS

ATAN 1 real•4 anY real argument

ATAN v=arctan(x)

DA TAN 1 real•B any real argument

ATAN2 2 real•4 any real arguments

y=arctan(~)
except IQ.QI

ATAN2

DATAN2 2 real•B any real arguments

exc•pt 10,0)

Hyperbolic SINH 1 real•4 lxl < 175.366

ex-e-x
v= ---

DSINH 2
1 real•S lxl < 175.366

SINH

CSINH 1 complex lx 1I.;174.673

l -l ·s :x2 1<2 18 .r,
e - e

y =----
2

CDS I NH 1 complex lx,1.;;174.673

·15 lx
2

1 <250.11

COSH 1 real •4
lxl < 175 366

ex+e-x

COSH v= ---
2

DCOSH
1 real •8 lxl < 175 366

e e

Function Value

Type and

Range

real •4 hn radians)

- rr /2 .;;; v .;;; rr 12

real•S (In radians)

- rr /2 .;;; v ..:rr12

real •4 (in radians)

O .;;; v ..:rr

real •8 (In radians)

0 ~ y ~ 11'

real •4 hn radians)

- rr 12 .;;; v ..:11 /2

real•S hn radians)

- rr 12 .;;; v .;;1112

real •4 (In radians)

- 1T ~ y ~7T

real •8 (In rad1ans)

- 1T ~ y <7T

real•4

-M.;;; y.;;; M

real•S

-M.;;; y.;;; M

complex •8

-M.;;y
1

,v
2

.;;M

complex •16

-M .;;y1,V2 .;;M

real ·4

l~y~M

real •8

1 ~ y ~ M

e

c
"ti
00
::u
~
N

en
"ti m
:ti

..,, :ti
0-<
::0 c
;i z
)> < z)> - (")
<o

en
.......
w

Ut
I
~

00

e e

Table 5-4. Standard Library Functions (Part 3 of 5)

General Ganwic Member Mathematical
Argument

Operation Name Name Definition
Number Type Range

Hyperbolic CCOSH 1 complex•B lx 1I<:,14.673
(cont.) lx

2
1<2 18.rr

ez + e -z
COSH y~---

2
Ix 1I<:i74.673 CDCOSH 1 complex •16
fx

2
i<250 .rr

TANH 1 real •4 any real argument

ex-e-x
TANH y= ---

eX+e-x
DTANH 1 real •8 any real argument

Exponential EXP 1 real .4 x ? -180.218

x .;;; 1 74.673
x y-=e

DEXP 1 real •8 x ? -180.218

x .;;; 174.673

EXP

CEXP 1 complex•8 x 1 .;;; 174.673

v~eL
lx21<12

18 m

CD EXP 1 complex •16 xl.;;; 174.673

lx21 < (2 50.rr1

BasP 10
EXP10 1 real•4

x?- 180.216/ln(lO)
E xponent1al x<: 174.673/ln(lOI

EXP10 y = 1 ox

DEXP10 1 real•8
x?- 180.216/ln(lOI

x<: 174.673/lnllOI

Natural logarithm
{ ALOG l

LOG 1 real •4 x > 0

{ ALOG } y""loge x or

LOG y=ln(x)
DLOG 1 real•S x > 0

Function Value

Type and

Range

complex •8

-M <;y1.Y2 Qvi

comptex•16

-M <:v1.v2 <:M

real .4

-1 ~ y ~ 1

real ·8

l~y~l

real•4

0 <; y <; M

real•B

0 <; y <; M

complex.a

-M<:y1,v2 <:M

complex.16

-M<:y1,y
2

<:M

rea1 .. 4

o<:v<:M

real •8

o<;y<;M

real •4

y? -180.218

y .;;; 174.673

real•8

y ? -180.218

y .;;; 1 74.673

e
c
"'D

~
~
:0
CD
:c:
"->

CJ)
"'D m
:0

.,, :0
0 -<
:oc z
:0 -

?Z ~
-(")

<o
CJ)

' w

U1
I -co

Table 5-4. Standard Library Functions (Part 4 of 5)

General Genwic Member Mathematical
Argument

Operation Name Name Definition
Number Type Range

Natural logarithm CLOG 1 complex•8 z * 0 + 01

y=PV\09
0

(z)

I ALOG}
LOG PV 1s pnnc1ple valuf,

CO LOG
which means y

2
between -1T and Tr.

1 complex•16 z * 0 + 01

Common logarithm
IALOG10} 1 real•4 x > 0

LOG10

\ALOG10\
LOG10

y=\0910•

OLOG10 1 real•S x > 0

Square root SORT 1 real .4 x > 0

y=Jx or
OSORT y=x 1 /2 1 real•S x~O

SORT
CSORT 1 complex•B any complex argument

y=Jlor

CDSORT
y=z 1/2

1 comp/ex• 16 any complex argument

Cube root CBRT 1 real •4 any real argument

CBRT y=x 113

DCB RT 1 reat•B any real argument

e e

Function Value

Type and

Ranee

complex•8y=y
1

+y
2

1

Y1;;;. --180.218

Y1.;;; 175.021

-Tr<;;; v
2

<;;;Tr

complex• 16y=y
1

+y
2

1

Y1;;;. -180.218

Y1.;;; 175.021

- Tr<;;; v2 <;;;Tr

real•4

y ;;. -78 268

y .;;; 75.859

real•B

y ;;;.-78268

y .;;; 75859

real•4

0 <;;; y <;;; Ml/2

real •8

0<;; y <;;; Ml/2

comptex•8
0 <;;; y 1 <;;; 10987lM112)

IY2I.;; 1.0987 lM 112 l

complex• 16

0 <;;; Y1 <;;; 10987 IM112l

lv 21 .;;; 10987 IM 112l

real•4

-M1/3<;;y <;;Ml/3

real•8
-M1/3<;;y.s;;M1/3

e

c
"tJ

~
-.J
~

:0

~
N

CJ)
"tJ m
:0

"T1 :0
0 -<
=l c
:0 ~

~~ - (')
<o

CJ)
...... w

er
N
0

e e
Table 5-4. Standard Library Functions (Part 5 of 5)

General Generic Member Mathematical
Argument

Operation Name Name Definition
Number Type Range

D1stribut1on ERF 1 real •4 anY real argument

ERF
21 x 2

Y = Jrr .-u du

DERF 0
1 real •8 any real argument

ERFC 1 real•4 any real argument

ERFC
v= ..2 J :-u2

du Jrr
x

DE RFC v= 1 - erflxl 1 real•S any real argument

GAMMA 1 real•4 x > 2-252 and

V fu:-1.-udu

x <57.5744

GAMMA

0

DGAMMA 1 real•8 x > r 252 and

x < 57 5744

A LG AMA 1 real •4 x >o and

x < 4 2913 1073

~ ALGAMA ~
y=loge r Ix) or

LGAMMA y=log.j u:·- 1e-udu
DLGAMA 1 real•B x >o and

0
x < 4.2913 1073

Function Value

Type and

Range

real•4

1 ~y:s;;;l

real•B

1<;;y.;;1

real •4

o<;;v <;;2

real•8

o<;; v <;;2

real•4

0.88560 <;;; v <;;; M

real•S

088560 <;;y <;;M

real •4

-012149<;;y <;;M

real•S

-012149.;;y<;;M

e
c
-0

t,,.
:ti

~
,..,,

C/l
-0 m
:ti

~~
:ti c
~~
~~
-(")

<o
C/l

~

U1

~

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

5.6.3. Standard Library Subroutines

5-22

The standard library subroutines are procedures available in subprograms supplied with the compiler. These
subroutines are invoked by the CALL statement, and control is returned to the main program at the first
executable statement immediately following the CALL statement. All of the standard library subroutines may be
overridden; a user may supply his own routine with any of the FORTRAN names, such as OVERFL, ERROR, etc.
Such routines may be included with an INCLUDE control card at the time the program is linked. Note that the
library routine names all have a $ as the second character (e.g. 0$ERFL, ESROR).

The subroutines provided by FORTRAN IV are presented in 5.6.3.1 through 5.6.3.12 and summarized in Table
5-5.

5.6.3.1. Arithmetic Overflow and Underflow Test (OVERFL)

The overflow check subroutine, OVERFL, informs the program when computational results are not within the
maximum or minimum magniturde permitted for a value. A real computation always yields a correct fraction, but
the exponent is incorrect by 128 for an overflow and by -128 for an underflow. An overflow during an integer
computation yields unpredictable results. An overflow or underflow causes a program check interrupt; when this
occurs, various switches are set and program execution resumes at the next instruction, which may be in the
same FORTRAN statement. These switches are interrogated by the OVERFL subroutine:

CALL OVER FL (i)

where:

Is an integer*4 variable.

The variable is assigned a value of 1, 2, or 3 to indicate the status of the interrupt switches.

The OVERFL subroutine operates in three separate modes for compatibility with other FORTRAN systems:

• FORTRAN IV Mode

Integer and real overflow and real underflow are monitored. Only the last event, either overflow or
underflow, is reflected in the interrupt switches. The i values assigned are:

An overflow interrupt has occurred. A previous underflow interrupt will not be reported,
and the overflow/underflow interrupt switch is reset.

2 Neither overflow nor underflow has occurred.

3 An underflow interrupt has occurred. A previous overflow interrupt will not be reported,
and the overflow/underflow interrupt switch is reset.

Integer overflows are reported only if the I I OPTION BOF is in the job control stream of the executable
program.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

For example, the statements

X=(1BE75*1BE75)+(1BE-75*11H-75)
CALL OVERFL (I)
CALL OVERFL (J)

5-23

set the value of I to 3 and J to 2, indicating, respectively, that an underflow was the last interrupt and that
there are no conditions to report. If the arithmetic statement is written as

X=(1BE-75*1BE-75)+(1BE75*1BE75)

I has the value 1, indicating that an overflow was the last event.

• SPERRY UNIVAC Series 70 Mode

Integer and real overflow and real underflow are monitored independently. The i values assigned are:

An overflow has occurred. The overflow switch is reset. OVER FL should be entered again
to determine if an underflow has also occurred.

2 Neither overflow nor underflow has occurred.

3 = An underflow has occurred. The underflow interrupt switch is reset.

The module FL$0VW70 must be included with an INCLUDE control card during linkage editing and the
I I OPTION BOF must be specified in the job control stream.

For example, the statements

X=(1BE75*1BE75)+(1BE-75*1BE-75)
CALL OVERFL (I)
CALL OVERFL (J)
CALL OVERFL (K)

set the value of I to 1, J to 3, and K to 2, indicating, respectively, an overflow, an underflow, and that there
are no conditions to report.

• IBM System 360/370 Mode

Real overflow and underflow are monitored, but integer overflow is ignored. The i values assigned are
identical with those for the FORTRAN IV mode.

The desired mode of operation is selected when the executable program is linked and executed. Selection of IBM
mode causes the DVCHK subroutine to ignore integer division by 0.

5.6.3.2. Divide Check Subroutine (DVCHK)

The divide check subroutine, DVCHK, informs the program when an integer or real division by 0 occurs or an
integer result of a division exceeds ±2,147,483,647. In both cases, an indicator is set, and the computation
yields the original dividend. This indicator is interrogated with the statement:

CALL DVCHK (i)

UP-8474 Rev. 2

where:

Is an integer*4 variable.

SPERRY UNIVAC OS/3
FORTRAN IV

5-24

The values assigned to i by DVCHK are:

A divide check has occurred. The indicator is reset.

2 A divide check has not occurred.

Integer divide checks are reported only if the job control statement I I OPTION BOF is present in the control

stream of the executable program.

Example:

5 7

CALL DVCHK(I)
GO TO (11'1, 28), I

18 STOP 'TERMINATION ON DVCHK'
28 CONTINUE

If a division by O was attempted (1=1), program control is transferred to statement 10; otherwise, control goes to

statement 20.

5.6.3.3. Error Indicator Test (ERROR)

This standard library subroutine tests an indicator to determine if a function error condition or an 1/0 ERR exit
has occurred:

CALL ERROR (i)

where:

Represents an integer*4 variable.

The integer variable is assigned the following values:

=

2

3

4

5

If a function error condition exists after a reference to a standard library function (Table 5-4) or
to the ERROR1 subroutine.

If no function or 1/0 error exists.

If an ERR exit was taken from an 1/0 statement because of a data transmission error.

If an ERR exit was taken from an 1/0 statement because of improper data.

If an ERR exit was taken because of an unrecoverable 1/0 error. No further references to the
file are permitted.

A call of the ERROR subroutine, prior to additional 1/0 or function references, always returns a value of 2.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

5.6.3.4. Error Indicator Setting Subroutine (ERROR1)

5-25

This subroutine is used in conjunction with the ERROR subroutine. CALL ERROR1 sets the function error
indicator tested by the ERROR subroutine. This is also performed by the standard library functions. The reference
to the ERROR1 subroutine is:

CALL ERRORl

Example:

5 7

Z = XRAY (Q)
CALL ERROR (I)
GO TO (38,48),I

48 CONTINUE

38 error condition routine

FUNCTION XRAY (B)
IF (B) 18,28,18

28 CALL ERRORl
RETURN

18 CONTINUE

5.6.3.5. Indicator Setting Subroutine (SLITE)

The SLITE standard library subroutine sets or resets one or more of four indicators internal to the subprogram.
This subroutine is used with the SLITET subroutine, which tests these indicators. The format of the CALL
statement is:

CALL SLITE (e)

where:

e
Is an integer expression. The value of the expression determines the indicator settings:

0
If all four indicators are to be reset.

l,2,3,or4
To set the corresponding sense indicator.

-1,-2,-3, or -4
To reset the corresponding indicator.

5.6.3.6. Indicator Testing Subroutine (SLITET)

The SLITET subroutine tests the indicators controlled by the SLITE subroutine. The format of the CALL statement
is:

CALL SLITET (e, i)

UP-8474 Rev. 2

where:

e

SPERRY UNIVAC OS/3
FORTRAN IV

5-26

Is an integer expression with a value corresponding to the sense indicator to be tested.

Is an integer variable name returning the results of the test.

If the indicator specified by e is set, the integer variable i is set to 1. If the indicator is not set. or if e is outside
the range 1 ~e~4. then i is set to 2. Execution of the SLITET subroutine does not affect the indicator settings.

5.6.3.7. Control Information Check (SSWTCH)

The SSWTCH standard library subroutine allows the FORTRAN programmer to check control information during
program execution. This control information is provided prior to execution of the program on a I I SET UPSI job
control card used in the operating system.

The format of the CALL statement is:

CALL SSWTCH (e, i)

where:

e
Is an integer expression with a value of 1 through 4, representing a binary switch position.

Is the integer variable name used to return the result of the switch position test.

If the specified binary switch is set, the variable has the value 1; otherwise, its value is 2. Execution of the
SSWTCH subroutine does not alter the switch settings.

5.6.3.8. Main Storage Dump Routines (DUMP and PDUMP)

These subroutines cause a dump or listing of the main storage assigned to the program; the subroutines are
described in Section 10.

5.6.3.9. EXIT Subroutine

The EXIT standard library subroutine terminates the program. The CALL EXIT statement is equivalent to the
FORTRAN STOP statement (4.9).

5.6.3.10. FETCH Subroutine

The FETCH subroutine loads a separately executable program and transfers control to its transfer address.
Processing in the calling program is not resumed. An 1/0 error during the load causes immediate job
termination. The CALL statement has the format:

CALL FETCH (s)

UP-8474 Rev. 2

where:

s

Examples:

SPERRY UNIVAC OS/3
FORTRAN IV

5-27

Is a load module name which must be either an 8-character name enclosed in apostrophes, or a
double precision or complex variable containing a load module name. The load module name must
conform to the linkage editor LOADM parameter. See system services program manual, UP-8062
(current version).

7

DOUBLE PRECISION DNAME/'LOADMX00'/
CALL FETCH (DNAME)

CALL FETCH (' LOADMX00')

The two calls of the FETCH standard library subroutine are equivalent.

5.6.3.11. LOAD Subroutine

The LOAD standard library subroutine loads subprogram overlays. Control is not transferred to the subprogram
but returns to the statement immediately following the CALL statement requesting the overlay. An 1/0 error
during the load causes immediate job termination. The loaded subprogram cannot share the same main storage
addresses as the procedure containing this CALL statement.

The format of the CALL statement is:

CALL LOAD (s)

where:

Is a phase name that must be an 8-character name enclosed in apostrophes, or a double precision or
complex variable containing a phase name.

5.6.3.12. · OPSYS Subroutine

The OPSYS subroutine loads subprogram overlays and transfers control to the statement following the CALL
statement.

The format of the CALL statement is:

CALL OPSYS ('LOAD',s)

where:

s
Is a phase name that must be an 8-character name enclosed in apostrophes, or a double precision or
complex variable containing a phase name.

This statement is equivalent to the CALL LOAD (s) statement.

UP-8474 Rev. 2

Subroutine

OVER FL

DVCHK

ERROR

ERROR1

SLITE

SLITET

SSWTCH

DUMP

PD UMP

EXIT

FETCH

LOAD

OPSYS

SPERRY UNIVAC OS/3
FORTRAN IV

Table 5-5. Standard Library Subroutines

Format Use

CALL OVERFL (i) Tests for overflow or underflow.

CALL DVCHK (i) Tests for invalid division.

CALL ERROR (i) Tests for function or 1/0 error conditions.

CALL ERROR1 Sets the function error indicator.

CALL SLITE (e) Sets the sense indicators specified.

CALL SLITET (e,i) Tests for the setting of specified sense indicators.

CALL SSWTCH (e,i) Tests the binary switch specified by the integer
expression and returns a value in the integer
variable name.

CALL DUMP (list) Dumps main storage assigned to the program;
program execution terminates.

CALL PDUMP Oist) Dumps main storage assigned to the program;
program execution continues.

CALL EXIT Terminates the program.

CALL FETCH (s) Loads and transfers control to the overlay specified
by the phase name.

CALL LOAD Is) Loads subprogram overlays and transfers control to the
program statement after the CALL statement.

CALL OPSYS ('LOAD'. s) Loads subprogram overlays and transfers control to the
program statement after the CALL statement; equivalent
to CALL LOAD statement.

5-28

Special
Name

0$ERFL

D$CHK

E$ROR

E$ROR1

S$1TE

S$1TET

S$WTCH

D$MP

P$UMP

E$1T

F$TCH

L$AD

0$SYS

UP-8474 Rev. 2

6.1. GENERAL

SPERRY UNIVAC 05/3
FORTRAN IV

6-1

6. Specification Statements

Specification statements are nonexecutable statements that inform the compiler about program data and main
storage allocation. See the "Specification Statements" section of the fundamentals of FORTRAN programmer
reference. All statements in this section are order dependent. Refer to Figure 1-1.

6.2. ARRAY DECLARATION

An array is an ordered set of elements identified by a symbolic name (1.2.4). An array may be declared in a
DIMENSION statement, a COMMON statement, or in an explicit type statement (INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, or LOGICAL).

6.2.1. Array Declarator

Format:

where:

v
Is a symbolic name identifying the array.

Is a unsigned integer constant or integer variable (for adjustable dimensions); an integer variable
used to declare an adjustable dimension must be a COMMON variable or a dummy argument of the
integer type; from one to seven dimensions may be declared.

Description:

The array declarator specifies the name and the dimensions of an array. If the array name is a dummy
argument, the array is a dummy array, and the dimensions may be specified as integer variables. In the
interest of efficiency, dummy arrays are processed at execution time in a special fashion. The procedure

prologue (5.5.1, 5.5.2) saves the subscripts in dimension declarators from the argument list or common
storage, and derives a partial solution to the equation used to locate array elements (Table 2-2). Thereafter,
subscript calculations in the body of the procedure can be performed more quickly. A side effect of this
technique, however, is that it is impossible to redeclare array dimensions within procedures; for example,
in the code sequence.

UP-8474 Rev. 2

Example:

5 7

DIMENSION B (5,18)
CALL A (B,5,18)

SUBROUTINE A (X,l,J)

SPERRY UNIVAC OS/3
FORTRAN IV

DIMENSION X (l,J); DECLARES (5,18)
5 J=5

10 1=18
X (M, N)= ...

Statements 5 and 10 do not change the array from X(5,10) to X(10,5).

6.3. DIMENSION STATEMENT

Format:

where:

v (i)
Is an array declarator (6.2.1)

Description:

The DIMENSION statement declares arrays.

Examples:

5 7

1. DIMENSION INRAY (10)
2. DIMENSION ARRAY2 (10) ARRAY3 (10,6,9)

6-2

1. This DIMENSION statement declares an integer array named INRAY, which has 10 elements. No
initialization of the array is accomplished.

2. The second DIMENSION statement declares two arrays containing real data elements.

6.4. TYPE STATEMENTS

Two kinds of type statements can be used in FORTRAN IV; the explicit type statements INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, and LOGICAL; and the IMPLICIT type statement. In the absence of typing with these
statements, symbolic names starting with the letters I, J, K, L, M, and N are considered to be integer*4 type
(FORTRAN name rule); all others are considered to be real*4.

e

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

6-3
Update B

6.4.1. Explicit Type Statements

Format:

where:

a

c

*S

Is the type, specified as INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL.

Is a variable name, an array name, an array declarator, or a function name.

Is an optional list of constants used to initialize the immediately preceding variable name or array.
When used to initialize an array, the /c/ may be a list each element of which may be a c, or j*c
when using the multiplier constant.

Is an optional length specification (2.3); may not be specified if the type is DOUBLE PRECISION.

Description:

An explicit type statement not only specifies the data type of a name but also contains initialization values
when the /c/ option is used. Numeric initialization values are converted to the type of the corresponding
variable or array, but note that truncation may occur.

The length implied by type (t), with or without the optional length specification (*S), applies to every name
in the list unless it is specifically overridden by a specification for the individual name. See 5.6.2.1 for a
discussion of specifying intrinsic and standard library functions in type statements.

Examples:

1 .
2.
3.

1 .

7

REAL LOAF, IOTA/5.21,JOKE/7.5/,*MATRIX(3,4,5)/60*0.0/
REAL*B A,B,C
REAL A,B*B,C

This statement specifies LOAF, IOTA, JOKE, and MATRIX as real types. In addition, IOTA is assigned
a value of 5.2; JOKE, 7.5; and the array MATRIX consists of 60 elements and is initialized with 0.0 in
every element.

2. In this explicit type statement, the variables A, B, and C all are typed as double precision due to the
length specification.

3. This statement specifies A and C as real variables; B is double precision variable because of its length
specification .

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

6-4

6.4.2. IMPLICIT Statement

Format:

IMPLICIT t*s(a 1,a 2 , ••• ,an).t*S(an+1-am•···), ...

where:

a

*S

Is the type, specified as INTEGER, REAL.DOUBLE PRECISION, COMPLEX, or LOGICAL.

Is a letter (A through Zand $)associated with the specified data type. The format of this specification
may be A,B,C, etc., with commas separating each letter, or it may be A-D, to specify a range of
letters.

Is the optional length specification.

Description:

The IMPLICIT statement permits the user to specify his own implicit type conventions for each program
unit. The IMPLICIT statement specifies types of symbolic names by the first letter of the name, including
the dollar sign.

•

$ may not be included in a range specification (two letters separated by a minus sign). It must be separate. •
The dollar sign indicates real data by standard typing conventions.

Symbolic names that start with a letter not covered by the IMPLICIT statement are typed according to the
standard conventions. Any implicit typing, whether standard or specified by the IMPLICIT statement, is
superseded by explicit typing.

Symbolic names that appear in the program before the IMPLICIT statement are typed by standard
conventions, except for dummy arguments in a SUBROUTINE or FUNCTION statement and the function
name in a FUNCTION statement, which are redefined by the first IMPLICIT statement, but not subsequent
IMPLICIT statements. IMPLICIT statements must appear in the specification group (Figure 1-1).

Example:

Explanation:

7

IMPLICIT REAL*S(A-D,F),LOGICAL(L),
*INTEGER*2(N,Q,U,V), INTEGER(X-Z,$)

After processing the IMPLICIT statement in the example, names beginning with the letters of the character
set are typed as follows:

• A through D are double precision, as specified by the IMPLICIT statement, because real*B is the
equivalent of double precision;

• E is real, because of the standard convention;

• F is double precision, as specified by the IMPLICIT statement; •

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

• G and H are real because of the standard convention;

• I, J, and K are integer because of the standard convention;

• L is logical, as specified by the IMPLICIT statement;

• M is integer because of the standard convention;

• N is integer*2, as specified by the IMPLICIT statement;

• 0 and Pare real because of the standard convention;

• Q is integer*2, as specified by the IMPLICIT statement;

• R through T are real because of the standard convention;

• U and V are integer*2, as specified by the IMPLICIT statement;

• W is real because of the standard convention;

• X and $ are implicitly typed as integer by the IMPLICIT statement; and

• Y and Z are real because of the standard convention.

6.5. EQUIVALENCE STATEMENT

Format:

E Q U I VALENCE (k,) • (k2) ••••• (kn)

where:

k

6-5

Is a list of the form a1,a2, ••• ,an and each a is a variable name, an array element name, or an array
name. Each name specified in the list shares assigned storage. Dummy arguments may not appear in
the list.

Description:

The EQUIVALENCE statement permits sharing of a main storage unit by two or more entities specified
within parentheses. The equivalence provided by the statement is in relation to the first, or leftmost, byte of
the entities specified. (See 6.6.1 for a discussion of the effects of the interaction of EQUIVALENCE and
COMMON statements.)

Program execution time is increased whenever a variable that does not have a proper boundary alignment
is referenced. To achieve proper alignment, a variable must have an assigned main storage address that is
an integral multiple of its length. Complex*16 variables require an 8-byte (double word) and complex*8
requires a 4-byte alignment. There are no boundary requirements for the logical*1 variables.

The first variable in each EQUIVALENCE group is assigned to a main storage address that is a multiple of 8
if possible. If erroneous boundaries are present in the EQUIVALENCE group, the addresses in the group are
increased successively by 2, 4, and 6 in an attempt to correct the error. Thereafter, it is the programmer's
responsibility to ensure that the variables in the EQUIVALENCE group have the proper alignment.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

6-6

6.6. COMMON STATEMENT

Format:

COMMON /x,/a,/ ... /xn/an

where:

x

a

Is an optional symbolic name identifying the COMMON block. If no symbolic name appears between
the slashes or if x1 with its associated slashes is omitted, blank COMMON is assumed.

Is a nonempty list of variable names, array names, or array declarators. No dummy arguments are

permitted.

Description:

The COMMON statement allows sharing of a common main storage area by different program units. When
block names are specified, the compiler treats each block as a separate control section (CSECT) whose
allocation will appear separately on the linker map. When no block name is specified (blank COMMON), the
compiler uses a CSECT name that is not assigned by the programmer. It is the programmer's responsibility
to ensure that every variable and array in COMMON has the proper boundary alignment. FORTRAN IV

inserts spaces to achieve proper alignment.

Every named or blank COMMON block is assigned a main storage address that is a multiple of 8. Each
COMMON variable or array is assured of proper alignment if it is placed in the block in descending length:
complex*16 variables and double precision first. then real and complex*B, and so on until logical*1
variables. In differing program units, when multiple definitions of a COMMON block specify different sizes

for the block, the largest definition is accepted.

6.6.1. COMMON/EQUIVALENCE Statement Interaction

The compiler does not process COMMON and EQUIVALENCE statements individually in the sequence in which
they are encountered. Instead, these statements are processed in three consecutive phases:

1. COMMON storage is allocated by processing all COMMON statements without regard to boundary

requirements.

2. EQUIVALENCE groups that do not contain COMMON variables or arrays are processed, and storage is
allocated. In any group containing improper boundaries, address adjustments are attempted.

3. EQUIVALENCE groups that contain COMMON variables or arrays are allocated storage without regard to
boundary requirements. This may have the effect of lengthening COMMON at the right end of the list;
COMMON cannot be extended at the left end of the list.

Example:

7

DIMENSION A(3)
COMMON B,C,D
EQUIVALENCE (A,D)
COMMON E

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

The format produces a blank COMMON configuration of

D E
B c shares storage with shares storage with

A(1) A(2)

6-7

A(3)

The first three statements can be ordered in any arbitrary sequence with the same result. Replacement of the
third line with the following statement is an illegal extension of COMMON.

7

EQUIVALENCE (A(3),8)

6.7. EXTERNAL STATEMENT

Format:

EXTERNAL v1 ,v 2 , •••• vn

where:

v
Is the name of an external function or an external subroutine.

Description:

The EXTERNAL statement specifies function or subroutine names used as actual arguments to an external
procedure. If an intrinsic function name appears in an EXTERNAL statement, that procedure is assumed to
have been written by the user, and no assumptions about its properties are made. This is also true with the
standard library function names. (See 5.6.2.1 for a discussion of specifying intrinsic and standard library
functions in an EXTERNAL statement.)

A procedure name can appear both as an actual argument and as a dummy argument. This can occur
when the procedure name is passed through multiple levels of procedure reference. In such a case, an
EXTERNAL statement must appear at every level of procedure call.

When the context of the program uniquely identifies a symbolic name to be a procedure name, the
EXTERNAL statement is unnecessary:

5 7

10 CALL A

20 CALL B(A)

No EXTERNAL statement is needed, but if statements 10 and 20 are reversed in sequence, the following
statement is needed.

7

EXTERNAL A

UP-8474 Rev. 2

6.8. PROGRAM STATEMENT

Format:

PROGRAM s

where:

s

SPERRY UNIVAC OS/3
FORTRAN IV

Is the symbolic name used to identify a main program.

Description:

6-8

The PROGRAM statement may be optionally used to identify a main program for later reference by the
linkage editor and librarian. When present, the PROGRAM statement is the first statement of the program
unit. In the absence of this statement, the compiler assumes the name $MAIN for main programs. Two
main programs cannot be compiled in the same job if this statement is not specified, since the second main
program supersedes the first.

The symbolic name s is a special name that bears no relationship to any variable or array name in the
program unit. It must be unique with respect to the SUBROUTINE, FUNCTION, BLOCK DATA, and
COMMON block names in the executable program.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7-1

7. Input and Output

7.1. GENERAL

This section describes the characteristics of the input/output system and the FORTRAN IV statements required
for input and output control. For further information, refer to the "Input/Output and FORMAT Statements"
section of the fundamentals of FORTRAN programmer reference. Also see Section 11 in this manual that
describes the usage of the data management system in the COi environment and Section 12 that describes the
usage in the DTF environment.

The FORTRAN input and output statements are READ and WRITE. These statements designate an 110 device
and reference an 110 list; they may reference a FORMAT statement. The input and output devices used in
FORTRAN for sequential files include card reader, printer, card punch, magnetic tape, and disk subsystems used
sequentially. Direct access processing also is possible with disk subsystems. The peripheral devices are assigned
unit numbers within the user's system.

7.2. INPUT /OUTPUT LIST

The purpose of an 110 list is to identify variables, arrays, and array elements so that they may be transferred to
and from external devices. The 1/0 list is an ordered set of items with the format:

where:

a
Is a simple 1/0 list which may be a variable, array element, or array name;

Is two simple lists separated by a comma;

Is a simple 1/0 list in parentheses; or

Is a DO-implied list (7.2.1).

Example:

V2,ARRAY,MATRIX(5)

This 1/0 list consists of a variable, an array name, and an array element.

The subscript expression of an array element may not reference a function.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

7-2

In an unformatted input/output statement, the 1/0 list directly determines record length; in a formatted
statement, record length is determined by the interaction between the list and the FORMAT specifications.

NOTE:

Section 11 discusses record length limitations with regard to various devices and the file access method in a CD/
environment. Section 12 discusses record length in a DTF environment.

7.2.1. DO-Implied List

Format:

(k' d)

where:

k

d

Is an 1/0 list (7.2).

Is a DO specification with the form: i=m 1, m2, m3 where parameter interpretation is identical with the

DO statement (4.7).

Description:

The DO-implied list allows the transfer of list elements in the sequence specified by the DO parameters.

Do-implied lists may be nested to a maximum of seven levels.

Example:

(((AX(I ,J,K), 1=1,5),J=l,5),K=l,5)

If the 3-level DO-implied list in the example is used in a WRITE statement, the group of 125 elements of
array AX is transferred to the specified external medium. The transfer would be to storage if the list were
used in a READ statement. See 2.4.1 for the general expression to determine the location of array

elements.

7.3. SEQUENTIAL FILES

The use of the American National Standard FORTRAN 1/0 statements READ, WRITE, BACKSPACE, REWIND,
and ENDFILE is defined in 7.3.1. through 7.3.7. The FORMAT statement. used for editing values represented by

character strings on the external media, also is described.

Files referenced with the standard statements are always treated as sequential, even when they reside on disk

storage.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7.3.1. Unformatted 110 Statements

7-3

An entire list of variables, arrays, and array elements transferred to an external device by an unformatted WRITE
statement exists as a single logical record for a subsequent unformatted READ or BACKSPACE order. The
formats are:

WRITE (u,SCREEN=b)k
WRITE (u)k
RE AD (u , END= I ab e I , SCREE N=b , ERR= I ab e 12) k
READ (u,EOF=label,,ERR=label 2)k
RE AD (u , END= I ab e 11 , ERR= I ab e 12) k

where:

u

Is a constant or integer variable designating an 1/0 device.

EOF=label

Is an optional specification denoting the statement label of the statement to receive control, if an
end-of-file condition occurs.

END= I ab e I
May be substituted for the EOF=label specification.

ERR=label

Is an optional specification denoting the statement label of the statement to receive control, if an
error condition occurs.

SCREEN=b

k

NOTES:

Is an optional 8-character name enclosed in apostrophes, a double precision, or a complex variable
containing the name of a full screen workstation format.

Is an 1/0 list. which may be empty for a READ statement to indicate the record to be skipped.

1. The order of END (or EOF), ERR, and SCREEN specifications are interchangeable.

2. The SCREEN parameter name may also be specified on the USE job control statement which calls screen
format services. Screen format service allows the user to set up a multiple line template that can be issued
to the workstation terminals with one input or output imperative (full screen workstation) or a single line­
by-line method. See the current versions of the screen formatting concepts and facilities user
guide/programmer reference and the job control user guide.

Description:

The unformatted 1/0 statements initiate and control the transfer of unformattted data between a
designated peripheral device and main storage.

Unformatted 1/0 is designed for high efficiency data transfer and, consequently, no data conversion
operations take place; the variables are specified in 2.3. Only minor input validity checking is performed in
keeping with this emphasis on throughput.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

7-4

If the list for a WRITE statement consists of two integers followed by three double precision values, the

only valid READ statements for that record are:

READ (u);bypass the record
READ (u) I
READ (u) I, I
READ (u) I, I, D
READ (u) I, I, D, D
READ (u) I, I, D, D, D

Even more efficiency can be achieved by reducing a list to a single element. Compare the following

program segments:

7

DIMENSION A(18) ,B(2B) ,C(3B)
DOUBLE PRECISION B

WR I TE (9) A , B , C

D I MENS I 0 N A (1 B) , B (2 B) , C (3 B) , DU MM Y (8 B)

DOUBLE PRECISION B
E Q U I VA L ENC E (DU MM Y , A) , (DU MM Y (1 1) , B) ,

1 (DUMMY (51) , C)

WRITE (9) DUMMY

The contiguous ascending storage addresses implied by DUMMY in the second segment allow greater

efficiency in the data transfer.

7.3.1.1. END, ERR, and SCREEN Clauses

In an unformatted READ statement, the END, ERR, and SCREEN clause may appear in any order after the unit
designation. In a formatted READ statement, these clauses may appear in any order after the FORMAT
designation. EOF is an alternate form for END and is identical in function in FORTRAN IV. If the END parameter
is not present in a READ statement, the program is terminated with an informational message if the end-of-data
is encountered. If either the END or EOF specification is present, control is transferred to the specified statement
label when the end-of-data is encountered.

The ERR parameter specifies a statement label to which control is passed when it is impossible to completely
process the current list. Other records in the file might still be available for processing. To describe the situation,
the indicators tested by the ERROR subroutine (5.6.3.3) are set. If the ERR parameter is not specified, the
program is terminated with an informational message when a record cannot be processed.

The screen clause denotes the name of the full screen workstation terminal format where the input/output is to
be applied (applicable to COi environment only).

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7.3.2. Formatted READ/WRITE Statements

Formats:

READ (u,a)k
READ (u,a,SCREEN=b)k
READ (u,a,EOF=label,)k
RE AD (u , a , END= I a b e I ,) k
READ (u,a,ERR=label ,SCREEN=b)k
RE AD (u , a , END= I a be 11 , ERR= I ab e 12) k
WR I TE (u , a) k
WRITE (u,a,SCREEN=b)k

where:

u
Is a constant or an integer variable designating an input or output device.

a

7-5

Is an array name, a NAMELIST name (7.3.5.1), the label of a FORMAT statement (7.3.3), or the
asterisk character (7.3.5.2).

EOF=label
Is an optional specification indicating that if an end of file condition is encountered on input, the
program is to branch to the label specified.

END=label
Accomplishes the same as EOF=label.

ERR=label
Is the optional specification of a label to which control is passed on encountering an error condition.

SCREEN=b

k

NOTE:

Is an optional 8-character name enclosed in apostrophes, a double precision, or a complex variable
containing the name of the full screen workstation format.

Is an optional 1/0 list.

The SCREEN parameter name may also be specified on the USE job control statement which calls the screen
format services routine. See the job control user guide for details.

Description:

The formatted READ/WRITE statements initiate and control the transfer of formatted data between a
designated peripheral device and main storage. Data is always converted from and to character strings on
external media and the internal representation specified in 2.3. A COMPLEX variable or array element
always requires two FORMAT editing codes. In a READ statement referencing a workstation terminal, any
combination of the END, ERR and SCREEN clauses is permitted (COi environment only).

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7-6

7.3.2.1. 1/0 Compatibility Statements

The following FORTRAN II statements are accepted by the FORTRAN IV processor:

READ a,k
PUNCH a,k
PRINT a,k

where:

a
Is the statement label of a FORMAT statement. an array name, or the asterisk character (7.3.5.2).

k
Is an 1/0 list.

NOTE:

FORTRAN II unit specifications are required when executing with a user-defined 110 configuration. The
FORTRAN system-supplied 110 module (FL$101) provides the appropriate devices.

7.3.3. FORMAT Statement

Format:

where:

q

z

Is the label of the FORMAT statement.

Is an optional group of one or more slashes; each time a slash appears in the FORMAT statement. it

signals the end of a logical record.

Is a field descriptor (7.3.3.1) or a group of field descriptors specifying the data conversion or the

action to be executed.

Is a field separator (either a slash or a comma) required when more than one field descriptor is used;
commas are not required when they follow fields described by a blank (wX), Hollerith (wHc1c2 .•. cw)
and literal ('c1c2 .•• cw') descriptors; slashes end a logical record.

Description:

The FORMAT statement specifies editing information for transforming formatted data (character strings)
from and to internal representations. The FORMAT statement descriptors are described in 7.3.3.1. through

7.3.3.4.

•

UP-8474 Rev. 2

Examples:

5 7

SPERRY UNIVAC 05/3
FORTRAN IV

100 FORMAT (' FIRST PAGE'/)
110 FORMAT (///112,2Xll2/)

7-7

If referenced by a WRITE statement, the first FORMAT statement causes the transfer of the literal FIRST
PAGE and provides an additional blank logical record. The second format statement skips three logical
records and then describes a record with a 12-byte integer field, two blanks and another 12-byte integer
field, plus another blank record.

7.3.3.1. Field Descriptors

The field descriptors specify the kind of 1/0 data conversion or action to be executed. FORTRAN IV allows the
descriptors listed in Table 7-1.

Table 7-1. FORMAT Statement Field Descriptors

Classification Field Descriptor

Integer rlw

Real (E conversion) srEw.d

Real (F conversion srFw.d

Double precision srDw.d

Logical rLw

General srGw.d

Hollerith (A conversion) rAw

Hollerith (H conversion) wHC1C2 ... Cw

Hexadecimal rZw

Literal 'c1C2 ... cw'

Blank wX

Record Position Tp

LEGEND:

a repeat count (0<r~255)

w the field width (0<~255)

s the scale factor nP (-128<n<+127) - optional

d decimal positions (cr-;;;d~w)

c character

p character position in the external record (0<p~32767)

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

7-8

The specifications within the field descriptors are described in the following listing and the input and output •
actions accomplished by the descriptors are described in 7.3.3.1.1 through 7.3.3.1.12.

• Repeat Count

The repeat count allows a field descriptor to be repeated a maximum of 255 times. The repeat count
specification must be an unsigned integer constant. The field descriptor 5L3 is the same as L3,L3,L3,L3,L3.

• Field Width

The field width specification is an unsigned integer constant indicating the number of character positions
the data occupies, or will occupy, in the external medium. The specification must not exceed 255.

• Scale Factor

Input and output using the E, F, D, and G conversion codes can be scaled up or down (multiplied or divided)
by the specified power of 10, when the scaling specification in the format nP is included in the field
descriptor. A complete description is available in the fundamentals of FORTRAN programmer reference.
Refer also to 7.3.3.1.13.

• Decimal Positions

The specification describes the number of digits to the right of the decimal point; if none exist, a zero must
be specified.

• Character

Any character of the FORTRAN character set is permissible.

• Character Position

See 7.3.3.1.12.

Field descriptors may be grouped by using parentheses. The left parenthesis may be preceded by a group repeat
count indicating the number of times the enclosed descriptors are to be repeated. The maximum is 255. Nesting
to three levels is permitted. The result of the basic group and repeat count 2(2X,215.F10.0) is
2X,15,15,F10.0,2X,15,15,F10.0.

7.3.3.1.1. Integer Descriptor (rlw)

On input operations, if the value exceeds the range, only the least significant digits are stored with the sign, if
any. An integer, which consists of a signed integer constant where the positive sign is optional, may contain, or
be preceded by, embedded zeros or blanks. Blanks are interpreted as zeros.

If the value exceeds the permissible range of ±32,768 for integer*2 or ±2,147,483,647 for integer*4, the list
element is defined to be the least significant 16 or 32 bits.

On output, the external field is preceded by a minus sign if the value is negative, and may be preceded by blanks,
space permitting, if the value is positive. If the internal value cannot be converted into the w characters
specified, the output field is set to w asterisks.

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7-9

• 7.3.3.1.2. Real Descriptor - E Conversion (srEw.d)

•

•

On input, the external field consists of a string of digits optionally preceded by blanks or zeros preceded by an
optional sign. Blanks are interpreted as zeros. The digit string may specify a decimal point, which overrides the d
specification in the descriptor. The digit may be followed by exponent notation, E or D followed by an optionally
signed integer constant. If the integer constant is signed, the E or D may be omitted. If the number of significant
digits exceeds the precision of the list element, the value is rounded to the correct size. If the value is too small
or too large for the range, a zero is substituted.

On output, the external field has the following format:

where:

Is the sign of the value, either blank or -.

n
Is a decimal digit.

Is the sign of the exponent, either blank or -.

ee
Is the 2-digit exponent.

Note the decimal point preceding the digits.

For a complete representation of all values, the w specification should provide at least seven more additional
field positions than the d specification. The rules governing the output form when w is not at least 7 greater than
d are:

• If (w-d) is 6, the zero character preceding the decimal point is deleted from the output form.

• If (w-d) is 5 and the value is nonnegative, both the s1 and the zero character preceding the decimal point
are deleted from the output form.

• If neither of the above conditions holds, the entire output field is set to asterisks.

7.3.3.1.3. Real Descriptor - F Conversion (srfw.d)

For input action, refer to the E conversion description (7.3.3.1.2). On output, the external field has the following
form:

s i 1 i 2 ••• i w - d -1 * f 1 f 2 ••• f d

where:

s
Is the sign of the value, either blank or - .

Is a digit within the integer portion of the output value.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Is a digit within the fractional portion of the output value.

7-10

Suffcient space must be provided for a minus sign if the value is negative. If the integer part of the value is
nonnegative and requires more than (w-d-1) character positions for its representation, or is negative and
requires more than (w-d-2) character positions, then the E conversion is used instead of the F conversion
specified by the descriptor. If neither F nor E conversions suffice to represent the value, the entire field is set to
asterisks.

7.3.3.1.4. Double Precision Descriptor (srDw.d)

For input action, refer to the E conversion description in 7.3.3.1.2. On output, also discussed in 7.3.3.1.2, the
external field has the following form:

7.3.3.1.5. Logical Descriptor (rlw)

The logical field descriptor allows the input or output of logical values. On input, the field is scanned until a Tor
an F is encountered; if no T or F is found, the list element is set to the .FALSE. statement. On output, a Tor an F
is inserted in the record. The character is right-justified and is preceded by w-1 blanks.

7.3.3.1.6. General Descriptor (srGw.d)

This descriptor provides the capabilities of the E, F, l,and the L conversion codes. During an input operation, this
descriptor accepts any real data form with or without an exponent. During an output operation, the F conversion
code is automatically selected if sufficient field width is specified in the descriptor; if not, the standard E or D
exponential form is selected for output.

The G descriptor may also be used to transfer integer, double precision, and logical data fields. For double
precision data, the G descriptor is, in effect. the same as a D descriptor. For integer and logical data, the G
descriptor is interpreted as an I or an L descriptor, respectively.

The d field in the format indicates the number of significant digits and must be greater than zero when editing
real data. The d and s editing information in the format may be omitted when transferring integer or logical data;
it is ignored when present.

7.3.3.1.7. Hollerith Descriptor - A Conversion (rAw)

This descriptor requires a corresponding variable or array element name in the 1/0 list. The maximum number of
characters that can be transmitted to a variable or array element is equal to the length, in bytes, of the variable
or array element.

On input, if the descriptor specifies fewer than the maximum number of characters, the data field is transferred
to main storage and left-justified; blanks are insertetJ in the remaining storage positions. If the descriptor
specifies more than the maximum number of characters, only the rightmost characters of the data field are
transferred to main storage. The remaining characters are skipped.

On output. if the descriptor specifes fewer characters than can be represented in the variable type, the leftmost
characters of the data field are transferred from main storage. If the descriptor specifies more characters than
can be represented in the variable type, the data field (right-justified and preceded by blanks) is transferred from
main storage to the external field.

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7.3.3.1.8. Hollerith Descriptor - H Conversion {whc1c2 ••• cw)

7-11

On input, the next w characters transferred from the external device replace the current Hollerith data specified
in the format statement. On output, the Hollerith data currently contained in the FORMAT statement is
transferred to an external device.

7.3.3.1.9. Hexadecimal Descriptor {rZw)

This descriptor is used to transfer hexadecimal digits, any two of which may be stored in one byte in the list item.
The number of digits associated with the data types are:

Number of
Type Hexadecimal Digits (k)

Logical*l 2

Logical*4 8

lnteger*2 4

lnteger*4 8

Real*4 8

Double precision 16

Complex*8 16

Complex*16 32

On input, the hexadecimal digits are stored two to a byte, right-justified, and zero filled; blanks are interpreted as
zeros. If a minus sign precedes the value, the leftmost bit of the variable is set to 1.

