
•

•

•

This SPERRY UNIVAC® Operating System/3 (OS/3) Library Memo announces the release and availability of
"SPERRY UNIVAC Operating System/3 (OS/3) Supervisor User Guide," UP-8075 Rev. 2. This is a Standard Library
Item (SLI).

This revision reflects the current status of the OS/3 operating system, including changes and enhancements.

The following have been added:

• The new format of the tape block number field, including the tape mark count, and the revised description of
physical IOCS handling of the block count.

• The ALLOC, SCRTCH, and OBTAIN macro instructions for diskette space management .

• The ACCESS parameter in the DTFPF macro instruction for shared filelock processing of SAT disc files .

• The ARG LST macro instruction to generate a parameter list for use in program linkage.

• A change in the G ETCS macro instruction to permit records of up to 128-bytes to be read by the control stream
embedded data reader.

• A description of system debugging aids available for use by experienced personnel for debugging within the
supervisor.

• The switch priority and termination code fields in the job accounting table and in the job accounting record
printout format.

Minor changes and additions have been made throughout the manual.

Destruction Notice: This revision supersedes and replaces "SPERRY UNIVAC Operating System/3 (OS/3) Supervisor
User Guide," UP-8075 Rev. 1 released on Library Memo dated November, 1975. Also destroyed is Updating Package A,
UP-8075 Rev. 1-A released on Library Memo dated March, 1976, Updating Package 8, UP-8075 Rev. 1-8 released on
Library Memo dated September, 1976, Updating Package C, UP-8075 Rev. 1-C released on Library Memo dated April,
1977, and Updating Package D UP-8075 Rev. 1-D released on Library Memo dated May, 1977. Please destroy all copies
of UP-8075 Rev. 1, UP-8075 Rev. 1-A, UP-8075 Rev. 1-8, UP-8075 Rev. 1-C, UP-8075 Rev. 1-D and their Library
Memos. Additional copies may be ordered by your local Sperry Univac Representative .

Mailing Lists
217, 630 and 692

Mailing Lists 18, 19, 75and 76
(Cover and 337 pages)

Library Memo

October, 1977

•

•

•

•
i

)

Supervisor
User Guide

•

•
H UNIVAC UP- 8075 Rev. 2

COMPUTER SYSTEMS

•

•

•

•

•

•

SPERRY UNIVAC
Operating System/3 (OS/3)

Supervisor
User Guide

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please contact your local Sperry Univac representative .

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Rand Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Rand Corporation. AccuScan, ESCORT, PAGEWRITER, PIXIE, and
UNIS are additional trademarks of the Sperry Rand Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406 .

©1974, 1975, 1976, 1977- SPERRY RAND CORPORATION PRINTED IN U.S.A.

•

•

•

•

•

•

8075 Rev. 2
UP-NUMBER SPERRY UNIVAC Operating System/3

PAGE STATUS SUMMARY

ISSUE: UP-8075 Rev. 2

PSS 1

UPDATE LEVEL PAGE

Part/Section
Page Update

Number Level Part/Section
Page

Number
Update
Level Part/Section

Page
Number

Update
Level

Cover

Title Page

PSS 1

Preface 1, 2

Contents 1 thru 9

PART 1

Title Page

1 1 thru 3

2 1 thru 10

3 1 thru 11

PART 2

Title Page

4 1 thru 37

5 1 thru 18

6 1 thru 63

PART 3

Title Page

7 1 thru 18

PART4

Title Page

8 1 thru 60

9 1 thru 52

10 1 thru 22

11 1 thru 9

Index 1 thru 15

User Comment
Sheet

All the technical changes are denoted by an arrow(-) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizontal arrow r-J pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

---------~---------

•

•

•

•

•

•

8075 Rev. 2 Preface 1
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE UP-NUMBER

Preface

This manual is one of a series designed to instruct and guide the programmer in the use of the
SPERRY UNIVAC Operating System/3 (OS/3). This manual specifically describes the OS/3
supervisor and its effective use. Its intended audience is the novice programmer with a
basic knowledge of data processing, but with limited programming experience, and the
programmer whose experience is limited to other than SPERRY UNIVAC systems.

Prerequisite to the use of this manual is a general knowledge of the OS/3 assembler, job
control, and data management.

Two other manuals are available that cover the supervisor; one is an introductory manual and
the other is a programmer reference manual (PRM). The introductory manual briefly describes
the supervisor and its facilities. The PRM provides the characteristics of OS/3 supervisor
in skeletal form and is intended as a quick-reference document for the programmer
experienced in the use of the supervisor.

This user guide is subdivided into the following parts:

• PART 1 . INTRODUCTION

Introduces the supervisor in terms of what it is, what it does, how it is structured, and how
it is used. This part also states the general conventions for writing macro instruction
statements which request services of the supervisor.

• PART 2. PHYSICAL INPUT /OUTPUT CONTROL

Describes the macro instructions and techniques by which you may write your own
routines to control input/output devices and disk storage space, and to process
sequential as well as random access files on disk.

• PART 3. MULTITASKING

Describes the macro instructions and techniques by which your program may execute in a
multitask and multijob environment.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Preface 2

PAGE

• PART 4. SUPERVISOR SERVICES

Describes the macro instructions and techniques by which you may request other services
of the supervisor such as program loading, job and task termination, storage displays, etc.

Each of the foregoing parts consists of one or more sections that cover the different aspects of
the subject matter covered in each part.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. INTRODUCTION

1. CONCEPT AND ORGANIZATION

1.1.

1.2.
1.2.1.
1.2.2.
1.2.3.
1.2.4.

GENERAL

FEATURES
Modularity
Minimum Main Storage Requirements
Multijobbing and Multitasking Capability
Minimum Operator Intervention

2. SUPERVISOR INTERFACES

2.1.

2.2.
2.2.1.
2.2.2.
2.2.2.1.
2.2.2.2.
2.2.2.3.
2.2.2.4.
2.2.2.5.
2.2.2.6.
2.2.2.7.
2.2.2.8.
2.2.2.9.
2.2.2.10.
2.2.2.11.
2.2.2.12.

INTERRUPT HANDLING

MODULAR FUNCTIONS
Task Control
Physical Input/Output Control

Execute Channel Program Processor Module
PUB Control Module
Queue Control Module
Address Adjustment Module
Channel Scheduler Modules
Interrupt Module
IOST Processor Module
Channel Interrupt Processor Modules
Error Control Module
Error Editing Root Overlay
Device Sense Analyzer Overlay
Error Reply Overlay

Contents 1

UPDATE LEVEL PAGE

Contents

1-1

1-2
1-2
1-2
1-3
1-3

2-1

2-2
2-2
2-2
2-2
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-5

8075 Rev. 2

UP-NUMBER

3.

4.

SPERRY UNIVAC Operating System/3 Contents 2

UPDATE LEVEL PAGE

2.2.3. Transient Management 2-5 • 2.2.4. Console Management 2-6
2.2.5. Resource Allocation 2-6
2.2.6. Timer and Day Clock Services 2-6
2.2.7. Program and Machine Error Control 2-7
2.2.8. Spooling Operations 2-7
2.2.9. Diagnostic and Debugging Aids 2-7
2.2.9.1. Monitor and Trace 2-7
2.2.9.2. Snapshot Display of Main Storage 2-8
2.2.9.3. Main Storage Dumps 2-8
2.2.9.4. Standard System Error Message Interface 2-8
2.2.10. Automatic Volume Recognition 2-8
2.2.11. Main Storage Consolidation 2-9
2.2.12. Rollout/Rollin 2-9
2.2.13. Cochanneling 2-10
2.2.14. Disk Seek Separation 2-10
2.2.15. Error Logging 2-10

MACRO INSTRUCTION CONVENTIONS

3.1. GENERAL 3-1

3.2. FORMAT ILLUSTRATION AND STATEMENT
CONVENTIONS 3-1

3.3. USE OF THE ASSEMBLER CODING FORM 3-5 • 3.3.1. Label Field 3-6
3.3.2. Operation Field 3-7
3.3.3. Operand Field 3-7
3.3.4. Comments Field 3-7
3.3.5. Continuation Column 3-7
3.3.6. Sequence Field 3-8

3.4. MACRO INSTRUCTIONS 3-8
3.4.1. Declarative Macro Instructions 3-8
3.4.2. Imperative Macro Instructions 3-8
3.4.3. Summary of Supervisor Macro Instructions 3-8

PART 2. PHYSICAL INPUT /OUTPUT CONTROL

PHYSICAL INPUT /OUTPUT CONTROL SYSTEM

4.1. GENERAL 4-1

4.2. PHYSICAL 1/0 CONTROL 4-2
4.2.1. General 4-2
4.2.2. General 1/0 Usage Requirements 4-4
4.2.3. Generate Buffer Control Word (BCW) 4-5
4.2.4. Generate Channel Command Word (CCW) 4-15
4.2.5. Generate Command Control Block (CCB) 4-18 • 4.2.6. Generate Physical Input/Output Control Block (PIOCB) 4-24
4.2.7. Read File Control Block (RDFCB) 4-26
4.2.8. Execute Channel Program (EXCP) 4-28
4.2.9. Swap 110 (SWAP) 4-29

•

•

•

8075 Rev. 2
UP-NUMBER

5.

6.

SPERRY UNIVAC Operating System/3

4.3 . INPUT /OUTPUT SYNCHRONIZATION
4.3.1. Wait for 1/0 Completion
4.3.2. Multiple 1/0 Wait

4.4. BLOCK NUMBERED TAPE FILES
4.4.1. Block Number Field
4.4.2. Tape Restrictions
4.4.3. Input/Output Buffer
4.4.4. Processing
4.4.5. Physical IOCS Requirements and Options

DISK SPACE MANAGEMENT

5.1. GENERAL

5.2. DISK SPACE MANAGEMENT ROUTINES
5.2.1. Allocate Routine
5.2.2. Extend Routine
5.2.3. Scratch Routine
5.2.3.1. Scratch Entire File
5.2.3.2. Scratch by Prefix
5.2.3.3. Scratch All by Date
5.2.4. Rename Routine
5.2.5. Obtain Routine

5.3 DISK MACRO INSTRUCTIONS
5.3.1. Assign Space to a New Disk File
5.3.2. Assign Additional Space to an Existing Disk File
5.3.3. Scratch a Disk File
5.3.4. Rename a Disk File
5.3.5. Access VTOC User Block

5.4. DISKETTE SPACE MANAGEMENT ROUTINES

5.5. DISKETTE MACRO INSTRUCTIONS
5.5.1. Assign Space to a New Diskette File
5.5.2. Scratch a Diskette File
5.5.3. Obtain Diskette Label Information

5.6. SPACE MANAGEMENT ERROR CODES

SYSTEM ACCESS TECHNIQUE

6.1. GENERAL

6.2. DISK SAT FILE ORGANIZATION AND
ADDRESSING METHODS

6.2.1. PCA Table Entries Used in Addressing
6.2.2. Block Addressing by Key
6.2.3. Block Addressing by Relative Block Number
6.2.4. Disk Space Control
6.2.5. Record Interlace
6.2.5.1. Interlace Operation
6.2.5.2. Lace Factor Calculation
6.2.6. Accessing Multiple Blocks

Contents 3

UPDATE LEVEL PAGE

4-30
(WAIT) 4-31
(WAITM) 4-32

4-33
4-33
4-35
4-35
4-35
4-36

5-1

5-2 ~
5-2
5-3
5-3
5-4
5-4
5-4
5-4
5-4

5-5
(ALLOC) 5-5
(EXTEND) 5-7
(SCRTCH) 5-9
(RENAME) 5-10
(OBTAIN) 5-12

+ 5-14

5-14
(ALLOC) 5-14
(SCRTCH) 5-16
(OBTAIN) 5-17

t
5-18

6-1

6-1
6-1
6-3
6-3
6-4
6-5
6-6
6-8
6-8

8075 Rev. 2
UP-NUMBER

7.

SPERRY UNIVAC Operating System/3

6.3. DISK SAT FILE INTERFACE
6.3.1. Define a New File
6.3.1.1. Filelocks
6.3.1.2. Shared Filelock Capability
6.3.2. Defining a Partition
6.3.3. Processing Partitioned SAT Files
6.3.3.1. Processing Blocks by Key
6.3.3.2. Processing by Relative Block Number

6.4. CONTROLLING YOUR DISK FILE PROCESSING
6.4.1. Open a Disk File
6.4.2. Retrieve Next Logical Block
6.4.3. Output a Logical Block
6.4.4. Wait for Block Transfer
6.4.5. Read by Key Equal/Read by Key Equal

or Higher
6.4.6. Access a Physical Block
6.4.7. Close a Disk File

6.5. SAT FOR TAPE FILES

6.6. SYSTEM STANDARD TAPE LABELS
6.6.1. Volume Label Group
6.6.2. File Header Label Group
6.6.2.1. First File Header Label
6.6.2.2. Second File Header Label
6.6.3. File Trailer Label Group

6.7. TAPE VOLUME AND FILE ORGANIZATION
6.7.1. Standard Tape Volume Organization
6.7.2. Nonstandard Tape Volume Organization
6.7.3. Unlabeled Tape Volume Organization

6.8. TAPE SAT FILE INTERFACE
6.8.1. Define a Magnetic Tape File
6.8.2. Define a Tape Control Appendage

6.9. CONTROLLING YOUR TAPE FILE PROCESSING
6.9.1. Open a Tape File
6.9.2. Get Next Logical Block

6.9.3. Output Next Logical Block
6.9.4. Wait for Block Transfer
6.9.5. Control Tape Unit Functions
6.9.6. Close a Tape File

6.10. BLOCK NUMBER PROCESSING
6.10.1. Facilities Required for Block Number Processing
6.10.2. Specifications for Block Number Processing
6.10.2.1. Initialized Processing
6.10.2.2. Noninitialized Processing

PART 3. MULTITASKING

MULTITASKING

7.1. GENERAL
7.1.1. Multijobbing and Multitasking

Contents 4

UPDATE LEVEL PAGE

6-10 • (DTFPF) 6-10
6-12
6-13

(PCA) 6-14
6-17
6-18
6-19

6-19
(OPEN) 6-19
(GET) 6-20
(PUT) 6-21
(WAITF) 6-22

(READE/READH) 6-23
(SEEK) 6-24
(CLOSE) 6-24

6-25

6-26
6-27
6-29

(HDR1) 6-29
(HDR2) 6-31

6-33 • 6-37
6-38
6-42
6-44

6-45
(SAT) 6-45
(TCA) 6-47

6-51

(OPEN) 6-51

(GET) 6-52

(PUT) 6-53

(WAITF) 6-54

(CNTRL) 6-54

(CLOSE) 6-55

6-56
6-57
6-57
6-58
6-58

•
7-1
7-1

•

•

•

8075 Rev. 2

UP-NUMBER

8.

