Operating System/3 (OS/3)

FORTRAN IV

Programmer Reference

This Library Memo announces the release and availability of “SPERRY UNIVAC® Operating System/3 (0S/3)
FORTRAN 1V Programmer Reference’”, UP-8474 Rev. 2.

This manual now covers FORTRAN 1V implemented on a 90/25, 90/30, 90/30B, or 90/40 system operating in a
define the file (DTF), consolidated data management (CDM), or mixed mode environment.

Workstation support is also provided.

Other technical changes were made.

Additional copies may be ordered by your local Sperry Univac representative.

Mailing Lists

BZ, CZ (less DE, GZ,
HA) MZ, 18U, 19U,
20U, 21U, 75U and
76U

Mailing Lists DE, GZ, HA, 18, 19, 20, 21, 75 and 76
(Covers and 289 pages)

Library Memo

RELEASE DATE:

October, 1980

I Te Lt U 1

Operating System/3 (0S/3)

FORTRAN 1V

Programmer Reference

This Library Memo announces the release and availability of Updating Package A to “SPERRY UNIVAC Operating
System/3 (0S/3) FORTRAN IV Programmer Reference”’, UP-8474 Rev. 2.

This update includes changes to the job control procedure for release 7.1:

= Specification of catalog files

L Expanded explanation of parameters

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8474 Rev. 2-A. To receive the complete manual, order UP-8474 Rev. 2.

Mailing Lists

BZ, CZ (less DE, GZ,
HA) MZ, 18U, 19U,
20U, 21U, 75U and
76U

Mailing Lists DE, GZ, HA, 18, 19, 20,
21,75and 76

(Package A to UP-8474 Rev. 2,

7 pages plus Memo)

Library Memo for
UP-8474 Rev. 2-A

S

September, 1981

FORTRAN 1V

Environment: 90/25, 30, 30B, 40 Systems

SPERRY==UNIVAC

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC), 5655 Henderson Rd., King of Prussia, Pa., 19406.

©1980 — SPERRY CORPORATION PRINTED IN US.A.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 PSS 1
FORTRAN IV Update B
PAGE STATUS SUMMARY
ISSUE: Update B — UP-8474 Rev. 2
RELEASE LEVEL: 8.0 Forward
. Page Update . Page Update] Page Update
Part/Section| nNymber | Level || Part/Section) wiver | Level | |Part/Section| niiver | Level
Cover/Disclaimer| Orig. 12 1 thru 46 Orig.
PSS 1 B 13 1 thru 3 Orig.
4 B
Preface 1 Orig. 5 Orig.
2,3 B
PART 4
Contents 1 thru 4 Orig. Title Page Orig.
5thru 7 B
89 Orig. Appendix A 1 thru 8 Orig.
PART 1 Appendix B 1 B
Title Page Orig. 2thru b Orig.
1 1 B Appendix C 1 thru 7 Orig.
2thru 9 Orig.
Appendix D 1thru b Orig.
2 1thru 7 Orig.
Appendix E 1,2 B
PART 2 3 A
Title Page Orig. 4 Oriq.
5 thru 7 B
3 1thru 6 Orig. 8 thru 14 Orig.
4 1thru 6 Orig. Appendix F 1 thru 15 Orig.
5 1 thru 28 Orig. Appendix G 1 thru 14 Orig
6 1,2 Orig. Appendix H 1thru 6 Orig.
3 B
4thru 8 Orig. Index 1 Orig.
2 B
7 1 thru 24 Orig. 3 Orig.
25,26 B 45 B
27 Orig. 6 Orig.
7 thru 10 B
8 1 thru 3 Orig.
PART 3 User Comment
Title Page Orig. Sheet
9 1 Orig.
2 B
3 Orig.
4 B
4a B*
5 Orig.
10 1 thru 4 Orig.
1 1 B
2 thru 4 Orig.
5 B
6 thru 15 Orig.
16 B
17,18 Orig.
19,20 B
21 thru 32 Orig.
*New pages

All the technical changes are denoted by an arrow (=} in the margin. A downward pointing arrow (*) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (4) is found. A horizontal arrow (9) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions,

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 Preface 1

FORTRAN IV

Preface

This manual is one of a series designed to instruct and guide the programmer in the use of SPERRY UNIVAC
Operating System/3 (0S/3). This manual specifically describes the 0S/3 FORTRAN IV. Its intended audience is
the experienced FORTRAN programmer new to SPERRY UNIVAC operating systems, and the 0S/3 in particular.

The fundamentals of FORTRAN, programmer reference, UP-7536 (current version) also is available for general
information concerning FORTRAN programming. A knowledge of that manual is assumed. It is useful in
reviewing the language; however, it does not present FORTRAN IV implementation for 0S/3.

This manual is divided into the following parts:

PART 1. FORTRAN IV PROGRAM STRUCTURE

Discusses the FORTRAN IV compiler, general structure of source programs, coding form layout, character
set, and types of data including constants, variables, and array elements used in integer and real
arithmetic.

PART 2. FORTRAN STATEMENTS

Describes FORTRAN IV expressions and assignment statements, control statements, statements used for
functions and subroutines, specification statements, and 1/0 statements.

PART 3. COMPILE, DEBUG, AND EXECUTE PROCEDURES
Discusses data initialization, compilation, debugging, and configuration of the execution environment.
PART 4. APPENDIXES

Provide additional information concerning:

A - Character set

B,C,D - UNIT options

E - FORTRAN sample job streams
F - Diagnostics

G - Run-time library routines

H - Subroutine linkage

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 Preface 2

FORTRAN IV Update B

Other current OS/3 publications, referenced in this manual, are useful to the programmer working with ‘
FORTRAN IV.

Consolidated Data Management (CDM) Environment

System processor programmer reference, UP-8881

Lists the hardware characteristics of integer/real arithmetic.

Screen format services concepts and facilities, UP-8802

Describes the screens and formats used on workstation terminals.

Interactive services commands and facilities user guide/programmer reference, UP-8845

Describes the commands and operating procedure for workétation terminals.

Editor user guide, UP-8828

Describes the interactive command language.

System service programs (SSP) user guide, UP-8841

Describes various system utilities (librarian and linkage editor among others).

Consolidated data management macroinstructions user guide/programmer reference, UP-8826)
Describes the data management macroinstructions. .
System messages programmer/operator reference, UP-8076

Lists and describes the system console messages issued during compilation by FORTRAN 1V.

Series 90 FORTRAN mathematical library programmer reference, UP-8029

Lists the multiplication, division, and exponentiation library routines.

Job control user guide, UP-8065

Provides information on the format and usage of job control statements and linkage editor job control
procedure call (jproc).

Fundamentals of FORTRAN programmer reference, UP-7536

Presents general information concerning FORTRAN.

Define the File (DTF) Environment

Data management user guide, UP-8068
Describes the data management macroinstructions.

System service programs (SSP) user guide, UP-8062

Describes various system utilities (librarian and linkage editor among others).

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 Preface 3
FORTRAN IV Update B

n 90/30 system processor programmer reference, UP-8052
Lists the hardware characteristics of integer/real arithmetic.
» System messages programmer/operator reference, UP-8076
Lists and describes the system console messages issued during compilation by FORTRAN 1V.
= Series 90 FORTRAN mathematical library programmer reference, UP-8029
Lists the multiplication, division, and exponentiation library routines.
. Job control user guide, UP-8065

Provides information on the format and usage of job control statements and linkage editor job control
procedure call (jproc).

n Fundamentals of FORTRAN programmer reference, UP-7536

Presents general information concerning FORTRAN.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 Contents 1
FORTRAN IV
Contents

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. FORTRAN IV PROGRAM STRUCTURE

1. INTRODUCTION
1.1. SCOPE AND PURPOSE 1-1
1.1.1. Compatibility 1-2
1.1.2. Extensions 1-2
1.2. SOURCE PROGRAMS 1-3
1.2.1. Character Set 1-4
1.2.2. FORTRAN Statements 1-4
1.2.3. Comments 1-4
1.2.4. Symbolic Names -5
1.2.5. Source Statement Order -5
1.3. SOURCE CODE GUIDELINES 1-7
1.4. STATEMENT CONVENTIONS 1-8

UP-8474 Rev. 2 SPERRY UNIVAC 05/3 Contents 2

FORTRAN IV

2. DATA TYPES
2.1. GENERAL 2-1
2.2. CONSTANTS 2-1
2.2.1. Integer Constants 2-1
2.2.2. Real Constants 2-2
2.2.3. Double Precision Constants 2-3
2.2.4. Hexadecimal Constants 2-3
2.25. Complex Constants 2-4
2.2.6. Logical Constants 2-4
2.2.7. Literal Constants 2-5
2.3. VARIABLES 2-5
2.4, ARRAYS 2-6
2.4.1. Array Element Reference 2-6
24.2. Element Position Location 2-7

PART 2. FORTRAN STATEMENTS

3. EXPRESSIONS AND ASSIGNMENT STATEMENTS
3.1. GENERAL 3-1
3.2. EXPRESSIONS 3-1
3.2.1. Arithmetic Expressions 3-1
3.2.2. Relational Expressions 3-1
3.2.3. Logical Expressions 3-2
3.2.4. Evaluation Order 3-2
3.2.5. Mixed-Mode Arithmetic 3-3
3.2.6. Arithmetic Operation User Checks 3-3
3.2.7. Implementation of Arithmetic Operations 3-4
3.3. ASSIGNMENT STATEMENTS 3-4
3.3.1. Arithmetic and Logical Assignment Statements 3-5
3.3.2. ASSIGN Statement 3-5

4. CONTROL STATEMENTS
4.1. GENERAL 4-1
4.2, ARITHMETIC IF 4-1
4.3. LOGICAL IF 4-2
4.4. UNCONDITIONAL GO TO 4-2
4.5, COMPUTED GO TO 4-3

4.6. ASSIGNED GO TO 4-3

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 Contents 3
FORTRAN IV
4.7. DO 4-4
4.7.1. Transfer of Control to and from a DO Range 4-5
4.8, CONTINUE 4-5
4.9, STOP 4-6
4.10. PAUSE 4-6
4.11. END 4-6
5. FUNCTIONS AND SUBROUTINES
5.1. GENERAL 5-1
5.2. PROCEDURE REFERENCE 5-3
5.2.1. Function Reference 5-3
5.2.2. Subroutine Reference (CALL Statement) 5-3
5.3. STATEMENT FUNCTION DEFINITION 5-4
5.4, SUBPROGRAM DEFINITION b-5
5.4.1. External Functions 5-5
54.1.1. FUNCTION Statement 5-6
54.1.2. RETURN Statement 5-7
5.4.1.3. ABNORMAL Statement 5-7
5.4.2. Subroutines 5-8
54.2.1. SUBROUTINE Statement 5-8
54.2.2. Subroutine RETURN Statement 5-9
5.4.3. Multiple Entry to Function and Subroutine Subprograms 5-10
5.5. ARGUMENT SUBSTITUTION 5-12
5.5.1. Call by Value 5-12
5.5.2. Call by Name 5-13
5.6. LIBRARY PROCEDURES 5-14
5.6.1. Intrinsic Functions 5-14
5.6.2. Standard Library Functions 5-16
5.6.2.1. Specification Statement Interaction 5-16
5.6.3. Standard Library Subroutines 5-22
5.6.3.1. Arithmetic Overflow and Underflow Test (OVERFL) 5-22
5.6.3.2. Divide Check Subroutine (DVCHK) 5-23
5.6.3.3. Error Indicator Test (ERROR) 5-24
5.6.34. Error Indicator Setting Subroutine (ERROR1) 5-24
5.6.3.5. Indicator Setting Subroutine (SLITE) 5-25
5.6.3.6. Indicator Testing Subroutine (SLITET) 5-26
5.6.3.7. Control Information Check (SSWTCH) 5-26
5.6.3.8. Main Storage Dump Routines (DUMP and PDUMP) 5-26
5.6.3.9. EXIT Subroutine 5-26
5.6.3.10. FETCH Subroutine 5-27
5.6.3.11. LOAD Subroutine b-27
5.6.3.12. OPSYS Subroutine 5-27

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3
FORTRAN IV

Contents 4

6. SPECIFICATION STATEMENTS

6.1.

6.2.
6.2.1.

6.3.
6.4.
6.4.1.
6.4.2.
6.5.

6.6.
6.6.1.

6.7.

6.8.

GENERAL

ARRAY DECLARATION
Array Declarator

DIMENSION STATEMENT
TYPE STATEMENTS

Explicit Type Statements
IMPLICIT Statement
EQUIVALENCE STATEMENT

COMMON STATEMENT
COMMON/EQUIVALENCE Statement Interaction

EXTERNAL STATEMENT

PROGRAM STATEMENT

7. INPUT AND OUTPUT

7.1.

7.2.
7.2.1.

7.3.
7.3.1.
7.3.1.1.
7.3.2.
7.3.21.
7.3.3.
7.3.3.1.
7.3.3.1.1.
7.3.3.1.2.
7.3.3.1.3.
7.3.3.14.
7.3.3.1.5.
7.3.3.1.6.
7.3.3.1.7.
7.3.3.1.8.
7.3.3.1.9.

7.3.3.1.10.
7.3.3.1.11.
7.3.3.1.12.
7.3.3.1.13.

7.3.3.2.
7.3.3.3.
7334
7.3.4.

7.3.5.

7.3.5.1.
7.3.5.2.

GENERAL

INPUT/OUTPUT LIST
DO-Implied List

SEQUENTIAL FILES
Unformatted 1/Q Statements
END, ERR, and SCREEN Clauses
Formatted READ/WRITE Statements
I/0 Compatibility Statements
FORMAT Statement
Field Descriptors
Integer Descriptor (rlw)
Real Descriptor - E Conversion (srEw.d)
Real Descriptor - F Conversion (srFw.d)
Double Precision Descriptor (srDw.d)
Logical Descriptor (rlL.w)
General Descriptor {srGw.d)
Hollerith Descriptor - A Conversion (rAw)
Hollerith Descriptor — H Conversion (wHc,C,...Cw)
Hexadecimal Descriptor (rZw)
Literal Descriptor (‘ciC,...Ccw’)
Blank Descriptor (wX)
Record Position Descriptor (Tp)
Scale Factor Effects
Multiple Record Format Specification
Carriage Control Conventions
Format Interaction with 1/0 List
Reread Form of READ Statement
List-Directed Input/Output
NAMELIST Statement
Simple List-Directed Input/Qutput

I
IR

~N o~
5L

~
N N N N
N

| |

[S DL | |

_a_n_n_a_n_n_a_a_‘_a—l_n—l_a_n.l_n_acomm\lmo)m

OO, WWWNN==—=0000

\l\l\l\I\I\I\I\J\J\I\I\I\ITI\J\J\I\I\J\I\I\I\I\I\I\I

i

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 Contents 5
FORTRAN IV Update B

7.3.6. Auxiliary 170 Statements 7-20
7.3.6.1. REWIND Statement 7-20
7.3.6.2. BACKSPACE Statement 7-20
7.3.6.3. ENDFILE Statement 7-21
7.3.7. Sequential File Considerations 7-21
7.3.8. File Screen Workstation |/0 7-23
7.4. DIRECT ACCESS FILES 7-23
7.4.1. DEFINE FILE Statement 7-23
7.4.2. Disk READ Statement 7-24
7.4.3. Disk WRITE Statement 7-25
7.4.4. Disk FIND Statement 7-26

8. DATA INITIALIZATION
8.1. GENERAL 8-1
8.2. DATA STATEMENT 8-1
8.3. BLOCK DATA SUBPROGRAM 8-3
8.3.1. BLOCK DATA Statement 8-3

PART 3. COMPILE, DEBUG, AND EXECUTE PROCEDURES

9. COMPILATION
9.1. GENERAL 9-1
9.2. FORTRAN IV COMPILERS 9-1
9.3. PARAMETER STATEMENT FORMAT 9-1
9.3.1. Compiler Arguments 9-2
9.4. STACKED COMPILATION 9-4
9.5. SOURCE CORRECTION FACILITY 9-4a
9.6. CREATING A JOB CONTROL STREAM 9-5
9.7. USE OF LARGER VERSION 9-5

10. DEBUGGING
10.1. GENERAL 10-1
10.2. CONDITIONAL COMPILATION 10-1
10.3. FORMATTED MAIN STORAGE DUMP 10-1
10.4. USE OF OPT=S 10-2

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

Contents 6

11.

12.

FORTRAN IV Update B
10.5. SUBSCRIPT CHECKING 10-2
10.6. LABEL TRACE 10-3
10.6.1. TRACE ON Statement 10-4
10.6.2. TRACE OFF Statement 10-4

CONSOLIDATED DATA MANAGEMENT (CDM) EXECUTION ENVIRONMENT
CONFIGURATION

11.1.

11.2.

11.3.
11.3.1.
11.3.2.
11.3.2.1.
11.3.2.2.
11.3.2.3.
11.3.2.4.
11.3.2.5.
11.3.2.6.
11.3.3.
11.3.4.
11.3.5.

11.4.

CDM RELATIONSHIP
CDM-SUPPLIED CONFIGURATIONS

PROGRAMMER-DEFINED CONFIGURATIONS
START Statement
FORTRAN Unit Definition Procedure (UNIT)

Unit Record Definition

Tapc File Definition

Disk File Definition

Workstation Unit Definition

Reread Unit Definition

Equivalent Unit Definition
FORTRAN Unit Definition Termination Procedure (FUNEND)
Error Environment Definition Procedure (ERRDEF)
END Statement

TYPICAL CONFIGURATION EXAMPLE

11-3
11-5
11-5
11-6
11-10
11-16
11-21
11-24
11-25
11-27
11-27
11-30

11-30

DEFINE THE FILE (DTF) EXECUTION ENVIRONMENT CONFIGURATION

12.1.

12.2.

12.3.
12.3.1.
12.3.1.1.
12.3.1.2.
12.3.1.3.
12.3.1.4.
12.3.1.5.
12.3.2.
12.3.3.
12.3.4.
12.3.4.1.
12.3.4.2.
12.3.4.2.1.
12.3.4.2.2.
12.3.4.3.
12.3.4.4.
12.3.4.5.
12.3.4.5.1.
12.3.4.5.2.
12.3.453.

DATA MANAGEMENT INTERFACE
DTF-SUPPLIED CONFIGURATIONS

PROGRAMMER-DEFINED CONFIGURATIONS
File Definition Conventions
Device Type
Record and Block Sizes
Record Formats
Buffer Allocation
File Type
START Statement
FORTRAN Initialization Procedure (FUNTAB)
FORTRAN Unit Definition Procedure (UNIT)
Printer File Definition
Card Input File Definition
Spooled Card Input File Definition
Data Management Card Input File Definition
Card OQutput File Definition
Tape File Definition
Files on Disk
Sequential Disk File Definition
Direct Access Disk File Definition
Combined Disk Files

121

12-2

12-2
12-3
12-3
12-3
12-3
12-4
12-5
12-6
12-6
12-6
12-7
12-10
12-10
12-12
12-16
12-19
12-25
12-25
12-32
12-35

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 Contents 7
FORTRAN IV Update B

12.3.4.5.3.1. Record Formats for MIRAM Disk Files 12-35
12.3.45.3.2. MIRAM Disk File Definition 12-36
12.3.4.6. Reread Unit Definition 12-39
12.3.4.7. Equivalent Unit Definition 12-40
12.3.5. FORTRAN Unit Definition Termination Procedure (FUNEND) 12-42
12.3.6. Error Environment Definition Procedure (ERRDEF) 12-43
12.3.7. END Statement 12-46

13. PROGRAM COLLECTION AND EXECUTION
13.1. GENERAL 13-1
13.2. LINK EDITING FORTRAN PROGRAMS 13-1
13.2.1. FORTRAN IV Supplied Modules 13-1
13.2.2. Overlay and Region Structures 13-2
13.2.3. Linkage Editor QOutput 13-3
13.3. EXECUTION OF FORTRAN PROGRAMS IN A CDM ENVIRONMENT 13-3
13.3.1. CDM FORTRAN 1/0 Units 13-3
13.3.2. CDM Pause Messages 13-4
13.3.3. CDM Diagnostic Messages 13-4
13.4. EXECUTION OF FORTRAN PROGRAMS IN A DTF ENVIRONMENT 13-4
13.4.1. DTF FORTRAN 1/0 Units 13-4
13.4.2. DTF Pause Messages 13-5
13.4.3. DTF Diagnostic Messages 13-5

PART 4. APPENDIXES

A. CHARACTER SET
A1, SOURCE PROGRAM AND INPUT DATA CHARACTERS A-1
A.2. PRINTER GRAPHICS A-1

B. SUMMARY OF CDM UNIT OPTIONS

C. SUMMARY OF DTF UNIT OPTIONS

D. ADDITIONAL UNIT OPTIONS IN DTF ENVIRONMENT
D.1. GENERAL D-1
D.2. CARD READER OPTIONS D-1
D.3. CARD PUNCH OPTIONS D-2
D.4. TAPE FILE OPTIONS D-2
D.5. SEQUENTIAL DISK FILE OPTION D-3

UP-8474 Rev. 2 SPERRY UNIVAC 0OS/3 Contents 8

FORTRAN IV
D.6. DIRECT ACCESS DISK FILE OPTIONS D-3
D.7. ADDITIONAL DATA MANAGEMENT DEVICES D-4

E. FORTRAN SAMPLE JOB STREAMS

E.1. JOB CONTROL PROCEDURE E-1
E.2. SAMPLE COMPILE-LINK-EXECUTE E-6
E.3. SOURCE FROM DISK LIBRARY-STACKED COMPILATION E-8
E.4. COMPILE-ASSEMBLE-LINK-EXECUTE E-9
E.5. COMPILATIONS WITH PARAMETER OPTIONS E-11
E.6. COMPILATION FROM A WORKSTATION TERMINAL E-12
E.7. EXECUTION FROM A WORKSTATION USING A SCREEN FORMAT E-13
E.8. CREATE AND COMPILE FROM A WORKSTATION USING EDT E-14

F. COMPILE-TIME DIAGNOSTIC MESSAGES

G. RUN-TIME MODULES

G.1. FORTRAN RUN-TIME MODULES G-1

G.2. FORTRAN IV STANDARD LIBRARY FUNCTION NAMES G-1

H. SUBROUTINE LINKAGE

H.1. CALLING FORTRAN SUBPROGRAMS H-1
H.1.1. Save Area H-1
H.1.2. Required Entry Conditions H-2
H.1.3. Exit Conditions H-3
H.1.4. Mathematical Library H-3
H.1.5. Compiled Subprograms H-4
H.2. CALLING FROM FORTRAN PROGRAMS H-4
H.2.1. Parameter List Formats H-4
H.2.2. Label Arguments H-5
H.2.3. Conventions H-5
H.3. TRACEBACK INTERFACE H-5

INDEX

USER COMMENT SHEET

FIGURES

1-1 Source Statement Order 1-6

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 Contents 9
FORTRAN IV

TABLES

1-1. FORTRAN Character Set 1-4
2-1. Data Types and Optional Lengths 2-5
2-2. Relative Location of Array Elements 2-7
3-1 FORTRAN IV Operators and Evaluation Order 3-3
3-2. Result Types and Lengths for Mixed-Mode Arithmetic 3-4
3-3 Assignment Statement Conversions 3-6

5-1 FORTRAN |V Procedures
5-2. Argument Forms

5-3 Intrinsic Functions

5-4. Standard Library Functions
5-5. Standard Library Subroutines

t (L
~N

0101('110101
N = e N) =

o]

7-1 FORMAT Statement Field Descriptors 7
7-2. Carriage Control Conventions 7-
7-3 Permissible Associations of List ltems 7

- n
(S -3

11-1. FORTRAN IV Devices and Arguments 11-4

A-1. EBCDIC Input Graphic Character Set A-2
A-2. EBCDIC/Hollerith Cross-Reference Table A-3
A-3. Representative EBCDIC Output Graphic Character Set A-8

Summary of UNIT Arguments for Unit Record B

Summary of UNIT Arguments for a Tape File B

Summary of UNIT Arguments for a Disk File B-
B
B
B

Summary of UNIT Arguments for a Workstation
Summary of UNIT Arguments for Reread Unit
Summary of UNIT Arguments for Equivalent Unit

i

|
I e o e

wmmt}umm

Summary of UNIT Arguments for Printer File

Summary of UNIT Arguments for Spooled Card Input File
Summary of UNIT Arguments for Card Input File
Summary of UNIT Arguments for Output File

Summary of UNIT Arguments for Tape File

Summary of UNIT Arguments for Sequential Disk Files
Summary of UNIT Arguments for Direct Access Disk Files
Summary of UNIT Arguments for Reread Unit

Summary of UNIT Arguments for Equivalent Unit
Summary of UNIT Arguments for MIRAM Disk Files

I
PN~

| |
[
NOOOOOTWWNN =

|
2OoONOO

)
©

OOOO(POOOOO
OOOOOCPOOOO

T
N

FORTRAN IV Compile-Time Diagnostic Messages
Operation-Type Diagnostic Messages F-14

'II'I'ﬂ
N -

FORTRAN IV Run-Time Modules G-1
FORTRAN IV Standard Library Function Names G-11

00
N~

I I
N

Save Area Format H-
Function Types and Corresponding Registers H

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 1-1

FORTRAN IV Update B

1. Introduction

1.1. SCOPE AND PURPOSE

This Sperry Univac document describes FORTRAN IV operating in two environments: (1) the System 80
consolidated data management environment, and (2) the 90/30 define the file interface environment. When
operating in the System 80 consolidated data management (CDM) environment, three changes in the run time
procedure are required; when in the 90/30 define the file (DTF) interface environment, no changes are required.

The three changes required when operating in the System 80 CDM environment are:
n A new UNIT definition facility is required to define the devices and file characteristics.
L New devices to be supported must be defined.

L] A new data access method is required. Called the consolidated access method (CAM), it is an enhancement
of the 0S/3 multiple indexed random access method (MIRAM).

The mathematical and /0 libraries used in System 80 CDM environment are identical with those supported in
the 90/30 DTF environment. All statements are identical except that a new keyword SCREEN is added to the 1/0
statements to provide support for the workstation terminal.

Regardless of the operating environment, FORTRAN IV consists of the following components:

u a compiler, that transforms programs written in an extended American National Standard FORTRAN
language into a form suitable for execution;

L a library of input/output and data formatting routines; and
. a library of commonly used mathematical functions and service routines.

The FORTRAN |V compiler accepts programs written in the FORTRAN language and produces an object module
that is suitable input to the linkage editor. Source programs may reside in the control stream or in a source
program library. A job control procedure is provided to call the compiler, allocate scratch files, and perform other
functions necessary for successful compilation. The output of the compiler must then be processed by the
linkage editor; during this processing, mathematical and 1/0 routines are taken from the FORTRAN library and
included in the executable program.

User-defined procedures, if they are required, also are included during the link-edit. These procedures are coded
in FORTRAN or in some other language (COBOL, assembly, etc.).

The output of the linkage editor is a load module that may consist of several overlay phases. During the
execution of the object program, the overlay phases may be loaded by specific calls by FORTRAN statements, or
they may be loaded automatically by referencing a routine in an overlay that is not currently in main storage. The
load module will accept and produce ASCII files.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 1-2
FORTRAN IV

During compilation, the compiler produces the following listings:

» A listing of the source program. For each diagnostic, the source statement is marked at the character for
which the diagnostic is produced.

L An error listing that contains the diagnostic messages and associated severity codes. (See Appendix F.)

u A main storage map showing the addresses allocated to the variables and arrays in the program. An
alphabetical and address sorted listing is optionally available.

Any of the listings may be suppressed by user options.
The FORTRAN IV compiler is self-initializing and up to 100 FORTRAN source programs can be processed by one

call on the compiler by job control. If a FORTRAN source statement follows an END statement in the source input
file, it is assumed that another program is to be processed, and the compiler reinitializes itself.

1.1.1. Compatibility
The FORTRAN IV language includes the American National Standard FORTRAN X3.9-1966 and the IBM
System/360/370 DOS FORTRAN IV languages as subsets. Programs that conform to either of these

specifications are accepted without change. FORTRAN IV is also highly compatible with SPERRY UNIVAC Series
70 FORTRAN.

1.1.2. Extensions

The FORTRAN 1V language provides many extensions to American National Standard FORTRAN, X3.9—1966.
These extensions are:

L Subscript expressions are integer or real arithmetic expressions (2.4.1).

L] Arithmetic assignment statements are used to assign complex values to integer and real variables, or
integer and real values to complex variables {3.3.1).

n A literal message is permitted with the STOP and PAUSE statements (4.9 and 4.10).

= An executable END statement is provided (4.11).

= The inclusion of statement labels (preceded by the & character) in the list of actual arguments in a
subroutine call to be referenced by a RETURN statement is permitted. Thus, the subroutine can transfer

control back to designated statements in the calling program (5.4.2.1).

n The ENTRY statement permits entry into a function or subroutine subprogram at points other than the
beginning of the subprogram (5.4.3).

L] Standard library routines are available: OVERFL, DVCHK, ERROR, ERROR1, SLITE, SLITET, SSWTCH,
DUMP, PDUMP, EXIT, FETCH, LOAD, and OPSYS (5.6.3).

L] Arrays may have a maximum of seven dimensions (6.2.1).
= Dimension declarator subscripts are permitted in common storage (6.2.1).

u Optional length specifications for logical, integer, complex, and real variables and arrays can be declared
(6.4.1).

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 1-3

FORTRAN iV

An IMPLICIT statement is provided for user-defined implicit typing of symbolic names in a program unit
(6.4.2).

End-of-file and error recovery are provided in READ statements (7.3.1.1).

The applicability of the G field descriptor is extended to cover integer and logical data (7.3.3.1.6).
Z and T format codes are provided (7.3.3.1.9 and 7.3.3.1.12).

Special I/0 formats and statements are provided for direct access storage devices (7.4).

Special 1/0 statements are provided to access the workstation. READ and WRITE commands to the
workstation may be done as a unit record or full screen 1/0 (7.3.1) in a CDI environment.

The specification of hexadecimal constants in DATA statements is permitted (8.2).

The TRACE ON and TRACE OFF statements are provided (10.6).

The FORTRAN IV language also includes several extensions to IBM System/360/370 FORTRAN IV including:

Embedded comments (1.2.3).

Extended exponentiation (3.2).

Optional statement labels on arithmetic IF statements (4.2).

Logical IF, PAUSE, and STOP statements can be terminal statements of DO loops (4.7).
An ABNORMAL statement is provided for optimal code generation (5.4.1.3).

The mathematical library can be referenced by generic names (5.6).

The ability to initialize variables and arrays in type statements (6.4.1).

The ability to use the IMPLICIT statement anywhere in the specification statement group (6.4.2).
The elimination of the restriction that all named common blocks be the same size (6.6).
A PROGRAM statement is provided to optionally name a main program (6.8).

Two classes of list-directed 1/0 statements are provided (7.3.5).

DO-implied loops in DATA statements are provided (8.2).

The BLOCK DATA statement contains an optional name for the subprogram (8.3.1).
Blocked and buffered input/output is provided {Sections 11 and 12).

Extended error recovery procedures are provided for the mathematical library (H.1.4).

1.2. SOURCE PROGRAMS

General procedures to be followed in FORTRAN programming are presented in subsections 1.2.1 through 1.4.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 1-4
FORTRAN IV

1.2.1. Character Set .

The character set consists of the FORTRAN character set and special characters as shown in Table 1-1. Each
character is represented in the Extended Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC codes not
shown in the table have no graphic equivalents in the FORTRAN character set, but these characters [can be
stored internally and transmitted to and from card, tape, and disk storage.

Table 1—1. FORTRAN Character Set

Alphabetics A through Z and $
FORTRAN Numerics 0 through 9
character
set Special symbols =, () +-*] &";
Blank A or blank space
Extended Any characters capable of representation in EBCDIC, such as:
character
set* ¢ ><l%n1.@#2-"

*The extended character set can change with the options selected for the system
printer {48 to 127 characters available, depending on printer model). See Appendix
A for a detailed discussion of the character set.

1.2.2. FORTRAN Statements |

FORTRAN statements are coded on the FORTRAN coding form. Columns 1 through 72 are used for the gontents
of a FORTRAN line. All characters in a line are restricted to the FORTRAN character set, except in comments and
literal constants. Columns 73 through 80 are ignored and may be used in any manner; the information |n these
columns is printed in the source program listing, but execution of the program is not affected by this information.

A statement label consists of one through five decimal digits in columns 1 through 5. The contents of these
columns for continuation lines are ignored during program compilation but are shown on the program listing and
may be used by the programmer, although a warning diagnostic is produced. Leading zeros and embedded and
trailing blank characters are ignored in a statement label. Each statement label must be unique within its
program unit. A special use of column 1 is indicated by an X coded there for program debugging purposes (10.2).

Each FORTRAN statement is written in columns 7 through 72. The first line of a statement must contain|either a
zero or a blank character in column 6. A statement may be continued on one or more successive lines with a
nonzero, nonblank character in column 6 for each line that is a continuation. A statement consists of one initial
line and up to 19 continuation lines.

1.2.3. Comments

The compiler provides three methods of entering comments: columns 73-80 on any line, the comment line, and
embedded comments. A comment line is indicated by the character C or * in column 1. The contents |of each
commert line are shown on the program listing, but are ignored by the compiler. A semicolon in columns 7
through 71 in a FORTRAN statement line indicates that the information immediately following and written on
the same line is to be treated as a comment; for example:

1 7
R=SQRT(A); CALCULATE SQUARE ROOT !

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3

FORTRAN IV
' A comment following a semicolon is continued on a succeeding statement line by specifying a C in column 1.
1 7
' DO 1686 1=1,9; BEGIN ITERATION
c Loop

The statement, SUBROUTINE SWAP (A,B), including commentary, may be written as follows:

SUBROUTINE; THIS SUBROUTINE EXCHANGES THE VALUES
1SWAP ; OF TWO REAL VARIABLES
2(A,B)

A semicolon in a literal constant is a valid character and does not indicate a comment; a semicolon to the left of
column 7 does not indicate a comment. Blank cards are ignored by the compiler.

1.2.4. Symbolic Names
Symbolic names contain up to six alphanumeric characters, the first of which must be alphabetic.

A special type of symbolic name, a label parameter, is associated with the RETURN statement. It consists of the
& character immediately followed by a statement label. A label parameter can appear only in a list of actual
arguments in a CALL statement (5.2.2).

‘ 1.2.5. Source Statement Order

Figure 1-1 shows the order in which the source statements of each program unit must be written. Within each
grouping, the statements may be written in any sequence.

Every executable program contains one main program and as many subprograms as required. A main program is
a set of statements and comments that is not headed by a FUNCTION, SUBROUTINE, or BLOCK DATA statement.
Subprograms are headed by one of these statements.

A subprogram headed by a BLOCK DATA statement is a specification subprogram; one headed by a FUNCTION
or SUBROUTINE statement is a procedure subprogram. The term “program unit” is used to refer to any main
program or subprogram.

A maximum of 100 FORTRAN program units may be processed by one compiler call. All program units are
terminated with an END statement. The first statement of a main program may optionally be a PROGRAM
statement.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 1-6
FORTRAN IV
LINE 1
Program Declarators:
BLOCK DATA PROGRAM
FUNCTION SUBROUTINE
Specification Statements:
ABNORMAL EXTERNAL
COMMON IMPLICIT
COMPLEX INTEGER
DIMENSION LOGICAL
________ DOUBLEPRECISION _ REAL |
EQUIVALENCE
COMMENT .
ENTRY Statement Functions
Statement
Executable Statements:
Arithmetic assignment Logical assignment
FORMAT Arithmetic IF Logical IF
Statement ASSIGN PAUSE
DATA Assigned GO TO PRINT
Statement BACKSPACE READ
CALL PUNCH
NAMELIST Computed GO TO RETURN
Statement CONTINUE REWIND
DEFINE FILE STOP
DO TRACE OFF
ENDFILE TRACE ON
FIND Unconditional GO TO
WRITE
LINE n END
NOTES:
1. Vertical lines demarcate statements that may be freely intermixed; for example, FORMAT statements
may appear anywhere between the program declarator {which may not exist} and the END statement.
2. Horizontal lines demarcate statements that must be in the order shown; for example, statement functions
must follow all specification statements.
3. The dotted horizontal lines indicate that EQUIVALENCE statements must follow any specification

statements that specify items to share storage; DATA statements must follow any specification

statements that reference items to be initialized.

Figure 1—1. Source Statement Order

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 1-7
FORTRAN v

‘ 1.3. SOURCE CODE GUIDELINES
The FORTRAN IV compiler performs most efficiently when the source statements are in the following order:
. IMPLICIT
n ABNORMAL
n EXTERNAL
. type statements

INTEGER

- REAL
- COMPLEX
- LOGICAL
- DOUBLE PRECISION
. DIMENSION
. COMMON
. " EQUIVALENCE
u DATA statements
u Executable statements
The message:
FF850 PROGRAM REORDERED
indicates that efficiency has been lost.

Certain illegal FORTRAN DO loop constructions produce incorrect object-time results without any compile-time
diagnostics. These include:

. Use of the induction variable after satisfaction of its DO loop.

] Changing the induction variable, increment, or maximum value during a DO loop.

u Branching into the range of a DO loop without having previously branched out of it.

These constructions are forbidden (see 4.7), although no explicit compile-time diagnostic is provided.
Some coding sequences or habits give rise to more efficient object code, such as the following:

= Use simple variables (not in COMMON or EQUIVALENCE) for frequently used induction variables and

‘ subscripts.

u Significantly faster code is generated for short DO loops that contain no branches outside the loop in which
the induction variable is used only in subscripts.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 1-8
FORTRAN IV

. The best code is generated for subscripts in the form c*itk, where i is an integer variable and ¢ qnd k are
optional integer constants. 1

u When a generalized subscript contains a constant term, write it at the righthand end (i.e., in the form itk,
where i is an integer expression and k is an integer constant).

u Use logical IF statements instead of arithmetic IF statements for conditional branching. The| term IF
(A.EQ.B) GO TO 10 is superior to IF (A-B) 11, 10, 11 followed by 11 CONTINUE.

L] When possible, avoid the use of an EQUIVALENCE for any variable in a freqently used COMMON.

u When possible in multidimension arrays, use dimensions that equal exact powers of 2 as the| leftmost
dimension; i.e., an array (2, 10) is prefereable to an array (10, 2).

If the programmer writes logical expressions so that the truth or falsity of the expression can be determined early
in left-to-right reading of the expression, time can be saved. For example, if L is usually false, then write

L .AND. A+B .GT. 25

instead of:

A+B .GT. 25 .AND. L

significantly slow down a program. For example, if a fixed-point variable occurs in many mixed expressions, you
should create a floating-point variable that has the same value. This is easily done with an as ignment
statement of the form: ‘

Although mixed arithmetic is a convenient feature of the FORTRAN language, too great a use{ it may

Al=!

1.4. STATEMENT CONVENTIONS

Conventions used to illustrate FORTRAN statements in Sections 1 through 9 are presented throughout these
sections. Conventions for illustrating statements in assembler language in Sections 10, 11, and 12 and
Appendixes D and E are as follows:

L] Capital letters, parentheses {), and punctuation marks (except braces, brackets, and ellipses) must be
coded exactly as shown. An ellipsis (a series of three periods) indicates the presence of a variable number

of entries.
= Lowercase letters and terms represent information supplied by the user.
L] Information within braces { } represents necessary entries, one of which must be chosen.
] Information within brackets [] (including commas) represents optional entries that are included or omitted

depending on program requirements. Braces within brackets signify that one of the entries must be chosen
if that operand is included.

L Underlined parameters are selected automatically when a parameter is omitted. These are called defauits.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 1-9
FORTRAN vV

= Some defaults are dependent on entries selected in other arguments. For example:

FRECSIZE=(k
88:if FMODE=STD

168;if FMODE=BINARY
L] The notation
FRECSIZE+4

specified as a default for an argument other than FRECSIZE, indicates that the default value for this
argument consists of the value specified for the FRECSIZE argument, multiplied by 4. This default value
should be used only as a default; it should not be specified as a predefinition argument.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 2-1
FORTRAN IV

2. Data Types

2.1. GENERAL

The data types available in FORTRAN |V are integer, real, double precision, complex, logical, hexadecimal, and
literal. For additional information concerning FORTRAN data types, refer to the “Writing a FORTRAN Program”
section of the fundamentals of FORTRAN programmer reference. Data types are categorized by their
manipulation with the FORTRAN program; e.g., data may appear as constants, variables, or elements of an array.
Each of these categories is explained in this section (2.2, 2.3, and 2.4, respectively). Additional information on
the hardware characteristics of integer and real arithmetic is included in the discussion of the arithmetic section
in the system processor programmer reference.

2.2. CONSTANTS

A constant is an arithmetic, logical, or literal value defined by its representation in the souce program. Once
defined, a constant must not be redefined during program execution. An arithmetic constant is said to be signed
if it is written with a plus or a minus sign, and an unsigned constant is treated as a positive value. Constants are
represented internaily using 8-bit bytes organized as single units, groups of two (half words), groups of four
(words), and groups of eight (double words).

2.2.1. Integer Constants

An integer constant consists of an optional sign followed by a string of decimal digits with no decimal point. An
integer constant may have a maximum of 10 digits. If the value of the constant is positive, it may be preceded by
a plus sign; if the value is negative, it must be preceded by a minus sign; for example:

1
-365
100000000

An integer constant has the following 4-byte representation in storage:

integer

01 7| 8 15 | 16 23|24 31

Byte 1 ’ Byte 2 I Byte 3 l Byte 4

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 2-2

FORTRAN IV

where:

Is the sign bit (O indicates positive; 1 indicates negative).

integer
Is a 31-bit binary integer, in twos complement representation.

The maximum absolute value for an integer is 2,147,483,647 (231-1).

2.2.2. Real Constants
A real constant may be written as:

= A basic real constant: an optionally signed string of up to seven significant digits with a decimal point
preceding, embedded in, or following the string; for example:

-1701.001

L] A basic real constant followed by a decimal exponent; the decimal exponent is expressed by the letter E
followed by an optionally signed integer constant with a maximum of two significant digits; for example:

170.1E-03

L] An integer constant followed by a decimal exponent; if the integer portion exceeds the permitted seven
digits, truncation of the excess rightmost digits results; for example:)

+1701E-4
17010E-5

Real constants occupy one word {four bytes) of storage in normalized fioating-point representation. The format is:

s
characteristic fraction
0f1 718 15|16 23 |24 31
Byte 1 Byte 2 I Byte 3 I Byte 4
where:
S
Is the sign bit.

characteristic
Is the exponent portion of the real number in seven bits; it is derived from the power of 16 by which
the fraction must be multiplied to give the real value; the characteristic is stored as an excess 64
number.

fraction
Is six hexadecimal digits representing the fractional part of the real value. The radix point is between
bits 7 and 8.

The maximum range for a real constant is from approximately 10-78 through 1075. it may have the value O where
the fraction is identically binary O.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3 2-3
FORTRAN IV

' 2.2.3. Double Precision Constants

A double precision constant is similar to a real constant, except that it may contain up to 16 significant digits. It
is written as a basic real constant or an integer constant followed by a double precision exponent; a double

precision exponent is expressed by the letter D followed by an optionally signed integer constant with a
maximum of two significant digits; for example:

-.180018201840D12

A double precision constant may also be written as an optionally signed string of more than seven significant
digits with a decimal point preceding, embedded in, or following the string.

A double precision constant is stored like a real constant, except that two words (eight bytes) of storage are used:

s characteristic fraction
0|1 71 8 15| 16 23 | 24 31
Byte 1 Byte 2 I Byte 3 i Byte 4
32 39‘ 40 47| 48 55 | 56 63
. Byte 5 | Byte 6 l Byte 7 ! Byte 8

A double precision constant may range in value from approximately 10-78 through 1075, or it may have the value O.

2.2.4. Hexadecimal Constants

Hexadecimal constants are written as the letter Z followed by any combination of up to 32 hexadecimal digits;
the hexadecimal digits and their equivatents are:

‘Hexadecimal Digits Decimal Equivalents Binary Representation
0o 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
' 7 7 0111

{continued)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 2-4

FORTRAN IV
Hexadecimal Digits Decimal Equivalents Binary Representation
8 8 1000
9 9 1001
A 10 1010
B 1 1011
o 12 1100
D 13 1101
E 14 1110
F 15 1111

Hexadecimal constants can be used only to initialize variables or arrays in specification or initialization
statements. The maximum number of digits used for initialization is determined by the type of data associated
with the constant. If the number of digits specified exceeds the maximum, the leftmost digits are truncated. If
less than the maximum are specified, hexadecimal O’s are padded on the left. Two hexadecimal digits occupy
one byte in main storage. Some examples of hexadecimal constants are:

Hexadecimal Binary
Constant Equivalent
ZF9 1111 1001
ZAS8 1010 1000
2C5 1100 0101

2.2.5. Complex Constants

A complex constant consists of an ordered pair of real constants or double precision constants, each of which
may be signed, separated by a comma, and enclosed in a set of parentheses. The first portion of the complex
constant is the real part, and the second is the imaginary part of the complex value. For example, (3.1415,182.)
and (314D-2,-18.2D1) are valid complex constants.

Complex constants are stored in either two or four words, depending on whether a double precision constant
appears. The presence of a double precision constant within the parentheses causes the other constant to be
treated as double precision, thus forming a double precision complex constant of 16 bytes. Integer constants in
this context are converted to real constants by the compiler. For example:

(10,50D+7) becomes {10.0 D+0,50D+7)
(10,10) (10.0 E+0,10.0 E+0)
CALL A (10,10) CALL A (10,10}
CALL A ((10,10)) CALL A ((10.0, 10.0))

2.2.6. Logical Constants

Logical constants specify the logical values .TRUE. or .FALSE. and occupy one word in storage. The value

.FALSE. has a binary representation of O; .TRUE. has an internal representation of X'FF".
!

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 2-5

FORTRAN vV

2.2.7. Literal Constants

A literal constant consists of 1 to 2565 characters from the FORTRAN character set (Table 1-1). Each character in
the string requires one byte of storage. Two methods of writing literal constants are:

1. as a Hollerith constant in the form wHc,c,...cw where w is an unsigned integer constant and ¢ represents a
character; or

2. as a character string enclosed in apostrophes:'c,c,...cw’ {if the apostrophe occurs in the string, it is
represented by doubling that character).

The literal DO NOT is represented by ‘DO NOT' or 6HDO NOT. The literal DON'T is represented by ‘DON"T' or
5HDON'T.

2.3. VARIABLES

A variable is represented by a symbolic name (1.2.4) that identifies a single value. A variable is associated with a
data type, and in FORTRAN IV there is both a standard and an optional length specification that determines the
number of bytes assigned in main storage (Table 2-1).

Table 2—1. Data Types and Optional Lengths

FORTRAN Standard Length Optional Length
Name Data Type in Bytes Data Type in Bytes
Integer Integer »4 4 Integer»2 2
Real Real«4 4 Real*8 8
Double precision Double precision 8 None
Complex Complex+8 8 Complex+16 16
Logical Logical*4 4 Logical*1 1

The data type associated with a variable is determined by either the explicit type declaration statements (6.4.1),
by the IMPLICIT statement (6.4.2), or by the variable name used. Names beginning with the letters |, J, K, L, M,
or N are assumed to represent integer values; names beginning with all other letters or $ are assumed to
represent real values.

To prevent confusion where the length can differ, the complete data type appears in this document; a reference
to 16-byte complex data appears as complex*16. A reference to logical data without any length specification
refers to logical*4 data. The optional specification for real data is real*8, the equivalent of double precision
representation.

Variables of the double precision type have only a standard length. There is no variable type associated with
literal or hexadecimal data. The optional length described may be specified in either the explicit type statements
or the IMPLICIT statement.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3 2-6

FORTRAN IV

The internal representation of the values is identical with that described for the proper constant type, with the
exception of integer*2 and logical*1 where there are no corresponding constants. The integer*2 variable or array
element occupies two bytes, with the sign stored in the most significant bit:

s integer

011 7|8 15

Byte 1 I Byte 2

The maximum value for the integer*2 type is 32767 (2'5-1). The hardware does not provide overflow indications
if the integer*2 is exceeded; therefore, significant numeric bits can propagate into the sign bit.

Example:

The following program prints the value -32768, with no indication of arithmetic overflow.
1 7

INTEGER « 2 1/32767/,)/1/.,K
K=1+J
PRINT 10,K

The logical*1 variable or array element occupies one byte in main storage. The value .FALSE. has a binary
representation of zero; .TRUE. is nonzero and is usually X'FF’.

2.4. ARRAYS

An array is an ordered set of values. Each value is called by array element, and the entire set is identified by a
symbolic name called an array name. An array is described by an array declarator {(Section 6). In FORTRAN IV,
the array can be declared as having a maximum of seven dimensions.

The form of the array declarator is dependent on the number of dimensions as shown in Table 2-2. For instance,
an array named AGO with three dimensions, each four elements in size, has the declarator AGO (4,4.4). AGO is
the array name, and the numbers in the parentheses are dimension declarators. Each dimension declarator must
be an unsigned integer constant, except when a dimension is adjustable. In this case, the dimension declarator
must be an integer variable with a length of four bytes.

2.4.1. Array Element Reference

Any element in an array may be referenced by using the array name, followed by parenthesized subscripts in the
format: ‘

array name (S;,S,,...,Sp)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 2-7
FORTRAN IV

where:

May be any integer or real arithmetic expression. The arithmetic expression must be evaluated
during execution as an integer greater than 0. Each subscript is evaluated in accordance with the
standard rules for evaluating mixed-mode expressions (Section 3).

Must correspond to the total number of subscripts in the declarator.

In an EQUIVALENCE statement, the number of subscripts may be either one (where the correspondence of
elements is determined by the location of array elements as in 2.4.2) or the number of subscripts in the array
declarator.

2.4.2. Element Position Location

General expressions for locating the position of an array element relative to its first element are given in Table
2-2. In this table, the first byte of the array is relative location O; the letters a,b,...,g refer to the value of a
subscript expression in an array element reference; the letters A,B,...,G refer to the values of the dimension
declarators; and the m is a multiplier determined by the number of bytes of storage required for each array

element.
Table 2—2. Relative Location of Array Elements
Number of Declarator Subscript Relative Location of Element
Dimensions Form Form in the Array
1 {(A) (a) fa-t)em
2 (A,B) (a,b) ((a-1)+Ax(b-1)) *m
3 (A,B,C) {a,b,c) ({a-1}+Ax(b-1)+A*Bx{c-1})*m
7 (AB,CDEFG) {a,b,c.d,e.f.g) ({a-1)+A*(b-1)+A=Bx(c-1)+
. tAxB+CxD+ExFx{g-1))*m
Examples:

If an array declarator is AGO(17), if the element referenced is AGO(4), and if the array is real, then the
location of the first byte of the fourth element relative to the beginning of the array is found with the
expression (a-1)*m. In this case, (4-1)*4=12, or the first byte of that element, is the twelfth from the
beginning of the array.

If AGO is declared as AGO(9,10,11) and the element to be located is AGO(3,4,5), then the calculation is
{(2)+9+(3)+9+%10+(4))*4, or location 1556.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 3-1
FORTRAN IV

3. Expressions and
Assignment Statements

3.1. GENERAL

This section discusses the use of expressions in FORTRAN |V programming and describes the assignment
statements. For additional information, refer to the “FORTRAN Expressions”” and “Assignment Statements”’
sections of the fundamentals of FORTRAN programmer reference.

3.2. EXPRESSIONS

An expression is a group of one or more elements and operators that is evaluated as a single value during
execution. Three different classes of expressions are evaluated: arithmetic, relational, and logical expressions.
Each of these expressions, as well as the order of evaluation, mixed-mode arithmetic, and user checks on
arithmetic operations, is discussed |n 3.2.1 through 3.2.7.

3.2.1. Arithmetic Expressions

An arithmetic expression is constructed as a numeric constant, a variable name, an array element reference, a
function reference, or combinations of these by using arithmetic operators. An arithmetic expression is always
evaluated as a numeric value.

3.2.2. Relational Expressions

A relational expression, actually a subset of logical expressions, consists of two arithmetic expressions separated
by a relational operator. The expression is evaluated at execution as a .TRUE. or .FALSE. statement. No complex
type of arithmetic expression may be used in a relational expression; however, the other types may be mixed in

any combination.

When mixed-mode arithmetic comparisons are made, the priority of the data type is:

Data Type Priority
Real*8 (double precision) 1
Real*4 2
Integer*4 3

4

Integer*2

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 3-2
FORTRAN IV

The expression with the lowest priority is converted to the type of the higher priority, and the comparison is
made. For example, if the relational expression consists of an integer expression and a real expression, the
integer is converted to a real*4 type before the comparison is made.

The result of a relational expression is always logical*4 type.

3.2.3. Logical Expressions
A logical expression is:

u a relational expression, a logical constant, a logical variable reference, a logical array element reference, a
logical function reference, or a logical expression in parentheses;

= a logical or relational expression preceded by the .NOT. operator; or

. two logical or relational expressions separated by .AND. or .OR..

If both operands of a logical expression are of the logical*1 type, then the result is of logical*1 type; otherwise,
the result is the logical*4 type.

3.2.4. Evaluation Order

An expression is evaluated by the priority of the operators in Table 3-1 and then calculated as follows:

1. This process begins with the leftmost operator.

2. If no parentheses intervene, the current operator is compared with the operator on its right. If the priority
of the current operator is greater than or equal to the priority of the next operator, the current operation is
performed and the result becomes the operand of the prior operator. Otherwise, the next operator becomes
the current operator, and this step is repeated, using it for comparison.

3. Upon encountering the right end of an expression, remaining operations are performed from right to left.

4. Sequential exponentiation is performed from right to left. For example, X*»Y*+Z is evaluated as X**(Y**Z).

5. Sequential integer division is performed from left to right. For example, 1/J/K is evaluated as (I/J)/K.

6. Expressions in parentheses are treated as single operands and evaluated first, starting with the innermost
parenthesized expression, before continuing the left-to-right comparisons.

In addition to these listed rules, the order in which operations are performed may be slightly affected by
optimization. For example:

. Logical expressions are not always completely evaluated; once the value is known, evaluation ceases.
Thus, for

IF (A .GT. B .OR. C .LT. FUNC(X)) GO TO 18

n if A is greater than B, control is transferred to statement 10 immediately, because the expression must be
.TRUE.. The function FUNC is not referenced.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 3-3

FORTRAN iV
. Table 3—1. FORTRAN IV Operators and Evaluation Order
Operation Operator Order of Priority
Function evaluation fix) 1
Exponentiation % 2
Multiplication *
3
Division /
Addition or unary plus +
4
Subtraction or unary minus -
Greater than .GT.
Greater than or equal to .GE.
Less than AT
5
Less than or equal to .LE.
Equal to .EQ.
Not equal to .NE.
Logical negation .NOT. 6
. Logical product AND. 7
Logical sum .OR. 8

3.2.5. Mixed-Mode Arithmetic
Mixed-mode arithmetic occurs when an operation is performed on two operands that are not the same type. The
type and length of the result are shown in Table 3-2 for the arithmetic operators, including exponentiation.
3.2.6. Arithmetic Operation User Checks
The following subroutine calls enable the programmer to check the evaluation of an arithmetic expression:
= CALL DVCHK(i}

Used to check for a division by zero after the division has been executed.
. CALL OVERFL{i)

Executed after an arithmetic operation to check for an overflow or underflow condition.
= CALL ERROR1 and CALL ERROR(i)

Routines used to set and test an indicator.

See 5.6.3 for more information on these subroutines.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 3-4
FORTRAN IV

Table 3—2. Result Types and Lengths for Mixed-Mode Arithmetic

First Operand: Type {Length)
Integer }Integer)Real Real Complex | Complex
(2) (4) (4) (8) (8) (16)
Integer |integer |iInteger |Real Real Complex| Complex
(2) (4) (4) (4) (8) (8) {16)
Integer JInteger |integer |Real Real Complex | Complex
(4) (4) (4) (4) (8) (8) (16)
Second Real Real Real Real Real Complex| Complex
Operand: | 4 (@ (@) @) () ®) (16)
(L.re‘:\::h) Real Reat Real Real Real Complex | Complex
(8) (8) (8) (8) (8 (18) (16)
Complex Complex jComplex | Complex | Complex | Complex | Complex
(8) (8) (8) (8 (16} (8) (16)
Complex |Complex |Complex |Complex | Complex | Complex | Complex
(16) (16) (16} (16) (16} (16) (16)

3.2.7. Implementation of Arithmetic Operations

When the compiler generates object code for arithmetic and logical expressions, most of the FORTRAN
operations are performed by using inline instructions. The size or complexity of some operations can cause the
compiler to generate calls to routines provided in the FORTRAN IV library.

Multiplication and division involving complex variables and array elements are performed by library routines.
Exponentiation operations are performed by a library routine, except for cases involving integer or real bases
raised to an integer constant power, where inline multiplications are generated.

These library routines are completely described in the Series 90 FORTRAN mathematical library programmer
reference.

3.3 ASSIGNMENT STATEMENTS

A value is assigned to a variable or an array element by executing an assignment statement. This value is the
current value until the variable or array element is redefined. There are three possible assignment statements:
the arithmetic and logical (described in 3.3.1) and the ASSIGN statement (3.3.2).

