
•

•

•
U01 -251 Rev, 3173

Sort/Merge

User Guide

(Series 9~
r., Spt..-. foseaCUP-111'

lUP· 2

®
This Library Memo announces the release and availability of "SPERRY UNIVAC Operating System/3 (OS/3)
Sort/Merge User Guide", UP-8342 Rev. 3.

This revision documents the following new sort/merge features for the 8.0 release:

• Data management environment considerations have been included indicating the file types supported.

• UOS parameter of OUTF IL control statement for indpendent sort/merge now defaults to 100% rather than
0%.

• All messages for the sort/merge job are displayed at the initiating workstation.

• SORT3 is now compatible with IBM System/32 and 34 sorts, as well as with the IBM System/3 sort .

• The record type specification for SORT3 now allows the specification of UDATE, UDAY, UMONTH, and
UYEAR for Factor 2.

• The field specification for SORT3 now allows you to specify up to a maximum of 256 bytes for the overflow
field length.

All other changes are corrections or expanded descriptions applicable to features present in sort/merge prior to the
8.0 release.

Destruction Notice: If you are going to OS/3 release 8.0, use this revision and destroy all previous copies. If you are
not going to OS/3 release 8.0, retain the copy you are now using and store this revision for future use.

Copies of UP-8342 Rev. 2, UP-8342 Rev. 2-A and UP-8342 Rev. 2-B will be available for 6 months after the release
of 8.0. Should you need additional copies of this edition, you should order them within 90 days of the release of
8.0. When ordering the previous edition of a manual, be sure to identify the exact revision and update packages
desired and indicate that they are needed to support an earlier release.

Additional copies may be ordered by your local Sperry Univac representative.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A02, A03, A04, 18, 18U, 19, 19U,
20, 20U, 21, 21U, 75, 75U, 76, and 76U

(Cover and 336 pages)

Library Memo for
UP-8342 Rev. 3

September, 1982

•

•

•

•

Sort/Merge

•

Environment: 90/25, 30, 306, 40 Systems

•
H UNIVAC UP-8342 Rev. 3

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please consult the appropriate release documentation or contact
your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, MAPPER, PAGEWRITER, PIXIE, and UNIS
are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1976, 1977, 1978 - SPERRY CORPORATION PRINTED IN U.S.A.

•

•

•

•

•

•

UP-8342 Rev. 3

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Preface 1, 2

Contents 1 thru 9

PART 1

Title Page

1 1thru14

PART2

Title Page

2 1thru12

3 1 thru 65

4 1thru19

PART3

Title Page

5 1 thru 11

6 1 thru 54

7 1 thru 6

8 1 thru 16

9 1 thru 18

PART4

Title Page

10 1thru13

11 1 thru 37

12 1 thru 7

PART5

Title Page

Appendix A 1 thru 8

Appendix B 1 thru 4

Update
Level

SPERRY UNIVAC OS/3
SORT/MERGE

PAGE STATUS SUMMARY

ISSUE: UP-8342 Rev. 3
8.0 Forward RELEASE LEVEL:

Part/Section
Page Update

Number Level

Appendix C 1 thru 4

Appendix D 1 thru 11

Index 1 thru 18

User Comment
Sheet

Part/Section

PSS 1

Page
Number

Update
Level

All the technical changes are denoted by an arrow(-.) in the margin. A downward pointing arrow (f) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (t) is found. A horizontal arrow(-.) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions.

----- ----~-----------

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

Preface 1

Preface

This manual is one of a series designed to instruct and guide the programmer in the use .
of the SPERRY UNIVAC Operating System/3 (OS/3). It specifically describes the function
and effective use of the sort/merge programs available to the user of OS/3. The intended
audience is the novice programmer with a basic knowledge of data processing but with
little programming experience, and the programmer whose experience is on systems other
than Sperry Univac.

An introductory manual, the introduction to sort/merge, UP-8073 (current version), is also
available. It briefly describes the general characteristics and facilities offered by the
sort/merge programs for OS/3. For the more experienced programmer, the sort/merge
programmer reference, UP-8054 (current version) is available .

In this manual, sort/merge subject matter is divided into the following parts:

• Part 1. Survey of Sort/Merge

• Part 2. Independent Sort/Merge

• Part 3. Subroutine Sort/Merge

• Part 4. System/3, 32, and 34 Compatible Sort (SORT3)

• Part 5. Appendixes

We suggest that you read this manual from beginning to end. Although each part is self
contained, you can profit by comparing the three sort/merge programs in order to select
the one most suited for your application.

Part 1. Survey of Sort/Merge

Introduces you to the process of record sorting in relationship to the three sort programs
offered by OS/3. The information is presented in terms of what each program does, how
you use them, and what you should consider before using them .

UP-8342 Rev. 3

Part 2. Independent Sort/Merge

SPERRY UNIVAC OS/3
SORT/MERGE

Preface 2

Describes this sort/merge program from the system viewpoint and accents the software
framework and the operational phase structure. Part 2 emphasizes independent
sort/merge from the user viewpoint, including independent sort/merge requirements you
must supply:

• Job control stream

• Sort/merge control statements

• User exits to own-code routines

This part also discusses the independent sort/merge application to a typical disk sort
problem and ends with program and control stream examples.

Part 3. Subroutine Sort/Merge

Describes this sort/merge program from the user viewpoint by using the same disk sort
problem from Part 2 to emphasize:

• User program interface with subroutine sort/merge

• Assembling, link editing, and executing a typical disk sort program

• Special job control stream applications

• Subroutine sort/merge user own-code routines.

Part 3 also supplies subroutine sort/merge program examples.

Part 4. System/3, 32, and 34 Compatible Sort

Describes this sort/merge program from the system viewpoint to emphasize the purpose,
application, software framework, and operational structure of the program. In addition,
Part 4 describes the IBM System/3, 32, and 34 compatible sort from the user viewpoint to
include the supportive requirements you must supply to run the sort. This includes:

• Job control stream

• Sort control statements

Part 5. Appendixes

Contain:

• Statement conventions

• Sort parameter table contents

• Subroutine sort/merge interface requirements for the COBOL programmer

• OS/3 and standard EBCDIC and ASCII collating sequences

•

•

•

•

•

•

UP-8342 Rev. 3

PAGE STATUS SUMMARY

PREFACE

CONTENTS

SPERRY UNIVAC OS/3
SORT/MERGE

Contents 1

Contents

PART 1. SURVEY OF OS/3 SORT /MERGE PROGRAMS

1. INTRODUCTION

1.1. WHY YOU NEED A SORT PROGRAM 1-1

1.2. SORT /PROGRAMS AVAILABLE TO THE OS/3 USER 1-1
1.2.1. Independent Sort/Merge 1-2
1.2.2. Subroutine Sort/Merge 1-2
1.2.3. System/3, 32, and 34 Compatible Sort (SORT3) 1-3

1.3. CONCEPT OF MODULAR SORT STRUCTURE 1-4

1.4. WHAT OS/3 SORT PROGRAMS CAN DO FOR YOU 1-5

1.5. DATA MANAGEMENT CONSIDERATIONS 1-6

1.6. PROGRAM RESTRICTIONS 1-7

1.7. ELEMENTS AFFECTING PERFORMANCE OF A SORT PROGRAM 1-8
1.7.1. Main Storage Allocation 1-9
1.7.2. Auxiliary Storage Work Area Assignments 1-10
1.7.3. 1/0 Data File Organization 1-11
1.7.4. Sort Options 1-11

1.8. STRUCTURING YOUR INPUT /OUTPUT DATA 1-12

t

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

PART 2. INDEPENDENT SORT /MERGE

2. INDEPENDENT SORT /MERGE BASIC CONCEPTS

2.1. GENERAL

2.2. SORT PROBLEM: A SOLUTION

2.3. WHAT SORT /MERGE DOES FOR YOU

2.3.1. Software Framework

2.3.2. Sort/Merge Operation Phases

2.3.2.1. Phase 0: Sort Initialization and Assignment

2.3.2.2. Phase 1: Data Input and Internal Sort

2.3.2.3. Phase 2: Preliminary Merge

2.3.2.4. Phase 3: Final Merge

3. INDEPENDENT SORT /MERGE REQUIREMENTS YOU SUPPLY

3.1. GENERAL

3.1.1. Job Control Stream

3.2. SORT /MERGE CONTROL STATEMENTS

3.2.1. Defining a Sort Operation
3.2.2. Defining Data Records
3.2.3. Defining the Input File

3.2.4. Defining the Output File
3.2.5. Ending Input to Sort/Merge
3.2.6. Handling Special Independent Sort/Merge Specifications

3.3. EXIT CODES

3.3.1. Defining Exits
3.3.1.1. Exiting to Your Own-Code Routines

3.3.1.2. Exiting to System-Supplied DELETE Routine

3.3.2. Using Exit Codes

3.3.2.1. Input File Label Processing

3.3.2.2. Input File Processing

3.3.2.3. Input File Read Error Processing

3.3.2.4. Output File Label Processing

3.3.2.5. Output File Processing
3.3.2.6. Write Error Processing for Direct Access Devices

3.3.2.7. Record Sequencing
3.3.2.8. Data Reduction
3.3.2.9. User-Defined Collation Sequencing
3.3.3. An Example of Exit-Code Use
3.3.4. General Purpose Registers
3.3.5. Providing a Branch for User Own-Code Exits
3.3.6. Formatting the Exit Parameter List
3.3.7. Job Control for the Own-Code Routine

3.4. USING THE MERGE-ONLY PROCESS
3.4.1. Defining the Merge-Only Operation
3.4.2. Merge-Only Exit Code for Input File Processing
3.4.3. Merge-Only Exit Code for Input File Read Error Processing

Contents 2

•
2-1

2-2

2-3
2-5
2-7
2-7
2-8
2-9
2-11

3-1
3-3

3-14
3-15
3-23 • 3-25
3-29
3-35
3-35

3-43
3-44
3-44
3-46
3-46
3-46
3-47
3-48
3-48
3-48
3-49
3-50
3-50
3-51
3-51
3-55
3-55
3-56
3-57

3-60 • 3-60
3-63
3-64

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3.5. RUNNING YOUR SORT JOB FROM A WORKSTATION

4. INDEPENDENT SORT /MERGE PROGRAM AND CONTROL
STREAM EXAMPLES

4.1. GENERAL

4.2. INDEPENDENT SORT /MERGE CONTROL STATEMENT EXAMPLES

4.3. JOB CONTROL STREAMS TO PERFORM INDEPENDENT DISK SORTS

4.4. JOB CONTROL STREAM TO PERFORM INDEPENDENT TAPE SORTS

4.5. JOB CONTROL STREAM TO PERFORM AN INDEPENDENT DEFAULT SORT

PART 3. SUBROUTINE SORT /MERGE

5. SUBROUTINE SORT /MERGE BASIC CONCEPTS

5.1. GENERAL

5.2. SORT PROBLEM: A SOLUTION

5.3. WHAT SORT /MERGE DOES FOR YOU
5.3.1. Software Framework
5.3.2. Subroutine Sort/Merge Phases
5.3.2.1. Phase 0: Sort Initialization and Assignment
5.3.2.2. Phase 1: Initial Sort
5.3.2.3. Phase 2: Preliminary Merge
5.3.2.4. Phase 3: Final Merge

6. SUBROUTINE SORT /MERGE REQUIREMENTS YOU SUPPLY

6.1. GENERAL

6.2. INITIATING THE OPERATION

6.3. DEFINING FILES

6.4. EXPLAINING RUN REQUIREMENTS TO SUBROUTINE SORT /MERGE
6.4.1. Required MRSPRM Parameters
6.4.2. Optional MR$PRM Parameters
6.4.2.1. Device Assignment Parameters
6.4.2.2. Record Definition Parameters
6.4.2.3. Restart Parameter
6.4.2.4. Miscellaneous Parameters
6.4.3. MR$PRM for the Disk Sort Program

Contents 3

3-65

4-1

4-1

4-4

4-15

4-18

5-1

5-1

5-6
5-6
5-6
5-6
5-6
5-8
5-9

6-1

6-3

6-5

6-8
6-8
6-15
6-16
6-19
6-23
6-24
6-30

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6.5. ACTIVATING THE SUBROUTINE SORT/MERGE (MR$0PN)

6.6. GETTING DATA INTO THE SORT PROCESS

6.7. PASSING CONTROL TO OUTPUT PROCESS

6.8. DRAWING DATA FROM THE SORT PROCESS

6.9. ENDING THE SORT RUN

6.10. SUBROUTINE SORT /MERGE MACRO PARAMETER USAGE

6.11. ASSEMBLING, LINKING. AND EXECUTING YOUR PROGRAM
6.11.1. Assembling the Program
6.11.2. Link Editing the Program
6.11.3. Executing the Program
6.11.4. Typical Subroutine Disk Sort Job Control Stream
6.11.4.1. Alternate Job Control Stream
6.11.5. Job Control Stream for Tape Work File Assignment

6.12. SUBMITTING SORT PARAMETER TABLE ENTRIES VIA THE JOB CONTROL
STREAM

7. SUBROUTINE SORT /MERGE USER OWN-CODE ROUTINES

7.1. DEFINITION

7.2. RECORD SEQUENCE OWN-CODE ROUTINE (RSOC)

7.3. DATA REDUCTION OWN-CODE ROUTINE (DROC)

8. SPECIAL SUBROUTINE SORT /MERGE APPLICATIONS

8.1. TAG SORT

8.2. RESTART FACILITIES

8.3. MERGE-ONLY FUNCTION
8.3.1. What Merge-Only Does for You
8.3.2. Merge-Only Requirements You Supply (MG$REL and MG$RET)
8.3.3. Assembling, Link Editing, and Executing Subroutine Merge-Only Program

9. SUBROUTINE SORT /MERGE PROGRAM EXAMPLES

9.1. GENERAL

9.2. SUBROUTINE TAPE SORT

9.3. SUBROUTINE TAPE SORT WITH RESTART USING PARAM STATEMENT

Contents 4

6-31 • 6-32

6-32

6-33

6-34

6-38

6-39
6-39
6-41
6-41
6-43
6-52
6-53

6-53

7-1 • 7-1

7-3

8-1

8-2

8-2
8-3
8-6
8-15

9-1

9-1

9-5 •

---------------------·------

•

•

UP-8342 Rev. 3

9.4.

9.5.

9.6.

SPERRY UNIVAC OS/3
SORT/MERGE

SUBROUTINE TAPE SORT USING OWN-CODE ROUTINE

SUBROUTINE INTERNAL SORT

SUBROUTINE DISK SORT USING CONSOLIDATED DATA MANAGEMENT

PART 4. SYSTEM/3, 32, AND 34 COMPATIBLE SORT

10. SYSTEM/3, 32, AND 34 COMPATIBLE SORT BASIC CONCEPTS

10.1. GENERAL

10.2. EXECUTION OF THE SORT3 PROGRAM

10.3. SOFTWARE FRAMEWORK OF SORT3 PROGRAM
10.3.1. Phase 0: Sort Initialization and Assignment
10. 3. 2. Phase 1: Data Input and Internal Sort
10.3.3. Phase 2: Preliminary Merge
10.3.4. Phase 3: Final Merge and Output

10.4. RECORD HANDLING DURING SORT

10.5. CHARACTERISTICS OF SORTS PERFORMED BY SORT3 PROGRAM

10.6. RUNNING SORT3 FROM A WORKSTATION

Contents 5

9-8

9-13

9-13

10-1

10-2

10-2
10-5
10-6
10-8
10-9

10-10

10-11

10-13

11. SYSTEM/3, 32, AND 34 COMPATIBLE SORT REQUIREMENTS YOU SUPPLY

11.1. GENERAL 11 -1

11.2. PREPARING JOB CONTROL STATEMENTS FOR YOUR SORT 11-3
11.2.1. Identifying and Scheduling Your Job 11-4
11.2.2. Assigning Devices to Your Job 11-4
11.2.3. Initiating the Execution of the SORT3 Program 11-5
11.2.4. Marking the End of Your Job 11-6

11.3. SORT CONTROL SPECIFICATIONS FOR YOUR JOB 11-6
11.3.1. Determining the Sort Specifications Needed 11-7
11.3.2. Numbering Your Sort Specifications 11-8
11.3.3. Preparing the Sort Specifications 11-10
11.3.3.1. Header Specification 11-10
11.3.3.2. Record Type Specification 11-14
11.3.3.3. Field Description Specification 11-21
11.3.4 . Defining an Alternate Collating Sequence 11-36

•

....

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

12 . SYSTEM/3, 32, AND 34 COMPATIBLE SORT PROGRAM AND
CONTROL STREAM EXAMPLES

12.1. GENERAL

12.2. SORT PROGRAM CONTROL SPECIFICATION EXAMPLES

12.3. SORT PROGRAM CONTROL STREAM EXAMPLES

PART 5. APPENDIXES

A. STATEMENT CONVENTIONS

A.1. GENERAL FORMAT RULES FOR SUBROUTINE AND INDEPENDENT
SORT/MERGE

A.2. INDEPENDENT SORT /MERGE CONTROL STATEMENT FORMAT RULES

A.3. SUBROUTINE SORT /MERGE MACRO FORMAT RULES

B. CONTENTS OF SORT PARAMETER TABLE

c. SUBROUTINE SORT /MERGE INTERFACE REQUIREMENTS FOR THE
COBOL PROGRAMMER

D. STANDARD EBCDIC AND ASCII COLLATING SEQUENCES

D.1. GENERAL

D.2. EBCDIC/ ASCII/HOLLERITH CORRESPONDENCE
D.2.1. Hollerith Punch Card Code
D.2.2. EBCDIC
D.2.3. ASCII

D.3. OS/3 COLLATING SEQUENCE FOR EBCDIC GRAPHIC CHARACTERS

D.4. OS/3 COLLATING SEQUENCE FOR ASCII GRAPHIC CHARACTERS

INDEX

USER COMMENT SHEET

Contents 6

•
12-1

12 1

12 -6

A-1

A-6

A-8

•
0-1

02
0-2
0-2
0-2

0-8

0-10

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

FIGURES

1-1. Modular Structure of OS/3 Sort Programs
1-2. Input Data Records before Sort
1-3. Data Records after Sort

2-1. Key, Record, and Block Interrelationship

2-2. Execution of Independent Sort/Merge

2-3. Independent Sort/Merge Operational Phases
2-4. Data to Independent Sort/Merge Program (Phase 0)

2-5. Data Route (Phase 1)
2-6. Data Route (Phase 2)
2-7. Data Route (Phase 3)

3-1. Disk Sort Program Flowchart Using Independent Sort/Merge
3-2. Independent Disk Sort Coding

3-3. Typical Job Control Stream for an Independent Sort/Merge Application

3-4. Device Assignment Results
3-5. Copying Corresponding Partitions
3-6. Copying Specific Partitions
3-7. Moving Sorted Partitions
3-8. INPFIL Control Statement Coding Examples
3-9. Partition Sizing for Single-Partition Output Disk Files
3-10. Partition Sizing for Multipartitioned Output Disk Files
3-11. OPTION Control Statement Coding Examples
3-12. Input File, Unsorted Records (Additional Data Fields Not Shown)
3-13. Tag-Sorted Output File when ADDROUT=A
3-14. Tag-Sorted Output File when ADDROUT=D
3-15. Same Work File Device Reserved for Output File Processing
3-16. Same Input Device Shared between Input File and Sort Work File
3-17. Coding Example for Using Exit Code E1 5
3-18. Writing Merge-Only Records from Two Partitioned Input Files to a Partitioned Output File
3-19. Typical Job Control Stream for an Independent Merge-Only Operation

5-1. Calling in Sort/Merge Modules (Phase 0)
5-2. Reading Unsorted Input Records (Phase 1)
5-3. Sorting Input Records and Building Record Strings (Phase 2)
5-4. Writing Sorted Records to the Output File (Phase 3)
5-5. Data Route (Phase 1)
5-6. Subroutine Sort/Merge Operational Phases

6-1. Disk Sort Program Flowchart
6-2. Sort Common Module as Initial Interface
6-3. Data Management Macro Specifications
6-4. Subroutine Sort/Merge Disk Sort Coding - Part 1
6-5. Key Field on Byte Boundary
6-6. Binary Key Field with Bit-Byte References
6-7. Main Storage Area Allotted by STOR without Number of Bytes Specified
6-8. Main Storage Area Allotted by STOR Specifying Maximum Number of Bytes
6-9. Same Work File Device Reserved for Output File Processing
6-10. Same Input Device Shared between Input File and Sort Work File during Subroutine

Sort/Merge Phases

Contents 7

1-5
1-13
1-14

2-3
2-4

2-6
2-7
2-8
2-9
2-11

3-2
3-3
3-12
3-13

3-19
3-20
3-22
3-26
3-33
3-34
3-37
3-38

3-38
3-39
3-40
3-41
3-52
3-62
3-63

5-2
5-3
5-4
5-5
5-7
5-10

6-2
6-4
6-6
6-7
6-9
6-9
6-13
6-14
6-18

6-19

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

Contents 8

6-11.
6-12.

6-13.
6-14.
6-15.
6-16.
6-17.
6-18.
6-19.
6-20.
6-21.
6-22.
6-23.
6-24.

8-1.
8-2.
8-3.
8-4.
8-5.
8-6.

10-1.
10-2.
10-3.

Input File, Unsorted Records (Additional Data Fields Not Shown)
Tag-Sorted Output Files

Variable-Length Records and BIN Size
ADTABL Parameter Adding Table Entries within the Same Program
ADTABL Parameter Referencing Table in Previous Program
Subroutine Sort/Merge Disk Sort Coding - Part 2
Disk Sort Program Coding
User Program Interface with Subroutine Sort/Merge
Complete MR$PRM Macro Format
Assembly, Linkage Edit, and Execution Run System Flowchart
Disk Sort Program Job Control Stream
Typical Job Control Stream for a Subroutine Sort/Merge Application
Device Assignment Results
Disk Sort Program Alternate Job Control Stream

Subroutine Merge-Only Operational Phases
Initial Comparison for Winner Record
End of File Merge-Only Processing
Subroutine Merge-Only Program Flowchart
Subroutine Merge-Only Program Coding
User Program Interface with Subroutine Merge-Only

Functional Divisions of a SORT3 Job
Execution of SORT3 Program
SORT3 Operational Phases

10-4. Operational Phase 0
10-5. Operational Phase 1
10-6. Operational Phase 2
10-7. Operational Phase 3
10-8. Example of Address Out (ADDROUT) Sort
10-9.

11-1.
11-2.

11-3.
11-4.
11-5.
11-6.
11-7.

A-1.

Example of Tag-along Sort

Typical Job Control Stream for Executing SORT3 under OS/3 Job Control
Typical Job Control Stream for Executing SORT3 under OS/3 Operational Control Language

(OCL) Processor
SORT3 Specifications Form
Numbering Sort Specifications
Header Specification Formats
Record Type Specification Format
Field Description Specification Formats

Statement Conventions Example

C-1. Typical Job Deck for OS/3 COBOL Program Executing a Sort via OS/3 Subroutine

Sort/Merge

6-20
6-21

6-21
6-25
6-26
6-30
6-35
6-37
6-38
6-42
6-43
6-50
6-51
6-52

8-4
8-6
8-6
8-7
8-13
8-16

10-1
10-3
10-4
10-5
10-7
10--8
10-9
10-11
10-12

11--2

11--3
11-9
11 -11
11-11
11-15
11--22

A-1

C-4

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

TABLES

1-1. File Types Supported in the Data Management Environments
1-2. Comparison of Data Capacities and Access Speeds for Direct Access Devices
1-3. Comparison of Transfer Rates for Magnetic Tape Devices

3-1. Data Format Codes
3-2. Exit Codes: Their Allowable Functions and Associated Phases
3-3. Branch Table Format
3-4. Parameter List Format

6-1. Data Format Codes
6-2. Summary of Sort/Merge Parameter Usage

11-1. SORT3 Specifications, Type and Function
11-2. Conditions Governing SORT3 Specification Requirements
11-3. Column Summary for Header Specification
11-4. Column 8 Entries and Their Effect on Factor 1 and 2 Field Lengths
11-5. Test Relationships for Factor 1 and 2 Comparisons
11-6. Factor 1 Field Length Requirements
11-7. Column Summary for Record Type Specification
11-8. Column Summary for Field Description Specification

B-1. Sort Parameter Table

C-1. Extended COBOL Interface with OS/3 Subroutine Sort/Merge

D-1. Cross-Reference Table: EBCDIC/ ASCII/Hollerith
D-2. OS/3 Collating Sequence: EBCDIC Graphics
D-3. OS/3 Collating Sequence: ASCII Graphics

Contents 9

1-7
1-10
1-11

3-17
3-44
3-56
3-57

6-10
6-40

11-7
11-8
11 -13
11-17
11-1 7
11 -18
11-20
11-35

B-2

C-2

D-3
D-8
D-10

•

•

•

•

•

•

PART 1. SURVEY OF OS/3 SORT/MERGE
PROGRAMS

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

1.1. WHY YOU NEED A SORT PROGRAM

1-1

1. Introduction

Why is it important that you have a sort capability? Well, consider the amount and types of
data contained in your files, and the number of ways in which you use that data. You'll
probably discover that you seldom use all of the data for every job and that the
organization of the data does not always lend itself to efficient methods of processing
during certain applications. In general, most files contain a collection of data records,
possibly of different types, that have no relationship other than their existence in the same
file. Finding records and specific types of data in your files requires a search, and
searching takes time. However, less time is expended to search an ordered file than to
search an unordered file, and time is directly related to processing efficiency. This is
where a good sort program comes into play. It allows you to select the data you need and
to organize that data according to criteria such as an employee number, customer account
number, an inventory item, or whatever your particular job application requires.
Remember, data is useless for the most part unless it can be related to something real
such as the type of record entries mentioned. A file properly organized and formatted for
the job at hand allows the use of techniques that achieve faster searching of your files,
faster determination of the presence or absence of the information needed, and faster
record retrieval during job execution.

1.2. SORT PROGRAMS AVAILABLE TO THE OS/3 USER

The SPERRY UNIVAC Operating System/3 (OS/3) offers you three alternative methods of
sorting your data files by providing you with a sort package containing the coding for three
sort programs: independent sort/merge, subroutine sort/merge, and IBM System/3, 32,
and 34 compatible sort (SORT3). All three programs are modular in structure and are
capable of operating in a minimum system configuration. Although they produce the same
results, the programs are implemented at different levels of programming, require different
degrees of user program intervention, and permit a varying degree of user control over the
actual sort operation. Each has its distinct advantages and disadvantages .

UP-8342 Rev. 3

1.2.1. Independent Sort/Merge

SPERRY UNIVAC OS/3
SORT/MERGE

1-2

Independent sort/merge is essentially an easy-to-use canned service program. It does not
need to be assembled or linked and requires only a minimum of user programming and
intervention. The program is loaded and directed at run time via sort/merge control
statements you include in the control stream of your job. Because sort/merge control
statements and job control are used to define files, records, and functional structure of the
sort to the system, you have no lengthy register address manipulations to program. You
simply provide the data files, assign your devices, and define the sort or merge-only
procedure you want independent sort/merge to perform.

For the user of indexed sequential access method files (ISAM) and for those who want to
perform specialized functions other than those provided by the program, independent
sort/merge allows you to write your routine (called an own-code routine). Own-code
routines can be used to extend your control over the selection of external formats and
disposition of output records, record sequencing, and data reduction. Own-code routines
are written in basic assembly language (BAL) and must conform to the interfaces of the
sort program and the conventions of OS/3. Although it supports user own-code,
independent sort/merge does not allow you to indiscriminately pass control to your
routines. Exiting to own-code routines is restricted to specific operational phases of the
sort. The rules for, and restrictions placed on, the use of own-code routines within
independent sort/merge are provided in Part 2.

Independent sort/merge programs can be executed either in a batch environment (on
cards) or in an interactive environment (from a workstation). Although the sample job
control streams for independent sort/merge are shown on cards, they can be keyed in
from a workstation. The rules for preparing your sort control statements and specifications
on cards also apply to workstation keyins. The procedure for executing your sort program
interactively is described in Section 3.

1.2.2. Subroutine Sort/Merge

Subroutine sort/merge, unlike independent sort/merge, is not a canned service program.
It simply provides you with sort modules capable of performing various sorting and
merging functions and allows you to write the sort program you want, using these
modules. This affords you the benefit of exercising greater control over the sort/merge
process and the advantage of flexibility in specifying:

• External input record formats

• Sources of input records

• External output record formats

• Disposition of final output records

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

1-3

However, greater user control means an increase in user programming. In fact, you will
have to assemble, link, and execute subroutine sort/merge from your job control stream in
addition to programming many of the other activities that are automatically performed for
the user of independent sort/merge. This means you get directly involved with job control,
data management, the assembler, etc. You provide the routines for inputting and
outputting data, and you establish the necessary communication links between your
program and subroutine sort/merge. Your responsibilities will also include the
programming needed for defining files, reserving buffer areas, manipulating register
addresses, and delivering data to and retrieving data from the sort, as well as initiating
and terminating the sort process.

By design, subroutine sort/merge can be incorporated as part of a much larger program
or, if combined with input and output routines, it can be part of a more conventional run
where sorting is the primary objective. Both basic assembly language (BAL) and COBOL
can serve as the medium through which you establish the communications link to
subroutine sort/merge. When BAL is employed, sort/merge and data management macros
are used for defining sort requirements. (See Part 3.) When COBOL is used, you must use
COBOL SORT statements to define the sort. (For more information, see Appendix C.)

1.2.3. System/3, 32, and 34 Compatible Sort (SORT3)

SORT3, like the independent sort/merge, is also considered an easy-to-use, canned sort
program because it is modular in design and requires a minimum of user programming
and does not need to be assembled or linked to your program. It increases the versatility of ~
the OS/3 sort package by providing you with a program that is compatible with the IBM
System/3, 32, or 34 sort. That is, SORT3 accepts, with minor differences, all System/3,
32, or 34 sort specifications and offers all of the features of these sorts that are feasible
within the OS/3 operating system. In addition to disk and tape input files, the SORT3 t
program is capable of processing input data from card files. It also provides you with added
control over the record sequencing, data reduction, and data disposition without the
necessity of reverting to user own-code routines.

SORT3 is designed to operate under control of the OS/3 supervisor and data management
systems. However, it can be initiated through either OS/3 job control language (JCL) or
the operation control language (OCL) processor. Running SORT3 under the OCL processor
does not require you to make any changes to your existing System/3, 32, or 34 sort job ~
stream; the OCL statements and sequence specification remain the same as though you
were running in a System/3, 32, or 34 environment. Instructions for running SORT3 ..,.
under OS/3 JCL are provided in Part 4.

Like independent sort/merge, SORT3 gives you a choice of operating either in a batch
environment or interactively from a workstation. The procedure for executing SORT3 from a
workstation is the same as described for independent sort/merge, except that the I I EXEC
statement will specify SORT3 instead of SORT. (See 3.5.)

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

1.3. CONCEPT OF MODULAR SORT STRUCTURE

1-4

In the process of describing the OS/3 sort package, we have referred to the sort programs
as being modular in structure. What do we mean by modular? Modular, as related to the
sort programs, refers to the method used to package the sort/merge programs. Rather
than writing separate sort programs for every conceivable type of sort, we have broken the
sort/merge process into a group of interrelated, yet independent, functional subtasks. The
subtasks are coded as executable routines and provided to you as load modules residing in
the system load library (YLOD). Most load modules are common to all three OS/3 sort
programs. Their implementation into your job is based on the structure you establish in
your job stream. That is, you define the type of sort you want performed through
parameterized statements in your job control stream, and the sort program will structure
the sort/merge process accordingly. One advantage of modular programming is that it
conserves main storage space. The sort program loads only those modules needed for the
particular sort/merge phase being executed. It also aids in adapting the OS/3 sort
programs to the requirements of your installation by increasing programming flexibility.

In addition to the sort modules, the OS/3 sort package provides call modules to interface
each sort program with the system. The call modules for the two canned programs,
independent sort/merge and the System/3, 32, or 34 compatible sort, are the SORT and
SORT3 system driver programs, respectively. They both reside in YLOD. The call module
for the subroutine sort is the sort common module (SG$0RT) that resides in the system
object library file (Y0BJ). All three call modules perform similar introductory functions,
but each contains elements peculiar to the sort program that it calls.

Figure 1-1 shows the modular structure of the OS/3 sort package. (Note that the load
modules are common to all three sort programs.)

If you wish to copy the OS/3 sort package onto your own user library file, you can do so
by means of the librarian as described in the system service program (SSP) user guide,
UP-8062 (current version). Be sure to include all of the following modules:

• System load library file (YLOD)

Sort load modules beginning with SM$

Independent sort/merge system driver program SORT

System/3 compatible sort system driver program SORT3

• System object library file (Y0BJ)

Subroutine sort/merge sort common module (SG$0RT)

• System macro library file (YMAC)

Five subroutine sort/merge macros beginning with MR$

Two subroutine merge-only macros beginning with MG$

•

•

•

•

•

•

UP-8342 Rev. 3

......

OS/3
MAIN

STORAGE

..._
~

SPERRY UNIVAC OS/3
SORT/MERGE

INTERFACE
MODULES

SYSTEM
DRIVER

PROGRAM
(SORT)

SORT
COMMON ..._
MODULE -
(SG$0RT)

SYSTEM
DRIVER ..._

PROGRAM -·
(SORT3)

1-5

YRES

OS/3 SYSTEM LIBR~

SORT LOAD,
OBJECT, AND MACRO

MODULES

• INDEPENDENT SORT /MERGE
(LOAD MODULES)

• SUBROUTINE SORT /MERGE
(MACRO, OBJECT, and
LOAD MODULES)

• SYSTEM/3, 32, or 34
COMPATIBLE SORT
(LOAD MODULES)

Figure 1-1. Modular Structure of OS/3 Sort Programs

1.4. WHAT OS/3 SORT PROGRAMS CAN DO FOR YOU

In general, the sort programs available in OS/3 assist you in producing a tailored output
file from your existing input data files. Through the sorting and merging techniques
employed in these programs, you can reformat a file (rearrange records and selectively
include or omit specific record types), reformat records, and summarize record fields. The
types of sorts performed include full record sorts, tag sorts, and summary sorts. All three
sort programs can:

• sort records in ascending or descending sequence;

• sort fixed-length or variable-length records;

• sort blocked or unblocked records;

• sort records with noncontiguous key or control fields;

t

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

• recognize key and control fields in the following formats:

character

binary (signed and unsigned)

decimal (signed zoned and unsigned zoned)

packed decimal

leading and trailing sign numeric

overpunched leading and trailing sign numeric

EBCDIC data in ASCII collating sequence

floating point (single and double precision)

1-6

• sort two or more different characters having the same collating value (multiple
character sort);

• sequence files in accordance to user-specified (alternate) collating sequence;

• perform data validity and data integrity checks during sorting; and

• perform restart procedures for tape sorts.

The output produced from your sort job is file formatted according to your instructions to
the sort program. You are not, however, automatically provided a copy of the output file
produced by the sort. If you want a copy of the sorted file, you can obtain it by running the
appropriate data utility routine, as described in the data utilities user guide/programmer
reference, UP-8069 (current version). The successful execution of your job results in a
terminated normally message printed on your job log and a list of the total number of
records included in the sort and the total number of records deleted during the sort.

1.5. DATA MANAGEMENT CONSIDERATIONS

The data management environment you use governs the types of files that can be sorted
by the sort/merge programs. Table 1-1 lists the file types and shows the data
management environments that support them.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

Table 1-1. File Types Supported in the Data Management Environments

Data Management Environment

File Type
Consolidated Data Basic Data
Management Only

Mixed
Management Only

MIRAM disk Yes Yes No

IRAM disk Yes Yes Yes

Nonindexed disk No Yes Yes

SAM disk No Yes Yes

Dam disk No No No

ISAM disk No No No

Card* Yes Yes Yes

Tape Yes Yes Yes

Data set
diskette* Yes Yes Yes

*SORT3 only

1-7

For further information on the various file types, refer to the basic data management user
guide, UP-8068 (current version) and the consolidated data management concepts and
facilities, UP-8825 (current version).

1.6. PROGRAM RESTRICTIONS

Variations in a program design, capability, and implementation sometimes restrict the use
of a sort program for specific applications or for specific system configurations. The
restrictions that apply to the sort programs are as follows:

• All Sort Programs

All sorting is limited to disk-only and tape-only sorts or storage-only sorts.

The disk work files that you assign to your program must be of the same type,
that is, all type 8430 or all type 8418, and so on.

If you use interactive services (consolidated data management environment only),
your disk files must be multiple indexed random access method (MIRAM) files.

Volume of data sorted and merged is limited by the type and physical capacity of
the tape or disk space assigned as auxiliary work storage.

Indexed random access method (IRAM) files are supported. Input files must have
been created by OS/3. The records must be fixed length. The output files are
nonindexed, and all volumes of the output file must be mounted.

t

t

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

1-8

• Independent Sort/Merge and Subroutine Sort/Merge

Input files must be disk only or tape only.

IRAM files are not supported when the independent or subroutine sort/merge is
used for a merge-only application.

Auxiliary storage work areas can be disk or tape, but not both. The independent
or subroutine sort/merge is limited to eight disk files or six tape files.

User own-code routines can be substituted for those provided in the independent
or subroutine sort/merge if they satisfy the requirements of the program and
OS/3 programming conventions.

• SORT3

Input files can be card, tape, disk or diskette.

A merge-only application cannot be performed by the SORT3 program.

SORT3 does not support data reduction or record sequencing and checking
through the use of user own-code exit routines.

Auxiliary storage work areas can be disk or tape, but not both. SORT3 is limited
to six disk files or six tape files.

1.7. ELEMENTS AFFECTING PERFORMANCE OF A SORT PROGRAM

The careful user should be aware of elements affecting the performance of his sort
program. These elements are:

• Available main storage

• Number and type of assigned auxiliary storage devices

• Record characteristics

• Input and output data file organization

• Options under which the sort program operates

Remember to be explicit in supplying instructions to your sort program and to be careful in
setting up your file and record formats. This results in faster sorts that require less central
processor time and reduces the number of 1/0 operations required. To improve program
efficiency, consider these factors during record and file preparation:

• Record size

• File size

•

•

•

•

•

•

UP-8342 Rev. 3

• Key or control field size

• Number of key or control fields

• Record format

• File format

SPERRY UNIVAC OS/3
SORT/MERGE

1-9

As a rule, simplification reduces processing and the time needed to perform a function. By
simplifying the key fields and decreasing their number and size, you decrease the number
of comparisons and the length of time needed to make each comparison. Sort performance
improves when input and output records are blocked. Decrease record size and you
increase efficiency because a greater number of records are processed at one time for a
given amount of main storage.

To improve processing speed and efficiency:

• Be generous with storage; assign more than one 1/0 device to the sort for auxiliary
storage and more than the minimum amount of main storage.

• Simplify your file and record formats.

• Be explicit in defining your output file requirements to the sort program .

1. 7 .1. Main Storage Allocation

In general, the more main storage available to a sort program, the more efficient the
performance. It decreases the number of 1/0 functions because fewer passes are needed
to produce strings of sequenced data for final merging. Therefore, proper consideration
given to these factors when preparing your program reduces processing time and
increases program efficiency. The minimum main storage requirements for your sort
depend upon which method you use:

• Independent sort/merge requires 16,000 bytes, plus sufficient main storage for the
larger of either two input blocks or two output blocks. User own-code routines may
require additional main storage.

When performing a merge-only operation, independent sort/merge requires 16,000
bytes, plus sufficient main storage to hold two buffers for each input file and two
buffers for the output file.

• Subroutine sort/merge requires 12,400 bytes. If the record length is greater than 100
bytes, you should allow 12,400 bytes plus five times the input record length. (These
figures do not include the requirements for your program, its preamble, or your own
code routines.)

• An internal-only sort/merge, performed by independent or subroutine sort/merge
requires sufficient main storage to hold the entire input file, plus eight bytes for each
record, in addition to the preceding requirements.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

1-10

• SORT3 requires a minimum of 16,000 bytes. However, the more sort specifications
you include in your program the less main storage available for the actual sort. Each
sort specification processed requires 12 bytes of main storage. Also bear in mind that
additional main storage is required when using an alternate collating sequence (280
bytes), field specifications for packed data (40 bytes each), and include or omit, or
both, specifications for packed data (1 00 bytes).

Performing large volume sorts is most efficient when 50,000 to 150,000 bytes of main
storage are allocated.

1.7.2. Auxiliary Storage Work Area Assignments

Work areas may be assigned as auxiliary storage on tape or disk, but not both. If disk
storage is used, all work area disks must be of the same general type, i.e., sectorized or
nonsectorized. It is important not to underestimate the amount of auxiliary storage
required. When possible, avoid assigning the bare minimum of auxiliary storage needed;
otherwise, the sort program must perform a greater number of intermediate merge passes
to sequence records. This wastes time and reduces program efficiency. Because the
volume of data processed varies with the quantity and type of magnetic tapes or disks
assigned as auxiliary storage, selecting auxiliary storage devices with faster data transfer
rates results in a faster sort. Data volume doesn't reduce sort performance.

•

Disk space is assigned by using standard sort work file names DM01, ... ,DMOn or system
scratch space file names $SCR1 , ... ,$SCRn (in consecutive order) on LFD job control •
statements or by using WORK jproc calls. If one work file is allocated, the file name DM01
or $SCR1 must be assigned; if two are used, the names DM01 and DM02 or $SCR1 and
$SCR2 must be assigned, and so forth. A maximum of eight disk files may be assigned to
the independent sort/merge and subroutine sort/merge programs. The SORT3 program is
limited to a maximum of six disk files. The amount of disk space requested must be
sufficient to hold the entire volume of data to be sorted, plus 10 to 20 percent additional
space for overhead requirements. (An additional 10 to 20 percent space should be
requested if data involves variable-length records.) In addition, all disk files used in the
sort operation must be the same type; i.e., mixed disk types are unacceptable. Table 1-2
contains a comparison of the direct access storage devices used by the sort programs. Sort
execution time tables that indicate specific performance times of an average sort
application with disk work files are available in the sort/merge programmer reference, UP-
8054 (current version).

Table 1-2. Comparison of Data Capacities and Access Speeds for Direct Access Devices

Disk Subsystem Type
Characteristics

8411 8414 8415 8416 8418-92/93 8418-94/95 8424 8425 8430

Maximum data capacity 7.250.000 29.170.000 33.200.000 28.958.720 28.958.720 57.917.440 58.300.000 58.352.000 100.018.280
(8~bit bytes per disk pack)

Maximum track capacity 3625 7294 13.030 10.240 10.240 10,240 7294 7294 13,030
(bytes)

Minimum cylinder access 25 20 10 10 10 10 10 7.5 7
time (ms) • Average cylmder access 75 60 33 30 27 33 30 41.5 27
time (ms)

Maximum cylinder access 135 130 60 60 45 60 55 80 50
time(ms)

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

1-11

When tape is used, the auxiliary storage work areas use labeled or unlabeled tapes. Work
files are assigned by using standard tape sort file names SM01 through SM06 (in
consecutive order) on LFD job control statements. A minimum of three tape units, and a
maximum of six, may be assigned. Each tape work file must be large enough to contain all
of the input data; i.e., the volume of data that can be processed in a tape sort is limited to
the capacity of the smallest reel of tape assigned to the sort. The speed (rate) of data
transfer from different tape units varies according to the tape density (number of bits
recorded across the width of the tape) and the number of recording tracks (7 or 9). Refer to
Table 1-3.

Data Transfer Rate

9-track (phase encoded)

1600bpi*
9-track (NAZI)

800 bpi
7-track INRZI)

200 bpi

556 bpi
800 bpi

• bpi = bits per inch
**bps = bi ts per second

Table 1-3. Comparison of Transfer Rates for Magnetic Tape Devices

Magnetic Tape Subsystem Type

UNISERVO 10 UNISERVO 12 UNISERVO 14 UNISERVO 16 UNISERVO 20

40,000 bps 68,320bps" 96,000 bps 192,000 bps 320,000 bps

20,000 bps 34,160 bps 48,000 bps 96,000 bps -

5,000 bps 8,540 bps 12,000 bps 24,000 bps -
13,900 bps 23,740 bps 33,400 bps 66,700 bps -

20,000 bps 34,160 bps 40,000 bps 96,000 bps -

1.7.3. 1/0 Data File Organization

UNISERVO Vl-C

-

34,160 bps

8,540 bps
23,740 bps

34, 160 bps

Data file organization begins with record layouts. If you assume that you have a fixed
number of records, a file of large records takes longer to sort than a file of smaller records.
Also, larger keys and more keys per record increase sort time because lengthier
comparisons are needed.

Record sizes that exceed one-half track in length may require up to 100 percent more
space or twice the normal space calculated by multiplying the number of records to be
sorted by the record size.

1 . 7.4. Sort Options

When using either independent sort/merge or subroutine sort/merge, there are two
optional parameters that affect performance:

• NOCKSM=D or NOCKSM=T

• USEQ

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

1-12

By specifying NOCKSM=D or NOCKSM=T, you suppress the calculation of a checksum •
word for blocks written to disk (D) or tape (T). A checksum word is used to verify the
integrity of data blocks transferred from sort/merge to work files. The calculation and
operation of a checksum word increases overall sort/merge operation time. Similarly, .if
you specify the USEQ optional parameter to indicate a special collation sequence other
than EBCDIC or ASCII, you increase sort/merge performance time.

The SORT3 counterparts to the aforementioned options are the VERIFY OPTION and the
ALT COLLA TING SEQ entries in the header specification.

1.8. STRUCTURING YOUR INPUT /OUTPUT DATA

When you first consider the problem of sorting data, you may be faced with a large volume
of information that may or may not be organized into workable units. Dividing information
into records, blocks, and files helps both you and the computer identify where the data is
located and control the changes or manipulations you want performed. After carefully
examining the nature and content of the input data and determining the record layout and
block size that best suits your needs, you must indicate, via your control stream, what size
records and blocks you intend to input for processing and output after the sorting
operation is completed.

Records can be divided into smaller units called fields. Specific fields, called key fields or
just keys in the independent sort/merge and subroutine sort merge program and control
fields in the SORT3 program, are used for comparing records to arrange them in the order
you want. To tell the sort program which keys to use, you must specify the size and
position of the keys within records.

Figure 1-2 illustrates what the data contained in key fields of the first two input data
record blocks might look like before the sort:

•

•

•
UP-8342 Rev. 3

Key or Control Field

SPERRY UNIVAC OS/3
SORT/MERGE

RECORD 2 I 1 I 0 I 0 I 0 I 1 I 0 I 0 15 I

1-13

RECORD 3 161 S 17 I 919 I 8 I 6 I 3 I I Block
1

RECORD 4 1914 16 I 0 I 0 I 0 I 5 14 I
RECORD 5 121 0 1416 1 3 1 8 14 14 1

RECORD 6 151 41 4 I s 16 I 5 I 5 I 5 I
• RECORD 7 I 0 I 3 I 0 I 0 I 0 I 6 I 0 I 0 I

RECORD 8 I s I s I s 15 15 I 2 19 16 I I Block 2

RECORD 9 1413 13 I 0 I 0 I 0 I 0 I 0 I

RECORD 10 171 0 , , , 0 I • I 3 1 ° I 0 I
Figure 1-2. Input Data Records before Sort

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

1-14

Of course, your volume of data is much larger than the two 400-byte record blocks shown
in Figure 1-2, but the results of sorting the records in ascending order by key fields
should be as shown in Figure 1-3.

Key or Control Field

RECORD 1

RECORD 2

RECORD 3 Block 1

RECORD 4

RECORD 5

RECORD 6

RECORD 7

RECORD 8 Block 2

RECORD 10 191 41 61 0 I 0 I 0 1 5 1 4 1

Figure 1-3. Data Records after Sort

•

•

•

•

PART 2. INDEPENDENT SORT/MERGE

•

•

----- ------------------.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

2-1

2. Independent Sort/Merge
Basic Concepts

2.1. GENERAL

The independent sort/merge is a self-contained processor that assists you in sorting and
merging, or just merging, data files. You initiate it by writing a job control stream including
some sort/merge control statements and job control statements that you will learn in the
following sections.

Operating in a minimum system configuration, independent sort/merge reads your data
files, sorts and merges the data according to your specifications, then writes the data to
your output file. It does this with almost no user program intervention, if you supply the
data files and specify the sort/merge procedures you want performed. There is only one
exception to this capacity: the OS/3 sort does not support indexed sequential files (ISAM).
Any ISAM files must be read or written via user own-code; thus, if you have indexed
sequential files and use the independent sort/merge, you would enter your own-code
routine via an exit code. (See 3.3.)

In addition to simplifying your sort/merge job execution, independent sort/merge allows
you to write own-code routines to perform specialized functions that it doesn't provide or
that you want to handle differently.

To use own-code routines, specify to the independent sort/merge:

• the name of your routine;

• the approximate size of its load module; and

• the phase of the sort/merge operation from which it is to be called.

An exit code contained in the control stream automatically calls your routine to perform its
function at the appropriate time. Own-code routines, their associated exit codes, and their
functions are explained in greater detail in 3.3.

A good example of routines you might want to perform differently would be 1/0 file
handling routines. You can program your own input or output file processing routines or
let the independent sort/merge handle one file while your own-code routine handles the
other. Thus, you can have both convenience and flexibility when you use the independent
sort/merge.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

2-2

The main advantage in using the independent sort/merge is that you have no assembly or •
linkage steps to perform. You simply submit job control and sort/merge control
statements, then execute them. This is a tremendous time and storage saver. To help you
understand the activities performed by the independent sort/merge and the information it
requires from you, we now examine a disk sort problem application.

2.2. SORT PROBLEM: A SOLUTION

A brief narrative outline of the independent sort/merge disk sort program follows. For
details about input and output files before and after the sort/merge operation, refer to 1.4.

SYSTEM: OS/3

PROGRAM: Independent Sort/Merge Disk Sort

FUNCTION:

1. This program sorts and merges an unordered file of employee records.

2. It is a disk sort.

3. It uses a sort key to sort and merge records.

4. The sort key is the employee number.

5. Employee number is located in the first eight byte positions of each record.

6. Records are sorted in ascending order.

INFORMATION:

1. This program needs one additional work file to perform the sort/merge ($SCR1).

2. Because data volume for the independent sort/merge example (Figures 3-2 and
3-4) is low, the work file is assigned to disk device 50. Usual job situations,
however, call for a larger volume of data. For optimum sort efficiency, a volume
should never hold more than one work file, and input and output files should be
on a separate volume.

INPUT AND OUTPUT:

1. The program produces an output file of records sorted in ascending order.

2. Both input and output files use fixed-length, blocked records.

3. Each record contains 80 bytes.

4. Each block contains 5 records.

•

•

•

•

•

UP-8342 Rev. 3

OUTPUT:

SPERRY UNIVAC OS/3
SORT/MERGE

The program produces an output file of records sorted in ascending order.

Figure 2-1 summarizes these specifications.

DISK
INPUT
FILE

80 bytes = 1 record

K REC2 K REC3 K REC4

---------~---._________ I .,,. .,,,.""
400 bytes= 1 block .,,,. ""

"" "" -""

2-3

\
\

' ' \
\

START
KEY -(I ",' I :

3

1 ·: I ·: I ·: I : I ·:]

Figure 2-1. Key, Record, and Block Interrelationship

2.3. WHAT SORT /MERGE DOES FOR YOU

Independent sort/merge is a modular canned program. Each module performs a specific
function when needed by a particular operational phase. After the needed modules are
called by the system driver program, they are loaded into main storage and executed. Not
all called modules are independent sort/merge modules. Some may be your own modules.
To determine which modules to use during certain phases, independent sort/merge
examines your specifications in the sort parameter table that you indicate via sort/merge
control statements and sometimes via job control statements in the job control stream.
Entries in the sort parameter table provide information concerning the type of sort, the
peculiarities of the input files, the final disposition and sequence of the output file,
characteristics of the records to be processed, and control functions. See Appendix B for
the format of the sort parameter table. Figure 2-2 illustrates how the independent
sort/merge operation executes .

UP-8342 Rev. 3

DISKS
DSP101, 103, 120

TRANSFER
RECORDS

SORTED
RECORDS

(WORK FILES)

TO AUXILIARY STORAGE

SPERRY UNIVAC OS/3
SORT/MERGE

MAIN STORAGE

SYSTEM
DRIVER PROGRAM

(SORT) -----------
INDEPENDENT
SORT/MERGE

MODULE

1/0 BUFFER AREA

WORK AREA
FOR SORT KEY

FIELD COMPARISONS

S/M MODULE
CALL

LOAD S/M
MODULE

READ

WRITE

Figure 2-2. Execution of Independent Sort/Merge

2-4

SYSRES

YLOD

DSP111

INPUT
FILE

OUTPUT
FILE

When you submit your job control stream including the sort/merge control statements to
the system and the EXEC statement is read, the system driver program (SORT) is loaded,
and it calls the first module of the independent sort/merge into main storage from the
system load library file (YLOD). Your previous job control statements include device
assignment sets that tell independent sort/merge where to find the input files, where to
perform the sorting in work files, and where to write the output file. The EXEC statement
signals independent sort/merge to accept your sort parameter table specifications that
provide information concerning sort procedures peculiar to your problem.

Notice there is an interplay of activities between your job control stream and the
independent sort/merge canned program. The entire sort/merge operation centers around
elements you supply and elements that independent sort/merge supplies.

•

•

•

-----------·---··

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

2-5

• 2.3.1. Software Framework

•

•

Independent sort/merge and subroutine sort/merge modular organization is basically the
same. Both types of sort/merge consist of two to four operational phases normally
executed in this sequence:

• Sort initialization and assignment (phase 0)

• Data input and internal sort (phase 1)

• Preliminary merge (phase 2)

• Final merge and output (phase 3)

In cases where the input file is biased (partially sequenced) or is small enough so that one
final merge produces the required output file, independent sort/merge bypasses the
preliminary merge (phase 2) and proceeds to the final merge and output (phase 3). In a
merge-only operation, phases 1 and 2 are both bypassed. Independent sort/merge
proceeds directly from initialization and assignment to phase 3, where records are read
into main storage, merged, and written to the output file. Figure 2-3 shows the
independent sort/merge operational phases .

UP-8342 Rev. 3

INPUT
FILE

RAW DATA INPUT t--------
UNORDERED INPUT DATA i>-~i>- /

~o ,..,.
c;O .,,-

q..\ ... ,..,..,,.
<;~ /

~~o.,,.
sOq...,,.,,-

....
CONTINUOUSLY MERGED

INTER· ------ -
MEDIATE STRING OF DATA

WORK
FILE

ko'il.
'G's

SEQUENCED DATA STRINGS o"'I' "li>,'11.
""'I' G's "'o;;......._o,,.&

,,.,,, 'f:ov
"'I(..... (:l\r.

-l?f:Ji>' cf:o
G'f:

INPUT
FILE

SPERRY UNIVAC OS/3
SORT/MERGE

START
II EXEC SORT

PHASEO
SORT INITIALIZATION

ANO ASSIGNMENT

SORT

PHASE1
DATA INPUT

ANO
INTERNAi.. SORT

PHAse 2
PRELIMINARY

MERGE

~ SORTED DATA FOR

MERGE -ONLY APPLICATION
PREVIOUSLY SEQUENCED FILES

LEGEND:

Operational flow

Data flow

Exits from sort/merge
program to user-supplied
routines

0 Sort/merge operational
phases

FINAL SEQUENCED OUTPUT

OUTPUT
FILE

EOJ

MERGE

Figure 2-3. Independent Sort/Merge Operational Phases

2-6

•

ALLOWABLE USER
EXITS TO OWN CODE

ROUTINES

Ell

} E15 See Table 3-2.
E18

• ALLOWABLE USER
EXISTS TO OWN·CODE

ROUTINES

E65

} E75 See Table 3-2.
E84

ALLOWABLE USER
EX ITS TO OWN.CODE

ROUTINES E31

) E32
E35 See Table 3-2.
E38
E39

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

2.3.2. Sort/Merge Operation Phases

2.3.2.1. Phase 0: Sort Initialization and Assignment

2-7

Phase 0 initializes the sort process by reading sort control statements from the job control
stream (Figure 2-4). It validates both the content and syntax of these statements and
then passes control to an assignment segment of the phase. By examining your
parameters, the assignment segment determines the type of sort function to be performed
(tape, disk, internal sort. or merge-only) and calculates and structures the sort/merge
processor to perform only the sort functions you specify. When the assignment segment
completes its task, phase 0 passes control to phase 1 or, in a merge-only procedure, to
phase 3 .

r-------- -----------,
1
I
I
I

I

READ

CONTROL

STATEMENTS

I
I
I
I
I
I

I
I

I
1
I _________ _j

INITIALIZATION SEGMENT

L_ -- -----, - - - - - - - - - ----------- --- ----- ---..

ASSIGNMEr,JT

SEGMENT

LEGEND:

E:J Data

SYSTEM DRIVER PROGRAM
(SORT)

LOAD
INDEPENDENT SIM MODULE
SORT1MERGE

MODULE

SYSRES

SYSLOD

' I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I L_ - - - - - - - - - -- - - - - - -- - ------ - _J

Figure 2-4. Data to Independent Sort/Merge Program (Phase 0)

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

2.3.2.2. Phase 1: Data Input and Internal Sort

2-8

When phase 1 receives control at the- end of phase 0, it initiates the input routine and
performs internal sort operations. The input routine can be supplied by independent
sort/merge or by you. If you use your own input routine, you must identify it to the
independent sort/merge via a user exit code (3.3). The input routine opens input files,
validates file labels, and reads data records one at a time before giving them, in successive
order, to the internal sort routine for initial sorting. Internal sorting in main storage
produces strings of sequenced data that are written as intermediate files to auxiliary
storage devices (tape or disk). If the number of data strings produced during the internal
sort are few enough to be merged in one final merge, phase 2, the preliminary merge, is
bypassed and control passes to phase 3 for final merging and output to the output file.
Otherwise, strings of sequenced data must be continuously merged into larger and larger
data strings until only one final merge operation is required to produce an output file
sequenced in the order you specified. Figure 2-5 illustrates data flow from the input file
through internal sort processing.

When the internal sort is completed, control passes to either phase 2 or phase 3.

MAIN STORAGE

INDEPENDENT SORT/MERGE

READ INPUT

1/0 BUFFER ARE"A

WRITE ORDERED STRINGS

i-.----..,,...,...,-..,.....,....------.----1 OF DATA TO DISK WORK FILES

LEGEND:

8UtLD SEQUENCED
PATA STfUNGS

c:J Data flow

DSP120

WORK
FILE

Figure 2-5. Data Route (Phase 1)

DSP111

DSP101

WORK
Ft LE

DSP103

WORK
FILE

•

•

i

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

2-9

• 2.3.2.3. Phase 2: Preliminary Merge

•

•

When phase 2 receives control, the module executed for it continuously merges data
strings produced in phase 1. These merge passes occur between auxiliary storage devices,
each successive merge producing longer and longer sequenced data strings. When only
one final merge pass is needed to create a single sequenced string (final output string),
phase 2 passes control to phase 3. Figure 2-6 shows long sequenced data strings ready
to be given to the final merge phase as a result of phase 2 operations.

LEGEND:

E /:] Data flow

DSP120

WORK
FILE

MAIN STORAGE

INDEPENDENT
SORT/MERGE

MODULE

INTERNAL
WORKAAEA

FOR KEY
FIELD COMPARISONS

MERGE STRINGS

DSP101

WORK
FILE

Figure 2-6. Data Route (Phase 2)

DSP103

WORK
FILE

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

2-10

When you use the input data records shown in Figure 1-2, the record strings produced
by phase 2 are:

Key Field

FIRST STRING:

RECORD 1 I 0 I 0 I 3 I 2 I I 6 5 I 4

RECORD 2 I 1 I 0 I 0 I 0 I 7 0 I 0 I 5

RECORD 3 2 I 0 I 4 6 3 8 I 4 I 4

RECORD4 I 6 I 8 I 7
9 I 9 I 8 I 6 I 3

RECORD 5 I 9 4 I 6 I 0 I 0 0 I 5 1 4

SECOND STRING: Key Field

~

RECORD 1
0 I 3 I 0 I 0 I 0 6 I o I 0 I

RECORD 2
4 I 3 I 3

0 I 0 I 0 I 0 0

RECORD 3 I 5 I 4 I 4 8 I 6
5 5 5

RECORD4 I 7 I 0 I 5 I 0 I 9 I 3 I 0 I 0

RECORD 5 8 I 8 8 5 I 5 I 2 I 9 I 6

THIRD STRING:

• • •

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

2-11

• 2.3.2.4. Phase 3: Final Merge

•

•

The final merge phase merges all strings written to the intermediate files into one
sequenced string and passes it either to the independent sort/merge output routine or to
your own output routine. If you provide the output routine, you must identify the exit code
required to transfer control to your routine. User exit codes allowed during this phase are
described in 3.3.2.4, 3.3.2.5, 3.3.2.6, 3.4.2, and 3.4.3. When you use your own output
routine, the final output data string passes to your routine for final disposition. Otherwise,
control passes to the independent sort/merge output routine which opens the output file,
writes the output sequenced data, closes the output file, and returns control to the
supervisor. Figure 2-7 depicts data flow from auxiliary storage devices to the output file
via phase 3.

DSP120

WORK
FILE

DSP101

WORK
HLE

DSP103

WORK
FILE

MAIN STORAGE

UNUSED
STORAGE

1/0 BUFFER
AREA

SORT OUTPUT IVIODU LE
OR

USER OUTPUT EXIT ROUTINE

Figure 2-7.

FINAL MERGE
PHASE

Data Route (Phase 3)

DSP111

WRITE

OUTPUT
FILE

LEGEND:

D Data flow

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

Contents of a file after phase 3 final merge processing would appear as follows:

Key Field

RECORD 1 I 0 I 0 I 3 I 2 , , I 6 I 5 I 4 I
RECORD 2 I 0 I 3 I 0 I 0 I 0 I 6 I 0 I 0 I
RECORD 3

RECORD4

RECORD 5

RECORD 6

RECORD 7

RECORD 8

RECORD 9 I 8 I 8 I 8 I 5 I 5 I 2 I 9 I 6 I
RECORD 10 I 9 I 4 I 6 I 0 I 0 I 0 I 5 1 4 I

2-12

To compare file contents before and after the sort, refer to Figures 1-2 and 1-3.

General-purpose registers and a branch table provide the interface required to link either
independent sort/merge or your own modules with a particular phase of operation. Refer
to 3.3.4 and 3.3.5 for more information about the role general-purpose registers and the
branch table play in independent sort/merge.

•

•

•

•

•

•

UP-8342 Rev. 3

3.1. GENERAL

SPERRY UNIVAC OS/3
SORT/MERGE

3-1

3. Independent Sort/Merge
Requirements You Supply

The independent sort/merge requirements you supply are simple and direct. They consist
of job control statements and a set of sort/merge control statements. The amount of detail
involved in writing the job control stream depends upon the complexity of the sort. In
essence, your sort/merge control statements tailor the available independent sort/merge
modules to suit the requirements of a particular sort/merge operation (disk, tape, default,
etc).

By answering these three questions concerning the independent sort/merge operation,
you can construct the specifications needed for the sort:

1 . How is the sort to be performed?

2. What does the sort act upon?

3. Which file is the sort using?

The independent sort/merge control statement, SORT, answers the first question via your
parameters that supply the information needed to sort the records. You can answer
question 2 by writing the RECORD sort control statement. This supplies information
describing the record size and formats used in the sort. Input and output files are defined
by using the INPFIL and OUTFIL control statements. To indicate the end of the sort control
stream, you use the END control statement.

Before we discuss the functions of each sort control statement, let's step through the
flowchart of a typical sort program (Figure 3-1) .

UP-8342 Rev. 3

START
(!/EXEC SORT)

DEFINE

SORT
OPERATION

(SORT)

DEFINE
LOGICAL
RECORDS
(RECORD)

DEFINE INPUT FILE
TO SORT/MERGE

(INPFIL)

DEFINE
OUTPUT FILE

TO SORT/MERGE
(OUTFIL)

END THE

SORT/MERGE
CONTROL

STATEMENTS
(END)

SPERRY UNIVAC OS/3
SORT/MERGE

EOJ

Figure 3-1. Disk Sort Program Flowchart Using Independent Sort/ Merge

3-2

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-3

• 3.1 .1. Job Control Stream

•

•

In order to schedule your program and allocate the system resources to it, you must assign
a name to the job so that the system can distinguish it from other jobs. The job control
statement that identifies the job and signifies the beginning of control information for the
job is the JOB statement. Figure 3-2 shows the entire job control stream required for our
independent disk sort program, including the input data before the sort and the output
data after the sort.

l 0 20

l. II JOB SRTEXMPL,,7000,9000,2
2. II DVC 20 I I LFD PRNTR
3. II DVC 50 II VOL DSP028 II LBL INFILE 11 LFD SORTINl
4. II DVC 50 II VOL DSP028 II LBL OUTFILE II LFD SORTOUT,, INIT
5. II DVC 50 II VOL DSP028 II EXT ST,C,,CYL,5
6. II LBL $SCRl II LFD DM0l
7. II EXEC SORT
8. 1$
9. SORT FIELDS=(l ,8,CH) ,DISC=!
10. RECORD LENGTH=(8~) ,TYPE=F
l l. INPFIL BLKSIZE=400
12. OUTFIL BLKSIZE=400
13. END
14. 1,·,
15. I&
16. II FIN

Figure 3-2. Independent Disk Sort Coding (Part 1 of 7)

DATA FILE BEFORE SORT
c
"U

8LKR REC# BKSZ RCSZ •••••••• 1 0 •••••••• 20 •••••••• 30 •••••••• 40 •••••••• so •••••••• 6 0 •••••••• 70 •••••••• 80 I Co
w .,,..
N

80 80 00321654

I
:0

FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
CD
:<

0032165400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 w

2 1 80 80 10007005
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
1000700500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

3 1 80 80 68799863
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
6879986300 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

4 1 80 80 94600054
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
9460005400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

' 1 80 80 20463844 _,
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 I 00 ~ 2046384400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

0 :0

t, 1 30 80 54486555 ,~~
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 "- z s:: -
544E655500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 m<

:0)>
Cl (")

7 1 80 80 03000600 Im§
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
0300060000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

BO 80 88855296
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
8885529600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

.... 1 80 80 43300000
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
4330000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

1 c 1 ~o 80 70509300
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
7050930000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

11 1 80 80 DAYTONOH I w
CCEEDDDC44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444

I .,,..

4183656800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

Figure 3-2. Independent Disk Sort Coding (Part 2 of 7)

• • •

• • •
DATA FILE BEFORE SORT (cont)

c
"'O

•••••••• 6 0 .•.••.•• 7 0 ••.••.•• 8 0
00

ELK~ KEC~ BKSZ RCSZ .••••... 1 0 ••••.•.• 20 •.•••••• 30 •••.•.•• 40 •••••••• 5 0 w
+>-
N

L 1 80 80 STLOUISM :D
Cll

EEDDECED44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 <:
2336492400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 w

1 3 1 80 80 YORKPEN
EDDDDCD444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
8692755000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

1 4 1 80 80 NEl.IARKNJ
DCECDDDD44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
5561925100 ooooooooco 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

1 5 1 80 80 MIAMI FLA
DCCDCCDC44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
4914963100 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

1 6 I 80 80 GH00001

I~~ DCFFFFF444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
6800001000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

0 :D
:D -<

1 7 1 EO 80 M0000004 -l c
"- z

DDFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 s: -m<
4600000400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 :D)>

G) ()

1 s 1 80
mo

80 PA000007 ~
"-

DCFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 w

7100000700 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

1 9 1 80 80 NJ000012
DDFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
5100001200 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

20 1 80 80 FL000006
CDFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
6300000600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

;: 1 1 80 80 33655307
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
3365530700 0000000000 oooooooooc 0000000000 0000000000 0000000000 0000000000 0000000000

22 1 80 80 10985469 I w
I

FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
(]'l

1098546900 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

Figure 3-2. Independent Disk Sort Coding (Part 3 of 7)

6LKR RECN BKSZ RCSZ

23 , 80 80

24 , 80 80

25 , 80 80

.,,.,
'- ~ 1 80 80

27 1 80 80

26 , 80 80

29 , 80 80

30 1 80 80

•

DATA FILE BEFORE SORT (cont)

•••••••• 1 0 ••••••• • 20 ••••••• • 30 ••.•••• • 40 •••••••• 5 0 •••••••• 6 0 •... 7o ao

98654 777
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
9865477700 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

68548833
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
6854883300 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

40675987
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
4067598700 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

77330659
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
7733065900 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

90675004
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
9067500400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

09436750
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
0943675000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

11766325
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
1176632500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

50964097
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
5096409700 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

Figure 3-2. Independent Disk Sort Coding (Part 4 of 7)

• •

I c
"ti

I O:i w

""" N

:JJ

I CD
<:
w

(J)
"ti m

(J) :JJ
0 :JJ
:JJ -<

,~~ s: -m<
:JJ)>
Cl ()
mo

I
(J)

"-w

w
I

°'

• • •
DATA FILE AFTER SORT I c

-0

eLKP REC~ eKSZ RCSZ •••••••• 1 0 •••••••• 2 0 •••••••• 3 0 •••••••• 4 0 •••••••• 5 0 •••••••• 6 0 •••••••• 7 0 •••••••• 8 0 I
00
w
-1:>
N

400 80 DAYTONCH

I
::IJ
C'O

CCEEODDC44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 <:

4183656800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 w

2 400 80 FL000006
CDFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
6300009600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

3 400 80 MIAMI FLA
DCCDCCDC44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
4914963100 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

4 400 80 M0000004
DDFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
4600000400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

5 400 80 NEwARKt.J

I~~ DCECDDDD44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
5561925100 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

0 ::IJ
::IJ -<

('_ ·1 400 80 NJ000012 I~ c DDFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
"- z s: -

5100001200 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
m<
::IJ)>
Cl (")

2 400 80 C'100001
mo

2 I ~ DCFFFFF444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
6800001000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

? 400 80 PA000007
DCFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
7100000700 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

2 4 400 80 STLCUIS,..
EEDDECED44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
2336492400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

" 5 l, 0 0 80 YCRKPEN
£DDCDCD444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
8692755000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

400 bO 00321654 I w
I

FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 -.J

0032165400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

Figure 3-2. Independent Disk Sort Coding (Part 5 of 7)

DATA FILE AFTER SORT (cont)

ELK. ~EC~ FKSZ RCSZ •••••.•• 1 0 •••••••• 2 0 •.•••••• 3 0 •••••••• 4 0 •••••••• 5 0 •••••••• 6 0 •••.•••• 7 0 •••••••• 8 0 I c
-0

2 400 80 03000600

I
00
w

FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 ~
N

0300060000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 :lJ
CD
<:

3 7 4CO 80 09436750 I w
-

FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
0943675000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

7 t, 4CO 80 10007005
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
1000700500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

:., 5 400 80 10985469
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
1098546900 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

4 1 400 80 11766325
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
1176632500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 I Cf)

-0

:. 2 400 i:O 20463844 I 00 ~ FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
0 :lJ
:lJ -<

2046384400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 -I c
"' z s: -m<

4 3 400 80 33655307 :lJ)>

FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
G) ('")

mo
3365530700 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 Cf)

"' w

4 4 400 80 40675987
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
4067598700 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

4 c 400 80 43300000 -
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
4330000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

::.. 1 400 BC 50964097
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
5096409700 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

) 2 400 dO 54486555
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444

I
w

5448655500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 I
co

Figure 3-2. Independent Disk Sort Coding (Part 6 of 7)

• • •

•
ELKR REC~ BKSZ RCSZ

) ~ 400 80 -

5 4 400 80

;, ~ 400 80

b 1 400 80

6 2 400 80

3 400 80

4 400 80

v 5 400 80

• •
DATA FILE AFTER SORT (cont)

•••••••• 10 •••••••• 20 •••••••• 3 0 •••••••• 4 0 •••••••• 5 0 •••••••• 6 0 •••••••• 7 0 •••••••• 8 0

68548833
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
6854883300 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

68799863
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
6879986300 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

70509300
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
7050930000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

77330659
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
7733065900 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

88855296
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
8885529600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

90675004
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
9067500400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

94600054
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
9460005400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

98654777
FFFFFFFF44 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444
9865477700 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

Figure 3-2. Independent Disk Sort Coding (Part 7 of 7)

I
c
LJ

00
w
+:>
N

I
::0
(!l

<:
w

I~~
o::o

I

::0 -<
-I c
" z s: -m<
::0)>
G> ()
mo
~

" w

w
I

<P

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-10

According to the example job control stream (Figure 3-2), SRTEXMPL is the 8-character •
alphanumeric name of your job (line 1). The double comma indicates that the job priority
parameter is omitted. Because it is omitted, the system assumes normal (N) priority. The
numbers 7000 and 9000 are hexadecimal values (equivalent to 28,672 and 36,864 in
decimal) that represent the minimum number of main storage bytes (including job
prologue) required to execute the largest job step of this job and the maximum number of
main storage bytes requested but not required to execute the largest job step of this job.
The number 2 indicates that no more than two tasks can be active at the same time in any
job step. A task is a unit of work that the supervisor schedules.

In order to process incoming information, the system needs hardware devices to handle
the processing, and you must assign devices to various routines in your program. A device
assignment set consists of at least two or as many as five job control statements; i.e., the
DVC and LFD statements or the DVC, VOL, EXT, LBL, and LFD statements. Each device
assignment set begins with a DVC statement that assigns a logical unit number. For
specific 1/0 device numbers, check the list of device types and features in the job control
user guide, UP-8065 (current version).

The first device usually assigned is a printer. It is needed to print messages for operator
action or information. The printer must be assigned the standard name PRNTR on the LFD
statement (Figure 3-2, line 2).

Your next series of job control statements (lines 3 through 10) follow a pattern in
assigning input, output, and sort work files. The pattern of specifications for each file is •
the file name within a volume name on a specific device.