On output, a sign position is never produced, and when w is less than k in the above table, hexadecimal digits
are truncated on the left. When w exceeds k, (w-k) blanks precede the value.

7.3.3.1.10. Literal Descriptor ('c 1c 2 ••• cw ')

This format code, similar in function to the H conversion, causes alphanumeric information to be read into or
written from the literal data in the FORMAT statement. It is not necessary to specify an external field width. No
1/0 list item in a READ or WRITE statement is associated with this form of alphanumeric transmission. If an
apostrophe is required in a Hollerith string, two successive apostrophes must be specified. For example, the
characters DONT are represented as 'DON'T. The effect of the literal format code depends on whether it is
used with an input or an output statement. A literal may not exceed 255 characters.

• Input

The characters in the external field replace the literal data in the FORMAT specification in main storage.
Contiguous inner apostrophes in the FORMAT specification are consolidatd into a single apostrophe. Field
width is determined by the literal length after contiguous apostrophes are eliminated. For example, the
FORMAT descriptor 'A" "B' causes the next four characters to be input. Each apostrophe in the external
field is treated as a separate character.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7-12

For example, if the input data in positions 1 through 10 is COUNTERL:i.l:i.l:i. and the following statements are
used, the READ statement causes the 10 characters specified COUNTERL:i.l:i.l:i. to be transferred, replacing
the characters HEADINGL:i.l:i.l:i. in the FORMAT statement.

5 7

READ (1, 28)
20 FORMAT ('HEADING ')

• Output

All characters, including blanks. within the apostrophes and the characters representing the literal
constant are written as part of the output data. The descriptor 'DON'T causes the five characters DON'T to
be written.

Example:

WRITE (30, 18)
10 FORMAT (' THESE ARE SAMPLE PROBLEMS')

Execution of the WRITE statement causes the following record to be written:

THESE ARE SAMPLE PROBLEMS

7.3.3.1.11. Blank Descriptor (wX)

This descriptor omits the next w consecutive characters on input. On output, the blank descriptor skips w
positions in the output record. At the time each output formatted record is started, it is filled with blanks.

7.3.3.1.12. Record Position Descriptor (Tp)

This descriptor specifies the position in a FORTRAN record where data transfer is to begin. Input and output may
begin at any position by using the Tp descriptor. The value of p represents the start position. As noted for the X
descriptor, each output formatted record is blank filled at the time it is started. For example, the format
specification

(T7, 13 HEMPLOYEEL:i.NAME,T100,9HTELEPHONE,T40, 12HHOMEL:i.ADDRESS)

causes record positions not specified in the field specification to be filled with blanks. However, for print records,
the position specified becomes print column t-1, because the first character of a print record is interpreted as the
carriage control character (Table 7-2), which is not printed. Thus, a print record for the format shown in the
example would be:

EMPLOYEE NAME HOME ADDRESS TELEPHONE

_PRl-NT __ --~;; _________ 7 ________ ---J/
LOCATION

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7-13

The following statements cause the 10 characters starting from position 20 of the record to be converted
according to the F10.3 code and stored in Y, and the 5 characters starting from position 1 to be converted
according to the F5.1 specification and stored in B.

5 7

READ (3,2) Y, B
2 FORMAT (T29,Fl9.3,Tl,F5.l)

7.3.3.1.13. Scale Factor Effects
'

Scale factors have the form nP, where n is an optionally signed integer constant, and affect only D, E, F, and G
format codes. Scale factors associated with other format codes are not meaningful.

READ and WRITE statements set an effective oP at their outset. By using an nP directly preceding either a format
code or its associated repeat specification (if any), all the following D, E, F, and G format codes will be treated as
though each were preceded by nP until a new scale factor is encountered. This rule applies even when a rescan
of the entire FORMAT statement is required. For variables of type real or complex, a scale factor will either shift
the decimal point n positions or have no effect, according to the following rules:

• Scaling has no effect when an input field contains an exponent or, for G output, when the internal value is
within the range of effective F conversion.

• When an exponent is produced by a D, E, F, or G output conversion, scaling multiplies the basic real
number by 10 n and reduces the produced exponent by n. Thus, external value== internal value.

• In all other cases, the scale factor implies a change of value according to the rule: external value == internal
value· 10 n_

7.3.3.2. Multiple Record Format Specification

The slash(/) is a record delimiter and a field separator. If a list of field specifications is followed by a slash, the
remainder of the record being edited is ignored on input or filled with spaces on output. Any editing codes
following the slash are used to edit the next record. The outer right parenthesis of the FORMAT statement is also
a record delimiter if 1/0 list elements of the corresponding 1/0 statement remain at the time it is scanned.

7.3.3.3. Caniage Control Conventions

The first position of a printer output record does not print, but determines the action of the printer carriage. The
action executed for a given carriage control symbol is described in Table 7-2.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table 7-2. Carriage Control Conventions

Symbol Meaning

6 1-line advance

0 2-line advance

+ No advance

1 Skip to top of next page

- 3-line advance

NOTE:

All actions take place before printing.

7.3.3.4. Format Interaction with 1/0 List

7-14

During the execution of an 1/0 statement, the FORMAT specification is scanned from left to right. Editing codes
of the form wH, 'h1 ... h n ', wX and Tp, as well as slashes, are interpreted and acted upon without reference to the
1/0 list. When any other editing code is encountered, one of two possible actions is taken:

1. if a list element remains to be transmitted, it is converted and transmitted, and the FORMAT scan

continues; or

2. if no list elements remain, both the current external record and the READ or WRITE statement are

terminated.

A maximum of three levels of parentheses is permitted in a FORMAT statement:

LABEL FORMAT (.. (.. (..) ..) .. (.. (..) ..) ..)
1 2 3 3 2 2 3 3 2 1 •

When the right parenthesis at level 1 is encountered and a list element remains to be transmitted, a new record

is started and one of two possible actions is taken:

1. if level 2 parenthetical groups exist, the FORMAT scan is resumed at the repeat count preceding the

rightmost level 2 grouping; or

2. the scan is resumed at the beginning of the FORMAT.

An occurrence of a complex variable in an 1/0 list requires two real editing codes, and complex*16 variable
requires two double precision editing codes.

List items must be associated as shown in Table 7-3.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

Table 7-3. Permissible Associations of list Items

Descriptor Data Types of List Items

Integer lnteger*2, integer*4

Real (E conversion, Real*4, real*8, the real or
F conversion), imaginary part of complex*8 or complex* 16

double precision types

Logical Logical* 1, logica1•4

General, lnteger•2, integer•4, real•4, real•8
Hollerith logical• 1, logical*4, the real or
(A conversion), imaginary part of complex•8 or
hexadecimal complex* 1 6 types

7.3.4. Reread Form of READ Statement

Format:

READ (u,a)k

where:

u
Is a constant or integer variable designating the reread unit.

a
Is the statement label of a FORMAT statement or an array name.

k
Is an 1/0 list.

Description:

7-15

The reread form of the READ statement allows the previous record transferred to main storage to be
reedited using a different FORMAT statement. This order neither selects nor initiates action on a peripheral
device.

The FORTRAN IV library contains a unit table that associates unit numbers with files. In this discussion, it
is assumed that unit 29 has been associated with the reread feature; actually, any one or more units can
be designated (see Section 11 for CDI environment and Section 12 for DTF).

The reread feature is used when the program must determine the kind of information in a record. For
instance, both header and detail records may be intermixed, and each kind of record may require different
editing information in a FORMAT statement. After a READ order transfers a record to main storage, the
record is identified by the program. If the correct format was applied, the program performs the necessary
action on the data; if not, the program may execute a statement such as:

READ (29,a)k

This would be in conjunction with the desired FORMAT statement.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

7-16

No ERR return is allowed with a reread. If an END or EOF label is specified and the previous read
encountered an end-of-file, control is returned to the specified label. An unformatted record may not be

reread.

Example:

8
characters

8 8

l.D.,_-4----------4----------+-------l

2

5 7

DATE

10
characters

DATA
FIELD1

TIME

10

DATA
FIELD2

DOUBLE PRECISION DATA. TIME,PLACE,D(S)
C READ RECORD

READ (28,15) I.DATE.TIME.PLACE
15 FORMAT (ll,3A8)
C IDENTIFY RECORD

IF (1-1),99 ;GO PROCESS HEADING CARD
C CARD IS DETAIL, SO FORMAT EDIT AGAIN

READ (29,311) D
311 FORMAT (IX,5Dlll.4)

7.3.5. List-Directed Input/Output

PLACE

--"' .s:

Heading Card

10 Detail Card

DATA
FIELDS

Two classes of list-directed input/output statements are provided in FORTRAN IV. Both classes process only
formatted records, with the FORTRAN IV system automatically supplying the necessary FORMAT specifications.

• Namelist input/output records contain variable or array element names with their associated values. The
entire list is named, and on input the file is automatically searched to locate the name (7.3.5.1).

• Simple list-directed input/output records contain values without variable or array names. The statements
are syntactically simple and require less main storage during program execution .(7.3.5.2).

7.3.5.1. NAMELIST Statement

Format:

NAME L I ST In 1Ia1 . a 2, ••.. an In 2/ a ' 1 , a '2 •••• , a ' n ...

where:

n

a

Is a namelist name of from one to six characters, beginning with a letter and enclosed in slashes,
used to identify the set of data names that follow.

Is a simple list of variables or arrays of any type representing the data to be transferred; array
element names are not permitted.

UP-8474 Rev. 2

Rules:

SPERRY UNIVAC OS/3
FORTRAN IV

7-17

1. Once the namelist name is defined by its appearance in a NAMELIST statement, it cannot be
redefined in any other statement and can appear only in 1/0 statements.

2. The list of variables and array names belonging to the specified namelist ends with the specification
of another namelist name enclosed in slashes or with the end of the NAMELIST statement.

3. A variable name or array name may be associated with more than one namelist name.

Description:

The NAMELIST statement is a nonexecutable statement that permits formatted data transfer operations
without either a FORMAT statement or a list of names in an 110 statement.

To use this statement, symbolic data set names are specified in the NAMELIST statement and also in the
record of data to be transferred. No data type is implied by the data set name; for example, a NAMELIST
statement specifying two sets of data may appear as:

7

NAMELIST/GRUPI/A, I ,MATRIX/GRUP2/X,J
DIMENSION MATRIX (28)

GRUP1 contains the variable names A and I and the array MATRIX/GRUP2 contains the variable names X
and J.

An 1/0 statement can specify a namelist name in place of the usual reference to a format specification.
The name specified identifies the record to be transferred. Data in a record is preceded by a variable or
array element name and an equals symbol. To ensure transfer of the correct data, the object program
compares the data name associated with a namelist with those in the record.

The general formats of 1/0 statements used in conjunction with the NAMELIST .statement are:

R E AD (u n i t , n am e I i. s t - n am e , E N D= I a b e 11 , E R R= I a b e I 2)

WRITE(unit,namel ist-name)

Note that the END and ERR clauses are optional and that no list is present.

The general form of data for input is:

where:

n
Is a namelist name (a name identical with the name specified in the NAMELIST statement).

a
Is a variable, an array element, or an array name of any data type.

UP-8474 Rev. 2

c

SPERRY UNIVAC OS/3
FORTRAN IV

7-18

Is a single, optionally-signed constant of the same type as the associated name; or (if the name is an
array name) c is a list of .one or more elements, each element separated by a comma, where an
element is either an optionally signed constant or a list of identical. optionally-signed COl'.IStants
preceded by an unsigned integer repeat count of the form k•.

The following rules pertain to input data:

1. The first character in a logical record must be blank. The second must be an ampersand immediately
followed by the namelist name without any embedded blanks. The namelist is separated from the
succeeding symbolic name by a blank or blanks. A comma after the last data unit is optional. The end of the
NAMELIST record is signaled by &END.

2. When an array element or an array occurs in a NAMELIST record, the data is an optionally signed constant
of the same type as its associated name. The constants can be preceded by an unsigned integer and an
asterisk to indicate repetition. An array nee(t not be filled by its data list.

3. No blanks may be embedded in constants.

4. If logical constants are used, the acceptable values are T or .TRUE. and F or .FALSE..

5. literal constants can be transferred on input by using either apostrophes or the wH field descriptor. Literal
constants may appear on an input record as TITLE='DON'T or TITLE=5HDON'T.

A READ statement referencing a namelist name causes the next record to be read and tested for the proper
namelist name. If the name is found, the first variable or array name is read and compared with the list of names
defined in the NAMELIST statement. If the variable or array name is found in the list, the data value or values are
assigned, and the next name is accessed. If the record does not contain the namelist name, subsequent records
are read from the external medium until the record containing the name is found. If, after the proper record is
found, a variable or array name that is not in the list of names appears in the input record, an error message is
produced and the program is terminated.

Output data contains the namelist name followed by variables. array elements, and/or array names and their
corresponding values. An array is written out by columns. Data fields are large enough to contain all the
significant digits. Output data can be read by an input statement referencing the namelist name. Literal data is
never produced as output.

7.3.5.2. Simple List-Directed Input/Output

list-directed 1/0 statements are identical in concept with formatted READ and WRITE statements except for the
lack of a specific FORMAT statement reference. They are distinguished by the presence of the character asterisk
(*)in place of the usual FORMAT reference, as in:

R EA D (18 , * , END= 3 8) A , B , C

These statements initiate and control the transfer of formatted data between a designated unit a~d main storage.
Format control is provided by the FORTRAN system based on the types of the list items and the record length
associated with the unit. When preparing input data, the programmer must ensure that it conforms to the
requirements of this list-directed format, specifically in regard to the use of the comma, slash, and blank
characters. list-directed output records are, of course, acceptable as list-directed input.

UP-8474 Rev. 2

• Input Data Format

SPERRY UNIVAC OS/3
FORTRAN IV

7-19

An input record consists of a list of constants, each demarcated by a separator. Separators are the
characters:

blank (or a series of blanks)

comma (preceded and followed by zero or more blanks)

end-of-record

slash (preceded by zero or more blanks)

Since the blank is considered a separator, no embedded blanks may appear in arithmetic constants. A
blank, comma, or slash may appear within a literal constant enclosed within apostrophes, and end-of­
record forces a read of the next sequential record.

For card input, end-of-record is determined by the fixed length of 80 positions. For other input, such as
tape or disk, the length specification given at the time the record was written is the determining factor. The
slash separator causes termination of the READ statement.

Real constants must be associated with real list items; integer and literal constants may have any
association. The exponent identifiers E and D are considered equivalent.

The real and imaginary parts of a COMPLEX constant must be separated by a comma and enclosed in
parentheses. A repeat count may precede a constant using the form:

r*constant

Two or more consecutive comma separators (with any number of blanks or end of records intervening)
indicates that the corresponding list items are not to be redefined. Multiple numbers of these "null items"
may be indicated by:

(separator)r*(separator)

Example:

1 7

INTEGER E,F,G
READ(U,*) A.B.C,D,I,F,G,H,I

c::..:~.:~7.12.2• .·HE··s·

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

After the READ statement is executed, the values of the list items will be:

A 17.2396 (or 17.23961727 if real*8)

B 12.0

C,D unchanged

E HE'S

F 12

G 14

H,I unchanged

• Output Data Format

7-20

The output records consist of a list of constants, each separated by a comma. Output records never contain
repeat items (r*constant) or literals. The maximum precision commensurate with the list item will be

represented.

7.3.6. Auxiliary 1/0 Statements

Auxiliary 1/0 statements control the demarcation of files and the positioning of files to desired points of

reference.

7.3.6.1. REWIND Statement

Format:

REWIND u

where:

u ~

Represents an integer constant or variable designating a sequential file on tape or disk.

Description:

The REWIND statement positions the file to a point immediately preceding all records of the file. The file is

closed before a rewind operation.

7.3.6.2. BACKSPACE Statement

Format:

BACKSPACE u

where:

u
Is an integer constant or variable designating a sequential file on tape or disk.

UP-8474 Rev. 2

Description:

SPERRY UNIVAC OS/3
FORTRAN IV

7-21

The BACKSPACE statement activates the designated unit and causes a backspace of one logical record.

A record for a formatted file is defined by the termination of a WRITE statement, a slash encountered
during format control, or the last parenthesis encountered in the format when other list items exist in the
corresponding READ or WRITE statement. It is illegal for a format to demand a record longer than is
present at the current file position.

In an unformatted environment, a record is defined by a single WRITE statement. The BACKSPACE
statement has no effect if the file associated with a unit is currently positioned immediately preceding the
first record. This statement should not be used when the file is used for list-directed input/output.

A BACKSPACE statement issued to an unopened file is a null operation. Logically, a BACKSPACE
statement can follow only a READ statement or a WRITE statement to that file. A BACKSPACE statement
after a WRITE statement closes and repositions the file; the file is open after a legal BACKSPACE
statement.

The BACKSPACE statement cannot be used with:

• a file of blocked records;

• a file having two 1/0 areas; or

• a file having a work area (DTF environment only).

However, these restrictions do not apply when backspacing over a file's end-of-file record.

7.3.6.3. ENDFILE Statement

Format:

ENDFILE u

where:

u
Is an integer constant or variable designating a card, tape, or sequential disk output file.

Description:

The ENDFILE statement closes the file specified by the unit number. Only a REWIND statement is allowed
after an ENDFILE statement is issued; all other commands produce error messages. An ENDFILE statement
issued to an unopened file is a null operation physically.

7.3.7. Sequential File Considerations

The 1/0 statements may not be executed in arbitrary sequences. The following listing shows instances where
specific commands are prohibited or ignored.

UP-8474 Rev. 2

~
Successful
READ

EOF
encountered
during READ

WRITE

ENDFILE

BACKSPACE

REWIND

No previous
operation

LEGEND:

SPERRY UNIVAC OS/3
FORTRAN IV

READ WRITE ENDFILE

w

BACK- I
SPACE
missing
(warning)

p File
truncated

p BACK- I
SPACE
missing
(warning)

I

Indicates an ignored operation.

P Indicates a prohibited operation.

BACKSPACE REWIND

N

I I

I I

N Indicates that the operation is noted, but the file is still positioned following
the last logical record. A second BACKSPACE must be issued to position the
file in front of the last logical record in the file.

W Indicates operation not permitted with double buffering.

7-22

In addition, since not all operations are permitted on all devices, the following listing shows prohibited
combinations.

~ e READ WRITE END FILE BACKSPACE REWIND

TAPE * *

DISK * *

CARD READ p p p

CARD PUNCH p

PRINTER p

REREAD p p p

WORKSTATION p p

*Prohibited when files are defined as input only or output only.

(See buffer allocation for tape and disk devices.)

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7-23

Formatted and unformatted records may be freely intermixed on output tape and disk files, but it is the
responsibility of the user to read these records in the same mode as they were written.

7.3.8. File Screen Workstation 1/0

In addition to line-by-line 1/0, the user can reference the workstation terminal using pregenerated screen ·
templates. These templates can be accessed via formatted or unformatted FORTRAN 1/0 statements. Data
transmitted using editing features of screen format services is done via FORTRAN unformatted 1/0 statements.
FORTRAN edited data should· be transmitted as character inserts that are not re-edited by screen format
services. It is the user's responsibility to coordinate the FORTRAN 1/0 statements with the screen format edit
services. A complete discussion of screen format services can be found in screen formatting concepts and
facilities user guide/programmer reference. A backspace or rewind is not permitted.

7.4. DIRECT ACCESS FILES

FORTRAN IV direct access statements are used to control disk subsystems. The term "direct access" refers to
the ability of the disk to access a specified record of a file without accessing all preceding records. Disk
subsystems need not be accessed directly; these devices may be used with sequential files in the same manner
as for tape units. In this case, the only 1/0 statements required are those described in 7.3.

The direct access 1/0 statements are DEFINE FILE, FIND, READ, and WRITE. The direct access 1/0 statements
can transmit either formatted or unformatted records.

7.4.1. DEFINE FILE Statement

Format:

D E F I N E F I L E u 1 (r 1 , m1 , x 1 , v 1) , u 2 (r 2 , m2 , x 2 , v 2) , ... , u n (r n , m n , x n , v n)

where:

u

m

x

Is a file identifier, an integer constant specifying a file, or a unit reference number.

Is an integer constant specifying the number of records in the file.

Is an integer constant specifying the maximum size of a record in the file in terms of characters
(bytes}, main storage locations (bytes), or main storage units (words), depending on the specification
for x.

Is one of three possible code letters to indicate an option of format control:

L

E

u

Transfers either formatted or unformatted data, where the specification form determines the
number of bytes.

Transfers formatted data, where the specification for m determines the number of bytes.

Transfers unformatted data, where the specification of m designates main storage units.

UP-8474 Rev. 2

v

SPERRY UNIVAC 05/3
FORTRAN IV

7-24

Is the associated variable for the file, which must be an unsubscripted integer*4 variable. After
execution of a READ or WRITE statement, the variable is assigned a value in the range (1 ~ v ~ r)
indicating the sequential position of the next record in the file; after execution of a FIND statement, it
is assigned a value indicating the position of the desired record. It is not defined (i.e., set to a value)
by the DEFINE FILE statement.

Description:

A DEFINE FILE statement is executable, and it dynamically describes one or more files that may be
referenced during program execution. At the start of execution of a FORTRAN program, all direct access
units are considered to be undefined, and no READ, WRITE, or FIND references are permitted. When a
DEFINE FILE is executed, the characteristics of one or more units are registered with the FORTRAN system,
and the units are made available for use. Thereafter, further definitions of previously defined units are
ignored.

The associated variable v should not be passed indiscriminately between subprograms or used for
purposes other than a file pointer, since the compiler has no syntactic clues as to its usage when the
DEFINE FILE statement is absent in a subprogram. When an associated variable must be transmitted to a
subprogram, it should be passed in COMMON storage or, less preferably, associated with a dummy
argument called by name.

To calculate the record size in storage units (when using the u specification for parameter x): determine the
total number of bytes required for all the items of the 1/0 list, and divide this by 4. If the quotient is not an
integer, round it to the next highest integer. There is no restriction on the transmission of multiple records
by FORMAT/list interaction, but unformatted lists cannot specify more than one disk record.

Example:

7

DEFINE FILE 3(190,120,L,FILE3),
15(98,80,U,FILES)

File 3 is composed of 100 records, the maximum size of which is 120 bytes. L indicates that the record size
is specified in bytes. If the 1/0 statement contains a reference to a format, 120 bytes of formatted data are
transferred; if unformatted data is transferred, File 5 contains 98 records, each 80 bytes in length.

7.4.2. Disk READ Statement

Format:

R EA D (u ' p , a , E RR= I a b e 11 , E ND= I a b e I 2) k

where:

u

p

a

Is a file identifier represented by an integer constant or variable followed by an apostrophe.

Is an integer expression designating the position of the record in the file, which should be in the
range (1~~r), where r is the number of records in the file.

Is an optional label of a FORMAT statement, an array name, or the character asterisk.

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

7-25
Update B

ERR= I ab e 11

Optionally specifies the label of a statement to which control is to be transferred when an error
condition occurs.

END= I ab e 12

k

Example:

Optionally specifies the label of a statement to which control is to be transferred when an ENDFILE
record is encountered, or when p is outside the file limits.

Is an 1/0 list.

5 7

INTEGER FILE3/1/
DEFINE FILE3(100,512,l,FILE3)

R EA D (3 ' F I l E 3 , 8 7 , E R R= 11 0) A , B , (C (I) , I = 1 , 3 0)

87 FORMAT (32F16:4)

The first record in file 3 is tranferred to main storage when the READ statement is first executed. Each
subsequent execution of the READ statement transfers the next record in the file to main storage, unless
the associated variable FILE3 is explicitly redefined. The descriptor 32F16.4 indicates that each unit of data
consists of 16 bytes and 32 such units of data are to be transferred. Thus, the 512 bytes (16x32) of the
record are transferred to main storage.

The slash in a FORMAT specification can control the starting point of data transfer in a file. If the FORMAT
statement in the example is:

F 0 RMA T (I I 3 2 F 16 . 4)

the first execution of the READ statement transfers the third record in the file; the second execution
transfers the sixth record.

7.4.3. Disk WRITE Statement

Format:

WR I TE (u ' p , a) k

where:

u

p

a

k

Is a file identifier represented by an integer constant or variable followed by an apostrophe.

Is an integer expression designating the position of the record in the file .

Is an optional FORMAT statement label, an array name, an integer variable to which the statement
label of a FORMAT statement has been assigned, or the character asterisk.

Is an 1/0 list.

UP-8474 Rev. 2

Example:

5 7

SPERRY UNIVAC OS/3
FORTRAN IV

DEFINE FILE 4(158,36,L,FI LE4)

LOGICAL

DOUBLE PRECISION D

FILE4 2

WRITE (4' FILE4+1,2) l,R,D,L

2 FORMAT (18, Fl2.2, Dl5.5, LI)

7-26
Update B

Thirty-six bytes (8 + 12 + 15 + 1) are transferred from storage to the third record in the file. The format
specification indicates the number of bytes for the integer, real, double precision, and logical values
transferred. If the WRITE statement does not specify a format label, an unformatted WRITE statement is
executed. In this case, 20 bytes are transferred.

Variable Name Type Number of Bytes

Integer 4

R Real 4

D Double precision 8

L Logical 4

20 Total

7.4.4. Disk FIND Statement

Format:

FIND (u'p)

where:

u

Is a file identifier represented by an integer constant or variable and followed by an apostrophe.

p
Is an integer expression designating the position of a record in the file.

•

•

•

UP-8474 Rev. 2

Description:

SPERRY UNIVAC OS/3
FORTRAN IV

7-27

The FIND statement can decrease the time required to execute an object program requiring records from
disk. This statement positions the access arms to a disk address specified by a file identifier and a record
position. During the time the arms are being positioned, execution of the object program can continue.
After positioning, a READ statement accessing the record addressed in the FIND statement may be
executed, and the record is transferred to main storage; thus, data transfer is completed more quickly
when the arms are pre-positioned to a required track address prior to the execution of a READ statement.
The FIND statement is never logically required in a program.

Example:

7

FIND (4' 28)

READ (4' 28) A, B, C

This example shows the relationship between a READ statement and a FIND statement. While the access
arms are being positioned, the statements between the FIND statement and the READ statement are
executed.

•

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

8-1

8. Data Initialization

8.1. GENERAL

Data initialization for FORTRAN IV programs is described in this section. For more information, refer to the
fundamentals of FORTRAN programmer reference. See the type statements (6.4.1), which have an initialization
capability. In the absence of initialization, variables and array elements must be defined prior to reference.

8.2. DATA STATEMENT

Format:

DATA k1/d 1 /, k2 /d 2 /, ••• , kn /d n I

where:

k

d

Is a list of variable names, array names, array element names, or implied DO lists separated by
commas.

Is a list of constants, any of which may be preceded by r* to specify a repeat count, where r is an
unsigned integer constant. Items in the list are separated by commas.

Description:

The DATA statement initializes values represented by a variable, an array, and specified array elements.
None of these should be in blank COMMON; they should be labeled COMMON only if the DATA statement
appears in a block data subprogram.

Array element names may appear in DATA statements if their usage conforms to the following
conventions:

• Subscript expressions are restricted to the standard American National Standard forms: c, v, c*v,
c*v+k, c*v-k, and v-k, where c and k are positive integer constants and v is an integer variable.

• When v appears in a subscript the array element name must be within the range of an implied DO
list in which v is the control variable .

• The initial, terminal, and incremental values of the control variable of any implied DO list must be
specified as positive integer constants.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

8-2

Constants may be of the integer, real, double precision, complex, hexidecimal, logical, or literal type. When
the corresponding variable is of a differing type (except for logical or literal), the constant will be converted,
possibly causing truncation.

The DATA statement may be used to initialize arrays and variables with literal data. When initializing an
array element or variable, a long literal string is truncated on the right to the corerect size and a shorter
string is filled with blanks on the right to the correct size.

Several consecutive elements of an array may be initialized with a single literal constant by using the array
name without a subscript or by using an array element as the last item on the list. The long literal constant
is placed in as many consecutive array elements as needed to contain it. If the last used position is only
partially filled, that element is padded on the right with blanks. Truncation occurs if the lateral string
exceeds the limit of the array or the 255-character literal limit.

Example:

DIMENSION ARR(6)
DATA ARR/'ABCDEFGHIJKLM'/

This produces:

ARR (1)
ARR (2)
ARR(3)
ARR(4)
ARR (5)
ARR(6)

contains
contains
contains
contains
not initialized
not initialized

'ABCD'
'EFGH'
' I J KL'
'M6M'

A long literal may be overlaid if the constant list contains more than one constant.

Example:

DIMENSION ARR(6)
DATA ARR,VAR/'ABCDEFGHIJKLM' ,99/

This produces:

ARR (1)
ARR (2)
ARR(3)
ARR(4)
ARR(5)
ARR(6)
VAR

contains
contains
contains
contains
not initialized
not initialized
not initialized

'ABCD'
99.IJ
' I J KL'
M6M

Initialization may commence at any point in the array.

Example:

DIMENSION ARR(6)
DATA VAR,ARR(3)/17,10HABCDEFGHIJ/

•

UP-8474 Rev. 2

This produces:

VAR
ARR (1)
ARR(2)
ARR(3)
ARR(4)
ARR(5)
ARR(6)

contains
not initialized
not initialized
contains
contains
contains
not initialized

SPERRY UNIVAC 05/3
FORTRAN IV

11.e

'ABCD'
'EFGH'
'IJM'

8.3. BLOCK DATA SUBPROGRAM

8-3

A block data subprogram is an independently compiled specificat•on subprogram. It is used to initialize values in
labeled common blocks. The subprogram can contain only DATA, EQUIVALENCE, COMMON, DIMENSION, TYPE,
and IMPLICIT statements. The block subprogram is headed by the BLOCK DATA statement. The order of
statements is governed by the rule shown in Figure 1-1.

8.3.1. BLOCK DATA Statement

Format:

BLOCK DATA s

where:

s
Is an optional symbolic name used to identify the BLOCK DATA subprogram.

Description:

The BLOCK DATA statement is the first statement in a block data subprogram, the statement indicating the
beginning of a block data subprogram to the compiler. For a discussion of the effects of s, see the PROGRAM
statement (6.8). In the absence of s, the compiler supplies the name $BLOCK.

•

<;'-if ~b''' -:-{

"~-~='J'.~:;~_,-.:~~

•

•

•

UP-8474 Rev. 2

9.1. GENERAL

SPERRY UNIVAC OS/3
FORTRAN IV

9-1

9. Compilation

The FORTRAN IV compiler accepts source programs from either a card file or a disk file. Card files are entered
directly into the card reader along with the appropriate job control stream. Disk files are built by the system
librarian and its job control stream is entered from a disk (filed job control stream) or from the card reader. When
operating in the COi environment, disk files may also be built from a workstation terminal using the facilities of
the system editor. Appendix E contains compilation examples.

9.2. FORTRAN IV COMPILERS

The FORTRAN IV compilers are named FOR4 and FOR4L; both require one work file allocated in the job control
stream. FOR4 requires 1080016 (X'10800') bytes of main storage plus space for the prologue; FOR4L requires
1900016 (X'19000') bytes of main storage plus space for the prologue. When FOR4 is executed, FOR4L will
automatically be loaded if sufficient main storage was allocated for the job. No other use is made of additional
storage. FOR4L contains significantly larger tables and workfile 1/0 buffers.

9.3. PARAMETER STATEMENT FORMAT

Parameter statements for the compiler appear as punched cards in the job control stream.

Format:

II LPARAML

The I I sequence must be in columns 1 and 2; columns 73 through 80 are not used. One or more blanks are
required before and after PARAM, and one or more blanks are permitted after a comma. Each argument consists
of a name (n), and equal sign, and a compiler directive (d). An argument may not contain embedded blanks.
Multiple PARAM statements are permitted, but continuation is not. An argument may not continue on another
card. For an explanation of statement conventions that apply to this section, refer to 1.4 .

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

9-2
Update B

9.3.1. Compiler Arguments

A list of arguments provided by the FORTRAN IV compiler follows. Descriptions of the arguments follow the list.

Format:

LABEL 60PERATION6 OPERAND

II 6PARAM6 OUT=fi lename,MAP=(S,A,L),
L I N= f i I en am e , LS T =op t i on . 0 PT= (S , N , X , C , T) ,
ERRFIL=module-namellfdname
IN=module-namelf i lename

Input Argument:

IN=module-namelf i le name
Specifies compilation of source programs residing in disk files.

Module-name is a one to eight alphanumeric character identifier indicating the name of a source
module to be compiled. Filename is a one to eight alphanumeric character identifier indicating the
name of a file in which the module resides. If /filename is not specifed, a default name is assumed
and can be described via the LIN argument.

The occurrence of an IN argument signals the end of the scanning for other PARAMs. Arguments following
an IN argument on a given // PARAM card are ignored. Subsequent I I PARAM statements may contain
only IN arguments to allow for stacked compilations (see 9.4).

Output argument:

OUT=f i I ename
Specifies the file in which the compiler is to place object modules.

A one to eight alphanumeric character identifier is specified by filename. If OUT is not specified, the
compiler places all object modules in the temporary scratch file YRUN.

Map Argument:

MAP=(S,A,L)
Specifies the type of maps produced by the compiler. One or all options may be chosen. The options
include:

s

A

L

Specifies object summary information, including module size and external subroutines called.

Specifies an alphabetical listing of the addresses assigned to variables, arrays, and statement
labels.

Specifies a listing of the addresses assigned to variables, arrays, and statement labels in order
by the storage locations assigned.

When a MAP argument is specified, it supercedes the maps selected by the LST argument. Also, when a
MAP argument is specified, it is not necessary to specify LST=M.

•

•

•

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

9-3

Library Input Argument:

LIN=filename
Specifies the name of the default file in which the source modules reside.

A one to eight alphanumeric character identifier is specified by file name. If LIN is not specified, the
compiler assumes the default filename of LIB1. This argument is used in conjunction with the IN
argument.

Listing Argument:

LST=option
Specifies the quantity of listings produced by the compiler.

One option may be chosen. The options include:

N

s

M

Specifies an abbreviated listing consisting of only the compiler identification, parameters, and
diagnostics.

Specifies, in addition to the N listing, the source code listing.

Specifies, in addition to the S listing, an object summary and a storage map showing the
addresses assigned to variables and arrays. (Can be superseded by the MAP argument.)

If no LST PARAM is specified, the S option is assumed.

Options Argument:

OPT=(S, N, C, T)
Specifies compilation options.

One or all options may be chosen. The options include:

s

N

x

c

Specifies that statement numbers will be inserted into the generated code as an aid to
debugging. When S is specified, the size of the object program and its execution time can
increase significantly.

Specifies that no object program is to be generated. The program units are merely compiled and
cannot be executed.

Specifies compilation of all cards with the character X in column 1. If this option is not
specified, these cards will be treated as comments.

Specifies all references to array elements are to be checked to determine if they are outside the
declared limits of the array .

--,

UP-8474 Rev. 2

T

SPERRY UNIVAC OS/3
FORTRAN IV

9-4
Update B

Specifies that tracing of executed labels is requested. The compiler generates a special
subroutine call at every label. A TRACE ON statement must occur in the program to activate
tracing.

If only one OPT argument is specified, the parentheses are optional.

Error File Argument:

ERRF I l=modu I e-namel I fdname

Specifies that an error file is created. This file allows the programmer to correct source code using
the error file processor (EFP) instead of the output listing.

Module-name is a one to eight alphanumeric character identifier indicating the module name of an
OS/3 MIRAM source library file. Lfdname is a one to eight alphanumeric character identifier
indicating the LFD name of an OS/3 MIRAM source library file.

If no ERRFIL parameter is specified, the error file is not written.

9.4. STACKED COMPILATION

The FORTRAN IV compiler is capable of processing up to 100 source program units during a single execution.
When the source programs are on punched cards, one or more units may be placed between the/$ and/* data
set delimiters. The data set is proceded by compilation // PARAM statements. All FORTRAN IV compiler
parameters are global and apply to all programs compiled. When a parameter is to be changed, the job control
stream should be organized into two or more FORTRAN IV compilations, each containing the required
parameters. For example:

I 5 7
II WORK!
II EXEC FOR4
II PARAM
1$

1·
II WORK!
11 EXEC FOR4
II PARAM
1$

1·

(one or more program units)

(one or more program units)

When the source programs are on disk files, the programs are identified by using a librarian module name. A
source module consists of one or more FORTRAN program units. The IN compiler parameter is used to identify
source files to the compiler. Note that once FORTRAN IV encounters an IN parameter, no parameters, except
other IN parameters, may occur.

When FORTRAN IV is doing a stacked compilation, the work file usage is cumulative. Thus, it may be desirable to
do multiple executions of the compiler to reduce the work file requirements.

•

•

•

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

9.5. SOURCE CORRECTION FACILITY

9-4a
Update B

When source programs reside on disk, it is possible to change the source as it is read into the compiler. If a /$

and /* data set immediately follow the I I PARAM statement with the IN argument, the compiler assumes that
the data set contains correction cards to the source file. The method of correction is the same for the system
librarian's module correcting (COR) function. Refer to the current version of the system service programs (SSP)
user guide. The corrections apply only to this compilation and the original source is not changed. When the
compilation is complete, the next card available in the control stream immediately follows the /* card. For

example:

- - - - - ------ - -----------~-------~--,

•

•

•

UP-8474 Rev. 2

5 7

II PARAM IN=MODAIFILEA

1$

update of correction cards

I*

I I PA RAM ...

NOTE:

SPERRY UNIVAC OS/3
FORTRAN IV

9-5

A data set to be compiled from cards may not immediately follow an IN card because it will be mistaken for a
correction deck.

9.6. CREATING A JOB CONTROL STREAM

The problem of creating a legal job control stream is greatly simplified by using the proper jproc (job control
procedure). How to use jprocs is described in Appendix E. However, if you want to create your own job control
stream, the following rules must be observed:

• The FORTRAN compiler requires one work file. The jproc WORK1 supplies this file.

• If the IN or OUT options are specified, the appropriate disk files must be defined.

• A printer device is required and must be defined by the I I DVC 20 and the I I LFD PRNTR job control
statements.

• Because of the stacked compilation feature (9.4), the // OPTION REPEAT feature of job control is not
required and, in fact, must not be used.

• If the I I OPTION LINK or the I I OPTION LINK.GO job control statement is specified, no linkage editor
control cards or control stream data from the program is allowed; the source correction facility (9.5) or the
stacked compilation feature (9.4) would mistake the data set for FORTRAN source code.

9.7. USE OF LARGER VERSION

Programs containing a large number of variables, arrays, statement labels, function references, etc., may require
the FOR4L compiler to compile successfully. Some of the error messages that indicate that the larger version of
the compiler is necessary are:

SYMBOL TABLE EXCEEDED

TOO MANY CONSTANT EXPRESSIONS

Recompile your program using the FOR4L compiler.

•

UP-8474 Rev. 2

10.1 GENERAL

SPERRY UNIVAC OS/3
FORTRAN IV

10-1

10. Debugging

Debugging aids are provided with the FORTRAN IV compiler. These debugging aids consist of the standard 1/0
statements (especially list-directed statements described in 7.3.5), conditional compilation, subscript checking,
label tracing (TRACE ON and OFF), and the DUMP and PDUMP standard library subroutines for formatted main
storage dumps.

10.2 CONDITIONAL COMPILATION

The compiler accepts the parameter which enables conditional compilation of any line which contains the
character X in position 1 of the. line. When this parameter is enabled, the line will be compiled; otherwise, the
line is treated as a comment.

Example:

I 5 7
X PRINT IB, A, B, C
X IB FORMAT (3Fl5.6)

This coding is used to print intermediate results during the debugging of a program. When debugging is
complete, these statements can remain dormant in the source to be used at a later date if necessary. See
Section 9 for the format of the PARAM statement.

10.3. FORMATTED MAIN STORAGE DUMP

Two FORTRAN IV standard library subroutines, DUMP and PDUMP, are provided to display variables and arrays.
These two subroutines are identical, except that DUMP terminates the calling program and PDUMP does not.

Format:

UP-8474 Rev. 2

where:

p

u

Is either DUMP or PDUMP.

SPERRY UNIVAC OS/3
FORTRAN IV

10-2

Is a variable or array element name indicating the upper address boundary for the display.

Is a variable or array element name indicating the upper address boundary for the display.

Is an integer indicating the desired 'interpretation of the storage area.

The u and I specifications may be interchanged; their positions in the CALL statement do not influence the dump.
The argument list enclosed in parentheses is optional.

The codes used for the format specification f are:

Display Interpretation f Display Interpretation

0 Hexidecimal 5 Real*4

Logical*1 6 Real*B

2 Logical*4 7 Complex*B

3 lnteger*2 8 Complex*16

4 lnteger*4 9 Literal

The output of these subroutines is directed to the debug unit or to the standard diagnostic unit. If no argument
list is present, the dump is for the entire program and is in hexadecimal format.

10.4 USE OF OPT=S

Initially a program unit should be compiled using the OPT=S option. This yields more diagnostics and makes
debugging easier when the statement numbers are available. After the program unit has been debugged, it
should be recompiled without the OPT=S option. This will eliminate the instructions that dynamically store the
card sequence numbers.

When using the subscript check and label trace features, OPT=S supplies additional information and should
always be specified.

10.5 SUBSCRIPT CHECKING

The FORTRAN IV compiler dynamically checks the value of the subscript by accepting a parameter that causes
code to be generated before every subscripted reference.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

10-3

The most common programming error is referencing outside the declared limits of an array. FORTRAN IV checks
every subscript reference if the user specifies the OPT=C compilation parameter option. The following example
shows the use of this feature.

Example:

1 5 7
11 EXEC FOR4
II PARAM OPT=(S,C)
1$

1·

SUBROUTINE A
DIMENSION X(10)
1=20
PRINT 100,X(I)
STOP

100 FORMAT (F20 3)
END

The following message is output to the diagnostic device during execution of the PRINT statement.

FL530 SUBSCRIPT 00000020 OUT OF RANGE ON CARD 0004 OF MODULE A

No recovery of the bad subscript is attempted. The number of times a subscript error is permitted and reported is
controlled by the FARG option of the error control definition macro (ERRDEF).

The OPT=C option significantly increases the size and execution time of the program. After the program is
debugged, it should be recompiled to eliminate the extra code.

The ON CARD field of the message requires the OPT=S option; otherwise, the field will be zeros.

10.6 LABEL TRACE

To follow the actual sequence of executed statements, FORTRAN IV has a trace facility. If the OPT=T parameter
option is specified, the compiler generates a special subroutine call at every executable label. When the
statement is executed, the following message is displayed on the diagnostic device if tracing is activated:

FL050 CONTROL AT STATEMENT_ ON _OF MODULE _

To control the trace facility, two new statements are available (see 10.6.1 and 10.6.2).

The OPT=T option significantly increases the size and execution time of a program. After the program is
debugged, it should be recompiled to eliminate the extra code.

The ON CARD field requires the OPT=S parameter option; otherwise, the field will be zeros.

UP-8474 Rev. 2

10.6.1. TRACE ON Statement

Format:

TRACE ON

Description:

SPERRY UNIVAC OS/3
FORTRAN IV

10-4

The TRACE ON statement enables the display of the TRACE message and is required to begin tracing.

Tracing is disabled at the beginning of execution.

10.6.2. TRACE OFF Statement

Format:

TRACE OFF

Description:

The TRACE OFF statement disables the trace display. This permits the user to control the amount of output

produced.

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

11-1
Update B

11. Consolidated Data Management (COM)
Execution Environment Configuration

11.1. COM RELATIONSHIP

This section describes the interface between FORTRAN IV and consolidated data management (CDM), including:

• the relationship between unit numbers and external files;

• the kinds of devices supported;

• performance considerations such as record blocking and buffering; and

• system defaults (assumptions made by the system when specific directions are not provided) .

Default actions taken when various errors are detected during program execution and how these defaults are
changed to suit application requirements are also described. An example of a complete execution environment is
given in 11 .4.

The FORTRAN IV execution environment is consistent with the CDM concept of device independence. This ~

means that substitution of similarly constructed files is possible without recompiling or reassembling. More
discussion about device independence is presented in 11.3.

FORTRAN IV supports the following device classes:

• Disk and diskette

• Tape

• Workstation terminal

• Unit record (card reader, card punch, printer, and control stream input).

FORTRAN IV accesses these devices via the standard data management interfaces (CDIB and RIB structures).
This interface is described in the common data management concepts user guide.

Before a FORTRAN IV program can be executed, a group of 1/0 subroutines must be incorporated to support the
FORTRAN 1/0 statements and provide an interface to data management. These 1/0 subroutines are individually
called by the FORTRAN IV compiler and automatically placed in the executable program by the linkage editor. In
the executable program, the control module is the center of the entire 1/0 scheme, because it contains the
following:

• A unit table consisting of one entry for each unit number specified in the user program. Each entry
contains FORTRAN control data and the information needed to connect the unit number to the actual
device.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

11-2

• A work area for record processing .

• A buffer needed to support the REREAD feature.

An executable program may only contain one 1/0 control module. This module may be supplied either by
FORTRAN IV or configured by the user. When supplied by FORTRAN IV, the configuration allows for standard
unit numbers used to reference a printer, card punch, tape, card reader, and a reread unit (11.2). When supplied
by the user, he may configure his own set of unit definitions by using the FORTRAN IV unit definition procedure
(UNIT). The user-supplied unit numbers are associated with the physical device via a device assignment set
(DVC-LFD) at program execution.

11.2. COi-SUPPLiED CONFIGURATIONS

The following configurations are supplied for general use in simple applications. The unit numbers selected are
industry standard. FORTRAN II 1/0 support is also included in these configurations.

• Control Module Fl$10

Unit
1

3
5
6
29
READ
PRINT

Notes
80 byte records; lfdname of FORT1; data can be reread; standard label if tape; can be
cards in control stream if I I LFD FORT1 is missing
Diagnostic device; lfdname of PRNTR; record size of 121; must be output device
Equivalent to unit 1
Equivalent to unit 3
Used to reread data from unit 1
FORTRAN II READ statement (equivalent to unit 1)
FORTRAN II PRINT statement (equivalent to unit 3)

• Control Module FL$101

Unit
1

2
3
5
6
11
12
29
READ
PRINT
PUNCH

Notes
80 byte records; lfdname of FORT1; data can be reread; standard label if tape; can be
cards in control stream if I I LFD FORT1 is missing
80 byte records; lfdname of FORT2
Diagnostic device; lfdname of PRNTR; record size of 121; must be output device
Equivalent to unit 1
Equivalent to unit 3
Fixed unblocked records; standard label if tape; lfdname of FORT11
Fixed unblocked records; standard label if tape; lfdname of FORT12
Used to reread data from unit 1
FORTRAN II READ statement (equivalent to unit 1)
FORTRAN II PRINT statement (equivalent to unit 3)
FORTRAN II PUNCH statement (equivalent to unit 2)

•

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

11.3. PROGRAMMER-DEFINED CONFIGURATIONS

11-3

The unit definition procedure is required to define the execution environment; namely, the logical units and their
attributes. The attributes are optional and are used to define the features such as record and buffer sizes, record
formats, file type, error recovery, etc. The UNIT definition procedure passes this information to data management
at file open time.