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 3-5
FORTRAN IV

. 3.3.1. Arithmetic and Logical Assignment Statements

Format:

Is any type of arithmetic expression for an arithmetic assignment statement or a logical expression
for logical assignment statements.

Is any type of arithmetic expression for an arithmetic assignment statement or a logical expression
for logical assignment statements.

Description:

The arithmetic or logical assignment statement assigns a single value to a variable or array element. The =
operator is read as “is replaced by” as in “AMR is replaced by 8.19" for AMR=8.19.

For all data types, except logical, Table 3-3 demonstrates the conversion of the expression to the type of
the receiving variable represented by v. Combinations of arithmetic and logical types are illegal. No

conversion takes place in logical evaluations except where e is logical*4 and v is logical*1. In this case, the
low order three bytes of e are ignored. The conversions are accomplished by intrinsic functions (5.6.1).

3.3.2. ASSIGN Statement

Format:

ASSIGN k TO i

where:

Is a statement label in the same program unit as the ASSIGN statement and is the label of another
executable statement.

Is the name of an integer*4 variable.
Description:

The ASSIGN statement permits an integer variable name to represent a statement label; the variable name
can then be used in the assigned GO TO statement. Once the integer variable name has been assigned a
value by the ASSIGN statement, it can be used for no other purpose until it is redefined. For instance, it

cannot be used in an arithmetic expression unless its value is redefined by an arithmetic assignment
statement or a READ statement.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

FORTRAN IV

3-6

Table 3—3. Assignment Statement Conversions

Data Integer Real Dm':t.)le Complex c lex=16
Types Integar«+2 (integer+4) (real*4) Precision {complex*8) omplex=
(real«8)
Integer =2 None * * * * *
I nteger il None IF1X(e) 1FIX 1FIX IFIX{SNGL
(integer *4) {(SNGL{e)) (REAL(e)) (DREAL(e)})
Real rrx FLOAT (e} None SNGL{e} REAL(e) SNGL
{real=4) (DREALIe})
v Double e DFLOAT(e) DBLE(e) None DBLE DREAL(e)
precision (REALIe))
Complex il CMPLX({FLOAT CMPLX CMPLX(SNGL. | None CMPLX(SNGL
{complex*8) (e),0.0) (e,0.0) (e),0.0) (REAL(e)),SNGL
(AIMAG({e)))
Complex*16 ol DCMPLX{DFLOAT DCMPLX(DBLE BCMPLX DCMPLX(DBLE None
{e),0.0) (e},0.0) (e,0.0) (REAL(e)),DBLE
(AIMAG(e)))

*Processing for integer*2 is identical with that for integer, except that the high order 16 bits of integer*4 are truncated.

**The sign is extended.

***e is treated as an integer*4,

NOTE:

See Table 5-3 for the definitions of these intrinsic functions.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 4-1

FORTRAN vV

4. Control Statements

4.1. GENERAL

Control statements are executable statements that modify the normal sequence of program execution. The
control statements used in FORTRAN IV are identical in function with those described in the “Control
Statements” section of the fundamentals of FORTRAN programmer reference.

4.2. ARITHMETIC IF

Format:
IF(e)k,, ky, ks
where:
e
Is any integer, real, or double precision arithmetic expression; complex is not permitted.
k
Is a statement label in the same program unit as the arithmetic IF control statement.
Description:

If the arithmetic expression value is negative, control is passed to the statement with the k; statement
label; if the value is zero, k, receives control; and if the value is positive, ks receives control. If any label is
omitted, control is passed to the next executable statement following the IF statement when the conditions
for the missing label are met. Trailing commas may be omitted when labels are not specified.

Note that the internal representation of real and double precision values is an approximation. One of these
types could be stored internally as a nonzero approximation of zero.

Examples:

7

IF(1-1)18, 28
IF(X-Y)15
IF(BETA-1.5),,280

~Noa| o on

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 4-2
FORTRAN IV

Statement 5 indicates that control is to be transferred to the statement labeled 10 if | is less than 1, to the
statement labeled 20 if | equals 1, or to the next statement following 5 if | is greater than 1.

Statement 6 transfers control to statement 15 if Y is greater than X; otherwise, control is transferred to the
next executable statement.

Statement 7 transfers control to statement 20 when BETA is greater than 1.5.

4.3. LOGICAL IF

Format:

1F(e)s

where:

Is any logical expression (3.2.3).

Is any executable statement except a DO, END, or another logical IF statement.
Description:

The logical IF statement allows the execution of a statement to be dependent on the truth of a logical
expression.

Examples:

1 517

IF(A.AND.B)GO TO 28
IF(C.GT.D) WRITE (18)C

if both A and B are TRUE, the GO TO statement is executed, and control passes to statement 20. If either A
or B is FALSE, the GO TO statement is ignored and control is transferred to the next executable statement.

The WRITE statement in the second example is executed if the value represented by C is greater than that
represented by D. Otherwise, control passes to the next executable statement below the IF statement.

4.4. UNCONDITIONAL GO TO

Format:

GO TO k

where:

Is the statement label of an executable statement in the same program unit.

Description:

The unconditional GO TO statement provides an unconditional transfer of control to the statement with the
label specified.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 4-3
FORTRAN IV

. 4.5. COMPUTED GO TO
Format:

GO TO(ky,ky, ..., kp),i
where:
k

Is a statement label of an executable statement in the same program unit.

Is an integer variable that must be defined by using an arithmetic assignment or a READ statement
before the execution of the GO TO control statemeht. The comma preceding i is optional.

Description;

The computed GO TO control statement permits the transfer of control to a label whose position in the GO
TO control statement equals the value of an integer variable. For instance, if the value of the integer
variable is 3, control is transferred to the third statement label in the computed GO TO contro! statement. If
the integer variable is negative, is equal to O, or is greater than the number of statement labels in the
control statement, control is transferred to the next executable statement following the computed GO TO
statement.

Example:

® .

GO TO (15,25,35,45), ITEM

When the value of the integer variable ITEM is 4, control is transferred to statement 45; when the value of
ITEM is 1, control is transferred to 15; and so on. Any value other than 1 through 4 resuits in control being
transferred to the next executable statement following the GO TO statement.

4.6. ASSIGNED GO TO

Format:
GO TO i, (ki ka,... ., kp)
where:
i
Is the name of a 4-byte integer variable that must be defined by an ASSIGN statement.
k

Is the statement label of an executable statement within the same program unit as the assigned GO

TO control statement; the parenthesized list of labels and the preceding comma are optional and may

be omitted. The list aids in defining the flow of the control to the compiler. This list, therefore, aids

the compiler in diagnosing errors and often provides significantly better code generation. When used,
‘ the label list must contain all possible destination labels.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 4-4
FORTRAN IV

Description: '

The assigned GO TO control statement transfers program control to the statement labeled with the current
value represented by an integer variable.

Example:

1 7
GO TO K5, (16,13,15,17,18,21)

When the current value of the integer variable K5 is associated with one of the statement labels in
parentheses, control is transferred to the statement with that label. The value of the integer variable can be
defined only by the ASSIGN statement (3.3.2). When the list of statement labels (10, 13, 15, 17, 18, 21) is
omitted from the assigned GO TO control statement, control is still transferred to the statement label
associated with the value of the integer variable K5.

4.7. DO
Format:

DO ni=m,,my,m;

where:

Is the statement label of the terminal statement of the DO loop which must follow the DO statement,
but which cannot be another DO statement. i

Is the control variable, which is an integer variable that may be referenced, but not redefined, within
the DO range.

m,
Is the initial parameter, the value of which is assigned to the control variable before the first
execution of the DO loop; this value should be less than or equal to the value of m,.

m;
Is the terminal parameter; it is compared to the control variable after each execution of the DO loop;
when the value of the control variable is greater than the value of m,, the DO control statement is
satisfied and control passes out of the DO range.

Is the incrementing parameter; its value is added to the control variable i after each execution of the
DO loop and before the comparison of m, and the control variable i. When this parameter is omitted,
1 is assumed to be the increment value.

Description:

The DO control statement initiates and controls the repeated execution-of the group of statements within
the DO range, which extends from the first executable statement following the DO control statement to the
terminal statement.

For a DO statement, the compiler generates two blocks of executable code:

] in the position of the DO statement, a block that defines the control variable to the value of the initial
parameter; and

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 4-5
FORTRAN IV

‘ a between the terminal statement of the DO loop and the statement following it, a DO control block.
Here, the control variable is incremented and tested, and program execution is resumed by either
exiting or reentering the DO range.

If no control statements are present in the DO range, the loop will be executed

Mmooy
ms

times by the action of the DO control block. A control statement can prevent the execution of the DO
control block; for example, the loop

1 5 7
DO 18 i=1,19

18 II;(A.GT.B)IF(C)ZB,EW

may be executed 10 times, unless the condition

(A.GT.B).AND.(C.GT.B)

. occurs, which prevents the execution of the DO control block and causes premature loop exit.

Either integer constants or integer variable names may be used as parameters for the DO control
statement; variables used as parameters may not be redefined within the DO range. The index variable of
the DO loop should be considered to be undefined when the loop is exhausted.

4.7.1. Transfers of Control to and from a DO Range

In FORTRAN IV programs, program control can always be transferred out of a DO loop without satisfying the DO
control statement parameters. However, control can be transferred into a DO range only from the extended DO
range, which consists of those statements executed between the transfer out of the innermost DO of a
completely nested DO loop and the transfer back into the DO loop range. For a more complete explanation of the
DO control statement, refer to the “‘Control Statements’ section of the fundamentals of FORTRAN programmer
reference.

4.8. CONTINUE

Format:

CONTINUE

Description:

The CONTINUE control statement can serve as a terminal statement of a DO range. It produces no coding

‘ and may be used anywhere in the program, subject to the ordering in Figure 1-1, without affecting the
logical program execution. When used as the terminal statement of a DO range, the CONTINUE control
statement must be labeled.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 4-6
FORTRAN 1V

4.9. STOP

Formats:

STOP
STOP n
STOP‘a’

where:

Is a message in the form of an unsigned decimal integer constant of not more than five digits.

Is a message in the form of a literal of not more than 243 characters enclosed in apostrophes.
Description:
The STOP control statement terminates job step execution and returns program control to the operating

system, indicating the logical end of the program. When a STOP n or a STOP ‘a’ is executed, a display is
always produced at the job’s diagnostic device (13.3.3).

4.10. PAUSE

Formats:

PAUSE
PAUSE n
PAUSE'a’

where:

Is a message in the form of an unsigned decimal integer constant of not more than five digits.

Is @ message in the form of a literal of not more than 243 characters enclosed in apostrophes.

Description:

The PAUSE control statement halts execution of the program and produces a display. The operator has the
choice of allowing the program to proceed to the next executable statement or to cancel the job.

4.11. END

Format:

END

Description:

The END control statement is an executable statement indicating the physical end of a program unit; it may
not have a statement label. When the END statement is executed in a main program it is interpreted as a
STOP control statement (4.9). When executed in a subroutine or function subprogram, the END statement
is equivalent to a RETURN statement (5.4.1.2).

FORTRAN IV

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-1
|
i

5. Functions and Subroutines

5.1. GENERAL

When a calculation or series of calculations is required repeatedly in a FORTRAN program, the statements used
to perform the calculations can be coded once as a procedure. This procedure can be referenced each time the
calculations are to be performed. Procedures, as explained here and described in the “Procedures and Procedure

Subprograms’’ section of the fundamentals of FORTRAN programmer reference, are categorized by:

] whether the procedure coding is inserted inline by the compiler each time the procedure is referenced, or
whether the procedure is compiled separately as a subprogram;

L] whether the procedure is referenced by a subroutine CALL statement or by a function reference; and
. whether the procedure is written by the user or supplied with the FORTRAN IV library.

Table 5-1 lists the procedures and shows their relationships within these categories.

Table 5—1. FORTRAN IV Procedures

Coding Inline Referenced Code
Procedure

or Subprogram By Source
Statement Subprogram Function User
function reference
External Subprogram Function User
function reference)
Intrinsic Inline* Function Sperry
function reference Univac
Standard Subprogram Function Sperry
library reference Univac
function
Subroutine Subprogram CALL User

statement

Standard Subprogram CALL Sperry
library statement Univac
subroutine

*Some of the larger intrinsic functions are external subprograms.
They are marked with (I) in Table 5-3.

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 5-2

FORTRAN IV

Functions are procedures referenced in expressions within FORTRAN statements. They always have at least one
argument, they always return the value associated with their name when they are executed, and they return
control to the expression within the referencing statement. The functions are:

. Statement functions

n External functions

» Intrinsic functions

u Standard library functions

Only statement functions and external functions are coded by the user.

Subroutines are procedures coded as subprograms; when they are referenced, control is transferred to the
subroutine, it is executed, and the control is then returned to the statement following the subroutine reference.
Subroutines are either user-coded or supplied as standard library subroutines. Subroutines differ from functions
in the method of referencing the procedure, in that multiple values or no value can be returned, and in the
method by which control is returned to the referencing program unit.

Functions always transfer a value associated with the function name, but subroutines do not. When value
transfers are made by subroutines, they are accomplished by redefining arguments or common storage.
Arguments are included as part of the procedure definition; these are dummy arguments. Arguments are also
specified in the procedure reference; these are actual arguments. Substitutions of actual for dummy arguments
are made when the procedure is referenced at execution time.

The actual arguments in the procedure reference must correspond to the dummy arguments in the procedure

definition. They must correspond in number, data type (except for literals), and order. The argument forms
permitted for actual arguments in the user-coded procedures are shown in Table 5-2.

Table 5—2. Argument Forms

Form of Actual Arguments Staten'\ent Exter'nai Subroutines
Functions | Functions

Variable name Yes Yes Yes
Expression Yes Yes Yes
Function reference Yes Yes Yes
Array element name Yes Yes Yes
Array name No Yes Yes
Literal constant No Yes Yes
Label parameter No No Yes
{statement label

preceded by &)

External procedure name No Yes Yes

NOTE:

External procedure names appearing as actual arguments must be declared
in an EXTERNAL statement (6.7) or referenced previously in a CALL
statement or function reference.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-3
FORTRAN IV

5.2. PROCEDURE REFERENCE

Depending on whether the procedure is a function or a subroutine (Table 5-1), it is referenced by either the
function reference or the subroutine CALL statement.

5.2.1. Function Reference

Statement functions, external functions, intrinsic functions, and standard library functions are all referenced in
expressions with the general function reference format:

f(a;,a;,...,ay)

where:

Is the symbolic name used to identify the user-coded function in its function definition, or supplied as
the function name of an intrinsic or library function.

Represents an actual argument; at least one is required.

Actual arguments must agree in type, number, and order with the dummy arguments in the function definition,
but actual argument types are not restricted by the data type of the function name. The forms permitted for
actual arguments are shown in Table 5-2 for statement functions and external functions, in Table 5-3 for
intrinsic functions, and in Table 5-4 for standard library functions.

Examples:

1 7

CZI=CBRT(SUZU)+CARA+YAM
MAICO=NORT++JAWA-INT(KS,ABL,R1)

In the first statement, the standard library function CBRT is referenced. In the next line, a user-coded
statement function, INT, is referenced, and three actual arguments are included in the function reference.
An integer type value is returned to the referencing expression, although the actual arguments are both
integer and real types. This is because the function name is an integer variable name, and the value type -
returned by the statement function is determined by the function name.

5.2.2. Subroutine Reference (CALL Statement)

All subroutines, whether written by the user or supplied with the compiler, are referenced with the CALL
statement.

Format;

CALL s(a,,a,,...,a,)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-4

FORTRAN IV

where:
s
Is the symbolic name of the subroutine as defined by the user or as supplied with the standard library
subroutines.
a
Is an actual argument. The use of a statement label preceded by an ampersand is allowed (5.4.2.2).
The argument list is optional and must be enclosed in parentheses when used.
Description:

The CALL statement is used to transfer control to the subroutine specified by the name. The maximum
number of actual arguments permitted is 255; the allowed forms are listed in Table 5-2.

Example:

1 7

CALL PGNUM
CALL ERROR(INER)
CALL SUB(X,Y,&10 , FUNC,&28)

Three subroutines are referenced by the calls in the example. In the first CALL statement, control is
transferred to the subroutine PGNUM. When the next line is executed, the standard library subroutine
ERROR is called; the actual argument INER is specified. The last line in the example references the
subroutine SUB; among the arguments are two statement labels, &10 and &20, which provide an optional
method of returning control from the subroutine explained in 5.4.2.2.

5.3. STATEMENT FUNCTION DEFINITION

The user-coded functions are the statement functions and the external functions. External functions are coded
as subprograms, as described in 5.4. Statement functions, however, are user-coded procedures that are defined
using only one FORTRAN statement. Statement functions require at least one argument and return one value to
the referencing statement. They are referenced with the function reference described in 5.2.1. After the
evaluation of the statement function, control is returned to the expression within the referencing statement.
Format:

f(a,,a,,....a)=e

where:

Is the symbolic function name assigned to the procedure.

Is a dummy argument consisting of a variable name.

Is a limited arithmetic or logical expression.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-6

FORTRAN IV

Description:

The statement function definition statement defines a function that may be referenced in a subsequent
expression. The statement function definition statement must precede all executable statements in the
program unit and must follow all specification statements (Figure 1-1). Note that a reference to another
function is permitted, but if such a reference is made to a statement function, that statement function must
have been previously defined in the program unit. For example, the following Example 1 is permitted but
Example 2 is not:

Example 1:

1 7

QU (A) = 2.8+SQRT (A)
AVR (A,B,PNT) = Ax«B+QU (PNT)

Example 2:

AVR (A,B,.PNT) = A««B+QU (PNT)
QU (A) = 2.8+SQRT (A)

The type of the value returned by the statement function is determined by the statement function name
according to the rules for variables described in 2.3, or it’s type if specified by a type statement (6.4) in the
same program. Note that it is the function name, not the type of the arguments or of the expression, which
determines the value type returned by the statement function, and that the function name cannot be
referenced from other subprograms.

Dummy argument names in the statement function definition may appear as variable names in the same
program unit. A maximum of 255 arguments may appear in the definition.

A limited expression is an arithmetic or logical expression that cannot contain a reference to another
statement function unless that function was previously defined. If the statement function being defined
appears in an external function or a subroutine, the expression cannot contain a symbolic name identical
with an entry name in the same subprogram.

5.4. SUBPROGRAM DEFINITION

Of the three user-coded procedures — statement functions, external functions, and subroutines - the latter two
are coded as subprograms.

5.4.1. External Functions

An external function is a user-coded function procedure requiring more than one FORTRAN statement for its
definition. External functions require at least one argument and return at least one value to the referencing
statement. They are referenced with the function reference (5.2.1). After evaluation of the external function,
control is returned to the expression within the referencing statement, where computation continues, using the
value associated with the function name.

An external function is defined by coding the required FORTRAN statements as a subprogram that begins with a
FUNCTION statement (5.4.1.1) and ends with an END statement (4.11).

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 5-6
FORTRAN IV

The external function returns a value of the type determined by the function or entry name, not by the data types
of the arguments. The data type of the function name is decided by the first letter of the external function name,
a type statement (6.4) in the same program unit as the FUNCTION declaration, or in the type specification in the
FUNCTION statement.

Multiple entry into an external function is provided by the ENTRY statement (5.4.3).

5.4.1.1. FUNCTION Statement

Format:

t FUNCTION f»s(a,,a,,...,ap)

where:

*S

Is an optional type specification used to determine the data type of the symbolic name f, and
therefore of the value returned by the external function; when this specification is omitted, the type is
determined by a type statement in the same program unit or by the implicit type of the external
function name. The permissible types are INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and
LOGICAL.

Is the symbolic name identifying the procedure; routines supplied by Sperry Univac reserve the dollar
sign as the third character of the function name. The name, or an ENTRY name, must be assigned a
value by using a READ or assignment statement to define the function value.

Is an optional length specification for the symbolic function name (1.2.4). This option may be used
only when the type option is used and the type specified is not DOUBLE PRECISION.

Is a dummy argument that may be a variable name, an array name, or a procedure name; variable
names may be enclosed in slashes to use the call-by-name method of argument substitution (5.5.2).

Description:

The FUNCTION statement defines an external function and must be the first statement of the subprogram
coded to define the external function.

Examples:

7

INTEGER FUNCTION XX1+2 (A)

RETURN
END

FUNCTION YY1 (B,C.D.H)

RETURN
END

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-7

FORTRAN IV

In the examples, two external function subprograms are outlined. In the first, the value returned is defined
as a 2-byte integer. The second subprogram returns a 4-byte real value unless, in the same program unit,
the type of the external function name YY1 is specified as another data type.

5.4.1.2. RETURN Statement

Format:

RETURN

Description:

The RETURN statement causes control to be transferred from the subprogram used to define the external
function (or subroutine as explained in 5.4.2.2) to the program unit that referenced the subprogram.

5.4.1.3. ABNORMAL Statement

One of the functions of the FORTRAN IV compiler is to increase efficiency by eliminating computational
redundancies in a statement sequence such as:

X=A+B+C
Y=FUNC(A)
I=SIN(A+B)

The A+*B is considered to be a common subexpression. The statements are usually evaluated as:
TEMP=A+B
X=TEMP-+C

Y=FUNC (A)
I=SIN(TEMP)

Other computational redundancies may be generated by the compiler and then eliminated while expanding the
array element location function (Table 2-2). However, if the function FUNC redefines the value of its argument A,
the reordering produces unexpected results. Functions that cause such undesirable side effects are known as
abnormal functions and should be identified to the compiler.

A function is considered abnormal if it:

. redefines the value of an argument or of an entity declared in common storage (as discussed in the
preceding paragraph);

. contains an input/output statement (such as a function that prints its results);, or

L does not always produce the same function value when given identical arguments (such as a function that
saves values between successive references).

Format:

ABNORMAL f,,f,,...,f4

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-8
FORTRAN IV

where:

Is the name of an abnormal function.
Description:
The ABNORMAL statement identifies abnormal functions.
When a program unit contains no ABNORMAL statement, all referenced functions are considered
abnormal, except for the standard library functions (Table 5-4). In an ABNORMAL statement, all listed
functions are considered abnormal; any other functions encountered are considered normal. An

ABNORMAL statement without a list specifies that all functions are normal.

An abnormal function is permitted to cause side effects affecting other statements, as in the preceding
example, but the function should not impact the same statement or expression. For example,

A(D)=1+F(1)

will, in general, cause unpredictable results if the function F is abnormal.

5.4.2. Subroutines

User-coded subroutines are procedures that, like external functions, are separately compiled as subprograms.
Unlike function subprograms, however, subroutines:

. do not require arguments;

L do not necessarily return a value to the referencing program unit;
L have no data type associated with the subroutine name;

n are defined with the SUBROUTINE statement (5.4.2.1);

] are referenced with the CALL statement (5.2.2); and

= return control to the first executable statement after the CALL statement, or they can return control to a
selected statement label in the referencing program unit (5.4.2.2).

Subroutines may have a maximum of 255 arguments; the argument forms permited are shown in Table 5-2.
Multiply entry into a subroutine is permitted (5.4.3). Subroutines are always considered to be abnormal.

5.4.2.1. SUBROUTINE Statement

SUBROUTINE s(a;,a,,...,a)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-9
FORTRAN IV

where:

Is a symbolic name identifying the subroutine. Avoid the use of the dollar sign as the third character
of the subroutine name, since this convention is used in naming system routines. This name cannot
appear elsewhere in the subprogram.

Is a dummy argument. The argument list is optional; when it is used, it is enclosed in parentheses.
Each specification may be a variable name, an array name, a procedure name, or an asterisk.
Variable names may be enclosed in slashes to specify the call-by-name method of argument
substitution (5.5.2).

Description:
The SUBROUTINE statement defines the subroutine and must be the first statement of the subprogram.

An asterisk in the dummy argument list signifies that the corresponding actual argument is a label

parameter preceded by an ampersand to provide an optional method of returning control! to the referencing
program unit.

5.4.2.2. Subroutine RETURN Statement

Format:

RETURN
or
RETURN i

where:

Is a positive integer constant or variable; this specification points to a label parameter in the actual
argument list of the CALL statement.

Description:

The RETURN statement always returns control to the first executable statement following the CALL
statement unless the optional integer specification is used. This option is not available when the RETURN
statement is used to return control from an external function procedure.

The optional method of returning control from an external subroutine requires the use of the label
parameter specification (signaled by an ampersand) in the actual argument list of the CALL statement, the
use of an asterisk in the corresponding dummy argument in the SUBROUTINE statement, and the integer
specification of the RETURN statement. If integer = n, the statement RETURN n causes control to be
returned to the statement in the main program labeled with the nth label parameter in the actual argument
list of the CALL statement.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-10
FORTRAN IV

Examples:

CALL SUB(X,&108,Y,8110,8129)

éUBROUTINE SUB(A,*,B,*,*)
I.RETURN 2

I.!ETURN

I.RETURN 3

RETURN 1
END

The subroutine SUB is entered when the CALL statement is executed. Control is returned to differing parts
of the calling program, depending on which RETURN statement is executed in the procedure definition.

If the first RETURN statement is executed, control is returned to the statement labeled 110 in the calling
program. This occurs because the integer option of the RETURN statement is used and the value of the
integer is 2; control is returned to the second label parameter in the CALL statement, &110.

If the second RETURN statement is executed, control returns to the executable statement immediately
following the CALL statement; if the third is executed, control goes to statement 120; if the fourth, to

statement 100.

When the value of the integer is less than 1 or greater than the number of asterisks, control is returned to
the statement following the CALL statement.

5.4.3. Multiple Entry to Function and Subroutine Subprograms

Alternate entry points to external functions and subroutines are provided by the ENTRY statement.
Format:

ENTRY e(a,,a;,...,2 ;)

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 5-11
FORTRAN IV

where:

Is a symbolic name that identifies the procedure entry point.

Is a dummy argument corresponding to an actual argument, if any, in order, number, and type.

Description:

Arguments are optional for entry into a subroutine. At least one argument is required for entry into a
function. Any dummy argument may be enclosed in slashes (5.5.2).

An ENTRY statement is nonexecutable and does not affect the normal sequence of statement execution. It
defines only those formal arguments in its list; other formal arguments not defined by the ENTRY
statement and used in the subprogram must have been defined by a previous reference to the subprogram.

ENTRY statements in a FUNCTION subprogram must define functions of the same type as that defined by
the FUNCTION statement. Regardless of which ENTRY statement is used, the value of the function is
defined by the last executed assignment of a value to the name of the function given in the FUNCTION
statement. ENTRY-point names are never used to return results to the calling program.

The following rules apply to the ENTRY statement:

1.

10.

Avoid the use of the dollar sign as the third character for the ENTRY name specification, since this is
the convention for system routines.

An entry name must not occur anywhere in the subprogram except in the ENTRY statement.

The same dummy arguments can be specified in more than one entry; the number of dummy
arguments may differ at different entry points.

An ENTRY into an external function subprogram must specify at least one argument.

Only those arguments specified in the argument list of an ENTRY statement are initialized; other
arguments are retained from previous function or entry references. Either the function name or at
least one entry name must be assigned a value in the function subprogram.

The asterisk must not be used as a dummy argument in an ENTRY statement of a function.

A procedure subprogram, whether an external function or a subroutine, must not reference itself or
any of its entry points.

Adjustable dimension arrays that appear in an ENTRY statement must also appear in the FUNCTION
or SUBROUTINE statement.

The type of the entry name must match that of the function name.

An ENTRY statement that contains a dummy argument must occur before the argument is used
unless the argument also occurs in the FUNCTION or SUBROUTINE statement.

UP-8474 Rev. 2 SPERRY UNIVAC 0S§/3 5-12
FORTRAN IV

Example:

1 7
FUNCTION ENTL1(X,Y,Z,A)

ENTRY ENT2 (X)

ENTI=Y / A + 1 » X
RETURN

END

The function may be called with four variables by the name ENT1, or with one variable by the name ENT2.

5.5. ARGUMENT SUBSTITUTION

When a procedure is called, the actual arguments, if any, are substituted for the dummy arguments in the
procedure receiving control. FORTRAN IV provides three methods of argument substitution:

L Call by value .

n Call by name (or address)

L] Symbolic substitution

5.5.1. Call by Value

The call-by-value method of argument substitution is the standard method of argument substitution when the
dummy arguments in SUBROUTINE, FUNCTION, and ENTRY statements are simple variables. For the procedure
reference

CALL A(B,C,D)

and the procedure definition

SUBROUTINE A(X,Y,Z)

the compiler generates a calling sequence for the CALL or FUNCTION reference, and a prologue for the
SUBROUTINE, FUNCTION, or ENTRY statement. The calling sequence consists of a transfer of control to the start
of the procedure and a list of main storage addresses where the actual arguments may be found. The prologue
contains instructions that perform the argument substitution. In the preceding example, the prologue performs
actions analogous to the FORTRAN statements X=8, Y=C, and Z=D.

This technique allows the dummy arguments to be referenced in the procedure body as though they were simple
variables local to the procedure. When a RETURN statement is encountered, an epilogue is executed. An
epilogue is a coding sequence that transmits the values of the dummy arguments to the calling program; thus,
statements analogous to B=X, C=Y, and D=Z are executed.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-13

FORTRAN v

The compiler generates a prologue and an epilogue for each SUBROUTINE, FUNCTION, and ENTRY statement.
The RETURN statement causes the execution of the epilogue associated with the last prologue that was
executed. Thus, in the following example, subrountine 1 on the left is treated as though it were written like
subroutine 2 on the right.

Subroutine 1 Subroutine 2

SUBROUTINE A(B) SUBROUTINE A ;PROLOGUE START
. B=actual argument
ASSIGN 100008 TO |

GO T0 149901 ;PROLOGUE END
199000 actual argument=B EPILOGUE START
RETURN EPILOGUE END

190861 CONTINUE

ENTRY C(D) GO TO 160092 ;JUMP OVER ENTRY STATEMENT
. ENTRY C PROLOGUE START
D=actual argument
ASSIGN 140803 TO |

GO TO 1p@002 ;PROLOGUE END
100603 actual argument=D ;EPILOGUE START
RETURN ;EPILOGUE END

1660062 CONTINUE

RETURN GO TO (100040, 100083)

5.6.2. Call by Name

The call-by-name method of argument substitution is the standard method of argument substitutuion when the
dummy arguments in SUBROUTINE, FUNCTION, or ENTRY statements are declared to be arrays or procedure
names. In these cases, the prologue copies the address of the actual argument into the procedure. Thereafter,
the code generated for the array references in the procedure must retrieve the address of the array prior to
accessing the array for computational purposes. See 6.2.1 for additional information on array declarator
processing. As an option, the user may specify this method of argument substitution for simple variables by
enclosing the dummy argument in slashes:

SUBROUTINE A(B,/C/,D)

In most cases, the choice is arbitrary, but special cases exist and can cause differing results:

CALL SQUARE (B,B)
SUBROUTINE SQUARE (X.,Y)

X=X*x2
Y=Y+»2

‘ Here, the introduction of slashes around X and Y will cause different results.

UP-8474 Rev. 2 . SPERRY UNIVAC 05/3 5-14
FORTRAN IV

5.6. LIBRARY PROCEDURES

The three classes of procedures that are available to the FORTRAN programmer are:
L] Intrinsic functions

Invoked with a function reference and usually associated with highly machine-dependent procedures or
non-FORTRAN capabilities, such as processing a variable-length argument list (5.6.1).

L] Standard library functions

Invoked with a function reference and provided for evaluation of common mathematical functions in the
areas of trigonometry, logarithms, roots, etc. While these procedures could be written in the FORTRAN
language, they are provided in a library (in assembly language output form) in order to optimize accuracy,
size, and performance (5.6.2).

L Standard library subroutines

Invoked with the CALL statement. They are associated with the operating environment of the program and
perform functions such as checking external switches, loading overlay phases, etc. (5.6.3).

FORTRAN |V provides nearly 100 intrinsic and standard library functions, many highly similar; for example, six
functions are provided to determine the absolute value of an argument, differing only in the types of their
arguments and function values.

To reduce the difficulty of remembering so many names and the risk of clerical errors in programming,
FORTRAN IV provides generic function reference. These similar functions can be referenced by a single name
called the generic name which, in this case, is ABS. Existing programs can reference the library using the
member names of the generic class (ABS, IABS, JABS, DABS, CABS, and CDABS).

The names and properties of these functions are known to the compiler. When a function reference using a
generic name is encountered, the compiler generates a reference to the proper member of the generic set by
examining the types of the arguments. Generic reference is not provided for library subroutines or for user-coded
procedures.

5.6.1. Intrinsic Functions

The intrinsic functions supplied with the compiler are listed in Table 5-3. Intrinsic functions are referenced with
the function reference described in 5.2.1. After evaluation of the function, the function value is returned to the
referencing statement at the expression containing the function reference.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 5-15
FORTRAN IV
. Table 5—3. Intrinsic Functions (Part 1 of 2)
Generic U Number Mem?er Member Meml?er
Name se Arguments Function Argument Function
Name Type Type
Determine the 1 ABS Real+4 Real«4
ABS absolute value IABS Integer 4 Integer*4
of the argument JABS Integerx2 Integer+2
DABS Double precision Double precision
CABS Determine the 1 CABS @ Complex+8 Real=4
absolute value coass @ Complex+16 Double precision
of the argument
AINT Truncation; 1 AINT Real+4 Real»4
eliminate the DINT Double precision Double precision
fractional
portion of argument
INT Truncation; 1 INT Real+4 Integer«4
eliminate the IDINT Double precision Integer+4
fractional
portion of argument
MOD Remaindering; 2 JMOD Integer=2 Integer=2
defined as a;~[x] a,, (Argument 2 AMOD Real+«4 Real+4
where [x] is the greatest must be MOD Integer+4 Integer+4
integer whose magnitude nonzero.) DMOD Double precision Double precision
does not exceed the
‘ magnitude of a;/a, and
whose sign is the same
as ay/a,
MAX Select the largest =2 JMAXO @ Integer=2 Integer » 2
MAXO0 value AMAX0 @ Integer »4 Real*4
Aamaxt @ Real+4 Real*4
; mzio % f Integer+4 Integer+4
MAX1 @ Real«4 Integer*4
DMAX1 O] Double precision Double precision
MIN Select the smallest =2 JMINO O Integer»2 Integer »2
MINO value AMINO @ Integer~4 Real»4
AMIN1 @ Real+4 Real+4
; :::zo %% Integer+4 integer+4
MIN1 @ Real+4 Integer »4
DMIN1 Q) Double precision | Double precision
Convert argument 1 FLOAT @ Integer «4 Real*4
from integer DFLOAT @ Integer*4 Double precision
to real or HFLOAT @ Integer+2 Real =4
double precision DHFLOT @ Integer »2 Double percision
Convert argument 1 IFIX @ Real+4 Integer~4
from real to HFIX (03} Real«4 Integer«2
integer
NOTES:

® This function is accessible only through its member name.

@ This function is an external procedure supplied in the FORTRAN IV library.

SPERRY UNIVAC 0S/3 5-16
FORTRAN IV

UP-8474 Rev. 2

Table 5—3. Intrinsic Functions (Part 2 of 2)

R Numb Member Member Member
Generic Use A um e'ts Function Argument Function
Name rgumen Name Type Type
SIGN Replace the algebraic 2 JSIGN Integer«2 Integer*2
sign of the first SIGN Real«4 Reai+4
argument with the sign ISIGN Integer+4 Integer«4
of the second argument DSIGN Double precision Double precision
Dtm Positive difference; 2 JDIM Integer =2 Integer+2
subtract the smatter DIM Real+4 Real»4
of the two arguments IDIM Integer =4 Integer+4
from the first argument DDIM Double precision Double precision
SNGL Convert double precision 1 SNGL Double precision | Real«4
to real CSNGL Complex*16 Complex+8
REAL Get real part of a 1 REAL Complex=8 Real+4
complex number DREAL Complex+16 Double precision
AIMAG Get imaginary part of 1 IMAG Complex+8 Real=4
IMAG a complex number AIMAG
DIMAG Complex*16 Doubie precision
DBLE Convert from real to 1 DBLE Real+4 Double precision
double precision CDBLE Complex+8 Complex*16
CMPLX Convert two real 2 CMPLX Real+4 Complex+8
arguments to a DCMPLX Double precision | Compiex*16
compiex number
CONJG Get conjugate of 1 CONJG Complex=8 Complex+8
a complex number DCONJG Complex=16 Complex*16

5.6.2. Standard Library Functions

The standard library functions (Table 5-4) are function subprograms supplied with the compiler. They are
accessed with a function reference (5.2.1) and return control to the referencing program unit within the
expression of the referencing statement. Detailed information on performance, size, and mathematical methods
is available in the Series 90 FORTRAN mathematical library programmer reference.

5.6.2.1. Specification Statement Interaction

This section describes the effects of listing the name of an intrinsic or standard library function in a type
statement in a FORTRAN IV compilation. An ABNORMAL or EXTERNAL statement causes no special effect.

Normally, FORTRAN IV uses a name in the form ILF#xx to reference a standard library function (or an intrinsic
function being used as a subroutine argument). If the name of the standard library function appears in a type
statement, this function will not be treated as a standard library function. It will be called via its actual name, and
no warning diagnostics for its argument will be generated.

A type statement is useful when calling a routine other than the standard library routine. For example, if a REAL
SQRT statement appears in a program, the FORTRAN IV compiler generates calls to SQRT rather than ILF#30.
This permits linkage to a user’s SQRT function.

A list of standard function names and their corresponding ILF#xx names is included in Appendix G.

Table 5—4. Standard Library Functions (Part-1 of 5§)

General Generic P AR abe Argument Function Value
Operation Name Name Definition Number Typs Range Tyﬂl:.n;:d
Trigonometric SiN 1 real«4 lxl<(2"’.m real 4
{in radians) 1€y s
y=sin{x}
DSIN 1 real 8 Ix}<(2%%.m real+8
(in radians) —IKy €1
SIN
CSIN 1 complex+8 ‘)(1I<(2'B m complex+8
(in radians}]kzl<174.673 -M <v1,y2<M
y=sin{z)
CDSIN 1 complex+16 |x1| <(250.7r) complex*16
{in radians) Ixpl < 174673 “M<y,y, M
cos 1 real «4 [l <2'®m real +4
{in radians) 1<y
y=cos{x)
DCos 1 reat -8 Ixl<i2%0.m real 8
(in radians} -1<y <1
cos .
ccos 1 complex <8 |x1| < 2'8m complex+8
(in radians) Ix,l € 174673 My, v, SM
y=cosl(z}
€DCOS 1 complex+16 | Ix,1<(2%0m complexs16
{in radians) Ix,| 174,673 -M <y, v, <M
TAN 1 real+4 Ixl < 2'8.m real v
{in radians) -M €y €M
TAN y=tan({x)
DTAN 1 real *8 Ix] < (2501!) real »8
{in radians} -M< y &M
COTAN 1 real+4 x| < (2'8.m real v4
COTAN [COTV {in radians) M<y €M
‘ I y=cotan(x}
cor DCOTAN 1 real -8 Ixl <(2%0.m real 8
{DCOT } {in radians) -M <y SM

NOTES:

1. M=16%2.(1-1675) for real+a and 16%3-(1-16 ") for real +8

2. z is a complex number of the form X, + X0

2

T A8 v/ p8-dN

Al NVHLHOA
€/S0 JVAINN AHH3dS

LL-S

Table 5—4. Standard Library Functions (Part 2 of 5)

. A t Function Value
Genoral Generic Member Mathematical rgumen '_': ! nd
Operation Name Name Definition ype a
Number Type Range Range
Trigonometric ASIN 1 real «4 IxI< 1 real *4 (in radians)
{cont) ARSIN -mr2 <y <n2
ASIN
ARSIN y=arcsin{x)
DASIN 1 real+8 Ix I<1 real«8 (in radians)
DARSIN ~ w2 Sy <2
[ACOS ‘ 1 real«4 Ix 1< 1 real+4 (in radians)
<y <
ACOS ARCOS 0Sysxnm
ARCOS y=arccosix}
DACOS 1 real »8 Ix | <1 real +8 (in radians)
DARCOS oSy sn
ATAN 1 real «4 any real argument real *4 {in radians)
-m2 <y <2
ATAN y=arctan{x)
DATAN 1 real*8 any real argument reat+8 (in radians)
i -m2 Sy <mR2
ATAN2 2 real«4 any real arguments real»4 (in radians}
X1 except (0,0) -n<y €1
ATAN2 y=arctan<_ >
DATAN2 x2 2 real*8 any real arguments real*8 (in radians)
except 10,0) -n<y<7m
Hyperbolic SINH 1 real»4 Ix| < 175.366 real+4
eX _e™X MKy €M
y=
DSINH 2 1 real+8 (x| < 175.366 real 8
M<Ky <™
SINH
CSINH 1 complex Ix‘ 1174673 complex *8
* | 18 .
o o2 8 wx2\<2 o7 —~M <y1,y2<M
y =
2
CDSINH 1 complex Ix [<174.673 complex 16
*16 Iyl <2507 M <y v, SM
. -4
COSH ! real 4 Ixl < 175 366 ree
eX+e X 1 Sy<M
COSH y=
2
DCOSH ! real «8 Ixl < 175366 real:8

1€y €M

Al Nvd1HOS
€/S0 JVAINN AHY3dS

T 'AeY vLP8-dN

8l-G

Table 5—4. Standard Library Functions (Part 3 of 5)

i . Argument Function Value
General Generic Member Mathematical
. N Definiti Type and
Operation ame Name tnition Number Type Range Range
Hyperbolic CCOSH 1 complex+8 |><1 I<174.673 complex *8
{cont.) Ix <2187 -M <y y, M
z -2 2 172
COSH y-2*e
2
< lex+16
CDCOSH 1 complex-16 | X3S 178673 comeEeTE
lx2|<2 o -M <y1,y2 <M
TANH 1 real =4 any real argument real «+4
eX_eg—X -1 Sy 1
TANH =
eX+e™X
DTANH 1 real +8 any real argument real -8
1Sy €9
Exponential EXP 1 real «4 x 2 ~180.218 real=4
x < 174673 0SysSM
y=e”
DE XP 1 real 8 x = -180.218 real+8
x € 174673 0Ky sSM
EXP
CEXP 1 compiex +8 x4 < 174673 complex»8
ol < 2'8m M <y v, <M
y=e’
CDEXP 1 complex+16 x < 174 673 complex.16
eyl < (259%m M < ygvy SM
=
Base 10 EXP10 1 real4 x= — 180.216/In(10) reai=4
Exponential x< 174.673/In(10) 0SysM
EXP10 vy = 10%
2 — 180.216/In(10) .
DEXP10] real~8 x=Z 80.216/In(10 real »8
x< 174.673/In(10} o<y<Mm
Natural logarithm ALOG
LOG 1 real+4 x>0 real =4
y 2 —180.218
< 174673
{ALOG } y=log, x or -
LOG =tn(x}
DLOG y=tnlx 1 real+*8 x >0 real+8
y 2 —180.218

y £ 174673

Al NvHLHO4
£/50 JVAINN AYY3dS

C 'A8Y ¥/ p8-dN

61-9

Table 5—4. Standard Library Functions (Part 4 of 5)

. . Argument Function Value
General Generic Memb Math b
Definiti Type and
Operation Name Name nition Nurhber Type Range Range
Natural logarithm CLOG 1 complex 8 2 F0+0 complex=By=y, +y,i
v, > 180218
y=PViog, (z) v; S 175021
i < <7
ALOG s
LOG PV 1s principle value,
hich
CDLOG :’e 1eh means V2d x 1 complex+16 z #0+0i complex+16 Y=Y Yol
tween ~T and 7.
" v, > -180218
vy S 175021
- < 12 <7
Common logarithm ALOG10 1 real+4 x>0 real*4
LOG10 y 2 -78.268
ALOG10 y € 75859
LOG10 v710910%
DLOG10 1 real*8 x >0 real +8
y = -78.268
y < 75869
Square root SQRT 1 real «4 x =20 real *4
o<y <m12
y=Vxor
DSQRT y=x1/2 1 real o8 x 20 real «8
o<y < m'?
SQRT .
CSQRT 1 complex 8 any complex argument complex «8
0 <y, < 10087 (M2
vyl < 1.0087 '/2)
y=Jzor
o212
CDSQRT 1 compiexs+16 any complex argument complexs 16
0 <y, < 1.0087 (M2
v, < 1.0987 Mm1/2)
Cube root CBRT 1 real -4 any real argument real »4
} _M1/3<Y<MH3
CBRT y=x113
DCBRT 1 reat+8 any real argument real+8

ML, L«m3

Al NVH14O4
£/S0 IVAINN AHH34S

T 'A8Y vL¥8-dN

0Z-§

Table 5—4. Standard Library Functions (Part 5§ of 5)

.) Functi }
General Generic Member Mathematical Argument unction Value
Operation Name Name Definition Type and
Number Type Range Range
Distribution ERF 1 real+«4 any ‘real argument real+4
x .
2 2 . 1 <yt
RF = — e Y du
E A Jr
DERF o 1 real«8 any real argument real =8
1<y <
ERFC 1 real+4 any real argument real +4
- 0S<y <2
v= —2/ e‘”zdu
ERFC Ju
X
DERFC y=1 - erfix) 1 real«8 any real argument real »8
0 yx2
GAMMA 1 real -4 x >2-252 404 real+4
- x <57.5744 088560 Sy <M
GAMMA v;/u‘f'e’“du
4]
DGAMMA 1 real +8 x > 27252 ang real+8
x <57.5744 0.88560 Sy <M
ALGAMA 1 real+4 x >0 and real =4
x<42913 1073 —0.12149 <y <M
v=logy [1 tx) or
;ALGAMA ‘ .
LGAMMA =1 x-lg—ug
DLGAMA v oge]u e o 1 real -8 x >0 and real+8

(¢]

x <42913 1073

~0.12149 <y <M

Al NVH1HO4
£/50 JVAINN AHY3dS

¢ 'ASY PLY8-dN

1Z-S

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-22
FORTRAN IV

5.6.3. Standard Library Subroutines

The standard library subroutines are procedures available in subprograms supplied with the compiler. These
subroutines are invoked by the CALL statement, and control is returned to the main program at the first
executable statement immediately following the CALL statement. All of the standard library subroutines may be
overridden; a user may supply his own routine with any of the FORTRAN names, such as OVERFL, ERROR, etc.
Such routines may be included with an INCLUDE control card at the time the program is linked. Note that the
library routine names all have a $ as the second character (e.g. O$SERFL, ESROR).

The subroutines provided by FORTRAN IV are presented in 5.6.3.1 through 5.6.3.12 and summarized in Table
5-5.

5.6.3.1. Arithmetic Overflow and Underflow Test (OVERFL)

The overflow check subroutine, OVERFL, informs the program when computational results are not within the
maximum or minimum magniturde permitted for a value. A real computation always yields a correct fraction, but
the exponent is incorrect by 128 for an overflow and by -128 for an underflow. An overflow during an integer
computation yields unpredictable results. An overflow or underflow causes a program check interrupt; when this
occurs, various switches are set and program execution resumes at the next instruction, which may be in the
same FORTRAN statement. These switches are interrogated by the OVERFL subroutine:

CALL OVERFL (i)

where:

Is an integer*4 variable.
The variable is assigned a value of 1, 2, or 3 to indicate the status of the interrupt switches.
The OVERFL subroutine operates in three separate modes for compatibility with other FORTRAN systems:
L FORTRAN IV Mode

Integer and real overflow and real underflow are monitored. Only the last event, either overflow or
underflow, is reflected in the interrupt switches. The i values assigned are:

1 = An overflow interrupt has occurred. A previous underflow interrupt will not be reported,
and the overflow/underflow interrupt switch is reset.

2 = Neither overflow nor underflow has occurred.

3 = An underflow interrupt has occurred. A previous overflow interrhpi will not be reported,
and the overflow/underflow interrupt switch is reset.

Integer overflows are reported only if the // OPTION BOF is in the job control stream of the executable
program.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-23
FORTRAN IV

For example, the statements

X=(1BE75+1PE75)+(10E-75x10E-75)
CALL OVERFL (1)
CALL OVERFL (J)

set the value of | to 3 and J to 2, indicating, respectively, that an underflow was the last interrupt and that
there are no conditions to report. If the arithmetic statement is written as

X=(10E-75+10E-75)+(10PE75~10E75)

| has the value 1, indicating that an overflow was the last event.

L SPERRY UNIVAC Series 70 Mode
Integer and real overflow and real underflow are monitored independently. The i values assigned are:

1 = An overflow has occurred. The overflow switch is reset. OVERFL should be entered again
to determine if an underflow has also occurred.

2

Neither overflow nor underflow has occurred.

3 An underflow has occurred. The underflow interrupt switch is reset.

The module FLSOVW70 must be included with an INCLUDE control card during linkage editing and the
// OPTION BOF must be specified in the job control stream.

For example, the statements

X=(1BE75+10E75)+(10E-75~10E-75)
CALL OVERFL (1)
CALL OVERFL (J)
CALL OVERFL (K)

set the value of | to 1, J to 3, and K to 2, indicating, respectively, an overflow, an underflow, and that there
are no conditions to report.

a IBM System 360/370 Mode

Real overflow and underflow are monitored, but integer overflow is ignored. The i values assigned are
identical with those for the FORTRAN IV mode.

The desired mode of operation is selected when the executable program is linked and executed. Selection of IBM
mode causes the DVCHK subroutine to ignore integer division by O.

5.6.3.2. Divide Check Subroutine (DVCHK)
The divide check subroutine, DVCHK, informs the program when an integer or real division by O occurs or an

integer result of a division exceeds +2,147,483,647. in both cases, an indicator is set, and the computation
yields the original dividend. This indicator is interrogated with the statement:

CALL DVCHK (i)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-24

FORTRAN IV
where:
i
Is an integer=4 variable.
The values assigned to i by DVCHK are:
1 = A divide check has occurred. The indicator is reset.
2 = A divide check has not occurred.

Integer divide checks are reported only if the job control statement // OPTION BOF is present in the control
stream of the executable program.

Example:

1 57

CALL DVCHK(1)

GO TO (1@,28).1
18 STOP 'TERMINATION ON DVCHK’
20 CONTINUE

If a division by O was attempted (I=1), program control is transferred to statement 10; otherwise, control goes to
statement 20.

5.6.3.3. Error Indicator Test (ERROR)

This standard library subroutine tests an indicator to determine if a function error condition or an 1/0 ERR exit
has occurred:

CALL ERROR (i)

where:

Represents an integer=4 variable.
The integer variable is assigned the following values:

1 = If a function error condition exists after a reference to a standard library function (Table 5-4) or
to the ERROR1 subroutine.

2 = If no function or 170 error exists.

3 = if an ERR exit was taken from an /0 statement because of a data transmission error.

4 = If an ERR exit was taken from an 1/0 statement because of improper data.

5 = If an ERR exit was taken because of an unrecoverable |/0 error. No further references to the

file are permitted.

A call of the ERROR subroutine, prior to additional 1/0 or function references, always returns a value of 2.

UP-8474 Rev. 2. SPERRY UNIVAC 0S/3 5-25

FORTRAN IV

5.6.3.4. Error Indicator Setting Subroutine (ERROR1)

This subroutine is used in conjunction with the ERROR subroutine. CALL ERROR1 sets the function error
indicator tested by the ERROR subroutine. This is also performed by the standard library functions. The reference
to the ERROR1 subroutine is:

CALL ERRORI1

Example:

1 5 7

1 = XRAY (Q)

CALL ERROR (1)

GO TO (36,48),1
40 CONTINUE

38 error condition routine

FUNCTION XRAY (B)
IF (B) 18,208,190
29 CALL ERROR1
RETURN
18 CONTINUE

5.6.3.5. Indicator Setting Subroutine (SLITE)
The SLITE standard library subroutine sets or resets one or more of four indicators internal to the subprogram.
This subroutine is used with the SLITET subroutine, which tests these indicators. The format of the CALL

statement is:

CALL SLITE (e)

where:

Is an integer expression. The value of the expression determines the indicator settings:

[/
If all four indicators are to be reset.

1, 2,3, 0or4
To set the corresponding sense indicator.

-1,-2,-3, or -4
To reset the corresponding indicator.
5.6.3.6. Indicator Testing Subroutine (SLITET)

The SLITET subroutine tests the indicators controlled by the SLITE subroutine. The format of the CALL statement
is:

CALL SLITET (e,i)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 5-26
FORTRAN IV

where:

Is an integer expression with a value corresponding to the sense indicator to be tested.

Is an integer variable name returning the results of the test.
if the indicator specified by e is set, the integer variable i is set to 1. If the indicator is not set, or if e is outside
the range 1 <e<4, then i is set to 2. Execution of the SLITET subroutine does not affect the indicator settings.
5.6.3.7. Control Information Check (SSWTCH)
The SSWTCH standard library subroutine allows the FORTRAN programmer to check control information during
program execution. This control information is provided prior to execution of the program on a // SET UPS! job
control card used in the operating system.

The format of the CALL statement is:

CALL SSWTCH (e, i)

where:

Is an integer expression with a value of 1 through 4, representing a binary switch position.

Is the integer variable name used to return the result of the switch position test.

If the specified binary switch is set, the variable has the value 1; otherwise, its value is 2. Execution of the
SSWTCH subroutine does not alter the switch settings.

5.6.3.8. Main Storage Dump Routines (DUMP and PDUMP)

These subroutines cause a dump or listing of the main storage assigned to the program; the subroutines are
described in Section 10.

5.6.3.9. EXIT Subroutine

The EXIT standard library subroutine terminates the program. The CALL EXIT statement is equivalent to the
FORTRAN STOP statement (4.9).

5.6.3.10. FETCH Subroutine

The FETCH subroutine loads a separately executable program and transfers control to its transfer address.
Processing in the calling program is not resumed. An 1/0 error during the load causes immediate job

termination. The CALL statement has the format:

CALL FETCH (s)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3

FORTRAN IV

where:
s
Is a load module name which must be either an 8-character name enclosed in apostrophes, or a
double precision or complex variable containing a load module name. The load module name must
conform to the linkage editor LOADM parameter. See system services program manual, UP-8062
(current version).
Examples:
1 7

DOUBLE PRECISION DNAME/' LOADMXGO ' /
CALL FETCH (DNAME)

CALL FETCH (*LOADMXA®')

The two calls of the FETCH standard library subroutine are equivalent.

5.6.3.11. LOAD Subroutine

The LOAD standard library subroutine loads subprogram overlays. Control is not transferred to the subprogram
but returns to the statement immediately following the CALL statement requesting the overlay. An 1/0 error
during the load causes immediate job termination. The loaded subprogram cannot share the same main storage
addresses as the procedure containing this CALL statement.

The format of the CALL statement is:

CALL LOAD (s)

where:

Is a phase name that must be an 8-character name enclosed in apostrophes, or a double precision or
complex variable containing a phase name.

5.6.3.12. OPSYS Subroutine

The OPSYS subroutine loads subprogram overlays and transfers control to the statement following the CALL
statement.

The format of the CALL statement is:

CALL OPSYS ('LOAD’,s)

where:

Is a phase name that must be an 8-character name enclosed in apostrophes, or a double precision or
complex variable containing a phase name.

This statement is equivalent to the CALL LOAD (s) statement.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3
FORTRAN IV

5-28

Table 5—5. Standard Library Subroutines

Special
Subroutine Format Use Name
OVERFL CALL OVERFL (i) Tests for.overflow or underflow. O$ERFL
DVCHK CALL DVCHK {i} Tests for invalid division. D$CHK
ERROR CALL ERROR (i) Tests for function or 1/O error conditions. E$ROR
ERROR1 CALL ERROR1 Sets the function error indicator. ESROR1
SLITE CALL SLITE (e) Sets the sense indicators specified. SSITE
SLITET CALL SLITET (e,i} Tests for the setting of specified sense indicators. S$ITET
SSWTCH CALL SSWTCH f(e,i) Tests the binary switch specified by the integer SSWTCH
expression and returns a value in the integer
variable name,
DUMP CALL DUMP (list) Dumps main storage assigned to the program; D$MmP
program execution terminates.
PDUMP CALL PDUMP ({list) Dumps main storage assigned to the program; PSUMP
program execution continues.
EXIT CALL EXIT Terminates the program. ES$IT
FETCH CALL FETCH (s) Loads and transfers contro!l to the overlay specified F$TCH
by the phase name.
LOAD CALL LOAD (s} Loads subprogram overlays and transfers control to the L$AD
program statement after the CALL statement.
OPSYS CALL OPSYS ('LOAD’, s) Loads subprogram overlays and transfers control to the 0$SYS
program statement after the CALL statement; equivalent
to CALL LOAD statement.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 6-1
FORTRAN IV

6. Specification Statements

6.1. GENERAL

Specification statements are nonexecutable statements that inform the compiler about program data and main
storage allocation. See the "‘Specification Statements’ section of the fundamentals of FORTRAN programmer
reference. All statements in this section are order dependent. Refer to Figure 1-1.

6.2. ARRAY DECLARATION

An array is an ordered set of elements identified by a symbolic name (1.2.4). An array may be declared in a

DIMENSION statement, a COMMON statement, or in an explicit type statement (INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, or LOGICAL).