SPERRY UNIVAC Operating System/3

7 .1 .1.1 . Primary Task
7.1.1.2. Subtask
7.2. TASK MANAGEMENT
7.2.1. General
7.2.2. Task Creation
7.2.3. Task Priority
7.2.4. Task Termination
7.2.5. Queue Driven Task
7.2.6. Hierarchical Structure

7.3. TASK MANAGEMENT MACRO INSTRUCTIONS
7.3.1. Generate an Event Control Block
7.3.2. Create an Additional Task
7.3.3. Terminate a Task
7.3.4. Yield Until Task Completion
7.3.5. Reactivate a Task
7.3.6. Change a Priority

7.4. TASK SYNCHRONIZATION
7.4.1. General
7.4.2. Wait for Task Completion
7.4.3. Multiple Task Wait
7.4.4. Activate the Waiting Task

PART 4. SUPERVISOR SERVICES

PROGRAM MANAGEMENT

8.1. GENERAL
8.1.1. Program Initiation and Loading

8.2. PROGRAM LOADER
8.2.1. Block Loader
8.2.2. Relocation
8.2.3. Library Search Order
8.2.4. Read Pointer for Repetitive Loads
8.2.5. Loader Error Processing
8.2.6. Load a Program Phase
8.2.7. Load a Program Phase and Relocate
8.2.8. Locate a Program Phase Header
8.2.8.1. Program Phase Header
8.2.9. Load a Program Phase and Branch

8.3. PROGRAM TERMINATION
8.3.1. Normal Termination
8.3.2. Abnormal Termination
8.3.3. Printout
8.3.4. End-of-Job Step
8.3.5. Cancel a Job

8.4. TIMER SERVICES
8.4.1. Date and Time Facilities
8.4.1.1. Current Date
8.4.1.2. Time of Day
8.4.1.3. Get Current Date and Time

Contents 5

UPDATE LEVEL PAGE

7-2
7-2
7-2
7-2
7-3
7-4
7-4
7-4
7-4

7-5
(ECB) 7-6
(ATIACH) 7-9
(DETACH) 7-10
(TYIELD) 7-11
(AWAKE) 7-12
(CHAP) 7-13

7-14
7-14

(WAIT) 7-15
(WAITM) 7-16
(POST) 7-17

8-1
8-1

8-2
8-2
8-3
8-4
8-4
8-5

(LOAD) 8-5
(LOADR) 8-7
(LOADI) 8-9

8-10
(FETCH) 8-11

8-12
8-13
8-13
8-13

(EOJ) 8-13
(CANCEL) 8-14

8-15
8-16
8-16
8-17

(GETIME) 8-17

8075 Rev. 2

UP-NUMBER

9.

SPERRY UNIVAC Operating System/3

8.4.2. Timer Interrupt Facilities
8.4.2.1. Set Timer Interrupt
8.4.2.2. Continue Processing Until Interrupt

8.4.2.3. Wait for Interrupt
8.4.2.4. Cancel a Previous Timer Interrupt Request

8.5. PROGRAM LINKAGE

8.5.1. Linkage Register Conventions
8.5.2. Linkage Procedure
8.5.3. Register Save Area
8.5.4. Call a Program
8.5.5. Generate an Argument List
8.5.6. Save Register Contents
8.5.7. Restore Registers and Return

8.6. ISLAND CODE LINKAGE
8.6.1. Attaching Island Code to a Task

8.6.1.1. Attaching Program Check, Abnormal Termination,
and Interval Timer Island Code

8.6.1.2. Attaching Operator Communication Island Code

8.6.2. Detaching Island Code From a Task

8.6.3. Island Code Entrance
8.6.4. Island Code Exit
8.6.4.1. Exiting From Program Check Interval Timer,

and Operator Communication Island Code

8.6.4.2. Exiting From Abnormal Termination Island Code

8.6.5. Program Check
8.6.6. Abnormal Termination
8.6.7. Interval Timer
8.6.8. Operator Communication
8.6.9. Use of Island Code With Multitasking

8.6.9.1. Program Check and Interval Timer With Multitasking

8.6.9.2. Abnormal Termination With Multitasking

8.6.9.3. Operator Communication With Multitasking

8.7. SYSTEM INFORMATION CONTROL

8.7.1. Get Data From Communication Region

8.7.2. Put Data Into Communication Region
8.7.3. Get Data From System Control Tables

8.8. CONTROL STREAM READER

8.8.1. Embedded Data
8.8.2. Reading Embedded Data
8.8.3. Get File From Control Stream

8.8.4. Rereading Embedded Data

8.8.5. Reset Control Stream Reader
8.8.6. Minimizing Disk Accesses

DIAGNOSTIC AND DEBUGGING AIDS

9.1. STORAGE DISPLAYS
9.1.1. Snapshot Dumps
9.1.2. Normal Termination Dumps
9.1.3. Abnormal Termination

Contents 6

UPDATE LEVEL PAGE

8-20
(SETI ME) 8-21 • 8-22

8-24
8-24

8-25
8-25
8-26
8-27

(CALL/VCALL) 8-28
(ARGLST) 8-30
(SAVE) 8-30
(RETURN) 8-32

8-34
(STXIT) 8-35

8-35
8-36

(STXIT) 8-38
8-39

(EXIT) 8-39

8-39
8-40
8-40
8-43 • 8-45
8-46
8-49
8-49
8-51
8-51

8-51
(GETCOM) 8-52
(PUTCOM) 8-53
(GETINF) 8-53

8-55
8-56
8-56

(GETCS) 8-57
8-59

(SETCS) 8-59
8-60

9-1
(SNAP/SNAPF) 9-1 • (DUMP) 9-5

9-10

•

•

•

8075 Rev. 2

UP-NUMBER

10.

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Contents 7

9.2 . CHECKPOINT AND RESTART CAPABILITY 9-10

9.2.1. How to Generate Checkpoint Records (CHKPT) 9-12

9.2.2. Using Magnetic Tape as the Checkpoint File 9-14
9.2.3. Using a SAT Disk as a Checkpoint File 9-15
9.2.3.1. Estimate Spare Requirements for a Disk Checkpoint File 9-16
9.2.3.2. Define, Open, and Close a Disk Checkpoint File (DDCPF, DCPOPN,

DCPCLS) 9-17
9.2.4 Processing PIOCS Files (DCFLT) 9-18

9.3. MONITOR AND TRACE CAPABILITY 9-22
9.3.1. How to Call the Monitor Routine 9-23
9.3.1.1. Monitoring From the Beginning of the Job 9-23
9.3.1.2. Monitoring After Execution Begins 9-25
9.3.2. Monitor Input Format 9-27
9.3.3. Defining What You Want to Monitor 9-29
9.3.4. Specifying Options 9-31
9.3.4.1. Storage Reference Option (S) 9-32
9.3.4.1.1. Program Relative Address (fR) 9-32
9.3.4.1.2. Base/Displacement Address {§/D) 9-34
9.3.4.1.3. Absolute Address (8BS) 9-34
9.3.4.2. Instruction Location Option (A) 9-35
9.3.4.3. Instruction Sequence Option (I) 9-36
9.3.4.4. Register Change Option (R) 9-37
9.3.4.5. No Option Specified? You Get a Default 9-37
9.3.5. Specifying Actions 9-38
9.3.5.1. Display Actions 9-38
9.3.5.1.1. Register Display (Dl>R) 9-39
9.3.5.1.2. Storage Display (Dl>S) 9-40
9.3.5.1.3. Default Display 9-42
9.3.5.2. Halt Action (H) 9-43
9.3.5.3. Quit Action (Q) 9-44
9.3.6. Cancel of Monitor 9-45

9.4. SYSTEM DEBUGGING AIDS 9-45 +
9.4.1. Supervisor Debug Option 9-46
9.4.2. Mini Monitor 9-48
9.4.3. Console Debug Options 9-50
9.4.4. Transient Halt Location 9-51
9.4.5. Symbiont Halt Location 9-51

MESSAGE DISPLAY, LOGGING, AND OPERATOR COMMUNICATION t
10.1. GENERAL 10-1
10.1.1. The Canned Message File 10-3
10.1.1.1. Canned Messages 10-3
10.1 .1 .2. Inserting Variable Characters in a Canned Message 10-3
10.1.2. The System Log 10-6

10.2. MESSAGE AND LOGGING MACRO INSTRUCTIONS 10-6
10.2.1. Write to the Log (WTL) 10-6
10.2.2. Display a Message and Write to the Log (WTLD) 10-9
10.2.3. Get a Canned Message (GETMSG) 10-14

8075 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

10.3. USER-OPERATOR COMMUNICATION
10.3.1. General

Contents 8
UPDATE LEVEL PAGE

10.3.2. Display a Message to the Operator (QPR)

10-17
10-17
10-18 •

....

11. OTHER SERVICES

11.1.
11.1.1.
11.1.1.1.
11.1.1.2.
11 .1 .1 .3.
11.1.1.4.
11.1.1.5.
11.1.2.
11.1.3.

11.2.
11.2.1.
11.2.2.
11.2.2.1.
11.2.2.2.
11.2.3.

SPOOLING
General

Initialization
Input Reader
Spooler
Output Writer
Special Functions

To Use Spooling
Create a Breakpoint in a Spool Output File

JOB ACCOUNTING
General
Accounting Data

Job Step Level Data
Job Level Data

Data Printout

INDEX

USER COMMENT SHEET

FIGURES

3-1. 9000 Series Assembler Coding Form

4-1
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.

Relationship of Basic Physical IOCS Macro Instructions
Buffer Control Word (BCW) Format for Integrated Disk Adapter
Buffer Control Word (BCW) Format for Integrated Peripheral Channel
Buffer Control Word (BCW) Format for Multiplexer Channel
Channel Command Word (CCW) Format for Selector Channel
Channel Address Word (CAW) Format
Command Control Block (CCB) Format
Physical 1/0 Control Block (PIOCB) and File Control Block (FCB) Format
Tape Block Number Field Format

Partition Control Appendage (PCA) Table Format
Record Formats for Disk Devices
Definition of Interlace Variables
Interlace Accessing
Define the File (DTF) Table Format
Tape Volume 1 (VOL 1) Label Format for an EBCDIC Volume
First File Header Label (HDR 1) Format for an EBCDIC Tape Volume
Second File Header Label (HDR2) Format for an EBCDIC Tape Volume
Tape File EOF1 and EOV1 Label Formats for EBCDIC Tapes
Tape File EOF2 and EOV2 Label Formats for EBCDIC Tapes
Reel Organization for EBCDIC Standard Labeled Tape Volumes
Containing a Single File

11-1
11-1
11-1
11-2
11-2
11-3
11-4
11 :.._4

(BRKPT) 11-5

11-5
11-5
11-6
11-6
11-7
11-8

•
3-6

4-3
4-7
4-10
4-13
4-16
4-17
4-22
4-25
4-34

6-2
6-3
6-6
6-7
6-9
6-28
6-30
6-32 • 6-34
6-36

6-39

...-------·-----------------

Contents 9 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

6-12. Reel Organization for EBCDIC Standard Labeled Tape Volume:

• Multifile Volume With End-of-File Condition 6-40

6-13. Reel Organization for EBCDIC Standard Labefed Tape
Volumes: Multifile Volumes With End-of-Volume Condition 6-41

6-14. Reel Organization for EBCDIC Nonstandard Volumes Containing a Single File 6-42

6-15. Reel Organization for EBCDIC Nonstandard Multifile Volumes 6-43

6-16. Reel Organization for Unlabeled EBCDIC Volumes 6-44

6-17. Tape Volume 1 (VOL1) Label Format for an EBCDIC Volume With Block Numbers 6-59

6-18. First File Header Label (HDR1) Format for an EBCDIC Tape Volume With
Block Numbers 6-60

6-19. Second File Header Label (HDR2) Format for an EBCDIC Tape Volume With Block
Numbers 6-61

6-20. Tape File EOF1 and EOV1 Label Formats for Block Numbered EBCDIC Files 6-62

6-21. Tape File EOF2 and EOV2 Label Formats for Block Numbered EBCDIC Files 6-63

7-1. Event Control Block (ECB) Format 7-8

8-1. Example of GETIME Macro Instruction 8-19
8-2. Example of SETIME Macro Instruction 8-23