FILE NAME

VOLUME NAME

DEVICE NUMBER

In this example (Figure 3-2), your first DVC statement after the printer device assignment
set assigns device number 50 to your input file named INFILE (line 3). The second DVC
statement assigns the same device to your output file (line 4). Looking at the next DVC
statement (line 5), notice that the same device is assigned for sort work file $SCR 1.
Because our input files are very low volume, this is possible; however, under normal
circumstances for larger input volume, you should assign one disk device for each sort
work file and another for input and output files. The sort operates more efficiently when
one work file is assigned per disk. The name $SCR1 is for a temporary work file. Next you
must identify the disk volume to be used. The VOL statement supplies volume serial
numbers that uniquely identify tape or disk volumes (lines 3, 4, and 5). The name you
assign to your input and output file volume is the alphanumeric name DSP028 (lines 3
and 4). For the sort work file volume name, you specify the same, DSP028 (line 5).

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-11

To provide disk space for sort work files and to designate information needed to create
new files or extend existing disk files, you specify the EXT job control statement on the
device assignment sets for each sort work file. Each EXT statement applies to the first
volume specified on the immediately preceding VOL statement (line 5). Notice there is no
EXT statement for either input or output files because these files already exist (lines 3 and
4). The input file was created by the data utility program that used your card input data,
and the output file needed an EXT only on the first run. ST indicates that your work file is
accessed via the system access technique (SAT). The C allocates contiguous space for the
extent; a comma indicates omission of an optional parameter; CYL specifies that space
must be allocated in cylinder; and the 5 indicates the number of cylinders allocated for the
file.

Data management needs to know the file identifiers you designate for your program. Only
one LBL statement is allowed per device assignment set. You specify the disk sort
program's input file identifier as INFILE (line 3), the output file identifier as OUTFILE (line
4), and the sort work file identifier as $SCA 1.

To associate the file information in the job control stream with the data management file
definition, you must specify the standard label names SORTINn and SORTOUT on the LFD
job control statement for each file (lines 3 and 4). Thus your first two LFD statements in the
job control stream would specify the name SORTIN1 for the input file and SORTOUT for the
output file. If more than one input file is being processed, the label names for the files must
be assigned in sequence (SORTIN1 for the first file, SORTIN2 for the second file, etc.). The
number of input files sort/merge can process depends on the type of operation being
performed (sort/merge or merge-only). For sort/merge operations, sort/merge can process
up to nine tape or disk files (SORTIN1 to SORTIN9). For merge-only operations, sort/merge
can process up to 16 tape or disk files (SORTIN1 to SORTIN9 for the first nine files and
SORTINA to SORTING for the last seven files).

The INIT parameter on the LFD statement for the output file indicates that you want to start
writing at the beginning of the file, overlaying its previous contents. The LFD statements for
sort work files must specify the file names DM01 through DM08 or $SCR1 through $SCR8,
in consecutive order, beginning with DM01 or $SCR1. Thus, the third LFD statement
specifies the name DM01 (line 6).

An easier way of assigning work areas on disk would be to use WORK job control procedure
(jproc) calls. A WORK jproc automatically generates a device assignment set allocating
system scratch space as a work area. The format for the WORK jproc call needed for our
program is I /WORK1. This statement takes the place of lines 5 and 6 in Figure 3-2. The
WORK jproc, used without parameters, allocates 4000 256-byte blocks of scratch space on
your system resident device (SYSRES) or the volume containing your system run library
(YRUN). You can increase the amount of work space and specify the use of other disk
volumes through optional parameters. For more information about the WORK jproc, see the
job control user guide, UP-8065 (current version).

There are three important features to consider when building an independent sort/merge
control stream .

1 . No device assignment or execute statements are needed for the assembler because
independent sort/merge does not need to be assembled.

2. To link file descriptions, LFD job control statements for independent sort/merge
programs must use the standard names SORTINn and SORTOUT.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-12

3. No linkage editor job control statements are required because independent
sort/merge does not need to be linked. Thus, when you execute (EXEC) the sort
program using independent sort/merge, the independent sort/merge interface
module comes from the system load library file (YLOD).

In part 1 of Figure 3-2, beginning with line 8, /$ indicates the start-of-data to the
independent sort. Lines 9 through 13 are your parameters for the sort parameter table
being structured for your disk sort program. Lines 14 through 16 indicate the end-of-data
to the independent sort/merge, the end of job stream, and the end of the card reader
operation. For details about job control and its language, see the job control user guide,
UP-8065 (current version).

Figure 3-3 shows the job control stream required to execute your disk sort program using
independent sort/merge. Figure 3-4 illustrates the results of your device assignment set
specifications. This same job control stream can also be created and executed from a
workstation. (See 3.5.)

Terminates card
reader operation ----~

II FIN

The sort/merge
control statements
preceded and followed ---"f'
by data sentinels.
(See 3.2.)

,----------.

/*

program control
statements

/$

I&

Marks the end
----- of job control

stream

II EXEC SORT

i------- Executes the independent sort/merge

II DVC - II LFD DVC, LFD, LBL (for disk) and LFD
job control statements required to

1-----assign auxiliary storage, if needed.

sequence

II DVC - II LFD
sequence

II DVC - II LFD
sequence

EXT statement may also be needed
for disk files. (See 3.1.1.)

DVC, VOL, LBL (for disk) and LFD
i------ job control statements required to

assign the output file. EXT statement
is also needed to allocate a new disk

file. (See 3.1.1.)

I----- DVC, VOL. LBL (for disk) and LFD
job control statements required to
assign the input file. (See 3.1.1.)

II DVC - II LFD
sequence 1------- Device assignment set for the printer

preceding job steps
if any

II JOB name

Figure 3-3.

i------- JOB statement is always required to initiate
the job and assign main storage.

Typical Job Control Stream for an Independent Sort/Merge Application

•

•

•

•

•

•

UP-8342 Rev. 3

EXT=5 cylinders
LBL= $SCR1
LFD=DM01 {

\
\
I
I
I

SPERRY UNIVAC OS/3
SORT/MERGE

VOL=DSP028

\

I
I
I
I
I
I \

I
\
I
\

I
I
I

DEVICE=50

l LBL=INFILE
\ LFD=SORTIN1

l LBL=OUTFILE
\ LFD=SORTOUT

Figure 3-4. Device Assignment Results

3-13

- ----------- ---------------------------------
UP-8342 Rev. 3 SPERRY UNIVAC OS/3

SORT/MERGE

3.2. SORT /MERGE CONTROL STATEMENTS

3-14

Sort/merge control statements are your way of providing the independent sort/merge
with the information needed to sort and merge records of your input files. These
statements, issued from the control stream, define the functional structure of the
independent sort/merge by:

• defining the sort/merge to be performed;

• describing your records, the input and output files, and the sort key fields; and

• specifying any own-code routine that you may use during program execution.

The actual structure of the independent sort/merge is based on the entries contained in
the sort parameter table. The initialization phase of independent sort/merge interprets and
uses the parameters you specify in the control statements to write entries into the sort
parameter table. (See Appendix B.)

Independent sort/merge uses eight control statements:

SORT

Defines the sort key fields, sorting sequence, auxiliary storage, and the number
and size of the input files.

MERGE

Defines a merge-only job.

RECORD

Defines the records to be sorted or merged.

INPFIL

Defines the input file to the sort/merge processor and specifies the procedures
for opening and closing input tape files.

OUTFIL

Defines the output file to the sort/merge processor and specifies the procedures
for opening and closing output tapes.

OPTION

Specifies additional options and information to the sort/merge program.

MODS

Required when you include user routines in a sort/merge application. It defines
your program routines with related user own-code exits. Also allows you to
perform automatic data reduction of your files through the use of the system
supplied data reduction routine (DELETE).

•

•

•

•

•

•

UP-8342 Rev. 3

END

SPERRY UNIVAC OS/3
SORT/MERGE

3-15

Indicates that the last control statement of a related group of sort/merge control
statements has been read. This is an optional control statement.

To understand the functions of the sort/merge control statements, we will examine each
of them and relate them to the coding for our disk sort program.

3.2.1. Defining a Sort Operation

The SORT control statement defines a sort operation to independent sort/merge. All
parameters are optional, but specifying your exact requirements will increase program
efficiency. The SORT control statement defines:

• sort key fields and their sorting sequence;

• the type and number of auxiliary storage devices needed;

• the approximate number of logical records in the input file being sorted; and

• the total number of input files entered into the sort.

The format of the SORT control statement is:

LABEL ti OPERATION ti

SORT

OPERANO

([strt-pos-1] [.lgth-1] [.form-1] [.seq-1]

FIELDS=
[, ... ,strt-pos-n,lgth-n [,form-n] [,seq-nJ])

([strt-pos-1] [,lgth-1) [,seq-1] c ... ,strt-pos-n,lgth-n

[,seq-nJ]) ,FORMAT=code

[
,COPY= { ~;p~t-file-partition-number·output-file-partition-number }]

[, ... ,input-file-partition-number·output-file-partition-number])

[m~K } =n"mbe• J
[{ number}] ,FILE=number 'lF

[,NOCKSM= {~} J
[.SIZE=number]

[
SORTP= (output-file-partition-number ,input-file-1-partition-number]

[. ... ,input-file-9-partition-number])

[{
CHPT }] Provided and accepted for compatibility with

• CHKPT other systems; however, no action is performed
by OS/3 sort/merge.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-16

The FIELDS keyword parameter may be used to specify up to 12 key fields. The order in
which you specify the key fields is considered by independent sort/merge as the order of
significance. The first key field defined is the major sorting field, the second specified is
the first minor sorting field, and so on.

There are two formats for the FIELDS parameter. One format has four subparameters to
indicate the starting position, length, data format, and sequence for each key field. The
other format has three of the same subparameters plus the FORMAT subparameter. The
data format may vary for each key field or it may be the same for all key fields. If you omit
the FIELDS parameter, one key field is assumed, beginning at byte 1, the same length as
the record up to a maximum of 256 bytes, with character format and ascending sequence.
If you specify FIELDS but omit any of the subparameters, you must retain their associated
commas, except for trailing commas.

The strt-pos subparameter is a decimal number specifying the starting point of a key field
relative to the beginning of the record. All key fields except binary key fields must start on
a full-byte boundary. The key field starting positions for independent sort/merge differ
from the subroutine sort/merge and SORT3 programs in that starting positions are
indicated by byte numbers instead of position numbers. For example, specifying 9 as strt
pos indicates that the most significant byte of the key field begins at byte 9 of the record
as illustrated by the following diagram:

1--
Key

~I Field

RECORD 1

I I
81 82 83 84 85 86 87 88 89 810 811 812

LEGEND:

8 =Byte

The byte numbering method used by independent sort/merge is compatible with other
systems.

Binary key fields may start on a bit boundary, i.e., a specific bit within a specific byte of a
record. In this case, you specify strt-pos in byte-bit format. Bits are numbered from 0 to 7.
As an example, assume that key field 1 starts at bit 2 of byte 9 in the record. You would
specify 9.2 for the strt-pos-1 subparameter.

The lgth subparameter is a decimal number specifying the key field length in full bytes
following any of these formats:

n

n.

n.O

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-17

When using binary key fields, specify key field length in byte-bit format. The number of
bits specified must not exceed seven. For example, a key field length of six bits would be
written as 0.6; that is, we have a key field that is six bits long. If the key field extends from
bit 2 of byte 10 through bit 5 of byte 12, the length subparameter would be specified as
2.4.

Byte 10 Byte 11 Byte 12

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

LEGEND:

D Key field length

The form subparameter is a code consisting of two or three alphabetic characters
specifying the key field's data format. If you omit this subparameter, the format is assumed
to be character (CH). This subparameter is used when the data format varies for each key
field. If all key fields have the same data format, you can use the FORMA T=code
subparameter. In this case, the same codes used for the form subparameter are
permissible; however, you must not specify the form subparameter when using the
FORMAT subparameter. The format codes and their maximum allowable field lengths are
shown in Table 3-1 .

Table 3-1. Data Format Codes (Part 1 of 2)

Format Description Allowable Field Length Code

AC EBCDIC data in ASCII
collating sequence 1 - 256 bytes

ASL ASCII numeric data
leading sign 2 - 256 bytes

AST ASCII numeric data
trailing sign 2 - 256 bytes

Bl Unsigned binary 1 bit to 256 bytes

Character (EBCDIC or ASCII) 1 - 256 bytes

CLO Numeric data overpunched
leading sign 1 - 256 bytes

CSL Leading sign numeric 2 - 256 bytes

CST Trailing sign numeric 2 - 256 bytes

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 3-18
SORT/MERGE

Table 3-1. Data Format Codes (Part 2 of 2)

Format
Code Description Allowable Field Length

CTO Numeric data overpunched
trailing sign 1 - 256 bytes

Fl Fixed-point integer 1 - 256 bytes

FL Floating point 1 - 256 bytes

MC Multiple character, user- 1 - 256 bytes
specified collating sequence

PD Packed decimal 1 - 32 bytes

USO Character, user-specified
collating sequence 1 - 256 bytes

ZD Zoned decimal 1 - 32 bytes

The seq subparameter specifies the sorting sequence of the key field: A for ascending
order and D for descending order. If omitted, ascending sequence is assumed.

The following coding illustrates FIELDS specifications. Line 1 shows that the first key field
begins at byte 1 of the record, is four bytes long, has a character format, and is to be
sorted in ascending sequence. The second key field begins at byte 10 of the record and is
12 bytes long, has a binary format, and is to be sorted in ascending sequence. Line 2 is
basically the same as line 1 except that the format of both key fields is the same.
Therefore, rather than defining them separately in the FIELDS parameter, they are jointly
defined by means of the FORMAT parameter. The sequence subparameters are omitted,
indicating that the default is to be applied. Remember that a comma must be coded in
place of a missing subparameter except after the last subparameter. Line 3 shows three
key fields with varying data formats. The first two are packed decimal and the third has a
character format. All fields are to be sorted in ascending sequence by default. The
WORK=3 parameter indicates that three work files (either tape or disk) are assigned to the
job. This parameter is optional.

1.
2.
3.

LABEL
1

t.OPERAT I ONt. OPERAND
10 16

SORT
SORT
SORT

FI EL DS= (1 , 4, CH, A, 1 el, 12, BI , A)
FIELDS=(l ,4,, 10, 12) ,FORMAT=CH
Fl ELDS=(85,3,PD, ,88,3,PD, ,8,9,CH) ,\.JORK=3

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-19

• Occasionally you may want to use multipartitioned disk files. Partitioning files simplifies
sorting where only certain data are involved in the sort. Suppose you perform a sort on
data records in one partition. At the end of the sort, you still want to write out the other
partitions to the output partitioned file. The COPY keyword parameter is then required to
copy disk input files directly into the output file without becoming involved in the sort. This
keyword parameter may be used only when one input file is specified.

•

•

There are two ways to specify the COPY parameter. COPY=ALL specifies that data records
contained in all input file partitions not involved in the sort are to be copied into the
corresponding partitions of the output file.

LABEL
1

t.OP ERAT I ONt.
10 16

SORT COPY=ALL

OPERAND

Figure 3-5 illustrates an action caused by this parameter.

INPUT FILE

PARTITION 1

COPIED

COPIED

LEGEND:

• Partitions not being sorted

Figure 3-5. Copying Corresponding Partitions

OUTPUT FILE

PARTITION 1

Using the alternate specification, you would indicate the input-file-partition-number and
output-file-partition-number. Each specification is a decimal number from 1 to 7. The first
number identifies the input file partition from which data records are to be copied into the
output file. The second number specifies the output file partition into which the data
records of the previously specified input file partition is to be written. The following coding
and Figure 3-6 illustrate the specifications needed to copy partitions 2 and 4 from the
input file to partitions 1 and 2 of the output file.

SORT COPY=(2. l ,4.2)

UP-8342 Rev. 3

INPUT FILE

PARTITION 1

PARTITION 3

LEGEND:

• Partitions not being sorted

SPERRY UNIVAC OS/3
SORT/MERGE

COPIED

COPIED

Figure 3-6. Copying Specific Partitions

3-20

OUTPUT FILE

PARTITION 3

PARTITION 4

Unless the sort is small and can be executed in main storage, it requires additional work
(scratch) space to perform its operations. You can choose one of three parameters on the
SORT control statement as the medium used for work area: DISC, TAPE, or WORK. DISC
and TAPE parameters are used to designate those media; however, the WORK parameter
can indicate the number of disk or tape files assigned to independent sort/merge as
working storage.

After designating the medium, you must specify a decimal number indicating the
maximum number of files available to independent sort/merge as working storage. This
number must not exceed 8 for disk files or 6 for tape files. You assign disk and tape files
in LFD job control statements using standard name DM01, ... ,DM08 or $SCR1 , ... ,$SCR8 for
disk, SM01, ... ,SM06 for tape.

If you omit this specification, independent sort/merge determines the number and type of
work files assigned, from the PUBS list generated by job control when devices were
assigned to your job. On the other hand, if you do not assign any work files in the job
control stream, the sort defaults to an internal, main storage sort, even if you include the
DISC, TAPE, or WORK parameter in the SORT control statement.

The following coding illustrates how this parameter could be added to the previously
described FIELDS parameters. In line 1, the WORK parameter indicates three work files
comprising tape or disk. In line 2, the DISC parameter indicates that three disks are to be
used for work files.

1.
2.

LABEL
1

t.OPERATIONt. OPERAND
10 16

SORT
SORT

Fl ELDS=(l ,4,CH,A, 10, 12,BI ,A) ,WORK=3
FIELDS=(l,4,,1~,12},FORMAT=CH,DISC=3

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

Independent sort/merge needs to know the total number of input files to be sorted in each
run. The FILE parameter supplies this information. Your data input files are specified as
SORTIN1 , ... ,SORTIN9 on LFD statements in the job control stream. If you have more than
one input file and forget to code the FILE parameter, independent sort/merge will process
only your first input file. The following coding indicates that two input files are to be
entered into the sort.

LABEL
l

b.OPERAT I ON.'.l
10 16

SORT FILE=2

OPERAND

A checksum word is normally calculated for each data block written to work files (disk or
tape). The checksum is the logical sum of all the data in the block. When the block is read,
the checksum is recalculated and compared with the previous calculation to verify data
integrity. A miscompare indicates a hardware problem because data integrity in reading or
writing data was not maintained. You can bypass this specification by coding the NOCKSM
parameter. This increases overall sort performance. D means omit disk checksum, and T
means omit tape checksum. The following coding indicates that no checksum word is to be
calculated for each data block written to the disk work file.

SORT NOC KSM=D

By specifying the NOCKSM parameter, you can save a considerable amount of processing
time.

Another parameter, SIZE, specifies the approximate number of records in the input file. If
you use the CALCAREA parameter in the OPTION sort control statement, the SIZE
parameter is required for an accurate calculation of optimum sort time and disk work
space. The following coding indicates that 3500 records are contained in the input file. If
you do not specify the number of records in the input file, independent sort/merge
assumes a file size of 25,000 records. You can greatly increase independent sort/merge
program efficiency by supplying this information.

SORT SIZE=350a

Like the COPY parameter, which handles the transfer of disk input file part1t1ons not
involved in the sort to disk output file partitions, the SORTP parameter transfers those
sorted partitions from the disk input file or files to a disk output file partition. The SORTP
keyword parameter is required when the sort/merge operation involves data records read
from or written to multipartitioned disk files. The first keyword subparameter of the SORTP
specifies the output-file-partition-number. This is a decimal number from 1 to 7 that
identifies the specific partition of an output file to which sorted data is to be written .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-22

You may specify up to nine partitioned input files to be read to the sort. The input file •
specification format is input-file-1-partition-number l ... ,input-file-9-partition-number]. The
FILE keyword parameter in the SORT control statement specifies the exact number of
input files involved in the sort. Each input file may be subdivided into a maximum of seven
partitions. If you are sorting two or more partitioned input files, you can sort only one
partition from each file. There is a way to make independent sort/merge sort more than
one partition of an input file by causing it to treat the additional partition as a partition of a
new file. To do this you redefine as a new input file each additional partition you want
sorted from the original input file by writing an additional job control device assignment
set in your job control stream. The following coding and Figure 3-7 illustrate the use of
SORTP parameter.

LABEL
1

t.OPERATIONt.
10 16

OPERAND

SORT SORTP=(3,1 ,3)

-----..... --.... -_... INPUT FILE 2

PARTITION 3
REDEFINED

FILE 2

II DVC 50
11 VOL DSP111
II LBL MYWORK
11 LFD SORTIN2

.....

I
I
I
I
I
I
I
I
I
I
I
I

~

INPUT FILE 1

PARTITION 4

LEGEND:

•
Data flow from
sorted partitions

Figure 3-7. Moving Sorted Partitions

OUTPUT FILE

PARTITION 1

PARTITION 2

PARTITION 4

The three subparameter numbers on the SORTP parameter indicate that output file
partition 3 receives the sorted data from partitions 1 and 3 of the input file. Although on
the SORTP parameter you may specify more than one input partition from which data is
received for sorting, the SORTP parameter is not put into effect until you redefine
additional input files in your job control device assignment sets.

•

•

•

•

•

UP-8342 Rev. 3

3.2.2. Defining Data Records

SPERRY UNIVAC OS/3
SORT/MERGE

3-23

The RECORD sort control statement defines the type and length of the data records being
sorted or merged. It also allows you to delete records from a file by character identification
and byte position. The RECORD statement is not generally required for disk input files
unless records are variable length or if length modifications are to be made; however, if
you omit the RECORD control statement, you also must omit the INPFIL control statement.
Both must be omitted or both must be present. It is required for tape input files, IRAM
files, and when input processing is handled by a user exit routine (3.3). The RECORD sort
control statement format is:

LABEL [).OPERATION[).

RECORD

OPERAND

{
LENGTH=(lgth-1 [,lgth-2] [,lgth-3] [,lgth-4] [,lgth-5]) }
RCSZ=bytes

r { p }] TYPE= i]!lff , ·····-·.·.·.·.·

v

[BIN= {bytes }]
' (min-bytes,size-1,freq-1 [, ... ,size-n,freq-1])

[,DEB LAN K=(delete-char ,byte-position)]

If input is from tape or IRAM disk files, you must include either a LENGTH or RCSZ
parameter.

The LENGTH parameter can list one to five lengths. Each length specifies definite
information about fixed- or variable-length records for input, internal sort, and output
phases of the sort/merge operation. Lgth-1 specifies the decimal number of bytes in the
input record for fixed-length records or the maximum input record length for variable
length records. (This length must not exceed 32, 767 bytes.) Lgth-2 gives the length (in
bytes) of each record released to the internal sort phase for fixed-length records or the
maximum-length record for variable-length records. If omitted, sort/merge assumes the
lgth-1 specification for this parameter. Do not specify /gth-2 for a merge-only operation;
however, you must retain its associated comma. Lgth-3 specifies the output record length
in bytes for fixed-length records or maximum output record length for variable-length
records written to tape or single-partition disk output files. Output record lengths written
to multipartitioned disk files are specified via the RCSZ keyword parameter in the OUTFIL
control statement (3.2.4). If /gth-3 is omitted, /gth-2 is assumed for sort operations, and
lgth-1 for merge-only operations. Lgth-4 is a decimal number specifying the minimum
input record length in bytes for variable-length records, and lgth-5 specifies the number of
bytes in variable-length input records that appear most frequently in the input file. If you
have variable-length records and omit lgth-4 and lgth-5, this information is obtained from
the BIN parameter. The LENGTH parameter is required for a tag sort (3.2.6) .

The other parameter alternative is RCSZ. It is a more general specification that indicates
the record length for fixed-length records or the maximum record size for variable-length
records.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-24

If input is from sequential or direct access disk files and you fail to specify either LENGTH •
or RCSZ parameters and also the BLKSIZE parameter on the INPFIL sort control statement,
independent sort/merge defaults to the input record size supplied by data management.

In the following coding, line 1 illustrates the LENGTH parameter for variable-length
records. The maximum input record length is 120 bytes; maximum length of each variable
length record released to the internal sort is 100 bytes; maximum length of each variable
length record written to the output file is 30; minimum input record length is 65 bytes;
and the number of bytes in the most frequently appearing records of the input file is 65.
Line 2 illustrates the more general specification of the RCSZ parameter, giving the number
of bytes in each fixed-length record or the maximum record size for variable-length
records.

l.
2.

LABEL
l

t.OPERATIONt.
10 16

RECORD
RECORD

OPERAND

LENGTH=(l20',l00',30,65,65)
RCSZ=80'

The TYPE parameter specifies the type (0, F, or V) of records to be processed by the
independent sort/merge. Specifications in this keyword apply only to tape and single
partition disk files. Specifications for data record types contained in multipartitioned disk
files are defined in the TYPE keyword parameter of the OUTFIL control statement (3.2.4). •
TYPE=D specifies that data records are ASCII, variable-length records. An F specifies
fixed-length records. This type of data record is assumed by default if you omit the TYPE
parameter. The V specifies variable-length records. The following coding specifies a fixed-
length record format and a record size of 80 bytes.

RECORD TYPE=F,RCSZ=80

To conserve main storage space and provide optimum processing speed, variable-length
records are divided into fixed-length subrecords (fixed-bin sizes). The BIN parameter either
specifies the size of these subrecords or supplies the information needed by independent
sort/merge to calculate the subrecord size. The BIN parameter has two formats. In the
first format, you can specify the decimal number of bytes in each bin. In the second
format, you indicate the minimum number of bytes in a bin (a number large enough to
accommodate all sort key fields within the record plus the 4-byte record length field), the
number of bytes in the most frequently occurring record sizes, and a number specifying
either the percentage or estimated number of the most frequently occurring records. If the
number is less than 100, independent sort/merge assumes this specification to be a
percentage. If 100 or more, the number is assumed to be an estimate of the number of the
specified-size records in the file to be sorted. A maximum of six different variable-length
record sizes and their frequencies may be specified. The sum of the records specified does
not have to total 100 percent of the file.

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-25

Assuming that all five lgth subparameters of the LENGTH parameter were not specified,
the following coding on line 1 specifies the number of bytes in each bin of a variable
length record. Line 2 shows information you supply to independent sort/merge to
calculate the bin size: minimum of 30 bytes per bin, a most frequently occurring record
length of 80 bytes, and approximately two hundred 80-byte records in the file to be sorted.

l.
2.

LABEL
l

~OPERATION~ OPERAND
l 0 16

RECORD BIN=40
RECORD BIN=(30,80,200)

You should code the BIN parameter if you use the RCSZ parameter or if you omit the lgth-
4 and /gth-5 subparameters of the LENGTH keyword parameter. If BIN and LENGTH are
both omitted, independent sort/merge calculates bin size from the lgth specifications of
the FIELDS parameter.

The DEBLANK parameter of the RECORD sort control statement allows you to delete
specific records from the file by defining a specific character and identifying its byte
position. The first subparameter (delete-char) indicates the character that, when found in
the byte specified by the byte-position subparameter, causes the record to be deleted from
the file. The second subparameter (byte-position) denotes the byte position of the character
used as a deletion indicator. In the following coding example, the DEBLANK parameter
specifies that any records with the character A in byte 4 are to be deleted.

RECORD DEBLANK=(A,4)

3.2.3. Defining the Input File

The INPFIL sort/merge control statement defines your input file to independent
sort/merge and specifies open and close procedures for tape files. It is not required if
input files are on disk, except for IRAM files. The BLKSIZE parameter must be specified for
IRAM files; all other parameters are optional.

UP-8342 Rev. 3

LABEL 60PERATION 6

INPFIL

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

3-26

[BLKSIZE= { ~:;:;s-1 [, ... ,bytes-8))} J
[,BUFOFF=n]

[,BYPASS]

[CLOSE= {£D tJ
[,DATA={~!} J
[,EXIT]

[{
factor }]

,INTERLACE= (factor-file-1 [, ... ,factor-file-n])

[,OPEN= { ~'J.~r'D }]
JIWO.

[,SKIPBYTE=n]

[VOLUME={vol }]
' (vol-1 [, ... ,vol-8])

Provided and accepted for compatibility with other
systems; however, no action is performed by OS/3
sort/merge.

Figure 3-8 shows coding examples referenced in the following INPFIL control statement
discussion.

1.
2.
3.
4.
s.

LABEL
l

t.OPERAT I ON.!l
10 16

INPFIL
INPFIL
INPFIL
INPFJL
INPFJL

OPERAND

BLKSIZE=800
BLKSIZE=(800,1200,1600)
BUFOFF=30,DATA=A
BLKSIZE=800,BYPASS,CLOSE=NORWD
EXIT

Figure 3-8. INPFIL Control Statement Coding Examples

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-27

The BLKSIZE parameter has two formats, one for sort/merge application and one for a
merge-only application. The first format applies to the sort/merge operation. It specifies
the number of bytes in each input file block when all input file blocks are the same length
or the length of the largest input block when block size varies. If the largest block length is
not specified when variable length blocks are involved, data will be lost through truncation
when the larger blocks are encountered. Line 1 of Figure 3-8 illustrates the first format.
The second format is required in a merge-only operation when input files have different
block sizes. The subparameters (bytes-1 [, ... ,bytes-BJ) specify block size, in bytes, of each
input file in order. For example, the first subparameter (bytes-1) specifies the number of
bytes per block for input file 1, the second subparameter specifies the block size for input
file 2, and so on. If you specify only one block size for an input file (bytes-1 subparameter),
all additional files are assumed to have blocks equal in length. Line 2 of Figure 3-8
illustrates three input files, each of a different block size. If you omit the BLKSIZE
parameter and also the RCSZ keyword parameter on the RECORD control statement,
independent sort/merge assumes that all input blocks are the size of the first block
processed. You must include the BLKSIZE parameter if you have IRAM files.

When tape data is in ASCII code, your program needs information prefixing each block of
data. This is because ASCII has a 7-bit character code and there must be a compensation
between ASCII and EBCDIC character code lengths, as well as space allotted for header
information. The BUFOFF (buffer offset) parameter defines the length of a block prefix
when you use an ASCII data block structure. You indicate a decimal number from 0 to 99
on the BUFOFF parameter. Figure 3-8, line 3 shows this parameter as well as the data
format parameter specifying ASCII code. These two parameters are usually coded together.

Another optional INPFIL parameter is the BYPASS parameter. It has no associated values
but when you specify BYPASS, you direct the independent sort/merge input phase to
ignore all unreadable blocks of data on the input file. Independent sort/merge does not
keep a record of the blocks ignored. Figure 3-8, line 4 shows an 800-block input file for
which all unreadable data blocks are to be ignored by the sort/merge input phase.

There are several rewind methods for closing input tape files:

• CLOSE=NORWD

Does not rewind input tape file on closing.

• CLOSE=RWD

Rewinds the input tape file to load point on closing.

• CLOSE=RWI

or

CLOSE=UNLD

Rewinds with interlock on closing.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-28

To understand when to use these parameters, consider the conditions which require their •
use. For example, you would want to specify NORWD if your tape contained multiple files
and you were planning to run successive sorts on file 1 and file 2. You wouldn't return to
the tape load point after sorting file 1 because you want to leave the tape prepositioned on
file 2 for the second sort. Suppose, on the other hand, you wanted to perform two
successive sorts on the same file. After the first sort at the end of the input tape or input
file, the tape needs to be rewound to the beginning of the file for the second sort on a
different key. This situation would require the RWD specification. The rewind with
interlock (RWI) and unload (UNLD) subparameters perform identical functions; i.e., the tape
is rewound with interlock, making those files inaccessible unless the operator intervenes.
The RWI or UNLD is a protective procedure you might specify if you didn't want to risk
writing over the tape files.

If you omit the CLOSE parameter, the default is UNLD. Figure 3-8, line 4 shows that no
rewinding is performed upon closing the input file.

You can specify two data formats: ASCII or EBCDIC. DATA=A indicates data recorded in
ASCII; DATA=E indicates data recorded in EBCDIC. EBCDIC is the default assumed if you
omit the DATA parameter. In the coding examples of Figure 3-8, since no data format is
specified, the system assumes a normal default condition of E (EBCDIC) except on line 3,
where ASCII data format is specified.

Instead of letting sort/merge provide the input routines, sometimes you may want to
supply your own routine for reading the input file. The EXIT parameter indicates that you •
are providing the entire input routine. EXIT has no associated value, and you may not code
any other INPFIL parameters when you specify it. Figure 3-8, line 5 shows this coding by
indicating that you want to read the input file via your own input routine.

Data management has a special feature called the interlace feature. Interlacing is a
method of recording data records on a disk file so that more than one physical record may
be written or accessed during each disk rotation. To properly access data records from
such an input file, your program must provide the independent sort/merge with the
interlace factor used during file creation. The INTERLACE keyword parameter has two
formats. The first specifies the interlace factor for a single input file, the second for
multiple input files. The following coding illustrates the two formats:

LABEL
1

llO P ERAT I ON!l
l 0 16

INPFIL
INPFIL

OPERAND

I NTERLACE=4
INTERLACE=(4,3,4)

The interlace fator is based upon many variables: time frame (internal between data
records); block size (number of physical records per track); disk rotational speed; and 1/0
time (time required to read or write a record). The data management user guide, UP-8068
(current version) provides a detailed explanation of interlace.

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-29

• Just as there are several rewind methods for closing input tape files, there are two rewind
methods for opening input tape files:

•

•

1. OPEN=NORWD specifies no rewind to load point on opening and is used when you
don't want to begin processing an input file at the beginning of the tape but at some
pre-positional location.

2. OPEN=RWD specifies rewind to load point on opening and is used when you want to
begin processing at the tape load point. RWD is the assumed default if you omit the
OPEN parameter. Thus, for each of the coding lines of Figure 3-8, input tape files
are rewound to load point on opening.

A record block doesn't always begin with the first data record. The SKIPBYTE parameter
specifies the location of the first data record in relation to the beginning of the block:

LABEL ~OPERATION~ OPERAND
1 10 16

INPFIL SKI PBYTE=l 0

The n is a decimal number you supply to indicate that the first data record is n+1 from the
beginning of the block; that is, the first n bytes are to be skipped. In the coding example,
the first data record starts at byte 11 .

3.2.4. Defining the Output File

The OUTFIL control statement defines output procedures to independent sort/merge. All
parameters are optional. They:

• define block size;

• define rewind alternatives for opening and closing the output file;

• indicate if you are providing the output routine; and

• indicate if a tape mark is to be written before the first data record of each volume in
the output file.

Notice that the following OUTFIL control statement format contains parameters similar to
the INPFIL control statement (3.2.3) .

UP-8342 Rev. 3

LABEL 60PERATION6

OUTFIL

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

3-30

IBLKSIZE= { ~:::s-partition- ~,~ytes-partition-2 } J
~ [, ... ,bytes-part1t1on-7])

[,BUFOFF=n]

[CLOSE= li: n
[,EXIT]

[FILTYPE= { ~l:M}]

Ii NTER LACE= {~:~=~r-partition-~,~actor-partition-2 }]
[[, ... ,factor-part1t1on-7])

[,NOTPMK]

[.NPTN= l number-;•rtitions)]

•

[,OPEN= { :i~~ro } J •
[,RCSZ=(max-bytes-partition-1,max-bytes-partition-2 J

[, ... ,max-bytes-partition-7])

Is IZ E= { :~;~::e-partition-1,percentage-partition-2 }] L [, ... ,percentage-partition-7])

, TYPE=(partition-1-type,partition-2-type [, ... ,partition-7-type])

[
,UOS=(ext-percent-partition-1,ext-percent-partition-2 J

[, ... ,ext-percent-partition-7])

These parameters are valid for disks as well as tapes. The OUTFIL control statement is not
needed if both input and output files are on disk, the output file is to have the same block
size and record size as the input files, and output is to a single-partition file or a
previously-defined multipartitioned file. If the output file has been predefined, you should
not specify the first optional parameter on the LFD job control statement, indicating the
maximum number of extents in the file. In addition, if you do use the OUTFIL control
statement for a previously defined output file, all file specifications must be the same as
when the file was created, or an error will result.

•

•

•

•

UP-8342 Rev. 3

The BLKSIZE parameter can specify:

SPERRY UNIVAC OS/3
SORT/MERGE

3-31

• the number of bytes in the output data block written to a tape or single-partition disk
output file (format 1); or

• the number of bytes in the output data blocks written to specific partitions in a
multipartitioned disk output file (format 2).

If block size is needed and you do not specify the BLKSIZE parameter or the RCSZ
parameter in any sort control statement, independent sort/merge assumes a block size
equal to the input block. In the following coding, line 1 indicates that you are writing 400-
byte data blocks to the output file. Line 2 indicates that you are writing output data blocks
to three partitions on a disk output file. The first partition receives 400-byte output data
blocks; the second partition receives 150-byte data blocks; and the third partition receives
640-byte data blocks.

1.
2.
3 .

LABEL
1

b.OPERATIONb.
10 16

OUTFIL
OUTFIL
OUTFIL

OPERAND

BLKS I ZE=400
BLKSIZE=(400,150,640)
BUFOFF=20

The BUFOFF parameter is used in the OUTFIL control statement, for specifying the length
of a block prefix for an ASCII data block structure. This buffer offset specifies a decimal
number from 0 to 99, indicating a special adjustment for data written in ASCII character
code. The BUFOFF example in line 3 indicates an adjustment of 20 bytes for an ASCII
format file.

The CLOSE parameter specifies rewind alternatives for closing tape output files. All the
specifications are identical to the CLOSE parameter specifications for the INPFIL control
statement (3.2.3): NORWD indicates no rewind on closing a tape output file; RWD, rewind
on closing; RWI or UNLD, rewind with interlock on closing. Similarly, the UNLD is
assumed by default if you omit the CLOSE parameter on the OUTFIL control statement.

To specify that you are providing your own output routine for writing the entire output file,
write the EXIT parameter. No other parameters may be specified on the OUTFIL control
statement when you specify EXIT. There is no assigned value for the EXIT parameter.

By using the FILTYPE parameter, you can create an indexed random access method,
nonindexed, or sequential access method output file. This parameter may be omitted if the
output file is to be the same type as the input file. IRAM output files are always
nonindexed, even if the input file has an index. If you are operating in the mixed data
management environment with tape input and you want disk output, the disk output file
will always be a nonindexed MIRAM file.

The INTERLACE parameter is required if you want to use the data management interlace
feature to create the data output file for the independent sort/merge. On output
processing, interlacing is a method of recording more than one physical record on a disk
for each rotation. In order to write an interlaced output file, your program must give

·---,

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-32

independent sort/merge the interlace factor required to create the file. You specify this
factor number in the INTERLACE parameter. For a more detailed explanation of the
variables used to determine the interlace factor, see the data management user guide, UP-
8068 (current version). Line 1 of the following coding example specifies an interlace factor
of 4 to create a single-partition output file. Line 2 specifies interlace factors for four
partitions of a multipartitioned output disk file. A maximum of seven partition factors may
be specified.

1.
2.

LABEL
1

AOPERATIONA
10 16

OUTFIL
OUTFIL

OPERAND

I NTERLAC E=4
INTERLACE=(3,7,4,5)

If you do not want a tape mark written before the first data record of each volume in the
tape output file, you can indicate this via the NOTPMK parameter. It has no associated
values and is coded as follows:

OUTF IL NOTPMK

Omitting the NOTPMK causes a tape mark to be written before the first record of each

•

volume in the tape output file. •

When you plan to use a multipartitioned disk output file, you must specify the number of
partitions to be created in that file via the NPTN parameter. The decimal number you
specify must be from 1 to 7. For example, the following coding indicates that the output
disk file contains four partitions.

OUTF IL NPTN=4

To specify rewind alternatives on opening tape output files, use the OPEN parameter
values identical to the OPEN parameter of the INPFIL control statement; i.e.,
OPEN=NORWD for no rewind to load point and OPEN=RWD for rewinding the output tape
file to the load point. If you omit the OPEN parameter on OUTFIL, independent sort/merge
assumes the RWD specification by default.

In addition to the block size, you can also indicate the maximum number of bytes in
records written to each partition of a multipartitioned disk output file. The RCSZ parameter
does this. You may specify up to seven maximum record sizes - one for each partition.
The following coding example indicates that output records are written to three disk
partitions. Each number within the parentheses represents the maximum number of bytes
for records written to partitions 1, 2, and 3, respectively.

•

•

•

•

UP-8342 Rev. 3

LABEL
1

i:lOPERAT I ONi:l
10 16

OUTFIL

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

RCSZ=(80,120,205)

3-33

If you fail to specify the RCSZ parameter, independent sort/merge supplies the same
number of bytes as the input record for all partitions.

To indicate to independent sort/merge the size of each partition on the output disk, you
use the SIZE parameter. The size specifies a percentage (a 1- or 2-digit decimal number).
There are two formats for the SIZE parameter. The first applies to a single-partition output
disk file occupying less than 100% of the available file space. Suppose you coded:

OUTFIL SIZE=5(1

Your disk partition size would be 50% of the file space available (Figure 3-9).

LEGEND:

50% FOR {
USE

UNUSED SPACE {

AVAi LAB LE OUTPUT
FILE SPACE

• File space for use

Figure 3-9. Partition Sizing for Single-Partition Output Disk Files

If you do not specify the SIZE parameter, independent sort/merge assumes a single
partition output disk file occupying 100% of the available file space.

The second SIZE parameter (percentage-partition-1, percentage-partition-2£ ... ,percentage
partition-7}) format can specify file space assigned to specific partitions of a
multipartitioned disk output file. Since a maximum of seven partitions are allowed, you
may specify up to seven percentages on this parameter. The following coding specifies a
disk output file with three partitions. The first partition would use 30% of the output disk
file; the second partition, 45%; and the third partition, 15%. Figure 3-10 shows how your
output disk file space would be partitioned .

UP-8342 Rev. 3

LABEL
l

t.OPERATIONt.
10 16

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

OUTF IL S IZE=(3£1,45, l 5)

PARTITION-I {

PARTITION-2 {

PARTITION-3 ~
UNUSED
SPACE

30%

45%

15%

10%

AVAILABLE OUTPUT
FILE SPACE

Figure 3-10. Partition Sizing for Multipanitioned Output Disk Files

3-34

You can tell independent sort/merge the type of record you write to each partition of a
multipartitioned file via the TYPE parameter. Indicate a record type for each partition by
choosing one of the following specifications:

• D ASCII variable-length records

• F Fixed-length records

• V Variable-length records

If you omit this parameter, the fixed type is assumed by default.

Suppose each of the three partitions you described in the previous SIZE parameter
example has a different record type: partition-1 contains ASCII variable-length records;
partition-2, fixed-length records; and partition-3, variable-length records. Your TYPE
parameter would have to include at least the D and V specifications. If you coded a comma
for partition-2 type record as follows, independent sort/merge would supply the default
condition of fixed-length records.

OUTFIL TYPE=(D,,V)

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-35

After you've assigned percentages of disk output file space to specific part1t1ons, your
number of records might increase and you might find that you exceed the amount of
output file space allocated for certain partitions. The UOS parameter solves this problem
by allowing the partitions to be dynamically extended by data management when they
become full. When you submitted an EXT job control statement for your output file, you
specified, in the third parameter, the number of cylinders you wanted for secondary
storage allocated. In the UOS parameter, you indicate what percentage of that amount you
want each partition extended by when it requires more space. You can specify up to 100%
for each partition. If you want to extend a partition by 100%, you can specify 100 for that
partition or you can omit the specification because the default is 100%. If you want to
extend a partition by less than 100, you must specify a percentage for that partition in the
UOS parameter. Suppose, for example, you specified five cylinders for the third parameter
of the EXT statement. If you have a 3-partition file, you might want to specify 100% for the
first and second partition and 20% for the third partition.

LABEL
1

t.OPERAT I ONt. OPERAND
10 16

OUTF IL UOS=(l 00, ,20)

If the first or second partition becomes filled, data management will extend the size of that
partition by five cylinders. If five additional cylinders aren't enough, data management will
extend the partition by another five cylinders. If the third partition is used up, data
management will extend it by one cylinder at a time .

3.2.5. Ending Input to Sort/Merge

The END control statement is optionally used to notify independent sort/merge that all
sort/merge control statements have been processed and that program execution may
begin. This control statement has no parameters and is coded as follows:

LABEL
1

t.OPERAT I ONt.
10 16

END

OPERAND

The END control statement is not to be specified when sort/merge specifications are
embedded in a jproc. Otherwise, the run processor mistakenly interprets the END control
statement as the END directive for the jproc.

3.2.6. Handling Special Independent Sort/Merge Specifications

The OPTION control statement consists of optional parameters that supply independent
sort/merge with additional information not applicable to any of the other sort/merge
control statements. Parameters with built-in default conditions automatically become
effective if you omit them. The OPTION control statement format follows:

t

UP-8342 Rev. 3

LABEL t.OPERATION t.

OPTION

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

[ADD ROUT= { ~ } J

[

~ CALCAREA l J
1 l CALCAREA={~~S})

[,CSPRAM= {!ION }]

[,KEYLEN=bytes]

3-36

[,LABEL=(output,input-1 [, ... ,input-n] ,work)]

[
RESERV= {work-file-name }]

' (work-file-name[,output-file-name])

[,RESTART]

[SHARE= {work-file-name }]
' (work-file-name[,input-file-name])

[,STO RAG E=bytes]

[,VERIFY]

[,ALTWK]

[,DUMP]

[,ERASE]

[,ROUTE]

[,SORTIN]

[,SORTOUT]

[,SORTWK]

Provided and accepted for compatibility with
other systems; however, no action is performed
by OS/3 sort/merge.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-37

For compatibility with other systems, OS/3 independent sort/merge accepts but does not
act upon seven parameters: AL TWK, DUMP, ERASE, ROUTE, SORTIN, SORTOUT, and
SORTWK.

You may specify the other OPTION control statement parameters in any order. With this in
mind, we plan to discuss those parameters concerning special specifications for disk
access input records (ADDROUT and KEYLEN), those concerning input, output, and work
files (LABEL, RESERV, SHARE, VERIFY CALCAREA, and STORAGE), and those that affect
external control (CSPRAM, PRINT, and RESTART). Figure 3-11 contains coding examples
pertaining to the following parameter discussion.

1.
2.
3.
4.

LABEL ~OPERATION~

1 10 16

OPTION
OPTION
OPTION

OPERAND

ADDROUT=D,CALCAREA=YES,CSPRAM=YES
STORAGE=l8000,KEYLEN=l0,PRINT=NONE,VERIFY
STORAGE=1800,LABEL=(S,S,S) ,RESERV=(SM06),
SHARE=(SM01)

Figure 3-11. OPTION Control Statement Coding Examples

72

c

The ADDROUT parameter is required when independent sort/merge must perform a tag
sort. The tag sort performed by independent sort/merge is a method of constructing a file
that contains only the direct access addresses, or the addresses and key fields, of the
records in the original file. If you provide the input through an own-code routine, you must
obtain the disk address of each input record and place it into the 10-byte address field of the
new tag sort record. The total length of all key fields per tag sort record, including the 10-
byte record address field, cannot exceed 256 bytes. A tag sort can be performed only when
input is from a nonindexed or IRAM file. Multiple input files cannot be tag sorted. If input is
from an IRAM file, the output of the tag sort will be an IRAM file without an index.

If you specify A on the ADDROUT parameter, the final output is only the direct access
addresses of the input records. D specifies that the output file is to contain both the direct
access addresses and sort key fields of each record. Figure 3-11, line 1, illustrates the
ADDROUT parameter. Figures 3-12, 3-13, and 3-14 show unsorted key fields from four
records and the resulting records returned to your output file after the tag sort. It is not the
intent to show actual record formats in Figures 3-12, 3-13, and 3-14 but to illustrate the
concept of record sorting by key fields and the outputs produced by a tag sort operation .

UP-8342 Rev. 3

RECORD
ADDRESS

SPERRY UNIVAC OS/3
SORT/MERGE

MAJOR KEY MINOR KEY

"
FIELD / FIELD

540 33 001654

360 04 002992

180 06 007959

001 10 004570

INPUT FILE
(UNSORTED RECORDS)

3-38

Figure 3-12. Input File. Unsorted Records (Additional Data Fields Not Shown)

INPUT FILE
(UNSORTED RECORDS)

540 33 001654

360 04 002992

180 06 007959

001 10 004570

WORK FILE
(RECORDS SORTED ON MAJOR KEY FIELD)

540 33 001654

001 10 004570

- 180 06 007959 - 180

360 04 002992 360

Figure 3-13. Tag-Sorted Output File when ADDROUT=A

OUTPUT FILE
(RECORD ADDRESSES ONLY)

540

001

•

•

•

•

•

•

UP-8342 Rev. 3

INPUT FILE
(UNSORTED RECORDS)

540 33 001654

360 04 002992

180 06 007959 -
001 10 004570

SPERRY UNIVAC OS/3
SORT/MERGE

WORK FILE
(RECORDS SORTED ON

MAJOR KEY FIELDS)

540 33 001654

001 10 004570

180 06 007959

360 04 002992

3-39

OUTPUT FILE
(RECORD ADDRESSES

AND KEY FIELDS)

540 33 001654

001 10 004570

180 06 007959 -
360 04 002992

Figure 3-14. Tag-Sorted Output File when ADDROUT=D

The following restrictions apply when ADDROUT is used:

1. Output block size must be a multiple of:

a. 10 bytes for ADDROUT=A

b. The sum of the sort key field lengths plus 10 bytes for ADDROUT=D

2. The lgth-2 and lgth-3 values in the length specification of the RECORD control
statement must be used. The lgth-2 value must be 10 bytes plus the sum of the sort
key field lengths. The lgth-3 value must be:

a. 10 bytes for ADDROUT=A

b. 10 bytes plus the sum of the sort key field lengths (after any user modification at
exit E35) for ADDROUT=D

Focusing now on the use of direct access for input records, note that record blocks may be
preceded by a key. This key is used by data management and has an entirely different
purpose from the sort key field represented on the FIELDS parameter of the SORT control
statement. You use the KEYLEN parameter to specify a decimal number of bytes in each
key. Figure 3-11, line 2 shows a KEYLEN parameter coding example. If you do not specify
the KEYLEN parameter, it is assumed that blocks do not have keys .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-40

Files may have .standard or nonstandard labels or may be on unlabeled tapes. The LABEL •
parameter specifies the label types for output, input, and work files. If files have
nonstandard labels, you must process those labels yourself via the user exits El 1 and E31.
The LABEL parameter specifies one of the following 1-character codes describing the label
type for output, input, and work files - in that order:

N Nonstandard labels

S Standard labels

U Unlabeled tapes

You may specify a maximum of nine input files. Standard labels are assumed on all files if
you omit the LABEL parameter. Figure 3-11, line 3 illustrates the coding of a LABEL
parameter, indicating standard labels for output, input, and work files.

By coding the RESERV parameter, you can reserve for your output data file a tape unit
assigned to the independent sort/merge as a scratch or work file. This allows the tape
unit to function as a work file during the input and intermediate phases of the sort/merge
operation and as the device for the output data file during the output phase. Figure 3-15
illustrates this.

MAIN STORAGE TAPE DEVICE 92

INDEPENDENT S/M

• INTERMEDIATE
PHASE COMPLETED

1---- - -- ---- -- -- --

REWIND

REMOVE WORK FILE
TAPE AND MOUNT YOUR

OUTPUT FILE TAPE

MAIN STORAGE TAPE DEVICE 92

INDEPENDENT S/M

• OUTPUT PHASE
~ --...

1------- ---------- -

Figure 3-15. Same Work File Device Reserved for Output File Processing

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-41

Independent sort/merge provides messages at the system console instructing you when to
unload the scratch tape and mount the output tape. The work-file-name specifies the
standard sort work file name (SM01, ... ,SM06) of the reserved tape device. The same
device cannot be assigned for both the RESERV and SHARE keyword parameters. The
device is associated with this name through an LFD job control statement. If you use the
second format, you can also specify the output-file-name, and the console messages will
include the name of the output file the operator is to mount.

In like manner, the SHARE parameter specifies the double use of one tape device by input
and work files. It allows a tape unit assigned to the independent sort/merge to be used as
the input device during the input phase of sort/merge operation and as a sort work file
during the intermediate and output phases (Figure 3-16).

MAIN STORAGE TAPE DEVICE 90

INDEPENDENT S/M

• INPUT PHASE
COMPLETED

1--------- ----- -----1

REWIND

REMOVE INPUT FILE
TAPE AND MOUNT YOUR
WORK FILE TAPE

MAIN STORAGE TAPE DEVICE 90

INDEPENDENT S/M

• INTERMEDIATE
~ PHASE

1--- ---- ------ -- -----

Figure 3-16. Same Input Device Shared between Input File and Sort Work File

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-42

Messages at the system console tell you when to unload an input tape and mount a •
scratch tape. The work-file-name specifies the standard sort work file name
(SM01, ... ,SM06) of the shared tape device. The device is associated with this file name
through an LFD statement in the job control stream. If you use the second format, you can
use the input-file-name subparameter to specify the name of the input file that is to be
shared, and a console message will be provided telling the operator which input tape to
dismount. Remember to assign different device numbers to your files specified on the
RESERV and SHARE parameters.

For output accuracy, coding the VERIFY parameter specifies that each output block will be
checked to ensure that it is written correctly when the output file is on a direct access
device. The VERIFY parameter has no associated values. Refer to Figure 3-11, line 2 for
an illustration of the VERIFY parameter.

In a disk sort, independent sort/merge can calculate for you the optimum working storage
area required for efficient sorting operations based on the parameters you supply on the
sort control statements. After its calculations, it displays execution information pertinent to
the defined sort/merge operation. It does these calculations when you specify the
CALCAREA parameter. The information it supplies is the estimated sort time in minutes
and the number of cylinders independent sort/merge requires for work space. If you
specify CALCAREA=YES, the sort is executed. If you specify CALCAREA or
CALCAREA=NO, optimum working storage is calculated and execution information is
displayed, but the sort is not executed. If you use the CALCAREA parameter, the SIZE
parameter on the SORT statement should be specified; otherwise, the default value of •
25,000 records will be used in calculating working storage area and the result may not be
accurate.

If you want the sort to use less main storage than is allocated in the job region, you can
indicate that decimal number of bytes on the STORAGE parameter. Otherwise,
independent sort/merge obtains this information from your job control statements. Lines 2
and 3 of Figure 3-11 show this parameter coded.

Occasionally, you may need to include certain parameters from the job control stream at
execution time. To tell independent sort/merge you are submitting parameters in this way,
you must use the CSPRAM parameter. The keyword parameters that independent
sort/merge can accept via the control stream at run time are BIN, DISC, NOCKSM,
RESERV, RESUME, SHARE, and TAPE. You enter these keyword parameters via PARAM
job control statements. There are three values to choose from on the CSPARM parameter:
NO, OPTION, or YES. NO specifies that sort/merge parameters will not be accessed from
the control stream. This specification is assumed by default if you omit the parameter. The
OPTION and YES keywords operate identically. The control stream is tested for the
presence of I /PARAM statements. If they are present, they are read. See Figure 3-11,
line 1 for an example of this parameter.

When independent sort/merge encounters errors, it provides error messages. These error
messages are interpreted in the system messages programmer/operator reference, UP-
8076 (current version). The way to specify the printing options for these error messages is
the PRINT parameter. There are three values to choose from: ALL, CRITICAL, and NONE. If •
omitted, the default provided for the PRINT parameter is ALL, which specifies that all

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-43

messages and control statements are written to the job log for subsequent printing. The
CRITICAL specification indicates that only fatal error messages are to be written to the job
log. NONE specifies that no messages be written to the log. Figure 3-11, line 2 illustrates
this specification. Error messages that are written to the job log also are displayed on the
operator console.

When a tape sort has been interrupted, and you want to restart it at the last recovery
point, you write the RESTART parameter. There are no values associated with this
parameter. The system console interfaces with independent sort/merge by displaying
messages concerning sort/merge execution status, fatal errors, possible recovery
information, and directions for mounting, dismounting, and labeling tapes during the
sort/merge process. The recovery information supplied by the system console is the
recovery point number or last cycle break executed before the sort was interrupted. You
need this number to restart your job. By coding this number on a PARAM job control
statement on the RESUME keyword parameter and by indicating the RESTART and
CSPRAM keyword parameters on the OPTION sort control statement (3.2.6), you can
restart your sort job by resubmitting the job control stream. The PARAM job control
statement must immediately follow the /* statement for the sort/merge control
statements.

The OPTION control statement that you must include for a tape restart is coded in line 1
as follows.

LABEL
1

t.OPERATIONt.
10 16

OPERAND

1. OPTION RESTART,CSPRAM=YES
2. II PARAM RESUME=(PASS,061)

Line 2 is an example of a PARAM statement that could indicate the recovery number you
just read from the system console.

3.3. EXIT CODES

Independent sort/merge allows you to pass control during certain phases of its operation
to your own-code routines which you write in BAL or to the system-supplied DELETE data
reduction routine. These points where control passes to your routines are called exits.

You use them when you want your own routines to handle input or output file processing,
record sequencing, data reduction, or special collation sequencing or you want
independent sort/merge to perform automatic data reduction. The MODS control
statement (3.3.1) allows you to specify:

• the phase number where your own-code routine or the DELETE routine enters the
independent sort/merge or merge-only operation; and

• the load module name of the routine, its approximate size, and the applicable exit
code number.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-44

Because each exit allows definite functions to be performed and these functions are
contained only in specific operational phases, your must choose exits and assign them to
the operational phase to which they are associated. Table 3-2 lists exit codes, the
functions each exit code allows you to perform, and the phase associated with each exit
code number.

Table 3-2. Exit Codes: Their Allowable Functions and Associated Phases

Phase Exit Code Function

1 Ell Input file label processing

E15 Input file processing:
- Reading input files

- Counting input records
- Inserting records

- Deleting records

- Modifying record size

- Modifying record content
- Modifying control fields

E18 Read error processing

3 E31 Output file label processing

E32 Input file processing during merge-only application:
- Modifying record content

- Modifying control fields

- Record substitution

E35 Output file processing

(Same as for E 15 except applicable to output files)

E38 Read error processing during merge-only application

E39 Write error processing for direct access devices

1-3 E65 Record sequencing

E75 Data reduction

E84 User-defined collation sequencing

3.3.1. Defining Exits

3.3.1.1. Exiting to Your Own-Code Routines

In order to activate your own-code routines (load modules), you need a MODS control
statement to define exits. The MODS statement specifies the sort/merge phase in which
your own-code routine load module is to be executed (PHn), the name (module-name) and
approximate length (length) of your module, and the exit-code numbers (exit-code) that are
to be used. If you plan to use your own routines in more than one phase, you must specify
each phase individually by repeating the PHn parameter for each phase exiting to your
own-code routines. The three exit codes which apply to all three phases (E65, E75, and
E84) must be specified individually by means of an identifying code that takes the place of
a phase number. Follow the first PHn parameter and subparameters with a comma, a
continuation character coded in column 72 (if necessary), and another PHn parameter with
its set of subparameters defining exits for that phase.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-45

• The MODS control statement format is:

•

•

LABEL fl OPERATION 6 OPERAND

MODS PHn=(module-name [,length] ,exit-code [, ... ,exit-code])
[, ... ,PHn=(module-name [.length] ,exit-code [, ... ,exit-code])]

You must always code the phase number PHn, module-name, and exit-code; however, the
length subparameter is optional. You can choose from the following decimal numbers
specifying the sort/merge phase in which your own-code routine is to execute or
identifying a routine that is executed during all phases.

n Description

1 Phase 1 (input-internal sort)

3 Phase 3 (final merge-output)

6 All phases (record sequencing routine)

7 All phases (data reduction routine)

8 All phases (user-defined collation sequencing)

The module-name subparameter may contain up to eight characters; the first character
must be alphabetic. The name you specify is the name of your own-code routine's load
module. Module length specifies the number of decimal bytes in the load module. If you
omit the length subparameter, independent sort/merge obtains the length from the load
module header record. Exit-code specifies the exit code numbers (i.e., E11, E15) listed as
subparameters on the phase to which they apply. You format the MODS control statement
according to the routines you want to use during sort/merge operations; for example, if
you're going to provide your own input file label processing routine and input file reading
routine, you format the MODS control statement to reflect the exit codes required for input
label (E11) and input file (E15) processing (line 1).

1.
2.

LABEL
1

60PERAT I ONL:i OPERAND
10 16

MODS PHl=(PHASEl ,385(d,El l ,El5),
PH3= (PHASE3, 2700, E3 l , E35)

72

c

Since both exits pertain to data input phase 1 of sort/merge, you indicate PH1 (line 1). In
addition, you specify the name of your own routine's load module (PHASE1) and the
approximate number of bytes (3850) required for your load module. Line 2 illustrates the
continuation of phase specifications. Here, you specify that your routine's load module
named PHASE3 contains 2700 bytes and is to receive control during phase 3 of the
independent sort/merge execution via exits 31 and 35. These exits process output file
labels and read output files.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3.3.1.2. Exiting to System-Supplied DELETE Routine

3-46

A special format of the MODS control statement is provided to allow you to exit to a
system-supplied data reduction routine called DELETE. The DELETE routine is supplied as
a load module in the system load library (YLOD) and, when activated, automatically
deletes duplicate records from your files. (See 3.3.2.8.) Defining the exit for the DELETE
routine is the same as that for exiting to your own-code routines (3.3.1.1), except that you
must use the system name DELETE when specifying the name of the load module.

The MODS control statement format for automatic data reduction is:

LABEL 60PERATION 6 OPERAND

MODS PH7=(DELETE [,length] ,E75)

3.3.2. Using Exit Codes

Independent sort/merge can exit to your own-code routines only during the phases you
specify in the MODS control statement. Independent sort/merge passes control to your
own-code routine via a branch table and general registers. When the exit is reached,
register 15 is loaded with the address of the first location of the exit routine load module,
which must be the branch table. This branch table must be covered by specifying register
15 as the base register. Before your routine assumes control from independent
sort/merge, you must save certain register contents. (See 3.3.3.) Table 3-2 helps to
categorize exit codes within their related phases. The following discussion describes the
functions that your own-code routines are permitted to perform.

3.3.2.1. Input File Label Processing

When you specify nonstandard labels for tape input files on the OPTION control statement,
you must enter that tape input file label processing routine via exit code E11. E11 enables
independent sort/merge to gain entry to your own-code nonstandard label processing
routine.

If you omit exit 11 (you do not specify E11 on the MODS control statement) for input files
that contain nonstandard or user labels, the labels are bypassed. However, you must
specify the input files as unlabeled (LABEL=U) in the OPTION control statement. Exit code
E11 enables the input files to interface with your own-code routine. This exit is essentially
the same as the LABADDR keyword parameter routine in DTF mode, or the ULABEL
keyword parameter routine in consolidated data management mode. For more information
on the use of these routines, basic data management users should consult the basic data
management user guide, UP-8068 (current version); consolidated data management users
should consult the consolidated data management concepts and facilities, UP-8825
(current version).

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-47

In the use of register 15, there is a conflict between sort/merge exit conventions and data
management. The sort/merge conventions require that register 15 be used as the base
register for each exit module, whereas data management requires that register 15 contain
the DTF address for the label processing routine in DTF mode. For exit 11, register 1 will
contain the address of the DTF or, if consolidated data management is being used, the
CDIB. In DTF mode, after the user has established a new base register other than 15, the
following instructions must be issued:

LR 15, 1 Puts DTF address in 15

L 1, 176(0, 15) Puts buffer address in 1

This will set up the registers so that the LBRET macros can be issued. The consolidated
data management user label routine must be executed without adding this code.

3.3.2.2. Input File Processing

Input file processing (exit code E15) enables independent sort/merge to enter your own
code routine to perform any of the following functions during phase 1:

• Read input files

• Count input records

• Insert records

• Delete records

• Lengthen or shorten records

• Modify record contents or control fields

When you specify E15 on your MODS control statement, exit code E15 receives control
each time an input record passes to internal sort phase 1. Since your routine may perform
a number of different functions on an E15 exit code, you must tell the sort what you
decide to do after the exit occurs. You supply this information to the sort by placing an
action code in the action word, a 4-byte area in main storage that independent sort/merge
sets up when it detects the EXIT parameter on the INPFIL sort control statement. You may
place any of the following action codes in the action word.

Action Code Action Taken

0 Accept the record by modifying it prior to entering the internal sort or
by taking no action

4 Delete the record from the sort

8 Request no return to exit code (E15 in this case) because exit use is
completed

12 Create a new record and insert it into the sort

------ ----------------------------
UP-8342 Rev. 3 SPERRY UNIVAC OS/3

SORT/MERGE
3-48

The action word is a 1-word (4-byte) entry in the parameter list, a table built by •
independent sort/merge to specify location of records and information affecting record
processing (3.3.6).

3.3.2.3. Input File Read Error Processing

By specifying exit code E18 on the MODS control statement, you enable independent
sort/merge to enter your own-code read error processing routine for the input file.
Independent sort/merge t~kes the address of your error routine and places it in the sort
input DTF. This supplies to data management the ERROR keyword parameter that names
your error handling routine, and you return to the sort via the BR 14 instruction. For more
information about the ERROR instruction, refer to the data management user guide, UP-
8068 (current version). You write only the BR 14 instruction to return to the sort.
Independent sort/merge dynamically activates the ERROR keyword parameter. If you
specify the BYPASS parameter on the INPFIL control statement and exit E18 on the MODS
control statement, the E18 specification overrides the BYPASS.

3.3.2.4. Output File Label Processing

The exit-code E31 specification on your MODS control statement enables independent
sort/merge to enter your own-code nonstandard label processing routine for the output
file. Functionally, it corresponds with the E11 exit for input files and interfaces the output
file via the LABADDR data management DTF keyword parameter and the LBRET •
imperative macro instruction. As in exit 11, there is a conflict with the use of register 15.
(See 3.3.2.1.) The user must establish a new base register and then load registers 15 and
1 as required for exit 11.

In consolidated data management, there is no register conflict. Register 1 will contain the
address of the CDIB as required by the consolidated data management user label routine.
Refer to the consolidated data management concepts and facilities, UP-8825 (current
version).

3.3.2.5. Output File Processing

Exit code E35 enables independent sort/merge to enter your own-code routine for output
file processing during phase 3. Any of the following functions may be used in your own
code output routine:

• Write output records

• Count output records

• Insert records

• Lengthen or shorten records

• Modify record contents or control fields •

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-49

By specifying exit code E35 on your MODS control statement, you indicate that E35 should
receive control each time an output record passes to final merge phase 3. Like exit code
E15 for input file processing, there are a number of possible functions your own-code
output routine can perform. Thus, you must tell the sort what you decide to do after exit
E35 occurs. To supply this information, you place action codes in the action word of exit
code E35 in the exit parameter list. (The action word is a 1-word (4-byte) field identified by
the parameter list; a table built by independent sort/merge to specify the location of
records and information affecting record processing. Additional details concerning
parameter list format are given in 3.3.6.) The action codes allowed are:

Action Code Action Taken

0 No change

4 Delete the record from the sort

8 Request no return to exit

12 Insert and accept a new record for output

Action codes 4 and 8 are valid only when the EXIT parameter is specified in the OUTFIL
control statement (3.2.4). If the EXIT parameter is not specified, then all of the action
codes listed are valid until sort/merge passes the last record to the exit 35 routine. At this
time, 8 and 12 are the only valid action codes .

After the last record is written, control is passed to the end-of-file routine. In this case, the
first entry in the exit parameter table is 0 contained in a 1-word (4-byte) field which
normally contains the address of the next record to be sent to the output buffer.

Exit code E35 is not valid in a merge-only application.

3.3.2.6. Write Error Processing for Direct Access Devices

There is no recovery from this type of error; however, you may supply your own-code
routine to handle a direct-access-device writing error by writing an E39 exit code on your
MODS control statement. To interface with the output file, your own-code routine uses the
same approach as data management error handling via the ERROR keyword parameter of
the DTF declarative macro and the BR 14 instruction. The ERROR keyword parameter
specifies the name of your error processing routine, and the BR 14 instruction returns
control from your error processing routine to the independent sort/merge. Refer to the
data management user guide, UP-8068 (current version) for more information about the
ERROR keyword parameter. You write only the BR 14 instruction. Independent sort/merge
dynamically activates the ERROR keyword parameter by taking your error processing
routine address and placing it in the sort input DTF .

UP-8342 Rev. 3

3.3.2.7. Record Sequencing

SPERRY UNIVAC OS/3
SORT/MERGE

3-50

Exit code E65 is used during phases 1, 2, and 3 for entering your own-code record
sequencing routine from independent sort/merge. Independent sort/merge enters your
routine each time two records are compared, to determine which will be sorted first. You
decide the record sorting sequence in your routine.

The first instruction in your own-code routine must be the USING assembler directive,
assigning register 15 as a base register. Your program receives the addresses of the two
records to be compared in register 11 and 12. For variable-length records, the addresses
supplied are those of the first bin of each record. The 4-byte record length field is part of
the first bin. You pass the result of the comparison to independent sort/merge via
condition code settings. If the record for the address in register 11 is first, the condition
code should be set to low (cc=1). If the record for the address in register 12 is first, you
set the condition code to high (cc=2). If the sequence of the two records is arbitrary, you
set the condition code to equal (cc=O). Control is returned to independent sort/merge via a
branch to register 14.

3.3.2.8. Data Reduction

When independent sort/merge encounters records with equal keys, it normally retains
both records in an arbitrary sequence. If you want to eliminate duplication in your files,
you can do so by using the system-supplied DELETE routine or by using exit code E75 to
enter your own-code data reduction routine. To use the system-supplied automatic data
reduction routine, include the following version of the MODS control statement in your
control stream.

MODS PH7=(DELETE,,E75)

When processed, this MODS statement causes independent sort/merge to load and
execute the load module for the automatic data reduction routine called DELETE. The
routine reduces data by deleting duplicate records whenever they are encountered. You
can use the DELETE routine for input files that contain either fixed-length or variable
length records but not both types. In your own-code routine, each time two records with
equal keys are processed, you may:

• delete one of the duplicate records;

• combine data contained in the duplicate records to create a new record; or

• use a combination of retaining, deleting, and combining duplicate records.

The first instruction in your own-code routine must be the USING assembler directive
specifying register 15 as a base register. Independent sort/merge places the addresses of
the two records with equal keys in registers 11 and 12. If one of the records is to be
deleted, normally the address of the record to be retained is in register 11 and the deleted
record address is in register 12, unless in your routine you overlay the address in register
11, thereby forcing the deletion of the address in register 11 and saving the address in
register 12. Your program returns control to independent sort/merge four bytes beyond
the address specified in register 14.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-51

• If you want to save the contents of both records, control must be returned to independent
sort/merge at the address specified in register 14.

•

•

3.3.2.9. User-Defined Collation Sequencing

Exit code E84 is used whenever you want to specify an alternate collating sequence to the
one supplied by independent sort/merge or to sort two or more different characters that
have the same collating values. To determine which operation you wish to perform, E84 is
used in conjunction with the character format code (USO and MC) specified in the FIELDS
keyword parameter of the SORT and MERGE control statements. Because both USO (user
specified collating sequence) and MC (multiple character) specifications use the E84 exit
code, they are mutually exclusive within a sort or merge operation. The distinction between
the two is that the USO specification for character code format requires you to provide
independent sort/merge with two 256-byte translation tables at exit code E84 when control
is passed to your own-code routine. The first table (input) must translate and collate the
input record key fields, and the second table (output) must return the fields to their original
format. You only require one table, the input table, when you use the MC specification. The
translation table is used only for comparison purposes and not to change the actual data in
the record. (See Appendix D for OS/3 EBCDIC and ASCII standard collating sequences.)

3.3.3. An Example of Exit-Code Use

Figure 3-17 finishes the discussion of exit codes by illustrating the coding required to
build a branch table, set up a base register, save and restore general registers, and provide
a return address to independent sort/merge. It also shows how you can write your own
input/output routine. The exit code used in this example is E15 as specified by the MODS
control statement (line 101). This example modifies the record contents (line 57).

Notice the DTF keyword parameters, ERROR (line 19) and EOFADDR (line 20), which give
data management the name of the error routine (line 68) and the end-of- data routine (line
60). When errors occur or the end-of-data condition is reached, data management enters
the error handling routine or end-of-data routine, respectively. Data management requires
1/0 buffers to be half-word aligned (line 21). If your input files are on 8416 or 8418 fixed
sector disks, or if you want to make your program device independent, your 1/0 buffer
areas must be in multiples of 256 bytes, or, in this case, 512 bytes instead of the 400
bytes shown in the example (lines 22 and 23). The 18-word (72 byte) data management
save area must be full-word aligned (line 24). There are two ways of providing the save
area address to data management: loading the address into general register 13 before
entering the data management imperative macro (see line 34, Figure 3-17), or specifying
the label of the area via the SAVAREA keyword parameter in your DTF. For more details
about the SAVAREA keyword parameter, refer to the data management user guide, UP-
8068 (current version). Using the SAVAREA keyword frees register 13 for other use by
your program .