When a new file is defined, data management supplies default values for any attributes not explicity specified.
The combination of specified attributes and data management defaults defines the file characteristics. When
accessing an exisiting file, the specified record size and record format attributes are compared to those specified
when the file was originally created. Any incompatibilities between the two produce an error message and
terminate the job step. All other specified attributes are accepted. If the record size and record format arguments
were omitted from the UNIT definition procedure at file creation, then the default characteristics are used.

To achieve device independence, a unit identifier is the only argument required on the UNIT definition procedure.
Since a file name is always required when accessing a file, a user-supplied logical file name may be specified or
the UNIT definition procedure will default to a FORTRAN IV logical file name. In either case, the file name must
be specified on the LFD job control statement for the device. At program execution time, providing the record
sizes are compatible, the unit is connected to the device via data management.

The following examples shows some typical uses of device independence.

Example 1:

Let's suppose that we have a file that can be input from either a card reader, a tape, a disk, or a
workstation. By specifiying the UNIT definition procedure with the file arguments FUNIT=1 and
FFILEID=INFILE, device independence is achieved. At program execution time, by changing only the logical
unit number on the DVC job control statement, the appropriate device is connected. Therefore, if a card
reader is required, specify logical unit number 30 on the DVC job control statement. Later if a disk unit is
required, specify 50. For a tape unit, specify 90 and for a workstation, specify 200. The lfdname INFILE
specified in the FFILEID argument remains unchanged in the LFD job control statement.

Example 2:

Supposing that we have input file but we omit the logical file name; then UNIT definition procedure is
coded UNIT FUNIT=10. FORTRAN IV supplies the default logical file name of FORT10. At program
execution time, the lfdname of FORT10 would be specified on the LFD job control statement. This is yet
another example of device independence whereby the I I DVC ... I I LFD sequence can be changed at
program execution time to have the appropriate device connected.

Example 3:

Again, let's suppose that the input file is using a card reader with the UNIT definition procedure of UNIT
FUNIT=20,FFILEID=MASTER,FAUE=YES. The FAUE argument is for detection of mispunched cards and
therefore unique to a card reader. Now, the input file is to reside on a disk (assuming the file was created
prior in a previous job step). At program execution time, the logical unit number is changed to reflect a disk
unit. Since the FAUE argument is unique to a card reader, it is ignored (no error message displayed) and
processing continues .

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

11-4

Table 11-1 is a summary of the device types and their arguments. Looking at the table, there are eight
arguments that are considered device independent. They are: FDIAGNOS, FFILEID, FOPTION, FRECSIZE,
FREREAD, FSPOOLIN, FTYPEFLE, and FUNIT. At program execution time, the unit may be switched to another
device by changing the logical unit number on the DVC job control statement, thus saving reassembling and
recompiling. The remaining arguments are device oriented; however, when applied to a device not supporting
the argument, it is ignored and no message is displayed.

There are only two arguments that may cause an OPEN error at program execution time. They are the FRECSIZE
and FRECFORM arguments. The error occurs when the record size or record format is not compatible with the
device change. A record format error could occur when one file is defined as fixed-unblocked, while at program
execution the file is variable-unblocked.

In summary, any combination of arguments may be specified with any device type, with the exception of
FRECSIZE and FRECFORM, without the need for reassembling or recompiling.

Table 11-1. FORTRAN IV Devices and Arguments

Argument Disk Tape Unit record Workstation Equivalent Reread

FAUE *
FBFSZ *
FBKNO *
FCHAR *
FCKPTREC *
FCLRW *
FCRDERR *
FDEVICE * * * * * *
FDIAGNOS * * * *
FERR OPT *
FEQUIV *
FFILABL *
FFILEID * * * *
FIOOPT *
FLINCNTL *
FNUMBUF * * *
FOPRW *
FOPTION * * * *
FRECFORM * *
FRECSIZE * * * *
FREREAD * * * *
FSCREND *
FSPOOLIN * * * *
FTRANS * *
FTYPEFLE * * * *
FUNIT * * * * * *
FVERIFY *

NOTE:

Only arguments applicable to the device type are recognized. All other arguments are ignored. If the record size
or record format arguments are not compatible, they produce an OPEN error and terminate the job step .

... -----------------------------------·-----·········---------

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

11-5
Update B

If necessary, a unit can be defined as device dependent. This is done via a device type parameter on the UNIT
definition procedure. Device dependency is discouraged because any device change requires reassembling a
new UNIT definition. The UNIT definition procedure is called via an assembly language source module with the
form:

10

name START
unit definition
unit definition

unit definition"
unit termination
error definition
END

The elements of this assembly module are discussed in 11.3.1 through 11.3.5.

11.3.1. START Statement

The START statement, a subprogram declarator statement required by the assembler, is the first statement of
the configuration definition .

Format:

name START

A 1- to 8-character symbolic name used to reference the control module on a linkage editor INCLUDE statement
is specified by name. START is coded as shown.

11.3.2. FORTRAN Unit Definition Procedure (UNIT)

Each file definition consists of a call on the FORTRAN unit definition procedure (UNIT), with optional arguments
specifying characteristics of the file. Each argument consists of a file attribute name, an equal sign, and a
particular characteristic of the file being defined. If an argument is not required it is omitted and the comma is
deleted.

Consolidated data management (CDM) supplies the default file attributes whenever the target device is known
(FDEVICE argument) and FORTRAN IV accepts these defaults. Attributes not relating to the assigned device are
ignored.

When defining the file attributes with the UNIT definition procedure, the following syntactical differences
between FORTRAN and assembly language should be remembered:

• In the assembler, the statement continuation character is required for line 1 through (n-1) in column 72.
whereas in FORTRAN it is required in lines 2 through n in column 6.

• No embedded blanks are permitted, and all continuation lines must start in column 16, as is illustrated in
following examples (11.3.2.1 through 11.3.2.6).

UP-8474 Rev. 2

11.3.2.1. Unit Record Definition

SPERRY UNIVAC OS/3
FORTRAN IV

11-6

The following devices are considered unit record devices: reader, punch, and printer. The unit record devices are
defined by using the UNIT procedure call described in this format. The arguments may appear anywhere in the
UNIT definition procedure while FUNIT is the only required argument. Following the format, descriptions of the
UNIT arguments and a UNIT example are presented.

Format:

10 16

UNIT [FDEVICE=UNITREC] FUNIT={~RINT}
PUNCH
READ

[FILEID={~H~:~m:: ~~::~=~RINT~
PUNCH; if FUN I T=PUNCH
READER; if FUNIT=READ

[
FNUMBUF={.!_

2
}] [FTYPEFLE={INPUT;if FUNIT=READ }]

OUT PUT; if FUN I T=PR I NT or PUNCH

~CHAR={~:F}] [FOPTION=YES] [FAUE=YES]

[FREREAD=YES] [FCRDERR=RETRY] [FRECSIZE=k]

fHP~~LIN=YES] [FTRANS=ASCI I] [FDIAGNOS=YES]

LFGET JCS=YES

Device Identification Argument:

FDEVICE=UNITREC
Specifies that this is a unit record device.

Unit Identifier Argument:

FUNIT=k
Specifies the unit identifier whose value is a unique integer constant in the range from 1~k~99.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

FUNIT=READ
Specifies READ as the unit identifier.

NOTE:

The identifiers READ, PRINT, and PUNCH are provided for reference by the FORTRAN II statements READ, PRINT,
and PUNCH, respectively, since these statements contain no specific unit identification. When a FORTRAN II
statement is executed and one of these identifiers is not specified, the applicable device specified is used The
units are searched in the order they are defined. In an executable program, only one such unit may be defined.

•

•

•

UP-8474 Rev. 2

File Name Argument:

FF I L E I D= f i I e n am e

SPERRY UNIVAC OS/3
FORTRAN IV

Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FF I LE I D=F 0 RT k

11-7

Specifies the file name as FORTk, where 1~k~99. If this argument is omitted and FUNIT=k is
specified, FORTk is assumed.

FFILEID=PRNTR

Specifies the file name as PRNTR. If this argument is omitted and FUNIT=PRINT is specified, PRNTR
is assumed.

FF I L E I D= f..!!!f!!.
Specifies the file name as PUNCH. If this argument is omitted and FUNIT=PUNCH is specified,
PUNCH is assumed.

FF I LE I D=READER

Specifies the file name as READER. If this argument is omitted and FUNIT=READ is specified,
READER is assumed.

Buffer Allocation Argument:

A buffer pool is dynamically acquired via the supervisor DMEM macroinstruction. Once a unit is opened,
one or two buffers from the pooled storage area are allocated. The size of each buffer is determined by the
FBFSZ argument or from data management at open time. When the buffer pool is used, the work area
cannot be used. (See the consolidated data management macro language user guide/programmer
reference.)

FNUMBUF=.l
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers are allocated to the unit.

File Type Argument:

FTYPEF LE=I NPUT

Specifies an input file. If this argument is omitted and FUNIT=READ is specified, INPUT is assumed.
INPUT should be specified when the file is read but never written.

FTYPEFLE=OUTPUT

Specifies an output file. If this argument is omitted and FUNIT=PUNCH or PRINT is specified,
OUTPUT is assumed. OUTPUT should be specified whenever the file is to be written but never read.

Invalid Character Processing Argument:

This argument specifies the action to be taken when a character with no corresponding printer graphic is
encountered.

FCHAR=OFF
Specifies that a blank is to be substituted for the character and that the line is to be written to the
printer with no error notification.

FCHAR=ON
Specifies that a device error is to be generated and the program is to be terminated.

UP-8474 Rev. 2

Optional Units Argument:

FOPT ION=YES

SPERRY UNIVAC OS/3
FORTRAN IV

Specifies an optional unit, a unit not always required during program execution.

11-8

When specified and the file is not allocated by job control, WRITE statements are ignored and the first
READ reference causes an end-of-file condition.

A unit need not be declared as optional if the program logic does not reference the unit.

Rejection of Mispunched Cards Argument:

FAUE=YES
Specifies that cards with an illegal hole combination in a column are to be bypassed and will not be
delivered to the program.

When the device being used is a SPERRY UNIVAC 0716 Card Reader, the erroneous card is also sorted into
a unique error stacker.

If this argument is not specified, the card reader is stopped, and operator intervention is sought when an
illegal hold combination is detected.

Reread Argument:

FR ER EAD=YE S
Specifies that the unit is to participate in the rearead feature (7.3.4).

The reread unit consists of a single buffer where each formatted input record is transferred. To save
processor time, this data movement is inhibited unless specified.

Device Error Recovery Argument:

FCRDERR=RETRY
Specifies that error recovery coding is included in the executable program.

If this argument is not specified or if the recovery attempt is unsuccessful, program termination is initiated
when device errors occur. Mispunched cards are automatically segregated into an error card stacker.This
argument is not meaningful if card output is spooled (transmitted to disk for later transcription to a card
punch).

Record Size Argument:

FRECS I ZE=k
Specifies the logical record size (in bytes). When accessing an existing file, the value of this argument
is compared to the record size specification of that file. Any incompatibilities produce OPEN errors. If
FRECSIZE and FRECFORM are omitted from the UNIT definition procedure, the file is processed using
the physical file information.

UP-8474 Rev. 2

Spooled Card Input File Argument:

FSPOOLIN=YES
or

FGET JCS=YES

SPERRY UNIVAC OS/3
FORTRAN IV

11-9

Specifies this unit will default to a spooled card input file via a GETCS when the lfdname declared in
the FFILEID argument is not found.

The spoolin feature (FSPOOLIN=YES) can be applied to any device but cannot exceed 128 bytes. If the
record size is omitted, 80 bytes is assumed.

Translate to ASCII Argument:

FT RAN S=A SC I I
Specifies that all incoming and outgoing records are translated to the ASCII character set.

Diagnostic Message Argument:

FD I AGNOS=YES
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
greater. Debugging information may also be written to this device (10.3); not available for input files.

If multiple diagnostic devices are specified, messages are posted to the first diagnostic unit encountered.

If omitted, diagnostics are transmitted to the system log and either the system console or the initiating
workstation terminal.

Example:

10

UNIT FUNIT=l0,
FD I AGNOS=YES,
FTYPEFLE=OUTPUT

72
5-

x
x

This unit procedure call specifies a device independent output file. The devices which may be allocated are:
tape, disk, workstation, and unit record output. The device is accessed from the FORTRAN user program via
the WRITE command to Unit 10. Diagnostics are posted to this unit during program execution. The file is an
output file. Since no filename is specified (FFILEID), FORT10 becomes the default filename (FORT from the
omitted FFILEID argument and 10 from the FUNIT argument). FORT10 must also appear as the filename on
the LFD job control statement. Since the logical record size and buffer allocation were omitted, the default

values are 121 and 1, respectively.

UP-8474 Rev. 2

11.3.2.2. Tape File Definition

SPERRY UNIVAC OS/3
FORTRAN IV

11-10

A single tape file is defined by using the UNIT definition procedure presented in this paragraph. The arguments
may appear anywhere in the UNIT definition procedure but FUNIT is the only required argument. Following the

format, descriptions of the UNIT arguments and a UNIT example are presented.

Format:

10 16

UNIT
FUN I T={:~:~Hl

PRINT

[FOEVICE=TAPE]

[FILEID={~~:~::~:: ~~::~::EAD }]
PUNCH; if FUN I T=PUNCH
PRNTR; if FUN I T=PR I NT

lFTYPE FL E={WORK }J
INPUT; if FUN I T=READ
OUTPUT; 1 f FUN I T=PR I NT or PUNCH

[RECFORM={:::~~~~ [FNUMBUF={}}] [FRECS I ZE=k]

FIXUNB
FIXBLK

[BFSZ={~RECS I ZE; if FRECFORM=F I XUNB ~
FRECS I ZE+4; if FRECFORM=VARUNB
FRECSIZE*4; if blocked

[FREREAD=YES] [FOIAGNOS=YES] [FBKNO=YES]

[FERROPT={~~~~RE }] [FF I LABL={~~D}] [FCKPTREC=YES]

[

CLRW={RWD ~ [FOPRW=NORWD]
NORWD
UNLOAD

[FSPOOLIN=YES] [FTRANS=ASCll]
or

[F GET JC S=YE S]

[FOPT I ON=YES]

Device Identification Argument:

FOEVICE=TAPE
Specifies this is a tape file.

Unit Identifier Argument:

FUNIT=k
Specifies the unit identifier whose value is an unique integer constant in the range from 1~k~99.

FUNIT=READ
Specifies READ as the unit identifier.

e.

UP-8474 Rev. 2

FUNIT=PUNCH

SPERRY UNIVAC OS/3
FORTRAN IV

Specifies PUNCH as the unit identifier.

FUNIT=PRINT

Specifies PRINT as the unit identifier.

File Name Argument:

FF I L E I D= f i I e n a m e

Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FF I LE I D=F 0 RT k

11-11

Specifies the filename as FORTk, where 1~k~99. If this argument is omitted and FUNIT=k is
specified, FORTk is assumed.

FF I LE I D=R EADER

Specifies the file name as READER. If this argument is omitted and FUNIT=READER is specified,
READER is assumed.

FF ILE I D=PUNCH

Specifies the file name as PUNCH. If this argument is omitted and FUNIT=PUNCH is specified,
PUNCH is assumed.

FF I LE I D=P RN TR

Specifies the file name as PRNTR. If the argument is omitted and FUNIT=PRINT is specified, PRINT is
assumed.

File Type Argument:

FTYPEFLE=WORK

Specifies a work file. WORK should be specified if the tape is to be read and written. WORK files are
limited to a single volume (reel).

FTYPEF LE=I NPUT

Specifies an input file. If this argument is omitted and FUNIT=READ is specified, INPUT is assumed.
INPUT should be specified if the tape is to be read but never written.

FT Y PE FL E=O UT PUT

Specifies an output file. If this argument is omitted and FUNIT=PUNCH or PRINT is specified,
OUTPUT is assumed. OUTPUT should be specified if the tape is to be written but not read.

Record Format Argument:

FRECFORM=VARUNB
Specifies variable length unblocked records.

5 block
I
I

BCW RCW I
record I

15

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

11-12

FRECFORM=VARBLK
Specifies variable length blocked records.

5 I
I
I

RCW I record

I i

1 15 n

1 I
I

I
record 1

RCW
I record2 BCW RCW I I

15
i 1

I i 2
1 1 15

For both unblocked and block records, i specifies record size, j specifies block size, BCW specifies a
data management block control word, and RCW specifies a data management record control word.

The FORMAT statement (7.3.3) may not specify a record larger than i-4 for variable-length records.
For unformatted input/output, no size limitation exists, since large FORTRAN records are
automatically segmented into multiple data management records, using the record control words to

identify beginning, middle, and end segments of the 1/0 list.

The BCW and RCW are controlled by FORTRAN IV and the data management system and are not
accessible through the FORTRAN language. The FBKSZ and FRECSIZE arguments are interpreted as
maximums; shorter records will be accepted, and generated if possible, to save space on the external

file and to reduce channel contention for main storage access.

FRECFORM=FIXUNB
Specifies fixed length unblocked records.

1 block j

c:J
FRECFORM=FIXBLK

Specifies fixed length blocked records.

block j

'----r-ec-o-rd_, __ _._ __ re_c_o_rd_
2
__ _. _- ~ ~ ~ ~ ~ c:J

For both unblocked and blocked records, i is the size specified for the FRECSIZE argument, and j is
the size specified for the FBFSZ argument. For unblocked records, i and j must be equal. For block
records, j is an integral multiple of i. The last block of the file may be less than j bytes, but it is always
a multiple of i.

The FORMAT statement may not require more than i character pos1t1ons for fixed-length records. In an

unformatted 1/0 list. no more than i bytes may be required for a record. In other words, when a FORMAT
processes a record, it cannot request more than "recsize" bytes of data.

UP-8474 Rev. 2

Buffer Allocation Argument:

SPERRY UNIVAC OS/3
FORTRAN IV

11-13

A buffer pool is dynamically acquired via the supervisor DMEM macroinstruction. Once a unit is opened,
one or two buffers from the pooled storage area are allocated. The size of each buffer is determined by the
FBFSZ argument or from data management at open time. (See the consolidated data management macro
language user guide/programmer reference.)

FNUMBUF=.!.
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers to be allocated to the unit.

Record Size Argument:

FRECSIZE=k
Specifies the logical record size (in bytes). When accessing an existing file, the value of this argument
is compared to the record size specification on that file. Any incompatibilities produce OPEN errors. If
FRECSIZE and FRECFORM are omitted from the UNIT definition procedure, the file is processed using
the physical file information.

Block Size Argument:

This argument specifies the block size, which must always be greater than or equal to the record size. The
default values for FBKSZ depend on the absolute value of the FRECSIZE specification and on the record
form used.

FBKSZ=k
Specifies the block size (k) as a positive integer constant in the range 18~k~32767.

FBKSZ=FRECS I ZE
Indicates the block size is equal to the record size. If this argument is not specified, and fixed
unblocked records have been specified, this is the default block size.

FBKSZ=FRECSIZE+4
Indicates the block size is four times more than the record size. If this argument is not specified, and
variable unblocked records have been specified, this is the default block size.

FBKSZ=FRECSIZE"4
Indicates the block size as four times the record size. If this argument is not specified and blocked
records have been specified, this is the default. File containing blocked records cannot be
backspaced.

Reread Argument:

FR ER EAD=YE S
Specifies that the unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer where each formatted input record is transferred. To save
processor time, this data movement is inhibited unless specified.

UP-8474 Rev. 2

Diagnostic Messages Argument:

SPERRY UNIVAC 05/3
FORTRAN IV

11-14

FD I AGNOS=YES
Specifies the current tape unit as the diagnostic device. If FRECSIZE is specified, its value must be

101 or greater. Debugging information may also be written to this device.

If multiple diagnostic devices are specified, FORTRAN IV will post messages to the first diagnostic
unit encountered; not available for input files. If omitted, diagnostics are transmitted to the system

log and either the system console or the initiating workstation terminal.

Block Numbering Argument:

F BKNO=YE S
Specifies that sequence numbers be encoded in each block before it is written and checked after
each block is read. These block numbers are not visible to the FORTRAN programmer. If omitted, no

block numbering occurs.

Device Error Processing Argument:

FERROPT=IGNORE
Specifies that the erroneous block is to be accepted.

FERROPT=SKIP
Specifies that the erroneous block is to be bypassed by reading the next block. If omitted, specifies
that control is to be transferred to the ERR clause of the READ statement. Abnormal termination

procedures are to be initiated if the ERR clause is not present.

NOTES:

1. SKIP and IGNORE should be used with discretion, since device position may be lost for unformatted

files and NAMEUSTs.

2. When the problem program receives control at the ERR label, the ERROR subroutine (5.6.3.3) should
be referenced to determine the error type. If the error is unrecoverable, the unit cannot be referenced
again. Unrecoverable errors can be caused by severe device failure, parity errors that cause
inconsistent control information, or any on a list-directed statement, which always implies loss of

position.

3. If the error is recoverable, the device is considered operable. Further references to the unit deliver
subsequent logical records; the erroneous record is bypassed. A parity or wrong length error on a
blocked file causes an ERR return for every logical record in the erroneous block. The term "logical
record" is interpreted identically with the BACKSPACE statement (7.3.6.2).

Tape Label Checking Argument:

FF I LAB L=STD
Specifies that system standard labels are assumed.

FF I LAB L=NO
Specifies that tapes are to be read and written without labels.

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

11-15

Checkpoint Processing Argument:

FCKPTREC=YES
Specifies that checkpoint blocks contained on an input tape will be bypassed. If omitted , the blocks
are read as data records. Argument is ignored when applied to an output file.

Tape Rewind Arguments:

Two arguments may be used to specify tape rewinding. They have no effect on the FORTRAN REWIND
command.

• FCLRW

•

FCLRW=RWD
Specifies that the tape is to be rewound to loadpoint when the STOP statement is
executed.

FCLRW=NORWD
Specifies that there is to be no rewind when the STOP statement is executed.

FCLRW=UNLOAD
Specifies that there is to be rewind with interlock when the STOP statement is executed
and that the tape is inaccessible to subsequent steps in the job without operator
intervention.

FOPRW

FOPRW=NORWD
Specifies that the tape is not to be rewound to load point when it is first referenced.

Optional Units Arguments:

FOPT I ON=YES
Specifies an optional unit; a unit not always required during program execution. When specified and
the file is not allocated by job control, WRITE statements are ignored and the first READ reference
causes an end-of-file condition. A unit need not be declared as optional if the program logic does not
reference the unit.

Spooled Card Input File Argument:

FSPOOLIN=YES
or

FGET JCS=YES
Specifies this unit will default to a spooled card input file via a GETCS when the lfdname for the unit
does not appear in the job control stream.

The spoolin feature can be applied to any device but cannot exceed 128 bytes. If the record size is
omitted, 80 bytes is assumed.

Translate to ASCII Argument:

FTRANS=ASC I I
Specifies that all incoming and outgoing records are translated to the ASCII character sets .

UP-8474 Rev. 2

Example:

SPERRY UNIVAC OS/3
FORTRAN IV

11-16
Update B

10 16 72
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--ts---~~~-

UNIT FDEVICE=TAPE, 
FUNIT=7, 
FCKPTREC=YES, 
FRECSIZE=Ul8, 
FTYPE FL E=WORK, 
FRECFORM=FIXBLK 

x 
x 
x 
x 
x 

This unit procedure call specifies a tape device (FDEVICE=TAPE). The unit number is 7 (FUNIT=7); 
checkpoint records are bypassed (FCKPTREC=YES); the record size is 100 bytes (FRECSIZE=100); it is a 
work file (FTYPEFLE=WORK); and fixed-length blocked records are used (FRECFORM=FIXBLK). 

The following defaults are assumed: 

• FORT7 becomes the default filename (FORT from the omitted FFIELD argument and 7 from the FUNIT 
argument). 

• One input/output buffer is allocated since the FNUMBUF argument is omitted. 

• The buffer size defaults to 104 bytes based on the record size argument (buffer size must be equal to 
or greater than the record size). 

11.3.2.3. Disk File Definition 

A disk file is defined by using the UNIT definition procedure presented in this paragraph. A MIRAM file is the 
~ only file type supported in the CDM environment. The arguments may appear anywhere in the UNIT definition 

procedure while FUNIT is the only required argument. Following the format, descriptions of the UNIT arguments 
and a unit example are presented. 

Format: 

10 16 

UNIT [FDEVICE=DISK] 

FUNIT={k } READ 
PUNCH 
PRINT 

[ FILEID={:~:i~:~~f F~~~~7~READ}] 
PUNCH; if FUN I T=PUNCH 
PRNTR; if FUNIT=PRINT 

LT Y PE FL E={WO R K 
INPUT; if FUNIT=READ 
OUTPUT; 1 f FUN I T=PUNCH 

[ FRECFORM={VARUNB}] [ FRECS I ZE=k] 
FIXUNB 

[FOPTION=YES] [FVERIFY=YES] 

}] 

[FBFSZ=k] 

or PRINT 

[FD I AGNOS=YES] rsPOO~ ! N=YEsi [ FREREAD=YES] 

UGETJCS=YESJ 

• 

• 

• 



UP-8474 Rev. 2 

Device Identification Argument: 

FDEVICE=DISK 
Specifies that this is a disk file. 

Unit Identifier Argument: 

FUNIT=k 

SPERRY UNIVAC OS/3 
FORTRAN IV 

Specifies a unique integer in the range 1~k~99. 

FUNIT=READ 
Specifies READ as the unit identifier. 

FUNIT=PUNCH 
Specifies PUNCH as the unit identifier. 

FUNIT=PRINT 
Specifies PRINT as the unit identifier. 

11-17 

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified by 
a control module. The identifiers READ, PUNCH, and PRINT are provided for reference by the FORTRAN II 
statements READ, PUNCH, and PRINT, respectively, since these statements contain no specific unit 
identification. When a FORTRAN II statement is executed and one of these special identifiers has not been 
provided, the applicable device specified is used. The units are searched in the order in which they are 
defined. In an executable program, only one such unit may be defined. 

File Name Argument: 

FF I L E I D= f i I e n am e 
Specifies a 1- to 7-character FORTRAN style symbolic name (filename). 

FF I L E I D= F 0 R T k 
Specifies the file name as FORTk, where 1~k~99. If this argument is omitted and FUNIT=k is 
specified, FORTk is assumed. 

FF I LE I D=READER 
Specifies the file name as READER. If this argument is omitted and FUNIT=READ is specified, 
READER is assumed. 

FF I LE I D=PUNCH 
Specifies the file name as PUNCH. If this argument is omitted and FUNIT=PUNCH is specified, 
PUNCH is assumed. 

FF I LE I D=PRNTR 
Specifies the file name as PRNTR. If this argument is omitted and FUNIT=PRINT is specified, PRNTR 
is assumed. 

File Type Argument: 

FTYPEFLE=WORK 
Specifies a work file. WORK should be specified if the disk is to be read and written. 

FTYPEFLE=INPUT 
Specifies an input file. If this argument is omitted and FUNIT=READ is specified, INPUT is assumed. 
INPUT should be specified if the disk is to be read but never written. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

11-18 

FTYPEFLE=OUTPUT 
Specifies an output file. If this argument is omitted and FUNIT=PUNCH or PRINT is specified, 
OUTPUT is assumed. OUTPUT should be specified if the disk is to be written but not read. 

Buffer Size Argument: 

FBFSZ=k 
Specifies the size of the input/output area used in processing the file records. The size must be a 
positive value greater than or equal to the record size. System overhead is reduced if the buffer size 
is an integer multiple of the record size. 

Record Format Argument: 

FRECFORM=VARUNB 
Specifies that the records are variable and unblocked. 

Variable-length unblocked records 

5 

i I 
I 

BCW RCW 
I 

record
1 RCW I record2 I I 

15 i 1 I i2 1 1 15 

where: 

Specifies record size 

Specifies block size 

BCW 
Specifies a data management block control word 

RCW 
Specifies a data management record control word 

- - - --..----~, ------"""" 
I 
I 

RCW I 
I 

record 

_____ .._ __ __,_15 ______ _,n 

The FORMAT statement (7.3.3) may not specify a record greater than i-4. For unformatted 
input/output records, no size limitation exists because large FORTRAN IV records are automatically 
segmented into multiple data management records via the record control words identifying the start, 
middle, and the end segment of the 1/0 list. 

The block and record control words are controlled by FORTRAN IV and data management and are not 
accessible with the FORTRAN IV language. The FBFSZ and FRECSIZE arguments are interpreted as 
maximums; shorter records are accepted and are generated, if possible, to save space on the external 
file and reduce channel contention for main storage access. 



• 

• 

• 

UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

11-19 
Update B 

FRECFORM=FIXUNB 
Specifies that the records are fixed and unblocked. 

Fixed-length unblocked records 

~ 
~ 
where: 

Specifies FRECSIZE argument 

Specifies FBFSZ argument 

The block size (j) and the record size (i) must be equal. The FORMAT statement may not require more 
than i character positions. In an unformatted 1/0 list, no more than i bytes may be required for a 
record. When a FORMAT statement processes a record, it cannot request more than "recsize" bytes 
of data. 

Record Size Argument: 

FRECSIZE=k 
Specifies the logical record size (in bytes). When accessing an existing file, the value is compared to 
the record size specification of that file. Any incompatibilities produce OPEN errors. If FRECSIZE and 
FRECFORM are omitted from the UNIT definition procedure, the file is processed using the physical 
file information. If the file has never been written to, then a 255-byte logical record size and fixed, 
unblocked records are assumed. 

Optional Units Argument: 

FOPTION=YES 
Specifies an optional unit, a unit not always required during program execution. When specified and 
the file is not allocated by job control, WRITE statements are ignored and the first READ reference 
causes an end-of-file condition. A unit need not be declared as optional if the program logic does not 
reference the unit. 

Write Verification Argument: 

FVERIFY=YES 
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper 
recording on the disk surface. 

This increased reliability necessarily causes some performance degradation . 



, 
UP-8474 Rev. 2 SPERRY UNIVAC OS/3 

FORTRAN IV 
11-20 
Update B 

Diagnostic Messages Argument: 

FD I AGNOS=YES 
Specifies the current disk unit as the diagnostic device. If FRECSIZE is specified, its value must be 
101 or greater. Debugging information may also be written to this device. If multiple diagnostic 
devices are specified, the FORTRAN system will post messages to the first diagnostic unit 
encountered. This argument is not available for input files. If omitted, diagnostics are transmitted to 
the system log and either the system console or the initiating workstation terminal. 

Spooled Card Input File Argument: 

FSPOOL I N=YES 
or 

FGET JCS=YES 
Specifies that this unit will default to a spooled card input file via a GETCS when the lfdname 
declared in the FFILEID is not found. 

The spool in feature can be applied to any device but cannot exceed 128 bytes. If the record size is omitted, 
80 bytes are assumed. 

Reread Argument: 

FRERE A D=YE S 

Example: 

Specifies this unit is to participate in the reread feature (7.3.4). The reread unit consists of a single 
buffer where each formatted input record is transferred. To conserve processor time, this data 
movement is inhibited unless specified. 

10 16 72 
~~~~~~~~~~~~~~~~~~~~~~~~~-<J--~~~~-

UN IT FUNIT=35, X
FDEVICE=DISK, X
FFILEID=PAYROL, X
FTYPEFLE=INPUT

This UNIT procedure call specifies a disk file (FDEVICE=DISK). The unit number is 35 (FUNIT=35), the file
name is PA YROL, and it is an input file.

The following defaults are assumed by CDM if the file has never been written to:

• The record format (FRECFORM argument) is fixed and unblocked.

• The record size (FRECSIZE argument) is 255 bytes.

•

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

11.3.2.4. Workstation Unit Definition

11-21

The workstation unit is defined by using the UNIT definition procedure presented in this paragraph. The
workstation terminal supports single line input and output (similar to a card reader) and full screen input and
output provided by the screen format services. The arguments may appear anywhere in the UNIT definition
procedure but FUNIT is the only required argument. Following the format, descriptions of the UNIT arguments
and a UNIT example are presented.

Format.

10 16

UNIT [FDEVICE=WORKSTN]
FUNIT={k } READ

PUNCH
PRINT

[

F I L E I D={ f i I en am e }]
FORTk; if FUNIT=k
READER;if FUNIT=READ
PUNCH; if FUN I T=PUNCH
PRNTR;if FUNIT=PRINT

L
SCREND=(WRAP)]

SCROLL
NEWPAGE

L
T VP EFL E=(WORK;

INPUT; if FUN I T=READ
OUTPUT;1f FUNIT=PUNCH or PRINT)]

[FIOOPT=YES] [FLINCNTL=YES] eNUMBUF=g}]

[FOPTION=YES] [FRECSIZE=k] [REREAD=YES]

jFSPOO~!N=YESJ [FDAIGNOS=YES]

LfGET JCS=YES

Device Identification Argument:

FDEVICE=WORKSTN
Specifies that this is a workstation terminal device.

Unit Identifier Argument:

FUNIT=k
Specifies the unit identifier whose value is a unique integer constant in the range from 1:o::;;k:o::;;99.

FUNIT=READ

Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

NOTE:

The identifiers READ, PUNCH, and PRINT are provided for reference by FORTRAN II statements READ, PUNCH,
and PRINT, respectively, since statements contain no specific unit identification. When a FORTRAN II statement
is executed and one of these identifiers is not specified, the applicable device specified is used. The units are
searched in the order in which they are defined. In an executable program, only one such unit can be defined.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

11-22

File Name Argument:

FF I L E I D= f i I e n am e
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FF I L E I D= F 0 R T k
Specifies the file name as FORTk, where 1~k~99. If this argument is omitted and FUNIT=k is
specified, FORTk is assumed.

FF I LE I D=READER
Specifies the file name as READER. If this argument is omitted and FUNIT=READ is specified,
READER is assumed.

FF ILE I D=PUNCH
Specifies the file name as PUNCH. If this argument is omitted and FUNIT=PUNCH is specified,
PUNCH is assumed.

FF I L E I D=f.!!l.R
Specifies the file name as PRNTR. If this argument is omitted and FUNIT=PRINT is specified, PRNTR
is assumed.

END of Screen Display Options Argument:

FSCREND=WRAP
Specifies when an end-of-screen is reached; the remainder of the display continues at the top of the
screen, which is the leftmost position on the first line. No clearing takes place.

FSCREND=SCROLL
Specifies when an end-of-screen is reached; the screen "scrolls up" to contain the remainder of the
display. Scrolling is when the entire screen display moves up one line at a time until the display is
completed. No clearing takes place.

FSCREND=NEWPAGE
Specifies when the end-of-screen is reached; the screen is cleared and the remainder of the display
continues at the top of the screen origin position, which is the leftmost position on the first line.

File Type Argument:

FTYPEFLE=WORK
Specifies a work file. WORK should be specified if the screen is to be read and written.

FTYPEFLE=I NPUT
Specifies an input file. If this argument is omitted and FUNIT=READ is specified, INPUT is assumed.
INPUT should be specified if the screen is to be read but never written.

FTYPEFLE=OUTPUT
Specifies an output file. If this argument is omitted and FUNIT=PUNCH or PRINT is specified,
OUTPUT is assumed. OUTPUT should be specified if the screen is to be written but not read.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

11-23

Input/Output Buffer Specification Argument:

FI OOPT=YES
Specifies one buffer is used exclusively for input and one buffer for output operations. This argument
is activated when double buffering (FNUMBUF=2) has been specified.

Output Line Control Argument:

FL I NCNTL=YES
Allows the workstation terminal, when accessed in single line output mode (WSAM), to perform like
a printer. The control characters used to position the output record on the screen are identical to
those for the printer (see Table 7-2).

Buffer Allocation Argument:

A buffer pool is dynamically acquired via the squence DMEM macroinstruction. Once a unit is opened, one
or two buffers from the pooled storage area are allocated. The size of each buffer is determined by the
FBFSZ argument or from data management. (See the consolidated data management macro language user
guide/programmer reference.)

FNUMBUF=J_
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers to be allocated to the unit.

• Record Size Argument:

FRECSIZE=k
Specifies the logical size (in bytes). When accessing an existing file, the value is compared to the
record size specification on that file. Any incompatibilities produce OPEN errors. If FRECSIZE and
FRECFORM are omitted from the UNIT definition procedure, the file is processed using the physical
file information.

Reread Argument:

FR ER EAD=YE S
Specifies this unit is to participate in the reread feature (7.3.4). The reread unit consists of a single
buffer where each formatted input record is transferred. To conserve processor time, this data
movement is inhibited unless specified.

Spooled Card Input File Argument:

FSPOOLIN=YES
or

FGET JCS=YES
Specifies this unit will default to a spooled card input file via a GETCS when the lfdname declared in
the FFILEID argument is not found.

The spoolin feature (FSPOOLIN) can be applied to any device but cannot exceed 128 bytes. If the record
size is omitted, 80 bytes is assumed.

UP-8474 Rev. 2

Diagnostic Messages Argument:

FD I AGNOS=YES

SPERRY UNIVAC OS/3
FORTRAN IV

11-24

Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
greater. Debugging information may also be written to this device (10.3).

If multiple diagnostic devices are specified, FORTRAN IV will post the messages to the first diagnostic unit
encountered. If omitted, diagnostics are transmitted to the system log and either to the system console or
to the initiating workstation terminal.

Example:

UNIT FUNIT=20,

FF I LE I D=S E E I T ,

FDEV I CE=WORKSTN,

F TYPE FL E=OUT PUT,

FSCREND=NEWPAGE,

FL I NCNTL=YES

x
x
x
x
x

This UNIT procedure call specifies a workstation terminal (FDEVICE=WORKSTN). FORTRAN IV recognizes
that this is a workstation terminal via its unique arguments. The unit number is 20 (FUNIT=20); the file
name is SEEIT (FFILEID=SEEIT); and it is an output file (FTYPEFLE=OUTPUT). Since it is a workstation
terminal, when the end of screen is reached, the screen is cleared and the remaining information to be
displayed starts on the first line at the leftmost position (FSCREND=NEWPAGE). Also, the workstation
terminal will function as a printer using the same control characters as in the FORMAT statement in our
source program (FLINCNTL=YES).

11.3.2.5. Reread Unit Definition

The reread unit is defined by using the UNIT procedure call presented in this paragraph. Following is a listing, in
the order of their relative importance and utility, of the arguments that may appear on the UNIT procedure call.
Following the listing, a description of UNIT arguments, programming considerations, and a UNIT example are
presented.

A single VARUNB buffer is automatically constructed with a size equivalent to the largest record size of all the
units in the reread feature.

Format:

10 16

UNIT FDEVICE=REREAD

FUNIT={k }
READ

Device Identification Argument:

FDEVICE=REREAD
Specifies that this is the reread unit.

UP-8474 Rev. 2

• Unit Identifier Argument:

FUNIT=k

SPERRY UNIVAC OS/3
FORTRAN IV

Specifies a unique integer constant (k) in the range 1~k~99.

FUNIT=READ
Specifies READ as the unit identifier.

11-25

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified by
a control module. The identifier READ is provided for reference by the FORTRAN II READ statement, since
this statement contains no symbolic unit identification. When a FORTRAN II statement is executed and this
special identifier has not been provided, the applicable unit specified is used. The units are searched in the
order in which they are defined. In an executable program, only one such unit may be defined.

Programming Considerations:

The record in the reread buffer is redefined only after a formatted READ statement is issued to a unit
specified with FREREAD=YES or FRECERR=YES.

Example:

10 16 72
________ U_N_l_T---FD_E_V_l_C_E=_R_E_R_E_A_D-.---------------------------<J jP------X--

FUNIT=29

The reread unit is defined to be unit 29.

11.3.2.6. Equivalent Unit Definition

An equivalent unit is defined by using the UNIT procedure call presented in this paragraph. Following is a listing,
in the order of their relative importance and utility, of the arguments that may appear on the UNIT procedure call.
Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

The function of an equivalent unit is to provide another reference number for a file. For example, an input file
might be referenced with both a FORTRAN IV statement with a unit number and FORTRAN II statement that
implies the special name READ. An equivalent unit can be used to resolve conflicts of this type.

Format:

10 16

UNIT FDEVICE=EQUIV

FUN I T={k } READ
PRINT
PUNCH

FEQU I V={k } READ
PRINT
PUNCH

UP-8474 Rev. 2

Device Identification Argument:

FDEVICE=EQUIV

SPERRY UNIVAC OS/3
FORTRAN IV

Specifies that this is an equivalent unit.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1~k~99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

11-26

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified by
a control module. The identifiers READ, PRINT, and PUNCH are provided for reference by the FORTRAN 11
statements READ, PRINT, and PUNCH, respectively, since these statements contain no specific unit
identification. When a FORTRAN II statement is executed and one of these special identifiers has not been
provided, the applicable device specified is used. The units are searched in the order in which they are
defined. In an executable program, only one such unit may be defined.

Establishing Equivalence Argument:

This argument is used to specify the unit that is to be treated as equivalent to the unit specified for FUNIT.
When a file reference to the unit specified for FUNIT occurs, device action takes place on the unit specified
for FEQUIV.

FEQUIV=k
Specifies a unique integer constant (k) in the range 1 ~k~99.

FEQUIV=READ
Specifies READ as the equivalent unit.

FEQUIV=PRINT
Specifies PRINT as the equivalent unit.

FEQUIV=PUNCH

Examples:

Specifies PUNCH as the equivalent unit.

10 16

UNIT FDEVICE=EQUIV,
FUNIT=PRINT,
FEQUIV=S

j
72

x
x

This UNIT procedure call specifies an equivalent unit that has no number; it can be referenced only by
using a FORTRAN II PRINT statement. When referenced, unit 5 is activated; unit 5 must be defined by
using another UNIT procedure call.

•
UP-8474 Rev. 2 SPERRY UNIVAC OS/3

FORTRAN IV

Circular equivalences, such as the following, are not permitted.

10 16

UNIT FDEVICE=EQUIV,
FUNIT=l,
FEQUIV=2

UNIT FDEVICE=EQUIV,
FUNIT=2,
FEQUIV=l

11.3.3. FORTRAN Unit Definition Termination Procedure (FUNEND)

11-27

,.
J

72

x
x

x
x

The list of units specified with UNIT procedure calls is terminated by the FUNEND procedure call. The FUNEND
procedure call:

• terminates the unit list;

• generates a work area (and reread buffer) when all record sizes are available; and

• posts warning messages for missing diagnostic unit and imcompatibility of reread units, and FORTRAN II
1/0.

Format:

10 16

FUNEND [MAXREC=record-size]

where:

MAXREC=record-size
Increases processing performance by bypassing the dynamic storage allocation mechanism. The
record size is the size of the largest record being processed using this input/output configuration.
When specified, static allocation of the work area and the reread buffer is automatically performed by
the FUNEND processor.

If the FDIAGNOS argument is omitted, the diagnostics are sent to the system log and either the system console
or the initiating workstation terminal. If the REREAD=YES argument is specified and no reread unit is defined,
unit 29 is provided as the reread unit. This default is only supplied if unit 29 has not been previously defined.

11.3.4. Error Environment Definition Procedure (ERRDEF)

During the execution of the object program, the FORTRAN system monitors program operations for consistency
and legality, insofar as it is practical. The errors detected are grouped into seven classes, each having a limit on
the number of times the error is to be accepted before program termination and on the number of diagnostic
mesages to be produced.

The seven error classes include program, arithmetic, argument, alignment, read, and data errors, explained in
the definitions following the format, and fatal errors, which are catastrophic errors forcing immediate program
termination.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

11-28

A table in the library contains the limit information for each class. This table is automatically included in the
executable program if the table is not explicitly redefined by the programmer. For this purpose, the error
definition procedure (ERRDEF) is provided.

Treatment of nonfatal errors can be controlled by using the ERRDEF procedure call. Following is a listing, in
order of relative importance and utility, of the arguments that may appear on the ERRDEF procedure call.
Following the listing, descriptions of ERRDEF arguments and an ERRDEF example are presented. The ERRDEF
procedure call should follow the FUNEND procedure call in the configuration module.

Format:

where:

10 16

[FUNDFLO=YES]

[FAl IGN~ (I! LL}· fo L)) J
L"AD~ (t! LL}. H: L}) J
LDATA~({~LL}. H~L))]

FERROPT= NONE
READ
READ.DATA
READ,UNREC
READ,DATA,UNREC
DATA
DATA,UNREC
UN REC

Is a positive integer constant less than 32, 768, with i~j. specifying the number of times the error is
to be accepted before program termination. For a fatal error, i is assumed to be 1.

Is a positive integer constant less than 32,768, with j~i. specifying the number of diagnostic
messages to be produced. For a fatal error, j is assumed to be 1.

UP-8474 Rev. 2

ALL

SPERRY UNIVAC OS/3
FORTRAN IV

11-29

Specifies that there is no limit on the number of times the error is to be accepted before program
termination or that there is no limit on the number of diagnostic messages to be produced.

During execution, the first j errors cause diagnostic messages to be produced. When the ith error occurs, a
diagnostic is issued, and program termination is initiated.

Program Error Argument (FPROG):

This argument is used to control system action when the flow of execution encounters a statement for
which code cannot be generated because of a syntax or other error or when an error occurs in FORMAT-
1/0 list interaction.

Arithmetic Error Argument (FARITH):

This argument is used to control system action when a program check interrupt occurs for overflow,
underflow, or divide check. The standard library functions (Table 5-4) cannot cause this error.

Argument Error Argument (FARG):

This argument is used to control system action when an out-of-range argument is transmitted to a
standard library function (Table 5-4).

Improper argument values can cause error reporting by the standard library functions (Table 5-4) because:

• the function is mathematically undefined for the argument, as SQRT (-10);

• the function value is insignificant, as SIN (10E60); or

• the function value is too large to be represented, as 1 OE50**1 OE50. This is analogous to an overflow
condition.

As a default, a function value too small to be represented (an underflow) is approximated by 0 and is not
reported or considered on the FARG counts.

This argument also controls the acceptance and printing of subscript checking. (See 10.5.)

Underflow Error Argument (FUNDFLO):

FUNDFLO=YES
Used to control system action when underflows occur. This argument indicates that underflow will
be reported and counted.

Alignment Error Argument (FALIGN):

This argument is used to control system action when a program check interrupt occurs for an instruction
referencing an illegal main storage boundary. This can occur because of improper COMMON and
EQUIVALENCE statements and during argument substitution in prologues and epilogues.

Read Error Argument (FREAD):

This argument is used to control system action when an input device error occurs. The error counts
associated with FREAD are meaningful only when an ERR clause is present in the referencing statement. If
no ERR clause is present, the program is immediately terminated, regardless of the specifications or the
number of times the error may be accepted or the number of diagnostic messages that may be produced.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

11-30

Data Error Argument (FDATA):

This argument is used to control system action when the input data contains illegal characters. The error
counts associated with FDATA are meaningful only when an ERR clause is present in the referencing
statement. If no ERR clause is present, the program is immediately terminated, regardless of the
specifications for the number of times the error may be accepted or the number of diagnostic messages
that may be produced.

Error Options Argument (FERROPT):

This argument specifies the meaning of the ERR clause. The FORTRAN IV default is to pass control to the
ERR label only for parity or wrong length errors. The ERROR subroutine (5.6.3) is used to determine the
error type. Eight possible combinations of the following FERROPT specifications are available.

Example:

NONE

READ

DATA

Used to control system action when the ERR clause feature is to be disabled.

Used to contol system action when control is to be passed to the ERR label for parity or wrong
length errors only.

Used to control system action when control is to be passed to the ERR label for data errors. This
class is composed of invalid input characters.

UN REC
Used to control system action when control is to be provided at the ERR clause for
unrecoverable device errors only. No further references to the unit are permitted.

10 16 72
~~~~E-R_R_D_E_F_F_P_R_O-G=_(_l_B_B_,-lB_B_)-.~~~~~~~~~~~~~~--45 s\o-~~X-

F AL I G N= ( A LL , 5 B ) , X 
FERROPT=(DATA) 

This ERRDEF procedure call indicates that if a program error occurs, the error may be accepted 100 times, 
and 100 diagnostic messages may be produced. If an alignment error occurs, there is no limit on the 
number of times the error may be accepted, and 50 diagnostic messages may be produced. DATA. 
specified for error options, indicates that control is to be passed to the ERR label if data errors occur. The 
standard defaults are taken for all arguments not specified. 