8-3. Register Save Area Format 8-27

8-4. Example of Program Check Island Code Linkage Using Symbolic Addresses 8-41

8-5. Example of Program Check Island Code Linkage Using Register Addresses 8-42

8-6. Example of Abnormal Termination Island Code Linkage Using Symbolic
Addresses 8-44

8-7. Example of Interval Timer Island Code Linkage Using Symbolic Addresses 8-45
8-8. Example of Operator Communication Island Code Linkage Using Symbolic

Addresses 8-47

• 8-9. Example of Operator Communication Island Code Linkage Using Register
Addresses 8-48

8-10. Example of Discrete Program Check Island Code for Each Task in a Job Step 8-49
8-11. Example of Common Program Check Island Code for All Tasks in a Job Step 8-50

9-1. Monitor Input Format 9-29

10-1. Canned Message Buffer Formats 10-4
10-2. Insertion of Variable Characters in a Canned Message 10-5

11-1. Relationship of Spooling Devices and Programs 11-2
11-2. Job Accounting Table Format 11-6
11-3. Job Accounting Record Printout Format 11-9

TABLES

3-1. Supervisor Macro Instructions 3-9

6-1. Tape Volume 1 (VOL 1) Label Format, Field Description
for an EBCDIC Volume 6-29

6-2. First File Header Label (HDR1), Field Description 6-31
6-3. Second File Header (HDR2), Field Description 6-33
6-4. Tape File EOF1 and EOV1 Labels, Field Description 6-35
6-5. Tape File EOF2 and EOV2 Labels, Field Description 6-37

8-1. Register Save Area 8-28

• 9-1. Checkpoint/Restart Error Codes 9-13
9-2. Summary of Actions and Program Information Printed 9-45
9-3. Summary of System Debugging Aids 9-52 ~

10-1. Summary of Message Macro Instructions 10-2

•

•

•

•

• PART 1. INTRODUCTION ·

•

•

•

•

•

•

•

8075 Rev. 2
UP-NUMBER

1-1
UPDATE LEVEL PAGE

SPERRY UNIVAC Operating System/3

1. Concept and Organization

1.1. GENERAL

The SPERRY UNIVAC Operating System/3 (OS/3) Supervisor (supervisor) is the component
that operates with problem programs (user programs) to provide the central control necessary
for optimum and continuous utilization of the system hardware and software. It provides the
control, interface, coordination, and allocation of hardware and controls the initiation, loading,
executing, and termination of user jobs. The efficient and flexible capabilities provided by the
supervisor are particularly useful for small to medium sized disc-oriented computing systems.

Within the context of this manual the following definitions apply:

Job
A total processing application comprising one or more processing steps. Each job is
divided into job steps (programs) that are executed serially. With the exception of
disk space, resources are allocated on a job basis.

Job Step

Task

The unit of work associated with one processing program. A job step is an executable
program consisting of one or more tasks that requires a specific amount of the
hardware resources of the system.

A unit of work capable of competing with other tasks for control of the central
processor. A task is a logical point of control rather than a physical set of instructions.
Each job step has at least one task and may create additional tasks (subtasks) all
of which compete independently for processor time.

Multitasking
The concurrent processing of many tasks asynchronously.Multitasking applies to the
switching of processor control among two or more tasks on a priority or rotational
basis. Job steps with more than one task are capable of using multitasking.

Multijobbing
The concurrent scheduling, loading, and execution of more than one job at a time.
This term is not synonymous with multitasking .

8075 Rev. 2

UP-NUMBER

1.2. FEATURES

1.2.1. Modularity

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

1-2

PAGE

The supervisor is designed around control modules, each representing functions or services to
be provided. At system generation time, a supervisor program is produced with modules
modified and combined to provide the specific combination of capabilities to meet the
requirements and restrictions of the particular user installation and applications.

1.2.2. Minimum Main Storage Requirements

The modular design of the supervisor keeps the resident main storage requirement to a
minimum. Modules that are frequently used and constitute an integral part of the supervisor
are called resident routines because they require permanent residence in main storage.
Modules that are not continuously required and are nottime critical to normal job execution are
called transient routines and are kept on the system resident disk storage. These transient
routines are located and loaded from disk into main storage only when needed, and
executed as an extension of the requesting program.

The following modules are always part of the resident supervisor (except for timer and day clock
services which are optional):

•

Supervisor Interface
The points at which control is passed to the supervisor by means of the supervisor call •
(SVC) instruction interrupt.

Task Switcher
The hub of the supervisor, this routine controls allocation of the processor based
upon internal priorities.

Transient Management
Schedules, locates, and loads the noncritical transients which perform the
nonresident supervisor functions.

Supervisor Overlay Scheduler
Schedules critical supervisor overlays.

Physical Input/Output Control
Controls the dispatching, queueing, and interrupt processing for all 1/0 devices
directly connected to the system.

Timer and Day Clock Services
Provides system clock and timer activities control.

Error Control
Handles unresolved 1/0, machine check, and program check interrupts; schedules
user island code subroutines or overlay functions to handle errors appropriately . •

•

•

•

8075 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 1-3
UPDATE LEVEL PAGE

Other modules may be selected for inclusion within the resident supervisor at system
generation. Such modules as clock control will be either resident or not available; whereas,
most modules will be either resident or transient, depending upon system generation options.

1.2.3. Multijobbing and Multitasking Capability

The supervisor provides multijobbing and multitasking capability through the submission of job
control streams which represent the jobs to be performed. In multijobbing environments, from
one to seven user jobs may be executed concurrently, with the jobs consisting of a series of job
steps (programs). The job steps are executed in a serial manner within each job. Job steps may
have from 1 to 256 tasks capable of executing concurrently with other tasks within the job step
or system.

1.2.4. Minimum Operator Intervention

Operator intervention is kept to a minimum. Operating in conjunction with the job control
system, the supervisor provides efficient control of the multijobbing environment. Most error
situations are handled by the supervisor and by user-supplied error routines, so that an
operator usually is not required to initiate error recovery procedures .

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 2-1

UPDATE LEVEL PAGE

•

•

•

2. Supervisor Interfaces

2.1. INTERRUPT HANDLING

The OS/3 Supervisor is informed of an event, either within the supervisor complex or
external to it, by an interrupt. Interrupts may be enabled (allowed) or disabled (held pending)
to avoid simultaneous interrupts and to service interrupts based on their relative priorities.
Upon recognizing an interrupt, the executing task is suspended and program control is
transferred to the appropriate interrupt handler. The interrupt handler analyzes the cause of
the interrupt and activates the appropriate interrupt servicing routine.

There are six classes of interrupts by which control is returned to the supervisor:

• Supervisor ca II

• Interval timer

• Input/ output

• Program errors

• Hardware errors

• Operator request

Of these six, the supervisor call and operator request interrupts provide the user with an
interface to the supervisor and, therefore, the operating system. The rest of the interrupts are
handled by the specific routines which are described on the following pages.

Tasks have access to the supervisor via the supervisor call (SVC) instruction which is generated
within system macro instructions. These supervisor macro instructions provide the access and
generate the parameter list associated with the desired function.

The service interrupt routine (SVC decode) determines what function is being requested and
passes control to the appropriate resident module. If the function is nonresident, then control is
passed to transient management and the overlay is loaded from the system resident disk.

The operator request interrupt allows the operator to initiate action by the supervisor from the
console or to answer a previously asked question. The attention interrupt causes the loading of
the operator communication overlay, which allows the operator to enter the command or
response.

8075 Rev. 2

UP-NUMB EA SPERRY UNIVAC Operating System/3

2.2. MODULAR FUNCTIONS

2.2.1. Task Control

2-2

UPDATE LEVEL PAGE

Up to seven user jobs can be activated by the job scheduler for concurrent execution. Job steps
consist of one or more tasks which are asynchronously executed based on internal priority.

Each job step has one primary task generated by the system. This task is deleted at the
termination of the job step. When it is desirable to establish additional tasks for the program,
supervisor requests are provided to attach additional tasks. Facilities to synchronize and detach
tasks are also provided.

The allocation of processor time to a task is based on a system switch list which contains
information about switching priorities. The number of priorities is a parameter in the supervisor
generation (SYSGEN).

2.2.2. Physical Input/Output Control

The physical input/output control system (PIOCS) is structured in function-oriented modules.
This allows a user to have the minimum usage of resident main storage needed for a particular
configuration. The following is a brief description of the functions performed by each of these
modules.

2.2.2.1. Execute Channel Program Processor Module

The execute channel program (EXCP) processor is a primary module of PIOCS together with the
hardware interrupt processor. These modules access the remaining functional modules to
complete their task.

The EXCP module receives control from the SVC decode routine, validates the request, queues
the request, and conditionally executes the request based on channel and device availability.

The modules accessed by the EXCP processor include the relocation module, the physical unit
block (PUB) control module, the queue control module, and the various channel scheduler
modules.

In the case of certain error conditions, it relinquishes primary control to the hardware interrupt
module.

The diagnostic adapter module interface and the error logging module interface is optional.

The standard entrance to the EXCP module is the SVC interrupt routine processing the EXCP
imperative macro instruction.

The standard exit of the module is the switcher.

•

•

The module exits to an error control routine in the event of a failure in the validation checks •
performed by the module.

re

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

2-3

UP-NUMBER UPDATE LEVEL PAGE

The module accesses various special purpose modules in performing its function. These
modules include:

• Physical unit block (PUB) control module

This module is accessed when the request is first submitted to validate the existence ofthe
device being called. It is also accessed after retrieval of a CCB from the 1/0 queue. This is to
validate that the contents of the CCB have not been inadvertently altered in the interim
period between the time it is first submitted and the time it is retrieved from the 1/0 queue
for execution.

• Queue control module

This module is accessed by the EXCP module to place the request in the 1/0 queue; to
retrieve a request from the 1/0 queue; and, in the case of program errors detected by the
channel schedulers, to delete a request from the 1/0 queue.

• Channel scheduler modules

There is a unique module for each channel type which performs the functions necessary to
prepare a request for the start 1/0 operation. This includes the set-up of the low storage
buffer control words (BCW) and the command address word (CAW).

2.2.2.2. PUB Control Module

The PUB control module has a number of primary functions:

• Verification of a PUB associated with a CCB

• Location of the device associated with a hardware interrupt

• Location of the device associated with the execution of an REXCP imperative macro
(answered operator communication)

• Location of a device with an interrupt held in abeyance in a communication environment

2.2.2.3. Queue Control Module

The queue control module is responsible for the maintenance of the queue list module. This
includes adding to the 1/0 queues, searching and retrieving from the 1/0 queues, and deletion
from the 1/0 queues. A queue head address is maintained for the system and each job for each
1/0 path (i.e., integrated disk adapter, each selector channel, each integrated peripheral
subchannel, and each multiplexer subchannel). Requests are queued first-in, first-out by
priority within the queue for the job. Retrieval from a given job queue is in the sequence
in which the CCBs are queued .

The selection of the CCB to be executed among the queue heads is accomplished by
scanning the queue heads from the last executed queue head in a circular direction looking
for the highest priority CCB to be executed. This scan takes the first encountered job if two
CCBs of equal priority are detected during the scan.

8075 Rev. 2
SPERRY UNIVAC Operating System/3 2-4

UP-NUMBER UPDATE LEVEL PAGE

At system generation time, you may select the option to scan the queue heads of random
access devices for the closest seek address rather than lowest priority. This scan would also •
start with system function and resolve conflicts by selecting the first CCB encountered.

2.2.2.4. Address Adjustment Module

The CCW data address adjustment module converts all addresses in a command chain to
absolute form prior to issuance of the start 1/0 (SIO) command to the hardware. The addresses
are converted to relative form prior to returning the command chain to the caller. The module is
accessed by the selector scheduler module to create absolute addresses, and by the selector
interrupt module to create relative addresses.

2.2.2.5. Channel Scheduler Modules

The various channel scheduler modules prepare a command for execution on a particular
channel. This function includes the validation of the command as it applies to a unique channel,
and the preparation of the channel's fixed low order storage locations. Additionally, they
present a transparent interface to systems users. The integrated channel format is converted to
multiplexer or selector channel format.

2.2.2.6. Interrupt Module

The interrupt modules perform processing common to the handling of all interrupts. These •
functions include:

• accessing the 1/0 status tables (IOST) for an interrupt to be processed;

• accessing the PUB control module for the device associated with the interrupt;

• transferring control to the particular channel interrupt processing for further processing of
solicited interrupts.;

• alerting the console manager for console unsolicited interrupts;

• alerting automatic volume recognition (AVR) for other unsolicited interrupts;

• processing of answered console error communications for 1/0; and

• final processing of a CCB, which includes posting the CCB and transferring control to the
EXCP processing module for further commands.

2.2.2.7. IOST Processor Module

The module performs the maintenance of the 1/0 status tables. This involves processing an
interrupt, setting the verification indicator, updating the soft status tables pointer, and •
presenting an interrupt to be processed to the interrupt module.

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

2.2.2.8. Channel Interrupt Processor Modules

2-5

UPDATE LEVEL PAGE

The various channel interrupt processor modules perform functions unique to particular
channels. They also access the common error control module on the occurrence of an error
condition.

2.2.2.9. Error Control Module

This module performs error processing functions common to all error conditions. This includes
processing an error action table of a particular channel and alerting the error editing transient
when an operator communication becomes necessary.

2.2.2.10. Error Editing Root Overlay

This overlay performs preliminary processing common to all 1/0 error messages to the
operator. The device and channel address, the device status, the channel status, and the sense
information are prepared in a canned message format. The reply options are validated and
prepared. The appropriate device or channel error mnemonic sense analysis is then called as
an overlay.