UP-8342 Rev. 3

II JOB SRTEXMP5,,8000,A000
II DVC 20 II LFD PRNTR
I I WORKl }
II WORK2 =II ASM
II EXEC ASM
1$
PHASE l

Ell
El8

START .0
USING '",15
B Ell
B El5
B El8
EQU "'
EQU '"
CANCEL

SPERRY UNIVAC OS/3
SORT/MERGE

ERROR

ERROR

DATA MANAGEMENT WORK AREA AND DTF
;'"-

INPUT DTFSD

DS
BUFFl DS
BUFF2 DS
SAVEAREA DS
SAVE DS

El5

BLKSIZE=400,RECSIZE=80, IOAREAl=BUFFl, IOAREA2=BUFF2,
IOREG=(2),RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES,
EOFADDR=EOF,TYPEFLE=INPUT
OH
CL400
CL400
l8F
l 0F

EXIT El5 ROUTINE

IOAREAl
IOAREA2
DATA MANAGEMENT SAVE AREA
ROUTINE SAVE AREA

SAVE REGISTERS

c
c

3-52

EQU
STM
LR
DROP
USING
LA

13,6,SAVE
4' l 5
l 5

SET NEW BASE REGISTER FOR YOUR ROUTINE
FREE Rl5

TAG

NEXT

RETURN

;'.._

BC
OPEN
MVI
EQU
GET
BAL
L
ST

L
MVC
EQU
LM
BR

PHASE! ,4
13,SAVEAREA
0', NEXT
INPUT
TAG+l ,X'F0'

INPUT
5,MOD
l ,SAVE+l6
2,0(0,l)

3 '4 (l)
!0(4,3), INSERT

13,6,SAVE
14

SET R4 AS BASE REGISTER
SET DATA MANAGEMENT SAVE AREA
FALL THROUGH ON FIRST TIME
OPEN THE INPUT FILE
ALTER BRANCH FOR NEXT ENTRY

GET A RECORD
MODIFY THE RECORD
LOAD PARAM LIST ADDR INTO REG l
STORE THE ADDRESS OF THE RECORD
IN THE PARAM LIST
GET ADDR OF ACTION CODE
SET INSERT IN ACTION WORD

RESTORE REGISTERS
RETURN TO INDEPENDENT S/M

MOD EQU "'

Figure 3-17. Coding Example for Using Exit Code ET 5 (Part 1 of 2)

l
2
3
4
5
6
7
8
9

10
l l
12
13
14
l 5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

•

•

•

•

•

•

UP-8342 Rev. 3

-;'~ ROUTINE TO MODIFY THE
-;'~

;':

MVC 8(45,2),MESSAGE
BR 5

•;'t

EOF EQU ;':

L 1 ,SAVE+l6
L 3 '4 (1)
MVC 0(4,3),EOD

"k

CLOSE INPUT
B RETURN

,·~

IOERROR EQU ·k

B E18
1':

INSERT DC FI 12'
EOD DC F1 8 1

SPERRY UNIVAC OS/3
SORT/MERGE

RECORD

ADD MESSAGE TO RECORD
RETURN

END OF DATA ROUTINE
LOAD PARAM LIST ADDR
GET ACTION WORD ADDR
SET ACTION CODE 8 FOR
EXIT ACTIVITY
CLOSE INPUT ROUTINE
RETURN

INTO REGl

END OF

ERROR HANDLING ROUTINE
BRANCH TO CANCEL

MESSAGE DC CL45'THIS RECORD HAS BEEN MODIFIED THROUGH EXIT 15'
END

I>'<
I I WORKl
II EXEC LNKEDT
1$

LOADM PHASE!
INCLUDE PHASE!

I"'
II DVC 50
II VOL DSP028
II LBL MYFILEl
II LFD INPUT
II DVC 50
II VOL DSP028
II EXT ,,,CYL,4
II LBL MYFILE2
II LFD SORTOUT,, INIT
II DVC RES

} = //DMGl WORK! BLK=20000
II EXT ST,C,,CYL,5
II LBL $SCR1
II LFD DM01
II EXEC SORT,YRUN
1$

SORT FIELDS=(l,8,CH)
RECORD RCSZ=80,TYPE=F
INPFIL EXIT
OUTFIL BLKSIZE=80
MODS PHl=(PHASEl,,El5)
END

I"'
I&
II FIN

Figure 3-17. Coding Example for Using Exit Code E15 (Part 2 of 2)

3-53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-54

Since your routines are associated with phases of independent sort/merge, all routines for
a particular phase must be linked together as one load module. Exit code E15 that we are
using in this coding example, as well as exit codes E11 and E18, belongs to phase 1. Thus
to access exit code E15, we must code the branch table for the phase 1 exits in the order
shown (lines 9-11). At execution time, your sort control statements have told
independent sort/merge that

• your key field starts in byte 1, extends eight bytes, and has a character data format
(line 97);

• your records are fixed type and 80 bytes long (line 98);

• you intend to use a phase 1 exit code (E15) for your own-code input processing
routine (line 101);

• your output block size is 80 bytes (line 100);

• the load module name for your input routine is PHASE1 (line 101); and

• you are supplying a routine to modify input records (line 51-57 and line 99).

The first step you must take in your own-code routine is to save those registers used by
independent sort/merge (line 30) and load the address of the data management save area
into register 13 (line 34). You set up a new base register for your own-code routine (line
33), open the input file, and read records (lines 36-39). To modify records, you branch out
to your record modification routine (line 40) and return infine to load the parameter list
address in register 1 and store the address of the modified record in the parameter list
(lines 41 and 42). This record modification information is needed by independent
sort/merge to continue its succeeding phases and give the sorted record results you want.
Therefore, you must move the address of the changed record to the parameter list. After
this move, the parameter list contains the changed record address and, thus, the
information needed by independent sort/merge in the first full word addressed by register
1. You must then tell independent sort/merge how to create a new record and to insert it
into the sort. First, you get the address of the action code (line 44) and place it in regist~r
3. Then, you insert the action code, a DC assembler directive indicating a full-word
constant with the number 12 (line 71), into the parameter list at the second full-word
position (line 45). When the end of input file is reached and all record inserts and
modifications have been made, you change your action code in the parameter table by
getting the action word address (line 62) and setting the action code to 8 (line 63). You
close the input file (line 65). The final step in coding is to restore the registers used by
independent sort/merge (line 47) and return to the independent sort/merge (line 48). In
keeping with the data management DTFSD macro specification for the EOFADDR keyword
parameter, the end-of-file routine (line 60) is labeled EOF, the address of your routine
handling the end-of-data condition.

Certain registers do play an important role in implementing the transfer from the
independent sort/merge to your own-code routines. As we examine the use and function
of these registers in the following discussion, refer frequently to Figure 3-17 to
understand how registers help implement the linkage from independent sort/merge to
your own-code routines.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-55

• 3.3.4. General Purpose Registers

•

•

Four general purpose registers play important roles in enabling independent sort/merge to
communicate with your own-code routines and to provide linkage between its modules
and your routine. These registers are 1, 13, 14, and 15.

In cases where several functions may be performed by your routine during a particular
sort/merge phase, independent sort/merge requires an action code from your routine to
tell it what to do with a record or how to handle the situation at hand. Your parameter list
is the place where independent sort/merge receives this action code, but first it needs the
address of the parameter list in order to locate the action code. Independent sort/merge
places the address of the parameter list in register 1. The possible action code response
your routine must make depends upon the exit-code function being performed. Action
codes for the various exit codes used in the independent sort/merge are described in
3.3.2.2. The format for your own-code parameter list is discussed in 3.3.6.

In your own-code routine, you use registers for base registers and movement of addresses.
The contents of any registers you use during execution of your own-code routine must be
saved in a save area and restored to their original values before returning control to
independent sort/merge. This save area must be 18 full words (72 bytes) long, full-word
aligned, and defined by a OS assembler directive in your program. Independent sort/merge
places the address of a save area in register 13.

Before independent sort/merge enters your own-code routine via the exit-code, it must
save the address of the next sequential instruction in its module. This address is known as
the return address. Independent sort/merge places its return address in register 14. At its
conclusion, your own-code routine must then branch back to the independent sort/merge
via register 14.

When exiting to a user routine, independent sort/merge loads register 15 with the
address of the exit routine. The appropriate exit routine is then entered via the branch
table (3.3.5) which is required at the beginning of each exit load module.

If you use exit codes E11, E18, E38, or E39, you must enter and leave them by using data
management DTF keyword parameters and imperative macros explained in the discussion
of each exit code (3.3.2). You can find more detailed information concerning data
management user exits in the data management user guide, UP-8068 (current version).

3.3.5. Providing a Branch for User Own-Code Exits

Independent sort/merge locates and enters each own-code routine via a branch table
entry which must also be the first coding of the own-code load module. Table 3-3
indicates the table format and the phases with which each exit code is associated. The
right half of Table 3-3 represents the actual user coding required to build the branch
table. (See lines 9 through 11 in Figure 3-17 for an illustration of this coding.)

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

Table 3-3. Branch Table Format

Applicable
Phase of Sort/Merge

Operation

3

entry

entry

Typical Table Format

B Ell
B E15
B E18

B E31
B E32
B E35
B E38
B E39

3-56

When independent sort/merge gives control to your own-code routine, it loads register 15
with the address of the first branch table entry and then enters your routine at the
appropriate branch table entry. Own-code routines for the same phase of the sort must be
linked together as one common load module. Each routine used at a given exit must have
its own point of entry (exit code) listed in the branch table.

Several exit codes (E65, E75, E84) link the sort to your own-code routines differently.
Because functions provided at these exits are common to all phases of independent
sort/merge, they are linked as independent load modules rather than as one common load
module by phase association. The point of entry for exit codes E65 and E75 is the first
position in the load module. Exit code E84, however, has a unique problem. It is used for
entering either a user-defined, alternate collating sequence (USO) or a user-defined
collating sequence for sorting two or more different characters having equal collating
values. Because exit code E84 has no executable code of its own, your coding must show
the address for entry to your translation tables as the first word of the load module. If your
own-code routine is for an alternate collating sequence, you must provide two table entry
addresses; one for the input translation table and one for the output translation table. For
MC (multiple character) sorting, you need only one table entry address because this function
uses only the input table for comparison purposes (conversion is not performed during this
operation thereby eliminating the need for the output translation table). The format for exit
code E84 is:

entry DC A(convto-address)

DC A(convfrm-address)

3.3.6. Formatting the Exit Parameter List

Independent sort/merge uses information it finds in the parameter list to locate your
response (action code). The action code you place in the action word tells independent
sort/merge how to process your records. Register 1 points to the first entry in the
parameter list when control passes to your own-code routine. Each entry in the parameter
list is a 1-word (4-byte) entry. Table 3-4 describes the parameter list information required
and the parameter positions it occupies in the list.

Some exits do not use the parameter list. These exits work according to data management
requirements, using data management keywords and imperative macros to locate own
code routines and return to the sort. The data management user guide, UP-8068 (current
version) discusses these keywords and imperative macros in more detail.

•

•

•

•

•

•

UP-8342 Rev. 3

Exits
Parameter

Position No.

El 1, E31 None

E15 1

2

E32 1

E35 1

2

3

4

E18,E38 None

E39 None

E65 None

E75 None

E84 None

SPERRY UNIVAC OS/3
SORT/MERGE

Table 3-4. Parameter List Format

Function of Parameter

Interfaces conform to data management conventions for

LABADDR routines.*

Address of record in the input buffer

Address of action word

Address of record in input buffer

Address of record next scheduled for the output buffer

Address of last record in the output buffer

Address of action word

Address of sequence check word

See data management conventions for ERROR routines.*

See conventions for data management ERROR routine.*

See E65 description (3.3.2.7).

See E75 description (3.3.2.8).

No executable code at this exit

*Refer to the data management user guide, UP-8068 (current version).

3 57

The parameter list is used by three exits: E15, E32, and E35. E15 uses a 2-word
parameter list, E32 uses a 1-word parameter list, and E35 uses a 4-word parameter list.
All other exits use other interface conventions.

3.3.7. Job Control for the Own-Code Routine

After you have written your own-code routine, you must assemble and link it (see Figure
3-17, lines 3 to 5 and 76 through 81) before you can use the routine in your independent
sort/merge program. Perhaps you want to assemble and link your routine and execute the
sort/merge in a single run as described in Figure 3-17. In this case, independent
sort/merge finds the load module in the job run library file (YRUN). However, you may
want to save your own-code routine in the form of a load module which you can use over
and over again.

If you decide to save the load module for future use, you again have two choices. You can
store the module in the system load library file (YLOD), where the sort/merge modules
also reside, or in a private library file. If you store the module in YLOD, you have a little
less coding to do and independent sort/merge can retrieve the module slightly faster at
execution time.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-58

Example 1 gives the job control stream needed for storing your own-code routine in •
YLOD.

Example 1:

10 20

1. II JOB OWNCODE
2. II DVC 20 I I LFD PRNTR
3. II ASM
4. 1$
5. -;'~

6. ·k YOUR PROGRAM CODING
7, -;'~

8. j-'-"
9. II LINK PHASEl ,OUT=(RES,YLOD)
10. I&
11. II FIN

Notice that we have used the job control procedure (jproc) calls for both the assembler
(line 3) and the linkage editor (line 9). This saves a considerable amount of coding. The
first parameter on the LINK jproc tells the linkage editor to include the object module
called PHASE1 in the load module it is creating. Since the label field is omitted, the name •
of the load module will also be PHASE1 by default. The OUT parameter tells the linkage
editor to place the load module in the YLOD file on your SYSRES volume.

When you want to execute the independent sort/merge, you use the job control stream in
example 2.

Example 2:

10 20

1. II JOB SRTEXMPL,,6000,800~
2. II DVC 2~ II LFD PRNTR
3. II DVC 50 II VOL DSP001
4. II LBL MYFILEl II LFD INPUT
5. II DVC 50 II VOL DSP001
6. II EXT ,,,CYL,4
7. II LBL MYFILE2
8. II LFD SORTOUT
9. llDM01 WORKl
10. llDM02 WORK2
ll. II EXEC SORT
12. 1$
13. SORT FIELDS=(l ,8)
14. INPFIL EXIT
15. MODS PHl=(PHASEl ,3588,El5)
16. END
17. I~"
18. I&
19. II FIN

•

......------------- --- --

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-59

There are three indications in example 2 that an own-code routine is being provided. On
line 4, the LFD name for the input file is INPUT, instead of the standard input file name
SORTIN 1. This matches the label you used on the input DTF when you wrote the program.
(See Figure 3-17, line 18.) The EXIT parameter on the INPFIL control statement (line 14)
indicates that you are providing the input routine, and the MODS control statement (line
15) specifies that your load module is named PHASE1 and is to be called from phase 1 at
exit E15. Job control automatically looks for your load module in YLOD.

If you want to store your program in an alternate library file, you might use the job control
stream in example 3.

Example 3:

l 0 20

l. II JOB OWNCODE
2. II DVC 2'1 II LFD PRNTR
3. II ASM
4. 1$
5. -;'-:

6. ·k. YOUR PROGRAM CODING
7. ;'-:

8. I;"
9 . II DVC 50 II VOL DSP00'2
lo. II EXIT ST,, , CYL, l
l l. II LBL OWNCODE I I LFD OWNCODE
12. II WORKl
13. II EXEC LNKEDT
14. 1$
15. LINKOP OUT=OWNCODE
16. LOADM PHASE!
17. INCLUDE PHASE!
18. I;'<
19. I&
20. II FIN

The device assignment set in lines 9 through 11 sets up a file labeled OWNCODE on volume
DSP002 to contain the load module PHASE1. If you wanted to add PHASE1 to a program file
which already existed, you would omit the EXT statement (line 10). In this example, we have
elected to use the WORK jproc, the EXEC LNKEDT statement, and linkage editor control
statements (lines 12 through 18) in place of the LINK jproc. The OUT keyword parameter of
the LINKOP control statement tells the linkage editor to store the load module in the file
with the LFD name OWNCODE. The LOADM and INCLUDE statements tell the linkage editor
to name the load module PHASE1 and to include the object module PHASE1.

At execution time, you have to tell job control where to find the load module you have
placed in an alternate library file. The same coding is needed as in Example 2, except for
an additional device assignment set and a change in the EXEC statement .

UP-8342 Rev. 3

Example 4:

10 20

lOa. II DVC 51 II VOL DSP002

SPERRY UNIVAC OS/3
SORT/MERGE

lOb. II LBL OWNCODE II LFD OWNCODE
11. II EXEC SORT,OWNCODE

3-60

Lines 1 Oa and 1 Ob represent the device assignment set for the load module containing
your own-code routine. The second parameter of the EXEC statement (line 11) must give
the LFD name of the alternate library file on which the load module, PHASE1, is stored.
Actually, placing OWNCODE in the EXEC statement will cause job control to search the
alternate library for all the needed sort modules. When they are not found in OWNCODE,
job control will automatically go to YLOD, where the sort/merge modules reside. It takes
slightly longer to retrieve modules this way than if you had stored PHASE1 in YLOD, but
the difference in total sort time is negligible.

3.4. USING THE MERGE-ONLY PROCESS

You need the merge-only process when you have previously-sorted or sequenced files and
want only to combine or merge them. The merge-only operation can combine two to eight

•

similarly ordered files into one final output file arranged in the same sequence as the •
input files. When independent sort/merge performs the merge-only process, control goes
only to the final merge phase and bypasses the internal sort and preliminary merge
phases. The same sort control statements' used for the sort/merge operation may be used
for the merge-only operation except you replace the SORT control statement with the
MERGE control statement. User own-code exit routines for a merge-only operation; i.e.,
exit routines E32 and E38, are associated with phase 3 of the sort. Thus, when
independent sort/merge performs a merge-only operation, it begins with phase 0, skips
phases 1 and 2, and ends with phase 3, where it enters your own-code routine via exit
codes E32 or E38 if you specified them on your MODS sort control statement. See 2.3.1
and Figure 2-3 for a better understanding of independent sort/merge phase operation
during merge-only processing.

3.4.1. Defining the Merge-Only Operation

Independent sort/merge needs information about key fields, their formats, and the number
of files to be merged. The MERGE control statement specifies this information as the
SORT statement does for a sort/merge operation. It replaces the SORT control statement
when you specify a merge-only operation. The MERGE control statement format is:

•

•

•

•

UP-8342 Rev. 3

LABEL 60PERATION6

MERGE

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

([strt-pos-1) [.lgth-1) [.form-1) [.seq-1)

c ... ,strt-pos-n,lgth-n [.form-n) [.seq-n)])

3-61

FIELDS=
(lstrt-pos-1) [.lgth-1) [.seq-1) [... ,strt-pos-n,lgth-n

[,seq-nl]),FORMAT=code

[{ FILES } ={ nu·.···m···.···· .. ··.b ... •.••.er }] ' ORDER !16

[

,MERGEP=(output-file-partition-number,]
input-file-1-partition-number,
input-file-2-partition-number
[. ... ,input-file-number-8-partition-number))

The FIELDS parameter specifies the key field starting position (strt-pos-1), the length of the
key field (lgth-1), the data format code (form-1), and the merging sequence (seq-1),
ascending or descending. The FORMAT subparameter is used to specify the data format
code when the data formats for all key fields are the same. Data format codes for this
subparameter are the same as those for the SORT control statement (Table 3-1).
Descriptions for positional subparameters of the FIELDS keyword parameter on the
MERGE control statement are the same as those for the SORT control statement (3.2.1). If
you omit the FIELDS keyword parameter, a character field is assumed beginning in
position 1, the record length is assumed as the field length up to 256 bytes, and records
will be merged in ascending sequence. If you specify FIELDS and omit any of its
subparameters, you must retain their associated commas, except for trailing commas.

The keyword parameters FILES and ORDER can be used interchangeably to specify the
number of data input files you want to merge. This number must not exceed 16. If you elect
not to include either the FILES or ORDER parameter in the MERGE control statement,
independent sort/merge assumes 16 input files. Remember, input files are defined via LFD
statements in your job's control stream. Therefore, you must use the system standard file
names SORTIN1 , ... ,SORTIN9 for the first nine input files defined and SORTINA, ... ,SORTING
for the remaining seven input files defined. The file names must be defined in sequence.

The MERGEP option keyword parameter is used when data records involved in a merge
only operation are read from and written to partitioned disk files. A partitioned disk file
(input or output) may contain up to seven partitions; however, you are limited to merging
data in only one partition from each input file read to the merge. Independent sort/merge
can merge data from a maximum of eight previously sequenced input files. (All input files
must be on the same device type.) Thus, you can specify up to eight partitions, one for
each input file, from which data records are read to the merge. (The exact number of input
files involved in the merge must agree with that specified in the FILES or ORDER keyword
parameters.) Since only one output file can be assigned to a merge-only operation, your
MERGEP keyword parameter must identify the partition of that file into which merged data
records are written. The position of the partition number specification in that MERGEP
parameter identifies the files with which it is associated. Notice that at least two input
file-partition-numbers are required if you decide to use the MERGEP parameter.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-62

Line 1 in the following coding example specifies that the key field begins at byte 9 of the
record being merged, is one byte long, has character data format, and is to be merged in
ascending order. It also specifies three input files to be merged. Line 2 shows the same
specification except independent sort/merge assumes the character data format code and
ascending merge sequence by default. In line 3, we add the optional keyword parameter,
MERGEP. MERGEP specifies that the disk output file is to receive the merged data records
in partition 3 from partition 2 of the first input file and partition 6 of the second input file.

1.
2.
3.

LABEL
I

MP ERA T I 0 Nt. OPERAND
JO 16

MERGE
MERGE
MERGE

FIELDS=(9, 1,CH,A) ,FILES=3
FIELDS=(9,l),FILES=3
FIELDS=(9, 1),FILES=3,MERGEP=(3,2,6)

Figure 3-18 illustrates the action of the MERGEP parameter specifications from line 3.

INPUT FILE 1

PARTITION 1

PARTITION 3

INPUT FILE 2

PARTITION 1

PARTITION 2

PARTITION 3

PARTITION 4

PARTITION 5

' ' ' ' ' ' ' ' ',
' ' ' ' ' ' ' ' ' MERGE ',

' ' ' ' ' ' ' ' ' ' ' '

I

I
I

I

'

I

' ' I

I
I

I

'<.
I '

I

I
I

I

I
I

I
I

I
I

I

/
I

I

MERGE

II /
I I

I I

/
I

/

I

I
I

I
/

I
/

/

I

I
I

I LEGEND:

I
I

I I fa !l Data flow

OUTPUT FILE

PARTITION 1

PARTITION 2

PARTITION 4

PARTITION 5

Figure 3-18. Writing Merge-Only Records from Two Partitioned Input Files to a Partitioned Output File

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-63

• 3.4.2. Merge-Only Exit Code for Input File Processing

•

•

You can use exit code E32 to enter your own-code routine from phase 3 of the merge-only
operation. Your own-code routine may modify the contents, including control fields, of
each record in the merge-only input files; however, it may not change the record size or
insert or delete records from the input merge-only files. In your own-code routine, you
may replace one record with another but you must be careful to avoid changing the
sequence of the record in the merge or a sequence error will result. To specify that you
want merge-only to enter your own-code routine, you indicate exit code E32, phase 3, and
the load module name of your own-code routine on the MODS control statement.

Figure 3-19 illustrates a typical job control stream required for an independent merge
only operation. In the following discussion, we step through these statements to describe
the processing involved.

II JOB MRGEXMP2,,7000,900G,2
II OPR 'MERGE EXAMPLE 2 1

II OPR 'VARYING BLOCK SIZE'
II DVC 50
I I VOL DSP028
II LBL MYLIBI
II LFD SORTINl
II DVC 5<11
II VOL DSP028
I I LBL MYLI B2
II LFD SORTIN2
II DVC 50
II VOL DSP028
11 LBL MYLI B3
II LFD SORTIN3
II DVC 50
I I VOL DSP028
II LBL MYLIB4
II LFD SORTOUT,,INIT
I I EXEC SORT
1$

MERGE FIELDS•(l,8,PD) ,FILES•3
RECORD TYPE•F,RCSZ=80
INPFIL BLKSIZE=(800,400,1600)
OUTFIL BLKSIZE=800
END

I*
I&
11 FIN

Figure 3-19. Typical Job Control Stream for an Independent Merge-Only Operation

I
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-64

The JOB statement supplies the name of your job, a minimum main storage requirement •
of 7000 hexadecimal bytes, a maximum of 9000 hexadecimal bytes of main storage
requested for your program, and a maximum of 2 tasks simultaneously active during your
program execution. The two OPR control statements (lines 2 and 3) display the messages
enclosed in quotation marks to the operator at the system console. Lines 4, 8, 12, and 16
specify that device 50 is used for input and output files. Lines 5, 9, 13, and 17 specify that
the same volume (DSP028) is used for input and output files. The file identifier for input
file 1 is MYLIB 1 (line 6); for input file 2, MYLIB2 (line 10); and for input file 3, MYLIB3
(line 14). The output file identifier is MYLIB4 (line 18). File names for the three input files
to be merged and the output file to receive the merged data records are the standard
names SORTIN 1 (line 7), SORTIN2 (line 11), SORTIN3 (line 15), and SORTOUT (line 19),
respectively. The INIT parameter on the LFD statement (line 19i indicates that this output
file is to be initialized starting at the first record the first time the file is opened. The EXEC
statement (line 20) tells OS/3 job control to execute the SORT program. Your sort/merge
control statements follow, beginning with the /$ and ending with the /* delimiters. The
MERGE control statement (line 22) tells the independent merge-only that the key field
begins in byte 1, extends eight bytes, and is in packed decimal data format. There are
three files being merged. Records are 80 bytes, fixed length according to the RECORD
control statement (line 23). Input files 1, 2, and 3 are blocked at 800, 400, and 1600 bytes,
respectively, and the output file has a block size of 800 bytes. These specifications appear
in the INPFIL and OUTFIL control statements (lines 24 and 25). Finally the END, /*, /&,
and FIN control statements (lines 26 through 29) indicate the end of your sort control
statements, end of job step, end of job, and end of card reader operations.

Note that on first runs, the EXT job control statement is needed immediately after each •
VOL statement to allocate each file; however, it should be removed on all succeeding runs
after the files have been allocated. The job control user guide, UP-8065 (current version)
explains the EXT statement in more detail.

3.4.3. Merge-Only Exit Code for Input File Read Error Processing

If you decide to write your own-code routine for processing input file read errors during
the merge-only operation, use exit code E38. The data management keyword parameter
ERROR on the DTF statement and the BR 14 instruction provide the interface between
merge-only and your routines. The data management user guide, UP-8068 (current
version) supplies more detailed information concerning this keyword and its interfacing
functions. Remember the sort dynamically activates the ERROR parameter by taking your
read error processing routine address and placing it in the sort input DTF. You write only
the BR 14 instruction to return to the sort.

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

3-65

• 3.5. RUNNING YOUR SORT JOB FROM A WORKSTATION

•

•

OS/3 provides you with the capability of running your independent sort/merge job
interactively. This means two things:

• you can build a control stream to execute independent sort/merge at a workstation,
as opposed to punching it on cards or writing it to a diskette; and

• you can initiate the running of the control stream from the workstation, as opposed to
asking the system operator to run your job for you.

The easiest way to build a control stream from a workstation is by using the job control
dialog. The control dialog is an interactive facility of OS/3 that allows you to describe your
job requirements in English, in response to a series of questions, and then produces as its
output, the job control stream needed by OS/3 to run your job. The control stream
produced by the job control dialog is virtually identical to the control stream that you
would have to produce if you were running your job in a batch environment. Only now,
you do not have to be concerned with the intricacies of the job control language. The job
control dialog eliminates this requirement on your part.

After you have answered all the questions presented to you by the job control dialog, it
builds a control stream and stores it in a permanent library file for you. From here, you
can initiate its running by simply keying in the appropriate system RUN command, or if
you'd rather, you can change the contents of the control stream using another interactive
facility of OS/3 called the general editor.

The procedures for activating the job control dialog, initializing the running of a job, and
activating the general editor are described in detail in the OS/3 workstation user guide,
UP-8845 (current version).

More detailed descriptions of the job control dialog and the general editor are presented in
the job control user guide, UP-8065 (current version) and the general editor user guide,
UP-8828 (current version), respectively.

Note that if a job has been initiated from a workstation, all messages will be displayed on
the workstation rather than the system console. This includes those messages that you
have specified to be printed on the system printer. (See 3.2.6.)

t

•

•

•

•
UP-8342 Rev. 3

4.1. GENERAL

SPERRY UNIVAC OS/3
SORT/MERGE

4-1

4. Independent Sort/Merge Program
and Control Stream Examples

This section contains examples that illustrate program coding and job control streams for
independent sort/merge operation. The first group of examples illustrate sort/merge
control statements only and the succeeding examples show complete job control streams
including job control and sort control statements required for performing:

• Independent disk sorts

• Independent tape sorts

• • An independent default sort

•

4.2. INDEPENDENT SORT /MERGE CONTROL STATEMENT EXAMPLES

The following six examples illustrate the sort/merge control statements needed to supply
information to independent sort/merge or merge-only for their functions. In each example,
the sort control statements are preceded by a /$ delimiter statement and followed by a /*
delimiter statement. The sort control statements within these delimiter statements
represent a data set to the independent sort/merge or merge-only.

Example 1 shows specifications for a tape sort/merge on fixed-length records.

Example 1:

/$
SORT FIELDS=(I ,4,CH,A, 10, 12,BI ,A) ,WORK=3,SIZE=3500
RECORD TYPE=F,RCSZ=82
INPFIL BLKSIZE=820,0PEN=RWD,CLOSE=UNLD,DATA=E
OUTFIL BLKSIZE=820,0PEN=RWD,CLOSE=UNLD
OPTION PRINT=ALL,STORAGE=20000,LABEL=(S,S)
END

/>':

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

4-2

The SORT statement defines the key fields, the number of work files, and the number of •
records to be sorted. The first key field begins in record position 1, is four bytes long, has a
character format, and is to be sorted in ascending sequence. The second key field begins
in position 10, is 12 positions long, is in binary format, and is to be sorted in ascending
sequence. Three work files are indicated by the WORK keyword parameter, and the input
file contains approximately 3500 records. The RECORD control statement defines the
record type as fixed with a record size of 82 bytes. The INPFIL control statement specifies
that the records are blocked at 820 characters per block, that the input file is on tape, and
that the tape is to be rewound to load point upon opening the rewound with interlock on
closing. Data is in EBCDIC format (DATA=E). The parameters specified in the OPTION
control statement provide for the printing of all messages, define the available main
storage as 20,000 bytes, and identify the input and output file labels as being standard
tape labels. The end of sort/merge control statements is indicated by the END control
statement in the job control stream.

Example 2 shows a tag sort on variable-length records.

Example 2:

/$
SORT FIELDS=(6, 10,CH,A, 12, 10,CH,D) ,WORK=3,SIZE=3500
RECORD TYPE=V,LENGTH=(4~0,30,,65,65)
OPTION ADDROUT=D
END

The FIELDS parameter says that the first sort key begins in byte 6 and is 10 bytes long, in
character format, sorted in ascending sequence. The second sort key begins in byte 12 and
is 10 bytes long, in character format, sorted in descending sequence. The WORK
parameter indicates three work files, and the SIZE parameter indicates approximately 3500
records in the input file. The length specifications of these records for each phase of
sort/merge operation, required for a tag sort, are: maximum input record length, 400
bytes; maximum length of records released to the internal sort. 30 bytes; maximum output
record length, 30 bytes by default; minimum input record length, 65 bytes; and the record
length appearing most frequently in the input file, 65 bytes. The OPTION control statement
defines a tag sort in which output records are to include both the direct access address
and the key fields. The new tag sort records will be 30 bytes in length, including the 10-
byte address field and 20 bytes for the key fields. This length is reflected in the second
and third subparameters of the LENGTH parameter. The END control statement indicates
the end of sort/merge control cards.

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

4-3

• Example 3 shows fixed-length record processing with user-written modification exits.

•

•

Example 3:

/$
SORT FIELDS=(2,4,CH,A) ,WORK=3,SIZE=9000
RECORD TVPE=F,RCSZ=82
INPFIL EXIT
OUTFIL EXIT
OPTION STORAGE=21000
MODS PH1=(PHASE1 ,4500,E11,E15),

PH3=(PHASE3,4000,E31 ,E35),
PH7=(PHASE7,1000,E75)

END
I*

c
c

The FIELDS parameter describes the sort key beginning in byte 2, extending four bytes in
character format, and being sorted in ascending sequence. There are three work files
(WORK) and approximately 9000 records in the input file (SIZE). The INPFIL and OUTFIL
control statements both state the EXIT keyword parameter indicating that user own-code
routines will provide the coding for reading the input file and writing the output file. Exit
codes E11 and E15 (approximately 4500 bytes long) provide the entry points to your read
routines, and exit codes E31 and E35 (approximately 4500 bytes long) provide the entry
points to your write routines. In addition, this coding indicates that you will also provide a
routine (approximately 1000 bytes long) for processing records with equal key fields
(specified by exit code E75 in the MODS control statement).

Example 4 illustrates the use of CALCAREA in the option statement.

Example 4:

/$
SORT FIELDS=(2,4,,,12,1g,,D),SIZE=65800
RECORD TYPE=F,RCSZ=82
INPFIL BLKSIZE=820
OUTFIL BLKSIZE=820
OPTION CALCAREA
END

I*

The FIELDS parameter describes the sort keys. The first key in byte 2 is four bytes long in
character format and is sorted in ascending sequence. The second key begins in byte 12,
extends 10 bytes in character format, and is sorted in descending sequence. There are
approximately 65,800 records in the input file (SIZE=65800). This example will not
perform a sort, but will give you the estimated sort time in minutes and the number of
cylinders independent sort/merge requires for disk work space .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

4-4

Example 5 defines a merge-only operation that processes three input files of fixed-length •
records (165 bytes), which are blocked 10 records per block. The sort key begins in byte
20, extends 10 bytes in character format, and is sorted in ascending sequence.

Example 5:

/$
MERGE FIELDS=(20,10,CH,A),FILES=3
RECORD TYPE=F,RCSZ=165
INPFIL BLKSIZE=l650
OUTFIL BLKSIZE=1650
END

I*

Example 6 shows the same merge-only operation as example 5 except for the file blocking
specified by the INPFIL control statement. The first file is blocked at 1650 bytes (10
records per block), the second at 825 bytes (5 records per block), and the third at 2475
bytes (15 records per block).

Example 6:

1$
MERGE FIELDS=(20,10),FILES=3
RECORD TYPE=F,RCSZ=165
INPFIL BLKSIZE=(l650,825,2475)
OUTFIL BLKSIZE=1650
END

/*

4.3. JOB CONTROL STREAMS TO PERFORM INDEPENDENT DISK SORTS

The six examples that follow illustrate complete job streams to perform independent disk
sorts where:

• disk input files and disk work files are used to create a disk output file;

• multiple input files and one disk work file are used to create a single-partition disk
output file;

• a multipartitioned disk input file is used to create a multipartitioned disk output file;

• a multipartitioned disk input file is used to copy sorted records to a multipartitioned
output file showing the use of keyword parameter COPY=ALL; or

• a multipartitioned disk input file is used to copy a sorted record to a multipartitioned
output file showing the use of the selective COPY feature.

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

4-5

• Example 1 illustrates a typical job control stream required for performing an independent
sort using disk input file, disk work files, and a disk output file. The job named SRTEXMP1
performs an independent sort of the data records contained in disk input file SORTIN 1. The
three disk work files (DM01 through DM03) assigned to the sort are SAT (system access
technique) files. The first key field for sorting starts at byte 9 of the record and is one byte
long. The second key field starts at byte 1 and extends for eight bytes. The records are
character formatted and are sorted in ascending order (specified by default in the sort
statement). The records are 80 bytes long and are fixed length. Both the input file and the
output file are blocked at 800 bytes. Approximately 10,000 records are involved in the sort.

•

•

Example 1:

II JOB SRTEXMPl ,,7011G,90a0,2
II DVC 511
II VOL DSP001
II LBL MYLIBl
I I LFD SORTI Nl
II DVC 50
II VOL DSP00"1
I I LBL HYLI B2
II LFD SORTOUT,,INIT
II DVC 51
I I VOL OS P 11 1
11 LBL SRTWK1
II LFD DMGl ,,INIT
II DVC 52
II VOL DSPl 12
I I LBL SRTWK2
II LFD DH02,,INIT
II DVC 53
II VOL DSP113
11 LBL SRTWK3
II LFD DMl13,,INIT
II EXEC SORT
1$

l INPUT FILE DEVICE
) ASSIGNMENT SET

l OUTPUT Fl LE DEVI CE
) ASSIGNMENT SET

l WORK FILEl DEVICE
) ASSIGNMENT SET

l WORK FILE2 DEVICE
) ASSIGNMENT SET

~WORK Fl LE3 DEVI CE
~ASSIGNMENT SET

SORT FIELDS=(9,l,,,l,8),WORK=3,SIZE=l0000 ~
RECORD LENGTH=(8@),TYPE=F
INPFIL BLKSIZE=8@a
OUTFIL BLKSIZE=800
END

SORT PROGRAM

I;'<
/&
II FIN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

UP-8342 Rev. 3

Line
Number

1

2-5

6-9

10-21

22

23-29

24

25

26-27

28-29

30

31

Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

4-6

The JOB statement defines the job named SRTEXMP1 to the system,
minimum and maximum main storage required for the job, and number
of tasks active simultaneously during the job execution.

Assigns the input file. (See 3.1.1 .)

Assigns the output file. (See 3.1 .1 .)

Assigns the disk work files. (See 3.1.1.) These files have been
previously created (indicated by lack of EXT statement); however, the
INIT option on the LFD statement allows the sort to access them as
through they were new files.

Initiates the execution of the independent sort/merge.

The data set containing the independent sort/merge control
statements.

The SORT statement specifies:

• a 1 -byte character key field at byte 9 of the data records to be
sorted and an 8-byte field at byte 1;

• three work files; and

• the input file contains approximately 10,000 records to be sorted.

The RECORD statement defines an 80-byte, fixed-length record.

The INPFIL and OUTFIL statements define the input and output block
sizes as 800 bytes.

Marks the end of the sort control statements.

Marks the end of the job stream.

Marks the end of reader operations.

Example 2 illustrates the job control stream required for performing an independent disk
sort using multiple input files, a disk work file, and a disk output file. The job named
SRTEXMP2 is to sort the data records of the three input files SORTIN1, SORTIN2, and
SORTIN3. The key fields are in packed decimal format and are to be sorted in ascending
order. Input files 1 and 3 are blocked at 800 bytes each and input file 2 at 400 bytes. The
output file is blocked at 800 bytes. Approximately 50,000 records are sorted.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

4-7

• Example 2:

•

•

II JOB SRTEXMP2,,7000,9a0a
II OPR I SORT EXAMPLE 7'
II OPR 'MULTIPLE INPUT FILES'
II DVC 50 }
II VOL DSP100 INPUT FILE1 DEVICE
II LBL SORTIN1 ASSIGNMENT SET
I I LFD SORTI NJ
I I DVC 50 }
II VOL DSP100 INPUT FILE2 DEVICE
II LBL INPUT02 ASSIGNMENT SET
11 LFD SORTI N2
II DVC 50 }
II VOL DSP10a INPUT FILE3 DEVICE
II LBL INPUT03 ASSIGNMENT SET
I I LFD SORTI N3
II DVC 50 }
II VOL DSP100 OUTPUT FILE DEVICE
II LBL OUTPUT ASSIGNMENT SET ·
II LFD SORTOUT,,INIT
II DVC 51 ~
II VOL DSP101 WORK FILE DEVICE
II LBL WORK
II LFD DM01 ,,INIT ASSIGNMENT SET
II EXEC SORT
1$

SORT FIELDS=(4,8,PD),FILE=3,SIZE=500Ga }
INPFIL BLKSIZE=(800,400,80a) SORT PROGRAM
OUTFIL BLKSIZE=(800)
END

I*
I&
II FIN

Line
Number Explanation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

1 The JOB statement defines the job named SRTEXMP2 to the system
and the minimum and maximum main storage bytes, in hexadecimal,
required for the job.

2-3 Gives messages to operator at system console.

4-15 Assigns the three input files. (See 3.1.1.)

16-19 Assigns the output file. (See 3.1 .1 .)

UP-8342 Rev. 3

Line
Number

20-23

24

25-30

26

27

28

29-30

31

32

Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

4-8

Assigns the disk work file. (See 3.1.1.) This file has been previously
created (indicated by lack of EXT statement); however, the INIT option
on the LFD statement allows the sort to access it as though it were a
new file.

Initiates the execution of the independent sort/merge.

The data set containing the independent sort/merge control
statements.

The SORT statement specifies:

• an 8-byte packed decimal key field at byte 4 of the data records to
be sorted;

• three input files; and

• the input files contain approximately 50,000 records to be sorted.

The INPFIL statement defines the input block sizes for each input file:
800 bytes for input files 1 and 3 and 400 bytes for input file 2.

The OUTFIL statement defines the output block size as 800 bytes.

Marks the end of sort/merge control statements.

Marks the end of the job stream.

Marks the end of card reader operations.

Example 3 illustrates the job control stream required to perform an independent disk sort
using a multipartitioned disk input file and single-partition disk output file. The job named
SRTEXMP3 sorts the data records contained in partition 3 of the input file SORTIN1 and
then writes the sorted records to output file SORTOUT. The key fields of the data records
are four bytes long, beginning at byte 1 of the record. Records are character formatted and
are sorted in ascending order. The requirements for the INPFIL and OUTFIL control
statements are determined by default.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

4-9

• Example 3:

•

•

II JOB SRTEXMP3,800g,900g
II DVC 511
I I VOL OS P 1 1111
II LBL INPUT
II LFD SORTINI
II DVC 511
II VOL DSPll111
II LBL OUTPUT
II LFD SORTOUT,,INIT
II DVC 51
11 VOL DSP1111
II LBL WORK
II LFD DMl11,,INIT
II EXEC SORT
1$

l INPUT FILE DEVICE j ASSIGNMENT SET

t
OUTPUT FILE DEVICE
ASSIGNMENT SET

(WORK FILE DEVICE
~ ASSIGNMENT SET

SORT FIELDS=(1 ,4,CH) ,SORTP=(I ,3) t
END

I*
I&

SORT PROGRAM

II FIN

I
2
3
4
5
6
7
8
9

10
II
12
13
14
15
16
17
18
19
20

Line
Number Explanation

2-5

6-9

10-13

14

15-18

16

The JOB statement defines the job named SRTEXMP3 to the system
and minimum and maximum hexadecimal main storage bytes required
to run the job.

Assigns the input file. (See 3.1.1.)

Assigns the output file. (See 3.1.1 .)

Assigns the disk work file. (See 3.1.1.) This file has been previously
created (indicated by lack of EXT statement); however, the INIT option
on the LFD statement allows the sort to access it as though it were a
new file.

Initiates the execution of the independent sort/merge.

The data set containing the independent sort/merge control
statements.

The SORT statement specifies:

• a 4-byte character key field beginning at byte 1 of the data records
to be sorted;

• partition 3 of the input file contains the records to be sorted; and

• the sorted records are to be written to a single-partition output file
(SORTOUT).

UP-8342 Rev. 3

Line
Number

17-18

19

20

Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

Marks the end of the sort control statements.

Marks the end of the job stream.

Marks the end of card reader operations.

4-10

Example 4 illustrates the job control stream required for performing an independent disk
sort using multipartitioned disk input and output files. The job named SRTEXMP4 sorts the
data records contained in partition 3 of the input file SORTIN 1 and then writes the sorted
records to partition 3 of the output file SORTOUT. Records to be sorted are character
formatted and the sort sequence is ascending. The key field for the sort begins in byte 2 of
each record and is four bytes long. Because the output file consists of four partitions
(NPTN=4), the user program must define all four partitions so that the output file can be
opened by independent sort/merge. To facilitate this requirement, the user's data set must
include the BLKSIZE, the SIZE, the UOS, the TYPE, and the RCSZ keyword parameters to
define each partition in the output file.

Example 4:

II JOB SRTEXMP4,,700g,9g0g
II DVC 50
II VOL DSPl00
II LBL INPUT
I I LFD SORTI NI
II DVC 50
I I VOL DSPl00
II LBL OUTPUT
II LFD SORTOUT,,INIT
11 DVC 51
II VOL DSPl01
II LBL WORK
II LFD DM01,,INIT
I I EXEC SORT
1$

INPUT FILE DEVICE
ASSIGNMENT SET

OUTPUT FILE DEVICE
ASSIGNMENT SET

l WORK Fl LE DEVI CE j ASSIGNMENT SET

SORT FIELDS={2,4,CH) ,SORTP=(3,3)
OUTFIL BLKSIZE=(400,250',80'0,200),SIZE=(20, 10,50,20),

END
I*
/&
II FIN

UOS= (50, 0, 25, 0), TYPE=· (F, V, F, F) , RC SZ= (40, 50', 80, 40) ,
NPTN=4

I
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

c 17
c 18

19
20
21
22
23

•

•

•

UP-8342 Rev. 3

• Line
Number

1

2-5

6-9

10-13

14

15-19

16

•
17-19

•

Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

4-11

The JOB statement defines the job named SRTEXMP4 and minimum
and maximum main storage bytes required for the job.

Assigns the input file. (See 3.1.1.)

Assigns the output file. (See 3.1 .1.)

Assigns the disk work file. (See 3.1.1.)

Initiates the execution of the independent sort/merge.

The data set containing the independent sort/merge control
statements.

The SORT statement specifies:

• a 4-byte character key field at byte 2 of the data records to be
sorted; and

• the input and output files are multipartitioned files, with the input
record read from input file partition 3 and the sorted records
written to output file partition 3.

The OUTFIL statement defines:

• the output block sizes;

• percentage of the output file reserved for each partition;

• percentage of secondary storage allocation to be suballocated to
each partition as needed;

• output record types; and

• output record sizes for each partition in the output file.

Block size is 400 bytes in output file partition 1, 250 bytes in partition
2, 800 bytes in partition 3, and 200 bytes in partition 4. Twenty percent
of the output file is assigned to partition 1, 10 percent to partition 2, 50
percent to partition 3, and 20 percent to partition 4. The percentage of
secondary storage for each partition is 50, 0, 25, and 0 percent,
respectively. Output record types for partitions 1 through 4 are fixed,
variable, fixed, and fixed, respectively. Record sizes for partitions 1
through 4 are 40 bytes, 50 bytes, 80 bytes, and 40 bytes. There are
four partitions in the output file .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

4-12

Example 5 illustrates the job control stream required for performing an indpendent disk
sort using multipartitioned input and output files and the COPY=ALL keyword parameter.
The COPY=ALL keyword parameter allows all partitions of the input file not involved in the
sort to be copied directly into the corresponding partitions of the output file. Records in the
partitions being sorted are processed in the usual manner. In this example, the job named
SRTEXMP5 sorts only the data records contained in partition 3 of the 4-partitioned input
file SORTIN 1. The sorted records are written to partition 3 of the output file SORTOUT.
Data records in the remaining partitions of the input file are not sorted but are copied into
the corresponding partitions in the output file as specified by the COPY=ALL keyword
parameter. In this type of sort, only the size (SIZE) of the output file partitions needs to be
defined. The expansion percentage (UOS) for each partition is assumed as 0.

Example 5:

II JOB SRTEXMP5,,7g0a,900g
II DVC 50
I I VOL OS Pl 00
II LBL INPUT
II LFD SORTI Nl
II DVC 50
11 VOL DSP1"0
II LBL OUTPUT
II LFD SORTOUT,,INIT
11 DVC 51
II VOL DSP101
II LBL WORK
II LFD DM01 ,,INIT
II EXEC SORT

} INPUT FILE DEVICE ASSIGNMENT SET

} OUTPUT FILE DEVICE ASSIGNMENT SET

} WORK FILE DEVICE ASSIGNMENT SET

1$ } SORT FIELDS=(2,4,CH) ,SORTP=(3,3) ,COPY=ALL
OUTFIL SIZE=(20,10,50,20) ,NPTN=4
END

SORT PROGRAM

/;';

I&
I I FIN

Line
Number Explanation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

The JOB statement defines the job named SRTEXMP5 to the system
and the minimum and maximum main storage hexadecimal bytes
required for the job.

2-5 Assigns the input file. (See 3.1.1.)

6-9 Assigns the output file. (See 3.1.1.)

10-13 Assigns the disk work file. (See 3.1.1.)

•

•

•

•

•

•

UP-8342 Rev. 3

Line
Number

14

15-19

16

17

18-19

20

21

Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

Initiates the execution of the independent sort/merge.

4-13

The data set containing the independent sort/merge control
statements.

The SORT statement specifies:

• a 4-byte character key field at byte 2 of the data records to be
sorted;

• only partition 3 of the input file is involved in the sort; and

• all other partitions of the input file are copied to their
corresponding partitions in the output file.

The OUTFIL statement defines the percentage of the output file to be
allocated for each partition in the output file. There are four partitions
in the output file (NPTN=4).

Marks the end of sort control statements.

Marks the end of the job stream.

Marks the end of the card reader operations.

Example 6 illustrates the job control stream required for performing an independent disk
sort involving multipartitioned disk files and demonstrating the use of the selective COPY
feature. In this example, the job named SRTEXMP6 sorts the data records in partition 3 of
the input file SORTIN1 and writes the sorted records to partition 1 in the output file
SORTOUT. The selective COPY keyword parameter specifies that partitions 1 and 2 of the
input file are to be copied directly into partitions 2 and 4, respectively, of the output file.
The characteristics of partitions copied from the input file to the output file remain the
same. It is best, to fully define the output file in all cases .

UP-8342 Rev. 3

Example 6:

II JOB SRTEXMP6,,70'00,9000
II DVC 50
II VOL DSP100
II LBL INPUT
I I LFD SORTI NJ
II DVC 50
I I VOL DSPl 00
II LBL OUTPUT
II LFD SORTOUT,,INIT
II DVC 51
11 VOL DSPl 0'1
II LBL WORK
II LFD DM01 ,,INIT
I I EXEC SORT
1$

SPERRY UNIVAC OS/3
SORT/MERGE

} INPUT FILE DEVICE ASSIGNMENT SET

} OUTPUT FILE DEVICE ASSIGNMENT SET

} WORK Fl LE DEVI CE ASS I GNHENT SET

SORT FIELDS=(l ,4),SORTP=(l ,3) ,COPY=(l.2,2.4) }
OUTFIL SIZE=(50,20,20,10),NPTN=4
END

SORT PROGRAM

I;':
I&
II FIN

Line
Number

1

Explanation

The JOB statement defines:

• the job named SRTEXMP6 to the system; and

4-14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

• minimum and maximum main storage bytes required for the job.

2-5

6-9

10-13

14

15-19

Assigns the input file. (See 3.1.1.)

Assigns the output file. (See 3.1.1 .)

Assigns the disk work file. (See 3.1.1.)

Initiates the execution of the independent sort/merge.

The data set containing the independent sort/merge control
statements.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

4-15

• Line
Number Explanation

•

•

16

17

18-19

20

21

The SORT statement specifies:

• a 4-byte character key field at byte 1 of the data records to be
sorted;

• data records in partition 3 of the input file are to be sorted and
written into partition 1 of the output file; and

• partitions 1 and 2 of the input file are to be copied into partitions 2
and 4, respectively, of the output file.

The OUTFIL statement defines the percentage of the OUTPUT file to be
allocated for each of the four partitions comprising the output file.
There are four output file partitions (NPTN=4).

Marks the end of sort control statements.

Marks the end of the job stream.

Marks the end of card reader operatio_ns .

4.4. JOB CONTROL STREAM TO PERFORM INDEPENDENT TAPE SORTS

Both examples 7 and 8 use tape input and work files to create tape output files. They
illustrate the use of SHARE, RESERV, RESTART, and CSPRAM parameters in the OPTION
sort control statement and the use of the PARAM job control statement to enter
parameters from the control stream.

Example 7 illustrates a typical job control stream required to perform an independent
sort/merge operation using tape for the input, output, and work files. The job named
SRTEXMP7 sorts the character-formatted data records to input file SORTIN 1 into
ascending order and then writes those records to the output tape file SORTOUT. The
records are fixed-length and 80 bytes long, with a 10-byte sort key field starting in byte 8.
The data block size for both the input and output records is 800 bytes. The input and
output files are rewound to their starting point upon opening and rewound with interlock
upon closing. Tape device SM01 is shared as an input device during input operations and
as a work storage device during sort operations. Tape device SM03 is specified as a
reserved device used for working storage during the first two phases of the sort and for
output file during phase 3 of the sort .

UP-8342 Rev. 3

Example 7:

II JOB SRTEXMP],,7aaa,9aag,2
11 DVC 90
II VOL MASTER
II LFD SORTIN1
I I DVC 90, I GNO RE
II VOL TAPE01
II LFD SM01
II DVC 91
II VOL TAPE02
II LFD SM02
II DVC 92
II VOL TAPE03
II LFD SM03
11 DVC 92, IGNORE
II VOL MASTER
II LFD SORTOUT
I I EXEC SORT
1$

SORT FIELDS=(8,10,CH)
RECORD LENGTH=(80),TYPE=F

SPERRY UNIVAC OS/3
SORT/MERGE

} INPUT FILE DEVICE ASSIGNMENT SET

}
REDEFINED INPUT DEVICE ASSIGNMENT
SET TO WORK FILE

}woRK FILE DEVICE ASSIGNMENT SET

}WORK FILE DEVICE ASSIGNMENT SET

}
REDEFINED WORK FILE DEVICE
ASSIGNMENT SET TO OUTPUT FILE

INPFIL BLKSIZE=800,0PEN=RWD,CLOSE=RWI
OUTFIL BLKSIZE=800,0PEN=RWD,CLOSE=RWI
OPTION SHARE=SM01 ,RESERV=SM~3

SORT PROGRAM

END
1~·:

I&
II FIN

Line
Number Explanation

4-16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

The JOB statement defines the job named SRTEXMP7 to the system
and minimum and maximum main storage bytes (in hexadecimal)
required to run the job.

2-4

5-7

8-13

Assigns the input file. (See 3.1.1.)

Redefines the device assigned to the input file as a work file, using the
IGNORE option of the DVC statement.

Assigns the remaining work files.

•

•

•

•

•

•

UP-8342 Rev. 3

Line
Number

14-16

17

18-25

19

20

21-22

23

24-25

26

27

Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

4-17

Redefines the device assigned to SM03 as the output file, using the
IGNORE option of the DVC statement.

Initiates the execution of the sort.

Is the data set containing the sort control statements.

The SORT statement defines a 10-byte character key field which begins
in byte 8 of the record.

The RECORD statement defines an 80-byte, fixed-length record.

The INPFIL and OUTFIL statements define the input and output block
sizes as 800 bytes and indicate that these files are to be set to load
point on opening and to interlock on closing.

The OPTION statement specifies SM01 as the SHARE file and SM03 as
the RESERV file. (See 3.2.6 and Figures 3-15 and 3-16.)

Indicates the end of the sort control statements.

Marks the end of the job stream.

Marks the end of card reader operations.

Example 8 illustrates a typical job control stream required for restarting an interrupted
tape sort performed by independent sort/merge. The sort itself is identical with that
described in example 7. (See example 7 for program and coding details.) By specifying the
RESTART and CSPRAM keyword parameters in the OPTION statement (line 25) included in
the user data set, the tape sort can be resumed. The system console displays the most
recent pass number, and the PARAM statement shown in line 28 of example 8 gives
independent sort/merge the pass recovery point at which the sort is resumed .

UP-8342 Rev. 3

Example 8:

II JOB SRTEXMB,,7000,9000,2
II OPR 'SORT EXAMPLE 8 1

SPERRY UNIVAC OS/3
SORT/MERGE

II OPR 'TAPE SORT WITH RESTART'

11 VOL MASTER INPUT FILE DEVICE II DVC 90 }

11 LFD SORTIN1 ASSIGNMENT SET

II DVC 9°, IGNORE } REDEFINED INPUT DEVICE ASSIGNMENT
II VOL TAPE0J SET TO WORK FILE
I I LFD SM01
II DVC 91 }
II VOL TAPE02 WORK FILE DEVICE ASSIGNMENT SET
II LFD SM02
II DVC 92 } II VOL TAPE03 WORK FILE DEVICE ASSIGNMENT SET
II LFD SM03

4-18

II DVC 92,IGNORE } REDEFINED WORK FILE DEVICE ASSIGNMENT
I I VOL MASTER
II LFD SORTOUT SET TO OUTPUT FILE
I I EXEC SORT
1$

SORT FIELDS=(S,10,CH)
RECORD LENGTH•(80),TYPE•F
INPFIL BLKSIZE=800,0PEN=RWD,CLOSE•RWI
OUTFIL BLKSIZE=800,0PEN=RWD,CLOSE=RWI
OPTION SHARE=SM01 ,RESERV=SM03,RESTART,CSPRAM=YES
END

I*
II PARAH RESUME=(PASS,023)
I&
II FIN

SORT PROGRAM

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

4.5. JOB CONTROL STREAM TO PERFORM AN INDEPENDENT DEFAULT SORT

•

•

The default sort is so named because all information supplied to independent sort/merge
is automatically defaulted in the absence of sort control statements. In the following
example, notice there are no sort control statements. The only indication of a sort is the
EXEC SORT job control statement in the control stream. This example illustrates a typical
job control stream required to perform a default disk sort operation. When a default sort is
performed, independent sort/merge takes the record size, block size, and record type
specifications from the volume-table-of-contents (VTOC) for the input file. The output file is
structured from the specifications for the input file. If the input file happens to be a
partitioned disk file, independent sort/merge assumes the first partition of the file as the
input partition. The output file is always a single partition file in a default sort operation.
The data records are assumed to be character formatted and to have one sort key field the
same length as the record but not to exceed 256 bytes. In a default sort. only one input
file can be processed, and all input. output, and work files assigned in the job control
stream must be disk files. •

•

•

•

UP-8342 Rev. 3

Example 9:

Line

II JOB SRTEXMP9,,7000,900G
II OPR 'SORT EXAMPLE 6 1

II OPR 'DEFAULT SORT'
II DVC 5'1
II VOL DSP100
II LBL INPUT
II LFD SORTINl
II DVC 50
I I VOL DSP100
II LBL OUTPUT
II LFD SORTOUT,, INIT
II DVC 51
11 VOL DSP101
II LBL WORK
II LFD DM0l ,,INIT
I I EXEC SORT
I&
II FIN

Number Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

} INPUT FILE DEVICE ASSIGNMENT SET

} OUTPUT FILE DEVICE ASSIGNMENT SET

} WORK FILE DEVICE ASSIGNMENT SET

4-19

l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1 The JOB statement defines the job named SRTEXMP9 and minimum
and maximum main storage bytes required to run the job.

2-3 Gives message to the operator at the system console.

4-7 Defines the input file. (See 3.1.1.)

8-11 Defines the output file. (See 3.1.1.)

12-15 Defines the work file. (See 3.1.1.)

16 Initiates the execution of independent sort/merge default sort.

17 Marks the end of control stream.

18 Marks the end of card reader operations.

•

•

•

•

PART 3. SUBROUTINE SORT/MERGE

•

•

•

•

• :

!

I

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

5-1

5. Subroutine Sort/Merge
Basic Concepts

5.1. GENERAL

For greater control over the sort/merge process than independent sort/merge provides,
use the subroutine sort/merge. Naturally, the benefits you receive for this control cost
something - an increase in the programming that you must do. You will have to program
many of the activities that are done automatically by independent sort/merge.

Writing your own routines requires a good working knowledge of basic assembler
language (BAL) or COBOL and data management macros. Section 6 discusses a disk
subroutine sort/merge program example showing the use of BAL instructions and data
management macros. Appendix C provides some subroutine sort/merge interface
requirements for the COBOL programmer. Most users will use the independent
sort/merge; however, the subroutine sort/merge is available if you have special sorting
and data reduction problems.

The same disk sort problem used to illustrate independent sort/merge is used to illustrate
subroutine sort/merge. This enables you to compare the programming needed for each
method and help you decide which technique most adequately fills your needs.

5.2. SORT PROBLEM: A SOLUTION

To recapitulate, the disk sort problem general specifications are:

SYSTEM: OS/3

PROGRAM: Subroutine Sort/Merge Disk Sort

FUNCTION:

1. This program sorts and merges an unordered file of employee records.

2. It is a disk sort.

3. It uses a sort key to sort and merge records .

4. The sort key is the employee number.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

5-2

5. Employee number is located in the first eight byte positions of each record
(0-7).

6. Records are sorted in ascending order.

INFORMATION:

1. This program needs a work file, $SCR1, to perform the sort/merge.

2. Work files are assigned to disk device 50.

INPUT AND OUTPUT:

1. Both input and ouput files are fixed-length, blocked records.

2. Each record contains 80 bytes.

3. Each block contains 5 records.

OUTPUT:

The program produces an output file of records sorted in ascending order.

Figure 2-1 summarizes these specifications.

Between your input stage and the output results, the program you write activates the
subroutine sort/merge to perform the sort and return control to your program. The
sort/merge modules reside in the system load library file (YLOD) located on the
SYSRES volume. When your program activates the subroutine sort/merge, it calls the
sort/merge modules into main storage from YLOD (Figure 5-1).

MR$0PN
CALL

MAIN STORAGE

SORT LINK MODULE

USER PROGRAM

SUBROUTINE
SORT MODULES

UNUSED
STORAGE

Figure 5-1. Calling in Sort/Merge Modules (Phase OJ

SYSRES

YLOD

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

5-3

Before sorting can begin, your program must read the input file records from an input
device. In this case, the input device is a disk named DSP028. Your program reads input
records block by block from DSP028 into an 1/0 area in main storage called a buffer area.
Buffer areas compensate for the differences in speed between low-speed 1/0 devices and
high-speed main storage processing.

Using two buffer areas for record processing substantially increases sort speed. The disk
sort program we are building illustrates this. This increase occurs because we can read
records into one buffer while we empty the other buffer into a work area for further
processing (Figure 5-2).

Records are passed one at a time to the subroutine sort where they are sorted into strings
of sequenced data. The strings are stored on disk work files to be merged in phases 2 and
3 of the sort.

SORT LINK MODULE

PASS RECORD { PASS RECORD
TO MR$REL MACRO TO SORT

USER PROGRAM

DSP028
110 BUFF EA

AREA

l.NPUT
FILE

SYSRES

SUBROUTINE
LOAD S/M

PHASE 1
YLOD

SORT/MERGE

DISK WORK
"-. FILES

UNUSED STORAGE

LEGEND:

LJ Data flow

Figure 5-2. Reading Unsorted Input Records (Phase 1)

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

5-4

When all the input records have been read, passed to the subroutine sort/merge for the
sorting, and ordered into sequenced strings of data on the work files, the strings are
repeatedly merged to produce a single string of sorted data (Figure 5-3).

MAIN STORAGE

SORT LINK MODULE

USER PROGRAM

Sl.JBROVTtNE
SORT/MERGE

UNUSED
STORAGE

MERGE DATA
STRINGS

LEGEND:

r. <<I Data flow

Figure 5-3. Sorting Input Records and Building Record Strings (Phase 2)

SYSRES

YLOD

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

5-5

When a single merge pass produces one string of ordered records, the sort returns to
your program, which may then request the return of records one at a time in the order
desired. Your program can then put the records in the output buffer and write them to
your output file (Figure 5-4).

DSP028

OUTPUT
Flt.E

LEGEND:

D Data flow

REQUEST
RECORD
RETURN

(MR$RET)

MAIN STORAGE

SORT LINK MODULE

USER PROGRAM

110 SOFFER
AREA

RETURN RECORD

SUBROUTtNE
SOOT/MERGE

UNUSED STORAGE

REQUEST
RECORD
RETURN

LOAD S/M PHASE 3

Figure 5-4. Writing Sorted Records to the Output File (Phase 3)

SYSRES

YLOD

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

5.3. WHAT SORT /MERGE DOES FOR YOU

5-6

Subroutine sort/merge is a sort/merge utility that you can call from your program via
macro instructions. The sort accepts unordered data from your program and returns it to
your program in the order you specified.

5.3.1. Software Framework

The subroutine sort/merge operation consists of two to four phases. Each phase employs
a specified sort/merge module to perform a distinct function. As each phase of the
sort/merge is performed, the sort/merge modules needed during that phase are loaded
into main storage and executed. Sort/merge modules are interrelated yet independent
modules residing as load modules in YLOD.

This brings us to the question of what happens during the subroutine sort/merge phases
and how we access the sort/merge load modules. To answer the first question, let's take
a closer look at the sort/merge phases. The answer to the second question should be
clear when we examine what your program must supply to subroutine sort/merge.

5.3.2. Subroutine Sort/Merge Phases

Now that you know where the sort/merge modules reside and have a general idea of

•

their functions, you realize that sort/merge must be called by your program in order to •
begin sorting records. To call the subroutine sort/merge, you must link the SG$0RT
object module to your program. This module resides in Y0BJ and is automatically
linked to your program when you specify the label MR$0RT as an EXTRN. SG$0RT
initiates the subroutine sort/merge when the MR$0PN macro instruction is executed.

5.3.2.1. Phase 0: Sort Initialization and Assignment

Phase 0, the sort initialization and assignment phase, is the first phase executed. It
collects and analyzes all information required by the following phases in determining the
overall sort/merge requirements. It extracts this information from the data your program
provides via parameter statements either in the MR$PRM sort macro or in the PARAM
job control statement. When the assignment function is completed, phase 0 passes
control to phase 1 or, in a merge-only procedure, to phase 3.

5.3.2.2. Phase 1: Initial Sort

In the beginning of phase 1, subroutine sort/merge accepts successive records from your
program, compares sort keys, and initially sorts them according to your specification (e.g.,
ascending or descending sequence). During this phase, the records are accumulated in
sequential lists called record strings. These sequenced record strings are then written out
to tape or disk.

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

5-7

If you remember your first two blocks of data records with key fields for comparison, the
input and initial sort process would look like Figure 5-5.

READ

LEGEND:

I r T I Data flow

MAIN STORAGE

WORK
AREA

Figure 5-5. Data Route (Phase 1)

RELEASE RECORD
TO SUBROUTINE

SORT/MERGE
PHASE 1

WRITE

ORDERED
DATA STRINGS

If you assign inadequate auxiliary storage to your program, the sort job step terminates.
However, if your work files are on disk, you can prevent your program from aborting by
including instructions that will repeatedly check the availability of work space. (See 6.6.)

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

5.3.2.3. Phase 2: Preliminary Merge

5-8

Phase 2 is initiated by the release of the last record to the subroutine sort/merge.
Subroutine sort/merge repeatedly merges the record strings produced during phase 1 so
that each successive pass produces fewer but longer sequential record strings. It
continues this process until only one final merge is needed to produce a single string of
sorted records. At this point, the subroutine sort/merge passes control to phase 3 for the
final merge.

If the record strings produced during phase 1 can be sequenced in one merge pass,
phase 2 is unnecessary and it is bypassed. This occurs when input to phase 1 is small
or closely resembles the final sequence desired, or a large amount of main storage is
available to the program. When a bypass occurs, phase 2 is skipped and control passes
from phase 1 to phase 3 for the final merge. If we required phase 2, the record strings
at the end of the phase would look like this:

First String:
Key Field

RECORD 1 0 0 1312 s Is 4

RECORD 2 o I o I o 7 o Io 5

RECORD 3 2 0 141 S 3 8 I 4 4

RECORD 4 s 8 1719 9 8 I s 3

RECORD 5 9 4 I s I o Io o I 5 4 I
Second String: Key Field

RECORD 1 I o I 3 0 I 0 0 I s I 0 I 0 I

RECORD 2 I 4 I 3 3 0
0 I 0 I 0 I 0

I

RECORD 3
1514

4 8 slslslsl

RECORD4 171 0 5 0 9 131 o I 0 I
RECORD 5 I a I a 8 5 5121916 I
Third String: • • •

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

5-9

• 5.3.2.4. Phase 3: Final Merge

•

•

Phase 3 performs the final merge of the sequenced record strings and produces a single
string of sorted records that would look like this:

RECORD 1

RECORD 2 I 0
1

3 I 0 I 0 I 0 I 6 I 0 I 0 I
RECORD 3 l1 l0 l 0 l 0 l 1 l 0 l0 Isl

RECORD4
l

2
l

0
1

4
1

6
1

3
1

8
1

4
1

4
1

RECORDS
1

4
1

3
1

3 I 0 l 0 l 0 l 0 l0 I
RECORD 6 Is 14 1 4 I 8 I 6 I s I s I s I

RECORD 7
1

6
1

8
1

7 I 9
1

9 I 8 I 6 I 3 I
RECORD 8 I 1 I 0 I s I 0

1
9

1
3 I 0 I 0 I

RECORD 9 lala\alslsl2I 9
1

6
1

RECORD 10
1

9
1

4
1

6 I 0 I 0 I 0 I s I 4 I
• • •

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

5-10

After the final merge of the record strings is completed, phase 3 makes the records
available to your program. At this point your program is responsible for requesting the
return of the sorted records and for writing them into your output file. The subroutine
sort/merge module operations and their interface with your main program are shown in
Figure 5-6.

DSP111

INPUT
FILE

START

MAIN STORAGE

USER COOING

CALLIN

S/M LOAD
MODULE

SUBROUTINE SORT/MERGE

INITIALIZATION
ANO

ASSIGNMENT

IPHASEOJ

USER CODING

READ
INPUT
FILE

RELEASE
RECORDS TO

SUBR S/M

SY SR ES

YLOO

Figure 5-6. Subroutine Sort/Merge Operational Phases (Part 1 of 2)

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

LEGEND

0
I

---------t------
1 I I
I I
I I

SORTED DATA STRING L I
,--- - -- - -I - -- - - INITiALSaAT I
I ,---T----- (PF!A$EO

I I I r--
1 I I
I I I
I I I

t

OSP101

STORAGE
WORK

I

DSP103

STORAGE
WORK

I LONG STRINGS OF
I I SEQUENCED DATA

!___ --4_'.'.0_'.'._~~~.'.°''.'.'.E
I
I
I
I

PREL!MtNAAV
MERGE

(PF!ASE 21

OONTINUOVSL Y
MEAGEDDA'tA
STRING

FINAL ... ERGE
U'F!ASE ~I

USER COOING

RETURN RECORDS
FROM S/M

ONE BY ONE

EOJ

OUTPUT
FILE

LJ Subroutine sort/merge program

Operational flow

Data flow

Work areas can also be on same disc as
input and output files if input 1s low

volume

5-11

SORT COMMON MODULE LOADS
EACH PHASE FROM YLOD

INTO MAIN STORAGE AS THE
PHASE IS REQUIRED

Figure 5-6. Subroutine Sort/Merge Operational Phases (Part 2 of 2)

Now that the importance of your main program cooperation with subroutine sort/merge
becomes quite evident, let's examine how you handle the needed interfacing activities
(Section 6).

- -- ------~-------·----------

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-1

6. Subroutine Sort/Merge
Requirements You Supply

6.1. GENERAL

To use the subroutine sort/merge, your program must establish a communication link with
it. Like any other communication problem, a language is needed as a medium to convey
information. Basic assembler language (BAL) or COBOL is your medium for
communicating with subroutine sort/merge. Consequently, a good working knowledge of
BAL or COBOL is needed if you plan to use subroutine sort/merge. This section discusses
a disk subroutine sort/merge program example showing the use of BAL instructions and
data management macros. Appendix C provides some subroutine sort/merge interface
requirements for the COBOL programmer .

BAL is not your only communicating tool. You use a set of sort/merge macro
instructions to activate subroutine sort/merge. These macro instructions, which you code
as part of your program, are expanded into a sequence of machine instructions that bring
the subroutine sort/merge modules into your program as they are needed. A final,
essential communicating tool is the job control stream consisting of control statements
that name the devices used by your program and the subroutine sort/merge modules,
describe label and space allocations, and call for the execution of assembly and linkage
editor software routines as they are needed.

An easy way to remember the subroutine sort/merge requirements you supply is to think
of the word "IDEAS". Each letter of this word represents something your program must
do when you use subroutine sort/merge:

Initiate the operation.

D Define files.

E Explain sort/merge run requirements.

A Activate subroutine sort/merge services.

S Stop or end the sort/merge process.

Before coding any program, a flowchart is helpful. The flowchart for the disk sort program
might look like Figure 6-1.

UP-8342 Rev. 3

START

r

DEFINE MR$0RT AS EXTRN
TO LINK SORT COMMON

MODULE
(SG$0RT)

+

DEFINE 1/0
FILES TO

DATA
MANAGEMENT

(DTFSD)

SORT +

MR$PRM BUILDS
SORT PARAMETER

TABLE

~

MR$0PN
OPENS

SUBROUTINE
S/M

SORTIN

OPEN DATA
INPUT
FILE

1

A

SPERRY UNIVAC OS/3
SORT/MERGE

~ GrET_R __ Ec ______,

READ
INPUT

RECORD

MR$REL
LOCATES AND

RELEASES
INPUT DATA

RECORD TO THE
SORT

YES

CLOSE INPUT
DATA FILE

(NOT NECESSARY
TO CONTINUE

PROGRAM)

MR$SRT
INDICATES

END OF INPUT
DATA FILE

SORT OUT

OPEN
OUTPUT

DATA FILE

Figure 6-1. Disk Sort Program Flowchart

6-2

0 RECRET

MR$RET
REQUESTS

SUBR SIM TO
RETURN SORTED

RECORDS TO
YOUR PROGRAM

NO

WRITE
SORTED
RECORD

CLOSE INPUT
DATA FILE (IF
NOT BEFORE).
CLOSE OUTPUT

DATA FILE

EOJ

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-3

• 6.2. INITIATING THE OPERATION

•

•

The first thing you must do is name your program (we will use SRTEXMPL) and set the
location counter to 0. The location counter always contains the address of the current
instruction. To set the location counter to 0, use the START assembler directive.

LABEL
l

.0.0PERAT IO~
10 16

SRTEXMPL START 0

OPERAND

Part of initiating subroutine sort/merge is to establish a communication interface
between your program and the subroutine sort/merge program via a sort common
module. The sort common module (SG$0RT) is a standard interface module that resides
in the system object library file (Y0BJ). To establish the communication interface
between your program and the subroutine sort/merge, you must link the sort common
module to your program in the link edit run.

The linkage editor links the sort common module (SG$0RT) in Y0BJ to the user object
module produced by the assembler.

To specify linkage, define the entry point for the common sort module in your program by
naming MR$0RT as an external reference (EXTRN). This is done by coding line 2 as
follows:

l · I SRTEXMPL START
2. EXTRN

0
MR$0RT

When the linkage editor processes your program, EXTRN tells it that MR$0RT is not
defined in your program but refers to an object module which must be linked to it. The
linkage editor makes the sort common module part of your program when it builds the
load module for your program in the job run library file (YRUN). This must be done
before your program is loaded into main storage for execution. Once your program load
module is loaded into main storage, the sort common module loads phase 0 into main
storage, and the sort common module remains there for the duration of subroutine
sort/merge processing and provides a link between your program and the subroutine
sort. Phase 0 loads the other phases (Figure 5-6).

Until now, the interfacing procedures we've discussed would look like Figure 6-2 .