6.2.1. Array Declarator

Format:
V(ig,i2,c..,107)
where:
v
Is a symbolic name identifying the array.
i
Is a unsigned integer constant or integer variable (for adjustable dimensions);, an integer variable
used to declare an adjustable dimension must be a COMMON variable or a dummy argument of the
integer type; from one to seven dimensions may be declared.
Description:

The array declarator specifies the name and the dimensions of an array. If the array name is a dummy
argument, the array is a dummy array, and the dimensions may be specified as integer variables. In the
interest of efficiency, dummy arrays are processed at execution time in a special fashion. The procedure
prologue (5.5.1, 5.56.2) saves the subscripts in dimension declarators from the argument list or common
storage, and derives a partial solution to the equation used to locate array elements (Table 2-2). Thereafter,
subscript calculations in the body of the procedure can be performed more quickly. A side effect of this
technique, however, is that it is impossible to redeclare array dimensions within procedures; for example,
in the code sequence.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 6-2
FORTRAN IV

Example:
1 5 7

DIMENSION B (5,18)
CALL A (B,5,10)
SUBROUTINE A (X,1,)J)
DIMENSION X (1,J); DECLARES (5,18)

5 J=5

19 1=10
X (M,N)=...

Statements 5 and 10 do not change the array from X(5,10) to X(10,5).

6.3. DIMENSION STATEMENT

Format:
DIMENSION v, (i,),v(iz), ..., vqalip)
where:
v(i)
Is an array declarator (6.2.1)
Description:

The DIMENSION statement declares arrays.

Examples:

1 517

1. DIMENSION INRAY (10)
DIMENSION ARRAY2 (106)....ARRAY3I (18,6,9)

1. This DIMENSION statement declares an integer array named INRAY, which has 10 elements. No
initialization of the array is accomplished.

2. The second DIMENSION statement declares two arrays containing real data elements.

6.4. TYPE STATEMENTS

Two kinds of type statements can be used in FORTRAN IV; the explicit type statements INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, and LOGICAL; and the IMPLICIT type statement. In the absence of typing with these
statements, symbolic names starting with the letters |, J, K, L, M, and N are considered to be integer*4 type
(FORTRAN name rule); all others are considered to be real*4.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 6-3
FORTRAN IV Update B
6.4.1. Explicit Type Statements
Format:
ts a, xs/c,/,a, xs/¢c,/, ..., apxs/cn/
where:
t
Is the type, specified as INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL.
a
Is a variable name, an array name, an array declarator, or a function name.
c
Is an optional list of constants used to initialize the immediately preceding variable name or array.
When used to initialize an array, the /c/ may be a list, each element of which may be a ¢, or j*c
when using the multiplier constant.
*$
Is an optional length specification (2.3), may not be specified if the type is DOUBLE PRECISION.
Description:

An explicit type statement not only specifies the data type of a name but also contains initialization values
when the /c/ option is used. Numeric initialization values are converted to the type of the corresponding
variable or array, but note that truncation may occur.

The length implied by type (t), with or without the optional length specification (*s), applies to every name
in the list unless it is specifically overridden by a specification for the individual name. See 5.6.2.1 for a
discussion of specifying intrinsic and standard library functions in type statements.

Examples:
1 7
1. REAL LOAF,I10TA/5.2/,J0KE/7.5/ ,MATRIX(3,4,5)/60+0.6/
2. REAL+8 A,B,C
3. REAL A,B+8,C
1. This statement specifies LOAF, IOTA, JOKE, and MATRIX as real types. In addition, IOTA is assigned
a value of 5.2; JOKE, 7.5; and the array MATRIX consists of 60 elements and is initialized with 0.0 in
every element.
2. In this explicit type statement, the variables A, B, and C all are typed as double precision due to the
length specification.
3.

This statement specifies A and C as real variables; B is double precision variable because of its length
specification.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 6-4

FORTRAN IV
6.4.2. IMPLICIT Statement
Format:
|MP|.|C|T t*s(a1,az, P ,an),t*s(an+‘-am, .« .),-. .«
where:
t
Is the type, specified as INTEGER, REAL,DOUBLE PRECISION, COMPLEX, or LOGICAL.
a
Is a letter (A through Z and $) associated with the specified data type. The format of this specification
may be A,B,C, etc.,, with commas separating each letter, or it may be A-D, to specify a range of
letters.
*s
Is the optional length specification.
Description:

The IMPLICIT statement permits the user to specify his own implicit type conventions for each program
unit. The IMPLICIT statement specifies types of symbolic names by the first letter of the name, including
the dollar sign.

$ may not be included in a range specification {two letters separated by a minus sign). It must be separate.
The dollar sign indicates real data by standard typing conventions.

Symbolic names that start with a letter not covered by the IMPLICIT statement are typed according to the
standard conventions. Any implicit typing, whether standard or specified by the IMPLICIT statement, is
superseded by explicit typing.

Symbolic names that appear in the program before the IMPLICIT statement are typed by standard
conventions, except for dummy arguments in a SUBROUTINE or FUNCTION statement and the function
name in a FUNCTION statement, which are redefined by the first IMPLICIT statement, but not subsequent
IMPLICIT statements. IMPLICIT statements must appear in the specification group (Figure 1-1).

Example:
1 7
IMPLICIT REAL«8(A—D,F),LOGICAL(L),
+INTEGER+2(N,Q,U,V),INTEGER(X-2,8%)
Explanation:

After processing the IMPLICIT statement in the example, names beginning with the letters of the character
set are typed as follows:

= A through D are double precision, as specified by the IMPLICIT statement, because real*8 is the
equivalent of double precision;

u E is real, because of the standard convention;

. F is double precision, as specified by the IMPLICIT statement;

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 6-5
FORTRAN IV

u G and H are real because of the standard convention;

L I, J, and K are integer because of the standard convention;

L] L is logical, as specified by the IMPLICIT statement;

L] M is integer because of the standard convention;

L N is integer=2, as specified by the IMPLICIT statement:

» O and P are real because of the standard convention;

] Q is integer*2, as specified by the IMPLICIT statement;

= R through T are real because of the standard convention;

] U and V are integer+2, as specified by the IMPLICIT statement;
u W is real because of the standard convention;

) X and $ are implicitly typed as integer by the IMPLICIT statement; and

a Y and Z are real because of the standard convention.

6.5. EQUIVALENCE STATEMENT

Format:
EQUIVALENCE (k,),(kz),...,(kn)
where:
k
Is a list of the form a,,a,,....a, and each a is a variable name, an array element name, or an array
name. Each name specified in the list shares assigned storage. Dummy arguments may not appear in
the list.
Description:

The EQUIVALENCE statement permits sharing of a main storage unit by two or more entities specified
within parentheses. The equivalence provided by the statement is in relation to the first, or leftmost, byte of
the entities specified. (See 6.6.1 for a discussion of the effects of the interaction of EQUIVALENCE and
COMMON statements.)

Program execution time is increased whenever a variable that does not have a proper boundary alignment
is referenced. To achieve proper alignment, a variable must have an assigned main storage address that is
an integral multiple of its length. Complex*16 variables require an 8-byte (double word) and complex*8
requires a 4-byte alignment. There are no boundary requirements for the logical*1 variables.

The first variable in each EQUIVALENCE group is assigned to a main storage address that is a multiple of 8
if possible. If erroneous boundaries are present in the EQUIVALENCE group, the addresses in the group are
increased successively by 2, 4, and 6 in an attempt to correct the error. Thereafter, it is the programmer’s
responsibility to ensure that the variables in the EQUIVALENCE group have the proper alignment.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 6-6

FORTRAN IV

6.6. COMMON STATEMENT

Format:

COMMON /x,/a,/.../xp/aq

where:
X
Is an optional symbolic name identifying the COMMON block. If no symbolic name appears between
the slashes or if x, with its associated slashes is omitted, blank COMMON is assumed.
a
Is a nonempty list of variable names, array names, or array declarators. No dummy arguments are
permitted.
Description:

The COMMON statement allows sharing of a common main storage area by different program units. When
block names are specified, the compiler treats each block as a separate control section (CSECT) whose
allocation will appear separately on the linker map. When no block name is specified (blank COMMON), the
compiler uses a CSECT name that is not assigned by the programmer. It is the programmer’s responsibility
to ensure that every variable and array in COMMON has the proper boundary alignment. FORTRAN IV
inserts spaces to achieve proper alignment.

Every named or blank COMMON block is assigned a main storage address that is a multiple of 8. Each
COMMON variable or array is assured of proper alignment if it is placed in the block in descending length:
complex*16 variables and double precision first, then real and complex*8, and so on until logical*1
variables. In differing program units, when multiple definitions of a COMMON block specify different sizes
for the block, the largest definition is accepted.

6.6.1. COMMON/EQUIVALENCE Statement Interaction

The compiler does not process COMMON and EQUIVALENCE statements individually in the sequence in which
they are encountered. Instead, these statements are processed in three consecutive phases:

1.

COMMON storage is allocated by processing all COMMON statements without regard to boundary
requirements.

2. EQUIVALENCE groups that do not contain COMMON variables or arrays are processed, and storage is
allocated. In any group containing improper boundaries, address adjustments are attempted.

3. EQUIVALENCE groups that contain COMMON variables or arrays are allocated storage without regard to
boundary requirements. This may have the effect of lengthening COMMON at the right end of the list;
COMMON cannot be extended at the left end of the list.

Example:

1 7

DIMENSION A(3)
COMMON B,C,D
EQUIVALENCE (A,D)
COMMON E

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 6-7
FORTRAN IV

The format produces a blank COMMON configuration of

D E
B ¢ shares storage with |shares storage with A(3)
A1) A(2)

The first three statements can be ordered in any arbitrary sequence with the same result. Replacement of the
third line with the following statement is an illegal extension of COMMON.

1 7
EQUIVALENCE (A(3),B)

6.7. EXTERNAL STATEMENT

Format:
EXTERNAL v,,v,,...,vp
where:
v
Is the name of an external function or an external subroutine.
Description:

The EXTERNAL statement specifies function or subroutine names used as actual arguments to an external
procedure. If an intrinsic function name appears in an EXTERNAL statement, that procedure is assumed to
have been written by the user, and no assumptions about its properties are made. This is also true with the
standard library function names. (See 5.6.2.1 for a discussion of specifying intrinsic and standard library
functions in an EXTERNAL statement.)

A procedure name can appear both as an actual argument and as a dummy argument. This can occur
when the procedure name is passed through multiple levels of procedure reference. In such a case, an
EXTERNAL statement must appear at every level of procedure call.

When the context of the program uniquely identifies a symbolic name to be a procedure name, the
EXTERNAL statement is unnecessary:

1 5 7
10 CALL A
28 CALL B(A)

No EXTERNAL statement is needed, but if statements 10 and 20 are reversed in sequence, the following
statement is needed.

1 7
EXTERNAL A

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 6-8
FORTRAN IV

6.8. PROGRAM STATEMENT

Format:

PROGRAM s

where:

Is the symbolic name used to identify a main program.
Description:

The PROGRAM statement may be optionally used to identify a main program for later reference by the
linkage editor and librarian. When present, the PROGRAM statement is the first statement of the program
unit. In the absence of this statement, the compiler assumes the name $MAIN for main programs. Two
main programs cannot be compiled in the same job if this statement is not specified, since the second main
program supersedes the first.

The symbolic name s is a special name that bears no relationship to any variable or array name in the
program unit. It must be unique with respect to the SUBROUTINE, FUNCTION, BLOCK DATA, and
COMMON block names in the executable program.

UP-8474 Rev. 2 SPERRY UNIVAC 0S8/3 7-1
FORTRAN IV

7. Input and Output

7.1. GENERAL

This section describes the characteristics of the input/output system and the FORTRAN IV statements required
for input and output control. For further information, refer to the “Input/Output and FORMAT Statements”
section of the fundamentals of FORTRAN programmer reference. Aiso see Section 11 in this manual that
describes the usage of the data management system in the CDI environment and Section 12 that describes the
usage in the DTF environment.

The FORTRAN input and output statements are READ and WRITE. These statements designate an 1/0 device
and reference an 1/0 list; they may reference a FORMAT statement. The input and output devices used in
FORTRAN for sequential files include card reader, printer, card punch, magnetic tape, and disk subsystems used
sequentially. Direct access pracessing also is possible with disk subsystems. The peripheral devices are assigned

. unit numbers within the user’s system.

7.2. INPUT/OUTPUT LIST

The purpose of an 1/0 list is to identify variables, arrays, and array elements so that they may be transferred to
and from-external devices. The 1/0 list is an ordered set of items with the format:

a,3,,...,a,

where:

Is a simple 1/0 list which may be a variable, array element, or array name;
Is two simple lists separated by a comma;
Is a simple 170 list in parentheses; or
Is a DO-implied list {7.2.1).
Example:
V2, ARRAY MATRIX(5)
. This 170 list consists of a variable, an array name, and an array element.

The subscript expression of an array element may not reference a function.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-2
FORTRAN IV

In an unformatted input/output statement, the 1/0 list directly determines record length; in a formatted
statement, record length is determined by the interaction between the list and the FORMAT specifications.

NOTE:

Section 11 discusses record length limitations with regard to various devices and the file access method in a CDI
environment. Section 12 discusses record length in a DTF environment.

7.2.1. DO-Implied List
Format:

(k,d)
where:
Is an 1/0 list (7.2).
Is a DO specification with the form: i=m,, m,, mz where parameter interpretation is identical with the

DO statement (4.7).

Description:

The DO-implied list allows the transfer of list elements in the sequence specified by the DO parameters.
Do-implied lists may be nested to a maximum of seven levels.

Example:

(((AX(1,J,K),1=1,5),)=1,5),K=1,5)

If the 3-level DO-implied list in the example is used in a WRITE statement, the group of 125 elements of
array AX is transferred to the specified external medium. The transfer would be to storage if the list were
used in a READ statement. See 2.4.1 for the general expression to determine the location of array
elements.

7.3. SEQUENTIAL FILES

The use of the American National Standard FORTRAN 1/0 statements READ, WRITE, BACKSPACE, REWIND,
and ENDFILE is defined in 7.3.1. through 7.3.7. The FORMAT statement, used for editing values represented by
character strings on the external media, also is described.

Files referenced with the standard statements are always treated as sequential, even when they reside on disk
storage.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-3
FORTRAN v

7.3.1. Unformatted I/0 Statements

An entire list of variables, arrays, and array elements transferred to an external device by an unformatted WRITE
statement exists as a single logical record for a subsequent unformatted READ or BACKSPACE order. The
formats are:

WRITE (u,SCREEN=b)Kk

WRITE (u)k

READ (u,END=label, SCREEN=b,ERR=Iabel,)k
READ (u,EOF=label,,ERR=Iabel,)k

READ (u,END={label, , ERR=label,)k

where:
u
Is a constant or integer variable designating an 1/0 device.
EOF=1label
Is an optional specification denoting the statement label of the statement to receive control, if an
end-of-file condition occurs.
END=label
May be substituted for the EOF=label specification.
ERR=1label
Is an optional specification denoting the statement label of the statement to receive control, if an
error condition occurs.
SCREEN=b
Is an optional 8-character name enclosed in apostrophes, a double precision, or a complex variable
containing the name of a full screen workstation format.
k ‘
Is an 1/0 list, which may be empty for a READ statement to indicate the record to be skipped.
NOTES:

1. The order of END (or EOF), ERR, and SCREEN specifications are interchangeable.

2. The SCREEN parameter name may also be specified on the USE job control statement which calls screen
format services. Screen format service allows the user to set up a multiple line template that can be issued
to the workstation terminals with one input or output imperative (full screen workstation) or a single line-
by-line method. See the current versions of the screen formatting concepts and facilities user
guide/programmer reference and the job control user guide.

Description:

The unformatted I/0 statements initiate and control the transfer of unformattted data between a
designated peripheral device and main storage. :

Unformatted 1/0 is designed for high efficiency data transfer and, consequently, no data conversion
operations take place; the variables are specified in 2.3. Only minor input validity checking is performed in
keeping with this emphasis on throughput.

UP-8474 Rev. 2 SPERRY UNIVAC 0S§/3 7-4
FORTRAN IV

If the list for a WRITE statement consists of two integers followed by three double precision values, the ’
only valid READ statements for that record are:

READ (u);bypass the record
READ (u) |

READ (u) 1,1
READ (u) t,1,D
READ (u) 1,1,D,D
READ (uw) 1,1,D,D,D

Even more efficiency can be achieved by reducing a list to a single element. Compare the following
program segments:

1 7

DIMENSION A(18),B(28),C(30)
DOUBLE PRECISION B

WIIHTE (9) A,B,C
DIMENSION A(16),B(26),C(36).DUMMY(89)

DOUBLE PRECISION B
EQUIVALENCE (DUMMY, A), (DUMMY(11),B),
1(DUMMY(51),C)

WRITE (9) DUMMY

The contiguous ascending storage addresses implied by DUMMY in the second segment allow greater
efficiency in the data transfer.

7.3.1.1. END, ERR, and SCREEN Clauses

in an unformatted READ statement, the END, ERR, and SCREEN clause may appear in any order after the unit
designation. In a formatted READ statement, these clauses may appear in any order after the FORMAT
designation. EOF is an alternate form for END and is identical in function in FORTRAN IV. If the END parameter
is not present in a READ statement, the program is terminated with an informational message if the end-of-data
is encountered. If either the END or EOF specification is present, control is transferred to the specified statement
label when the end-of-data is encountered.

The ERR parameter specifies a statement label to which control is passed when it is impossible to completely
process the current list. Other records in the file might still be available for processing. To describe the situation,
the indicators tested by the ERROR subroutine (5.6.3.3) are set. If the ERR parameter is not specified, the
program is terminated with an informational message when a record cannot be processed.

The screen clause denotes the name of the full screen workstation terminal format where the input/output is to
be applied {applicable to CDI environment only).

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-5
FORTRAN IV

7.3.2. Formatted READ/WRITE Statements

Formats:

READ (u,a)k

READ (u,a,SCREEN=b)k

READ (u,a,EOF=label,)k

READ (u,a,END=label,)k

READ (u,a,ERR=label,SCREEN=bD)k
READ (v,a,END=!abel,,ERR=label,)k
WRITE (u,a)k

WRITE (u,a,SCREEN=b)k

where:
u
Is a constant or an integer variable designating an input or output device.
a .
Is an array name, a NAMELIST name (7.3.5.1), the label of a FORMAT statement (7.3.3), or the
asterisk character (7.3.5.2).
EOF=label -
Is an optional specification indicating that if an end of file condition is encountered on input, the
program is to branch to the label specified.
END=1label
Accomplishes the same as EQOF=label.
ERR=label
Is the optional specification of a label to which controt is passed on encountering an error condition.
SCREEN=b
Is an optional 8-character name enclosed in apostrophes, a double precision, or a complex variable
containing the name of the full screen workstation format.
k
Is an optional 170 list.
NOTE:

The SCREEN parameter name may also be specified on the USE job control statement which calls the screen
format services routine. See the job control user guide for details.

Description:

The formatted READ/WRITE statements initiate and control the transfer of formatted data between a
designated peripheral device and main storage. Data is always converted from and to character strings on
external media and the internal representation specified in 2.3. A COMPLEX variable or array element
always requires two FORMAT editing codes. In a READ statement referencing a workstation terminal, any
combination of the END, ERR and SCREEN clauses is permitted (CDI environment only).

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-6
FORTRAN IV

7.3.2.1. 170 Compatibility Statements

The following FORTRAN I statements are accepted by the FORTRAN IV processor:

READ a,k
PUNCH a.k
PRINT a,k

where:

Is the statement label of a FORMAT statement, an array name, or the asterisk character (7.3.5.2).

Is an 1/0 list.
NOTE:
FORTRAN Il unit specifications are required when executing with a user-defined 1/0 configuration. The
FORTRAN system-supplied 1/0 module (FL$I01) provides the appropriate devices.
7.3.3. FORMAT Statement

Format:

| FORMAT (q.t,z,t22z,...tpZpstpq2)

where:
|
Is the label of the FORMAT statement.
q
Is an optional group of one or more slashes; each time a slash appears in the FORMAT statement, it
signals the end of a logical record.
t
Is a field descriptor (7.3.3.1) or a group of field descriptors specifying the data conversion or the
action to be executed.
z
Is a field separator (either a slash or a comma) required when more than one field descriptor is used;
commas are not required when they follow fields described by a blank (wX), Hollerith (wHcyc,...cw)
and literal (‘cic,...cw') descriptors; slashes end a logical record.
Description:

The FORMAT statement specifies editing information for transforming formatted data (character strings)
from and to internal representations. The FORMAT statement descriptors are described in 7.3.3.1. through
7.3.34.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-7
FORTRAN IV

Examples:

1 5 7

198 FORMAT (° FIRST PAGE'/)
119 FORMAT (///112,2X112/)

if referenced by a WRITE statement, the first FORMAT statement causes the transfer of the literal FIRST
PAGE and provides an additional biank logical record. The second format statement skips three logical
records and then describes a record with a 12-byte integer field, two blanks and another 12-byte integer
field, plus another blank record.

7.3.3.1. Field Descriptors

The field descriptors specify the kind of 1/0 data conversion or action to be executed. FORTRAN IV allows the
descriptors listed in Table 7-1.

Table 7—1. FORMAT Statement Field Descriptors

Classification Field Descriptor
Integer riw
Real (E conversion) srEw.d
Real {F conversion srFw.d
Double precision srDw.d
Logical rLw
General srGw.d
Hollerith (A conversion) rAw
Hollerith (H conversion) wHcC,...cp
Hexadecimal rZw
Literal ‘c,cz...cw’
Blank wX
Record Position Tp
LEGEND:
r = a repeat count (0<r<255)
w = the field width (O<w<255)
s = the scale factor nP (-128<n<{+127) - optional
d = decimal positions (O<id<w)
c = character
p = character position in the external record (0<p<32767)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-8
FORTRAN IV

The specifications within the field descriptors are described in the following listing and the input and output
actions accomplished by the descriptors are described in 7.3.3.1.1 through 7.3.3.1.12.

L] Repeat Count

The repeat count allows a field descriptor to be repeated a maximum of 255 times. The repeat count
specification must be an unsigned integer constant. The field descriptor 5L3 is the same as L3,L3,L3,1.3,L3.

a Field Width

The field width specification is an unsigned integer constant indicating the number of character positions
the data occupies, or will occupy, in the external medium. The specification must not exceed 255.

- Scale Factor
input and output using the E, F, D, and G conversion codes can be scaled up or down (multiplied or divided)
by the specified power of 10, when the scaling specification in the format nP is included in the field
descriptor. A complete description is available in the fundamentals of FORTRAN programmer reference.
Refer also to 7.3.3.1.13.

] Decimal Positions

The specification describes the number of digits to the right of the decimal point; if none exist, a zero must
be specified.

L] Character

Any character of the FORTRAN character set is permissible.
L] Character Position
See 7.3.3.1.12.

Field descriptors may be grouped by using parentheses. The left parenthesis may be preceded by a group repeat
count indicating the number of times the enclosed descriptors are to be repeated. The maximum is 255. Nesting
to three levels is permitted. The result of the basic group and repeat count 2(2X,2i5,F10.0) is
2X,15,15,F10.0,2X,15,15,F10.0.

7.3.3.1.1. Integer Descriptor (riw)

On input operations, if the value exceeds the range, only the least significant digits are stored with the sign, if
any. An integer, which consists of a signed integer constant where the positive sign is optional, may contain, or
be preceded by, embedded zeros or blanks. Blanks are interpreted as zeros.

If the value exceeds the permissible range of +32,768 for integer*2 or +2,147,483,647 for integer*4, the list
element is defined to be the least significant 16 or 32 bits.

On output, the external field is preceded by a minus sign if the value is negative, and may be preceded by blanks,
space permitting, if the value is positive. If the internal value cannot be converted into the w characters
specified, the output field is set to w asterisks.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-9
FORTRAN IV

' 7.3.3.1.2. Real Descriptor - E Conversion (srEw.d)

On input, the external field consists of a string of digits optionally preceded by blanks or zeros preceded by an
optional sign. Blanks are interpreted as zeros. The digit string may specify a decimal point, which overrides the d
specification in the descriptor. The digit may be followed by exponent notation, E or D followed by an optionally
signed integer constant. If the integer constant is signed, the E or D may be omitted. If the number of significant
digits exceeds the precision of the list element, the value is rounded to the correct size. If the value is too small
or too large for the range, a zero is substituted.

On output, the external field has the following format:

s.@.nny: :ngEs,ee

where:
$4
Is the sign of the value, either blank or -.
n
Is a decimal digit.
LP)
Is the sign of the exponent, either blank or -.
ee
Is the 2-digit exponent.
‘ Note the decimal point preceding the digits.

For a complete representation of all values, the w specification should provide at least seven more additional
field positions than the d specification. The rules governing the output form when w is not at least 7 greater than

d are:
n If {(w-d) is 6, the zero character preceding the decimal point is deleted from the output form.
L If (w-d) is 5 and the value is nonnegative, both the s, and the zero character preceding the decimal point

are deleted from the output form.

u If neither of the above conditions holds, the entire output field is set to asterisks.

7.3.3.1.3. Real Descriptor - F Conversion (srFw.d)

For input action, refer to the E conversion description (7.3.3.1 .2). On output, the external field has the following
form:

S ihige .. iw-dortifa. .y

where:

Is the sign of the value, either blank or -.

Is a digit within the integer portion of the output value.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-10
FORTRAN IV

Is a digit within the fractional portion of the output value.

Suffcient space must be provided for a minus sign if the value is negative. If the integer part of the value is
nonnegative and requires more than {w-d-1) character positions for its representation, or is negative and
requires more than (w-d-2) character positions, then the E conversion is used instead of the F conversion
specified by the descriptor. If neither F nor E conversions suffice to represent the value, the entire field is set to
asterisks.

7.3.3.1.4. Double Precision Descriptor (srDw.d)

For input action, refer to the E conversion description in 7.3.3.1.2. On output, also discussed in 7.3.3.1.2, the
external field has the following form:

s;B.nn,. ..ngDs,ee

7.3.3.1.5. Logical Descriptor (rLw)

The logical field descriptor allows the input or output of logical values. On input, the field is scanned untita T or
an F is encountered; if no T or F is found, the list element is set to the .FALSE. statement. On output,aToranF
is inserted in the record. The character is right-justified and is preceded by w-1 blanks.

7.3.3.1.6. General Descriptor (srGw.d)

This descriptor provides the capabilities of the E, F, l,and the L conversion codes. During an input operation, this
descriptor accepts any real data form with or without an exponent. During an output operation, the F conversion
code is automatically selected if sufficient field width is specified in the descriptor; if not, the standard E or D
exponential form is selected for output.

The G descriptor may also be used to transfer integer, double precision, and logical data fields. For double
precision data, the G descriptor is, in effect, the same as a D descriptor. For integer and logical data, the G
descriptor is interpreted as an | or an L descriptor, respectively.

The d field in the format indicates the number of significant digits and must be greater than zero when editing
real data. The d and s editing information in the format may be omitted when transferring integer or logical data;
it is ignored when present.

7.3.3.1.7. Hollerith Descriptor - A Conversion (rAw)

This descriptor requires a corresponding variable or array element name in the 1/0 list. The maximum number of
characters that can be transmitted to a variable or array element is equal to the length, in bytes, of the variable
or array element.

On input, if the descriptor specifies fewer than the maximum number of characters, the data field is transferred
to main storage and left-justified; blanks are insertelf in the remaining storage positions. If the descriptor
specifies more than the maximum number of characters, only the rightmost characters of the data field are
transferred to main storage. The remaining characters are skipped.

On output, if the descriptor specifes fewer characters than can be represented in the variable type, the leftmost
characters of the data field are transferred from main storage. If the descriptor specifies more characters than
can be represented in the variable type, the data field (right-justified and preceded by blanks) is transferred from
main storage to the external field.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-1
FORTRAN IV

7.3.3.1.8. Hollerith Descriptor - H Conversion {(whcc,...C\y)

On input, the next w characters transferred from the external device replace the current Hollerith data specified
in the format statement. On output, the Hollerith data currently contained in the FORMAT statement is
transferred to an external device.

7.3.3.1.9. Hexadecimal Descriptor {rZw)

This descriptor is used to transfer hexadecimal digits, any two of which may be stored in one byte in the list item.
The number of digits associated with the data types are:

Number of
Type Hexadecimal Digits (k)
Logical*1 2
Logical*4 8
Integer=2 4
Integer*4 8
Real*4 8
Double precision 16
Complex*8 16
Complex*16 32

On input, the hexadecimal digits are stored two to a byte, right-justified, and zero filled; blanks are interpreted as
zeros. If a minus sign precedes the value, the leftmost bit of the variable is set to 1.

On output, a sign position is never produced, and when w is less than k in the above table, hexadecimal digits
are truncated on the left. When w exceeds k, (w-k) blanks precede the value.

7.3.3.1.10. Literal Descriptor (‘ciC,...C\y ')

This format code, similar in function to the H conversion, causes alphanumeric information to be read into or
written from the literal data in the FORMAT statement. It is not necessary to specify an external field width. No
170 list item in a READ or WRITE statement is associated with this form of alphanumeric transmission. If an
apostrophe is required in a Hollerith string, two successive apostrophes must be specified. For example, the
characters DON'T are represented as ‘DON"T’. The effect of the literal format code depends on whether it is
used with an input or an output statement. A literal may not exceed 255 characters.

L] Input

The characters in the external field replace the literal data in the FORMAT specification in main storage.
Contiguous inner apostrophes in the FORMAT specification are consolidatd into a single apostrophe. Field
width is determined by the literal length after contiguous apostrophes are eliminated. For example, the
FORMAT descriptor ‘A’ "'B’ causes the next four characters to be input. Each apostrophe in the external
field is treated as a separate character.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-12
FORTRAN IV

For example, if the input data in positions 1 through 10 is COUNTERAAA and the following statements are ‘
used, the READ statement causes the 10 characters specified COUNTERAAA to be transferred, replacing
the characters HEADINGAAA in the FORMAT statement.

1 5 7

READ (1, 28)
20 FORMAT ('HEADING ")

- Output
All characters, including blanks, within the apostrophes and the characters representing the literal
constant are written as part of the output data. The descriptor ‘DON’T’ causes the five characters DON'T to
be written.

Example:

WRITE (30, 10)
10 FORMAT (' THESE ARE SAMPLE PROBLEMS')

Execution of the WRITE statement causes the following record to be written:
THESE ARE SAMPLE PROBLEMS

7.3.3.1.11. Blank Descriptor (wX)

This descriptor omits the next w consecutive characters on input. On output, the blank descriptor skips w
positions in the output record. At the time each output formatted record is started, it is filled with blanks.

7.3.3.1.12. Record Position Descriptor {Tp)

This descriptor specifies the position in a FORTRAN record where data transfer is to begin. Input and output may
begin at any position by using the Tp descriptor. The value of p represents the start position. As noted for the X
descriptor, each output formatted record is blank filled at the time it is started. For example, the format
specification

(T7. 13 HEMPLOYEEANAME,T100,9HTELEPHONE,T40,12HHOMEAADDRESS)

causes record positions not specified in the field specification to be filled with blanks. However, for print records,
the position specified becomes print column t-1, because the first character of a print record is interpreted as the
carriage control character (Table 7-2), which is not printed. Thus, a print record for the format shown in the
example would be:

EMPLOYEE NAME HOME ADDRESS TELEPHONE

A / /

LOCATION

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-13
FORTRAN IV

The following statements cause the 10 characters starting from position 20 of the record to be converted
according to the F10.3 code and stored in Y, and the 5 characters starting from position 1 to be converted
according to the F5.1 specification and stored in B.

1 57

READ (3.,2) Y, B
2 FORMAT (T728,F10.3,7T1,F5.1)

7.3.3.1.13. Scale Factpr Effects

Scale factors have the form nP, where n is an optionally signed integer constant, and affect only D, E, F, and G
format codes. Scale factors associated with other format codes are not meaningful.

READ and WRITE statements set an effective oP at their outset. By using an nP directly preceding either a format
code or its associated repeat specification (if any), all the following D, E, F, and G format codes will be treated as
though each were preceded by nP until a new scale factor is encountered. This rule applies even when a rescan
of the entire FORMAT statement is required. For variables of type real or complex, a scale factor will either shift
the decimal point n positions or have no effect, according to the following rules:

u Scaling has no effect when an input field contains an exponent or, for G output, when the internal value is
within the range of effective F conversion.

] When an exponent is produced by a D, E, F, or G output conversion, scaling multiplies the basic real
number by 10 N and reduces the produced exponent by n. Thus, external value = internal value.

- In all other cases, the scale factor implies a change of value according to the rule: external value = internal
value - 10 M.

7.3.3.2. Muitiple Record Format Specification

The slash (/) is a record delimiter and a field separator. If a list of field specifications is followed by a slash, the

remainder of the record being edited is ignored on input or filled with spaces on output. Any editing codes

following the slash are used to edit the next record. The outer right parenthesis of the FORMAT statement is also

a record delimiter‘if 170 list elements of the corresponding 1/0 statement remain at the time it is scanned.

7.3.3.3. Carniage Control Conventions

The first position of a printer output record does not print, but determines the action of the printer carriage. The
action executed for a given carriage control symbol is described in Table 7-2.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-14

FORTRAN IV

Table 7—2. Carriage Control Conventions

Symbol Meaning
A 1-line advance
0 2-line advance
+ No advance
1 Skip to top of next page
- 3-line advance

NOTE:

All actions take place before printing.

7.3.3.4. Format Interaction with 1/0 List

During the execution of an |/0 statement, the FORMAT specification is scanned from left to right. Editing codes
of the form wH, ‘h,..h ", wX and Tp, as well as slashes, are interpreted and acted upon without reference to the
170 list. When any other editing code is encountered, one of two possible actions is taken:

1. if a list element remains to be transmitted, it is converted and transmitted, and the FORMAT scan
continues; or

2. if no list elements remain, both the current external record and the READ or WRITE statement are
terminated.

A maximum of three levels of parentheses is permitted in a FORMAT statement:

LABEL FORMAT (..(..(..)..)..(..(..)-.)..)

1 2 3 3 2 2 3 3 2 1 .

When the right parenthesis at level 1 is encountered and a list element remains to be transmitted, a new record
is started and one of two possible actions is taken:

1. if level 2 parenthetical groups exist, the FORMAT scan is resumed at the repeat count preceding the
rightmost level 2 grouping; or

2. the scan is resumed at the beginning of the FORMAT.

An occurrence of a complex variable in an 170 list requires two real editing codes, and complex*16 variable
requires two double precision editing codes.

List items must be associated as shown in Table 7-3.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-15
FORTRAN IV

Table 7—3. Permissible Associations of List ltems

Descriptor Data Types of List Items

Integer Integer*2, integer+4

Real (E conversion, Real*4, real*8, the real or

F conversion), imaginary part of complex*8 or complex*16
double precision types

Logical Logical*1, logical*4

General, Integer+2, integer+4, real*4, reai*8
Hollerith logical*1, logical*4, the real or

(A conversion), imaginary part of complex*8 or
hexadecimal complex*16 types

7.3.4. Reread Form of READ Statement

Format:

READ (u,a)k

where:
Is a constant or integer variable designating the reread unit.
Is the statement label of a FORMAT statement or an array name.

Is an 1/0 list.
Description:

The reread form of the READ statement allows the previous record transferred to main storage to be
reedited using a different FORMAT statement. This order neither selects nor initiates action on a peripheral
device.

The FORTRAN |V library contains a unit table that associates unit numbers with files. In this discussion, it
is assumed that unit 29 has been associated with the reread feature; actually, any one or more units can
be designated (see Section 11 for CDI environment and Section 12 for DTF).

The reread feature is used when the program must determine the kind of information in a record. For
instance, both header and detail records may be intermixed, and each kind of record may require different
editing information in a FORMAT statement. After a READ order transfers a record to main storage, the
record is identified by the program. If the correct format was applied, the program performs the necessary
action on the data; if not, the program may. execute a statement such as:

READ (29,a)k

This would be in conjunction with the desired FORMAT statement.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-16
FORTRAN IV

No ERR return is allowed with a reread. If an END or EOF label is specified and the previous read
encountered an end-of-file, control is returned to the specified label. An unformatted record may not be

reread.
Example:
8 - .
8 8 Heading Card
characters
1.D.
% DATE . TIME PLACE |
10 10 l 10 l Detail Card
characters
S\
\>~
) DATA DATA DATA
FIELD1 FIELD2 FIELDS

1 57

DOUBLE PRECISION DATA, TIME,PLACE,D(5)
C READ RECORD

READ (26,15) | ,DATE,TIME,PLACE
15 FORMAT (11,3A8)
C IDENTIFY RECORD

IF (1-1),99 :GO PROCESS HEADING CARD
C CARD !S DETAIL, SO FORMAT EDIT AGAIN

READ (29,30) D
3p FORMAT (1X,5D160.4)

7.3.5. List-Directed Input/Output

Two classes of list-directed input/output statements are provided in FORTRAN 1V. Both classes process only
formatted records, with the FORTRAN IV system automatically supplying the necessary FORMAT specifications.

u Namelist input/output records contain variable or array element names with their associated values. The -
entire list is named, and on input the file is automatically searched to locate the name (7.3.5.1).

] Simple list-directed input/output records contain values without variable or array names. The statements
are syntactically simple and require less main storage during program execution {7.3.5.2).

7.3.5.1. NAMELIST Statement

Format:
NAMELIST /n,/ay,2,,....3g/n/a";,8"3,...,8 ...

where:

Is a namelist name of from one to six characters, beginning with a letter and enclosed in slashes,
used to identify the set of data names that follow.

a o
Is a simple list of variables or arrays of any type representing the data to be transferred; array
element names are not permitted.

UP-8474 Rev. 2 SPERRY UNIVAC 0S§/3 7-17
FORTRAN IV

Rules:

1. Once the namelist name is defined by its appearance in @ NAMELIST statement, it cannot be
redefined in any other statement and can appear only in |/0 statements.

2. The list of variables and array names belonging to the specified namelist ends with the specification
of another namelist name enclosed in slashes or with the end of the NAMELIST statement.

3. A variable name or array name may be associated with more than one namelist name.
Description:

The NAMELIST statement is a nonexecutable statement that permits formatted data transfer operations
without either a FORMAT statement or a list of names in an 1/0 statement.

To use this statement, symbolic data set names are specified in the NAMELIST statement and also in the
record of data to be transferred. No data type is implied by the data set name; for example, a NAMELIST
statement specifying two sets of data may appear as: ’

1 7

NAMELIST/GRUPLI/A, | MATRIX/GRUP2/X,J
DIMENSION MATRIX (28)

GRUP1 contains the variable names A and | and the array MATRIX/GRUP2 contains the variable names X
and J.

An I/0 statement can specify a namelist name in place of the usual reference to a format specification.
The name specified identifies the record to be transferred. Data in a record is preceded by a variable or
array element name and an equals symbol. To ensure transfer of the correct data, the object program
compares the data name associated with a namelist with those in the record.

. The general formats of /0 statements used in conjunction with the NAMELIST statement are:

READ(unit,namelist-name, END=label,,ERR=label,)

WRITE(unit,namelist-name)

Note that the END and ERR clauses are optional and that no list is present.
The general form of data for input is:

N&nAa=c¢,, 3a,=¢C,,

anzcn,&END

where:

Is a namelist name (a name identical with the name specified in the NAMELIST statement).

Is a variable, an array element, or an array name of any data type.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-18
FORTRAN IV

Is a single, optionally-signed constant of the same type as the associated name; or (if the name is an
array name) c is a list of one or more eiements, each element separated by a comma, where an
element is either an optionally signed constant or a list of identical, optionally-signed constants
preceded by an unsigned integer repeat count of the form k».

The following rules pertain to input data:

1. The first character in a logical record must be blank. The second must be an ampersand immediately
foliowed by the namelist name without any embedded blanks. The namelist is separated from the
succeeding symbolic name by a blank or bianks. A comma after the last data unit is optional. The end of the
NAMELIST record is signaled by &END.

2. When an array element or an array occurs in a NAMELIST record, the data is an optionally signed constant
of the same type as its associated name. The constants can be preceded by an unsigned integer and an
asterisk to indicate repetition. An array need not be filled by its data list.

3 No blanks may be embedded in constants.
4 If logical constants are used, the acceptable values are T or .TRUE. and F or .FALSE..

5. Literal constants can be transferred on input by using either apostrophes or the wH field descriptor. Literal
constants may appear on an input record as TITLE="DON"T’ or TITLE=5HDON'T.

A READ statement referencing a namelist name causes the next record to be read and tested for the proper
namelist name. if the name is found, the first variable or array name is read and compared with the list of names
defined in the NAMELIST statement. if the variable or array name is found in the list, the data value or values are
assigned, and the next name is accessed. If the record does not contain the namelist name, subsequent records
are read from the external medium until the record containing the name is found. If, after the proper record is
found, a variable or array name that is not in the list of names appears in the input record, an error message is
produced and the program is terminated.

Output data contains the namelist name followed by variables, array elements, and/or array names and their
corresponding values. An array is written out by columns. Data fields are large enough to contain all the
significant digits. Output data can be read by an input statement referencing the namelist name. Literal data is
never produced as output.

7.3.5.2. Simple List-Directed Input/Output

List-directed 1/0 statements are identical in concept with formatted READ and WRITE statements except for the
lack of a specific FORMAT statement reference. They are distinguished by the presence of the character asterisk
{*) in place of the usual FORMAT reference, as in:

READ (18,+,END=30)A,B.C

These statements initiate and control the transfer of formatted data between a designated unit and main storage.
Format contro! is provided by the FORTRAN system based on the types of the list items and the record length
associated with the unit. When preparing input data, the programmer must ensure that it conforms to the
requirements of this list-directed format, specifically in regard to the use of the comma, slash, and blank
characters. List-directed output records are, of course, acceptable as list-directed input.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-19
FORTRAN IV

» Input Data Format

An input record consists of a list of constants, each demarcated by a separator. Separators are the
characters:

blank (or a series of blanks)

comma {preceded and followed by zero or more blanks)

- end-of-record

slash (preceded by zero or more blanks)

Since the blank is eonsidered a separator, no embedded blanks may appear in arithmetic constants. A
blank, comma, or slash may appear within a literal constant enclosed within apostrophes, and end-of-
record forces a read of the next sequential record.

For card input, end-of-record is determined by the fixed length of 80 positions. For other input, such as
tape or disk, the length specification given at the time the record was written is the determining factor. The

slash separator causes termination of the READ statement.

Real constants must be associated with real list items; integer and literal constants may have any
association. The exponent identifiers E and D are considered equivalent.

The real and imaginary parts of a COMPLEX constant must be separated by a comma and enclosed in
parentheses. A repeat count may precede a constant using the form: :

r«constant

Two or more consecutive comma separators {(with any number of blanks or end of records intervening)
indicates that the corresponding list items are not to be redefined. Multiple numbers of these “null items”
may be indicated by:

(separator)}re(separator)
Example:

1 7

INTEGER E,F,G
READ(U,») A.B,C.D.E.F,G . H,1I

12 14/

17.23961727,12,2+ '"HE"'S’

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-20

FORTRAN IV

After the READ statement is executed, the values of the list items will be:

A 17.2396 (or 17.23961727 if real*8)
B 12.0

cD unchanged

E HE'S

F 12

G 14

H.I unchanged

n Output Data Format
The output records consist of a list of constants, each separated by a comma. Qutput records never contain
repeat items (r=constant) or literals. The maximum precision commensurate with the list item will be
represented.

7.3.6. Auxiliary I/0 Statements

Auxiliary 170 statements control the demarcation of files and the positioning of files to desired points of
reference.

7.3.6.1. REWIND Statement

Format:

REWIND u

where:

u »
Represents an integer constant or variable designating a sequential file on tape or disk.

Description:

The REWIND statement positions the file to a point immediately preceding all records of the file. The file is
closed before a rewind operation.

7.3.6.2. BACKSPACE Statement

Format:

BACKSPACE u

where:

Is an integer constant or variable designating a sequential file on tape or disk.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-21
FORTRAN vV

. Description:

The BACKSPACE statement activates the designated unit and causes a backspace of one logical record.
A record for a formatted file is defined by the termination of a WRITE statement, a slash encountered
during format control, or the last parenthesis encountered in the format when other list items exist in the
corresponding READ or WRITE statement. It is illegal for a format to demand a record longer than is
present at the current file position.

In an unformatted environment, a record is defined by a single WRITE statement. The BACKSPACE
statement has no effect if the file associated with a unit is currently positioned immediately preceding the
first record. This statement should not be used when the file is used for list-directed input/output.

A BACKSPACE statement issued to an unopened file is a null operation. Logically, a BACKSPACE
statement can follow only a READ statement or a WRITE statement to that file. A BACKSPACE statement
after a WRITE statement closes and repositions the file; the file is open after a legal BACKSPACE
statement.

The BACKSPACE statement cannot be used with:

L] a file of blocked records;

L] a file having two 170 areas; or

[] a file having a work area (DTF environment only).

. However, these restrictions do not apply when backspacing over a file’s end-of-file record.

7.3.6.3. ENDFILE Statement

Format:

ENDFILE u

where:

Is an integer constant or variable designating a card, tape, or sequential disk output file.
Description:
The ENDFILE statement closes the file specified by the unit number. Only a REWIND statement is allowed

after an ENDFILE statement is issued; all other commands produce error messages. An ENDFILE statement
issued to an unopened file is a null operation physically.

7.3.7. Sequential File Considerations

The 1/0 statements may not be executed in arbitrary sequences. The following listing shows instances where
specific commands are prohibited or ignored.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-22
FORTRAN IV

Current
_ \Qperation| peap | WRITE | ENDFILE | BACKSPACE | REWIND
Previous
Operation
Successful w
READ
BACK- |
EOF SPACE
encountered missin
during READ .g
(warning)
File
WRITE P truncated
ENDFILE P BACK- 1 N
SPACE
missing
(warning) | .
BACKSPACE
REWIND 1 i
No previous
operation i I |
LEGEND:
| Indicates an ignored operation.
P Indicates a prohibited operation.
N Indicates that the operation is noted, but the file is still positioned following

the last logical record. A second BACKSPACE must be issued to position the
file in front of the last logical record in the file.

w Indicates operation not permitted with double buffering.

In addition, since not all operations are permitted on all devices, the following listing shows prohibited
combinations.

Operation »
File type READ WRITE ENDFILE | BACKSPACE REWIND
TAPE * *
DISK * *
CARD READ P P P

CARD PUNCH P

PRINTER P
REREAD P P P
WORKSTATION P P

*Prohibited when files are defined as input only or output only.

{See buffer allocation for tape and disk devices.)

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 7-23
FORTRAN IV

Formatted and unformatted records may be freely intermixed on output tape and disk files, but it is the
responsibility of the user to read these records in the same mode as they were written.

7.3.8. File Screen Workstation 1/0

In addition to line-by-line 170, the user can reference the workstation terminal using pregenerated screen °
templates. These templates can be accessed via formatted or unformatted FORTRAN 1/0 statements. Data
transmitted using editing features of screen format services is done via FORTRAN unformatted 1/0 statements.
FORTRAN edited data should be transmitted as character inserts that are not re-edited by screen format
services. It is the user’s responsibility to coordinate the FORTRAN 1/0 statements with the screen format edit
services. A complete discussion of screen format services can be found in screen formatting concepts and
facilities user guide/programmer reference. A backspace or rewind is not permitted.

7.4. DIRECT ACCESS FILES

FORTRAN IV direct access statements are used to control disk subsystems. The term “‘direct access’ refers to
the ability of the disk to access a specified record of a file without accessing all preceding records. Disk
subsystems need not be accessed directly; these devices may be used with sequential files in the same manner
as for tape units. In this case, the only 1/0 statements required are those described in 7.3.

The direct access 1/0 statements are DEFINE FILE, FIND, READ, and WRITE. The direct access 1/0 statements
can transmit either formatted or unformatted records.

7.4.1. DEFINE FILE Statement

Format:
DEFINE FILE w,(ry,m,xy,vy),up(ry,my, X5, Va),un(rn.mn,anV“)
where:
u
Is a file identifier, an integer constant specifying a file, or a unit reference number.
r
Is an integer constant specifying the number of records in the file.
m

Is an integer constant specifying the maximum size of a record in the file in terms of characters
(bytes), main storage locations (bytes), or main storage units (words), depending on the specification
for x.

Is one of three possible code letters to indicate an option of format control:

L
Transfers either formatted or unformatted data, where the specification form determines the
number of bytes.

E
Transfers formatted data, where the specification for m determines the number of bytes.

U

Transfers unformatted data, where the specification of m designates main storage units.

UP-8474 Rev. 2 SPERRY UNIVAC 0S§/3 7-24
FORTRAN IV

Is the associated variable for the file, which must be an unsubscripted integer*4 variable. After
execution of a READ or WRITE statement, the variable is assigned a value in the range (1 <v <)
indicating the sequential position of the next record in the file; after execution of a FIND statement, it
is assigned a value indicating the position of the desired record. It is not defined (i.e., set to a value)
by the DEFINE FILE statement.

Description:

A DEFINE FILE statement is executable, and it dynamically describes one or more files that may be
referenced during program execution. At the start of execution of a FORTRAN program, all direct access
units are considered to be undefined, and no READ, WRITE, or FIND references are permitted. When a
DEFINE FILE is executed, the characteristics of one or more units are registered with the FORTRAN system,
and the units are made available for use. Thereafter, further definitions of previously defined units are
ignored.

The associated variable v should not be passed indiscriminately between subprograms or used for
purposes other than a file pointer, since the compiler has no syntactic clues as to its usage when the
DEFINE FILE statement is absent in a subprogram. When an associated variable must be transmitted to a
subprogram, it should be passed in COMMON storage or, less preferably, associated with a dummy
argument called by name.

To calculate the record size in storage units (when using the u specification for parameter x). determine the
total number of bytes required for all the items of the 1/0 list, and divide this by 4. if the quotient is not an
integer, round it to the next highest integer. There is no restriction on the transmission of multiple records
by FORMAT/list interaction, but unformatted lists cannot specify more than one disk record.

Example:

1 7

DEFINE FILE 3(1066,120,L,FILE3),
15(98,80,U,FILES)

File 3 is composed of 100 records, the maximum size of which is 120 bytes. L indicates that the record size
is specified in bytes. If the 1/0 statement contains a reference to a format, 120 bytes of formatted data are
transferred; if unformatted data is transferred, File 5 contains 98 records, each 80 bytes in length.

7.4.2. Disk READ Statement

Format:

READ(u‘p,a,ERR=1label,, END=1label,)k

where:

Is a file identifier represented by an integer constant or variable followed by an apostrophe.

Is an integer expression designating the position of the record in the file, which should be in the
range (1<<p<r), where r is the number of records in the file.

Is an optional label of a FORMAT statement, an array name, or the character asterisk.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-25
FORTRAN IV Update B

. ERR=label,

Optionally specifies the label of a statement to which control is to be transferred when an error
condition occurs.

END=label,

Optionally specifies the label of a statement to which control is to be transferred when an ENDFILE
record is encountered, or when p is outside the file limits.

k
Is an 1/0 list.
Example:
1 5 7

INTEGER FILE3/1/
DEFINE FILE3(180,512,L.FILE3)

READ (3° FILE 3,87,ERR=110) A,B,(C(1),1=1,30)
87 FORMAT (32F16:4)

The first record in file 3 is tranferred to main storage when the READ statement is first executed. Each
subseqguent execution of the READ statement transfers the next record in the file to main storage, unless
the associated variable FILE3 is explicitly redefined. The descriptor 32F16.4 indicates that each unit of data

| consists of 16 bytes and 32 such units of data are to be transferred. Thus, the 512 bytes (16x32) of the
. record are transferred to main storage.

The slash in a FORMAT specification can control the starting point of data transfer in a file. If the FORMAT
statement in the example is:

FORMAT(//32F16.4)

the first execution of the READ statement transfers the third record in the file; the second execution
transfers the sixth record.

7.4.3. Disk WRITE Statement

Format:

WRITE(u‘p,a)k

where:

u
Is a file identifier represented by an integer constant or variable followed by an apostrophe.

p
Is an integer expression designating the position of the record in the file.

a
Is an optional FORMAT statement label, an array name, an integer variable to which the statement
label of a FORMAT statement has been assigned, or the character asterisk.

k

Is an 1/0 list.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-26

FORTRAN IV Update B

Example:

1 57
DEFINE FILE 4(156,36,L,FILE4)

LOGICAL L
DOUBLE PRECISION D

FILE4 = 2

WRITE (4° FILE4+1,2) |,R,D,L
2 FORMAT (18, F12.2, D15.5, L1)

Thirty-six bytes { 8 + 12 + 15 + 1) are transferred from storage to the third record in the file. The format
specification indicates the number of bytes for the integer, real, double precision, and logical values
transferred. If the WRITE statement does not specify a format label, an unformatted WRITE statement is
executed. In this case, 20 bytes are transferred.

Variable Name Type Number of Bytes
| Integer 4
R Real 4
D Double precision 8
L Logical 4
20 Total

7.4.4. Disk FIND Statement

Format:
FIND (u’'p)
where:
u
Is a file identifier represented by an integer constant or variable and followed by an apostrophe.
p

Is an integer expression designating the position of a record in the file.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 7-27
FORTRAN IV

Description:

The FIND statement can decrease the time required to execute an object program requiring records from
disk. This statement positions the access arms to a disk address specified by a file identifier and a record
position. During the time the arms are being positioned, execution of the object program can continue.
After positioning, a READ statement accessing the record addressed in the FIND statement may be
executed, and the record is transferred to main storage; thus, data transfer is completed more quickly
when the arms are pre-positioned to a required track address prior to the execution of a READ statement.
The FIND statement is never logically required in a program.

Example:

1 7
FIND (4 28)

READ (4’ 28) A, B, C

This example shows the relationship between a READ statement and a FIND statement. While the access
arms are being positioned, the statements between the FIND statement and the READ statement are
executed.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 8-1
FORTRAN IV

8. Data Initialization

8.1. GENERAL
Data initialization for FORTRAN IV programs is described in this section. For more information, refer to the

fundamentals of FORTRAN programmer reference. See the type statements (6.4.1), which have an initialization
capability. In the absence of initialization, variables and array elements must be defined prior to reference.

8.2. DATA STATEMENT

Format:
. DATA k,/d,/,kz/dz/,...,kn/dn/

where:

Is a list of variable names, array names, array element names, or implied DO lists separated by
commas.

Is a list of constants, any of which may be preceded by r« to specify a repeat count, where r is an
unsigned integer constant. ltems in the list are separated by commas.

Description:
The DATA statement initializes values represented by a variable, an array, and specified array elements.
None of these should be in blank COMMON; they should be labeled COMMON only if the DATA statement

appears in a block data subprogram.

Array element names may appear in DATA statements if their usage conforms to the following
conventions:

u Subscript expressions are restricted to the standard American National Standard forms: ¢, v, c»v,
c«vtk, cxv-k, and v-k, where ¢ and k are positive integer constants and v is an integer variable.

[] When v appears in a subscript the array element name must be within the range of an implied DO
list in which v is the control variable.

‘ . The initial, terminal, and incremental values of the control variable of any implied DO list must be
specified as positive integer constants.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 8-2
FORTRAN IV

Constants may be of the integer, real, double precision, complex, hexidecimal, logical, or literal type. When
the corresponding variable is of a differing type (except for logical or literal), the constant will be converted,
possibly causing truncation.

The DATA statement may be used to initialize arrays and variables with literal data. When initializing an
array element or variable, a long literal string is truncated on the right to the corerect size and a shorter
string is filled with blanks on the right to the correct size.

Several consecutive elements of an array may be initialized with a single literal constant by using the array
name without a subscript or by using an array element as the last item on the list. The long literal constant
is placed in as many consecutive array elements as needed to contain it. If the last used position is only
partially filled, that element is padded on the right with blanks. Truncation occurs if the lateral string
exceeds the limit of the array or the 255-character literal limit.

Example:

DIMENSION ARR(6)
DATA ARR/‘ABCDEFGHIJKLM' /

This produces:

ARR(1) contains *ABCD’
ARR(2) contains "EFGH’
ARR(3) Contains “1JKL'
ARR(4) contains ‘MAAA '

ARR(5) not initialized
ARR(6) not initialized

A long literal may be overlaid if the constant list contains more than one constant.
Example:

DIMENSION ARR(6)
DATA ARR,VAR/'ABCDEFGHIJKLM', 99/

This produces:

ARR(1) contains “ABCD’
ARR(2) contains 99.9
ARR(3) contains “1JKLT
ARR(4) contains MAAA

ARR(5) notinitialized
ARR(6) not initialized
VAR not initialized

Initialization may commence at any point in the array.
Example:

DIMENSION ARR(6)
DATA VAR,ARR(3)/17,10HABCDEFGHIJ/

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 8-3
FORTRAN IV

' This produces:

VAR contains 17.8
ARR(1) not initialized
ARR(2) not initialized

ARR(3) contains *ABCD’
ARR(4) contains “EFGH’
ARR(5) contains RV

ARR(6) nNot initialized

8.3. BLOCK DATA SUBPROGRAM

A block data subprogram is an independently compiled specification subprogram. It is used to initialize values in
labeled common blocks. The subprogram can contain only DATA, EQUIVALENCE, COMMON, DIMENSION, TYPE,
and IMPLICIT statements. The block subprogram is headed by the BLOCK DATA statement. The order of
statements is governed by the rule shown in Figure 1-1.