2.2.2.11. Device Sense Analyzer Overlay

These various critical overlays convert the sense information of a particular error into an
English language message to the operator. The operator communication critical overlay is then
called to output the message to the operator.

2.2.2.12. Error Reply Overlay

This overlay processes an answered 1/0 error communication to the operator. It validates the
reply and prepares resident control to perform final processing of the message reply.

2.2.3. Transient Management

Transient management consists of two routines, the transient scheduler and the transient
loader. The transient scheduler receives control and executes as a supervisor critical function.
It allocates a transient area and schedules the transient loader to receive control as the task
associated with this transient area. The transient loader computes the disk address based
upon the transient identifier and initiates a read of the transient. Upon normal completion
of the read, control is passed to the transient.

The transients will either request the overlay of themselves with subsequent phases or release
the area when finished processing. The transient loader performs the read of the overlay or
yields control to the task switcher .

Transient management is designed to locate a transient and load in a very efficient manner,
requiring only one access to the disk. In addition, it supports serially reusable and private
copy transients in order to gain additional efficiencies by reducing disk 1/0 accesses.

- - - - --- -----------

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

2-6
UP-NUMBER

2.2.4. Console Management

Console management provides for the displaying of messages on the CRT screen with
responses and commands coming from the operator. The screen images are rolled upward with
new display lines or operator input appearing on the bottom of the screen. These routines
selectively delete messages not requiring responses from the top of the screen.

Console management is nonresident and is loaded as an overlay when requested. These
requests come either as an SVC instruction from a program or as an attention interrupt from the
operator.

2.2.5. Resource Allocation

Resources are allocated by the supervisor or job control on a job basis. Main storage and
devices are allocated at job initiation for the job's duration. Normally, disk storage should
be allocated at job initiation. However, the capability is provided to allocate or extend
permanent and temporary files on a dynamic basis during execution of a job step.

Disk space management routines provide an efficient and completely automatic space
accounting and maintenance feature, which relieves you of the responsibility of knowing
the precise contents of disk volumes. The routines also permit resolution of competing
demands for allocation and establishment of standard interfaces.

•

Disk space management consists of service routine sets that allocate space to files on disk •
. volumes. This is accomplished by maintaining the volume table of contents (VTOC),

through standard procedures, for all files: system, temporary, and permanent.

The routines maintain the VTOC by creating control records for new files and deleting control
records for files removed from the volume. When a file is created, unused space is found for it by
searching the appropriate records in the VTOC, allocating the space as extents of the file, and
removing it from free space. When a file is deleted, the control record for the file is removed
from the VTOC; the extents previously assigned to the file are then available for allocation.

Job control requests a main storage job region at job initiation. This region is capable of
satisfying the main storage requirements of any job step within the job. Job control determines
the main storage necessary for the largest job step in addition to that needed by the operating
system for this job. This amount of main storage is requested from the supervisor if all device
requirements are satisfied.

Devices are allocated to job steps and particular volumes as the job steps are initiated. The
supervisor is not involved in device allocation to jobs.

2.2.6. Timer and Day Clock Services

The system hardware contains a high resolution timer. An interface is provided to allow a task
to request an interrupt after any time period greater than 1 millisecond. The calling task may
specify the wait interval in milliseconds or seconds.

The time of day is provided by a simulated day clock. In addition to providing the time to
programs upon request, this time is used by the supervisor for time stamping of log messages
and job accounting entries.

•

•
8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

2.2.7. Program and Machine Error Control

2-7

UPDATE LEVEL PAGE

Any error which causes a program interrupt is examined to determine the type of interrupt with
the appropriate action being taken.

An interface is provided for processing error information by means of user-supplied island
code. Island code is a closed subroutine, having the entry point defined to the supervisor by
various action macro instructions, and is given control upon the occurrence of certain
contingencies. Standard actions are initiated in the absence of user code. If the unrecovered
error is in the system, the system will terminate that task which initiated the action resulting in
the error.

If any requester of a supervisor function provides a set of parameters which are inconsistent or
invalid, the requester is abnormally terminated.

2.2.8. Spooling Operations

The supervisor uses a spooling technique which consists of a set of routines that buffer data
files for low speed input and output devices to a direct access storage device. There are three
types of routines used for spooling operations: job control stream and card disk readers,
supervisor printer/punch spooling cooperative, and output printer/punch writers. In
addition, you can utilize the data conversion utilities for converting slow speed media to
high speed devices or reverse.

• Output writers are provided for online devices, as well as those used in a remote batch
environment. This allows user jobs to be unaware of whether they are operating with real
devices or spooled files.

•

Input readers are provided for local subsystems which are normally used as batch mode input
devices. The user job is required to discern whether data files were submitted as control stream
embedded data, or spooled input, or input from unit record device.

2.2.9. Diagnostic and Debugging Aids

Diagnostic and debugging aids provided in the supervisor include monitor mode, snapshot
display of main storage, main storage dumps, standard system error message interface,
uniform error responses to user programs and program checkpoint restart. Descriptions of
these aids are provided in the following paragraphs.

2.2.9.1. Monitor and Trace

The monitor routine enables you to trace the execution of a program by a hardware
monitor interrupt so that errors can be located and corrected. You can monitor an entire
task or part of a task. In your input to the monitor routine, you can specify actions to be
performed at specific points in the program. The monitor routine interrupts each
instruction before it is executed and tests for the conditions specified in your monitor
input. For each condition, you can request a monitor printout of current program
information (PSW contents, next instruction to execute, etc), and continue program
execution under monitor control, suspend program execution, or continue program
execution without monitor intervention.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

2.2.9.2. Snapshot Display of Main Storage

2-8

UPDATE LEVEL PAGE

The capability is provided for requesting a partial storage printout at given points in a
program by means of a SNAP or SNAPF macro instruction within the program itself. It is
also possible to enable or disable these dumps at run time by means of job control. This
enables a program to be tested without recompilation to include and disable SNAP or
SNAPF requests.

2.2.9.3. Main Storage Dumps

A main storage dump may be provided for programs under the following conditions:

• Abnormal termination dump for user job provides a main storage dump of the regivn in
hexadecimal plus a formatted display of error codes, job-oriented tables, and supervisor
information to assist the user in debugging.

• Program or operator request dump provides an orderly capability for the operator or any
program to request a main storage dump in the same format as the normal termination
dump.

• System failure dump. This is a program intended for use when, for some unexplained
reason, the operating system performs abnormally.

2.2.9.4. Standard System Error Message Interface

An error message service routine provides complete and specific error messages without
requiring each system module to contain alphanumeric error information. This routine locates
the message in a disk file and transfers control to the system console handler for message
display or system logging.

2.2.10. Automatic Volume Recognition

Automatic volume recognition allows the console operator to premount magnetic tapes
and disk packs before the devices are required for a job step. This reduces time lost due to
job step setup and console responses. The automatic volume recognition function is
performed during supervisor initialization and as a result of an attention interrupt being
received from an online 1/0 device. This attention interrupt is caused by physically
activating the device online, or, in the case of a device that does not have an attention
interrupt capability, by the operator issuing an AVR console command.

Using the physical unit block (PUB) for the devices, automatic volume recognition checks
to see if the required tape and disk volumes are already mounted. In addition, it performs
special processing to handle unique characteristics of various devices. For example, when
required at supervisor initialization, it distinguishes between an 8418 disk pack with high
density and an 8418 disk pack with low density or an 8416; it performs special interrupt

•

•

processing for the 8415 disk; it identifies an 0776 printer configured as an 0770 printer. It •
then marks the device type in the PUB for that device. It also distinguishes between block
numbered and unnumbered tapes. If a tape is not at loadpoint, it rewinds the tape so that
it can read the label and the volume serial number.

•

•

•

8075 Rev. 2 2-9
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE UP-NUMBER

The automatic volume recognition function displays console messages to the operator to
indicate such conditions as a disk or tape not prepped, an 1/0 error, or a duplicate volume
serial number.

A system generation option incorporates a retry on the attention interrupts feature in the
AVR function. This permits automatic retry of a recoverable error when an attention
interrupt is received on a printer, card reader, or card punch that has an unanswered
physical IOCS error message. The operator can initiate the recovery retry at the device by
placing it online, instead of having to return to the console to respond to the error
message.

2.2.11. Main Storage Consolidation

Main storage consolidation is a system generation option that repos1t1ons jobs and
reallocates space in main storage so that enough contiguous space can be made available
when needed to hold the next job to be initiated. This reduces fragmentation of main
storage and permits a job to be run that requires more contiguous space than is currently
available without consolidation.

When a job or a symbiont terminates, the next job to be run is evaluated to determine
whether there is enough space available or whether main storage consolidation is
necessary and which jobs must be moved. If this job is scheduled and consolidation is
required, the jobs are moved down one by one, starting with those farthest from the
supervisor. Each job to be moved is brought to an idle state, then moved down. Addresses
are adjusted and the job is reactivated. When all these jobs have been moved, the next
scheduled job is read in and initiated.

Main storage consolidation does not move symbionts because they do not have an
associated relocation register. Nor does main storage consolidation move jobs with open
interfaces to the integrated communications access method (ICAM), because these jobs
may be reading or writing directly into or out of user main storage. This restriction is
minimized if ICAM is loaded first, then ICAM user jobs next, in order to retain the
maximum continuous main storage region for further allocation.

2.2.12. Rollout/Rollin

The rollout/rollin function is a system generation option that temporarily transfers jobs
from main storage to disk to make room for a job with a preemptive scheduling priority.
Jobs currently in main storage are suspended and written to the job's run library. The
preemptive job is then read into main storage and initiated. As enough space becomes
available, the rolled-out jobs are read back into main storage and allowed to continue
processing.

When a job or a symbiont terminates and there is a preemptive job in the job queue, the
preemptive job is evaluated to determine whether there is enough existing main storage
available, or whether main storage consolidation or rollout is necessary to make space
available. If the job is scheduled and rollout is required, the rollout function brings each
job marked for rollout to an idle state, delinks the TCBs from the switch list, and writes the
job's image from the job region to disk. These rolled-out jobs have asterisks appended to
their names on the top line of the display on the system console. If the needed 1/0 devices
are available, the preemptive job is read into the freed main storage and initiated.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

2-10

UPDATE LEVEL PAGE

As space becomes available and if there are no other preemptive jobs, the job scheduler
tries to bring in the rolled-out jobs, one by one. The job slots and 1/0 devices remain in •
effect from the time the jobs were rolled out. The job scheduler ignores any jobs on the
high- or normal-priority job queues until all of the rolled-out jobs have been rolled back in
and reactivated.

2.2.13. Cochanneling

Cochanneling is the capability of accessing a single peripheral device through either of
two physical paths. Under OS/3, it provides for the support of both the dual access and
dual channel capabilities of the 90/30 hardware.

Dual access cochanneling permits simultaneous 1/0 operations (read/read, read/write,
write/write) on any two devices using two control units and two selector channels. Each
input/output device is connected to both control units, one control unit on each selector
channel. Depending on the control units used, dual access cochanneling is applicable to
SPERRY UNIVAC 8414 Disk Subsystems and UNISERVO 12, 16, and 20 Magnetic Tape
Subsystems on selector channels.

Dual channel cochanneling provides for nonsimultaneous access to a single control unit
from either of two selector channels. The devices are connected to one control unit, which
is connected to both selector channels. When one channel is busy, the second channel is
used to access the device, thereby avoiding a wait for the busy channel. Depending on the
control units used, dual channel cochanneling is applicable to SPERRY UNIVAC 8411 and
8414 Disc Subsystems, and UNISERVO 10, 12, 14, 16, and 20 Magnetic Tape Subsystems •
on selector channels.

2.2.14. Disk Seek Separation

This feature provides for the execution of seek commands to the requested devices before
executing the data transfer command, thereby freeing the 1/0 channel during the device
positioning time. This is accomplished by executing seek commands to all devices that
have queued requests whenever the channel is free (channel end status received). The
data transfer (reads and writes) on the channel are executed as soon after the positioning
of the head (device end status) is completed.

Seek separation will increase the number of 1/0 requests that can be completed in a given
time frame when multiple devices are in use on a channel. It will not change the
sequence of a job 1/0 request, but it may change the sequence of various job 1/0 requests
with regard to execution.

2.2.15. Error Logging

The error logging function records hardware errors for later statistical and historical use by
Sperry Univac customer engineers. It is a default feature of all OS/3 supervisors above
the minimum PIOCS configuration and can be turned on and off, and suspended and
resumed, by system console commands. At the time the error occurs, pertinent •
information is stored temporarily in the error log file on the system resident volume. The
customer engineer can read these records from the error log file into main storage for
processing and permanent record, assisting him in maintaining customer equipment.

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

3-1

UP-NUMBER

3. Macro Instruction Conventions

3.1. GENERAL

The OS/3 provides a complement of macro instructions to facilitate service requests
between a user program and the supervisor. This set of macro instructions is available
only when using the assembler language and cannot be directly evoked when using
higher-level languages.

Conventions used in this manual to illustrate the supervisor macro instruction formats and
some general rules for writing macro instruction statements are contained in 3.2.

General rules and conventions for writing programs using the SPERRY UNIVAC 9000
Series assembler coding form are contained in 3.3 .

3.2. FORMAT ILLUSTRATION AND STATEMENT CONVENTIONS

The general format of a macro instruction is:

LABEL ll OPE RATION ll OPERAND

symbolic macro parameters
name mnemonic

• A symbolic name can appear in the label field. It can have a maximum of eight
characters and must begin with an alphabetic character.

• The appropriate macro instruction mnemonic must appear in the operation field and
identifies the operation or service requested.