11.3.5. END Statement 

The END statement, a source program terminator statement required by the assembler, indicates the end of the 
definition of the execution environment. 

Format: 

10 

END 

The END statement. coded as shown, follows the ERRDEF procedure call or the FUNEND procedure call. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

11.4. TYPICAL CONFIGURATION EXAMPLE 

11-31 

The following coding example defines a typical configuration that can be used by a FORTRAN IV program: 

10 16 
(. 

1 . II JOB FUNDEFS 
) 

2. II DVC 29 II LFD PRNTR 

3. II DVC 59 II VOL D99999 II LBL INPUTF II LFD DATA 
4. II DVC 49 II LFD PUNCH 

5. II DVC 2 Sfl II LFD STN 

6. II WORKl 

II WORK2 

7. II EXEC ASM 

8. 1$ 
9. USER ID START 

1 fl . UNIT FUNIT=PRINT, 

11. FRECSIZE=l21 
12. UNIT FUNIT=63, 

13. FFILEID=DATA, 

14. FTYPEFLE=INPUT 

15. UNIT FDEVICE=UNITREC, 

16. FUNIT=PUNCH, 

17. FRECSIZE=8fl, 

18. FCRDERR=RETRY 

19. UNIT FUN I T=3, FF ILE I D=S TN, 

2 fl. FSCREND=NEWPAGE 

2 1 . FUNE ND 

22. ERRDEF 

23. END 

24. 1· 
25. I& 
26. II FIN 

Explanations: 

1 . Indicates the job name FUNDEFS. 

2. Indicates the device assignment set for the printer. 

3. Indicates the device assignment set for the disk. 

4. Indicates the device assignment set for the card punch. 

5. Indicates the device assignment set for the workstation. 

6. Specifies two assembler work files. 

7. Begins the assembler execution. 

8. Specifies the start of data to the assembler. 

9. Specifies the start of the execution module. 

72 

x 

x 
x 

x 
x 
x 

x 

1 O. Defines the FORTRAN II print file since no FFILEID argument is specified. FORTRAN IV defaults to 
PRNTR (see line 2). 



UP-8474 Rev. 2 

11. Defines the record size. 

12. Starts the definition for unit 63. 

SPERRY UNIVAC OS/3 
FORTRAN IV 

11-32 

13. Indicates a disk file since the filename DATA is the same as the lfdname associated with the disk 
device (see line 3). 

14. Indicates an input file. 

15. Starts the definition for a unit record device. 

16. Defines the device as PUNCH. 

17. Indicates the logical record size of 80 bytes. 

18. Indicates retry error recovery is attempted. 

19. Starts the definition for a device (in this instance, a workstation since the filename STN is the same 
as the lfdname for DVC job control statement, 200). 

20. Indicates when the workstation end-of-screen is reached; the screen is cleared and the remaining 
screen display starts at the leftmost position on the first line. 

21. Terminates the UNIT definition procedures. 

22. Creates the error control table in the executable program. 

23. Terminates the source program. 

24.) 
25. Indicates end-of-job. 

26. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12-1 

12. Define the File ( DTF) 
Execution Environment 
Configuration 

12.1. DATA MANAGEMENT INTERFACE 

This section describes the interface between FORTRAN IV and the data management system in a DTF 
environment including: 

• the relationships between unit numbers and external files; 

• the kinds of devices supported; 

• performance considerations, such as record blocking and buffering; and 

• system defaults, that is, assumptions made by the system when specific directions are not provided. 

Default actions taken when various errors are detected during program execution and how these defaults are 
changed to suit application requirements also are described. An example of a complete execution environment is 
given in 12.3.6. 

An executable program requires a group of subroutines to support the FORTRAN 1/0 statements and to provide 
an interface to the data management system. These subroutines, individually called by the compiler, are 
automatically placed in the executable program by the linkage editor. One module, the control module, is central 
to the entire 110 scheme, because it contains the following tables: 

• a unit table containing a unit number and FORTRAN control information and having an entry for each unit 
number implicit in the FORTRAN source program; 

• a unit control table (a DTF in data management terminology) required by the data management system; and 

• buffers and work areas for record processing. 

A few control modules suitable for many application programs are contained in the FORTRAN N library (12.2). 
For more complex programs, the control module must be configured, using the FORTRAN IV unit definition 
procedures (UNITs). Only one control module can exist in an executable program. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12.2. DTF-SUPPLIED CONFIGURATIONS 

12-2 

The following configurations are supplied for general use in simple applications. The unit numbers selected are 
industry standard. 

• Control Module FL$10 

Unit Device Notes ---
1 Card read Cards in control stream 

3 Printer Also used for diagnostics 

5 Card read Equivalent to unit 1 
6 Printer Equivalent to unit 3 
29 Reread 

• Control Module FL$101 

Unit Device Notes 

1 Card read Cards in control stream 
2 Card punch 
3 Printer Also used for diagnostics 
5 Card read Equivalent to unit 1 
6 Printer Equivalent to unit 3 
11, 12 Tapes 508-byte variable unblocked 

records, no labels, workfile 
29 Reread To reread cards, but not tapes 

12.3. PROGRAMMER-DEFINED CONFIGURATIONS 

The execution environment is configured using an assembly language source module with the form: 

18 

name START 
file initialization 
file definition, 
file definition 2 

file definitionn 
file termination 
error definition 
END 

Continuation t 
72 

Each element of the assembly module is discussed in detail in 12.3.1through12.3.7. For an explanation of the 
statement conventions applicable to this section refer to 1.4. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12.3.1. File Definition Conventions 

12-3 

Basic information about various arguments specified in defining a file is presented in the following explanations. 
This information applies to all files for which these features are specified. 

12.3.1.1. Device Type 

The device type is specified by the FDEVICE argument. This required argument is the basic criterion against 
which all other arguments are validated. For example, if the device is specified as a printer, the specification of a 
5000-character record is rejected. 

The specification for FDEVICE is one of the primary considerations in selecting default values for other 
arguments. For example, if the device is specified as card input, the FORTRAN system assumes the card length 
to be 80, unless the user specifies otherwise. 

File support provided by FORTRAN IV is largely device independent. The user need not be concerned with 
whether the device is a UNISERVO 1-C, Vlll-C, 12, 16, or 20 magnetic tape unit, for example, because the system 
dynamically adapts itself to the varying requirements of these devices. The few features that cannot be 
supported in a device-independent fashion are noted in this section. 

12.3.1.2. Record and Block Sizes 

Record and block sizes are specified by the two optional arguments FRECSIZE and FBKSZ. The default value for 
FRECSIZE is selected by the FORTRAN system, based on the device type specified. For FBKSZ, the default value 
is computed from the record size. FBKSZ is associated with the tape and disk devices and must always be greater 
than or equal to the record size. 

12.3.1.3. Record Formats 

Four different record forms are available, including variable-length unblocked, variable-length blocked, fixed­
length unblocked, and fixed-length blocked records, and are specified by the FRECFORM argument. 

• Variable-Length Records 

Formats for variable-length unblocked and blocked records follow. 

a. Unblocked Records (VARUNB) 

s 
I 
I 

block 

BCW RCW : record 

ls 

b. Blocked Records (VARBLK) 

5 

l 
BCW RCW 

I 
record 1 I 

1 ls 

I 
I 

RCW I record2 I 

i 1 
I i 2 1 1 s 

I 
I 
I 

RCW I record 

Is i 
1 n 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12-4 

For both unblocked and blocked records, i specifies record size, j specifies block size, BCW specifies a data 
management block control word, and RCW specifies a data management record control word. 

The FORMAT statement (7.3.3) may not specify a record larger than i-4 for variable-length records. For 
unformatted input/output, no size limitation exists, since large FORTRAN records are automatically 
segmented into multiple data management records, using the record control words to identify beginning, 
middle, and end segments of the 1/0 list. 

The BCW and RCW are controlled by FORTRAN IV and the data management system and are not 
accessible through the FORTRAN language. The FBKSZ and FRECSIZE arguments are interpreted as 
maximums; shorter records will be accepted, and generated if possible, to save space on the external file 
and to reduce channel contention for main storage access. 

• Fixed-Length Records 

Formats for fixed-length unblocked and blocked records follow. 

a. Unblocked Records (FIXUNB) 

block j 

r-==-1 
~ 

b. Blocked Records (FIXBLK) 

block 
,,----------.....;_~--~- - -- - -...-------

i 1 

record 
n 

.__ _____ ___. ______ __,_ -- - - - ______ __, 

For both unblocked and blocked records, i is the size specified for the FRECSIZE argument, and j is the size 
specified for the FBKSZ argument. For unblocked records. i and j must be equal. For blocked records, j is an 
integral multiple of i. The last block of the file may be less than j bytes, but is always a multiple of i. 

The FORMAT statement may not require more than i character positions for fixed-length records. In an 
unformatted 1/0 list. no more than i bytes may be required for a record. 

12.3.1.4. Buffer Allocation 

The amount of main storage used to support a unit is controlled by three interacting optional arguments: 

• FBUFPOOL, which specifies buffer pooling; 

• FNUMBUF, which specifies the number of buffers to be allocated to a unit; and 

• FWORKA, which specifies whether a work area is to be allocated. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12-5 

Buffer pooling must be used with descretion, or unpredictable results will occur. When multiple units with 
pooled buffers are active, only unblocked records may be processed and only one buffer can be used. The term 
active covers the time period from the first reference to the unit until termination, which, on input, means an 
END clause return. On output this means the execution of an ENDFILE statement. If only one unit using buffer 
pooling is active at a given time, record blocking and double buffering can be used. 

During processing of each unit definition procedure, a data management control block (DTF) is generated. Then, 
assuming buffer pooling is not requested, one or two buffers are allocated, using the FBKSZ value or its default 
to determine the block size. After the last unit definition procedure is processed, space for work area is allocated. 

Work area size is determined by the largest record for which work area processing was requested. 

Similarly, one or two buffers are allocated for units using pooled buffers. The largest blocksize specified for such 
use is selected. 

A work area is automatically assumed for output variable length blocked files. A work area cannot be used if 
buffer pooling is selected. 

For any application, a tradeoff can be made between main storage economy and program performance by use of 
these arguments and blocksize adjustments. This is especially useful when the program processes large tape or 
sequential disk files and is to be executed relatively often. In other cases, the system defaults are generally best. 

Of the eight possible combinations, the following four are generally of greatest utility: 

• One buffer, no work area, buffer pooling 

This configuration gives greatest main storage economy. There is no overlap between computational and 
1/0 activity, and blocked files cannot be processed if more than one file is using pooled buffers. 

• One buffer, no work area, no buffer pooling 

This configuration requires more main storage, but allows unrestricted use of blocked files. BACKSPACE 
requires this configuration. There is no overlap between computational and 1/0 activity. 

• One buffer, work area, no buffer pooling 

This is the usual FORTRAN IV default. This requires slightly more main storage, but allows overlap 
between computational and 1/0 activity. The central processor loading is slightly increased because of 
record movement, but overall performance is usually improved. 

• Two buffers, no work area, no buffer pooling 

This configuration requires a still greater amount of main storage, provides overlap, and reduces 
computational loading due to the absence of record movement. 

There is no requirement to allocate buffers for all units in the same fashion. The most attention should be given 
to the highest activity files. 

12.3.1.5. File Type 

The type of file - input, output, or work - is specified by the FTYPEFLE argument. This argument is not necessary 
for most devices. A printer, for example, is incapable of performing input functions and is always classified as an 
output device. 



UP-8474 Rev. 2 SPERRY UNIVAC 05/3 
FORTRAN IV 

12-6 

For tape and disk devices, the specification of an input or an output file permits the system to eliminate support 
coding and reduce the size of the executable program. The specification of a work file causes support coding for 
both input and output functions to be included. 

12.3.2. START Statement 

The START statement. a subprogram declarator statement required by the assembler, is the first statement of 
the configuration definition. 

Format: 

18 

name START 

A 1- to 8-character symbolic name used to reference the control module on a linkage editor INCLUDE statement 
is specified by name. START is coded as shown. 

This statement is always followed by the FUNTAB procedure call. 

12.3.3. FORTRAN Initialization Procedure (FUNTAB) 

The FUNTAB statement follows the START statement and precedes all other statements. It initializes Basic 
FORTRAN, FORTRAN IV, or Extended FORTRAN parameters needed by statements which follow. To initialize the 
FORTRAN IV parameters, the FUNTAB statement is coded as follows: 

Format: 

10 16 

FUNTAB SYS=FOR 

NOTE: 

Omitting the SYS=FOR operand from the FUNTAB call initializes basic FORTRAN parameters. 

12.3.4. FORTRAN Unit Definition Procedure (UNIT) 

Each file definition consists of a call on the FORTRAN unit definition procedure (UNIT) with arguments specifying 
characteristics of the file. There are major syntactical differences between FORTRAN and assembly language: 

• In the assembler, the statement continuation character is required for lines 1 through n-1 in column 72. In 
FORTRAN, it is required in lines 2 though n in column 6. 

• No embedded blanks are permitted, and all continuation lines must start in column 16 (as illustated in 
following examples). 



UP-8474 Rev. 2 

Format: 

10 16 

UNIT n1=c 1 , 

n2=C2' 

nn=c n 

SPERRY UNIVAC OS/3 
FORTRAN IV 

12-7 

Continuation t 
72 

x 
x 

x 

Each argument consists of an identifying name (n), an equal sign, and a particular characteristic (c) of the 
file being defined. All arguments must start in column 16. If an argument is not required, it is omitted, and 
the comma is deleted. • 

12.3.4.1. Printer~ File Definition 

A single printer file is defined by using the UNIT procedure call shown in the following format. Listed in order of 
relative importance and utility are the arguments that may appear on this UNIT procedure call. Descriptions of 
the UNIT arguments and a UNIT example also are presented. Work areas and buffer pooling are not supported for 
printers. The default number of buffers is 2. 

Format: 

UNIT FDEVICE=PRINTER 

FUN I T={k ) 
PRINT 
PUNCH 

[

FILEID={f.ilename }] 
FORTk; if FUN I T=k 
PRNTR; if FUN I T=PR I NT 
PUNCH;if FUNIT=PUNCH 

e RECS I Z E= { ~ 
21

}] 

(FNUMBUF={l}] 

[FD I AGNOS=YE S] 

[
FPRINTOV={SKIP }] 

NOSKIP 

(FCHAR={~~ F }] 

[ FOPT I ON=YES] 

Device Identification Argument: 

FD EV IC E=P RI N TE R 
Specifies this is a printer file. 



UP-8474 Rev. 2 

Unit Identifier Argument: 

FUNIT=k 

SPERRY UNIVAC OS/3 
FORTRAN IV 

Specifies a unique integer constant (k) in the range 1 ~k~99. 

FUNIT=PRINT 
Specifies PRINT as the unit identifier. 

FUNIT=PUNCH 
Specifies PUNCH as the unit identifier. 

12-8 

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified 
by a control module. The identifiers PRINT and PUNCH are provided for reference by the FORTRAN II 
statements PRINT and PUNCH, respectively, since these statements contain no specific unit identification. 
When a FORTRAN II statement is executed and one of these special identifiers has not been provided in 
the control module, the first printer device specified is used. The units are searched in the order in which 
they are defined. In an executable program, only one such unit may be defined. 

File Name Argument: 

FF I LE I D=f i I en ame 
Specifies a 1- to 7-character FORTRAN style symbolic name (filename). 

FFILEID=.E.9.!!l 
Specifies the file name as FORTk, where 1 ~9. If the FFILEID argument is not specified, and 
FUNIT=k has been specified, FORTk is the default file name. 

FF I LE I D=f.!!!! 
Specifies the file name as PRNTR. If the FFILEID argument is not specified and FUNIT=PRINT has 
been specified, PRNTR is the default file name. 

FI LE I D=PUNCH 
Specifies the file name as PUNCH. If the FFILElD argument is not specified and FUNIT=PUNCH has 
been specified, PUNCH is the default file name. 

Record Size Argument: 

FRECSIZE={k } 
121 

Specifies a positive integer constant (k), in the range 1~~161. If this argument is omitted, 121 is the 
default record size. This accommodates a 120-character SPERRY UNIVAC 0773 Printer, with one 
additional character for carriage control. Other printers may specify up to 160 print positions. 

Buffer Allocation Argument: 

FNUMBUF=l 
Specifies one buffer to be allocated to a unit. 

FNUMBUF=2 
Specifies two buffers to be allocated to a unit. 



UP-8474 Rev. 2 

Diagnostic Messages Argument: 

SPERRY UNIVAC OS/3 
FORTRAN IV 

The FORTRAN IV runtime environment always requires a device for diagnostic purposes. 

FDIAGNOS=YES 

12-9 

Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or 
more. Debugging information may also be written to this device (103). This argument is not available 
for input files. 

Printer Forms Control Argument: 

This argument specifies whether the forms control loop (or an electronic equivalent) contained in the 
printer device for locating the top and bottom of the page is to cause automatic skipping across the seam of 
the paper. 

FPRINTOV=SKIP 
Specifies that the printer is to skip to the top of the next page (home paper) when the bottom of the 
current page (forms overflow) is detected. 

FPRINTOV=NOSKIP 
Specifies that no automatic forms control is desired. Spacing is then under sole control of the 
carriage control characters (7.3.3.3.). 

Invalid Character Processing Argument: 

This argument specifies the action to be taken when a character with no corresponding printer graphic is 
encountered. 

FCHAR=OFF 
Specifies that a blank is to be substituted for the character and that the line is to be written to the 
printer with no error notification. 

FCHAR=ON 
Specifies that a device error is to be generated and the program is to be terminated. 

Optional Units Argument: 

F OPT I ON=YE S 
Specifies an optional unit (a unit not always required during program execution). 

When this argument is specified, and the file has not been allocated by job control statements, WRITE 
statements are effectively ignored. A unit need not be declared as optional if the logic of the program does 
not cause a reference to the unit. 

Example: 

10 16 

UNIT FDEVICE=PRINTER, 
FUN I T=l8, 
FRECS I ZE=l81. 
FDIAGNOS=YES, 
FPRINTOV=NOSKIP 

s 72 

x 
x 
x 
x 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12-10 

A printer is defined (unit 10) with 100 printable characters per line. It is also to be used for diagnostic 
purposes. No automatic forms overflow is to take place; device error recovery is requested. The FORTRAN 
system assumes defaults of: 

• file name is FORT10; 

• two buffers; 

• substitution of blanks for nonprinting characters; and 

• file is required if a reference occurs. 

12.3.4.2. Card Input File Definition 

Two methods, the operating system spooling facility and the data management card read procedures, are 
provided to read data cards. The operating system spooling facility reads cards and transcribes them to a disk file 
before the executable program is activated. When a card image is requested by the program, the operating 
system reads the card image from disk and delivers it to the program. The data management card read 
procedures require the allocation of a card reader device to the executable program and activate the device in 
synchronization with program requests for card images. This method requires more main storage and is most 
suited to high volume applications. The two methods are described in 12.3.4.2.1 and 12.3.4.2.2. 

12.3.4.2.1. Spooled Card Input File Definition 

A spooled card input file is defined by using the UNIT procedure call. Following the format is a listing, in order of 
relative importance and utility, of the arguments that may appear on the UNIT procedure call. Following the 
listing, descriptions of UNIT arguments, programming considerations, and a UNIT example are presented. Only 
one spooled card input file is permitted for a given application. 

Format: 

10 16 

UNIT FDEVICE=SPOOLIN 

FUNIT={k } 
READ 

[ FRERE A D=YE S] 

(FBKSZ={:u}] 

[FBUFPOOL=YES] 

(FRECS I ZE=t:e}] 

Device Identification Argument: 

FDEVICE=SPOOLIN 
Specifies that this is a spooled card input file. 



UP-8474 Rev. 2 

Unit Identifier Argument: 

FUNIT=k 

SPERRY UNIVAC 05/3 
FORTRAN IV 

Specifies a unique integer constant in the range 1~k~99. 

FUNIT=READ 
Specifies READ as the unit identifier. 

12-11 

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified 
by a control module. The identifier READ is provided for reference by the FORTRAN II READ statement, 
since this statement contains no specific unit identification. When a FORTRAN II statement is executed and 
one of these special identifiers has not been provided, the first spoolin device specified is used. The units 
are searched in the order in which they are defined. In an executable program, only one such unit may be 
defined. 

Reread Argument: 

FR ER EAD=YE S 
Specifies that the unit is to participate in the reread feature (7.3.4). 

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve 
central processor time, this data movement is inhibited unless specifically requested. 

Block Size Argument: 

FBKSZ={k } 
400 

Specifies a positive integer constant (k) this is an integral multiple of FRECSIZE. A large multiple of 
FRECSIZE reduces operating system overhead. The default block size is the largest integral multiple 
of FRECSIZE that is less than or equal to 400. If a number is specified that is not an integral multiple 
of FRECSIZE, the block size is rounded downward to the nearest multiple. 

Buffer Pooling Argument: 

FBUFPOOL=YES 
Specifies that buffer pooling is to be used. 

The buffers are to be logically equivalent with all other units for which buffer pooling is specified. 

When multiple units with pooled buffers are active, only unblocked records may be processed and only one 
buffer can be used. A unit is active from the first reference to the unit until termination, which means an 
END clause return. If only one unit using buffer pooling is active at a given time, record blocking can be 
used. 

Record Size Argument: 

FRECS I ZE={:
0

} 

Specifiesthe record size for a spooled card input file, where k may be from 1 to 128. The default 
record size of the spooled card input file is 80. 



UP-8474 Rev. 2 

Programming Considerations: 

SPERRY UNIVAC OS/3 
FORTRAN IV 

Spooled input consists of one or more sets of cards, each headed with a card containing 

/$ 

in columns 1 and 2 and terminated with a card containing 

/* 

in columns 1 and 2. 

12-12 

The /$ card is always bypassed by the FORTRAN IV library and is not accessible as a data card; the /* card 
causes control to be transferred to the label specified in the END clause or, in the absence of an END 
clause, causes program termination. 

Example: 

10 16 

UNIT FDEVICE=SPOOLIN, 
FUNIT=2, 
FREREAD=YES, 
FBKSZ=248 

f 
72 

x 
x 
x 

This UNIT procedure call defines a spooled card input file (unit 2) that participates in the reread feature. 
Three cards (240 characters) at a time are read into the buffer to reduce operating system overhead. As a 
default, the FORTRAN system assumes a unique, nonpooled buffer. 

12.3.4.2.2. Data Management Card Input File Definition 

A single data management card or 8413 diskette input file is defined by using the UNIT procedure call in this 
format. Following the format is a listing, in the order of relative importance and utility, of the arguments that may 
appear on the UNIT procedure call. Following the listing, descriptions of the UNIT arguments and a UNIT example 
are presented. 

The only limitation on the number of data management card input files is the system configuration and the 
number of devices that can be allocated to the application. Cards may be read from a card punch if the device is 
equipped with the optional read feature. 



UP-8474 Rev. 2 

Format: 

10 16 

SPERRY UNIVAC 05/3 
FORTRAN IV 

UNIT FDEVICE=CARDIN 

FUNIT=tk } 
READ 

[
FF I LE I D={f i I ename }] 

FORTk; if FUNIT=k 
READER; 1f FUNIT=READ 

[ FREREAD=YES] 

[ FBUFPOOL=YES] 

eNUMBUF={t}J 

[ FWORKA={ YES; if FNUMBUF=l }] 
NO; if FNUMBUF=2 

eRECS I ZE=t:elJ 

[ FBKSZ=tk }] 
FRECSIZE 

es TUB={~!}] 
[ FOPT I ON=YES] 

[ FAUE=YES] 

Device Identification Argument: 

FDEVICE=CARDIN 
Specifies that this is a card input file. 

Unit Identifier Argument: 

FUNIT=k 
Specifies a unique integer constant in the range 1:Qc~99. 

FUNIT=READ 
Specifies READ as the unit identifier. 

12-13 

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified 
by a control module. The identifier READ is provided for reference by the FORTRAN II READ statement, 
since this statement contains no specific unit identification. When a FORTRAN II statement is executed and 
this special identifier has not been provided, the first card device specified is used. The units are searched 
in the order in which they are defined. In an executable program, only one such unit may be defined. 

File Name Argument: 

F F I L E I D= f i I e n am e 
Specifies a 1- to 7-character FORTRAN style symbolic name (filename). 

FF I LE I D=FORTk 
Specifies the file name as FORTI<, where 1 ~k~99. If the FFILEID argument is not specified and 
FUNIT=k has been specified, FORTk is the default file name. 



UP-8474 Rev. 2 

FF I LE I D=READER 

SPERRY UNIVAC OS/3 
FORTRAN IV 

12-14 

Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has 
been specified, READER is the default file name. 

Reread Argument: 

FR ER EAD=YE S 
The reread unit consists of a single buffer to which each formatted input record is transferred. To 
conserve central processor time, this data movement is inhibited unless specifically requested. 

Buffer Pooling Argument: 

FBUFPOOL=YES 
The buffers are to be logically equivalent with all other units for which buffer pooling is specified. 

When multiple units with pooled buffers are active, only unblocked records may be processed, and only 
one buffer can be used. A unit is active from the first reference to the unit until termination, which means 
an END clause return. If only one unit using buffer pooling is active at a given time, double buffering can be 
used. 

Buffer Allocation Argument: 

FNUMBUF=l 
Specifies one buffer to be allocated to the unit. 

FNUMBUF=2 
Specifies two buffers to be allocated to the unit. 

Work Area Allocation Argument: 

This argument specifies whether records are to be processed directly in the buffer or moved from a work 
area for processing. 

FWORKA=YES 
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is 
specified, the default is that space is allocated for a work area. 

FWORKA=NO 
Specifies that no space for a work area is to be allocated. If this argument is omitted and 
FNUMBUF=2 is specified, the default is that no space is allocated for a work area. 

Record Size Argument: 

This argument specifies record size. 

FRECSIZE={:e} 

Specifies a positive integer constant (k) in the range 1 ~ k ~ 128. 

If 96-column cards are to be read, 96 must be specified. If an 8413 diskette is to be read, the record size 
must correspond to that actually recorded on the device. If this argument is omitted, 80 is the default 
record size. 

If the rightmost columns of an 80-column card are not meaningful to the program, this argument may be 
used to save main storage space by specifying a shorter record size. 



UP-8474 Rev. 2 

Block Size Argument: 

SPERRY UNIVAC OS/3 
FORTRAN IV 

This argument specifies the block size for an 8413 diskette. 

FBKSZ={k } 
FRECSIZE 

12-15 

Specifies a positive integer constant (k::::;1024) that should be an integral multiple of FRECSIZE. A 
large multiple of FRECSIZE reduces operating overhead. The default block size is FRECSIZE. If a 
number is specified that is not an integral multiple of FRECSIZE, the block size is rounded downward 
to the nearest multiple. 

Stub Card Argument: 

This argument specifies cards physically shorter than 80 columns. 

FSTUB=Sl 
Specifies a 51-column card. 

FSTUB=66 
Specifies a 66-column card. 

The card reader must be equipped with the proper optional feature if this argument is specified. If stub 
cards are to be read, FSTUB must be specified. FSTUB is completely independent of the record size. 

Optional Units Argument: 

FOPT I ON=YES 
Specifies an optional unit, a unit not always required during program execution. 

When this argument is specified and the file has not been allocated by job control statements, the first 
READ reference causes an end-of-file condition to occur. 

A unit need not be declared as optional if the logic oft.he program does not cause a reference to the unit. 

Rejection of Mispunched Cards Argument: 

FAUE=YES 
Specifies that cards with an illegal hole combination in a column are to be bypassed and will not be 
delivered to the program. 

When the device being used is a SPERRY UNIVAC 0716 Card Reader, the erroneous card is also sorted into 
a unique error stacker. 

If this argument is not specified, the card reader is stopped. Operator intervention is sought when an illegal 
hole combination is detected. 

Example: 

10 16 

UNIT FDEVICE=CARDIN, 
FUNIT=READ, 
FNUMBUF=2, 
FRECS I ZE=56, 
FAU E=YE S 

72 

x 
x 
x 
x 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12-16 

This UNIT procedure call defines a card reader device, or a card punch device with the optional read 
feature, to be referenced by using the FORTRAN II READ statement. Two buffers are allocated for 
efficiency, and only the first 56 characters on each card are to be transferred to main storage. Cards with 
erroneous punches are ignored. The defaults assumed are: 

• file name is READER; 

• records will not be reread; 

• nonshared buffers with no work area; 

• no stub cards; and 

• file required if a reference occurs. 

12.3.4.3. Card Output File Definition 

A single card or 8413 diskette output file is defined by using the UNIT procedure calls presented in this format. 
Following the format is a listing, in the order of relative importance and utility, of the arguments that may appear 
on the UNIT procedure call. Following the listing, descriptions of UNIT arguments and a UNIT example are 
presented. 

Format: 

10 16 

UNIT FDEVICE=CARDOUT 

FUNIT={k } 
PUNCH 

[

FF I L E I D={ f i I e n am e 
FORTk;if 
PUNCH; i f 

[ FBUFPOOL=YES] 

(FNUMBU F { ~ }] 

FUNIT=k IJ 
FUNIT=PUNCH 

rFWORKA={YES; if FNUMBUF=l }] 
~;if FNUMBUF=2 

[FRECS I ZE:{:e}J 

rFBKSZ={k }] 
. FRECSIZE 

[ F CR DER R=R ET RY] 

[ FOPT I ON=YES] 

Device Identification Argument: 

FDEVICE=CARDOUT 
Specifies that this is a card output file. 

Unit Identification Argument: 

FUNIT=k 

Specifies a unique integer constant (k) in the range 1 ~~9. 



UP-8474 Rev. 2 

FUNIT=PUNCH 

SPERRY UNIVAC OS/3 
FORTRAN IV 

Specifies PUNCH as the unit identifier. 

12-17 

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT' and PUNCH) may be specified 
by a control module. The identifier PUNCH is provided for reference by the FORTRAN II PUNCH statement, 
since this statement contains no specific unit identification .. When a FORTRAN II statement is executed and 
this special identifier has not been provided, the first cardout device specified is used. The units are 
searched in the order in which they are defined. In an executable program, only one such unit may be 
defined. 

File name Argument: 

FF I L E I D= f i I e n am e 
Specifies a 1- to 7-character FORTRAN style symbolic name (filename). 

FF ILE I D=FORTk 
Specifies the file name as FORTk where 1~~99. If the FFILEID argument is not specified and 
FUNIT=k has been specified, FORTk is the default file name. 

FF ILE I D=PUNCH 
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has 
been specified, PUNCH is the default file name. 

Buffer Pooling Argument: 

FBUFPOOL=YES 
Specifies that buffer pooling is to be used. The buffers are to be logically equivalent with all other 
units for which buffer pooling is specified. 

When multiple units with pooled buffers are active, only one buffer can be used. A unit is active from the 
first reference to the unit until termination, which means the execution of an ENDFILE statement. If only 
one unit using buffer pooling is active at a given time, double buffering can be used. 

Buffer Allocation Argument: 

FNUMBUF=l 
Specifies one buffer to be allocated to the unit. 

FNUMBUF=2 
Specifies two buffers to be allocated to the unit. 

Work Area Allocation Argument: 

This argument specifies whether records are to be processed directly in the buffer or moved from a work 
area for processing. 

FWORKA=YES 
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is 
specified, the default is that space is allocated for a work area. 

FWORKA=NO 
Specifies that no space for a work area is to be allocated. If this argument is omitted and 
FNUMBUF=2 is specified, the default is that no space is allocated for a work area. 



UP-8474 Rev. 2 

Record Size Argument: 

FRECSIZE={:s} 

SPERRY UNIVAC 05/3 
FORTRAN IV 

Specifiesa positive integer constant (k) in the range 1~k~l28. 

If this argument is omitted, 80 is the default record size. 

Block Size Argument: 

This argument specifies the block size for an 8413 diskette. 

FBKSZ={k } 
FRECSIZE 

12-18 

Specifes a positive integer constant (k~1024) that should be an integral multiple of FRECSIZE. A 
large multiple of FRECSIZE reduces operating overhead. The default block size is FRECSIZE. If a 
number is specified that is not an integral multiple of FRECSIZE, the block size is rounded downward 
to the nearest multiple. 

Device Error Recovery Argument: 

FCRDERR=RETRY 
Specifies that error recovery coding is included in the executable program. 

If this argument is not specified or if the recovery attempt is unsuccessful, program termination is initiated 
when device errors occur. Mispunched cards are automatically segregated into an error card stacker. This 
argument is not meaningful if card output is spooled (transmitted to disk for later transcription to a card 
punch). 

Optional Units Argument: 

FOPT I ON=YES 
Specifies an optional unit(a unit not always required during program execution). 

When this argument is specified and the file has not been allocated by the job control statement, WRITE 
statements are effectively ignored. 

A unit need not be declared optional if the logic of the program does not cause a reference to the unit. 

Example: 

10 16 72 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~1~~~~-

UNIT FDEVICE=CARDOUT, X
FUNIT=32, X
FBUFPOOL=YES, X
FCRDERR=RETRY

This FUNDEF procedure call defines a card punch device (unit 32) with a pooled buffer. In the event of a device
error, automatic retry is to be attempted. The defaults assumed are:

• file name is FORT32;

• one buffer ·and one work area;

• record size of 80; and

• file is required if a reference occurs.

UP-8474 Rev. 2

12.2.4.4. Tape File Definition

SPERRY UNIVAC OS/3
FORTRAN IV

12-19

A single tape file is defined by using the UNIT procedure call presented in this format. Following the format is a
listing, in the order of relative importance and utility, of the arguments that may appear on the UNIT procedure
call. Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

Format:

10 16

UNIT FDEVICE=TAPE

FUNIT={k)
READ
PUNCH

[

FILEID={filename I~
FORTk; if FUN I T=k
READER; 1 f FUN I T=READ
PUNCH; if FUNIT=PUNCH

[TYPEFLE={~~:~~~!tF~~~~~~READ }]

OUTPUT; 1 f FUN I T=PUNCH

[RECFORM={:::~~~}]
FIXUNB
FIXBLK

[FNUMBU F={t}J

[FWORKA={YES; if FNUMBUF=l}]
1!Q ; if FNUMBUF=2

[FBUFPOOL=YES]

[FR EC S I Z E= {: tl8 }]

[BKSZ={~RECS I ZE; if FRECFORM=F I XUNB l~
FRECS I ZE+4; if FRECFORM=VARUNB
FRECSIZE•4;otherwise

[FRERE A D=YE S]

[FDIAGNOS=YES]

[FBKNO=YES]

[F E RR 0 PT= { ~ ~ ~ ~ R E }]

[FCKPT=YES]

[FF I LABL={~~D}]
[FCKPTREC=YES]

IF c L RW={ ::~wo IJ
L UNLOAD

[FOPRW=NORWD]

[FOPTION=YES]

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

12-20

Device Identification Argument:

FDEVICE=TAPE
Specifies that this is a tape file;

Unit Identifier Argument:

FUN I T=k
SDpecifies a unique integer constant in the range 1 ~~99.

FUN I T=READ
Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifiers READ and PUNCH are provided for reference by the FORTRAN II
statements READ and PUNCH, respectively, since these statements contain no specific unit identification.
When a FORTRAN II statement is executed and one of these special identifiers has not been provided, the
applicable device specified is used. The units are searched in the order in which they are defined. In an
executable program, only one such unit may be defined.

File Name Argument:

FF I LE I D=f i I en ame
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FF I LE I D=FORTk
Specifies the file name as FORTI<, where 1~99. If the FFILEID argument is not specified and
FUNIT=k has been specified, FORTk is the default file name.

FFI LEID=READER
Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has
been specified, READER is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has
been specified, PUNCH is the default file name.

Type-of-File Argument:

FTYPEFLE=WORK or FTYPEFLE=INOUT
Specifies a work file. If this argument is not specified and FUNIT=k has been specified, WORK is the
FTYPEFLE default. FTYPEFLE=WORK should be specified if the tape is to be read and written. Work
files are limited to a single volume (reel).

FTYPEFLE=INPUT
Specifies an input file. If this argument is not specified and FUNIT=READ has been specified, INPUT
is the FTYPEFLE default. FTYPEFLE=INPUT should be specified if the tape is to be read but never
written.

FTYPEF LE=OUTPUT
Specifies an output file. If this argument is not specified and FUNIT=PUNCH has been specified,
OUTPUT is the FTYPEFLE default. FTYPEFLE=OUTPUT should be specified if the tape is to be written
but never read.

UP-8474 Rev. 2

Record Format Argument:

FRECFORM=YARUNB

SPERRY UNIVAC OS/3
FORTRAN IV

Specifies variable-length unblocked records.

FRECFORM=YARBLK

12-21

Specifies variable-length blocked records. BACKSPACE is not allowed if this option is specified.

FRECFORM=FIXUNB
Specifies fixed-length unblocked records.

FRECFORM=f I XBLK
Specifies fixed-length blocked records, BACKSPACE is not allowed if this option is specified.

Buffer Allocation Argument:

FftUMBUF=l
Specifies one buffer to be allocated to a unit. This argument is required if BACKSPACE is to be
allowed.

FNUM8Uf=2
Specifies two buffers to be allocated to a unit.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved to and from a
work area for processing.

FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.

FWORKA=NO
Specifies that no space for a work area is to be allocated. If this argument is omitted and
FNUMBUF=2 is specified, the default is that no space is allocated for a work area. This argument is
required if BACKSPACE is to be allowed.

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are. to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which on input
means an END clause return and on output means the execution of an ENDFILE statement. lf only one unit
using buffer pooling is active at a given time, record blocking and double buffering can be used.

Record Size Argument:

FRECS I ZE=t k }
588

Specifies a positive integer constant (k) in the range 18~Q2767 if fixed records are specified and
1 ~k:s:;;32727 if variable records are specified. If this argument is omitted, 508 is the default record
size.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

12-22

FORTRAN IV pads out all variable-length records to 18 bytes, if necessary. This implies that it is impossible
to detect all instances when the program requests records longer than the length written. Fixed-length
records must be at least 18 bytes.

Block Size Argument:

This argument specifies the block size, which must always be greater than or equal to the record size. The
default values for FBKSZ depend on the absolute value of the FRECSIZE specification and on the record
form used.

FBKSZ=k
Specifies the block size (k) as a positive integer constant in the range 18~k~32767.

FBKSZ=FRECS I ZE
Indicates the blocksize is equal to the record size. If this argument is not specified and fixed
unblocked records have been specified, this is the default block size.

FBKSZ=FRECSIZE+4
Indicates the block size is four more than the record size. If this argument is not specified, and
variable unblocked records have been specified, this is the default block size.

FBKSZ=FRECS I ZE*4

Example:

Indicates the block size as four times the record size. If this argument is not specified and blocked
records have been specified, this is the default. Files containing blocked records cannot be
backspaced.

10 16 72
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--1.5~~~~ 

FRECFORM=VARBLK, 
FRECS1ZE=l8BB 

x 

In this example FBKSZ is not specified. Since FRECFORM=VARBLK is specified, the default value for FBKSZ is 
equal to four times the value of FRECSIZE. 

Reread Argument: 

FR ER EAD=YE S 
Specifies that a unit is to participate in the reread feature (7.3.4). 

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve 
central processor time, this data movement is inhibited unless specifically requested. 

Diagnostic Messages Argument: 

FDIAGNOS=YES 
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or 
more. Debugging information may also be written to this device (10.3). This argument is not available 
for input files. 

The FORTRAN IV run-time environment always requires a device for diagnostic purposes. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12-23 

Block Numbering Argument: 

F BKNO=YE S 
Specifies that sequence numbers are to be encoded in each block before it is written and checked 
after each block is read. These block numbers are not visible to the FORTRAN programmer. 

Device Error Processing Arguments: 

Two arguments are used to specify device error processing. 

• FERRO PT 

Specifies action to be taken when an erroneous data block is encountered. 

If omitted, specifies that control is to be transferred to the ERR clause of the READ statment; 
abnormal termination procedures are to be initiated if the ERR clause is not present. 

FERROPT=IGNORE 
Specifies that the erroneous block is to be accepted. 

FERROPT=SK IP 
Specifies that the erroneous block is to be bypassed by reading the next block. 

SKIP and IGNORE should be used with discretion, since device position may be lost for unformatted 
files and NAMELISTs. 

When the problem program receives control at the ERR label, the ERROR subroutine (5.6.3.3) should 
be referenced to determine the error type. If the error is unrecoverable, the unit cannot be referenced 
again. Unrecoverable errors can be caused by severe device failure, parity errors that cause 
inconsistent control information, or any error on a list-directed statement, which always implies loss 
of position. 

If the error is recoverable, the device is considered operable. Further references to the unit deliver 
subsequent logical records; the erroneous record is bypassed. A parity or'wrong length error on a 
blocked file causes an ERR return for every logical-record in the erroneous block. The term "logical 
record" is interpreted identically with the BACKSPACE statement (7.3.6.2). 

• FRECERR 

FRECERR=YES 
Specifies that formatted records in blocks with parity or wrong lengths errors are to be 
moved to the reread buffer. Access to these records is required by some application 
programs. 

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or 
more erroneous bits. The next reference to the unit in error delivers the next record or causes 
another ERR return. A reread unit must be defined to access the reread buffer (12.3.4.6). Refer also 
to the ERRDEF procedure (12.3.6). 

Tape Label Checking Argument: 

FF I LABL=STD 
Specifies that system standard labels are assumed. 

FFILABL=NO 
Specifies that tapes are to be read and written without labels. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12-24 

Checkpoint Processing Argument: 

FCKPT=YES 
Specifies that an input tape file contains operating system checkpoint dumps used to restart 
programs after a catastrophic failure. 

The block size must be 20 bytes or larger when this argument is used. FCKPT must be specified when 
checkpoint dumps are present. 

Tape Rewind Arguments: 

Two arguments may be used to specify tape rewinding. They have no effect on the FORTRAN REWIND 
command. 

• FCLRW 

FCLRW=RWD 
Specifies that the tape is to be rewound to loadpoint when the STOP statement is 
executed. 

FCLRW=NORWD 
Specifies that there is to be no rewind when the STOP statement is executed. 

FCLRW=UNLOAD 
Specifies that there is to be rewind with interlock when the STOP statement is executed 
and that the tape is inaccessible to subsequent steps in the job without operator 
intervention. 

• FOPRW 

FOPRW=NORWD 
Specifies that the tape is not to be rewound to load point when it is first referenced. 

Optional Units Argument: 

FOPT I ON=YES 
Specifies an optional unit, a unit not always required during program execution. 

When this argument is specified and the file has not been allocated by job control statements, WRITE 
statements are effectively ignored, and the first READ reference will cause an end-of-file condition to 
occur. 

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit. 