UP-8342 Rev. 3

MAIN STORAGE

USER PROGRAM

SORT COMMON
MODULE (SG$0RT)

0
S/M MODULE

CALL

PHASE 0
SUBROUTINE S/M

MODULE

SPERRY UNIVAC OS/3
SORT/MERGE

@
LOAD USER
PROGRAM

SYSRES

LOAD S/M
MODULE Y0BJ

I
I

I
I

/
I

I
I

I /
/

/
/

/ -
,,,

\ '
\ '

\
\ \
\ \
\ \

\ \

\
\
\
\
\
\

\

Figure 6-2. Sort Common Module as Initial Interface

6-4

G)

USER PROGRAM
LOAD MODULE

INCLUDING
SORT COMMON

MODULE (SG$0RT)

SUBROUTINE
S/M MODULES

SORT
COMMON
MODULE
(SG$0RT)

T
0

LINKAGE
EDITOR

PERFORMS
TRANSFER

Naturally, you want to make your program relocatable. This can be done by using base
register addressing; in our program, we will use base register 4. To do this, we code:

LABEL
1

t.OPERAT IO~
10 16

BALR 4,0
USING '",4

OPERAND

The branch and link assembler instruction loads the starting address of your program
into register 4. When your program is loaded into main storage, its starting address is
loaded into register 4, the base register. The 0 operand indicates that no branching is to
occur.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-5

The USING assembler directive assigns general register 4 to your program as the base
register. The asterisk (*) operand indicates that the value assumed to be in register 4
when the program is assembled is the current value in the location counter.

Next we must branch to the beginning of our program. This is accomplished by coding:

LABEL
1

l:.OPERAT I ONl:.
10 16

B START

OPERAND

START is the label of the first instruction in our subroutine sort/merge program.

We have now completed the initialization of our program. To summarize, the coding for
our disk sort program up to this point looks like this:

SRTEXMPL START
EXT RN

;'-:.

BALR
USING
B

6.3. DEFINING FILES

0
MR$0RT

4,0
,., ,4
START

DEFINES MR$0RT AS AN EXTRN
LINKS SORT COMMON MODULE TO
YOUR PROGRAM

The software supplied by Sperry Univac includes another powerful component called data
management, an elaborate group of routines that handle several types of processing, such
as sequential, random, and indexed-sequential. When using subroutine sort/merge, you
must provide your own 1/0 routines. Each record is read in order of its physical location
on the tape or disk. (Subroutine tape sorts are shown in Section 9.) The several access
methods, and therefore the sort/merge, can process only files defined by the DTF
declarative macros peculiar to tape (DTFMT) or disk (DTFSD, DTFDA, DTFNI, or DTFMI)
input files. When you want to sort records in a file, you must tell the data management
software that the file you are processing is an input or an output file. The TYPEFLE
keyword parameter serves this purpose. In order to operate properly, data management
also needs specific information defining your program's data files.

NOTE:

In this discussion, all references to data management mean basic data management.
Users of consolidated data management should refer to the consolidated data
management concepts and facilities, UP-8825 (current version) for information on defining
files.

In our discussion of your data files and the resultant files you wanted after subroutine
sort/merge execution (5.2), we looked at some of the file definitions, such as record size,
record format, and block size. Each of these specifications, in addition to other file
information, must appear in your program in a section called file definitions. For example,
you may define the files for sequential disk processing by using the DTFSD macro
instruction. Data management uses your file definitions to supply file information to the
system when your program requires it.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-6

You can find the format of the DTFSD, DTFDA, DTFNI, DTFMI, or DTFMT macro •
instructions in the data management user guide, UP-8068 (current version). We will not
repeat them here; if you need more information about these macro instructions, see the
user guide. The coding for the input and output file definitions on our disk sort example
program is illustrated in Figure 6-3.

LABEL ~OPERATION!':. OPERAND
1 10 16 72

INPUT DTFSD BLKSIZE=400,RECSIZE=8fi1, IOAREAl=BUFFl, IOAREA2=BUFF2J h-
IOREG=(2) ,RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, C
EOFADDR=EOF,TYPEFLE=INPUT
BLKSIZE=400,RECSIZE=80, IOAREAl=BUFFI ,IOAREA2=BUFF2, C
IOREG=(2) ,RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, C
TYPEFLE=OUTPUT

OUTPUT DTFSD

Figure 6-3. Data Management Macro Specifications

In this disk sort problem, we're specifying:

• a maximum block size of 400 bytes;

• a record size of 80 bytes;

• an IOAREA 1 called BUFF1 for the primary 1/0 buffer area;

• an additional IOAREA2 called BUFF2 to speed up 1/0 processing;

• a record format of fixed blocks; and

• an end-of-file address called EOF, which specifies the symbolic name of your
program's routine to handle the end of input file processing.

You do not need an end-of-file routine for the output file because that is handled by the
end of job processing.

In addition, we're specifying the optional parameters ERROR, OPTION, TYPEFLE, and
IOREG. The ERROR=IOERROR parameter specifies that your program includes a routine
labeled IOERROR to handle unrecoverable errors. OPTION=YES indicates that both input
and output files are optional; i.e., you won't always use both of them. Although omitting
the file type parameter still generates the TYPEFLE=INPUT parameter by default, we
have input and output sort files to process so we use TYPEFLE=OUTPUT. This parameter
indicates that the second DTFSD is for an output file. The TYPEFLE=INPUT parameter
reads header/trailer labels for the input file, and the TYPEFLE=OUTPUT parameter writes
header /trailer labels for the output file. IOREG specifies the register used for
incrementing record addresses during the reading and writing of records. Here we are
using general register 2 as the index register.

When you specify IOAREA 1 and IOAREA2, you must also define how much main storage
is required to handle the block size you indicated on the BLKSIZE parameter. Thus,
somewhere in your program you write the define storage statements as illustrated in
lines 2 and 3 of the following coding:

•

•

•

•

•

UP-8342 Rev. 3

LABEL
l

l.
2.
3. BUFF]
4.
5. BUFF2
6. SAVEAREA

D.OPERAT I OND.
10

DS
DS
DS
DS
DS
DS

16

OH
CL8
CL400
CL8
CL400
18F

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

6-7

Not only does data management associate I OAR EA 1 and IOAREA2 with their names,
BUFF1 and BUFF2, but it also looks for the needed space, indicated by character length
400 (Cl 400). This data management space accommodates alternate input and output
block processing. If your input files are on 8416 or 8418 fixed-sector disks, or if you want
to make your program device independent, you must allow a multiple of 256 bytes for
each buffer area. Since your input and output block size is 400 bytes, you would need 512
bytes for each buffer area. Data management requires two other define storage
statements, OS CL8 (lines 2 and 4 on preceding coding form). These statements designate
eight additional bytes of storage immediately preceding the first and second 1/0 areas
(BUFF1 and BUFF2 in this case), and a save area defined as 18 full words (72 bytes) of
storage, SAVEAREA OS 18F (line 6 on preceding coding form). This is the area where your
program saves the contents of any register used during execution of GET and PUT
imperative macro instructions .

Data management requires eight bytes before each buffer on output but it does not
require eight bytes before each buffer on input. 1/0 buffers must be half-word aligned
(see line 1 on preceding coding form), and the save area must be full-word aligned. It
should be noted at this point that there are two ways of providing the save area address
to data management: loading the address into general register 13 before entering the
data management imperative macro (see line 9, Figure 8-5) or specifying the label of
the area via the SAVAREA keyword parameter in your DTF. For more details about the
SAVAREA keyword parameter, refer to the data management user guide, UP-8068
(current version). Using the SAVAREA keyword frees register 13 for other use by your
program. Up to this point, our coding looks like Figure 6-4.

l.
2.
3.
4.
5.
6.
7.
8.
9.

IO.
11.
12.
l 3.

LABEL 60PERATl0Nll OPERAND
I I 0 16 72
.--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~·---5!r------

SRTEXMPL START
EXTRN

BALR
USING

INPUT DTFSD

OUTPUT DTFSD

l!l.
MRS ORT

4,0
·, ,4
START

DEFINES MRSORT AS AN EXTRN
LINKS SORT COMMON MODULE TO
YOUR PROGRAM

BLKSIZE=4l!ll!l,RECSIZE=8l!l, IOAREAl=BUFFI, IOAREA2=BUFF2,
I OREG= (2) , REC FORM=F IX BL K, ERROR= I OERROR, OPT I ON=Y ES,
EOFADDR=EOF,TYPEFLE=INPUT
BLKSIZE=4l!ll1,RECSIZE=8l!l, IOAREAl=BUFFI. IOAREA2=BUFF2,
IOREG=(2),RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES,
TYPEFLE=OUTPUT

20a~ DS OH
CL8 21. DS

22. BUFF! DS
22a. DS
23. BUFF2 DS
24. S/.\VEAREA DS

C L4l!ll1
CL8
CL4l!ll!l
18F

STORAGE REQUIRED FOR DM

DATA MANAGEMENT SAVE AREA

Figure 6-4. Subroutine Sort/Merge Disk Sort Coding - Part 1

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-8

6.4. EXPLAINING RUN REQUIREMENTS TO SUBROUTINE SORT /MERGE

Your program must describe its sort/merge requirements to subroutine sort/merge. You
use the MR$PRM macro instruction to do this. Subroutine sort/merge uses the
information specified by MR$PRM to build a sort parameter table. Each keyword
parameter you specify with MR$PRM becomes an entry in the sort parameter table. (See
Appendix 8.)

Since the MR$PRM macro instruction has many parameters, we are going to show its
format in two parts. The first part illustrates only the required parameters. After discussing
the use of these parameters, the second part of the format shows the optional parameters
followed by a discussion of their use. To complete the explanation, 6.4.3 explains the
MR$PRM parameters we've specified for the disk sort program. Finally, 6.10 provides the
entire MR$PRM macro format and a table that summarizes the use of the parameters.

6.4.1. Required MR$PRM Parameters

The MR$PRM format for the required parameters is:

LABEL 60PERATION 6

[symbol] MR$PRM

OPERAND

J

FIELD=(strt-pos-1,lgth-1 [,form-1] [,seq-1] [,order-1] 1
[, ... ,strt-pos-n,lgth-n [,form-n] [,seq-n] [,order-n]]) ,

, RSOC=symbol,

FIN=symbol,

IN=symbol,

OUT=symbol,

RCSZ=max-bytes,

STOR= { symbol }
(symbol, number-of-bytes)

The first thing you must do is choose either the FIELD or RSOC parameter. One or the
other of these parameters is required but not both. If you are sorting by key field
comparison, you indicate the FIELD parameter. It has subparameters that define the sort
key fields to subroutine sort/merge. The key field definition includes starting position,
length, data format, sorting sequences, and order of significance. You must specify at
least the starting position and the length of key field. Specifications for the other
subparameters are generated by default.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-9

By writing a decimal number for starting position, you indicate the starting point of a key
field relative to the beginning of the record. For subroutine sort/merge, there are two
numbering scales for bytes in records: the byte number and the byte position number.
Both byte numbers and byte position numbers proceed from most significant to least
significant (left to right); however, byte numbers begin at 1 and increase, while byte
position numbers begin at 0 and increase. Remember to specify key field starting
positions by byte position in the record, not by byte number.

Using your record layout for the disk sort as an example (Figure 1-2), notice that the
first key field starts at byte 1 of each record. You would specify 0 for the strt-pos-1
subparameter because byte 1 corresponds with byte position 0 of the record (Figure
6-5).

RECORD 1 Key Field

01234567 01234567 01234567 01234567 01234567 01234567 01234567 01234567

B1 B2 B3 B4 B5 B6 B7 B8
Pos 0 Pos 1

I~
Pos 2 Pos 3 Pos4 Pos 5 Pos6 Pos 7

Key Field Length ·I 8 Bytes

LEGEND:

B Byte
Pos Position

Figure 6-5. Key Field on Byte Boundary

All key fields, with the exception of binary key fields, start on a full-byte boundary so you
can easily specify their starting points by using the byte position number in the record.
When you want to specify a binary key field, the starting position is not limited to a byte
boundary but can start at any bit position within a byte. Sometimes you might need to
specify the binary key field starting position in a byte-bit format. Suppose that instead of
starting in record byte 1 or byte position number 0, your 8-byte key field starts in bit
position 2 of record byte 6. You would specify 5.2 for byte position number 5, bit 2
(Figure 6-6).

RECORD 1

01234567 01234567 01234567 01234567 01234567 01234567 01234567 01234567

Bl B2 B3 B4 B5 86 B7 88
Pos 0 Pos 1 Pos 2 Pos 3 Pos4 Pos 5 Pos6 Pos 7

Key Field Length
22 Bits or

2 Bytes and 6 Bits
LEGEND:

B Byte
Pos Position

Figure 6-6. Binary Key Field with Bit-Byte References

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-10

The key field length subparameter (lgth) is also a mandatory specification. When you
specify a key field in full bytes, lgth is a whole number indicating the total number of bytes
the field occupies relative to the byte position number you specified in the strt-pos
subparameter (Figure 6-5). Since your record key fields from the disk sort example are
each eight bytes, you would write an 8 for the lgth subparameter as follows:

LABEL
l

b.OPERAT I ON.6
10 16

MR$PRM

OPERAND

FIELD=(0,8)

A binary key field's length is based upon the number of full bytes plus the number of
bits the field occupies. Using Figure 6-6, you would specify 2.6 for the lgth
subparameter, indicating a total of 22 bits or 2 bytes and 6 bits.

The form subparameter is not mandatory. It is a 2- or 3-character code that specifies the
key field's data format.

If you did not specify one of the format codes in Table 6-1, the default would be CH for
character code (form).

Table 6-1. Data Format Codes {Part 1 of 2)

Maximum Allowable
Format Code Description Field Length (Bytes)

AC Character (EBCDIC in ASCII collation sequence) 1-256

ASL ASCII leading sign numeric 2-256

AST ASCII trailing sign numeric 2-256

Bl Unsigned binary 1 bit-256

• Character (EBCDIC or ASCII) 1-256

CLO Overpunched leading sign numeric 1-256

CSL Leading sign numeric 2-256

CST Trailing sign numeric 2-256

CTO Overpunched trailing sign numeric 1-256

Fl Fixed-point integer 1-256

•

•

•

•

•

•

UP-8342 Rev. 3

Format Code

FL

MC

PD

USO

ZD

SPERRY UNIVAC OS/3
SORT/MERGE

Table 6-1. Data Format Codes (Part 2 of 2)

Description

Floating point

Multiple character, user-specified
collating sequence

Packed decimal

Character, user-specified collation sequence

Zoned decimal

6-11

Maximum Allowable
Field Length (Bytes)

1-256

1-256

1-32

1-256

1-32

Seq, the sorting sequence subparameter, could be A for ascending or D for descending. By
not writing a specification, you accept ascending sequence, the default condition.

As many as 255 different key fields may be specified. The order subparameter designates
the significance of multiple key fields from major to minor. The major key field is always
numbered 1; the next most significant key field is 2; and so on up to the maximum
specification of 255 key fields. If you omit the order subparameter, subroutine
sort/merge assumes the order in which you define the key fields to be the order of
significance. If you use order for one field, you must use it for all fields.

In the following coding example, line 1 describes a single key field. The key field strt
pos-1 begins in byte position 0 and extends for seven bytes (lgth-1). The key field's data
format (form-1) is EBCDIC in ASCII collation sequence (AC). The D indicates a descending
sort sequence (seq-1). Line 2 describes three keys. Each key has its own parameter
specifications. The first key has a starting position of byte position 5 extending through
byte position 12 (eight bytes). The format is assumed character (EBCDIC or ASCII), and
sort sequence is assumed ascending by default. The first key field is the second most
significant key field (order-1). The second key field starts in byte position number 16 and
extends through byte position number 18 (three bytes). Character format and ascending
sort sequence are assumed by default, and the second key field is the major key since
order-2 indicates 1. Finally, the third key field starts in byte position number 58 and
extends through byte position number 67 (10 bytes). Again, by default, the format is
assumed to be character and sequence, ascending. Key field 3 is the third in order of
major to minor key fields.

l.
2.

LABEL
l

t:.OPERATIO~

10 16

MR$PRM
MR$PRM

OPERAND

FIELD=(0,7,AC,D)
FIELD=(5,8,,,2,l6,3,,,1 ,58,10,,,3)

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-12

Instead of specifying the FIELD parameter, you could choose the record sequencing own
code parameter (RSOC). If you decided to write your own routine for record sequencing,
you would code RSOC and the symbolic name of your own-code routine:

LABEL ~OPERATIO~ OPERAND
l l 0 16

MR$PRM RSOC=MYROUT

This parameter overrides the FIELD parameter if you specify both FIELD and RSOC.
RSOC is discussed in 8.2.

The sort/merge macro that initializes subroutine sort/merge is discussed in 6.5. Once
initialization is complete, subroutine sort/merge looks for the entry address of your
program. You define this entry location by specifying a symbolic name via the IN
parameter of the MR$PRM sort macro:

MR$PRM IN=MYOPN

After sort/merge is complete and subroutine sort/merge is ready to return records to
your program, it looks for the location within your program where it can return control.
The OUT parameter symbolic name specifies this return location:

MR$PRM OUT=MYCLSE

As soon as the last sorted record is returned to your program, you've reached the output
end-of-data and you must tell subroutine sort/merge where to pass control. The FIN
parameter indicates your symbolic name for the output end-of-data routine:

MR$PRM FIN=MYEND

In addition to the areas you've set aside for the program itself and for input/output
buffers, you need space in main storage for the subroutine sort/merge modules and for
sort/merge operations.

Using the STOR parameter, you can indicate either:

• the symbolic name of the first main storage location available for subroutine
sort/merge; or

• the symbolic name and maximum number of bytes (decimal) available in main
storage, starting at that name.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-13

If you do not give a maximum number of bytes, subroutine sort/merge uses main
storage locations starting at the address you specify (e.g., WORK) to the upper limit of
main storage allocated to your job region (Figure 6-7).

LABEL
l

~OPERATION~
10 16

MR$PRM

I
USER

PROGRAM ~

REGION

STARTING I

OPERAND

STOR=WORK

MAIN STORAGE

USER PROGRAM
I\

SORT COMMON MODULE

1/0 BUFFER AREA

ADDRESS FOR ____ 1-----------------------1
SUBROUTINE
SORT/MERGE

SORT/MERGE
REGION

SUBROUTINE SORT/MERGE MODULES

WORK AREA FOR
SORT/MERGE OPERATIONS

STORAGE AREA ALLOCATED
BY STOR=WORK

JOB REGION
AS DEFINED

IN JOB PROLOGUE

Figure 6-7. Main Storage Area Allotted by STOR without Number of Bytes Specified

If, for example, you specify a maximum number of main storage bytes by writing
STOR=(WORK, 15000), the main storage area allocated for subroutine sort/merge would
extend 15,000 bytes from your starting address of WORK. Main storage space allocation
would look like Figure 6-8.

MR$PRM STOR=(WORK,15000)

--.

UP-8342 Rev. 3

USER
PROGRAM

REGION

STARTING
ADDRESS

FOR SUBROUTINE
SORT/MERGE

SORT/MERGE
REGION

I

I

SPERRY UNIVAC OS/3
SORT/MERGE

MAIN STORAGE

USER PROGRAM

SORT COMMON MODULE

1/0 BUFFER AREA

SUBROUTINE SORT/MERGE MODULES

WORK AREA FOR
SORT/MERGE OPERATIONS

STORAGE AREA ALLOCATED
BY STOR=(WOR K, 15000)

UNUSED

\

I

I

6-14

JOB REGION
AS DEFINED

NJOBPROLOGUE

Figure 6-8. Main Storage Area Allotted by STOR Specifying Maximum Number of Bytes

If you use the STOR parameter to specify the amount of main storage available to
subroutine sort/merge, be sure to allocate a sufficient amount. See 1.6.1 for minimum
main storage requirements.

The last required MR$PRM parameter is RCSZ. You must specify the size of fixed-length
data records or the maximum size of variable-length data records to be sorted. Indicate a
decimal number of bytes after the equal sign, e.g., RCSZ=80.

LABEL
l

t.OPERATIONt.
10 16

MR$PRM

OPERAND

Size specified for variable-length records must include the 4-byte record length field that
precedes each record. If a tag sort has been indicated (ADDROUT keyword parameter
specified), the record size must equal the combined length of all key fields specified plus
the 10-byte record access address field. Maximum allowable record size depends
somewhat upon the system hardware configuration.

This completes our discussion of the required MR$PRM parameters.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-15

• 6.4.2. Optional MR$PRM Parameters

•

•

In addition to required parameters, MR$PRM has many optional parameters. Some are
more frequently used than others. The following format shows all the MR$PRM optional
parameters:

LABEL b.OPERATION b.

[symbol] MR$PRM

OPERAND

[,ADDROUT= { ~ }]

[,ADTABL=symbol]

[,Bl N={ ~~~~~bytes,size-1,freq-1 [, ... ,size-n,freq-n]) } J
[,CA LC = { ~~S } J
[,CSPRAM= {~tlON}]

[

~ DISC={i ~~~~;ssk~i~=~~~s~~~~-number) ~ l
,) TAPE= { label-type }

((label-type,max-file-number)

[DROC= {DELETE }]
' symbol

[,MERGE= {~s}]

[,NOC KSM= { ~}]

[,PAD=bytes]

[,PRINT={~~~CAL}]
[,RESERV =sort-filename]

[,R ESUM E=(PASS,recovery-number)]

[,SHAR E=sort-filename]

[,SIZE=nuinber]

[,USEO=(to-address, from-address)]

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-16

In order to help you relate these optional parameters with their functions, we will
discuss them under these categories:

• Device assignment parameters

• Record definition parameters

• Restart parameter

• Miscellaneous parameters

Before each categorical explanation we will list the parameters to be discussed.

6.4.2.1. Device Assignment Parameters

Parameters used to define devices include:

LABEL LOPERATION .6. OPERAND

MR$PRM

[

' ~DISC={ ~:~~;~:k~i::~~s~-:~number) l l
TAPE= { label-type }

(label-type,max-file-number)

[symbol]

[,R ESE RV =sort-filename]

[,SHAR E=sort-filename]

The DISC and TAPE parameters identify the storage medium assigned to your work files.
You must first decide whether to use tape or disk. Suppose you choose disk. You would
decide whether to specify:

• address and maximum disk file number; or

• maximum disk file number.

The address subparameter specifies the symbolic name of a list of your own user-supplied
disk file names. The max-disk-file-number subparameter specifies the maximum number
of files available to sort/merge. This number must not exceed eight. Line 1 in the
following coding shows an example of the address and max-disk-file-number specification.
On the other hand, you can specify only the max-disk-file-number. This indicates the
maximum number of standard disk file names (not to exceed eight) assigned to subroutine
sort/merge. Line 2 of the following coding shows a maximum of seven disks to be used
for work files.

LABEL
I

LOPERAT I ONL
l 0 16

MR$PRM
MR$PRM

DI SC= (MYLABEL, 7)
DISC=7

OPERAND

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-17

By using the TAPE parameter, you can identify the tape labels you want for all work
(scratch) tape files in your program and specify the maximum number of sort files that
may be assigned for subroutine sort/merge use. If you chose tape as your storage
medium, you have to decide whether to specify:

• label type (NO or STD); or

• label type and maximum file number.

Tapes are either unlabeled or labeled standard. In the following example, the first
specification indicates that you are assigning unlabeled tapes as scratch tape files; the
second specification assigns standard label tapes as scratch tape files.

LABEL
l

L':.OPERAT I ONL':.
10 16

MR$PRM
MR$PRM

TAPE=NO
TAPE=STD

OPERAND

If you specify both label type and max-file-number, you write the label type and a
decimal number to indicate a maximum number of tape files you want assigned as
working storage. The minimum is three; the maximum is six. For example, if you want to
use standard labels and a maximum of four auxiliary working storage tapes, you code:

MR$PRM TAPE=(STD,4)

This TAPE parameter specifies only the assignment of standard labels to four tape work
files. It does not assign standard sort tape file names. The LFD job control statement
does that.

If you omit both the DISC and TAPE parameters, subroutine sort/merge will determine
the type and number of work files from your LFD statements in the job control stream.
For tape files, standard labels are assumed.

The RESERV parameter reserves a tape unit for use by a sort work file and by an output
file. Sort/merge uses the tape unit as a work file during phases 0, 1, and 2. At the
beginning of phase 3 when sort/merge transfers control to your program at the address
you specify on the OUT parameter, the work file is closed and rewound to the unload
point. After you dismount it and mount your data output file, the reserved tape unit
accepts your output file on the same device (Figure 6-9). You might specify a standard
tape sort file name (SM01, ... ,SM06) as follows:

MR$PRM RESERV=SM~4

UP-8342 Rev. 3

,...---..,

MAIN STORAGE

SUBROUTINE S/M

• INTERMEDIATE
PHASE COMPLETED

SPERRY UNIVAC OS/3
SORT/MERGE

r---------------~

REMOVE WORK Fl LE
TAPE AND MOUNT YOUR
OUTPUT FILE TAPE

MAIN STORAGE

SUBROUTINE S/M

• OUTPUT PHASE

~
f----- - --- - --- -- --

TAPE DEVICE 92

REWIND

TAPE DEVICE 92

Figure 6-9. Same Work File Device Reserved for Output File Processing

6-18

The SHARE parameter allows a tape unit assigned to subroutine sort/merge to be used
(shared) as a device for an input file during the initial sort phase of subroutine
sort/merge and as a work file during the remaining phases of sort/merge operation. You
designate a standard sort tape name (SM01, .. .,SM06) for the SHARE parameter:

LABEL
I

l!.O PERA T I 0 NL':!.

10 16

MR$PRM SHARE=SM~I

OPERAND

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-19

• The action taken might look like Figure 6-10.

•

•

MAIN STORAGE TAPE DEVICE 90

SUBROUTINE S/M

• INITIAL SORT
PHASE

t-----------------

REWIND

REMOVE INPUT FILE
TAPE AND MOUNT YOUR
WORK Fl LE TAPE

MAIN STORAGE TAPE DEVICE 90

SUBROUTINE S/M

• PRELIMINARY
,.,., MERGE PHASE

t---- --------------

Figure 6-10. Same Input Device Shared between Input File and Sort Work File during Subroutine Sort/Merge Phases

Remember, a shared tape cannot be reserved and a reserved device cannot be shared.
Associate the SHARE parameter with a dual-purpose input device and the RESERV
parameter with a dual-purpose output device.

6.4.2.2. Record Definition Parameters

The following parameters define records:

LABEL .60PERATION .6

[symbol] MR$PRM

OPERAND

[,ADDROUT= { ~ }]

[,Bl N={ ~~~~~bytes,size-1,freq-1 [, ... ,size-n,freq-n]) } J
[,USEQ=(to-address, from-address)]

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-20

The ADDROUT parameter is related to a special sort application called a tag sort. The tag
sort performed by subroutine sort/merge is a method of sorting in which the output file
contains only the direct access addresses, or the addresses and key fields, of the records in
the original file. The first 10 bytes of each reconstructed record contain the direct access
address field. The total length of all key fields per tag sort record cannot exceed 256 bytes. A
tag sort can be performed only when input is from a nonindexed or IRAM disk file. Multiple
input files cannot be tag sorted. When input is from an IRAM file, the output of a tag sort is
an IRAM file without an index.

When you want to perform a tag sort, you tell sort/merge via the ADDROUT parameter:

LABEL
l

6.0PERAT I ON6.
l 0 16

MR$PRM
MR$PRM

ADDROUT=A
ADDROUT=D

OPERAND

The ADDROUT parameter has two options. The D specifies that both the address field and
the record key fields are returned to your own program in the sorted record. The A specifies
that the sorted records returning to your program include only the address field. If you want
to construct a separate file containing the sorted key fields you need and you also want to
save the original addresses of the whole record that you tag sorted, specify D. You use A if
you don't need to know the key field contents of the sorted records but want only their
addresses for retrieving the entire original record at a later time. Figures 6-11 and 6-12
show unsorted key fields from four records and the resulting records returned to your output
file after a tag sort. It is not the intent to show actual record formats in Figures 6-11 and
6-12 but only to illustrate the concept of record sorting by key fields and the outputs
produced by a tag sort operation. To retrieve the disk address of the record for a tag sort, you
must define the input file as a DTFNI file and use the imperative macro, NOTE, to obtain the
record address. The NOTE macro must never be used with a DTFSD file. It is issued only to a
DFFNI file.

RECORD
ADDRESS

540 33 001654

360 04 002992

180 06 007959

001 10 004570

INPUT FILE
(UNSORTED RECORDS)

MINOR KEY
FIELD

Figure 6-11. Input File. Unsorted Records (Additional Data Fields Not Shown)

•

•

•

------------~------

•

•

•

UP-8342 Rev. 3

INPUT FILE
{UNSORTED RECORDS)

540 33 001 654

360 04 002992

180 06 007959

SPERRY UNIVAC OS/3
SORT/MERGE

WORK FILE

{RECORDS SORTED ON MAJOR
KEY FIELDS)

540 33 001654

001 10 004570

-
360

180 06 007959
ADDROUT==A
_I

180

6-21

OUTPUT FILE
{RECORD ADDRESSES

ONLY)

540

001

------.....---'---------... --..,
ADDROUT==D

OUTPUT FILE
{RECORD ADDRESSES AND

CONTROL FIELDS) 001 10 004570 360 04 002992

L 540 33 001654

001 10 004570

180 06 007959

360 04 002992

Figure 6-12. Tag-Sorted Output Files

Although the BIN parameter is shown as optional, it is required if your records are
variable length. To conserve main storage space and provide optimum processing speed,
subroutine sort/merge divides variable-length records into fixed-length subrecords called
bins. Remembering that a 4-byte record-length field is considered a part of variable
length records, several of them with key fields might look like Figure 6-13.

Record· Length Field Key Field 1 Key Field 2 --------- ~ ~
RECORD 1 BS B6 B7 BB B9 B10 811 B12 813 814 BlS (

Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos 1BO BPR
0 1 2 3 4 s 6 7 B 9 10 11 12 13 14

Record-Length Field Key Field 1 Key Field 2 ----------- ,...-__.....___
~

RECORD 2 BS B6 87 BB B9 810 B11 B12 B13 814 B1S D
Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos Pos BOBPR
0 1 2 3 4 s 6 7 B 9 10 11 12 13 14

Record-Length Field Key Field 1 Key Field 2 ------------ -------- ~

RECORD 3 BS B6 B7 BB B9 BlO B11 B12 B13 B14 B1S

Pos Pos Pos Pos Pos Pos Pos Pas Pos Pos Pos Pos Pos Pos Pos 100 8PR
0 1 2 3 4 s 6 7 B 9 10 11 12 13 14

LEGEND:

8 Byte
8PR Bytes per record
Pos Position

·ords and BIN Size

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-22

There are two formats for the BIN parameter. The first format allows you to define the
size of these subrecords (bins), and the second format allows you to supply information
that subroutine sort/merge uses to calculate the bin size for you. If you specify the bin
size yourself, remember that the size must be large enough so that the first bin may
contain all the sort key fields within a record as well as the 4-byte record-length field.
Examining Figure 6-13 to determine the number of bytes for the format 1 BIN
parameter, notice that each record contains two key fields which extend 15 bytes into
the record. Therefore, the minimum number you can specify is 15. However, since you
have record lengths of 180, 80, and 100 bytes, all divisible by 20, a more efficient bin
size to specify might be 20.

LABEL
l

b.OPERATION!l
l 0 16

MR$PRM

OPERAND

BIN=2(1

Suppose you have the same record information from Figure 6-13 but you decide to let
subroutine sort/merge calculate the bin size. To calculate this number, subroutine
sort/merge needs:

• the minimum number of bytes which can accommodate all sort key fields for each
variable-length record plus the 4-byte record length field (min-bytes);

• the record length (size-1) appearing most frequently in the input file; and

• the number or percentage of size-1 records in the input file (freq-1). If the number
specified is less than 100, subroutine sort/merge assumes it to be a percentage. If
100 or greater, it is assumed to be an estimate of the number of records in the file.

The same information can optionally be specified for additional record sizes appearing in
the input file. The following coding specifies that 15 bytes are needed to accommodate
all key fields, that 50 percent of your input file contains 180-byte records, and that there
are approximately two hundred 80-byte records and three hundred 100-byte records in
the file. You need not specify every record size appearing in your input file.

MR$PRM BIN=(l5,l80,5!1,80,20(1,l00,300)

In our discussion of the FIELD parameter, we learned that there are many format codes
used to perform collation sequences (Table 6-1). If you have a collation sequence for 8-
bit character data differing from EBCDIC or ASCII representation, you may specify USO
on the form-1 subparameter of the FIELD keyword parameter. In addition to the FIELD
parameter, you specify the USEQ parameter of the MR$PRM macro.

•

•

•

•

•

•

UP-8342 Rev. 3

LABEL
l

i'.10P ERAT I ONl'.1
l 0 16

MR$PRM

SPERRY UNIVAC OS/3
SORT/MERGE

FIELD=((0,8,USQ)

USEQ=(MYCODE,CODTRAN)

6-23

OPERAND

The to-address subparameter on the USEO parameter specifies the address of a 256-byte
table that translates the record fields into your own collation sequence. The from-address
subparameter is the address of a 256-byte table that translates the fields back to the
original data format code for output.

Usually one table is sufficient to perform the necessary translations and since both
positional subparameters must be specified, you code the same address on both
subparameters. Thus, you would probably write the following coding if one table is
sufficient for the translations:

MR$PRM FIELD=((0,8,USQ),

USEQ=(MYCODE,MYCODE)

6.4.2.3. Restart Parameter

Suppose that somewhere in the middle of merging records into your desired sequence,
the sort/merge program was interrupted. The number of collation passes previously
made is shown on the system console. To restart your tape sort, you code the most
recent collation pass number on the RESUME parameter.

LABEL i'.1 OPE RA Tl ON i'.1 OPERAND

[symbol] MR$PRM [,R ESUM E=(PASS,recovery-number)]

UP-8342 Rev. 3

LABEL ~OPERATIO~
1 10 16

MR$PRM

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

RESUME=(PASS,053)

6-24

Instead of coding RESUME on the MR$PRM macro instruction and having to reassemble
your program, you can enter it from the job control stream by submitting a PARAM job
control statement (6.12), as in the following example:

II PARAM RESUME =(PASS,053)

In order to enter RESUME on a PARAM statement, you must have coded CSPRAM=YES
on your MR$PRM macro (6.4.2.4).

Only tape sorts can be restarted. The disk cannot be repositioned as a tape is repositioned
for a restart.

6.4.2.4. Miscellaneous Parameters

The remaining optional parameters are:

LABEL ~OPERATION~ OPERAND

[symbol] MR$PRM [,ADTABL=symbol]

[,CALC = { ~~S }]

[,CSPRAM= {~~ION}]
[DROC= {DELETE}]

• symbol

[,MERGE= {~s}]

[,NOCKSM={ ~} J
[,PAD=bytes]

[.PRINT·{=~CAL}]
[,SIZE=number]

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-25

• Just as MR$PRM builds the sort parameter table, the ADTABL parameter allows you to
generate additional parameter tables and link them to the existing sort parameter table. It
is important to code ADTABL as the last parameter of the MR$PRM it is used in, because
subroutine sort/merge ignores all parameter entries following the ADTABL parameter
(Figure 6-14). This symbolic label may be the beginning of an additional parameter table
or any number of parameter tables. In addition to coding the ADTABL parameter last on
your MR$PRM macro, you must create another sort parameter table in the current
program or reference a sort parameter table from another program. To link tables within
the same program later in the program, you indicate the symbolic label specified on the
ADTABL and write a MR$PRM there as follows (line 13):

•

•

LABEL .!lOPERATION.!l OPERAND
l l 0 16 ~~_Jl:_

l. SORT MR$PRM FIELD=(0,8), c
2. IN=SORTIN, c
3. OUT=SORTOUT, c
4. FIN=SORTFIN, c
5, RCSZ=80 c
6. SOTR=\JORK c
7. PAD=l2, c
8. ADTABL=MYTABL
9.

lo .
l l.
12.
13. MYTABL MR$PRM DISC=4, c
14. ADDROUT=D

Figure 6-14. ADTABL Parameter Adding Table Entries within the Same Program

To reference sort parameter tables from other programs, you must indicate your symbolic
name from the ADTABL parameter as an external reference in your program and as an
entry point in the program being referenced (Figure 6-15). If duplicate fields exist in the
two parameter tables, the first occurrence is used .

UP-8342 Rev. 3

LABEL t.OPERA Tl ONt.
I 10

SORT MR$PRM

r EXTRN

ADDED
AFTER
FIRST SRTAB MR$PRM
TABLE

4 MYTABL

ENTRY

Figure 6-15.

16

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

FIELD=(0,8),
IN=SORTIN,
OUT=SORTOUT,
FIN=SORTFIN, FIRST PROGRAM SORT
RCSZ=80, PARAMETER TABLE
STOR=WORK,
PAD=l6,
ADTABL=MYTABL
MYTABL

FIELD=(l2,4),
IN=SORTIN,
OUT=SORTOUT,
FIN=SORTFIN, SECOND PROGRAM SORT
RCSZ=l20, PARAMETER TABLE
DISC=4,
ADDROUT=D
MYTABL

COMMENT

ADTABL Parameter Referencing Table in Previous Program

6-26

72

c
c
c
c
c
c
c

c
c
c
c
c
c

Another very useful optional parameter is the CALC parameter. This parameter may be
specified only for disk sorts. If you want the subroutine sort/merge to calculate optimum
working storage, display information produced during sort initialization, and then terminate
the job step, you must indicate CALC=NO (line 1).

l.
2.

MR$PRM
MR$PRM

CALC=NO
CALC=YES

The YES specification (line 2) causes the subroutine sort/merge to calculate optimum
working storage, display sort information, and proceed with the sort as defined by the
current sort parameter table. In either case, you must have specified the SIZE parameter
in MR$PRM, as well as all required record description keyword parameters. The
information displayed specifies the estimated sort time in minutes and the number of
cylinders required for work space.

In the SIZE parameter, you indicate the approximate number of records to be sorted. This
permits subroutine sort/merge to optimize its procedures. If you omit the SIZE parameter,
subroutine sort/merge assumes a file of 25,000 records and the sort may not be
optimized.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-27

OPERAND LABEL 60PERATION6
_1~~~1_0~~~-l6~~~~~~~~~~~~~~~~~~f 72

MR$PRM SIZE=2000,
CALC=YES

c

Subroutine sort/merge also accepts sort/merge parameters from the job control stream by
means of the PARAM job control statement. See 6.12 for parameters you can submit to
subroutine sort/merge via the job control stream at run time. If you use this convenient
method of entering sort/merge parameters in the sort parameter table, you specify your
intention via the CSPRAM keyword parameter by coding YES (line 2). If you omit the
CSPRAM parameter or code CSPRAM=NO (line 1), subroutine sort/merge will not look for
PARAM statements in the job control stream.

1.1 2.
MR$PRM
MR$PRM

CSPRAM=NO
CSPRAM=YES

It is advisable to specify CSPRAM=YES. Then, if you decide to add other parameters to
your sort parameter table, you may do so; or, if you don't, the execution of your program is
not affected. If you choose the default condition of CSPRAM=NO, you have to recode the
MR$PRM macro and recompile your program to add parameters. Only BIN, DISC,
NOCKSM, RESERV, RESUME, SHARE, and TAPE may be entered into the parameter table
via the PARAM job control statement .

Suppose you know that your data files contain a large quantity of records with equal key
fields. To avoid unnecessary key field comparison and redundancy in your output file, there
is a convenient method of eliminating or combining these records with equal key fields.
It's called data reduction own-code routine (DROC). This parameter allows you to specify
automatic data reduction to be performed by subroutine sort/merge or by your own-code
routine. Remember that record fields are duplicated in your files and that these whole
records may be either eliminated or combined. Therefore, all records in your data files for
data reduction must be fixed-length records. Never specify the DROC parameter for
variable-length records. If you specify DELETE (otherwise known as auto delete),
subroutine sort/merge performs data reduction automatically (line 1). Subroutine
sort/merge uses registers to handle the saving and deleting of records with duplicate
keys. For a more detailed description of how it performs deletion, read 7.3.

1. I 2.
MR$PRM
MR$PRM

DROC=DELETE
DROC=MYWORK

Otherwise, the symbol you indicate on the DROC parameter specifies the symbolic label of
your own-code data reduction routine entry address (line 2). Own-code routines can delete
records with equal keys, summarize duplicate keys creating new records, or use a
combination of keeping, deleting, or summarizing records. Thus, if you are interested in
combining keys (summarizing) or a combination of deleting and combining, you must write
your own routine and specify its name on the DROC parameter of the MR$PRM macro .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-28

Subroutine sort/merge is capable of performing a merge-only application. You tell
subroutine sort/merge to perform merge-only via the MERGE parameter:

1.
2.

LABEL
1

l!.OPERATIONA
10 16

MR$PRM
MRPM

OPERAND

MERGE=YES
MERGE=NO

If you omit this parameter, subroutine sort/merge assumes NO by default, a merge-only
operation is not performed. You can also specify that this is not a merge-only operation by
coding NO (line 2).

Normally, the subroutine sort/merge generates a checksum word for each output data
block written to the tape or disk working storage areas. The checksum word provides a
check of data integrity during read and write transfer operations (1/0 processing) between
the sort/merge operation and the sort work files.

The checksum word is calculated by logically summing, into a 1-word field, the records in
the data block before they are written out to the sort work file. This checksum word is
placed in the data block that is written to the sort work file.

Later, after the data blocks are read back into main storage from the sort work file, a
checksum word is recalculated. Data integrity is then verified by comparing the new
checksum word with the old checksum word. If the new word equals the old, the sort
continues. If the comparison is unequal, the sort terminates. The checksum operation
works as follows:

INPUT
FILE

OR

INPUT BLOCK 1

RECl I 00000000!111111111

REC2 \ 11111111I000000001

REC3 I 00000000 I 0000000 1 I

REC4 j 10000000 I 00000000 I

REC5 j 11111111 I 00000000 J

/ ' /
/

/
CHECKSUM WORD

'

WRITE

' ' '

SORT
WORK

READ

DATA

FILE BLOCK

I

I

I
I

MAIN STORAGE

RECALCULATE
CHECKSUM

CHECKSUM WORD

\
\

\
\

00000000 00000000 10000000 11111110 i---c_oM_P_A_R _E -- 00000000 00000000 10000000 11111110

SORT CONTINUES

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-29

• You can suppress this calculation of the checksum word by specifying the NOCKSM
keyword parameter for the device type to which output data blocks are written.

•

•

1.
2.

LABEL
1

t.OPERATIONt.
10 16

MR$PRM
MR$PRM

NOCKSM=D
NOCKSM=T

OPERAND

The D indicates no checksum word calculation for blocks written to disk (line 1). Specify T
for no checksum word calculations on blocks written to tape (line 2). Since checksum word
calculations are time consuming, it is wise to specify this parameter.

Another special optional parameter, PAD, allows you to augment the sort parameter table
beyond its generated length. This enables you to enter additional parameters into the table
from your own program at run time. The decimal number you enter specifies the number
of additional bytes to be added to the sort parameter table. Remember that these bytes
must be expressed in multiples of four.

The PAD parameter is used with the ADTABL parameter. The ADTABL specifies the name
of the additional sort parameter table or the table being referenced in another program,
and PAD specifies the number of extra bytes required for the additional parameter table
entries .

The following coding illustrates two PAD parameters:

1.1 2.
MR$PRM
MR$PRM

PAD=l2
PAD=8

Also, see Figure 6-14, line 7 and Figure 6-15, line 7.

Subroutine sort/merge generates messages that are displayed on the system console or
written in the job control spool log. The parameter PRINT allows you to specify that you
want all messages (ALL), only critical messages (CRITICAL), or no messages (NONE)
written into the system message log. If you omit PRINT, all messages are written to the
system message log .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-30

6.4.3. MR$PRM for the Disk Sort Program

Let's consider the specifications you might make in the parameter table for the disk sort
program. Specifying the required parameters and other parameters pertinent to your disk
sort (Figure 6-16), you might write:

14.
15.
16.
17.
18.
19.
20.

LABEL 60PERATIONA OPERAND

~1~~~1_0~~~16~~~~~~~~~~~~~~~--s~
SORT MR$PRM FIELD=(0,8,CH), C

IN=SORTIN, C
OUT=SORTOUT, C
FIN=SORTFIN, C
RCSZ=80, C
STOR=WORK, C
DISC=4

Figure 6-16. Subroutine Sort/Merge Disk Sort Coding -Part 2

The FIELD parameter indicates that each of your record key fields start in byte position
number 0, are eight bytes long, and are in the EBCDIC or ASCII character format (CH).
Since your sorting sequence is ascending, you don't need to code an A for the seq-1
subparameter because A is the normal default. In this case, you are not sorting on more
than one key field so there is no need to specify the order-1 subparameter for major or
minor sort key fields. You assign the name SORTIN to the entry location of your program
by using the IN parameter. You also assign the name SORTOUT to the location in your
program where subroutine sort/merge can return control after it has sorted the records
and it is ready to return them to your program.

When subroutine sort/merge returns the last sorted record to your program, it looks for
the name of your output end-of-date routine. In your FIN parameter, you specified the
name SORTFIN. Your records for the disk sort are 80-byte, fixed-length data records, so
you specify a record size of 80 bytes.

On the STOR parameter, you indicate that the name of the first main storage location
available for working storage is WORK and that this area extends to the upper limit of
main storage allocated to your job region (Figure 6-7).

Since your sort/merge is being performed on disk, you specify in the DISC parameter that
you want to use disk space for additional working storage on the sort. For this program,
you choose to indicate only the maximum number of standard disk file names assigned to
subroutine sort/merge. The 4 specifies that four file names are assigned to subroutine
sort/merge.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-31

• 6.5. ACTIVATING THE SUBROUTINE SORT /MERGE (MR$0PN)

•

•

Once you define the input and output files (DTFSD), establish the communications
interface with subroutine sort/merge modules (MR$0RT), define the sort requirements
(MR$PRM), and reserve input and output buffer areas, you need some way to activate
phase 0 of subroutine sort/merge. The MR$0PN imperative macro instruction generates
linkage to call the sort/merge initialization module into main storage. This module
performs the initialization procedure of phase 0 before actual sort/merge execution. You
may choose to open the input data files before or after you open the subroutine
sort/merge; however, you must be sure to open both subroutine sort/merge and your
input data files before releasing records to the sort.

A label on the MR$0PN macro is optional, but for the operand you must indicate either
the symbolic label (address) of the sort parameter table or the number 1 indicating register
1 where you have previously loaded the address of your sort parameter table. A blank
operand field will also indicate that register 1 was loaded with the parameter table
address. In our disk program, we indicate the symbolic label of the sort parameter table on
the MR$0PN macro instruction. Continuing the disk sort program coding from the last
coding examples of Figure 6-4 and Figure 6-16, you would write:

LABEL t.OPERAT I ONt. OPERAND
1 10 16

25. START EQU ii\

26 . MR$0PN SORT OPEN THE SUBROUTINE SORT /MERGE
27. SORT IN LA 13,SAVEAREA POINT TO SAVE AREA
28. OPEN INPUT OPEN THE INPUT FILE
29. GETREC GET INPUT GET RECORD FROM INPUT FILE
30. LR 1 ,2 LOAD Rl WITH RECORD ADDRESS
31. ;'-:. ASSUMING R2 IS SPECIFIED AD
32. ·/;. THE 1/0 REGISTER IN THE INPUT DTF

When the MR$0PN has opened the subroutine sort/merge, it passes control to your
program at the address you specified in the IN keyword parameter of the MR$PRM macro
instruction. According to your specification on the IN parameter for the disk sort program,
your program receives control at the address of symbolic label SORTIN.

At this point, you begin your own program input routine. This routine loads the data
management save area address into register 13, opens your input data file (if you haven't
already opened it), reads each record, and sets the address of the record in register 1,
preparing it for release to the sort. You label your first input routine instruction SORTIN
because you want your program to receive control from subroutine sort/merge at that
point. To set the address of the data management save area, you load it into register 13
via the load-address (LA) instruction (line 27).

Next, by issuing the OPEN imperative macro instruction (line 28), you open the input data
file you named INPUT in your DTFSD. With the file open, you can read the input file by
designating the GET imperative macro instruction (line 29). Since you plan to read many
records and you'll need to repeat this instruction, you label it GETREC, giving yourself a
place to return for reading subsequent records. Data management automatically loads the
first data record address into register 2 when you specify IOREG=(2) on the DTFSD macro.
Because the sort/merge expects the address of the record being released to it to be in
register 1, you must load register 1 with the record address. In this example, a load
register (LR) instruction is used.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-32

6.6. GETTING DATA INTO THE SORT PROCESS

You've read the record and now you must pass it to subroutine sort/merge before
returning to read subsequent records.

The MRSREL macro generates code to release unsorted records one at a time to the
subroutine sort/merge for processing.

33,
34.

LABEL
l

t.OPERAT I ONA
10 16

MR$REL
B GETREC

OPERAND

RELEASE RECORD TO THE SORT
GET NEXT RECORD

After the transfer occurs, subroutine sort/merge returns control to your program at the
instruction immediately following the MRSREL macro. Now you want to read the next
record, so you branch back to your GET instruction labeled GETREC. Reading records,
setting the address in register 1, and releasing records to the sort procedure are repeated
until the end of input file is reached. When data management reaches the end-of-input
file, it looks for the symbolic address of your end-of-file routine. Your EOFADDR
specification on the input DTFSD data management macro indicates the name EOF. This is
your means of exiting the read record loop.

If you are using disk work files and are not certain whether you have assigned enough
auxiliary storage, you can include a routine that will check on the availability of work area
before each record is passed to the subroutine sort/merge. When control is returned to
your program immediately following the MRSREL macro instruction, register 1 will be set
to a positive value if more records can be accepted or to a negative value if work space
may be insufficient to complete the sort. Use a load and test register (LTR) instruction to
set register 1, followed by a branch minus (BM) instruction, which will cut short the read
record loop. You have several alternatives at this point. You can complete the sort with
only the records read thus far by branching to EOF; branch to your error processing
routine, IOERROR (6.9, line 53); or write a special routine to handle this condition in some
other way. In the example, we have labeled this routine NOROOM.

33a.
33b.

LTR
BM

l '1
NO ROOM

LOAD Rl AND CHECK FOR NEGATIVE VALUE
GO TO 'NOROOM' ROUTINE

6.7. PASSING CONTROL TO OUTPUT PROCESS

After you read the last data record of the input file and reach the end of file, you designate
the end-of-file routine and issue a CLOSE imperative macro to close the input file
(although this is not required for continuing your program).

This is followed by the MRSSRT sort macro, which tells the subroutine sort/merge that
you have reached the end-of-input data and that it may now complete the process of
sorting and merging to produce the final results.

•

•

•

•

•

•

UP-8342 Rev. 3

LABEL ~OPERATION~
1 10

35, EOF EQU
36. "k,

37. .. l;.

38. CLOSE
39. MR$SRT
40. ·k

16

··k

INPUT

SPERRY UNIVAC OS/3
SORT/MERGE

6-33

OPERAND

THIS LOCATION IS SPECIFIED
AS THE END OF FILE ADDRESS
IN THE INPUT DTF
CLOSE THE INPUT FILE
TELLS THE SORT THAT THE
END OF FILE HAS BEEN REACHED.

After the sort receives all input data records, it completes a preliminary merge of record
strings. Subroutine sort/merge may skip this phase if your input file is small. The final
merge (phase 3) always occurs, and subroutine sort/merge looks in your sort parameter
table for the symbolic label you indicated on the OUT parameter of the MR$PRM. It passes
control to this label address when it is ready to return the records to your program. Since
you designated SORTOUT as the symbolic label for the disk sort program, the subroutine
sort/merge returns control to that label address which is the beginning of your output
routine.

6.8. DRAWING DATA FROM THE SORT PROCESS

Your output routine coding might continue as follows:

41. SORTO UT EQU ;'\ OUT ADDRESS
42. OPEN OUTPUT OPEN THE OUTPUT FILE
43. RECRET MR$RET REQUEST A RECORD RETURNED.
44. MVC '1(8'1,2) ,0(1) MOVE THE SORTED RECORD TO
45. ·k THE OUTPUT BUFFER AREA.R2 IS
46. ;''\. ASSUMED SPECIFIED AS THE 1/0
47. ·k REG I STER IN THE OUTPUT DTF.
48. PUT OUTPUT OUTPUT THE RECORD RETURNED
49. B RECRET

· To begin your output routine, you open the output file (line 42) and request subroutine
sort/merge to return sorted records to your program via the MR$RET sort macro (line 43).
Records are released to your program one at a time. Consequently, the MR$RET macro
must execute for each returning sorted record. Because record writing is a repetitive
process, and the MR$RET must execute for each record, you assign a symbolic label to the
MR$RET macro instruction to develop your output record processing loop (line 43).
MR$RET returns the address of sorted records one at a time to register 1 and returns
control to your program at the line of coding immediately following the MR$RET macro
instruction. When you open the output file and specify IOREG=(2) in the DTFSD data
management macro, register 2 is set to the location in the buffer where the first record is
to be moved. When control returns to your program (following the MR$RET), the record to
which register 1 points must be moved to the location where register 2 points (line 44).
When you issue a PUT macro, data management updates the address in register 2 to the
location for the next record, tests to see if the buffer is full, and, if it is full, writes the
block to the output file .

Next, you write the sorted record to disk via the PUT imperative macro (line 48) and issue
an unconditional branch (line 49) to the MR$RET macro, which you labeled REGRET (line
43). This loop repeats until it reaches the end of data indicating that all sorted records
have been returned to your program.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-34

When subroutine sort/merge has returned all sorted records, it looks for a point in your
program to pass control and exit the return records loop. This point is specified as a
symbolic label address in the FIN parameter of your sort parameter table. You indicated
the label address FIN=SORTFIN in your disk sort parameter table, so subroutine
sort/merge returns control to your program at SORTFIN (the beginning of your close
output file routine). In this way, you exit the return record loop.

6.9. ENDING THE SORT RUN

Programming the ending of a sort run follows the same basic procedure as ending any other
program. If there are no other calculations or data manipulations to be performed on the
sorted data, you issue the CLOSE imperative macro to close the output data file and an EOJ
supervisor macro to notify the supervisor that the job step is completed.

t'.lOPERAT I ONt'.l LABEL
l 10 16

50. SO RTF IN EQU
51. CLOSE OUTPUT
52. EOJ

OPERAND COMMENTS

FIN ADDRESS
CLOSE THE OUTPUT FILE.
END OF JOB STEP.

Another good addition to any program is an error routine to tell the system what
procedures it should take when an error occurs. If you include an error routine, you must
indicate the name of your error routine on the ERROR parameter of the DTFSD statements
for both input and output files. (See Figure 6-3, ERROR=IOERROR.) Suppose you name
your error processing routine IOERROR. You might use the following approach to handle
an error condition by using the CANCEL supervisor macro (line 54) to halt the current job
run.

53. I OERROR EQU ·k

54. CANCEL CANCEL THE JOB.
55. L TORG DEFINE ALL LITERALS HERE.
56. WORK EQU ·k START OF SORT WORK AREA.
57, ·k THIS SET UP ALLOWS THE SORT
58. ''" TO USE ALL MEMORY FROM
59. ,., THIS LOCATION TO THE END OF
60. ··/'; THE JOB REG I ON.
61. END SRTEXMPL

Finally, to lead into the necessary job control statements for your disk sort program, you
would write the LTORG assembler directive (line 55), which generates into your source
module all previously defined literals.

In the STOR parameter of the MR$PRM macro, you specified the symbolic label WORK.
That name indicated the starting address of the main storage area available to subroutine
sort/merge. Here, at the end of your program, you place your designation of that area (line

•

•

61). Your equate (EQU*) statement with the current location counter symbol (*) tells •
sort/merge that it should use the area starting with the address in the current location
counter (now showing the address of the end of your program) to the end of the job region
as the space for its main storage work area. Figure 6-17 shows the coding of your disk
sort program to this point and the diagram following it, Figure 6-18, illustrates your
program's interface with the subroutine sort/merge.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-35

Notice the use of equate statements in this program coding. In all cases except the last,
these statements are located at the beginning of input, sort, output, end, or error routines,
as indicated by their labels. Use of the equate statement is a valuable programming
technique that allows you to change or insert instructions at these points at a later time.

SRTEXMPL START 0 SETS LOCATION COUNTER TO ZERO.
MR$0RT DEFINES AN EXT RN. 'i: EXTRN MR$0RT

*
* BALR 4,0

US I NG ;': ,4
!3 START

LINKS COMMON SORT MODULE
TO YOUR PROGRAM.

INPUT DTFSD BLKSIZE=40G,RECSIZE=80,IOAREAl=BUFFI ,IOAREA2=BUFF2,
IOREG=(2) ,RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES,
EOFADDR=EOF, TYPEFLE= INPUT

OUTPUT DTFSD BLKSIZE=400,RECSIZE=80,IOAREAl=BUFFI ,IOAREA2=BUFF2,
IOREG=(2) ,RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES,
TYPEFLE=OUTPUT

SORT

;':

*

MR$PRM FIELD=(0,7,CH),
IN=SORTIN,
OUT=SORTOUT,
FIN=SORTFIN,
RCSZ=80,
STOR=\;JORK,
DISC=4

DAT A MAIJAGEMENT \;JORK AREA

1
2
3
4
5
6
7

c 8
c 9

10
c 11
c 12

13

c 14
c 15
c 16
c 17
c 18
c 19
c 20

DS OH 20a
;'; DS CL8 21
BUFF! OS CL400 22

OS CL8 22a
BUFF2 OS CL400 23
SAVEAREA DS I 3F DATA MANAGEMENT SAVE AREA 24
..,,,,

;';

Figure 6-17. Disk Sort Program Coding (Part 1 of 2)

UP-8342 Rev. 3

START

SORTI N

GET REC

*

*
;':.

i':

-;';

EOF
-;':.

*
i':.

·;':

SORTO UT

RECRET

;':

'~
i~

'~

;"
SO RTF IN

;':

;':

*
I OERROR

WORK

*
*
*
*

EQU ;':

MR$0PN SORT
LA 13,SAVEAREA
OPEN I !~PUT
GET ll~PUT

LR I, 2

MR$REL
B GET REC

EQU ;':

CLOSE INPUT

MR$SRT

EQU * OPEN OUTPUT
MRSRET
MVC 0(80,2) ,0(1)

PUT OUTPUT
B RECRET

EQU ;':

CLOSE OUTPUT
EOJ

SPERRY UNIVAC OS/3
SORT/MERGE

OPEN THE SORT/MERGE SUBROUTINE
POINT TO SAVE AREA
OPEN THE INPUT FILE
GET RECORD FROM INPUT FILE

LOAD Rl WITH RECORD ADDRESS
ASSUMING R2 IS SPECIFIED AS
THE 1/0 REGISTER IN THE INPUT
DTF.
RELEASE RECORD TO THE SORT
GET NEXT RECORD

THIS LOCATION IS SPECIFIED
AS THE END OF FILE ADDRESS
IN THE INPUT DTF.
CLOSE THE INPUT FILE.

TELLS THE SORT THAT THE END-
OF-DATA HAS BEEN REACHED.
OUT ADDRESS
OPEN THE OUTPUT FILE.
REQUEST A RECORD RETURNED.
MOVE THE SORTED RECORD TO
THE OUTPUT BUFFER AREA.
R2 IS ASSUMED SPECIFIED AS
THE 1/0 REGISTER IN THE
OUTPUT DTF.
OUTPUT THE RECORD RETURNED.
REQUEST NEXT RECORD.

FIN ADDRESS
CLOSE THE OUTPUT Fl LE.
END OF JOB STEP.

ERROR ADDRESS FOR DATA MANAGEMENT

EQU *
CANCEL CANCEL THE JOB
LTORG DEFINE ALL LITERALS HERE
EQU * START OF SORT WORK AREA.

THIS SETUP ALLOWS THE SORT
TO USE ALL MEMORY FROM
THIS LOCATION TO THE END OF
THE JOB REGION.

END SRTEXMPL

Figure 6-17. Disk Sort Program Coding (Part 2 of 2)

6-36

25
26 • 27
28
29

30
31
32

33
34

35
36
37
38

39
40
41
42
43
44
45 • 46
47

48
49

so
51
52

53
54
55
56
57
58
59
60
61

•

•

•

•

UP-8342 Rev. 3

START

The user program interfaces with the
subroutine sort/merge through the sort
common module. The sort common module
must be linked to the user's program by the
linkage editor. Specify EXTRN MR$0RT.

The sort parameter table, which is created
by the MR$PRM macro, specifies to the sort
the different sorting options the user wants
to use. The other sort macros interact with
the subroutine sort/merge via the sort
common module.

The user provides all input and output data
processing and may modify records before,
during, and after the sort.

USER PROGRAM

SPERRY UNIVAC OS/3
SORT/MERGE

6-37

r---- -----------------,

MR$0PN

I
I
I
I
I Sort initialization
I (Phase 0)

Return via IN parameter

I
I
I
I
I
I

MR$REL (record address

loaded in register 1)
I

......

I
I (Phase 1)

Returns to instruction

following MR$REL macro

I
I
I
I
I

MR$SRT I

-

T
I
I
I
I
I
I

(Phase 2)

Return via OUT parameter

I
I

I
I
I
I

(Phase 3)

MR$RET I

1
I

Returns to instruction

-- following MR$RET macro
(record address in register 2)

l
I

Information from sort
parameter table and job
control statements is
processed.

Input record is given to the
sort which builds initial
(PHASE 1) strings in sort
work areas.

After all records have been
given to the sort, a
preliminary merging of the
record strings may occur.
If file is small or partially
sequenced, this phase may
be skipped.

A final merge of all the
record strings occurs.

The sort releases to the
user one sorted record
every time MR$RET
macro is issued.

l--- ------ -- _____ _J
OS/3 SUBROUTINE

SORT/MERGE

Figure 6-18. User Program Interface with Subroutine Sort/Merge

--------~--~----,------------------------------------

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-38

6.10. SUBROUTINE SORT /MERGE MACRO PARAMETER USAGE

We've examined required and optional MR$PRM macro parameters and a typical disk sort
program MR$PRM specification. Figure 6-19 illustrates the entire MR$PRM macro
format.

LABEL

[symbol]

t.OPERATION t.

MR$PRM

OPERAND

{

FIELD=(strt-pos-1,lgth-1 [,form-1) [,seq-1) [.order-1) l
[, ... ,strt-pos-n,lgth-n[,form-n] [,seq-n] [,order-n]]) ~,

RSOC=symbol,

FIN=symbol,

IN=symbol,

OUT=symbol,

RCSZ=max-bytes,

STOR= { symbol }
(symbol, number-of-bytes)

[,ADDROUT= { ~ }]

[,ADTABL=symbol]

[,Bl N={ ~!~:bytes,size-1,freq-1 [, ... ,size-n,freq-n]) } J
[,CALC = { ~~S } J
[,CSPRAM= { ! } J

[~
DISC={ (addre~s,m~x-disk-file-number)} ~ l

max-d1sk-f1le-number
,

TAPE= { label-type }
(label-type,max-file-number)

[DROC= {DELETE }]
' symbol

[,MERGE= {~s} J
[,NOCKSM= { ~}]

[, PAD=bytes]

[,PRINT={=~CAL} J

Figure 6-19. Complete MR$PRM Macro Format (Part 1 of 2)

•

•

•

•

•

•

UP-8342 Rev. 3

LABEL 60PERATION 6

MR$PRM
(cont)

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

[,RESERV =sort-filename]

[,R ESUM E=(PASS,recovery-number)]

[,SHAR E=sort-filename]

[,SIZE=number]

[,USEQ=(to-address,from-address)]

Figure 6-19. Complete MRSPRM Macro Format (Part 2 of 2)

6-39

Table 6-2 summarizes sort/merge macro instructions required for subroutine sort/merge
execution in single-cycle sort/merge, merge-only, or internal (main storage) sort/merge
operations including MR$PRM subparameter use.

6.11. ASSEMBLING, LINKING, AND EXECUTING YOUR PROGRAM

Up to this point, you have written your program. Now you must assemble, link, and
execute it. This is done by embedding your program in a job control stream. The job
control stream consists of job control statements that name devices used by your program
and the subroutine sort/merge; describe labels and space allocations; and assemble, link,
and execute your program.

6.11.1. Assembling the Program

When you submit your program (including the job control statements before and after the
source coding) to the assembler, it prepares a machine language program from your
program's source code. This machine language is called object code; the assembler's
translation of your source code to object code is an object module that the assembler
places in the temporary job run library file (YRUN). The whole process is called the
assembly run.

On the assembly run, no data is manipulated. The assembler simply analyzes each
statement and converts it into a form acceptable to the machine. Instructions called
assembler control directives direct the operation of the assembler. In your disk sort
program, the START assembler directive sets the initial location counter value. The END
directive indicates the end of your source program and the location where control is
transferred after your program is loaded into main storage.

You specify the EXTRN assembler directive and the assembler includes it in your program
object module as an unresolved external reference. The EXTRN directive tells the
assembler that you want the linkage editor to call in the sort common module in object
code form from the object library file (Y0BJ).

UP-8342 Rev. 3

Macros
and

Parameters

MR$PRM
MR$0PN
MR$REL
MR$SRT
MR$RET
MG$REL
MG$RET

DROC
FIN
IN
OUT
RSOC

DISC
RES ERV
SHARE
STOR
TAPE

ADD ROUT
BIN
FIELD
RCSZ
USEQ

RESUME

ADTABL
CALC
CSPRAM
MERGE
SIZE
NOCKSM
PAD
PRINT

SPERRY UNIVAC OS/3
SORT/MERGE

Table 6-2. Summary of Sort/Merge Parameter Usage

Single-Cyde
Sort/Merge Merge-

Only

Disk Tape

Required Optional Required Optional Required Optional

x x x
x x x
x x
x x
x x

x
x

Normal Linkage Sort Parameter Table Entries

x x x
x x x
x x x
x x

x x x

Device Assignment Sort Parameter Table Entries

x
x
x

x x x
x

Record Definition Sort Parameter Table Entries

x x
x x

x x x
x x x

x x x

Restart Sort Parameter Table Entries

x

Miscellaneous Sort Parameter Table Entries

x x x
x
x x x

x
x x
x x
x x x
x x x

6-40

•
Internal

Sort/Merge

Required Optional

x
x
x
x
x

x
x
x
x

x

• x

x
x

x
x

x

x

x

x

x
x

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-41

Another assembler directive, LTORG, tells the assembler to generate all literals that were
not previously defined in your source program. In other words, the assembler builds a
literal table, a collection of constant values assigned to symbolic names.

6.11.2. Link Editing the Program

You now have an object module representing your source program in YRUN. The
linkage editor begins its activities by taking the object module as its input. If you elect to
write a control stream for the link edit job step, linkage editor scans its control stream data
set for linkage editor control statements and finds the LOADM and INCLUDE statements
which tell it to name the load module it is creating SRTEXM and to include the object
module named SRTEXMPL. (See Figure 6-24, lines 18 through 22.) Otherwise, if you use
the short way of linking the object module named SRTEXMPL, you use the LINK job
control procedure instead of the linkage editor statements. (See Figure 6-21, line 8.) The
linkage editor also scans your program object module for external references and finds
MR$0RT. It looks for MR$0RT in Y0BJ, finds it is an entry point to the object module
SG$0RT, and includes SG$0RT in the load module SRTEXM. Normally, linkage editor
places the load modules it produces in the temporary job run library file (YRUN) unless
you specify that the load modules be placed in your user load library (a file separate from
the system resident library files).

6.11.3. Executing the Program

Now you have a load module that is acceptable to the system for the execution run. At this
point, you need the sort data files and device assignment set information. You supplied the
device assignment data after the linkage editor jproc call. (See Figure 6-21, lines 9
through 21.) At the end of your job control stream, the EXEC statement tells the supervisor
to execute your load module named SRTEXM. Your program load module normally comes
from YRUN and the execution begins. In the execution run, the load modules for the
subroutine sort/merge are called from YLOD into main storage, as needed by your
program. When the sort/merge phases are completed, your sorted records are written to
the output files on the volumes and devices you specified in the job control stream. (See
Figure 6-21, lines 13 through 16.)

Figure 6-20 illustrates the assembly, linkage edit, and execution runs for a subroutine
sort/merge disk sort program .

UP-8342 Rev. 3

r: SYSRES ~

I'--. --1

l'---$~~M~=---'

...... _...)

ASSEMBLY
LISTING

......... _
/ SYSRES ")
..... .../

SORT COMMON

' -- Y0BJ , _____ _...
MODULE
ISG$0RTI

......-

LINK EDIT
LISTING

......... _

~ ""''"~""' STREAM

e:J,oj
INPUT

USER PR y OGRAM MA ALSO
GENERATE ITS OWN INPUT INTERNALLY!

SPERRY UNIVAC OS/3
SORT/MERGE

6-42

SUBROUTINE SORT/MERGE SYSTEM FLOWCHART

""~""} L
MRSOPN MACROS L
MRSREL USED IN L
MR$SRT SOURCE

MERGE MR$RET CODING
SORT/MERGE

"'" 1 ~;:::; ('"""'"""' I-MACROS
I-

I-
IMR$0RT CODED
IN PROGRAM AS EXTERNAL SYMBOL)

OS/3
ASSEMBLER (SORT MACROS GET EXPANDED)

(OR
COMPILER)

,,...
SYSRES

........
r-- _,,
r---1

USER OBJECT
MODULE YRUN

- --------
....... ...,,,

OS/3
....... LINKAGE

EDITOR

/' SYSRES _,-t--.. USER LOAD

t--..

MODULE

..__s_:::s_i:~N--~ (INCLUDING
.----- SORT COMMON

MODULE)

...... ../

/' SYSRES ") SORT/MERGE r-- LOAD MODUL:OS

r-- ...,,,
YLOD (CALLED IN BY SORT

-... ------ COMMON MODULE
WHENEVER NEEDEDI

........ __,,

-10°,LJI OS/3
PROCESSOR

......

1 AUXILIARY STORAGE

MAY NOT N
USER PROGRAM OUTPUT

BE EEDED IF ENOUGH
MAIN STORAGE IS SPECIFIED!

Figure 6-20. Assembly, Linkage Edit, and Execution Run System Flowchart

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-43

• 6.11.4. Typical Subroutine Disk Sort Job Control Stream

•

•

In order to schedule your program and allocate system resources to it, you must assign a
name to the job so that the system can distinguish it from other jobs. The job control
statement that identifies the job and signifies the beginning of control information for the
job is the JOB statement. Figure 6-21 shows the entire job control stream required for
our disk sort program, the input data before the sort, and the output data after the sort.