• When parameters are specified in the operand field, they must be positional
parameters or keyword parameters as required by the particular function.

• Parameters must not be separated by blanks.

• Assembler rules regarding blank columns and continuation of the operand field must
be followed.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 3-2

.UPDATE LEVEL PAGE

The conventions used to delineate the supervisor macro instructions are as follows:

• Capital letters, commas, parentheses, and equal signs must be coded exactly as
shown.

Examples:

R
ALL
(1)
SIZE=

• Lowercase letters and words are generic terms representing information that must be
supplied by the user. Such lowercase terms may contain hyphens and acronyms (for
readability). Acronyms that form part of the variable symbolic name remain
capitalized.

•

Examples:

symbol
start-addr
number-of-bytes
param-1
CCB-name

Information contained within braces represents mandatory entries of which one must
be chosen.

Examples:

{
input-area }

(1)

• Information contained within brackets represents optional entries that (depending
upon program requirements) are included or omitted. Braces within brackets signify
that one of the specified entries must be chosen if that parameter is to be included.

Examples:

[,entry-number]
[,R]

[• H~r-name}]
[,ERROR=symbol]
[,WAIT=YES]

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

•

SPERRY UNIVAC Operating System/3
3-3

UPDATE LEVEL PAGE

When an uppercase portion of a parameter is underlined, only that portion need be
coded. For example:

PR:xv

can be coded as either P:12 or PR:12.

• An ellipsis (series of three periods) indicates the omission of a variable number of
entries.

Example:

CCB-name-1, ... ,CCB-name-n

• An optional parameter that has a list of optional entries may have a default
specification that is supplied by the operating system when the parameter is not
specified by the user. Although the default may be specified by you with no adverse
effect, it is considered inefficient to do so. For easy reference, when a default
specification occurs in the format delineation it is printed on a shad~q background. If,
by parameter omission, the operating system performs some complex processing
other than parameter insertion, it is explained in an "if omitted" sentence in the
parameter description.

•

Example:

[, {~}]
Positional parameters must be written in the order specified in the operand field and
must be separated by commas. When a positional parameter is omitted, the comma
must be retained to indicate the omission, except for the case of omitted trailing
parameters.

Examples:

Assume that LOAD is a supervisor macro instruction with one mandatory
positional parameter (phase-name) and four optional positional parameters (load- ~
addr, error-addr, and R):

Format:

LABEL 60PERATION 6 OPERAND

[symbol] LOAD { pha~~-)name } [, { loa1~~ddr } J
,R ,DA [, {

erro(rr-)addr }] [] []

Macro instruction statements might be written:

LABEL OOPERA TIONI'> OPERAND COMMENTS
10 16

SPERRY UNIVAC Operating System/3 3-4 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

• A keyword parameter consists of a word or a code immediately followed by an equal
sign, which is, in turn, followed by a specification. Keyword parameters can be
written in any order in the operand field. Commas are required only to separate
parameters.

Examples:

Assume that PCA is a supervisor macro instruction with two mandatory keyword
parameters (IOAREA 1 and BLKSIZE) and nine optional keyword parameters
(EODADDR, FORMAT, KEYLEN, LACE, LBLK, SEQ, SIZE, UOS, and VERIFY):

Format:

LABEL 60PERATION 6

[symbol] PCA

OPERAND

IOAREA 1=area-name
,BLKSIZE=n
[,EODADDR=end-of-data-addr]
[,FORMAT=NO]
[,KEYLEN=n]
[,LACE=n]
[,LBLK=n]
[,SEQ=YES]
[,SIZE=n]
[,UOS=n]
[,VERIFY=YES]

Macro instruction statements might be written:

LABEL L'iOPERA TIONll OPERAND COMMENTS
18 16

._._.__.__.~--"--+_._._~_.__._,_.__~__.__.~~~~~~~__.__.~~~~~~~~~~- Li...~L...J. l 1 _ _1.......1_1_ J

._._,__.__.~--"--+_._._~_.__._,__.__~__.__.~~~~~~~__.__.~~~.~~~~~~~~J.... L..L._1_1 J l 1 _ _l_

72

• The option to use register preloading is indicated by a register number enclosed in
parentheses and may be shown as (1), (0), (15), or (r). This indicates that, instead of
entering a symbolic address or a value as the parameter in the macro instruction, you
intend to load the designated register with the required data prior to the execution of
the macro instruction. For example, in the format illustration:

LABEL 6 OPERATION 12. OPERAND

{
. } [{ number.-o· f-records }] mput-area , (O)

(1) 1

[symbol] GETCS

[, { err~~}addr } J [, {~} J

•

•

•

•

•

•

3-5 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

The optional entries (1) and (0) refer to registers 1 and 0. The optional entry (r) refers
to a register (other than 1 or 0) to be designated by you in the macro instruction
statement. For example, the instruction:

LABEL l:.OPERATIONt:. OPERAND
10 16

Specifies the input area (positional parameter 1) as WORK and the error address
(positional parameter 3) as ERRADDR. It also specifies that, at the time this macro
instruction is executed, register 0 will contain the number of records to be read
(positional parameter 2).

Note the use of the shaded entry 1, which means that an entry of one as the number
of records is assumed if you omit positional parameter 2; and the shaded entry· 80,
which means a record image of 80 bytes is to be read if you omit positional
parameter 4.

3.3. USE OF THE ASSEMBLER CODING FORM

To convert your written program to a form that can be conveniently inputted to the
computer, your written work is keypunched into 80-column cards. To make the job of the
programmer, keypunch operator, and any other person who may reference this program
easier, there are conventions for writing and reading programs and reference materials. A
useful tool is the 9000 Series· assembler coding form. (See Figure 3-1.)

Theoretically, you could write your program on a plain sheet of paper, as long as you
observe the assembly language formatting rules. Using an assembler coding form,
however, will ease the job, both for you and for the keypunch operator, who must prepare
the punched card deck from your written program.

The paragraphs that follow describe the conventions and rules that apply to the use of this
form. Following these rules will result in a stylized assembly listing that is easy to read
and use, in addition to ensuring that your program executes properly. The assembler user
guide, UP-8061 (current version) gives a detailed description of how to use the coding
form. However, some of the rules and conventions are included here for your convenience .

8075 Rev. 2

UP-NUMBER

SPE~v+uNIVAC

SPERRY UNIVAC Operating System/3

ASSEMBLER CDDIN13 FDRM

PROGRAM _______________ PROGRAMMER ______ DATE

LABEL OOPERATIONI'> OPERAND 6 COMMENTS
I 10 16

l J. _l_ I _l _l_ _l _l _l_ J.
I I _l _l_ _l_ _l _l _l -'- L _l

_l _l_ l I _l_ J. _l _l _l _l_

I I _l _l _l _l l l _l _l

__:_._ _l _l _l I _l_ J. J. J. J. ...l
I _l I _l _l_ _l _l_ _l _l _l

_l _l_ l I _l J_ J. _l _l

I I _l _l _l J. J_ _l _l ...l
J. _[_ _l _l_ _l _l l _l _l _l

_l J. _l _l J. J. _l _l l _[_

_l I _l J_ _l _l _l _l _l _[_

_l _l_ _l _l _l _l _J _l _J _j_

I l I _[_J _l _J _l _l _l

I _l _j_ _l _J _l l _j_ l _[_

I _l _j I _J _l l _l _l _J

I _l _l l _J _j_ J. _j_ J J_

_l _l _l .! _J _l_ J. _l _l _J

I _l _l _l _J _l _J J. _l _l_

_l _l _l _l _J _j_ _J _l _l _l_

_l I I I _l _j_ 1 _j_ _l ..1

I _j_ _l _J ..1 _l J_ _j_ J_ _l_

_l _l _l _l _l _j_ _l _l _l _J

l _l _l _l _l _l_ _l _l _l J_

_l I I I _J _l _l _l _J _l

_l _l _l _J _J _l 1 j _J _l

_l I I _J _l _J _l _J _l

I _i _j_ _J _J _j_ _J _l _J _l

_l __]_ _l _l _J _l _l __]_ _J __]_

I _l _l _J ..1 _l _J _l _J _l

_l _J __]_ _J _l _J _J _J _J _l

Figure 3-1. 9000 Series Assembler Coding Form

3.3.1. Label Field

3-6

UPDATE LEVEL PAGE

UNIVAC

@l•l•l•I
SERIES

--- PAGE- Of_ PAGES

72 80

I _l_ _l I

_l _l_ _l _l

J. _l _l_ I

_l J. _l _l

J. ...J.. ...J.. I

_l _l _l I

J. _l_ _l _[

_l _l _l I

_l _[_ _l_ J.
_l J. .! I

_l _l _l I

_J _l _J I

J. _J _J _[

J. _J _j_ I

...l J_ _J I

_l _J J. I

l J _J _l

J. _J _J _l

_l _l _J

_l _l _J I

J_ _J _J I

_l _J _J I

_l l _l _j_

_J _l _J

J. _J _J I

J. _J __]_ _l

_l _J ,_l _J

_l --1.... LLLLi _J " I , " '
_J -1.......L..1...l.......t...._Ll_ I I I I I l...L

..1 ' _l ...1 _J

The first eight columns of the assembler coding form may contain a symbol. This symbol
can be used to identify a line of coding, or to identify a main storage or constant area. The
rules for using the label field are:

1. The symbol must start in column 1.

2. The symbol must begin with an alphabetic or special character.

3. The symbol must not exceed eight characters in length.

4. The symbol must not contain embedded blanks or other special characters.

5. The field must be terminated by a blank.

6. An asterisk (*) entered in column 1 indicates to the assembler that the entry on this
line is to be treated as comments.

•

•

•

•

•

•

8075 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

3.3.2. Operation Field

3-7
UPDATE LEVEL PAGE

The operation code is written in the operation field (column 10 through 14). These codes
specify the operation to be performed. The rules for using this field are:

1. The operation code must not contain embedded blanks.

2. The operation code must be written exactly as shown in the list of mnemonics for
application instructions, directives, and macro or proc instructions.

3. The operation field must be terminated by a blank.

4. An operation code consisting of six characters, (for example, the macro instruction
ATTACH) will fall in columns 10 through 15. In this case, column 16 must be blank to
terminate the operation field.

3.3.3. Operand Field

The operand field begins in column 16 and usually ends in or before column 71. The
operands that form part of the assembler statements are written in this field. The rules for
using this field are:

1. The operand field is terminated by a blank that is not enclosed by an apostrophe .

2. Operands may be continued onto the next line by placing a nonblank character in
column 72. The continuation line starts at column 16. Up to two continuation lines
are permitted.

3.3.4. Comments Field

Program documentation is as important to the programmer writing the program as it is to
those who must refer to it later. Operand specification is usually completed by column 40,
thus leaving column 41 through 71 free for comments. There must be at least one blank
between the end of the operand specification and the start of the comments. Long
comments can be entered by coding an asterisk in column 1.

3.3.5. Continuation Column

When the operand specification is to be continued onto the next line, a nonblank character
must be written in column 72. Do not confuse this with continuing a comment. An
operand specification can be continued for a total of three lines. The second and third
continuation lines start in column 16 .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

3.3.6. Sequence Field

3-8

UPDATE LEVEL PAGE

Columns 73 through 80 may be used for entering sequence numbers. This is done by
assigning consecutive numbers to each line of coding and is useful for reassembling the
card deck if it should be dropped. It is good practice to number the lines in multiples of 10,
or even 100. This allows you to insert additional coding lines without having to renumber
the cards when they have been keypunched prior to the modification. Some programmers
use letters in addition to the numbers. This is useful in identifying the deck from which
cards have come if they have been removed for any reason.

3.4. MACRO INSTRUCTIONS

3.4.1 . Declarative Macro Instructions

Declarative macro instructions generate nonexecutable code sequences in the user
program and are used to allocate areas in main storage containing control information for
various system services.

3.4.2. Imperative Macro Instructions

Imperative macro instructions generate executable code sequences in the user program.
These code sequences make up the interface between the user program and the

•

supervisor. Imperative macro instructions are used to request services of the supervisor or •
to direct the operation of the user program.

3.4.3. Summary of Supervisor Macro Instructions

Table 3-1. is a list of the OS/3 supervisor macro instructions and a brief statement of the
~ service performed by each. In this list, ARGLST, BCW, CCW, CCB, PIOCB, DTFPF, PCA,

SAT, TCA, ECB, DDCPF, and DCFLT are declarative macro instructions; the remainder are
imperative macro instructions. Complete descriptions of the macro instructions are
contained in Sections 4 through 11 of this manual in the same functional groups as
indicated in the table.

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

Table 3-1. Supervisor Macro Instructions (Part 1 of 3)

PHYSICAL INPUT /OUTPUT CONTROL SYSTEM

Physical Input/Output Control

BCW
ccw
CCB
PIOCB
RDFCB
EXCP
SWAP

Generate buffer control word.
Generate channel command word.
Generate command control block.
Generate physical input/output control block.
Read file control block.
Execute channel program.
Access the next physical input/output device.

Input/Output Synchronization

WAIT
WAITM

SPACE MANAGEMENT

Disk

ALLOC
EXTEND
SCRTCH
RENAME
OBTAIN

Diskette

ALLOC
SCRTCH
OBTAIN

Wait for one or all input/output requests to complete.
Wait for one of several input/output requests to complete.

Assign space to a new disk file or to an existing disk file.
Assign additional space to an existing disk file.
Deallocate one or more disk files.
Rename a disk file.
Access VTOC user block .

Assign space to a new diskette file.
Deallocate a diskette file.
Obtain diskette label information.