8.3.1. BLOCK DATA Statement

Format:

BLOCK DATA s

‘ where:

Is an optional symbolic name used to identify the BLOCK DATA subprogram.
Description:
The BLOCK DATA statement is the first statement in a block data subprogram, the statement indicating the

beginning of a block data subprogram to the compiler. For a discussion of the effects of s, see the PROGRAM
statement (6.8). In the absence of s, the compiler supplies the name $BLOCK.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 9-1

FORTRAN IV

9. Compilation

9.1. GENERAL

The FORTRAN IV compiler accepts source programs from either a card file or a disk file. Card files are entered
directly into the card reader along with the appropriate job control stream. Disk files are built by the system
librarian and its job control stream is entered from a disk (filed job control stream) or from the card reader. When
operating in the CDI environment, disk files may also be built from a workstation terminal using the facilities of
the system editor. Appendix E contains compilation examples.

9.2. FORTRAN IV COMPILERS

The FORTRAN |V compilers are named FOR4 and FOR4L; both require one work file allocated in the job control
stream. FOR4 requires 10800, (X'10800°) bytes of main storage plus space for the prologue; FOR4L requires
19000, (X'19000°) bytes of main storage plus space for the prologue. When FOR4 is executed, FOR4L will
automatically be loaded if sufficient main storage was allocated for the job. No other use is made of additional
storage. FOR4L contains significantly larger tables and workfile 1/0 buffers.

9.3. PARAMETER STATEMENT FORMAT
Parameter statements for the compiler appear as punched cards in the job control stream.
Format:

1

// APARAMA n1:d1 ’ n2=d2, -

The // sequence must be in columns 1 and 2; columns 73 through 80 are not used. One or more blanks are
required before and after PARAM, and one or more blanks are permitted after a comma. Each argument consists
of a name (n}), and equal sign, and a compiler directive (d). An argument may not contain embedded blanks.
Multiple PARAM statements are permitted, but continuation is not. An argument may not continue on another
card. For an explanation of statement conventions that apply to this section, refer to 1.4.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 9-2
FORTRAN IV Update B

9.3.1. Compiler Arguments

A list of arguments provided by the FORTRAN IV compiler follows. Descriptions of the arguments follow the list.

Format:
LABEL AOPERATIONA OPERAND
// APARANMA QUT=filename,MAP=(S A L),

LIN=filename,LST=option,OPT=(S ,N,X,C,T),
ERRFIL=module-name/lfdname
IN=module-name/filename

Input Argument:

IN=module-name/filename
Specifies compilation of source programs residing in disk files.

Module-name is a one to eight alphanumeric character identifier indicating the name of a source
module to be compiled. Filename is a one to eight alphanumeric character identifier indicating the
name of a file in which the module resides. If /filename is not specifed, a default name is assumed
and can be described via the LIN argument.

The occurrence of an IN argument signals the end of the scanning for other PARAMs. Arguments following
an IN argument on a given // PARAM card are ignored. Subsequent // PARAM statements may contain
only IN arguments to allow for stacked compilations (see 9.4).

Output argument:

OUT=filename
Specifies the file in which the compiler is to place object modules.

A one to eight alphanumeric character identifier is specified by filename. If OUT is not specified, the
compiler places all object modules in the temporary scratch file $YSRUN.

Map Argument:
MAP=(S,A, L)

Specifies the type of maps produced by the compiler. One or all options may be chosen. The options
include:

Specifies object summary information, including module size and external subroutines called.

Specifies an alphabetical listing of the addresses assigned to variables, arrays, and statement
labels.

Specifies a listing of the addresses assigned to variables, arrays, and statement labels in order
by the storage locations assigned.

When a MAP argument is specified, it supercedes the maps selected by the LST argument. Also, when a
MAP argument is specified, it is not necessary to specify LST=M.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 9-3
FORTRAN IV

Library Input Argument:

LIN=filename

Specifies the name of the default file in which the source modules reside.

A one to eight alphanumeric character identifier is specified by file name. If LIN is not specified, the
compiler assumes the default filename of LIB1. This argument is used in conjunction with the IN
argument.

Listing Argument:

LST=option

Specifies the quantity of listings produced by the compiler.

One option may be chosen. The options include:

Specifies an abbreviated listing consisting of only the compiler identification, parameters, and
diagnostics.

Specifies, in addition to the N listing, the source code listing.

Specifies, in addition to the S listing, an object summary and a storage map showing the
addresses assigned to variables and arrays. (Can be superseded by the MAP argument.)

If no LST PARAM is specified, the S option is assumed.

Options Argument:

OPT=(S,
Specifies compilation options.

N, C, T)

One or all options may be chosen. The options include:

Specifies that statement numbers will be inserted into the generated code as an aid to
debugging. When S is specified, the size of the object program and its execution time can
increase significantly.

Specifies that no object program is to be generated. The program units are merely compiled and
cannot be executed.

Specifies compilation of all cards with the character X in column 1. If this option is not
specified, these cards will be treated as comments.

Specifies all references to array elements are to be checked to determine if they are outside the
declared limits of the array.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 94
FORTRAN IV Update B

Specifies that tracing of executed labels is requested. The compiler generates a special
subroutine call at every label. A TRACE ON statement must occur in the program to activate
tracing.

If only one OPT argument is specified, the parentheses are optional.
Error File Argument:

ERRFIL=module-name/!fdname
Specifies that an error file is created. This file allows the programmer to correct source code using

the error file processor (EFP) instead of the output listing.

Module-name is a one to eight alphanumeric character identifier indicating the module name of an
0S/3 MIRAM source library file. Lfdname is a one to eight alphanumeric character identifier
indicating the LFD name of an 0S/3 MIRAM source library file.

if no ERRFIL parameter is specified, the error file is not written.

9.4. STACKED COMPILATION

The FORTRAN IV compiler is capable of processing up to 100 source program units during a single execution.
When the source programs are on punched cards, one or more units may be placed between the /$ and /* data
set delimiters. The data set is proceded by compilation // PARAM statements. All FORTRAN IV compiler
parameters are global and apply to all programs compiled. When a parameter is to be changed, the job control
stream should be organized into two or more FORTRAN IV compilations, each containing the required
parameters. For example:

1 5 7

// WORK1

// EXEC FOR4
// PARAM

/3

{one or more program units)
T
// WORK1
// EXEC FOR4

// PARAM
/$

(6ne or more program units)
/ *
When the source programs are on disk files, the programs are identified by using a librarian module name. A
source module consists of one or more FORTRAN program units. The IN compiler parameter is used to identify

source files to the compiler. Note that once FORTRAN IV encounters an IN parameter, no parameters, except
other IN parameters, may occur.

When FORTRAN 1V is doing a stacked compilation, the work file usage is cumulative. Thus, it may be desirable to
do multiple executions of the compiler to reduce the work file requirements.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 9-4a
FORTRAN IV Update B

9.5. SOURCE CORRECTION FACILITY

When source programs reside on disk, it is possible to change the source as it is read into the compiler. If a /$
and /* data set immediately follow the // PARAM statement with the IN argument, the compiler assumes that
the data set contains correction cards to the source file. The method of correction is the same for the system
librarian’s module correcting (COR) function. Refer to the current version of the system service programs (SSP)
user guide. The corrections apply only to this compilation and the original source is not changed. When the
compilation is complete, the next card available in the control stream immediately follows the /* card. For

example:

UP-8474 Rev. 2 SPERRY UNIVAC 0S§/3 9-56
FORTRAN IV

1 57
// PARAM IN=MODA/FILEA
/%

update of correction cards
/ *
// PARAM. ..

NOTE:

A data set to be compiled from cards may not immediately follow an IN card because it will be mistaken for a
correction deck.

9.6. CREATING A JOB CONTROL STREAM
The problem of creating a legal job control stream is greatly simplified by using the proper jproc (job control

procedure). How to use jprocs is described in Appendix E. However, if you want to create your own job control
stream, the following rules must be observed:

L] The FORTRAN compiler requires one work file. The jproc WORK1 supplies this file.
L If the IN or OUT options are specified, the appropriate disk files must be defined.

‘om A printer device is required and must be defined by the // DVC 20 and the // LFD PRNTR job control
statements.

. Because of the stacked compilation feature (9.4), the // OPTION REPEAT feature of job control is not
required and, in fact, must not be used.

= if the // OPTION LINK or the // OPTION LINK,GO job control statement is specified, no linkage editor
control cards or control stream data from the program is allowed; the source correction facility (9.5) or the
stacked compilation feature (9.4) would mistake the data set for FORTRAN source code.

9.7. USE OF LARGER VERSION

Programs containing a large number of variables, arrays, statement labels, function references, etc., may require
the FOR4L compiler to compile successfully. Some of the error messages that indicate that the larger version of
the compiler is necessary are:

SYMBOL TABLE EXCEEDED

TOO MANY CONSTANT EXPRESSIONS

Recompile your program using the FOR4L compiler.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 10-1
FORTRAN 1V

10. Debugging

10.1 GENERAL

Debugging aids are provided with the FORTRAN IV compiler. These debugging aids consist of the standard 1/0
statements (especially list-directed statements described in 7.3.5), conditional compilation, subscript checking,
label tracing (TRACE ON and OFF), and the DUMP and PDUMP standard library subroutines for formatted main
storage dumps.

10.2 CONDITIONAL COMPILATION

The compiler accepts the parameter which enables conditional compilation of any line which contains the
character X in position 1 of the line. When this parameter is enabled, the line will be compiled; otherwise, the
line is treated as a comment. ’

Example:
1 5 7
X PRINT 18, A, B, C

X 18 FORMAT (3Fl15.6)

This coding is used to print intermediate results during the debugging of a program. When debugging is
complete, these statements can remain dormant in the source to be used at a later date if necessary. See
Section 9 for the format of the PARAM statement.

10.3. FORMATTED MAIN STORAGE DUMP

Two FORTRAN IV standard library subroutines, DUMP and PDUMP, are provided to display variables and arrays.
These two subroutines are identical, except that DUMP terminates the calling program and PDUMP does not.

Format:

CALL p(uy, Iy, fy uglp, fy, oot nfan)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 10-2
FORTRAN IV

where:

Is either DUMP or PDUMP.

Is a variable or array element name indicating the upper address boundary for the display.

Is a variable or array element name indicating the upper address boundary for the display.

Is an integer indicating the desired interpretation of the storage area.

The u and | specifications may be interchanged; their positions in the CALL statement do not influence the dump.
The argument list enclosed in parentheses is optional.

The codes used for the format specification f are:

f Display Inierpretation f Display Interpretation
0 Hexidecimal 5 Real*4

1 Logical*1 6 " Real*8

2 Logical*4 7 Complex*8

3 Integer«2 8 Complex*16

4 Integer*4 9 Literal

The output of these subroutines is directed to the debug unit or to the standard diagnostic unit. If no argument
list is present, the dump is for the entire program and is in hexadecimal format.

10.4 USE OF OPT=S

Initially a program unit should be compiled using the OPT=S option. This yields more diagnostics and makes
debugging easier when the statement numbers are available. After the program unit has been debugged, it
should be recompiled without the OPT=S option. This will eliminate the instructions that dynamically store the
card sequence numbers.

When using the subscript check and label trace features, OPT=S supplies additional information and should
always be specified.

10.5 SUBSCRIPT CHECKING

The FORTRAN IV compiler dynamically checks the value of the subscript by accepting a parameter that causes
code to be generated before every subscripted reference.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 10-3
FORTRAN iV

The most common programming error is referencing outside the declared limits of an array. FORTRAN IV checks
every subscript reference if the user specifies the OPT=C compilation parameter option. The following example
shows the use of this feature.

Example:

1 5 7
// EXEC FOR4
// PARAM 0PT=(S,C)

/3
SUBROUTINE A
DIMENSION X(19)
1=20
PRINT 108,X(1)
STOP

1868 FORMAT (F28 3)

END

/*

The following message is output to the diagnostic device during execution of the PRINT statement.

FL530 SUBSCRIPT 00000020 OUT OF RANGE ON CARD 0004 OF MODULE A
No recovery of the bad subscript is attempted. The number of times a subscript error is permitted and reported is
controlled by the FARG option of the error control definition macro (ERRDEF).

The OPT=C option significantly increases the size and execution time of the program. After the program is
debugged, it should be recompiled to eliminate the extra code.

The ON CARD field of the message requires the OPT=S option; otherwise, the field will be zeros.

10.6 LABEL TRACE

To follow the actual sequence of executed statements, FORTRAN IV has a trace facility. If the OPT=T parameter

option is specified, the compiler generates a special subroutine call at every executable label. When the

statement is executed, the following message is displayed on the diagnostic device if tracing is activated:
FLO50 CONTROL AT STATEMENT _ ON ___ OF MODULE ____

To control the trace facility, two new statements are available (see 10.6.1 and 10.6.2).

The OPT=T option significantly increases the size and execution time of a program. After the program is
debugged, it should be recompiled to eliminate the extra code.

The ON CARD field requires the OPT=S parameter option; otherwise, the field will be zeros.

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 10-4

FORTRAN 1V

10.6.1. TRACE ON Statement

Format:

TRACE ON

Description:

The TRACE ON statement enables the display of the TRACE message and is required to begin tracing.
Tracing is disabled at the beginning of execution.

10.6.2. TRACE OFF Statement

Format:

TRACE OFF

Description:

The TRACE OFF statement disables the trace display. This permits the user to control the amount of output
produced.

UF;-8474 Rev. 2 SPERRY UNIVAC 0S/3 111
FORTRAN IV Update B

11. Consolidated Data Management (CDM)
Execution Environment Configuration

11.1. CDM RELATIONSHIP

This section describes the interface between FORTRAN 1V and consolidated data management (CDM), including:
] the relationship between unit numbers and external files;

u the kinds of devices supported;

s performance considerations such as record blocking and buffering; and

L system defaults (assumptions made by the system when specific directions are not provided).

Default actions taken when various errors are detected during program execution and how these defaults are
changed to suit application requirements are aiso described. An example of a complete execution environment is
given in 11.4

The FORTRAN IV execution environment is consistent with the CDM concept of device independence. This

means that substitution of similarly constructed files is possible without recompiling or reassembling. More
discussion about device independence is presented in 11.3.

FORTRAN IV supports the following device classes:

n Disk and diskette

] Tape

m Workstation terminal

= Unit record (card reader, card punch, printer, and control stream input).

FORTRAN IV accesses these devices via the standard data management interfaces (CDIB and RIB structures).
This interface is described in the common data management concepts user guide.

Before a FORTRAN |V program can be executed, a group of 1/0 subroutines must be incorporated to support the
FORTRAN |/0 statements and provide an interface to data management. These |/0 subroutines are individually
called by the FORTRAN IV compiler and automatically placed in the executable program by the linkage editor. In
the executable program, the control module is the center of the entire |/O scheme, because it contains the
following:

u A unit table consisting of one entry for each unit number specified in the user program. Each entry
contains FORTRAN control data and the information needed to connect the unit number to the actual
device.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 11-2
FORTRAN IV

] A work area for record processing.

L A buffer needed to support the REREAD feature.

An executable program may only contain one 1/0O control module. This module may be supplied either by
FORTRAN IV or configured by the user. When supplied by FORTRAN [V, the configuration allows for standard
unit numbers used to reference a printer, card punch, tape, card reader, and a reread unit (11.2). When supplied
by the user, he may configure his own set of unit definitions by using the FORTRAN IV unit definition procedure
(UNIT). The user-supplied unit numbers are associated with the physical device via a device assignment set
(DVC-LFD) at program execution.

11.2. CDI-SUPPLIED CONFIGURATIONS

The following configurations are supplied for general use in simple applications. The unit numbers selected are
industry standard. FORTRAN Il 1/0 support is also included in these configurations.

n Control Module FLS$IO

Unit
1

(o224 BRIV

29
READ
PRINT

Notes

80 byte records; lfdname of FORT1; data can be reread; standard label if tape; can be
cards in control stream if // LFD FORT1 is missing

Diagnostic device; lfdname of PRNTR; record size of 121; must be output device
Equivalent to unit 1

Equivalent to unit 3

Used to reread data from unit 1

FORTRAN Il READ statement (equivalent to unit 1)

FORTRAN Il PRINT statement (equivalent to unit 3)

= Control Module FL$I01

Unit
1

READ
PRINT
PUNCH

Notes

80 byte records; [fdname of FORT1; data can be reread; standard label if tape; can be
cards in control stream if // LFD FORT1 is missing

80 byte records; Ifdname of FORT2

Diagnostic device; Ifdname of PRNTR; record size of 121; must be output device
Equivalent to unit 1

Equivalent to unit 3

Fixed unblocked records; standard label if tape; Ifdname of FORT11

Fixed unblocked records; standard label if tape; Ifdname of FORT12

Used to reread data from unit 1

FORTRAN Il READ statement (equivalent to unit 1)

FORTRAN 1l PRINT statement (equivalent to unit 3)

FORTRAN Il PUNCH statement (equivalent to unit 2)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-3
FORTRAN IV

11.3. PROGRAMMER-DEFINED CONFIGURATIONS

The unit definition procedure is required to define the execution environment; namely, the logical units and their
attributes. The attributes are optional and are used to define the features such as record and buffer sizes, record
formats, file type, error recovery, etc. The UNIT definition procedure passes this information to data management
at file open time.

When a new file is defined, data management supplies default values for any attributes not explicity specified.
The combination of specified attributes and data management defaults defines the file characteristics. When
accessing an exisiting file, the specified record size and record format attributes are compared to those specified
when the file was originally created. Any incompatibilities between the two produce an error message and
terminate the job step. All other specified attributes are accepted. If the record size and record format arguments
were omitted from the UNIT definition procedure at file creation, then the default characteristics are used.

To achieve device independence, a unit identifier is the only argument required on the UNIT definition procedure.
Since a file name is always required when accessing a file, a user-supplied logical file name may be specified or
the UNIT definition procedure will default to a FORTRAN 1V logical file name. In either case, the file name must
be specified on the LFD job control statement for the device. At program execution time, providing the record
sizes are compatible, the unit is connected to the device via data management.

The following examples shows some typical uses of device independence.
Example 1:

Let's suppose that we have a file that can be input from either a card reader, a tape, a disk, or a
workstation. By specifiying the UNIT definition procedure with the file arguments FUNIT=1 and
FFILEID=INFILE, device independence is achieved. At program execution time, by changing only the logical
unit number on the DVC job control statement, the appropriate device is connected. Therefore, if a card
reader is required, specify logical unit number 30 on the DVC job control statement. Later if a disk unit is
required, specify 50. For a tape unit, specify 90 and for a workstation, specify 200. The Ifdname INFILE
specified in the FFILEID argument remains unchanged in the LFD job control statement.

Example 2:

Supposing that we have input file but we omit the logical file name; then UNIT definition procedure is
coded UNIT FUNIT=10. FORTRAN IV supplies the default logical file name of FORT10. At program
execution time, the Ifdname of FORT10 would be specified on the LFD job control statement. This is yet
another example of device independence whereby the // DVC... // LFD sequence can be changed at
program execution time to have the appropriate device connected.

Example 3:

Again, let's suppose that the input file is using a card reader with the UNIT definition procedure of UNIT
FUNIT=20,FFILEID=MASTER,FAUE=YES. The FAUE argument is for detection of mispunched cards and
therefore unique to a card reader. Now, the input file is to reside on a disk (assuming the file was created
prior in a previous job step). At program execution time, the logical unit number is changed to reflect a disk
unit. Since the FAUE argument is unique to a card reader, it is ignored (no error message displayed) and
processing continues.

-

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-4

FORTRAN |V

Table 11-1 is a summary of the device types and their arguments. Looking at the table, there are eight
arguments that are considered device independent. They are: FDIAGNOS, FFILEID, FOPTION, FRECSIZE,
FREREAD, FSPOOLIN, FTYPEFLE, and FUNIT. At program execution time, the unit may be switched to another
device by changing the logical unit number on the DVC job control statement, thus saving reassembling and
recompiling. The remaining arguments are device oriented; however, when applied to a device not supporting
the argument, it is ignored and no message is displayed.

There are only two arguments that may cause an OPEN error at program execution time. They are the FRECSIZE
and FRECFORM arguments. The error occurs when the record size or record format is not compatible with the
device change. A record format error could occur when one file is defined as fixed-unblocked, while at program
execution the file is variable-unblocked.

In summary, any combination of arguments may be specified with any device type, with the exception of
FRECSIZE and FRECFORM, without the need for reassembling or recompiling.

Table 11—1. FORTRAN 1V Devices and Arguments

Argument Disk Tape Unit record Workstation Equivalent Reread

FAUE *
FBFSZ *
FBKNO *
FCHAR *
FCKPTREC *
FCLRW *
FCRDERR
FDEVICE * * * * * *
FDIAGNOS * * * *
FERROPT *
FEQUIV *
FFILABL *
FFILEID * * *
FIOOPT
FLINCNTL
FNUMBUF
FOPRW
FOPTION
FRECFORM
FRECSIZE
FREREAD
FSCREND
FSPOOLIN *
FTRANS
FTYPEFLE *
FUNIT *
FVERIFY *

*x x Kk %

* k¥ ok %k

* * * * * ¥ *x X *x &
*x ok K ok * *
* * o ¥ ¥ *

NOTE:

Only arguments applicable to the device type are recognized. All other arguments are ignored. If the record size
or record format arguments are not compatible, they produce an OPEN error and terminate the job step.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-6
FORTRAN IV Update B

if necessary, a unit can be defined as device dependent. This is done via a device type parameter on the UNIT
definition procedure. Device dependency is discouraged because any device change requires reassembling a
new UNIT definition. The UNIT definition procedure is called via an assembly language source module with the
form:

1 10

name START
unit definition
unit definition

unit definitiong
unit termination
error definition
END

The elements of this assembly module are discussed in 11.3.1 through 11.3.5.

11.3.1. START Statement

The START statement, a subprogram declarator statement required by the assembler, is the first statement of
the configuration definition.

Format:

name START

A 1- to 8-character symbolic name used to reference the control module on a linkage editor INCLUDE statement
is specified by name. START is coded as shown.

11.3.2. FORTRAN Unit Definition Procedure (UNIT)

Each file definition consists of a call on the FORTRAN unit definition procedure (UNIT), with optional arguments
specifying characteristics of the file. Each argument consists of a file attribute name, an equal sign, and a
particular characteristic of the file being defined. If an argument is not required it is omitted and the comma is
deleted.

Consolidated data management (CDM) supplies the default file attributes whenever the target device is known
(FDEVICE argument) and FORTRAN [V accepts these defaults. Attributes not relating to the assigned device are
ignored.

When defining the file attributes with the UNIT definition procedure, the following syntactical differences
between FORTRAN and assembly language should be remembered:

n In the assembler, the statement continuation character is required for line 1 through (n-1} in column 72.
whereas in FORTRAN it is required in lines 2 through n in column 6.

L] No embedded blanks are permitted, and all continuation lines must start in column 16, as is illustrated in
following examples (11.3.2.1 through 11.3.2.6).

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-6
FORTRAN IV

11.3.2.1. Unit Record Definition

The following devices are considered unit record devices: reader, punch, and printer. The unit record devices are |
defined by using the UNIT procedure call described in this format. The arguments may appear anywhere in the ‘
UNIT definition procedure while FUNIT is the only required argument. Following the format, descriptions of the |
UNIT arguments and a UNIT example are presented.

Format:
1 10 16
UNIT [FDEVICE=UNITREC] FUNIT=(k
PRINT
PUNCH
READ

FFILEID=yfilename
FORTk; if FUNIT=Kk
PRNTR; if FUNIT=PRINT
PUNCH; if FUNIT=PUNCH
READER; if FUNIT=READ

[FNUMBUF={_1_}] [FTYPEFLE={INPUT;if FUNIT=READ }]
2 OUTPUT;if FUNIT=PRINT or PUNCH

[FCHAR={0FF}] [FOPTION=YES] [FAUE=YES]
ON

[FREREAD=YES] [FCRDERR=RETRY] [FRECSIZE=k]
[:SPOOLIN=YES:] [FTRANS=ASCII] [FDIAGNOS=YES]

or
GETJCS=YES

Device identification Argument:

FDEVICE=UNITREC
Specifies that this is a unit record device.

Unit Identifier Argument:

FUNIT=Kk
Specifies the unit identifier whose value is a unique integer constant in the range from 1<k<99.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

FUNIT=READ
Specifies READ as the unit identifier.

NOTE:

The identifiers READ, PRINT, and PUNCH are provided for reference by the FORTRAN Il statements READ, PRIN T,
and PUNCH, respectively, since these statements contain no specific unit identification. When a FORTRAN |l .
statement is executed and one of these identifiers is not specified, the applicable device specified is used. The
units are searched in the order they are defined. In an executable program, only one such unit may be defined.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-7
FORTRAN iV

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTKk
Specifies the file name as FORTk, where 1<k<99. If this argument is omitted and FUNIT=k is
specified, FORTk is assumed.

FFILEID=PRNTR
Specifies the file name as PRNTR. If this argument is omitted and FUNIT=PRINT is specified, PRNTR
is assumed.

FFILEID=PUNCH
Specifies the file name as PUNCH. If this argument is omitted and FUNIT=PUNCH is specified,
PUNCH is assumed.

FFILEID=READER
Specifies the file name as READER. If this argument is omitted and FUNIT=READ is specified,
READER is assumed.

Buffer Allocation Argument:

A buffer pool is dynamically acquired via the supervisor DMEM macroinstruction. Once a unit is opened,
one or two buffers from the pooled storage area are allocated. The size of each buffer is determined by the
FBFSZ argument or from data management at open time. When the buffer pool is used, the work area
cannot be used. (See the consolidated data management macro language user guide/programmer
reference.)

FNUMBUF=1
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers are allocated to the unit.

File Type Argument:

FTYPEFLE=INPUT
Specifies an input file. If this argument is omitted and FUNIT=READ is specified, INPUT is assumed.
INPUT should be specified when the file is read but never written.

FTYPEFLE=QUTPUT
Specifies an output file. If this argument is omitted and FUNIT=PUNCH or PRINT is specified,
OUTPUT is assumed. OUTPUT should be specified whenever the file is to be written but never read.

Invalid Character Processing Argument:

This argument specifies the action to be taken when a character with no corresponding printer graphic is
encountered.

FCHAR=O0FF
Specifies that a blank is to be substituted for the character and that the line is to be written to the
printer with no error notification.

FCHAR=ON
Specifies that a device error is to be generated and the program is to be terminated.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-8
FORTRAN IV

Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution.

When specified and the file is not allocated by job control, WRITE statements are ignored and the first
READ reference causes an end-of-file condition.

A unit need not be declared as optional if the program logic does not reference the unit.
Rejection of Mispunched Cards Argument:

FAUE=YES
Specifies that cards with an illegal hole combination in a column are to be bypassed and will not be
delivered to the program.

When the device being used is a SPERRY UNIVAC 0716 Card Reader, the erroneous card is also sorted into
a unique error stacker.

If this argument is not specified, the card reader is stopped, and operator intervention is sought when an
illegal hold combination is detected.

Reread Argument:

FREREAD=YES
Specifies that the unit is to participate in the rearead feature (7.3.4).

The reread unit consists of a single buffer where each formatted input record is transferred. To save
processor time, this data movement is inhibited unless specified.

Device Error Recovery Argument;

FCRDERR=RETRY
Specifies that error recovery coding is included in the executable program.

If this argument is not specified or if the recovery attempt is unsuccessful, program termination is initiated
when device errors occur. Mispunched cards are automatically segregated into an error card stacker.This
argument is not meaningful if card output is spooled (transmitted to disk for later transcription to a card
punch).

Record Size Argument:

FRECSIZE=k
Specifies the logical record size (in bytes). When accessing an existing file, the value of this argument
is compared to the record size specification of that file. Any incompatibilities produce OPEN errors. If
FRECSIZE and FRECFORM are omitted from the UNIT definition procedure, the file is processed using
the physical file information.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 - 11-9
FORTRAN IV

‘ Spooled Card Input File Argument:

FSPOOLIN=YES
or

FGETJCS=YES

Specifies this unit will default to a spooled card input file via a GETCS when the Ifdname declared in
the FFILEID argument is not found.

The spoolin feature (FSPOOLIN=YES) can be applied to any device but cannot exceed 128 bytes. If the
record size is omitted, 80 bytes is assumed.

Translate to ASCll Argument:

FTRANS=ASCI |
Specifies that all incoming and outgoing records are translated to the ASCIl character set.

Diagnostic Message Argument:
FDIAGNOS=YES
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
greater. Debugging information may also be written to this device (10.3); not available for input files.

If multiple diagnostic devices are specified, messages are posted to the first diagnostic unit encountered.

If omitted, diagnostics are transmitted to the system log and either the system console or the initiating
workstation terminal.

. Example:

1 10 p 72
7 5

UNIT FUNIT=10, X

FDIAGNOS=YES, X

FTYPEFLE=0QUTPUT

This unit procedure call specifies a device independent output file. The devices which may be allocated are:
tape, disk, workstation, and unit record output. The device is accessed from the FORTRAN user program via
the WRITE command to Unit 10. Diagnostics are posted to this unit during program execution. The file is an
output file. Since no filename is specified (FFILEID), FORT10 becomes the default filename (FORT from the
omitted FFILEID argument and 10 from the FUNIT argument). FORT10 must also appear as the filename on
the LFD job control statement. Since the logical record size and buffer allocation were omitted, the default
values are 121 and 1, respectively.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3
FORTRAN IV

11.3.2.2. Tape File Definition

A single tape file is defined by using the UNIT definition procedure presented in this paragraph. The arguments

may appear anywhere in the

format, descriptions of the

UNIT arguments and a UNIT example are presented.

Format:
1 10 16
UNIT [FDEVICE=TAPE] FUNIT={k
READ
PUNCH
PRINT

[FFILEID=yfilename

FORTk; if FUNIT=k
READER;if FUNIT=READ
PUNCH:; if FUNIT=PUNCH
L PRNTR; if FUNIT=PRINT

TFTYPEFLE=(WORK
INPUT; if FUNIT=READ
QUTPUT;if FUNIT=PRINT or PUNCH

[FRECFORM=(VARUNB [FNUMBUF={l}] [FRECSIZE=k]
VARBLK 2

FIXUNB
L FIXBLK
[F

BFSZI=(k
FRECSIZE;if FRECFORM=FIXUNB
FRECSIZE+4;if FRECFORM=VARUNB

| FRECSIZE«4;if blocked
[FREREAD=YES] [FDIAGNOS=YES] [FBKNO=YES]
[FERROPT={IGNORE}] [FFILABL={STD}][FCKPTREC=YES]

SKIP NO
FCLRW={|RWD [FOPRW=NORWD] [FOPTION=YES]
NORWD
UNLOAD
[FSPOOLIN=YES] [FTRANS=ASCII]
or

[FGETJCS=YES]

Device ldentification Argument:

FDEVICE=TAPE
Specifies this

Unit Identifier Argument:

FUNIT=K

is a tape file.

UNIT definition procedure but FUNIT is the only required argument. Following the

Specifies the unit identifier whose value is an unique integer constant in the range from 1<k<99.

FUNIT=READ

Specifies READ as the unit identifier.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-11
FORTRAN IV

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTKk
Specifies the filename as FORTk, where 1<k<99. If this argument is omitted and FUNIT=kK is
specified, FORTk is assumed.

FFILEID=READER

Specifies the file name as READER. If this argument is omitted and FUNIT=READER is specified,
READER is assumed.

FFILEID=PUNCH
Specifies the file name as PUNCH. If this argument is omitted and FUNIT=PUNCH is specified,
PUNCH is assumed.

FFILEID=PRNTR
Specifies the file name as PRNTR. If the argument is omitted and FUNIT=PRINT is specified, PRINT is
assumed.

File Type Argument:

FTYPEFLE=WORK
Specifies a work file. WORK should be specified if the tape is to be read and written. WORK files are
limited to a single volume (reel).

FTYPEFLE=INPUT
Specifies an input file. If this argument is omitted and FUNIT=READ is specified, INPUT is assumed.
INPUT should be specified if the tape is to be read but never written.

FTYPEFLE=QUTPUT
Specifies an output file. If this argument is omitted and FUNIT=PUNCH or PRINT is specified,
OUTPUT is assumed. OUTPUT should be specified if the tape is to be written but not read.

Record Format Argument:

FRECFORM=VARUNB
Specifies variable length unblocked records.

1 5 block j

BCW RCW record

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 11-12
FORTRAN IV

FRECFORM=VARBLK

Specifies variable length blocked records.

1 5 j

]
|
BCW RCW rc-:cord1 RCW record2 A RCW | record
|
|

For both unblocked and block records, i specifies record size, j specifies block size, BCW specifies a
data management block control word, and RCW specifies a data management record control word.

The FORMAT statement (7.3.3) may not specify a record larger than i-4 for variable-length records.
For unformatted input/output, no size limitation exists, since large FORTRAN records are
automatically segmented into multiple data management records, using the record control words to
identify beginning, middle, and end segments of the 1/0 list.

The BCW and RCW are controlled by FORTRAN IV and the data management system and are not
accessible through the FORTRAN language. The FBKSZ and FRECSIZE arguments are interpreted as
maximums; shorter records will be accepted, and generated if possible, to save space on the external
file and to reduce channel contention for main storage access.

FRECFORM=F1XUNB

Specifies fixed length unblocked records.

1 block i

record

FRECFORM=F I XBLK

Specifies fixed length blocked records.

1 block j

recor record N record
eco d1 cord,, n

For both unblocked and blocked records, i is the size specified for the FRECSIZE argument, and j is
the size specified for the FBFSZ argument. For unblocked records, i and j must be equal. For block

records, j is an integral multiple of i. The last block of the file may be less than j bytes, but it is always
a multiple of i.

The FORMAT statement may not require more than i character positions for fixed-length records. In an
unformatted /0 list, no more than i bytes may be required for a record. In other words, when a FORMAT
processes a record, it cannot request more than “recsize” bytes of data.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-13
FORTRAN IV

Buffer Allocation Argument:

A buffer pool is dynamically acquired via the supervisor DMEM macroinstruction. Once a unit is opened,
one or two buffers from the pooled storage area are allocated. The size of each buffer is determined by the

FBFSZ argument or from data management at open time. (See the consolidated data management macro
language user guide/programmer reference.)

FNUMBUF=1
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers to be allocated to the unit.

Record Size Argument:

FRECSIZE=k
Specifies the logical record size (in bytes). When accessing an existing file, the value of this argument
is compared to the record size specification on that file. Any incompatibilities produce OPEN errors. If
FRECSIZE and FRECFORM are omitted from the UNIT definition procedure, the file is processed using
the physical file information.

Block Size Argument:

This argument specifies the block size, which must always be greater than or equal to the record size. The
default values for FBKSZ depend on the absolute value of the FRECSIZE specification and on the record
form used.

FBKSZ=k
Specifies the block size (k) as a positive integer constant in the range 18<k<32767.

FBKSZ=FRECSIZE

Indicates the block size is equal to the record size. If this argument is not specified, and fixed
unblocked records have been specified, this is the default block size.

FBKSZ=FRECSIZE+4
Indicates the block size is four times more than the record size. If this argument is not specified, and
variable unblocked records have been specified, this is the default block size.

FBKSZ=FRECSIZE*4
indicates the block size as four times the record size. If this argument is not specified and blocked

records have been specified, this is the default. File containing blocked records cannot be
backspaced.

Reread Argument:

FREREAD=YES
Specifies that the unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer where each formatted input record is transferred. To save
processor time, this data movement is inhibited unless specified.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 11-14
FORTRAN IV

Diagnostic Messages Argument:

FOIAGNOS=YES

Specifies the current tape unit as the diagnostic device. if FRECSIZE is specified, its value must be
101 or greater. Debugging information may also be written to this device.

If multiple diagnostic devices are specified, FORTRAN IV will post messages to the first diagnostic
unit encountered; not available for input files. If omitted, diagnostics are transmitted to the system
log and either the system console or the initiating workstation terminal.

Block Numbering Argument:

FBKNO=YES

Specifies that sequence numbers be encoded in each block before it is written and checked after
each block is read. These block numbers are not visible to the FORTRAN programmer. If omitted, no
block numbering occurs.

Device Error Processing Argument:

FERROPT=IGNORE

Specifies that the erroneous block is to be accepted.

FERROPT=SKIP

Specifies that the erroneous block is to be bypassed by reading the next block. If omitted, specifies
that control is to be transferred to the ERR clause of the READ statement. Abnormal termination
procedures are to be initiated if the ERR clause is not present.

NOTES:

SKIP and IGNORE should be used with discretion, since device position may be lost for unformatted
files and NAMELISTs.

When the problem program receives control at the ERR label, the ERROR subroutine (5.6.3.3) should
be referenced to determine the error type. If the error is unrecoverable, the unit cannot be referenced
again. Unrecoverable errors can be caused by severe device failure, parity errors that cause
inconsistent control information, or any on a list-directed statement, which always implies loss of
position.

If the error is recoverable, the device is considered operable. Further references to the unit deliver
subsequent logical records; the erroneous record is bypassed. A parity or wrong length error on a
blocked file causes an ERR return for every logical record in the erroneous block. The term “logical
record” is interpreted identically with the BACKSPACE statement (7.3.6.2).

Tape Label Checking Argument:

FFILABL=STD

Specifies that system standard labels are assumed.

FFLABL=NO

Specifies that tapes are to be read and written without labels.

- UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-15
FORTRAN IV

Checkpoint Processing Argument:
FCKPTREC=YES
Specifies that checkpoint blocks contained on an input tape will be bypassed. If omitted , the blocks
are read as data records. Argument is ignored when applied to an output file.

Tape Rewind Arguments:

Two arguments may be used to specify tape rewinding. They have no effect on the FORTRAN REWIND

command.
] FCLRW
FCLRW=RWD
Specifies that the tape is to be rewound to loadpoint when the STOP statement is
executed.
FCLRW=NORWD
Specifies that there is to be no rewind when the STOP statement is executed.
FCLRW=UNLOAD
Specifies that there is to be rewind with interlock when the STOP statement is executed
and that the tape is inaccessible to subsequent steps in the job without operator
intervention.
= FOPRW

FOPRW=NORWD
Specifies that the tape is not to be rewound to load point when it is first referenced.

Optional Units Arguments:

FOPTION=YES
Specifies an optional unit; a unit not always required during program execution. When specified and
the file is not allocated by job control, WRITE statements are ignored and the first READ reference
causes an end-of-file condition. A unit need not be declared as optional if the program logic does not
reference the unit.

Spooled Card Input File Argument:

FSPOOLIN=YES
or

FGETJCS=YES
Specifies this unit will default to a spooled card input file via a GETCS when the Ifdname for the unit
does not appear in the job control stream.

The spoolin feature can be applied to any device but cannot exceed 128 bytes. If the record size is
omitted, 80 bytes is assumed.

Translate to ASCIlI Argument:

FTRANS=ASCII
Specifies that all incoming and outgoing records are translated to the ASCII character sets.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-16
FORTRAN IV Update B

Example:

1 10 16 72

UNIT FDEVICE=TAPE,
FUNIT=7,
FCKPTREC=YES,
FRECSIZE=108,
FTYPEFLE=WORK,
FRECFORM=F I XBLK

> D€ > DX >

This unit procedure call specifies a tape device (FDEVICE=TAPE). The unit number is 7 (FUNIT=7);
checkpoint records are bypassed (FCKPTREC=YES); the record size is 100 bytes (FRECSIZE=100); it is a
work file (FTYPEFLE=WORK); and fixed-length blocked records are used (FRECFORM=FIXBLK).

The following defaults are assumed:

u FORT7 becomes the default filename (FORT from the omitted FFIELD argument and 7 from the FUNIT
argument).

. One input/output buffer is aIIocated' since the FNUMBUF argument is omitted.
L The buffer size defaults to 104 bytes based on the record size argument (buffer size must be equal to

or greater than the record size).

11.3.2.3. Disk File Definition

A disk file is defined by using the UNIT definition procedure presented in this paragraph. A MIRAM file is the
only file type supported in the CDM environment. The arguments may appear anywhere in the UNIT definition
procedure while FUNIT is the only required argument. Following the format, descriptions of the UNIT arguments
and a unit example are presented.

Format:

1 10 16

UNIT [FDEVICE=DISK]

FUNIT={(k
READ
PUNCH
PRINT

[FFILEID=/filename

FORTk;if FUNIT=Kk
READER;if FUNIT=READ
PUNCH;if FUNIT=PUNCH

— PRNTR:if FUNIT=PRINT

[FTYPEFLE=({WORK [FBFSI=k]
INPUT;if FUNIT=READ

L QUTPUT; if FUNIT=PUNCH or PRINT

[FRECFORM={VARUNB} [FRECSIZE=k]
FIXUNB

[FOPTION=YES] [FVERIFY=YES]
[FDIAGNOS=YES] ESPOOLIN=YES] [FREREAD=YES]

or
FGETJCS=YES

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-17
FORTRAN IV

‘ Device Identification Argument:

FDEVICE=DISK
Specifies that this is a disk file.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer in the range 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified by
a control module. The identifiers READ, PUNCH, and PRINT are provided for reference by the FORTRAN Il
statements READ, PUNCH, and PRINT, respectively, since these statements contain no specific unit
identification. When a FORTRAN |l statement is executed and one of these special identifiers has not been
provided, the applicable device specified is used. The units are searched in the order in which they are
defined. In an executable program, only one such unit may be defined.

‘ File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FQRTk
Specifies the file name as FORTk, where 1<k<99. If this argument is omitted and FUNIT=k is

specified, FORTk is assumed.

FFILEID=READER
Specifies the file name as READER. If this argument is omitted and FUNIT=READ is specified,

READER is assumed.

FFILEID=PUNCH
Specifies the file name as PUNCH. If this argument is omitted and FUNIT=PUNCH is specified,

PUNCH is assumed.

FFILEI!D=PRNTR
Specifies the file name as PRNTR. If this argument is omitted and FUNIT=PRINT is specified, PRNTR

is assumed.

File Type Argument:

FTYPEFLE=WORK
Specifies a work file. WORK should be specified if the disk is to be read and written.

FTYPEFLE=INPUT
Specifies an input file. If this argument is omitted and FUNIT=READ is specified, INPUT is assumed.
INPUT should be specified if the disk is to be read but never written.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3

. FORTRAN IV

FTYPEFLE=0UTPUT

Specifies an output file. If this argument is omitted and FUNIT=PUNCH or PRINT is specified,
OUTPUT is assumed. OUTPUT should be specified if the disk is to be written but not read.

Buffer Size Argument:

FBFSZ=k
Specifies the size of the input/output area used in processing the file records. The size must be a

positive value greater than or equal to the record size. System overhead is reduced if the buffer size
is an integer multiple of the record size.

Record Format Argument:

FRECFORM=VARUNB
Specifies that the records are variable and unblocked.

Variable-length unblocked records

1 s 00000 J
I 1 !
t | :
BCW RCwW : record, RCwW : record,, co. RCW record)
. ' ; | :
1 ls 1] 15 ‘o [|5 n
where:
i
Specifies record size
i
Specifies block size
BCW
Specifies a data management block control word
RCW

Specifies a data management record control word

The FORMAT statement (7.3.3) may not specify a record greater than i-4. For unformatted
input/output records, no size limitation exists because large FORTRAN |V records are automatically

segmented into multiple data management records via the record control words identifying the start,
middle, and the end segment of the 1/0 list.

The block and record control words are controlled by FORTRAN IV and data management and are not
accessible with the FORTRAN IV language. The FBFSZ and FRECSIZE arguments are interpreted as
maximums; shorter records are accepted and are generated, if possible, to save space on the external
file and reduce channel contention for main storage access.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-19

FORTRAN IV Update B

. FRECFORM=F I XUNB

Specifies that the records are fixed and unblocked.

Fixed-length unblocked records

1 block J

record

where:

Specifies FRECSIZE argument

Specifies FBFSZ argument

The block size (j) and the record size (i) must be equal. The FORMAT statement may not require more
than i character positions. In an unformatted 1/0 list, no more than i bytes may be required for a
record. When a FORMAT statement processes a record, it cannot request more than ‘‘recsize’ bytes
of data.

Record Size Argument:

‘ FRECSI1ZE=k

Specifies the logical record size {in bytes). When accessing an existing file, the value is compared to
the record size specification of that file. Any incompatibilities produce OPEN errors. If FRECSIZE and
FRECFORM are omitted from the UNIT definition procedure, the file is processed using the physical
file information. If the file has never been written to, then a 255-byte logical record size and fixed,
unblocked records are assumed.

Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution. When specified and
the file is not allocated by job control, WRITE statements are ignored and the first READ reference
causes an end-of-file condition. A unit need not be declared as optional if the program logic does not
reference the unit.

Write Verification Argument:
FVERIFY=YES
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper

recording on the disk surface.

This increased reliability necessarily causes some performance degradation.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-20
FORTRAN IV Update B

Diagnostic Messages Argument:

FDIAGNOS=YES
Specifies the current disk unit as the diagnostic device. If FRECSIZE is specified, its value must be
101 or greater. Debugging information may also be written to this device. If muitiple diagnostic
devices are specified, the FORTRAN system will post messages to the first diagnostic unit
encountered. This argument is not available for input files. If omitted, diagnostics are transmitted to
the system log and either the system console or the initiating workstation terminal.

Spooled Card Input File Argument:

FSPOOLIN=YES
or

FGETJCS=YES
Specifies that this unit will default to a spooled card input file via a GETCS when the lfdname
declared in the FFILEID is not found.

The spoolin feature can be applied to any device but cannot exceed 128 bytes. If the record size is omitted
80 bytes are assumed.

'

Reread Argument:

FREREAD=YES
Specifies this unit is to participate in the reread feature (7.3.4). The reread unit consists of a single
buffer where each formatted input record is transferred. To conserve processor time, this data
movement is inhibited unless specified. '

Example:
1 10 16 . 72
Vol
UNIT FUNIT=35, 7 X
FDEVICE=DISK, X
FFILEID=PAYROL, X

FTYPEFLE=INPUT

This UNIT procedure call specifies a disk file (FDEVICE=DISK). The unit number is 35 (FUNIT=35), the file
name is PAYROL, and it is an input file.

The following defaults are assumed by CDM if the file has never been written to:
[] The record format (FRECFORM argument) is fixed and unblocked.

" The record size (FRECSIZE argument) is 255 bytes.

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 11-21 .
FORTRAN IV

11.3.2.4. Workstation Unit Definition

The workstation unit is defined by using the UNIT definition procedure presented in this paragraph. The
workstation terminal supports single line input and output {(similar to a card reader) and full screen input and
output provided by the screen format services. The arguments may appear anywhere in the UNIT definition
procedure but FUNIT is the only required argument. Following the format, descriptions of the UNIT arguments
and a UNIT example are presented.

Format.
1 10 16
UNIT [FDEVICE=WORKSTN] FUNIT=(k
READ
PUNCH
PRINT
FFILEID= filename SCREND=(WRAP
FORTk;if FUNIT=k SCROLL
READER;if FUNIT=READ NEWPAGE
PUNCH;if FUNIT=PUNCH
— PRNTR;if FUNIT=PRINT
[FTYPEFLE=({WORK:
‘INPUT;if FUNIT=READ }:|
L QUTPUT;if FUNIT=PUNCH or PRINT

[FIOOPT=YES] [FLINCNTL=YES] [FNUMBUF={%}]

[FOPTION=YES] [FRECSIZE=k] [REREAD=YES]

[FSPOOLIN=YES] [FDAIGNOS=YES]
or
FGETJCS=YES

Device Identification Argument:

FDEVICE=WORKSTN
Specifies that this is a workstation terminal device.

Unit Identifier Argument:

FUNIT=k
Specifies the unit identifier whose value is a unique integer constant in the range from 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

NOTE:

The identifiers READ, PUNCH, and PRINT are provided for reference by FORTRAN Il statements READ, PUNCH,
and PRINT, respectively, since statements contain no specific unit identification. When a FORTRAN Il statement
is executed and one of these identifiers is not specified, the applicable device specified is used. The units are
searched in the order in which they are defined. In an executable program, only one such unit can be defined.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-22
FORTRAN IV

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTk
Specifies the file name as FORTk, where 1<k<99. If this argument is omitted and FUNIT=k is
specified, FORTk is assumed.

FFILEID=READER
Specifies the file name as READER. If this argument is omitted and FUNIT=READ is specified,
READER is assumed.

FFILEID=PUNCH
Specifies the file name as PUNCH. If this argument is omitted and FUNIT=PUNCH is specified,
PUNCH is assumed.

FFILEID=PRNTR
Specifies the file name as PRNTR. If this argument is omitted and FUNIT=PRINT is specified, PRNTR
is assumed.

END of Screen Display Options Argument:

FSCREND=WRAP
Specifies when an end-of-screen is reached; the remainder of the display continues at the top of the
screen, which is the leftmost position on the first line. No clearing takes place.

FSCREND=SCROLL
Specifies when an end-of-screen is reached; the screen “‘scrolls up” to contain the remainder of the
display. Scrolling is when the entire screen display moves up one line at a time until the display is
completed. No clearing takes place.

FSCREND=NEWPAGE
Specifies when the end-of-screen is reached; the screen is cleared and the remainder of the display
continues at the top of the screen origin position, which is the leftmost position on the first line.

File Type Argument:

FTYPEFLE=WORK
Specifies a work file. WORK should be specified if the screen is to be read and written.

FTYPEFLE=INPUT
Specifies an input file. If this argument is omitted and FUNIT=READ is specified, INPUT is assumed.
INPUT should be specified if the screen is to be read but never written.

FTYPEFLE=QUTPUT
Specifies an output file. If this argument is omitted and FUNIT=PUNCH or PRINT is specified,
OUTPUT is assumed. QUTPUT should be specified if the screen is to be written but not read.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-23
FORTRAN iV

Input/Output Buffer Specification Argument:

FIOOPT=YES

Specifies one buffer is used exclusively for input and one buffer for output operations. This argument
is activated when double buffering (FNUMBUF=2) has been specified.

Output Line Control Argument:

FLINCNTL=YES
Allows the workstation terminal, when accessed in single line output mode (WSAM), to perform like
a printer. The control characters used to position the output record on the screen are identical to
those for the printer (see Table 7-2).

Buffer Allocation Argument:

A buffer pool is dynamically acquired via the squence DMEM macroinstruction. Once a unit is opened, one
or two buffers from the pooled storage area are allocated. The size of each buffer is determined by the

FBFSZ argument or from data management. (See the consolidated data management macro language user
guide/programmer reference.)

FNUMBUF=1
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers to be allocated to the unit.

Record Size Argument:

FRECS!ZE=k
Specifies the logical size (in bytes). When accessing an existing file, the value is compared to the
record size specification on that file. Any incompatibilities produce OPEN errors. If FRECSIZE and
FRECFORM are omitted from the UNIT definition procedure, the file is processed using the physical
file information.

Reread Argument:

FREREAD=YES
Specifies this unit is to participate in the reread feature (7.3.4). The reread unit consists of a single
buffer where each formatted input record is transferred. To conserve processor time, this data
movement is inhibited unless specified.

Spooled Card Input File Argument:

FSPOOLIN=YES

or

FGETJCS=YES
Specifies this unit will default to a spooled card input file via a GETCS when the Ifdname declared in
the FFILEID argument is not found.

The spoolin feature (FSPOOLIN) can be applied to any device but cannot exceed 128 bytes. If the record
size is omitted, 80 bytes is assumed.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-24

FORTRAN iV

Diagnostic Messages Argument:

FDIAGNOS=YES
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
greater. Debugging information may aiso be written to this device (10.3).

If multiple diagnostic devices are specified, FORTRAN IV will post the messages to the first diagnostic unit
encountered. If omitted, diagnostics are transmitted to the system log and either to the system console or
to the initiating workstation terminal.

Example:

1 10 16 72

UNIT FUNIT=20,
FFILEID=SEEIT,
FDEVICE=WORKSTN,
FTYPEFLE=0UTPUT,
FSCREND=NEWPAGE,
FLINCNTL=YES

> > > > >

This UNIT procedure call specifies a workstation terminal (FDEVICE=WORKSTN). FORTRAN IV recognizes
that this is a workstation terminal via its unique arguments. The unit number is 20 (FUNIT=20); the file
name is SEEIT (FFILEID=SEEIT); and it is an output file (FTYPEFLE=OUTPUT). Since it is a workstation
terminal, when the end of screen is reached, the screen is cleared and the remaining information to be
displayed starts on the first line at the leftmost position (FSCREND=NEWPAGE). Also, the workstation
terminal will function as a printer using the same control characters as in the FORMAT statement in our
source program (FLINCNTL=YES).

11.3.2.5. Reread Unit Definition

The reread unit is defined by using the UNIT procedure call presented in this paragraph. Following is a listing, in
the order of their relative importance and utility, of the arguments that may appear on the UNIT procedure call.
Following the listing, a description of UNIT arguments, programming considerations, and a UNIT example are
presented.

A single VARUNB buffer is automatically constructed with a size equivalent to the largest record size of all the
units in the reread feature.

Format:

1 10 16

UNIT FDEVICE=REREAD

FUNIT=]k
READ

Device ldentification Argument:

FDEVICE=REREAD
Specifies that this is the reread unit.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-25
FORTRAN vV

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified by
a control module. The identifier READ is provided for reference by the FORTRAN Il READ statement, since
this statement contains no symbolic unit identification. When a FORTRAN Il statement is executed and this
special identifier has not been provided, the applicable unit specified is used. The units are searched in the
order in which they are defined. In an executable program, only one such unit may be defined.

Programming Considerations;

The record in the reread buffer is redefined only after a formatted READ statement is issued to a unit
specified with FREREAD=YES or FRECERR=YES.

Example:

1 10 16 72

UNIT FDEVICE=REREAD, X
FUNIT=29

L)
“r

The reread unit is defined to be unit 29.

11.3.2.6. Equivalent Unit Definition

An equivalent unit is defined by using the UNIT procedure call presented in this paragraph. Following is a listing,
in the order of their relative importance and utility, of the arguments that may appear on the UNIT procedure call.
Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

The function of an equivalent unit is to provide another reference number for a file. For example, an input file
might be referenced with both a FORTRAN IV statement with a unit number and FORTRAN |l statement that
implies the special name READ. An equivalent unit can be used to resolve conflicts of this type.

Format:

1 10 16

UNIT FDEVICE=EQUIYV

FUNIT=[k
READ
PRINT
PUNCH

FEQUIV={k
READ
PRINT
PUNCH

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-26
FORTRAN IV

Device Identification Argument:

FOEVICE=EQUIV
Specifies that this is an equivalent unit.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1-99 and READ, PRINT, and PUNCH) may be specified by
a control module. The identifiers READ, PRINT, and PUNCH are provided for reference by the FORTRAN Il
statements READ, PRINT, and PUNCH, respectively, since these statements contain no specific unit
identification. When a FORTRAN Il statement is executed and one of these special identifiers has not been
provided, the applicable device specified is used. The units are searched in the order in which they are
defined. In an executable program, only one such unit may be defined.

Establishing Equivalence Argument:

This argument is used to specify the unit that is to be treated as equivalent to the unit specified for FUNIT.
When a file reference to the unit specified for FUNIT occurs, device action takes place on the unit specified
for FEQUIV.

FEQUIV=Kk
Specifies a unique integer constant (k) in the range 1<k<99.

FEQUIV=READ
Specifies READ as the equivalent unit.

FEQUIV=PRINT
Specifies PRINT as the equivalent unit.

FEQUIV=PUNCH
Specifies PUNCH as the equivalent unit.

Examples:
1 10 16 72
55
UNIT FDEVICE=EQUIV, X
FUNIT=PRINT, X
FEQUIV=5
This UNIT procedure call specifies an equivalent unit that has no number; it can be referenced only by
using a FORTRAN Il PRINT statement. When referenced, unit 5 is activated; unit 5 must be defined by ‘

using another UNIT procedure call.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3
FORTRAN IV

Circular equivalences, such as the following, are not permitted.

1 10 16

FDEVICE=EQUIYV,
FUNIT=1,
FEQUIV=2

FDEVICE=EQUIV,
FUNIT=2,
FEQUIV=]

11.3.3. FORTRAN Unit Definition Termination Procedure (FUNEND)

The list of units specified with UNIT procedure calls is terminated by the FUNEND procedure call. The FUNEND
procedure call:

L terminates the unit list;
" generates a work area (and reread buffer) when all record sizes are available; and

L posts warning messages for missing diagnostic unit and imcompatibility of reread units, and FORTRAN I
170.

Format:

l 1 10 16

FUNEND [MAXREC=record-size]

where:

MAXREC=record-size :
Increases processing performance by bypassing the dynamic storage allocation mechanism. The
record size is the size of the largest record being processed using this input/output configuration.
When specified, static allocation of the work area and the reread buffer is automatically performed by
the FUNEND processor.

If the FDIAGNOS argument is omitted, the diagnostics are sent to the system log and either the system console
or the initiating workstation terminal. If the REREAD=YES argument is specified and no reread unit is defined,
unit 29 is provided as the reread unit. This default is only supplied if unit 29 has not been previously defined.

11.3.4. Error Environment Definition Procedure (ERRDEF)

During the execution of the object program, the FORTRAN system monitors program operations for consistency
and legality, insofar as it is practical. The errors detected are grouped into seven classes, each having a limit on
the number of times the error is to be accepted before program termination and on the number of diagnostic
mesages to be produced.

The seven error classes include program, arithmetic, argument, alignment, read, and data errors, explained in
' the definitions following the format, and fatal errors, which are catastrophic errors forcing immediate program
termination.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-28
FORTRAN iV

A table in the library contains the limit information for each class. This table is automatically included in the
executable program if the table is not explicitly redefined by the programmer. For this purpose, the error
definition procedure (ERRDEF) is provided.