Example: 

10 16 72 
~~~~~~~~~~~~~~~~~~~~~~~~~~-CJ~~~~ 

UNIT FDEYICE=TAPE,
FUNIT=7,
FTYPE FI LE=I NPUT,
FRECFDRM=YARBLK,
FWO R KA=YE S ,
FRECS I ZE=488,
FBKSZ=l888,
FCKPT=YE S

x
x
x
x
x
x
x

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

12-25

This example defines a tape file (unit 7) used for input only. The records are variable in length, with a maximum
size of 400 bytes, and blocked into a maximum blocksize of 1000 bytes. The file is processed by using a work
area, and checkpoint records are present and are to be bypassed when encountered.

The assumed defaults are:

• file name is FORT7;

• no buffer pooling, one unique buffer;

• no reread;

• not the diagnostic device;

• no block numbering;

• device errors to be returned to ERR labels with the record bypassed and not made available to reread;

• no labels;

• rewinds at start and end of processing; and

• file is required if a reference occurs.

Because a work area is requested, BACKSPACE will not be allowed.

12.3.4.5. Files on Disk

FORTRAN supports three separate types of files on disk: sequential disk, direct access disk, and combined
sequential-direct disk.

• SAM

Sequential disk uses the disk sequential access method (SAM) and uses a file similar to a tape file. Only
sequential 1/0 statements are allowed.

• DAM

Direct access disk uses the direct access method (DAM) and creates a file of fixed-size records referenced
by relative record number only.

• MIRAM

Combined sequential direct disk uses the multi-indexed random access method (MIRAM).

Because of its flexibility and effeciency the MIRAM file is recommended for most applications.

12.3.4.5.1 Sequential Disk File Definition

A single sequential disk file is defined by using the UNIT procedure call presented in this format. Following the
format is a listing, in the order of relative importance and utility, of the arguments that may appear on the UNIT
procedure call. Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

12-26

Sequential disk files are conceptually identical with tape files. Most arguments are treated identically with tape
file arguments.

Format:

10 16

UNIT FDEVICE=SDISC

FUNIT=1k)
READ
PUNCH

[F S E C T 0 R= { ~ ~ S }]

[

F I L E I D={ f i I e n a m e I~
FORTk; if FUN I T=k
READER; if FUN I T=READ
PUNCH; if FUN I T=PUNCH

[TYPEFLE={~~:~:~!tF~~~~7~READ }]

OUTPUT; 1 f FUN I T=PUNCH

[

RECFORM={VARUNB}] VARBLK
FIXUNB
FIXBLK

eNUMBUF={t}J

[FBUFPOOL=YES]

[
FWORKA={ YES; if FNUMBUF=l }]

.!.Q ; if FNUMBUF=2

eRECS I ZE={:ealJ

[BKSZ={~RECS I ZE; if FRECFORM=F I XUNB I~
FRECS I ZEH; if FRECFORM=VARUNB
FRECSIZE.4;otherwise

[FREREAD=YES]

[FD I AGNOS=YES]

[FERROPT={~~~~RE}]

[FR EC ER R=YE S]

[FOPTION=YES]

[FV ER I F Y=YE S]

Device Identification Argument:

FDEVICE=SDISC
Specifies that this is a sequential disk file.

UP-8474 Rev. 2

Unit Identifier Argument:

FUNIT=k

SPERRY UNIVAC OS/3
FORTRAN IV

Specifies a unique integer constant (k) in the range 1:s:;;k:s:;;99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

12-27

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifiers READ and PUNCH are provided for reference by the FORTRAN II
statements READ and PUNCH, respectively, since these statements contain no specific unit identification.
When a FORTRAN II statement is executed and one of these special identifiers has not been provided, the
applicable device specified is used. The units are searched in the order in which they are defined. In an
executable program, only one such unit may be defined.

Sector Processing Argument:

FSECTOR=YES
Specifies that processing on a sectorized disk is expected (e.g., an 8416). FSECTOR parameter is valid
for all file types: input, output, or work. When specified, the FORTRAN IV 1/0 system ensures that all
1/0 areas, including pooled· 110 areas, are integral multiples of 256 bytes in length. This is necessary
to prevent program termination or destruction of data.

FSECTOR=NO
Specifies that processing on a nonsectorized disk is expected. This will conserve space.

File Name Argument:

FF I L E I D= f i I e n am e
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FF I LE I D=F 0 RT k
Specifies the file name as FORTk, where 1:s:;;k:s:;;99. If the FFILEID argument is not specified and
FUNIT=k has been specified, FORTk is the default file name.

FF I LE I D=READER
Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has
been specified, READER is the default file name.

FF I LE I D=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has
been specified, PUNCH is the default file name.

Type of File Argument:

FTYPEFLE=WORK or FTYPEFLE=INOUT
Specifiesa work file. If the argument is not specified and FUNIT=k has been specified, WORK is the
FTYPEFLE default. FTYPEFLE=WORK should be specified if the disk is to be read and written.

UP-8474 Rev. 2

FTYPEFLE=I NPUT

SPERRY UNIVAC OS/3
FORTRAN IV

12-28

Specifies an input file. If this argument is not specified and FUNIT=READ has been specified, INPUT
is the FTYPEFLE default. FTYPEFLE=INPUT should be specified if the disk is to be read but never
written.

F TYP EFL E=OUT PUT
Specifies an output file. If this argument is not specified and FUNIT=PUNCH has been specified,
OUTPUT is the FTYPEFLE default. FTYPEFLE=OUTPUT should be specified if the disk is to be written
but never read.

Record Format Argument:

FRECFORM=VARUNB
Specifies variable-length unblocked records.

FRECFORM=VARBLK
Specifies variable-length blocked records.

FRECFORM=FIXUNB
Specifies fixed-length unblocked records. If specifying a FIXBLK file (read to end-of-file and then
write), FSECTOR=YES should be specified since 110 on system sectorized disks must be done to
prepare for extension.

FRECFORM=F I XBLK
Specifies fixed-length blocked records.

Buffer Allocation Argument:

FNUMBUF=l
Specifies one buffer to be allocated to a unit.

FNUMBUF=2
Specifies two buffers to be allocated to a unit.

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which on input
means an ENO clause return and on output means the execution of an ENDFILE statement. If only one unit
using buffer pooling is active at a given time, record blocking and double buffering can be used.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved to and from a
work area for processing.

FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.

•
UP-8474 Rev. 2 SPERRY UNIVAC 05/3

FORTRAN IV
12-29

FWO R K A=..!!Q_
Specifies that no space for a work area is to be allocated. If this argument is omitted and
FNUMBUF=2 is specified, the default is that no space is allocated for a work area.

Record Size Argument:

FRECSIZE={k }
588

Specifies the record size as a postive integer constant (k). If this argument is omitted, 508 is the
default record size. See the specific disk subsystem reference manuals for maximum and minimum
record size specifications.

Block Size Argument:

This argument specifies the block size, which must always be greater than or equal to the record size.

The default value for FBKSZ depend on the absolute value of the FRECSIZE specification and on the record
form used.

FBKSZ=k
Specifies the block size as a positive integer constant in the range 3~k~3625. The upper limit can be
increased to 7294 bytes for SPERRY UNIVAC 8414/8424/8425 Disk Drive Units and to 13030 bytes
for SPERRY UNIVAC 8430 Disk Drive Units.

F BK SZ= F RECS I ZE
Indicates the block size is equal to the record size. If this argument is not specified and fixed
unblocked records have been specified, this is the default block size.

FBKSZ=FRECSIZE+4
Indicates the block size is four more than the record size. If this argument is not specified and
variable unblocked records have been specified, this is the default block size.

FBKSZ=FRECSIZE"4
Indicates the block size is four times the record size. If this argument is not specified and blocked
records have been specified, this is the default block size.

Example:

10 16

FRECFORM=VARBLK
FRECS I ZE=l8H

In this example, FBKSZ is not specified. Since FRECFORM=VARBLK is specified, the default value for
FBKSZ is equal to four times the value of FRECSIZE.

Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

UP-8474 Rev. 2

Diagnostic Messages Argument:

FD I AGNOS=YES

SPERRY UNIVAC OS/3
FORTRAN IV

12-30

Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
more. Debugging information may also be written to this device (10.3). This argument is not available
for input files.

The FORTRAN IV runtime environment always requires a device for diagnostic purposes.

Device Error Processing Arguments:

Two arguments are used to specify device error processing.

• FERRO PT

Specifies action to be taken when an erroneous data block is encountered.

If omitted, specifies that control is to be transferred to the ERR clause of the READ statement; abnormal
termination procedures are to be initiated if the ERR clause is not present.

FERROPT=IGNORE
Specifies that the erroneous block is to be accepted.

FERROPT=SK IP
Specifies that the erroneous block is to be bypassed by reading the next block.

SKIP and IGNORE should be used with discretion, since device position may be lost for unformatted files
and NAMELISTs.

When the problem program receives control at the ERR label, the ERROR subroutine (5.6.3.3) should be
referenced to determine the error type. If the error is unrecoverable, the unit cannot be referenced again.
Unrecoverable errors can be caused by severe device failure, parity errors that cause inconsistent control
information, or any error on a list-directed statement, which always implies loss of position.

If the error is recoverable, the device is considered operable. Further references to the unit deliver
subsequent logical records; the erroneous record is bypassed. A parity or wrong length error on a blocked
file causes an ERR return for every logical record in the erroneous block. The term "logical record" is
interpreted identically to the BACKSPACE statement (7.3.6.2).

• FRECERR

FRECERR=YES
Specifies that formatted records in blocks with parity or wrong length errors are to be moved to
the reread buffer. Access to these records is required by some application programs.

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or more
erroneous bits. The next reference to the unit in error delivers the next record or causes another ERR
return. A reread unit must be defined to access the reread buffer (12.3.4.6). Refer also to the ERRDEF
procedure (12.3.6).

UP-8474 Rev. 2

• Optional Units Argument:

FOPT I ON=YES

SPERRY UNIVAC OS/3
FORTRAN IV

Specifies an optional unit a unit not always required during program execution.

12-31

When this argument is specified and the file has not been allocated by job control statements, WRITE
statements are effectively ignored, and the first READ reference will cause an end-of-file condition to
occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.

Sector Processing Argument:

FSECTOR=YES
Specifies that processing on a sectorized disk is expected (e.g., an 8416 or 8418). FSECTOR
parameter is valid for all file types: input, output, or work. The FORTRAN IV 1/0 system ensures that
all 1/0 areas, including pooled 1/0 areas, are integral multiples of 256 bytes in length. This is
necessary to prevent program termination or destruction of data.

FSECTOR=NO
Specifies that processing on a nonsectorized disk is expected. This will conserve space.

Write Verification Argument:

FVER I FY=YES
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper
recording on the disk surface.

This increased reliability necessarily causes some performance degradation.

::xample:

10 16 72
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~j~~~~~ 

UNIT FDEVICE=SDISC, X 
FUNIT=9, X 
FTYPEFLE=OUTPUT, X 
FRECSIZE=lOOO, X 
FVERIFY=YES 

This FUNDEF procedure call specifies a sequential disk file (unit 9) intended for output of variable 
unblocked records with a maximum size of 1000 bytes. Each record is read checked after it is written. The 
defaults assumed are: 

• file is named FORT9; 

• variable unblocked records and one unique 1004-byte buffer with a work area; 

• not a diagnostic device and not optional to the program; 

• records never reread and not available in the reread buffer after ERR returns. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12.3.4.5.2. Direct Access Disk File Definition 

12-32 

A direct access disk file is defined by using the UNIT procedure call presented in this format. Following the 
format is a listing, in the order of relative importance and utility, of the arguments that may appear on the 
FUNDEF procedure call. Following the listing, descriptions of UNIT arguments, programming considerations, and 
a UNIT example are presented. 

Direct access disk file options are treated identically with sequential disk file options. Records are fixed length 
and unblocked. 

Format: 

10 16 

UNIT FDEVICE=DISC 

FUNIT=k 

[FSECTOR={~~s}J 

[FF I L E I D= { f i I e n am e 
FORTk;where k=FUN IT}] 

[FTYPEFLE={INPUT }] 
OUTPUT 

[ FBUFPOOL=YES] 

[FR EC SIZE= g 
12 

}] 

[ FR E R EA D= YE S ] 

[ FRECERR=YES] 

[ FVER I FY=YES] 

Device Identification Argument: 

FDEVICE=DISC 
Specifies that this is a direct access disk file. 

Unit Identifier Argument: 

FUNIT=k 
Specifies a unique integer constant (k) in the range 1 ~k~99. 

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT and PUNCH) may be specified 
by a control module. 

Sector Processing Argument: 

FSECTOR=YES 
Specifies that processing on a sectorized disk is expected (e.g., an 8416 or 8418) FSECTOR 
parameter is valid for all file tapes: input, output, or work. The FORTRAN IV 1/0 system ensures that 
all 1/0 areas, including pooled 1/0 areas, are integral multiples of 256 bytes in length. This is 
necessary to prevent program termination or destruction of data. 

F S ECTOR=NO 
Specifies that processing on a nonsectorized disk is expected. This will conserve space. 



UP-8474 Rev. 2 

• File Name Argument: 

FF I L E I D= f i I en am e 

SPERRY UNIVAC 05/3 
FORTRAN IV 

Specifies a 1- to 7-character FORTRAN style symbolic name. 

FF I LE I D=f..Q.!Ul 

12-33 

Specifies the file name as FORTk, where 1~k~99. If the FFILEID argument is not specified and 
FUNIT=k has been specified, FORTk is the default file name. 

Type of File Argument: 

FTYPEF LE=I NPUT 
Specifies an input file. 

FTYPEF LE=OUTPUT 
Specifies an output file. 

NOTE: 

See Programming Considerations. 

Buffer Pooling Argument: 

FBUFPOOL=YES 
Specifies that buffer pooling is to be used. 

The buffers are to be logically equivalent with all other units for which buffer pooling is specified. 

When multiple units with pooled buffers are active, only one buffer can be used. A unit is active from the 
first reference to the unit until termination, which on input means an END clause return and an output 
means the execution of an ENDFILE statement. 

Record Size Argument: 

FRECSIZE={k } 
512 

Specifies the record size as a positive integer constant. If this argument is omitted, 512 is the default 
record size. See the specific disk subsystem reference manuals for maximum and minimum record 
size specifications. 

Reread Argument: 

FR ER EAD=YE S 
Specifies that a unit is to participate in the reread feature (7.3.4). 

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve 
central processor time, this data movement is inhibited unless specifically requested. 



UP-8474 Rev. 2 

Device Error Processing Argument: 

FRECERR=YES 

SPERRY UNIVAC OS/3 
FORTRAN IV 

12-34 

Specifies that formatted records in blocks with parity errors or wrong length errors are to be moved to 
the reread buffer. Access to these records is required by some application programs. 

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or more 
erroneous bits. The next reference to the unit in error delivers the next record or causes another ERR 
return. A reread unit must be defined to access the reread buffer (12.3.4.6). Refer also to the ERRDEF 
procedure (12.3.6). 

Write Verification Argument: 

FVER I FY=YES 
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper 
recording on the disk surface. 

This increased reliability causes some performance degradation. 

Programming Considerations: 

The TYPEFLE specification does not restrict the use of READ and WRITE statements. The only implication 
of TYPEFLE is that, for INPUT, label checking is performed and, for OUTPUT, labels are written. When the 
associated DEFINE FILE statement is executed, it must specify a record size less than or equal to FRECSIZE. 
The FORTRAN system thereafter enforces the record size specified on the DEFINE FILE statement, but 
always transfers records of FRECSIZE bytes to and from the disk. 

Example: 

10 16 

UNIT FDEVICE=DISC, 
FUNIT=l3, 
FTYPEFLE=I NPUT, 
FRECS I ZE=348 

s 72 

x 
x 
x 

This UNIT procedure call specifies a direct access disk file (unit 13) which is to be read only. The record size 
is 348. The defaults are: 

• file name is FORT13; 

• no buffer pooling; 

• buffer size is 348; 

• no reread and records not available in the reread buffer after ERR returns; and 

• no verification. 



UP-8474 Rev. 2 

12.3.4.5.3. Combined Disk Files 

SPERRY UNIVAC OS/3 
FORTRAN IV 

12-35 

MIRAM disk files may be created and accessed as either sequential or direct access files. Since the type of 
access is not included in the file definition, the same definition may be used for both. Within each FORTRAN 
program, however, only one access method may be used for a file. 

If direct access is chosen, the FORTRAN user must use the proper 1/0 statements including DEFINE FILE (7.4.1 ). 
The direct access FIND statement is ignored because it serves no purpose for MIRAM files. A read of a record 
that was not written causes a fatal error. 

12.3.4.5.3.1. Record Formats for MIRAM Disk Files 

Data records are maintained in fixed-length slots. All records in a MIRAM file are created with a record control 
byte (RCB). For fixed-length records, slot size is one byte greater than record size because of the RCB. For 
variable-length records, the slots are equal to the maximum record size plus a 4-byte overhead. 

• Fixed-Length Records (FIX) 

...._i__,__re_c_o-rd_,__._~__,'--r-e-co_r_d_2 _.__i__._ _ __.'~+ I ~ ' '"'~• I 

• Variable-Length Records (VAR) 

4-byte 4-byte 
control record, control 
word word 

spanned 
record 

1 
I 
I 

l 
record2 

By recording the data records in consecutive order and associating a relative record slot number with each 
record, files may be accessed by either sequential or relative record techniques. 

The FORTRAN user does not specify a parameter for buffer size. The size is determined in the unit procedure as 
follows: 

• If the slot length is less than or equal to 256 bytes and is evenly divisible into 256, the buffer size is 256. 

• If the slot length is greater than 256 and a multiple of 256, the buffer size equals the slot length. 

• Otherwise, the buffer size is calculated by adding 255 to the slot length and rounding up to the next 
multiple of 256. 

A work area is always allocated and its size is equal to the slot length. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12.3.4.5.3.2. MIRAM Disk File Definition 

12-36 

A MIRAM disk file is defined by using the UNIT procedure call presented in this format. The listing that follows 
gives the arguments, in order of relative importance and utility, that may appear on the UNIT procedure call. 
Following the listing are descriptions of UNIT arguments and a UNIT example. 

Format: 

10 16 

UNIT FDEVICE=MIDISC 

FUNIT={k ) 
READ 
PUNCH 

[ 
F 

1

LE

1 

D= { :~H~F~ tFUF~INTl~~READ }] 
PUNCH; if FUN I T=PUNCH 

[
FTYPEFLE={WORK;if FUNIT=k )] 

INPUT; if FUNIT READ 
OUTPUT; if FUN I T=PUNCH 

rRECFORM={:!~}] 

[FBUFPOOL=YES] 

[

FRECSIZE={k 
2 5 5; i f 
2 5 2; i f 

[ FRERE A D=YE S] 

[FRECERR=YES] 

[ F 0 PT I 0 N=YE SI 

[FVERIFY=YES] 

FRECFORM=Flx)J 
FRECFORM=VAR 

Device Identification Argument: 

FDEVICE=MIDISC 
Specifies that this is a MIRAM disk file. 

Unit Identifier Argument: 

FUNIT=k 
Specifies a unique integer constant (k) in the range 1 ~k~99. 

FUNIT=READ 
Specifies READ as the unit identifier. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12-37 

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified 
by a control module. The identifiers READ and PUNCH are provided for reference by the FORTRAN II 
statements READ and PUNCH, respectively, since these statements contain no specific unit identification. 
When a FORTRAN II statement is executed and one of these special identifiers has not been provided, the 
applicable device specified is used. The units are searched in the order in which they are defined. In an 
executable program, only one such unit may be defined. 

File Name Argument: 

FF I LE I D= f i I en am e 
Specifies a 1- to 7-character FORTRAN-style symbolic name (filename). 

FF I LE I D=f..Q.fil 
Specifies the file name as FORTk, where 1 :s;;k:s;;99. If the FFILEID argument is not specified and 
FUNIT=k has been specified, FORTk is the default file name. 

FF I LE I D=READER 
Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has 
been specified, READER is the default file name. 

FF ILE I D=PUNCH 
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNlT=PUNCH has 
been specified, PUNCH is the default file name. 

Type of File Argument: 

FTYPEFLE=WORK 
Specifies a work file. If this argument is not specified and FUNIT=k has been specified, WORK is the 
FTYPEFLE default. FTYPEFLE=WORK should be specified if the disk is to be read and written. 

FTYPEFLE=INPUT 
Specifies an input file. If this argument is not specified and FUNIT=READ has been specified, INPUT 
is the FTYPEFLE default. FTYPEFLE=INPUT should be specified if the disk is to be read but never 
written. 

FTYPEFLE=OUTPUT 
Specifies an output file. If this argument is not specified and FUNIT=PUNCH has been specified, 
OUTPUT is the FTYPEFLE default. FTYPEFLE=OUTPUT should be specified if the disk is to be written 
but never read. 

Record Format Argument: 

FRECFORM=FIX 
Specifies fixed-length records. 

FRECFORM=VAR 
Specifies variable-length records. 

Buffer Pooling Argument: 

FBUFPOOL=YES 
Specifies that buffer pooling is to be used. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

The buffers are to be equivalent with all other units for which buffer pooling is specified. 

12-38 

When multiple units with pooled buffers are active, only one buffer can be used. A unit is active from the 
first reference to the unit until termination, which on input means an END clause and on output means the 
execution of an ENDFILE statement. 

Record Size Argument: 

FRECSIZE=1k } 
255 
252 

Specifies the record size as a positive constant (k). If the argument is omitted and FRECFORM=FIX, 
255 is the default record size. If FRECFORM=VAR, 252 is the default record size. 

Reread Argument: 

FR ER EAD=YE S 
Specifies that a unit is to participate in the reread feature (7.3.4). 

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve 
central processor time, this data movement is inhibited unless specifically requested. 

Devcie Error Processing Argument: 

FR EC ER R=YE S 
Specifies that formatted records in blocks with parity errors or wrong length are to be moved to the 
reread buffer. Access to these records is required by some application programs. 

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or more 
erroneous bits. The next reference to the unit in error delivers the next record or causes another ERR 
return. A reread unit must be defined to access the reread buffer (12.3.4.6). Refer also to the ERRDEF 
procedure (12.3.6). 

Optional Units Argument: 

FOPT I ON=YES 
Specifies an optional unit (i.e., a unit not always required during program execution). 

When this argument is specified and the file has not been allocated by job control statements, WRITE 
statements are effectively ignored and the first READ reference causes an end-of-file condition to occur. 

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit. 

Write Verification Argument: 

FVERIFY=YES 
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper 
recording on the disk surface. 

This increased reliability necessarily causes some performance degradation. 



UP-8474 Rev. 2 

Example: 

10 16 

SPERRY UNIVAC OS/3 
FORTRAN IV 

UNIT FDEVICE=MIDISC, 
FUNIT=S, 
FRECFORM=VAR, 
FRECS I ZE=300 

12-39 

72 

x 
x 
x 

This FUNDEF procedure call specifies a MIRAM disk file (unit 8) intended for input and output of variable­
length records with a maximum length of 300 bytes and a record slot length of 304 bytes. 

The defaults are: 

• file name is FORTS; 

• file is a work file available for input and output; 

• one buffer allocated; 

• no buffer pooling; 

• no reread facility (i.e., records are not available in reread buffer after ERR returns); 

• not an optional unit; and 

• no verification 

A work area is automatically allocated and the buffer size is 768 bytes. If the FORTRAN user wants to 
access the file using direct access, a define file statement must be included in the FORTRAN program. 
Otherwise, sequential access is assumed. 

12.3.4.6. Reread Unit Definition 

The reread unit is defined by using the UNIT procedure call presented in this format. Following the format is a 
listing, in the order of relative importance and utility, of the arguments that may appear on the unit procedure 
call. Following the listing, description of UNIT arguments, programming considerations, and a UNIT example are 
presented. 

A single VARUNB buffer is automatically constructed with a size equivalent to the largest record size of all the 
units in the reread feature. 

Format: 

10 16 

UNIT FDEVICE=REREAD 

FUN I T={k } 
READ 

Device Identification Argument: 

FDEVICE=REREAD 
Specifies that this is the reread unit. 



UP-8474 Rev. 2 

Unit Identifier Argument: 

FUNIT=k 

SPERRY UNIVAC OS/3 
FORTRAN IV 

Specifies a unique integer constant (k) in the range 1 ~k~99. 

FUNIT=READ 
Specifies READ as the unit identifier. 

12-40 

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT and PUNCH) may be specified 
by a control module. The identifier READ is provided for reference by the FORTRAN II READ statement, 
since this statement contains no symbolic unit identification. When a FORTRAN II statement is executed 
and this special identifier has not been provided, the applicable unit specified is used. The units are 
searched in the order in which they are defined. In an executable program, only one such unit may be 
defined. 

Programming Considerations: 

The record in the reread buffer is redefined only after a formatted READ statement is issued to a unit 
specified with FREREAD=YES or FRECERR=YES. 

Example: 

10 16 72 

UNIT FDEVICE=REREAD, s x 
FUNIT=29 

The reread unit is defined to be unit 29. 

12.3.4.7. Equivalent Unit Definition 

An equivalent unit is defined by using the UNIT procedure call presented in this format. Following the format is a 
listing, in the order of relative importance and utility, of the arguments that may appear on the UNIT procedure 
call. Following the listing, descriptions of UNIT arguments and a UNIT example are presented. 

The function of an equivalent unit is to provide another reference number for a file. For example, an input file 
might be referenced with both a FORTRAN IV statement with a unit number and FORTRAN II statement that 
implies the special name READ. An equivalent unit can be used to resolve conflicts of this type. 

Format: 

10 16 

UNIT FDEVICE=EQUIV 

FUN I T={k } READ 
PRINT 
PUNCH 

FEQUIV={k } READ 
PRINT 
PUNCH 



UP-8474 Rev. 2 

Device Identification Argument: 

FDEVICE=EQUIV 

SPERRY UNIVAC OS/3 
FORTRAN IV 

Specifies that this is an equivalent unit. 

Unit identifier Argument: 

FUNIT=k 
Specifies a unique integer constant (k) in the range 1~K~99. 

FUNIT=READ 
Specifies READ as the unit identifier. 

FUNIT=PRINT 
Specifies PRINT as the unit identifier. 

FUNIT=PUNCH 
Specifies PUNCH as the unit identifier. 

12-41 

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified 
by a control module. The identifiers READ, PRINT and PUNCH are provided for reference by the FORTRAN II 
statements READ, PRINT, and PUNCH, respectively, since these statements contain no specific unit 
identification. When a FORTRAN II statement is executed and one of these special identifiers has not been 
provided, the applicable device specified is used. The units are searched in the order in which they are 
defined. In an executable program, only one such unit may be defined. 

Establishing Equivalence Argument: 

This argument is used to specify the unit that is to be treated as equivalent to the unit specified for FUNIT. 
When a file reference to the unit specified for FUNIT occurs, device action takes place on the unit specified 
for FEQUIV. 

FEQUIV=k 
Specifies a unique integer constant (k) in the range 1~k~99. 

FEQU I V=READ 
Specifies READ as the equivalent unit. 

FEQU I V=PR I NT 
Specifies PRINT as the equivalent unit. 

FEQUIV=PUNCH 

Examples: 

Specifies PUNCH as the equivalent unit. 

10 16 

UNIT FDEVICE=EQUIV, 
FUNIT=PRINT, 
FEQUIV=S 

s 
72 

x 
x 

This UNIT procedure call specifies an equivalent unit that has no number; it can be referenced only by 
using a FORTRAN II PRINT statement. When referenced, unit 5 is activated; unit 5 must be defined by 
using another UNIT procedure call. 



UP-8474 Rev. 2 

Example: 

SPERRY UNIVAC OS/3 
FORTRAN IV 

Circular equivalence, such as the following, is not permitted. 

10 16 

UNIT FDEVICE=EQUIV, 
FUNIT=l, 
FEQU I V=2 

UNIT FDEVICE=EQUIV, 
FUNIT=2, 
FEQUIV=l 

12.3.5. FORTRAN Unit Definition Termination Procedure (FUNEND) 

12-42 

72 

x 
x 

x 
x 

The list of units specified with UNIT procedure calls is terminated by the FUNEND procedure call. The FUNEND 
procedure call: 

• terminates the unit list; 

• generates a work area large enough to accommodate any unit for which FWORKA=YES is specified; 

• generates one or two buffers large enough to accommodate any unit for which FBUFPOOL=YES is 
specified; 

• generates a reread buffer large enough to accommodate any unit for which FREREAD=YES or 
FRECERR=YES is specified; and 

• guarantees the presence of a diagnostic unit. 

If FDIAGNOS=YES was specified for a unit, no action takes place. If a unit was specified as, or defaulted to, 
FFILEID=PRNTR, that unit is specified as the diagnostic device. If neither of the preceding conditions holds, a 
UNIT procedure call with the following form is generated, and a warning diagnostic is issued. 

10 16 72 s 
UNIT FDEVICE=PRINT, x 

FUNIT=PRINT, x 
FDIAGNOS=YES, x 
FRECS I ZE=lBl 

Format: 

10 16 

FUNE ND 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12-43 

12.3.6. Error Environment Definition Procedure (ERRDEF) 

During the execution of the object program, the FORTRAN system monitors program operations for consistency 
and legality, insofar as it is practical. The errors detected are grouped into seven classes, each having a limit on 
the number of times the error is to be accepted before program termination and on the number of diagnostic 
messages to be produced. The seven error classes include program, arithmetic, argument, alignment, read, and 
data errors explained in the following paragraphs, and fatal errors, which are catastrophic errors forcing 
immediate program termination. A table in the library contains the limit information for each class. This table is 
automatically included in the executable program if the table is not explicitly redefined by the programmer. For 
this purpose, the error definition procedure (ERRDEF) is provided. 

Treatment of nonfatal errors can be controlled by using the ERRDEF procedure call. Following is a listing, in 
order of relative importance and utility, of the arguments that may appear on the ERRDEF procedure call. 
Following the listing, descriptions of ERRDEF arguments and an ERRDEF example are presented. The ERRDEF 
procedure call should follow the FUNEND procedure call in the configuration module. 

Format: 

where: 

10 

ERRDEF 

16 

L"··~(l·H · i+rn 
LARITH~0~}· Hd)J 
[FARG~(lkl' fal))J 
[ FUNDF LO=YES] 

LAL I G N= ( {A~ L} ' I~~ L)) J 
L" .. ~(1.;d. n~,DJ 
LDATA= ({~}'IA~~))] 
FERROPT= NONE 

READ 
READ.DATA 
READ,UNREC 
READ,DATA,UNREC 
DATA 
DATA,UNREC 
UNREC 

Is a positive integer constant less than 32,768, with i~k that specifies the number of times the error 
is to be accepted before program termination. For a fatal error, i is assumed to be 1. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

12-44 

Is a pos1t1ve integer constant less than 32,768 with j:s;;i that specifies the number of diagnostic 
messages to be produced. For a fatal error, j is assumed to be 1. 

ALL 
Specifies that there is no limit on the number of times the error is to be accepted before program 
termination or that there is no limit on the number of diagnostic messages to be produced. 

During execution, the first j errors cause diagnostic messages to be produced; when the ith error occurs, a 
diagnostic is issued, and program terminatnion is initiated. 

Program Error Argument (FPROG): 

This argument is used to control system action when the flow of execution encounters a statement for 
which code cannot be generated because of a syntax or other error or when an error occurs in FORMAT-
1/0 list interaction. 

Arithmetic Error Argument (FARITH): 

This argument is used to control system action when a program check interrupt occurs for overflow, 
underflow, or divide check. The standard library functions (Table 5-4) cannot cause this error. 

Argument Error Argument (FARG): 

This argument is used to control system action when an out-of-range argument is transmitted to a 
standard library function (Table 5-4). 

Improper argument values can cause error reporting by the standard library functions (Table 5-4) because: 

• the function is mathematically undefined for the argument, as SQRT (-10); 

• the function value is insignificant. as SIN (10E60); or 

• the function value is too large to be represented, as 1 OE50** 1 OE50. This is analogous to an overflow 
condition. 

As a default. a function value too small to be represented (an underflow) is approximated by 0 and is not 
reported or considered on the FARG counts. 

This argument also controls the acceptance and printing of subscript checking. (See 10.5.) 

Underflow Error Argument (FUNDFLO): 

FUND FLO= YES 
Used to control system action when underflows occur. This argument indicates that underflow will 
be reported and counted. 

Alignment Error Argument (FALIGN): 

This argument is used to control system action when a program check interrupt occurs for an instruction 
referencing an illegal main storage boundary. This can occur because of improper COMMON and 
EQUIVALENCE statements and during argument substitution in prologues and epilogues. 



UP-8474 Rev. 2 

Read Error Argument (FREAD) 

SPERRY UNIVAC OS/3 
FORTRAN IV 

12-45 

This argument is used to control system action when an input device error occurs. The error counts 
associated with FREAD are meaningful only when an ERR clause is present in the referencing 
statement. If no ERR clause is present, the program is immediately terminated, regardless of the 
specifications for the number of times the error may be accepted or the number of diagnostic 
messages that may be produced. 

Data Error Argument (FDATA): 

This argument is used to control system action when the input data contains illegal characters. The error 
counts associated with FDATA are meaningful only when an ERR clause is present in the referencing 
statement. If no ERR clause is present, the program is immediately terminated, regardless of the 
specifications for the number of times the error may be accepted or the number of diagnostic messages 
that may be produced. 

Error Options Argument (FERROPT): 

This argument specifies the meaning of the ERR clause. The FORTRAN IV default is to pass control to the 
ERR label only for parity or wrong length errors. The ERROR subroutine (5.6.3.3) is used to determine the 
error type. Eight possible combinations of the following FERROPT specifications are available. 

Example: 

NONE 
Used to control system action when the ERR clause feature is to be disabled. 

READ 
--Used to control system action when control is to be passed to the ERR label for parity or wrong 

length errors only. 

DATA 
Used to control system action when control is to be passed to the ERR label for data errors; this 
class is composed of invalid input characters. 

UN REC 
Used to control system action when control is to be provided at the ERR clause for 
unrecoverable device errors only. No further references to the unit are permitted. 

10 16 

ERRDEF FPROG=(lBB,lBB), 
FALIGN=(ALL,50), 
FERROPT=(DATA) 

72 

x 
x 

This ERRDEF procedure call indicates that if a program error occurs, the error may be acepted 100 times, 
and 100 diagnostic messages may be produced. If an alignment error occurs, there is no limit on the 
number of times the error may be accepted, and 50 diagnostic messages may be produced. DATA. 
specified for error options, indicates that control is to be passed to the ERR label if data errors occur. The 
standard defaults are taken for all arguments not specified. 



UP-8474 Rev. 2 

12.3.7. END Statement 

SPERRY UNIVAC OS/3 
FORTRAN IV 

12-46 

The END statement, a source program terminator statement required by the assembler, indicates the end of the 
definition of the execution environment. 

Format: 

10 16 

END 

The END statement, coded as shown, follows the ERRDEF procedure call, or the FUN END procedure call. 

Example: 

An example of a complete execution environment follows. 

MYIO 

10 16 

START 
FUNTAB SYS=FOR 
UNIT FDEVICE=PRINTER, 

FUNIT=l2, 
FDIAGNOS=YES 

UNIT FDEVICE=TAPE, 

FUN END 

FUNIT=ll, 
FTYPEFLE=INPUT, 
FRECS I ZE=288 

ERRDEF FERROPT=(DATA) 
END 

72 

x 
x 

x 
x 
x 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

13-1 

13. Program Collection and Execution 

13.1. GENERAL 

Before a set of program units can be executed, they must be collected and the necessary FORTRAN supporting 
routines made available to them. The linkage editor performs this task. 

After the program units are link edited, all physical devices required for execution are assigned via job control 
statements. 

13.2. LINK EDITING FORTRAN PROGRAMS 

Several special interfaces of the linkage editor are used by FORTRAN IV and described in this section. The user 
should be aware of these interfaces to use the linkage editor successfully with FORTRAN compiled programs. 
The linkage editor options listed in the OS/3 system service programs (SSP) user guide can be used only if they 
do not conflict with requirements of FORTRAN IV. Also, the linkage editor jproc call described in the current 
version of the OS/3 job control user guide shows an easy method for executing the linkage editor. 

13.2.1. FORTRAN IV Supplied Modules 

After programs are compiled by the FORTRAN compiler, various mathematical functions, service routines, and 
system routines may have to be connected to the programs. This entire group of modules must then be 
converted into executable format. The functions SIN, ALOG, and CBRT, the subroutines DUMP and DVCHK, and 
the service routines read-write, integer editing, and error detection are examples of the services that may need 
to be supplied before a FORTRAN program is executable. 

A complete list of functions and services supplied with FORTRAN IV are included in Appendix G. 

Because of the special conventions used in generating references to the FORTRAN standard library subroutines 
(5.6.3), a user program that attempts to override the supplied routine must: 

1. specifically include the module; and 

2. equate the special name to the real name. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

For example, if the program used the following coding to call a special error subroutine: 

7 

CALL ERROR(l,K,L) 

SUBROUTINE ERROR(ll,Jl,Kl) 

13-2 

then the control stream to link the load modules of the program would require the following coding: 

10 16 

INCLUDE ERROR, input file 
E$ROR EQU ERROR 

13.2.2. Overlay and Region Structures 

Sometimes the executable program created as linkage editor output is too large to fit into the required main 
storage limits. The linkage editor provides overlay and region segmentation methods to assist in creating smaller 
executable load modules. 

Programs compiled by the FORTRAN IV compiler reference each subprogram with the automatic overlay feature 
of the system. Thus, an overlay structure may be used with no changes to the FORTRAN programs. A few 
restrictions should be observed, however, so that the FORTRAN service routines operate correctly: 

• The root phase of the overlay structure should contain the following: 

All common areas 

The execution environment module 

The modules FLSIOCOM, FLSABTRM, FLSERCTL (FDSIOCOM, FDSABTRM, FOSERCTL for DTF) 

The main program of the execution 

The module FF#MPI 

• Any direct access associated variables should be in a common area. 

• If the explicit overlay control statements CALL LOAD, CALL FETCH, or CALL OPSYS are used, the 
automatic overlay feature will not operate correctly. The linkage editor option, NOV, must be specified to 
suppress normal V-CON processing. 



• 

• 

• 

UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

13-3 

• Local variables become undefined upon exit from a subprogram if the subprogram is in an overlay . 

The user should take care when building overlay structures since program execution speed can be seriously 
affected. 

13.2.3. Linkage Editor Output 

The executable module created by the linkage editor is placed in the system file, $Y$RUN. The program may be 
executed directly from this file, or it may be saved with the system librarian. 

In addition to load modules, the linkage editor produces a listing and a storage map for each load module. All 
linkage editor errors should be resolved before attempting to execute the program. The storage maps should be 
saved to aid in debugging the program. 

The linkage editor can be executed either via the LINK job control procedure call statement (jproc) or using the 
conventional device assignment set and EXEC statement. It is recommended that LINK jproc be used since it 
requires less coding. For example: 

• jproc Method 

• 

//TEST LINK $MAIN,MYIO 

Conventional Method 

II WORK! 
II EXEC LNKEDT 
!$ 
LOADM TEST 
INCLUDE $MAIN 
INCLUDE MYIO 
/* 

Both methods cause the FORTRAN IV program ($MAIN) and the execution module (MYIO) to be linked to an 
executable program (TEST). All supporting FORTRAN IV run-time modules needed by $MAIN and MYIO programs 
are automatically included into TEST from the system object module library ($Y$0BJ). 

13.3. EXECUTION OF FORTRAN PROGRAMS IN A COi ENVIRONMENT 

The FORTRAN IV compiler uses the operating system and the common data interface to execute its compiled 
programs. The following information describes the various interfaces that FORTRAN IV requires. 

13.3.1. COi FORTRAN 1/0 Units 

The FORTRAN 1/0 unit module that is linked to the executable program specifies which units and devices may 
be used during this execution. The user is responsible for supplying the actual devices that connect to the units 
in the 1/0 unit module. 

To connect an actual device to an executable program, the user supplies appropriate JCL statements that 
allocate the device for this job or job step. When a device is not used during an execution of a program, the 
device need not be assigned. 



UP-8474 Rev. 2 

13.3.2. COM Pause Messages 

SPERRY UNIVAC OS/3 
FORTRAN IV 

13-4 
Update B 

If a PAUSE statement is executed, the text of the PAUSE message is displayed on the initiating workstation 
terminal, if present, or else on the system console. The program then waits for a response from the operator. 

There are three allowable responses to a PAUSE message: 

• CONT 

Continue the program execution 

• STOP 

Terminate the program normally 

• DUMP 

Terminate the program with a dump 

If any other response is made, the PAUSE message is reissued. 

~ 13.3.3. COM Diagnostic Messages 

The FORTRAN run-time system has many diagnostic messages that may be displayed during execution. These 

• 

messages are output to the FORTRAN unit assigned for diagnostic information (FDIAGNOS=YES). If no • 
diagnostic device is specified, the messages are simultaneously written to the system log and the initiating 
workstation terminal. In lieu of an initiating workstation terminal, the messages are sent to the system console. 

The amount of information output by the FORTRAN run-time system may be controlled by the error definition 
procedure (ERRDEF). However, the STOP message and execution summary information are always output. 
Therefore, when using preprinted forms or when printing final draft output, the user should assign the 
diagnostic device separate from his copy printer. For a complete list of run-time diagnostics, refer to the system 
messages programmer I operator reference. 

Diagnostic messages that can be generated during compilation are listed and described in Appendix F. 

13.4. EXECUTION OF FORTRAN PROGRAMS IN A DTF ENVIRONMENT 

The FORTRAN IV compiler uses the operating system and the data management system to execute its 
compiled programs. The following information describes the various interfaces that FORTRAN IV requires. 

13.4.1. DTF FORTRAN 1/0 Units 

The FORTRAN 1/0 unit module that is linked to the executable program specifies which units and devices may 
be used during this execution. The user is responsible for supplying the actual devices that connect to the units 
in the 1/0 unit module. 

To connect an actual device to an executable program, the user supplies appropriate JCL statements, which 
allocate the device for this job or job step. He must assign a file on the device via the LFD job control statement • 
where the filename on the LFD statement is the same as the FFILEID argument. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

13-5 

The FORTRAN diagnostic device must always be allocated to the executing program. In all FORTRAN IV default 
1/0 configurations, this device is a printer with the FFILEID=PRNTR. When a device is not used during an 
execution of a program, the device need not be assigned. 

13.4.2. DTF Pause Messages 

If a PAUSE statement is executed, the text of the PAUSE message is displayed on the system console. The 
program then waits for a response from the operator. 

There are three allowable responses to a PAUSE message: 

• CONT 

Continue the program execution. 

• STOP 

Terminate the program normally. 

• DUMP 

Terminate the program with a dump. 

If any other response is made, the PAUSE message is reissued. 

13.4.3. DTF Diagnostic Messages 

The FORTRAN run-time system has many diagnostic messages that may be displayed during execution. These 
messages are output to the FORTRAN unit assigned for diagnostic information (FDIAGNOS=YES). 

The amount of information output by the FORTRAN run-time system may be controlled by the error definition 
procedure (ERRDEF). HowevP.r, the STOP message and execution summary information are always output. 
Therefore, when using preprinted forms or when printing final draft output, the user should assign the 
diagnostic device separate from his copy printer. For a complete list of run-time diagnostics, refer to the system 
messages programmer I operator reference. 

Diagnostic messages that can be generated during compilation are listed and described in Appendix F. 









UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

A-1 

Appendix A. Character Set 

A.1. SOURCE PROGRAM AND INPUT DATA CHARACTERS 

Table A-1 shows the EBCDIC input character set for FORTRAN IV. Binary bit positions 1 through 3, along with 
their hexadecimal equivalents, are read at the left of the grid. Binary bit positions 4 through 7, along with their 
hexadecimal equivalents, are read from left to right at the top of the grid. The point at which these coordinates 
intersect represents the value of the corresponding EBCDIC graphic character as it appears on the keyboard of a 
SPERRY UNIVAC 1700 Series keypunch. 

When two hexadecimal or binary number coordinates intersect showing no equivalent EBCDIC graphic 
character, this means the SPERRY UNIVAC 1004 Card Processor changes these hexadecimal or binary values to 
the character blank (hexadecimal 40). For example, the hexadecimal value C1 is encoded with the keyboard 
character A; the hexadecimal value 77 produces a blank. 

Table A-2 lists EBCDIC graphic characters, their Hollerith punched card code equivalents, and decimal, 
hexadecimal, and binary equivalents. 

A.2. PRINTER GRAPHJCS 

Many different printer devices are supported, each with subtly different character sets. The character sets vary in 
size from 16 to 94 characters to accommodate differing national languages and the needs of various 
applications. Internal representations of the character set may differ due to translations performed by using a 
load code, a translation table within the printer control unit. 

There is a difference between the EBCDIC graphic character set for card punched input and EBCDIC printer 
graphics because output graphic character sets vary according to printer models. 

Table A-3 shows a representative character set and its internal hexadecimal representation. Special characters 
and lowercase alphabetics may differ due to the printer model, the features installed, and the load code in use. 
These features should be checked to ensure availability, and the table should be updated to reflect installation 
usages. 



Table A-1. EBCDIC Input Graphic Character Set 

.. 4567 

HEXA· 
DECIMAL 

0 1 2 3 4 5 6 7 8 9 

+ 
0123 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 (Space) 

5 0101 & 

-
6 0110 (minus) I 

7 0111 

8 1000 

9 1001 

A 1010 

B 1011 

c 1100 { A B c D E F G H I 

D 1101 } J K L M N 0 p Q R 

E 1110 s T u v w x y z 

F 1111 0 1 2 3 4 5 6 7 8 9 

Bit Positions: 0 234567 

Weight: 27 26 25 24 23 22 21 2° 

e e 

A B c D 

1010 1011 1100 1101 

rJ. < ( 

! $ . I 

(co,,.; ma) % (underline) 

: # @ 
(apostrophe) 

• 
E F 

1110 1111 

+ I 

; I 

> ? 

.. 
~ (quote 

mark) 

e 

c 
-0 
00 
""" -J 

""" :D 
(!) 

:c: 
N 

(/) 
-0 
m 
:D 

-n :D 
0 -< 
:D c 
-I z 
~~ - (") 
<o 

(/) 

' w 

:i=-
N 



UP-8474 Rev. 2 SPERRY UNIVAC 05/3 
FORTRAN IV 

A-3 

Table A-2 lists EBCDIC graphic characters, their Hollerith punched card code equivalents, and decimal, 
hexadecimal, and binary equivalents. 

Table A-2. EBCDIC/Hollerith Cross-Reference Table (Part 1 of 5) 

EBCDIC 

Hex a- EBCDIC Hollerith 
Decimal deci- Binary Graphic Punched Card 

mal Character Code 

0 00 0000 0000 12-0-9-8-1 
1 01 0000 0001 12-9-1 
2 02 0000 0010 12-9-2 
3 03 0000 0011 12-9-3 
4 04 0000 0100 -12-9-4 
5 05 0000 0101 12-9-5 
6 06 0000 0110 12-9-6 
7 07 0000 0111 12-9-7 
8 08 0000 1000 12-9-8 
9 09 0000 1001 12-9-8-1 

10 OA 0000 1010 12-9-8-2 
11 OB 0000 1011 12-9-8-3 
12 oc 0000 1100 12-9-8-4 
13 OD 0000 1101 12-9-8-5 
14 OE 00001110 12-9-8-6 
15 OF 00001111 12-9-8-7 
16 10 0001 0000 12-11-9-8-1 
17 11 0001 0001 11-9-1 
18 12 0001 0010 11-9-2 
19 13 0001 0011 11-9-3 
20 14 0001 0100 11-9-4 
21 15 0001 0101 11-9-5 
22 16 0001 0110 11-9-6 
23 17 0001 0111 11-9-7 
24 1R 0001 1000 11-9-8 
25 19 0001 1001 11-9-8-1 
26 1A 0001 1010 11-9-8-2 
27 lB 00011011 11-9-8-3 
28 lC 0001 1100 11-9-8-4 
29 1D 0001 1101 11-9-8-5 
30 lE 00011110 11-9-8-6 
31 lF 00011111 11-9-8-7 
32 20 0010 0000 11-0-9-8-1 
33 21 0010 0001 0-9-1 
34 22 0010 0010 0-9-2 
35 23 00100011 0-9-3 
36 24 0010 0100 0-9-4 
37 25 0010 0101 0-9-5 
38 26 0010 0110 0-9-6 

~ .. l..7 00100111 0.:9.- 7 
40 28 0010 1000 0-9-8 
41 29 0010 1001 0-9-8-1 
42 2A 0010 1010 ')-9-8-2 
43 28 00101011 0-9-8-3 
44 2C 0010 1100 ...1l:9.:8A_ 

45 20 0010 1101 0-9-8-5 
46 2E 0010 1110 0-9-8-6 
47 2F 0010 1111 0-9-8-7 
48 30 0011 0000 12-11-0-9-8-1 
49 31 0011 0001 9-1 
50 32 0011 0010 9-2 
51 33 0011 0011 9-3 
52 34 0011 0100 9-4 
53 35 0011 0101 9-5 
54 36 0011 0110 9-6 



UP-8474 Rev. 2 SPERRY UNIVAC 05/3 
FORTRAN IV 

Table A-2. EBCDIC/Hollerith Cross-Reference Table (Part 2 of 5) 

EBCDIC 

Hex a- EBCDIC Hollerith 
Decimal deci- Binary Graphic Punched Card 

mal Character Code 

55 37 0011 0111 9-7 

56 38 0011 1000 9-8 

57 39 0011 1001 9-8-1 

58 3A 0011 1010 9-8-2 

59 38 00111011 9-8-3 

60 3C 00111100 9-8-4 

61 30 0011 1101 9-8-5 

62 3E 0011 1110 9-8-6 

63 3F 0011 1111 9-8-7 

64 40 0100 0000 SP No punches 

65 41 0100 0001 12-0-9-1 

66 42 0100 0010 12-0-9-2 

67 43 0100 0011 12-0-9-3 

68 44 0100 0100 12-0-9-4 

69 45 0100 0101 12-0-9-5 

70 46 01000110 12-0-9-6 

71 47 0100 0111 12-0-9-7 
72 48 0100 1000 12-0-9-8 
73 49 0100 1001 12-8-1 
74 4A 0100 1010 [ --12Jl,2_ 

75 48 0100 1011 12-8-3 
76 4C 0100 1100 < 12-8-4 
77 40 0100 1101 ( 12-8-5 
78 4E 0100 1110 + 12-8-6 
79 4F 0100 1111 ! 12-8-7 
80 50 0101 0000 & 12 
81 51 0101 0001 12-11-9-1 
82 52 0101 0010 12-11-9-2 
83 53 0101 0011 12-11-9-3 
84 54 0101 0100 12-11-9-4 
85 55 0101 0101 12-11-9-5 
86 56 01010110 12-11-9-6 
87 57 0101 0111 12-11-9-7 
88 58 0101 1000 12-11-9-8 
89 59 0101 1001 11-8-1 
90 5A 0101 1010 I 11-8-2 
91 58 0101 1011 $ 11-8-3 
92 5C 0101 1100 . 11-8-4 
93 50 0101 1101 ) 11-8-5 
94 5E 0101 1110 ; 11-8-6 
95 5F 0101 1111 A 11-8-7 
96 60 0110 0000 - 11 
97 61 0110 0001 I 0-1 
98 62 0110 0010 11-0-9-2 
99 63 0110 0011 11-0-9-3 

100 64 0110 0100 11-0-9-4 
101 65 01100101 11-0-9-5 
102 66 01100110 11-0-9-6 
103 67 01100111 11-0-9-7 
104 68 01101000 11-0-9-8 
105 69 0110 1001 0-8-1 
106 6A 0110 1010 I 12-11 I 

107 68 0110 1011 0-8-3 
108 6C 01101100 % 0-8-4 
109 60 01101101 - 0-8-5 

A-4 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

Table A-2. EBCDIC/Hollerith Cross-Reference Table (Part 3 of 5) 

EBCDIC 

Hex a- EBCDIC Hollerith 
Decimal deci· Binary Graphic Punched Card 

mal Character Code 

110 6E 0110 1110 > 0-8-6 
111 6F 0110 1111 ? 0-8-7 
112 70 0111 0000 12-11-0 
113 71 0111 0001 12-11-0-9-1 
114 72 0111 0010 12-11-0-9-2 
115 73 0111 0011 12-11-0-9-3 
116 74 0111 0100 12-11-0-9-4 

117 75 0111 0101 12-11-0-9-5 

118 76 0111 0110 12-11-0-9-6 

119 77 0111 0111 12-11-0-9-7 

120 78 0111 1000 12-11-0-9-8 
79 01111001 

. 
B-1 121 

122 7A 0111 1010 : 8-2 

123 7B 0111 1011 # B-3 

124 7C 01111100 @ 8-4 

125 70 01111101 8-5 

126 7E 0111 1110 = B-6 
127 7F 0111 1111 .. B-7 

12B BO 1000 0000 12-0-8-1 

129 Bl 1000 0001 a 12-0-1 

130 82 1000 0010 b 12-0-2 

131 B3 1000 0011 c 12-0-3 

132 B4 1000 0100 d 12-0-4 

133 B5 1000 0101 e 12-0-5 

134 B6 1000 0110 f 12-0-6 

135 B7 1000 0111 g 12-0-7 

136 88 1000 1000 h 12-0-8 
137 B9 1000 1001 i 12-0-9 

13B SA 1000 1010 12-0-8-2 

139 BB 1000 1011 12-0-B-3 

140 BC 1000 1100 12-0-B-4 

141 BO 1000 1101 12-0-8-5 

142 BE 10001110 12-0-8-6 

143 BF 1000 1111 12-0-8-7 

144 90 1001 0000 12-11-8-1 

145 91 1001 0001 j 12-11-1 

146 92 1001 0010 k 12-11-2 

147 93 1001 0011 I 12-11-3 

148 94 1001 0100 m 12-11-4 

149 95 1001 0101 n 12-11-5 

150 96 1001 0110 0 12-11-6 

151 97 1001 0111 p 12-11-7 

152 9B 1001 1000 q 12-11-8 

153 99 1001 1001 r 12-11-9 

154 9A 1001 1010 12-11-B-2 

155 913 1001 1011 12-11-8-3 

156 9C 1001 1100 12-11-B-4 

157 90 1001 1101 12-11-B-5 

15B 9E 1001 1110 12-11-B-6 

159 9F 10011111 12-11-B-7 

A-5 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

Table A-2. EBCDIC/Hollerith Cross-Reference Table (Part 4 of 5) 

EBCDIC 

Hex a· EBCDIC Hollerith 
Decimal deci· Binary Graphic Punched Card 

mal Character Code 

160 AO 1010 0000 11-0-8-1 

161 A1 1010 0001 r..J 11-0-1 

162 A2 1010 0010 s 11-0-2 
163 A3 1010 0011 t 11-0-3 
164 A4 1010 0100 u 11-0-4 
165 AS 10100101 v 11-0-5 

166 A6 10100110 w 11-0-6 
167 A7 10100111 x 11-0-7 
168 AB 10101000 y 11-0-8 
169 A9 1010 1001 z 11-0-9 
170 AA 1010 1010 11-0-8-2 
171 AB 10101011 11-0-8-3 
172 AC 1010 1100 11-0-8-4 
173 AD 10101101 11-0-8-5 
174 AE 10101110 11-0-8-6 
175 AF 1010 1111 11-0-8-7 
176 BO 1011 0000 12-11-0-8-1 
177 B1 1011 0001 12-11-0-1 
178 B2 1011 0010 12-11-0-2 
179 B3 1011 0011 12-11-0-3 
180 B4 10110100 12-11-0-4 
181 BS 1011 0101 12-11-0-5 
182 B6 1011 0110 12-11-0-6 
183 B7 10110111 12-11-0-7 
184 BB 1011 1000 12-11-0-8 
185 B9 1011 1001 12-11-0-9 
186 BA 1011 1010 12-11-0-8-2 
187 BB 1011 1011 12-11-0-8-3 
188 BC 1011 1100 12-11-0-8-4 
189 BD 1011 1101 12-11-0-8-5 
190 BE 10111110 12-11-0-8-6 
191 BF 10111111 12-11 -0-8-7 
192 co 1100 0000 { 12-0 
193 C1 11000001 A 12-1 
194 C2 11000010 B 12-2 
195 C3 1100 0011 c 12-3 
196 C4 11000100 D 12-4 
197 cs 1100 0101 E 12-5 
198 C6 1100 0110 F 12-6 
199 C7 11000111 G 12-7 
200 ca 1100 1000 H 12-8 
201 C9 1100 1001 I 12-9 
202 CA 1100 1010 12-0-9-8-2 
203 CB 11001011 12-0-9-8-3 
204 cc 1100 1100 12-0-9-8-4 
205 CD 11001101 12-0-9-8-5 
206 CE 1100 1110 12-0-9-8-6 
207 CF 11001111 12-0-9-8-7 
208 DO 1101 0000 } 11-0 
209 01 1101 0001 J 11-1 

A-6 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

Table A-2. EBCDIC/Hollerith Cross-Reference Table (Part 5 of 5) 

EBCDIC 

Hex a- EBCDIC Hollerith 
Decimal deci- Binary Graphic Punched Card 

mat Character Code 

210 02 1101 0010 K 11-2 
211 03 1101 0011 L 11-3 
212 04 1101 0100 M 11-4 
213 05 1101 0101 N 11-5 
214 06 1101 0110 0 11-6 
215 07 1101 0111 p 11-7 
216 08 1101 1000 Q 11-8 
217 09 1101 1001 R 11-9 
218 DA 1101 1010 12-11-9-8-2 
219 DB 1101 1011 12-11-9-8-3 
220 DC 1101 1100 12-11-9-8-4 
221 DD 1101 1101 12-11-9-8-5 
222 DE 1101 1110 12-11-9-8-6 
223 OF 11011111 12-11-9-8-7 
224 EO 11100000 \ 0-8-2 
225 El 1110 0001 ....... 

11-0-9-1 
226 E2 11100010 s 0-2 
227 E3 1110 0011 T 0-3 
228 E4 11100100 u 0-4 
229 E5 11100101 v 0-5 
230 E6 11100110 w 0-6 
231 E7 11100111 x 0-7 
232 ES 1110 1000 y 0-8 
233 E9 11101001 z 0-9 
234 EA 1110 1010 11-0-9-8-2 
235 EB 1110 1011 11-0-9-8-3 
236 EC 11101100 11-0-9-8-4 
237 ED 11101101 11-0-9-8-5 
238 EE 11101110 11-0-9-8-6 
239 EF 11101111 11-0-9-8-7 
240 FO 11110000 0 0 
241 Fl 1111 0001 1 1 
242 F2 1111 0010 2 2 
243 F3 1111 0011 3 3 
244 F4 1111 0100 4 4 
245 F5 1111 0101 5 5 
246 F6 1111 0110 6 6 
247 F7 11110111 7 7 
248 FS 1111 1000 8 8 
249 F9 1111 1001 9 9 
250 FA 1111 1010 12-11-0-9-8-2 
251 FB 1111 1011 12-11-0-9-8-3 
252 FC 1111 1100 12-11-0-9-8-4 
253 FD 11111101 12-11-0-9-8-5 
254 FE 1111 1110 12-11-0-9-8-6 
255 FF 11111111 12-11-0-9-8-7 

A-7 



HEXA-
0 1 2 3 

DECIMAL 

i 0123 0000 0001 0010 0011 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 (Space) 

5 0101 & 

-
6 0110 (minus) I 

7 0111 

8 1000 a b c 

9 1001 j k I 

A 1010 s t 

B 1011 

c 1100 { A B c 

D 1101 } J K L 

E 1110 \ s T 

F 1111 0 1 2 3 

Bit Positions: 0 234567 

Weight: 27 26 25 24 23 22 21 20 

e 

Table A-3. Representative EBCDIC Output Graphic Character Set 

4567 

4 5 6 7 8 9 A 

0100 0101 0110 0111 1000 1001 1010 

[ 

l 

I 
I 

(single : 
quote) 

d e f g h i 

m n 0 p q r 

u v w x y z 

D E F G H I 

M N 0 p Q R 

u v w x y z 

4 5 6 7 8 9 

e 

B c D 

1011 1100 1101 

< ( 

$ * ) 

(co~ma) % (underline) 

# @ 
(apostrophe) 

E F 

1110 1111 

+ ! 

; A 

> ? 

.. 
; (quote 

mark) 

• 

e 

c 
"'ti 

~ 
-..! 
~ 
::0 

~ 
N 

(/) 
"'ti m 
::0 

"T1 ::0 
0 -< 
::0 c 
~z 
::0 -

~ ); - (') 
<o 

(/) 

' w 

t 



• 

• 

• 

UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

Appendix B. 

B-1 
Update B 

Summary of COM 
UNIT Options 

Summaries of UNIT arguments and the types of files they define are presented in Tables B-1 through B-6. 

Table 8-1. Summary of UNIT Arguments for Unit Record 

Argument Use 

FAUE=YES Specifies cards with an illegal hold combination in a column be bypassed and not 
sent to the program. 

FBFSZ=k Specifies buffer size . 

FCHAR= ~OFF f Specifies printer action for illegal characters. OFF causes blank substitution; ON 
ON causes program termination. 

FCRDERR=RETRY Specifies error recovery coding is included in the executable program. 

FDEVICE=UNITREC Specifies this is a unit record device. 

FDIAGNOS=YES Specifies the unit as a diagnostic device. 

FFILEIDTl•n•m• 1 Specifies job control file reference name (LFD). Defaults to PRNTR, PUNCH, and 
FORTk; if FUNIT=k READER taken only for FORTRAN II FUNIT. 
PRNTR; 1f FUNIT=PRINT 
PUNCH; if FUNIT=PUNCH 
READER= if FUNIT=READ 

FNUMBUF=Hl Specifies the number of 1/0 buffers. 

FOPTION=YES Specifies a file not logically required. If the file is not allocated, output is ignored. 

FREREAD=YES Specifies a copy of each formatted input record is transferred to the reread buffer. 

FSPOOLIN=YES or FGET JCS=YES Specifies this unit defaults to a spooled card input file via a GETCS 
when the lfdname declared in the FFILEID agreement is not found. 

FTRANS=ASCll Specifies all incoming and outgoing records are translated to the ASCII character 
set. 

FUNIT= 

{~RINT} 
Specifies the FORTRAN IV unit reference number or FORTRAN II statement 
reference. 

PUNCH 
READ 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

B-2 

Table 8-2. Summary of UNIT Arguments for a Tape File 

Argument Use 

FBFSZ= 

r ~ 
Specifies the size of the unit buffer. FORTRAN IV will supply a default buffer size 

FRECSIZE; if only if record size and record format are specified. 
FRECFORM=FIXUNB 

FRECSIZE+4; if 
FRECFORM=VARUNB 

FRECSIZE*4; if blocked 

FBKNO=YES Specifies output tape blocks are sequentially numbered and input tape blocks are 
checked. 

FCKPTREC=YES Specifies that checkpoint blocks are bypassed. 

FCLRW= l RWD ! Specifies positioning at end of program execution for input and output tapes. 
NORWD 
UNLOAD 

FDEVICE=TAPE Specifies device type to be used for the file. 

FDIAGNOS=YES Specifies the unit as a diagnostic device. 

FERROPT= l IGNORE~ Specifies the action for device errors. IGNORE and SKIP disable the ERR clause for 
SKIP parity/length. 

FFILABL= l~~D~ Specifies standard or missing labels on magnetic tape. 

FNUMBUF=u~ Specifies the number of 1/0 buffers. 

FOPRW=NORWD Specifies the rewind is disabled at first reference to tape file. 

FOPTION=YES Specifies a file is not logically required. If the file is not allocated, output is ignored, 
and input causes an end return. 

FRECFORM= rARUNB} Specifies records as variable or fixed and blocked or unblocked. 
VARBLK 
FIXUNB 
FIXBLK 

FRECSIZE=k Specifies logical record size. Taken as a maximum for variable records. 

FREREAD=YES Specifies a copy of each forn1atted input record is transferred to the reread buffer. 

FSPOOLIN=YES Specifies this unit will default to a spooled card input file via a GETCS when the 
or lfdname declared in the FFILEID argument is not found. 

FGETJCS=YES 

FTRANS=YES Specifies all incoming and outgoing records are translated to the ASCII character 
set. 

FTYPEFLE= ~ WORK; if FUNIT=k ~ Specifies the level of data management support. 
INPUT; if FUNIT=READ 
OUTPUT; if FUNIT=PUNCH 

FUNIT= r } Specifies FORTRAN IV unit reference number of FORTRAN II statement reference. 
READ 
PUNCH 
PRINT 

• 

• 

• 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

B-3 

Table 8-3. Summary of UNIT Arguments for a Disk File 

Argument Use 

FDEVICE=DISK Specifies device type to be used for this file. 

FDIAGNOS=YES Specifies the unit as a diagnostic device. 

FFILEID= 

roo•m• l Specifies job control file reference name (LFD). Defaults READER, PUNCH, and 
FORTk; if FUNIT=k PRNTR taken only for FORTRAN II FUNIT. 
READER; if FUNIT=READ 
PUNCH; if FUNIT=PUNCH 
PRNTR; if FUNIT=PRINT 

FOPTION=YES Specifies a file not logically required. If the file is not allocated, output is ignored and 
input causes an end return. 

FRECFORM= lVARUNB~ Specifies records as variable or fixed. No blocking. 
FIXUNB 

FRECSIZE=k Specifies the logical record size. Taken as maximum for variable records. 

FREREAD=YES Specifies a copy of each formatted input record is transferred to reread buffer. 

FSPOOLIN=YES Specifies this unit will default to a spooled card input file via a GETCS when the 
or lfdname declared in the FFILEID argument is not found. 

FGETJCS=YES 

FTYPEFLE1WORK' "FUNIT~k } Specifies level of data management support. 
INPUT; if FUNIT=READ 
OUTPUT; if FUNIT=PUNCH 
--- or FUNIT=PRINT 

FUNIT~ r } Specifies FORTRAN IV unit reference number or FORTRAN II statement 
READ reference. 
PUNCH 
PRINT 

FVERIFY=YES Specifies a reread of each written block to ensure proper parity. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

B-4 

Table 8-4. Summary of UNIT Arguments for a Workstation 

Argument Use 

FDEVICE=WORKSTN Specifies device to be used for a workstation. 

FUNIT~ r } Specifies the FORTRAN IV unit reference number or FORTRAN II statement 
READ reference. 
PUNCH 
PRINT 

FFILEID~ f enome } 
Specifies the job control file reference name (LFD). Defaults to READER, PUNCH, 

FORTk; if FUNIT=k and PRNTR taken only for FORTRAN II FUNIT. 
READER; if FUNIT=READ 
PUNCH; if FUNIT=PUNCH 
PRNTR; if FUNIT=PRINT 

FSCREND=iWRAP ! Specifies action taken when end of screen display is reached. 
SCROLL 
NEWPAGE 

FTYPEFLErORK } 
Specifies level of data management support. 

INPUT; if FUNIT=READ 
OUTPUT; if FUNIT=PUNCH 

or PRINT 

FIOOPT=YES Specifies one buffer is used exclusively for input and one buffer for output. This is 
the effect only when FNUMBUF=2 is specified. 

FLINCNTL=YES Indicates the workstation will function as a printer. 

FNUMBUF=Hf Specifies the number of input/output buffers. 

FOPTION=YES Specifies a file not logically required. If file is not allocated, output is ignored and 
input causes an end return. 

FRECSIZE=k Specifies the logical record size. 

FREREAD=YES Specifies a copy of each formatted input record be transferred to the reread 
buffer. 

FSPOOLIN=YES Specifies this unit will default to a spooled card input file via a GETCS when the 
or lfdname declared in the FFILEID argument is not found. 

FGETJCS=YES 

FDIAGNOS=YES Specifies diagnostic messages are posted to this device. 



UP-8474 Rev. 2 

Argument 

FDEVICE=REREAD 

FUNIT= ~k ~ 
READ 

Argument 

FDEVICE=EQUIV 

FUNIT= r } READ 
PRINT 
PUNCH 

FEQUIV= r } READ 
PRINT 
PUNCH 

SPERRY UNIVAC OS/3 
FORTRAN IV 

Table 8-5. Summary of UNIT Arguments for Reread Unit 

Use 

Specifies device to be used for the file. 

B-5 

Specifies FORTRAN IV unit reference number or FORTRAN II statement reference. 

Table 8-6. Summary of UNIT Arguments for Equivalent Unit 

Use 

Specifies device to be used for the file. 

Specifies FORTRAN IV unit reference number or FORTRAN II statement reference. 

Specifies unit to be activated. 





UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

Appendix C. 

C-1 

Summary of DTF 
UNIT Options 

Summaries of UNIT arguments and the types of files they define are presented in Tables C-1 through C-10. 

Table C-1. Summary of UNIT Arguments for Printer File 

Argument Use 

FDEVICE=PRINTER Specifies the device to be used for the file. 

FUNIT=1~RINT ~ Specifies FORTRAN IV unit reference 
number or FORTRAN 11 statement 

PUNCH reference. 

[ r•oomo }] Specifies job control file reference name 
FORTK; if FUNIT = k (LFD). Defaults PRNTR and PUNCH 

FFILEID= PRNTR; if FUNIT =PRINT taken only for FORTRAN II FUNIT. 
PUNCH; if FUNIT =PUNCH 

[FRECSIZE= ~~ 21 f J Specifies logical record size. 

[ FNUMBUF= 1 ~ f J Specifies number of input/output buffers. 

[FDIAGNOS=YES] Specifies the unit as the diagnostic device. 

[ FPRINTOV= 1 ~~;KIP f J Specifies printer action when bottom of 
page is encountered. 

[ FCHAR= 1~~F f J Specifies printer action for illegal characters. 
OFF causes blank substitution; ON causes 
program termination. 

[ FOPTI ON= YES] Specifies a file not logically required. If the 

file is not allocated, output is ignored. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

Table C-2. Summary of UNIT Arguments for Spooled Card Input File 

Argument Use 

FDEVICE=SPOOLIN Specifies the device to be used for the file. 

FUNIT= ~ ~EAD ~ Specifies FORTRAN IV unit reference number or 
FORTRAN 11 statement reference. 

[FREREAD=YES) Specifies that a copy of each formatted input record 
is transferred to the reread buffer. 

[ FBKSZ= ~ ~00; G Specifies size of unit buffer. 

[FBUFPOOL=YES) Specifies that the buffer for the unit is pooled. 

[FRECSIZE= ~~on Specifies card size read. 

Table C-3. Summary of UNIT Arguments for Card Input File 

Argument Use 

FDEVICE=CARDIN Specifies device used for the file. 

FUNIT=~~EAD ~ Specifies FORTRAN IV unit reference number or 
FORTRAN 11 statement reference. 

t r··•m• (] Specifies job control file reference name ( LFD). 
FFILEID= FORTk; if FUNIT=k Default READER taken only for FORTRAN 11 

READER; if FUNIT=READ FUNIT. 

[FREREAD=YES) Specifies that a copy of each formatted input record 
is transferred to the reread buffer .. 

[FBUFPOOL=YES) Specifies that buffers for the unit are pooled, or 
shared, with all other units so specified. 

[FNUMBUF= ~ t ~ J Specifies number of input buffers. 

~WORKA= ~ YES; if FNUMBUF=1 ~ J Specifies that logical records are processed in a 
NO; if FNUMBUF=2 work area rather than in the buffer. 

~RECSIZE= ~ ~Of J Specifies logical record size. 

rsTUB= ~ :! ~ J Specifies that cards shorter than 80 columns are 
processed. 

[FOPTION=YES) Specifies a file not logically required. If the file is 

not allocated, and input causes an end return. 

[FAUE=YES) Specifies that mispunched cards are ignored. 

[ FBKSZ= ~ ~RECSIZE t] Specifies a buffer size for multiple record input for 
the 8413 diskette only. 

C-2 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

Table C-4. Summary of UNIT Arguments for Card Output File 

Argument Use 

FDEVICE=CARDOUT Specifies device used for the file. 

FUNIT= {~UNCH ~ Specifies FORTRAN IV unit reference number or 
FORTRAN 11 statement reference. 

t l"''"m' \] 
Specifies job control file reference name (LFD). 

FFILEID= FORTk; if FUNIT=k Default PUNCH taken only for FORTRAN 11 
PUNCH; if FUNIT=PUNCH FUNIT. 

[FBUFPOOL=YES] Specifies that buffers for the unit are pooled, 
or shared, with all other units so specified. 

rNUMBUF= ~ ~ t J Specifies number of input buffers. 

~WORKA= ~YES; if FNUMBUF=1 ~ J Specifies that logical records are processed in a 
NO; if FNUMBUF=2 work area rather than in the buffer. 

rRECSIZE= { ~o ~ J Specifies logical record size. 

[FCRDERR=RETRY] Specifies that automatic error recovery is 
attempted for mispunched cards. 

[FOPTION=YES] Specifies a file not logically required. If the file is 
not allocated, output is ignored. 

rs~SZ= ~ ~RECSIZE l J Specifies a buffer size for multiple record input for 
the 8413 diskette only. 

Table C-5. Summary of UNIT Arguments for Tape File (Part 1 of 2) 

Argument Use 

FDEVI CE=TAPE Specifies device used for the file. 

FUNIT={~EAD } 
Specifies FORTRAN IV unit reference number or 
FORTRAN 11 statement reference. 

PUNCH 

f''"'~ } Specifies job control file reference name ( LF D). 
FORTk; if FUNIT=k Defaults READER and PUNCH taken only for 

[FILEIO• READER, ;tFUNIT-REAO ] FORTRAN 11 FUNIT. 
PUNCH; if FUNIT=PUNCH 

~ rOUT }] 

Specifies level of data management support. 
WORK; if FUNIT=k 

FTYPEFLE= INPUT; if FUNIT=READ 

OUTPUT; if FUNIT=PUNCH 

t , n VARUNB Specifies records as variable or fixed and blocked 

RECFORM= ~VARBLK or unblocked. 

J:IXUNB 
FIXBLK 

GNUMBUF= ~1 ~] Specifies number of input/output buffers. 

~WORKA= {YES; if FNUMBUF=1 ~] Specifies that logical records are pro_cessedin a 
--

NO; if FNUMBUF= 2 work area rather than in the buffer. 

C-3 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

Table C-5. Summary of UNIT Arguments for Tape File (Part 2 of 2) 

Argument 

[FBUFPOOL=YES) 

rRECSIZE= ~ ~OS ~ J 

{
k }] 

FRECSIZE ; if 
FRECFORM=FIXUNB 

FRECSIZE+4 ; if 
FRECFORM=VARUNB 

fRECSIZE*4 ; otherwise 

[FREREAD=YES) 

[ FDI AG NOS= YES) 

[FBKNO=YESI 

[FRECERR=YES) 

[FCKPT=YES) 

rFCLRW= ~ ~~~WO } J 
L \UNLOAD 

[ FOPRW=NORWD I 

[FOPTION=YES] 

Use 

Specifies that buffers for the unit are pooled, 
or shared, with all other units so specified. 

Specifies logical record size. Taken as maximum for 
variable records. 

Specifies the size of the unit buffer. 

Specifies that a copy of each formatted input record 
is transferred to the reread buffer. 

Specifies the unit as the diagnostic device 

Specifies that output tape blocks are sequentially 
numbered and input tape blocks are checked. 

Specifies action for device errors. IGNORE and SKIP 
disable the ERR clause for parity/length. 

Specifies that records with bad parity or wrong length 
are moved to the reread buffer. 

Specifies standard or missing labels on magnetic tape. 

Specifies checkpoint dumps used to restart programs after 
a catastrophic failure are present on input tapes. 

Specifies positioning at end of program execution for 
input and output tapes. 

Specifies that rewind is disabled at first reference to 
tape file. 

Specifies a file not logically required. If the file is 

not allocated, output is ignored, and input causes an 
end return. 

C-4 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

C-5 

Table C-6. Summary of UNIT Arguments for Sequential Disk Files 

Argument Use 

FDEVICE=SDISC Specifies device used for the file. 

FUNIT=l ~EAD ( 
Specifies FORTRAN IV unit reference number or 
FORTRAN II statement reference. 

PUNCH 

[FSECTOR= ~~~sn Specifies processing on a sectorized disk expected. 

[FFILEID• 

filename 

}] 
Specifies job control file reference name ( LF D). 

FORTk; if FUNIT=k Defaults READER and PUNCH taken only for 
READER; if FUNIT=READ FORTRAN II FUNIT. 
PUNCH; if FUNIT=PUNCH 

~ rOUT } ] Specifies level of data management support. WORK; if FUNIT=k 
FTYPEFLE= INPUT; if FUNIT=READ 

OUTPUT; if FUNIT=PUNCH 

[ rRUNB}] Specifies records as variable or fixed and blocked or 
RECFORM= VARBLK unblocked. 

FIXUNB 
FIXBLK 

[FBUFPOOL=YES] Specifies that buffers for the unit are pooled, 
or shared, with all other units so specified. 

rNUMBUF= ~ ~ f J Specifies number of input/output buffers. 

~WORKA= { YES; if FNUMBUF=1} J Specifies that logical records are processed in a 
NO; if FNUMBUF=2 work area rather than in the buffer. 

rRECSIZE= ~ ~OS f J Specifies logical record size. Taken as maximum for 
variable records. 

t {k }] 
Specifies the size of the unit buffer. 

FRECSIZE; if FRECFORM=FIXUNB 
BKSZ= FRECSIZE+4; if FRECFORM=VARUNB 

FRECSIZE*4; otherwise 

[FREREAD=YES] Specifies that a copy of each formatted input record 
is transferred to the reread buffer. 

[FDIAGNOS=YES] Specifies the unit as the diagnostic device. 

~ERROPT= ~IGNORE 0 Specifies action for device errors. IGNORE and 
SKIP SKIP disable the ERR clause for parity/length. 

[FRECERR=YES] Specifies that records with bad parity or wrong 
length are moved to the reread buffer. 

[FOPTION=YES) Specifies a file not logically required. If the file is 
not allocated, output is ignored,and input causes 
an end return. 

[FVERIFY=YES) Specifies a reread of each written block to ensure 
proper parity. 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

C-6 

Table C-7. Summary of UNIT Arguments for Direct Access Disk Files 

Argument Use 

FDEVICE=DISC Specifies device used for the file. 

FUNIT=k Specifies FORTRAN IV unit reference number. 

(i=sECTOR= { ~~s } J Specifies processing on a sectorized disk expected. 

~ {filename } J FF I LEID= ~;where k=FUNIT 
Specifies job control file reference name (LFD). 

~ {INPUT }] FTYPEFLE= OUTPUT 
Specifies level of data management support. 

[FBUFPOOL=YES) Specifies that buffers for the unit are pooled, 
or shared, with all other units so specified. 

[FRECSIZE= ~ ~12 f J Specifies logical record size. 

[FRECERR=YES) Specifies that records with bad parity or wrong length 
are moved to the reread buffer. 

[FREREAD=YES) Specifies that a copy of each formatted input record 
is transferred to the reread buffer. 

[FVERIFY=YES) Specifies a reread of each written block to ensure 
proper parity. 

Table C-8. Summary of UNIT Arguments for Reread Unit 

Argument Use 

FDEVICE=REREAD Specifies device used for the file. 

FUNIT= ~~EADf Specifies FORTRAN IV unit reference number or 
FORTRAN II statement reference. 

Table C-9. Summary of UNIT Arguments for Equivalent Unit 

Argument Use 

FDEVICE=EQUIV Specifies device used for the file. 

r } Specifies FORTRAN IV unit reference number or 
READ FORTRAN 11 statement reference. 

FUNIT= PRINT 

PUNCH 

r } Specifies the unit to be activated. 
READ 

FEOUIV= PRINT 

PUNCH 



UP-8474 Rev. 2 SPERRY UNIVAC OS/3 
FORTRAN IV 

C-7 

Table C-10. Summary of UNIT Arguments for MIRAM Disk Files 

Argument Use 

FDEVICE=MI DISC Specifies device used for the file. 

FUNIT·{~EAD } 
Specifies FORTRAN IV unit reference number or 
FORTRAN 11 statement reference. 

PUNCH t I fil•M~ ! Specifies job control file reference name (LFD). 
, FORTk; if FUNIT=k Defaults READER and PUNCH taken only for 

FILEID= READER; if FUNIT=READ FORTRAN II FUNIT. 

' PUNCH; if FUNIT=PUNCH 
~~~ _,..,.. 