SYSTEM ACCESS TECHNIQUE (SAT)

Disk SAT

DTFPF
PCA
OPEN
GET
PUT
WAITF
READE
READH
SEEK
CLOSE

Tape SAT

SAT
TCA
OPEN
GET
PUT
WAITF
CNTRL
CLOSE

Define a partitioned file.
Define a partition control appendage.
Open a disk file.
Retrieve next logical block.
Output a logical block.
Wait for block transfer.
Search track by key, equal.
Search track by key, equal or higher.
Access a physical block.
Close a disk file.

Defines magnetic tape file.
Define a tape control appendage.
Open a tape file.
Get next logical block.
Output next logical block .
Wait for block transfer.
Control tape unit functions.
Close a tape file.

3-9

UPbATE LEVEL PAGE

t

SPERRY UNIVAC Operating System/3 3-10 8075 Rev. 2

UP-NUMBER .UPDATE LEVEL PAGE

MULTITASKING

Task Management

ECB
ATTACH
DETACH
TY I ELD
AWAKE
CHAP

Task Synchronization

WAIT
WAITM
POST

PROGRAM MANAGEMENT

Program Loader

LOAD
LOA DR
LOADI
FETCH

Table 3-1. Supervisor Macro Instructions {Part 2 of 3)

Generate an event control block.
Create and activate an additional task.
Terminate a task normally.
Deactivate a task.
Reactivate an existing nonactive task.
Change the priority of a task.

Wait for a task request to complete.
Wait for one of several task requests to complete.
Activate the waiting task.

Load a program phase and return control.
Load a program phase, relocate address-constants, and return control.
Locate a program phase and store its phase header in a work area.
Load a program phase and branch.

Job and Task Termination

EOJ
CANCEL

Timer Services

GETIME
SETI ME

Subroutine Linkage

CALL/VCALL
ARGLST
SAVE
RETURN

Island Code Linkage

STXIT
EXIT

Terminate a job step normally.
Terminate a job abnormally.

Obtain current time and date.
Set an elapsed time counter for the requesting task.

Call a program.
Generate an argument list.
Save register contents.
Restore registers and return.

Link to island code subroutine.
Exit from island code subroutine.

•

•

•

•

•

•

8075 Rev. 2 3-11

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Table 3-1. Supervisor Macro Instructions (Part 3 of 3)

PROGRAM MANAGEMENT (cont)

System Information Control

GETCOM
PUTCOM
GETINF

Control Stream Reader

GET CS
SET CS

Retrieve data from job communication area.
Place data into job communication area.
Retrieve data from system control tables.

Retrieve embedded data file submitted in job control stream.
Reset pointer to embedded data file.

DIAGNOSTIC AND DEBUGGING

Storage Displays

SNAPISNAPF
DUMP

Checkpoint Facility

CHKPT
DDCPF
DCPOPN
DC PC LS
DCFLT

Monitor and Trace

Printout portions of main storage and return control.
Printout the job main storage and terminate the job step .

Record a checkpoint.
Define a disk checkpoint file.
Open a disk checkpoint file.
Close a disk checkpoint file.
Generate a file list table.

11 OPTION TRACE Monitor from start of job.
(This is a job control statement, not a macro instruction.)

MESSAGE DISPLAY, LOGGING, AND OPERATOR COMMUNICATION

WTL
WTLD
GETMSG
OPR

OTHER SERVICES

Spooling

BRKPT

Write a message into system log file.
Write a message into system log file after displaying on system console.
Retrieve message from canned message file.
Display a message to operator on system console.

Create a breakpoint in a spool output file.

•

•

•

•

•

•

PART 2. PHYSICAL INPUT /OUTPUT
CONTROL

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

4-1

UPDATE LEVEL PAGE

4.1. GENERAL

4. Physical Input/Output Control
System

The resident supervisor of OS/3 contains a set of routines called the physical input/output
control system (IOCS) that controls the activity between the processor and all peripheral
devices connected to the multiplexer, selector, and integrated channels. These input/output
(1/0) channels operate independently of the processor and allow 1/0 operations on a
channel to overlap with processing and with operations on other 1/0 channels.

Physical IOCS:

• schedules 1/0 requests to maintain optimum 1/0 throughput without burdening the
problem program;

• initiates 1/0 operations;

• tests for error or other exceptional conditions pertinent to the actual physical transfer of
data; and

• activates error recovery procedures in the event of peripheral device errors.

Problem program interface to the IOCS is provided at two levels: data management (logical 1/0
control system) and physical IOCS macro instructions.

Data management routines substantially reduce programming effort, especially for jobs
requiring a great amount of 1/0 processing. The routines, by handling the foregoing 1/0
functions for the programmer automatically, enable you to concentrate on the logical record,
because the applicable physical IOCS macro instructions are contained in the data
management macro routines and you need only limited knowledge of the peripheral device.
The data management macro instructions are described in the data management user
guide, UP-8068 (current version).

The use of the physical IOCS macro instructions may be advantageous for certain programs,
which, because of unique 1/0 devices, need to control the actual handling ofthe data to be read
or written. To use physical IOCS macro instructions, you must have an in-depth knowledge of
the particular peripheral device and its control requirements. At the physical IOCS level, the

• problem program is responsible for performing functions such as:

8075 Rev. 2

UP·NUMBER
SPERRY UNIVAC Operating System/3 4-2

UPDATE LEVEL PAGE

• constructing the actual 1/0 commands processed by the device as well as constructing the
control blocks used by physical IOCS for issuing the 1/0 order; •

• ensuring the desired sequence of 1/0 commands by the proper use of 1/0 synchronization
macro instructions;

• blocking/deblocking logical records;

• alternating 1/0 buffer areas;

• detecting wrong-length records;

• handling end-of-file (EOF) or end-of-volume (EOV) conditions;

• processing labels;

• translating ASCII data to EBCDIC on input, or EBCDIC data to ASCII on output; and

• handling unique error conditions.

4.2. PHYSICAL 1/0 CONTROL

4.2.1. General

Detailed tabular information pertaining to each request must be supplied if the problem
program is to communicate effectively with the IOCS facilities of the resident supervisor
through the physical IOCS macro instructions.

The following physical IOCS macro instructions are available for establishing the tabular
information and for requesting services of the supervisor and the IOCS:

• Table generation macro instructions (declarative)

BCW
Constructs a buffer control word (BCW), which is used by the integrated 1/0 channels
and multiplexer channel.

ccw

CCB

Constructs a channel command word (CCW), which is used by the selector 1/0
channel and the physical device.

Constructs a command control block (CCB), which is used as a bidirectional
communications medium between the problem program and the IOCS routines in the
supervisor.

PIOCB
Constructs a physical input/output control block (PIOCB), which is used as a buffer
for file control blocks (FCB) containing file and device information that is compiled by
job control at the time the job control stream is processed.

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

•

4-3
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Service request macro instructions (imperative)

RDFCB
Reads a file control block (FCB), which completes the PIOCB with information
compiled at job execution time by job control. (The RDFCB macro instruction must be
executed prior to any service for an associated PIOCB.)

EXCP
Requests execution of a channel program. The EXCP macro instruction initiates the
physical IOCS routine. Before this instruction can be executed, you must construct an
1/0 control packet that consists of a CCB, a CCW or a BCW, and a PIOCB.

SWAP
Accesses the next physical 1/0 device as allocated by job control.

The relationship of the basic physical IOCS macro instructions is illustrated in Figure 4-1.

//LFD

II DVC

RDFCB PIOCB-name- - - - - - - - -cp
EXCP CCB-name ~

Command Control
Block (CCBl

BCW/CCW-reference

Pl DCB-reference

T T

Buffer Control
Words (BCW) or
Channel Command
Words (CCWl

command-code

data-reference

options

data-length

Data Area

data

I
Physical 1/0
Control Block (PIOCB) I

PUB-reference

T.___ ___ ___,T

Physical Unit
Block (PUBI

1-----------l

1-----------l

PUB 1

PUB 2

device-ID PUB 3
1-----------l

PUB 4
~-------<

lf-------IT PUB n

Device Assignment
Via Job Control

Figure 4-1. Relationship of Basic Physical IOCS Macro Instructions

8075 Rev. 2
SPERRY UNIVAC Operating System/3 4-4

UP-NUMBER UPDATE LEVEL PAGE

4.2.2. General 1/0 Usage Requirements

The users of 1/0 facilities are required to perform certain prerequisites for 1/0 communication.
These include:

• Description of the file to the operating system through DVC, LBL, or LFD statements.

• Description of the file to the data management system through file description tables and
file control routines.

Description of the file to the operating system is through job control statements which describe
the device to be used, the volume which contains the file, and the logical name assigned to the
file.

Description of the file to the data management system includes the option of linking to a
standard data management file control module, using a resident module, or assembling and/ or
linking a special tailored module with the user program.

The file description table must be included with the user program.

The macro instructions used in the 1/0 system are best described atthe levels at which they are
employed.

• User level macro instructions

•

The execution of imperative macros (EXCP, RDFCB, SWAP) results in control being passed •
to the appropriate control routine with in the operating system. You specify the name of the
file, which is the name that was assigned to the file control block by an entry in the label
field of the PIOCB macro instruction.

Example:

FILEIN
MASTER

RDFCB
EXCP
WAIT

CCB
PIOCB

MASTER
FILEIN
FILEIN

The PIOCB declarative macro instruction reserves an area which is the repository of the file
control block. The name assigned to the PIOCB must be a duplicate of the character string in the
LFD job control statement.

•

•

•

•

8075 Rev. 2

UP-NUMBER

•

SPERRY UNIVAC Operating System/3
4-5

UPDATE LEVEL PAGE

Data management level macro instructions

Execution of the imperative 1/0 macro instructions results in the data management file
control routine reducing your macro to a new level of imperative macro instructions. These
include the RDFCB (read file control block), the EXCP (execute channel program), and the
WAIT (wait for channel program completion) macro instructions.

The primary parameter to the EXCP and WAIT macro instructions is the CCB. The CCB
macro provides the ability to specify a particular command to a particular device.

4.2.3. Generate Buffer Control Word (BCW)

Function:

The BCW macro instruction generates a buffer control word which provides the
hardware parameter interface to the integrated disk adapter, integrated peripheral
channel, multiplexer channel, and the integrated line adapters for use by the physical
IOCS routines. Also, the BCW macro instruction provides you with a limited device
independent interface across selector channel devices. In this case, the physical IOCS
routines construct a CCW chain by using the information provided in the BCW. The
formats of the BCW are shown in Figures 4-2, 4-3, and 4-4.

Note that the BCW of formatting commands sent to the 8411 and 8414 disk
subsystems must specify a single record .

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:

LABEL fl OPERATION fl OPERAND

symbol BCW device-cmd-code [,data-addr] [,data-flag]
[,data-byte-count] [,repl-addr] [,repl-flag]
[,repl-byte-count] [,control-flag]

Label:

symbol
Specifies the symbolic address of the buffer control word. This name is used to refer
to the BCW.

Positional Parameter 1:

device-cmd-code
Specifies the actual device command code that directs the operation of the 1/0
device. (For a complete description of the command codes for a particular device,
refer to the appropriate subsystem programmer reference manual.)

If omitted, 16 bytes containing O's are reserved for the BCW, and the assembly listing
will contain an error note.

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

4-6

UP-NUMBER PAGE

Positional Parameter 2:

data-addr
Specifies the symbolic address of the data being transferred. This is the active
buffer for the system console and the integrated line adapters. For the
read/punch, it is the address of the punch output buffer. This parameter is
required if data is being transferred to or from storage.

If omitted, the data address field in the BCW is set to O's, and the assembly listing will
contain an error note.

Positional Parameter 3:

data-flag
Specifies the flag byte associated with the address of the active buffer. This is
written in the form X'xx' as follows:

For the integrated disk adapter:

X'40'

X'80'

Indicates a search operation is to be performed on an entire
cylinder rather than a track.

Indicates no data to be transferred.

For the integrated peripheral channel:

X'20'

x·ao·

Indicates no data to be transferred. (This entry can also be used
for the multiplexer channel.)

Indicates a replacement operation is to be performed. If this
entry is used, positional parameters 5, 6, and 7 are also
required.

If omitted, X'OO' is assumed, indicating normal operation as specified by the device
command code, data address, and data byte count fields in the BCW.

Positional Parameter 4:

data-byte-count
Specifies the number of bytes to be transferred.

If omitted, zero is assumed. For a search on the integrated disk adapter, this indicates
the maximum number of bytes are to be transferred; and for a read or a write, this
indicates no data is to be transferred. For the integrated peripheral channel, this
indicates the maximum number of bytes are to be transferred.

NOTE:

•

•

Positional parameters 5, 6, 7, and 8 apply only to the integrated peripheral channel. •

•

•

•

8075 Rev. 2

UP-NUMBER

BCWO

BCW1

BCW2

BCW3

Bits

0-7

8

9-11

12

13-31

4-7
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

I. command

70

l

'. .. I 1· I
·:·:::·:, =::

9. key to
7 /8., 9 11 _12, 13

address

skiR multitrack direction

~l~IY"

' (}

54. 55

track
condition

count

63

seek difference magnitude 0....,...0 head address 0 --.......... 0

19 so··· 84

absolute cylinder address record no.