Treatment of nonfatal errors can be controlled by using the ERRDEF procedure call. Following is a listing, in
order of relative importance and utility, of the arguments that may appear on the ERRDEF procedure call.
Following the listing, descriptions of ERRDEF arguments and an ERRDEF example are presented. The ERRDEF
procedure call should follow the FUNEND procedure call in the configuration module.

Format:
1 10 16
ERRDEF[FROG=/(i). (i]
ALLY {ALL
L 1 1 /4
[FARITH=/(i . (i
({ALL} lALL)
- 18
[FARG=/fi \.(i .
<{AL_L} ALL
L 18 J/]
 [FUNDFLO=YES]
[FALIGN= {i },j
L 18
FREAD= {i i '
ALL} ALL >
- 18
[FDATA= {i 1 (i
R 10
[FERROPT=/ (NONE W\
READ
READ,DATA
JREAD,UNREC
READ,DATA,UNREC
DATA
DATA, UNREC J
| \UNREC
where:

Is a positive integer constant less than 32,768, with iz, specifying the number of times the error is
to be accepted before program termination. For a fatal error, i is assumed to be 1.

Is a positive integer constant less than 32,768, with j<i, specifying the number of diagnostic
messages to be produced. For a fatal error, j is assumed to be 1.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-29
FORTRAN IV

AlLL
Specifies that there is no limit on the number of times the error is to be accepted before program
termination or that there is no limit on the number of diagnostic messages to be produced.

During execution, the first j errors cause diagnostic messages to be produced. When the ith error occurs, a
diagnostic is issued, and program termination is initiated.

Program Error Argument (FPROG):
This argument is used to control system action when the flow of execution encounters a statement for
which code cannot be generated because of a syntax or other error or when an error occurs in FORMAT-
170 list interaction.

Arithmetic Error Argument (FARITH):

This argument is used to control system action when a program check interrupt occurs for overflow,
underfiow, or divide check. The standard library functions (Table 5-4) cannot cause this error.

Argument Error Argument (FARG):

This argument is used to control system action when an out-of-range argument is transmitted to a
standard library function (Table 5-4).

Improper argument values can cause error reporting by the standard library functions (Table 5-4) because:
] the function is mathematically undefined for the argument, as SQRT (-10);
. the function value is insignificant, as SIN (10E60); or

n the function value is too large to be represented, as 10E50+*10E50. This is analogous to an overflow
condition.

As a default, a function value too small to be represented (an underflow) is approximated by O and is not
reported or considered on the FARG counts.

This argument also controls the acceptance and printing of subscript checking. (See 10.5.)
Underflow Error Argument (FUNDFLO):

FUNDFLO=YES
Used to control system action when underflows occur. This argument indicates that underflow will
be reported and counted.

Alignment Error Argument (FALIGN):

This argument is used to control system action when a program check interrupt occurs for an instruction
referencing an illegal main storage boundary. This can occur because of improper COMMON and
EQUIVALENCE statements and during argument substitution in prologues and epilogues.

Read Error Argument (FREAD):

This argument is used to control system action when an input device error occurs. The error counts
associated with FREAD are meaningful only when an ERR clause is present in the referencing statement. If
no ERR clause is present, the program is immediately terminated, regardless of the specifications or the
number of times the error may be accepted or the number of diagnostic messages that may be produced.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-30
FORTRAN IV

Data Error Argument (FDATA):

This argument is used to control system action when the input data contains illegal characters. The error
counts associated with FDATA are meaningful only when an ERR clause is present in the referencing
statement. If no ERR clause is present, the program is immediately terminated, regardless of the
specifications for the number of times the error may be accepted or the number of diagnostic messages
that may be produced.

Error Options Argument (FERROPT):

This argument specifies the meaning of the ERR clause. The FORTRAN IV default is to pass control to the
ERR label only for parity or wrong length errors. The ERROR subroutine (5.6.3) is used to determine the
error type. Eight possible combinations of the following FERROPT specifications are available.

NONE
Used to control system action when the ERR clause feature is to be disabled.

READ
Used to contol system action when control is to be passed to the ERR label for parity or wrong
length errors only.

DATA
Used to control system action when control is to be passed to the ERR label for data errors. This
class is composed of invalid input characters.

UNREC
Used to control system action when control is to be provided at the ERR clause for
unrecoverable device errors only. No further references to the unit are permitted.

Example:
1 10 16 .. 72
ERRDEF FPROG=(1600,160),)) X
FALIGN=(ALL,58), X

FERROPT=(DATA)

This ERRDEF procedure call indicates that if a program error occurs, the error may be accepted 100 times,
and 100 diagnostic messages may be produced. If an alignment error occurs, there is no limit on the
number of times the error may be accepted, and 50 diagnostic messages may be produced. DATA,
specified for error options, indicates that control is to be passed to the ERR label if data errors occur. The
standard defaults are taken for all arguments not specified.

11.3.56. END Statement

The END statement, a source program terminator statement required by the assembler, indicates the end of the
definition of the execution environment.

Format:

1 10
END

The END statement, coded as shown, follows the ERRDEF procedure call or the FUNEND procedure call.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 11-31

FORTRAN IV

11.4. TYPICAL CONFIGURATION EXAMPLE

The following coding example defines a typical configuration that can be used by a FORTRAN IV program:

A O bW N s

7.
8.
9.

16.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26,

1 10 16 rr 72
// JOB FUNDEFS 77

// DVC 28 // LFD PRNTR

// DVC 58 // VOL D99999 // LBL INPUTF // LFD DATA

// DVC 48 // LFD PUNCH

// DVGC 266 // LFD STN

// WORK1

// WORK?2

// EXEC ASM

/$

USERID START

/'
/&
//

UNIT FUNIT=PRINT, X
FRECSIZE=121

UNIT FUNIT=63, X
FFILEID=DATA, X
FTYPEFLE=INPUT

UNIT FDEVICE=UNITREC, X
FUNIT=PUNCH,
FRECSI1ZE=88, X
FCRDERR=RETRY

UNIT FUNIT=3 FFILEID=STN, v X
FSCREND=NEWPAGE

FUNEND

ERRDEF

END

FIN

Explanations:

1.

2.

10.

Indicates the job name FUNDEFS.

Indicates the device assignment set for the printer.
Indicates the device assignment set for the disk.
Indicates the device assignment set for the card punch.
Indicates the device assignment set for the workstation.
Specifies two assembler work files.

Begins the assembler execution.

Specifies the start of data to the assembler.

Specifies the start of the execution module.

Defines the FORTRAN Il print file since no FFILEID argument is specified. FORTRAN |V defaults to
PRNTR (see line 2).

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 - 11-32
FORTRAN IV

11. Defines the record size.

12. Starts the definition for unit 63.

13. Indicates a disk file since the filename DATA is the same as the lfdname associated with the disk
device (see line 3).

14. Indicates an input file.

15. Starts the definition for a unit record device.

16. Defines the device as PUNCH.

17. Indicates the logical record size of 80 bytes. b

18. Indicates retry error recovery is attempted.

19. Starts the definition for a device (in this instance, a workstation since the filename STN is the same
as the lfdname for DVC job control statement, 200).

20. Indicates when the workstation end-of-screen is reached; the screen is cleared and the remaining

21.

22.

23.

24.

25.

26.

screen display starts at the leftmost position on the first line.
Terminates the UNIT definition procedures.

Creates the error control table in the executable program.

Terminates the source program.

Indicates end-of-job.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 121
FORTRAN IV

12. Define the File (DTF)
Execution Environment
Configuration

12.1. DATA MANAGEMENT INTERFACE

This section describes the interface between FORTRAN IV and the data management system in a DTF
environment including:

L] the relationships between unit numbers and external files;

u the kinds of devices supported;

= performance considerations, such as record blocking and buffering; and

L system defaults, that is, assumptions made by the system when specific directions are not provided.
Default actions taken when various errors are detected during program execution and how these defaults are
changed to suit application requirements also are described. An example of a complete execution environment is
given in 12.3.6.

An executable program requires a group of subroutines to support the FORTRAN 1/0 statements and to provide
an interface to the data management system. These subroutines, individually called by the compiler, are
automatically placed in the executable program by the linkage editor. One module, the control module, is central

to the entire 1/0 scheme, because it contains the following tables:

L] a unit table containing a unit number and FORTRAN control information and having an entry for each unit
number implicit in the FORTRAN source program;

s a unit control table (a DTF in data management terminology) required by the data management system; and
L] buffers and work areas for record processing.
A few control modules suitable for many application programs are contained in the FORTRAN 1V library {12.2).

For more complex programs, the control module must be configured, using the FORTRAN 1V unit definition
procedures (UNITs). Only one control module can exist in an executable program.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3
FORTRAN IV

12.2. DTF-SUPPLIED CONFIGURATIONS

The following configurations are supplied for general use in simple applications. The unit numbers selected are

industry standard.

. Control Module FL$IO

Unit Device Notes

1 Card read Cards in control stream
3 Printer Also used for diagnostics
5 Card read Equivalent to unit 1

6 Printer Equivalent to unit 3

29 Reread

L Control Module FL$101

Unit Device Notes

1 Card read Cards in control stream

2 Card punch

3 Printer Also used for diagnostics

5 Card read Equivalent to unit 1

6 Printer Equivalent to unit 3

11,12 Tapes 508-byte variable unblocked
records, no labels, workfile

29 Reread To reread cards, but not tapes

12.3. PROGRAMMER-DEFINED CONFIGURATIONS

The execution environment is configured using an assembly language source module with the form:

1 10

Continuation —1

name START
file initialization
file definition,
fite definition,

file definitionn
file termination
error definition
END

Each element of the assembly module is discussed in detail in 12.3.1 through 12.3.7. For an explanation of the

statement conventions applicable to this section refer to 1.4.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-3
FORTRAN IV

12.3.1. File Definition Conventions

Basic information about various arguments specified in defining a file is presented in the following explanations.
This information applies to ail files for which these features are specified.

12.3.1.1. Device Type

The device type is specified by the FDEVICE argument. This required argument is the basic criterion against
which all other arguments are validated. For example, if the device is specified as a printer, the specification of a
5000-character record is rejected.

The specification for FDEVICE is one of the primary considerations in selecting default values for other
arguments. For example, if the device is specified as card input, the FORTRAN system assumes the card length
to be 80, unless the user specifies otherwise.

File support provided by FORTRAN IV is largely device independent. The user need not be concerned with
whether the device is a UNISERVO I-C, VIII-C, 12, 16, or 20 magnetic tape unit, for example, because the system
dynamically adapts itself to the varying requirements of these devices. The few features that cannot be
supported in a device-independent fashion are noted in this section.

12.3.1.2. Record and Block Sizes

Record and block sizes are specified by the two optional arguments FRECSIZE and FBKSZ. The default value for
FRECSIZE is selected by the FORTRAN system, based on the device type specified. For FBKSZ, the defauit value
is computed from the record size. FBKSZ is associated with the tape and disk devices and must always be greater
than or equal to the record size.

12.3.1.3. Record Formats

Four different record forms are available, including variable-length unblocked, variable-length blocked, fixed-
length unblocked, and fixed-length blocked records, and are specified by the FRECFORM argument.

L] Variable-Length Records
Formats for variable-length unblocked and blocked records follow.
a. Unblocked Records (VARUNB)

1 5 block j

BCW RCW record

b. Blocked Records (VARBLK)

record

BCW RCW record1 RCW record2 ... RCW

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-4
FORTRAN IV

For both unblocked and blocked records, i specifies record size, j specifies block size, BCW specifies a data
management block control word, and RCW specifies a data management record control word.

The FORMAT statement (7.3.3) may not specify a record larger than i-4 for variable-length records. For
unformatted input/output, no size limitation exists, since large FORTRAN records are automatically
segmented into multiple data management records, using the record control words to identify beginning,
middle, and end segments of the 170 list.

The BCW and RCW are controlled by FORTRAN IV and the data management system and are not
accessible through the FORTRAN language. The FBKSZ and FRECSIZE arguments are interpreted as
maximums; shorter records will be accepted, and generated if possible, to save space on the external file
and to reduce channel contention for main storage access.

] Fixed-Length Records
Formats for fixed-length unblocked and blocked records follow.

a. Unblocked Records (FIXUNB)

1 block j

record

b. Blocked Records (FIXBLK)

1 block i

record1 mcord2 L recordn

For both unblocked and blocked records, i is the size specified for the FRECSIZE argument, and j is the size
specified for the FBKSZ argument. For unbiocked records, i and j must be equal. For blocked records, j is an
integral multiple of i. The last block of the file may be less than j bytes, but is always a muitiple of i.
The FORMAT statement may not require more than i character positions for fixed-length records. In an
unformatted 1/0 list, no more than i bytes may be required for a record.
12.3.1.4. Buffer Allocation
The amount of main storage used to support a unit is controlled by three interacting optional arguments:
= FBUFPOOL, which specifies buffer pooling;

L] FNUMBUF, which specifies the number of buffers to be allocated to a unit; and

a PWORKA, which specifies whether a work area is to be allocated.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-5
FORTRAN IV

Buffer pooling must be used with descretion, or unpredictable results will occur. When multiple units with
pooled buffers are active, only unblocked records may be processed and only one buffer can be used. The term
active covers the time period from the first reference to the unit until termination, which, on input, means an
END clause return. On output this means the execution of an ENDFILE statement. if only one unit using buffer
pooling is active at a given time, record blocking and double buffering can be used.

During processing of each unit definition procedure, a data management control biock (DTF) is generated. Then,
assuming buffer pooling is not requested, one or two buffers are allocated, using the FBKSZ value or its default
to determine the block size. After the last unit definition procedure is processed, space for work area is allocated.

Work area size is determined by the largest record for which work area processing was requested.

Similarly, one or two buffers are aflocated for units using pooled buffers. The largest blocksize specified for such
use is selected.

A work area is automatically assumed for output variable length blocked files. A work area cannot be used if
buffer pooling is selected.

For any application, a tradeoff can be made between main storage economy and program performance by use of
these arguments and blocksize adjustments. This is especially useful when the program processes large tape or
sequential disk files and is to be executed reiatively often. in other cases, the system defaults are generally best.
Of the eight possible combinations, the following four are generally of greatest utility:

] One buffer, no work area, buffer pooling

This configuration gives greatest main storage economy. There is no overlap between computational and
170 activity, and blocked files cannot be processed if more than one file is using pooled buffers.

= One buffer, no work area, no buffer pooling

This configuration requires more main storage, but allows unrestricted use of blocked files. BACKSPACE
requires this configuration. There is no overlap between computational and I/0 activity.

= One buffer, work area, no buffer pooling
This is the usual FORTRAN IV default. This requires slightly more main storage, but allows overlap
between computational and 1/0 activity. The central processor loading is slightly increased because of
record movement, but overall performance is usually improved.

8. Two buffers, no work area, no buffer pooling

This configuration requires a still greater amount of main storage, provides overlap, and reduces
computational loading due to the absence of record movement.

There is no requirement to allocate buffers for all units in the same fashion. The most attention should be given
to the highest activity files.

12.3.1.5. File Type

The type of file - input, output, or work - is specified by the FTYPEFLE argument. This argument is not necessary

for most devices. A printer, for example, is incapable of performing input functions and is always classified as an
output device.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-6
FORTRAN IV

For tape and disk devices, the specification of an input or an output file permits the system to eliminate support
coding and reduce the size of the executable program. The specification of a work file causes support coding for
both input and output functions to be included.

12.3.2. START Statement

The START statement, a subprogram declarator statement required by the assembier, is the first statement of
the configuration definition.

Format:
1 10
name START

A 1- to 8-character symbolic name used to reference the control module on a linkage editor INCLUDE statement
is specified by name. START is coded as shown.

This statement is always followed by the FUNTAB procedure call.

12.3.3. FORTRAN Initialization Procedure (FUNTAB)

The FUNTAB statement follows the START statement and precedes all other statements. It initializes Basic
FORTRAN, FORTRAN IV, or Extended FORTRAN parameters needed by statements which follow. To initialize the

FORTRAN IV parameters, the FUNTAB statement is coded as follows: ‘
Format:
1 10 16

FUNTAB SYS=FOR

NOTE:

Omitting the SYS=FOR operand from the FUNTAB call initializes basic FORTRAN parameters.

12.3.4. FORTRAN Unit Definition Procedure (UNIT)

Each file definition consists of a call on the FORTRAN unit definition procedure (UNIT) with arguments specifying
characteristics of the file. There are major syntactical differences between FORTRAN and assembly language:

n In the assembler, the statement continuation character is required for lines 1 through n-1 in column 72. In
FORTRAN, it is required in lines 2 though n in column 6.

L] No embedded blanks are permitted, and all continuation lines must start in column 16 (as illustated in
foliowing examples).

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-7

FORTRAN IV
' Format:
Continuation -—‘
1 10 16 72
UNIT n=c¢c,, X
n2=(:2 y x

nn=Cn

Each argument consists of an identifying name {n), an equal sign, and a particular characteristic (c) of the
file being defined. All arguments must start in column 16. If an argument is not required, it is omitted, and
the comma is deleted.)

12.3.4.1. Printer File Definition

A single printer file is defined by using the UNIT procedure call shown in the following format. Listed in order of
relative importance and utility are the arguments that may appear on this UNIT procedure call. Descriptions of
the UNIT arguments and a UNIT example also are presented. Work areas and buffer pooling are not supported for
printers. The default number of buffers is 2.

Format:
. UNIT FDEVICE=PRINTER

FUNIT=(k
1PRINT
PUNCH

FFILEID=(filename
FORTk;if FUNIT=Kk
PRNTR;if FUNIT=PRINT
PUNCH;if FUNIT=PUNCH

[FRECSIZE={I;2—1}]
[FNUMBUF={£}:]

[FDIAGNOS=YES]

[FPRINT0V={'§‘%;_'_I:IP}]

[FCHAR={g_'F‘F}]

[FOPTION=YES]

Device ldentification Argument:

FDEVICE=PRINTER
Specifies this is a printer file.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-8
FORTRAN IV

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1<k<99.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified
by a control moduie. The identifiers PRINT and PUNCH are provided for reference by the FORTRAN il
statements PRINT and PUNCH, respectively, since these statements contain no specific unit identification.
When a FORTRAN II statement is executed and one of these special identifiers has not been provided in
the control module, the first printer device specified is used. The units are searched in the order in which
they are defined. In an executable program, only one such unit may be defined.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTk
Specifies the file name as FORTk, where 1<k<99. If the FFILEID argument is not specified, and
FUNIT=k has been specified, FORTk is the default file name.

FFILEID=PRNITIR
Specifies the file name as PRNTR. Iif the FFILEID argument is not specified and FUNIT=PRINT has
been specified, PRNTR is the default file name.

FILEID=PUNCH
Specifies the file name as PUNCH. if the FFILEID argument is not specified and FUNIT=PUNCH has
been specified, PUNCH is the default file name.

Record Size Argument:

FRECSIZE={Kk }
iz
Specifies a positive integer constant (k), in the range 1<k<161. If this argument is omitted, 121 is the
default record size. This accommodates a 120-character SPERRY UNIVAC 0773 Printer, with one
additional character for carriage control. Other printers may specify up to 160 print positions.

Buffer Allocation Argument:

FNUMBUF=1
Specifies one buffer to be allocated to a unit.

FNUMBUF=2
Specifies two buffers to be allocated to a unit.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-9
FORTRAN IV

. Diagnostic Messages Argument:
The FORTRAN IV runtime environment always requires a device for diagnostic purposes.

FDIAGNOS=YES
Specifies the current unit as the diagnostic device. if FRECSIZE is specified, its value must be 101 or
more. Debugging information may also be written to this device {103). This argument is not available
for input files.

Printer Forms Control Argument:

This argument specifies whether the forms control loop (or an electronic equivalent) contained in the
printer device for locating the top and bottom of the page is to cause automatic skipping across the seam of
the paper.

FPRINTOV=SKIP
Specifies that the printer is to skip to the top of the next page (home paper) when the bottom of the
current page (forms overflow) is detected.

FPRINTOV=NOSKIP
Specifies that no automatic forms control is desired. Spacing is then under sole control of the
carriage control characters (7.3.3.3.).

Invalid Character Processing Argument:

This argument specifies the action to be taken when a character with no corresponding printer graphic is

. encountered.

FCHAR=0OFF
Specifies that a blank is to be substituted for the character and that the line is to be written to the
printer with no error notification.

FCHAR=0N
Specifies that a device error is to be generated and the program is to be terminated.

Optional Units Argument:

FOPTION=YES
Specifies an optional unit (a unit not always required during program execution).

When this argument is specified, and the file has not been allocated by job control statements, WRITE
statements are effectively ignored. A unit need not be declared as optional if the logic of the program does
not cause a reference to the unit.

Example:
1 10 16 - 72
>
UNIT FDEVICE=PRINTER, X
FUNIT=18, X
FRECS1ZE=101, X
FDIAGNOS=YES, X

FPRINTOV=NOSKIP

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-10
FORTRAN iV

A printer is defined (unit 10) with 100 printable characters per line. It is also to be used for diagnostic ‘
purposes. No automatic forms overflow is to take place; device error recovery is requested. The FORTRAN
system assumes defaults of:

[] file name is FORT10;

two buffers;
. substitution of blanks for nonprinting characters; and

L] file is required if a reference occurs.

12.3.4.2. Card Input File Definition

Two methods, the operating system spooling facility and the data management card read procedures, are
provided to read data cards. The operating system spooling facility reads cards and transcribes them to a disk file
before the executable program is activated. When a card image is requested by the program, the operating
system reads the card image from disk and delivers it to the program. The data management card read
procedures require the allocation of a card reader device to the executabie program and activate the device in
synchronization with program requests for card images. This method requires more main storage and is most
suited to high volume applications. The two methods are described in 12.3.4.2.1 and 12.3.4.2.2.

12.3.4.2.1. Spooled Card Input File Definition

A spooled card input file is defined by using the UNIT procedure call. Following the format is a listing, in order of
relative importance and utility, of the arguments that may appear on the UNIT procedure call. Following the
listing, descriptions of UNIT arguments, programming considerations, and a UNIT example are presented. Only
one spooled card input file is permitted for a given application.

Format:

1 10 16

UNIT FDEVICE=SPOOLIN

FUNIT={k }
READ

[FREREAD=YES}

[Faxsz={b_”}]

[FBUFPOOL=YES]

[mcsus={£!}]

Device Identification Argument:

FDEVICE=SPOOLIN
Specifies that this is a spooled card input file.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-11
FORTRAN IV

Unit Identifier Argument:

FUNIT=k ‘
Specifies a unique integer constant in the range 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifier READ is provided for reference by the FORTRAN Il READ statement,
since this statement contains no specific unit identification. When a FORTRAN Il statement is executed and
one of these special identifiers has not been provided, the first spoolin device specified is used. The units
are searched in the order in which they are defined. In an executable program, only one such unit may be
defined.

Reread Argument:

FREREAD=YES
Specifies that the unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

Block Size Argument:

FBKSZI={(k
{400
Specifies a positive integer constant (k) this is an integral muitiple of FRECSIZE. A large multiple of
FRECSIZE reduces operating system overhead. The default block size is the largest integral multiple
of FRECSIZE that is less than or equal to 400. If a number is specified that is not an integral multiple
of FRECSIZE, the block size is rounded downward to the nearest muitiple.

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which means an
END clause return. If only one unit using buffer pooling is active at a given time, record blocking can be
used.

Record Size Argument:

FRECSI ZE={k }
80
Specifies the record size for a spooled card input file, where k may be from 1 to 128. The default
record size of the spooled card input file is 80.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-12
FORTRAN IV

Programming Considerations:
Spooled input consists of one or more sets of cards, each headed with a card containing
/$
in columns 1 and 2 and terminated with a card containing
/*
in columns 1 and 2.
The /$ card is always bypassed by the FORTRAN IV library and is not accessible as a data card; the /* card

causes control to be transferred to the label specified in the END clause or, in the absence of an END
clause, causes program termination.

Example:
1 10 16 .. 72
2 J
UNIT FDEVICE=SPOOLIN, X
FUNIT=2, X
FREREAD=YES, X
FBKSZI=249

This UNIT procedure call defines a spooled card input file {unit 2) that participates in the reread feature.
Three cards (240 characters) at a time are read into the buffer to reduce operating system overhead. As a
default, the FORTRAN system assumes a unique, nonpooled buffer.

12.3.4.2.2. Data Management Card Input File Definition

A single data management card or 8413 diskette input file is defined by using the UNIT procedure call in this
format. Following the format is a listing, in the order of relative importance and utility, of the arguments that may
appear on the UNIT procedure call. Following the listing, descriptions of the UNIT arguments and a UNIT example
are presented.

The only limitation on the number of data management card input files is the system configuration and the
number of devices that can be allocated to the application. Cards may be read from a card punch if the device is
equipped with the optional read feature.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-13
FORTRAN v

Format:

1 10 16

UNIT FDEVIGE=CARDIN

FUNIT={k }
READ

FFILEID=(filename
FORTk;if FUNIT=k
READER:;if FUNIT=READ

[FREREAD=YES]
[FBUFPOOL=YES]

[FNUHBI] F={%}]

[rwouA={m;if rnunsu;=1}]
NO:if FNUMBUF=2

[FRECSIZE={:E}]

[FBKSZ:{:RECSIZE}]

et

[FOPTION=YES]
[FAUE=YES]

Device identification Argument:

FDEVICE=CARDIN
Specifies that this is a card input file.

Unit Identifier Argument:

FUNIT=k
Specifies a unigue integer constant in the range 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifier READ is provided for reference by the FORTRAN Il READ statement,
since this statement contains no specific unit identification. When a FORTRAN Il statement is executed and
this special identifier has not been provided, the first card device specified is used. The units are searched
in the order in which they are defined. In an executable program, only one such unit may be defined.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name {(filename).

FFILEID=FORTKk
Specifies the file name as FORTK, where 1<k<99. If the FFILEID argument is not specified and
FUNIT=k has been specified, FORTk is the default file name.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-14
FORTRAN v

FFILEID=READER
Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has

been specified, READER is the default file name.
Reread Argument:

FREREAD=YES
The reread unit consists of a single buffer to which each formatted input record is transferred. To

conserve central processor time, this data movement is inhibited unless specifically requested.
Buffer Pooling Argument:

FBUFPOOL=YES
The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed, and only
one buffer can be used. A unit is active from the first reference to the unit until termination, which means
an END clause return. If only one unit using buffer pooling is active at a given time, double buffering can be
used.

Buffer Allocation Argument:

FNUMBUF=1
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers to be allocated to the unit.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved from a work
area for processing.

FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the default is that space is allocated for a work area.

FWORKA=NO
Specifies that no space for a work area is to be allocated. If this argument is omitted and
FNUMBUF=2 is specified, the default is that no space is allocated for a work area.

Record Size Argument:
This argument specifies record size.

FRECSIZE=(k
{30}
Specifies a positive integer constant (k) in the range 1 < k > 128.

if 96-column cards are to be read, 96 must be specified. If an 8413 diskette is to be read, the record size
must correspond to that actually recorded on the device. If this argument is omitted, 80 is the defauit
record size.

If the rightmost columns of an 80-column card are not meaningful to the program, this argument may be
used to save main storage space by specifying a shorter record size.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-15
FORTRAN IV

. Block Size Argument:

This argument specifies the block size for an 8413 diskette. -

FBKSZI= { k }
FRECSIZE
Specifies a positive integer constant (k<<1024) that should be an integral multiple of FRECSIZE. A

large multiple of FRECSIZE reduces operating overhead. The default block size is FRECSIZE. If a
number is specified that is not an integral multiple of FRECSIZE, the block size is rounded downward
to the nearest multiple.

Stub Card Argument:

This argument specifies cards physically shorter than 80 columns.

FSTUB=51
Specifies a 51-column card.

FSTUB=66
Specifies a 66-column card.

The card reader must be equippéd with the proper optional feature if this argument is specified. if stub
cards are to be read, FSTUB must be specified. FSTUB is completely independent of the record size.

Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified and the file has not been allocated by job control statements, the first
READ reference causes an end-of-file condition to occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.
Rejection of Mispunched Cards Argument:

FAUE=YES i
Specifies that cards with an illegal hole combination in a column are to be bypassed and will not be

delivered to the program.

When the device being used is a SPERRY UNIVAC 0716 Card Reader, the erroneous card is also sorted into
a unique error stacker.

if this argument is not specified, the card reader is stopped. Operator intervention is sought when an illegal
hole combination is detected.

Example:
1 10 16 g 72
UNIT FDEVICE=CARDIN, X
FUNIT=READ, X
FNUMBUF=2, X
X

‘ FRECSIZE=56,
FAUE=YES

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-16
FORTRAN IV

This UNIT procedure call defines a card reader device, or a card punch device with the optional read
feature, to be referenced by using the FORTRAN |l READ statement. Two buffers are allocated for
efficiency, and only the first 56 characters on each card are to be transferred to main storage. Cards with
erroneous punches are ignored. The defaults assumed are:

u file name is READER;

L] records will not be reread;

. nonshared buffers with no work area;
. no stub cards; and

= file required if a reference occurs.

12.3.4.3. Card Output File Definition
A single card or 8413 diskette output file is defined by using the UNIT procedure calls presented in this format.
Following the format is a listing, in the order of relative importance and utility, of the arguments that may appear

on the UNIT procedure call. Following the listing, descriptions of UNIT arguments and a UNIT example are
presented.

Format:

1 10 16

UNIT FDEVICE=CARDOUT

FUNIT={I(}
PUNCH

FFILEID=¢filename
FORTk;if FUNIT=K
PUNCH;if FUNIT=PUNCH
[FBUFPOOL=YES]

[FNUHBUF{;_}]

[FwonxA={g§; if rnuunur=1}]
NO :if FNUMBUF=2

[FRECS | Ziz{:—g}]

,[FBKszz{:RECSIZE}]

[FCRDERR=RETRY]
[FOPTION=YES]

Device Identification Argument:

FDEVICE=CARDOUT
Specifies that this is a card output file.

Unit Identification Argument: '

FUNIT=k
Specifies a unique integer constant (k) in the range 1<k<99.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-17
FORTRAN IV

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers {(values 1 to 99 and READ, PRINT' and PUNCH) may be specified
by a control module. The identifier PUNCH is provided for reference by the FORTRAN | PUNCH statement,
since this statement contains no specific unit identification. When a FORTRAN |l statement is executed and
this special identifier has not been provided, the first cardout device specified is used. The units are
searched in the order in which they are defined. in an executable program, only one such unit may be
defined.

File name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTk ‘
Specifies the file name as FORTk where 1<k<99. If the FFILEID argument is not specified and
FUNIT=k has been specified, FORTk is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has
been specified, PUNCH is the default file name.

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used. The buffers are to be logically equivalent with all other
units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only one buffer can be used. A unit is active from the
first reference to the unit until termination, which means the execution of an ENDFILE statement. If only
one unit using buffer pooling is active at a given time, double buffering can be used.

Buffer Allocation Argument:

FRUMBUF=1
Specifies one buffer to be allocated to the unit.

FNUMBUF=2
Specifies two buffers to be allocated to the unit.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved from a work
area for processing.

FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the defauit is that space is allocated for a work area.

FWORKA=NO .
Specifies that no space for a work area is to be allocated. If this argument is omitted and

FNUMBUF=2 is specified, the default is that no space is allocated for a work area.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-18
FORTRAN IV

Record Size Argument:

FRECSIZE={k }
88
Specifies a positive integer constant (k) in the range 1<k<128.

If this argument is omitted, 80 is the default record size.
Block Size Argument:
This argument specifies the block size for an 8413 diskette.

FBKSZI={(k
{FRECSIZE}
Specifes a positive integer constant (k<1024) that should be an integral mulitiple of FRECSIZE. A
large multiple of FRECSIZE reduces operating overhead. The default block size is FRECSIZE. If a
number is specified that is not an integral multiple of FRECSIZE, the block size is rounded downward
to the nearest multiple.

Device Error Recovery Argument:

FCRDERR=RETRY
Specifies that error recovery coding is included in the executable program.

Iif this argument is not specified or if the recovery attempt is unsuccessful, program termination is initiated
when device errors occur. Mispunched cards are automatically segregated into an error card stacker. This
argument is not meaningful if card output is spooled (transmitted to disk for later transcription to a card
punch).

Optional Units Argument:

FOPTION=YES
Specifies an optional unit{a unit not always required during program execution).

When this argument is specified and the file has not been allocated by the job control statement, WRITE
statements are effectively ignored.

A unit need not be declared optional if the logic of the program does not cause a reference to the unit.

Example:
1 10 16 L 72
4]
UNIT FDEVICE=CARDOUT, X
FUNIT=32, X
FBUFPOOL=YES, X

FCRDERR=RETRY

This FUNDEF procedure call defines a card punch device (unit 32) with a pooled buffer. In the event of a device
error, automatic retry is to be attempted. Theé defaults assumed are:

n file name is FORT32;
u one buffer ‘and one work area;
. record size of 80; and

L] file is required if a reference occurs.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 12-19
FORTRAN IV

12.2.4.4. Tape File Definition

A single tape file is defined by using the UNIT procedure call presented in this format. Following the format is a
listing, in the order of relative importance and utility, of the arguments that may appear on the UNIT procedure
call. Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

Format:

16

UNIT

FDEVICE=TAPE

FUNIT=(k
READ }

PUNCH

[FFILEID=(filename

FORTk:;if FUNIT=k
READER;if FUNIT=READ
PUNCH;if FUNIT=PUNCH

TYPEFLE=(INOUT
WORK:if FUNIT=k
INPUT:if FUNIT=READ

L QUTPUT;if FUNIT=PUNCH

[FRECFORM={VARUNB
VARBLK
FIXUNB
_ FIXBLK

[FNUMBU F={%}]

[FWORKA={£S_; if FNUMBUF=1}]
NO ;if FNUMBUF=2

[FBUFPOOL=YES]

[FRECSIZE={£E_8}]

BKSZ={(k
FRECSIZE;if FRECFORM=F|XUNB
FRECSIZE+4;if FRECFORM=VARUNB
FRECSIZE*4 .0therwise

[FREREAD=YES]
[FDIAGNOS=YES]
[FBKNO=YES]

[FERROPT={;$?$RE[]

[FCKPT=YES]

[FFI lABL={;-;-D}]

[FCKPTREC=YES]

FC LRW=(RWD
NORWD
UNLOAD

[FOPRW=NORWD]
[FOPTION=YES]}

[T

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-20
FORTRAN IV

Device ldentification Argument:

FDEVICE=TAPE
Specifies that this is a tape file;

Unit Identifier Argument:

FUNIT=k
SDpecifies a unique integer constant in the range 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers {values 1 to 99 and READ, PRINT, and PUNCH} may be specified
by a control module. The identifiers READ and PUNCH are provided for reference by the FORTRAN H
statements READ and PUNCH, respectively, since these statements contain no specific unit identification.
When a FORTRAN Il statement is executed and one of these special identifiers has not been provided, the
applicable device specified is used. The units are searched in the order in which they are defined. In an
executable program, only one such unit may be defined.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTKk
Specifies the file name as FORTKk, where 1<k<99. If the FFILEID argument is not specified and
FUNIT=k has been specified, FORTk is the default file name.

FFILEID=READER
Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has
been specified, READER is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has
been specified, PUNCH is the default file name.

Type-of-File Argument:

FTYPEFLE=WORK or FTYPEFLE=INOUT
Specifies a work file. If this argument is not specified and FUNIT=k has been specified, WORK is the
FTYPEFLE defauit. FTYPEFLE=WORK should be specified if the tape is to be read and written. Work
files are limited to a single volume (reel).

FTYPEFLE=INPUT
Specifies an input file. If this argument is not specified and FUNIT=READ has been specified, INPUT
is the FTYPEFLE default. FTYPEFLE=INPUT should be specified if the tape is to be read but never
written.

FTYPEFLE=QUTPUT
Specifies an output file. If this argument is not specified and FUNIT=PUNCH has been specified,
OUTPUT is the FTYPEFLE default. FTYPEFLE=OUTPUT should be specified if the tape is to be written
but never read.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-21
FORTRAN IV

Record Format Argument:

FRECFORM=YARUNB
Specifies variable-length unblocked records.

FRECFORM=VARBLK
Specifies variabie-length blocked records. BACKSPACE is not aliowed if this option is specified.

FRECFORM=F | XUNB
Specifies fixed-length unblocked records.

FRECFORM=F I XBLK . .
Specifies fixed-length blocked records, BACKSPACE is not allowed if this option is specified.

Buffer Allocation Argument:

FNUMBUF=1

Specifies one buffer to be allocated to a unit. This argument is required if BACKSPACE is to be
allowed.

FNUMBUF=2
Specifies two buffers to be allocated to a unit.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved to and from a
work area for processing.

FWORKA=YES
Specifies that space for a work area is to be allocated. if this argument is omitted and FNUMBUF=1 is
specified, the default is that space is atlocated for a work area.

FWORKA=NO
Specifies that no space for a work area is to be allocated. If this argument is omitted and
FNUMBUF=2 is specified, the default is that no space is allocated for a work area. This argument is
required if BACKSPACE is to be allowed.

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which on input
means an END clause return and on output means the execution of an ENDFILE statement. If only one unit
using buffer pooling is active at a given time, record blocking and double buffering can be used.

Record Size Argument:

FRECSIZE= { k
sas}
Specifies a positive integer constant (k) in the range 18<k<32767 if fixed records are specified and
14<k<32727 if variable records are specified. If this argument is omitted, 508 is the defauit record
size.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-22
FORTRAN IV

FORTRAN IV pads out all variable-length records to 18 bytes, if necessary. This implies that it is impossible
to detect all instances when the program requests records longer than the length written. Fixed-length
records must be at least 18 bytes.

Block Size Argument:

This argument specifies the block size, which must always be greater than or equal to the record size. The
default values for FBKSZ depend on the absolute value of the FRECSIZE specification and on the record
form used.

FBKSZI=k
Specifies the block size (k) as a positive integer constant in the range 18<k<32767.

FBKSZI=FRECSIZE
Indicates the blocksize is equal to the record size. If this argument is not specified and fixed
unblocked records have been specified, this is the default block size.

FBKSZ=FRECS|ZE+4
Indicates the block size is four more than the record size. If this argument is not specified, and
variable unblocked records have been specified, this is the default block size.

FBKSZ=FRECS|ZE+4
Indicates the block size as four times the record size. If this argument is not specified and blocked

records have been specified, this is the default. Files containing blocked records cannot be
backspaced.

Example:

1 10 16 72

b
n

FRECFORM=VARBLK, X
FRECS1ZE=1880

In this example FBKSZ is not specified. Since FRECFORM=VARBLK is specified, the default value for FBKSZ is
equal to four times the value of FRECSIZE.

Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

Diagnostic Messages Argument:

FDIAGNOS=YES
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
more. Debugging information may also be written to this device (10.3). This argument is not available
for input files.

The FORTRAN IV run-time ‘environment always requires a device for diagnostic purposes.

UP-8474 Rev. 2

SPERRY UNIVAC 0S§/3 12-23
FORTRAN IV

Block Numbering Argument:

FBKNO=YES

Specifies that sequence numbers are to be encoded in each block before it is written and checked
after each block is read. These block numbers are not visible to the FORTRAN programmer.

Device Error Processing Arguments:

Two arguments are used to specify device error processing.

FERROPT
Specifies action to be taken when an erroneous data block is encountered.

if omitted, specifies that control is to be transferred to the ERR clause of the READ statment;
abnormal termination procedures are to be initiated if the ERR clause is not present.

FERROPT=IGNORE
Specifies that the erroneous block is to be accepted.

FERROPT=SKIP
Specifies that the erroneous block is to be bypassed by reading the next block.

SKIP and IGNORE should be used with discretion, since device position may be lost for unformatted
files and NAMELISTs.

When the problem program receives control at the ERR label, the ERROR subroutine (5.6.3.3) should
be referenced to determine the error type. If the error is unrecoverable, the unit cannot be referenced
again. Unrecoverable errors can be caused by severe device failure, parity errors that cause
inconsistent control information, or any error on a list-directed statement, which always implies loss
of position.

If the error is recoverable, the device is considered operable. Further references to the unit deliver
subsequent logical records; the erroneous record is bypassed. A parity or wrong length error on a
blocked file causes an ERR return for every logical-record in the erroneous block. The term “logical
record” is interpreted identically with the BACKSPACE statement (7.3.6.2).

FRECERR

FRECERR=YES
Specifies that formatted records in blocks with parity or wrong lengths errors are to be
moved to the reread buffer. Access to these records is required by some application
programs.

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or
more erroneous bits. The next reference to the unit in error delivers the next record or causes
another ERR return. A reread unit must be defined to access the reread buffer (12.3.4.6). Refer also
to the ERRDEF procedure (12.3.6).

Tape Label Checking Argument:

FFILABL=STD

Specifies that system standard labels are assumed.

FFILABL=NO

Specifies that tapes are to be read and written without labels.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-24
FORTRAN IV

Checkpoint Processing Argument:

FCKPT=YES
Specifies that an input tape file contains operating system checkpoint dumps used to restart
programs after a catastrophic failure.

The block size must be 20 bytes or larger when this argument is used. FCKPT must be specified when
checkpoint dumps are present.

Tape Rewind Arguments:

Two arguments may be used to specify tape rewinding. They have no effect on the FORTRAN REWIND

command.
= FCLRW
Fd L RW=RWD
Specifies that the tape is to be rewound to loadpoint when the STOP statement is
executed.

FCLRW=NORWD
Specifies that there is to be no rewind when the STOP statement is executed.

FCLRW=UNLOAD
Specifies that there is to be rewind with interlock when the STOP statement is executed

and that the tape is inaccessible to subsequent steps in the job without operator
intervention.

= FOPRW

FOPRW=NORWD
Specifies that the tape is not to be rewound to load point when it is first referenced.

Optional Units Argument:

FOPTION=YES ,
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified and the file has not been allocated by job control statements, WRITE
statements are effectively ignored, and the first READ reference will cause an end-of-file condition to
occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.
Example:

1 10 16 72

VN
tn

UNIT FDEVICE=TAPE,
FUNIT=7,
FTYPEFILE=INPUT,
FRECFDRM=VARBLK,
FWORKA=YES,
FRECSIZE=408,
FBKSI=10868,
FCKPT=YES

M 3 € 2 P D M

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-25
FORTRAN IV

This example defines a tape file (unit 7) used for input only. The records are variable in length, with a maximum
size of 400 bytes, and blocked into a maximum blocksize of 1000 bytes. The file is processed by using a work
area, and checkpoint records are present and are to be bypassed when encountered.

The assumed defaults are:

L file name is FORT7;

L] no buffer pooling, one unique buffer;

] no reread;

L] not the diagnostic device;

L no block numbering;

= device errors to be returned to ERR labels with the record bypassed and not made available to reread;

= no labels;

L rewinds at start and end of processing; and

L file is required if a reference occurs.

Because a work area is requested, BACKSPACE will not be allowed.

12.3.4.5. Files on Disk

FORTRAN supports three separate types of files on disk: sequential disk, direct access disk, and combined
sequential-direct disk.

. SAM

Sequential disk uses the disk sequential access method {SAM) and uses a file similar to a tape file. Only
sequential 1/0 statements are allowed.

. DAM

Direct access disk uses the direct access method (DAM) and creates a file of fixed-size records referenced
by relative record number only.

] MIRAM
Combined sequential direct disk uses the multi-indexed random access method (MIRAM).

Because of its flexibility and effeciency the MIRAM file is recommended for most applications.

12.3.4.5.1 Sequential Disk File Definition

A single sequential disk file is defined by using the UNIT procedure call presented in this format. Following the
format is a listing, in the order of relative importance and utility, of the arguments that may appear on the UNIT
procedure cail. Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-26
FORTRAN IV

Sequential disk files are conceptually identical with tape files. Most arguments are treated identically with tape
file arguments.

Format:

1 10 16

UNIT FDEVICE=SDISC

FUNIT={k
READ

PUNCH

[FSECTOR={£S-}]

ﬁrllzloz filename

FORTk;if FUNIT=k
READER:;if FUNIT=READ
| PUNCH;if FUNIT=PUNCH

[FTYPEFLE=(INOUT

WORK:if FUNIT=k
INPUT;if FUNIT=READ
[QUTPUT;if FUNIT=PUNCH

[FRECFORM={VARUNB
VARBLK
FIXUNB
- FIXBLK

[FNUMBUF={%}]

[FBUFPOOL=YES]

[FWORKA={1£§;if FNUMBUle}]
NO ;if FNUMBUF=2

[FRECSIZE={;ﬂ}]

BKSZI={(k
FRECSIZE;if FRECFORM=FIXUNB
FRECSIZE+4;if FRECFORM=VARUNS
FRECSIZE 4;0therwise

[FREREAD=YES]
[FDIAGNOS=YES)

[FERROPT={;&T$RE}]

[FRECERR=YES]
[FOPTION=YES]
[FVERIFY=YES]

Device Identification Argument:

FDEVICE=SDISC
Specifies that this is a sequential disk file.

UP-8474 Rev. 2 SPERRY UNiVAC 0S/3 12-27
FORTRAN IV

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1<<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifiers READ and PUNCH are provided for reference by the FORTRAN II
statements READ and PUNCH, respectively, since these statements contain no specific unit identification.
When a FORTRAN Il statement is executed and one of these special identifiers has not been provided, the
applicable device specified is used. The units are searched in the order in which they are defined. In an
executable program, only one such unit may be defined.

Sector Processing Argument:

FSECTOR=YES .
Specifies that processing on a sectorized disk is expected (e.g., an 8416). FSECTOR parameter is valid
for all file types: input, output, or work. When specified, the FORTRAN IV |1/0 system ensures that all
170 areas, including pooled 1/0 areas, are integral multiples of 256 bytes in length. This is necessary
to prevent program termination or destruction of data.

FSECTOR=NO
Specifies that processing on a nonsectorized disk is expected. This will conserve space.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTKk
Specifies the file name as FORTK, where 1<k<99. If the FFILEID argument is not specified and

FUNIT=k has been specified, FORTk is the default file name.

FFILEID=READER
Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has

been specified, READER is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has

been specified, PUNCH is the default file name.
Type of File Argument:

FTYPEFLE=WORK or FTYPEFLE=INOUT
Specifies a work file. If the argument is not specified and FUNIT=k has been specified, WORK is the

FTYPEFLE default. FTYPEFLE=WORK should be specified if the disk is to be read and written.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-28
FORTRAN v

FIYPEFLE=INPUT
Specifies an input file. If this argument is not specified and FUNIT=READ has been specified, INPUT
is the FTYPEFLE default. FTYPEFLE=INPUT should be specified if the disk is to be read but never
written.

FTYPEFLE=0UTPUT
Specifies an output file. If this argument is not specified and FUNIT=PUNCH has been specified,
QUTPUT is the FTYPEFLE default. FTYPEFLE=QUTPUT should be specified if the disk is to be written
but never read.

Record Format Argument:

FRECFORM=VARUNSB
Specifies variable-length unblocked records.

FRECFORM=VARBLK
Specifies variable-length blocked records.

FRECFORM=FIXUNB
Specifies fixed-length unblocked records. If specifying a FIXBLK file (read to end-of-file and then
write), FSECTOR=YES should be specified since 1/0 on system sectorized disks must be done to
prepare for extension.

FRECFORM=FIXBLK
Specifies fixed-length blocked records.

Buffer Allocation Argument:

FNUMBUF=]1
Specifies one buffer to be allocated to a unit.

FNUMBU F=2
Specifies two buffers to be ailocated to a unit.

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that bulffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only unblocked records may be processed and only one
buffer can be used. A unit is active from the first reference to the unit until termination, which on input
means an END clause return and on output means the execution of an ENDFILE statement. if only one unit
using buffer pooling is active at a given time, record blocking and double buffering can be used.

Work Area Allocation Argument:

This argument specifies whether records are to be processed directly in the buffer or moved to and from a
work area for processing.

FWORKA=YES
Specifies that space for a work area is to be allocated. If this argument is omitted and FNUMBUF=1 is
specified, the defauit is that space is allocated for a work area.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-29
FORTRAN IV

FWORKA=NO
Specifies that no space for a work area is to be allocated. If this argument is omitted and
FNUMBUF=2 is specified, the default is that no space is allocated for a work area.

Record Size Argument:

FRECSIZE=(k
{sns}

Specifies the record size as a postive integer constant (k). If this argument is omitted, 508 is the
default record size. See the specific disk subsystem reference manuals for maximum and minimum
record size specifications.

Block Size Argument:
This argument specifies the block size, which must always be greater than or equal to the record size.

The default value for FBKSZ depend on the absolute value of the FRECSIZE specification and on the record
form used.

FBKSZ=k
Specifies the block size as a positive integer constant in the range 3<k<3625. The upper limit can be
increased to 7294 bytes for SPERRY UNIVAC 8414/8424/8425 Disk Drive Units and to 13030 bytes
for SPERRY UNIVAC 8430 Disk Drive Units.

FBKSZ=FRECSIZE
Indicates the block size is equal to the record size. If this argument is not specified and fixed
unblocked records have been specified, this is the default block size.

FBKSZ=FRECSIZE+4
Indicates the block size is four more than the record size. lf this argument is not specified and
variable unblocked records have been specified, this is the default block size.

FBKSZ=FRECSIZE" 4
Indicates the block size is four times the record size. If this argument is not specified and blocked
records have been specified, this is the default block size.

Example:

1 10 16

FRECFORM=VARBLK
FRECSIZE=1880

In this example, FBKSZ is not specified. Sini:e FRECFORM=VARBLK is specified, the default value for
FBKSZ is equal to four times the value of FRECSIZE.

Reread Argument:

" FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

UP-8474 Rev. 2 SPERRY UNIVAC 0S§/3 12-30
FORTRAN IV

Diagnostic Messages Argument:

FDIAGNOS=YES
Specifies the current unit as the diagnostic device. If FRECSIZE is specified, its value must be 101 or
more. Debugging information may also be written to this device (10.3). This argument is not available
for input files.

The FORTRAN IV runtime environment always requires a device for diagnostic purposes.

Device Error Processing Arguments:

Two arguments are used to specify device error processing.
FERROPT
Specifies action to be taken when an erroneous data block is encountered.

If omitted, specifies that control is to be transferred to the ERR clause of the READ statement; abnormal
termination procedures are to be initiated if the ERR clause is not present.

FERROPT=IGNORE
Specifies that the erroneous block is to be accepted.

FERROPT=SKIP
Specifies that the erroneous block is to be bypassed by reading the next block.

SKIP and IGNORE shouid be used with discretion, since device position may be lost for unformatted files
and NAMELISTs.

When the problem program receives control at the ERR label, the ERROR subroutine {5.6.3.3) should be
referenced to determine the error type. If the error is unrecoverable, the unit cannot be referenced again.
Unrecoverable errors can be caused by severe device failure, parity errors that cause inconsistent control
information, or any error on a list-directed statement, which always implies loss of position.

If the error is recoverable, the device is considered operable. Further references to the unit deliver
subsequent logical records; the erroneous record is bypassed. A parity or wrong length error on a blocked
file causes an ERR return for every logical record in the erroneous block. The term “logical record” is
interpreted identically to the BACKSPACE statement {7.3.6.2).

FRECERR

FRECERR=YES
Specifies that formatted records in blocks with parity or wrong length errors are to be moved to
the reread buffer. Access to these records is required by some application programs.

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or more
erroneous bits. The next reference to the unit in error delivers the next record or causes another ERR
return. A reread unit must be defined to access the reread buffer (12.3.4.6). Refer aiso to the ERRDEF
procedure (12.3.6).

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-31
FORTRAN IV

‘ Optional Units Argument:

FOPTION=YES
Specifies an optional unit, a unit not always required during program execution.

When this argument is specified and the file has not been allocated by job control statements, WRITE

statements are effectively ignored, and the first READ reference will cause an end-of-file condition to
occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.

Sector Processing Argument:

FSECTOR=YES
Specifies that processing on a sectorized disk is expected (e.g., an 8416 or 8418). FSECTOR
parameter is valid for all file types: input, output, or work. The FORTRAN IV I/0 system ensures that
all 1/0 areas, including pooled 1/0 areas, are integral multiples of 256 bytes in length. This is
necessary to prevent program termination or destruction of data.

FSECTOR=NO
Specifies that processing on a nonsectorized disk is expected. This will conserve space.

Write Verification Argument:
FVERIFY=YES
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper
. recording on the disk surface.
This increased reliability necessarily causes some performance degradation.

Zxample:

1 10 16 72

-
UNIT FDEVICE=SDISC, R
a FUNIT=9,

FTYPEFLE=0UTPUT,

FRECSI1ZE=1000,

FVERIFY=YES

> > >¢ >

This FUNDEF procedure call specifies a sequential disk file (unit 9) intended for output of variable
unblocked records with a maximum size of 1000 bytes. Each record is read checked after it is written. The
defaults assumed are:

. file is named FORTY;

] variable unblocked records and one unique 1004-byte buffer with a work area;

] not a diagnostic device and not optional to the program;

] records never reread and not available in the reread buffer after ERR returns.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-32
FORTRAN IV

12.3.4.5.2. Direct Access Disk File Definition

A direct access disk file is defined by using the UNIT procedure call presented in this format. Following the
format is a listing, in the order of relative importance and utility, of the arguments that may appear on the
FUNDEF procedure call. Following the listing, descriptions of UNIT arguments, programming considerations, and
a UNIT example are presented.

Direct access disk file options are treated identically with sequential disk file options. Records are fixed length
and unblocked.

Format:

1 10 16

UNIT FDEVICE=DISC
FUNIT=k

[FSECTOR={;(E)_S-}]

[FFILEID={fiIename }]
FORTk:where k=FUNIT

[FTYPEFLE={INPUT }]
OUTPUT

[FBUFPOOL=YES]

[FRECSIZE={;£}]

[FREREAD=YES]
[FRECERR=YES]
[FVERIFY=YES]

Device Identification Argument:

FDEVICE=DISC
Specifies that this is a direct access disk file.

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1<k<99.

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT and PUNCH) may be specified
by a control module.

Sector Processing Argument:

FSECTOR=YES
Specifi? that processing on a sectorized disk is expected (e.g.,, an 8416 or 8418) FSECTOR
parameter is valid for all file tapes: input, output, or work. The FORTRAN IV 1/0 system ensures that
all 1/0 areas, including pooled 170 areas, are integral multiples of 256 bytes in length. This is
necessary to prevent program termination or destruction of data.

FSECTOR=NO
Specifies that processing on a nonsectorized disk is expected. This will conserve space.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-33
FORTRAN vV

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name.

FFILEID=FORTk
Specifies the file name as FORTk, where 1<k<99. If the FFILEID argument is not specified and
FUNIT=k has been specified, FORTk is the default file name.
Type of File Argument:

FTYPEFLE=INPUT
Specifies an input file.

FTYPEFLE=OUTPUT
Specifies an output file.

NOTE:
See Programming Considerations.
Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

The buffers are to be logically equivalent with all other units for which buffer pooling is specified.
When multiple units with pooled buffers are active, only one buffer can be used. A unit is active from the
first reference to the unit until termination, which on input means an END clause return and an output
means the execution of an ENDFILE statement.

Record Size Argument:

FRECSIZEz{k
512}

Specifies the record size as a positive integer constant. If this argument is omitted, 512 is the default
record size. See the specific disk subsystem reference manuals for maximum and minimum record
size specifications.

Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-34
FORTRAN IV

Device Error Processing Argument:

FRECERR=YES
Specifies that formatted records in blocks with parity errors or wrong length errors are to be moved to
the reread buffer. Access to these records is required by some application programs.

After an ERR return, the reread unit may be referenced to recover the data, which may contain one or more
erroneous bits. The next reference to the unit in error delivers the next record or causes another ERR
return. A reread unit must be defined to access the reread buffer (12.3.4.6). Refer also to the ERRDEF
procedure (12.3.6).

Write Verification Argument:

FVERIFY=YES
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper

recording on the disk surface.
This increased reliability causes some performance degradation.
Programming Considerations:

The TYPEFLE specification does not restrict the use of READ and WRITE statements. The only implication
of TYPEFLE is that, for INPUT, label checking is performed and, for QUTPUT, labels are written. When the
associated DEFINE FILE statement is executed, it must specify a record size less than or equal to FRECSIZE.
The FORTRAN system thereafter enforces the record size specified on the DEFINE FILE statement, but
always transfers records of FRECSIZE bytes to and from the disk.

Example: .

1 10 16 72
55

UNIT FDEVICE=DISC, X

FUNIT=13, X

FTYPEFLE=INPUT, X

FRECSIZE=348

This UNIT procedure call specifies a direct access disk file {(unit 13) which is to be read only. The record size
is 348. The defaults are:

L file name is FORT13;

u no buffer pooling;

. buffer size is 348,;

a no reread and records not available in the reread buffer after ERR returns; and

. no verification.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-35
FORTRAN IV

12.3.4.5.3. Combined Disk Files

MIRAM disk files may be created and accessed as either sequential or direct access files. Since the type of
access is not included in the file definition, the same definition may be used for both. Within each FORTRAN
program, however, only one access method may be used for a file.

If direct access is chosen, the FORTRAN user must use the proper 1/0 statements including DEFINE FILE (7.4.1).
The direct access FIND statement is ignored because it serves no purpose for MIRAM files. A read of a record
that was not written causes a fatal error.