~ tRK, ;fFUNIM } J Specifies level of data management support.
FTYPEFLE= INPUT; 1f FUNIT=READ

OUTPUT; if FUNIT=PUNCH

FRECFORM={~} Specifies records as variable or fixed.
VAR

[FBUFPOOL=YES) Specifies that buffers for the unit are
pooled, or shared, with all other units so specified.

tRECSIZE-{ ~55,if FRECFORM-FIX} J Specifies logical record size. Taken as maximum
for variable records.

252; if FRECFORM=VAR
..

[FREREAD=YES) Specifies that a copy of each formatted input
record is to be transferred to the reread buffer.

[FRECERR=YES) Specifies that records with bad parity or wrong
length are moved to the reread buffer.

[FOPTION=YES) Specifies a file not logically required. If the file
is not allocated, output is ignored and input
causes an end return.

[FVERI FY=YES) Specifies a reread of each written block to ensure
proper parity.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

D-1

Appendix D. Additional UNIT Options
in DTF Environment

D.1. GENERAL

Additional options for execution environment configuration not presented in Section 12 are descibed in this
appendix. Users familiar only with FORTRAN, however, should ignore this entire appendix, since it requires
detailed knowledge of both assembly language and the data management system.

In the following descriptions of options for the various devices, a symbol required by an argument must be
provided in assembler language following the FUNEND procedure call or be defined in another module. If it is
defined in another module, the symbol must be named on an EXTRN statement in the UNIT module and on an
ENTRY statement in the module defining the symbol. For further information, refer to the data management
programmer reference. For an explanation of the statement conventions applicable to this appendix, refer to 1.4.

D.2. CARD READER OPTIONS

Additional options for the card reader are described.

Binary Card Input Argument:

FMODE=STD
Specifies standard translation mode.

FMODE=BINARY
Specifies binary translation mode. Binary card input defines two bytes for each card column. Holes
12 through 3 are mapped onto bits 25 through 2° of byte 1; holes 4 through 9 are mapped onto bits 25

through 20 of byte 2, etc. Bits 27 and 26 of each byte are set to 0. When the BINARY option is
specified, the default value for FRECSIZE is changed from 80 to 160.

Binary cards should be read by using an unformatted statement or an A FORMAT code; 96-column
cards can not be read with BINARY mode.

ASCII Character Set Argument:

FASCll=YES
Specifies the ASCII character set.

If this argument is not specified, the EBCDIC character set is used. If FMODE=BINARY is specified, FASCll
cannot be specified. ASCII does not imply a larger character set than EBCDIC; it is the accepted standard
for information interchange.

UP-8474 Rev. 2

D.3. CARD PUNCH OPTIONS

SPERRY UNIVAC OS/3
FORTRAN IV

Additional options for the card punch are specified.

Binary Card Output Argument:

FMODE=STD
Specifies standard translation mode.

FMODE=BINARY

D-2

Specifies binary translation mode. Binary card output defines two bytes for each card column. Holes
12 through 3 are mapped onto bits 25 through 20 of byte 1; holes 4 through 9 are mapped onto bits 25

through 2° of byte 2, etc. Bytes 27 and 26 of each byte are not transmitted to the unit. When the
BINARY option is specified, the default value for FRECSIZE is changed from 80 to 160.

ASCII Character Set Argument:

FASCI l=YES
Specifies the ASCII character set.

If this argument is not specified, the EBCDIC character set is used. If FMODE=BINARY is specified, FASCll
cannot be specified. ASCII does not imply a larger character set than EBCDIC, but is merely the accepted
standard for information interchange.

0.4. TAPE FILE OPTIONS

Additional options for magnetic tape are specified.

User Header and Trailer Label Arguments:

The FFILABL and FLABADDR arguments are used to specify user header and trailer labels.

• FFILABL

This argument specifies the type of labels to be used. In addition to the STD and NO options presented in
Section 12, a third option is available.

FF I LABL=NSTD
Specifies nonstandard labels.

A nonstandard labeled tape with user trailer labels cannot be extended or backspaced after ENDFILE
has been encountered.

• FLABADDR

FLABADDR=symbol
Specifies that user header and trailer labels are to be processed.

The address of the user label routine is specified by symbol. This argument should be specified if
FFILABL=NSTD is specified.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

0-3

ASCII Tape Files Arguments:

• FASCll

FASCll=YES
Specifies ASCII files.

• FBUFOFF

FBUFOFF=k

• FLENCHK

Specifies that a block length field of 0 to 99 bytes is to be prefixed on each block. FBUFOFF may
be specified only if FASCll=YES has been specified. A value of 0 to 99 is specified by k.

If a value other than 4 is specified for k, the block length field is assumed to be destined for, or
received from, an alien operating system and is ignored. If the block size is determined by
default, FBUFOFF is added afterward.

FLENCHK=YES
Specifies that, for variable length records, the block length field is automatically set on output
and checked on input. FLENCHK may be specified only if FASCll=YES and FBUFOFF=4 have
been specified.

D.5. SEQUENTIAL DISK FILE OPTION

This is an additional option for sequential disk processing.

User Header and Trailer Argument:

FLABADDR=symbol
Specifies that the user header and trailer labels are to be processed. The address of the user label
routine is specified by symbol.

D.6. DIRECT ACCESS DISK FILE OPTIONS

Additional options for direct access disk are specified.

• FLABADDR

FLABADDR=symbol

• FTRLBL

Specifies that user header labels are to be processed. The address of the user label routine is
specified by symbol.

FTRLBL=YES
Specifies that user trailer labels are to be processed. This argument may be specified only if the
FLABADDR argument has been specified.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

D.7. ADDITIONAL DATA MANAGEMENT DEVICES

D-4

Files for sequential devices supported by data management but not presented in Section 12, such as optical
document readers, paper tape, etc., are defined by using the following UNIT procedure call. A listing, in the order
of relative importance and utility, of the arguments that may appear on this UNIT procedure call is followed by
descriptions of the arguments.

Format:

10 16

UNIT FDEVICE=DMS
FUNIT=k
FWORKA=YES

[
FF I LE I D={ f i I en am e }]

FORTk

[

FRECFORM= {~::~~~}]
FIXUNB
FIXBLK

[FRECSIZE= {:es}]
[FR E R EA D= YES]

Device Identification Argument:

FDEVICE=DMS
Specifies that this file is for a sequential device supported by data management.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant in the range 1:s;;;k:s;;;99.

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified
by a control module.

Work Area Allocation Argument:

FWORKA=YES

Specifies that records are to be moved to and from a work area for processing. Space for a work area
is to be allocated.

File Name Argument:

FF I L E I D= f i I e n am e
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FF ILE I D=FORTk

Specifies the file name as FORTk, where 1:s;;;k:s;;;99. If the FFILEID argument is not specified, FORTk is
the default file name.

The UNIT procedure call generates an address constant that references the specification for FFILEID. A
define the file (DTF) macroinstruction labeled with the file name must be provided. An EXTRN statement is
automatically generated for the label specified in FFILEID.

UP-8474 Rev. 2

Record Formats Arguments:

FRECFORM=VARUNB

SPERRY UNIVAC 05/3
FORTRAN IV

Specifies variable-length unblocked records.

FRECFORM=VARBLK
Specifies variable-length blocked records.

FRECFORM=FIXUNB
Specifies fixed-length unblocked records.

FRECFORM=FIXBLK
Specifies fixed-length blocked records.

Record Size Argument:

0-5

This argument specifies the record size and is used only to ensure that the common work area is large enough
for all units using it. No 1/0 areas are allocated; these must be defined by the user.

FRECSIZE={k }
508

Specifies a positive integer constant.

If this argument is omitted, 508 is the default record size.

Reread Argument:

FR ER EAD=YE S

.. ~

Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consits of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

E-1
Update B

Appendix E. FORTRAN Sample
Job Streams

E.1. JOB CONTROL PROCEDURE

The FOR4 procedure call statement generates the necessary job control statements to compile a FORTRAN IV
program. Optionally, the procedure call statement can generate job control statements that specify the following:

• input - source library;

• output - object library;

• PARAM control statements defining the compiler processing logic; and

• automatically link and/or execute the program .

The input may be embedded data cards (/$, source deck, /*) immediately after the FOR4 procedure call, or a
module in any library as defined by the IN parameter. This results in the appropriate DVC-LFD control statement
sequence with an LFD name, LIB1, and the PARAM control statement, PARAM IN=module-name/LIB1, unless
the PARAM LIN statement is specified.

The object code may be written in YRUN by default, but a specific output library can be specified by the OUT
parameter. This results in the appropriate DVC-LFD control statement sequence with an LFD name, OUTFPUT,
and the PARAM control statement, PARAM OUT=OUTFPUT.

The ALTLOD parameter generates the necessary DVC-LFD control statement with an LFD name, ALTLOD, and
the appropriate EXEC control statement to load and execute the FORTRAN compiler from a private library other
than YLOD.

Format:

I I (s y m b o I] (F 0 R 4) [RN TR= { N I~ [I N ={ (v o I - s e r - n o , I a b e I) ~
FOR4l ({lun}[,vol-ser-no]) (RES)
FOR4LG N (RES, label)

20
(RUN, label)

- (*,label)

[

0 UT={~ R ~ ~ ~ ; : ~:; ~ o. I ab e I)~ [' SC R 1= { ~ ~ ~ - s er - no}]

(RUN, label) -
(',label)
(RUN,YRUN)

[

Al Tl 0 D={ (v o I - s e r - n o . I a be I) ~ [. 0 PT= (S . N . X • C . T)]
(RES, label)
(RUN, label)
(• . I ab e I)
(RES,YRUN)

[, LIN=f i lename] [, LST=opt ion] [,MAP=(S,A. L)][,SIZE={~}]

[,ERRFIL=(vol -ser-no. label ,module-name)] -

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

E-2
Update B

Label:

symbol
Specifies the 1- to 6-character source module name; only used when the IN parameter is also used.

Operation:

FOR4
This form of the procedure call statement is used to compile a FORTRAN IV source program.

FOR4L
This form of the procedure call statement is used to compile a FORTRAN IV source program and link­
edit the object modules (see Note 1).

FOR4LG
This form of the procedure call statement is used to compile a FORTRAN IV source program. link-edit
the object modules, and execute the load module (see Notes 1, 2, and 3).

NOTES:

1. Linkage control cards or program data are not allowed with this form of the procedure call statement.

2. The FOR4LG procedure call statement cannot be used when operating with the shared code data
management feature. Instead, use the FOR4L procedure call statement and provide a separate EXEC
statement to execute the load module.

3. Device assignment sets must be specified prior to the jproc.

Keyword parameter PRNTR:

PRNTR{({ ::' r. '°I -"' -oo)}

Specifies the logical unit number of the printer and, optionally, the destination-id (vol-ser-no). If a
printer device assignment set is not to be generated, the value N is coded, and the printer device
assignment set must be manually inserted in the control stream.

P RN T R= (I u n [, v o I - s e r - n o])
Specifies the logical unit number (20-29) of the printer device. Optionally, the destination-id (vol-ser­
no) can be specified.

PRNTR=(N[,vol -ser-no])
Indicates that a device assignment set for the printer must be manually inserted in the control
stream. This permits LCB and VFB job control statements to be used in the control stream. The
volume serial number can also be specified.

If omitted, 20 is assumed.

Keyword Parameter IN:

This parameter specifies the input file referenced by the PARAM IN control statement. If omitted, the
source input is assumed to be embedded data cards (/$, source deck, /*).

IN=(vol -ser-no, label)
Specifies the volume serial number (vol-ser-no) and the file identifier (label) where the source input
is located.

IN=(RES)
Specifies that the source input is located on the SYSRES device in YSRC.

•

•

•

----------------·----·

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

E-3
Update A

IN=(RES, label)
Specifies that the source input is located on the SYSRES device, in the file identified by the file­
identifier (label).

IN=(RUN,label)
Specifies that the source input is located on the job's SYSRUN file with the file identifier (label)
specified by the user.

IN= (• , I ab e I)
Specifies that the source input is located on a catalog file identified by the file identifier (label).

Keyword Parameter OUT:

This parameter specifies the output file definition. If omitted, the object code is located on the job's
SYSRUN file.

OUT=(vol-ser-no, label)
Specifies the volume serial number (vol-ser-no) and the file identifier (label) of the file where the
object code is to be located.

OUT=(RES, label)
Specifies that the object code is to be located on the SYSRES device, within the file identified by the
label parameter.

OUT=(RUN, label)
Specifies that the object code is to be located on the job's SYSRUN file identified by a user specified
file identifier (label) .

OUT=(*, label)
Specifies that the object code is to be located on a catalog file identified by the file identifier (label).

Keyword Parameter SCR1:

SC R 1 ={ v o I - s e r - n o }
RES

Specifies the volume serial number of the work file labeled SSCR1. If omitted, the work file is
assumed to be on the SYSRES device.

Keyword Parameter ALTLOD:

This parameter specifies the location of the alternate load library. If omitted, the compiler is loaded from
SY SR UN.

ALTLOD=(vol -ser-no. label)
Specifies the volume serial number (vol-ser-no) and file identifier (label) of an alternate load library
that contains the FORTRAN IV compiler.

ALTLOD=(RES, label)
Specifies that the alternate load library is located on the job's SYSRES device, in the file identified by
the file identifier (label).

ALTLOD=(RUN, label)
Specifies that the alternate load library is located on the job's SYSRUN file with the file identifier
(label) specified by the user.

ALT LOO=(*, label)
Specifies that the alternate load library is located on a catalog file identified by the file identifier
(label).

t

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

E-4

Keyword Parameter OPT:

OPT=(S, N, X, C, T)
Specifies one or all of the following compilation options.

s

N

x

c

T

Specifies that statement numbers will be inserted into the generated code as an aid to
debugging. When S is specified, the size of the object program and its execution time can
increase significantly.

Specifies that no object program is to be generated. The program units are merely compiled and
cannot be executed.

Specifies compilation of all cards with the character X in column 1. If this option is not
specified, these cards will be treated as comments.

Specifies all references to array elements are to be checked to see if they are outside the
declared limits of the array.

Specifies that tracing of executed labels is requested. The compiler generates a special
subroutine call at every label. A TRACE ON must occur in the program to activate tracing .

If only one OPT argument is specified, the parentheses are optional.

Keyword Parameter LIN:

LIN=f i le name
Specifies the name of the default filename in which the source modules reside.

A 1- to 8-alphanumeric-character identifier is specified by filename. If the LIN parameter is not specified,
the compiler assumes the default filename of LIB1. This parameter is used in conjunction with the IN
parameter.

Keyword Parameter LST:

LST=option
Specifies the quantity of listings produced by the compiler. One of the following options may be
chosen.

N

s

M

Specifies an abbreviated listing consisting of only the compiler identification, parameters, and
diagnostics.

Specifies, in addition to the N listing, the source code listing.

•

•

Specifies, in addition to the S listing, an object summary and a storage map showing the •
addresses assigned to variables and arrays. (Can be superseded by the MAP parameter.)

If no LST parameter is specified, the S option is assumed.

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC 0513
FORTRAN IV

E-5
Update B

Keyword Parameter MAP:

MAP=(S, A, L)
Specifies the type of maps produced by the compiler. One or all of the following options may be
chosen.

s

A

Specifies object summary information, including module size and external subroutines called.

Specifies an alphabetical listing of the addresses assigned to variables, arrays, and statement
labels.

Specifies a listing of the addresses assigned to variables, arrays, and statement labels in order
by the storage locations assigned.

When a MAP argument is specified, it supersedes the maps selected by the LST parameter. Also, when a
MAP argument is specified, it is not necessary to specify LST=M.

Keyword Parameter SIZE:

SIZE=g}

Specifies the size of the FORTRAN IV compiler to be used .

Specifies the large version.

s
Specifies the small version.

If omitted, S is assumed.

Keyword Parameter ERRFIL:

This parameter specifies that error diagnostic messages are written to a file that is accessed by the error
file processor. When you specify this parameter, error records are created for every error generated by the
compiler.

ERRFIL=(vol-ser-no, label ,module-name)
The vol-ser-no specifies the volume serial number of the file. The label specifies the file identifier
(name of the file that the module is placed into). The module-name is the name of the module that is
referenced by the error file processor.

If omitted, the error file is not created.

Example:

The following example illustrates the use of the FOR4 procedure call statement in its basic form:

10

I . II JOB FRTRNIA
2. II FOR4
3. /$
4. J source 5. deck
6.
7. ;·

UP-8474 Rev. 2

Line Explanation

SPERRY UNIVAC OS/3
FORTRAN IV

Indicates that the name of the job is FRTRN 1 A.

E-6
Update B

2 Indicates the name of the procedure being called (FOR4). No keyword parameters specifying
special options for this compile are used.