87 88 89 99/

o --"""o

95

prog
offset

102 111 112 119 120 124 125 127

Allocation Function

Command code Command code to be executed by IDA; bits 0-3
must be zero

Unassigned; must be set to zero

Key 3-bit field containing storage protection key

Unassigned; must be set to zero

Address Storage address on which command operates

Figure 4-2. Buffer Control Word (BCW) Format for Integrated Disk Adapter (Part 1 of 3)

8075 Rev. 2

UP-NUMBER

Bits

32-47

48

49

50

51-54

55-63

64-69

70-79

80-83

84-87

88,89

90-95

SPERRY UNIVAC Operating System/3
4-8

UPDATE LEVEL PAGE

Allocation Function

Unassigned; must be set to zero

Skip sentinel Set with read data command to indicate data
transfers inhibited to main storage;
set with search/read commands to indicate
search begins at index

Multitrack sentinel Set to 1 with search/read command to indicate
search limited to cylinder boundaries rather
than single track

Direction sentinel If 1, specifies accessor moves in direction of
decreasing cylinder numbers

Unassigned; must be set to zero

Count On search/read commands - number of bytes to
be searched

On data read or write commands - number of
records to be processed

Unassigned; must be zero

Seek difference magnitude During seek operation, specifies magnitude of
difference between accessor present position and
desired position

Unassigned; must be set to zero

Head address 4-bit field specifying current operation head
address

Track condition Condition of track where operation acts

Unassigned; must be set to zero

Figure 4-2. Buffer Control Word (BCW) Format for Integrated Disk Adapter (Part 2 of 3)

--·--·--·---·-

•

•

•

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3 4-9

UP-NUMBER .UPDATE LEVEL PAGE

Bits Allocation Function

96 Recalibrate Set to 1 - accessor reoriented and moved to
cylinder 0; overrides bits 71-79 and 50

97-101 Unassigned; must be set to zero

102-111 Absolute cylinder address Final position of accessor after completed
seek or recalibrate

112-119 Record number Number of record where operation is performed
or initiated

120-124 Unassigned; must be set to zero

125-127 Programmer offset Bit125=1 Programmed offset used for command

Bit125=0 Programmed offset not used; bits
126 and 127 ignored

Bit126=1 Major offset

Bit 126 = 0 Minor offset

Bit 127 = 1 Offset away from hub

Bit 127 = 0 Offset toward hub

LEGEND:

System-supplied data

[=:J Data supplied by the user via the macro instruction that directs the supervisor to generate the control
block

Figure 4-2. Buffer Control Word (BCW) Format for Integrated Disk Adapter (Part 3 of 3)

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 4-10

UPDATE LEVEL PAGE

BCWO command code I) key(a) 0 address(a)

0 7 8 9 11 12 13

BCW1 count(r)

38

BCW2

77

c
0 (a) P (a).0"""'*"

47 48 49 50 51 53 54

address(r)

count(a)

BCW3 k·i.,.'------------------'""'
Bits Allocation

0-7 Command code

8

9-11 Key (a)

12

13--31 Address (a)

Function

Field accessed by IPC du ring SIO instruction

Unassigned; must be set to zero

3-bit field containing 1/0 storage protection key

Unassigned; must be set to zero

any byte in main storage Allows IPC to reference
during data transfer sequ ences

Bit 31 = 0 Most significant byte of
addressed half word

Bit 31 = 1 Least significant byte of
addressed half word

Figure 4-3. Buffer Control Word (BCW) Format for Integrated Per ipheral Channel (Part 1 of 3)

31

63

95

,,:I

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 4-11

UPDATE LEVEL PAGE

Bits Allocation Function

32 c (a) Specifies data chaining operations when set to 1

33 Unassigned; must be set to zero

34 t (a) Single control bit used with c(a) bit:

c(a) ; 0 and t ; 0 Use a fields for current
data transfer sequence
(no data chaining)

c(a) ; 0 and t ; 1 Terminates control

c(a) ; 1 and t ; 0 Use a fields for current
data transfer sequence
(data chaining initial a
and r setting)

c(a) ; 1 and t ; 1 a fields depleted; replace-
ment operation required

t(a) and c(a) ; 1:

f; 0 Terminates with buffer
wraparound error

f ; 1, c(r) ; 1 or 0, Terminates normally
t(r) ; 1

f;1,c(r);Q, Normal data transfer;
t(r) ; 0 no chaining

f; 1,c(r) ;1, Normal data
t(r) ; 0 transfer with chaining

35-37 Unassigned; must be set to zero

38-47 Count (r) Byte count required for all data transfer
operations

48 c (a) Specifies data chaining operations when set to 1

49 Unassigned; must be set to zero

50 t(a) Same as for bit 34

51-53 Unassigned; must be set to zero

54-63 Count (a) Byte count required for all data transfer
operations

Figure 4-3. Buffer Control Word (BCW) Format for Integrated Peripheral Channel (Part 2 of 3)

8075 Rev. 2

UP-NUMBER

4:;-12
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Bits Allocation Function

64 f (flag bit) Indicates to I PC that current contents of
r fields are valid for replacement operation

65-72 Unassigned; must be set to zero

73-75 Key (r) 3-bit field containing 1/0 storage protection key

76 Unassigned; must be set to zero

77-95 Address (r) Allows IPC to reference any byte in main storage
during data transfer sequences

Bits 31 and 95 = 0 Most significant byte of
addressed half word

Bits 31 and 95 = 1 Least significant byte of
addressed half word

96-127 Unassigned; must be set to zero

LEGEND:

I•= System-supplied data
0 = Data supplied by the user via the macro instruction that directs the supervisor

to generate the control block
a = active
c chaining
f flag
r = replacement
t = transfer

Figure 4-3. Buffer Control Word (BCW) Format for Integrated Peripheral Channel (Part 3 of 3)

•

•

•

•

•

•

4-13 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

BCWO command code 0 key 0 data address

0 7 8 9 11 l2 13 31

byte count
BCWl

BCW2
l:

... :.:·::o·:.·:.64· •. :····--.. :····.·.·. ___ _.,_._.______.....~01
- 9~

BCW3

Bits Allocation Function

~7 Command code Specifies operation to be performed by device
and channel

8 Unassigned; must be set to zero

9-11 Key Contains I /0 storage protection key

12 Unassigned; must be set to zero

13-31 Data address Allows multiplexer channel to reference any
byte in main storage during data transfer
sequences

32-47 Unassigned; must be set to zero

48 w w=O Input operation (read)
w=l Output operation (write)

49 m m= 0 Ascending address (forward sequence)
m= 1 Descending address (reverse sequence)

50 t t = 0 Transfer data
t = 1 Termination of data transfer

51-63 Byte count Contains byte count required for all data transfers

64--127 Unassigned; must be set to zero

LEGEND:

System-supplied data
D Data supplied by the user via the macro instruction that directs the supervisor to generate the control

block

Figure 4-4. Buffer Control Word (BCWJ Format for Multiplexer Channel

.d

SPERRY UNIVAC Operating System/3
4-14 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 5:

repl-addr
Specifies the symbolic address of the second buffer area. This is the replacement
buffer for the system console and the line adapters. For the read/punch, it is the
address of the input buffer.

When the byte count decrements to zero during a data transfer operation, this
address replaces the data address specified in positional parameter 2.

Positional parameter 3 (data-flag) must be X'80'.

Positional Parameter 6:

repl-flag
Specifies the flag byte associated with the address of the replacement buffer.
When the byte count decrements to zero during a data transfer operation, this flag
byte replaces the data-flag specified in positional parameter 3. To continue the
replacement operation, this entry must be X'80'.

Positional parameter 3 (data-flag) must be X'80'.

Positional Parameter 7:

rep I-byte-count
Specifies the number of replacement bytes to be transferred. When the byte count
decrements to zero during a data transfer operation, this byte count replaces the
data byte count specified in positional parameter 4.

Positional parameter 3 (data-flag) must be X'80'.

Positional Parameter 8:

control-flag
Specifies the control flag for communication devices associated with the line
adapters of the integrated peripheral channel. Details of this parameter and its use
will be supplied later.

Examples of BCW usage:

LABEL OOPERATIONL'; OPERAND
1 10 16

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

4-15

Explanations:

1. Read one 80-column card in EBCDIC mode.

2. Read/punch 80-column card in EBCDIC mode. Punch buffer is IOAREA 1; read buffer
is IOAREA2.

3. Print 132 positions and advance one line.

4. Read one sector on 8416/18 disk.

NOTE:

The cylinder half word (BCW name+ 12), the head address byte (BCW name+ 10), and the
record (sector) number byte (BCW name+ 14) can be set statically by use of the ORG
assembler control directive, or dynamically via instruction execution.

4.2.4. Generate Channel Command Word (CCW)

Function:

The CCW macro instruction generates a channel command word which provides the
hardware parameter interface to the selector channels for use by the physical IOCS
routines. The format of the CCW is shown in Figure 4-5. The format of the CAW,
which contains the first CCW address, is shown in Figure 4-6.

The supervisor can only handle command chains on selector devices through two
levels of transfer in channel (TIC) within command chain. This limitation is due to the
lack of hardware address relocation on CCWs and the need to have a software
function perform the absolutizing and relativizing of CCW addresses.

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:

LABEL

symbol

Label:

bi OPERATION bi

ccw

OPERAND

[device-cmd-code] [,data-addr] [,flag]
[,data-byte-count]

symbol
Specifies the symbolic address of the channel command word. This name is used
to refer to the CCW .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 4-16

UPDATE LEVEL PAGE

Positional Parameter 1:

device-cmd-code
Specifies the actual device command code that directs the operation of the 1/0
device. (For a complete description of the command codes for a particular device,
refer to the appropriate subsystem programmer reference manual.)

If omitted, eight bytes containing O's are reserved for the CCW, and the assembly
listing will contain an error note.

0

command code

s
c I

0 ... -
7 g

· ..

~

data address
0 (Next CCW address if

TIC command)

~ 13

c i o·'•· ..., _ _____ __,..o
byte count

33 34 35 4 48

Bits Allocation Function

0-7 Command code Specifies operation to be performed by device
and channel

8-12 Unassigned; must be set to zero

13-31 Data address Address of location in main storage into or from
which first byte of data is transferred

32 Unassigned; must be set to zero

33 cc (chain command flag) When valid ending device status received, new
CCW fetched and operation specified by new
command code initiated

34 sli (suppress length indication flag) If set to 1, incorrect length condition not
indicated to program; if cc= 1 also, command
chaining not suppressed

35-47 Unassigned; must be set to zero

48-63 Byte count Byte count required for ail data transfer
operations

LEGEND:

System-supplied data
[:=:J Data supplied by the user via the macro instruction that directs the supervisor to generate the control

block

Figure 4-5. Channel Command Word (CCW) Format for Selector Channel

-

31

63

•

•

•

•

•

•

8075 Rev. 2 4-17

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

fif$t ccw addresli

Bits Allocation Function

0-2 Key 1/0 storage protection key used by channel for
all storage accesses of data and CCWs

3-12 Bits set to zero

13-31 First CCW address Controls 1/0 operation initiated by SIO
instruction

LEGEND:

System-supplied data

Figure 4-6. Channel Address Word (CAW} Format

Positional Parameter 2:

data-addr
Specifies the symbolic address of the data being transferred. This parameter is
required if data is being transferred to or from storage.

If omitted, the data address field in the CCW is set to O's, and the assembly listing will
contain an error note.

Positional Parameter 3:

flag
Specifies the flag byte associated with the address of the buffer. This is written in
the form X'xx' as follows:

X'20'
X'40'
X'60'

Indicates incorrect data length to be suppressed.
Indicates command chaining.
Indicates both of above.

If omitted, X'OO' is assumed, indicating normal operation as specified by the device
command code, data address, and data byte count fields in the CCW.

Positional Parameter 4:

data-byte-count
Specifies the number of bytes to be transferred .

If omitted, zero is assumed, resulting in a maximum data transfer.

8075 Rev. 2
SPERRY UNIVAC Operating System/3

4-18

UP-NUMBER UPDATE LEVEL PAGE

Examples:

Search key equal/read data (for a following update) on 8414 disk.

LABEL OOPERATIONfi OPERAND COMMENTS
10 16

SEEK

-'----'--'---'-----L___i_______.__L___.L_~~-~~t ~~~~~~-d ~e~ l~~o~re:t ~~~r~ .

Read data

Format write a data record on 8414 disc.

The 218-byte buffer defined as IOAREA 1 contains an 8-byte count field, a 10-byte key field, and
a 200-byte data field.

4.2.5. Generate Command Control Block (CCB)

Function:

The CCB macro instruction generates a command control block which serves as a link
between the PIOCB and the BCW or the CCW. There must be at least one CCB macro
instruction for each type of 1/0 peripheral device to be controlled by physical 1/0 macro
instructions. An active CCB pertains to one 1/0 request at a time; therefore, each
outstanding 1/0 request must have a unique CCB. The format of the CCB is shown in
Figure 4-7. This is a declarative macro instruction and must not appear in a
sequence of executable code.

Format:

LABEL

symbol

LlOPERATION Ll

CCB

OPERAND

PIOCB-name, { ~~:~~:~: }[{ PUB-e~:y-number} J
[{ er~i~-tion} J

•

•

•

•

•

•

8075 Rev. 2 SPERRY UNIVAC Operating System/3
4-19

UP-NUMBER UPDATE LEVEL PAGE

Label:

symbol
Specifies the symbolic address of the command control block. This name is used to
refer to the CCB.

Positional Parameter 1:

PIOCB-name
Specifies the symbolic address of an associated physical input/output control block
generated by the PIOCB macro instruction. (The address furnished wi 11 be modified by
this macro instruction to be the address of the PUB address within the PIOCB.)

Positional Parameter 2:

BCW-name
Specifies the symbolic address of a BCW.

CCW-name
Specifies the symbolic address of a CCW, or a list of CCWs if command chaining is
used.