12.3.4.5.3.1. Record Formats for MIRAM Disk Files
Data records are maintained in fixed-length slots. All records in a MIRAM file are created with a record control
byte (RCB). For fixed-length records, slot size is one byte greater than record size because of the RCB. For

variable-length records, the slots are equal to the maximum record size plus a 4-byte overhead.

L Fixed-Length Records (FiX)

je——————256 bytes ! fe— 256 bytes -]
; l : a
R | R R I R 1
C : record, C | record, C : record, C : record,
B, B : B | J B |
| 1 1 1
spanned
record
= Variable-Length Records (VAR)
1
4-byte 4-byte l
control record, control | record,
word word |
|

By recording the data records in consecutive order and associating a relative record slot number with each
record, files may be accessed by either sequential or relative record techniques.

The FORTRAN user does not specify a parameter for buffer size. The size is determined in the unit procedure as
follows:

. If the slot length is less than or equal to 256 bytes and is evenly divisible into 256, the buffer size is 256.
L If the slot length is greater than 256 and a multiple of 256, the buffer size equals the slot length.

= Otherwise, the buffer size is calculated by adding 255 to the slot length and rounding up to the next
multiple of 256.

A work area is always allocated and its size is equal to the slot length.

UP-8474 Rev. 2

12-36

SPERRY UNIVAC 0S/3
FORTRAN IV

12.3.4.5.3.2. MIRAM Disk File Definition

A MIRAM disk file is defined by using the UNIT procedure call presented in this format. The listing that follows
gives the arguments, in order of relative importance and utility, that may appear on the UNIT procedure call.
Following the listing are descriptions of UNIT arguments and a UNIT example.

Format:
1 10 16
UNIT FDEVICE=MIDISC
FUNIT=(k
READ
PUNCH
[FFILEID= (filename

FTYPEFLE=

FORTK;if FUNIT=k
READER;if FUNIT=READ
PUNCH;if FUNIT=PUNCH

INPUT;if FUNIT READ }:|
QUTPUT;if FUN!T=PUNCH

{WORK; if FUNIT=k

[rntcrom={5ﬁ}]

[FBUFPOOL=YES]

FRECSIZE= (k
{255;” FRECFORM=FIX

252;if FRECFORM=VAR

[FREREAD=YES]
[FRECERR=YES]
[FOPTION=YES]
[FVERIFY=YES]

Device ldentification Argument:

FDEVICE=MIDISC

Specifies that this is a MIRAM disk file.

Unit Identifier Argument:

FUNIT=k

Specifies a unique integer constant (k) in the range 1 <k<99.

FUNIT=READ

Specifies READ as the unit identifier.

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 12-37
FORTRAN IV

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifiers READ and PUNCH are provided for reference by the FORTRAN Ii
statements READ and PUNCH, respectively, since these statements contain no specific unit identification.
When a FORTRAN |l statement is executed and one of these special identifiers has not been provided, the
applicable device specified is used. The units are searched in the order in which they are defined. In an
executable program, only one such unit may be defined.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN-style symbolic name (filename).

FFILEID=FORTk
Specifies the file name as FORTk, where 1 <k<99. If the FFILEID argument is not specified and
FUNIT=k has been specified, FORTk is the default file name.

FFILEID=READER
Specifies the file name as READER. If the FFILEID argument is not specified and FUNIT=READ has
been specified, READER is the default file name.

FFILEID=PUNCH
Specifies the file name as PUNCH. If the FFILEID argument is not specified and FUNIT=PUNCH has
been specified, PUNCH is the default file name.

Type of File Argument:

FTYPEFLE=WORK
Specifies a work file. If this argument is not specified and FUNIT=k has been specified, WORK is the
FTYPEFLE default. FTYPEFLE=WORK should be specified if the disk is to be read and written.

FTYPEFLE=INPUT
Specifies an input file. If this argument is not specified and FUNIT=READ has been specified, INPUT
is the FTYPEFLE default. FTYPEFLE=INPUT should be specified if the disk is to be read but never
written.

FTYPEFLE=0UTPUT
Specifies an-output file. If this argument is not specified and FUNIT=PUNCH has been specified,
OUTPUT is the FTYPEFLE default. FTYPEFLE=QUTPUT should be specified if the disk is to be written
but never read.

Record Format Argument:

FRECFORM=FIX
Specifies fixed-length records.

FRECFORM=VAR
Specifies variable-length records.

Buffer Pooling Argument:

FBUFPOOL=YES
Specifies that buffer pooling is to be used.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-38
FORTRAN iV

The buffers are to be equivalent with all other units for which buffer pooling is specified.

When multiple units with pooled buffers are active, only one buffer can be used. A unit is active from the
first reference to the unit until termination, which on input means an END clause and on output means the
execution of an ENDFILE statement.

Record Size Argument:

FRECSIZE=(k
255

252
Specifies the record size as a positive constant (k). If the argument is omitted and FRECFORM=FIX,
255 is the default record size. If FRECFORM=VAR, 252 is the default record size.

Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consists of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

Devcie Error Processing Argument:
FRECERR=YES
Specifies that formatted records in blocks with parity errors or wrong length are to be moved to the
reread buffer. Access to these records is required by some application programs.
After an ERR return, the reread unit may be referenced to recover the data, which may contain one or more
erroneous bits. The next reference to the unit in error delivers the next record or causes another ERR
return. A reread unit must be defined to access the reread buffer (12.3.4.6). Refer also to the ERRDEF
procedure (12.3.6).

Optional Units Argument:

FOPTION=YES
Specifies an optional unit (i.e., a unit not always required during program execution).

When this argument is specified and the file has not been allocated by job control statements, WRITE
statements are effectively ignored and the first READ reference causes an end-of-file condition to occur.

A unit need not be declared as optional if the logic of the program does not cause a reference to the unit.
Write Verification Argument:

FVERIFY=YES
Specifies that all WRITE statements cause the data to be automatically read back to ensure proper
recording on the disk surface.

This increased reliability necessarily causes some performance degradation.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-39

FORTRAN IV
. Example:
1 10 16 e, 72
2)
UNIT FDEVICE=MIDISC, X
FUNIT=8, X
FRECFORM=VAR, X

FRECSIZE=300

This FUNDEF procedure call specifies a MIRAM disk file (unit 8) intended for input and output of variable-
length records with a maximum length of 300 bytes and a record slot length of 304 bytes.

The defaults are:

L file name is FORTS;

u file is a work file available for input and output;

- one buffer allocated;

L] no buffer pooling;

= no reread facility (i.e., records are not available in reread buffer after ERR returns);
] not an optional unit; and

‘ L no verification

A work area is automatically allocated and the buffer size is 768 bytes. If the FORTRAN user wants to
access the file using direct access, a define file statement must be included in the FORTRAN program.
Otherwise, sequential access is assumed.

12.3.4.6. Reread Unit Definition

The reread unit is defined by using the UNIT procedure call presented in this format. Following the format is a
listing, in the order of relative importance and utility, of the argumeénts that may appear on the unit procedure
call. Following the listing, description of UNIT arguments, programming considerations, and a UNIT example are

presented.

A single VARUNB buffer is automatically constructed with a size equivalent to the largest record size of all the
units in the reread feature.

Format:

1 10 16

UNIT FDEVICE=REREAD

FUNIT={k }
READ

Device Identification Argument:

‘ FDEVICE=REREAD

Specifies that this is the reread unit.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-40

FORTRAN IV

Unit Identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1<k<99.

FUNIT=READ
Specifies READ as the unit identifier.

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT and PUNCH) may be specified
by a control module. The identifier READ is provided for reference by the FORTRAN |l READ statement,
since this statement contains no symbolic unit identification. When a FORTRAN Il statement is executed
and this special identifier has not been provided, the applicable unit specified is used. The units are
searched in the order in which they are defined. In an executable program, only one such unit may be
defined.

Programming Considerations:

The record in the reread buffer is redefined only after a formatted READ statement is issued to a unit
specified with FREREAD=YES or FRECERR=YES.

Example:

1 10 16 72

UNIT FDEVICE=REREAD, X
FUNIT=29

The reread unit is defined to be unit 29.

12.3.4.7. Equivalent Unit Definition

An equivalent unit is defined by using the UNIT procedure call presented in this format. Following the format is a
listing, in the order of relative importance and utility, of the arguments that may appear on the UNIT procedure
call. Following the listing, descriptions of UNIT arguments and a UNIT example are presented.

The function of an equivalent unit is to provide another reference number for a file. For example, an input file
might be referenced with both a FORTRAN [V statement with a unit number and FORTRAN |l statement that
implies the special name READ. An equivalent unit can be used to resolve conflicts of this type.

Format:

1 10 16

UNIT FDEVICE=EQUIV

FUNIT=(k
READ
PRINT
PUNCH

FEQUIV=(k
READ
PRINT
PUNCH

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 12-41

FORTRAN IV

Device ldentification Argument:

FDEVICE=EQUIV
Specifies that this is an equivalent unit.

Unit identifier Argument:

FUNIT=k
Specifies a unique integer constant (k) in the range 1<K<99.

FUNIT=READ
Specifies READ as the unit identifier.

FUNIT=PRINT
Specifies PRINT as the unit identifier.

FUNIT=PUNCH
Specifies PUNCH as the unit identifier.

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified
by a control module. The identifiers READ, PRINT and PUNCH are provided for reference by the FORTRAN ii
statements READ, PRINT, and PUNCH, respectively, since these statements contain no specific unit
identification. When a FORTRAN Il statement is executed and one of these special identifiers has not been
provided, the applicable device specified is used. The units are searched in the order in which they are
defined. In an executable program, only one such unit may be defined.

Establishing Equivalence Argument:

This argument is used to specify the unit that is to be treated as equivalent to the unit specified for FUNIT.

When a file reference to the unit specified for FUNIT occurs, device action takes place on the unit specified
for FEQUIV.

FEQUIV=k
Specifies a unique integer constant (k) in the range 1<k<99.

FEQUIV=READ
Specifies READ as the equivalent unit.

FEQUIV=PRINT
Specifies PRINT as the equivalent unit.

FEQUIV=PUNCH
Specifies PUNCH as the equivalent unit.

Examples:

1 10 16 72
C C
) J
UNIT FDEVICE=EQUIV, X
FUNIT=PRINT, X

FEQUIV=5

This UNIT procedure call specifies an equivalent unit that has no number; it can be referenced only by
using a FORTRAN Il PRINT statement. When referenced, unit 5 is activated; unit 5 must be defined by
using another UNIT procedure call.

UP-8474 Rev. 2

12-42

SPERRY UNIVAC 0S/3
FORTRAN IV

Example:

Circular equivalence,

such as the following, is not permitted.

1 10 16 5 5 72
UNIT FODEVICE=EQUIV, X
FUNIT=1, X
FEQUIV=2
UNIT FDEVICE=EQUIV, X
FUNIT=2, X
FEQUIV=1

12.3.5. FORTRAN

Unit Definition Termination Procedure (FUNEND)

The list of units specified with UNIT procedure calls is terminated by the FUNEND procedure call. The FUNEND

procedure call:

generates one or two buffers large enough to accommodate any unit for which FBUFPOOL=YES is

generates a work area large enough to accommodate any unit for which FWORKA=YES is specified;

generates a reread buffer large enough to accommodate any unit for which FREREAD=YES or

] terminates the unit list;
a
|]
specified;
[]
FRECERR=YES is specified; and
n

guarantees the presence of a diagnostic unit.

If FDIAGNOS=YES was specified for a unit, no action takes place. If a unit was specified as, or defaulted to,
FFILEID=PRNTR, that unit is specified as the diagnostic device. If neither of the preceding conditions holds, a
UNIT procedure call with the following form is generated, and a warning diagnostic is issued.

1 10 16 72
o o
£ §
UNIT FDEVICE=PRINT, X
FUNIT=PRINT, X
FDIAGNOS=YES, X
FRECSIZE=191
Format:
1 10 16

FUNEND

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-43

FORTRAN IV

12.3.6. Error Environment Definition Procedure (ERRDEF)

During the execution of the object program, the FORTRAN system monitors program operations for consistency
and legality, insofar as it is practical. The errors detected are grouped into seven classes, each having a limit on
the number of times the error is to be accepted before program termination and on the number of diagnostic
messages to be produced. The seven error classes include program, arithmetic, argument, alignment, read, and
data errors explained in the following paragraphs, and fatal errors, which are catastrophic errors forcing
immediate program termination. A table in the library contains the limit information for each class. This table is
automatically included in the executable program if the table is not explicitly redefined by the programmer. For
this purpose, the error definition procedure (ERRDEF) is provided.

Treatment of nonfatal errors can be controlled by using the ERRDEF procedure call. Following is a listing, in
order of relative importance and utility, of the arguments that may appear on the ERRDEF procedure call.
Foliowing the listing, descriptions of ERRDEF arguments and an ERRDEF example are presented. The ERRDEF
procedure call should follow the FUNEND procedure call in the configuration module.

Format:
1 10 16
ERRDEF [FPROG=/(i Y. (|)
ALL! IaLt
8 1)1
[FAR! TH= { i }. i
ALL ALL>
L 10
pARG= i (i
{ALL} ALl
L 10
[FUNDFLO=YES]
[FALIGN= { i }. i
ALLS 1ALL
L 10
[FREAD= { i Y (i
_£l} ALL >
. 10
(FDATA= { i }, j
ALLS {aLL
L A0
[FERROPT=/f/NONE 7
READ
READ,DATA
READ,UNREC
1 READ,DATA,UNREC
DATA
DATA,UNREC
L \UNREC -
where:

Is a positive integer constant less than 32,768, with ik that specifies the number of times the error
is to be accepted before program termination. For a fatal error, i is assumed to be 1.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-44
FORTRAN IV

Is a positive integer constant less than 32,768 with j<i that specifies the number of diagnostic
messages to be produced. For a fatal error, j is assumed to be 1.

ALL
Specifies that there is no limit on the number of times the error is to be accepted before program
termination or that there is no limit on the number of diagnostic messages to be produced.

During execution, the first j errors cause diagnostic messages to be produced; when the ith error occurs, a
diagnostic is issued, and program terminatnion is initiated.

Program Error Argument (FPROG):

This argument is used to control system action when the flow of execution encounters a statement for
which code cannot be generated because of a syntax or other error or when an error occurs in FORMAT-
170 list interaction.

Arithmetic Error Argument (FARITH):

This argument is used to control system action when a program check interrupt occurs for overflow,
underflow, or divide check. The standard library functions (Table 5-4) cannot cause this error.

Argument Error Argument (FARG):

This argument is used to control system action when an out-of-range argument is transmitted to a
standard library function (Table 5-4).

Improper argument values can cause error reporting by the standard library functions (Table 5-4) because:
n the function is mathematically undefined for the argument, as SQRT (-10);
. the function value is insignificant, as SIN (10E60); or

n the function value is too large to be represented, as 10E50++* 10E5B0. This is analogous to an overflow
condition.

As a default, a function value too small to be represented (an underflow) is approximated by O and is not
reported or considered on the FARG counts.

This argument also controls the acceptance and printing of subscript checking. (See 10.5.)

Underflow Error Argument (FUNDFLO):

FUNDFLO=YES
Used to control system action when underflows occur. This argument indicates that underflow will
be reported and counted.

Alignment Error Argument (FALIGN):

This argument is used to control system action when a program check interrupt occurs for an instruction
referencing an illegal main storage boundary. This can occur because of improper COMMON and
EQUIVALENCE statements and during argument substitution in prologues and epilogues.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-45
FORTRAN IV

Read Error Argument (FREAD)

This argument is used to control system action when an input device error occurs. The error counts
associated with FREAD are meaningful only when an ERR clause is present in the referencing
statement. if no ERR clause is present, the program is immediately terminated, regardless of the
specifications for the number of times the error may be accepted or the number of diagnostic
messages that may be produced.

Data Error Argument (FDATA):

This argument is used to control system action when the input data contains illegal characters. The error
counts associated with FDATA are meaningful only when an ERR clause is present in the referencing
statement. f no ERR clause is present, the program is immediately terminated, regardiess of the
specifications for the number of times the error may be accepted or the number of diagnostic messages
that may be produced.

Error Options Argument (FERROPT):

This argument specifies the meaning of the ERR clause. The FORTRAN IV default is to pass control to the
ERR label only for parity or wrong length errors. The ERROR subroutine (5.6.3.3) is used to determine the
error type. Eight possible combinations of the following FERROPT specifications are available.

NONE
Used to control system action when the ERR clause feature is to be disabled.

READ
Used to control system action when control is to be passed to the ERR label for parity or wrong
length errors only.

DATA
Used to control system action when control is to be passed to the ERR label for data errors; this
class is composed of invalid input characters.

UNREC
Used to control system action when control is to be provided at the ERR clause for
unrecoverable device errors only. No further references to the unit are permitted.

Example:

1 10 16 72

4

ERRDEF FPROG=(108,160),
FALIGN=(ALL,58), X
FERROPT=(DATA)

>

This ERRDEF procedure call indicates that if a program error occurs, the error may be acepted 100 times,
and 100 diagnostic messages may be produced. if an alignment error occurs, there is no limit on the
number of times the error may be accepted, and 50 diagnostic messages may be produced. DATA,

specified for error options, indicates that control is to be passed to the ERR label if data errors occur. The
standard defaults are taken for all arguments not specified.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 12-486
FORTRAN IV

12.3.7. END Statement ‘

The END statement, a source program terminator statement required by the assembler, indicates the end of the
definition of the execution environment.

Format:

1 10 16

END

The END statement, coded as shown, follows the ERRDEF procedure call, or the FUNEND procedure calil.

Example:

An example of a complete execution environment follows.

1 10 16 - 3, 72
MYIlO START)
FUNTAB SYS=FOR
UNIT FDEVICE=PRINTER, X
FUNIT=12, X

FDIAGNOS=YES

UNIT FDEVICE=TAPE, X
FUNIT=11, X
FTYPEFLE=INPUT, X
FRECSIZE=208

FUNEND

ERRDEF FERROPT=(DATA)

END

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 13-1

FORTRAN IV

13. Program Collection and Execution

13.1. GENERAL

Before a set of program units can be executed, they must be collected and the necessary FORTRAN supporting
routines made available to them. The linkage editor performs this task.

After the program units are link edited, all physical devices required for execution are assigned via job control
statements.

13.2. LINK EDITING FORTRAN PROGRAMS

Several special interfaces of the linkage editor are used by FORTRAN IV and described in this section. The user
should be aware of these interfaces to use the linkage editor successfully with FORTRAN compiled programs.
The linkage editor options listed in the 0S/3 system service programs {(SSP) user guide can be used only if they
do not conflict with requirements of FORTRAN IV. Also, the linkage editor jproc call described in the current
version of the 0S/3 job control user guide shows an easy method for executing the linkage editor.

13.2.1. FORTRAN IV Supplied Modules

After programs are compiled by the FORTRAN compiler, various mathematical functions, service routines, and
system routines may have to be connected to the programs. This entire group of modules must then be
converted into executable format. The functions SIN, ALOG, and CBRT, the subroutines DUMP and DVCHK, and
the service routines read-write, integer editing, and error detection are examples of the services that may need
to be supplied before a FORTRAN program is executable.

A complete list of functions and services supplied with FORTRAN |V are included in Appendix G.

Because of the special conventions used in generating references to the FORTRAN standard library subroutines
(5.6.3), a user program that attempts to override the supplied routine must;

1. specifically include the module; and

2. equate the special name to the real name.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 13-2
FORTRAN IV

For example, if the program used the following coding to call a special error subroutine:

CALL ERROR(!,K,L)

SUBROUTINE ERROR(I11,J1,K1)

then the control stream to link the load modules of the program would require the following coding:

1 10 16

INCLUDE ERROR,input file
ESROR EQU ERROR

13.2.2. Overlay and Region Structures
Sometimes the executable program created as linkage editor output is too large to fit into the required main
storage limits. The linkage editor provides overlay and region segmentation methods to assist in creating smaller
executable load modules.
Programs compiled by the FORTRAN IV compiler reference each subprogram with the automatic overlay feature
of the system. Thus, an overlay structure may be used with no changes to the FORTRAN programs. A few
restrictions should be observed, however, so that the FORTRAN service routines operate correctly:
L] The root phase of the overlay structure should contain the following:

- All common areas

- The execution environment module

- The modules FL$IOCOM, FLSABTRM, FLSERCTL (FD$IOCOM, FDSABTRM, FD$ERCTL for DTF)

- The main program of the execution

- The module FF#MPI
a Any direct access associated variables should be in a common area.
] If the explicit overlay control statements CALL LOAD, CALL FETCH, or CALL OPSYS are used, the

automatic overlay feature will not operate correctly. The linkage editor option, NOV, must be specified to .
suppress normal V-CON processing.

'UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 13-3

FORTRAN IV

L Local variables become undefined upon exit from a subprogram if the subprogram is in an overlay.

The user should take care when building overlay structures since program execution speed can be seriously
affected.

13.2.3. Linkage Editor Output

The executable module created by the linkage editor is placed in the system file, YRUN. The program may be
executed directly from this file, or it may be saved with the system librarian.

In addition to load modules, the linkage editor produces a listing and a storage map for each load module. All
linkage editor errors should be resolved before attempting to execute the program. The storage maps should be
saved to aid in debugging the program.

The linkage editor can be executed either via the LINK job control procedure call statement (jproc) or using the
conventional device assignment set and EXEC statement. It is recommended that LINK jproc be used since it
requires less coding. For example:

L jproc Method

//TEST LINK $MAIN MYIO

u Conventional Method

// WORK1

// EXEC LNKEDT
/3

LOADM TEST
INCLUDE S$MAIN
INCLUDE MYIO
/[*

Both methods cause the FORTRAN IV program ($MAIN) and the execution module (MYIO) to be linked to an
executable program (TEST). All supporting FORTRAN {V run-time modules needed by $MAIN and MYIO programs
are automatically included into TEST from the system object module library (YOBJ).

13.3. EXECUTION OF FORTRAN PROGRAMS IN A CDI ENVIRONMENT

The FORTRAN IV compiler uses the operating system and the common data interface to execute its compiled
programs. The following information describes the various interfaces that FORTRAN iV requires.

13.3.1. CDI FORTRAN 1/0 Units

The FORTRAN 170 unit module that is linked to the executable program specifies which units and devices may
be used during this execution. The user is responsible for supplying the actual devices that connect to the units
in the 170 unit module.

To connect an actual device to an executable program, the user supplies appropriate JCL statements that
allocate the device for this job or job step. When a device is not used during an execution of a program, the
device need not be assigned.

-

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 13-4

FORTRAN IV Update B

13.3.2. CDM Pause Messages

If a PAUSE statement is executed, the text of the PAUSE message is displayed on the initiating workstation
terminal, if present, or else on the system console. The program then waits for a response from the operator.

There are three allowable responses to a PAUSE message:
. CONT
Continue the program execution
. STOP
Terminate the program normally
. DUMP
Terminate the program with a dump

If any other response is made, the PAUSE message is reissued.

13.3.3. CDM Diagnostic Messages

The FORTRAN run-time system has many diagnostic messages that may be displayed during execution. These
messages are output to the FORTRAN unit assigned for diagnostic information (FDIAGNOS=YES). If no
diagnostic device is specified, the messages are simultaneously written to the system log and the initiating
workstation terminal. In lieu of an initiating workstation terminal, the messages are sent to the system console.

The amount of information output by the FORTRAN run-time system may be controlled by the error definition
procedure (ERRDEF). However, the STOP message and execution summary information are always output.
Therefore, when using preprinted forms or when printing final draft output, the user should assign the
diagnostic device separate from his copy printer. For a complete list of run-time diagnostics, refer to the system
messages programmer/operator reference.

Diagnostic messages that can be generated during compilation are listed and described in Appendix F.

13.4. EXECUTION OF FORTRAN PROGRAMS IN A DTF ENVIRONMENT

The FORTRAN IV compiler uses the operating system and the data management system to execute its
compiled programs. The following information describes the various interfaces that FORTRAN IV requires.

13.4.1. DTF FORTRAN |/0 Units

The FORTRAN I/0 unit module that is linked to the executable program specifies which units and devices may
be used during this execution. The user is responsible for supplying the actual devices that connect to the units
in the I/0 unit module.

To connect an actual device to an executable program, the user supplies appropriate JCL statements, which
allocate the device for this job or job step. He must assign a file on the device via the LFD job control statement
where the filename on the LFD statement is the same as the FFILEID argument.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3

FORTRAN IV

The FORTRAN diagnostic device must always be allocated to the executing program. In all FORTRAN IV default
I70 configurations, this device is a printer with the FFILEID=PRNTR. When a device is not used during an
execution of a program, the device need not be assigned.

13.4.2. DTF Pause Messages

If a PAUSE statement is executed, the text of the PAUSE message is displayed on the system console. The
program then waits for a response from the operator.

There are three allowable responses to a PAUSE message:
m CONT
Continue the program execution.
= STOP
Terminate the program normally.
n DUMP
Terminate the program with a dump.

If any other response is made, the PAUSE message is reissued.

13.4.3. DTF Diagnostic Messages

The FORTRAN run-time system has many diagnostic messages that may be displayed during execution. These
messages are output to the FORTRAN unit assigned for diagnostic information (FDIAGNOS=YES).

The amount of information output by the FORTRAN run-time system may be controlled by the error definition
procedure (ERRDEF). However, the STOP message and execution summary information are always output.
Therefore, when using preprinted forms or when printing final draft output, the user should assign the
diagnostic device separate from his copy printer. For a complete list of run-time diagnostics, refer to the system
messages programmer/operator reference.

Diagnostic messages that can be generated during compilation are listed and described in Appendix F.

o Ve
it
5

i

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 A-1
FORTRAN IV

Appendix A. Character Set

A.1. SOURCE PROGRAM AND INPUT DATA CHARACTERS

Table A-1 shows the EBCDIC input character set for FORTRAN IV. Binary bit positions 1 through 3, along with
their hexadecimal equivalents, are read at the left of the grid. Binary bit positions 4 through 7, along with their
hexadecimal equivalents, are read from left to right at the top of the grid. The point at which these coordinates
intersect represents the value of the corresponding EBCDIC graphic character as it appears on the keyboard of a
SPERRY UNIVAC 1700 Series keypunch.

When two hexadecimal or binary number coordinates intersect showing no equivalent EBCDIC graphic
character, this means the SPERRY UNIVAC 1004 Card Processor changes these hexadecimal or binary values to
the character blank (hexadecimal 40). For example, the hexadecimal value C1 is encoded with the keyboard
character A; the hexadecimal value 77 produces a blank.

Table A-2 lists EBCDIC graphic characters, their Hollerith punched card code equivalents, and decimal,
hexadecimal, and binary equivalents.

A.2. PRINTER GRAPHICS

Many different printer devices are supported, each with subtly different character sets. The character sets vary in
size from 16 to 94 characters to accommodate differing national languages and the needs of various
applications. Internal representations of the character set may differ due to translations performed by using a
load code, a translation table within the printer control unit.

There is a difference between the EBCDIC graphic character set for card punched input and EBCDIC printer
graphics because output graphic character sets vary according to printer models.

Table A-3 shows a representative character set and its internal hexadecimal representation. Special characters
and lowercase alphabetics may differ due to the printer model, the features installed, and the load code in use.
These features should be checked to ensure availability, and the table should be updated to reflect installation
usages.

Table A—1. EBCDIC Input Graphic Character Set

- 4567 >
:::I'; AL 0 1 2 3 a 5 6 7 8 9 A B c D E F
0123 | oooo | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | o111 | 1000 | 1001 1010 | 1011 1100 1101 1110 111
0 0000
1 0001
2 0010
3 0011
4 0100 (Space) ¢ < { + |
5 0101 & ! $ *) ; 1
6 0110 | (minus) | / (comma) % {underline) > ?
7 0111 # @ ’ = (qu;;te
(apostrophe) mark)
8 1000
9 1001
A 1010
B 1011
c 1100 { A B8 c D E F G H I
) 1101 } J P L M N 0 P Q R
E 1110 5 T U v w X Y z
F 1111 | o 1 2 3 4 5 6 7 8 9
Bit Positions: 0 1 2 3 4 5 6 7
Weight: 27 28 25 2% 3 22 21 0

Al NYH1HO4
€/S0 JOVAINN AHYH3dS

T 'A8H ¥LP¥8-dN

v

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 A-3
FORTRAN IV

' Table A—2 lists EBCDIC graphic characters, their Hollerith punched card code equivalents, and decimal,
hexadecimal, and binary equivalents.

Table A—2. EBCDIC/Hollerith Cross-Reference Table (Part 1 of 5)

EBCDIC
Hexa- EBCDIC Hollerith
Decimal deci- Binary Graphic Punched Card
mal Character Code
0 00 0000 0000 12-0-9-8-1
1 01 - 0000 0001 12-9-1
2 02 0000 0010 12-9-2
3 03 0000 0011 12-9-3
4 04 0000 0100 12:9-4
5 05 0000 0101 1295
6 06 0000 0110 12-9-6
7 07 00000111 | 12-9-7
8 08 0000 1000 1298
9 09 0000 1001 12-98-1
10 0A 0000 1010 12-98-2
11 0B 0000 1011 12-98-3
12 0oC 0000 1100 12-98-4
13 oD 0000 1101 12-9-8-5
14 OE 0000 1110 12-9-8-6
15 OF 0000 1111 12-9-8-7
16 10 0001 0000 12-11-9-8-1
17 1 0001 0001 1191
18 12 0001 0010 11-9-2
. 19 13 0001 0011 11-9-3
20 14 0001 0100 11-9-4
21 15 0001 0101 11-9-5
22 16 0001 0110 11-9-6
23 17 0001 0111 11-9-7
24 18 0001 1000 11-9-8
25 19 0001 1001 11-9-8-1
26 1A 0001 1010 11-9-8-2
27 1B 0001 1011 1198-3
28 1C 0001 1100 11-98-4
29 1D 0001 1101 11-98-5
30 1E 0001 1110 11-98-6
31 1F 0001 1111 11-9-8-7
32 20 0010 0000 11-09-8-1
33 21 0010 0001 0-9-1
34 22 0010 0010 09-2
35 23 0010 0011 09-3
36 24 00100100 0-9-4
37 25 00100101 0-9-5
38 26 00100110 096
39 27 0010 0111 09-7
40 28 0010 1000 098
41 29 0010 1001 0-9-8-1
42 2A 0010 1010 0-9-8-2
43 2B 0010 1011 0-9-8-3
44 2C 300101100 09-84
45 2D 00101101 0985
46 2€E 00101110 09-86
47 2F 00101111 0-98-7
48 30 0011 Q000 12-11-0-9-8-1
49 31 0011 0001 9-1
’ 50 32 0011 0010 9-2
51 33 0011 0011 9-3
52 34 0011 0100 9-4
53 35 0011 0101 9-5
54 36 0011 0110 9-6

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 A-4
FORTRAN IV
Table A—2. EBCDIC/Hollerith Cross-Reference Table (Part 2 of 5)
EBCDIC
Hexa- EBCDIC Hollerith
Decimal deci- Binary Graphic Punched Card
mal Character Code
55 37 0011 0111 9-7
56 38 0011 1000 9-8
57 39 0011 1001 9-8-1
58 3A 0011 1010 98-2
59 38 0011 1011 98-3
60 3C 0011 1100 9-8-4
61 30 0011 1101 9-8-5
62 3E 0011 1110 9-8-6
63 3F 0011 1111 9-8-7
64 40 0100 0000 sP No punches
65 11 0100 0001 12-0-9-1
66 42 0100 0010 12-0-9-2
67 43 0100 0011 12-0-9-3
68 44 0100 0100 12-0-9-4
69 45 0100 0101 12-09-5
70 46 01000110 12096
71 47 01000111 12-09-7
72 48 0100 1000 12.0-9-8
73 49 0100 1001 12-8-1
74 4A 0100 1010 L 12.8.2
75 48 0100 1011 . 12.8-3
76 4C 0100 1100 < 12-8-4
77 4D 0100 1101 { 12-85
78 4E 01001110 + 1286
79 4F 0100 1111 | 12-8-7
80 50 0101 0000 & 12
81 51 0101 0001 12-11-9-1
82 52 0101 0010 12-11-9-2
83 53 0101 0011 12-11-9-3
84 54 0101 0100 12-11-9-4
85 55 0101 0101 12-11-9-5
86 56 0101 0110 12-11-9-6
87 57 0101 0111 12-11-9-7
88 58 0101 1000 12-11-9-8
89 59 0101 1001 11-8-1
90 5A 0101 1010] 11-82
91 58 0101 10114 $ 1183
92 5C 0101 1100 * 1184
93 5D 0101 1101) 1185
94 5E 0101 1110 ; 1186
95 5F 0101 1111 A 1187
96 60 0110 0000 _ 1"
97 61 0110 0001 / 0-1
98 62 0110 0010 11-0-9-2
99 63 0110 0011 11-0-9-3
100 64 0110 0100 11-0-9-4
101 65 0110 0101 11095
102 66 01100110 11-09-6
103 67 01100111 11-0-9-7
104 68 0110 1000 11-09-8
105 69 0110 1001 08-1
106 6A 0110 1010 ! 12-11
107 68 0110 1011) 0-8-3
108 6C 0110 1100 % 0-8-4
109 6D 01101101 —_ 08-5

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3
FORTRAN IV

Table A—2. EBCDIC/Hollerith Cross-Reference Table (Part 3 of 5)

EBCDIC

Hexa- EBCDIC Hollerith
Decimal deci- Binary Graphic Punched Card

mal Character Code
10 6E 01101110 > 0-8-6
1M1 6F 0110 1111 ? 08-7
112 70 0111 0000 12-11-0
113 71 0111 0001 12-11-0-91
114 72 0111 0010 12-11-0-9-2
115 73 0111 0011 12-11-0-9-3
116 74 0111 0100 12-11-0-9-4
17 75 0111 0101 12-11-0-9-5
118 76 01110110 12-11-09-6
119 77 01110111 12-11-0-9-7
120 78 0111 1000 12-11-09-8
121 79 0111 1001 ' 8-1
122 7A 01111010 : 8-2
123 78 0111 101 # 83
124 7C 0111 1100 @ 8-4
125 7D 0111 1101 ’ 8-5
126 7E 0111 1110 = 8-6
127 7F 0111 1111 ' 8-7
128 80 1000 0000 12-0-8-1
129 81 1000 0001 a 12-0-1
130 82 1000 0010 b 12-0-2
131 83 1000 0011 c 12-0-3
132 84 1000 0100 d 12-04
133 85 1000 0101 e 12-0-56
134 86 1000 0110 f 12-06
135 87 1000 0111 g 12-0-7
136 88 1000 1000 h 12-08
137 89 1000 1001 i 12-09
138 8A 1000 1010 12-08-2
139 88 1000 1011 12-08-3
140 8C 1000 1100 12-0-8-4
141 8D 1000 1101 12-0-8-5
142 8E 1000 1110 12-0-8-6
143 8F 1000 1111 12-08-7
144 90 1001 0000 12-11-8-1
145 91 1001 0001 i 12-111
146 92 1001 0010 k 12-11-2
147 93 1001 0011 | 12-11-3
148 94 1001 0100 m 12114
149 95 1001 0101 n 12-11-5
150 96 1001 0110 o 12-11-6
151 97 1001 0111 p 12-11-7
152 98 1001 1000 q 12-118
153 99 1001 1001 r 12-119
154 9A 1001 1010 12-11-8-2
155 98 1001 1011 12-11-8-3
156 9c 1001 1100 12-11-8-4
157 9D 1001 1101 12-11-8-5
158 9E 1001 1110 12-11-8-6
159 9F 1001 1111 12-11-8-7

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 A-6
FORTRAN iV

Table A—2. EBCDIC/Hollerith Cross-Reference Table (Part 4 of 5}

EBCDIC
Hexa- EBCDIC Hollerith
Decimal deci- Binary Graphic Punched Card
mal Character Code
160 AO 1010 0000 11-0-8-1
161 A1 1010 0001 ~ 11-0-1
162 A2 1010 0010 s 1102
163 A3 1010 0011 t 11-0-3
164 A4 1010 0100 u 11-0-4
165 A5 1010 0101 v 11-05
166 A6 10100110 w 11-06
167 A7 10100111 x 11-0-7
168 A8 1010 1000 v 11-08
169 A9 1010 1001 z 11-0-9
170 AA 1010 1010 11082
17m AB 1010 1011 11-08-3
172 AC 1010 1100 11.08-4
173 AD 1010 1101 11-08-5
174 AE 1010 1110 11-08-6
175 AF 1010 1111 11-08-7
176 BO 1011 0000 12-11-0-8-1
177 B1 1011 0001 12:11-0-1
178 B2 1011 0010 12-11-0-2
179 B3 1011 0011 12-11.0-3
180 B4 1011 0100 121104
181 BS 1011 0101 12-11-05
182 86 1011 0110 12-11-0-6
183 B7 1011 0111 12-11-0-7
184 B8 1011 1000 12-11-08
185 89 1011 1001 12-11-09
186 BA 1011 1010 12-11-08-2
187 BB 1011 1011 12-11-08-3
188 BC 1011 1100 12-11-08-4
189 BD 1011 1101 12-11-085
190 BE 1011 1110 12-11-08-6
191 BF 1011 1111 12-11-08-7
192 co 1100 0000 { 120
193 c1 1100 0001 A 12-1
194 C2 1100 0010 B 122
195 c3 1100 0011 C 123
196 c4 1100 0100 D 124
197 c5 1100 0101 E 126
198 c6 1100 0110 F 126
199 c7 1100 0111 G 127
200 c8 1100 1000 H 128
201 c9 1100 1001 i 129
202 CA 1100 1010 12-0-9-8-2
203 cB 1100 1011 12-09-8-3
204 cC 1100 1100 12-0-9-8-4
205 co 1100 1101 12-09.85
206 CE 1100 1110 12-098.6
207 CF 1100 1111 12-09-8-7
208 Do 1101 0000 } 11-0
209 D1 1101 0001 J 111

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 A-7
FORTRAN IV

Table A—2. EBCDIC/Hollerith Cross-Reference Table (Part 5 of 5)

EBCDIC

Hexa- EBCDIC Hollerith
Decimal deci- Binary Graphic Punched Card

mal Character Code
210 D2 1101 0010 K 11-2
21 D3 1101 0011 L 11-3
212 D4 1101 0100 M 11-4
213 D5 1101 0101 N 15
214 D6 1101 0110 o) 11-6
215 D7 1101 0111 P 11-7
216 D8 1101 1000 Q 118
217 D9 1101 1001 R 19
218 DA 1101 1010 12-11-9.8-2
219 DB 1101 1011 12-11-98-3
220 DC 1101 1100 1211984
221 DD 1101 1101 12-11-985
222 DE 1101 1110 12-11-9.8-6
223 DF 1101 1111 12-11-98-7
224 EO 1110 0000 \ 0-8-2
225 E1 1110 0001 i 11-09-1
226 E2 1110 0010 S 0-2
227 E3 1110 0011 T 0-3
228 E4 1110 0100 u 04
229 E5 1110 0101 Y 05
230 E6 11100110 w 0-6
231 E7 11100111 X 0-7
232 ES 1110 1000 Y 08
233 E9 1110 1001 z 09
234 EA 1110 1010 11-0-9-8-2
235 EB 1110 1011 11-0-9-8-3
236 EC 1110 1100 11-0-9-8-4
237 ED 1110 1101 11-09-8-5
238 EE 11101110 11-0-9-8-6
239 EF 1110 1111 11-0-98-7
240 FO 1111 0000 0 0
241 F1 1111 0001 1 1
242 F2 1111 0010 2 2
243 F3 1111 0011 3 3
244 F4 1111 0100 4 4
245 F5 1111 0101 5 5
246 F6 1111 0110 6 6
247 F7 1111 0111 7 7
248 F8 1111 1000 8 8
249 F9 1111 1001 9 9
250 FA 11111010 12-11-0-9-8-2
251 FB 11111011 12-11-0-9-8-3
252 FC 1111 1100 12-11-0-9-84
253 FD 1111 1101 12-11-09-8.5
%4 FE 1111 1110 12:11-0-9-8-6
255 FF 1111 1111 12-11-0-9-8-7

Table A—3. Representative EBCDIC Output Graphic Character Set

- 4567 -
EE(’:"‘;A L 0 1 2 3 4 5 6 7 8 9 A B c D E F
0123 | o000 | 0001 | o010 | 0011 | 0100 | 0101 | o110 | o111 | 1000 | 1001 1010 1011 1100 1101 1110 1111
0 0000
1 0001
2 0010
3 0011
4 0100 (Space) [< (+ !
5 0101 | &] $.) ; A
6 0110 | (minus) | / \ (comma)| % | tunderline) > ?
7 01 (sin,gle # @) = (qu;;te
quote) {apostrophe) mark}
8 1000 a b c d e f g h i
9 1001 j k | m n o p q r
A 1010 [t u v w x y 2z
B 1011
c 1100 { A 8 c D £ F G H i
D 1101 } J K L M N o P Q R
E 1110 \ S T u v w X Y z
F 111 | o 1 2 3 4 5 6 7 8 9

Bit Positions: 0

Weight:

27 26 25 9% 38 52 1 0

1

2 345 6 7

AN Nvdl1H0d
€/S0 IVAINN AdY3dS

T 'A8Y ¥L¥8-dN

8-v

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 B-1
FORTRAN VvV Update B

Appendix B. Summary of CDM
UNIT Options

Summaries of UNIT arguments and the types of files they define are presented in Tables B-1 through B-6.

Table B—1. Summary of UNIT Arguments for Unit Record

Argument Use
FAUE=YES Specifies cards with an illegal hold combination in a column be bypassed and not
sent to the program. :
FBFSZ=k Specifies buffer size.

FCHAR= ;OFF$
{ON

Specifies printer action for illegal characters. OFF causes blank substitution; ON
causes program termination.

FCRDERR=RETRY

Specifies error recovery coding is included in the executable program.

FDEVICE=UNITREC

Specifies this is a unit record device.

FDIAGNOS=YES

Specifies the unit as a diagnostic device.

FFILEID= (filename
FORTk; if FUNIT=k
PRNTR; if FUNIT=PRINT
PUNCH; if FUNIT=PUNCH
READER= if FUNIT=READ

Specifies job control file reference name (LFD). Defaults to PRNTR, PUNCH, and
READER taken only for FORTRAN Il FUNIT.

FNUMBUFZil%
2

Specifies the number of 1/0 buffers.

FOPTION=YES

Specifies a file not logically required. If the file is not allocated, outputis ignored.

FREREAD=YES

Specifies a copy of each formatted input record is transferred to the reread buffer.

FSPOOLIN=YES or FGETJCS=YES

Specifies this unit defaults to a spooled card input file via a GETCS
when the Ifdname declared in the FFILEID agreement is not found.

FTRANS=ASCII Specifies all incoming and outgoing records are translated to the ASCli character
set.
FUNIT= k Specifies the FORTRAN IV unit reference number or FORTRAN II statement
PRINT reference.
PUNCH
READ

UP-8474 Rev. 2

]

SPERRY UNIVAC 0S/3 B-2
FORTRAN IV

Table B—2. Sumrmary of UNIT Arguments for a Tape File

Argument Use
FBFSZ= k Specifies the size of the unit buffer. FORTRAN IV will supply a default buffer size
FRECSIZE; if only if record size and record format are specified.

FRECFORM=FIXUNB
FRECSIZE+4; if

FRECFORM=VARUNB
FRECSIZE*4; if blocked

FBKNO=YES

Specifies output tape blocks are sequentially numbered and input tape blocks are
checked.

FCKPTREC=YES

Specifies that checkpoint blocks are bypassed.

NORWD

FCLRW= 3RWD
UNLOAD

Specifies positioning at end of program execution for input and output tapes.

FDEVICE=TAPE

Specifies device type to be used for the file.

FDIAGNOS=YES

Specifies the unit as a diagnostic device.

FERROPT= IGNORE%
SKIP

Specifies the action for device errors. IGNORE and SKIP disable the ERR clause for
parity/length.

FFILABL= STD"
NO

Specifies standard or missing labels on magnetic tape.

FNUMBUF=31E
2

Specifies the number of |/0 buffers.

FOPRW=NORWD

Specifies the rewind is disabled at first reference to tape file.

FOPTION=YES

Specifies a file is not logically required. If the file is not allocated, output is ignored,
and input causes an end return.

FRECFORM= (VARUNB
VARBLK
FIXUNB
FIXBLK

Specifies records as variable or fixed and blocked or unblocked.

FRECSIZE=k

Specifies logical record size. Taken as a maximum for variable records.

FREREAD=YES

Specifies a copy of each forenatted input record is transferred to the reread buffer.

FSPOOLIN=YES

Specifies this unit will default to a spooled card input file via a GETCS when the

or Ifdname declared in the FFILEID argument is not found.
FGETJCS=YES
FTRANS=YES Specifies all incoming and outgoing records are translated to the ASCII character

set.

FTYPEFLE= { WORK; if FUNIT=k
INPUT; if FUNIT=READ
OUTPUT; if FUNIT=PUNCH

Specifies the level of data management support.

FUNIT= k
READ
PUNCH
PRINT

Specifies FORTRAN IV unit reference number of FORTRAN Il statement reference.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3
FORTRAN IV

Table B—3. Summary of UNIT Arguments for a Disk File

Argument

Use

FDEVICE=DISK

Specifies device type to be used for this file.

FDIAGNOS=YES

Specifies the unit as a diagnostic device.

FFILEID= (filename Specifies job control file reference name (LFD). Defaults READER, PUNCH, and
FORTk; if FUNIT=k PRNTR taken only for FORTRAN Il FUNIT.
READER; if FUNIT=READ
PUNCH:; if FUNIT=PUNCH
PRNTR; if FUNIT=PRINT
FOPTION=YES Specifies a file not logically required. If the file is not allocated, output is ignored and

input causes an end return.

FRECFORM= 3VARUNB§
FIXUNB

Specifies records as variable or fixed. No blocking.

FRECSIZE=k

Specifies the logical record size. Taken as maximum for variable records.

FREREAD=YES

Specifies a copy of each formatted input record is transferred to reread buffer.

FSPOOLIN=YES
or
FGETJCS=YES

Specifies this unit will default to a spooled card input file via a GETCS when the
Ifdname declared in the FFILEID argument is not found.

FTYPEFLE={WORK; if FUNIT=k
INPUT; if FUNIT=READ
OUTPUT; if FUNIT=PUNCH
or FUNIT=PRINT

Specifies level of data management support.

FUNIT= ¢k Specifies FORTRAN IV unit. reference number or FORTRAN Il statement
READ reference.
PUNCH
PRINT

FVERIFY=YES Specifies a reread of each written block to ensure proper parity.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 B-4

FORTRAN IV

Table B—4. Summary of UNIT Arguments for a Workstation

Argument

Use

FDEVICE=WORKSTN

Specifies device to be used for a workstation.

FUNIT= [k Specifies the FORTRAN IV unit reference number or FORTRAN [l statement
READ reference.
PUNCH
PRINT

FFILEID= [filename Specifies the job control file reference name (LFD). Defaulits to READER, PUNCH,

FORTK; if FUNIT=k
READER; if FUNIT=READ
PUNCH; if FUNIT=PUNCH
PRNTR; if FUNIT=PRINT

and PRNTR taken only for FORTRAN Il FUNIT.

SCROLL

FSCREND={\ WRAP
NEWPAGE

Specifies action taken when end of screen display is reached.

FTYPEFLE={ WORK
INPUT; if FUNIT=READ
OUTPUT; if FUNIT=PUNCH
or PRINT

Specifies level of data management support.

FIOOPT=YES

Specifies one buffer is used exclusively for input and one buffer for output. This is
the effect only when FNUMBUF=2 is ‘specified.

FLINCNTL=YES

Indicates the workstation will function as a printer.

FNUMBUF=§_1_ E
2

Specifies the number of input/output buffers.

FOPTION=YES Specifies a file not logically required. If file is not allocated, output is ignored and
input causes an end return.

FRECSIZE=k Specifies the logical record size.

FREREAD=YES Specifies a copy of each formatted input record be transferred to the reread

buffer.

FSPOOLIN=YES
or
FGETJCS=YES

Specifies this unit will default to a spooled card input file via a GETCS when the
Ifdname declared in the FFILEID argument is not found.

FDIAGNOS=YES

Specifies diagnostic messages are posted to this device.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 B-5
FORTRAN IV

Table B—5. Summary of UNIT Arguments for Reread Unit

Argument Use
FDEVICE=REREAD Specifies device to be used for the file.
FUNIT= ;k & Specifies FORTRAN IV unit reference number or FORTRAN Il statement reference.
READ

Table B—6. Summary of UNIT Arguments for Equivalent Unit

Argument Use

FDEVICE=EQUIV Specifies device to be used for the file.

FUNIT= k Specifies FORTRAN IV unit reference number or FORTRAN li statement reference.
READ
PRINT
PUNCH

FEQUIV= [k Specifies unit to be activated.
READ
PRINT
PUNCH

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3
FORTRAN IV

C-1

Appendix C. Summary of DTF

UNIT Options

Summaries of UNIT arguments and the types of files they define are presented in Tables C-1 through C-10.

Table C—1. Summary of UNIT Arguments for Printer File

Argument

Use

FDEVICE=PRINTER

Specifies the device to be used for the file.

k
FUNIT=3PRINT g
PUNCH

Specifies FORTRAN IV unit reference
number or FORTRAN 11| statement
reference.

filename

EORTK; if FUNIT = k
PRNTR; if FUNIT = PRINT
PUNCH; if FUNIT = PUNCH

FFILEID=

Specifies job control file reference name
(LFD). Defaults PRNTR and PUNCH
taken only for FORTRAN |1 FUNIT.

I:FRECSIZE= 3 :ﬂ ;]

Specifies logical record size.

[FNUMBUF= ;

(]

(L

Specifies number of input/output buffers.

[FDIAGNOS=YES]

Specifies the unit as the diagnostic device.

_ {SKIP]
[FPR'NTOV’ % NOSKIP f

Specifies printer action when bottom of
page is encountered.

[FCHAR= 38—:::%]

Specifies printer action for illegal characters.
OFF causes btank substitution; ON causes
program termination.

[FOPTION=YES]

Specifies a file not logically required. If the
file is not allocated, output is ignored.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 c-2

FORTRAN IV

Table C—2. Summary of UNIT Arguments for Spooled Card Input File

Argument

Use

FDEVICE=SPOOLIN

Specifies the device to be used for the file,

k
FUNIT= % READ %

Specifies FORTRAN 1V unit reference number or
FORTRAN |l statement reference.

[FREREAD=YES]

Specifies that a copy of each formatted input record
is transferred to the reread buffer.

[FBKSZ= %;92; ;]

Specifies size of unit buffer.

[FBUFPOOL=YES]

Specifies that the buffer for the unit is pooled.

[FRECSIZE= i; ;]

Specifies card size read.

Table C—3. Summary of UNIT Arguments for Card Input File

Argument

Use

FDEVICE=CARDIN

Specifies device used for the file.

k
FUNIT—%READ ‘

Specifies FORTRAN {V unit reference number or
FORTRAN !l statement reference.

filename
FFILEID=< FORTk; if FUNIT=k

READER; if FUNIT=READ

|

Specifies job control file reference name (LFD).
Default READER taken only for FORTRAN |1
FUNIT.

[FREREAD=YES]

Specifies that a copy of each formatted input record
is transferred to the reread buffer. .

[FBUFPOOL=YES]

Specifies that buffers for the unit are pooled, or
shared, with all other units so specified.

[FNUMBUF= ; % %]

Specifies number of input buffers.

YES; if FNUMBUF=1

FWORKA= ;&; if FNUMBUF=2

]

Specifies that logical records are processed in a
work area rather than in the buffer,

_ Yk
_FRECSIZE— 3QQ$]

Specifies logical record size.

[rsTus- ;g;g]

Specifies that cards shorter than 80 columns are
processed.

[FOPTION=YES]

Specifies a file not logically required. If the file is
not allocated, and input causes an end return.

[FAUE=YES]

Specifies that mispunched cards are ignored.

k
[FBKSZ' § FRECSIZE %]

Specifies a buffer size for multiple record mput for
the 8413 diskette only.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

FORTRAN IV

Table C—4. Summary of UNIT Arguments for Card Output File

Argument

FDEVICE=CARDOUT

Specifies device used for the file.

FFILEID={ FORTk; if FUNIT=k
PUNCH; if FUNIT=PUNCH

FUNIT=; k Specifies FORTRAN IV unit reference number or
PUNCH FORTRAN Il statement reference.
filename Specifies job control file reference name {(LFD).

Default PUNCH taken only for FORTRAN H
FUNIT.

[FBUFPOOL=YES]

Specifies that buffers for the unit are pooled,
or shared, with all other units so specified.

[FNUMBUF= 3 % E]

Specifies number of input buffers.

E:WORKA= % YES; if FNUMBUF=1 s]

NO; if FNUMBUF=2

Specifies that logical records are processed in a
work area rather than in the buffer,

[Frecsize- {51

Specifies logical record size.

{FCRDERR=RETRY]

Specifies that automatic error recovery is
attempted for mispunched cards.

[FOPTION=YES]

Specifies a file not logically required. If the file is
not aliocated, output is ignored.

k
[FB'FSZ' ;FRECSIZE %:I

Specifies a buffer size for multiple record input for
the 8413 diskette only.

Table C—5. Summary of UNIT Arguments for Tape File (Part 1 of 2)

Argument

FDEVICE=TAPE

Specifies device used for the file.

k
FUNIT={READ }

PUNCH

Specifies FORTRAN 1V unit reference number or
FORTRAN |{ statement reference.

— filename

FORTK; if FUNIT=k
FFILEID= READER; if FUNIT=READ
PUNCH; if FUNIT=PUNCH

.

Specifies job control file reference name (LFD).
Defaults READER and PUNCH taken only for
FORTRAN Il FUNIT. ’

- INOUT
WORK; if FUNIT=k
FTYPEFLE= { \NPUT; if FUNIT=READ

Specifies level of data management support.

- QUTPUT,; if FUNIT=PUNCH
VARUNB Specifies records as variable or fixed and-blocked
_ JVARBLK or unblocked.
FRECFORM= FIXUNB
FIXBLK

s

enumaur- {4 1]

N

Specifies number of input/output buffers.

[FWORKA= "} NO: if FNUMBUF= 2

[;YES; if FNUMBUF=1 z]

Specifies that logical records are p(ppgssieqrig a
work area rather than in the buffer.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3
FORTRAN iV

c-4

Table C—5. Summary of UNIT Arguments for Tape File (Part 2 of 2}

Argument

Use

[FBUFPOOL=YES]

Specifies that buffers for the unit are pooled,
or shared, with all other units so specified.

— ik i:l
_FRECSlZE 3@

Specifies logical record size. Taken as maximum for
variable records.

k
r FRECSIZE ;if
FBKSZ= FRECFORM=FIXUNB
ERECSIZE+4 ;if
FRECFORM=VARUNB
FRECSIZE+*4 ; otherwise

Specifies the size of the unit buffer.

[FREREAD=YES]

Specifies that a copy of each formatted input record
is transferred to the reread buffer,

[FDIAGNOS=YES)

Specifies the unit as the diagnostic device

[FBKNO=YES] Specifies that output tape blocks are sequentially
numbered and input tape blocks are checked.
_ IGNORE Specifies action for device errors, IGNORE and SKIP
FERROPT= 1{skip disable the ERR clause for parity/length,

[FRECERR=YES]

Specifies that records with bad parity or wrong length
are moved to the reread buffer.

[FFILABL= % E)D ﬂ

Specifies standard or missing labels on magnetic tape.

[FCKPT=YES] Specifies checkpoint dumps used to restart programs after
a catastrophic failure are present on input tapes.
j RWD Specifies positioning at end of program execution for
FCLRW= l NORWD input and output tapes.
UNLOAD

[FOPRW=NORWD]

Specifies that rewind is disabled at first reference to
tape file.

[FOPTION=YES]

Specifies a file not logically required. If the file is

not allocated, output is ignored, and input causes an
end return.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 c-5

FORTRAN iV

Table C—6. Summary of UNIT Arguments for Sequential Disk Files

Argument

Use

FDEVICE=SDISC

Specifies device used for the file.

WORK; if FUNIT=k
TYPEFLE=< INPUT; if FUNIT=READ
OUTPUT; if FUNIT=PUNCH

M

k Specifies FORTRAN 1V unit reference number or
FUNIT=< READ FORTRAN |l statement reference.
PUNCH
FSECTOR= NO Specifies processing on a sectorized disk expected.
L YES
B filename Specifies job contro! file reference name (LFD).
FFILEID= FORTK; if FUNIT=k Defaults READER and PUNCH taken only for
BEADER; if FUNIT=READ FORTRAN Il FUNIT.
L PUNCH; if FUNIT=PUNCH
[~ INOUT

Specifies level of data management supbort.

B VARUNB

FRECFORM=/) VARBLK
FIXUNB
FIXBLK

Specifies records as variable or fixed and blocked or
unblocked.

[FBUFPOOL=YES]

Specifies that buffers for the unit are pooled,
or shared, with alt other units so specified.

|E=NUMBUF= ;—1- f]

N

Specifies number of input/output buffers.