It is important to note that this example employs very low volume input files. Under
normal disk sort conditions, input files are much larger, and the same disk used as it is in
this example for input, output, and the work file will result in the least efficient sort. The
most efficient disk sort is achieved when you use one work file per disk and a separate
disk for the input and output files.

l 0 20

l. II JOB SRTEXMPL ,,7000,9000,2
2. I I DVC 20 11 LFD PRNTR
3. 11 WORKl
4. I I WORK2
5. II EXEC ASM
6. 1$

: } YOUR

7. I;"
8. llSRTEXM LINK SRTEXMPL
9, II DVC 50

10. II VOL DSP028
11. II LBL MYFILEl
12. II LFD INPUT
l3. 11 DVC 50
14. II VOL DSP028
15. II LBL MYFILE2
16. I I LFD OUTPUT, , IN IT
17. I I DVC 50
18. II VOL DSP028
19. II EXT ST,C,,CYL,5
20. II LBL $SCRl
21. II LFD DM01

PROGRAM CODING

Figure 6-21. Disk Sort Program Job Control Stream (Part 1 of 5)

UP-8342 Rev. 3

10 20

22"1' I 23. /&
24. //

EXEC SRTEXM,YRUN

FIN

e LU REC# BKSZ RCSZ •••••••• 10 •••••••• 20

80 80 00321654
FFFFFFFF44 4444444444
0032165400 0000000000

80 80 10007005
FFFFFFFF44 4444444444
1000700500 0000000000

80 80 68799863
FFFFFFFF44 4444444444
6879986300 0000000000

80 80 94600054
FFFFFFFF44 4444444444
9460005400 oooooooocc

so 80 20463844
FFFFFFFF44 4444444444
2046384400 0000000000

30 80 54486555
FFFFFFFF44 4444444444
54H655500 0000000000

80 80 03000600
FFFFFFFF44 4444444444
0300060000 0000000000

60 BO 88855296
FFFFFFFF44 4444444444
888552~600 0000000000

80 80 43300000
FFFFFFFF44 4444444444
4330000000 0000000000

1G ~o SC 70509300
FFFFFFFF44 4444444444
7050930000 0000000000

11 so 80 CA YTONOM
CCEEDDDC44 4444444444
4183656800 0000000000

L 80 80 STLOUISM
EEDDECE044 4444444444
2336492400 0000000000

13 80 80 YORKPEN
EDDDDC0444 4444444444
8692755000 0000000000

1 4 80 80 N EwAR KNJ
DCECOOC044 4444444444

SPERRY UNIVAC OS/3
SORT/MERGE

DATA FILE BEFORE SORT

•••••••• 30 •••••••• 40 •••••••• 50

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444

•••••••• 60

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444

Figure 6-21. Disk Sort Program Job Control Stream (Part 2 of 5)

6-44

•

•••••••• 70 •••••••• 80

4444 4444 44 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

• 4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444

•

UP-8342 Rev. 3

•
6LK~ RECR BKSZ RCSZ

1 5 80 80

16 80 80

17 so 80

18 80 80

19 80 80

20 80 80

<1 80 80

22 80 80

23 80 80

• 24 80 80

25 80 80

2~ 80 80

27 80 80

2e 80 80

29 80 80

30 80 80

•

........ 10

5561925100

MIAMI FLA
DCCDCCDC44
4914963100

OH00001
DCFFFFF444
6800001000

140000004
DDFFF FFF44
4600000400

PA000007
DCFFFFFF44
7100000700

NJ000012
DDFFFFFF44
5100001200

F L000006
CDFFFFFF44
6300000600

33655307
FFFFFFFF44
3365530700

10985469
FFFFFFFF44
1098546900

98654777
FFFFFFFF44
9865477700

68548833
FFFFFFFF44
6854883300

40675987
FFFFFFFF44
4067598700

77330659
FFFFFFFF44
7733065900

90675004
FFFFFFFF44
9067500400

09436750
FFFFFFFF44
0943675000

11766325
F FF FF F FF 44
1176632500

50964097
FFFFFFFF44
5096409700

SPERRY UNIVAC OS/3
SORT/MERGE

DATA FILE BEFORE SORT (contl

•••••••• 20 •••••••• 30 •••••••• 40 •••••••• 5 0

0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

•••••••• 60

0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

Figure 6-21. Disk Sort Program Job Control Stream (Part 3 of 5)

6-45

•••••••• 70 •••••••• 80

0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
000000-0000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

UP-8342 Rev. 3

ELK• f;EC• EKSZ RCSZ

400 80

400 80

3 400 80

4 400 80

400 80

400 80

400 SC

400 80

400 80

400 80

400 60

400 BO

400 80

4CO 80

,;. 400 80

400 80

4 400 80

4 3 400 80

4 4 400 80

400 80

400 80

400 oO

•••••••• 10 •••••••• 20

DA YTCNCH
CCEEDDOC44 4444444444
4183656800 0000000000

FL000006
COFFFFFF44 4444444444
6300000600 0000000000

MIAMI FLA
OCCDCCOC44 4444444444
4914963100 0000000000

'40000004
DDFFFFFF44 4444444444
4600000400 0000000000

NEWARK~J

DCECDDOD44 4444444444
5561925100 0000000000

NJ000012
DDFFFFFF44 4444444444
5100001200 0000000000

0"00001
OCFFFFF444 4444444444
6800001000 0000000000

PA000007
OCFFFFFF44 4444444444
7100000700 0000000000

STLCUISM
EEOOECED44 4444444444
2336492400 0000000000

YORKPEN
EDOODC0444 4444444444
8692755000 0000000000

00321654
FFFFFFFF44 4444444444
0032165400 0000000000

03000600
FFFFFFFF44 4444444444
0300060000 0000000000

09436750
FFFFFFFF44 4444444444
0943675000 0000000000

10007005
FFFFFFFF44 4444444444
1000700500 0000000000

10985469
FFFFFFFF44 4444444444
1098546900 0000000000

11766325
FFFFFFFF44 4444444444
1176632500 0000000000

20463844
FFFFFFFF44 4444444444
2046384400 0000000000

33655307
FFFFFFFF44 4444444444
3365530700 0000000000

40675987
FFFFFFFF44 4444444444
4067598700 0000000000

43300000
FFFFFFFF44 4444444444
4330000000 0000000000

50964097
FFFFFFFF44 4444444444
5096409700 0000000000

54486555
FFFFFFFF44 4444444444
5448655500 0000000000

SPERRY UNIVAC OS/3
SORT/MERGE

DATA FILE AFTER SORT

•••••••• 30 •••••••• 40 •••••••• 5 0

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 0000000000 0000000000

4444444444 4444444444 4444444444
0000000000 oooooocooo 0000000000

4444444444 4444444444 4444444444
0000000000 oooooooooc 0000000000

•••••••• 60

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

Figure 6-21. Disk Sort Program Job Control Stream (Pan 4 of 5)

6-46

• •••••••• 70 •••••••• 80

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444 • 0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444 • oooooooooc 0000000000

4444444444 4444444444
0000000000 0000000000

•

•

•

UP-8342 Rev. 3

ELK. i.E C~ SKSZ RCSZ

400 80

4 400 80

400 60

6 1 400 80

6 2 400 80

400 80

4 400 80

t. 5 400 80

•••••••• 10

68548833
FFFFFFFF44
6854883300

68799863
FFFFFFFF44
6879986300

70509300
FFFFFFFF44
7050930000

77330659
FFFFFFFF44
7733065900

88855296
FFFFFFFF44
8885529600

90675004
FF FF FF FF 44
9067500400

94600054
FFFFFFFF44
9460005400

98654777
FF F FF FF f 44
9865477700

SPERRY UNIVAC OS/3
SORT/MERGE

DATA FILE AFTER SORT (contl

•••••••• 2 0 •••••••• 30 •••••••• 40 •••••••• 5 0

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444
0000000000 0000000000 0000000000 0000000000

•••••••• 60

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

4444444444
0000000000

Figure 6-21. Disk Sort Program Job Control Stream (Part 5 of 5)

6-47

•••••••• 7 0 80

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

4444444444 4444444444
0000000000 0000000000

SRTEXMPL is the 8-character alphanumeric name of your job (Figure 6-21, line 1). The
double comma indicates that the job priority parameter is omitted. Because it is omitted,
the system assumes normal (N) priority. The numbers 7000 and 9000 are hexadecimal
values (equivalent to 28,672 and 36,864 in decimal) that represent the minimum number
of main storage bytes (including job prologue) required to execute the largest job step of
this job and the maximum number of main storage bytes requested but not required to
execute the largest job step of this job. The number 2 indicates that no more than two
tasks can be active at the same time in any job step. A task is a unit of work that the
supervisor schedules.

In order to process incoming information, the system needs hardware devices to handle
the processing and you must assign devices to various routines in your program. A device
assignment set consists of at least two or as many as five job control statements; i.e., the
DVC and LFD statements or the DVC, VOL, EXT, LBL, and LFD statements.

I I DVC 20 assigns device number 20 to the printer device designated by the system
filename, PRNTR (Figure 6-21, line 2). The two following job control statements, I I
WORK1 and // WORK2 (Figure 6-21, lines 3 and 4), are job control procedure (jproc)
calls that allot temporary files for the assembly job step by automatically supplying the
DVC, VOL, EXT, LBL, and LFD parameter information you would otherwise have to specify
for assembler use. Two of these temporary files are needed by the assembler so that it can
assemble an object module from the source code you supply immediately after the start
of-data {/$) control statement (Figure 6-21, line 6) .

Finally, the // EXEC ASM statement (Figure 6-21, line 5) tells the system to load and
execute the assembler. The /$ indicates the start-of-data to the assembler. This data is
your program.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3

SORT/MERGE
6-48

At the end of your source coding, you code a /*delimiter statement (Figure 6-21, line 7)
to indicate the end of data (your program) to the assembler.

So far, we have generated an object module called SRTEXMPL (label of the START
assembler directive) and it is in YRUN. Now we must use the linkage editor to prepare a
load module. The simplest way to do this is to use the LINK job control procedure call
(Figure 6-21, line 8). The LINK jproc generates a load module called SRTEXM from the
object module (called SRTEXMPL). Load module SRTEXM is then automatically placed in
YRUN, unless you specify an alternate library via the OUT keyword parameter. For more
information about job control procedures, refer to the job control user guide, UP-8065
(current version).

When you execute the load module SRTEXM (Figure 6-21, line 22), you tell the
supervisor to retrieve it from YRUN. Otherwise, the supervisor searches for the
SRTEXMPL load module in the YLOD first before going to YRUN. Thus, by specifying
YRUN, you save processing time.

Your next series of job control statements (Figure 6-21, lines 9 through 21) follow a
pattern in assigning input, output, and sort work files. The pattern of specifications for
each file is the file name within a volume name on a specific device.

DEVICE NUMBER

VOLUME NAME

FILE NAME

Each device assignment set begins with a DVC statement that assigns a device number
(Figure 6-21, lines 9, 13, and 17). For specific 1/0 device numbers, check the list of
device types and features in the job control user guide, UP-8065 (current version).

Your first DVC statement assigns device number 50 to your input file named MYFILE1
(Figure 6-21, lines 9 and 11). The second DVC statement assigns the same device to your
output file named MYFILE2 (lines 13 and 15). Looking at the next DVC statement (line 17),
notice that device number 50 is assigned for the sort work file $SCR1. Next, you must
identify the disk volume to be used. The VOL statement supplies volume serial numbers
that uniquely identify tape or disk volumes (lines 10, 14, and 18). The name you assign to
your input and output file volume is the alphanumeric name DSP028 (lines 10 and 14).
For the sort work file volume name you specify the same volume, DSP028 (line 18).

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-49

To provide disk space for the sort work file and to designate information needed to create
new files or extend existing disk files, you specify the EXT job control statement on the
device assignment set for the sort work file. The EXT statement applies to the first volume
specified on the immediately preceding VOL statement {line 19). Notice that there is no
EXT statement for either input or output files because these files already exist. ST
indicates that your work file is accessed via the system access technique {SAT). The C
allocates contiguous space for the extent, a comma indicates omission of an optional
parameter, CYL specifies that space must be allocated in cylinders, and the 5 indicates the
number of cylinders allocated for the work file.

Data management needs to know the file names you designate for your program. The LBL
job control statement supplies this information by specifying label information for tape or
disk volumes. Only one LBL statement is allowed per device assignment set. You specify
the disk sort program's input file identifier as MYFILE1 {line 11), the output file identifier
as MYFILE2 {line 15), and the sort work file identifier as $SCR1 {line 20).

To link the file information in the job control stream with the data management file
definition, you specify the DTF file label on the LFD job control statement of the device
assignment set for each file {lines 12 and 16). Thus your first two LFD statements in the
job control stream would specify the names INPUT and OUTPUT. Although job control
allows 8-character names, data management requires that logical file names not exceed
seven characters, the first of which must be alphabetic. Because the logical file names on
the LFD statements {lines 12 and 16) come from the file label on the data management
DTF macros, lines 12 and 16 must be the same as the file names in the labels of
corresponding DTF declarative macros. They also must not exceed seven characters. The
INIT parameter on the LFD statement for the output file {line 16) indicates that you want to
start writing at the beginning of the file, overlaying its previous contents.

When specifying the LFD statement for your sort work file, you must specify the link file
name DM01 or $SCR 1, because only these standard names are recognized internally by
data management for the sort work file area. Thus, the third LFD statement specifies the
name DM01 {line 21). An easier way to allocate work areas on disk is with the WORK
jproc call. A WORK jproc automatically generates a device assignment set allocating
system scratch space as a work area. The format for a jproc call that would take the place
of lines 17 through 21 is //DM01 WORK 1 or just // WORK1. The WORK jproc, used
without parameters, allocates 4000 blocks of 256-bytes each (equivalent to one cylinder)
of scratch space on your system resident device {SYSRES) or the disk containing your
system run library (YRUN). You can increase the amount of work space and specify the
use of other disk devices through optional parameters. For more information about the
WORK jproc, see the job control user guide, UP-8065 {current version).

After you execute your program load module (line 22), the /& delimiter card must indicate
the end of your job control stream and the FIN job control statement, the end of the card
reader operation. Figure 6-22 shows the job control stream required to assemble, link,
and execute your disk sort program using subroutine sort/merge. Figure 6-23 illustrates
the results of your device assignment set specifications .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

II FIN

Marks the end ----1
of the job ..r---------..

Terminates
------ card reader

operation

control stream.

II EXEC name1
II EXEC name1. -----...,------------.
Required to

II PARAM if
required by the

1------ user program
for the sort.
(See 6.12.l

DVC, VOL, LBL (for disk),

6-50

execute the user
program "name1"
which calls the sort. 1-----and LFD job control statements

DVC, VOL, LBL (for disk), ------1 required to assign the output
file. EXT statement also needed
to allocate a new disk file.
(See6.11.4.)

and LFD job control statements
required to assign auxiliary
storage, if needed. EXT statement
may also be needed for disk files.
(See 6. 11.4.l

sequence

II JOB name

i------ DVC, VOL, LBL (for disk),and
LFD job control statements
required to assign the input
file. (See 6.11.4.l

Linkage editor job control procedure call

User program source statements. (See 6.11.4.)

&/.---Job control statements required to execute the assembler.

t-----11 JOB name is always required to initiate the job and assign main storage.

Figure 6-22. Typical Job Control Stream for a Subroutine Sort/Merge Application

•

•

•

•

•

•

UP-8342 Rev. 3

EXT=5 cylinders
LBL=$SCR1
LFD=DM01

{

I
\
\
\
\
\
\
\
\
\

SPERRY UNIVAC OS/3
SORT/MERGE

VOL=DSP028

I
I
I
I
I
I
I
I
I

DEVICE=50

l LBL=MYFILE1
\ LFD=INPUT

l LBL=MYFILE2
\ LFD=OUTPUT

Figure 6-23. Device Assignment Results

6-51

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6.11 .4.1. Alternate Job Control Stream

6-52

The job control stream shown in Figure 6-21 illustrates shortcuts in assigning work files
to the assembler and the linkage editor. If you choose to use the standard job control and
link editor statements equivalent to the WORK and LINK job control procedures, you can
do so (Figure 6-24); however, it makes lengthier coding and does not increase efficiency.
To set up the assembler and linkage editor work files, write DVC, VOL, EXT, LBL, and LFD
job control statements; to write a data stream for the linkage editor, use the LOADM and
INCLUDE linkage editor control statements, as shown in Figure 6-24.

l.
2.
3.
4.
5.
6.
7.
8.
9.

1 o.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

1 10 20
II JOB SRTEXMPL,,7000,9000,2
II DVC 20 II LFD PRNTR
II DVC RES
II EST ST,, 1 ,BLK, (256,400!1)
II LBL $SCR 1
II LFD $SCR 1 = II WORK!
II DVC RUN II WORK2
II EXT ST,, 1, BLK, (256 ,4000)
II LBL $SCR2
II LFD $SCR2
II EXEC ASM
1$

: } YOUR PROGRAM CODING

1,·,
II WORK!
II EXEC LNKEDT
1$ =II LINK SRTEXMPL

LOADM SRTEXM
INCLUDE SRTEXMPL

j-'-"
II DVC 50

} DEVICE ASSIGNMENT SET I II VOL DSPl 11
II LBL MYFILEl
II LFD INPUT
II DVC 50
II VOL DSPl 11 DEVICE ASSIGNMENT SET 2
II LBL MYFILE2
II LFD OUTPUT,,INIT
II DVC 51
II VOL DSP120
II EXT ST,CYL,,C,20 DEVICE ASSIGNMENT SET 3
II LBL SRTWKl
II LFD DM01
II EXEC SRTEXM
I&
II FIN

Figure 6-24. Disk Sort Program Alternate Job Control Stream

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

6-53

Notice that your load module name in the EXEC statement (line 36) must specify the name
from the LOADM control statement (line 20).

Using the WORK jproc statement (line 17) without any of its optional parameters
generates:

• the device and volume numbers of your SYSRES volume;

• an extent of 4000 256-byte blocks;

• the label name $SCR1; and

• the LFD name $SCR1.

6.11.5. Job Control Stream for Tape Work File Assignment

If you want to use tape work files, your program requires the following series of job
control statements in your job control stream:

10 20

1. II DVC 90'
2. II VOL TAP 150
3. I I LBL SRTWKl
4. II LFD SM03

Line 1 specifies the logical device unit number. Lines 2 and 3 specify the volume serial
number and file label. The LBL statement is optional for tape files. Line 4 gives the
standard sort tape file name, SM03. Three to six tape work files are required when you
are using tape auxiliary storage. You must assign the LFD names SM01, SM02, and SM03
if you are using three tape files, SM04 for one additional file, and so on.

6.12. SUBMITTING SORT PARAMETER TABLE ENTRIES VIA THE JOB
CONTROL STREAM

You can change, add, delete, or override existing parameters in the sort parameter table by
coding PARAM job control statements in your control stream. Only the following keyword
parameters can be accepted from the control stream at program execution time:

BIN Bin size

DISC Disk work file allocation

NOCKSM Checksum suppression

RES ERV Tape work file device reserved for output file

UP-8342 Rev. 3

RESUME

SHARE

TAPE

SPERRY UNIVAC OS/3
SORT/MERGE

Resumption of interrupted tape sort

Tape unit shared by input file and work file

Tape work file allocation

6-54

To code parameters you want to include in the control stream, use the same keyword
format as described for the MR$PRM macro instruction (Figure 6-19) and begin writing
your PARAM statement keyword parameters in column 10. Separate each parameter by a
comma and, if necessary, continue through column 71. If more parameters must be
included on that PARAM statement, follow the last keyword parameter by a comma and
code a nonblank character in column 72 to indicate more parameters to come. You may also
submit multiple PARAM statements as in the following example.

10 20

II PARAM TAPE=(STD,6),SHARE=SM01
II PARAM NOCKSM=T

PARAM control statements should appear in your job control stream immediately following
the EXEC statement that initiates execution of your program. The following example
illustrates the proper placement of the PARAM job control statement to add keyword
parameters to the sort parameter table in the disk sort program.

l. II EXEC SRTEXM
2. II PARAM DISC=? ,NOCKSM=D
3. I&
4. II FIN

Line 1 specifies the sort program to be executed. On line 2, the first keyword parameter
would change the disk sort program's original specification of four disks to seven disks for
sort work file use. The NOCKSM keyword parameter specifies no checksum calculations
on disk. Both parameters are being added to the sort parameter table from the job control
stream.

In addition to coding PARAM job control statements, you must include the CSPRAM=YES
keyword parameter in your sort parameter table via the MR$PRM macro. Otherwise, if you
do not specify the CSPRAM or specify CSPRAM=NO, control stream processing is
bypassed. To avoid recompiling your program, it is wise to specify CSPRAM=YES on your
original program. If you do not add keyword parameters from the job control stream, the
CSPRAM=YES specification won't affect your program's execution. For an example of a
subroutine tape sort with a restart capability using a PARAM statement, see 9.3, line 30
and line 112.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

7-1

7. Subroutine Sort/Merge User
Own-Code Routines

7.1. DEFINITION

Subroutine sort/merge handles two types of user own-code routines during sort
processing:

• Record sequence own-code (RSOC)

• Data reduction own-code (DROC)

Whenever you use own-code routines, you must indicate that you are using them and
what you are naming them. By writing the RSOC or DROC keyword parameters in the
MR$PRM sort macro, you can fulfill both of these requirements. The result is that your
keyword specifications appear in the sort parameter table.

Both RSOC and DROC routines require registers 11, 12, 14, and 15 for communication
with the subroutine sort/merge. All other registers are available for use by the own-code
routine. Information contained in the registers and the action to be performed depend on
the specific own-code routine executed.

7.2. RECORD SEQUENCE OWN-CODE ROUTINE (RSOC)

Using the RSOC routine provides a powerful method of handling sort sequences that
involve more than a comparison for ascending or descending sequences. It enables you to
write your own routine for record comparisons that might include a variety of record key
field tests. RSOC allows you to compare the key fields of two records and to set the
condition code to indicate the order you want. If you specify RSOC on the MR$PRM macro,
do not specify the FIELD parameter. Nevertheless, the RSOC parameter overrides the
FIELD parameter if you should forget and specify both.

When two records are ready to be compared to determine which should precede the other,
subroutine sort/merge transfers control to your own-code routine at the address (symbolic
label name) you specified on your RSOC keyword parameter. Subroutine sort/merge
places the RSOC address in register 15 and stores the subroutine sort/merge return
address in register 14 .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

7-2

The first instruction in your own-code routine must be the USING assembler directive. It
must assign register 15 for use as the base register of your RSOC routine. Your RSOC
routine automatically receives the addresses of the two records to be compared in
registers 11 and 12. For variable-length records, addresses supplied to your RSOC routine
are those of the first bin of each record. The 4-byte length field is part of the bin. You pass
the result of the comparison to the subroutine sort/merge via condition code settings. If
the record for the address in register 11 is first, your own-code routine must set the
condition code to low (cc=1). If the record for the address in register 12 is first, your
routine must set the condition code to high (cc=2). If the sequence of the two records is
arbitrary, your routine must set the condition code to equal (cc=O).

After you set the condition codes resulting from the comparison, you may optionally write
a DROP assembler directive to disengage the use of base register 15 before you return
control to the subroutine sort/merge via a branch to register 14. A sketch of the key
instructions needed for using RSOC follows:

LABEL LlO P ERAT I 0 Nil OPERAND LlCOMMENTS
1 10 16

MR$PRM RSOC=MYROUT

:} YOUR PROGRAM

MY ROUT USING '" '1 5 ASSIGN BASE Rl5 TO OWN-CODE ROUTINE

: } YOUR OWN-CODE ROUTINE

DROP 15 DISENGAGE BASE Rl5
BR 14

: } RETURNS TO THE SUBROUTINE SORT /MERGE

For a complete program example illustrating a user own-code routine for a subroutine sort,
see 9.4.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

7-3

• Use of the RSOC routine is not frequent but its availability can prove very valuable. For
example, your company might use a nonstandard arithmetic sign with data. In this case,
an RSOC routine can provide the necessary transsystem sign interpretation. The following
diagram illustrates file contents before and after the execution of a RSOC routine to
arrange the file in ascending sequence:

•

•

Rec 1

& 5

Rec 2

x 6

Rec 3

x 5

Rec4

x 2

Rec 5

Rec 6

LEGEND:

X=
&=+

Before

3 7

0 9

3 7

4 5

0

\
\

I
I
I
I
I

\
\
\

I
I

\
I

\
\
\ I
\ I

I
I

\
\
\ I

I \
I I
\
\

\
\ I

I
f

RSOC
and
Final
Sort
I I
I I
I \
I I

/ \
I \
I \
I \
I \
I \
I \ : \

I \
I \
I \
I \
I \

Rec 1

Rec 2

Rec 3

Rec4

Rec 5

Rec 6

7.3. DATA REDUCTION OWN-CODE ROUTINE (DROC)

After

9

2 4 5

0

7

DROC routines concern final disposition of fixed-length records with equal key field values.
DROC routines should not be used with variable-length records. When you specify the
DROC keyword parameter on the MR$PRM sort macro, you can specify:

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

7-4

• automatic data reduction by deletion of duplicate records (DELETE), also called auto
delete; or

• the name of your own-code routine, which can handle the data reduction in three
ways:

1. by deleting one of the records containing equal keys;

2. by combining data contained in the two records to create a new record; and

3. by using a combination of keeping, deleting, and combining records with
duplicate keys.

Like the RSOC routine, DROC uses register 15 as a base register to contain its address.
Thus, the first instruction in your DROC routine should be the USING assembler directive
specifying register 15 as a base register. Registers 11 and 12 contain the addresses of the
two records with equal keys. If you wish to retain only one record, the retained record
address is in register 11 and the deleted record address is in register 12 unless, in your
own-code routine, you overlay the address in register 11. Such an overlay forces the
deletion of the address in register 11 and uses the address in register 12 as your saved
record address. Normally, register 11 addresses the saved record and control returns to
subroutine sort/merge four bytes beyond the subroutine sort/merge return address
specified in register 14. If you want to retain both records, control must return to
subroutine sort/merge at the address specified in register 14. Because register 14
contains the subroutine sort/merge return address, take great care not to change its
contents.

To end your DROC routine, you return control to independent sort/merge at the address
specified in register 14. You may optionally include the DROP assembler directive to
disengage register 15 from use as your routine's base register. The following shows the
coding required to specify your own DROC routine. Notice in the diagram the file contents
before and after the execution of a DROC routine which specifies your own-code routine
symbolic label name, MYWORK.

LABEL t.OP ERAT I ONli OPERAND t.COMMENTS
1 10 16

MR$PRM DROC=MYWORK

: } YOUR PROGRAM

MYWORK USING '"' 15 ASSIGN BASE R15 TO OWN-CODE ROUTINE

: } YOUR OWN-CODE ROUTINE

DROP 15 DISENGAGE BASE Rl5
BR 14

: } RETURNS TO THE SUBROUTINE SORT /MERGE

•

•

•

•

•

•

UP-8342 Rev. 3

Before

Rec 1

2 3 4

Rec 2

Rec 3

9

Rec4

6 0 9 3

Rec 5

4

Rec 6

9 4

SPERRY UNIVAC OS/3
SORT/MERGE

I I
\ I
\ I
\ I
\ I
\ I
\ I
\ I

I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
I I

DROC
and
Final
Sort

I '
I ' I \

I \
I \
I \
I \

I ' \
I \
I '
I \
I \
I \
I \
I '
I \

7-5

After

Rec 1

[2 3 4

r- - - - - - - - - - - - -- -,
L ___ ~e~~s~e~2~~~ ____ J

Rec 2

4

Rec 3

Rec 4

B

You also have the alternative specification of DELETE on the DROC parameter. Before
using this, you should be very sure that the records are exactly duplicated or that the key
fields you need are exactly duplicated, because the subroutine sort/merge performs
automatic data reduction by arbitrarily deleting one of the records with equal keys. Your
program receives no control in this instance. The illustration which follows shows the
coding required and a file before and after the execution of a DROC=DELETE specification
in the MR$PRM sort macro.

LABEL
1

.6.0PERAT I ONLl
10 16

MR$PRM

OPERAND COMMENTS

DROC=DELETE

UP-8342 Rev. 3

Before

Rec 1

I 6 I 0 5 5

Rec 2

I 1 I I 3 I 2 I
Rec 3

I 7 I 5 I 8 8

Rec4

I 5 I 0 I 3 2 I
Rec 5

I 6 I 0 I 5 I 5 I
Rec 6

I 1 I 1 I 3 I 2

SPERRY UNIVAC OS/3
SORT/MERGE

7-6

After

\ I
\ I Rec 1

I I \
I 3 2

\ I
\ I
\ I \ Rec 2 I

I I I \ I 2 \ 5 0 3

\ I
\ I

I
\ I Rec 3
\ I I I I I 6 0 5 5

DROC
and
Final
Sort

I \ Rec4

I \ I I 5 I 8 I 8 I 7
\

I
\ I

I \
I \ r------------ -----,
I \ I Previous Rec 5 deleted I
I \ L __ - -----------' I \

I \ I
\ I

r--------------~ I \
I \ I Previous Rec 6 deleted I

I \
L ___ ---- - - - ____ J

•

•

•

---------- -- ----------- -------

•

•

•

UP-8342 Rev. 3

8.1. TAG SORT

SPERRY UNIVAC OS/3
SORT/MERGE

8-1

8. Special Subroutine
Sort/Merge Applications

A tag sort produces a sorted output file that contains only the direct access address or the
address and key fields of records. The main purpose of a tag sort is to reduce the amount
of storage required for your data files when you want the same files sorted in several
different ways. A tag file allows you to access your original file in the sequence you desire
without having to duplicate its entire contents. A tag sort can be performed only if you
have nonindexed or IRAM disk files.

By specifying the ADDROUT parameter on the MR$PRM macro instruction, you indicate
that you want to perform a tag sort. If you specify ADDROUT=A. only the 10-byte record
address is returned to your program. If you specify ADDROUT=D, sort/merge returns both
the address and the record key fields to your program. The length of a tag sort record
cannot exceed 256 bytes, including the 10-byte address field. Sometimes you may be
interested in creating a new file of key fields, as well as saving the addresses of the
records they came from for later reference. If this is your need, specify ADDROUT=D.
Otherwise, specify ADDROUT=A to indicate that you want only the addresses of the tag
sort records returned to your program. In this case, you would only be interested in sorting
the tag sort records and saving their addresses but not contents. The addresses would still
enable you to retrieve their record contents at a later time. (See 6.4.2.2.)

Tag sort records are not available to your own-code routines (RSOC and DROC). Because
the records are reconstructed during a tag sort, you may not know the exact location of
key fields in the tag sort record. It is up to you to obtain the disk address of that input
record being reconstructed and place it into the 10-byte address field of the new tag sort
record. To do this, you first define the file using the DTFNI data management macro
instruction and in your program's record reading routine immediately after reading each
record (GET macro), issue the NOTE imperative macro to place the address of the record
into a program-addressable field of the DTFNI file table, designated filenameB. You may
address this area by concatenating the letter B to your 7-character logical file name. Refer
to data management user guide, UP-8068 (current version) for the uses of the NOTE
macro and the filenameB field. The following coding example illustrates the key
instructions needed for a tag sort that returns only the address field to your program.
Remember, the NOTE imperative macro must be used with the DTFNI, not the DTFSD,
declarative macro .

UP-8342 Rev. 3

LABEL
1

}
INPUT

}

t.OPERATIONt.
10 16

MR$PRM

DTFNI

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

ADDROUT=A

RECSIZE=l00,IOREG=(2),

GETREC GET INPUT
NOTE I NPUTB

MVC TAGREC+4(6) ,INPUTB

MVC TAGREC+l0(80) ,0(2)

MR$REL
B GET REC

TAGREC DC XL10 1 00 1

8.2. RESTART FACILITIES

8-2

t.COMMENTS

YOUR PROGRAM OPENING INSTRUCTIONS

OTHER DATA MANAGEMENT MACROS

READS RECORD
PLACES INPUT REC ADDR IN DATA
MANAGEMENT DEFINED AREA,INPUTB
PLACES INPUT REC ADDR IN TAG
SORT REC ADDR AREA
PLACES KEY FIELDS IN TAG SORT
RECORD
RELEASE RECORD TO THE SORT
GET NEXT RECORD

If your program is interrupted in the middle of a tape sort/merge, there is a way to restart it
from the point of interruption. By coding the RESUME parameter on your MR$PRM macro
instruction, or on a PARAM job control statement, you can indicate that you want to recover
your tape sort. You must specify the most recent collation pass number displayed on the
system console. (See 6.4.2.3). For additional program examples, see 9.3.

8.3. MERGE-ONLY FUNCTION

The merge-only function combines two or more similarly ordered (presorted) input files into
one output file arranged in the same order as the input files. The merge-only function can
combine 2 to 16 previously sequenced files into one final output file.

In a situation that requires merge-only, you start with a number of files presorted in some
sequence. You are interested in expanding the size of your data files while reducing the
number of files you have to work with. At the same time, you don't want to resort any
files. As long as the files you are combining have been presorted in the same sequence
(i.e., ascending or descending), your application is definitely a merge-only operation.
Because the merge-only function is a part of the subroutine sort/merge, you must indicate
to subroutine sort/merge that you want merge-only processing by writing the
MERGE=YES parameter on your MR$PRM macro instruction. This places the merge-only
indication in your sort parameter table.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

8-3

• 8.3.1. What Merge-Only Does for You

•

•

The subroutine merge-only operation is activated in basically the same way as the
sort/merge, with two exceptions: the sort macro, MR$SRT, is not needed, and the release
and return macros, MR$REL and MR$RET, are replaced by MG$REL and MG$RET. These
two macros are unique to merge-only processing.

Their formats are:

LABEL f::,, OPERATION f::,, OPERAND

[symbol] MG$REL

LABEL b,.OPERATION f::,, OPERAND

[symbol] MG$RET

When you initiate the merge-only operation, phase 3 is performed. Multiple input files of
the same sequence must be combined so that the one final output file, though expanded,
has the same overall sequence. To determine the proper sequence, subroutine sort/merge
performs a tournament sort to find the record that meets the output file sequence that you
specified in your program. Initially, your program releases the first record of each input file
to subroutine sort/merge for comparison by pairs. Subroutine sort/merge continues until
a final comparison results in a single winner record. A tournament sort is similar to the
elimination process used in a tennis match or tournament playoff. Figures 8-1 and 8-2
depict how this process occurs .

UP-8342 Rev. 3

LEGEND:

INPUT
FILE

l'lWI Subroutine merge-only program

- Operational flow

Data flow

SPERRY UNIVAC OS/3
SORT/MERGE

START

USER PROGRAM

CALLIN
MERGE-ONLY

LOAD MODULE

SUBROUTINE MERGE-ONLY

USER CODING

READ
INITIAL

RECORD
EACH INPUT

FILE

RELEASE
INITIAL

RECORDS ONE
ATA TIME TO

MERGE

Figure 8-1. Subroutine Merge-Only Operational Phases (Part 1 of 2)

8-4

•

•

•

•

•

•

UP-8342 Rev. 3

SEE FIGURE 8-2 FOR
AN EXAMPLE OF TOUR
NAMENT MERGE
PROCESS

LEGEND:

D Subroutine merge-only program

- Operational flow

- - - Data flow

SPERRY UNIVAC OS/3
SORT/MERGE

. -.... -.,

USER CODING

RETURN
WINNER

RECORDS FROM
MERGE ONE BY ONE

I

t
WRITE

WINNER
RECORDS

DSP028

OUTPUT
FILE

I

8-5

SORT COMMON MODULE LOADS
EACH PHASE FROM YLOD
INTO MAIN STORAGE AS THE
PHASE IS REQUIRED

Figure 8-1. Subroutine Merge-Only Operational Phases (Part 2 of 2)

UP-8342 Rev. 3

{
DSP028

SORTIN1

MYLIB1

SORTIN2 {
MYLIB2

{ ', SOR Tl NJ
MYLIB3 MG$REL :. ----- '

INPUT! REC1

SPERRY UNIVAC OS/3
SORT/MERGE

MERGE-ONLY

COMPARE=

ASCENDING
SEQUENCE

OUTPUT
REC1
(WINNER)

INPUT3 REC1 COMPAREJ.T::l

-------------'& MG$RET=~PUT 0

Figure 8-2. Initial Comparison for Winner Record

8-6

DSP028 OR
,,,OTHERVOL\llo'll:.

MYLIB4

GET NEW
RECORD

SORT
OUT

•

The record selected as the winner is returned to your program and the file identifier points
your program to the next record to be released. After the first record is released, each new
record released to the merge is always obtained from the input file associated with the
returned winner record. The other records involved in the merge do not return to your
program but remain in the merge for the next comparison. This and all succeeding
comparisons are initiated as soon as your program replaces the returned winner record
with the new record to be included in the merge via the MG$RET macro. This new record
is always the next record of the winner record's input file. The merge process repeats until
subroutine sort/merge processes all records from each input file and returns them to your
program. Figure 8-3 illustrates this. •

DSP028

SORTIN1 { MYLIB1

{ SORTIN2
MYLIB2

{ SORTIN3
MYLIB3

' ' ' I NPUT1 IEOF REACHED)
' ASCENDING

0 -- 0 SEQUENCE

INPUT2 IEOF REACHED

0 0

....
' I NPUT3 REC 200

MG$RET ' 9 8 ----
(LAST REC!

Figure 8-3. End of File Merge-Only Processing

OUTPUT
REC 200

~~\:.
OTHER VOL

MYLIB4

NO NEW
RECORD

CLOSE
OUTPUT

FILE

8.3.2. Merge-Only Requirements You Supply (MG$REL and MG$RET)

SORT
OUT

Before we start to explain a sample merge-only program, let's look at a flowchart of that
program (Figure 8-4) and the job description that follows.

•

•

•

•

UP-8342 Rev. 3

START

DEFINE MR$0RT

AS EXTRN
TO LINK SORT

COMMON
MODULE
(SG$0RTI

DEFINE 1/0
FILES TO DATA
MANAGEMENT

IDTFSDI

MERGE

MR$PRM BUILDS

PARAMETER
TABLE FOR

MERGE-ONLY

FOR INITIAL
MERGE - DEFINE

ADDRESS CONSTANTS
FOR INPUT1, INPUT2,

AND INPUT3 FILES

DEFINE STORAGE
FOR WORK AREA,
INPUT BUFFERS,

AND OM SAVEAREA

OPEN DATA
INPUT FILES

1, 2, &3

MR$0PN OPENS
MERGE-ONLY
PROCESSING

MERGEIN

MERGE
HOUSEKEEPING

ROUTINE

FILSET

INITIALIZE
FILES ANO

READ 1ST REC OF
EACH INPUT Fl LE

MG$REL
RELEASE THE
INPUT OA;A

RECORD TO THE
MERGE

SPERRY UNIVAC OS/3
SORT/MERGE

MG$RET
REQUEST A

WINNER RECORD

GETREC

WRITE
WINNER
RECORD

GET A
NEW

RECORD

REACHED

EDF

FILSET

NO
RETREC

Figure 8-4. Subroutine Merge-Only Program Flowchart

MERGE-ONLY PROBLEM: A SOLUTION

SYSTEM: OS/3

PROGRAM: Subroutine Merge-Only Program

FUNCTION:

CLOSE THAT
INPUT FILE

INDICATE EDF
TO MERGE

FOR ALL INPUT

END OF
DATA REACHED
CLOSE OUTPUT

FILE

EOJ

8-7

NO
RETREC

1. This program merges records of three previously sequenced files to produce a single
output file .

2. It is a disk merge.

3. Previously sequenced files are in ascending sequence.

UP-8342 Rev. 3

INFORMATION:

SPERRY UNIVAC OS/3
SORT/MERGE

8-8

1. This program needs a table of file addresses to help locate input files for initiation of
the first record merge from each file.

2. Buffer and output processing areas must be reserved in main storage for input and
output file processing.

3. All three input files are assigned to disk device 51.

INPUT & OUTPUT:

1. Both input and output files use fixed-length, blocked records.

2. Each record contains 80 bytes.

3. The first input file contains ten records per block, the second input file, five records,
and the third input file, twenty records.

OUTPUT:

The program produces a single output file of records merged in ascending order from three
input files.

After coding your initial job control statements and assigning a base register to your
program to make it relocatable (lines 1 through 11), you issue the EXTRN assembler
directive, which links the sort common module from Y0BJ to your program (line 12),
and you define your input and output files to data management (lines 15 through 26).

10 20 72
-::

.J
1. II JOB MRGEXMPL,,70aa,90~a,2
2. II DVC 2a I I LFD PRNTR
3. II WORK]
4. II WORK2
5. II EXEC ASM
6. 1$
7. MRGEXMPL START 0
8. BALR 4,0
9. USING "' ,4
10. LA 13,SAVEAREA
11. B START
12. EXTRN MR$0RT DEFINES THE SORT COMMON MODULE
13. -'· TO BE INCLUDED BY THE LINKAGE
14. ·k EDITOR
15. I NPUTl DTFSD BLKSIZE=800,RECSIZ~=80, IOAREAl=BUFFl, c
16. IOREG=(2) ,RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, c
17. EOFADDR=EOF,TYPEFLE=INPUT
18. INPUT2 DTFSD BLKSIZE=800,RECSIZE=80, IOAREA1=BUFF2, c
19. IOREG=(2) ,RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, c
20. EOFADDR=EOF,TYPEFLE=INPUT
21. I NPUT3 DTFSD BLKSIZE=1600,RECSIZE=80, IOAREA1=BUFF3, c
22. IOREG=(2) ,RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, c
23. EOFADDR=EOF,TYPEFLE=INPUT
24. OUTPUT DTFSD BLKSIZE=400,RECSIZE=80, IOAREA1=0UT01 ,IOAREA2=0UT02, c
25. WORKA=YES,RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, c
26. TYPEFLE=OUTPUT

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

8-9

Your MR$PRM macro instruction, which creates the parameter table for your program,
supplies all the information needed by the subroutine sort/merge to perform the merge.
All the following parameters coded for the merge-only program example are required (lines
27 through 32). For other optional merge-only parameters that may be included in the sort
parameter table generated by MR$PRM, see 6.10.

LABEL t.OPERATIONt. OPERAND t.COMMENTS
l 10 16 72
...-~~~~~~~~~~~~~~~~~~~~~~~~~~~~--;Jr'~~~

27. MERGE
28.
29.
30.
31 .
32.

MR$PRM I N=MERGE IN,
FI N=MERG EF IN,
STOR=WORK,
RCSZ=80,
FIELD=(0,8,CH),
MERGE=YES

c
c
c
c
c

Initially, the subroutine sort/merge needs a way to locate the first record of each input
file. Lines 33-36 show the way to provide that information to your program when it
begins the initial merge comparison. In addition, you must define an 18-full-word (72-byte)
save area which is full-word area aligned and a save area of 18 full words for data
management use (line 33).

33. SAVEAREA OS
34. FILTABL DC
35. DC
36. DC

l8F
A(INPUTl)
A(INPUT2)
A (I NPUT3)

ADDRESS OF INl DTF
ADDRESS OF IN2 DTF
ADDRESS OF IN3 DTF

To begin your program, you open all the input files and the output file (lines 38 through
41). By issuing the MR$0PN (line 42) and referencing the table from your MR$PRM sort
parameter table specifications (line 27), you open the subroutine merge (lines 37 through
44).

37. START EQU ;';

38. OPEN I NPUTl
39. OPEN INPUT2 OPEN INPUT FILES
40. OPEN INPUT3
41. OPEN OUTPUT OPEN OUTPUT FILE
42. MR$0PN MERGE OPEN SORT/MERGE SUBROUTINE
43. ·'· REFERENCING MR$PRM MACRO
44. _,_

GENERATED AT MERGE

The next routines consist of handling the registers that receive initial file addresses and
index later file address references. You must read the initial record of each input file
before you release it to the merge via the MG$REL macro (line 54). This means that you
must increment the full length of your input file to get to the second file (line 55). This is
the value of setting up your file table of address constants earlier in lines 34 through 36 .

UP-8342 Rev. 3

LABEL ti.OPE RAT I ONt.
l 10

4s. MERGE IN EQU
46. LA
47. ·'·

48. LA
49. FILSET L
so. ;•:

Sl. ;'-;

s2. ;':

S3. BAL
S4. MG$REL
ss. LA
S6. BCT
S7. ·'·

S8. ·'·

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND t.COMMENTS
16

·k IN ADDRESS
S,3(0,0) LOAD RS WITH THE NUMBER OF

INPUT FILES
6,FILTABL GET FILE TABLE ADDRESS
10,0(6) LOAD DTF ADDR IN RIO AND

USE AS AN INDEX TO IDENTIFY
INPUT FILE TO MERGE AND TO
YOUR PROGRAM.

7,GETREC GET FIRST RECORD FOR EACH FILE.
RELEASE RECORD TO MERGE.

6,4(0,6) INCREMENT TO NEXT DTF ADDR.
S,FILSET TEST FOR LAST INPUT FILE.

IF YES CONTINUE. IF NO GET FIRST
RECORD OF NEXT FILE.

8-10

Before continuing, let's examine the function of the MG$REL macro instruction. The
MG$REL is used to release only the initial record of each previously sequenced data file to
the subroutine merge. After the initial record of each input file has been released and the
merge begins, do not use MG$REL macro for releasing any subsequent records to the
merge-only. Issue the MG$REL macro only after your program has:

• defined input and output files and assigned devices on which they are located;

• created the interface between subroutine sort/merge and your program (EXTRN
MR$0RT);

• defined merge-only processing (MR$PRM);

• opened input and output files; and

• initiated subroutine sort/merge for merge-only processing (MR$0PN).

Two registers, R1 and R10, play important roles in receiving and storing addresses used by
the subroutine sort/merge. Before releasing the initial record of an input file to subroutine
sort/merge, you must identify both the record to be released and the file it belongs to. You
identify the records and files by loading the address of the record's first byte into register 1
(line 67, GETREC routine) and the address or identifier of the file into register 10 (line 49,
FILSET routine).

S9. RETREC EQU ·'·
60. MG$RET REQUEST A WINNER RECORD.
61. BAL 7,PUTREC WRITE RECORD TO OUTPUT FILE.
62. BAL 7,GETREC GET NEW RECORD FROM INPUT FILE.
63. B RETREC GET A NEW WINNER RECORD.
64. GETREC EQU ·'· GET A RECORD ROUTINE.
6S. LR l 'H'J POINT TO INPUT FILE DTF.
66. GET (1) GET RECORD.
67. LR 1 ,2 POINT TO NEW RECORD.
68. BR 7 RETURN

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

8-11

Your record and file identification coding must precede the MG$REL macro (line 53
branches out to the GETREC routine, which points to the next record in line 67 before
branching back to the MG$REL macro). After you release the initial record of the first
input file, the subroutine sort/merge returns control to your program at the instruction
immediately after the MG$REL macro (line 55). Your program must then point to (identify)
the next input file, where you must retrieve the first record for release to the merge (line
55). You create a processing loop from the initial record accessing to its release. When the
initial records from each input file have been released, your program can request the
subroutine sort/merge to compare them. Select one winner record that fulfills the output
sequence requirements you specified, and return it to your program. To return the winner
record, you issue the MG$RET macro (line 60). Once you issue MG$RET and it executes,
the MG$REL macro is no longer required to release subsequent records to the merge. The
succeeding MG$RET executions automatically release the next winner record. In addition,
MG$RET initiates each succeeding merge process just by requesting the return of a
record.

Because of the double function of the MG$RET macro after the initial input file records are
merged, you must be cautious to avoid overlaying a previous winner record with the next
new record for merge, when submitting subsequent records for merge-only processing. If
you do not write your winner record to the output file before the next MG$RET execution,
the next record is called in, destroying your previous winner record. This can easily occur
because subroutine sort/merge does not move records accessed by your program during
the merge-only processing. Subroutine sort/merge, however, does make the winner
record available to your program by placing the address of its first byte into register 1 and
by returning control to the instruction immediately following the MG$RET macro (lines 67,
68, 63, and 61) in your program.

At this point, you must make certain that your program does not lose the winner record by
having it returned to your program and consequently overlayed by the next record. This
can occur because register 1 is the same register in which your program identifies the
address of the next record to be released to the merge. To avoid this error, place your
winner record into the output or work area (lines 69 through 72) before placing the
address of the next record to be released into register 1 (line 67). The following coding
shows how to avoid overlaying the winner record in our subroutine merge-only program:

LABEL t.OPERAT IONt. OPERAND t.COMMENTS
l 10 16

59. RETREC EQU _,_

60. MG$RET REQUEST A WINNER RECORD.
6 l. BAL 7,PUTREC WRITE RECORD TO OUTPUT FILE.
62. BAL 7,GETREC GET NEW RECORD FROM INPUT FILE.
63. B RETREC GET A NEW WINNER RECORD.
64. GETREC EQU _,_ GET A RECORD ROUTINE.
65. LR l, 10 POINT TO INPUT FILE DTF.
66. GET (l) GET RECORD.
67. LR l '2 POINT TO NEW RECORD
68. BR 7 RETURN.
69. PUTREC EQU _,_ PUT RECORD ROUTINE.
70. MVC WORKAREA,0(1) MOVE WINNER REC TO WORKAREA.
71. PUT OUTPUT,WORKAREA PUT OUT THE RECORD.
72. BR 7 RETURN.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

8-12

After you write the winner record to your output file, your program must always replace
that record in the merge with the next record from the winner record input file (lines 62
and 64 through 68). Subroutine sort/merge enforces this requirement by placing the
identifier of the winner record input file in register 10 at the same time it returns the
winner record address to your program. You use this file identifier (address) from register
10 as a pointer to locate the next record you want released to the merge (lines 60 through
66). Thus, it is very important that you be careful not to alter the contents of register 1 O;
otherwise, the merge will be in error.

After obtaining the next record from the selected file, your program must load this record
address into register 1 (line 67). Execution of the MG$RET macro instruction then releases
the new record to the merge for processing (PUTREC and GETREC routines).

The entire cycle repeats until your program encounters an end-of-file condition for one of
the input files (identified by the file address in register 10). Your program must close this
depleted file and indicate an end-of-file condition to the subroutine sort/merge before
releasing additional records to the merge (EOF routine, lines 73 through 77).

LABEL i:lOPERATIONl'.l OPERAND l'.lCOMMENTS
l 10 16

73. EOF EQU ·'· END-OF-FILE ADDRESS.
74. LR l '10 LOAD Rl WITH DTF ADDRESS.
75. CLOSE (l) CLOSE THAT INPUT FILE.
76. XR l 'l INDICATE EOF CONDITION TO MERGE.
77. B RETREC REQUEST ANOTHER WINNER.

By loading binary O's into register 1 and executing the MG$RET macro instruction, your
program can indicate end-of-file status to the subroutine sort/merge (lines 59, 60, 76, and
77).

The merge is complete when all input files have been closed and the last winner record
has been returned to your program. Subroutine sort/merge looks for the symbolic label
specified on the FIN parameter of your sort parameter table (lines 28 and 73).

78. MERGEF IN EQU ... FIN ADDRESS .
79. CLOSE OUTPUT CLOSE OUTPUT FILE.
80. EOJ
8 l. IOERROR EQU _,_

82. CANCEL CANCEL THE JOB.
83. L TORG DEFINE LITERALS HERE.

In this routine, you close the output file and indicate an end-of-job condition to job control
(lines 79 and 80). Finally, you add the error routine named IOERROR as specified in your
DTF data management macros (lines 16, 19, 22, 25, 81, and 82). The LTORG assembler
directive in line 83 defines all literals from your program and line. Line 84 defines the
work area specified in your output DTF (line 25). Data management also requires an
additional eight bytes of storage before each output buffer, and all 1/0 buffers must be
half-word aligned (lines 85 and 87). Lines 86 and 88 indicate 400-byte buffer areas for
each output buffer, and lines 89-91 define the three 400-byte input buffers.

•

•

•

•

•

UP-8342 Rev. 3

LABEL t.OPERAT I ONt:.
1 10

84. WORKAREA DS
85. DS
86. OUTQJl DS
87. DS
88. OUT02 DS
89. BUFFl DS
90. BUFF2 DS
91. BUFF3 DS
92. WORK EQU
93. END

16

CL80
4H
CL411llll
4H
CL411lf2J
CL800
CL411JQJ
CL160<1
-·-
MRGEXMPL

SPERRY UNIVAC OS/3
SORT/MERGE

OPERAND

HALFWORD ALIGN
OUTPUT AREAl

OUTPUT AREA2
INPUT AREAl
INPUT AREA2
INPUT AREA3

8-13

t:.COMMENTS

Line 92 equates the value of the location counter at this point in your program to the
beginning of the work area you specified in your MR$PRM macro (line 29). The END
assembler control directive indicates the end of your source program. Figure 8-5
illustrates a printout of the entire source program.

I l6JOB6HRGEXHPL,,700Q,9000,2 I
ll6DVC62a II LFD PRNTR 2
ll6WORKI }= II ASM

3
l/6WORK2 4
ll6EXEC6ASM 5
1$ 6
MRGEXMPL START 0 7

BALR 4,0 8
USING *,4 9
LA 13,SAVEAREA 10
B START II
EXTRN MRSORT 12

* 13
* 14
INPUT! DTFSD BLKSIZE=800,RECSIZE•80,IOAREAl=BlJFF1, c 15

IOREG=(2),RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, c 16
EOFADDR=EOF, TYPE FLE• I NPIJT 17

INPUT2 DTFSD BLKSIZE=40G,RECSIZE•80,IOAREA1•BUFF2, c 18
IOREG=(2),RECFORM•FIXBLK,ERROR=IOERROR,OPTION=YES, c 19
EOFADDR=EOF,TYPEFLE=INPUT 20

INPUT3 DTFSD BLKSIZE=l600,RECSIZE=80,IOAREAl•BUFF3, c 21
IOREG=(2),RECFORM=FIXBLK,ERROR=IOERROR,OPTION=YES, c 22
EOFADDR=EOF,TYPEFLE•INPUT 23

OUTPUT DTFSD BLKSIZE=400,RECSIZE=80,IOAREA1=0UT01 ,IOAREA2-0UT02, c 24
WORKA=YES,RECFORM•FIXBLK,ERROR=IOERROR,OPTION=YES, c 25
TYPEFLE=OUTPUT 26

-;':

* THE FOLLOWING HACRO GENERATES THE PARAMETER TABLE
* MERGE HR$PRH IN=HERGEIN, c 27

FIN=MERGEFIN, c 28
STOR=WORK, c 29
RCSZ=80, c 30
FIEL0-(0,8,CST), c 31
HERGE=YES 32

*
Figure 8-5. Subroutine Merge-Only Program Coding (Part 1 of 3)

UP-8342 Rev. 3

SAVEAREA DS 18F
FILTABL DC A(INPUTl)

DC A (I NPUT2)
DC A (I NPUT3)

START EQU *

*

OPEN INPUTl
OPEN INPUT2
OPEN INPUT3
OPEN OUTPUT
MR$0PN MERGE

MERGEIN EQU *
LA 5,3(0,0)

* LA 6,FILTABL
FILSET L 10,0(6)
*
*

*
*

BAL 7, GETREC
HG$REL
LA 6,4(tJ,6)
BCT 5,FILSET

RETREC EQU *
MG$RET
BAL 7, PUTREC
BAL 7, GETREC
B RETREC

GETREC EQU *
LR 1 , 10
GET (1)
LR 1 ,2
BR 7

PUTREC EQU *
MVC WORKAREA, 0(1)
PUT OUTPUT,WORKAREA
BR 7

EOF EQU *
LR 1,10
CLOSE (1)
XR 1, I
B RETREC

MERGEFIN EQU *
CLOSE OUTPUT
EOJ

*

SPERRY UNIVAC OS/3
SORT/MERGE

DATA MANAGEMENT SAVE AREA
ADDRESS OF INI OTF
ADDRESS OF IN2 DTF
ADDRESS OF IN3 DTF

OPEN
INPUT

FILES
OPEN OUTPUT FILE
OPEN S/t1 REFERENCING MR$PRM MACRO
IN ADDRESS

LOAD RS WITH THE NUMBER OF INPUT
FILES.
GET FILE TABLE ADDRESS
LOAD DTF ADDR IN RlO, USE AS INDEX
TO IDENTIFY INPUT FILE TO MERGE
AND TO YOUR PROGRAM.

GET FIRST REC FOR EACH FILE.
RELEASE REC TO MERGE.
INCREMENT TO NEXT DTF ADDR.
TEST FOR LAST INPUT FILE: IF YES,
CONTINUE. IF NO, GET FIRST REC OF
NEXT Fl LE.

REQUEST WINNER REC
WRITE REC TO OUTPUT FILE
GET NEW REC FROM INPUT FILE
GET NEW WINNER REC.
GET a REC ROUTINE
POINT TO INPUT FILE DTF.
GET RECORD.
POINT TO NEW RECORD
RETURN
PUT REC ROUT I NE
MOVE WINNER RECORD TO WORKAREA
PUT OUT THE REC
RETURN
END-OF-FILE ADDR
LOAD Rl WITH DTF ADDR
CLOSE THAT INPUT FILE
INDICATE EOF CONDITION TO MERGE
REQUEST ANOTHER WINNER
FIN ADDRESS
CLOSE OUTPUT FILE

* ERROR ADDRESS FOR DATA MANAGEMENT
* IOERROR EQU *

CANCEL
LTORG

*
*

CANCEL JOB
DEFINE LITERALS HERE

Figure 8-5. Subroutine Merge-Only Program Coding (Part 2 of 3)

8-14

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81-
82
83

•

•

•

•

•

•

UP-8342 Rev. 3

WORKAREA

OUT01

OUT02
BUFFl
BUFF2
BUFF3
WORK

I*
ll~WORKl

DS
OS
OS
OS
DS
DS
OS
DS
EQU
END

II EXEC LNKEOT
1$

CL80
4H
CL400
4H
CL40G
CL800
CL40G
CL1600

* MRGEXMPL

LOAOM MER01
INCLUDE MRGEXMPL

I*
II DVC 51
II VOL OSP028
II LBL MYLI B 1
II LFD I NPUTl
II DVC 51
II VOL DSP028
II LBL MYLI B2
II LFD INPUT2
II DVC 51
II VOL DSP028
II LBL HYLIB3
II LFO INPUT3
II DVC 51
II VOL DSP028
II LBL MYLI B4
II LFD OUTPUT,,INIT
II EXEC MERG1,YRUN
I&
II FIN

SPERRY UNIVAC OS/3
SORT/MERGE

OUTPUT AREAl

OUTPUT AREA2
INPUT AREAl
INPUT AREA2
INPUT AREA3

//MER0l LINK MRGEXMPL

Figure 8-5. Subroutine Merge-Only Program Coding (Part 3 of 3)

8-15

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

l 00
l 01
102
I 03
I 04
105
I 06
107
l 08
109
110
112
113
114
115
116
117
118
119

To eliminate extra coding, lines 3, 4, and 5 can be replaced by the ASM jproc call, which
automatically supplies two work areas for the assembler. Also, lines 95 through 100 may
be replaced by the single jproc call I /MER01 LINK MRGEXMPL.

8.3.3. Assembling, Link Editing, and Executing Subroutine Merge-Only Program

The process of assembling, link editing, and executing the subroutine merge-only program
is basically the same as our subroutine sort/merge disk sort program (6.11). Job control
statements precede and follow the subroutine merge-only program. Some execute the
assembler which produces an object module. The linkage editor uses this object module as
input to create a load module. Further job control following the source program specifies
device assignment sets and end statements (line 101 through 119). They tell us that the
three input files named MYLIB 1, 2, and 3 are contained on the same volume, DSP028, on
the same input device 51 and that after merge processing, the records will be written to

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

8-16

one output file, MYLIB4 on that same volume DSP028 on device 51. The load module to
be executed can be found in the YRUN library. Refer to the system flowchart (Figure
6-20) which depicts assembly, linkage edit, and execution runs. Figure 8-6 illustrates
your program's interface with subroutine merge-only.

As in the regular subroutine sort/merge an
interface is set up through the sort common
module The merge-only option, however,
must be specified in the MR$PRM macro.

Also as in the regular subroutine sort/merge,
the user performs all input and output
operations. The user must release the first
record of each input file before the merge
can start. This initial release is via the
MG$REL macro.

Merging is commenced and carried out via
the MG$RET macro, which selects a winner
from among the different records from each
file. This winner record, after being
processed by the user, must be replaced by
the user from the same file that the winner

came from.

When an end-of-file condition is reached,
this information is relayed via the MG$RET
macro, with register 1 binarily zeroed out.
Another winner is then chosen from the
records already released from the remaining
files.

USER PROGRAM

r-------------- ----,
1
I
I
I

MR$0PN I
I
I

I
Return via IN parameter

-,.. Information from the sort
parameter table and job
control statements is
processed.

MG$REL (record address loaded__,,,

in register 1)

_ Returns to instruction

following MG$REL macro
I
I

I
I
I
I
I
I

MG$R ET (address of new

record loaded in register 1)

I
I
I

-..

..

Returns to instruction following
MG$RET macro (Register 1 loaded

;jth winner record address. Register
10 loaded with winner record file
address)

MG$RET (register 1 loaded w1_h
-,..

binary 0)

l.!._all input files are closed, returns via

FIN parameter. Otherwise, same as
above.

I

I

-

The first record of each input
file is given to the sort in order
to initialize a tournament
among these records.

Among the records from each
input file, a winner is selected
and returned to the user. The
input file address of the
winner record is also given to
the user so that a new record
may be read in to replace the
winner. The sort is also
informed by the user when an
input file is closed and a new
winner from the other files has
to be chosen.

'-- - - - - -- ---- --- __ _J
OS/3 SUBROUTINE SORT/MERGE

MERGE-ONLY

Figure 8-6. User Program Interface with Subroutine Merge-Only

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

9-1

9. Subroutine Sort/Merge
Program Examples

9.1. GENERAL

This section contains complete program coding examples and an explanation of:

• A subroutine tape sort

• A tape sort using the PARAM statement to add parameters to the sort parameter
table

• A tape sort using a record sequence own-code routine (RSOC)

• An internal (main storage) sort

• A disk sort using consolidated data management

Each example illustrates the job control stream requirements needed to assemble, link,
and execute the program. Following each example is a line-by-line description of what
each instruction or group of instructions does.

9.2. SUBROUTINE TAPE SORT

The following example illustrates the general requirements for performing a typical
subroutine sort operation using tape work files and disk input and output files.

II JOB SRTEXMP2,,700G,9000,2
II DVC 20 II LFO.PRNTR
II WORKl
II WORK2
II EXEC ASH
1$
SRTEXHPL START 0

BALR 4,G
USING •,4

*
*
*

B START
EXTRN MR$0RT THIS DEFINE THE COMM~N SORT

MODULE FOR INCLUSION BY THE
LINKAGE EDITOR.

INPUT DTFSD BLKSIZE•4096,RECSIZE•2~6,IOAREAl•BUFFl,
IOREG•(2) ,RECFORH•FIXBLK,ERROR•IOERROR,OPTION=YES,
EOFADDR•EOF,TYPEFLE•INPUT

c
c

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017

(continued)

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

OUTPUT DTFSD BLKSIZE•4096,RECSIZE•256,IOAREA1•BUFF1,
IOREG•(2) ,RECFORH-FIXBLK,ERROR•IOERROR,OPTION•VES,
TYPEFLE•OUTPUT

*
* SORT HR$PRH IN•SORTIN,

*

OUT•SORTOUT ,
FIN•SORTFIN,
STOR•WORK.
TAPE=(N0,3),
RCSZ•256,
FIELD•l0,8,CH)

* DATA HANAGEHENT WORK AREAS
OS OH
OS CL8

BUFF! OS CL40q6
SAVEAREA OS 18F

*
*

START EQU * HRSOPN SORT
SORT IN LA 13,SAVEAREA

* OPEN INPUT

*
* INPUT ANO RECORD RELEASE

* GETREC EQU * GET INPUT
LR 1,2

* HR$REL
B t.iETREC

*
* EOF ROUTINF"

* fOF EQU *
rLO~E INPUT
HR$SRT

*
*
* OUTPUT AND RECORD RETURN

* SORTO UT EQU * OPEN OUTPUT

* REQREC HRSRET
* MVC 0 (2 56 • ~ ~ : 0 (1)
*
* PUT OUTPUT

B RE QR EC

*
* END OF SORT ROUTINE

*

IOAREA
DATA HANAGEHENT SAVE AREA.

OPEN SORT/MERGE SUBROUTINE.
LOAD RI~ WITH ADDR OF DH
SAVE AREA.
OPEN THE INPUT FILF

ROUTINE.

GET RECORD FROH INPUT FILE.
LOAD Rl WITH ADDR OF RFCORD
TO BE RELEASED.
RELEASE RECORD TO T4E SORT.
GET T~E NFXT RFCORO.

CLOSE THF. INPUT FILE
INFORM THE SORT OF THE
EOF CONDITION.

ROUTINE

OPEN THE OUTPUT Fl LE.

REQUEST THE RETllRN OF A
RECORD
HOVF Tl-IE SORTF.O RECORD TO OllTPllT
BUFFFR AREA.

OIJT PUT THE RECORO
REQUEST NEXT RF"CORD

c
c

c
c
c
c
c
c

9-2

018
019
020
021
022
023
024
025
026
on
028
029
030
031
032
033
f\34
035
036
037

038
039
o4o
041
n4:i
~43
044
045
046
047
048
049
050
051
052
oc;3
054
oc;5
056
057
058
059
060
061
062
063
064
065
066
067
068
Ni9
070
071
072
073
074

•

•

•

•

•

•

UP-8342 Rev. 3

SORTFIN EQU *
CLOS~ OUTPUT
EOJ

*

SPERRY UNIVAC OS/3
SORT/MERGE

ClOSE THE OUTPUT FILE.

* ERROR ADDRESS FOR DATA MANAGEMENT
* IOERROR

WORK

I*
II WORKl

EQU
CANCEL
LTORG
EQU
END

I I EXEC LNKEDT
1$

*

* SRTEXMPL

LOADH SORTf/J2
INCLUDE SRTEXHPL

I*
II DVC 50'
II VOL DSP0C11
II LBL SORTIN
II LFD INPUT
II DVC 50
II VOL DSPllJ01
II LBL SORTOUT
II LFD OUTPUT
II DVC 90
II VOL SCRCHl
II LFD SH01
II DVC 91
II VOL SCRCH2
II LFD SH0'?
II DVC 92
II VOL SCRCH3
II IFD SH03
II EXEC SORT0'2,YRUN
I&
II FIN

Line
Number Explanation

CANCEL THf' JOB
DEFINE ALL LITERALS HERE
SORT WOl\K ARE~.

9-3

075
076
077
078
079
080
081
OR"
083
084
085
086
087
088
089
090
09]
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112

1 The name of the job is SRTEXMP2; it requires 28,672 decimal (700016) bytes
of main storage as a minimum and requests 32,768 decimal (900016) bytes
maximum. A maximum of two tasks can be active simultaneously in any job
step.

2

3-4

5

6

These job control statements assign the printer to the subroutine
sort/merge for displaying messages during program execution.

The WORK1 and WORK2 statements set up temporary files for the
assembler job step .

This statement initiates the execution of the assembler.

/$ job control delimiter statement indicates the start-of-data to the
assembler.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 9-4
SORT/MERGE

Line
Number Explanation

7-11

15-20

23-29

32

33

34-35

38-39

40-42

46-51

55-58

62-63

65-71

75-77

81-82

83

84-86

This group of assembler directives and instructions initializes your location
counter to zero, assigns register 4 as a base register, and defines the sort
common module.

These two DTFSD statements describe input and output files to data
management.

This MR$PRM macro sets up the sort parameter table and is referenced
later by the MR$0PN macro (line 39). For information about these
parameters, see 6.4.

This DS statement half-word aligns the 1/0 buffer.

This DS statement provides the 8-byte area required by data management
before BUFFER 1.

These define storage statements set up 4096 bytes for input/output buffer 1
and 18 full words (72 bytes) of storage for the data management save area,
which must be full-word aligned.

The MR$0PN macro opens the subroutine sort/merge.

The sort input routine opens the input data file.

The input and record release routine reads records and releases them to the
sort.

The end-of-file routine closes the input data file and tells the sort that it has
reached the end-of-file (MR$SRT).

The sort output routine opens the output data file.

This routine returns records from the sort/merge, writes the record, and
requests the next record.

The end of sort routine closes the output file and notifies job control that the
end-of-job condition was reached.

The IOERROR routine is the error handling routine for data management.

LTORG assembler control directive defines all literals at this point in your
program.

The EOU statement indicates that the address of the current location
counter be used as the beginning of the main storage work area you
designated in the STOR parameter (line 26). The END assembler directive
concludes your source program and the /* is a job control delimiter
statement indicating the end-of-data (your source program) to the
assembler.

•

•

•

•

•

•

UP-8342 Rev. 3

Line
Number

87

88

Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

Sets up a temporary work file for the link edit step.

This statement executes the linkage editor.

9-5

89-92 These statements indicate the data set to control the building of the load
module named SORT02.

93-96 Assigns the input file named SORTIN to volume DSP001, on device 50.

97-100 Assigns the output file named SORTOUT to volume DSP001 on device 50.

101-109 Assigns the tape sort work files with LFD names SM01, SM02, and SM03
to volumes SCRCH1, SCRCH2, and SCRCH3 on devices 90, 91, and 92,
respectively.

110 Executes your program named SORT02, which is found in YRUN library.

111 Marks the end of the job stream.

112 Marks the end of reader operations.

9.3. SUBROUTINE TAPE SORT WITH RESTART USING PARAM STATEMENT

The following example illustrates requirements to perform a restart after a subroutine
sort/merge program is interrupted. This example includes the RESUME parameter via the
job control PARAM statement and the CSPRAM parameter indication.

II JOB SRTEXMlJ,,7000,9000
II DVC 20'
II LFD PRNTR
II WORKl
II WORK2
II EXEC ASM
1$
SRTEXMPL START

BALR
USING
B

*
*
*

EXT RN

0
4,G
*,4
START
MR$0RT THIS DEFINES THE COMMON SORT

MODULE FOR INCLUSION BY THE
LINKAGE EDITOR.

INPUT DTFSD BLKSIZE•4096,RECSIZE•256,IOAREA1•BUFF1,
IOREG•(2) ,RECFORM•FIXBLK,ERROR•IOERROR,OPTION•YES,
EOFADDR•EOF,TYPEFLE•INPUT

OUTPUT DTFSD BLKSIZE•4096,RECSIZE•256,IOAREA1•BUFF1,

*
*

IOREG•(2) ,RECFORM•FIXBLK,ERROR•IOERROR,OPTION•YES,
TYPEFLE•OUTPUT

c
c
c
c

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

SORT MR$PRM IN•SORTIN,
OUT•SORTOUT,
FIN•SORTFIN,
STOR•WORK,
TAPES•(N0,3),
RCSZ•256,
CSPRAM•YES,
FIELD•(l1,8,CH)

*
* DATA MANAGEMENT WORK AREAS

DS OH
DS elf!

BUFF! OS CL4096 IOAREA
SAVEAREA OS 18F DATA MANAGEMENT SAVE AREA
*
* START EQU * MR$0PN SORT OPEN SORT/MERGE SUBROUTINE
SORT IN LA 13,SAVEAREA LOAD REG 13 WITH ADDR OF DH
* SAVE AREA.

OPEN INPUT OPEN THE INPUT FILE.
*
* INPUT ANO RECORD RELEASE ROUTINE.
* GETREC EQU * GET INPUT GET RECORD FROM INPUT FILE.

LR l. 2 LOAD REG 1 WITH ADDR OF
* RECORD TO BE RELEASED.

MR$REL RELEASE RECORD TO THE SORT.
B GET REC GET THE NEXT RECORD.

*
* EOF ROUTINE

* EOF EQU * CLOSE INPUT CLOSE THE INPUT FILE AND
MR$SRT INFORM THE SORT OF THE END-

OF-DATA CONDITION.
*
* OUT PUT AND RECORD RETURN ROUTINE.

* SORTO UT EQU * OPEN OUTPUT OPEN THE OUTPUT FILE.
* RE QR EC HR$RET REQUEST THE RETURN OF A
* RECORD.

MVC s (256 ,2) ,0 (I) MOVE THE SORTED RECORD TO THE
* OUTPUT BUFFER AREA

PUT OUTPUT OUTPUT THE RECORD.
B REQREC REQUEST THE NEXT RECORD.

*
* END OF SORT ROUTINE.
*
SORTFIN EQU * CLOSE OUTPUT CLOSE THE OUTPUT FILE.

EOJ
*
* ERROR ADDRESS FOR DATA MANAGEMENT.
* IOERROR EQU * CANCEL CANCEL THE JOB.

LTORG DEFINE All LITERALS HERE.

9-6

c 24 • c 25
c 26
c 27
c ~8
c 29
c 30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 • 53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72.
73
74
75
76
77
78
79
80
81 • 82
83
84

•

•

•

UP-8342 Rev. 3

WORK

I*
II WORKl

EQU
END

I I EXEC lNKEDT
1$

LOADH SORT03

* SRTEXHPL

INCLUDE SRTEXHPL
I*
II DVC 50
II VOL DSP001
II LBL SORTIN
II LFO INPUT
II DVC 50
II VOL DSPl/J01
II LBL SORTOUT
II LFD OUTPUT
II DVC 90
II VOl. SCRCHl
II LFD SH01
II DVC 91
I I VOL SCRCH2
II LFD SMl12
II DVC 92
I I VOi c;cRCH3
II LFD SH03
II EXEC SORT~3,$YSRUN
II PARAH RFSUME•(PASS,233)
I&
II FIN

Line
Number Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

SORT WORK AREA.

9-7

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
l 01
102
103
104
105
106
107
108
109
l l 0
l l l
112
113
114

The JOB statement names the program SRTEXM13 and specifies
approximately 28,000 decimal (700016) bytes minimum main storage and
32,000 decimal (900016) bytes maximum main storage.

2-5

6

7

8-14

16-21

24-31

34

35

Assigns the printer to the job and sets up two temporary work files.

Executes the assembler.

/$ indicates the start-of-data (your source program) to the assembler.

These instructions set the location counter to zero, register 4 as base
register to the program, and define the sort common module.

DTFSD statement describes input and output files to data management.

SORT is the label of the MR$PRM macro that specifies sort parameter table
entries. (See 6.4 for details.) Line 30 must be specified if you intend to enter
the RESUME parameter via a PARAM statement in line 112 .

This OS statement half-word aligns the 1/0 buffer.

This DS statement provides the 8-byte area required by data management
before BUFFER 1 .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 9-8
SORT/MERGE

Line
Number Explanation

36-37

40-41

42-44

48-53

57-60

64-72

76-78

82-83

84

85-87

88-89

90-93

94-101

102-110

111

112-113

114

These statements define storage areas for the 1/0 buffer and data
management save area. The 72-byte data management save area must be
full-word aligned.

MR$0PN opens the subroutine sort/merge by specifying the name of the
sort parameter table (line 24).

This sort input routine opens the input file.

This sort input routine reads records and releases them to the sort.

This end-of-file routine closes the input file and indicates the end-of-data
(MR$SRT).

This output sort routine opens the output file, requests the return of sorted
records, and writes sorted records.

The end of sort routine, SORTFIN, closes the output file and tells job control
that the end-of-job condition was reached.

IOERROR is the error routine for data management.

LTORG defines all literals.

The EQU, END, and /* statements specify the beginning of the sort work
area, the end of the source program, and the end-of-data to the assembler.

WORK1 provides a temporary work file to the linkage editor and EXEC
executes the linkage editor.

This is the data set to the linkage editor (the load module SORT03).

Disk input and output data files named SORTIN and SORTOUT are assigned
to volume DSP001, on device 50.

Tape work files with LFD names SM01, SM02, and SM03 are assigned to
volumes SCRCH1, 2, and 3 on devices 90, 91, and 92, respectively.

Your program named SORT03 is executed from the YRUN library.

The PARAM statement includes the RESUME parameter to provide the
restart capability. (See 6.4.2.3 for more details.) The /& delimiter statement
indicates the end-of-job to job control.

Marks the end of reader operations.

9.4. SUBROUTINE TAPE SORT USING OWN-CODE ROUTINE

The following example shows the use of a record sequence own-code routine (RSOC).

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

II JOB SRTEXH15,,7G00,9G0a
II DVC 2a
II LFD PRNTR
II WORKI
I I WORK2
II E)tEC ASH
1$
SRTEXMPL START 0

BALR 4,a
USING •,4
B START
EXT RN HR$0RT THIS DEFINES THE COMMON SORT

* MODULE FOR INCLUSION BY THE

* LINKAGE EDITOR.

* INPUT DTFSD BLKSIZE•4GG,RECSIZE•80,IOAREAl•BUFF1,
IOREG•(2) ,RECFORH•FIXBLK,ERROR•IOERROR,OPTION•YES,
EOFADDR•EOF,TYPEFLE•INPUT

OUTPUT DTFSD BLKSIZE•400,RECSIZE•80,IOAREAl•BUFF1,
IOREG•(2) ,RECFORM•FIXBLK,ERROR•IOERROR,OPTION=YES,
TYPE•OUTPUT

*
* SORT MRSPRH IN•SORTIN,

OUT•SORTOUT ,
FIN•SORTFIN,
STOR•WORK,
TAPES•(N0,3),
RCSZ•8G,
RSOC•RECCMPR

*
*
* DATA MANAGEMENT WORK AREAS

DS OH
DS cu~

BUFF! OS CL 41.W IOAREA
SAVEAREA OS 18F DATA MANAGEMENT SAVE AREA

*
* START EQU * HR$0PN SORT OPEN SORT/MERGE SUBROUTINE
SORT IN LA 13,SAVEAREA LOAD REG 13 WITH AODR OF OM

* SAVE ARFA.
OPEN INPUT OPEN THE INPUT FILE.