3 Indicates start of data.

4-6 Represents the source deck to be compiled.

7 Indicates end of data.

E.2. SAMPLE COMPILE-LINK-EXECUTE

The following job control streams illustrate a simple compilation from cards, linking the program EX1, and
executing the bound program TEST1 from YRUN. (TEST1 is the new name for EX1 .)

Example A shows a job control stream using the conventional method, that is, the EXEC statements with their
supporting device assignment sets. Example B shows the jproc method, which is more efficient because it
requires less coding, thereby reducing the possibility of mistakes. Both examples produce the same result in
either a CDI or DTF environment.

Example A:

10 16

1. II JOB EXAMPLE!
2. II DVC 20 II L FD PRNTR PRINTER FOR ALL PROCESSORS
3. II WORKl ONE WORK FI LE
4. II EXEC FOR4 BEGIN COMPILATION
5. II PA RAM PARAMETERS(AS NEEDED)
6. 1$

PROGRAM EXl

{program body)

7. END
8. I• END COMPILATION
9. II WORKl 0 N E WO R K F I L E
10 . II EXEC LNKEDT BEGIN LINK EDIT
11 . 1$ START OF INPUT TO LINKAGE EDITOR
1 2 . LO ADM TESTl
13 . INCLUDE EX 1
14. I• END LINK EDIT
1 5 . II EXEC TEST1,YRUN BEGIN EXECUTION
16. I& END OF JOB

Line Explanation

Indicates the job name, EXAMPLE1

2 Indicates the printer device number for all processors

3 Specifies one work file for FORTRAN IV compiler execution

4 Begins compilation (FOR4 or FOR4L)

•

•

•

•

•

•

UP-8474 Rev. 2

Line Explanation

SPERRY UNIVAC OS/3
FORTRAN IV

5 Adds parameters here as per job requirements

6 Start of data to compiler (source program)

7 End of source data

8 End of compilation

9 Specifies one work file for the linkage editor

10 Begins the link edit

11 Start of data to linkage editor

12 Names new load module TEST1

13 Links source module named EX1

14 Ends link edit

15 Begins program execution

16 End of job

Example B:

10

1. // JOB EXAMPLE!
2. // FOR4
3. /$

: }
4. /*

program EXl
source card deck
END

5. //TEST! LINKG EXl
6. /&

Line Explanation

Indicates the job name, EXAMPLE1

E-7
Update B

2 Indicates the FORTRAN jproc; allocates a printer and a work file and starts compilation

3 Start of data to the compiler (source program)

4 End of source data

5 Indicates the linkage editor jproc; allocates a work file, uses the input source program EX1 and
names the new load module TEST1

6 End of job

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

E.3. SOURCE FROM DISK LIBRARY - STACKED COMPILATION

E-8

This job control stream represents the source module from the disk library for a stacked compilation. Source
programs on disk files are identified using a librarian module name. Each source module consists of one or more
FORTRAN program units.

Example:

10 16

1. II JOB EXAMPLE2
2. II DVC 211 II LFD PRNTR
3. II WORK I
4. II DVC 511 II VOL DISCllll II LBL FORSOURCE II LFD INPUT
5. II EXEC FOR4
6. II PARAM IN=MODULEillNPUT
7. II PA RAM IN=MODULE211NPUT
8.

9.
10. II PARAM IN=MODULEnllNPUT
11. I&

Line Explanation

Indicates job name, EXAMPLE2

2 Indicates the printer device number

3 Specifies one work file for the FORTRAN IV compiler

4 Specifies that the file, FORSOURCE, on disk DISCOO, device 50, is the INPUT file.

5 Begins compilation (FOR4)

6-7 Identifies the first and second source program module names/filenames to the compiler

8-10 Identifies all succeeding and last source program module names/filenames to the compiler

11 End of job

•

•

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

E.4. COMPILE, ASSEMBLE, LINK, AND EXECUTE

E-9

This example shows the user-specified execution environment, control stream input, and print and tape output in
a DTF environment. For a COi environment, every statement is the same except that the FUNTAB is omitted.

10 16 72

1. II JOB EXAMPLE3
2. II FOR4
3. 1$

: l source
program deck
($MAIN)

4. I*
5. II ASM LST=N
6: 1$
7. MYIO START

8. FUNT AB SYS=FOR

9. UNIT FD EV IC E=P RI N TE R, x
10. FUNIT=l
11 . UNIT FDEVICE=SPOOLIN, x
12. FUNIT=READ, x
13. FBKSZ=88
14. UNIT FDEVICE=TAPE, x
15. FUNIT=lB, x
16. FF I LE I D=X Y Z, x
17. FRECFORM=FIXBLK, x
18 . FR EC S I ZE=2 5 6
19. FUN END
20. EJECT
21. ERRDEF
22. END
23. I•
24. llTEST3 LINKG $MAIN,MYIO
25. II DVC 21 II LFD FORTI
26. II DVC 48 II VOL TAPEBB II LFD XYZ
27. 1$

: l
control
stream
input

28. I•
29. I&

Line Explanation

Indicates job name, EXAMPLE3

2 Indicates the FORTRAN job control procedure (jproc), FOR4

3 Start of data to compiler (source program - $MAIN)

4 End of data

5 Indicates assembler jproc, ASM; no cross-reference listing is produced (LST=N)

UP-8474 Rev. 2

Line

6

7

8

9

10

11-13

12

13

14-18

15

16

17

18

19

Explanation

SPERRY UNIVAC OS/3
FORTRAN IV

Start of data to the assembler

Start of execution environment module (MYIO)

Initiates file for FORTRAN IV

Defines first file (UNIT definition procedure) specifying a printer file

Specifies printer unit number 1

Defines second file (UNIT definition procedure) specifying a spooled input file

Identifies the reader as input device

Indicates input block size

Defines third file (UNIT definition procedure) specifying a tape file

Specifies tape unit number 10

Indicates the tape filename, XYZ

Specifies fixed-length blocked records

Specifies a tape record length of 256 bytes

Terminates UNIT procedure calls

20 File termination

21 Includes library table of error information in executable program

22 Terminates source program

23 End of data to assembler

E-10

24 Indicates the linkage editor jproc; names the new load module as TEST3 which includes the
modules $MAIN (FORTRAN source program) and MYIO (assembler source program) and
executes the module

25-26 Connects devices assigned before execution of TEST3 to the FORTRAN unit table via their LFD
names

27 Start of spoolin data

28 End of spoolin data

29 End of job

NOTE:

The default FF/LEID for the printer is FORT1.

•

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

E.5. COMPILATIONS WITH PARAMETER OPTIONS

E-11

The following example shows the use of special parameter options associated with the FOR4 jproc in either the
CDI or DTF environment.

Example:

10 16

1. // JOB EXAMPLE4
2. // FOR4 MAP=(S),OPT=(X)
3. /$

: l program deck

4. /*
5. //TEST4 LINKG $MAIN
6. /&

Line Explanation

Indicates job name, EXAMPLE4

2 Indicates the FORTRAN jproc, FOR4; an object summary is produced and all cards with an X in
column 1 are accepted for compilation as FORTRAN statements.

3 Start of data to compiler (source program-$MAIN)

4 End of data

5 Indicates the linkage editor jproc, LINKG; names the new load module as TEST4 which is the
source program $MAIN, and executes the program.

6 End of job

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

E.6. COMPILATION FROM A WORKSTATION TERMINAL

E-12

In the COi environment, compilation can originate from a workstation terminal. The following example shows a
typical compilation.

10 16

1. LOGON SYSPUBS,6944,DOIT
2. I EDT

:)FORTRAN 1V source program

@WRITE INPUTl
@ HALT

3. RV JC$BUILD

:}job control screen

4. RV COMP IL
5. LOGOFF

Line Explanation

Connects the workstation terminal to the host system and defines the user, his account
number, and password.

2 Calls the system editor. The FORTRAN IV source program immediately follows /EDT command.
After the last FORTRAN IV source statement, the @WRITE command is issued to save the
source program in a library. The @HALT command ends the EDT session.

3 Calls the system build command. This command writes the job control stream to the system job
control stream library file (YJCS). This job control stream defines the system resources that
the source program requires.

4 Calls the job control stream from SYSJCS. This step compiles the source program.

5 Ends the workstation terminal session.

NOTE:

For more information about workstation terminal input, see the workstation user guide and the editor user
guide.

•

•

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

E.7. EXECUTION FROM A WORKSTATION USING A SCREEN FORMAT

E-13

The following example shows the job control stream that will execute a FORTRAN IV loadable program using
screen format services.

Example:

1.
2.
3.
4.
5.
6.

7.

8.

9.
10.

10 16

LOGON STSPUBS,6944,DOIT
RU JC$BUILD
II JOB APPLIC
II DVC 200
II USE SFS,MYFILE
II DVC 50
II VOL 000028
II LBL DISK-FORMAT-FILE
II L FD MYF I LE
II DVC 20
II LFD LIST
II DVC 51 II VOL 000027
II LBL APPLIC.FILE
II LFD APPLl
II EXEC FORT01
LOGO FF

Line Explanation

Connects the workstation terminal to the system and also identifies the user.

2 Builds the job control stream to be used by the loadable FORTRAN IV program.

3 Identifies the job name of the filed job control stream.

4 Defines the workstation terminal.

5 Calls the screen format services routine and specifies the screen format file that the executable
program is using. The screen parameter must specify a screen residing on the file (7.3.1).

6 Defines the file where the screen format resides.

7 Defines the print file to be used by the executable program.

8 Defines the disk file to be used by the executable program.

9 Calls the executable program.

10 Disconnects the workstation terminal from the system.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

E-8. CREATE AND COMPILE FROM A WORKSTATION USING EDT

You use the following commands at the workstation to create and compile your program:

10 16

1. LOGON user-id

2. /EDT

:}FORTRAN IV '''''' ''''''"
@WR I TE INPUT 1

II JOB COMPIL

I I F 0 R 4 , I N= I NP U T 1

/&

@WR I TE . $ Y $JCS

@HALT

3. RV COMP IL

4. LOGO FF

Line Explanation

Connects the workstation terminal to the system and also identifies the user.

2 Calls the system editor (EDT).

3 Compiles the program.

4 Disconnects the workstation terminal from the system.

E-14

72

•
UP-8474 Rev. 2 SPERRY UNIVAC OS/3

FORTRAN IV

Appendix F.

F-1

Compile-Time
Diagnostic Messages

All messages produced by the FORTRAN IV compiler are printed on one or more pages containing the title
ERROR LISTING as a header line. Separate error listings are produced for each program module processed.

Two classes of messages may be produced-severity code 1 or severity code 2. Severity code 1 messages denote·
a condition that, while not entirely incorrect~ is not fully correct and should be examined and possibly changed by
the user. Severity code 2 messages indicate an error that inhibils correct program execution. A severity code 2
error sets the leftmost bit of the UPSI byte, which may be tested via the job control statement, I I SKIP target­
label, 1. The severity code of each error is printed immediately to the left of the message in the error listing.

In most cases, the card causing the error (message), is itself printed on the error listing, followed by a line
containing a pointer to the place at which the error occurs and also containing the severity code and the error
message. However, it is not always possible to print the card at fault. In that case, only the severity code and the
message are printed. For example, in some cases parts of the compilation process are shared by the various
passes of the compiler (e.g., constant evaluation), so the card at fault may no longer be available at the time the
error is detected. Also, sometimes no one card is at fault, as in the case of the possible interrelationship between
COMMON, DIMENSION, EQUIVALENCE, and DATA statements.

Table F-1 lists and describes the FORTRAN IV compile-time diagnostics. All messages are prefixed by severity
code shown in the Severity Code column where:

1 =warning

2 =serious

The Diagnostic Message column shows the message as it appears when printed. The cause of the message and
the action to be taken are described in the remaining columns. The messages are presented in alphabetical order
by severity code.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

F-2

Table F-1. FORTRAN IV Compile-Time Diagnostic Messages (Part 1 of 8)

Severity Explanation
Diagnostic Message Code Reason Recovery

1 ARRAY MISSING SUBSCRIPTS A variable known to be an array is referenced Correct source
without subscripts. program.

1 "," ASSUMED BEFORE TYPE In an IMPLICIT statement, commas must Correct statement.
separate type specifications.

1 BLOCK DATA STMT ENDS Extraneous field detected on BLOCK DATA Correct BLOCK DATA
BADLY statement. statement.

1 DIM DECLARED BEFORE The dimensions of this array have been Delete declarator. Do
declared previously. not delete the array

name if a type or
COMMON statement.

1 END STMT MISSING Compiler encountered another program unit Insert END statement
before an END statement. before next program

unit.

1 EXTRANEOUS LABEL Label is not accepted as the destination Warning only.
point of a control transfer.

1 EXTRANEOUS OPTR Extraneous operator detected after end Correct statement.
of valid statement.

1 FIELD AFTER END OF STMT Extraneous field detected after end of Correct statement.
valid statement.

1 GO TO W/O ASSIGN ON CARD An assigned GO TO on card nnnn has been Provide an ASSIGN
nnnn encountered without an ASSIGN statement statement or change.

in the program. the GO TO.

1 ","IGNORED Extraneous comma in a COMMON statement Correct COMMON
ignored. statement.

1 ILLEGAL CHARACTER Character not a member of the FORTRAN Probable keypunch error.
character set. Correct error. Correct

statement.

1 ILLEGAL ELEMENT In an EQUIVALENCE statement, an attempt Dimension array or
was made to subscript a nonarray. correct statement.

1 "*" ILLEGAL HERE Optional length specification illegal for Remove optional
DOUBLE PRECISION. length.

1 ILLEGAL LABEL The statement label is either an invalid Correct statement
constant or it exceeds the maximum label label.
value of 99999.

1 ILLEGAL RANGE A statement label has been found which Correct label.
exceeds the maximum value of 99999.

1 ILLEGAL STMT FORM FORTRAN statement not in valid format. Correct statement.

1 ILLEGAL STMT IN LOG IF A DO or logical IF cannot be the object Correct statement.
statement of a logical IF.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

F-3

Table F-1. FORTRAN IV Compile-Time Diagnostic Messages (Part 2 of 8)

Severity
Diagnostic Message

Explanation
Code Reason Recovery

1 ILLEGAL USE OF STD FCN Improper use of or wrong number of Insert a TYPE
arguments in standard library function. statement to declare

function as users, or
correct function.
reference.

1 INTEGER>2**31 An integer constant exceeds one full word. Examine constant for
Binary bits were truncated on the left, and correctness. A
a maximum positive value of 7FFFFFFF was precision or type
substituted. change may be

appropriate.

1 LABEL IN CONT. Characters appeared in label field of Warning only.
continuation card.

1 LENGTH ILLEGAL HERE Optional length illegal for DOUBLE PRECISION. Remoye optional
length.

1 LITERAL TOO BIG A Hollerith constant or literal constant Shorten character
has exceeded the maximum length of 255 string.
characters.

1 LITERAL TOO SHORT Zero length literal constant encountered. Correct constant.

1 ","MISSING Comma missing in assigned GO TO (before Warning. Insert
branch list). comma if desired.

1 MISSING ")"OR "),"? An EQUIVALENCE set is missing its closing Correct EQUIVALENCE
parenthesis. statement.

1 MISSING SIZE Optional size in a type statement is missing, Remove '*' or insert
but the '*' was detected. size.

1 MISSING "TO" IN ASSIGN Keyword TO missing from ASSIGN statement. Correct ASSIGN
statement.

1 NAME TRUNCATED Symbolic name cannot exceed six characters. Shorten name to six or
less characters.

1 NULL EXPONENT The exponents on a real or double precision Correct constant.
constant are missing.

1 NUMBER > 16**63 Magnitude of real constant out of range Correct program.
(positive).

1 NUMBER < 16**-65 Magnitude of real constant out of range Correct program.
(negative).

1 PREVIOUS "," IGNORED Previous comma in a COMMON or type Correct statement.
statement has been ignored.

1 PROG ENDS BADLY STOP statement missing. Warning.

1 SHOULD HAVE INTEGER HERE Variable should be of type integer. Correct statement.

1 SHOULD HAVE LABEL AFTER Label missing on statement immediately Correct program logic.

BRANCHES following an unconditional branch.

1 "," SHOULD PRECEDE A comma should precede the name in a Correct DATA
DATA statement. statement.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

F-4

Table F-1. FORTRAN IV Compile-Time Diagnostic Messages (Part 3 of 8)

Severity Explanation
Diagnostic Message Code Reason Recovery

1 STMT ENDS BADLY Extraneous field detected on END statement. Correct END
statement.

1 "STOP" COMPILED HERE RETURN statement occurs in a main program. Change RETURN to
STOP statement substituted. STOP.

1 TOO FEW SUBSCRIPTS Array element reference contains fewer Correct either the
subscripts than the array declarator. declarator or the

reference.

1 TRANSFER ENDS DO LOOP An unconditional transfer of control has Correct source
been used as the terminal statement of a program.
DO loop. The DO terminal block is
inaccessible and only one iteration of the DO
is possible.

2 ADJ DIM IN COMMON OR Adjustable dimensions are prohibited in main Correct program logic.
MAIN PROG programs.

2 #ARGS + ENTRY > 398 or As stated. Break up program.
COMMONS> 85

2 ARITH CONST & LOG VAR DATA statement processor cannot perform a Correct DAT A
meaningful conversion. statement.

2 ARITH OPND & LOG OPTR A nonlogical was used in formation of logical Correct expression.
expression.

2 ARRAY ILLEGAL IN STMT FCN A statement function cannot reference an Correct statement
array. function definition.

2 BADLY NESTED DO A DO loop must be completely enclosed by Correct structure of
any surrounding DO loop. See fundamentals loops.
of FORTRAN programmer reference, UP-7536
(current version).

2 BINARY OPTR STARTS SUBEXP +, *, /, or ** begins an arithmetic expression. Correct expression.

2 COMMONS: TOO MANY; OR Internal table overflow processing COMMON Try large compiler or
TOO BIG. statement. change program logic.

2 COMMON W/EQUIV.: TOO MANY; Internal table overflow processing COMMON Try large compiler or
OR TOO BIG. statement. change program logic.

2 COMPLEX COMPARAND Operators GT, GE, EO, NE, LT, LE cannot be Correct expression.
used with complex entries.

2 COMPLEX OPND IN IF Complex expression not permitted in arithmetic Correct program.
IF.

2 DATA TABLE EXCEEDED An implied-do in a DATA statement is too Break up the DATA
complex. statement.

2 DIM 2**24 Value of a dimension must be less than 2**24. Correct statement.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

F-5

Table F-1. FORTRAN IV Compile-Time Diagnostic Messages (Part 4 of 8)

Severity
Diagnostic Message

Explanation
Code

Reason Recovery

2 DUPLICATE END REFERENCE Two END clauses in one statement. Probably intended to
be an ERR clause.

2 DUPLICATE ERR REFERENCE Two ERR clauses. Correct statement.
Probably should be
an END clause.

2 EQUIV TO ITSELF A variable has been made equivalent to itself Correct EQUIVALENCE
indirectly. statement.

2 EQUIV TOO EXTENSIVE Excessive number of equivalence sets in the Reduce number of
program unit. The compiler can address only equivalence groups.
65K in the equivalence table.

2 EXTRANEOUS "," Comma encountered in expression analysis. Correct statement.

2 FUNCTION NOT ASSIGNED Function name does not take on a value. Correct function.
A VALUE

2 GO TO LIST TOO BIG List for computed GO TO or assigned GO TO Break up computed
has more than 127 entries. GO TO so that each

list is less than
127 entries.

2 IF ENDS BADLY Error detected in processing the labels Correct labels for
in an arithmetic IF. arithmetic IF.

2 ILLEGAL ARRAY DECLARATOR A dimension declarator must be a constant or Correct subscript.
integer variable.

2 ILLEGAL ASSIGN Label of ASSIGN must be an executable Correct statement.
statement label.

2 ILLEGAL BLOCK SYMBOL Illegal common block name. Correct COMMON
statement.

2 ILLEGAL COMMON STMT Unrecoverable error in COMMON statement. Correct COMMON
statement.

2 ILLEGAL COMPLEX CONSTANT A component of the constant is not an Correct statement.
acceptable real constant.

2 ILLEGAL DATA Unrecoverable error in DATA statement. Correct DAT A
statement.

2 ILLEGAL DATA SET A data set reference number must be ;;;;,: 1 Correct statement.
REFERENCE NO. and,;;; 99.

2 ILLEGAL DATA STMT NAME is not a variable or array name, or is Correct statement.
a dummy argument, or a blank common.

2 ILLEGAL DMY ARG A dummy argument list may consist only of Correct list.
simple variable names which are unique in
the list.

2 ILLEGAL DO Bad DO statement Correct DO statement.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

F-6

Table F-1. FORTRAN IV Compile-Time Diagnostic Messages (Part 5 of 8)

Severity Explanation

Code
Diagnostic Message

Reason Recovery

2 ILLEGAL EQUIV GROUP Equivalence set is attempting to distort the Correct EQUIVALENCE
structure of an array which demands the statement.
contiguity of successive array elements.

2 ILLEGAL FORM OF 1/0 STMT Error detected in READ, WRITE, PRINT, or Correct statement.
PUNCH statement.

2 ILLEGAL IMPLIED DO Error in implied DO in 1/0 list or DATA Correct statement.
statement.

2 ILLEGAL IN ARITH EXP . NOT. is illegal in arithmetic expression. Correct expression .

2 ILLEGAL IN BRANCH LIST Illegal symbol in GO TO list. Correct statement.

2 ILLEGAL IN GO TO Error detected in processing the object of a Correct statement.
GO TO statement.

2 ILLEGAL IN SUBSCRIPTS Complex and logical expressions may not Correct subscript.
be used as subscripts. A subscript
expression may only be integer or real.

2 ILLEGAL 1/0 LIST The symbolic name indicated by the marker Correct statement.
cannot appear in an 1/0 list.

2 ILLEGAL LENGTH FOR TYPE The length specification on implicit or Correct length
explicit type statement is either an invalid specification or
constant or the value exceeds 32. decrease its value.

2 ILLEGAL NO. FOR LABEL Error in processing label designating DO Fix label in DO
loop terminator. statement.

2 ILLEGAL NUMBER OF ARGS A standard library function has been Correct function
referenced with an incorrect number of reference.
arguments.

2 ILLEGAL OPND IN STMT Illegal operand in CALL, REWIND, ENDFILE, Correct statement.
or BACKSPACE statement.

2 ILLEGAL SUBSCRIPTS Illegal specification of subscripts in a Correct DAT A
DATA statement. statement.

2 ILLEGAL SYMBOL AFTER Error in name after branch list in computed Correct statement.
BRANCHES GO TO.

2 ILLEGAL SYMBOL BEFORE Error detected identifying beginning of Correct assigned
BRANCHES branch list for assigned GO TO. GO TO.

2 ILLEGAL TO HAVE INITIAL Common variables may only be initialized by Change program logic.
VALUES BLOCK DATA.

2 ILLEGAL TYPE STMT Unrecoverable error in a type statement. Correct statement.

2 INCONSISTENT USE OF LABEL An attempt was made to branch to a format Correct statement.
label.

2 "'="' INSIDE EXP An equal sign detected inside. Correct statement.

2 LIST ILLEGAL FOR The variable list must appear in the Correct both
NAMELIST 1/0 NAMELIST statement and not in the statements.

READ/WRITE statement.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

F-7

Table F-1. FORTRAN IV Compile-Time Diagnostic Messages (Part 6 of 8)

Severity
Diagnostic Message

Explanation
Code Reason Recovery

2 LITERAL CONST OR &NO. Literal constant or &label detected outside Correct statement.
ILLEGAL HERE of a call statement.

2 LOCAL ARRAYS TOO LARGE Storage necessary for local arrays is too Decrease array storage
> 2**20 large. necessary.

2 LOG COMPARAND Operators GT, GE, EQ, NE, LT, LE cannot be Correct expression.
used with logical entries.

2 LOG CONST & ARITH VAR DAT A statement processor cannot perform a Correct DAT A
meaningful conversion. statement.

2 LOG OPND & ARITH OPTR Logical primary detected in arithmetic Correct expression.
expression.

2 ")"MISSING Right parenthesis missing or redundant; Add or delete a
left parenthesis present. parenthesis.

2 MISSING OPND IN STMT Invalid unit operand in REWIND, ENDFILE, or Correct statement.
BACKSPACE statement.

2 MODES MIXED OVER "=" In an ASSIGNMENT statement of the form Correct statement or
V=E, when V is logical, E must also be specify additional

logical. When V is arithmetic, E must data typing.
also be arithmetic.

2 <name> -ADJ. DIM. -MUST Variable must be of type integer. Correct statement.
BE INTEGER(D

2 <name> EQUIV. TO A variable made equivalent to a COMMON Correct statement.
COMMON - INITIALIZED(D variable can only be initialized in a

BLOCK DATA statement.

2 <name> EXTENDS COMMON Violation of a basic ANS/ECMA rule. Unless Change EQUIVALENCE
BLOCK NEGATIVELY(D this diagnostic appears in every program statements in the

unit referencing the block program execution, source code.
results will be incorrect in the source code.

2 <name> IN COMMON TWICE; Incorrect equivalence set has caused <name> Correct EQUIVALENCE
DUE TO EQUIV.(D to have two different locations in common. statement.

2 <name> IN INCONSISTENT Equivalence set is attempting to distort the Correct EQUIVALENCE
EQUIVALENCES.[) structure of an array. statement.

2 <name> MISALIGNED DUE Variable specified is an improper main storage EQUIVALENCE
TO EQUIVALENCE(!) boundary. statements should be

reorganized.

2 NEED "(" IN ASSIGNED GO TO Open parenthesis missing after comma in Correct statement.
assigned GO TO.

2 NEED INTEGER Relative record number in direct access 1/0 Correct statement.
statement must be integer.

2 NEED INTEGER FOR ADJ DIM Variable must be of type integer. • Correct statement.

2 NEED INT VAR IN COMP Variable for a computed GO TO must be a Correct program.
GOTO simple variable of type integer*4.

(!) The character string <name> is replaced by the name of the variable in error, at the time the message is printed.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

F-8

Table F-1. FORTRAN IV Compile-Time Diagnostic Messages (Part 7 of 8)

Severity Explanation
Diagnostic Message Code Reason Recovery

2 NEED INT*4 IN ASSIGNED Variable in assigned GO TO must be of Correct program.
GO TO type integer*4.

2 NEED SIMPLE VAR IN COMP Variable for a computed GO TO must be a Correct program.
GOTO simple variable of type integer*4.

2 NESTED LOG IF A logical IF cannot be the object statement Correct statement.
of a logical IF.

2 NO. CONST < NO. VAR DATA statement has more variables than Correct DAT A
constants. statement.

2 NO. DIM> 7 An array may have from one to seven Correct statement.
dimensions.

2 NO. DIM > DECLARED In an EQUIVALENCE statement, the number Correct statement.
of dimensions of an array exceeds its
declaration .

2 . NOT. AFTER SUBEXP . NOT. ends an expression .. NOT. can only Correct statement .
begin an expression.

2 NO. VAR < NO. CONST More constants than variables appear in the Correct DAT A
DATA statement. statement.

2 OPTR ENDS SUBEXP +, -, *, I, or ** ends an arithmetic Correct statement.
expression.

2 OPTR MISSING An arithmetic or logical operator was Correct statement.
expected where indicated.

2 "&"OR"." ILLEGAL HERE Invalid label after "&", or invalid number Correct statement.
after ". ".

2 PROGRAM OVERFLOWS SVCT Object program has become too large. Break up program.
REGION

2 REL AFTER REL Two consecutive relationals (.NOT., .OR., Correct statement.
.AND.) appear in a statement.

2 SIMPLE VAR. AREA> 32664 Too many simple variables in program unit. Break program unit
BYTES into smaller units and

recompile or use large
compiler.

2 STMT ENDS BADLY Extraneous field encountered on a declarator Correct statement.
statement.

2 STMT ILLEGAL IN BLOCK DATA A block data subprogram may only contain Remove statement.
specification and data initialization
statements.

2 STMT NOT IN THIS FORTRAN Acceptable keyword not implemented in this Remove statement
compiler. from program.

2 STMT TOO COMPLEX FORTRAN statement too complicated to Simplify statement.
complete compilation.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

F-9

Table F-1. FORTRAN IV Compile-Time Diagnostic Messages (Part 8 of 8)

Severity
Diagnostic Message

Explanation
Code Reason Recovery

2 SUBSCRIPT ERROR ON There is an error in the subscripts for an Correct DAT A
CARD nnnn. implied DO loop in the DATA statement for statement or array

card nnnn. Either the subscripts are dimensions.
outside the array boundaries, or a variable
subscript is not an indication variable.

2 SYMBOL TABLE EXCEEDED Too many symbolic names in program Shorten program unit
unit. or try large compiler.

2 TOO MANY")" No corresponding left parenthesis for Check statement.
marked delimiter.

2 TOO MANY CONSTANT As stated. Try larger compiler or
EXPRESSIONS break up program.

2 TOO MANY CONTINUATION FORMAT statement is too large. Break up statement.
CARDS

2 TOO MANY EQUIVALENCES' Excessive number of equivalence sets in the Reduce number of
CAN'T PROCESS. program unit. equivalence groups.

2 TOO MANY EXTERNAL SYMBOLS Program is calling too many subroutines. Break up program.

2 TOO MANY NESTED DO STMT More than 15 nested DO statements. Change program ,logic.

2 TOO MANY SUBSCRIPTS Maximum number of subscripts for an a·rray Change program logic.
is seven.

2 TOO MANY VAR IN () Table overflow in equivalence processing. Try large compiler, or
break up program.

2 UNABLE TO EVALUATE An unrecoverable error, such as overflow, Correct statement.
CONSTANT has occurred trying to evaluate a constant

expression.

2 UNCLASSIFIABLE STMT Statement cannot be classified because of Correct statement.
misspelled keyword or unrecognizable syntax.

2 UNDEFINED LABEL nnnnn Transfer of control to nonexecutable Change label.
statement not permitted.

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

F-10

When the current usage of a name conflicts with the previous usage of the same name, the FORTRAN IV
compiler produces a diagnostic error message in the form:

text-1 ILLEGAL text-2

where text-1 and text-2 may take on any one of several values. The possible values for text-1 and text-2 with an
explanation for each are listed alphabetically by text value, as follows:

• Values for text-1 with explanation

ADJ'ING DIM.
An adjusting dimension variable

ARRAY
An array

COM. ARY
An array that is in a common

COM. VAR.
A variable in a common

DMY. ARG.

A dummy argument of a subprogram

OMV. ARRAY

A dummy argument of a subprogram that is determined to be an array

OMV. FCN.

A dummy argument of a subprogram that the compiler has determined is a function

DMY. SBR.

A dummy argument that the compiler has determined is a subroutine

DMY. SUBPRG.

A dummy argument that the compiler has determined is a subprogram (function or subroutine).

OMV. VAR.

A nonarray dummy argument of a subprogram

DUP. ARG.
Duplicate arguments

ENTRY

A name that has appeared on an ENTRY statement

EQUIV. ARRAY

An array that has occurred on an EQUIVALENCE statement

EQUIV. VAR

A variable that has occurred on an EQUIVALENCE statement

EXT. FCN.

A function that has appeared on an EXTERNAL statement

UP-8474 Rev. 2

INIT. ARRAY

SPERRY UNIVAC OS/3
FORTRAN IV

An array that has been initialized by a DATA statement or by a type statement

INIT. VAR.
A variable that has been initialized by a DATA statement or by a type statement

NAME LIST
A NAMELIST name

NON-COM. ARY.
An array not in any common

NON-COM. VAR.
A variable not in any common

NON-INT.
A noninteger variable

NON-INT*4
A noninteger*4 variable

REPETITION
A name encountered more than once

STD.FCN.
A FORTRAN standard library subroutine

STD. SBR.
A FORTRAN standard library subroutine

STMT. FCN.
A statement function

SUBPRG
A subprogram (subroutine or function)

THIS FCN.
A name the compiler has typed a function

THIS NAME
A name to which no attributes have been determined

THIS SBR.
A name the compiler has typed a subroutine

TOOLATE.
A use of a name occurred after conflicting use

TYPED VAR.
A variable that has occurred on a type statement

VAR.
A simple variable

F-11

UP-8474 Rev. 2

• Values for text-2 with explanation

AS ADJ'ING DIM.

SPERRY UNIVAC OS/3
FORTRAN IV

When the compiler expects an adjusting dimension variable

AS ASSIGN 'VAR.
When the compiler expects an ASSIGN variable

AS CALLED SBR.
When the compiler expects a SUBROUTINE name

AS COM. BLOCK
When the compiler expects the name of a common block

AS DMY. ARG.
When the compiler expects a dummy argument of a subprogram

AS ENTRY ARG.
When the compiler expects an argument on an ENTRY statement

AS ENTRY STMT.
On an ENTRY statement

AS FMT.
When the compiler expects a FORMAT statement

AS FMT.; NAMLST
When the compiler is expecting either a FORMAT array or a NAMEUST name

AS INT. VAR.
When the compiler expects an integer variable

AS NAMEUST
When the compiler expects a NAMEUST name

AS STMT. FCN.
When the compiler expects a statement function

FOR DMY. ARGS.
Within the dummy argument list for a subprogram

IN ABNORMAL
In an ABNORMAL statement

IN COM. STMT.
In a COMMON statement

IN DATA STMT.
In a DATA statement

IN DIM. STMT.
In a DIMENSION statement

F-12

UP-8474 Rev. 2

IN 1/0 LIST

SPERRY UNIVAC OS/3
FORTRAN IV

In the list portion of an 1/0 statement

IN EQUIV. STMT.
In an EQUIVALENCE statement

IN EXP
Within an expression (logical or arithmetic)

IN EXTERNAL
In an EXTERNAL statement

IN TYPE STMT.
On a type statement

ON LEFT
On the left-hand side of the equals sign

Example 1:

TOOLATE. ILLEGAL AS STMT. FCN.

F-13

This error indicates that the compiler has detected a statement that looks like a statement function, but
occurs too late in the program unit to be a statement function. This error occurs most frequently when a
name is used as an array but is never dimensioned.

Example 2:

REPETITION ILLEGAL IN TYPE STMT.

This error indicates that the name pointed to by the error pointer has already occurred on a type statement.

The FORTRAN IV compiler operation-type diagnostic error messages are listed and described in Table F-2. The
severity code has the same values and meanings as shown in Table F-1; it separates the message number and
the message text. A blank severity code indicates a serious error.

Message Severity
Number Code

FF800 1

FF801 2

FF802 2

FF803 2

FF804 2

FF850

FF851

FF900

e

Table F-2. Operation-Type Diagnostic Messages (Part 1 of 2)

Explanation
Diagnostic Message

Reason Recovery

UPDATE 'nnnnnnnn' IS An out-of-5equence source correction Fix the source correction deck

OUT OF SEQUENCE card detected ('nnnnnnnn' is
sequence number)

SOURCE LIBRARY ERROR ON Source file specified by LFD-name Check for a missing II LFD lfd

'PARAM IN=mod/lfd', 'ltd' could not be opened
OPEN ERROR.

SOURCE LIBRARY ERROR ON Source module 'mod' on the file Check for incorrect spelling of

'PARAM IN=mod/lfd', specified by LFD-name 'ltd' module or LFD-name

MODULE NOT FOUND. could not be found

SOURCE LIBRARY ERROR ON A SAT read error occurred while Check disk drive and/or pack

'PARAM IN=mod/lfd', reading the directory of the
DIRECTORY READ ERROR. source file

SOURCE LIBRARY ERROR ON Module 'mod' on the source file Re-<:reate source module
'PARAM IN=mod/lfd', specified by LFD-name 'ltd' is
MODULE IS EMPTY. emptY

PROGRAM REORDERED This source module has caused the Reordering can be avoided if the specification
FORTRAN IV compiler to call its statements precede the first DATA statement,
reordering algorithm. Some degrada- statement function definition, or executable
tion in compiler performance may statement, and if they occur in the following
occur. order:

IMPLICIT, ABNORMAL, EXTERNAL, type
statements (INTEGER, REAL, COMPLEX,
LOGICAL, DOUBLE PRECISION) DIMEN-
SION, COMMON, and EQUIVALENCE

REORDERING FAILED The program nnnnnn was too See FF850.

FOR nnnnnn complicated to reorder mechanically.
Program terminated.

PROGRAM CHECK IN A program check has occurred Submit a Software User Report

COMPILER, JOB CANCELED. during the compilation (SUR), including a dump, all
compilation printout, and a
source listing

e e

c
"'ti

~
-.J

"" ::0
CD
:c:,

en
"'ti
m
::0

"T1 ::0
0 -<
::0 c
-I z
::0 -

~);
-n
<o

en
' w

~
""

e
Message Severity

Number Code

FF901

FF902

FF903

FF904

FF905

FF910

Table F-2. Operation-Type Di.tic Messages (Part 2 of 2)

Explanation
Diagnostic Message

Reason Recovery

COMPILER WORK FILE An error has occurred on the If nn is not one of these values,
ERROR nn, JOB CANCELED. compiler work file (WORK1) submit a Software User Report

where nn is: (SUR) with a dump

06 open failed (WORK1 may be
missing)

09 attempted to compile more
than 100 modules

10 SAT write error

11 SAT read error

12 SAT read or write error

SOURCE LIBRARY ERROR An unrecoverable error has If nn is not one of these error
nn, 'PARAM IN=mod/lfd', occurred in processing source codes, submit a Software User
JOB CANCELED. module 'mod' from the file 'lfd'. Report (SUR) with a dump

Error code nn has the values:

02 library format error

04 SAT read error

05 GETCS error on update cards

07 SEQ card error

ERROR PROCESSING OUTPUT An unrecoverable error has If PARAM OUT= was specified, ensure
FILE, JOB CANCELED. occurred in writing the object that its LFD was defined

module

NO SOURCE FILE: END-OF- The compiler has no input (no Provide input by using a PARAM
FILE ON SPOOLIN, JOB card input or PARAM IN= IN= or by providing a card deck
CANCELED specified)

PRNTR ERROR, JOB An unrecoverable error has Make sure that II LFD PRNTR is
CANCELED. occurred on compiler's printer included in the control stream

file PRNTR. This message is
written only to the operator's
console.

FORTRAN REQUIRES MICRO- The compiler requires the Load the 2K COS and a supervisor
LOGIC EXPANSION, JOB extended instruction set which that supports floating-point
CANCELED. is available only if the micro- procedures

logic expansion has been loaded

e
c
"'ti

~
-.J

""' ::0
CD
:::.
N

CJ)
"'ti m
::0

.,, ::0
0 -<
::0 c
-I z
::0 -

~~
-n
<o

CJ)

' c.>

.,,
~
O'I

----~--------------

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

G-1

Appendix G. Run-Time Modules

G.1. FORTRAN RUN-TIME MODULES

Table G-1 provides a list of run-time modules with a description of their function and the entires in each module.
For additional information about mathematical routines, see Table 5-4.

G.2. FORTRAN IV STANDARD LIBRARY FUNCTION NAMES

The FORTRAN IV compiler generates external references to special names for calls upon standard library
functions. These special names consist of ILF# followed by two characters.

For example, when a FORTRAN program calls for the library SQRT function, FORTRAN IV generates an external
reference for the ILF#30 FORTRAN IV name. Table G-2 lists special external reference names and their standard
library functions.

Table G-1. FORTRAN IV Run-Time Modules (Part 1 of 12)

CSECTor
Module Entry Name

Function

FD$ABTRM FL$ABTAM Abnormal termination code for DTF

FD$CLOSE FL$CLOSE Final file close for DTF

FD$DEFIL FL$DEFIL Define FILE statement processor for DTF

FD$EDTFI FL$EDTFI F edit - Input for DTF
FL$EDTEI E edit - Input for DTF
FL$EDTDI D edit - Input for DTF

FD$EDTll FL$EDTll I edit - Input for DTF

FD$EDTZI FL$EDTZI Z edit - Input for DTF

FD$ERCTL FL$ERCTL Error control and traceback routine for DTF
FL$WTERR
FL$WTMSG

FD$ERRN FL$ERRN Error message setup for DTF

FD$GTMS3 FL$GTMS3 05/3 GET message processor for DTF
FL$GTMSG

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 2 of 12)

CSECTor
Function Module Entry Name

FD$1NFL3 FL$1NFL3 Set file to input mode for DTF
FL$1NFL

FD$1NITL FL$1NITL Program initialization routine for DTF

FD$10 FL$10 Standard 110 configuration for DTF
FL$ERRCT
FL$FUNTB
FL$RERDB
FL$WORKA
FL$1
FL$3
PRNTR
PRNTRC

FD$10COM FL$10COM 1/0 control common for DTF
FL$ERBYT
FL$ERR
FL$GTSAV
FL$1FSAV
FL$10SAV
FL$0FSAV
FL$ROSAV
FL$RWSAV
FL$SKADR
FL$TBSAV
FL$WTSAV

FD$10PEN FL$10PEN 110 argument list processor for DTF
FL$BCKSP For BACKSPACE statement
FL$DFIND For FIND statement
FL$DOPEN For direct access I /0
FL$ENDFL For ENDFI LE statement
FL$REWND For REWIND statement
FL$SOPEN For SEQUENTIAL 1/0

FD$101 FL$101 Alternate 110 configuration for DTF
FL$ERRCT
FL$FUNTB
FL$RERDB
FL$WORKA
FL$1
FL$2

FL$3
FL$11
FL$12
FORT11
FORT11C

FORT11 E
FORT12
FORT12C
FORT12E
FORT2
FORT2C
PAN TR
PRNTRC

G-2

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 3 of 12)

CSECTor
Module

Entry Name Function

FD$0UTF3 FL$0UTF3 Set file to output mode for DTF
FL$0UTFL

FD$READ FL$READ Input file processor for DTF
FL$EOF
FL$ERROA

FD$STOP FL$STOP STOP/PAUSE processor for DTF
FL$PAUSE

FD$WRITE FL$WRITE Output file processor for DTF

FL$ABS FL$ABS Integer and real absolute value
ABS
DABS
IABS
JABS

FL$ABTRM FL$ABTRM Abnormal termination code

FL$ARFOR FL$ARFOR Array FORMAT processor

FL$ASIN FL$ASIN Arcsine/arccosine functions
ACOS
ARCOS
ARSIN
ASIN

FL$ATAN FL$ATAN Arctangent functions
ATAN
ATAN2

FL$BCKSA FL$BCKSA BACKSPACE processor

FL$CABS FL$CABS Complex absolute value function
CABS

FL$CBRT FL$CBRT Cube root
CBRT

FLCC FLCC Complex exponential functions:
FL$CC C**C
FL$CI C**l4
FL$CJ C**l2
FL$CR C**R4
FL$1C 14**C
FL$JC 12~*C

FL$RC R4**C

FL$CDABS FL$CDABS Complex*16 absolute value function
CDABS

G-3

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 4 of 12)

CSECTor
Module Entry Name Function

FLCDD FLCDD Complex*16 exponential functions:
FL$CD C8**R8
FL$CDC C8**C16
FL$CDD C16**C16
FL$DC R8**C8
FL$DCC C16**C8
FL$DCD C16**R8
FL$DCI C16**14
FL$DCJ C16**12
FL$DCR C16**R4
FL$DDC R8**C16
FL$1DC 14**C16
FL$JDC 12**C16
FL$RDC R4**C16

FL$CDEXP FL$CDEXP Complex*16 exponential functions
CDEXP

FL$CDLOG FL$CDLOG Complex*16 logarithm function
CD LOG
FL$CDLG

FL$CDMPY FL$CDMPY Complex*16 multiply/divide
COD VD#
COM PY#

FL$CDSIN FL$CDSIN Complex*16 sine/cosine and hyperbolic sine/cosine
cocos functions
CDCOSH
CDSIN
CDSINH

FL$CDSQT FL$CDSOT Complex*16 square root function
CDSORT

FL$CEXP FL$CEXP Complex exponential function
CEXP

FL$CLNRW FL$CLNRW File close routine (no rewind)

FL$CLOG FL$CLOG Complex logarithm function
CLOG

FL$CLOSE FL$CLOSE Final file close

FL$CMPLX FL$CMPLX Complex intrinsic functions:
CMPLX ca
DCMPLX C16

FL$CMPY FL$CMPY Comp_lex multiply /divide
covo#
CMPY#

FL$CNFLT FL$CNFLT

FL$COLUM FL$COLUM

G-4

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 5 of 12)

Module
CSECTor

Entry Name Function

FL$CONJG FL$CONJG Conjugate intrinsic functions
CON JG Single-precision conjugate function
DCONJG Double-precision conjugate function

FL$CSIN FL$CSIN Complex sine/cosine and hyperbolic sine/cosine
ccos functions
CCOSH
CSIN
CSINH

FL$CSQRT FL$CSORT Complex square root function
CSORT

FL$DASIN FL$DASIN Real *8 arcsine/arccosine functions
DACOS
DAR COS
DARSIN
DASIN

FL$DATAN FL$DATAN Real *8 arctangent functions
OAT AN
DATAN2

FL$DBLE FL$DBLE Single to double intrinsic functions:
COBLE ca to C16
DBLE R4 to RS

FL$DBOUT FL$DBOUT Debug 1/0 routines
FL$DBCL
FL$DBOP
FL$FLSH
FL$STKR

FL$DCBRT FL$DCBRT Real*8 cube root function
DCB RT

FL$DDPOW FL$DDPOW Real *8 power functions
DEXP
DEXP10
DLOG
DLOG10
FL$DD R8**R8
FL$DEXP$
FL$01 R8**14
FL$DJ R8**12
FL$DLOG$
FL$DR R8**R4
FL$1D 14**R8
FL$JD 12**R8
FL$RD R4**R8
FP$DTD R8**R8 (Basic FORTRAN)
FP$DTH R8**12 (Basic FORTRAN)
FP$DTI R8**14 (Basic FORTRAN)
FP$DTR R8**R4 (Basic FORTRAN)
FP$HTD 12**R8 (Basic FORTRAN)
FP$1TD 14**R8 (Basic FORTRAN)
FP$RTD R4**R8 (Basic FORTRAN)

G-5

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 6 of 12)

CSECTor
Module Entry Name

Function

FL$DEBUG FL$DEBUG Debug control routines:
FL$DARI array INIT
FL$DBGUN UNIT value
FL$DCHK SUBCHK
FL$DELI array element INIT
FL$DINT variable INIT
FL$DRTN RETURN
FL$DSBT SUBTRACE
FL$DTOF TRACE OFF
FL$DTON TRACE ON
FL$DTRC TRACE
FL$DUNT UNIT

FL$DEFIL FL$DEFIL DEFINE FILE statement processor

FL$DERF FL$DERF Real *8 error function
DERF
DERFC

FL$DFNDB FL$DFNDB FIND statement processor

FL$DGAMA FL$DGAMA Real *8 distribution function
DGAMMA
DLGAMA

FL$DHPER FL$DHPER Rea1*8 hyperbolic sine/cosine
DCOSH
DSINH

FL$DHYPT FL$DHYPT Real *8 hyperbolic tangent
DTANH

FL$DIM FL$DIM Positive difference intrinsic functions
DDIM
DIM
IDIM
JDIM

FL$DMAX FL$DMAX Real *8 maximum/minimum intrinsic functions
DMAX1
DMIN1

FL$DOPNA FL$DOPNA Direct access READ/WRITE processor
FL$DFNDA Direct access FIND processor