_ J YES;if FNUMBUF=1
[FWORKA' {gg_; if FNUMBUF=2 }]

Specifies that logical records are processed in a
work area rather than in the buffer.

freceee {3 1

Specifies logical record size. Taken as maximum for
variable records.

k
FBKsz< J FRECSIZE; if FRECFORM=FIXUNB

FRECSIZE+4; if FRECFORM=VARUNB
FRECSIZE*4; otherwise

Specifies the size of the unit buffer.

[FREREAD=YES]

Specifies that a copy of each formatted input record
is transferred to the reread buffer,

[FDIAGNOS=YES]

Specifies the unit as the diagnostic device.

IGNORE
[FERROPT— ;smp 2]

Specifies action for device errors. {GNORE and
SKIP disable the ERR clause for parity/length.

[FRECERR=YES]

Specifies that records with bad parity or wrong
length are rr)oveditio the reread buffer.

[FOPTION=YES]

Specifies a file not logically required. If the file is
not allocated, output is ignored,and input causes
an end return.

[FVERIFY=YES]

Specifies a reread of each written block to ensure
proper parity,

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 C-6
FORTRAN IV

Table C—7. Summary of UNIT Arguments for Direct Access Disk Files

Argument Use

FDEVICE=DISC

Specifies device used for the file.

FUNIT=k

Specifies FORTRAN 1V unit reference number.

[FSECTOR= { ﬁgs }]

Specifies processing on a sectorized disk expected.

FEILEID= filename Specifies job control file reference name (LFD).
FORTk; where k=FUNIT
_ JINPUT Specifies level of data management support,
[FTYPEFLE {—OUTPUT }]

[FBUFPOOL=YES]

Specifies that buffers for the unit are pooled,
or shared, with all other units so specified.

[FRECSIZE= %;1_ ?:I

Specifies logical record size.

[FRECERR=YES]

Specifies that records with bad parity or wrong length
are moved to the reread buffer,

[FREREAD=YES]

Specifies that a copy of each formatted input record
is transferred to the reread buffer,

[FVERIFY=YES]

Specifies a reread of each written block to ensure
proper parity.

Table C—8. Summary of UNIT Arguments for Reread Unit

Argument

FDEVICE=REREAD

Specifies device used for the file.

k
FUNIT= ;READ%

Specifies FORTRAN 1V unit reference number or
FORTRAN 1l statement reference.

Table C—9. Summary of UNIT Arguments for Equivalent Unit

Argument

Use

FDEVICE=EQUIV

Specifies device used for the file.

PUNCH

k Specifies FORTRAN IV unit reference number or
FUNIT= E::\ﬁ' FORTRAN {1 statement reference.
PUNCH
k Specifies the unit to be activated.
FEQUIV= FF:;ANI?I_

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 c-7
FORTRAN IV

Table C—10. Summary of UNIT Arguments for MIRAM Disk Files

Argument

Use

FDEVICE=MIDISC

Specifies device used for the file.

k Specifies FORTRAN |V unit reference number or
FUNIT={ READ FORTRAN Il statement reference.

PUNCH
r filename Specifies job control file reference name (LFD).
FFILEID= FORTk; if FUNIT=k Defaults READER and PUNCH taken only for

READER; if FUNIT=READ
PUNCH; if FUNIT=PUNCH

FORTRAN Il FUNIT.

WORK; if FUNIT=k
FTYPEFLE= < INPUT; if FUNIT=READ
OUTPUT,; if FUNIT=PUNCH

Specifies level of data management support.

FRECFORM={-F1X_
VAR

Specifies records as variable or fixed.

[FBUFPOOL=YES]

Specifies that buffers for the unit are
pooled, or shared, with all other units so specified.

x

FRECSIZE=< 255;if FRECFORM=FiX
252; if FRECFORM=VAR

Specifies logical record size. Taken as maximum
for variable records.

[FREREAD=YES]

Specifies that a copy of each formatted input
record is to be transferred to the reread buffer.

[FRECERR=YES]

Specifies that records with bad parity or wrong
length are moved to the reread buffer.

[FOPTION=YES]

Specifies a file not logically required. If the file
is not allocated, output is ignored and input
causes an end return.

[FVERIFY=YES]

Specifies a reread of each written block to ensure
proper parity.

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 D-1
FORTRAN IV

Appendix D. Additional UNIT Options
in DTF Environment

D.1. GENERAL

Additional options for execution environment configuration not presented in Section 12 are descibed in this
appendix. Users familiar only with FORTRAN, however, should ignore this entire appendix, since it requires
detailed knowledge of both assembly language and the data management system.

In the following descriptions of options for the various devices, a symbol required by an argument must be
provided in assembler language following the FUNEND procedure call or be defined in another module. If it is
defined in another module, the symbol must be named on an EXT RN statement in the UNIT module and on an
ENTRY statement in the module defining the symbol. For further information, refer to the data management
programmer reference. For an explanation of the statement conventions applicable to this appendix, refer to 1.4.

‘ D.2. CARD READER OPTIONS
Additional options for the card reader are described.
Binary Card input Argument:

FMODE=STD
Specifies standard translation mode.

FMODE=BINARY
Specifies binary translation mode. Binary card input defines two bytes for each card column. Holes
12 through 3 are mapped onto bits 25 through 2° of byte 1; holes 4 through 9 are mapped onto bits 25
through 20 of byte 2, etc. Bits 27 and 25 of each byte are set to 0. When the BINARY option is
specified, the default value for FRECSIZE is changed from 80 to 160.

Binary cards should be read by using an unformatted statement or an A FORMAT code; 96-column
cards can not be read with BINARY mode.

ASCIl Character Set Argument:

FASCII=YES
Specifies the ASCII character set.

If this argument is not specified, the EBCDIC character set is used. if FMODE=BINARY is specified, FASCII
cannot be specified. ASCIl does not imply a larger character set than EBCDIC; it is the accepted standard
‘ for information interchange.

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 D-2
FORTRAN IV

D.3. CARD PUNCH OPTIONS
Additional options for the card punch are specified.
Binary Card Output Argument:

FMODE=STD
Specifies standard translation mode.

FMODE=BI|NARY
Specifies binary translation mode. Binary card output defines two bytes for each card column. Holes

12 through 3 are mapped onto bits 25 through 29 of byte 1; holes 4 through 9 are mapped onto bits 25
through 2° of byte 2, etc. Bytes 27 and 2% of each byte are not transmitted to the unit. When the
BINARY option is specified, the defauit value for FRECSIZE is changed from 80 to 160.

ASCIt Character Set Argument:

FASCI I=YES
Specifies the ASCII character set.

if this argument is not specified, the EBCDIC character set is used. If FMODE=BINARY is specified, FASCII
cannot be specified. ASCIl does not imply a larger character set than EBCDIC, but is merely the accepted
standard for information interchange.

D.4. TAPE FILE OPTIONS

Additional options for magnetic tape are specified.

User Header and Trailer Label Arguments:

The FFILABL and FLABADDR arguments are used to specify user header and trailer labels.

a FFILABL

This argument specifies the type of labels to be used. In addition to the STD and NO options presented in
Section 12, a third option is available.

FFILABL=NSTD
Specifies nonstandard labels.

A nonstandard labeled tape with user trailer labels cannot be extended or backspaced after ENDFILE
has been encountered.

. FLABADDR

FLABADDR=symbo |
Specifies that user header and trailer labels are to be processed.

The address of the user label routine is specified by symbol. This argument should be specified if
FFILABL=NSTD is specified.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 D-3
FORTRAN IV

ASCIl Tape Files Arguments:

] FASCII
FASCII=YES
Specifies ASCII files.
L FBUFOFF
FBUFOFF=k
Specifies that a block length field of O to 99 bytes is to be prefixed on each block. FBUFOFF may
be specified only if FASCII=YES has been specified. A vaiue of O to 99 is specified by k.
If a value other than 4 is specified for k, the block length field is assumed to be destined for, or
received from, an alien operating system and is ignored. If the block size is determined by
default, FBUFQOFF is added afterward.
a FLENCHK

FLENCHK=YES
Specifies that, for variable length records, the block length field is automatically set on output
and checked on input. FLENCHK may be specified only if FASCII=YES and FBUFOFF=4 have
been specified.

D.5. SEQUENTIAL DISK FILE OPTION
This is an additionai option for sequential disk processing.
User Header and Trailer Argument:
FLABADDR=symbo |
Specifies that the user header and trailer labels are to be processed. The address of the user label
routine is specified by symbol.
D.6. DIRECT ACCESS DISK FILE OPTIONS
Additional options for direct access disk are specified.
L FLABADDR
FLABADDR=symbol
Specifies that user header labels are to be processed. The address of the user label routine is
specified by symbol.
n FTRLBL

FTRLBL=YES
Specifies that user trailer labels are to be processed. This argument may be specified only if the
FLABADDR argument has been specified.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3
FORTRAN IV

D.7. ADDITIONAL DATA MANAGEMENT DEVICES

Files for sequential devices supported by data management but not presented in Section 12, such as optical

document readers, paper tape, etc., are defined by using the following UNIT procedure call. A listing, in the order
‘ of relative importance and utility, of the arguments that may appear on this UNIT procedure call is followed by
| descriptions of the arguments.

Format:
1 10 16
UNIT FDEVICE=DMS
FUNIT=k
FWORKA=YES
[FFILEID={fiIename}]
| FORTk
[T FRECFORM= (VARUNB
VARBLK
FIXUNB
| FIXBLK
" FRECSIZE= (k
{sos}]

[FREREAD=YES]

Device identification Argument:

FDEVICE=DMS
Specifies that this file is for a sequential device supported by data management.

Unit identifier Argument:

FUNIT=k
Specifies a unique integer constant in the range 1<k<99.

A maximum of 102 unique unit identifiers (values 1 to 99 and READ, PRINT, and PUNCH) may be specified
by a control module.

Work Area Allocation Argument:

FWORKA=YES :
Specifies that records are to be moved to and from a work area for processing. Space for a work area
is to be allocated.

File Name Argument:

FFILEID=filename
Specifies a 1- to 7-character FORTRAN style symbolic name (filename).

FFILEID=FORTk
Specifies the file name as FORTk, where 1<k<99. If the FFILEID argument is not specified, FORTk is
the default file name.

The UNIT procedure call generates an address constant that references the specification for FFILEID. A
define the file (DTF) macroinstruction labeled with the file name must be provided. An EXTRN statement is ‘
automatically generated for the label specified in FFILEID.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 D-5
FORTRAN IV

Record Formats Arguments:

FRECFORM=VARUNB
Specifies variable-length unblocked records.

FRECFORM=VARBLK
Specifies variable-length blocked records.

FRECFORM=F I XUNB
Specifies fixed-length unblocked records.

FRECFORM=F | XBLK
Specifies fixed-length blocked records.

Record Size Argument:

This argument specifies the record size and is used only to ensure that the common work area is iarge enough
for all units using it. No 1/0 areas are allocated; these must be defined by the user.

FRECSlZE={k }
508

Specifies a positive integer constant.

If this argument is omitted, 508 is the default record size.
Reread Argument:

FREREAD=YES
Specifies that a unit is to participate in the reread feature (7.3.4).

The reread unit consits of a single buffer to which each formatted input record is transferred. To conserve
central processor time, this data movement is inhibited unless specifically requested.

UP-8474 Rev. 2 SPERRY UNIVAC 05/3 E-1
FORTRAN IV Update B

Appendix E. FORTRAN Sample
Job Streams

E.1. JOB CONTROL PROCEDURE

The FOR4 procedure call statement generates the necessary job control statements to compile 'a FORTRAN IV
program. Optionally, the procedure call statement can generate job control statements that specify the following:

L input - source library;

L] output - object library;

L PARAM control statements defining the compiler processing logic; and

L automatically link and/or execute the program.

The input may be embedded data cards (/$, source deck, /*) immediately after the FOR4 procedure call, or a
module in any library as defined by the IN parameter. This results in the appropriate DVC-LFD control statement
sequence with an LFD name, LIB1, and the PARAM control statement, PARAM IN=module-name/LIB1, unless
the PARAM LIN statement is specified.

The object code may be written in YRUN by default, but a specific output library can be specified by the OUT
parameter. This results in the appropriate DVC-LFD control statement sequence with an LFD name, QUTFPUT,
and the PARAM control statement, PARAM OUT=0UTFPUT.

The ALTLOD parameter generates the necessary DVC-LFD control statement with an LFD name, ALTLOD, and
the appropriate EXEC control statement to load and execute the FORTRAN compiler from a private library other

than YsSLOD.

Format:

//[symbol](FOR4 [PRNTR=(N , I N=
FOR4L lun}{,vol-ser-noj

. —

FOR4LG N

L 20

[, 0UT=((,vol-ser-no,label) ,SCR1= -ser-no
(RES, labei)

(RUN, label)

(*,label)
L \(Run.svsrun)

[ALTLOD=f(vol-ser-no,label)Y][.O0PT=(S,N,X,C,T)]
(RES, label)

(RUN,label)

(*,label)

| (RES,YRUN)

[.LIN=filename] [,LST=option] [,MAP=(S,A,L)] ,SIZE:{l}]

[,ERRFIL=(vol-ser-no,label,module-name)] s

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 E-2
FORTRAN IV Update B

Label:

symbol
Specifies the 1- to 6-character source module name; only used when the IN parameter is also used.

Operation:

FOR4
This form of the procedure call statement is used to compile a FORTRAN IV source program.

FOR4L
This form of the procedure call statement is used to compile a FORTRAN {V source program and link-
edit the object modules {see Note 1).

FOR4LG
This form of the procedure call statement is used to compile a FORTRAN IV source program, link-edit
the object modules, and execute the load module {see Notes 1, 2, and 3).

NOTES:

7. Linkage control cards or program data are not allowed with this form of the procedure call statement.
2. The FOR4LG procedure call statement cannot be used when operating with the shared code data
management feature. Instead, use the FOR4L procedure call statement and provide a separate EXEC

Statement to execute the load module.

o 3. Device assignment sets must be specified prior to the jproc.

Keyword parameter PRNTR:

PRNTR=(N
lun)[,vol-ser-no]
N
28
Specifies the logical unit number of the printer and, optionally, the destination-id (vol-ser-no). If a

printer device assignment set is not to be generated, the value N is coded, and the printer device
assignment set must be manually inserted in the control stream.

PRNTR=(lun[,vol-ser-no])
Specifies the logical unit number (20-29) of the printer device. Optionally, the destination-id (vol-ser-
no) can be specified.

PRNTR=(N[.vol-ser-no])
Indicates that a device assignment set for the printer must be manually inserted in the control

stream. This permits LCB and VFB job control statements to be used in the control stream. The
volume serial number can also be specified.

If omitted, 20 is assumed.

Keyword Parameter IN:

This parameter specifies the input file referenced by the PARAM IN control statement. If omitted, the
source input is assumed to be embedded data cards (/$, source deck, /*).
IN=(vol-ser-no,label)
Specifies the volume serial number (vol-ser-no) and the file identifier (label) where the source input
is located.
IN=(RES)
Specifies that the source input is located on the SYSRES device in YSRC.

LY

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 E-3
FORTRAN IV Update A

IN=(RES,label)
Specifies that the source input is located on the SYSRES device, in the file identified by the file-
identifier (label).

IN=(RUN,label)
Specifies that the source input is located on the job’s YRUN file with the file identifier (label)
specified by the user.

IN=(*,label)
Specifies that the source input is located on a catalog file identified by the file identifier (label).

Keyword Parameter QUT:

This parameter specifies the output file definition. If omitted, the object code is located on the job’s
$YSRUN file.

QUT=(vol-ser-no,label)
Specifies the volume serial number (vol-ser-no) and the file identifier (label) of the file where the
object code is to be located.

OUT=(RES,tabel)
Specifies that the object code is to be located on the SYSRES device, within the file identified by the
label parameter.

OUT=(RUN,label)

Specifies that the object code is to be located on the job’s YSRUN file identified by a user specified
file identifier (label).

0UT=(*,label)
Specifies that the object code is to be located on a catalog file identified by the file identifier (label).

Keyword Parameter SCR1:

SCR1=fvol-ser-no
RES

Specifies the volume serial number of the work file labeied $SCR1. If omitted, the work file is
assumed to be on the SYSRES device.

Keyword Parameter ALTLOD:

This parameter specifies the location of the alternate load library. if omitted, the compiler is loaded from
$YSRUN.

ALTLOD=(vol-ser-no,label)
Specifies the volume serial number (vol-ser-no) and file identifier (label) of an alternate load library
that contains the FORTRAN 1V compiler.

ALTLOD=(RES,label)
Specifies that the alternate load library is located on the job’s SYSRES device, in the file identified by
the file identifier (label).

ALTLOD=(RUN, label)
Specifies that the alternate load library is located on the job’s YRUN file with the file identifier
(label) specified by the user.

ALTLOD=("*,label)
Specifies that the alternate load library is located on a catalog file identified by the file identifier
(label).

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 E-4
FORTRAN IV

Keyword Parameter OPT:

OPT=(S, N, X, C, T)
Specifies one or all of the following compilation options.

S
Specifies that statement numbers will be inserted into the generated code as an aid to
debugging. When S is specified, the size of the object program and its execution time can
increase significantly.

N
Specifies that no object program is to be generated. The program units are merely compiled and
cannot be executed.

X
Specifies compilation of all cards with the character X in column 1. If this option is not
specified, these cards will be treated as comments.

c
Specifies all references to array elements are to be checked to see if they are outside the
declared limits of the array.

T

Specifies that tracing of executed labels is requested. The compiler generates a special
subroutine call at every label. A TRACE ON must occur in the program to activate tracing.

If only one OPT argument is specified, the parentheses are optional.
Keyword Parameter LIN:

LIN=filename
Specifies the name of the default filename in which the source modules reside.

A 1- to 8-alphanumeric-character identifier is specified by filename. If the LIN parameter is not specified,
the compiler assumes the default filename of LIB1. This parameter is used in conjunction with the IN
parameter.

Keyword Parameter LST:
LST=option

Specifies the quantity of listings produced by the compiler. One of the following options may be
chosen.

Specifies an abbreviated listing consisting of only the compiler identification, parameters, and
diagnostics.

Specifies, in addition to the N listing, the source code listing.

Specifies, in addition to the S listing, an object summary and a storage map showing the
addresses assigned to variables and arrays. (Can be superseded by the MAP parameter.)

If no LST parameter is specified, the S option is assumed.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 E-5
FORTRAN IV Update B

. Keyword Parameter MAP:
MAP=(S, A, L)

Specifies the type of maps produced by the compiler. One or all of the following options may be
chosen.

Specifies object summary information, including module size and external subroutines called.

Specifies an alphabetical listing of the addresses assigned to variables, arrays, and statement
labels.

Specifies a listing of the addresses assigned to variables, arrays, and statement labels in order
by the storage locations assigned.

When a MAP argument is specified, it supersedes the maps selected by the LST parameter. Also, when a
MAP argument is specified, it is not necessary to specify LST=M.

Keyword Parameter SIZE:

SIZEz{Is.}

Spgcifies the size of the FORTRAN IV compiler to be used.

L
‘ Specifies the large version.

Specifies the small version.

If omitted, S is assumed.

Keyword Parameter ERRFIL:

This parameter specifies that error diagnostic messages are written to a file that is accessed by the error
file processor. When you specify this parameter, error records are created for every error generated by the
compiler.

ERRFIL=(vol-ser-no,label ,module-name)
The vol-ser-no specifies the volume serial number of the file. The label specifies the file identifier
(name of the file that the module is placed into). The module-name is the name of the module that is
referenced by the error file processor.

If omitted, the error file is not created.

Example:

The following example illustrates the use of the FOR4 procedure call statement in its basic form:

1 10

// JOB FRTRNIA
. // FOR4

/$

; source deck

SN L BN

/c

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 E-6
FORTRAN IV Update B

Line Explanation

4-6

Indicates that the name of the job is FRTRN1A.

Indicates the name of the procedure being called (FOR4). No keyword parameters specifying
special options for this compile are used.

Indicates start of data.
Represents the source deck to be compiled.

Indicates end of data.

E.2. SAMPLE COMPILE-LINK-EXECUTE

The following job control streams illustrate a simple compilation from cards, linking the program EX1, and
executing the bound program TEST1 from YRUN. (TEST1 is the new name for EX1.)

Example A shows a job control stream using the conventional method, that is, the EXEC statements with their
supporting device assignment sets. Example B shows the jproc method, which is more efficient because it
requires less coding, thereby reducing the possibility of mistakes. Both examples produce the same result in
either a CDI or DTF environment.

Example A:
1 10 16
1. |// JOB EXAMPLE1L
2. |// DVC 28 // LFD PRNTR PRINTER FOR ALL PROCESSORS
3. |// WORK1 ONE WORK FILE
4. |// EXEC FOR4 BEGIN COMPILATION
5. {// PARAM PARAMETERS(AS NEEDED)
6. |/$
PROGRAM EX1
{program body}
7. END
8. |/ END COMPILATION
9. |// WORK1 ONE WORK FILE
10. {// EXEC LNKEDT BEGIN LINK EDIT
11. (/% START OF INPUT TO LINKAGE EDITOR
12. LOADM TESTI
13. INCLUDE EX1
14. /" END LINK EDIT
15.// EXEC TESTI,S$YSRUN BEGIN EXECUTION
16. |/& END OF JOB
Line Explanation
1 Indicates the job name, EXAMPLE1
2 Indicates the printer device number for all processors
3 Specifies one work file for FORTRAN IV compiler execution
4 Begins compilation (FOR4 or FOR4L)

T

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 E-7

FORTRAN IV Update B
| . Line Explanation
5 Adds parameters here as per job requirements
6 Start of data to compiler (source program)
7 End of source data
8 End of compilation
9 Specifies one work file for the linkage editor
10 Begins the link edit
11 Start of data to linkage editor
12 Names new load module TEST1
13 Links source module named EX1
14 Ends link edit
15 Begins program execution
16 End of job
. Example B:
1 10
1. (// JOB EXAMPLE1
2. |// FOR4
3.17/%
program EX1
source card deck
END
4.1 /"
5. | //TEST1 LINKG EX1
6. | /&
Line Explanation
1 Indicates the job name, EXAMPLE1
2 Indicates the FORTRAN jproc; allocates a printer and a work file and starts compilation
3 Start of data to the compiler (source program)
4 End of source data
5 Indicates the linkage editor jproc; allocates a work file, uses the input source program EX1 and
names the new load module TEST1
. 6 End of job

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 E-8
FORTRAN IV

E.3. SOURCE FROM DISK LIBRARY - STACKED COMPILATION

This job control stream represents the source module from the disk library for a stacked compilation. Source
programs on disk files are identified using a librarian module name. Each source module consists of one or more
FORTRAN program units.

Example:
1 10 16
1. |//7 JOB EXAMPLE?2
2. |// DVC 20 // LFD PRNTR
3. /7 WORK1
4. |// DVC 58 // VOL DISCP@ // LBL FORSOURCE // LFD INPUT
5. |// EXEC FOR4
6. |// PARAM IN=MODULEL1/INPUT
7. |// PARAM IN=MODULE2/INPUT
8.
9.)
10.|// PARAM IN=MODULEn/INPUT
11.]/&
Line Explanation
1 Indicates job name, EXAMPLE2
2 Indicates the printer device number
3 Specifies one work file for the FORTRAN IV compiler
4 Specifies that the file, FORSOURCE, on disk DISCOO, device 50, is the INPUT file.
5 Begins compilation (FOR4)
6-7 Identifies the first and second source program module names/filenames to the compiler
8-10 Identifies all succeeding and last source program module names/filenames to the compiler

11 End of job

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 E-9
FORTRAN IV

’ E.4. COMPILE, ASSEMBLE, LINK, AND EXECUTE

This example shows the user-specified execution environment, control stream input, and print and tape output in
a DTF environment. For a CDI environment, every statement is the same except that the FUNTAB is omitted.

1 10 16] 72
1. |// JOB EXAMPLE3
2. |// FOR4
3 /8
source
program deck
(SMAIN)
4. | /" ‘
5. |// ASM LST=N
6. |/$
7. |[MYIiO START
8. FUNTAB SYS=FOR
9. UNIT FDEVICE=PRINTER, X
10. ' FUNIT=1
11: UNIT FDEVICE=SPOOLIN, X
12. FUNIT=READ, X
13. FBKSZ=80
14. UNIT FDEVICE=TAPE, X
15. FUNIT=140, X
16. FFILEID=XYZ, X
17. FRECFORM=FIXBLK, X
18. FRECSIZE=256
‘ 19. FUNEND
20. EJECT
21. ERRDEF
22. END
23.(/"
24.|//TEST3 LINKG SMAIN MYIO
25.|// DVC 21 // LFD FORT1
26.{// DVC 48 // VOL TAPEGO // LFD XYZ
27:1/$
. control
.} stream
input
28.|/*
29.1/8&
Line Explanation
1 Indicates job name, EXAMPLE3
2 Indicates the FORTRAN job control procedure (jproc), FOR4
3 Start of data to compiler {(source program - $MAIN)
4 End of data
5 Indicates assembler jproc, ASM; no cross-reference listing is produced (LST=N)

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 E-10
FORTRAN IV

Line Explanation

6 Start of data to the assembler

7 Start of execution environment module (MYIO)

8 Initiates file for FORTRAN IV

9 Defines first file (UNIT definition procedure) specifying a printer file

10 Specifies printer unit number 1

11-13 Defines second file (UNIT definition procedure) specifying a spooled input file

12 Identifies the reader as input device

13 Indicates input block size

14-18 Defines third file (UNIT definition procedure) specifying a tape file

15 Specifies tape unit number 10

16 Indicates the tape filename, XYZ

17 Specifies fixed-length blocked records

18 Specifies a tape record length of 256 bytes .

19 Terminates UNIT procedure calls

20 File termination

21 Includes library table of error information in executable program

22 Terminates source program

23 End of data to assembler

24 Indicates the linkage editor jproc; names the new load module as TEST3 which includes the
modules $MAIN (FORTRAN source program) and MYIO (assembler source program) and
executes the module

25-26 Connects devices assigned before execution of TEST3 to the FORTRAN unit table via their LFD
names

27 Start of spoolin data

28 End of spoolin data

29 End of job

NOTE:

The default FFILEID for the printer is FORTT. .

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 E-11
FORTRAN IV

E.5. COMPILATIONS WITH PARAMETER OPTIONS

The following example shows the use of special parameter options associated with the FOR4 jproc in either the
CDI or DTF environment.

Example:
1 10 16
1. |// JOB EXAMPLE4
// FOR4 MAP=(S),0PT=(X)
3 /%
program deck
4. |/
5. {//TEST4 LINKG $MAIN
6: |/&
Line Explanation
1 Indicates job name, EXAMPLE4
2 Indicates the FORTRAN jproc, FOR4; an object summary is produced and all cards with an X in
column 1 are accepted for compilation as FORTRAN statements.
3 Start of data to compiler (source program-$MAIN)
4 End of data
5 Indicates the linkage editor jproc, LINKG; names the new load module as TEST4 which is the

source program $MAIN, and executes the program.

6 End of job

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 E-12
FORTRAN IV

E.6. COMPILATION FROM A WORKSTATION TERMINAL

In the CDI environment, compilation can originate from a workstation terminal. The following example shows a
typical compilation.

1 10 16

1. |LOGON SYSPUBS,6944,D0IT
2. |/EDT

.}FORTRAN 1V source program

@ WRITE INPUTIL
@ HALT
3. |RV JCSBUILD

.]job control screen

4. |RV COMPIL

5. |LOGOFF

Line Explanation

1 Connects the workstation terminal to the host system and defines the user, his account
number, and password.

2 Calls the system editor. The FORTRAN IV source program immediately follows /EDT command.
After the last FORTRAN IV source statement, the @WRITE command is issued to save the
source program in a library. The @HALT command ends the EDT session.

3 Calls the system build command. This command writes the job control stream to the system job
control stream library file (YJCS). This job control stream defines the system resources that
the source program requires.

4 Calls the job control stream from YJCS. This step compiles the source program.

5 Ends the workstation terminal session.

NOTE:

For more information about workstation terminal input, see the workstation user guide and the editor user
guide.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 E-13
FORTRAN IV

E.7. EXECUTION FROM A WORKSTATION USING A SCREEN FORMAT

The following example shows the job control stream that will execute a FORTRAN IV loadable program using
screen format services.

Example:

1 10 16

LOGON STSPUBS,6944 DOIT
RU JCSBUILD

// JOB APPLIC

// DVC 289

// USE SFS MYFILE

// DVC 58

// VOL DpA@28

// LBL DISK-FORMAT-FILE
// LFD MYF!LLE

7.1// DVC 28

// LFD LIST

8. |// DVC 51 // VOL Dp@p27
// LBL APPLIC.FILE

// LFD APPLI1

.| // EXEC FORT@1

10.| LOGOFF

DU B W N

Line Explanation

1 Connects the workstation terminal to the system and also identifies the user.

2 Builds the job control stream to be used by the loadable FORTRAN IV program.

3 Identifies the job name of the filed job control stream.

4 Defines the workstation terminal.

5 Calls the screen format services routine and specifies the screen format file that the executable
program is using. The screen parameter must specify a screen residing on the file (7.3.1).

6 Defines the file where the screen format resides.

7 Defines the print file to be used by the executable program.

8 Defines the disk file to be used by the executable program.

9 Calls the executable program.

10 Disconnects the workstation terminal from the system.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3
FORTRAN IV

E-8. CREATE AND COMPILE FROM A WORKSTATION USING EDT

You use the following commands at the workstation to create and compile your program:

1 10 16

72

1. |LOGON user-id
2. |/EDT

FORTRAN IV source program
@WRITE INPUTI

// JOB COMPIL
// FOR4,IN=INPUT1

/&

@WRITE.YSSJCS

@HALT

RV COMPIL

LOGOFF

Line Explanation

1 Connects the workstation terminal to the system and also identifies the user.
2 Calls the system editor (EDT).

3 Compiles the program.

4 Disconnects the workstation terminal from the system.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 F-1
FORTRAN IV

Appendix F. Compile-Time
Diagnostic Messages

All messages produced by the FORTRAN IV compiler are printed on one or more pages containing the title
ERROR LISTING as a header line. Separate error listings are produced for each program module processed.

Two classes of messages may be produced-severity code 1 or severity code 2. Severity code 1 messages denote -
a condition that, while not entirely incorrect‘ is not fully correct and should be examined and possibly changed by
the user. Severity code 2 messages indicate an error that inhibits correct program execution. A severity code 2
error sets the leftmost bit of the UPSI byte, which may be tested via the job control statement, // SKIP target-
label,1. The severity code of each error is printed immediately to the left of the message in the error listing.

In most cases, the card causing the error (message), is itself printed on the error listing, followed by a line
containing a pointer to the place at which the error occurs and also containing the severity code and the error
message. However, it is not always possible to print the card at fault. In that case, only the severity code and the
message are printed. For example, in some cases parts of the compilation process are shared by the various
passes of the compiler (e.g., constant evaluation), so the card at fault may no longer be available at the time the
error is detected. Also, sometimes no one card is at fault, as in the case of the possible interrelationship between
COMMON, DIMENSION, EQUIVALENCE, and DATA statements.

Table F-1 lists and describes the FORTRAN IV compile-time diagnostics. All messages are prefixed by severity
code shown in the Severity Code column where:

1

warning

2 = serious

]

The Diagnostic Message column shows the message as it appears when printed. The cause of the message and
the action to be taken are described in the remaining columns. The messages are presented in alphabetical order
by severity code.

UP-8474 Rev. 2

SPERRY UNIVAC 05/3
FORTRAN IV

Table F—1. FORTRAN IV Compile-Time Diagnostic Messages (Part 1 of 8)

Severity
Code

Diagnostic. Message

Explanation

Reason

Recovery

ARRAY MISSING SUBSCRIPTS

A variable known to be an array is referenced
without subscripts.

Correct source
program.

”,”” ASSUMED BEFORE TYPE

In an IMPLICIT statement, commas must
separate type specifications.

Correct statement.

BLOCK DATA STMT ENDS
BADLY

Extraneous field detected on BLOCK DATA
statement.

Correct BLOCK DATA
statement.

DIM DECLARED BEFORE

The dimensions of this array have been
declared previously.

Delete declarator. Do
not delete the array
name if a type or
COMMON statement.

END STMT MISSING

Compiler encountered another program unit
before an END statement.

Insert END statement
before next program
unit.

EXTRANEOUS LABEL

Label is not accepted as the destination
point of a control transfer.

Warning only.

EXTRANEOUS OPTR

Extraneous operator detected after end
of valid statement.

Correct statement.

FIELD AFTER END OF STMT

Extraneous field detected after end of
valid statement.

Correct statement.

GO TO W/0 ASSIGN ON CARD
nnnn

An assigned GO TO on card nnnn has been
encountered without an ASSIGN statement
in the program.

Provide an ASSIGN
statement or change.
the GO TO.

“,"” IGNORED

Extraneous comma in a COMMON statement
ignored.

Correct COMMON
statement.

ILLEGAL CHARACTER

Character not a member of the FORTRAN
character set.

Probable keypunch error.

Correct error. Correct
statement.

ILLEGAL ELEMENT

In an EQUIVALENCE statement, an attempt
was made to subscript a nonarray.

Dimension array or
correct statement.

“*" ILLEGAL HERE

Optional length specification illegal for
DOUBLE PRECISION.

Remove optional
length.

ILLEGAL LABEL

The statement label is either an invalid
constant or it exceeds the maximum label
value of 99999.

Correct statement
label.

ILLEGAL RANGE

A statement label has been found which
exceeds the maximum value of 99999.

Correct label.

ILLEGAL STMT FORM

FORTRAN statement not in valid format.

Correct statement.

ILLEGAL STMT IN LOG (F

A DO or logical IF cannot be the object
statement of a logical IF.

Correct statement.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3
FORTRAN VvV

Table F—1. FORTRAN IV Compile-Time Diagnostic Messages (Part 2 of 8)

continuation card.

Severity) . Explanation
Code Diagnostic Message
Reason Recovery
1 ILLEGAL USE OF STD FCN Improper use of or wrong number of Insert a TYPE
arguments in standard library function. statement to declare
function as users, or
correct function.
reference.
1 INTEGER>2**31 An integer constant exceeds one full word. Examine constant for
Binary bits were truncated on the left, and correctness. A
a maximum positive value of 7FFFFFFF was precision or type
substituted. change may be
appropriate.
1 LABEL IN CONT. Characters appeared in label field of Warning only.

LENGTH ILLEGAL HERE

Optional length illegal for DOUBLE PRECISION.

Remoyve optional
length.

LITERAL TOO BIG

A Hollerith constant or literal constant
has exceeded the maximum length of 265

‘characters.

Shorten character
string.

LITERAL TOO SHORT

Zero length literal constant encountered.

Correct constant.

“," MISSING

Comma missing in assigned GO TO (before
branch list).

Warning. Insert
comma if desired.

MISSING)" OR "),"?

An EQUIVALENCE set is missing its closing
parenthesis.

Correct EQUIVALENCE
statement.

MISSING SIZE

Optional size in a type statement is missing,
but the ‘*' was detected.

Remove “*' or insert
size.

MISSING “TO” IN ASSIGN

Keyword TO missing from ASSIGN statement.

Correct ASSIGN
statement.

NAME TRUNCATED

Symbolic name cannot exceed six characters.

Shorten name to six or
less characters.

NULL EXPONENT

The exponents on a real or double precision
constant are missing.

Correct constant.

NUMBER > 16**63

Magnitude of real constant out of range
(positive).

Correct program.

NUMBER < 16**-65

Magnitude of real constant out of range
(negative).

Correct program.

PREVIOUS ",” IGNORED

Previous comma in a COMMON or type
statement has been ignored.

Correct statement.

PROG ENDS BADLY

STOP statement missing.

Warning.

SHOULD HAVE INTEGER HERE

Variable should be of type integer.

Correct statement.

SHOULD HAVE LABEL AFTER

BRANCHES

Label missing on statement immediately
following an unconditional branch.

Correct program logic.

”,"" SHOULD PRECEDE

A comma should precede the name in a
DATA statement.

Correct DATA
statement.

UP-8474 Rev. 2

SPERRY UNIVAC 0S5/3
FORTRAN IV

F-4

Table F—1. FORTRAN IV Compile-Time Diagnostic Messages (Part 3 of 8)
. Explanation
sf:ve;tv Diagnostic Message P
ode Reason Recovery
1 STMT ENDS BADLY Extraneous field detected on END statement. Correct END
statement.
1 “STOP” COMPILED HERE RETURN statement occurs in @ main program. Change RETURN to
STOP statement substituted. STOP.
1 TOO FEW SUBSCI;(IPTS Array element reference contains fewer Correct either the
subscripts than the array declarator. declarator or the
reference.
1 TRANSFER ENDS DO LOOP An unconditional transfer of control has Correct source
been used as the terminal statement of a program.
DO loop. The DO terminal block is
inaccessible and only one iteration of the DO
is possible.
2 ADJ DIM IN COMMON OR Adjustable dimensions are prohibited in main Correct program logic. -
MAIN PROG programs.
2 #ARGS + ENTRY > 398 or As stated. Break up program.
COMMONS > 85
2 ARITH CONST & LOG VAR DATA statement processor cannot perform a Correct DATA
meaningful conversion. statement.
2 ARITH OPND & LOG OPTR A nonlogical was used in formation of logical Correct expression.
expression.
2 ARRAY ILLEGAL IN STMT FCN A statement function cannot reference an Correct statement
array. function definition.
2 BADLY NESTED DO A DO loop must be completely enclosed by Correct structure of
any surrounding DO loop. See fundamentals loops.
of FORTRAN programmer reference, UP-7536
(current version).
2 BINARY OPTR STARTS SUBEXP +, *, /, or ** begins an arithmetic expression. Correct expression.
2 COMMONS: TOO MANY; OR Internal table overflow processing COMMON Try large compiler or
TOO BIG. statement. change program logic.
2 COMMON W/EQUIV.: TOO MANY;| Internal table overflow processing COMMON Try large compiler or
OR TOO BIG. statemient. change program logic.
2 COMPLEX COMPARAND Operators GT, GE, EQ, NE, LT, LE cannot be Correct expression.
used with complex entries.
2 COMPLEX OPND IN IF Complex expression not permitted in arithmetic | Correct program.
IF.
2 DATA TABLE EXCEEDED An implied-do in a DATA statement is too Break up the DATA
complex. statement.
2 DIM 2**24 Value of a dimension must be less than 2**24.| Correct statement.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 F-5
FORTRAN IV
Table F—1. FORTRAN IV Compile-Time Diagnostic Messages (Part 4 of 8)
Severit Explanati
cv:: Y Diagnostic Message Planation
e
Reason Recovery

2 DUPLICATE END REFERENCE Two END clauses in one statement. Probably intended to

be an ERR clause.

2 DUPLICATE ERR REFERENCE Two ERR clauses. Correct statement.

Probably should be
an END clause.

2 EQUIV TO ITSELF A variable has been made equivalent to itself Correct EQUIVALENCE
indirectly. statement.

2 EQUIV TOO EXTENSIVE Excessive number of equivalence sets in the Reduce number of
program unit. The compiler can address only equivalence groups.
65K in the equivalence table.

2 EXTRANEOUS “.” Comma encountered in expression analysis. Correct statement.

2 FUNCTION NOT ASSIGNED Function name does not take on a value. Correct function.

A VALUE

2 GO TO LIST TOO BIG List for computed GO TO or assigned GO TO Break up computed

has more than 127 entries. GO TO so that each
list is less than
127 entries.

2 IF ENDS BADLY Error detected in processing the labels Correct labels for
in an arithmetic IF. arithmetic IF.

2 ILLEGAL ARRAY DECLARATOR A dimension declarator must be a constant or Correct subscript.
integer variable.

2 ILLEGAL ASSIGN Label of ASSIGN must be an executable Correct statement.
statement label.

2 ILLEGAL BLOCK SYMBOL lllegal common block name. Correct COMMON

statement.

2 ILLEGAL COMMON STMT Unrecoverable error in COMMON statement. Correct COMMON

statement.

2 ILLEGAL COMPLEX CONSTANT A component of the constant is not an Correct statement.
acceptable real constant.

2 ILLEGAL DATA Unrecoverable error in DATA statement. Correct DATA

statement.

2 ILLEGAL DATA SET A data set reference number must be = 1 Correct statement.

REFERENCE NO. and < 99.

2 ILLEGAL DATA STMT NAME is not a variable or array name, or is Correct statement.
a dummy argument, or a blank common.

2 ILLEGAL DMY ARG A dummy argument list may consist only of Correct list.
simple variable names which are unique in
the list.

2 ILLEGAL DO Bad DO statement Correct DO statement.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3
FORTRAN IV

Table F—1. FORTRAN IV Compile-Time Diagnostic Messages (Part 5 of 8)
Severity . . Explanation
Diagnostic Message
Code 9 Reason Recovery
2 ILLEGAL EQUIV GROUP Equivalence set is attempting to distort the Correct EQUIVALENCE
structure of an array which demands the statement.
contiguity of successive array elements.
2 ILLEGAL FORM OF 1/0 STMT Error detected in READ, WRITE, PRINT, or Correct statement.
PUNCH statement.
2 ILLEGAL IMPLIED DO Error in implied DO in 1/0 list or DATA Correct statement.
statement.
2 ILLEGAL IN ARITH EXP .NOT. is illegal in arithmetic expression. Correct expression.
2 ILLEGAL IN BRANCH LIST lllegal symbol in GO TO list. Correct statement.
2 ILLEGAL IN GO TO Error detected in processing the object of a Correct statement.
GO TO statement.
2 ILLEGAL IN SUBSCRIPTS Complex and logical expressions may not Correct subscript.
be used as subscripts. A subscript
expression may only be integer or real.
2 ILLEGAL 1/0 LIST The symbolic name indicated by the marker Correct statement.
cannot appear in an 1/0 list.
2 ILLEGAL LENGTH FOR TYPE The length specification on implicit or Correct length
explicit type statement is either an invalid specification or
constant or the value exceeds 32. decrease its value.
2 ILLEGAL NO. FOR LABEL Error in processing label designating DO Fix label in DO
loop terminator. statement.
2 ILLEGAL NUMBER OF ARGS A standard library function has been Correct function
referenced with an incorrect number of reference.
arguments.
2 ILLEGAL OPND IN STMT Illegal operand in CALL, REWIND, ENDFILE, Correct statement.
or BACKSPACE statement.
2 ILLEGAL SUBSCRIPTS Iliegal specification of subscripts in a Correct DATA
DATA statement. statement.
2 ILLEGAL SYMBOL AFTER Error in name after branch list in computed Correct statement.
BRANCHES GO TO.

2 ILLEGAL SYMBOL BEFORE Error détected identifying beginning of Correct assigned
BRANCHES branch list for assigned GO TO. GO TO.

2 iLLEGAL TO HAVE INITIAL Common variables may only be initialized by Change program logic.
VALUES BLOCK DATA.

2 ILLEGAL TYPE STMT Unrecoverable error in a type statement. Correct statement.

2 INCONSISTENT USE OF LABEL An attempt was made to branch to a format Correct statement.
label.

2 “=""INSIDE EXP An equal sign detected inside. Correct statement.

2 LIST ILLEGAL FOR The variable list must appear in the Correct both

NAMELIST 1/0 NAMELIST statement and not in the statements.
READ/WRITE statement.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3
FORTRAN IV

Table F—1. FORTRAN IV Compile-Time Diagnostic Messages (Part 6 of 8)

s it Explanation
Z‘f;;y Diagnostic Message P :
Reason Recovery

2 LITERAL CONST OR &NO. Literal constant or &label detected outside Correct statement.

ILLEGAL HERE of a call statement.

2 LOCAL ARRAYS TOO LARGE Storage necessary for local arrays is too Decrease array storage

> 2**20 large. necessary.

2 LOG COMPARAND Operators GT, GE, EQ, NE, LT, LE cannot be Correct expression.
used with logical entries.

2 LOG CONST & ARITH VAR DATA statement processor cannot perform a Correct DATA
meaningful conversion. statement.

2 LOG OPND & ARITH OPTR Logical primary detected in arithmetic Correct expression.
expression.

2 “Y" MISSING Right parenthesis missing or redundant; Add or delete a
left parenthesis present. parenthesis.

2 MISSING OPND IN STMT Invalid unit operand in REWIND, ENDFILE, or Correct statement.
BACKSPACE statement.

2 MODES MIXED OVER =" In an ASSIGNMENT statement of the form Correct statement or
V=E, when V is logical, E must also be specify additional
logical. When V is arithmetic, E must data typing.
also be arithmetic.

2 <name> -ADJ. DIM. -MUST Variable must be of type integer. Correct statement.

BE INTEGER(Y)
2 <name> EQUIV. TO A variable made equivalent to a COMMON Correct statement.
COMMON - INITIALIZED@ variable can only be initialized in a
BLOCK DATA statement.
2 <name> EXTENDS COMMON Violation of a basic ANS/ECMA rule. Unless Change EQUIVALENCE
BLOCK NEGATIVELY@ this diagnostic appears in every program statements in the
unit referencing the block program execution, source code.
results will be incorrect in the source code.
2 <name> IN COMMON TWICE; Incorrect equivalence set has caused <name> Correct EQUIVALENCE
DUE TO EQUIV.(D) to have two different locations in common. statement.
2 <name> IN INCONSISTENT Equivalence set is attempting to distort the Correct EQUIVALENCE
EQUIVALENCES.(1) structure of an array. statement.
2 <name> MISALIGNED DUE Variable specified is an improper main storage | EQUIVALENCE
TO EQUIVALENCE(D) boundary. statements should be
reorganized.

2 NEED “(” IN ASSIGNED GO TO Open parenthesis missing after comma in Correct statement.
assigned GO TO.

2 NEED INTEGER Relative record number in direct access 1/0 Correct statement.
statement must be integer.

2 NEED INTEGER FOR ADJ DIM Variable must be of type integer. . Correct statement.

2 NEED INT VAR IN COMP Variable for a computed GO TO must be a Correct program.

GO TO simple variable of type integer+4.

@ The character string <name>> is replaced by the name of the variable in error, at the time the message is printed.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 F-8
FORTRAN IV
Table F—1. FORTRAN IV Compile-Time Diagnostic Messages (Part 7 of 8)
i Explanation
S::v:‘;gy Diagnostic Message
Reason Recovery
2 NEED INT*4 IN ASSIGNED Variable in assigned GO TO must be of Correct program.
GO 10 type integer*4.
2 NEED SIMPLE VAR IN COMP Variable for a computed GO TO must be a Correct program.
GO TO simple variable of type integer+4.
2 NESTED LOG IF A logical IF cannot be the object statement Correct statement.
of a logical IF.
2 NQ. CONST < NO. VAR DATA statement has more variables than Correct DATA
constants. statement.
2 NO. DIM > 7 An array may have from one to seven Correct statement.
dimensions.
2 NO. DIM > DECLARED In an EQUIVALENCE statement, the number Correct statement.
of dimensions of an array exceeds its
declaration.
2 .NOT. AFTER SUBEXP .NOT. ends an expression. .NOT. can only Correct statement.
begin an expression.
2 NO. VAR < NO. CONST More constants than variables appear in the Correct DATA
DATA statement. statement.
2 OPTR ENDS SUBEXP +, -, * /, or ** ends an arithmetic Correct statement.
expression.
2 OPTR MISSING An arithmetic or logical operator was Correct statement.
expected where indicated.
2 “&” OR ".” ILLEGAL HERE Invalid label after “&", or invalid number Correct statement.
after "."".
2 PROGRAM OVERFLOWS SVCT Object program has become too large. Break up program.
REGION
2 REL AFTER REL Two consecutive relationals (.NOT., .OR,, Correct statement.
.AND.) appear in a statement.
2 SIMPLE VAR. AREA > 32664 Too many simple variables in program unit. Break program unit
BYTES into smaller units and
recompile or use large
compiler.
2 STMT ENDS BADLY Extraneous field encountered on a declarator Correct statement.
statement.
2 STMT ILLEGAL IN BLOCK DATA A block data subprogram may only contain Remove statement.
specification and data initialization
statements.
2 STMT NOT IN THIS FORTRAN Acceptable keyword not implemented in this Remove statement
compiler. from program.
2 STMT TOO COMPLEX FORTRAN statement too complicated to Simplify statement.
complete compilation.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 F-9
FORTRAN IV
Table F—1. FORTRAN IV Compile-Time Diagnostic Messages (Part 8 of 8)
Severit Explanation
cv: ;;y Diagnostic Message P
Reason Recovery
2 SUBSCRIPT ERROR ON There is an error in the subscripts for an Correct DATA
CARD nnnn. implied DO loop in the DATA statement for statement or array
card nnnn. Either the subscripts are dimensions.
outside the array boundaries, or a variable
subscript is not an indication variable.
2 SYMBOL TABLE EXCEEDED Too many symbolic names in program Shorten program unit
unit. or try large compiler.
2 TOO MANY)" No corresponding left parenthesis for Check statement.
marked delimiter.
2 TOO MANY CONSTANT As stated. Try larger compiler or
EXPRESSIONS break up program.
2 TOO MANY CONTINUATION FORMAT statement is too large. Break up statement.
CARDS
2 TOO MANY EQUIVALENCES’ Excessive number of equivalence sets in the Reduce number of
CAN'T PROCESS. program unit. equivalence groups.
2 TOO MANY EXTERNAL SYMBOLS | Program is calling too many subroutines. Break up program.
2 TOO MANY NESTED DO STMT More than 15 nested DO statements. Change program.logic.
2 TOO MANY SUBSCRIPTS Maximum number of subscripts for an array Change program logic.
is seven.
2 TOO MANY VAR IN () Table overflow in equivalence processing. Try large compiler, or
break up program.
2 UNABLE TO EVALUATE An unrecoverable error, such as overfiow, Correct statement.
CONSTANT has occurred trying to evaluate a constant
expression.
2 UNCLASSIFIABLE STMT Statement cannot be classified because of Correct statement.
misspelled keyword or unrecognizable syntax.
2 UNDEFINED LABEL nnnnn Transfer of control to nonexecutable Change label.
statement not permitted.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 F-10
FORTRAN IV

When the current usage of a name conflicts with the previous usage of the same name, the FORTRAN IV
compiler produces a diagnostic error message in the form:

text-1 ILLEGAL text-2

where text-1 and text-2 may take on any one of several values. The possible values for text-1 and text-2 with an
explanation for each are listed alphabetically by text value, as follows:

. Values for text-1 with explanation

ADJ'ING DIM.
An adjusting dimension variable

ARRAY
An array

COM. ARY
An array that is in a common

COM. VAR.
A variable in a common

DMY. ARG.
A dummy argument of a subprogram

DMY. ARRAY
A dummy argument of a subprogram that is determined to be an array

DMY. FCN.
A dummy argument of a subprogram that the compiler has determined is a function

DMY. SBR. :
A dummy argument that the compiler has determined is a subroutine

DMY. SUBPRG.
A dummy argument that the compiler has determined is a subprogram (function or subroutine).

DMY. VAR.
A nonarray dummy argument of a subprogram

DUP. ARG.

Duplicate arguments

ENTRY
A name that has appeared on an ENTRY statement

EQUIV. ARRAY
An array that has occurred on an EQUIVALENCE statement

EQUIV. VAR
A variable that has occurred on an EQUIVALENCE statement

EXT. FCN.
A function that has appeared on an EXTERNAL statement

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3
FORTRAN IV

INIT. ARRAY
An array that has been initialized by a DATA statement or by a type statement

INIT. VAR.
A variable that has been initialized by a DATA statement or by a type statement

NAMELIST
A NAMELIST name

NON-COM. ARY.
An array not in any common

NON-COM. VAR.
A variable not in any common

NON-INT.
A noninteger variable

NON-INT*4
A noninteger*4 variable

REPETITION
A name encountered more than once

STD.FCN.
A FORTRAN standard library subroutine

STD. SBR.
A FORTRAN standard library subroutine

STMT. FCN.
A statement function

SUBPRG
A subprogram (subroutine or function)

THIS FCN.
A name the compiler has typed a function

THIS NAME
A name to which no attributes have been determined

THIS SBR.
A name the compiler has typed a subroutine

TOOLATE.
A use of a name occurred after conflicting use

TYPED VAR.
A variable that has occurred on a type statement

VAR.
A simple variable

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 F-12
FORTRAN IV

L] Values for text-2 with explanation

AS ADJ'ING DIM.
When the compiler expects an adjusting dimension variable

AS ASSIGN 'VAR.
When the compiler expects an ASSIGN variable

AS CALLED SBR.
When the compiler expects a SUBROUTINE name

AS COM. BLOCK
When the compiler expects the name of a common block

AS DMY. ARG.
When the compiler expects a dummy argument of a subprogram

AS ENTRY ARG.
When the compiler expects an argument on an ENTRY statement

AS ENTRY STMT.
On an ENTRY statement

AS FMT.
When the compiler expects a FORMAT statement

AS FMT.; NAMLST
When the compiler is expecting either a FORMAT array or a NAMELIST name

AS INT. VAR.
When the compiler expects an integer variable

AS NAMELIST
When the compiler expects a NAMELIST name

AS STMT. FCN.
When the compiler expects a statement function

FOR DMY. ARGS.
Within the dummy argument list for a subprogram

IN ABNORMAL
In an ABNORMAL statement

IN COM. STMT.
In a COMMON statement

IN DATA STMT.
In a DATA statement

IN DIM. STMT.
In a DIMENSION statement

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 F-13
FORTRAN VvV

IN 170 LIST
In the list portion of an 1/0 statement

IN EQUIV. STMT.
In an EQUIVALENCE statement

IN EXP
Within an expression (logical or arithmetic)

IN EXTERNAL
In an EXTERNAL statement

IN TYPE STMT.
On a type statement

ON LEFT
On the left-hand side of the equals sign

Example 1:
TOOLATE. ILLEGAL AS STMT. FCN.
This error indicates that the compiler has detected a statement that looks like a statement function, but
occurs too late in the program unit to be a statement function. This error occurs most frequently when a
name is used as an array but is never dimensioned.
Example 2:
REPETITION ILLEGAL IN TYPE STMT.
This error indicates that the name pointed to by the error pointer has already occurred on a type statement.
The FORTRAN IV compiler operation-type diagnostic error messages are listed and described in Table F-2. The

severity code has the same values and meanings as shown in Table F-1; it separates the message number and
the message text. A blank severity code indicates a serious error.

Table F—2. Operation-Type Diagnostic Messages (Part 1 of 2)

Al NVH1HO4
€/S0 JVAINN AHY3dS

T ‘A8Y pLP8-dN

Message Severity ‘) Explanation
Number Code Diagnostic Message
Reason Recovery
FF800 1 UPDATE ‘nnnnnnnn’ IS An out-ofsequence source correction Fix the source correction deck
OUT OF SEQUENCE card detected (‘nnnnnnnn’ is
sequence number)
FF801 2 SOURCE LIBRARY ERROR ON Source file specified by LFD-name Check for a missing // LFD Ifd
‘PARAM IN=mod/Ifd’, ‘Ifd’ could not be opened
OPEN ERROR.
FF802 2 SOURCE LIBRARY ERROR ON Source module ‘mod’ on the file Check for incorrect spelling of
‘PARAM IN=mod/Ifd’, specified by LFD-name ‘Ifd’ module or LFD-name
MODULE NOT FOUND. could not be found
FF803 2 SOURCE LIBRARY ERROR ON A SAT read error occurred while Check disk drive and/or pack
‘PARAM IN=mod/ifd’, reading the directory of the
DIRECTORY READ ERROR. source file
FF804 2 SOURCE LIBRARY ERROR ON Module ‘mod’ on the source file Re-<create source module
‘PARAM IN=mod/ifd’, specified by LFD-name ‘Ifd’ is
MODULE IS EMPTY. empty
FF850 PROGRAM REORDERED This source module has caused the Reordering can be avoided if the specification
FORTRAN |V compiler to call its statements precede the first DATA statement,
reordering algorithm. Some degrada- statement function definition, or executable
tion in compiler performance may statement, and if they occur in the following
occur. order:
IMPLICIT, ABNORMAL, EXTERNAL, type
statements (INTEGER, REAL, COMPLEX,
LOGICAL, DOUBLE PRECISION) DIMEN-
SION, COMMON, and EQUIVALENCE
FF851 REORDERING FAILED The program nnnnnn was too See FF850.
FOR nannnnn complicated to reorder mechanicaily.
Program terminated.
FF900 PROGRAM CHECK IN A program check has occurred Submit a Software User Report
COMPILER, JOB CANCELED. during the compilation (SURY), including a dump, all
compilation printout, and a
source listing

vi-d4

Table F—2. Operation-Type Di“tic Messages (Part 2 of 2}

Message Severity)) Explanation
Number Code Diagnostic Message
Reason Recovery
FF901 COMPILER WORK FILE An error has occurred on the If nn is not one of these values,
ERROR nn, JOB CANCELED. compiler work file (WORK1) submit a Software User Report
where nn is: (SUR) with a dump
06 open failed (WORK1 may be
missing)
09 attempted to compile more
than 100 modules
10 SAT write error
1 SAT read error
12 SAT read or write error
FF902 SOURCE LIBRARY ERROR An unrecoverable error has If nn is not one of these error
nn, ‘PARAM IN=mod/Ifd’, occurred in processing source codes, submit a Software User
JOB CANCELED. module ‘mod’ from the file ‘Ifd’, Report {SUR) with a dump
Error code nn has the values:
02 library format error
04 SAT read error
05 GETCS error on update cards
07 SEQ card error
FFO03 ERROR PROCESSING OUTPUT An unrecoverable error has If PARAM OUT= was specified, ensure
FILE, JOB CANCELED. occurred in writing the object that its LFD was defined
module
FF904 NO SOURCE FILE: END-OF- The compiler has no input (no Provide input by using a PARAM
FILE ON SPOOLIN, JOB card input or PARAM IN= IN= or by providing a card deck
CANCELED specified)
FF905 PRNTR ERROR, JOB An unrecoverable error has Make sure that // LFD PRNTR is
CANCELED. occurred on compiler’s printer included in the control stream
file PRNTR. This message is
written only to the operator's
console.
FF910 FORTRAN REQUIRES MiCRO- The compiler requires the Load the 2K COS and a supervisor

LOGIC EXPANSION, JOB
CANCELED.

extended instruction set which
is available only if the micro-
logic expansion has been loaded

that supports floating-point
procedures

ANl NVH1H04
€/S0 JVAINN AHY3dS

T 'A9Y L¥8-dN

Sl-d

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 G-1
FORTRAN iV

Appendix G. Run-Time Modules

G.1. FORTRAN RUN-TIME MODULES

Table G-1 provides a list of run-time modules with a description of their function and the entires in each module.
For additional information about mathematical routines, see Table 5-4.