*
* INPUT AND RECORD RELEASE ROUTINE.

* GETREC EQU * GET INPUT GET RECORD FROH INPUT FILE.
LR 1 ,2 LOAD REG 1 WITH ADDR OF

* RECORD TO BE RELEASED.
MRS REL RELEASE RECORD TO THE SORT.
B GET REC GET THE NEXT RECORD.

*
* EOF ROUTINE

*

9-9

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

c 16
c 17

18
c 19
c 20

21
22
23

c 24
c 25
c 26
c 27
c 28
c 29

30
31
32
33
34
35
36
37
38
39
40
41
.42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

EOF

*
*
*
* SORTO UT

* REQREC

*

*
*
* SORTFIN

*
*
*
RECCMPR

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
* IOERROR

*
*
*
*
*

EQU *
CLOSE INPUT
MR$SRT

CLOSE THE INPUT FILF AND
INFORM THE SORT OF THE END
OF-DATA CONDITION.

RECORD RETURN AND OUTPUT ROUTINE.

EQU *
OPEN OUTPUT

HR$RET

HVC 0(80 ,2) ,0(1)

PUT OUTPUT
B REQREC

END OF SORT ROUTINE.

EQU *
CLOSE OUTPUT
EOJ

RSOC ROUTINE

EQU *
USING *, 15

OPEN THE OUTPUT FILE.

REQUEST THE RETURN OF A
RECORD.
HOVE SORTED REC TO OUTPUT
BUFFER AREA
OUTPUT THF RECORD.
REQUEST THF NEXT RECORD.

CLOSF THF OUTPUT FILE.

IN THIS LOCATION A ROUTINE IS TO BE INSERTED TO PERFORM
KEV COMPARISONS. REGISTERS II AND 12 CONTAIN THE ADDRESS
OF THF RECORDS TO BE COMPARED. IF THE RECORD POINTED TO
BY REGISTER 11 IS THE WINNER, THE CONDITION CODE IS TO BE
SET TO LOW (CC•I). IF THE RECORD FOR THE ADDRESS IN
REGISTER 12 IS THE WINNER, THf CONDITION CODE IS TO BE
SET TO HIGH (CC•2). IF THE TWO RECORDS ARE fQUAL. THE
CONDITION CODE IS TO BE SET TO EQUAL (CC•G). THE RSOC
ROUTINE RETURNS TO THE SORT VIA REGl5TER 14.

CLC 0(8,11),0(12)

DROP 15
BR 14

COMPARE FOR ASCENDING SEQUENCE.
IF THE SEQUENCE WERF DESCENDING
REGISTER 11 ANO REGISTER 12
\.'OULO BE SWITCHED SO THAT THE
INSTRUCTION WOULD READ:
CLC 4(10,12),4(11)
DISENGAGE USE OF R15 AS RSOC BASE REr.
RETUPN TO THE SORT WITH THE
CONDITION CODE SET BY THE
COMPARE INSTRUCTION.

FRROR ADDRESS FOR DATA MANAGEMENT

EQU *
CANCEL

LTORG

CANCEL THE JOB.

DEFINE ALL LITERALS HERE TO
FREE THE WORK AREA.

9-10

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7A
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
9~
96
97
9R
99

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

9-11

WORK EQU * c:oRT WORK AREA 115
116
117
118
119
120
121
122
123
121i
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

ENO SRTEXHPL
I*
I I WORKl
I I EXEC LNKEOT
1$

LOAOH SORT03
INCLUDE SRTEXHPL

/*
11 OVC 50
I I VOL OSP001
I I LBL SORT IN
II LFO INPUT
I I OVC 50
II VOL OSP001
II LBL SORTOUT
II LFO OUTPUT
II ovc 90
II VOL SCRCHl
II LFO SM01
II ovc 91
II VOL SCRCH2
II LFO SM02
11 ovc 92
II VOL SCRCH3
II LFO SM03
II EXEC SORT03,YRUN
I&
II FIN

Line
Number

1-6

7

8-14

16-21

24-30

24-30

34

35

Explanation

The program named SRTEXM15 uses approximately 28,000 decimal
(700016) bytes minimum main storage space and approximately 32,000
decimal (900016) bytes maximum main storage. Two temporary work files
and a printer (if needed) are made available to the assembler and it is
executed.

This is the start-of-data to the assembler.

These instructions set the location number counter to zero, designate
register 4 as the base register, and define the sort common module
(MR$0RT).

DTFSD macros define the input and output files to data management.

MR$PRM defines the sort parameter table. Notice the name of the record
sequence own-code routine is RECCMPR (line 30).

For more details, see 6.4.1.

This DS statement half-word aligns the 1/0 buffer.

This DS statement provides the 8-byte area required by data management
before BUFFER 1.

UP-8342 Rev. 3

Line
Number

36-37

40-41

42-44

48-53

57-59

64-66

67-72

76-78

82-105

108-109

113

115-117

118-123

124-131

132-140

141-142

143

Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

9-12

These instructions define storage for the half-word aligned 1/0 buffer area
and the data management 72-byte save area, which must be full-word
aligned.

The MR$0PN macro opens the subroutine sort/merge.

The sort input routine opens the input file.

This input routine reads input records and releases them to the sort.

The end-of-file routine closes the output file and informs the sort of the end
of-data condition.

The sort output routine opens the output file.

This routine requests the return of records from the sort and writes the
record.

The end of sort routine closes the output file and informs job control that
end-of-job was reached.

RECCMPR is the name of the user's own-code routine for record
sequencing.

IOERROR is the data management error handling routine.

LTORG assembler directive defines all literals.

This EQU statement points to the beginning of the work area. The END
assembler directive names the source module that is ending and /*
indicates to job control that end-of-data was reached.

Execute the linkage editor by using one temporary work file. /$ and/* mark
the beginning and end of the data set used by the linkage editor.

Both disk input file SORTIN and disk output file SORTOUT on volume
DSP001 use the same device 50.

Tape work files named SM01, 02, and 03, on volumes SCRCH1, 2, and 3
reside on devices 90, 91, and 92, respectively.

Execute the program SORT02 from YRUN library and indicate end-of-job
to job control (/&).

Marks end of reader operation.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

9-13

• 9.5. SUBROUTINE INTERNAL SORT

•

•

The distinguishing characteristic of an internal sort/merge is that the entire sort process
is accomplished in main storage without the use of tape or disk work files. The general
program coding for an internal-only sort is identical to that for a subroutine disk or tape
sort (Figure 6-17 and 9.2) except for the following modifications:

• The DISC and TAPE keyword parameters specified in the MR$PRM macro instruction
for the tape and disk sorts are omitted for the internal sort.

• Disk and tape work files are not assigned for internal sorts. (The assignment of work
files in the examples for tape and disk sorts appears in the job control stream.)

An internal sort/merge is feasible only if the input file is relatively small, because all of
the data must be in main storage at the same time. If you do not assign adequate main
storage, the sort will terminate. See 1.7.1 for minimum main storage requirements.

9.6. SUBROUTINE DISK SORT USING CONSOLIDATED DATA MANAGEMENT

The following example shows a subroutine disk sort operation using consolidated data
management to define input and output files.

II JOB SRTEXMPL .. 71HHl,9000,2
II DVC 20 II LFD PRNTR
II WORKl
II WORK2
II EXEC ASM
1$

SRTEXMPL START 0
EXTRN MR$0RT

BALR 4,0
USING ',4
B START

SETS LOCATION COUNTER TO ZERO.
MR$0RT DEFINES AN EXTRN.
LINKS COMMON SORT MODULE
TO YOUR PROGRAM.

SORTRIB RIB BFSZ=512,RCSZ=80, 10Al=BUFF1, IOA2=BUFF2,WORK=YES,
RCFM=FIX,OPTN=YES.MODE=SEQ

INPUT
OUTPUT
USING
VTOC

SORT

CDIB
CDIB
CD$CDIB,5
CDIB=YES

MR$PRM F I E L D= (0 , 7 , CH) ,
IN=SORTIN,
OUT=SORTOUT,
FI N=S 0 RTF IN,
RCSZ=80,
STOR=WORK,
DISC=4

l

2
3

4

5

6

7

8

9

10
11

12

13

c 14

c
c
c
c
c
c

1 5

16
17
18
19
20
2 l

22
23
24
25
26
27
28

(continued)

UP-8342 Rev. 3

DS
BUFFl DS
BUFF2 OS
INOUTBUF OS

START EQU

SPERRY UNIVAC OS/3
SORT/MERGE

DATA MANAGEMENT WORK AREA
OH
CL512
CL512
CL80

9-14

MR$0PN SORT OPEN THE SORT/MERGE SUBROUTINE
SORT IN

GET REC

EOF:

LA 5, INPUT
OPEN INPUT,(SORTRIB)
TM CD$1SUCC,L'CD$1SUCC
BZ
EQU

IOERROR

DMINP INPUT,INOUTBUF
TM CD$1EOF,L'CD$1EOF
BO EOF
TM CD$1SUCC,L'CD$1SUCC
BZ IOERROR
LA 1, I NOUTBUF
MR$REL
B GETREC

EQU

CLOSE INPUT

OPEN THE INPUT FILE
SUCCESSFUL OPERATION?
IF NOT, BRANCH TO IOERROR.

GET RECORD FROM INPUT FILE
INPUT FILE EMPTY?
IF EMPTY, BRANCH TO EOF.

LOAD Rl WITH RECORD ADDRESS.
RELEASE RECORD TO THE SORT.
GET NEXT RECORD.

THIS LOCATION IS SPECIFIED
AS THE END OF FI LE ADDRfSS.
CLOSE THE INPUT FILE.

29
30

31

32
33

34

35
36

37

38

39
40

41

42

43

44

45

46
47
48

49
50
51
52
53
54

TM CD$1SUCC,L'CD$1SUCC 55
BZ IOERROR 56

57

MR$SRT TELLS THE SORT THAT THE END 58

SORTOUT EQU

RECRET

LA 5,0UTPUT
OPEN OUTPUT,(SORTRIB)
TM
BZ
MR$RET
LA
MVC

CD$1SUCC,L'CD$1SUCC
IOERROR

2, I NOUTBUF
0(80,2),0(1)

DMOUT OUTPUT, I NOUTBUF
TM
BZ
B

CD$1SUCC,L'CD$1SUCC
IOERROR
RECRET

SORTFIN EQU
CLOSE OUTPUT
TM CD$1SUCC,L'CD$1SUCC
BZ IOERROR
EOJ

OF FILE HAS BEEN REACHED.
OUT ADDRESS.

OPEN THE OUTPUT FILE.

REQUEST A RECORD RETURNED.
LOAD R2 WITH BUFFER ADDRESS
MOVE THE SORTED RECORD TO
THE OUTPUT BUFFER AREA.
OUTPUT THE RECORD RETURNED.

FIN ADDRESS
CLOSE THE OUTPUT FILE.

END OF JOB STEP.

59

60
61
62
63

64
65
66

67

68
69
70
71

72

73

74
75

76

77

78
79

(continued)

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 9-15
SORT/MERGE

• ERROR ADDRESS FOR DATA MANAGEMENT 80
81
82
83
84
85
86

•

•

Line

IOERROR EQU
CANCEL
LTORG

WORK EQU

END SRTEXMPL
I•

llSRTEXM LINK SRTEXMPL
II DVC 50
II
II
II
II
II
II
II

II
II
II
II
II
II
I&
II

VOL DSP028
LBL MYF ILE 1
LFD INPUT
DVC 50
VOL DSP028
LBL MYFILE2
LFD OUTPUT .. INIT

DVC 50
VOL DSP028
EXT ST,C.,CYL,5
LBL $SCR1
LFD DM01
EXEC SRTEXM,YRUN

FIN

CANCEL THE JOB.
DEFINE ALL LITERALS HERE.
START OF SORT WORK AREA.
THIS SETUP ALLOWS THE SORT
TO USE ALL MEMORY FROM 87
THIS LOCATION TO THE END OF 88
THE JOB REGION. 89

90
91
92
93
94

95
96
97
98
99

100
101
102
103
104
105
106
107
108

Number Explanation

1-5

6

7-13

14-17

The program named SRTEXMPL uses approximately 28,000 decimal (700016)

bytes of minimum main storage space and approximately 32,000 decimal
(900016) bytes of maximum main storage. Two temporary work files and a
printer (if needed) are made available to the assembler, and the assembler is
executed.

This is the start-of-data to the assembler.

These instructions set the location counter to zero, set register 4 as base
register to the program, and define the sort common module.

These instructions specify two files named INPUT and OUTPUT, each with a
CDIB macroinstruction. In addition, a RIB labeled SORTRIB is specified as
having a buffer size of 512 bytes, a record size of 80 bytes, an IOA 1 called
BUFF1 for the primary 110 buffer area, an additional IOA2 called BUFF2 to
speed up 1/0 processing, and sequential access. The WORK parameter
indicates that all input and output operations take place using data
contained in a work area. OPTN=YES indicates that all files associated with
SORTRIB are optional; i.e., they won't always be used.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 9-16
SORT/MERGE

Line
Number Explanation

18-19

22-28

30

31-32

36-37

38

39

40-41

Only one RIB macro is needed because it defines the characteristics of both
files INPUT and OUTPUT.

The VTOC macro generates a DSECT, which in effect is a map of the CDIB.
The USING directive associates register 5 with the address of the first CDIB
byte, CD$CDIB. Statements generated by VTOC then fix the indicators
CD$ISUCC (lines 40, 46, 55, 63, 70, and 76) and CD$1EOF (line 44) as
offsets from register 5. All you do, as a result. is load register 5 with the
address of any actual CDIB, and you can test the bit indicators in the CDIB
as symbols rather than having to know where exactly in the CDIB they lie.
The use of register 5 with VTOC does not affect register 4 because the
remainder of the program continues to use register 4 as its base register.

This MR$PRM macro sets up the sort parameter table and is referenced
later by the MR$0PN macro (line 37). For information about these
parameters, see 6.4.

This DS statement half-word aligns the 1/0 buffer.

These define storage statements set up 512 bytes for input/output buffers 1
and 2, and 80 bytes of storage for the data management save area, which
must be full-word aligned.

The MR$0PN macro opens the subroutine sort/merge.

Establishes the base register as described in line 18.

The sort input routine opens the input data file.

Before doing any 1/0 operation, you want to link bit indicators CD$1SUCC
(line 40) and CD$1EOF (line 44) to the file whose condition they are to test.
You do this by loading register 5 with the address of the input file CDIB, an
operation that takes place at location SORTIN. As long as register 5 remains
unchanged, CD$1SUCC and CD$1EOF will reflect the condition of file INPUT.

When you open your input file (line 39), you associate it with the RIB named
SORTRIB. Lines 40 and 41 contain a pair of instructions that recur
throughout the program. The test under mask (TM) instruction at line 40
tests the successful-operation indicator CD$1SUCC that is set during the
preceding OPEN operation. The branch on zero (BZ) instruction at line 41
causes a branch to routine IOERROR only if the CD$1SUCC indicator has
been set off (the 1/0 operation has failed for some reason); otherwise, the
operation has been successful and control passes to the next sequential
instruction. You code these TM and BZ instructions after each data
management macro in your program.

•

•

•

•

•

•

UP-8342 Rev. 3

Line
Number

42-48

49-50

52-59

60-62

65-72

74-78

82-83

84

85-91

92

93-96

Explanation

SPERRY UNIVAC OS/3
SORT/MERGE

9-17

With the file open, you can read the input file by designating the DMINP
imperative macro (line 43). Because you plan to read many records and you
will need to repeat this instruction, you label it GETREC, giving yourself a
place to return for reading subsequent records. Data management
automatically loads the first data record address into register 2 when you
specify IORG=(2) on the RIB macro. Because sort/merge expects the
address of the record being released to it to be in register 1, you must load
register 1 with the record address (in this case, the work area INOUTBUF).
In this example, a load address (LA) instruction is used (line 48).

These instructions release the record to the sort and get the next record,
until the end of the input file is reached.

When the last record is read, the CDIB end-of-file indicator CD$1EOF is set
on. The TM and BO instructions at lines 44-45, which before have passed
control to the next instruction, now cause a branch to the routine beginning
at EOF. The end-of-file routine closes the input data file and tells the sort
that it has reached end-of-file (MR$SRT).

This is the sort output routine. You load register 5 with the address of the
OUTPUT file CDIB (line 61). This causes the bit indicator CD$1SUCC to
reflect the condition of the file OUTPUT. Line 62 opens the output file.

This routine returns each record from sort/merge, writes the record, and
requests the next record.

The end-of-sort routine closes the output file and notifies job control that
the end-of-job condition was reached.

The IOERROR routine is the error handling routine for data management.

The LTORG assembler control directive defines all literals at this point in the
program.

The EQU statement indicates that the address of the current location
counter is to be used as the beginning of the main storage work area you
designated in the STOR parameter (line 27). The END assembler directive
concludes your source program and the /* is the job control delimiter
statement indicating the end-of-data (your source program) to the
assembler.

This is the LINK job control procedure call, which generates a load module
called SRTEXM from the object module (called SRTEXMPL) .

Assigns the input file named INPUT to volume DSP028 on device 50. The
INIT parameter on line 100 indicates that you want to start writing at the
beginning of the file, overlaying its previous contents.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 9-18
SORT/MERGE

Line
Number Explanation

101-105

106

107

108

Assigns the disk sort work file with LFD name DM01 to volume DSP028 on
device 50. The EXT statement specifies that your work file is accessed via
the system address technique (ST), allocates contiguous space for the extent
(C), specifies that space must be allocated in cylinders (CYL), and allocates 5
cylinders for the work file.

Executes your program named SRTEXM, which is found in the YRUN
library.

Marks the end of the job stream.

Marks the end of reader operations.

•

•

•

•

•

•

PART 4. SYSTEM/3, 32, and 34
COMPATIBLE SORT

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

10-1

10. System/3, 32, and 34 Compatible
Sort Basic Concepts

10.1. GENERAL

The SORT3 program, as introduced in Part 1, assists you in sorting and merging your data
files with only a minimum amount of user program intervention. Simplicity is the word
which best describes the use of this program because, basically, it does all the work for
you. It reads your data files, selectively sorts and merges the data according to your
specifications, and then writes the data to your output file. You do not have to concern
yourself with opening and closing files, supplying read and write routines, passing data to
the sort program or retrieving sorted data for the output. Your responsibility is to provide
the data files to be sorted, and to prepare the control stream necessary to define the sort
and execute the program. In relation to the entire job, your program responsibility, as
shown in Figure 10-1, is involved only with the input step of running SORT3. Details for
preparing both control statements and sort specifications are covered in Section 11.

INPUT
~

CONTROL
STATEMENTS

SORT

SPECIFICATIONS

INPUT
FILES
FOR

SORTING

EXECUTION -----------
SUPERVISOR

l
SORT3

PROGRAM

1
WORK
FILES

Figure 10-1. Functional Divisions of a SORT3 Job

OUTPUT
~

SORTED
OUTPUT

FILE

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

10.2. EXECUTION OF THE SORT3 PROGRAM

10-2

Execution of the SORT3 program takes place after the system input device has read your
control stream. In the discussion of program execution, take note of the interplay of
activities between your control stream input, the system, and the SORT3 program. The
entire sort/merge operation centers around the elements supplied by both you and
SORT3.

Program execution begins when the EXEC statement (JCL) or RUN statement (OCL) is read
from the control stream you submitted to the system for running your job. This statement
signals the system to load the system driver program (Figure 10-2) for SORT3 into main
storage. The system driver program provides the interface between the system and the
remaining SORT3 program modules. The first action taken by the driver program is to call
into main storage the sort modules needed to initialize the sort process. The loading of the
modules signals the sort program to accept your sort specifications and execute the first
phase of the program: initialization and assignment. As explained in Section 1, the sort
program is modular and the various modules used in the sort process reside in the system
load library file (YLOD) on the SYSRES volume. When one phase is completed, it signals
the driver program to load the next group of modules into main storage and execute the
next phase in the sort process.

10.3. SOFTWARE FRAMEWORK OF SORT3 PROGRAM

•

SORT3 consists of four operational phases that are normally executed in the following •
sequence:

• Phase 0 - Sort initialization and assignment

• Phase 1 - Data input read and internal sort

• Phase 2 - Preliminary merge

• Phase 3 - Final merge and output

In cases where the input file is partially sequenced or is small enough so one final merge
produces the required output sequence, SORT3 bypasses phase 2 and proceeds to phase
3, where the records are read into main storage, merged, and written to the output file.
Figure 10-3 shows the operational phases of the SORT3 program.

•

UP-8342 Rev. 3

•
WORK FILES

TRANSFER
RECORDS

SORTED
RECORDS

•
TO AUXILIARY STORAGE

•

SPERRY UNIVAC OS/3
SORT/MERGE

MAIN STORAGE

SYSTEM
DRIVER PROGRAM

(SORT3) -----------

SORT/MERGE
MODULES

1/0 BUFFER AREA

WORK AREA
FOR SORT CONTROL
FIELD COMPARISONS

SIM MODULE
CALL

LOAD S/M
MODULE

READ

WRITE

Figure 10-2. Execution of SORT3 Program

10-3

SYS RES

YLOD

USER FILE

INPUT
FILE

OUTPUT
FILE

UP-8342 Rev. 3

INPUT
FILE

INPUT
FILE

UNORDERED INPUT DATA

INTER
MEDIATE

WORK
FILE

LEGEND:

li;W4

Operational flow
Data flow
Sort/merge operational
phases

SPERRY UNIVAC OS/3
SORT/MERGE

RAW DATA INPUT

/
\>-"°\I>-/

~Q / o.,,,
~~(>/

s""\~.,,.
~<c,Q /

O~ /
c:; /

/
/

CONTINUOUSLY MERGED ---------
STRING OF DATA

START

FINAL SEQUENCED OUTPUT

OUTPUT
FILE

Figure 10-3. SORT3 Operational Phases

EOJ

10-4

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

10-5

• 10.3.1. Phase 0: Sort Initialization and Assignment

•

•

Phase 0 (Figure 10-4) initializes the sort process by reading sort control statements from
the job control stream. It validates both the content and syntax of these statements and
then passes control to an assignment segment of the phase. By examining your
parameters, the assignment segment determines the type of sort function to be performed.
In addition, it builds a parameter table, sets up compare routines, and structures the
SORT3 processor to perform only the sort functions you have specified. When the
assignment segment completes its task, phase 0 passes control to phase 1.

PHASE 0
S/M MODULE

MAIN STORAGE

SYSRES CALL

r------~----1i--~~+-~---i SYSTEM DRIVER
PROGRAM

f'-..__ SYSLOD _...-1r---

PHASE 0 ---+--------------
PHASE 0

SIM MODULES

SORT
SPECIFICATIONS ---------.

FIELD DESCRIPTION

RECORD TYPE

HEADER

INITIALIZATION
SEGMENT

• READS SORT SPECIFICATIONS

• VALIDATES CONTENTS AND
SYNTAX OF SPECIFICATIONS

•

•

•

•
•

PHASE 0

ASSIGNMENT
SEGMENT

EXAMINES AND EVALUATES
SORT SPECIFICATIONS

BUILDS SORT PARAMETER
TABLE

STRUCTURES SORT3
PROCESSOR

SETS UP COMPARE ROUTINES

PASSES CONTROL TO
PHASE 1

PASSES CONTROL TO OPERATIONAL PHASE 1

Figure 10-4. Operational Phase 0

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

10.3.2. Phase 1: Data Input and Internal Sort

10-6

When phase 1 receives control, it initiates an input routine that opens your input files,
validates file labels, and reads the data records one at a time. (The location of your data
files is determined by the device assignment sets in your control stream.) Before a record
is passed to the internal sort routine of this phase for initial sorting, it is checked against
the criteria of your sort specifications to determine whether it is to be included in the sort.
If the record is to be included, phase 1 reformats the record into a sort record (according to
your specifications) and passes the sort record to the internal sort routine. (The details of
sort record handling are described in 10.4.)

Internal sorting is performed in main storage and produces strings of sequenced data that
are written as intermediate files to auxiliary storage devices (tape or disk). If the number of
data strings produced during the internal sort are few enough to be merged in one final
merge, phase 2, the preliminary merge is bypassed and control passes to phase 3 for final
merging and output to the output file. Otherwise, strings of sequenced data must be
continuously merged into larger and larger data strings until only one final merge
operation is required to produce an output file sequenced in the order you specified. Figure
10-5 illustrates data flow from the input file through internal sort processing.

When the internal sort is completed, control passes to either phase 2 or phase 3.

•

•

•

•

•

•

UP-8342 Rev. 3

INPUT
FILE

USER FILES

INPUT
FILE

INTERMEDIATE STORAGE

WORK
FILES

SPERRY UNIVAC OS/3
SORT/MERGE

INPUT
RECORDS

t--

--,
I
I
I
I +-

.., ...

F
SEQUENCED
STRINGS 0

SORTED
RECORDS

MAIN STORAGE

OPERATIONAL PHASE 1

INPUT READ SEGMENT

• INITIATES INPUT ROUTINE

- OPENS INPUT FILES
- VALIDATES FILE LABELS
- READS INPUT RECORDS

• BUILDS SORT RECORDS FOR
THOSE RECORDS TO BE SORTED
(FORMATIED ACCORDING TO
SEQUENCE SPECIFICATION)

110 BUFFER AREA

t
INTERNAL SORT SEGMENT

• SORTS RECORDS AS SETUP
BY ASSIGNMENT SEGMENT
OF PHASE 0

- ADDRESS OUT (ADDROUT)
SORT

- TAG ALONG SORT
- SUMMARY TAG ALONG

SORT

• GENERATES STRINGS OF
SORTED (SEQUENCED) DATA

• PASSES CONTROL TO NEXT
OPERATIONAL PHASE

f+-1

..

t-- -1

PASSES CONTROL TO OPERATIONAL PHASE 2

Figure 10-5. Operational Phase 1

PHASE 1 LOAD
MODULES --,

I
I
I
I
I
I
I
I
I

STORED DATA
STRINGS

10-7

SYSRES

YLOD

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

10.3.3. Phase 2: Preliminary Merge

10-8

When phase 2 receives control, the module executed for it continuously merges data
strings produced in phase 1. These merge passes occur between auxiliary storage devices,
each successive merge producing longer and longer sequenced data strings. When only
one final merge pass is needed to create a single sequenced string (final output string),
phase 2 passes control to phase 3. Figure 10-6 shows long sequenced data strings ready
to be given to the final merge phase as a result of phase 2 operations.

INTERMEDIATE STORAGE

WORK
FILES

MERGED
STRINGS

MAIN STORAGE

OPERATIONAL PHASE 2 f-.-
---·-----------

CONTINUOUSLY MERGES
RECORDS SORTED BY PHASE 1

INTO LONG SEQUENCED
STRINGS

t
T

-.- SORT WORK AREA

PASSES CONTROL OPERATIONAL PHASE 3

Figure 10-6. Operational Phase 2

PHASE 2 LOAD
MODULES

SYS RES

SYSLOD

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

10-9

• 10.3.4. Phase 3: Final Merge and Output

•

•

The final merge phase merges all data strings written to the work files into one sequenced
string and passes it to the sort output routine. The output routine opens your output file,
writes the output data, closes the output file, terminates the sort, and returns control to
the system. Figure 10-7 shows the data flow during phase 3 execution.

WORK
FILES

...,

....I

MAIN STORAGE

OPERATIONAL PHASE 3 --1

FINAL MERGE

t
1/0 BUFFER

SORT OUTPUT

SUPERVISOR

Figure 10-7. Operational Phase 3

PHASE 3
LOAD MODUL ES~---
--1 /

~ I
L--

"
'

-

L_

SYSRES

YLOD

OUTPUT
FILE

UP-8342 Rev. 3 SPERRY UNIVAC CS/3
SORT/MERGE

10.4. RECORD HANDLING DURING SORT

10-10

When your input records are read during phase 1 execution of the sort, SORT3 checks
each record to see if it is to be accepted or rejected on the basis of your sort
specifications. SORT3 builds a sort work record for each input record accepted into the
sort. The sort work record is reformatted to increase the efficiency of the sort process.
(SORT3 does not change the format of the actual input record.) In the reconstructed
format, control or key fields are placed ahead of data fields unless, of course, the control
fields are to be dropped during the sort.

CONTROL DATA DATA CONTROL INPUT RECORD I
FORMAT

'--~~~~~~L--~~~~~~'--~~~~~----''--~~~~~--'

SORT WORK RECORD I
FORMAT

'--~~~~~~...._~~~~~~L--~~~~~~'--~~~~~--'

CONTROL CONTROL DATA DATA

The placement of specific control fields and data fields within the sort work record is
defined by the parameters of your record type and field description specifications. For
example, assume you have identified positions 27 through 30 of your input records as a
primary control field, and positions 1 through 5 as a secondary control field. Positions 6
through 26 contain data. Your input record would appear as:

1 5 6 26 27 30

I • .. I I
INPUT

I I I Contml Field I RECORD Control Field DATA
FORMAT

When SORT3 accepts the input record for sorting, it repositions the record fields according
to the sequence you have specified. The primary control field appears first, the secondary
field next, and so on until all the control fields are properly positioned and followed by the
data fields. The sort work record would appear as:

SORT
WORK

RECORD
FORMAT

1 (27-30) 4 5 (1-5) 9 10

I Cont<ol Field I Cont<ol Field I

(6-26) 30

DATA

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

10-11

The sort work record is sent for initial {internal) sorting after it is constructed. SORT3 uses
the control fields to sequence the records in either ascending or descending order
according to your sort specifications. When all the records are properly sequenced, SORT3
writes the records to your output file. The output record format is the same as the sort
work record format unless SORT3 is instructed to drop control fields during the sort.

10.5. CHARACTERISTICS OF SORTS PERFORMED BY SORT3 PROGRAM

There are three types of sort jobs performed by SORT3: addrout {address out), tag-alone
(data fields can tag along with control fields in the sorted records), and summary tag-along
{data is summarized in the sorted records).

The output from an addrout sort job {Figure 10-8) consists of 10-byte binary relative
record numbers of the records in the input file.

NOTE:

An addrout sort can be used to process disk files only.

RECORD
ADDRESS

MAJOR
KEY

FIELD

33 001654

360 04 002992

180 06 007959

001 10 004570

INPUT FILE
(UNSORTED REOCRDS)

MINOR
KEY

FIELD

540 33 001654

001 10 004570

180 06 007959

360 04 002992

WORK FILE
(WORK RECORDS SORTED

ON MAJOR KEY FIELD)

Figure 10-8. Example of Address Out (ADDROUT) Sort

540

001

180

360

OUTPUT FILE
(10-BYTE ADDRESS RECORDS

SORTED ON MAJOR KEY FIELD)

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

10-12

The output for a tag-along sort (Figure 10-9) is a file of sorted records containing the
following:

1. Control fields and data

2. Control fields only

3. Data only

RECORD
ADDRESS

MAJOR KEY
FIELD

33 001654

360 04 002992

180 06 007959

001 10 004570

INPUT FILE
(UNSORTED RECORDS)

MINOR KEY
FIELD

WORK FILE
(SORTED ON MAJOR KEY FIELD)

540 33 001654

001 10 004570

180 06 007959

360 04 002992

180 06 007959

001 10 004570

360 04 002992

540 33 001654

540 33 001654

001 10 004570

180 06 007959

360 04 002992

Figure 10-9. Example of a Tag-Along Sort

OUTPUT FILE
(SORTED RECORDS)

33 001654

10 004570

06 007959

04 002992

(CONTROL FIELD AND DATA)

001654

004570

007959

002992

DATA

33

10

06

04

CONTROL FIELD

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

10-13

• The output for a summary tag-along is a file of sorted records containing the following:

1. Control fields, data fields, and summary data

•

•

2. Control fields only

3. Data fields and summary data

4. Data fields only

5. Summary data fields only

6. Control fields and summary data fields

10.6. RUNNING SORT3 FROM A WORKSTATION

OS/3 provides you with the capability of running sort jobs that use the SORT3 program
interactively from a workstation. The procedures used to build and prefile the control
stream for a SORT3 job closely parallel those applicable to independent sort/merge. (See
3.5.)

If a job has been initiated from a workstation, all messages will be displayed on the
workstation rather than the system console. This includes those messages that you have
specified to be printed on the system printer. (See 11.3.3.1.)

t

------ -----------------------

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-1

11. System/3, 32, and 34 Compatible -..
Sort Requirements You Supply

11.1. GENERAL

To run a SORT3 program, you are responsible for:

• Identifying your job to the system

• Assigning the devices needed for the sort

• Initiating execution of the sort program

• Defining the criteria for the sort

The first three items in our list of responsibilities are achieved through the use of control
statements in the job stream for SORT3. The last item is accomplished by a set of sort
specifications also included in the job stream. The detail involved in the preparation of the
control statements and sort specifications depends upon the complexity of the sort, the
system configuration in which you run the job and the size and format of your input files,
to name a few.

Preparation of the sort specifications will probably be the largest task in setting up your
job. As you know, these specifications define the criterion governing performance of the
sort. However, SORT3 simplifies this requirement by accepting the same sort
specifications that you used in the System/3, 32, or 34 environment, namely, the header,
record type, and field description sequence specifications. The format for these
specifications remains the same whether you use OS/3 job control or System/3 OCL to
run SORT3. Your responsibility is to prepare the sort specifications (as described in 11.3)
and include them as part of your control stream input.

The same does not hold true for the control statements needed to run your job. If you use
OS/3 job control, the control statements in your control stream must conform to the OS/3
JCL conventions as defined in the job control user guide, UP-8065 (current version). If you
use the OCL processor to run your job, the control statements appearing in your control
stream must conform to the System/3 OCL conventions defined in the System/3 to OCL
transition user guide, UP-8379 (current version). The advantage of having both methods is
that you can use your existing control streams. For example, the user who has a control
stream for running his sort job in a System/3, 32, or 34 environment can run that same
control stream in an OS/3 environment by use of the OCL processor. For those using
OS/3 job control, prepare your control statements and submit your job as you would for
any other OS/3 job.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-2

Typical job control streams for executing SORT3 under OS/3 JCL and the OCL processor
are shown in Figures 11-1 and 11-2, respectively.

These job control streams can also be created and executed from a workstation. (See 3.5.)

TERMINATES CARD
READER OPERATION

11 FIN

THE SORT /MERGE
CONTROL STATEMENTS

MARKS THE END
~--- OF JOB CONTROL STREAM

MARKS THE END OF
~---SORT SPECIFICATIONS.

PRECEDED AND FOLLOWED --
BY DATA SENTINELS.
(SEE 11.3.3.)

THE DEVICE
ASSIGNMENT SET

sequence

II JOB name

sort statements CONSIST OF ONE HEADER SPECIFICATION,
;--- RECORD TYPE SPECIFICATIONS (WHEN REQUIRED),

FIELD DESCRIPTION SPECIFICATIONS.

11 EXEC SORT3 MARKS THE BEGINNING OF
1----- SORT SPECIFICATIONS

1----- EXECUTES THE SORT3 PROGRAM.
ALWAYS REQUIRED.

DVC, VOL, LBL (FOR DISK) AND LFD
;--- JOB CONTROL STATEMENTS REQUIRED TO

ASSIGN THE OUTPUT FILE. EXT STATEMENT
IS ALSO NEEDED TO ALLOCATE A NEW DISK
FILE. (SEE 11.2.2.)

i---- DVC, VOL, LBL, (FOR DISK) AND LFD
JOB CONTROL STATEMENTS REQUIRED TO
ASSIGN THE INPUT FILE. (SEE 11.2.2.)

DEVICE ASSIGNMENT SET FOR THE PRINTER.
;--- ALWAYS REQUIRED. (See 11.2.2.)

1----- JOB STATEMENT IS ALWAYS REQUIRED TO INITIATE
THE JOB AND ASSIGN MAIN STORAGE.

Figure 11-1. Typial Job Control Stream for Executing SORT3 under OS/3 Job Control

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-3

'----- MARKS END OF JOB

I---- MARKS END OF CONTROL STREAM

SORT CONTROL STATEMENTS ----1

I I FILE NAME-OUTPUT.

,___ __ ALWAYS REQUIRED.
DEFINES OUTPUT FILE FORMAT.

REQUIRED WHEN SORT INCLUDES RECORDS HAVING
>---- DIFFERENT FORMATS OR ONLY SELECTIVE RECORDS

ARE SORTED

1----- ONE ALWAYS REQUIRED. DEFINES THE SORT

'---- ALWAYS REQUIRED. EXECUTES THE SORT3 PROGRAM

DEVICE ASSIGNMENT ----1 I I FILE NAME-WORK.
1---- ALWAYS REQUIRED. IDENTIFIES OUTPUT FILE

11.2.

SET

I I FILE NAME-INPUT.
1---- OPTIONAL. IDENTIFIES WORK FILE

I I LOAD $DSORT,unit
1---- ALWAYS REQUIRED. IDENTIFIES INPUT FILE

1---- ALWAYS REQUIRED. IDENTIFIES PROGRAM TO BE RUN .

Figure 11-2. Typical Job Control Stream for Executing SORT3 under OS/3 Operational Control
Language (OCL) Processor

PREPARING JOB CONTROL STATEMENTS FOR YOUR SORT

The job control statements described in this section are used to direct the system in
handling your SORT3 job in an OS/3 environment. They are responsible for:

• Identifying and scheduling your job

• Assigning system resources for your job

• Defining your input, work, and output files

• Initiating the SORT3 program

• Ending the job after the sort is completed

If you are running your sort under OCL processor, refer to the System/3 to OS/3
transition user guide, UP-8379 (current version), for information concerning the format
and use of the OCL control statements .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11.2.1. Identifying and Scheduling Your Job

11-4

The first statement in the job stream is the JOB statement. It assigns a unique name to
your job so that the system can distinguish it from other jobs being processed concurrently
with your job. The JOB statement also specifies the minimum and maximum main storage
requirements (in bytes) for the job and the priority of the job. The system will not schedule
your job or allocate the required system resources to it if the JOB statement is omitted.
The coding of a typical JOB statement may appear as:

I I JOB PYRLSORT,, 7000,9000

In the coding example of the JOB statement, PYRLSORT is the 8-character alphanumeric
name assigned to your job. The double comma indicates that you have elected not to
assign a priority level to the job. The system in this case assumes a normal priority. The
hexadecimal values 7000 and 9000 represent the minimum number of main storage bytes
needed to execute the largest job step of your job, and the maximum number of main
storage bytes requested (not required) to execute the largest job step of this job.

11.2.2. Assigning Devices to Your Job

The next series of job control statements that appear in the job stream are the device
assignment sets. Each device assignment set consists of as few as two job control
statements (DVC and LFD), or as many as five job control statements (DVC, VOL, EXT, LBL,
and LFD). The device assignment sets are used for the allocation of peripheral devices
needed for printing messages, inputting data, handling data during processing, and
collecting output data. They also identify the device type used, disk or tape volume
mounted, and the files to be processed. Each device assignment set begins with a DVC
statement that specifies the logical unit number for the device type upon which a
particular file is mounted and ends with an LFD statement that associates a logical file
name with that device. Detailed information about the device assignment statements and
a list of specific 110 device numbers are provided in the job control user guide, UP-8065
(current version).

The first device that must be assigned for the sort job is the printer. SORT3 requires this
device to print messages for operator action or information. The coding used to assign the
printer may appear as:

I I DVC 20 I I LFD PRNTR

In this example, the printer to be assigned to your job is logical device 20. It must be
assigned the system standard name PRNTR in the LFD statement.

Following the printer assignment set are the assignment sets for the input, work, and
output files. The pattern of each set is similar. That is, the specifications for each file
identify a device, a file on a volume, and a logical file name.

For example:

11 DVC 65 11 VOL SYS200 11 LBL PAYROLL 11 LFD INPUT
I I DVC 66 I I VOL SCR200 I I LBL $SCR1 I I LFD DM01
I I DVC 65 I I VOL SYS200 I I EXT SQ,C,CYL,5 I I LBL EXEMPT I I LFD OUTPUT

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-5

In this example, the first DVC statement assigns device number 65 to your input file
named PAYROLL. The second DVC statement assigns device 66 to a temporary work or
sort scratch file named $SCR 1. The third DVC statement also assigns device number 65 to
your output file EXEMPT. Unless your input files are very low volume, it is advisable to
assign one device for each sort work file and another device for your input and output
files. The sort operates more efficiently when one work file is assigned per device.

The VOL statements uniquely identify the volumes mounted on the devices you have
assigned. The input and output files mounted on device 65 are on volume SYS200 and the
work file is on volume SCR200.

By specifying the EXT job control statement in a device assignment set, you can provide
disk space for sort work files, designate information needed to create new files, or extend
existing disk files. Each EXT statement applies to the volume specified on the immediately
preceding VOL statement. In the example, the EXT statement is specified for the output
file to be created.

The LBL statements provide data management with the file identifier used to locate your
file on the specified volume. Only one LBL statement is allowed per device assignment set.
In the coding example, PAYROLL is the file identifier for the input file, $SCR1 is the
identifier for the work file, and the EXEMPT is the identifier for the output file.

To associate the file information in your job control stream with the data management file
definition, you must assign a logical or internal file name to each file. Logical file names
are assigned via the LFD statement. For the SORT3 program, you must use the system
standard names INPUT or INPUT1 through INPUTS for the input file and OUTPUT for the
output file. (You may assign a maximum of eight input files to your job providing they all
contain the same size records.) The LFD statements for sort work files must specify the
system standard names DM01 through DM03 or $SCR1 through $SCR3, in consecutive
order starting with DM01 or $SCR1. Therefore, the LFD statement for the work file in the
coding example is DM01.

Although the example shown uses disk devices exclusively for input, work, and output
files, you are not limited to disk for these files. In addition to disk, input files may reside on
card, magnetic tape, and diskette; work files can be on magnetic tape; and output files can
be written to magnetic tape and diskette. (SORT3 supports the following types of input
files: punch card, magnetic tape, diskettes, nonindexed and sequential nonindexed disk,
and IRAM. Output files supported by SORT3 are magnetic tape, diskette, nonindexed and
sequential nonindexed disk, and IRAM. SORT3 does not support ISAM files.) If the input
file resides on a device other than disk and the output file is written to a disk file, then the
output file is an IRAM file. If both the input file and the output file are on disk, the output
file is the same type as the input file.

11.2.3. Initiating the Execution of the SORT3 Program

The I I EXEC job control statement in your job control stream initiates the execution of the
SORT3 program. When processed, the EXEC statement causes the root phase of the
SORT3 program to be loaded from the system load library (SYSLOD) into the main storage .
The I I EXEC statement immediately follows the device assignment sets in the job control
stream. The format of the I I EXEC statement for SORT3 is:

I I EXEC SORT3

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11.2.4. Marking the End of Your Job

11-6

So far we have provided the system with all the control information and control data
needed to execute your job. Now you must mark the end of your job so that job control
does not confuse it with other jobs in the control stream. (This could occur when the
system finishes executing your job and queries job control for more input.) To mark the
end of job, place /$ job control statement at the end of the sort specifications in your job
control stream.

If no other jobs follow your job in the control stream, you'll want to terminate the card
reader operation. This is accomplished by including the I I FIN control statement as the
last statement in your job control stream.

11.3. SORT CONTROL SPECIFICATIONS FOR YOUR JOB

To determine which modules to include in the sort, SORT3 must be instructed how to
conduct the sort. Directing sort execution is accomplished through the use of sort
specifications. The specifications convey:

• what type of sort to perform;

• which record types to select for sorting;

• how to format the sorted records;

• how to format the output file; and

• what information (if any) is to be printed for user/operator use. The responsibility for
supplying the specifications to SORT3 falls upon you, the user.

The media used to present the specifications to the SORT3 program is punched cards;
however, job streams filed (via the general editor or job control language) in YJCS can
also be used. The SORT3 program accepts the specifications as control data and uses the
information presented in their parameter fields as the criteria from which it structures the
execution of its modules to sort the records of your file. The SORT3 specifications are:

• Header

• Record type

• Field description

The SORT3 specifications always follow the // EXEC statement in your control stream. A
start-of-data sentinel (/$) marks the beginning of the specifications, and an end-of-data
sentinel (/*) marks the end of the specifications in the control stream.

The three SORT3 specifications used to describe the sort and the information they convey
to the SORT3 program are summarized in Table 11-1.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-7

• Table 11-1. SORT3 Specifications, Type and Function

•

•

Specification Type Purpose

Header • Defines the type of sort conducted

• Defines format of the sorted file

• Defines the system information printed

Record type • Defines the record types to be included or omitted from the sort

Field description • Defines format of the output records

11 .3.1. Determining the Sort Specifications Needed

The number of sort specifications that must appear in your job control stream is based
upon the answer to two questions concerning your job.

1. Are all the records contained in your input file to be sorted?

2. Do all the records to be sorted have the same format?

If the answer to both questions is yes, you can bypass the normal specifiation requirement
of header, record type, and field description, and provide only the header and field
description specifications. The reason that SORT3 does not have to be selective in record
processing is because all the records are included in the sort and they are all of the same
type. (SORT3 considers the job to be an implied, include-all record type sort.) On the other
hand, SORT3 must be selective in its record processing whenever the answer to either or
both questions is no. Under these circumstances, you must identify the specific record
types you want included in or omitted from the sort. Therefore, a record type specification
must be included for each record type involved in the sort. The general rules for
determining how to include sort specifications in your job control stream are:

1. One header specification is required for every sort job and it is always the first
specification in the sequence.

2. A record type specification is required whenever the sort is not to include every
record in your file or the records selected for the sort have different formats. Under
these circumstances, a record type specification is required for each type of record.

3. Record type specifications are paired with field description specifications. A field
description specification must be provided for each record type specification appearing
in the job control stream.

4. Each field description specification immediately follows its associated record type
specification.

5. The paired record type and field description specifications follow the header
specification in the control stream.

The requirements for providing sort specifications and the sequence in which they must
appear in your job control stream are summarized in Table 11-2.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

Table 11-2. Conditions Governing SORT3 Specification Requirements

Record Format Number of Sequence Specifications Required
Records to (Arrange in Order Listed)
Be Sorted

Same for all All 1. Header
records to
be sorted 2. Field description

Not all 1. Header

2. Record type

3. Field description

First Record Type Format:

Severa I different All or specified 1. Header
formats for the number from the
records to file 2. Record type
be sorted

3. Field description

Second and Each Subsequent Type Format:

1. Record type

2. Field description

11.3.2. Numbering Your Sort Specifications

11-8

It is not required that you number the sort specifications appearing in your job control
stream. However, numbering does avoid the possibility of getting the specifications out of
sequence if you should accidentally drop or mix up the card deck containing the
specifications. When used, every sort specification in your job control stream must be
numbered so the SORT3 program can determine if a specification is out of order or if the
entire specification sequence is arranged in a descending order. Because SORT3 is
designed to process sort specifications numbered in ascending sequence, either of the
other two conditions mentioned causes the program to issue a warning message to the
operator and to halt the sort. The sort remains halted until the operator instructs SORT3 to
continue processing or to terminate the job. To avoid this problem, make ceratin that each
sort specification is properly numbered and that the entire sequence of specifications is
arranged in ascending order by those numbers.

What constitutes a properly numbered sort specification? To help understand sort
specification numbering, refer to the SORT3 Specifications form shown in Figure 11-3.
The SORT3 Specification form is designed so each page of the form contains the facilities
for specifying one header specification, one record type specification, and one field
description specification. As you can see, the field columns of the specifications
correspond to the columns of the punched cards used in your control stream. The purpose
of the form is to provide you with an easy method of organizing and defining the sort
specifications applicable to your sort. When you are satisified that the specifications are
properly defined and are arranged in the order you want them processed, transferring
them to the punched cards becomes a simple matter.

•

•

•

• • •
SPEl«Y+ UNIVAC SORT 3 SPECIFICATIONS

PROGRAM PROGRAMMER DATE PAGE OF PAGES

Header

FORMH

~ LARGEST c
< SORTA TOTAL OF -

CONTROL
w

SORTR '-' z
PAGE LINE SORTRS FIE LOS OF w

:::>
NO. NO. SORTT ANY RECORD :il

TYPE "'
1 2 3 5 6 7 12 13 17 18 19

H _J

RECORO I' j1~~\ el I FACTOR 1 REL

~
z
0

IPAGEI I ;:: NO. LINE ~ ~J LOCATION

NO. O ~ ~

EQ
NE
LT
GT
LE

~ g
z z

zO 0

!? ii: OUTPUT ct
NOT !i:o WO

0 .. RECORO "' >- RESERVED
USED .. :::> :::> u. z a. LENGTH .. cc - ..

"':::> ow
a. 0 Z>

25 26 27 28 29 32 33 34 35

_l _l

FACTOR 2 (FIELO OR CONSTANT)

I CONSTANT-~~~~~.-..

LOCATION

COMMENTS

40

l J I

COMMENTS

72 73

PROGRAM
IDENTIFICATION

PROGRAM
IDENTIFICATION

80

2 8 ul FROM TO

Record 11 213 5) 6 7 8 9 12!13

GE l!i:I FROM TO

16117 18119120 23124 39140 72173 80 27128

Type
I I I I I I I I ' I ' I I ' I I ' I I I I ' I ' I ' I I ' I -~-

..L+. I I I • ' • -J---L--1- 1 J__[__ L~~n=: : : : I : ~L-"-L_L~_L~I : I:_::-~=:~
__ L -1.. l_J.____L___l____J______.J___l_____L___ _l_~..J....._-.L .l.~~~~~--1

FORM
~ ~F COMMENTS

~ ..
"''-' w< .. "' '-'< <:I: z

~ PROGRAM LOCATION "''-' 0 RESERVED
~AG~ ~ <w-

LINE 5~~ z IDENTIFICATION
:::> 0

NO. NO. ii: 0 .. :::> "' 0 "' - z "' 0 ~;:::: .. ;;;; '-'"' z "' ~ FROM TO w :::> 0 0

"'"' '-' !!!

Field 1 2 3 5 6 1 8 9 12 13 16 17 18 19 20 22 23 39 40 72 73 80

F _l _l _l _l J_ _l

F _l l _l _l J_ l
F _l _l _l ..L l J_ l ..L ..l

F J_ J _l l J_ J_ ..L..L ..l

F J_ J_ ..l..L ..Ll ..l..L..LJ. J. J_ ..l ..l ..l..L..LJ. J. J_ J. ..L J. ..l ..L..L..l..L..L J. ..l ..L ..L ..L_l_

F J. ..1 _l J. _l ..1

Figure 11-3. SORT3 Specifications Form

c
" O:i
w

""" "' ::0
(1)

:<:
w

en
" m

en :o
o~
~c '- z s:: -
m~
::0 ()

~o
en
'w

I
<D

--------~------------------------------

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-10

Usually one page is sufficient to define all of the specifications needed to describe the sort
to the SORT3 program. If necessary, specifications can be continued on subsequent pages.
The important thing is to keep the pages arranged in ascending sequence. Therefore, every
page containing specifications for your job must be assigned a 2-digit page number.
Because the page number is applicable to every specification line appearing on the page,
the number is also entered in the Page No. field (columns 1-2) of each specification line.
For example, the first page is numb~r 01; all the specification lines on that page are
preceded with an 01 in columns 1 and 2. Subsequent pages would be numbered 02, 03,
and so on.

The specification lines on each page are also numbered in ascending sequence. A 3-digit
number specified in columns 3-5 (Line No. field) is used to identify each line. Make
certain you define the specifiations in the order in which they are to be procesed by
SORT3. It is suggested that you place a zero in column 5 of the Line No. field or leave this
column of the field blank to allow you the capability of inserting additional or out-of
sequence specifications. This method of numbering eliminates renumbering existing
specification lines whenever an insertion is required. To illustrate this, suppose you have
used three lines to define a record type and have numbered the lines 010, 011, and 012.
At this point you realize you omitted a line of the record type specification that should
have been defined second in the sequence. Your numbering scheme leaves no room for
insertion; therefore, you are forced to renumber all of the existing specification lines. Had
your specification lines been numbered 010, 020, and 030, inserting the out-of-sequence
specification line could have been accomplished simply by assigning it a number greater in
value than 010 and less than 020. As you can see, any value from 1 to 9 assigned to
column 5 will properly sequence the inserted line. Figure 11-4 illustrated sort
specification page and line numbering. Specification line and page numbering is important
because SORT3 compares the 5-digit number formed by the entries in the Page No. and
Line No. fields as the specifications are read. Improperly sequenced sort specifications will
terminate the job.

One other thing you must be concerned with when numbering sort specifications is the
page and line numbers assigned to the header specification. The header specification must
always be the first sort specification processed in the sequence. Therefore, it is always
defined on page 01 and is given the line number 000.

11.3.3. Preparing the Sort Specifications

Now that you have determined which sort specifications are required for your job, it is
time to define the specifications in a form recognizable to the SORT3 program: 80-column
card format.

11.3.3.1. Header Specification

The first sort specification that you must prepare is the header specification. This
specification allows you to identify the type of sort you want performed and to identify the
criteria for formatting the output (sorted) file. Figure 11-5 shows the format of the header
specification for each type of sort performed by the SORT3 program. The shaded areas
identify the fields that you must consider when preparing the specifications.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-11

SPE~Y+UNIVAC SORT 3 SPECIFICATIONS

Header

Record
Type

Field

Header

Header

Header

FORM

~H

PAGE LINE
NO NO

I 23 56 7

P,10.00H

RECOAO

~ ~
PAGE

NO. LINE
NO.

SORTA
SORTR
SORTRS
SORTT

CONTROL
FIELDS OF

ANY RECORD~
TYPE v.i

1213

FACTOR 1

LOCAT!ON

171819

RH

EQ

NE
LT

GT
LE

FROM TO GE ~

1 23 5 6 7 8 9 1213 1617181920

,.
z
0

~ NOT

USED

OUTPUT
RECORD
LENGTH

> RESERVED

~
2526272829 32333435 40

FACTOR 2 (FIELD OR CONSTANT)

CONSTANT

LOCATION

FROM TO

2324 2728 3940

COMMENTS

7273

.J.

COMMENTS

7273

PROGRAM

IDENTIFICATION

PROGRAM

IDENTIFICATION

80

80

k:ubio _l ~~+-~.J.-~~~~1-'-'-+-'-~~~~_j_~~~~~_j_~~~~~ L . .LJ_+J .. _

~h-o..._I b~l"-"l_g"'"l-+-+-+--"--"_j .•. t-~--jl--++ l '-~ ~~+ + L l '~~~-~- J_L .. L.+~~ +~ L~~~~~~~_J_~~~~~~~~-. " " " j

~11p..~_ +-+-~_j__j_~-+~~ ~ ~t- .. l +Lt-'~ ~~-+-'-LL L c '-' J-+-L_j__~~~~_j_~-+-'-~..L...L_J_ _, ..l ..l..l LL'

~ U:)C .I- --l. L_j__.__l____j__J____l_____l_.L____ _J_ _l___j_ J__L_L__L _L.~+_J_~~~~..L...L...1-_.i.....L-L.......L-~~~~~~L l 1 L i l 1

~b~\b4cf'-'..LI""'l-!-H-+-L-'-+~++Ltil-'-'-'-t~~~L ~~.J.~'--'--"~~-+-'-~.J.~J......L.~~'-'--'--'-+~
1

FORM

~F

LOCATION
AGE LINE
NO NO

FROM TO

F~
~

~<

LI<

liUH

J _J_ _J_

COMMENTS

RESERVED

1 2 3 5 6 7 8 9 1213 1617181920 2223 3940

b1b5c,

~H

PAGE LINE
NO NO

1 23 56 7

FORMH

~

PAGE LINE
NO NO

1 23 56 7

~H

PAGE LINE

NO NO

1 23 56 7

J

j

J

.J.

SORTA
SORTR

SORT RS
SORTT

SORTA
SORTA
SORTRS
SOATT

SORTA
SORTA
SOATRS

SORTT

J _J_

J _J_ _J_

J _J_ _J_

I _J_ _J_ _J_

_l _J_ _J_ _J_

_l _J_ _J_

Figure 11-4. Numbering Sort Specifications

LARGEST
TOTAL OF
CONTROL
FIELDS OF

ANY RECORD
TYPE

1213 171819

;;::LE~~ ~
CONTROL
FlELDSOF ~

ANY RECORD~
TYPE u:o

1213 171819

LARGEST Ei

" TOTAL OF
CONTROL
FIELDS OF

ANY RECORD::;:!
TYPE "'

1213 171819

.J.

NOT
USED

NOT

USED

NOT
USED

OUTPUT
RECORD
LENGTH

RESERVED

2526272829 32333435

...!..

40

J

a. Address out sort (SORTA)

OUTPUT

RECORD
LENGTH

RESERVED

2526272829 32333435 40

b. Tag-along sort (SORTR)

OUTPUT
RECORD
LENGTH

RESERVED

2526272829 32333435 40

c. Summary sort (SORTRS)

J

Figure 11-5. Header Specification Formats

J

J

J

J

J

J

COMMENTS

...!..

COMMENTS

COMMENTS

J.

PROGRAM

IDENTIFICATION

72 73

7273

7273

"'

PROGRAM

IDENTIFICATION

80

PROGRAM

IDENTlFICATION

PROGRAM
IDENTIFICATION

80

7273 80

t

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-12

Selecting the type of sort is accomplished by entering one of four sort names into the field
formed by columns 7 through 12 of the specification. Although four sort names are
provided for your selection, only three type sorts are possible: address out (SORTA), tag
along (SORTR), and tag-along summary (SORTRS). The SORTT entry is provided strictly for
System/3 compatibility and, when specified, produces a tag-along sort the same as the
SORTR entry. SORT3 will not execute if you omit this field from the specification. The sort
type entry must be left-justified in the field.

In addition to telling SORT3 which sort to perform, you must provide control field and
record sequencing information to the program. The control field information (specified in
columns 13-17) tells SORT3 how large a buffer it must provide to accommodate the
control fields used in sorting your input records. You can specify anything up to 256 bytes.
But rather than arbitrarily assigning a value to this field, you can compute the number of
bytes needed by totaling the lengths of the control fields for each record type involved in
the sort. (Control field types are discussed under column 7 of the field description
specification (11.3.3.3). Normal (N) control fields, opposite (0) control fields, and forced (F)
control fields are included in this calculation.) The largest total is the value entered in the
field. For example, three record types are described for your sort. The total length of the
control fields for the first record type is 10 bytes; the total length for the second reocrd
type is 12, and the total for the third record type is 8. A buffer size of 12 bytes can
accommodate all three, so this is the value you would specify in columns 13-17. The
entry must be right-justified in the field.

Record sequencing refers to how the SORT3 program sequences the records in the sorted
output file. You can specify either ascending or descending by entering an A or D,
respectively, in column 18.

With the exception of the Output Record Length field (columns 29-32), the remaining
fields of the header specification need only be specified if you do not want the program's
standard default options. For example, SORT3 uses a standard collating sequence for the
sort. If you want to specify an alternate sequence, you must specify the character S in
column 26. Of course, you must define characteristics of the alternate collation. This
requires you to prepare ALTSEQ statements and place them immediately after the header
specification in your job control stream. (ALTSEQ specifications are described in 11.3.4.)
When you specify an alternate collating sequence, make certain you do not use a packed
(P) or unpacked (U) Factor 1 in the record type specifiation. Otherwise, the proper records
may not be included in or omitted from your output file. The reason is that the ALTSEQ
specifications used to define your alternate collating sequence change the Factor 1 fields.
This change may affect the unit position and sign of an unpacked decimal number or any
one position of a packed decimal number. If it does, the basis of selecting records for the
sort is unpredictable.

The Print Option field (column 27) is also optional. Normally, SORT3 prints (on the system
printer) and displays (on the system console) sequence specifications, diagnostic
messages, program status messages, action messages, and other system messages. This
is the default case. You can limit or inhibit this service by specifying a 1, 2, or 3 in column
27. A 1 causes only program status messages, action messages, and other system
messages to be printed and displayed. A 2 causes only action messages and other system
messages to be printed and displayed. A 3 causes only other system messages to be
printed and displayed. Note that if a job is initiated from a workstation, messages will be
displayed on the workstation rather than the system console.

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-13

• If you requested one of the tag-along sorts for your job (SORTR, SORTRS, or SORTT), you
can have SORT3 drop control fields from the sorted output records by entering an X in
column 28. (Control fields are normally dropped when opposite fields or an alternating
collating sequence is specified. In both cases, SORT3 changes the control information
during the sort so it is meaningless as data. If, under these circumstances, you want to
retain the control information in the output record and keep it in a meaningful form, you
must define the control field twice: once as control fields and once as data fields.

•

•

Previously, it was stated that the Output Record Length field (columns 29-32) was a
required field. This is true whenever one of the tag-along sorts is to be performed. The
entry in this field depends on whether control fields are dropped from the sorted output
records (X in column 28). If the control fields are dropped, the length specified includes
only data fields. The calculation is similar to that for columns 13-17; total the length of
the data fields in each record type in the sort. Enter the largest value right-justified in the
field. If control fields are retained in the output records, total the length of the data fields
for each record type in the sort and add the largest value to the value entered in columns
13-17. Enter the sum right-justified into columns 29-32. Under both conditions, the
value entered must not exceed 4096 bytes.

The VERIFY option (column 34) can be used to improve program performance (throughput)
by requesting SORT3 not to verify the data written on the work files during the sort. If this
field is blank, data verification is performed automatically. To inhibit this feature, enter an
N in the field .

Columns 40 through 80 have no effect on program function. They are provided for your
comments and program identification. They can be printed out whenever the Print Option
field (column 27) is specified as 0 or left blank.

A summary of the field entries for the header specification is provided in Table 11-3.

Table 11-3. Column Summary for Header Specification (Part 1 of 2)

Columns Entries Explanation

1-2 00 Page number

3-5 000 Header number

6 H Header identification

7-12 SORTA Addrout sort job (disk files only)

SORTA Tag-along sort job

SORTRS Summary tag-along sort job

SORTI Tape sort (for System/3 compatibility only)

13-17 1-256 Longest control field used in sorting the reocrds (right-justified)

18 A Records in sorted file to be in ascending order by control fields

D Records in sorted file to be in descending order by control fields

19-25 Blank Not used

UP-8342 Rev. 3

Columns

26

27

28

29-32

33

34

35-39

40-80

SPERRY UNIVAC OS/3
SORT/MERGE

11-14

Table 11-3. Column Summary for Header Specification (Part 2 of 2)

Entries Explanation

Blank Use standard OS/3 collating sequence in compare operations.

s Use an alternate collating sequence in compare operations. ALTSEQ statements will define
the collating sequence to be used.

0 or Print and display:
Blank Sequence specifications

Diagnostic messages
Program-status messages
Action messages
Other system messages

1 Print and display:
Program-status messages
Action messages
Other system messages

2 Print and display action messages and other system messages.

3 Print and display other system messages only.

Blank Keep control fields in output records in tag-along sort job.

x Drop control fields from output records in tag-along sort job.

1-4096 Length of output records in tag-along sort job (right-justified)

Blank Not used

N Data written on the work file will not be verified.

Blank Reserved

Blank or Not used by SORT3. May be used for comments or program identification
any OS/3
characters

11 .3.3.2. Record Type Specification

The next sort specifications you must prepare for your job are the record type
specifications. Record type specifications are used for defining the types of input records
SORT3 is to include in or omit from the sort. Of course, there is no need to prepare record
type specifications if SORT3 does not have to be selective in sorting the records of your
input file. For example, if every record in your input files is to be sorted and the format of
each record is the same, SORT3 does not have to decide which records to include or omit.
You can, therefore, omit the record type specification from your job control stream. To
SORT3, the omitted specifications imply an include-all record condition for your sort. On
the other hand, a sort that includes or excludes specific record types requires you to
identify these record types to the SORT3 program. In this case, you must include a record
type specification for each record type to be sorted. Figure 11-6 shows the format of the
record type specification and the field entries you must consider for each type of sort
performed by SORT3.

•

•

•

•

•

•

UP-8342 Rev. 3

Record
Type

LEGEND:

PAGE
NO LINE

NO.

1 23 5 6

SPERRY UNIVAC OS/3
SORT/MERGE

FACTOR 1 REL FACTOR 2 (FIELD OR CONSTANT)

EQ
NE

LOCATION LT

GT

CONSTANT

LOCATION

FROM TO ~~ ~ FROM TO

9 1:13 lli 17 lB 19 20 2:h4 27 28 3940

G) Format when comparison involves input record field to a constant.

@ Format when comparison involves two input record fields.

@ Format when comparison involves input record field to a keyword.

Figure 11-6. Record Type Specification Format

COMMENTS

11-15

7273

PROGRAM
IDENTIFICATION

80

Before getting into the specifics of preparing the specification, let's briefly discuss how
SORT3 identifies records. Records are selected or omitted on the basis of a test or
comparison. That is, SORT3 looks at a particlar key field or fields (control and/or data) in
each record of your input file and compares the data in that field to a constant. keyword,
or the data in another field of the same record. (The data you are comparing is the Factor
1 field, and the data you are comparing it against is the Factor 2 field.) The results of the
comparison determine whether the record is selected or omitted from the sort.

What role do you play in this procedure for sorting records? You establish the criteria
upon which SORT3 makes its decisions. For example, the information coded in your record
type specifications:

• defines the length and location of the Factor 1 and Factor 2 fields used in the
comparison;

• provides the constant if it is used;

• provides the keyword;

• defines how the data contained in the factor fields is to be interpreted during the
comparison;

• defines what the results of the comparison must be; and

• decides whether the record type based on the results of this test is to be included in
or omitted from the sort.

The decision to include or omit the record type defined in the specification is based on
your entry in column 6 (Record Type field). An I in this field tells SORT3 to include in the
sort only those records that meet the comparison requirements set forth in the
specification. An 0 in column 6 instructs SORT3 to omit those input records that meet the
comparison requirements defined in the specification.

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-16

Why have an include an omit capability? Consider a file that contains many different types
of records and you want to include only a few types in the sort. You automatically exclude
all records not wanted by defining only those few types you do want sorted. Now, consider
a time when you want to include all but a few record types in the sort. Rather than
providing a description for each record included in the sort, you can simply describe the
few records you want omitted. The remaining record types are automatically included in
the sort. From this example, you can see the advantages of having both options available.

In normal practice, an omit record description is always followed by a special version on
the include record description referred to as an include all record description. The include
all description is defined by entering the charac~er I in column 6 and leaving blank the
fields (columns 7-39) of the specification related to describing the record type. This tells
SORT3 to include all record types in the sort not previously defined to be omitted or
included. If you use the include-all version, only one can be specified per job and it must
be the last record type defined for that job.

Because a record type description can extend beyond one line of code on the form, you
must define the relationship of one line to another. Column 7 is used to define this
relationship. A blank field tells SORT3 that this is the first line of code for the record
description. An A entry states that this line of code is a continuation of the preceding line.
(The A represents an AND function.) An 0 entry defines that the line of code applies to a
different record type than the one described on the preceding line, but the field
descriptions are common to both record types. (The 0 represents an OR function.)
Comment lines are defined by an asterisk (*) in column 7. Comment lines have no effect
on sort other than being printed if you have specified the Print option on the header
specification.

How should SORT3 interpret the data in the Factor 1 and Factor 2 fields during compare
operations? When these fields contain alphanumeric data, an entry of C, Z, or D must be
entered in column 8 of the specification. The specific entry made depends upon what
portion of the data you want included in the comparison. That is, alphanumeric data
comprises two portions: a zone portion and a digit portion. The Z entry instructs SORT3 to
use only the zone portion of the data. The D entry specifies only the digit portion and the C
entry instructs SORT3 to use both portions. If the Factor 1 and Factor 2 fields contain
numeric data, a P or U character must be specified in column 8. The P entry indicates the
data is packed and the U entry indicates the data is unpacked. Packed numeric data
always contains a sign (positive or negative) and only the digit portion of the data.
Unpacked numeric data also contains a sign but includes both the zone and the digit
portions of the data. As you can see, the data type, and the method of comparison used,
have some influence on the length of the Factor 1 and Factor 2 fields. Table 11-4 lists
the available entries for column 8 and the restrictions each places on the length of the
Factor 1 and Factor 2 fields.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

Table 11-4. Column 8 Entries and Their Effect on Factor 1 and 2 Field Lengths

Maximum Allowable
Column Entry Compare Operation Method Length for

Factor 1 and 2 Fields

c Use both zone and digit 256 bytes
portions of the bytes

z Use only the zone portion 1 byte
of the byte

D Use only the digit portion 16 bytes
of the bytes

p Packed numeric data 8 bytes or
15 digits and a sign

u Unpacked numeric data 16 digits

11-17

The remaining fields of the specifications pertain to defining the Factor 1 and Factor 2
fields for the sort, defining the conditions for field comparisons, etc.

First, let's discuss setting up the test conditions for the comparison. You have six test
conditions available to use in the comparison between the Factor 1 and Factor 2 fields.
Each condition instructs SORT3 to look for a specific test result from the comparison of
the two fields. The record is selected or rejected based on the results of the comparison.
Columns 17 and 18 are used for defining the results of the comparison. The entries for
this field and the restrictions in their use (where applicable) are given in Table 11-5.

Table 11-5. Test Relationships for Factor 1 and 2 Comparisons

Column 17-18 Entry Test Conducted

EQ Factor 1 field equal to Factor 2 field

NE Factor 1 field not equal to Factor 2 field

LT Factor 1 field less than Factor 2 field*

GT Factor 1 field greater than Factor 2 field*

LE Factor 1 field less than Factor 2 field*

GE Factor 1 field greater than or equal to Factor 2 field*

*These entries are not permitted when the comparison made involves only the zone portions
of the data (Z specified in column 8) .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-18

The time has arrived to discuss the Factor fields. First, let's approach the Factor 1 field
(columns 9-16). SORT3 does not interpret the entry in this field as actual data, but as the
location of the data within your input records. As you can see, the Factor 1 field is
composed of two parts. The first part (columns 9-12) defines the position at which the
data begins in the record. The second part (columns 13-16) defines where the data ends.
The number of positions from one point to the other also represents the length of data.
Technically, the length of the data defined in the Factor 1 field can be any number of bytes
from 1 to 256. In practice, however, this length cannot exceed the length of the records in
the file. In addition, the length specified in the Factor 1 field is restricted by how the data
is interpreted (column 8 entry) and whenever the Factor 2 field defines a constant or
keyword. The allowable field lengths and the restrictions other field specifications place on
this length are defined in Table 11-6.

Column 8 Entry

c

z

D

P*

U*

256

16

8

16

Table 11-6. Factor 1 Field Length Requirements

Maximum Factor 1 Field Length (in bytes)

When Factor 2 defines a constant, the length defined must not exceed 20.
When Factor 2 defines a keyword, the length must not exceed 6.

Because the field is packed, it can actually represent 15 decimal digits and a
sign.

*Do not use a packed or unpacked Factor 1 field if an alternate collating sequence is specified in the header
specification (S in column 26).

A few rules to keep in mind when coding the Factor 1 field are:

• All entries must be right-justified (the From Location must end in column 12 and the
To Location must end in column 16)

• You need not enter anything in the From Location when a Factor 1 field length of one
byte is defined.

In the brief description of how SORT3 compares the Factor fields, it was stated that the
_.. data defined by the Factor 1 field was compared against a constant, keyword, or the data

in another field of the record. This constant or field location is identified in the Factor 2
field (columns 20-39). Because the Factor 2 field can specify either of two types of
information, you must tell the SORT3 program how to interpret the entry in the Factor 2
field. If a C is entered in column 19, the Factor 2 field contains a constant. If it contains a
field position, enter an F in the column.

When the Factor 2 entry defines a field, only columns 20--27 are used. The length of the
field defined must be the same as that specified for Factor 1. It must also be in the same
record type as Factor 1. The purpose of the From Location and the To Location, and the
rules for coding, are the same as for the Factor 1 field.

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-19

All of the columns (20-39) are used when Factor 2 is a constant. However, the rules for
coding your entry depend on whether the constant is a packed or unpacked number, an
alphanumeric constant, a numeric constant, or a signed constant. In general, the constant
must be the same length as the Factor 1 field.

For example, if Factor 1 is a 4-position field, the constant field must take up four positions.
If the constant is the number 6, enter the 6 in column 23, and either leave columns
20-22 blank or fill them with zeros.

If the Factor 1 field contains a packed number, the length of the constant (including the
sign) must be twice the length of the Factor 1 field. The reason is that Factor 1 data is in
packed form, and the constant is in unpacked form. When alphanumeric constants are
specified (column 8 entry is C, Z, or D), the constant must be the same length as the factor
1 field and must always begin in column 20. When numeric constants are specified
(column 8 entry is P, U, or D), they must be right-justified within the field length defined in
Factor 1 (within twice the field length if Factor 1 is a packed number). For example,
assume that Factor 1 defines a 6-position field in the input record, and that Factor 2 is the
numeric constant 456. To right-justify the constant within six positions, put the constant
in columns 23-25. Because leading zeros are not required (to SORT3, blanks and zeros
look the same), columns 20-25 could contain either 000456 or 456 with three leading
blanks.

For signed constants, the last character in the constant must be its sign (+ or -) when
Factor 1 is a packed number. If Factor 1 is an unpacked number, and the constant is a
negative number, the last digit in the constant must be a character that indicates both the
numeric value of the last digit and the negative sign for the entire constant.

The following example shows the entries you make for records that have a packed -1 in
positions 1 and 2 of the record, an unpacked -24 in positions 5 through 8 of the record,
and an unpacked -10 in positions 11 through 16 of the record.