FL$DSIN FL$DSIN Real *8 sine/cosine function
DCOS
DSIN
FL$DCOS$
FL$DSIN$

FL$DSORT FL$DSQRT Real *8 square root function
DSQRT

FL$DTAN FL$DTAN Real *8 tangent/cotangent function
DCOT
DCOTAN
DTAN

G-6

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 7 of 12)

CSECTor
Module Entry Name Function

FL$DUMP FL$DUMP DUMP/PDUMP processor
D$MP
FL$DUMPD
P$UMP

FL$DVCHK FL$DVCHK Divide check subroutine
D$CHK

FL$EDTAI FL$EDTAI A edit - input

FL$EDTAO FL$EDTAO A edit - output

FL$EDTCI FL$EDTCI Complex input

FL$EDTCO FL$EDTCO Complex output

FL$EDTEO FL$EDTEO E edit - output
FL$EDTDO D edit - output

FL$EDTFI FL$EDTFI F edit - input
FL$EDTEI E edit - input
FL$EDTDI D edit - input

FL$EDTFO FL$EDTFO F edit - output

FL$EDTGI FL$EDTGI G input

FL$EDTGO FL$EDTGO G output

FL$EDTll FL$EDTll I edit - input

FL$EDTIO FL$EDTIO I edit - output

FL$EDTLI FL$EDTLI L edit - input

FL$EDTLO FL$EDTLO L edit - output

FL$EDTZI FL$EDTZI Z edit - input

FL$EDTZO FL$EDTZO Z edit - output

FL$ENDFA FL$ENDFA ENDFILE processor

FL$ERCTL FL$ERCTL Error control and traceback routine
FL$WTERR
FL$WTMSG

FL$ERE FL$ERE Syntax error CALL subroutine

FL$ERF FL$ERF Real error function
ERF
ERFC

FL$ERRN FL$ERRN Error message setup

FL$ERTST FL$ERTST ERROR/ERROR1 subroutines
E$ROR
E$ROR1

G-7

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 8 of 12)

CSECTor
Module

Entry Name Function

FL$FLOAT FL$FLOAT Float intrinsic functions
DFLOAT
DH FLOT
FLOAT
HFLOAT

FL$FORMT FL$FORMT FORMAT processor

FL$FTCH FL$FTCH FETCH subroutine
F$TCH

FL$GAMMA FL$GAMMA Real gamma function
ALGAMA
GAMMA

FL$GDIRI FL$GDIRI List-directed input processor

FL$GDIRO FL$GDIRO List-directed output processor

FL$GTMS3 FL$GTMS3 OS/3 GET message processor
FL$GTMSG

FL$HXCVD FL$HXCVD Binary to decimal conversion

FL$HYPER FL$HYPER Real hyperbolic functions
COSH
SINH
TANH

FL$1FIX FL$1FIX Fix intrinsic function
HFIX
IFIX

FL$1MAG FL$1MAG Imaginary part of complex intrinsic function
AIMAG
DIMAG
IMAG

FL$1NFL3 FL$1NFL3 Set file to input mode for OS/3
FL$1NFL

FL$1NITL FL$1NITL Program initialization routine

FL$1NT FL$1NT Integer intrinsic functions
AINT
DINT
IDINT
INT

FL$10 FL$10 Standard 1/0 configuration
FL$ERRCT
FL$FUNTB
FL$RERDB
FL$WORKA
FL$1
FL$3
PRNTR
PRNTRC

G-8

--

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 9 of 12)

Module
CSECTor

Entry Name Function

FL$10ARA FL$10ARA Dummy 1/0 common (basic FORTRAN)

FL$10CLS FL$10CLS 110 statement termination
FL$DCLSE direct access 110
FL$FCLS formatted 1/0
FL$NMLCL namelist 1/0
FL$SCLSE sequential 1/0

FL$10COM FL$10COM 1/0 control common
FL$ERBYT
FL$ERR error control routine
FL$GTSAV
FL$1FSAV
FL$10SAV
FL$0FSAV
FL$ROSAV
FL$RWSAV
FL$SKADR
FL$TBSAV
FL$WTSAV

FL$10ERR FL$10ERR Data management fatal error processor

FL$10LST FL$10LST 1/0 list item processor
FL$10LS

FL$10PEN FL$10PEN 1/0 argument list processor
FL$BCKSP
FL$DFIND for FIND statement
FL$DOPEN for direct access 1/0
FL$ENDFL
FL$REWND
FL$SOPEN for sequential 1/0

FL$101 FL$101 Alternate I /0 configuration
FL$ERRCT
FL$FUNTB
FL$RERDB
FL$WORKA
FL$1
FL$2
FL$3
FL$11
FL$12
FORT11
FORT11C
FORT11 E
FORT12
FORT12C
FORT12E
FORT2
FORT2C
PRNTR
PRNTRC

G-9

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 10 of 12)

CSECTor
Function Module Entry Name

FL$1XPI FL$1XPI Integer power functions:
FL$11 14**14
FL$1J 14**12
FL$JI 12**14
FL$JJ 12**12
FP$HTH 12**12 (Basic FORTRAN)
FP$HTI 12**14 (Basic FORTRAN)
FP$1TH 14**12 (Basic FORTRAN)
FP$1TI 14**14 (Basic FORTRAN)

FL$LOAD FL$LOAD LOAD and OPSYS subroutines
L$AD
0$SYS

FL$MAX FL$MAX Max/min intrinsic functions
AMAXO
AMAX1
AMINO
AMIN1
JM A XO
JMINO
MAX
MAXO
MAX1
MIN
MINO
MIN1

FL$MOD FL$MOD Modulo arithmetic intrinsic functions
AMOD
DMOD
JMOD
MOD

FL$NAMEI FL$NAMEI NAME LIST input

FL$NAMEO FL$NAMEO NAME LIST output

FL$0UTF3 FL$0UTF3 Set file to output mode for system
FL$0UTFL

FL$0VRFL FL$0VRFL Overflow subroutine

0$ERFL

FL$0VW70 FL$0VW70 Series 70 overflow subroutine
0$ERFL

FL$POWER FL$POWER Real*4 power functions
ALOG
ALOG10
EXP
EXP10
FL$ALOG$
FLEXP
FL$1R 14**R4
FL$JR 12**R4
FL$RI R4**14
FL$RJ R4**12

G-10

UP-8474 Rev. 2 SPERRY UNIVAC 05/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 11of12)

Module
CSECTor

Entry Name Function

FL$POWER FL$RR R4**R4
(cont) FPEXP

FP$HTR 12**R4 (Basic FORTRAN)
FP$1TR 14**R4 (Basic FORTRAN)
FP$RTH R4**12 (Basic FORTRAN)
FP$RTI R4**14 (Basic FORTRAN)
FP$RTR R4**R4 (Basic FORTRAN)
LOG
LOG10

FL$READ FL$READ Input file processor
FL$EOF
FL$ERROA

FL$REAL FL$REAL Real part of complex intrinsic function
DR EAL
REAL

FL$REOPN FL$REOPN Reopen closed file

FL$RWNDA FL$RWNDA REWIND statement processor

FL$SCNUM FL$SCNUM

FL$SIGN FL$SIGN Sign intrinsic functions
DSIGN
FL$DSIGN
FL$1SIGN
FL$JSIGN
ISIGN
JSIGN
SIGN

FL$SIN FL$SIN Sine/cosine functions
cos
FLCOS
FLSIN
SIN

FL$SLITE FL$SLITE SLITE/SLITET subroutines
S$1TE
S$1TET

FL$SNGL FL$SNGL Single from double intrinsic functions
CSNGL
SNGL

FL$SOPNA FL$SOPNA

FL$SQRT FL$SQRT Real *4 square root function
SQRT

FL$SSWTH FL$SSWTH System switch subroutines
S$WTCH

FL$STOP FL$STOP STOP/PAUSE processor
FL$PAUSE

G-11

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table G-1. FORTRAN IV Run-Time Modules (Part 12 of 12)

CSECTor
Module Entry Name Function

FL$STXIT FL$STXIT STXIT control routine
FL$STXTA

FL$TAN FL$TAN Real *4 tangent/contangent functions
COT
COT AN
TAN

FL$UNFOR FL$UNFOR Unformatted 1/0 processor

FL$WRITE FL$WRITE Output file processor

FF$AG ILF#AG FORTRAN IV assigned GO TO
ILF#CG FORTRAN IV computed GO TO

FF$1C ILF#IC FORTRAN IV 1/0 interface

FF$MPI ILF#MPI FORTRAN IV initialization
ILF#BUG FORTRAN IV diagnostics

FF$NL ILF#NL FORTRAN IV namelist interface

FF$PA ILF#PA FORTRAN IV PAUSE

FF$0PNA Checks operation sequences

FF$SCHK ILF#SCHK FORTRAN IV subscript check processor
ILF#FO 1 byte arrays
ILF#F1 2 byte arrays
ILF#F2 4 byte arrays
ILF#F3 8 byte arrays
ILF#F4 16 byte arrays

FF$TR ILF#TR FORTRAN IV label tracing

FF$XD ILF#XD FORTRAN IV complex division
ILF#XV FORTRAN IV real/complex

FF$XM ILF#XM FORTRAN IV complex multiply

G-12

UP-8474 Rev. 2

Name

ILF#OO
ILF#01
ILF#02
ILF#03
ILF#04

ILF#OS
ILF#06
ILF#07
ILF#OS
ILF#09

ILF#10
ILF#11
ILF#12
ILF#13
ILF#14

ILF#15
ILF#16
ILF#17
ILF#18
ILF#19

ILF#20
ILF#21
ILF#22
ILF#23
ILF#24

ILF#25
ILF#26
ILF#27
ILF#28
ILF#29

ILF#30
ILF#31
ILF#32
ILF#33
ILF#34

ILF#35
ILF#36
ILF#37
ILF#38
ILF#39

ILF#40
ILF#41
ILF#42
ILF#43
ILF#44

ILF#45
ILF#46
ILF#47
ILF#48
ILF#49

SPERRY UNIVAC OS/3
FORTRAN IV

G-13

Table G-2. FORTRAN IV Standard Library Function Names (Part 1 of 2)

Standard Library Function Name Standard Library Function

EXP ILF#50 AMAXO
DEXP ILF#51 MAX1
CEXP ILF#52 AMINO
CD EXP ILF#53 MIN1
ALOG ILF#54 FLOAT

DLOG ILF#55 DFLOAT
CLOG ILF#56 IFIX
CD LOG ILF#57 HFIX
ALOG10 ILF#58 SIGN
DLOG10 ILF#59 ISIGN

ATAN ILF#60 DSIGN
DAT AN ILF#61 DIM
SIN ILF#62 IDIM
DSIN ILF#63 SNGL
CSIN ILF#64 CSNGL

CDSIN ILF#65 REAL
JMAXO ILF#66 DR EAL
MAXO ILF#67 AIMAG
AMAX1 ILF#68 DIMAG
DMAX1 ILF#69 DBLE

JMINO ILF#70 COBLE
MINO ILF#71 CMPLX
AMIN1 ILF#72 DCMPLX
DMIN1 ILF#73 CDNJG
cos ILF#74 DCONJG

DCOS ILF#75 DDIM
ccos ILF#76 JSIGN
cocos ILF#77 JDIM
TANH ILF#78 HFLOAT
DTANH ILF#79 DH FLOT

SORT ILF#80 SINH
DSQRT ILF#80 COSH
CSQRT ILF#82 DSINH
CDSQRT ILF#83 DCASH
MOD ILF#84 ASIN

JMOD ILF#85 ACOS
AMOD ILF#86 DASIN
DMOD ILF#87 DACOS
CABS ILF#88 TAN
CD ABS ILF#89 COT AN

ABS ILF#90 DTAN
IABS ILF#91 DCOTAN
JABS ILF#92 ERF
DABS ILF#93 ERFC
ATAN2 ILF#94 DERF

DATAN2 ILF#95 DERFC
INT ILF#96 GAMMA
IDINT ILF#97 ALGAMA
AINT ILF#98 DGAMMA
DINT ILF#99 DLGAMA

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table G-2. FORTRAN IV Standard Library Function Names (Part 2 of 2)

Name Standard Library Function

ILF#AO CSINH
ILF#A1 CDSINH
ILF#A2 CCOSH
ILF#A3 CDCOSH
ILF#A4 EXP10

ILF#A5 DEXP10
ILF#A6 CBRT
ILF#A7 DCB RT

G-14

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Appendix H.

H-1

Subroutine Linkage

H.1. CALLING FORTRAN SUBPROGRAMS

All language processors, including FORTRAN IV, generate and expect standard subprogram linkages in their
generated programs. These linkage conventions are defined in the supervisor user guide. In addition, special
FORTRAN conventions and considerations are required (suggested) for successful operation of the run-time
system.

H.1.1. Save Area

A FORTRAN subprogram requires a 72-byte, word-aligned save area, supplied by the calling program. Table H-1
illustrates the format of a save area. Word 1 of the save area is reserved for system use. Words 2 and 4 through
18 are initialized according to standard linking conventions.

During execution of a FORTRAN subprogram, register 13 contains the address of this program's save area. Word
2 contains the pointer to the save area supplied to the program. Just before returning to the calling program,
register 13 is restored to the calling program's save area and a X'FF' is put into byte 12 of the save area as a
termination indicator.

Table H-1. Save Area Format (Part 1 of 2)

Word Byte Content

1 0 RESERVED FOR SYSTEM USE

2 4 SAVE AREA BACKWARD LINK ADDRESS

3 8 SAVE AREA FORWARD LINK ADDRESS

4 12 CALLING PROGRAM RETURN ADDRESS

5 16 CALLED PROGRAM ENTRY POINT ADDRESS

6 20 REGISTER 0

7 24 REGISTER 1

8 28 REGISTER 2

9 32 REGISTER 3

10 36 REGISTER 4

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Table H-1. Save Area Format (Part 2 of 2)

Word Byte Content

11 40 REGISTER 5

12 44 REGISTER 6

13 48 REGISTER 7

14 52 REGISTER 8

15 56 REGISTER 9

16 60 REGISTER 10

17 64 REGISTER 11

18 68 REGISTER 12

NOTE:

Each word in the save area is aligned on a full-word boundary.

H .1 .2. Required Entry Conditions

The following entry conditions are required:

• Register 13 must contain the save area address.

• Register 14 must contain the return address.

• Register 15 must contain the entry point address.

H-2

• If parameters are passed, register 1 must contain the address of a word-aligned parameter list. The
compiler-generated program requires that the actual arguments specified in the parameter list conform in
type and number with the dummy arguments. Each word in the parameter list contains the address of the
actual argument. If the dummy argument is:

a simple variable, the parameter list contains the address of the actual value being passed;

an array name, the parameter list contains the address of the first element in the array;

a subprogram name, the parameter list contains the address of a word containing the address of the
subprogram's entry point.

FORTRAN IV requires that integer*2 simple variables and array arguments contain the actual address minus 2.
This permits integer constants to be passed as integer*2 arguments.

•

UP-8474 Rev. 2

• H.1.3. Exit Conditions

SPERRY UNIVAC OS/3
FORTRAN IV

H-3

When a FORTRAN subprogram returns to the calling program, registers 2 through 14 are restored to their
original contents and the contents of all call-by-value actual arguments are set to the value of the corresponding

·local dummy argument. If a subroutine is exiting, register 15 contains the K value of the RETURN K statement. A
simple RETURN is equivalent to RETURN 0.

A function returns its value in a register depending on its type. The function types and corresponding registers
are illustrated in Table H-2.

Table H-2. Function Types and Corresponding Registers

Function Type Register Containing Value

{ INTEGER*2 }
INTEGER[*4]

General register 0

{ REAL[*4] }
REAL *8,DOUBLE PRECISION

Floating point register 0

{ COMPLEX[*8)} Real part in floating register 0

COMPLEX*16 Imaginary part in floating register 2

{ LOGICAL*1 }
LOGICAL[*4)

General register 0

NOTE:

Registers 0, 1, and 15 and all floating-point registers are not preserved over a subprogram reference.

H.1.4. Mathematical Library

The mathematical functions supplied by FORTRAN IV are available to programs written in other languages.
Tables 5-3 and 5-4 specify the functions available and Appendix G lists the actual modules containing these
functions.

The mathematical library is entirely self-contained except for one external reference. If an error condition is
possible, the function uses the first word of FLSIOARA (1/0 area) to get to an error control routine. The error
routine FLSERR is required for FORTRAN IV. If a FORTRAN-compiled program is also included in the executable
module, FORTRAN automatically supplies the common area, FLSIOARA. However, if FORTRAN-compiled
subprograms are not included in the load module, the user must supply the FLSIOARA module. An assembly
language routine to accomplish this is:

10 16

FL$10ARA START e
DC A (FORTE RR)

FORTE RR DS OH
USING FORTE RR, 15
DUMP
END

More complicated routines may be substituted when required. However, the first word at FLSIOARA must be an
address constant containing the address of the processing routine.

UP-8474 Rev. 2

H.1.5. Compiled Subprograms

SPERRY UNIVAC OS/3
FORTRAN IV

H-4

Other language programs may use FORTRAN-compiled subprograms. FORTRAN subprograms assume
availability of a complete FORTRAN run-time library for support. However, if only a subprogram is used and the
FORTRAN library support is not available, then OVERFL, DVCHK, and orderly termination on fatal errors are not
normally supported.

The FLSINITL routine uses both the program check and abnormal termination island code services of the
supervisor. In addition, the program mask bits in the PSW are set to allow exponent overflow and underflow
interrupts. A complete FORTRAN 1/0 environment is required for printing diagnostic information.

A subprogram may use FORTRAN 1/0 to process data files. However, a FORTRAN STOP statement must be used
to terminate job step processing. An ENDFILE statement should be used for any active sequential 1/0 unit before
the final exit from the FORTRAN routine. The ENDFILE statement ensures that the file is closed by data
management with all 1/0 activity completed.

H.2. CALLING FROM FORTRAN PROGRAMS

When a FORTRAN-compiled program references a subprogram:

• register 1 contains the address of a parameter list;

• register 13 contains the address of an 18-word save area;

• register 14 contains the return address; and

• register 15 contains the subprogram's entry address.

The four bytes at the address in register 14 is a NOP with the FORTRAN source line number in hexadecimal as
the second half word. An equivalent assembly language calling sequence would be as follows:

10 16

LA Rl3,SAVEAREA
LA Rl,PARMLST
L Rl5,=V(PROGNAME)
BALR Rl4,Rl5
NOP X'(linenumber)'

H .2 .1 . Parameter List Formats

If the subprogram reference has an actual argument list, register 1 contains the address of the parameter list.
The parameter list is a sequence of words containing the addresses of the actual arguments. The last word in the
parameter list is identified with bit 0 of the first byte of the word set to 1.

If the actual argument is a variable, array element reference, or constant, the parameter list points to the
appropriate location containing the value. An actual argument that is an array name is equivalent to passing the
first element in the array. Label arguments (H.2.2) are not passed in the parameter list. For integer*2 variables
and arrays, the parameter list points to two bytes before the location containing the value(s).

NOTE:

Logical constants are always passed as logical*4 values and integer constants are always passed as integer*4
values.

•

UP-8474 Rev. 2

H.2.2. Label Arguments

SPERRY UNIVAC OS/3
FORTRAN IV

H-5

Labels may be passed in an actual argument list in a CALL statement. When labels occur, they are not explicitly
passed in the parameter list, but immediately following the CALL statement, they are converted to a form similar
to a computed GO TO. Upon return, the compiler expects register 15 to contain a value indicating how to process
the labels. For n labels, if register 15 contains a value i with 1 ~i~n. control passes to the statement at the ith
label. Any other values in register 15 cause control to pass to the next sequential statement.

H.2.3. Conventions

A FORTRAN-compiled program assumes that registers 2 through 14 are not modified during a subprogram
reference. Register 13 contains a save area address for the called subprogram to save any needed registers. The
called subprograms should conform to the standard usage of this save area through normal linkage conventions.
Words 1 and 2 must not be modified; they contain required FORTRAN system information. Registers 0, 1, 15,
and the four floating-point registers may be modified by the called program.

If the subprogram is a function, it must return a value. The location of this value is specified in Table H-2.

H.3. TRACEBACK INTERFACE

When the FORTRAN run-time system prints a diagnostic, a traceback of the· current subprogram linkage is
attempted. Beginning with the current save area, indicated by register 13, the traceback routine uses the
backward link, word 2, of each save area to determine the sequence of calls and then prints this information.
Observing the following conventions will avoid any possible problems with the traceback routines.

1. During subprogram execution, point register 13 to a local save area. This ensures a correct beginning for
the traceback.

2. Fill the backward link address, word 2, in every save area with the appropriate address. The main program
must have a zero in this field.

10 16

MY MOD START

SAVEAREA DC
DC
DC

18F'8'
X'6'
CLS'MYMOD'

72 bytes
length
name

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

H-6

3. The traceback routine assumes the entry name is located four bytes after the entry point. The form is a 1- •
byte length, followed by one to six bytes containing the entry name. In assembly language, the normal
entry point is coded as follows:

MY MOD

MYENT

10 16

START

ENTRY MYENT
USING MYENT,Rl5
B
DC
DC

*+6
X'5'
CL5'MYENT'

4. The traceback routine assumes that a half-word line number is located two bytes after the return point
(specified in register 14). Refer to H.2 for an assembly language example of this.

•

UP-8474 Rev. 2

•

Term

A
ABNORMAL statement

Argument substitution
call by name
call by value
description

Arguments

• compiler
description
forms
UNIT

Arithmetic assignment statements

Arithmeti~ expressions

Arithmetic IF statement

Arithmetic, mixed mode

Arithmetic operations
implementation
user checks

Arithmetic underflow and overflow (OVERFL)

Arrays
declaration
declarator
description
element position location
element reference

ASCII character set arguments

• ASSIGN statement

Assigned GO TO statement

SPERRY UNIVAC OS/3
FORTRAN IV

Reference Page Term

Assignment statements
arithmetic and logical

5.4.1.3 5-7 conversion
description

5.5.2 5-13
5.5.1 5-12
5.5 5-12

B
BACKSPACE auxiliary 1/0 9.3.1 9-2

5.1 5-2 statement

Table 5-2 5-2
See UNIT arguments. Binary arguments

card input

3.3.1 3-5 card output

3.2.l 3-1 Blank descriptor

3.2.6 3-3
BLOCK DATA statement

4.2 4-1
Block sizes

3.2.5 3-3
Buffer a !location

3.2.7 3-4
3.2.6 3-3

5.6.3.l 5-22 c
Call by name, argument substitution

6.2 6-1
6.2.l 6-1 Call by value, argument substitution
2.4 2-6
2.4.2 2-7 CALL statement
2.4.1 2-6 description

standard library subroutines
D.2 D-1
D.3 D-2 Calling from FORTRAN programs

conventions
3.3.2 3-5 description

label arguments
4.6 4-3 parameter list formats

Index 1

Index

Reference Page

3.3.l 3-5
Table 3-3 3-6
3.3 3-4

7.3.6.2 7-20

D.2 D-1
D.3 D-2

7 .3.3.1.11 7-12

8.3.1 8-3

12.3.1.2 12-3

12.3.1.4 12-4

5.5.2 5-13

5.5.l 5-12

5.2.2 5-3
5.6.3 5-22

H.2.3 H-5
H.2 H-4
H.2.2 H-5
H.2.1 H-4

UP-8474 Rev. 2

Term

Card input files
arguments
data management
description
spooled

Card output files
arguments
definition

Card punch options

Card reader options

Carriage control conventions

CDM configurations
programmer defined
supplied

CDM relationship

Character set
description
EBCDIC
printer graphics
source program and input data

Clauses (END, ERR, SCREEN)

Coding example, FORTRAN IV

Coding form

Collection, program

Combined disk files
arguments
definition
MIRAM disk files

Comments

COMMON statement
description
interaction with EQUIVALENCE statement

Compatibility

Compilation
arguments
conditional
description
FORTRAN IV
large version
PARAM options

SPERRY UNIVAC OS/3
FORTRAN IV

Reference Page Term

PARAM statement
Table C-3 C-2 source correction facility
12.3.4.2.2 12-12 stacked
12.3.4.2 12-10 workstation
12.3.4.2.1 12-10
Table C-2 C-2 Compile-assemble-link-execute, sample

Table C-4 C-3
Compile-link-execute, sample

12.3.4.3 12-16 Compile-time diagnostics

D.3 D-2 Compiled subprograms

D.2 D-1 Complex constants

7.3.3.3 7-13 COMPLEX statement

Computed GO TO statement
11.3 11-3
11.2 11-2 Conditional compilation

11.1 11-1 Configurations
COM-supplied
DTF-supplied

1.2.1 1-4 programmer-supplied
Table A-1 A-2
A.2 A-1
A.l A-1 Constants

complex
7.3.1.1 7-4 double precision

hexadecimal
11.4 11-31 integer

literal
1.2.2 1-4 logical

real
Section 13

CONTINUE statement

Table C-10 C-7 Control information check (SSWTCH)
12.3.4.5.3.2 12-36
See MIRAM disk files Control statements

CONTINUE statement
1.2.3 1-4 DO loops

END statement
GO TO statement. assigned

6.6 6-6 GO TO statement. computed
6.6.1 6-6 GO TO statement. unconditional

IF statement. arithmetic
1.1.1 1-2 IF statement, logical

PAUSE statement
STOP statement

9.3.1 9-2
10.2 10-1
9.1 9-1
9.2 9-1
9.7 9-5
E.5 E-11

Index 2
Update B

Reference

9.3
9.5
9.4
E.6

E.4

E.2

Table F-1

H.1.5

2.2.5

6.4

4.5

10.2

11.2
12.2
11.3
12.3

2.2.5
2.2.3
2.2.4
2.2.1
2.2.7
2.2.6
2.2.2

4.8

5.6.3.7

4.8
4.7
4.11
4.6
4.5
4.4
4.2
4.3
4.10
4.9

Page • 9-1
9-4a
9-4
E-12

E-9

E-6

F-2

H-4

2-4

6-2

4-3

10-1

11-2
12-2
11-3
12-3 • 2-4
2-3
2-3
2-1
2-5
2-4
2-2

4-5

5-26

4-5
4-4
4-6
4-3
4-3
4-2
4-1
4-2
4-6
4-6

•

UP-:3474 Rev. 2

• Term

D

Data initialization
BLOCK DATA statement
block data subprogram
DATA statement

Data management
additional devices
card input file definition
interface

DATii statement

Data types
arrays
description
constants
variables

Debugging
description
conditional compilation
formatted main storage dump
statement numbers option

• DEFINE FILE statement

Definition
statement function
subprogram

Descriptors
blank
double precision
general
hexadecimal
Hollerith, A conversion
Hollerith, H conversion
integer
literal
logical
real, E conversion
real, F conversion
record position

Device type

Devices and arguments

Diagnostic messages
compile-time
description

• name usage conflict
operation-type

SPERRY UNIVAC OS/3
FORTRAN IV

Reference Page Term

DIMENSION statement

Direct access files

8.3.l 8-3
arguments

8.3 8-3
definition

8.2 8-1 options

Disk files
D.7 D-4
12.3.4.2 12-10

description

12.l 12-1
direct access

8.2 8-1 sequential

2.4 2-6
2.1 2-1 Disk FIND statement
2.2 2-1
2.3 2-5 Disk library, source module for

stacked compilation

10.l 10-1 Disk READ statement
10.2 10-1
10.3 10-1 Disk WRITE statement
10.4 10-2

7.4.l 7-23
Divide check subroutine (DVCHK)

DO-implied list

5.3 5-4
5.4 5-5

DO range

DO statement

7.3.3.1.11 7-12
7 .3.3.1.4 7-10

Double precision constants

7.3.3.1.6 7-10
7.3.3.1.9 7-11

Double precision descriptor

7.3.3.1.7 7-10
7.3.3. l.8 7-11

DOUBLE PRECISION statement

7.3.3.1.1 7-8 DTF configurations
7.3.3.1.10 7-11
7.3.3.l.5 7-10

programmer-defined

7.3.3.l.2 7-9
supplied

7.3.3.l.3 7-9 Dump, formatted main storage
7.3.3.1.12 7-12

12.3.1.1 12-3
DUMP subroutine call statement

Table 11-1 11-4

Appendix F
13.3.3 13-4
13.4.3 13-5
Appendix F
Table F-2 F-14

Index 3

Reference Page

6.3 6-2

Table C-7 C-6
7.4 7-23
12.3.4.5.2 12-32
D.6 D-3

11.3.2.3 11-16
12.3.4.5.2 12-32
D.6 D-3
Table C-7 C-6
12.3.4.5.1 12-25
D.5 D-3
Table C-6 C-5

7.4.4 7-26

E.3 E-10

7.4.2 7-24

7.4.3 7-25

5.6.3.l 5-23

7.2.l 7-2

4.7.l 4-5

4.7 4-4

2.2.3 2-3

7.3.3.l.4 7-10

6.4 6-2

12.3 12-2
12.2 12-2

10.3 10-1

5.6.3.8 5-26

UP-8474 Rev. 2 SPERRY UNIVAC OS/3
FORTRAN IV

Index 4
Update B

UP-8474 Rev. 2

• Term

File definition conventions (DTF environment)
buffer a !location
device type
file type
record and block sizes
record formats

File screen workstation 1/0

File type

Fl ND statement

FORMAT statement
carriage control conventions
description
field descriptors
interaction with 1/0 list
multiple record format specification
permissible associations of list items

Formatted READ/WRITE statements

FORTRAN IV coding example

Function reference • FUNCTION statement

Function subprograms, multiple entry

Functions
description
external
intrinsic

standard library

statement, definition

FUNEND unit definition termination procedure
CDM envircnment
DTF environment

FUNTAB initialization procedure

FOR4 call statement

FOR4L call statement

FOR4LG call statement

•

SPERRY UNIVAC OS/3
FORTRAN IV

Reference Page Term

12.3.1.4 12-4 G
12.3.1.l 12-3
12.3.1.5 12-5 General descriptor
12.3.1.2 12-3
12.3.1.3 12-3 GO TO statement

assigned
7.3.8 7-23 computed

unconditional
12.3.1.5 12-5

Graphics, printer

7.4.4 7-26
Guidelines, source code

7 .3.3.3 7-13
7.3.3 7-6
7 .3.3.1 7-7
7.3.3.4 7-14
7.3.3.2 7-13
Table 7-3 7-15

7.3.2 7-5

11.4 11-32 H

5.2.1 5-3 Hexadecimal constants

5.4.1.1 5-6 Hexadecimal descriptor

5.4.3 5-10 Hollerith descriptors

5.1 5-2
5.4.1 5-5
5.6.l 5-14
Table 5-3 5-15
5.6.2 5-16
Table 5-4 5-17
5.3 5-4

11.3.3 11-27 IF statement
12.3.5 12-42 arithmetic

12.3.3 12-6
logical

IMPLICIT statement

E.l E-1 Indicator setting subroutine (SLITE)

E.l E-1 Indicator testing subroutine (SLITET)

E.1 E-1 Initialization procedure (FUNTAB)
COM environment
DTF environment

Input files, card

Index 5
Update B

Reference

7 .3.3.1.6

4.6
4.5
4.4

A.2

1.3

2.2.4

7.3.3.l.9

7.3.3.1.7
7.3.3. l.8

4.2
4.3

6.4.2

5.6.3.5

5.6.3.6

11.3.2
12.3.3

Page

7-10

4-3
4-3
4-2

A-1

1-7

2-3

7-11

7-10
7-11

4-1
4-2

6-4

5-25

5-25

11-16
12-6

See card input files.

UP-8474 Rev. 2

Term

Input/output
description
direct access files
list
I ist-d i rected
sequential files

statements

Integer constants

Integer descriptor

INTEGER statement

Intrinsic functions

110 list, format interaction

1/0 statements
BACKSPACE
compatibility
DEFINE FILE
disk FIND
disk READ
disk WRITE
ENDFILE
FORMAT
NAME LIST
READ

REWIND
WRITE

110 unit module

J
Job control procedure

Job control stream, creating a

Job control stream examples

SPERRY UNIVAC 05/3
FORTRAN IV

Reference Page Term

7.1 7-1
7.4 7-23 Label arguments
7.2 7-1
7.3.5 7-16 Label trace
7.3 7-2
7.3.7 7-22 Library function names
See 1/0 statements.

2.2.1 2-1
Library procedures

description

7.3.3.1.1 7-8
intrinsic functions

special names
6.4 6-2 standard library functions

5.6.1 5-14 standard library subroutines
Table 5-3 5-15

7.3.3.4 7-14 Library subroutines
Table 7-3 7-15 DUMP

DVCHK
ERROR

7.3.6.2 7-20 ERROR I
7.3.2.1 7-6 EXIT
7.4.1 7-23 FETCH
7.4.4 7-26 LOAD
7.4.2 7-24 OPSYS
7.4.3 7-25 OVER FL
7.3.6.3 7-21 PD UMP
7.3.3 7-6 SLITE
7.3.5.l 7-16 SLITET
7.3.l 7-3 SSWTCH
7.3.2 7-5
7.3.4 7-15 Link editing
7.3.6.l 7-20 description
7.3.l 7-3 FORTRAN supplied modules
7.3.2 7-5 linkage editor output

L

12.3.1 12-4
overlay and region structures

Linkage, subroutine

List-directed input/output
description
NAMELIST statement
simple

Litera I constants

Literal descriptor

Load module name
E.l E-1

LOAD subroutine call statement
9.6 9-5

Logical assignment statements
Appendix E

Logical constants

Index 6

Reference Page •
H.2.2 H-5

10.6 10-3

Table G-2 G-11

5.6 5-14
5.6.1 5-14
Table 5-3 5-15
Table 5-5 5-28
5.6.2 5-16
Table 5-4 5-17
5.6.3 5-22
Table 5-5 5-28

5.6.3.8 5-26
5.6.3.2 5-23
5.6.3.3 5-24
5.6.3.4 5-25
5.6.3.9 5-26
5.6.3.10 5-26
5.6.3.11 5-27 • 5.6.3.12 5-27
5.6.3.l 5-22
5.6.3.8 5-26
5.6.3.5 5-25
5.6.3.6 5-25
5.6.3.7 5-26

12.2 12-1
12.2.l 12-1
12.2.3 12-3
12.2.2 12-2

Appendix H

7.3.5 7-16
7.3.5.l 7-16
7.3.5.2 7-18

2.2.7 2-5

7.3.3.1.10 7-11

5.6.3.10 5-27

5.6.3.11 5-27

3.3.1 3-5 • 2.2.6 2-4

UP-8474 Rev. 2

• Term

Logical descriptor

Logical expressions

Logical IF statement

LOGICAL statement

M

Main storage dump
formatted
routines

Mathematical library

MIRAM disk files
arguments
definition

• record format

Mixed-mode arithmetic
description
result types and lengths

Multiple record format specification

N

NAMELIST statement

Names, symbolic

•

SPERRY UNIVAC OS/3
FORTRAN IV

Reference Page Term

7.3.3.1.5 7-10 0
3.2.3 3-2 Operators, evaluation order

4.3 4-2 OPSYS subroutine call statement

6.4 6-2 Output file definition, card

OVERFL subroutine call statement

Overlays

10.3 10-1
5.6.3.8 5-26

H.1.4 H-3
p

PARAM statement
arguments

Table C-10 C-7 format
12.3.4.5.3.2 12-36 special options
12.3.4.5.3.1 12-35

Parameter list formats

3.2.5 3-3 Pause messages
Table 3-2 3-4 COM

DTF
7.3.3.2 7-13

PAUSE statement

PDUMP subroutine call statement

Printer files
arguments
definition

Printer graphics

7.3.5.1 7-17
Procedures

1.2.4 1-5 argument substitution
description

function reference
initialization reference (FUNTAB)
job control fiprocs)
library
statement function definition
subprogram definition
subroutine reference
unit definition

Index 7
Update B

Reference

Table 3-1

5.6.3.12

12.3.4.3

5.6.3

5.6.3
13.2.2

9.3.1
9.3
E.5

H.2.1

13.3.2
13.4.2

4.10
13.3.2
13.4.2

5.6.3.8

Table C-1
12.3.4.1

A.2
Table A-2

5.5
5.1
Table 5-1
5.2.1
12.3.3
E.1
5.6
5.3
5.4
5.2.2
11.3.2
12.3.4

Page

3-3

5-27

12-16

5-22

5-27
13-2

9-2
9-1
E-11

G-4

13-4
13-5

4-6
13-4
13-5

5-26

C-1
12-7

A-1
A-3

5-12
5-1
5-1
5-3
12-6
E-1
5-14
5-4
5-5
5-3
11-5
12-6

UP-8474 Rev. 2

Term

Program collection and execution, link
editing

PROGRAM statement

R

READ statement
disk
formatted
unformatted

Real constants

Real descriptors

REAL statement

Record formats

Record definition, unit

Record position descriptor

Record size

Region structures

Registers, subprogram exit conditions

Relational expressions

Reread unit
arguments
definition

RETURN statement

REWIND auxiliary 1/0 statement

Run-time modules

SPERRY UNIVAC OS/3
FORTRAN IV

Reference Page Term

13.2 13-1
Save area .

6.8 6-8

Scale factor effects

SCREEN clause

Sequential disk files
arguments
definition
option

Sequential files, 1/0

7.4.2 7-24
SLITE subroutine call statement

7.3.2 7-4 SLITET subroutine call statement
7.3.1 7-3

2.2.2 2-2
Source code gu id el in es

7.3.3.1.2 7-9
Source correction facility

7.3.3.1.3 7-9 Source module from disk library,

6.4 6-2
stacked compilation

12 .3.1.3 12-3
Source programs

character set
comments

11.3.2.1 11-6 FORTRAN statements

7.3.3.1.12 7-12
statement order

12.3.1.2 12-3
symbolic names

13.2.2 13-1
Source statement order

Table G-2 G-3 Specification statement interaction,

3.2.2 3-1
standard library functions

Specification statements
array declaration

Table B-8 B-6 array declarator
7.3.4 7-15 COMMON statement
12.3.4.6 12-39 description
11.3.2.5 11-24 DIMENSION statement

EQUIVALENCE statement
5.4.2.2 5-9 EXTERNAL statement

PROGRAM statement
7 .3.6.1 7-20 type statements

Table G-1 G-1 Spooled card input file
arguments
definition

s

Index 8
Update B

Reference

H.1.1
Table H-1

7.3.3.1.13

7.3.1.1

Table C-6
12.3.4.5.1
D.5

7.3
7.3.7

5.6.3.5

5.6.3.6

1.3

9.5

E.3

1.2.l
1.2.3
1.2.2
1.2.5
Figure 1-1
1.2.4

1.2.5
Figure 1-1

5.6.2.1

6.2
6.2.l
6.6
6.1
6.3
6.5
6.7
6.8
6.4

Table C-2
12.3.4.2.1

Page •
H-1
H-1

7-13

7-4

C-5
12-25
D-3

7-2
7-21

5-25

5-25

1-7

9-4a

E-8 •
1-4
1-4
1-4
1-5
1-6
1-5

1-5
1-6

5-16

6-1
6-1
6-6
6-1
6-2
6-5
6-7
6-8
6-2

• C-2
12-:-10

UP-8474 Rev. 2

• Term

SSWTCH subroutine call statement

Stacked compilation

Standard library functions
description
listing
names
specification statement interaction

Standard library subroutines

Statement function definition

Statements
control
conventions
FORTRAN
1/0
source, order
specification

START statement

• COM environment
OTF environment

STOP statement

Subprogram definition
external functions
multiple entry
subroutines

Subprograms
calling
compiled
entry conditions
exit conditions
function types and corresponding

registers
mathematical library

Subroutines
description
linkage
reference
RETURN statement
subprograms, multiple entry
SUBROUTINE statement

Subscript checking

• Symbolic names

Supplied modules

SPERRY UNIVAC OS/3
FORTRAN IV

Reference Page Term

5.6.3.7 5-26 T

9.4 9-4 Tape file arguments
COM environment
DTF environment

5.6.2 5-16
Table 5-4 5-17 Trace back interface
G.2 G-1
5.6.2.1 5-16 TRACE OFF statement

5.6.3 5-22 TRACE ON statement
Table 5-5 5-28

Type statements
5.3 5-4

See control statements.
1.4 1-8
1.2.2 1-4
See 1/0 statements.
1.2.5 1-5
See specification
statements.

u
11.3.1 11-5 Unconditional GO TO
12.3.2 12-6

4.9 4-6
Unformatted 1/0 statements

UNIT arguments (COM enviroment)
disk

5.4.1 5-5 equivalent
5.4.3 5-10 reread unit
5.4.2 5-8 tape file

unit record

H.1 H-1
workstation

H.1.5 H-4 UNIT arguments (DTF environment)
H.1.2 H-2 card input files
H.1.3 H-3 ca rd output files

direct access disk files
Table H-2 H-3 equivalent unit
H.1.4 H-3 MIRAM disk files

printer
reread unit

5.4.2 5-8 sequential disk files
Appendix G spooled card input files
5.2.2 5-3 tape files
5.4.2.2 5-9
5.4.3 5-10 UNIT definition procedure (COM environment) 5.4.2.2 5-9

disk file
equivalent unit

10.5 10-2 reread unit
tape file

1.2.4 1-5 unit record

13.2.1 13-1
workstation

Index 9
Update B

Reference

Table 8-2
Table C-5

H.3

10.6.2

10.6.1

6.4

4.4

7.3.1

Table 8-3
Table B-5
Table 8-5
Table B-2
Table B-1
Table 8-4

Table C-3
Table C-4
Table C-7
Table C-9

Page

8-2
C-3

H-5

10-4

10-4

6-2

4-2

7-3

8-3
8-5
8-5
B-2
B-1
8-4

C-2
C-3
C-6
C-6

Table C-10 C-7
Table C-1 C-1
Table C-8 C-6
Table C-6 C-5
Table C-2 C-2
Table C-5 C-3

11.3.2.3 11-16
11.3.2.5 11-25
11.3.2.5 11-24
11.3.2.2 11-10
11.3.3.1 11-6
11.3.2.4 11-21

UP-8474 Rev. 2

Term

Unit definition procedure (DTF environment)
card input files
card output files
combined disk files
description
direct access disk files
equivalent
printer files
reread
sequential disk files
tape files

Unit definition termination procedure (FUNEND)
CDM environment
DTF environment

UNIT options
additional data management devices
card punch
card reader
CDM summary
direct access disk file
DTF summary
sequential disk files
tape files

SPERRY UNIVAC OS/3
FORTRAN IV

Reference Page Term

12.3.4.2 12-10
12.3.4.3 12-16 Variables
12.3.4.5.3 12-35
12.3.4 12-6
12.3.4.5.2 12-32
12.3.4.7 12-40
12.3.4.1 12-7
12.3.4.6 12-29
12.3.4.5.1 12-25
12.3.4.4 12-19

11.3.3 11-27
12.3.5 12-42 WRITE statement

disk
formatted

D.7 D-4 unformatted
D.3 D-2
D.2 D-1 Workstation compilation
Appendix B
D.6 D-3 Workstation execution
Appendix C
D.5 D-3 Workstation I/ 0
D.4 D-2

Workstation unit definition

v

w

Index 10
Update B

Reference

2.3

7.4.3
7.3.2
7.3.1

E.6

E.7

7.3.8

11.3.2.4

Page •
2-5

7-25
7-5
7-3

E-12

E-13

7-23

11-21 •

•

I
I
I
I .,
I
I
I
I
I
I
I
I
I
I
I
l
I

.; I
c:

g' I .,
I
I
I

•

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

•

•

•

•

USER COMMENT SHEET

Comments concerning the content, style, and usefulness of this manual may be made in the space provided below. Please
fill in the requested information .

This User Comment Sheet will not normally lead to a reply to the originator. Requests for copies of manuals, lists of manuals,
pricing information, etc. must be made through your Series 1100 site manager, to your Sperry Univac representative, or to

the Sperry Univac office serving your locality. Software problems should be submitted on a Software User Report (SUR)
form U01-745. Questions of a technical nature regarding either the manual or the software should be submitted on a
Technical Question (question/answer) form UD1-1195. These forms are available through your Sperry Univac representativ1>.

Customer Name: _____________________ System Type:--------------

Tille of Manual: _______________________________________ ~

UP No.: ____________ Revision No.: _______ Update:----------------

NameofUser: -----------------------------Date:-----------

AddressofUter: ---------------------------------------
Comments: Give page and paragraph reference where appropriate .

Please rate this manual. Good -
Organization of the text - • · · • · · • · · • · · • · · · · • • • · • • · · · · · · • • · · -

Clarity of the .text · • · • · · · • • · · • · · · · • · • · • • · • • • • · · · • • • • · • • · -

Adequacy of coverage · · · · · • · · · • · · • · · • · · · · · · • • • · · • • · • • · • · · -

Examples • • · · · • · · · · • · · • · · · · · · • • • · · • · - • • • · - • - - - - • • - - · ,____

Crosareferences - · · - · · · - · • · - · · · - · · • - - - · · · • • - - - - - - • - ·- - · -

Tables - • - · • · • - · • · · · - · • - - · - · - • - · · • .••• - - •••.• ·- ·- • - .•.• ~ -

Illustrations.- - · - - · - · · • • - • • · • · · · • • • - • · - • - - - · - • · - • · - • • - - · -

Index - • • • · • - • · - • · • - • • • · - • · - • · • • • • • - • • • • - •. - • • - ••• -­
Appteranc:e - • . .• • • • • • • . • • • • • • • • • . • • . . • • • • • • • • • • • • • • • • • • -

Adequate
Not

Adequate

YOUR COMMENTS, PLEASE · · • ·

This manual is part of a library that serves as a source of information for personnel using SPERRY UNIVAc®
systems. Space is provided on the opposite side of this form for your comments concerning the usefulness of
the information presented. Each comment will be carefully reviewed by the persons respo~sible for writing
and publishing this manual. All comments and suggestions become the property of Sperry Univac.

I
I
I

~
I

I
I
I
I
I
I
I
I
I
I
I
I

FOLD I

1••··--------------------------···················--·--------·

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21

POSTAGE Will BE PAID BY

SPERRY UNIVAC

ATTN: Sy$tems Support

BLUE BELL, PA.

1100 Systems Publications
M.S. 4533

P.O. Box 43942
St. Paul, Minnesota 55164

111111 NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

I
I
I
I
I
I

I
I
I
I
I
•s

~
I

I
I
I
I
I
I
I
I

·······························---···-----------------·--·--· ~~ I
I
I
I

I

•

.;
c

Cl
c • 0

'" ...
:l
u

•

UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

•

lg •. I -t

I
I

•

•

.,
c:

~I c:

·~

•

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATIN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I
I
I
I
I

---!
FOLD I

I
I
I

•

§.