G.2. FORTRAN IV STANDARD LIBRARY FUNCTION NAMES

The FORTRAN IV compiler generates external references to special names for calls upon standard library
functions. These special names consist of ILF# followed by two characters.

For example, when a FORTRAN program calls for the library SQRT function, FORTRAN IV generates an externa!
‘ reference for the ILF#30 FORTRAN IV name. Table G-2 lists special external reference names and their standard
library functions.

Table G—1. FORTRAN IV Run-Time Modules (Part 1 of 12)

CSECT or

Entry Name Function

Module

FD$SABTRM FL$ABTRM Abnormal termination code for DTF

FD$CLOSE FL$CLOSE Final file close for DTF

FD$DEFIL FLSDEFIL Define FILE statement processor for DTF

FD$EDTFI FLSEDTFI F edit — Input for DTF
FL$EDTEI E edit — Input for DTF
FLSEDTDI D edit — Input for DTF

FD$SEDTII FLSEDTH | edit — Input for DTF

FD$EDTZI FLSEDTZI Z edit — Input for DTF

FDSERCTL FL$ERCTL Error control and traceback routine for DTF
FL$WTERR
FL$WTMSG

FD$ERRN FL$ERRN Error message setup for DTF

. FD$GTMS3 FL$GTMS3 0S/3 GET message processor for DTF

FL$GTMSG

UP-8474 Rev. 2

.

SPERRY UNIVAC 0S/3

FORTRAN IV

Table G—1.

FORTRAN IV Run-Time Modules (Part 2 of 12)

Module

CSECT or
Entry Name

Function

FD$INFL3

FL$INFL3
FLSINFL

Set file to input mode for DTF

FDS$INITL

FLSINITL

Program initialization routine for DTF

FD$IO

FL$IO
FLSERRCT
FL$FUNTB
FL$RERDB
FL$WORKA
FL$1

FL$3
PRNTR
PRNTRC

Standard 1/O configura

tion for DTF

FD$IOCOM

FL$IOCOM
FLSERBYT
FL$ERR
FL$GTSAV
FL$IFSAV
FL$IOSAV
FL$OFSAV
FL$ROSAV
FL$RWSAV
FL$SKADR
FL$TBSAV
FL$WTSAV

1/O control common for DTF

FD$IOPEN

FL$IOPEN
FL$BCKSP
FL$DFIND
FL$DOPEN
FLSENDFL
FLSREWND
FL$SOPEN

1/0 argument list processor for DTF
For BACKSPACE statement

For FIND statement
For direct access 1/0

For ENDFILE statement

For REWIND statemen
For SEQUENTIAL I/O

t

FD$101

FL$IO1
FLSERRCT
FL$FUNTB
FL$SRERDB
FLSWORKA
FL$1

FL$2

FL$3
FL$11
FL$12
FORT11
FORT11C
FORT11E
FORT12
FORT12C
FORT12E
FORT2
FORT2C
PRNTR
PRNTRC

Alternate 1/O configuration for DTF

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 G-3

FORTRAN IV
‘ Table G—1. FORTRAN IV Run-Time Modules (Part 3 of 12)
CSECT or
Module Entry Name Function

FD$OUTF3 FLSOUTF3 Set file to output mode for DTF
FL$SOUTFL ’

FD$READ FL$READ Input file processor for DTF
FL$EOF
FL$ERROA

FD$STOP FL$STOP STOP/PAUSE processor for DTF
FL$PAUSE

FD$WRITE FLSWRITE Qutput file processor for DTF

FL$ABS FL$ABS Integer and real absolute value
ABS
DABS
IABS
JABS

FL$SABTRM FLSABTRM Abnormal termination code

FL$ARFOR FLSARFOR Array FORMAT processor

FL$ASIN FL$ASIN Arcsine/arccosine functions

ACOS
o Amcos
ARSIN
ASIN

FL$ATAN FLSATAN Arctangent functions
ATAN
ATAN2

FL$BCKSA FL$BCKSA BACKSPACE processor

FLSCABS FL$CABS Complex absolute value function
CABS .
FL$CBRT FL$CBRT Cube root
CBRT
FL$CCS FL$CC$ Complex exponential functions:
FL$CC Cc**C
FL$CI C**14
FL$CJ C**2
FL$CR C**R4
FLS$IC 14**C
FL$JC 12**C
FL$RC R4**C

FL$CDABS FL$CDABS Complex*16 absolute value function
CDABS

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

FORTRAN IV

G-4

Table G—1. FORTRAN IV Run-Time Modules (Part 4 of 12)
Modul CSECT or X
lodule Entry Name Function
FLCDD FLCDD Complex*16 exponential functions:
FL$CD C8**R8
FL$CDC Cc8**C16
FL$CDD C16**C16
FL$DC R8**C8
FL$DCC c16**C8
FL$DCD C16**R8
FL$DCI C16**14
FL$DCJ C16**12
FL$DCR C16**R4
FL$DDC R8**C16
FL$IDC 14**C16
FL$JDC 12**C16
FLSRDC R4**C16
FL$CDEXP FL$CDEXP Complex *16 exponential functions
CDEXP
FL$CDLOG FL$CDLOG Complex*16 logarithm function
CDLOG
FL$CDLG
FLSCDMPY FL$CDMPY Complex*16 muitiply /divide
CcDDVD#
CDMPY#
FLSCDSIN FL$CDSIN Complex*16 sine/cosine and hyperbolic sine/cosine
CDCOS functions
CDCOSH
CDSIN
CDSINH
FL$CDSQT FL$CDSQT Complex*16 square root function
CDSQRT
FL$CEXP FL$CEXP Complex exponential function
CEXP
FLSCLNRW FLSCLNRW File close routine (no rewind)
FL$CLOG FL$CLOG Complex logarithm function
CLOG
FL$CLOSE FL$CLOSE Final file close
FLSCMPLX FLSCMPLX Complex intrinsic functions:
CMPLX c8
DCMPLX Cc16
FLSCMPY FLSCMPY Complex multiply/divide
COVD#
CMPY#
FL$CNFLT FLSCNFLT
FL$COLUM FL$COLUM

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

FORTRAN IV

G-5

Table G—1. FORTRAN IV Run-Time Modules (Part 5 of 12)
Module E‘::rEYCJ a:: . Function
FLSCONJG FL$CONJG Conjugate intrinsic functions
CONJG Single-precision conjugate function
DCONJG Double-precision conjugate function
FL$CSIN FL$CSIN Complex sine/cosine and hyperbolic sine/cosine
CCOs functions
CCOSH
CSIN
CSINH
FL$CSQRT FL$CSQRT Complex square root function
CSQRT
FL$DASIN FL$DASIN Real *8 arcsine/arccosine functions
DACOS
DARCOS
DARSIN
DASIN
FL$DATAN FLSDATAN Real *8 arctangent functions
DATAN
DATAN2
FL$DBLE FL$DBLE Single to double intrinsic functions:
CDBLE C8to C16
DBLE R4 to R8
FL$DBOUT FL$DBOUT Debug 1/0 routines
FL$DBCL
FL$DBOP
FL$FLSH
FL$STKR
FL$DCBRT FL$DCBRT Real*8 cube root function
DCBRT
FLSDDPOW FL$SDDPOW Real *8 power functions
DEXP
DEXP10
DLOG
DLOG10
FL$DD R8**R8
FL$DEXPS$
FL$DI R8**{4
FL$DJ R8**|2
FL$DLOGS
FL$DR R8**R4
FLSID 14**R8
FL$JD 12**R8
FL$RD _R4**R8
FP$DTD R8**R8 (Basic FORTRAN)
FP$DTH R8**12 (Basic FORTRAN)
FP$DTI R8**14 (Basic FORTRAN)
FP$DTR R8**R4 {Basic FORTRAN)
FP$SHTD 12**R8 (Basic FORTRAN)
FPSITD 14**R8 (Basic FORTRAN)
FP$RTD R4**R8 (Basic FORTRAN)

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 G-6
FORTRAN IV

Table G—1. FORTRAN IV Run-Time Modules (Part 6 of 12)

CSECT or

Entry Name Function

Module

FLSDEBUG FL$DEBUG Debug control routines:

FL$DARI array INIT
FL$SDBGUN UNIT value
FL$DCHK SUBCHK
FLSDELI array element INIT
FLSDINT variable INIT
FL$DRTN RETURN
FL$DSBT SUBTRACE
FL$DTOF TRACE OFF
FLSDTON TRACE ON
FL$DTRC TRACE
FL$DUNT UNIT

FL$DEFIL FL$DEFIL DEFINE FILE statement processor

FL$DERF FL$DERF Real *8 error function
DERF
DERFC

FL$DFNDS8 FLSDFNDB FIND statement processor

FLSDGAMA FLSDGAMA Real*8 distribution function
DGAMMA
DLGAMA

FL$DHPER FL$SDHPER Real*8 hyperbolic sine/cosine
DCOSH
DSINH

FL$DHYPT FL$DHYPT Real *8 hyperbolic tangent
DTANH

FLSDIM FL$DIM Positive difference intrinsic functions
DDIM
DIM
IDIM
JDIM

FL$DMAX FL$DMAX Real *8 maximum/minimum intrinsic fﬁnctions
DMAX1
DMIN1

FL$DOPNA FL$DOPNA Direct access READ/WRITE processor
FL$DFNDA Direct access FIND processor

FL$DSIN FL$DSIN Real *8 sine/cosine function
DCOS
DSIN
FL$SDCOSS
FL$DSINS

FL$DSQRT FL$DSQRT Real *8 square root function
DSQRT

FL$DTAN FLSDTAN Real *8 tangent/cotangent function
DCOT
DCOTAN
DTAN

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

FORTRAN IV

Table G—1. FORTRAN IV Run-Time Modules (Part 7 of 12)
CSECT or F .
Module Entry Name unction
FL$DUMP FLSDUMP DUMP/PDUMP processor
D$MP
FL$DUMPD
PSUMP
FL$DVCHK FL$DVCHK Divide check subroutine
D$CHK
FL$EDTAI FLSEDTAI A edit — input
FLS$EDTAO FL$EDTAO A edit — output
FLSEDTCI FLSEDTCI Complex input
FL$EDTCO FL$EDTCO Complex output
FLSEDTEO FL$EDTEO E edit — output
FL$EDTDO D edit — output
FLSEDTF! FL$EDTFI F edit — input
FL$EDTE| E edit — input
FL$EDTD! D edit — input
FL$EDTFO FL$EDTFO F edit — output
FLSEDTGI FL$EDTGI G input
FL$EDTGO FL$EDTGO G output
FLSEDTH FL$SEDTH | edit — input
FLSEDTIO FL$EDTIO | edit — output
FL$EDTLI FLSEDTLI L edit — input
FL$EDTLO FL$EDTLO L. edit — output
FL$EDTZI FLSEDTZI Z edit — input
FL$EDTZO FL$EDTZO Z edit — output
FLSENDFA FLSENDFA ENDFILE processor
FLSERCTL FL$ERCTL Error control and traceback routine
FLSWTERR
FLSWTMSG
FLSERE FL$ERE Syntax error CALL subroutine
FL$ERF FL$ERF Real error function
ERF
ERFC
FLSERRN FLSERRN Error message setup
FLSERTST FLSERTST ERROR/ERROR1 subroutines
E$ROR
E$ROR1

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 G-8
FORTRAN IV

Table G—1. FORTRAN IV Run-Time Modules (Part 8 of 12}

CSECT or

Module Entry Name

Function

FL$FLOAT FLSFLOAT Float intrinsic functions
DFLOAT
DHFLOT
FLOAT

HFLOAT

FL$FORMT FL$FORMT FORMAT processor

FL$FTCH FLSFTCH FETCH subroutine
F$TCH

FL$GAMMA | FL$GAMMA | Real gamma function
ALGAMA
GAMMA

FL$GDIRI FL$GDIRI List-directed input processor

FL$GDIRO FL$GDIRO List-directed output processor

FL$GTMS3 FL$GTMS3 08/3 GET message processor
FL$GTMSG

- FL$HXCVD FLSHXCVD Binary to decimal conversion

FL$SHYPER FL$HYPER Real hyperbolic functions
COSH
SINH
TANH

FLS$IFIX FL$IFIX Fix intrinsic function
HFIX
IFIX

FL$IMAG FLSIMAG Imaginary part of complex intrinsic function
AIMAG
DIMAG
IMAG

FLSINFL3 FLSINFL3 Set file to input mode for OS/3
FL$INFL

FLSINITL FLSINITL Program initiatization routine

FLSINT FLSINT Integer intrinsic functions
AINT
DINT
IDINT
INT

FLS$IO FL$IO Standard 1/O configuration
FL$ERRCT
FLSFUNTB
FLSRERDB
FLSWORKA
FL$1

FL$3
PRNTR
PRNTRC

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

FORTRAN IV

Table G—1.

FORTRAN IV Run-Time Modules (Part 9 of 12)

Module

CSECT or
Entry Name

Function

FL$IOARA

FL$IOARA

Dummy I/O common (basic FORTRAN)

FL$I10CLS

FL$10OCLS
FL$DCLSE
FL$FCLS
FLSNMLCL
FL$SCLSE

1/0 statement termination
direct access 1/0
formatted 1/O
namelist 1/0
sequential 1/O

FL$IOCOM

FL$SIOCOM
FLSERBYT
FL$ERR
FL$GTSAV
FL$IFSAV
FL$IOSAV
FLSOFSAV
FL$ROSAV
FLSRWSAV
FL$SKADR
FL$TBSAV
FLSWTSAV

/0 control common

error control routine

FLSIOERR

FL$IOERR

Data management fatal error processor

FL$IOLST

FL$IOLST
FL$IOLS

1/0 list item processor

FLSIOPEN

FL$IOPEN
FL$BCKSP
FL$SDFIND
FL$SDOPEN
FLSENDFL
FLSREWND
FL$SOPEN

1/O argument list processor

for FIND statement
for direct access 1/O

for sequential 1/O

FLSI01

FL$IO1
FL$ERRCT
FL$FUNTB
FL$RERDB
FLSWORKA
FL$1

FL$2
FL$3
FL$11
FL$12
FORT11
FORT11C
FORTI1E
FORT12
FORT12C
FORT12E
FORT2
FORT2C
PRNTR
PRNTRC

Alternate 1/O configuration

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

FORTRAN Iv

Table G—1.

FORTRAN IV Run-Time Modules (Part 10 of 12)

Module

CSECT or
Entry Name

Function

FL$IXPI

FL$IXPI
FL$I
FL$N
FL$JI
FL$M
FP$HTH
FP$HTI
FP$ITH
FP$ITI

Integer power functions:

14**14
14**12
12**14
12**12

12**12 (Basic FORTRAN)
12**14 (Basic FORTRAN)
14**12 (Basic FORTRAN)
14**14 (Basic FORTRAN)

FL$LOAD

FL$LOAD
L$AD
0$sYs

LOAD and OPSYS subroutines

FLSMAX

FLSMAX
AMAXO0
AMAX1
AMINO
AMIN1
JMAXO
JMINO
MAX
MAXO0
MAX1
MIN
MINO
MIN1

Max/min intrinsic functions

FL$MOD

FLSMOD
AMOD
DMOD
JMOD
MOD

Modulo arithmetic intrinsic functions

FLSNAMEI

FLSNAME!

NAMELIST input

FLSNAMEO

FLSNAMEO

NAMELIST output

FLSOUTF3

FL$SOUTF3
FLSOUTFL

Set file to output mode for system

FLSOVRFL

FL$SOVRFL
OS$ERFL

Overflow subroutine

FLSOVW70

FL$SOVW70
O$ERFL

Series 70 overflow subroutine

FLSPOWER

FL$POWER
ALOG
ALOG10
EXP
EXP10
FL$ALOGS
FL$EXPS
FL$IR
FL$JR
FL$RI
FL$RJ

Real*4 power functions

14**R4
12**R4
R4**14
R4**12

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

FORTRAN IV

Table G—1.

FORTRAN IV Run-Time Modules (Part 11 of 12)

Module

CSECT or
Entry Name

Function

FL$POWER
{cont)

FL$RR
FPSEXP$
FP$HTR
FP$ITR
FP$RTH
FP$RTI
FP$RTR
LOG
LOG10

R4**R4

12**R4 (Basic FORTRAN)
14**R4 (Basic FORTRAN)
R4**12 (Basic FORTRAN)
R4**14 (Basic FORTRAN)
R4**R4 (Basic FORTRAN])

FL$READ

FLSREAD
FL$EOF
FLSERROA

Input file processor

FLSREAL

FLSREAL
DREAL
REAL

Real part of complex intrinsic function

FLSREOPN

FLSREOPN

Reopen closed file

FLSRWNDA

FLSRWNDA

REWIND statement processor

FLSSCNUM

FLSSCNUM

FL$SIGN

FL$SIGN
DSIGN
FL$DSIGN
FL$ISIGN
FL$JSIGN
ISIGN
JSIGN
SIGN

Sign intrinsic functions

FLS$SIN

FLS$SIN
cos
FLCOS
FL$SINS
SIN

Sine/cosine functions

FL$SLITE

FL$SLITE
S$ITE
S$ITET

SLITE/SLITET subroutines

FL$SNGL

FL$SNGL
CSNGL
SNGL

Single from double intrinsic functions

FL$SOPNA

FL$SOPNA

FL$SQRT

FL$SQRT
SQRT

Real *4 square root function

FL$SSWTH

FL$SSWTH
S$WTCH

System switch subroutines

FL$STOP

FL$STOP
FLSPAUSE

STOP/PAUSE processor

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 G-12
FORTRAN IV

Table G—1. FORTRAN IV Run-Time Modules (Part 12 of 12)

| CSECT or .
Module Entry Name Function
FL$STXIT FL$STXIT STXIT control routine
FLSSTXTA
FL$TAN FLSTAN Real *4 tangent/contangent functions
CcoT
COTAN
TAN
FLSUNFOR FLSUNFOR Unformatted 1/0 processor
FLSWRITE FL$WRITE Output file processor
FF$AG ILF#AG FORTRAN IV assigned GO TO
ILF#CG FORTRAN |V computed GO TO
FF$IC ILF#1C FORTRAN 1V 1/0 interface
FF$MPI ILF#MPI FORTRAN IV initialization
ILF#BUG FORTRAN IV diagnostics
FF$NL ILF#NL FORTRAN IV namelist interface
FF$PA ILE#PA FORTRAN IV PAUSE
FF$SOPNA Checks operation sequences
FF$SCHK ILF#SCHK FORTRAN 1V subscript check processor
ILF#FO 1 byte arrays
ILE#F1 2 byte arrays
ILF#F2 4 byte arrays
ILF#F3 8 byte arrays
ILF#Fa 16 byte arrays
FF$TR ILF#TR FORTRAN 1V label tracing
FF$XD ILF#XD FORTRAN |V complex division
ILF#XV FORTRAN 1V real/complex
FF$XM ILFH# XM FORTRAN [V complex multiply

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3
FORTRAN IV

G-13

Table G—2. FORTRAN |V Standard Library Function Names (Part 1 of 2)

Name Standard Library Function Name Standard Library Function
ILF#00 EXP ILF#50 AMAXO
ILF&O1 DEXP ILF#51 MAX1
ILF#02 CEXP ILF#52 AMINO
ILF#03 CDEXP ILF#53 MIN1
ILF#04 ALOG ILF#54 FLOAT
ILF#05 DLOG ILF#55 DFLOAT
ILF#06 CLOG ILF#56 IFIX
ILF#07 CDLOG ILF#57 HFIX
ILF#08 ALOG10 ILF#58 SIGN
ILF#09 DLOG10 ILF#59 ISIGN
ILF#10 ATAN ILF#60 DSIGN
ILF#11 DATAN ILF#61 DIM
ILF#12 SIN ILF#62 IDIM
ILF#13 DSIN ILF#63 SNGL
ILF#14 CSIN ILF#64 CSNGL
ILF#15 CDSIN ILF#65 REAL
ILF#16 JMAXO ILF#66 DREAL
ILF#17 MAX0 ILF#67 AIMAG
ILF#18 AMAX1 ILF#68 DIMAG
ILF#19 DMAX1 ILF#69 DBLE
ILF#20 JMINO ILF#70 CDBLE
ILF#21 MINO ILF#71 CMPLX
ILF#22 AMIN1 ILF#72 DCMPLX
ILF#23 DMIN1 ILF#73 CDNJG
ILF#24 cos ILF#74 DCONJG
ILF#25 DCOS ILF#75 DDIM
ILF#26 CCOs ILF#76 JSIGN
ILF#27 CDCOS ILF#77 JDIM
ILF#28 TANH ILF#78 HFLOAT
ILF#29 DTANH ILF#79 DHFLOT
ILF#30 SQRT ILF#80 SINH
ILF#31 DSQRT ILF#80 COSH
ILF#32 CSQRT ILF#82 DSINH
ILF#33 CDSQRT ILF#83 DCASH
ILF#34 MOD ILF#84 ASIN
ILF#35 JMOD ILF#85 ACOS
ILF#36 AMOD ILF#86 DASIN
ILF#37 DMOD ILF#87 DACOS
ILF#38 CABS ILF#88 TAN
ILF#39 CDABS ILF#89 COTAN
ILF#40 ABS ILF#90 DTAN
ILF#41 IABS ILF#91 DCOTAN
ILF#42 JABS ILF#92 ERF
ILF#43 DABS ILF#93 ERFC
ILF#44 ATAN2 ILF#94 DERF
ILF#45 DATAN2 ILF#95 DERFC
ILF#46 INT ILF#96 GAMMA
ILF#47 IDINT ILF#97 ALGAMA
ILF#48 AINT ILF#98 DGAMMA
ILF#49 DINT ILF#99 DLGAMA

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 G-14
FORTRAN IV

Table G—2. FORTRAN IV Standard Library Function Names {Part 2 of 2)

Name Standard Library Function
ILF#AO CSINH

ILF#A1 CDSINH

ILF#A2 CCOSH

ILF#A3 CDCOSH

ILF#A4 EXP10

ILF#AS DEXP10

ILF#A6 CBRT

ILF#A7 DCBRT

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 H-1

FORTRAN IV

Appendix H. Subroutine Linkage

H.1. CALLING FORTRAN SUBPROGRAMS

All language processors, including FORTRAN [V, generate and expect standard subprogram linkages in their
generated programs. These linkage conventions are defined in the supervisor user guide. In addition, special
FORTRAN conventions and considerations are required (suggested) for successful operation of the run-time
system.

H.1.1. Save Area

A FORTRAN subprogram requires a 72-byte, word-aligned save area, supplied by the calling program. Table H-1
illustrates the format of a save area. Word 1 of the save area is reserved for system use. Words 2 and 4 through
18 are initialized according to standard linking conventions.

During execution of a FORTRAN subprogram, register 13 contains the address of this program'’s save area. Word
2 contains the pointer to the save area supplied to the program. Just before returning to the calling program,

register 13 is restored to the calling program’s save area and a X'FF’ is put into byte 12 of the save area as a
termination indicator.

Table H—1. Save Area Format (Part 1 of 2)

Word Byte Content

1 0 RESERVED FOR SYSTEM USE

2 4 SAVE AREA BACKWARD LINK ADDRESS
3 8 SAVE AREA FORWARD LINK ADDRESS
4 12 CALLING PROGRAM RETURN ADDRESS
5 16 CALLED PROGRAM ENTRY POINT ADDRESS
6 20 REGISTER O -

7 24 REGISTER 1

8 28 REGISTER 2

9 | 32 REGISTER 3

10 36 REGISTER 4

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 H-2
FORTRAN IV

Table H—1. Save Area Format (Part 2 of 2}

Word Byte Content
| a0 REGISTERS
12 44 REGISTER 6
13 4 REGISTER 7
| 52 REGISTER 8
15 56 REGISTER 9
16 60 REGISTER 10
17 64 REGISTER 11
18 68 REGISTER 12
NOTE:

Each word in the save area is aligned on a full-word boundary.

H.1.2. Required Entry Conditions

The following entry conditions are required:

L Register 13 must contain the save area address.

= Register 14 must contain the return address.

= Register 15 must contain the entry point address.

] If parameters are passed, register 1 must contain the address of a word-aligned parameter list. The
compiler-generated program requires that the actual arguments specified in the parameter list conform in
type and number with the dummy arguments. Each word in the parameter list contains the address of the
actual argument. If the dummy argument is:

- a simple variable, the parameter list contains the address of the actual value being passed;

- an array name, the parameter list contains the address of the first element in the array;

- a subprogram name, the parameter list contains the address of a word containing the address of the
subprogram’s entry point.

FORTRAN IV requires that integer=2 simple variables and array arguments contain the actual address minus 2.
This permits integer constants to be passed as integer*2 arguments.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 H-3

FORTRAN IV

H.1.3. Exit Conditions

When a FORTRAN subprogram returns to the calling program, registers 2 through 14 are restored to their
original contents and the contents of all call-by-value actual arguments are set to the value of the corresponding

"local dummy argument. If a subroutine is exiting, register 15 contains the K value of the RETURN K statement. A

simple RETURN is equivalent to RETURN 0.

A function returns its value in a register depending on its type. The function types and corresponding registers
are illustrated in Table H-2.

Table H—2. Function Types and Corresponding Registers

Function Type Register Containing Value
INTEGER*2 General register 0
INTEGER[*4] eralreg
REAL[*4] . . .
{REAL‘B,DOUBLE PREC|SION} Floating point register 0
COMPLEX[*8] Real part in floating register O
COMPLEX*16 Imaginary part in floating register 2
LOGICAL*1 .
{LOGICAL[*M} General register 0

NOTE:

Registers 0, 1, and 15 and all floating-point registers are not preserved over a subprogram reference.

H.1.4. Mathematical Library

The mathematical functions supplied by FORTRAN IV are available to programs written in other languages.
Tables 5-3 and 5-4 specify the functions available and Appendix G lists the actual modules containing these
functions.

The mathematical library is entirely self-contained except for one external reference. If an error condition is
possible, the function uses the first word of FL$IOARA (I/0O area) to get to an error control routine. The error
routine FLSERR is required for FORTRAN IV. if a FORTRAN-compiled program is also included in the executable
module, FORTRAN automatically supplies the common area, FL$IOARA. However, if FORTRAN-compiled
subprograms are not included in the load module, the user must supply the FL$IOARA module. An assembly
language routine to accomplish this is:

1 10 16

FLSIOARA START @
DC A(FORTERR)
FORTERR DS OH
USING FORTERR,15
DUMP
END

More complicated routines may be substituted when required. However, the first word at FL$IOARA must be an
address constant containing the address of the processing routine.

UP-8474 Rev. 2 SPERRY UNIVAC 0S5/3 H-4
FORTRAN IV

H.1.5. Compiled Subprograms

Other language programs may use FORTRAN-compiled subprograms. FORTRAN subprograms assume
availability of a complete FORTRAN run-time library for support. However, if only a subprogram is used and the
FORTRAN library support is not available, then OVERFL, DVCHK, and orderly termination on fatal errors are not
normally supported.

The FLSINITL routine uses both the program check and abnormal termination island code services of the
supervisor. In addition, the program mask bits in the PSW are set to allow exponent overflow and underflow
interrupts. A complete FORTRAN 1/0 environment is required for printing diagnostic information.

A subprogram may use FORTRAN 1/0 to process data files. However, a FORTRAN STOP statement must be used
to terminate job step processing. An ENDFILE statement should be used for any active sequential 1/0 unit before
the final exit from the FORTRAN routine. The ENDFILE statement ensures that the file is closed by data
management with all 1/0 activity completed.

H.2. CALLING FROM FORTRAN PROGRAMS

When a FORTRAN-compiled program references a subprogram:

L] register 1 contains the address of a parameter list;

. register 13 contains the address of an 18-word save area;

. register 14 contains the return address; and

L] register 15 contains the subprogram’s entry address. .

The four bytes at the address in register 14 is a NOP with the FORTRAN source line number in hexadecimal as
the second half word. An equivalent assembly language cailing sequence would be as follows:

1 10 16

LA R13,SAVEAREA

LA R1,PARMLST

L R15,=V(PROGNAME)
BALR R14,R15

NOP X‘'(linenumber)’

H.2.1. Parameter List Formats

If the subprogram reference has an actual argument list, register 1 contains the address of the parameter list.
The parameter list is a sequence of words containing the addresses of the actual arguments. The last word in the
parameter list is identified with bit O of the first byte of the word set to 1.

If the actual argument is a variable, array element reference, or constant, the parameter list points to the
appropriate location containing the value. An actual argument that is an array name is equivalent to passing the
first element in the array. Label arguments (H.2.2) are not passed in the parameter list. For integer=2 variables
and arrays, the parameter list points to two bytes before the location containing the value(s).

NOTE:

Logical constants are always passed as logical*4 values and integer constants are always passed as integer*4
values.

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 H-5

FORTRAN IV

H.2.2. Label Arguments

Labels may be passed in an actual argument list in a CALL statement. When labels occur, they are not explicitly
passed in the parameter list, but immediately following the CALL statement, they are converted to a form similar
to a computed GO TO. Upon return, the compiler expects register 15 to contain a value indicating how to process
the labels. For n labels, if register 15 contains a value i with 1<i<n, control passes to the statement at the ith
label. Any other values in register 15 cause control to pass to the next sequential statement.

H.2.3. Conventions

A FORTRAN-compiled program assumes that registers 2 through 14 are not modified during a subprogram
reference. Register 13 contains a save area address for the called subprogram to save any needed registers. The
called subprograms should conform to the standard usage of this save area through normal linkage conventions.
Words 1 and 2 must not be modified; they contain required FORTRAN system information. Registers O, 1, 15,
and the four floating-point registers may be modified by the called program.

If the subprogram is a function, it must return a value. The location of this value is specified in Table H-2.

H.3. TRACEBACK INTERFACE

When the FORTRAN run-time system prints a diagnostic, a traceback of the current subprogram linkage is
attempted. Beginning with the current save area, indicated by register 13, the traceback routine uses the
backward link, word 2, of each save area to determine the sequence of calls and then prints this information.
Observing the following conventions will avoid any possible problems with the traceback routines.

1. During subprogram execution, point register 13 to a local save area. This ensures a correct beginning for
the traceback.

2. Fill the backward link address, word 2, in every save area with the appropriate address. The main program
must have a zero in this field.

1 10 16

MYMOD START

SAVEAREA DC 18F‘@° 72 bytes

DC X‘6’ length
DC CL5 ‘MYMOD’ name

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 H-6
FORTRAN IV

3. The traceback routine assumes the entry name is located four bytes after the entry point. The formisa 1-
byte length, followed by one to six bytes containing the entry name. In assembly language, the normal
entry point is coded as follows:

1 10 16

MYMOD START

ENTRY MYENT

USING MYENT,R15
MYENT B »+6

DC X‘5’

DC CL5 "MYENT’

4. The traceback routine assumes that a half-word line number is located two bytes after the return point
(specified in register 14). Refer to H.2 for an assembly language example of this.

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

Index 1

FORTRAN IV
Index
Term Reference Page Term Reference Page
A Assignment statements
arithmetic and logical 331 3-5
ABNORMAL statement 5413 5—7 conversion Table 3—3 3—6
description 33 3—4
Argument substitution
call by name 552 5—13
call by value 55.1 5—12
description 55 5—12
B
aumens e 931 o_p | BACKSPACE auxilary 1/0
description 5:1. 52 statement 7.36.2 7—20
forms Table 5—2 5—2 Binary arguments
IT N . X
UN See UNIT arguments card input D2 D—1
Arithmetic assignment statements 331 3—5 card output D3 D—2
Arithmetic expressions 321 3—1 Biank descriptor 733111 7-12
326 3—-3
BLOCK DATA statement 831 8—3
Arithmetic IF statement 42 4—1 .
Block sizes 123.1.2 12—3
Arithmetic, mixed mode 325 3—3 .
Buffer allocation 12314 12—4
Arithmetic operations
implementation 327 3—4
user checks 326 3—3
Arithmetic underflow and overflow (OVERFL) 56.3.1 5—22 C
Arrays Call by name, argument substitution 552 5—13
declaration 6.2 6—1
declarator 6.2.1 6—1 Call by value, argument substitution 55.1 5—12
description 24 2—6
element position location 242 2—7 CALL statem_ent
element reference 24.1 2—6 description 522 5—3
standard library subroutines 56.3 522
ASClI character set arguments D.2 D—1
D3 D—2 Calling from FORTRAN programs
conventions H2.3 H—5
ASSIGN statement 33.2 3—5 description H2 H—4
label arguments H.2.2 H—5
Assigned GO TO statement 46 4—3 parameter list formats H.2.1 H—4

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 Index 2
FORTRAN IV Update B
Term Reference Page Term Reference Page
Card input files PARAM statement 9.3 9—1
arguments Table C—3 C—2 source correction facility 95 9—A4a
data management 123422 12—12 stacked 94 94
description 12342 12—10 workstation £E6 E—12
spooled 123421 12—10
Table C(—2 C—2 Compile-assemble-link-execute, sample E4 E—9
Card output files Compile-link-execute, sample E2 E—6
arguments Table C—4 (C—3
definition 12343 12—16 | Compile-time diagnostics Table F—1 F—2
Card punch options D3 D—2 Compiled subprograms H.15 H—4
Card reader options D.2 0—1 Complex constants 225 2—4
Carriage control conventions 7333 7—13 COMPLEX statement 6.4 6—2
CDM configurations Computed GO TO statement 45 43
programmer defined 11.3 113
supplied 112 11—2 | Conditional compilation 10.2 10—1
CDM relationship 11.1 11-—-1 Configurations
CDM-supplied 11.2 112
Character set DTF-supplied 122 12—2
description 121 1-4 programmer-supplied 113 113
EBCDIC Table A—1 A—2 12.3 12——3
printer graphics A2 A—1
source program and input data Al A—1 Constants
complex 225 2—4
Clauses (END, ERR, SCREEN) 73.11 7—4 double precision 223 2—3
hexadecimal 224 2—3
Coding example, FORTRAN IV 114 11-31 integer 221 2—1
literal 227 2—5
Coding form 122 1—4 logical 226 2—4
real 222 2—2
Collection, program Section 13
CONTINUE statement 48 4—5
Combined disk files
arguments Table C—10 C—7 Control information check (SSWTCH) 56.3.7 5—26
definition 1234532 12—36
MIRAM disk files See MIRAM disk files Control statements
CONTINUE statement 48 4—5
Comments 123 1—4 DO loops 47 4—4
END statement 411 4—6
COMMON statement GO T0 statement, assigned 46 4—3
description 6.6 6—6 GO TO statement, computed 45 4—3
interaction with EQUIVALENCE statement 6.6.1 6—6 GO TO statement, unconditional 44 42
IF statement, arithmetic 4.2 4—1
Compatibility 111 1-2 IF statement, logical 43 4—2
PAUSE statement 410 4—6
Compilation STOP statement 49 4—6
arguments 93.1 9—2
conditional 10.2 10—1
description 9.1 9—1
FORTRAN IV 9.2 9—1
large version 9.7 9—5
PARAM options E5 E—11

UP-3474 Rev. 2

SPERRY UNIVAC 0S/3

Index 3

FORTRAN IV
Term Reference Page Term Reference Page
D DIMENSION statement 6.3 6—2
Data initialization Direct access files
BLOCK DATA statement 83.1 8—3 g;ﬁl"nﬂfo"f ;af'e =7 g‘_‘ga
block data subprogram 83 8—3 123452 12—32
DATA statement 8.2 8—1 options 06 D—3
Data management Disk fil
additional devices D.7 D—4 1S ISZscription 11.323 11—16
card input file definition 12342 12—10 direct access 12 3'4'5 9 19—32
interface 12.1 12—1 06 D—3
Table C—7 C—6
DATA statement 82 81 sequential 123451 12—25
Data types D5 D—3
arrays 24 2—6 Table C—6 (—5
description 21 2—1 . _
constants 29 91 Disk FIND statement 744 1—26
variables 23 2—5 Disk library, source module for
Debugging stacked compilation E3 £—-10
description 10.1 10—1 .
conditional compilation 10.2 10— | Disk READ statement 742 -2
formatted main storage dump 10.3 10—1 ; _
statement numbers option 104 10—2 Disk WRITE statement 743 =2
DEFINE FILE statement 741 723 Divide check subroutine {DVCHK) 56.3.1 5—-23
Definition DO-implied list 7121 72
statement function 53 5—4
subprogram 54 5—5 DO range 471 4=5
Descriptors DO statement 47 4—4
blank 733111 7-12 .
double precision 73314 710 Double precision constants 223 2—3
general 73316 7—10 s . _
hexadecimal 73319 711 Double precision descriptor 713314 7—10
Hollerith, A conversion 713317 7—10
Hollerith. H conversion 73318 7—11 | DOUBLE PRECISION statement 64 62
:pteg(ler ;gg” 0 ;_?1 DTF configurations
fera PSS - programmer-defined 123 12—2
logical 73315 7—10 supplied 12.2 12—2
real, E conversion 73312 -9 ’
real, F conversion 73313 7—9 . _
record position 733112 7—12 Dump, formatted main storage 10.3 10—1
i | 6.3. —
Device type 12311 12—3 DUMP subroutine call statement 56.3.8 5—26
Devices and arguments Table 11—1 11—4
Diagnostic messages
compile-time Appendix F
description 1333 13—4
13.4.3 13—5
name usage conflict Appendix F
operation-type Table F—2 F—14

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 Index 4

FORTRAN IV Update B
Term Reference Page Term Reference Page
E Execution environment (DTF)
configurator supplied 12.2 12—1
EBCDIC data management interface 12.1 12—1
input character set Table A—1 A—2 error environment definition (ERRDEF) 12.3.6 12—43
; file definition conventions 1231 12—3
A—3 A— ; .)
output character set Table A—3 8 programmer-defined configurations 12.3 12—2
. . . START statement initialization (FUNTAB) 12.3.2 12—6

Element position location, arrays 242 2—7 unit definition 1234 19—

Element reference, arrays 241 9—6 unit definition termination (FUNEND) 1235 12—42

END clause 7311 74 Exit conditions, subprogram H.1.3 H—3

END statement EXIT subroutine 56.3.9 5—26
CDM environment 11.35 11-30 .
description 411 4—§ Explicit type statement 6.4.1 6—3
DTF environment 1237 12—46 .

Expressions
- arithmetic 321 3—1
ENDFILE auxitiary 1/0 statement 7363 7-21 evaluation order 394 3—2
" Table 3—1 3—3

Entry conditions, subprograms H1.2 H—2 logical 323 3—2

ENTRY statement 543 511 refational 322 3—1

EQUIVALENCE statement Extensions 112 1—2
description ' 6.5 6—6 .

; . . External functions
interaction with common statement 6.6.1 6—6 ABNORMAL

Equivalent unit
arguments Table C—9 C—6
definition 12347 12—40

ERR clause 73.1.1 7—4

ERRFIL parameter 931 9—2

El E—1
Error environment definition procedure F
(ERRDEF) ‘
CDM environment 1134 11—27 | FETCH subroutine call statement 56.3.10 5—26
DTF environment 1236 12—43 .
Field descriptors, FORMAT statement
Error file processing 93.1 92 blank 733111 7-12
Also see Descriptors.
Error indicator set subroutine (ERROR1) 5634 5—25
File definition (CDM)
Error indicator test subroutine (ERROR) 56.3.3 5—24 disk 11.323 11-16
tape 11.322 11—-10
Evaluation order, expressions 324 3—2 unit record 11321 11—6
Table 3—1 3—3
File definition (DTF)

Execution environment (CDM) card output 12.34.3 12—16
configurator supplied 11.2 11-2 data management card input 123422 12—12
description 11.1 11—1 direct access disk 123452 12—-32
programmer-defined configurations 11.3 11-3 printer 12341 12—7
START statement 11.3.1 11—-5 sequential disk 123451 12—-25

spooled card input 123421 12—10
tape 12344 12—19

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3 Index 5
FORTRAN IV Update B
Term Reference Page Term Reference Page
File definition conventions (DTF environment)
buffer allocation 12314 12—4 G
device type 123.1.1 12—3 ‘
file type 12315 12—5 General descriptor 73316 7—10
record and block sizes 123.1.2 123
record formats 12313 12—3 | GO 70 statement
assigned 46 4—3
File screen workstation 1/0 738 723 computed 45 4-3
unconditional 44 42
File type 12.3.15 12—5
Graphics, printer A2 A—1
FIND statement 7144 7—26 o
Guidelines, source code 1.3 1—7
FORMAT statement
carriage control conventions 7333 7—13
description 733 7—6
field descriptors 7331 7—17
interaction with 170 list 7334 7—14
multiple record format specification 7332 7—13
permissible associations of list items Table 7—3 7—15
Formatted READ/WRITE statements 132 7—5
FORTRAN IV coding example 11.4 11—-32 H
Function reference 591 5_3 Hexadecimal constants 224 2—3
FUNCTION statement 54.1.1 5—6 Hexadecimal deSCfiptor 73319 7—11
. : Hollerith descriptors 7.33.17 7—10
Function sub , multiple ent 543 5—10
unction subprograms, multiple entry 73318 1
Functions
description 5.1 5—2
external 54.1 5—5
intrinsic 56.1 5—-14
Table 5—3 5—15
standard library 56.2 5—16
Table 5—4 5—17
statement, definition 5.3 5—4
FUNEND unit definition termination procedure |
CDM envirenment 11.3.3 H=27| ¢ statement
DTF environment 12.35 12—42 arithmetic 49 4—1
logical 43 4—2
FUNTAB initialization procedure 1233 12—6 Bice
IMPLICIT statement 6.4.2 6—4
FOR4 call statement E1 E—1 Indicator setting subroutine (SLITE) 56.3.5 525
FORAL call statement El E—1 | Indicator testing subroutine (SLITET) 56.36 5—25
FOR4LG call statement E.l E—1

Initialization procedure (FUNTAB)
CDM environment
DTF environment

Input files, card

1132 1116
1233 12—6

See card input files.

SPERRY UNIVAC 0S/3

UP-8474 Rev. 2 Index 6
FORTRAN IV
Term Reference Page Term Reference Page
Input/output
description 7.1 7—1
direct access files 74 7—23 Label arguments H.2.2 H—5
list 12 7—1 |
list-directed 735 7—16 1 _
sequential files 73 7—2 Label trace 06 103
137 7—=22 . . - "
statements See 1/0 statements. Library function names Table G—2 G—1I11
Integer constants 221 2—1 L'brarydz;?:;;g: s 56 514
intrinsic functi 8. —14
Integer descriptor 7331.1 7—8 intrinsic functions ?a%lle 5—3 2_15
special names Table 5—5 5—28
INTEGER statement 64 6—2 standard library functions 56.2 5—16
. . Table 5—4 5—17
Intrinsic functions 56.1 S—14 standard library subroutines 56.3 §—22
Table 5—3 5—15 Table 5—5 5—28
1/0 list, format interaction 7334 T—14 | Lirar ~
J y subroutines
Table 7—3 7—15 DUMP 5638 5-26
DVCHK 5632 5—23
1/0 statements ERROR 5.6.3.3 5—24
BACKSPACE 7.36.2 7—20 ERROR1 5.6.3.4 5--25
DEFINE FILE 74.1 7—23 FETCH 56.3.10 5—26
ENDFILE 7363 7-21 PDUMP 56.38 526
FORMAT 733 =6 SLITE 5635 5—25
NAMELIST 7.35.1 7—16 SLITET 56.3.6 525
READ 731 73 " 7)
739 I—s5 SSWICH 56.3. 5—26
134 7—15 . "
’ Link editing
REWIND 7361 7—20 description 12.2 12—1
WRITE 731 73 FORTRAN supplied modules 1221 12—1
132 1=5 linkage editor output 12.2.3 12—3
| d region struct 12.2.2 12—2
1/0 unit module 12.3.1 12—4 overlay and region structures
Linkage, subroutine Appendix H
List-directed input/output
description 735 7—16
NAMELIST statement 7.35.1 7—16
simple 7352 7—18
Literal constants 227 2—5
Literal descriptor 733110 7—11
Load module name 56.3.10 5—27
Job control procedure E.l E—1
LOAD subroutine call statement 56.3.11 527
Job control stream, creating a 9.6 9—-5
Logical assignment statements 331 3—5
Job controf stream examples Appendix E
Logical constants 226 2—4

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

Index 7

FORTRAN IV Update B
. Term Reference Page Term Reference Page
Logical descriptor 73315 7-—-10 (0]
Logical expressions 323 32 Operators, evaluation order Table 3—1 3—3
Logical IF statement 43 4-—2 OPSYS subroutine call statement 56.3.12 5—27
LOGICAL statement 6.4 6—2 Output file definition, card 12.3.43 12—16
OVERFL subroutine call statement 5.6.3 5—22
Overlays 56.3 5—-27
13.2.2 13—2
Main storage dump
formatted 103 10—1
routines 56.38 5—26
Mathematical library H1.4 H—3
o PARAM statement
MIRAM disk files arguments 931 9—2
arguments Table C—10 C—7 format 9.3 9—1
definition 12.3.45.32 12—36 special optio E.5 F—11
record format 1234531 12—35 pectal options '
.) _ , Parameter list formats H.2.1 G—4
Mixed-mode arithmetic
result types and lengths Table 3—2 3—4 CDM 13.3.2 13—4
) o DTF 134.2 13—5
Multiple record format specification 71332 7—13
PAUSE statement 4.10 4—6
1332 13—4
134.2 13—5
PDUMP subroutine call statement 56.38 5—26
Printer files
arguments Table C—1 C—1
definition 12341 12—7
Printer graphics A2 A—1
Table A—2 A—3
NAMELIST statement 7351 7—17
Procedures
Names, symbolic 12.4 1—5 argument substitution 55 5—12
description 5.1 5—1
Table 5—1 5—1
function reference 521 5—-3
initialization reference (FUNTAB) 12.3.3 12—6
job control {jprocs) E1l E—1
library 5.6 5—14
statement function definition 53 5—4
. subprogram definition 54 5—5
subroutine reference 522 5—3
unit definition 1132 11-5
1234 12—6

UP-8474 Rev. 2 SPERRY UNIVAC 0S/3 index 8
FORTRAN IV Update B
Term Reference Page Term Reference Page
Program collection and execution, link
editing 13.2 13—1
Save area . H.1.1 H—1
PROGRAM statement 6.8 6—8 Table H—1 H—1
Scale factor effects 733113 7--13
SCREEN clause 7311 7—4
Sequential disk files
arguments Table C—6 C—5
definition 123451 12—25
option D.5 D—3
R Sequential files, 1/0 7.3 1—2
737 7121
READ sé?st:ment 742 vy SLITE subroutine call statement 56.35 5—-25
formatted 7132 /=4 | SUITET subroutine call statement 5636 5-25
unformatted 731 7—3
Source code guidelines 1.3 1-7
Real constants 222 2—2 g
Source correction facili 95 9—4a
Real descriptors 73312 7—9 Y
73313 7—9 Source module from disk library,
tacked compilation E3 E—8
REAL statement 6.4 6—2 ° P
Source programs
Record formats 123.1.3 12—3 c[t:arizgicter set 12.1 1—4
_ . comments 123 1—4
Record definition, unit 113.21 11—6 FORTRAN statements 122 1—4
statement order 125 1-5
Record position descriptor 733112 7-12 Figure 1—1 1—6
symbolic names 124 1-5
Record size 12312 12—3 ymbote
Source statement order 125 1-5
Region structures 1322 13—1 Figure 1—1 1—6
Registers, subprogram exit conditions Table G—2 G—3 Specification statement interaction
tandard lib functions 56.2.1 5—16
Relational expressions 322 3—1 standard flbrary functio
) Specification statements
Reread unit array declaration 6.2 6—1
a’g.“’!‘.e"*s Table B—8 B—6 array declarator 6.2.1 6—1
definition 734 7—15 COMMON statement 6.6 6—6
12346 1239 description 6.1 6—1
11325 11-24 DIMENSION statement 6.3 6—2
EQUIVALENCE stat t 5 —
RETURN statement 5422 59 EXTERNAL statemert 7 -
OGRAM stat . —_
REWIND auxiliary 1/0 statement 7361 7—20 g';eGstatemseiéme"t 22 g_g
Run-time modules Table G—1 G—1 Spooled card input file
arguments Table C—2 (—2
definition 123421 1210

UP-8474 Rev. 2

SPERRY UNIVAC 0S/3

Index 9

FORTRAN IV Update B
Term Reference Page Term Reference Page
SSWTCH subroutine call statement 56.3.7 5—26
Stacked compilation 94 9—4 Tape file arguments
CDM environment Table B—2 B—2
Standard library functions DTF environment Table C—5 C—3
description 56.2 5—16
listing Table 5—4 5—17 Traceback interface H3 H—5
names G.2 G—1
specification statement interaction 56.2.1 5—16 TRACE OFF statement 10.6.2 10—4
Standard library subroutines 563 522 TRACE ON statement 106.1 10—4
Table 5—5 5—28
Type statements 6.4 6—2
Statement function definition 53 5—4
Statements
control See control statements.
conventions 14 1—8
FORTRAN 122 1—4
170 See 1/0 statements.
source, order 125 1-5
specification See specification
statements.
START statement U
CDM environment 11.3.1 11-5 o
DTF environment 1232 19—g | Unconditional GO TO 44 4—2
Unformatted 1/0 st 3 —
STOP statement 19 1—6 nformatte statements 7.31 7—3
Subprogram definition UNIT a(;igst:(ments (CDM enviroment) Table B3 B3
external functions 541 5—5 equivalent Table B—5 B—5
multiple entry 543 5—10 reread unit Table B—5 B—5
subroutines 542 5—8 tape file Table B—2 B—2
Sub unit record Table B—1 B—1
ubprograms workstation Table B—4 B—4
calling H.1 H—1
compiled H15 H—4 UNIT ar R
. guments (DTF environment)
entry conditions H.12 H—2 card input files Table C—3 (—2
exit conditions . H13 H—3 card output files Table C—4 €—3
function types and corresponding direct access disk files Table C—7 C—6
registers Table H—2 H—3 equivalent unit Table C—9 C—6
mathematical library H.1.4_ H—3 MIRAM disk files Table C—10 C—7
. printer Table C—1 C—1
Subroutines reread unit Table C—8 (—6
description 542 58 sequential disk files Table C—6 C—5
linkage Apngnd'x G spooled card input files Table C—2 €—2
reference 5.2. 9—3 tape files Table C—5 (—3
RETURN statement 5422 5—-9
subprograms, multiple entry 543 5—10 finiti .
SUBROUTINE statement 5429 59 UNIT ddeistlr(utflitl)g procedure (CDM environment) 11323 16
ivalent unit 11.3.25 11—25
Subscript checking 10.5 10—2 reread wnit 11.3.2.5 11—24
) tape file 11322 11—10
Symbolic names 124 1-5 unit record 11331 11—6
kstati 11.324 11-21
Supplied modules 1321 13—1 workstation

SPERRY UNIVAC 0S/3 »

UP-8474 Rev. 2 index 10
FORTRAN IV Update B
Term Reference Page Term Reference Page
Unit definition procedure (DTF environment)
card input files 12342 12—10
card output files 12343 12—16 .
combined disk files 123453 12—35 ‘ariables 23 25
description 1234 12—6
direct access disk files 123452 1232
equivalent 12347 12—40
printer files 12.34.1 12—7
reread 12346 12—29
sequential disk files 123451 1225
tape files 12344 12—19
Unit definition termination procedure (FUNEND)
CDM environment 11.33 11—-27
DTF environment 1235 12—42 WRITE statement
disk 743 7—25
UNIT options formatted 1.3.2 7—5
additional data management devices D.7 D—4 unformatted 7.3.1 73
card punch D.3 D—2
card reader D2 D—1 Workstation compilation E6 E—12
CDM summary Appendix B
direct access disk file D.6 D—3 Workstation execution E7 E—13
DTF summary Appendix C
sequential disk files D5 D—3 Workstation 1/0 138
tape files D4 D—2
Workstation unit definition 11324

| SPERRY<FUNIVAC

.ong line.

|
|
|
|
I
|
|
|
|
I
|
|
|
|
l
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
[

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving

subsequent editions.

Please note: This form is not intended to be used as an order blank.

{Document Title)

(Document No.) {Revision No.) (Updaté No.)

Comments:

From:

{Name of User)

{Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A))

Thank you for your cooperation

| II I| | NO POSTAGE

|
NECESSARY
IF MAILED
IN THE
UNITED STATES
FIRST CLASS ~ PERMIT NO.21 BLUE BELL, PA.
L]
POSTAGE WILL BE PAID BY ADDRESSEE R
L
L
SPERRY UNIVAC E———
L]
ATTN.: SYSTEMS PUBLICATIONS ———
L
L]
R
R
P.0. BOX 500 R
BLUE BELL, PENNSYLVANIA 19424 ——

1ND .

USER COMMENT SHEET

Comments concerning the content, style, and usefulness of this manual may be made in the space provided below. Please
fill in the requested information.

This User Comment Sheet will not normally lead to a reply to the originator. Requests for copies of manuals, lists of manuals,
pricing information, etc. must be made through your Series 1100 site manager, to your Sperry Univac representative, or to
the Sperry Univac office serving your locality. Software problems should be submitted on a Software User Report {SUR)
form UD1-745. Questions of a technical nature regarding either the manual or the software should be submitted on a
Technical Question {question/answer) form UD1—1195. These forms are available through your Sperry Univac representative.

Customer Name: ’ System Type:

Title of Manual:

UP No.: Revision No.: Update:

Name of User: ‘ Date: .

Address of User:

Gom:ﬁonu: Give page and paragraph reference where appropriatq.

Not
Please rate this manual. Good Adequate Adequate
Organizationof thetext - - - ----«--c---comcccrccenonnenn - ———— e ———
Clarityofthetext - - - - -« --c--cnuu-c--s-omrean oo —_— e D
Adequacy of coverage - - - - - - - - -~ - - seccecenoe e i ———— —
Examples - - - - -- - c -t mm e R —— —— —
Crossreferences - - - - - ----«-c---o ottt s s o oo o — _— e
Tobles - - - - - ccmieaeanea e aaa e T e e e
fHustrations - - - - - - - - -~ - - - - e s st s s .t — — e
Index - ------ - e rs et e s sttt s e s m s —— PRSI [N,
ADPOArBNCE - - - .- - - - - - - - - - s oo ssssscmo e, —— e ——e

YOUR COMMENTS, PLEASE - - --

This manual is part of a library that serves as a source of information for personnel using SPERRY UNIVAC®
systems. Space is provided on the opposite side of this form for your comments concerning the usefulness of
the information presented. Each comment will be carefully reviewed by the persons responsible for writing
and publishing this manual. All' comments and suggestions become the property of Sperry Univac.

—

FOLD
18 (R D D R S (S (0) 0 O 0 N O O 0 00 N S RO I OO G A N D (NN N (D W00 D (A N N N IS I O A (N A NS D N A AR U R A0S D A UG A0 A V0 0 N BN AN

| " " | NO POSTAGE
NE

SRR
CESSARY
IF MAILED
IN THE
UNITED STATES
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.
— 5
¢ POSTAGE WILL BE PAID BY ———— B°
SPERRY UNIVAC I
R
ATTN: Systems Support =
1100 Systems Publications R
M.S. 4533 P ——
Lo e e
P.O. Box 43942 ——
St. Paul, Minnesota 55164 - -

A S 0 N A N D O O N 00 6 (U O A 4 N 0 0 e 5 0 £ O O
FOLD

---'----------J-----_-'--------J—--—----—-

SPERRY <= UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

» {Document No.} (Revision No.) (Update No.)
' Comments:
')
[
£
>
c
®:
(]
5
&)
From:

(Name of User)

{Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A))
Thank you for vour cooperation

|
|
|
|
|
|
|
|
|
|
|
l
l
|
|
|
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|
I
I
|

Y _

| I| || I NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

1nJ

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

Cut along line.

I
I
I
I
I
|
I
I
I
I
I
I
I
I
|
I
I
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
I
|
|
I
I
|

5 -

SPERRY <= UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

{Document No.) {Revision No.} (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A)
Thank you for your cooperation

| " " I NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

. A1Nd

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