Record
Type

RECORD ,
TVPf (3

~ ~
FACTOR 1 REL FACTOR 2 (fl ELD QR CONSTANT] COMMENTS

EQ CONSTANT

~AGE ~ LOCATION ~~
NO LINE ~ ~ GT

NO. - ~ f2 LE '-'
2 8 ~ FROM TO GE ;:;:: FROM TO

LOCATION

1 23 5 6 7 8 9 1213 1617181920 2324 2728 3940

~~~-.~~~i~~ 

i 

PROGRAM 

IDENTIFICATION 

1273 80 

~~~tlj__lj,__J__l_/ 

As in the header specification, comments can be written in columns 40 through 80. They
have no effect on program functions, and are printed only if the Print Option is specified in
the header specification.

When the Factor 2 entry defines a keyword, the column 8 entry must be a C and the
column 19 entry must be a K. The permissible Factor 2 entries for a keyword are UDATE,
UDAY, UMONTH, and UYEAR. The Factor 1 field length must be 6 if UDATE is specified,
and the format of the date in the record field must be the same as UDATE. If UDAY,
UMONTH, or UYEAR is specified, the Factor 1 field length must be 2.

t

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-20

The following example shows the entries you make when you are comparing fields with
keywords.

RECORD ,

J,~~i ~ FACTOR 1 REL

EO
NE
LT
GT
LE

AGE
NO llNE ..

TO GE

Record I 2 J 5 6 7 8 9 12 13 161118

Type

it
1920

FACJOR 2 fflELD OR CONSTANT! COMMENTS

CONSTANT

lOCATJON

FROM TO

2324 2728 3940

PROGRAM
IDENTIFICATION

1213 80 __ __,_ _____________ ----+-----"!

As in the header specification, comments can be written in columns 40 through 80. They
have no effect on program functions and are printed only if the Print Option is specified in
column 27 of the header specification.

A summary of the field entries for the record type specification is provided in Table 11-7.

Table 11-7. Column Summary for Record Type Specification (Part 1 of 2)

Columns Entries Explanation

1-2 Page number

3-5 Line number (Leave column 5 blank or enter any value to keep the specifications in
ascending order.)

6 I Include.

0 Omit.

7 A And (These specifications continue the definition of the record described previously.)

0 Or (These specifications define a different type of record than the previous one.)

Blank First of a set of I or 0 record types

* Comment

8 c Use both zone and digit portions of characters.

z Use only zone portion of 1 -character field.

D Use only digit portion of characters.

p Signed packed decimal data

u Signed unpacked decimal data

9-12 1-4096 The input record position in which the Factor 1 field begins (blank if field is only one position
long)

13"'10- 1-4096 The input record position invvhich the Factor 1 field ends

•

•

•

•

•

•

UP-8342 Rev. 3

Columns Entries

17-18 EQ

NE
1---

LT

GT

LE

GE

19 c

F
--

K

SPERRY UNIVAC OS/3
SORT/MERGE

Table 11-7. Column Summary for Record Type Specification (Part 2 of 2)

Explanation

Factor 1 must equal Factor 2.

Factor 1 must not equal Factor 2.

Factor 1 must be less than Factor 2.

Factor 1 must be greater than Factor 2.

Factor 1 must be less than or equal to Factor 2.

Factor 1 must be greater than or equal to Factor 2.

Factor 2 is a constant.

Factor 2 is another field in the same input record.
·-------------

Factor 2 is a keyword: UDATE, UDAY, UMONTH, or UYEAR.

11-21

20-23 1-4096 The input record position in which the Factor 2 field begins (blank if field is only one position
long)

-------- - -- ----- f-

24-27 1-4096 The input record position in which the Factor 2 field ends

20-39 Any Factor 2 constant
characters

1---

40-80 Any Comments or program identification
characters

11.3.3.3. Field Description Specification

The last sort specification to be prepared is the field description specification. This
specification instructs SORT3 how to format the records in the output file. For address out
sorts (SORTA), the field parameters in each line describe the control fields used to sort
record addresses. For tag-along sorts (SORTR and SORTT) and summary sorts (SORTRS),
the field parameters in each line define the fields SORT3 uses to create the output records.
Figure 11-7 shows the format of the field description specification and the fields that must
be considered for each type of sort performed by SORT3. When writing records to a disk file,
SORT3 normally blocks the file by a factor of eight unless this block size exceeds 1024
bytes; in which case, the block size is made as close as possible to 1024 without exceeding
this value. If any record size exceeds 512 bytes, then the output file is unblocked. Records
written to diskette files are always unblocked, and the block size of records written to tape
files is specified by the user .

UP-8342 Rev. 3

FORM

~

Field I 23 56 1 8 9

LOCATION

FROM TO

1213 1617181920 2223

SPERRY UNIVAC OS/3
SORT/MERGE

RESERVED

3940

..L ..L ..L ..L

..L

F 11 ..J. ..J. ...!.

Field

Field

FORM

~F

l'AGE LINE
NO. NO

1 23

FORM

~F

:~· LINE

NO

1 23 "

" ~~
~~
~~
) 8

..L l ...L

t '- '4Vill ...1.

..L l ...L
dt\Tu1W .-1,;' ...L

..L l _l_

FORCED

LOCATION

FROM~ TO

9 1213 1617181920 2223

.,,
F _l l

LEGEND:

CD Defining normal control fields

@ Defining opposite control fields

@ Defining forced control fields

©
®

Defining data control fields

Defining summary data fields

a. Address out sort (SORTA)

RESERVED

39 40

..L

-1.

-1. J.

-1. J.

-1. -1.

..L

-1.

b. Tag-along sort (SORTR)

RESERVED

J.

-1.

-1.

-1.

..L

-1.

3940

..L

-1.
_L

..L

..L

J.

..L

c. Summary sort (SORTRS)

COMMENTS

...L

...L

COMMENTS

..L

-1.

J.

-1.

J.

..L

COMMENTS

-1.

J.

J.

J.

J.

..L

J.

-1.

..L

Figure 11-7. Field Description Specification Formats

...L

...L

...L

...L

..L

J.

J.

J.

...L

..L

-1.

J.

J.

-1.

-1.

..L

J.

-1.

..L

11-22

72 73

72 73

12 13

PROGRAM
IDENTIFICATION

.,

PROGRAM
IDENTIFICATION

.,

PROGRAM
IDENTIFICATION

.,

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-23

In reviewing the specification formats, note that columns 7-16 must be specified for all
sort jobs. Columns 17-19 are applicable only when forced control fields are used, and
columns 20-22 apply only to summary sorts.

To make certain SORT3 properly interprets the contents of the field description
specification, you must define whether a control field, data field, or comment is being
described in each specification line. Defining the field type is a function of the entry in
column 7 of the specification. Data field descriptions are indicated by a D entered in the
column, comments are indicated by an asterisk (*) in the column, and summary data are
indicated by an S in the column. Control field descriptions are indicated by column entries
of N, 0, or F depending on the type of control field described (normal, opposite, or forced).

Data field descriptions are applicable only to the tag-along sorts (SORTA, SORTRS)
performed by SORT3. They define the fields you want SORT3 to include in your sorted
output records. They are not used for defining the fields used in sorting the records. When
your input file contains more than one type of record, it is not necessary that the total
length of data fields defined be the same for all record types, or that all record types
contain the same number of data fields.

The SORT3 program blank-fills short data fields to maintain a uniform length for all data
fields. It is necessary that within each set of included record type and field description
lines, the data field description lines follow the control field description lines in your
control stream. (SORT3, when building work records, requires control records to appear
ahead of data records.)

Do not include data field descriptions in your control stream for address out sorts (SORTA)
because SORT3 will process the description line as a comment. In mentioning comments,
it should be pointed out that comment lines serve no function other than helping you
document the sort. When properly identified (* in column 7), they can be coded anywhere
in the specification. However, it is preferred that they be coded in columns 40-80 to
avoid confusion. Comments are printed only when the Print Option (0 or blank in column
27) is specified in the header specification.

Summary data field descriptions (S in column 7) can be defined for all three sort jobs
performed by SORT3. However, the data fields are summarized (added together) only in
the summary tag-along sort (SORTRS). For tag-along sorts (SORTA and SORTI), summary
data fields are processed as normal data fields. For address out sorts (SORTA), the
summary data fields are processed as comments.

It is important, when performing a summary sort, that the summary data fields in the work
and output records of the individual record types be located in the same position on each
record. This is not a consideration for the input records. No more than 24 data fields can
be summarized for each record type included in the sort .

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-24

The format for summary fields is defined by the first summary field description •
specification processed for an included record type. It is suggested that a summary
specification be specified for each record type included in the sort. The advantage is that
SORT3 will issue a warning whenever summary fields are not aligned; you can then make
the changes necessary. If summary field specifications are not provided, the data field
specifications should align the data for summarization. If summary specifications are not
provided when a summary tag-along sort (SORTRS) is specified, the output of the job
produced a file consisting of records with unlike control fields. This is due to the fact that
SORT3 eliminates all but one copy of each record having common control fields.

Another consideration when defining summary data fields is the possibility of overflow. To
allow for the possibility of an anticipated overflow condition, you should complete the
overflow field length entry in columns 20-22. These columns are used only by a
summary tag sort to eliminate the possibility of an overflow condition. (An entry in the
overflow field length columns is ignored for forced fields because they are only 1-byte in
length.) The entry made in columns 20-22 effectively increases the length of the
summary data field and should reflect the sum of the summary data field length and the
anticipated overflow length. Entries in columns 20-22 must also be right-justified and
must not exceed the maximum field length determined by your entry in column 8.

To illustrate the coding for columns 20-22, assume you want to summarize an unpacked
field in positions 8-11 of the input record. You know that the output will exceed the 4-
position summary field by 1 position. To allow for the expected overflow; specific an entry
of 5 in column 22.

If packed fields are summarized, columns 20-22 should specify the number of bytes of
packed data. For example, to summarize a packed field in positions 3-6 of the input
record, knowing that the output will exceed the 4-position packed summary field (7
numbers plus sign) by 1 position, specify a 5 in column 22 (9 numbers plus sign).

Normal control field descriptions are used to sort records in the normal sequence as
specified by the sequence field (column 18) in the header specification for the job.

Opposite control field descriptions are also used to sort records. However, they instruct
SORT3 to sequence the records opposite to that specified by the sequence field in the
header specification.

By defining normal and opposite control fields for your job, records can be sorted so some
control fields are in ascending order and other control fields are in descending order.

Force control field descriptions are used to modify the contents of control fields in the
work records constructed for the sort. Forced control field descriptions affect work records
and output records, but not your input records.

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-25

When a line of the specification is identified as a forced control field line (F in column 7),
SORT3 looks at columns 9-16 to identify the position of the control field in the input
record, then it checks columns 17-19 to see how the control field is affected. That is, the
entries in columns 17-19 tell sort how to modify the control field when it is placed into
the work record. The column 17 entry specifies which character in the control field
(identified in columns 13-16) SORT3 is to replace. The entry in column 18 gives the
replacement character for the field or, when column 17 is not used, adds a new character
to the control field identified. The column 19 entry shows a continuation in the force field
description (relates the specification to the preceding specification line). To review the
various conditions under which you may use forced control fields, three examples are
provided as follows:

Example 1:

Example 1 illustrates a conditional force. Assume that each record in the file to be sorted
has a 1-byte control field in record position 10. If the byte contains the charcter R, SORT3
replaces it with the character H before sorting the records. The field description
specification is coded as follows:

Ftekt

FORM
TYPE F

~
~AGE LINE ~ ~

NO. NO. ~ ~

~~

1 23
'' 7

• 9

F F]Q
1213

_L

_L

_L

_L

COMMENTS

RESERVED

161118 1920 2223 3940

1.0 H _L ...L _L

_L ...L ...L _L

_L ...L _L _L

_L ...L _L _L

_L ...L _L _L

...L

The SORT3 program constructs a work record for the selected input record.

Input Record

Data R Data

1 -byte control
field in record
position 10

Constructed Work Record

R Data

1 -byte control field

PROGRAM
IDENTIFICATION

72 73 80

--.....,

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-26

The content of the control field is checked for the character R. If it contains an R, the
control field content is changed to H in the work record.

Original Work Record Modified Work Record

Data H Data

Example 2:

Example 2 illustrates an unconditional force. An unconditional force allows you to add
(force) a new character into your output records. This is done without basing the force on
a specific control field of the input record as you would for a conditional force. Therefore,
you do not code columns 9-16 of the specification. However, you must define the
character that is being forced. You define this character in column 18.

The position that the forced character occupies in the output record is determined by the
sequence in which it appears in your control stream. That is, if it is the first control field
specification defined in your control stream, it will be the first control field in the output
record. This is shown in the following coding:

FORM

i-E!!!-F COMMENTS

RESERVED PROGRAM
IDENTIFICATION

Field 1 13 ,, ' • g 1213 16171 81920 '"' 3940 72 73 80

,!Fie _[_

[_[_ _[_ _[_ ...l

[_[_ _[_ ...l
. _[_ _[_ _[_ ...l ...l

[_[_ ...l ...l ...l_

..L _[_ ...l

•

•

•

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-27

When processed, this specification instructs SORT3 to place a percent sign in the first
control field position of the work and output records. All other control fields are positioned
after the percent sign. For example, if the input record format appears as:

Control Control
Data Field Data Field Data

A B

The work record constructed from the field specification appears as follows:

Control Control
% Field Field Data

A B

If the forced control field is defined after the field descriptions for A and B, then the
percent sign (%) occupies the third control field position (first undefined control field
available) in the record. The work record constructed from the specification would appear
as:

Control Control
Field Field % Data

A B

UP-8342 Rev. 3

Example 3:

SPERRY UNIVAC OS/3
SORT/MERGE

11-28

Example 3 illustrates a force-all condition. Force-all is a special form of conditional force
(Example 1) that can only occur when a control field in the input record does not contain a
particular field entry. If, for example, a specific control field in the input record does not
contain a particular character, you can direct SORT3 to change the contents of the control
field in the work record. Force-all specifications usually follow a series of conditional force
specifications. In the specifications shown, SORT3 checks the 1-byte control field in
position 1 to see If it contains the characters A, B, or #. If it does, A is replaced with the
character 2, B is replaced with a 4, and #with a $. If the control field does not contain an
A, B, or # entry, SORT3 places + in the control field.

FORM ;r COMMENTS

~
;; uc

c % z z;:
~~ LOCATION ~uo RESERVED

~··~ ~~~
~~~ 

LINE o~z 

~I 
~Zo 

NO NO. ::: ~ ~ 

~i~ 
WO~ 
>~~ 

~~ FROM TO O~o 

~" 

PROGRAM 
IDENTIFICATION 

FM!ld 1 23 56 ) 8 9 1213 16171 81920 2223 3940 72 73 ., 
,N=~ _j_ l~Z _j_ _j_ _j_ _j_ 

•IFld _j_ 1 IB lxl _j_ _j_ 

•FH _j_ J_~ lxl_j_ _j_ _J_ _j_ 

F FEI _J_ IXI J_ _J_ _J_ _J_ 

F _j_ _j_ _j_ _J_ 

F _j_ _j_ ..l. ..l. 

Note the use of the X in column 19. This shows that each specification is a continuation of 
the preceding line. 

SORT3 replaces the specified control fields with hexadecimal FF or 00 if (depending if 
ascending or descending sequence is specified in the header specification): 

• the force-all specification did not follow the conditional force specifications; and 

• SORT3 cannot locate any of the characters specified in the conditional force 
specification. 

The following list summarizes the rules for coding the field description specification for 
forced control fields: 

Defining a Conditional Force Character 

Fill in columns 1-6 as for any control field. 

Put an F in column 7. 

Define the position of the control field in the input record in columns 13-16. 

Enter the character to be replaced in column 17. 

Enter the character it is to be replaced with in column 18. 

• 

• 

• 



• 
UP-8342 Rev. 3 

Defining a Force-All Character 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Fill in columns 1-6 as for any control field. 

Put an F in column 7. 

Enter the character which replaces the control field in column 18. 

11-29 

Put any character in column 19. (The character in column 19 tells SORT3 that 
the line is a continuation of the preceding line.) 

Leave columns 9-17 blank. 

NOTE: 

If a force-all line is not placed after conditional force and SORT3 does not find the 
specified characters in the control field of the input record, then SORT3: 

1. replaces the control field character with hex FF (if ascending sequence is specified in 
the header); or 

2. replaces the control field character with hex 00 (if descending sequence is specified 
in the header). 

• Defining an Unconditional Force Character 

• 

Fill in column 1-6 as for any control field. 

Put an F in column 7. 

Put the character to be forced in column 18. 

Leave columns 9-17 blank. 

After defining the type of field being described, you must indicate to SORT3 what portion 
of the input record it must use to build and sort work records. This definition is the 
function of the entry made in column 8. If the data to be used is alphanumeric, you can 
enter the characters C, Z, or D in column 8. A C entry tells SORT3 to use both zone and 
digit portions of the data bytes in the fields defined. If you only want SORT3 to use the 
zoned portion of each byte, enter a Z in column 8. The D entry limits SORT3 to use of the 
digit portion of each byte. When numeric data is used for building and sorting work files, 
you must define to SORT3 whether the data being used are signed packed decimal 
numbers or signed unpacked decimal numbers. This is accomplished by entering a P or U, 
respectively, in column 8 . 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

11-30 

In a situation where SORT3 is to force characters into a data field of the work record, 
enter a V in column 8 and define the character to be forced in column 18. 

To illustrate how the column 8 entry functions, assume that a 1-byte control field in the 
input record can contain any one of the following characters: 

Character Zone Digit 

$ 0101 1011 

A 1100 0001 

B 1100 0010 

c 1100 0011 

If you wanted the records sorted into ascending order using the digit portion of the control 
field characters, put a D in column 8. The characters will appear in the following order in 
the output record: 

A 

B 

c 

$ 

If the records are to be sorted into ascending order using both the zone and digit portions, 
enter a C in column 8. The order of the characters in the output records will be: 

$ 

A 

B 

c 

If you had a Z entered in column 8, and specified ascending sequence in the header 
specification, the records with an $ control field precede records with an A, B, or C control 
field. Because A, B, and C have identical zone portions, records with any of these 
characters as a control field will not be any special order after the sort. 

• 

• 

• 



• 

• 

• 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

11-31 

If you want to sort records so that some control fields are in ascending order and other 
control fields are in descending order, opposite control fields should be used. An opposite 
field is sorted in ascending order if descending order is specified on the header 
specification, or in descending order if ascending order is specified on the header 
specification. If the file contains different record types, all of which have an opposite 
control field in the same record position, the column 8 entries for all these control fields 
must be D, C, Z, or any combination of C and Z. With any other combination, the results of 
the sort will be unpredictable. 

NOTE: 

When using opposite control fields, SORT3 changes them into meaningless control field 
information when building the work record. Therefore, information is usually dropped by 
coding an X in column 28 of the header specification for tag-along or summary sorts. To 
retain the original control field data in the output record, repeat the description for the 
information as a data field. The same holds true when using packed or unpacked control 
fields. 

If you specified packed or unpacked control fields (normal or opposite), SORT3 changes the 
control fields while building the work record. Therefore, the control field information must 
be dropped by coding an X in column 28 of the header specification. To retain the original 
control field data in the output record, redefine the information as a data field. 

When using control fields to sequence information in the sorted records, the following 
rules must be followed: 

• Only one character is allowed in a forced control field. 

• Either a conditional or an unconditional force can be indicated. 

• A force-all must be preceded by a conditional force. 

• A forced control field can be defined by placing an F in column 7 of the field 
specifications. 

The order in which control fields are described in the field specification lines determines 
the sequence of the records (tag-along sort) or the record addresses (addrout sort) in the 
sorted file . 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

11-32 

Suppose a file is to be sorted in ascending order (A in column 18 of the Header line) and 
each record in that file has a normal control field in positions 1-2 and an opposite control 
field in positions 5-7. Each record represents one customer's order for a separate item. 
The part number is in position 1-2; the number of parts ordered is in positions 5-7. The 
unsorted file appears as: 

Input 
Record 
Name 

0 

1 

2 

3 

4 

5 

6 

1 2 

2 0 

4 0 

3 0 

1 4 

6 0 

3 0 

6 0 ------Part 
Number 

Input Record Position 

3 4 5 

3 

2 

6 

4 

1 

6 

0 

5 

0 

5 

7 

5 

3 

Number 
Ordered 

7 

0 

0 

0 

0 

0 

9 

0 

The first control field can be used to sort the records in ascending order according to the 
part number. The second control field is then used to sort the number of parts ordered in 
descending order within each group of parts. The field specification would be coded as 
follows: 

FORM FO~EO COMMENTS 
~ -----., 

~< 
~~ 

~ 
Uc 
<:z :;;: 

LOCATION ~uo RESERVEO 
AG~ LINE ;;: ~~~ 

~~~ 
o~z

NO NO ~ ~;~

~
~ t; ~ ~ g le

FROM TO ~as O~o ~"

PROGRAM
IDENTIFICATION

Field I 23 '') • 1213 1611 181920 2223 3940 72 73 ..
''" I _2J ~. 1'1-tI.~. C0.1-1.T'.ROL ~'D
,h i_.S _1J _j_ _J__ ID~.1H:!S ·I<\...... ~EJ-1>
dn ' 2 _J__ loo.:rA_ c~~ ~ _J_

<ll'l i_1S 2 _j_ _J__ ~ --- .i=":r:E.L.1l _J_
f _J__ _j_ _J__ _j_ _J_ _J_

F _J__

•

•

•

UP-8342 Rev. 3 SPERRY UNIVAC OS/3
SORT/MERGE

11-33

• The sorted output file is formatted as follows:

•

•

Output
Record
Number

0

1

2

3

4

5

6

Output Record Position

1 2 3 4 5

1 4 4 5 0

2 0 3 0 0

3 0 6 0 0

3 0 5 9

4 0 2 5 0

6 0 1 3 0

6 0 7 0 _______ ---.......----..... --
Part

Number
Number
Ordered

After completing the column 7 and 8 entries, you must identify where the record field
being used starts and ends in the input record. The position at which the field begins in
the record is entered (right-justified) in columns 9-12 (From columns). The position at
which the field ends in the record is entered (right-justified) in column 13-16 (To
columns). The order in which the fields are described in the specification determines the
order they appear in the sort output records. For example, suppose you have an input
record that looks as follows:

Record Field Positions

Part Cost Stock Limit
(part number) (price per item) (balance in stock) (reorder limit)

1 5 6 7 12 13 14 15 21 22 23 29

But you want your output (sorted) record to look like:

Part Limit Stock

1 5 6 12 13 19

UP-8342 Rev. 3 SPERRY UNIVAC OS/3

SORT/MERGE
11-34

To format the output record, columns 9 through 16 would have to be coded as follows:

FORM
TYPE F

FORCED COMMENTS

w<

;, LI<
<x

~~~~ ~~ 
LOCATION ~u RESERVED 

AGE 
<w 

LINE %~ ~o t:1 z 

~~ 
< ... z 0 

NO. NO. ~~ ~~~~ 

~~ FROM TO ~~ ~~~i 

PROGRAM 
IDENTIFICATION 

Field I " '' 1 8' 1213 1617 181920 2223 3940 72 73 

F~ __!_ I -5 _l_ _[_ IB8KI_ _l_ 

,il)r 1231 _2q __!_ _[_ ~l'lll_ _l_ 

,Jt: _u_sj _z_lJ _l_ _[_ ~ J_ 

F __[_ __[_ _[_ J_ J_ 

F _[_ J_ 

F 

80 

The limitation to the maximum length of the field described in columns 9-16 is 
determined by the entry in column 8. 

Column 8 
Entry 

c 

z 

D 

p 

u 

v 

Maximum Allowable 
Field Length 

(bytes) 

256 

16 

8 

16 

1 

When fields 1-byte in length are being described, leave columns 9-12 (From) blank, and 
enter the record position of byte right-justified in column 13-16. 

Comments pertaining to field description specification are coded in columns 40-80 and 
have no effect on the sort function. Comments are printed only if specified in Print option 
of the header specification. 

A summary of the field entries for the field description specification is provided in Table 
11-8. 

• 

• 

• 



-----------------------

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

11-35 

• Table 11-8. Column Summary for Field Description Specification 

Columns Contents Explanation 

1-2 Page number 

3-5 Line number (Leave column 5 blank, or enter any value to 

keep the specifications in ascending order.) 

6 F Field specification line 

7 N Normal control field 

0 Opposite control field 

F Forced control field 

D Data field 

s Summary data field 

* Comment 

8 p Signed packed decimal data 

u Signed unpacked decimal data 

c Use both zone and digit portions of bytes in the field. 

• z Use only zone portion of 1-byte field . 

D Use only digit portion of bytes in the field. 

v Force a data character into the data field. 

9-12 1-4096 Starting position of field in the record (blank if field is one byte long) 

13-16 1-4096 End position of field in the record 

17 Any character Forced control fields only (the character the sort is to change) 

18 Any character Forced control fields only (the character to substitute) 

19 Blank Forced control field line is not a continuation of the preceding line. 

Any character Forced control field is a continuation of the preceding line. 
other than blank 

20-22 1-256 Summary tag-along sort only (overflow field length entry) 

23-39 Not used Not used 

40-80 Any character Comments or program identification 

• 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

11.3.4. Defining an Alternate Collating Sequence 

11-36 

If you elect to use a collating sequence other than the standard collating sequence 
provided by the SORT3 program, you are required to define the alternate collating 
sequence to be used in its place. To do this, you must prepare alternate collation (ALTSEQ) 
statements and include them in your job control stream. ALTSEQ statements are prepared 
in 80-column punch card format and are positioned immediately after the header 
specification in the control stream. A punch card with double asterisks (** in columns 1 
and 2) immediately follows the ALTSEQ statements to mark their ending in the job stream. 
When inserted into your job stream, ALTSEQ statements should appear as follows: 

Job control statements 

I I EXEC SORT3 
/$ 
Header specification 
ALTSEQ statements 
** 
Record type/field description specifications as required 
/* 

Job control statements 

You may include as many ALTSEQ statements as needed to define the alternate collating 
sequence. Each new statement, however, must begin in column 1 and must begin with 
ALTSEQ. 

The rules for preparing ALTSEQ statements are as follows: 

1. Enter ALTSEQ in columns 1 through 6. 

2. Leave columns 7 and 8 blank. 

3. Enter, into columns 9 and 10, the hexadecimal equivalent of the character being 
moved from its normal position in the collating sequence. 

4. Enter, into column 11 and 12, the hexadecimal equivalent of the character whose 
position in the collating sequence is to be assumed by the character specified in step 
3. 

5. Repeat steps 3 and 4 for as many pairs as required to define the characters that must 
be taken out of the normal sequence. Do not leave spaces between sets of 
hexadecimal entries. 

6. End the series of statements by placing a card with double asterisks(**) in columns 1 
and 2 after the last ALTSEQ statement. 

• 

• 

• 



• 

• 

• 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

11-37 

Although AL TSEQ statements do not affect data fields or forced control field characters, 
they do affect Factor 1 and Factor 2 fields, normal and opposite control fields, and control 
field characters before they are replaced or added to by forced fields. 

You should consider what effect an alternate collating sequence will have on these fields 
for your particular job. In addition, packed and unpacked Factor 1 and 2 fields must not be 
specified when an alternate collating sequence is used. 

Another consideration when using an alternate collating sequence is whether the 
characters moved in the sequence are considered equal or unequal. That is, when a 
character is moved into the sequence position normally assigned to another character, 
both the new and the original character occupy the same position. They are considered 
equal. If they are not to be considered equal, the character that originally occupied the 
position must be moved to another position. To illustrate this point, two examples are 
provided. The first example shows the coding required to change one character in the 
sequence (characters are considered equal). The second example applies to changing 
several characters where they are unequal. 

Example 1: 

ALTSEQ 505B 
** 

The character defined by hexadecimal 50 (&) is moved to the position defined by 
hexadecimal 5B ($). The ampersand and the dollar sign both occupy the same position and 
are therefore considered equal. 

Example 2: 

ALTSEQ 4EF3F3F4F4F5 
** 

The characters represented by the hexadecimal values shown in the ALTSEQ format are 
as follows: 

=I= 4E 

3 F3 

4 F4 

5 F5 

The format shown moves the character =I= into the position occupied by the character 3. 
Because you do not want them to be considered equal, you must move the character 3 to 
another position. To maintain the proper sequence in the collation, the character 3 is 
moved into the character 4 position, 4 is moved into character 5 position, and so on. 
Basically, you have altered the collating sequence so that =I= is inserted between 2 and 3 . 



-------------------

• 

• 

• 



• 

• 

• 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

12-1 

12. System/3, 32, and 34 Compatible Sort 
Program and Control Stream Examples 

12.1. GENERAL 

This section contains examples that illustrate program coding and job control streams for 
the System/3, 32, and 34 compatible sort operation. The first three examples illustrate ~ 
only the sort specifications, and the four remaining examples show complete job streams 
with the sort statements included. 

12.2. SORT PROGRAM CONTROL SPECIFICATION EXAMPLES 

The following three examples illustrate only the sort specifications used for an address out 
sort, a tag-along sort, and a summary sort. 

Example 1 shows the sort specifications for an address out sort. The purpose of the job is 
to produce an output file containing the 10-byte relative addresses of all the records in the 
input file. The records are sorted in ascending order by company division number (control 
field position 39-41 of the input record), and then by employee life number (control field 
position 1-6) within each division. You would code the sort specifications for this job as 
follows: 



UP-8342 Rev. 3 

Example 1: 

SPERRY UNIVAC OS/3 
SORT/MERGE 

12-2 

SPE~Y+UNIVAC 
SORT 3 SPECIFICATIONS 

PROGAAM __________ PROGRAMMER ___________ OATE ____ pAGE__l____OF __l__PAGES 

....... 
~H 

SORTA 
SORTA 

PAGE LINE SORT RS 
NO NO SORTT 

" ~:::LE~~ ~ o 
CONTROL '"' NOT OUTPUT o ~ 
FIELOSOF ~ USEO RECORD ~ !: RESERVED 

AN\~~ORO ~ LENGTH ~ ~ 

COMMENTS 

PROGRAM 
IOENTlFICATION 

µ_ ! 6 ,·-·---j"f-"----1"-j"._" ----="++++"'----="+I"+~"+''-' ---+'.:c.' _______________ .:.c:"+-"'-------1'° 
0 I 000 H .s /lJtTA 

RECOAO 

~~ 
RH FACTOR 2 (FIELD OR CONSTANT) 

f------1-,-0 CONSTANT 

FACTOR 1 

~AGE ~ LOCATION ~~ LOCATION 
NO LINE ~ ~ GT 

NO ~ ~ § FROM TO ~~ ~ FROM TO 

.J. 

COMMENTS 

PROGRAM 
IDENTIFICATION 

Record 1 23 S6 7 89 -~'l-~~19~!_3_~---~-- __ ____:'::.i'.:.:."-----------------''.:i.":c..'-----1" 
Type - - 1~-'-+~-'-+~.l.. '~-'--'--'--'--"--"--'-+-"--"-

_.L.__l __ .L 

Field 

locLo_ F IOJ. rlr ,_ •. Q ..'LI. 
loJ. ~· rl~ I ..A 

F 

F ..1 
F __! 

f 

_j ~ c 

..1 

..1 

..1 

.~.L..i-.L.c...L..i-J....L.J....L.~.l..L.L.J....L.J....L.J....L.J....L.~~-'-

.l -1 ,_ 1 -'- _, -'---, ~ -~ • , 1- .._ , _ ___.--' ___.____.__l_~-"--"-~-"--"--'--'-~-'--'--'--'--'--'-~~.L.f _i_L_L_j_ J._ 1 i_ _ 

_l LI .i 1 1 1 IL L_l_ ---'-. -'---'-:... •-' j._! _ _L_l_l.____J_-L...L.~~~i~-L...L.~~~~-L...L.+-L-.J. .l._j__l__j_J 

RESERVED 

I 

l 

l 

COMMENTS 

3940 

.IJw.Ju..s.. 1.0.11 o EL .C..O.M.P .A.~ .1. 

E1M.P.L.O.'(LE Ll1P,t .w.11.11.A.E.A.J. 

..1 --1. .l. 

PROGRAM 
IDENTIFICATION 

1213 llO 

In this example, the header statement defines the job as an address out sort by the entry 
SORTA in columns 17-12 and specifies the longest total length of the control fields used 
for the sort as 9. (The two control fields, division and life number, are 3 and 6 respectively 
and are contained on the same record type.) The entry A in column 18 indicates ascending 
order for the sort. Because no alternate collating sequence is specified, SORT3 will use 
the standard collating sequence. The printing of all messages is inhibited by the 3 entry in 
column 27. 

Because all of the input records are involved in the sort, and they all have the same 
format, it is not necessary to prepare a record type specification for this job. SORT3 
assumes an include-all situation. 

• 

• 

• 



• 

• 

• 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

12-3 

Both control fields used for sorting the records are identified as normal control fields by 
the N entry in column 7 of the field description specification. The entry C in column 8 
indicates that both the zone and the digit portion of the characters in the two control fields 
are used for the sort. Because the division number is the first field used in the sort, its 
position in the input record is defined first. It occupies three positions in the record, 
beginning at position 39 and ending at position 41. The next field used for sorting (life 
number) occupies six positions beginning at position 1 and ending at position 6. 

Example 2 shows the sort specifications for a tag-along sort. The output file produced is to 
contain the records of only those salespersons working for division 013 of the company. 
Records are to be sorted in descending sequence by total sales. Each output record is to 
contain the employee name and number, total monthly transactions, and total sales in 
dollars. The division number is to be dropped from the output. You would code the sort 
specifications for this job as follows: 

Example 2: 

SPE~Y+UNIVAC SORT 3 SPECIFICATIONS 

PAOGRAM _________ PAOGAAMMEA __________ OATE ___ PAGE __ OF __ PAGES 

Header 

Record 
Type 

Field 

~H 
SORTA 

PAG~ 
SORTR 

LINE SORT RS 
NO NO SOR TT 

LARGEST § 
TOTALOF ~ 
CONTROL ~ NOT 
FIELOSOF ';: USED 

ANY RECORD~ 
TVPE "" 

.. 
z 

OUTPUT co~ 
RECORD ~ 1:: RESERVED 

LENGTH ~ ~ 

8--- ~ 6 f-- 12 13 1118 19 

0Jio._onl"ls.n11.T1R 1.11or-
2526 29 323313435 

x _i.i_LI _L 

FACTOR 1 REL FACTOR 2 !FIELD OR CONSTANT) 
>-------1---1 

EO CONSTANT 
NE 

LOCATION LT LOCATION 
GT 

TO ~: ~ FROM TO 

COMMENTS 

_L I 

COMMENTS 

PROGRAM 
tDENTIFICAT10N 

7273 80 

PROGRAM 
IDENTIFICATION 

1 2 3 5 6 1 8 9 1213 1611181920 23 24 --~---- ----"t-"---------------""+'"'------'4"' 
a.thLO~ loL-J.U , .3.slE<>I .3.. -'-t-'--'-'--~~~-'--!"'lo1i.L.'V:iw1.T..:; ... !cl.~&,-n11'f'"',__.j.OJU •• l~1~~··.!1..0 .. "11LJl •• 1Lw.YL._._J;_:I'.d1&JJ ... HC'11L~.llhlhl..n.£•iJ1.__,_ .. n.-'--"--'--'-'-+-~-C-

'----'--~ -'-L' i l -'- L _, L i _1_l__l LL l L....1.- +--1-- +-'- -.L_L_-'----' _J _ __J____j_ l_L_l.. ~LLJ.-L.L.L..L IL-"--'--'--L~-'--'-'"-1-.L.L.J..L.L.J.' 

Lt~ ~ ~)_.,_- _L_." " ' ' "" I-· L L ""-'-~ ~ -" ~ L ' L c ' " .L..L-'--'--'--'--L-'- .L.L..L.-'--'--'--'--L~.L.L.j.-'-" .L.L..L..LL.. 

_-,+··~+-J-1-+-.__J__,_µ.~+-"-J.-W~_µ.~+-"-LLc~.~~-+--'-~ _L 

_L 

COMMENTS 

RESERVEO 

" 

_L 

1213 

PROGRAM 
IOENTIFICATION 

., 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

12-4 

The header statement defines the job as a tag-along sort (SORTA) and defines the total 
length of the control field used for the sort as 11. (Total sales field extends from position 
56 to 66 in the record - a length of 11.) The entry D in column 18 specifies descending 
order for the sort and the X in column 28 instructs SORT3 to drop control fields from the 
output records. The total length of the output record, as determined by the data fields 
described in the field description specification, is 51. (Control field lengths are not included 
when they are dropped from the output records.) The standard collation sequence is used 
and all messages are printed. 

To select only those records applicable to the salespersons employed at division 13, the 
record statement sets up a comparison (EQ in columns 17-18) between the division 
number field of the input record (33-35) and the constant 013 (columns 20-23). If the 
comparison proves equal, the record is included (I in column 6) in the sort. 

Because the selected records are sorted according to the value in the total sales field 
(56-66), this field must be the first described in the field description specification. The 
entry N defines the field as a normal control field. Only the data portion of the characters 
in this field are to be used for the sort as indicated by the entry D in column 8. The control 
field begins at position 56 and ends at position 66. The remaining field description 
specifications define the data fields (0 in column 7) that are to be included in the output 
records. The position (entries in columns 9-16) of each field is also identified for the 
SORT 3 program. Take note that the total sales field is described twice, once as a control 
field and once as a data field. This was purposely done so this field would appear in the 
output record. Remember SORT3 was instructed to drop control fields from the output 
records. 

Example 3 shows the sort specifications for a summary sort. The purpose of this job is to 
produce an output file that lists, by customer account, the total number of shipments made 
to each customer and the total dollar value of those shipment. The program, therefore, 
must be capable of selecting only those records of customers to whom shipments were 
made, and to summarize the data in the shipment and dollar value fields of each record to 
produce the totals required for the output. 

• 

• 

• 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

12-5 

• Example 3: 

• 

• 

St=E~v+uNIVAC SORT 3 SPECIFICATIONS 

PROGAAM, _________ PROGAAMMER _________ DATE ___ PAGE __ QF __ PAGES 

Header 

Record 
Type 

Field 

~H 
SORTA 

PAGE LINE SORTRS 
NO NO SORTT 

LARGEST§_ 
TOTALOF ~ 
CONTROL ~ 
FlELDSOF ~ USED 

ANY RECORD~ 
TYPE "' 

OUTPUT 
RECORD RESERVED 
LENGTH 

COMMENTS 

PROGRAM 
IDENTIFICATION 

1 2 3 5 6 1 1213 111819 ----==="___:'.ci.:' .:i.:...i.c"----l.'-'-' --------------"+"-----l" 
tol1o.o.0Hls,o RT1R~ __lllA _[ ~b _j_ I 

PROGRAM 
lOENTIFICATION 

~1 41 -'-'+'+'+'+'--1~11-3 -16r17 4181~"-0 --~---~----"+"--------------"~"----;" 
lo:l""u'-f'h-'LL~LUJ-+-l'c~--'-+-'~~- ~LL~-+-c~L~-~~L.L-1 L~ ~~-'-'--'-'-'~-'-L'-'-L_Li__LJl_L_LL.LJ_~L_L_j_L..L_L_L_L_.c_,_ 

,_l_ _ _._ __ _J_~._ l j l 

_L_L.·+1 

, l l L _j_ _ _i __ _L __ L___l______L__J_ _l 1 1 .l_ _ _L_..1._.1 _1 .__1 l . .1--'---.J...-...J...~-'--'--"~~~~--L...L.. L l__ _ _L--l. i 1 _j_ 

.1 l l l_L-1 L_!____L_~_l, l_ _ _L_~.L_l _l_ _ _l__l_l_.L_L...L._.L_~~~1~_L_L_~--'-+-'-'-1--L_J_J__L_j__j_l 

I 1 J 1 L l __ _i___!_ _ _L____L y _L ~-- L_L L-' i _L_LL_.i.__L_.L ..... L.....L.-'--'-L-'--'i~_L_L_~--'-+-l-l-~ 

'-'--1~-l-l-+-+-~ p "'--'-+-+--J-L-'-"--+~-"--l-~' ~~~·-u-~~~~'-'--C~-L-L~--'-+-'-'-.L-1--'~ 

_l I I 

~F 
FORCED 

::; ~ 

COMMENTS 

. ~~ ~ 
LOCATION hli RESERVED PROGRAM 

AGE LINE ~~ ~~ IDENTIFICATION 
NO NO ii~ 

~~ fROM TO ~~ ~~gi 
1 23 56 7 • 9 1213 1617 181920 2223 3940 12 73 BO 

lo,i Lru.o_ f Ir LO: .cl3J ·,11.<1'0ME.f\. ,A,C,r n 11'1,T. A111NA,< • 

lo,t la3D •is'ln_ 12.f_ .2-~I _l I IA1M,1 P.IH !IT ,T,01T.A· -"' I 
lru_ ln.11.n •liJv IA11 AN.K. c~.0.A.r fl I 

loJ lo&.o •hlL _l Ji _l I J1>10 L L.A.ll ,,S,i ,G,Wi I 
khl_ lni..o dslu 13.11 .~.1.1 _l I f!"J01T,A, .n~,L LAIR. V,A.L,U,E I 
0,1 ln.1.n f !sill ? lo1V~llFLO,W .. I .H10.I C..ATl\A 

The SORTRS entry in columns 7-12 of the header specification defines the job as a 
summary sort. The largest control field for any record is 10 and the records are to be 
sorted into ascending order (A in column 18) by customer account number. Standard 
collation is used, all messages are printed, and control fields are not to be dropped from 
the output records (columns 26-28 blank). The output record length specified in column 
26 is a total of the control field lengths and data field lengths specified in the field 
description specification. 

The record type specification identifies the records to be included (I in column 6) in the 
sort as those with the character S in position 5 of the record. The records are sorted by 
customer account number as defined by columns 9-16 of coding line 020 of the field 
description. As the individual records are sorted, the two data fields identified in coding 
lines 030 and 060 of the field description are summarized for identical customer account 
numbers. The output records, therefore, reflect the total number of shipments made to 
each customer and the total dollar value of those shipments. The output record format will 
also contain a dollar sign preceding the total dollar value field as specified by the use of 
the force field entry in coding line 050. An occurrence of an overflow condition while 
summarzing the summary data fields is indicated by a question mark(?) in the last field of 
the output record. 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

12.3. SORT PROGRAM CONTROL STREAM EXAMPLES 

12-6 

Sort control stream examples are provided to show how an address out sort and a tag
along sort would be set up for execution under OS/3 job control or the OCL processor. 
The data sets used for these examples are the same as those described in examples 1 and 
2 respectively. 

Example 4 shows the control stream and sort specifictions to perform an address out sort 
under OS/3 job control execution. 

Example 4: 

10 20 

II JOB EXAMPLE,,8000,8000 
II DVC 20 II LFD PRNTR 
II DVC 65 II VOL SYS200 II LBL DISKOUT II LFD INPUT 
II DVC 66 II VOL SCR200 II LBL $SCR1 II DM01 
II DVC 65 II VOL SYS200 
I I EXT ... 
II LBL CARDIN II LFD OUTPUT 
I I EXEC SORT3 
1$ 

HSORTA 9A 3 

72 

FNC 39 41 
FNC 1 6 

DIVISION OF COMPANY 
EMPLOYEE LIFE NUMBER 

1,·~ 

I& 
II FIN 

Example 5 shows the same sort program as example 4 but set up for execution under the 
OCL processor. 

Example 5: 

II LOAD $DSORT,Fl 
II FILE NAME-INPUT,UNIT-Dl ,PACK-SYS200,LABEL-DISKOUT,RETAIN-S 
II FILE NAME-WORK,UNIT-D2,PACK-SCR200,RECORDS-700,RETAIN-S 
II FILE NAME-OUTPUT,UNIT-Dl ,PACK-SYS200,LABEL-CARDIN,RECORDS-600 
I I RUN 

HSORTA 9A 3 
FNC 39 41 DIVISION OF COMPANY 
FNC 1 6 EMPLOYEE LI FE NUMBER 

II END 
I& 
II FIN 

• 

• 

• 



• 

• 

• 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

12-7 

Example 6 shows the control stream and sort specifications data set to perform a tag
along sort number OS/3 job control execution. 

Example 6: 

10 20 

II JOB EXAMP6,,8000,8000 
II DVC 20 II LFD PRNTR 
II DVC 65 II VOL SYS200 II 
II DVC 65 I I VOL QC 1111 
II EXT 
II LBL NAME II LFD OUTPUT 
II DVC 66 II VOL D00921 II 
II EXEC SORT3 
1$ 

HSORTR 11 D 
I D 33 35EQC13 
FND 56 66 
FNC 1 25 
FDC 26 32 
FDC 50 55 
FDC 56 66 

I·'-" 
I& 
II FIN 

LBL HONPROD II LFD INPUT 

LBL $SCR1 II LFD DM01 

x 51 

TOTAL SALES 
EMPLOYEE NAME 
EMPLOYEE NUMBER 
TOTAL MONTHLY TRANSACTIONS 
TOTAL SALES IN DOLLARS 

Example 7 shows the same sort program as example 6 but set up for execution under the 
OCL processor. 

Example 7: 

$DSORT, Fl II LOAD 
II FILE 
II FILE 
I I RUN 

NAME-INPUT,UNIT-Dl ,PACK-SYS200,LABEL-HONPROD,RETAIN-S 
NAME-OUTPUT,LABEL-NAME,UNIT-D2,PACK-QC1111 ,RECORDS-2000 

II 
I& 

HSORTR 
I D 33 
FND 56 
FDC 1 
FDC 26 
FDC 50 
FDC 56 

END 

II FIN 

11 D 
35EQC13 
66 
25 
32 
55 
66 

x 51 

TOTAL SALES 
EMPLOYEE NAME 
EMPLOYEE NUMBER 
TOTAL MONTHLY TRANSACTIONS 
TOTAL SALES IN DOLLARS 



• 

• 

• 



• 

PART 5. APPENDIXES 

• 

• 



• 

• 

• 



• 

• 

• 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

A-1 

Appendix A. Statement Conventions 

A.1. GENERAL FORMAT RULES FOR SUBROUTINE AND INDEPENDENT 
SORT/MERGE 

The following general conventions apply to the coding formats illustrated in this manual 
for both independent and subroutine sort/merge control statements and macros. 

• Lowercase letters and words are generic terms representing information that must be 
supplied by you (Figure A-1, lines 2 and 4). Such lowercase terms may contain 
hyphens and acronyms (for readability). 

Examples: 

Independent Sort/Merge 

{ 

([strt-pos-1 ][,lgth-1 ][, form-1 ][,seq-1] } 
Fl ELDS= [, ... ,strt-pos-n,lgth-n[, form-n][seq-n]]) 

(strt-pos-1,lgth-1 [,seq-1 ][, ... ,strt-pos-n,lgth-n 
[,seq-n]]),FORMAT=code 

Subroutine Sort/Merge 

[,US EQ=(to-address, from-address)] 

• Capital letters, commas, equal signs, and parentheses must be coded exactly as 
shown. For example: The letter D on the ADDROUT parameter means return both 
address field and record key fields to the program in a subroutine tag sort (Figure 
A-1, line 1), and the letter A on the DATA parameter means input data is recorded 
in ASCII in an independent sort/merge (Figure A-1, line 5). 

I. 
2. 
3. 
4. 
5. 

LABEL 
I 

~OPERATION~ OPERAND 
10 16 

MR$PRM 
MR$PRM 
MR$PRM 
MR$PRM 
INPFIL 

ADDROUT=D 
RESUME=(PASS,033) 
MERGE=YES 
FIELD=(l ,6) 
DATA=A 

Figure A-1. Statement Conventions Example 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

A-2 

• Information contained within braces { } represents alternate choices, of which only 
one may be chosen. 

Independent Sort/Merge 

FIELDS= 

( [strt-pos-1] [,lgth-1] [, form-1] [,seq-1] 

[, ... ,strt-pos-n,lgth-n [,form-n] [,seq-nJJ) 

( strt-pos-1,lgth-1 [,seq-1] [, ... ,strt-pos-n,lgth-n 

[,seq-nJJ) ,FORMAT=code 

Subroutine Sort/Merge 

~
FIELD= ( strt-pos-1,lgth-1 [,form-1] [,seq-1] [,or~er-1] } 

[ , ... ,strt-pos-n,lgth-n[,form-n] [,seq-n] [,order-n1]) 

RSOC=symbol 

• Information contained within brackets [ ] represents optional entries that (depending 
upon program requirements) are included or omitted. Braces within brackets [{}] 
signify that one of the specified entries must be chosen if that parameter is included . 

Examples: 

Independent Sort/Merge 

Braces within brackets: Brackets: 

[,FILE=number] 

Subroutine Sort/Merge 

Braces within brackets: Brackets: 

[ DROC= {DELETE}] 
' symbol [,SIZE=number] 

• Optional parameters having lists of optional entries may have default specifications 
supplied by the operating system when the parameters are not specified by you. 
Although the default may be specified by you with no adverse effect, it is considered 
inefficient to do so. For easy reference, when a default specification occurs in the sort 
macro or sort control statement format, it is printed on a shaded background. If, by 
parameter omission, the operating system performs some complex processing other 
than parameter insertion, it is explained in text. 

• 

• 

• 



-----------·-----------

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

A-3 

• Examples: 

• 

• 

-Independent Sort/Merge 

[ {
D }] TYPE= il~!I. 

Subroutine Sort/Merge 

[ {:. }] ,MERGE= ;~~S 

[ CSPRAM= {~s} J 
• An ellipsis (series of three periods) indicates the presence of a variable number of 

entries. 

Examples: 

Independent Sort/Merge 

[ {
bytes }] 

,BLKSIZE= (bytes-1 [, ... ,bytes-8]) 

Subroutine Sort/Merge 

FIELD= (strt-pos-1,lgth-1 [,form-1] [,seq-1] [,order-1] 

[, ... ,strt-pos-n,lgth-n[,form-n] [,seq-n] [,order-n]]) 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

A-4 

• A keyword parameter consists of a word or a code usually, but not always, followed 
by an equal sign and a specification. Keyword parameters can be written in any order 
in the operand field and are separated by commas. 

Examples: 

Independent Sort/Merge 

Assume that INPFIL is an independent sort/merge control statement with four 
optional keyword parameters; OPEN, CLOSE, DATA, and BYPASS. 

LABEL 
1 

t.OPERAT I ONt. 
10 16 

INPFIL 
INPFIL 
INPFIL 
INPFIL 

OPERAND 

OPEN=RWD,CLOSE=RWD,DATA=A 
CLOSE=RWD,DATA=A,OPEN=RWD 
DATA=A,CLOSE=RWD 
CLOSE=RWD,BYPASS 

Subroutine Sort/Merge 

Assume that MR$PRM, the sort macro instruction, is specifying three of the 
required keyword parameters: FIN, IN, and OUT. 

SOR Tl 
SORT2 
SORT3 
SORT4 

MR$PRM 
MR$PRM 
MR$PRM 
MR$PRM 

FIN=SORTFIN, IN=SORTIN,OUT=SORTOUT 
FIN=SORTFIN,OUT=SORTOUT, IN=SORTIN 
IN=SORTIN,FIN=SORTFIN,OUT=SORTOUT 
OUT=SORTOUT, IN=SORTIN,FIN=SORTFIN 

• Positional parameters are presented in lowercase letters and require insertion of a 
value. 

Example: 

MR$OPN= {parameter-table-name} 

• 

• 

• 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

A-5 

• • A keyword parameter may contain a sublist of parameters called subparameters, 
which are separated by commas and enclosed in parentheses. The parentheses must 
be coded as part of the specification. All subparameters presented in this manual are 
positional. They must be coded in the order shown, and the comma must be retained 
when a subparameter is omitted, except for trailing commas. 

• 

• 

Examples: 

Independent Sort/Merge 

LABEL 
l 

~OPERATION~ 

l 0 16 

SORT FIELDS=(l ,4,CH,A) 
SORT FIELDS=(l ,4,,A) 
SORT FIELDS=(l ,4) 

OPERAND 

Subroutine Sort/Merge 

MR$PRM 
MR$PRM 
MR$PRM 

FIELD=(0, l ,AC,D,3) 
F I ELD= ( 0, l ,, D) 
FIELD=(0',l) 

You can apply the following rules to the coding of both independent and subroutine 
sort/merge control statements and macro instructions. 

• Sort/merge control statements and macro instructions are coded in the operation 
field, which may begin in any column except column 1. 

• Parameters are specified in the operand field. This field is separated from the 
operation field by one or more blanks and must begin on the same line of the card. 

• At least one space must separate the operand field from the comments field, if 
included. 

• Embedded blanks are not allowed. Anything after a blank is regarded as a comment. 

• Values can be written with up to eight alphanumeric characters. 

• Commas, equal signs, parentheses, and blanks are used only as field delimiters; they 
may not be used in values. 

• Periods are used to separate byte-bit specifications in the FIELD and FIELDS 
parameters and input and output file-partition-numbers in the COPY parameter. 

• Any nonblank character in column 72 indicates that the statement is continued on 
the following card. The continuation of an operand starts in column 16; the 
continuation of comments starts in column 17. A continuation statement may not 
begin with a comma in column 16. 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

A-6 

A.2. INDEPENDENT SORT /MERGE CONTROL STATEMENT FORMAT RULES 

Independent sort/merge control statements are placed in the control stream between the 
start-of-data (/$) and end-of-data (/*) job control statements. Each control statement can 
appear only once in your program. Sort/merge control statements should appear in this 
general format on the coding form: 

COL. 
t.OPERA TIONt. OPERAND t.COMM ENTS COL. SEQUENCE 

1 72 
73 80 

blank 

blank variable variable opti onal or optional 
character 

• Column 1 

The first column or position must be blank for all sort/merge control statements. 

• Operation 

• 

Use field for defining the operation to be performed. The permissible entries are: 

END 

INPFIL 

MERGE 

MODS 

OPTION 

OUTFIL 

RECORD 

SORT 

The operation field must be the first field you define in a control statement. It starts in 
any column after column 1 but cannot extend into column 72 (continuation field). 

Operand 

The operands specify the parameters needed to define and execute the sort/merge. 
Separate this field from the operation field by one or more blanks and begin the first 
operand on the same card as your operation field. Operands are composed of keyword 
parameters equated to a value, a set of values (positional parameters), or used as an 
indicator without associated values. 

• 

• 

• 



• 

• 

• 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

A-7 

• Comment 

Use the comment field to annotate the sort/merge program. Leave one or more 
blanks between the operand field and the comment field. 

• Continuation 

Column 72 is used for the continuation indicator. A blank indicates that this is the 
last image of the statement. You may use any other character to indicate that the 
statement is continued on the following image or card. The continuation character is 
not included in any operation or operand field. 

• Sequence 

You may use the sequence field (positions 73 through 80) as you wish; however, it is 
usually used for sequence numbering and identification. 

Continuation statements are logical extensions of the preceding operand or comment. The 
statement preceding a continuation statement contains characters through column 71 or 
the operand may be discontinued by a comma followed by a blank. In either case, a 
character must appear in column 72 to establish a continuation statement. The 
continuation of an operand starts in column 16; the continuation of a comment starts in 
column 17 . 

I 
I STATEMENT 
I 

CONTINUATION 
1 15 16: 17 71 72 73 80 

operand 
continuation 

blank j character 
sequence-id 

comment 

• Column 16 

Contains the first characters or delimiter of the continued operand (never a comma). 

• Column 17 

Contains the first character of the continued comment. 

• Column 71 

• 

• 

Is the last column of the continuation statement. 

Column 72 

Is any nonblank character; indicates that the next statement is a continuation 
statement. 

Columns 73 through 80 

Is the sequence identification. 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

A.3. SUBROUTINE SORT /MERGE MACRO FORMAT RULES 

A-8 

Macro instructions provide an interface between subroutine sort/merge and your program. 
By using these macro instructions, you define the sort run; control the function, structure, 
and execution of the subroutine by building a sort parameter table; and link the various 
functional modules of the subroutine with your program. The conventions illustrated in A.1 
show how to use the subroutine sort/merge macro instructions presented in this manual. 

• 

• 

• 



• 

• 

• 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

B-1 

Appendix B. Contents of Sort 
Parameter Table 

The sort parameter table is the primary interface between your program and the modules 
of the independent or subroutine sort/merge. Through this table, you define the 
requirements that sort/merge uses to sequence your input files and produce an output file 
ordered to your specifications. 

Although a sort parameter table is needed by both independent and subroutine 
sort/merge, you can never see or modify it when using the independent sort/merge. 
Nevertheless, your sort control statements and job control statements used with 
independent sort/merge supply information to the sort parameter table. 

If you use the subroutine sort/merge, the sort parameter table is generated inline in your 
program by execution of the MR$PRM macro instruction (6.4). Parameters can be modified 
via entries you submit on sort parameter statements issued in your job control stream for 
either independent or subroutine sort/merge. (See CSPRAM discussion, 3.2.6, and 
PARAM discussion, 6.12.) Table B-1 is the resulting parameter table generated inline 
after the MR$PRM macro is executed in your subroutine sort/merge program. 

Each sort keyword generates a code. When you want to modify the location of certain sort 
keyword parameters, you find their code in your program printout. The value next to each 
code specifies the value you want to change. You may want to change some, all, or none 
of these parameters. 

Lowercased letters in the value column of Table B-1 represent variable information 
which you supply via your sort keyword parameters on the MR$PRM sort macro. Their 
meaning is explained under the description of values in Table B-1. The codes, values, and 
keyword parameters are the only information actually generated inline in your subroutine 
sort/merge program . 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 B-2 
SORT/MERGE 

Table 8-1. Sort Parameter Table (Part 1 of 3) • 
Coda Value 

Keyword 
Description of Values 

Parameter 

()() 000000 000000 - Indicates the end of a parameter table 

()() aaaaaa ADTABL aaaaaa - Is the address of an additional parameter table containing information 
which applies to this sort 

01 aaaaaa IN aaaaaa - The address specified by IN keyword. This address identifies the 
location to which control returns following the opening of the 
sort/merge. 

02 aaaaaa OUT aaaaaa - The address specified by the OUT keyword. This address specifies 
the location to which control returns when the sequenced records are 
ready to be returned. 

03 aaaaaa FIN aaaaaa - Specifies the location to which control returns after the last record 
has been returned to the user 

04 aaaaaa RSOC aaaaaa - Specifies the address at which the user own-code record sequencing 
routine is located 

05 aaaaaa DROC aaaaaa - Specifies the address at which the user own-code, data-reduction 
routine is located 

07 aaaaaa STOR aaaaaa - The address of the first byte of the work area reserved for the sort 

FF nnnnnn nnnnnn - A binary value indicating the number of bytes available for sort 
usage in the work area. This value is zero if the number of bytes is 
absent. 

08 00 nnnn RCSZ nnnn - A binary value specifying size of the record to be sorted. This 
specifies the maximum record size for variable-length records and • includes the 4-byte record length field. 

09 000000 MERGE 09 - Indicates a merge-only application 

OA 00 nnnn BIN nnnn - A binary number specifying the BIN size for variable-length records 
(form 11 

OA 00 nnnn BIN nnnn - A binary number specifying the minimum Bl N size for variable-length 
(form 2) records 

FF SSS SSS ssssss - A binary number specifying a record size within the file to be sorted 

FF 00 VVV\/ vvvv - A binary number specifying the number of times this record size occurs 
in the file or percentage of occurrences 

FF ssssss Each size-n and freq-n subparameter pair requires two BIN continuation words in the 
FF 00 vvvv parameter table. 

• 



UP-8342 Rev. 3 

• 
Code Valu• 

Keyword 
Parameter 

OB ii pppp FIELD 
FF cc qq rr 
FF 00 II bb 

• 
oc 0000 nn DISC 
FF aaaaaa 

OD 00 nn xx TAPE 

OE 0000 bb SHARE 

OF 0000 bb RESERV 

• 14 rrrrrr RESUME= 
(PASS, .. ) 

SPERRY UNIVAC OS/3 
SORT/MERGE 

B-3 

Table 8-1. Sort Parameter Table (Part 2 of 3) 

D111eription of Values 

ii - A binary number specifying the length of the field in bytes that are 
represented as length-n for all fields that are in the byte-bit format. 
For binary fields, it is defined as true length (0.;;;; ii,;;;; 255). 

-
PPPP - The location of the first byte of the key field relative to the.start 

of the record (0 ,.;;pppp .;;;32767) 

cc - Binary code of the FIE LO form parameter 

00 = CH - character 

01 = Bl - unsigned binary 

02 = Fl - fixed pointer integer 

03 = PD - packed decimal 

04 = ZD - zoned decimal 

05 = FL - floating point 

06 = MC - multiple character, user-specified 

collating sequence 

07 = AC - EBCDIC data in ASCII collation sequence 

08 = CSL - leading sign numeric 

09 = CST - trailing sign numeric 

QA = CLO - numeric data overpunched leading sign 
OB = CTO - numeric data overpunched trailing sign 
oc = ASL - ASCII numeric data leading sign 
OD = AST - ASCII numeric data trailing sign 
OE = USO - user specified collation sequence 

qq - Binary code of the field sequence parameter 
00 =ascending sequence, A 
01 =descending sequence, D 

rr - Binary value specifying the order of significance of this field 
(01.;;; rr ,;;;; 255) 

II - A binary value, used only when BI is specified. Specifies a 

number of bits when the length of a 'Bl' field is not an even multiple 
of bytes 
(00,,;;ii.;;;07) 

bb - A binary value used only in Bl fields to specify the first bit 

location of a B 1 field within the byte location specified by pppp 

(00 .;;;bb ,;;;07) 

nn - A binary value specifying the maximum number of disk file names that 

may be assigned 

(0 .;;;nn .;;;a) 

aaaaaa - The address of the list of user-supplied disk file names 

nn - A binary value specifying the maximum number of tape file names that 

may be assigned 

(0.;;;; nn .;;;s) 

xx - A binary code indicating the tapes label parameter 
00 = standard labels, STD 
01 = no labels, NO 

bb - Two unsigned decimal d191ts representing the last two characters of 

the file name of the tape unit to be shared (SMOG. bb 0 6 or lessl 

bb - Two unsigned decimal d1g1ts representing the last two characters of 

the file name of the tape unit to be reserved (SM06, bb ~ 6 or less) 

rrrrrr - Three-character pass recovery-number parameter 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 B-4 
SORT/MERGE 

Table 8-1. Sort Parameter Table (Part 3 of 3) • Code Value Keyword 
Description of Values 

Parameter 

1A 00 gg hh NOCKSM gg-hh - Binary code indicating checksum to be omitted 

gg = 01 - omit tape checksum 

hh = 01 - omit disk checksum 

1B aaaaaa USEQ aaaaaa - The address of a 256-byte translation table specifying the desired 
collation sequence 

FF dddddd dddddd - The address of a 256-byte translation table specifying the inverse 
of the first table 

20 000000 PAD The null PAD entry is used to reserve space in the parameter table. The entry is repeated 
(bytes+3)14 times, where bytes in (bytes+3) represents the PAD 'bytes' parameter. 

21 0000 jj CSPRAM jj - Binary code indicating the CSPRAM option 
01 - OPTION 
02 - YES 
03 - NO 

22 0000 nn ADD ROUT nn - A binary code specifying the tag-sort option 

00 - A - return only the direct access address of record 

01 - D - return the disk address and the record key fields 

25 0000 nn CALC nn - A binary code signifying that sort optimization information is to 
be calr.ulated and displayed. The sort may be executed or terminated. 

00 - NO - no execution • 01 - YES - execution 

26 nnnnnn SIZE nnnnnn - A binary number indicating the approximate number of records to be 
sorted 

29 0000 nn PRINT nn - A binary code indicating the type of messages to be displayed 

00 - ALL 
01 - CRITICAL 
02 - NONE 

• 



• 

• 

• 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

Appendix C. Subroutine Sort/Merge 
Interface Requirements 

C-1 

for the COBOL Programmer 

The SPERRY UNIVAC Operating System/3 (OS/3) COBOL sort facility uses the capabilities 
of the subroutine sort/merge for sorting the data fields involved in your COBOL program. 
The method of defining the requirements for the initialization and execution of the 
subroutine sort/merge from your COBOL program, however, varies from that described in 
Section 3 of this manual in that the requirements are specified according to OS/3 COBOL 
conventions. During compilation of your COBOL program, the OS/3 Extended COBOL 
compiler expands the COBOL program sort statements into the parameter information 
required by the subroutine sort/merge for defining the various sort/merge entries of the 
sort parameter table and for executing the modular elements that make up the subroutine 
sort/merge routine. If it is necessary to change the requirements of the sort prior to its 
execution, you have the option to redefine some, but not all, of the compiler-generated 
parameter information by inserting parameter control statements in the job control stream 
for your program. You may also introduce certain additional parameters to the subroutine 
sort/merge in the same manner. 

During program execution, a message that questions the presence of parameter 
statements in the control stream for your program is displayed on the system console. 
(This display will not occur if you have specified the compiler output option 
/I 6.PARAM.6..0UT=S in your program to disable the display feature.) Your response to the 
question determines whether or not the parameter statements are accessed by the 
subroutine sort/merge during execution of the sort. The parameters that you may insert 
into the job control stream allow you to designate the type of sort desired, to reserve or 
share the use of magnetic tape devices assigned as auxiliary working storage to the sort, 
to replace the arbitrary BIN size provided by the compiler, to resume an interrupted tape 
sort, or to inhibit the calculation of a summation check for files written to tape or disk. 

Table C-1 summarizes the parameters supplied by the Extended COBOL compiler and 
indicates those which may be inserted in the job control stream. Figure C-1 depicts a 
typical job deck for a COBOL program executing a sort and shows the placement of sort 
parameter statements in the job control stream. Further details of the use of subroutine 
sort/merge through the OS/3 COBOL sort facility are given in the Extended COBOL 
supplementary reference manual, UP-8059 (current version) . 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 C-2 
SORT/MERGE 

Table C-1. Extended COBOL Interface with OS/3 Subroutine Sort/Merge (Part 1 of 2) 

Usaof 
Parameter 

Parameter 

Normal sort DROC 
linkage 

FIN 

IN 

OUT 

RSOC 

Facility DISC 
assignment 

TAPE 

STOR 

RESERV 

SHARE 

Record AD DR OUT 
definition 

BIN 

FIELD 

RCSZ 

USEQ 

• X = Required for execution 
0 =Optional 

Execution 
Requirement 

for 
Sort/Marge* 

0 

x 

x 

x 

0 

x 

x 

x 

0 

0 

0 

0 

x 

x 

0 

Par.a meter 
May Ba Passed 

Compiler Action and COBOL Programmer's Options 
in Job Control 

Stream 

No None. Neither automatic nor user own-code data reduction 
(DROC) is available to the COBOL programmer. 

No Provides FIN from the AT END imperative statement of COBOL program 
RETURN statement 

No Provides address to which sort/merge returns control to the 
COBOL program after being initialized; this is the address 
immediately before the file named in the COBOL USING 
statement that has been opened, or immediately before the 
PERFORM statement resulting from the INPUT procedure of 
the SORT statement. 

No Provides address immediately before the opening of the file 
named in the GIVING statement, or the PERFORM statement 
resulting from the OUTPUT procedure in the COBOL SORT 
statement 

No None. User own-code exit for record sequencing (RSOC) is 
not available to the COBOL programmer. 

Yes Enters the maximum (DISC=B). May be overridden by the 
COBOL programmer. Must be overridden by setting DISC=O 
when an internal-only sort is specified 

Yes Enters the maximum (TAPE=6). May be overridden by the 
COBOL programmer. Must be overridden by setting TAPE=O 
when an internal-only sort is specified 

No Provides externally defined address KE$ALP, which is de-
fined by linkage editor as the end of the longest phase 
in the load module. Also provides the amount of main 
storage available for the sort to use; the sort uses main 
storage from KE$ALP to the end of job region. 

Yes None. COBOL programmer may pass in job control stream. 

Yes None. COBOL programmer may pass in job control stream. 

No None. Tag sorting is not available to a COBOL program. 

Yes Provides the length of shortest record described in the 
sort file description (SD). COBOL programmer may 
override when the lengths and positions of the key fields 
in his records justify using a different BIN length to 
improve the efficiency of the sort. 

No Provides FIELD from the information on sort key fields contained in 
SORT statement in COBOL program 

No Provides RCSZ from the maximum record size described in 01-level 
entries following sort file description (SD) 

No None. To sort data in other than ASCII or EBCDIC, the COBOL 
programmer will need to use format 3 of the TRANSFORM verb 
before presenting his data to the sort and afterwards to 
retranslate it. 

• 

• 

• 



• 

• 

• 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

C-3 

Table C-1. Extended COBOL Interface with OS/3 Subroutine Sort/Merge (Part 2 of 2) 

Use of 
Parameter 

Parameter 

Tape sort RESUME restart 

Miscel- ADTABLE 
laneous 

CALCAREA 

CSP RAM 

NOCKS UM 

PAD 

PRINT 

SIZE 

• X =Required for execution 
0 =Optional 

Execution 
Requirement 

for 
Sort/Marge• 

0 

0 

0 

0 

0 

0 

0 

0 

Parameter 
May Ba Passed 

Compiler Action and COBOL Programmer's Options 
in Job Control 

Stream 

Yes None. COBOL programmer specifies when required. 

No Uses ADTABLE to dynamically link parameter table to program 

No None. The CALCAREA option is not available to the COBOL 
programmer. 

No Enters CSPRAM=OPTION, thus permitting the COBOL programmer 
to make the decision at execution time whether to pass parameters 
to sort/merge in job control stream 

Yes None. COBOL programmer may pass in job control stream 

No Uses PAD to reserve space for parameter table dynamically 
linked by compiler 

No None. Default value (PRINT=ALLI is assumed by subroutine 
sort/merge, and all messages generated by the sort are 
displayed on the system printer. 

No None. No means available to COBOL programmer to specify 



-------------,--------------. 

UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

C-4 

Parameter statements_ 
for COBOL compiler II PARAM nnn 

II EXEC COBOL 

Parameter statements for 
subroutine sort-merge 

II FIN 

II PARAM n 

II EXEC name-1 

II DVC-LFD 
sequence 

II symbol WORKn 

- For COBOL program 
input file 

sequence 

sequence 

Auxiliary storage for 
sort, if required. See 
Note 1. 

- For COBOL output program 

_ Linkage editor control statements. 
See Note 2. 

sequence ~ JCL <o °'"""COBOL oompil" II JOB name 

NOTES: 

1. Symbol specified is either DMnn for disk or SMnn for tape auxiliary storage. If you specify the I I WORK jproc, the 
DVC/LFD sequence set may be omitted. The // WORK jproc or the DVC/LFD sequence set is omitted when an 
internal sort is specified by // PARAM DISK=O or // PARAM TAPE=O. 

2. Linkage editor control statements prepared by COBOL program should not include a RES statement (as this statement 
is generated by OS/3 extended COBOL compiler) unless the programmer has specified the compiler output option I I 
!'> PARAM !'> OUT=L to inhibit generation of linkage editor control statements in the object module. 

Figure C-1. Typical Job Deck for OS/3 COBOL Program Executing a Sort via OS/3 Subroutine Sort/Merge 

• 

• 

• 



----·-------~-----

• 
UP-8342 Rev. 3 

D.1. GENERAL 

SPERRY UNIVAC OS/3 
SORT/MERGE 

0-1 

Appendix D. Standard EBCDIC and 
ASCII Collating Sequences 

Appendix D provides three useful tables containing collating sequences. The first (Table 
D-1) presents a cross-reference table that enables you to compare the following standard 
codes commonly used in data processing and in the SPERRY UNIVAC Operating System/3 
(OS/3): 

• Hollerith punched card code 

• EBCDIC (Extended Binary Coded Decimal Interchange Code) 

• • ASCII (American National Standard Code for Information Interchange) 

• 

• Binary bit-pattern (bit-configuration) representation for an 8-bit system 

• Hexadecimal representation 

Table D-2 provides a convenient chart of OS/3 EBCDIC graphics only, and Table D-3 
lists OS/3 ASCII graphics only. 

D.2. EBCDIC/ ASCII/HOLLERITH CORRESPONDENCE 

Table D-1 is a cross-reference table depicting the correspondences among the Hollerith 
punch card code, ASCII, and EBCDIC. The table is arranged in the sorting (or collating) 
sequence of the binary bit patterns which have been assigned to the codes, with 0000 
0000 being the lowest value in the sequence and 1111 1111 the highest. These binary bit 
patterns are sorted in a left-to-right sequence (most significant to least significant bit). 

Note that the column headed Decimal uses decimal numbers to represent the positions of 
the codes and bit patterns in this sequence, but counts the position of the lowest value as 
the zero position rather than the first. Thus, the position of the highest value bit pattern 
1111 1111 is represented in the decimal column by 255, whereas it is actually the 256th 
in the sequence. This scheme corresponds to the common convention for numbering 
bytes, in which the first byte of a group is byte 0, and is convenient when you are 
constructing a 256-byte translation table. 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

0-2 

The column headed Decimal also represents the collating sequence for the EBCDIC • 
graphic characters shown in the fourth column of the table; the fifth column, Hollerith 
Punched Card Code, contains the holer patterns assigned to these EBCDIC graphics. Empty 
space in the fourth column represents the positions of the EBCDIC control characters; the 
EBCDIC space character is represented in the fourth column by the conventional notation 
SP at decimal position 64, and the corresponding card code is no punches. 

The ASCII graphic characters, listed in the sixth column of Table D-1, are also in their 
collating sequence, and the hole patterns in the seventh column correspond to the ASCII 
graphics. The ASCII space character is represented by the notation SP in the sixth column 
at decimal position 32; the corresponding card code is, again, no punches. The empty 
space in the sixth column represents the positions of the ASCII control characters. The 
shading in the ASCII graphic character column indicates where the 128-character ASCII 
code leaves off: there are no ASCII graphic or control characters that correspond to the bit 
patterns higher in collating sequence than 0111 1111 (the 128th in Table D-1 ). 

D.2.1. Hollerith Punch Card Code 

The Standard Hollerith punch card code specifies 256 hole-patterns in 12-row punched 
cards. Hole-patterns are assigned to the 128 characters of ASCII and to 128 additional 
characters for use in 8-bit coded systems. These include the EBCDIC set. Note that no 
sorting sequence is implied by the Hollerith code itself. 

D.2.2. EBCDIC 

EBCDIC is an extension of Hollerith coding practices. It comprises 256 characters, each of 
which is represented by an 8-bit pattern. Table D-1 shows the EBCDIC graphic characters 
only; the EBCDIC control characters are not indicated. 

D.2.3. ASCII 

ASCII comprises 128 coded characters, each represented by an 8-bit pattern, and includes 
both control characters and graphic characters. Only the latter are shown in Table D-1. 

• 



UP-8342 Rev. 3 

• 
Decimal 

0 
1 

2 
3 
4 
5 

6 
7 

8 

9 
10 
11 

12 
13 
14 
15 

16 
17 

18 

19 
20 
21 • 22 
23 
24 
25 
26 
27 
28 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

39 
40 
41 

42 
43 
44 
45 
46 
47 

48 
49 
50 
51 

• 52 
53 
54 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Table D-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 1 of 5) 

EBCDIC ASCII 

Hex a· EBCDIC Hollerith ASCII Hollerith 

dec1· Binary Graphic Punched Card Graphic Punched Card 
mal Character Code Character Code 

00 0000 0000 12-0-9-8-1 12-0-9-8-1 
01 0000 0001 12-9-1 12-9-1 
02 0000 0010 12-9-2 12-9-2 
03 0000 0011 12-9-3 12-9-3 

04 0000 0100 -12.:9..:4. JU 
05 0000 0101 12-9-5 0-9-8-5 

06 0000 0110 12-9-6 0-9-8-6 

07 0000 0111 12-9-7 0-9-8-7 

08 0000 1000 12-9-8 11-9-6 

09 0000 1001 12-9-8-1 12-9-5 
QA 0000 1010 12-9-8-2 0-9-5 

OB 0000 1011 12-~-8-3 12-9-8-3 
QC 0000 1100 12-9-8-4 12-9-8-4 
OD 0000 1101 12-9-8-5 12-9-8-5 
OE 0000 1110 12-9-8-6 12-9-8-6 
OF 0000 1111 12-9-8-7 12-9-8-7 
10 0001 0000 12-11-9-8-1 12-11-9-8-1 
11 0001 0001 11-9-1 11-9-1 
12 0001 0010 11-9-2 11-9-2 
13 0001 0011 11-9-3 11-9-3 
14 0001 0100 11-9-4 q.R-4 

15 0001 0101 11-9-5 9-8-5 
16 0001 0110 11-9-6 9-2 
17 0001 0111 11-9-7 0-9-6 
18 0001 1000 11-9-8 11-9-8 
19 0001 1001 11-9-8-1 11-9-8-1 
lA 0001 1010 11-9-8-2 9-8-7 
lB 0001 1011 11-9-8-3 0-9-7 
lC 0001 1100 11-9-8-4 11-9-84 
1D 0001 1101 11-9-8-5 1 l_Jt-8-5 
lE 0001 1110 11-9-8-6 11-9-8-fi 
lF 0001 1111 11-9-8 7 11-9-8-7 
20 0010 0000 11-0-9-8-1 SP No punches 
21 0010 0001 0-9-1 I 12-8-7 
22 0010 0010 0-9-2 " 8-7 
23 00100011 0-9-3 # 8-3 
24 00100100 0-9-4 $ 11-8-3 
25 0010 0101 0-9-5 % 0-8-4 
26 0010 0110 0-9-6 & 12 
27 00100111 _QJl.;-7 ...a:5.. 
28 0010 1000 0-9-8 ( 12-8-5 
29 0010 1001 0-9-8-1 I 11-8-5 
2A 0010 1010 'J-9-8-2 . 11-8-4 
2B 00101011 0-9-8-3 + 12-8-6 
7C 0010 uoo .illl:8.:A_ ___Q:8.;.l 
20 0010 1101 0-9-8-5 - 11 
2E 0010 1110 0-9-8-6 12-8-3 
2F 0010 1111 0-9-8-7 I 0-1 
30 0011 0000 12-11-0-9-8-1 0 0 
31 0011 0001 9-1 1 1 
32 0011 0010 9-2 2 2 

33 0011 0011 9-3 3 3 
34 0011 0100 9-4 4 4 

35 0011 0101 9-5 5 5 

36 0011 0110 9-6 6 6 

D-3 



UP-8342 Rev. 3 

Decimal 

55 
56 
57 

58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

80 
. 81 

82 

83 
84 
85 
86 
87 

88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 

--------~------------------------

SPERRY UNIVAC OS/3 
SORT/MERGE 

D-4 

Table D-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 2 of 5) • 
EBCDIC ASCII 

Hex a- EBCDIC Hollerith ASCII Hollerith 

deci· Binary Graphic Punched Card Graphic Punched Card 
mal Character Code Character Code 

37 00110111 9-7 7 7 
38 00111000 9-8 8 8 
39 0011 1001 9-8-1 9 9 
3A 0011 1010 9-8-2 : 8-2 
38 00111011 9-8-3 11-8-6 
3C 0011 1100 9-8-4 < 12-8-4 
30 00111101 9-8-5 = 8-6 
3E 0011 1110 9-8-6 > 0-8-6 
3F 0011 1111 9-8-7 ? 0-8-7 
40 0100 0000 SP No punches @ 8-4 
41 0100 0001 12-0-9-1 A 12-1 
42 0100 0010 12-0-9-2 8 12-2 
43 0100 0011 12-0-9-3 c 12-3 
44 0100 0100 12-0-9-4 D 12-4 
45 01000101 12-0-9-5 E 12-5 
46 01000110 12-0-9-6 F 12-G 
47 0100 0111 12-0-9-7 G 12-7 
48 0100 1000 12-0-9-8 H 12-8 

49 0100 1001 12-8-1 I 12-9 

4A 0100 1010 [ .J.2:8:2. J 11-1 

48 01001011 12-8-3 K 11-2 

4C 0100 1100 < 12-8-4 L 11-3 

40 0100 1101 ( 12-8-5 M 11-4 

4E 0100 1110 + 12-8-6 N 11-5 • 4F 0100 1111 I 12-8-7 0 11-6 

50 0101 0000 & 12 p 11-7 

51 0101 0001 12-11-9-1 Q 11-8 

52 0101 0010 12-11-9-2 R 11-9 

53 0101 0011 12-11-9-3 s 0-2 

54 0101 0100 12-11-9-4 T 0-3 

55 0101 0101 12-11-9-5 u 0-4 

56 0101 0110 12-11-9-6 v 0-5 

57 0101 0111 12-11-9-7 w 0-6 

58 0101 1000 12-11-9-8 x 0-7 

59 0101 1001 11-8-1 y 0-8 
5A 0101 1010 J 11-8-2 z 0-9 

58 01011011 $ 11-8-3 [ 12-8-2 

5C 01011100 . 11-8-4 \ 0-8-2 

50 0101 1101 ) 11-8-5 J 11-8-2 

5E 01011110 ; 11-8-6 /\ 11-8-7 

5F 01011111 A 11-8-7 - 0-8-5 

60 0110 0000 - 11 8-1 
61 0110 0001 I 0-1 a 12-0-1 

62 0110 0010 11-0-9-2 b 12-0-2 

63 0110 0011 11-0-9-3 c 12-0-3 

64 0110 0100 11-0-9-4 d 12-0-4 

65 0110 0101 11-0-9-5 e 12-0-5 

66 01100110 11-0-9-6 f 12-0-6 

67 0110 0111 11-0-9-7 g 12-0-7 

68 0110 1000 11-0-9-8 h 12-0-8 

69 01101001 0-8-1 i 1'.l-u=!f 

GA 0110 1010 I 
12-11 i 12-11-1 

I 

68 01101011 0-8-3 k 12-11-2 

6C 01101100 % 0-8-4 I 12-11-3 

60 01101101 - 0-8-5 m 12-11-4 • 



UP-8342 Rev. 3 

• 
Deco ma I 

110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

128 
129 
130 

• 131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 

152 
153 
154 
155 
156 
157 
158 
159 

• 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Table D-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 3 of 5) 

EBCDIC ASCII 

Hex a· EBCDIC Hollerith ASCII Holleroth 
deco· Binary Graphic Punched Card Graphic Punched Card 
mal Character Code Character Code 

6E 0110 1110 > 0-8-6 n 12-11-5 

6F 0110 1111 7 O..S-7 0 12-11-6 

70 0111 0000 12-11-0 p 12-11-7 

71 0111 0001 12-11-0-9-1 q 12-11..S 

72 0111 0010 12-11-0-9-2 r 12-11-9 

73 0111 0011 12-11-0-9-3 s 11-0-2 
74 0111 0100 12-11-0-9-4 t 11-0-3 
75 0111 0101 12-11-0-9-5 u 11-0-4 

76 0111 011q 12-11-0-9-6 v 11-0-5 
77 0111 0111 12-11-0-9-7 w 11-0-6 
78 0111 1000 12-11-0-9..S x 11-0-7 
79 0111 1001 ' 8-1 y 11-0..S 
7A 0111 1010 8-2 z 11-0-9 
78 0111 1011 :tt 8-3 { 12-0 
7C 0111 1100 @ 8-4 I 12-11 I 

70 0111 1101 8-5 
7E 0111 1110 = 8-6 

} 11-0 
,......, 11-0-1 

7F 0111 1111 .. 8-7 12-9-7 
80 1000 0000 12-0..S-1 11-0-9-8-1 
81 1000 0001 a 12-0-1 0-9-1 
82 10000010 b 12-0-2 0-9-2 
83 1000 0011 c 12-0-3 0-9-3 
84 1000 0100 d 12-0-4 0-9-4 
85 1000 0101 e 12-0-5 11-9-5 
86 10000110 f 12-0-6 12-9-6 
87 1000 0111 g 12-0-7 11-9-7 
88 1000 1000 h 12-0..S 0-9-8 
89 1000 1001 I 12-0-9 0-9-8-1 
8A 1000 1010 12-0..S-2 0-9-8-2 
88 1000 1011 12-0-8-3 0-9-8-3 
8C 1000 1100 12-0-8-4 
80 1000 1101 12-0..S-5 

i 
0-9-8-4 
12-9..S-1 

8E 1000 1110 12-0..S-6 12-9..S-2 
SF 1000 1111 12-0-8-7 11-9-8-3 
90 1001 0000 12-11-8-1 JL 12-11-0-9-8-1 
91 1001 0001 J 12-11-1 I 9-1 
92 1001 0010 k 12-11-2 I 11-9-8-2 
93 1001 0011 I 12-11-3 9-3 
94 1001 0100 m 12-11-4 
95 1001 0101 n 12-11-5 
96 1001 0110 0 12-11-6 
97 1001 0111 p 12-11-7 

l 
9-4 
9-5 

1 9-6 
12-9-8 

98 1001 1000 q 12-11-8 9-8 
99 1001 1001 r 12-11-9 9-8-1 
9A 1001 1010 12-11-8-2 

' 
9-8-2 

913 1001 1011 12-11..S-3 9-8-3 
9C 1001 1100 12-11-8-4 12-9-4 
90 1001 1101 12-11-8-5 11-9-4 
9E 1001 1110 12-11-8-6 9-8-6 
9F 1001 1111 12-11-8-7 11-0-9-1 

D-5 



UP-8342 Rev. 3 

Decimal 

160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 

SPERRY UNIVAC OS/3 
SORT/MERGE 

D-6 

Table D-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 4 of 5) 

EBCDIC ASCII 

Hex a- EBCDIC Hollerith ASCII Hollerith 
deci- Binary Graphic Punched Card Graphic Punched Card 
mal Character Code Character Code 

AO 1010 0000 11-0-8-1 12-0-9-1 
A1 1010 0001 r..J 11-0-1 12-0-9-2 
A2 10100010 s 11-0-2 12-0-9-3 
A3 1010 0011 t 11-0-3 12-0-9-4 
A4 1010 0100 u 11-0-4 12-0-9-5 
A5 10100101 v 11-0-5 12-0-9-6 
A6 1010 0110 w 11-0-6 12-0-9-7 
A7 10100111 x 11-0-7 12-0-9-8 
A8 1010 1000 v 11-0-8 12-8-1 
A9 1010 1001 z 11-0-9 12-11-9-1 
AA 1010 1010 11-0-8-2 12-11-9-2 
AB 10101011 11-0-8-3 12-11-9-3 
AC 1010 1100 11-0-8-4 12-11-9-4 
AD 1010 1101 11-0-8-5 12-11-9-5 
AE 10101110 11-0-8-6 12-11-9-6 
AF 10101111 11-0-8-7 12-11-9-7 
BO 1011 0000 12-11-0-8-1 12-11-9-8 
B1 1011 0001 12-11-0-1 11-8-1 
B2 10110010 12-11-0-2 11-0-9-2 
B3 1011 0011 12-11-0-3 11-0-9-3 
B4 1011 0100 12-11-0-4 11-0-9-4 
B5 1011 0101 12-11-0-5 11-0-9-5 
B6 1011 0110 12-11-0-6 11-0-9-6 
B7 10110111 12-11-0-7 11-0-9-7 
B8 1011 1000 12-11-0-8 11-0-9-8 
B9 1011 1001 12-11-0-9 0-8-1 
BA 1011 1010 12-11-0-8-2 12-11-0 

BB 10111011 12-11-0-8-3 12-11-0-9-1 

BC 1011 1100 12-11-0-8-4 12-11-0-9-2 
BO 1011 1101 12-11-0-8-5 12-11-0-9-3 
BE 1011 1110 12-11-0-8-6 12-11-0-9-4 
BF 1011 1111 12-11-0-8-7 12-11-0-9-5 
co 1100 0000 { 12-0 12-11-0-9-6 
C1 11000001 A 12-1 12-11-0-9-7 
C2 1100 0010 B 12-2 12-11-0-9-8 
C3 1100 0011 c 12-3 12-0-8·1 
C4 1100 0100 D 12-4 12-0-8-2 
cs 11000101 E 12-5 12-0-8-3 
C6 1100 0110 F 12-6 12-0-8-4 
C7 11000111 G 12-7 12-0-8-5 
ca 1100 1000 H 12-8 12-0-8-6 
C9 1100 1001 I 12-9 12-0-8-7 
CA 1100 1010 12-0-9-8-2 12-11-8-1 
CB 11001011 12-0-9-8-3 12-11-8-2 
cc 11001100 12-0-9-8-4 12-11-8-3 
CD 11001101 12-0-9-8-5 12-11-8-4 
CE 1100 1110 12-0-9-8-6 12-11-8-5 
CF 11001111 12-0-9-8-7 12-11-8-6 
DO 1101 0000 } 11-0 12-11-8-7 
01 1101 0001 J 11-1 11-0-8-1 --

• 

• 



UP-8342 Rev. 3 

• 
Decimal 

210 
211 
212 
213 
214 
215 
216 
217 

218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 

• 232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 

252 
253 
254 
255 

• 

SPERRY UNIVAC OS/3 
SORT/MERGE 

D-7 

Table D-1. Cross-Reference Table: EBCDIC/ASCII/Hollerith (Part 5 of 5) 

EBCDIC ASCII 

Hex a- EBCDIC Hollerith ASCII Hollerith 
deci- Binary Graphic Punched Card Graphic Punched Card 
mal Character Code Character Code 

02 1101 0010 K 11-2 11-0-8-2 

03 1101 0011 L 11-3 11-0-8-3 

04 1101 0100 M 11-4 11-0-8-4 

05 1101 0101 N 11-5 11-0-8-5 

06 1101 0110 0 11-6 11-0-8-6 

07 1101 0111 p 11-7 11-0-8-7 

08 1101 1000 Q 11-8 12-11-0-8-1 

09 1101 1001 R 11-9 12-11-0-1 

DA 1101 1010 12-11-9-8-2 12-11-0-2 

DB 1101 1011 12-11-9-8-3 12-11-0-3 

DC 11011100 12-11-9-8-4 12-11-0-4 

DD 1101 1101 12-11-9-8-5 12-11-0-5 
DE 1101 1110 12-11-9-8-6 12-11-0-6 
OF 1101 1111 12-11-9-8-7 12-11-0-7 

EO 11100000 \ 0-8-2 12-11-0-8 
El 1110 0001 11-0-9-1 12-11-0-9 
E2 1110 0010 s 0-2 12-11-0-8-2 

E3 1110 0011 T 0-3 12-11-0-8-3 
E4 11100100 u 0-4 12-11-0-8-4 

E5 1110 0101 v 0-5 12-11-0-8-5 

E6 1110 0110 w 0-6 12-11-0-8-6 
E7 1110 0111 x 0-7 12-11-0-8-7 
ES 1110 1000 y 0-8 12-0-9-8-2 
E9 11101001 z 0-9 12-0-9-8-3 
EA 1110 1010 11-0-9-8-2 12-0-9-8-4 
EB 1110 1011 11-0-9-8-3 12-0-9-8-5 
EC 1110 1100 11-0-9-8-4 12-0-9-8-6 
ED 1110 1101 11-0-9-8-5 12-0-9-8-7 
EE 11101110 11-0-9-8-6 12-11-9-8-2 
EF 11101111 11-0-9-8-7 12-11-9-8-3 
FO 1111 0000 0 0 12-11-9-8-4 
F1 1111 0001 1 1 12-11-9-8-5 
F2 1111 0010 2 2 12-11-9-8-6 
F3 1111 0011 3 3 12-11 -9-8-7 
F4 1111 0100 4 4 l 11-0-9-8-2 
F5 1111 0101 5 5 ! 11-0-9-8-3 
F6 1111 0110 6 6 11-0-9-8-4 
F7 1111 0111 7 7 11-0-9-8-5 
F8 1111 1000 8 8 11-0-9-8-6 
F9 1111 1001 9 9 11-0-9-8-7 
FA 1111 1010 12-11-0-9-8-2 12-11-0-9-8-2 
FB 1111 1011 12-11-0-9-8-3 12-11-0-9-8-3 
FC 11111100 12-11-0-9-8-4 12-11-0-9-8-4 
FD 1111 1101 12-11-0-9-8-5 12-11-0-9-8-5 
FE 1111 1110 12-11-0-9-8-6 12-11-0-9-8-6 
FF 1111 1111 12-11-0-9-8-7 12-11-0-9-8-7 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

D-8 

0.3. OS/3 COLLATING SEQUENCE FOR EBCDIC GRAPHIC CHARACTERS 

The following table shows the OS/3 collating sequence for EBCDIC characters and 
unsigned decimal data. The collating sequence ranges from low (0000000) to high 
(11111111). The bit configurations that do not correspond to symbols (e.g., 0-73, 81-89, 
etc.) are not shown. Some of these correspond to control commands for printers and other 
devices. 

Packed decimal, zoned decimal, fixed-point, and normalized floating-point data is collating 
algebraically; i.e., each quantity is interpreted as having a sign. 

Table D-2. OS/3 Collating Sequence: EBCDIC Graphics (Part 1 of 2) 

Collating 
Bit Configuration Symbol Meaning 

Sequence 

0 0000 0000 
64 0010 0000 SP Space 

74 0100 1010 [ Opening bracket 
75 0100 1011 Period, decimal point 

76 0100 1100 < Less than sign 

77 01001101 ( Left parenthesis 
78 0100 1110 + Plus sign 

79 0100 1111 ! Exclamation point 
80 0101 0000 & Ampersand 

90 0101 1010 l Closing bracket 
91 0101 1011 $ Dollar sign 

92 0101 1100 . Asterisk 

93 0101 1101 I Right parenthesis 
94 0101 1110 Semicolon 
95 0101 1111 I Logical NOT 
96 0110 0000 Minus sign, hyphen 

97 0110 0001 I Slash 

106 0110 1010 I Vertical bar 
107 0110 1011 Comma 
108 0110 1100 % Percent sign 
109 0110 1101 - Underscore 
110 0110 1110 > Greater than sign 
111 0110 1111 ? Question mark 

122 0111 1010 Colon 
123 0111 1011 # Number sign 
124 0111 1100 @ At sign 
125 0111 1101 Apostrophe, prime 
126 0111 1110 ~ Equals sign 
127 0111 1111 " Quotation marks 

129 1000 0001 a 
130 1000 0010 b 

131 1000 0011 c 
132 1000 0100 d 
133 1000 0101 e 

134 1000 0110 f 
135 1000 0111 g 
136 1000 1000 h 
137 1000 1001 i 

145 1001 0001 j 
146 1001 0010 k 
147 1001 0011 I 

148 1001 0100 m 

• 

• 



UP-8342 Rev. 3 

• 

• 

• 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Table 0-2. OS/3 Collating Sequence: EBCDIC Graphics (Part 2 of 2) 

Collating 
Bit Configuration Symbol Meaning 

Sequence 

149 1001 0101 n 
150 1001 0110 0 

151 1001 0111 p 
152 1001 1000 q 
153 1001 1001 r 

161 1010 0001 "' Tilde 
162 1010 0010 s 
163 10100011 t 
164 1010 0100 u 

165 1010 0101 v 
166 1010 0110 w 
167 1010 0111 x 
168 1010 1000 y 

169 1010 1001 z 

192 1100 0000 { Opening brace 
193 1100 0001 A 
194 1100 0010 B 
195 1100 0011 c 
196 1100 0100 D 
197 11000101 E 
198 11000110 F 
199 1100 0111 G 
200 1100 1000 H 

201 11001001 I 

208 1101 0000 } Closing brace 
209 1101 0001 J 
210 11010010 K 
211 1101 0011 L 
212 1101 0100 M 
213 1101 0101 N 
214 1101 0110 0 
215 1101 0111 p 

216 1101 1000 a 
217 1101 1001 R 

224 11100000 ' Reverse slant 
226 11100010 s 
227 1110 0011 T 
228 1110 0100 u 
229 1110 0101 v 
230 1110 0110 w 
231 1110 0111 x 
232 1110 1000 y 

233 1110 1001 z 

240 1111 0000 0 
241 1111 0001 1 
242 1111 0010 2 
243 1111 0011 3 
244 1111 0100 4 
245 1111 0101 5 
246 1111 0110 6 
247 1111 0111 7 
248 11111000 8 
249 1111 1001 9 

0-9 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

0.4. OS/3 COLLATING SEQUENCE FOR ASCII GRAPHIC CHARACTERS 

D-10 

Table D-3 shows the OS/3 collating sequence for ASCII characters and unsigned decimal 
data. The collating sequence ranges from low (00000000) to high (01111111 ). Bit 
configurations that do not correspond to symbols are not shown. 

Packed decimal, zoned decimal, fixed-point normalized floating-point data, and the signed 
numeric data formats are collated algebraically; i.e., each quantity is interpreted as having 
a sign. 

Table D-3. OS/3 Collating Sequence: ASCII Graphics (Part 1 of 2) 

Collating 
Bit Configuration Symbol Meaning 

Sequence 

0 0000 0000 Null 
32 0010 0000 SP Space 
33 0010 0001 ! Exclamation mark 
34 0010 0010 .. Quotation mark 
35 00100011 # Number sign 
36 0010 0100 $ Dollar sign 
37 0010 0101 % Percent sign 
38 0010 0110 & Ampersand 
39 0010 0111 Apostrophe, prime 
40 0010 1000 ( Opening parenthesis 
41 00101001 ) Closing parenthesis 
42 0010 1010 . Asterisk 
43 0010 1011 + Plus sign 
44 0010 1100 Comma 
45 00101101 Hyphen, minus sign 
46 0010 1110 Period, decimal point 
47 00101111 I Slant 
48 0011 0000 0 
49 0011 0001 1 
50 0011 0010 2 
51 0011 0011 3 
52 0011 0100 4 
53 0011 0101 5 
54 0011 0110 6 
55 0011 0111 7 
56 0011 1000 8 
57 0011 1001 9 
58 0011 1010 Colon 

59 0011 1011 Semicolon 
60 00111100 < Less than sign 
61 00111101 ~ Equals sign 
62 0011 1110 > Greater than sign 
63 0011 1111 ? Question mark 
64 0100 0000 @ Commercial at sign 
65 0100 0001 A 
66 0100 0010 B 
67 0100 0011 c 
68 0100 0100 D 
69 01000101 E 
70 01000110 F 
71 0100 0111 G 
72 0100 1000 H 
73 0100 1001 I 
74 0100 1010 J 
75 0100 1011 K 

76 01001100 L 
77 0100 1101 M 

• 

• 

• 



UP-8342 Rev. 3 

• 

• 

• 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Table D-3. OS/3 Collating Sequence: ASCII Graphics (Part 2 of 2) 

Collating 
Bit Configuration Symbol Meaning 

Sequence 

78 0100 1110 N 
79 0100 1111 0 
80 0101 0000 p 

81 0101 0001 Q 

82 0101 0010 R 
83 0101 0011 s 
84 0101 0100 T 
85 0101 0101 u 
86 01010110 v 
87 0101 0111 w 
88 0101 1000 x 
89 0101 1001 y 

90 0101 1010 z 
91 01011011 [ Opening bracket 
92 0101 1100 \ Reverse slant 
93 0101 1101 l Closing bracket 
94 01011110 /\ Circumflex 
95 0101 1111 - Underscore 
96 01100000 Grave accent 
97 0110 0001 a 
98 0110 0010 b 
99 0110 0011 c 
100 01100100 d 
101 0110 0101 e 
102 01100110 f 
103 01100111 g 
104 0110 1000 h 
105 0110 1001 i 
106 01101010 j 

107 01101011 k 
108 01101100 I 
109 01101101 m 
110 01101110 n 
111 0110 1111 0 

112 0111 0000 p 
113 0111 0001 q 
114 0111 0010 r 
115 0111 0011 s 
116 0111 0100 t 
117 0111 0101 u 
118 0111 0110 v 
119 0111 0111 w 
120 0111 1000 x 
121 0111 1001 y 

122 0111 1010 z 
123 0111 1011 ,{ Opening brace 
124 01111100 Vertical line 
125 01111101 l Closing brace 
126 01111110 Tilde 

D-11 

\ 



• 

• 

• 



UP-8342 Rev. 3 

• 

Term Reference 

A 

Access speeds, direct access 
devices Table 1-2 

Acronyms A.l 

Action code 

• input file processing 3.3.2.2 
output file processing 3.3.2.5 

Action word 3.3.2.2 

Address out (ADDROUT) sort 
description 10.5 

Fig. 10-8 
example 12.2 
sample control stream 12.3 

ADDROUT keyword parameter 
MR$PRM macro 6.4.2.2 
OPTION control statement 3.2.6 
tag sort 8.1 

ADTABL keyword parameter, 
MR$PRM macro 6.4.2.4 

Alternate collating sequence 11.3.4 

Alternate library, storing own-code routine 3.3.7 

Alternative sort programs 1.2 

AL TSEQ statement 11.3.4 

AL TWK keyword parameter, 

• OPTION control statement 3.2.6 

American National Standard Codes for 
Information Interchange See ASCII. 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

ASCII 
code correspondence 
collating sequences 

1-10 cross-reference table 
description 

A-1 variable-length records, partitioned 
files 

3-47 ASCII graphics, collating 

3-48 sequence 

3-47 Assembler directives 
DC 
DROP 

10-11 DS 

10-11 END 

12-2 EXTRN 

12-6 LTORG 
START 
USING, DROC routine 

6-20 USING, subroutine sort/merge 

3-39 USING, RSOC routine 

8-1 
Auto delete 

6-25 Automatic data reduction 

11-36 

3-59 Auxiliary storage 
checking availability 

1-1 disk 
inadequate 

11-36 standard file names 
tape 
work area 

3-37 

Index 1 

Index 

Reference Page 

D.2 D-1 
D.1 D-1 
Table D-1 D-3 
D.2.3 D-2 

3.2.4 3-34 

Table D-3 D-10 

3.3.3 3-54 
7.2 7-2 
3.3.4 3-55 
6.11.1 6-39 
6.11.1 6-39 
6.11.1 6-40 
6.11.1 6-39 
7.3 7-4 
6.2 6-5 
7.2 7-2 

7.3 7-4 

See data 
reduction 
routine. 

6.6 6-32 
1.7.2 1-10 
5.3.2.2 5-7 
1.7.2 1-10 
1.7.2 1-11 
1.7.2 1-10 



UP-8342 Rev. 3 

Term 

B 

Base register addressing 

Basic Assem bier Language (BAL) 

BIN keyword parameter 
MR$PRM macro 
PARAM control statement 

RECORD control statement 

Binary key fields 

Blanks 

BLKSIZE keyword parameter 
INPFIL control statement 
OUTFIL control statement 

Block size 

Braces 

Brackets 

Branch and link assembler 
instruction 

Branch table, exit codes 
format 
function 

Buffer area 

Buffer offset 

BUFOFF keyword parameter 
INPFIL control statement 
OUTFIL control statement 

BYPASS keyword parameter, INPFIL 
control statement 

Byte-bit format 
independent sort/merge 
subroutine sort/merge 

Byte numbering method 
independent sort/merge 
subroutine sort/merge 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Reference Page Term 

c 
6.2 6-4 CALC keyword parameter, MR$PRM 

macro 
6.1 6-1 

CALCAREA keyword parameter 
control statement example 

6.4.2.2 6-21 OPTION control statement 
3.2.6 3-42 
6.12 6-53 CANCEL supervisor macro 
3.2.2 3-24 

Capabilities 
3.2.l 3-16 independent sort/merge 
6.4.l 6-9 subroutine sort/merge 

system/3, 32, and 34 
A.l A-5 compatible sort 

Capital letters 
3.2.3 3-27 
3.2.4 3-31 Checksum word 

See BLKSIZE CLOSE imperative macro 
keyword parameter. input file 

output file 
A.l A-2 

CLOSE keyword parameter 
A.l A-2 INPFIL control statement 

OUTFIL control statement 

6.2 6-4 CLOSE keyword parameter 
INPFIL control statement 
OUTFIL control statement 

Table 3-3 3-56 
3.3.5 3-55 COBOL 

extended COBOL interface 
5.2 5-3 requirements 

See BUFOFF sort program job control 
keyword parameter. stream 

subroutine sort/merge 

3.2.3 3-27 Coding conventions 
3.2.4 3-31 

Collating sequence 
alternate 

3.2.3 3-27 ASCII graphics 
single key field 

3.2.1 3~16 Commas 
6.4.1 6-9 

Comment field 

3.2.1 3-16 Compatible sort, system/3, 32, and 34 
6.4.l 6-9 

Condition code 

Index 2 

Reference Page • 
6.4.2.4 6-26 

4.2 4-3 
3.2.6 3-42 

6.9 6-34 

1.2.1 1-2 
1.2.2 1-2 

1.2.3 1-3 

A.l A-1 

6.4.2.4 6-28. 

6.7 6-32 
6.9 6-34 

3.2.3 3-27 • 3.2.4 3-31 

3.2.3 3-27 
3.2.4 3-31 

Appendix C 
Table C-1 C-2 

Fig. C-1 C-4 
6.1 6-1 

A.l A-1 

11.3.4 11-36 
Table D-3 D-10 
6.4.1 6-11 

A.l A-1 

A.2 A-7 

1.2.3 1-3 

7.2 7-2 • 



UP-8342 Rev. 3 

• Term 

Conditional force 

Consolidated data management 

Continuation indicator 

Continuation statements 

Control specifications, SORT3 

Control statements, sort/merge 
definition 
END 
examples 
format rules 
INPFIL 
MERGE 
MODS 
OPTION 
OUTFIL 
RECORD 
SORT 

• Control stream 

Conversion table, user-defined 
collation sequencing 

COPY keyword parameter, SORT 
control statement 

Cross-reference table, 
EBCDIC/ASCII/Hollerith 

CSPRAM keyword parameter 
OPTION control statement 
MR$PRM macro instruction 

Cylinders, allocating 

D 
Data block 

Data capacities, direct access 
devices 

Data file organization • Data format codes 

Reference 

11.3.3.3 

9.6 

A.2 

A.2 

11.3 
12.2 

3.2 
3.2.5 
4.2 
A.2 
3.2.3 
3.4.l 
3.3.1 
3.2.6 
3.2.4 
3.2.2 
3.2. l 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

11-24 Data input phase 
independent sort/merge 

9-13 SORT3 

A-7 DATA keyword parameter, INPFIL 
control statement 

A-7 
Data management 

11-6 considerations 
12-1 

macro specifications, coding 
routines 

3-14 
3-35 Data management keywords 
4-1 BLKSIZE 
A-6 EOFADDR 
3-25 ERROR 
3-60 
3-44 
3-36 IOAREAl 
3-29 IOAREA2 
3-23 IOREG 
3-15 LABADDR 

OPTION 
See job control stream. SAVAREA 

TYPEFLE 

3.3.5 3-55 Data management macros 
DTFDA 
DTFMT 

3.2.l 3-18 DTFNI 

DTFSD 
Table D-1 D-3 LBRET 

Data records 
3.2.6 3-36 after sort 
6.4.2.4 6-27 before sort 

3.1.1 3-11 Data reduction routine 
independent sort/merge 

subroutine sort/merge 

Data strings 

6.4.2.4 6-28 
DC assembler directive 

Table 1-2 1-10 DEBLANK keyword parameter, RECORD 
control statement 

1.7.3 1-11 
Default disk sort 

Table 3-1 3-17 
Table 6-1 6-10 Default specifications 

Index 3 

Reference Page 

2.3.2.2 2-8 
10.3.2 10-6 

3.2.3 3-28 

1.5 1-6 
Table 1-1 1-7 
Fig. 6-3 6-6 
6.3 6-5 

6.3 6-6 
3.3.3 3-51 
3.3.2.3 3-48 
3.3.2.6 3-49 
6.3 6-6 
6.3 6-6 
6.3 6-6 
6.3 6-6 
3.3.2.4 3-48 
6.3 6-6 
3.3.3 3-51 
6.3 6-6 

6.3 6-5 
6.3 6-5 
6.3 6-5 
8.1 8-1 
6.3 6-5 
3.3.2.4 3-48 

Fig. 1-3 1-14 
Fig. 1-2 1-13 

3.3.1.2 3-46 
3.3.2.8 3-50 
7.3 7-3 
6.4.2.4 6-27 

2.3.2.2 2-8 
Fig. 5-3 5-4 

3.3.3 3-54 

3.2.2 3-25 

4.5 4-18 

A.l A-2 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

Index 4 



UP-8342 Rev. 3 

• Term Reference 

ERROR keyword parameter 
data management 6.3 
read error processing, merge-only 3.4.3 
read error processing, sort/merge 3.3.2.3 
subroutine sort/merge 6.9 
write error processing 3.3.2.6 

Error messages 3.2.6 

EXEC ASM statement 6.11.4 

EXEC statement 2.3 
6.11.3 
11.2.3 

Exit codes 
branch table 3.3.5 
coding example Fig. 3-17 
collating example 3.3.2.9 
data reduction 3.3.2.8 
functions and associated phases Table 3-2 
input file label processing 3.3.2.l 
input file processing, merge-only 3.4.2 
input file processing, sort/merge 3.3.2.2 

• input file read error processing, 
merge-only 3.4.3 

input file read error processing, 
sort/merge 3.3.2.3 

output file label processing 3.3.2.4 
output file processing 3.3.2.5 
parameter I ist 3.3.6 
program example 3.3.3 
record sequencing 3.3.2.7 
using 3.3.2 
write error processing 3.3.2.6 

EXIT keyword parameter 
INPFIL control statement 3.2.3 
OUTFIL control statement 3.2.4 

Exit parameter list 
format Table 3-4 
formatting 3.3.6 

Exiting to routines 
system-supplied 3.3.1.2 
user own-code 3.3.1.1 

EXT job control statement 3.1.1 
6.11.4 

Extended Binary Coded Decimal 
Interchange Code See EBCDIC. • Extended COBOL, subroutine 
sort/merge Table C-1 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

External reference (EXTRN) 
6-6 
3-64 
3-48 EXTRN assembler directive 
6-34 
3-49 

3-42 

6-47 

2-4 
6-41 
11-5 

3-55 F 
3-52 
3-51 Field description specification, SORT3 
3-50 column summary 
3-44 d esc ri ption 
3-46 
3-63 examples 
3-47 formats 

3-64 FIELD keyword parameter, MR$PRM 
macro 

3-48 
3-48 FIELDS keyword parameter 
3-48 MERGE control statement 
3-56 SORT control statement 
3-51 
3-50 File blocking, merge-only, control statement 
3-46 examples 
3-49 

FILE keyword parameter, SORT 
control statement 

3-28 
3-31 File preparation 

FILES keyword parameter, MERGE 
3-57 control statement 
3-56 

FILTYPE keyword parameter, OUTFIL 
control statement 

3-46 
3-44 FIN job control statement 

3-11 
6-49 FIN keyword parameter, MR$PRM 

macro instruction 

Final merge phase 
independent sort/merge 
SORT3 

C-2 subroutine sort/merge 

Index 5 

Reference Page 

6.2 6-3 
6.4.2.4 6-25 

6.2 6-3 
8.3.2 8-8 

Table 11-8 11-35 
11.3.1 11-7 
11.3.3.3 11-21 
11.3.3.3 11-24 
Fig. 11-7 11-22 

6.4.1 6-8 

3.4.1 3-60 
3.2.1 3-16 

4.2 4-4 

3.2.1 3-21 

1.6 1-7 

3.4.1 3-61 

3.2.4 3-31 

6.11.4 6-49 
11.2.4 11-6 

6.4.1 6-12 

2.3.2.4 2-11 
10.3.4 10-9 
Fig. 5-4 5-5 



UP-8342 Rev. 3 

Term 

Fixed-length records 
merge-only, control statement 

example 
partitioned files 
size 
tape sort, control statement 

example 
with user exits, control 

statement example 

Force-all condition 

Format rules 

FORMAT subparameter 
MERGE control statement 
SORT control statement 

G 
Generic terms 

GET imperative macro 

GETREC routine 

H 

Hardware devices 

Header specification, SORT3 
column summary 
description 

formats 

Hollerith 
code correspondence 
cross-reference table 
punched card code description 

Hyphens 

Reference 

4.2 
3.2.4 
3.2.2 

4.2 

4.2 

I 1.3.3.3 

A.I 

3.4.I 
3.2.I 

A.I 

6.5 

8.3.2 

3.1.1 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

4-4 IBM System/3 compatible sort 
3-34 
3-23 IN keyword parameter, MR$PRM 

macro instruction 
4-I 

INCLUDE statement 
4-3 

11-26 Independent default sort, job 
control stream example 

A-I 
Independent disk sort 

coding 
3-60 flowchart 
3-I7 job control stream 

job control stream exam pies 
key, record, and block 

relationship 
sample program 

Independent sort/ merge 
basic concepts 
byte numbering method 
control statement examples 
control statement format rules 

A-I control statements 
control stream 

6-3I data flow 
data format 

8-11 data records 
defining files 
execution 

executing from workstation 
flowchart 
introduction 
job control stream 

key fields 
merge-only operation 
minimum main storage requirements 

3-IO 
operation phases 

record layout 

Table 11-3 11-13 
requirements 
scratch files 

I 1.3.1 11-7 software framework 
11.3.3.1 11-10 sort operation Fig. II-5 11-11 sorting sequence 

special specifications 

D.2 D-2 
tag sort 

Table D-1 D-3 
working storage 

D.2.1 D-2 

A.I A-1 

Index 6 

Reference Page • 
1.2.3 I-3 

6.4.l 6-I2 

6.11.2 6-4I 
6. I 1.4.l 6-52 

4.5 4-I8 

Fig. 3.2 3-3 
Fig. 3-I 3-2 
3.1.1 3-3 
4.3 4-4 

Fig. 2-I 2-3 
2.2 2-2 

Section 2 
3.2.I 3-I6 
4.2 4-I • A.2 A-6 
3.2 3-I4 
3.1.1 3-11 
Fig. 2-3 2-6 
3.2.1 3-I7 
3.2.2 3-23 
3.1.1 3-IO 
2.3 2-3 
Fig. 2-2 2-4 
3.5 3-65 
Fig. 3-I 3-2 
1.2.1 I-2 
3.1.1 3-3 
Fig. 3-3 3-I2 
3.2.I 3-I6 
3.4.1 3-60 
1.7.I I-9 
2.3.2 2-7 
Fig. 2-3 2-6 
3.2.I 3-I6 
Section 3 
3.2.1 3-20 
2.3.1 2-5 
3.2.I 3-I5 
3.2.1 3-18 
3.2.6 3-36 
3.2.6 3-38 
3.2.1 3-20 • 



UP-8342 Rev. 3 

• Term Reference 

Independent tape sort, job control 
stream examples 4.4 

Indexed random access method 
(IRAM) files See IRAM 

files. 

Indexed sequential files (ISAM) See ISAM. 

Initial sorting 2.3.2.2 

Initialization phase 
independent sort/merge 2.3.2.1 
SORT3 10.3.1 
subroutine sort/merge Fig. 5-2 

INPFIL control statement 
BLKSIZE keyword parameter 3.2.3 
BUFOFF keyword parameter 3.2.3 
BYPASS keyword parameter 3.2.3 
CLOSE keyword parameter 3.2.3 
DATA keyword parameter 3.2.3 
EXIT keyword parameter 3.2.3 
format 3.2.3 
function 3.2.3 • INTERLACE keyword parameter 3.2.3 
OPEN keyword parameter 3.2.3 
SKIPBYTE keyword parameter 3.2.3 
use 3.2 
VOLUME keyword parameter 3.2.3 

Input files 
defining 3.2.3 
device assignment 3.1.1 
LABADDR keyword parameter 3.3.2.1 
label processing, own-code 

routine 3.3.2.1 
LBRET imperative macro 3.3.2.1 
maximum number 3.2.6 
merge-only operation 3.4.1 
multipartitioned disk files 3.2.3 
processing, merge-only 3.4.2 
processing, sort/merge 3.3.2.2 
read error processing, sort/merge 3.3.2.3 
unsorted records Fig. 3-12 

Input routine 2.3.2.2 

Input tape file 
closing 3.2.3 
opening 3.2.3 

Interactive operation • independent sort/merge 3.5 
SORT3 10.6 

Interlace factor 3.2.4 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

INTERLACE keyword parameter 
4-15 INPFIL control statement 

OUTFIL control statement 

Interlacing 

Internal sort 
independent sort/merge 

2-8 
main storage requirements 
SORT3 

2-7 subroutine sort/merge 
10-5 
5-3 1/0 data file organization 

1/0 data structuring 
3-27 
3-27 1/0 devices 
3-27 
3-27 IOAREA 1 keyword parameter, data 
3-28 management 
3-28 
3-26 IOAREA2 keyword parameter, data 
3-25 management 
3-28 
3-29 IOREG keyword parameter, data 
3-29 management 
3-14 
3-29 IRAM files 

FILTYPE keyword parameter 
restrictions 

3-25 tag sort 
3-10 
3-46 ISAM files, restriction 

3-46 
3-46 
3-40 
3-61 
3-28 
3-64 
3-47 
3-48 
3-38 

2-8 

3-27 
3-29 

3-65 
10-13 

3-32 

Index 7 

Reference Page 

3.2.3 3-28 
3.2.4 3-29 

See INTERLACE 
keyword parameter. 

2.3.2.2 2-8 
3.2.1 3-20 
1.7.l 1-9 
10.3.2 10-6 
9.5 9-13 

1.7.3 1-11 

1.8 1-12 

3.1.1 3-10 

6.3 6-6 

6.3 6-6 

6.3 6-6 

3.2.4 3-30 
1.6 1-7 
3.2.6 3-38 

1.6 1-7 
2.1 2-1 



UP-8342 Rev. 3 

Term Reference 

J 
Job control dialog 3.5 

Job control statements 
DVC 3.1.1 

6.11.4 
11.2.2 

EXEC 11.2.3 
EXT 3.1.1 

6.11.4 
FIN 6.11.4 

11.2.4 
JOB 6.11.4 

11.2.1 
LBL 3.1.1 

6.11.4 
LFD 3.1.1 

6.11.4 
PAR AM 3.2.6 

6.12 
VOL 3.1.1 

6.11.4 
See also SORT3 job control statements. 

Job control streams 
COBOL sort program Fig. C-1 
entering from workstation 3.5 
independent default sort examples 4.5 
independent disk sort examples 4.3 
independent merge-only operation Fig. 3-19 
independent sort/merge 3.1.1 

Fig. 3-3 
independent tape sort examples 4.4 
own-code routines 3.3.7 
PARAM statement, testing for 3.2.6 
SORT3, executing under OS/3 

job control Fig. 11-1 
12.3 

SORT3, executing under OS/3 
OCL processor Fig. 11-2 

12.3 
submitting parameters 6.12 
subroutine sort/merge 6.11.4 

Fig. 6-22 
tape work file 6.11.5 

Job deck 
COBOL sort program Fig. C-1 
independent sort/merge Fig. 3-1 
subroutine sort/merge Fig. 6-22 

Job priority 6.11.4 

Job run library file ($Y$RUN) 6.2 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

JOB statement 

3-65 

3-10 
6-48 K 
11-4 
11-5 Key fields 
3-11 equal 
6-49 
6-49 tag sort 
11-6 
6-43 
11-4 
3-11 KEYLEN keyword parameter, OPTION 
6-49 control statement 
3-11 
6-49 Keyword parameter 
3-42 
6-53 
3-10 
6-48 L 

LABADDR keyword parameter, data 
management 

C-4 input file label processing 
3-65 output file label processing 
4-18 
4-4 LABEL keyword parameter, OPTION 
3-63 control statement 
3-3 
3-12 label types 
4-15 
3-57 LBL job control statement 
3-42 

11-2 LBRET imperative macro 
12-6 input file label processing 

output file label processing 
11-3 
12-6 LENGTH keyword parameter, RECORD 

6-53 control statement 

6-43 
6-50 LFD job control statement 

6-53 

Link edit, subroutine 
C-4 sort/merge 
3-2 
6-50 Link edit run 

6-47 LINK statement 

6-3 Linkage editor 

Literal table 

Index 8 

Reference Page • 
3.1.1 3-3 
6.11.4 6-43 
11.2.1 11-4 

6.4.2.4 6-27 
7.3 7-3 
3.2.6 3-38 
6.4.2.2 6-20 
8.1 8-1 

3.2.6 3-26 

A.1 A-4 

• 3.3.2.1 3-46 
3.3.2.4 3-48 

3.2.6 3-36 

3.2.6 3-40 

3.1.1 3-11 
6.11.4 6-49 

3.3.2.1 3-46 
3.3.2.4 3-48 

3.2.2 3-23 

3.1.1 3-11 
6.11.4 6-49 

6.11.2 6-41 

6.2 6-3 

6.11.4 6-48 

6.2 6-3 • 6.11.2 6-41 

6.11.1 6-40 



UP-8342 Rev. 3 

• Term 

Load-address (LA) 
instruction 

Load modules 

Load register (LR) instruction 

LOADM statement 

Location counter 

Lowercase terms 

LTORG assembler directive 

• M 

Machine language program 

Macro instructions, sort/merge 
format rules 
MG$REL 

MG$RET 

MR$0PN 
MR$PRM 
MR$REL 
MR$RET 
MR$SRT 

Magnetic tape devices, transfer rates 

Main storage allocation 
JOB statement 
program requirements 
STOR keyword parameter 
STORAGE keyword parameter 

Main storage requirements 
independent merge-only 
independent sort/merge 
internal only sort/merge • subroutine sort/merge 
SORT/3 

Merge, final 

Reference 

6.5 

5.3.1 
3.3.1 

6.5 

6.11.2 
6.11.4. l 

6.2 

A.l 

6.9 
6.11.1 
8.3.2 

6.11.1 

A.3 
8.3.1 
8.3.2 
8.3.1 
8.3.2 
6.5 
6.4 
6.6 
6.8 
6.7 

Table 1-3 

3.1.1 
1.7.1 
Fig. 6-7 
3.2.6 
Fig. 6-8 

1.7.1 
1.7.1 
1.7.1 
1.7.1 
1.7.1 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

Merge, preliminary 
6-31 

5-6 MERGE control statement 
3-44 FIELDS keyword parameter 

FILES keyword parameter 
6-31 format 

function 
6-41 MERGEP keyword parameter 
6-52 ORDER keyword parameter 

use 
6-3 

MERGE keyword parameter, MR$PRM 
A-1 macro 

6-34 Merge-only, subroutine 
6-40 
8-12 

Merge-only exit code 
input file processing 
input file read error processing 

Merge-only operation 
independent sort/merge 
input files 
job control stream 

6-40 subroutine sort/merge 

MERGEP keyword parameter, MERGE 
A-8 control statement 
8-3 
8-10 Messages 
8-3 error 
8-11 system console 
6-31 
6-8 MG$REL macro instruction 
6-32 format 
6-33 function 
6-32 

MG$RET macro instruction 
1-11 format 

function 

3-10 MODS control statement 
1-9 format 
6-13 function 
3-42 PHn keyword parameter 
6-14 use 

Modular organization, independent 
1-9 sort/merge 
1-9 
1-9 Modular sort structure, concept 
1-9 
1-9 

See final merge 
MR$0PN macro instruction 

phase. MR$0RT external reference 

Index 9 

Reference Page 

See preliminary 
merge phase. 

3.4.1 3-60 
3.4.1 3-61 
3.4.1 3-60 
3.4.1 3-60 
3.4 3-61 
3.4.1 3-61 
3.2 3-14 

6.4.2.4 6-28 

See subroutine 
merge-only. 

3.4.2 3-63 
3.4.3 3-64 

3.4.1 3-60 
3.4.1 3-61 
Fig. 3-19 3-63 
8.3 8-2 

3.4.1 3-61 

3.2.6 3-42 
3.2.6 3-41 

8.3.1 8-3 
8.3.2 8-10 

8.3.1 8-3 
8.3.2 8-11 

3.3.1 3-44 
3.3.1 3-44 
3.3.1 3-44 
3.2 3-14 

2.3.1 2-5 

1.3 1-4 
Fig. 1-1 1-5 

6.5 6-31 

6.2 6-3 



UP-8342 Rev. 3 SPERRY UNIVAC OS/3 
SORT/MERGE 

Index 10 



UP-8342 Rev. 3 

• Term Reference 

Operation phases, subroutine sort/merge 
final merge (phase 3) 5.3.2.4 

Fig. 5-4 
initial sort (phase 1) 5.3.2.2 

Fig. 5-2 
preliminary merge (phase 2) 5.3.2.3 

Fig. 5-3 
sort initialization and assignment 

(phase 0) 5.3.2.1 
Fig. 5-1 

Operation phases, system/3, 32, 34 
compatible sort 

description 10.3 
Fig. 10-3 

phase 0, initialization 
and assignment 10.3.1 

Fig. 10-4 
phase 1, data input and 

internal sort 10.3.2 
Fig. 10-5 

phase 2, preliminary merge 10.3.3 
Fig. 10-6 

Phase 3, final merge and 

• output 10.3.4 
Fig. 10-7 

QPR control statement 3.6.4 

OPTION control statement 
ADDROUT keyword parameter 3.2.6 
ALTWK keyword parameter 3.2.6 
CALCAREA keyword parameter 3.2.6 
coding examples Fig. 3-11 
CSPRAM keyword parameter 3.2.6 
DUMP keyword parameter 3.2.6 
ERASE keyword parameter 3.2.6 
format 3.2.6 
function 3.2.6 
KEYLEN keyword parameter 3.2.6 
LABEL keyword parameter 3.2.6 
PRINT keyword parameter 3.2.6 
RESERV keyword parameter 3.2.6 
RESTART keyword parameter 3.2.6 
ROUTE keyword parameter 3.2.6 
SHARE keyword parameter 3.2.6 
SORTIN keyword parameter 3.2.6 
SORTOUT keyword parameter 3.2.6 
SORTWK keyword parameter 3.2.6 
STORAGE keyword parameter 3.2.6 
use 3.2 
VERIFY keyword parameter 3.2.6 

• OPTION keyword parameter, data 
management 6.3 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

Optional entries 
5-9 
5-5 Optional parameters 
5-6 
5-3 ORDER keyword parameter, MERGE 
5-8 control statement 
5-4 

OUT keyword parameter 
5-6 linkage editor control statement 
5-2 

MR$PRM macro instruction 

OUTFIL control statement 
10-2 BLKSIZE keyword parameter 
10-4 BUFOFF keyword parameter 

CLOSE keyword parameter 
10-5 EXIT keyword parameter 
10-5 FILTYPE keyword parameter 

format 
10-6 function 
10-7 INTERLACE keyword parameter 
10-8 NOTPMK keyword parameter 
10-8 NPTN keyword parameter 

OPEN keyword parameter 
10-9 RCSZ keyword parameter 
10-9 SIZE keyword parameter 

TYPE keyword parameter 
3-64 UOS keyword parameter 

use 

3-36 Output files 
3-37 defining 
3-36 device assignment 
3-37 label processing, own-code routines 
3-36 multi partitioned 
3-37 
3-37 processing, own-code routine 
3-36 single-partition 
3-36 
3-36 tag sorted, ADDROUT =A 
3-36 tag sorted, ADDROUT =D 
3-36 
3-36 Output record loop 
3-36 
3-37 Output routine 
3-36 
3-37 Own-code, capability 
3-37 
3-37 
3-36 
3-14 
3-36 

6-6 

Index 11 

Reference Page 

A.1 A-2 

A.1 A-2 

3.4.1 3-61 

3.3.7 3-58 
6.11.4 6-48 
6.4.1 6-12 

3.2.4 3-31 
3.2.4 3-31 
3.2.4 3-31 
3.2.4 3-31 
3.2.4 3-32 
3.2.4 3-30 
3.2.4 3-29 
3.2.4 3-32 
3.2.4 3-32 
3.2.4 3-32 
3.2.4 3-32 
3.2.4 3-33 
3.2.4 3-33 
3.2.4 3-34 
3.2.4 3-35 
3.2 3-14 

3.2.4 3-29 
3.1.1 3-10 
3.3.2.4 3-48 
3.2.4 3-34 
Fig. 3-10 3-34 
3.3.2.5 3-48 
3.2.4 3-33 
Fig. 3-9 3-33 
Fig. 3-13 3-38 
Fig. 3-14 3-39 

6.8 6-33 

6.8 6-33 

1.6 1-8 



UP-8342 Rev. 3 

Term Reference 

Own-code routines 
assembling and linking 3.3.7 
branch table 3.3.5 
collating sequence 3.3.2.9 
conversion table 3.3.5 
data reduction (DROC), 

independent sort/merge 3.3.2.8 
data reduction (DROC), 

subroutine sort/merge 6.4.2.4 
7.3 

defining exits 3.3.1 
general purpose registers 3.3.4 
input file label processing 3.3.2.1 
input file processing, merge-only 3.4.2 
input file processing, sort/merge 3.3.2.2 
input file read error processing, 

merge-only 3.4.3 
job control requirements 3.3. 7 
load modules 3.3.1 
output file label processing 3.3.2.4 
output file processing 3.3.2.5 
parameter list 3.3.6 
phases 3.3.1 
program example 3.3.3 
read error processing 3.3.2.3 
record sequence (RSOC) 7.2 
record sequencing 3.3.2.7 
return address 3.3.4 
save area 3.3.4 
write error processing 3.3.2.6 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

p 
3-57 
3-55 Packed decimal data format 
3-51 
3-56 PAD keyword parameter, MR$PRM macro 

3-50 PARAM job control statement 
BIN keyword parameter 

6-27 DISC keyword parameter 
7-3 format 
3-44 NOCKSM keyword parameter 
3-55 RESERV keyword parameter 
3-46 RESUME keyword parameter 
3-63 SHARE keyword parameter 
3-47 TAPE keyword parameter 

3-64 Parameter list, own-code routine 
3-57 
3-44 Parameter table 
3-48 additional 
3-48 previous program 
3-56 sort 
3-44 
3-51 Parentheses 
3-48 
7-1 Partition size 
3-50 multipartitioned disk files 
3-55 single-partition disk files 
3-55 
3-49 Partitioned disk files 

PASS subparameter 

Performance factors, sort/merge 

Phases 

PHn keyword parameter, MODS control 
statement 

Positional subparameters 

Preliminary merge phase 
independent sort/merge 
SORT3 
subroutine sort/merge 

PRINT keyword parameter 
MR$PRM macro 
OPTION control statement 

PUBS list 

PUT imperative macro 

PUTREC routine 

Index 12 

Reference Page • 
3.4.2 3-64 

6.4.2.4 6-29 

6.12 6-53 
6.12 6-53 
6.12 6-54 
6.12 6-53 
6.12 6-53 
6.12 6-53 
6.12 6-54 
6.12 6-54 

3.3.6 3-56 

6.4.2.4 6-25 
Fig. 6-15 6-26 
Appendix B 

A.l A-1 

• Fig. 3-10 3-34 
Fig. 3-9 3-33 

See multipartitioned 
disk files. 

6.4.2.3 6-23 

1.7 1-8 

See operation phases. 

3.3.1 3-44 

A.l A-5 

2.3.2.3 2-9 
10.3.3 10-8 
Fig. 5-3 5-4 

6.4.2.4 6-29 
3.2.6 3-36 

3.2.1 3-20 

6.8 6-33 • 8.3.2 8-12 



UP-8342 Rev. 3 

• Term 

R 

RCSZ keyword parameter 
MR$PRM macro 
OUTFI L control statement 

Read error processing sort/ merge 
error handling routine 
ERROR keyword parameter 

Read record loop 

Record and file preparation 

Record comparisons 

RECORD control statement 
BIN keyword parameter 
DEBLANK keyword parameter 
format 
function 
LENGTH keyword parameter 
RCSZ keyword parameter 
TYPE keyword parameter 
use • Record definition, parameters 

Record handling, SORT3 

Record layouts 
1/0 data file organization 
subroutine sort/ merge 

Record sequence own-code routine (RSOC) 

Record strings 

Record type specification, SORT3 
column summary 
column 8 entries 
description 

Factor 1 field length 
requirements 

format 
test relationships, Factor 1 

and 2 comparisons 

RESERV keyword parameter 
MR$PRM macro 
OPTION control statement 

• PARAM control statement 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Reference Page Term 

Reserved tape unit 
independent sort/merge 
subroutine sort/merge 

6.4.1 6-14 
3.2.4 3-33 RESTART keyword parameter, OPTION 

control statement 

3.3.2.3 3-48 Restrictions 
3.3.2.3 3-48 indexed random access method 

(IRAM) files 
6.6 6-32 ISAM files 

sort program 
1.6 1-7 

RESUME keyword parameter 
7.2 7-1 MR$PRM macro 

PARAM control statement 

3.2.2 3-24 restart facilities 
3.2.2 3-25 
3.2.2 3-23 Rewind methods 
3.2.2 3-23 input tape file closing 
3.2.2 3-23 input tape file opening 
3.2.2 3-24 output tape file closing 
3.2.2 3-24 output tape file opening 
3.2 3-14 

ROUTE keyword parameter, OPTION 
6.4.2.2 6-19 control statement 

10.4 10-10 Routines, exiting 
system-supplied 
user own-code 

1.7.3 1-11 
6.4.1 6-9 RSOC keyword parameter 

MR$PRM macro 
7.2 7-1 record sequencing 

2.3.2.3 2-9 RSOC routine 
Fig. 5-3 5-4 

Table 11-7 11-20 
Table 11-4 11-17 
11.3.1 11-7 
11.3.3.2 11-14 

Table 11-6 11-18 
Fig. 11-6 11-15 

Table 11-5 11-17 

6.4.2.1 6-17 
3.2.6 3-36 
3.2.6 3-42 
6.12 6-53 

Index 13 

Reference Page 

3.2.6 3-40 
6.4.2.1 6-17 

3.2.6 3-36 

1.6 1-7 
2.1 2-1 
1.6 1-7 

6.4.2.3 6-23 
3.2.6 3-42 
6.12 6-53 
8.2 8-2 

3.2.3 3-27 
3.2.3 3-29 
3.2.4 3-31 
3.2.4 3-32 

3.2.6 3-37 

3.3.1.2 3-46 
3.3.1.1 3-44 

6.4.1 6-8 
6.4.1 6-11 

See record sequence 
own-code routine. 



UP-8342 Rev. 3 

Term 

s 
SAVAREA keyword parameter, data 

management 

Scratch files, subroutine sort/merge 

Sequence field 

Sequential access method file, Fil TYPE 
keyword parameter 

SG$0RT 

Shaded background 

SHARE keyword parameter 
MR$PRM macro 
OPTION control statement 
PARAM control statement 

Shared tape files 
input and sort work 

sort work and output 

Single-partition disk files, partition size 

SIZE keyword parameter 
MR$PRM macro 
OUTFI L control statement 
SORT control statement 

SKIPBYTE keyword parameter, INPFIL 
control statement 

Software framework, independent sort/merge 

SORT module 

Sort common module (SG$0RT) 
initial interface 
initiating operation 

SORT control statement 
COPY keyword parameter 
DISC keyword parameter 
FILE keyword parameter 
format 
FORMAT subparameter 
function 
NOCKSM keyword parameter 
SIZE keyword parameter 
SORTP keyword parameter 

Reference 

3.3.3 

6.4.2.1 

A.2 

3.2.4 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

TAPE keyword parameter 
use 
WORK keyword parameter 

3-51 
Sort files 

6-17 
Sort job step, termination 

A-7 
Sort/merge 

modules, calling in 
3-32 parameter usage summary 

See sort com- Sort/merge macro instructions 
man module. MG$REL 

MG$RET 
A.1 A-2 MR$0PN 

MR$PRM 

6.4.2.1 6-18 MR$REL 
3.2.6 3-36 MR$RET 
3.2.6 3-42 MR$SRT 
6.12 6-54 

Sort options 

3.2.6 3-41 Sort parameter table 
Fig. 6-10 6-19 contents 
6.4.2.1 6-18 linking additional tables 

submitting entries from control stream 
Fig. 3-9 3-33 

Sort program 
alternatives 

6.4.2.4 6-26 considerations 
3.2.4 3-33 elements 
3.2.l 3-21 examples, SORT3 

introduction 
1/0 data structuring 

3.2.3 3-29 modular structure concept 
performance 

2.3.1 2-5 restrictions 

2.3 2-4 Sort program alternatives 
independent sort/merge 
subroutine sort/merge 

Fig. 6-2 6-4 system/3 compatible sort 
6.2 6-3 

Sort structure, module concept 

3.2. l 3-18 Sort work record 
3.2.1 3-20 
3.2.1 3-21 SORTIN keyword parameter, OPTION control 
3.2.1 3-15 statement 
3.2.1 3-17 
3.2.1 3-15 SORTINn and SORTOUT file names 
3.2.1 3-21 
3.2.l 3-21 SORTOUT keyword parameter, OPTION 
3.2.1 3-21 control statement 

Index 14 

Reference Page • 3.2.1 3-20 
3.2 3-14 
3.2.l 3-20 

6.4.2.1 6-17 

5.3.2.2 5-7 

Fig. 5-1 5-2 
Table 6-2 6-40 

8.3.2 8-6 
8.3.2 8-6 
6.5 6-31 
Fig. 6-1 6-2 
6.4.1 6-8 
6.6 6-32 
6.8 6-33 
6.7 6-32 

1.7.4 1-11 

Appendix B • 6.4.2.4 6-25 
6.12 6-53 

1.2 1-1 
1.6 1-7 
1.7 1-8 
Section 12 
1.1 1-1 
1.8 1-12 
1.3 1-3 
1.7 1-8 
1.6 1-7 

1.2.1 1-2 
1.2.2 1-2 
1.2.3 1-3 

1.3 1-4 

10.4 10-10 

3.2.6 3-37 

3.1.1 3-11 

3.2.6 3-37 • 



UP-8342 Rev. 3 

• Term Reference 

SORTP keyword parameter, SORT control 
statement 3.2.1 

SORTWK keyword parameter, OPTION 
control statement 3.2.6 

SORT/3 
basic concepts Section 10 
description 1.2.3 
examples Section 12 
executing from workstation 10.6 
execution 10.2 

Fig. 10-2 
functional division Fig. 10-1 
operational phases 10.3 

Fig. 10-4 
Fig. 10-5 
Fig. 10-6 
Fig. 10-7 

requirements Section 11 
sort job characteristics 10-5 
specifications form Fig. 11-3 

SORT /3 control specifications 
description 11.3 • determining need 11.3.1 
examples 12.2 
numbering 11.3.2 

Fig. 11-4 
preparing 11.3.3 

SORT /3 job control statements 
device assigning 11.2.2 
end, marking 11.2.4 
execution, initiation 11.2.3 
identifying 11.2.1 
scheduling 11.2.1 

SORT /3 software framework 
data input 10.3.2 
final merge 10.3.4 
internal sort 10.3.2 
output 10.3.4 
preliminary merge 10.3.3 
sort assignment 10.3.1 
sort initialization 10.3.l 

SORT /3 specification formats 
field description Fig. 11-7 
header Fig. 11-5 
record type Fig. 11-6 

• 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

Standard labels 
3-21 

START assembler directive 
3-37 

Start-of-data (/$) statement 

1-3 Statement conventions 

10-13 STOR keyword parameter, MR$PRM macro 
10-2 
10-3 STORAGE keyword parameter, OPTION 
10-1 control statement 
10-2 
10-5 Structure 
10-7 sort/merge 
10-8 See also modular structure. 
10-9 

Subparameters 
10-11 
11-9 Subroutine disk sort 

alternate job control stream 
coding 

11-6 
11-7 job control stream 
12.l 
11-8 sample program 
11-11 using consolidated data management 
11-9 

Subroutine merge-only 
assembling 

11-4 coding 
11-6 end of file processing 
11-5 executing 

Index 15 

Reference Page 

See LABEL 
keyword parameter. 

6.2 6-3 
6.11.1 6-40 

6.11.4 6-47 

Appendix A 

6.4.l 6-12 

3.2.6 3-36 

1.3 1-3 

A.l A-5 

6.11.4.1 6-52 
Fig. 6-4 6-7 
Fig. 6-16 6-30 
6.11.4 6-43 
Fig. 6-21 6-43 
5.1 5-1 
9.6 9-13 

8.3.3 8-15 
8.3.2 8-8 
Fig. 8-3 8-6 
8.3.3 8-15 

11-4 file blocking, control statement examples 4.2 4-4 
11-4 fixed length records, control statement 

examples 4.2 4-1 
initial comparison Fig. 8-2 8-6 

10-6 job description Fig. 8-4 8-7 
10-9 link editing 8.3.3 8-15 
10-6 operational phases Fig. 8-1 8-4 
10-9 program coding Fig. 8-5 8-13 
10-8 program flowchart Fig. 8-4 8-7 
10-5 user program interface Fig. 8-6 8-16 
10-5 

11-22 
11-11 
11-15 



UP-8342 Rev. 3 

Term Reference 

Subroutine sort/merge 
activating 6.5 
alternate job control stream 6.11.4.1 
assembling program 6.11.l 
assembly run 6.11.l 
basic concepts Section 5 
byte numbering method 6.4.1 
checksum word 6.4.2.4 
defining files 6.3 
error handling routine 6.9 
executing program 6.11.3 
extended COBOL Table C-1 
flowchart Fig. 6-1 
initialization procedure 6.5 
initiating 6.2 
input routine 6.5 
internal sort 9.5 
introduction 1.2.2 
job control stream 6.11.4 

Fig. 6-22 
key fields 6.4.1 

6.4.2.2 
link editing program 6.11.2 
macro format rules A.3 
main storage requirements 1.7.l 
merge-only 6.4.2.4 
merge-only function 8.3 
operation phases 5.3.2 

Fig. 5-6 
output routine 6.8 
own-code routines Section 7 
program examples Section 9 
record layout 6.4.1 
record size 6.4.1 
requirements Section 6 
run requirements 6.4 
save area 6.3 
software framework 5.3.1 
sorting sequence 6.4.1 
special applications Section 8 
tag sort 6.4.2.2 

8.1 
tape sort 6.4.2.3 

9.2 
tape sort using own-code routine 9.4 
tape sort with restart 9.3 
user program interface Fig. 6-18 
working storage 6.4.2.1 

Summary tag-along sort 10.5 
12.2 

System access technique (SAT) 3.1.l 

System driver program (SORT) 2.3 
10.2 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

System load library file ($Y$LOD) 
6-31 own-code routine 
6-52 sort/merge modules 
6-39 
6-39 System macro library file ($Y$MAC) 

6-9 System message log 
6-28 
6-5 System object library file ($Y$0BJ) 
6-34 
6-41 
C-2 System/3, 32, and 34 compatible sort 
6-2 alternate collating sequence 
6-31 basic concept 
6-3 characteristics 
6-31 control specifications 
9-13 
1-2 examples 
6-43 execution 
6-50 
6-8 job control statements, 
6-20 preparation 
6-41 record handling 
A-8 requirements 
1-9 software framework 
6-28 
8-2 specification numbering 
5-6 
5-10 
6-33 

6-9 
6-14 

6-8 
6-7 
5-6 
6-11 

6-20 
8-1 
6-23 
9-1 
9-8 
9-5 
6-37 
6-17 

10-13 
12-5 

3-11 

2-4 
10-2 

Index 16 

Reference Page • 
3.3.7 3-60 
1.3 1-4 

1.3 1-4 

6.4.2.4 6-29 

1.3 1-4 
6.2 6-3 

11.3.4 11-34 
Section 10 
10.5 10-11 
11.3 11-6 
Table 11-1 11-7 
Section 12 
10.2 10-2 
Fig. 10-2 10-3 

11.2 11-3 
10.4 10-10 
Section 11 
10.3 10-2 
Fig. 10-3 10-4 • 11.3.2 11-8 

• 



UP-8342 Rev. 3 

• Term 

T 

Table entries, adding 

Tag-along sort 
description 

example 
sample control stream 

Tag sort 
control statement example 

files 

independent sort/merge 
IRAM file 
subroutine sort/merge 

Tape files, shared 

TAPE keyword parameter • MR$PRM macro 
PARAM control statement 

SORT control statement 

Tape labels 

Tape mark 

Tape sort 
fixed-length records, 

example 
restarting 

subroutine sort/merge, example 
using own-code routine, example 
with restart, example 

Task 

Temporary job run library file ($Y$RUN) 

Tournament sort 

Transfer rates, magnetic tape devices 

TYPE keyword parameter 

• OUTFIL control statement 
RECORD control statement 

TYPEFLE keyword parameter, data 
management 

Reference 

Fig. 6-14 

10.5 
Fig. 10-9 
12.2 
12.3 

4.2 
Fig. 3-13 
Fig. 3-13 
Fig. 3-14 
Fig. 6-12 
3.2.6 
3.2.6 
6.4.2.2 
8.1 

See shared 
tape files. 

6.4.2.1 
3.2.6 
6.12 
3.2.1 

6.4.2.1 

See NOTPMK 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

u 
6-25 UDATE 

UDAY 
10-12 
10-12 UMONTH 
12-3 
12-7 Unconditional force 

Unlabeled tapes 
4-2 
3-38 
3-38 Unsorted input records, reading 
3-39 
6-20 Unsorted records, releasing to sort 
3-38 
3-38 UOS keyword parameter, OUTFIL control 
6-20 statement 
8-1 

USEQ keyword parameter 
MR$PRM macro 
sort/merge performance 

User own-code exits 
6-16 
3-42 
6-54 USING assembler directive 
3-20 

6-17 UY EAR 

keyword parameter. 

4.2 4-1 v 
6.4.2.3 6-23 
8.2 8-2 Variable-length records 
9.2 9-1 BIN size 
9.4 9-8 
9.3 9-5 partitioned files 

size 
6.11.4 6-47 tag sort exam pie 

6.11.1 6-40 VERIFY keyword parameter, OPTION 
control statement 

8.3.1 8-3 
VOL job control statement 

Table 1-3 1-11 

VOLUME keyword parameter, INPFIL control 
3.2.4 3-34 statement 
3.2.2 3-24 

Volume serial numbers 

6.3 6-6 Volume table of contents (VTOC) 

Index 17 

Reference Page 

11.3.3.2 11-19 

11.3.3.2 11-19 

11.3.3.2 11-19 

11.3.3.3 11-25 

See LABEL 
keyword parameter. 

Fig. 5-2 5-3 

6.6 6-32 

3.2.4 3-35 

6.4.2.2 6-22 
1.7.4 1-11 

See own-code 
routines. 

6.2 6-5 
7.2 7-2 

11.3.3.2 11-19 

3.2.2 3-24 
Fig. 6-13 6-21 
3.2.4 3-34 
3.2.2 3-23 
4.2 4-2 

3.2.6 3-36 

3.1.1 3-10 
6.11.4 6-48 

3.2.3 3-29 

6.11.4 6-48 

4.5 4-18 



UP-8342 Rev. 3 

Term Reference 

w 
Winner record, subroutine merge-only 8.3.l 

8.3.2 

Work area 
auxiliary storage 1.7.2 
checking availability 6.6 
main storage 6.9 

Fig. 6-7 

Work files 
device assignment 3.1.1 

6.11.4 
disk 1.7.2 

3.2.l 
6.6 

tape 3.1.1 
1.7.2 
3.2.l 
6.4.2.1 
6.11.5 

SPERRY UNIVAC OS/3 
SORT/MERGE 

Page Term 

WORK job control procedure 

8-3 WORK keyword parameter, SORT control 
8-11 statement 

Work record, sort 
1-10 
6-32 Working storage 
6-34 independent sort/merge 
6-13 optimum area 

Workstation, sort program 
3-10 execution 
6-49 independent sort/merge 
1-10 SORT3 
3-20 
6-32 Write error processing 
3-10 
1-10 
3-20 
6-17 
6-53 

Index 18 

Reference Page • 3.1.1 3-11 

3.2.l 3-20 

10.4 10-10 

3.2.l 3-18 
3.2.6 3-42 

3.5 3-65 
10.6 10-13 

3.3.2.6 3-49 

• 

• 



• 

.; 
c: 

Cl • c: 
0 

co .... 
:i 
u 

• 

UNIVAC 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 
subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

FOLD I 
--------------------------------------------------! 

111111 NO POSTAGE I 
NECESSARY I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

IF MAILED I 
IN THE 

UNITED STATES I 
I 
I 
I 
I 
In 
I~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-~------------------------------------------------! 
FOLD I 

I 
I 
I 
I 
I 
I 

• 

• 

• 