When you use data management macro instructions, the BCWs and CCWs are generated
automatically. When using physical IOCS macro instructions, you must specify each BCW
and CCW according to the 1/0 functions desired.

Positional Parameter 3:

PUB-entry-number
May be 0, 2, 4, 6, 8, 10, 12, or 14 indicating one of e.ight 2-byte fields in the PIOCB
containing the absolute address of the PUB for the device involved in the 110
operation. (Zero indicates the first entry, 2 the second, 4 the third, etc.)

If omitted, zero is assumed (indicating the first PUB address) .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

4-20

UPDATE LEVEL PAGE

Positional Parameter 4:

error-option
Specifies error acceptance options elected at assembly time. This is written in the
form X'xx' as follows:

x·oo·

X'Ol'
X'02'
X'04'
x·oa·

X'10'
X'20'

X'40'

x·ao·

NOTES:

Indicates that no error conditions are acceptable to the problem
program.
Block number area is reserved in buffer.
Reserved for system use.
Reserved for system use.
Indicates system access CCB. Device independence can be achieved
by furnishing a BCW for integrated peripheral.
Indicates a diagnostic request. Reserved for system use.
Indicates that, following the normal error recovery attempts by the
supervisor, those errors classified as unique are acceptable to the
problem program. See note 1.
Indicates that all unrecoverable error conditions are acceptable to the
problem program following the normal error recovery attempts by the
supervisor. See note 2.
Indicates user has own error code. No recovery will be attempted by
the supervisor, and device status and sense are communicated to user
in the CCB.

1. Accept Unique Errors (byte 3, bit 2). Unique errors may be considered as
recoverable errors. The meaning of unique errors is different for different
devices.

For a disk, unique error means record not found. Your program may expect
that certain records you are looking for in a file may not be there. An
example ·of this is an update-add program. If the record is found, it is
updated; if it is not found, it is added to the file. In this case, you should set
the accept unique errors bit (byte 3, bit 2) in the CCB. If you receive a no
record found condition (byte 2, bit 3), physical IOCS will retry the error
twice. If the record is still not found and the CCB is marked to accept unique
errors, no error message is displayed on the console and control is returned
to your program with the no record found bit set in the CCB.

For tape, unique error means a tape that is busy rewinding. If you issue an
EXCP to a magnetic tape which is rewinding, the CCB will be returned with
the unique error bit (byte 2, bit 2) set. This occurs whether or not accept
unique errors is set in the CCB. The EXCP should be reexecuted until the
status does not occur. At that time, the EXCP is considered completed.

•

•

•

•

•

8075 Rev. 2

UP·NUMBER
SPERRY UNIVAC Operating System/3

4-21

UPDATE LEVEL PAGE

For printers, unique error means character mismatch. This means that there
is no match between a code in the load code buffer (LCB) and a character in
the print line buffer. When you generate the LCB for your printer, you may
choose whether or not to report character mismatches. If you choose not to
report character mismatches, they will be ignored and no console error
message will be displayed. If the LCB is generated so that character
mismatches are to be reported and a character mismatch occurs, an error
message will be displayed on the console. If the accept unique errors bit is
set in the CCB, the options on the error message will be R (retry) or I
(ignore).

If the operator responds I, control will be returned to your program with the
unique error bit set in the CCB. If the accept unique errors bit is not set, the
options on the error message will be R (retry) or C (cancel).

There are no unique errors for readers and punches. Note that, except for
tape, if a unique error occurs and the CCB is not marked to accept unique
errors, physical IOCS will treat the unique error as an unrecoverable error.

2. Accept Unrecoverable Errors (byte 3, bit 1). If you set this bit in the CCB and
an unrecoverable error occurs, the console message will appear with the R
(retry) and U (accept unrecoverable) options. If the operator responds R, the
command will be retried. If the operator responds U, control will be returned
inline following the command, and the unrecoverable error bit (byte 2, bit 1)
will be set in the CCB. If you do not set the accept unrecoverable bit in the
CCB and an unrecoverable error occurs, the console message will appear
with the R (retry) and the C (cancel) options. After successive retries, if the
error still is unrecoverable, the operator may choose to respond C and the
job will be cancelled.

If omitted, the entry X'OO' is assumed, indicating that no error conditions are
acceptable to the problem program.

The CCB is used to communicate with the functional IOCS routines executing the 1/0
operations. The generated CCB forms the logical connection between the PIOCB and the CCW
or the BCW. The PIOCB references the actual peripheral device and the CCW or the BCW
defines and controls the function of the particular device and its data transfer. The CCB also
specifies user options pertinent to the 1/0 request in the event of an error, and reflects the
status of the request. When the related 1/0 interrupt occurs, the IOCS also stores status
information pertinent to the interruption in the associated CCB.

Because the CCB serves as a 2-way communications medium between the IOCS and the
problem program, it is used for one active 1/0 request at a time; therefore, every active 1/0
request must have a unique CCB .

•

8075 Rev. 2

UP-NUMBER

Byte

0

4

8

12

16

20

24

0

control byte 1

sense byte 0

sense byte 4

SPERRY UNIVAC Operating System/3 4-22

UPDATE LEVEL PAGE

1 2 3

1/0 error count transmission byte control byte 2

TCB address<D

or next CCW address

T
CCB link I address@ l or residual CCW byte count

CCW address

PIOCB pointer (PUB address)

sense byte 1 sense byte 2 sense byte 3

sense byte 5 device status channel status

NOTES:

CD During the 1/0 command execution, contains the address of the TCB associated with this CCB. At 1/0 command
termination, physical IOCS inserts the address of the next CCW in the chain.

@ During 1/0 command execution, bytes 8-11 contain the address of the next CCB in the chain at this job level. At 1/0
command termination, physical IOCS inserts the number of bytes remaining in the CCW byte count(when the 1/0 command
terminated) into bytes 10 and 11 .

Figure 4-7. Command Control Block (CCB) Format (Part 1 of 2)

•

•

8075 Rev. 2

UPDATE LEVEL
SPERRY UNIVAC Operating System/3

UP-NUMBER

4-23

PAGE

• Byte Length Content

0 1 Control byte 1
Bits 0-2 Reserved

3 1 = Ignore block numbers

4 Reserved
5 1 = CCB in wait condition

6-7 Reserved

1 1 Binary count of errors encountered processing the CCB

2 1 Transmission byte

Bit 0 0 = CCB in process
1 = CCB processed

1 1 = Unrecoverable error

2 1 = Unique error
3 1 = No record found
4 1 = Unit exception

5 1 = Block numbers not equal

6 1 =Track end

7 1 = Cy! inder end

3 1 Control byte 2
Bit 0 1 = User error recovery

1 1 = Accept unrecoverable errors
2 1 = Accept unique errors
3 1 = Diagnostic CCB. Reserved for system use
4 1 = System access CCB
5 Reserved
6 Reserved
7 1 = Block number area reserved

4-7 4 During I /0 command execution, full-word address
of TCB associated with this CCB

or
At 1/0 command termination, full-word address
of next CCW if not at end of command chain • 8-11 4 During 1/0 command execution, full-word address
of next CCB
or

10-11 2 At 1/0 command termination, bytes remaining in
CCW byte count when I /0 command was terminated

12-15 4 Full-word address of first CCW

16-19 4 Address of PIOCB entry which contains the half-word
address of PUB associated with this CCB

20-23 4 Sense bytes 0 through 3

24,25 2 Sense bytes 4 and 5

26 1 Device status

Bit 0 1 = Attention

1 1 = Status modifier

2 1 = Control unit end

3 1 =Busy
4 1 = Channel end
5 1 = Device end
6 1 = Unit check
7 1 = Unit exception

27 1 Channel status

Bit 0 0
1 1 = Incorrect length
2 1 = Program check
3 1 = Invalid address
4 1 = Channel data check • 5 1 = Interface control check
6 1 = Channel control check

7 1 = Buffer terminate

Figure 4-7. Command Control Block (CCB) Format (Part 2 of 2)

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

4.2.6. Generate Physical Input/Output Control Block (PIOCB)

4-24

UPDATE LEVEL PAGE

Function:

The PIOCB macro instruction generates a physical 1/0 control block which provides a
buffer into which the RDFCB will transfer the FCB which contains file and device
information defined in the job control stream. The format of the PIOCB is shown in
Figure 4-8. This is a declarative macro instruction and must not appear in a
sequence of executable code.

Format:

LABEL /:),.OPERATION /:),. OPERAND

symbol PIOCB

Label:

symbol
Specifies the symbolic address of the physical 1/0 control block: This name is used to
refer to the PIOCB. The characters appearing in this name become the 8-byte
character string (file name)generated in the first eight bytes of the PIOCB and used as
a search key by the RDFCB macro instruction to locate the file control block.

Positional Parameter 1:

MAX
Specifies that an area is to be reserved with in the PIOCB large enough to contain the
complete FCB inclt.1ding the 8-byte file name. The size of the FCB area is stored as a
binary constant in the 2-byte FCB length field in the PIOCB foll-owing the file name.

FCB-length
Specifies the number of bytes to be reserved within the PIOCB for the FCB. The size
may be from 16 to 256 bytes. This option is used to limit the size of the PIOCB for the
purpose of reading partial file control blocks.

If omitted, a minimum size PIOCB of 16 bytes is generated, allowing for storage of
the file name, the FCB-length, and only the first six bytes of the file control block
data. These six bytes contain the 4-byte device type code and the absolute address
of the physical unit block for the device assigned to the file.

Error-free use of space management functions (for example, those provided by the
ALLOC and SCRTCH macro instructions) requires a fairly complete FCB. When you
issue an RDFCB and PIOCB macro instruction combination to read the FCB into main
storage, do not use the default value (16 bytes) in the PIOCB macro instruction.
Instead, either specify the necessary FCB length or, for maximum safety, use the
MAX parameter.

•

•

The PIOCB macro instruction is used to generate physical 1/0 control blocks. These blocks •
serve as repositories for file and device information previously compiled by job control at the
time the job control stream was evaluated. This information is stored in the form of a file control
block. File control blocks are stored in the job run library on the system resident direct access
device.

•

•

•

8075 Rev. 2 4-25

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

At assembly time, the PIOCB macro instruction provides main storage space for the following
information:

• Eight-byte file name (search key)

An 8-byte character string is generated within each physical 1/0 control block. This
character string is required by the RDFCB macro instruction to obtain the file control block.
The characters in this 8-byte search key are identical to the characters appearing as the
label of the PIOCB macro instruction.

Byt e 0 I 1 I 2 I 3

file name

I
FCB length device type I

I
12 I device type (cont) PUB 1 address

16 PUB 2 address PUB 3 address

20 PUB 4 address PUB 5 address

24 PUB 6 address PUB 7 address

28 PUB 8 address

32 ~
::: bytes 19-44 of file identifier

52

56

60

64

X'F1' J
file serial number

J
I

vol seq no. I

I I I vol. seq, no. (cont) creation date

68 expiration date I extent count

72 extent storage length extent storage start address

76

bytes 1-18 of file identifier
-;:;::;

:::

92
file type

96 reserved l option codes secondary allocation

100 ~

112

116

~ reserved (15 bytes)

l flags

number of l number of

PUB addresses volumes

120 vol 1 VSN or ERB pointer

124

vol 2-22 VSN or ERB pointer entries

248

252 vol 23 VSN or ERB pointer (or pointer to next FCB)

Figure 4-8. Physical 110 Control Block (PIOCB) and File Control Block (FCB) Format (Part 1 of 2)

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

4-26

.UPDATE LEVEL PAGE

NOTES:

1. Physical 1/0 control block (PIOCB) refers to the buffer area generated by the PIOCB macro instruction. File control block
(FCB) refers to the file control data read into the buffer area by the RDFCB macro instruction. Minimum PIOCB includes bytes
0 to 15; maximum PIOCB includes bytes 0 to 255.

2. Bytes 118 to 255 consist of a 6-byte field for each volume which contains either a 6-bytevolumeserial number(VSN)or a 4-
byte extent request block (ERB) pointer if the volume was not allocated at the time the FCB was built. If there are more than
23 volumes, the last field contains a pointer to the next FCB.

Figure 4-8. Physical 110 Control Block (PIOCB) and File Control Block (FCB) Format (Part 2 of 2)

• Half-word length field

A 2-byte field immediately follows the 8-byte search key. This field contains a binary count
of the number of bytes reserved for the file control block. This binary count ranges from a
minimum of 16 to a maximum of 256. Altering the contents of this half-word field is not
recommended since the field defines the size of the PIOCB and is used as the requested
length of the file control block. The RDFCB macro instruction transfers only the number of
bytes equal to this size or less.

• Part or all of a file control block

A 2-byte field is reserved for each device that is allocated to a file. A maximum of eight
fields is permitted. The first 2-byte field is referred to in positional parameter 3 of the CCB
macro instruction (4.2.5) as PUB-entry-number zero, the second field as entry two, the
third field as entry four, and the fourth field as entry six, etc. Following the successful
completion of an RDFCB macro instruction, these PUB address fields contain the absolute
addresses of the physical unit blocks that identify the assigned devices. Device
assignments indicated in the file control block are made by job control from the
parameters in the LFD and DVC statements. Thus, the RDFCB macro instruction, in
conjunction with the PIOCB macro instruction, dynamically links the problem program
with the device allocations made by job control.

4.2.7. Read File Control Block (RDFCB)

Function:

The RDFCB macro instruction locates and transfers the file control block into the physical
1/0 control block in main storage.

Format:

LABEL /),.OPERATION /),. OPERAND

[symbol] RDFCB

•

•

•

------------------~------

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

4-27 8075 Rev. 2

• Positional Parameter 1:

•

•

PIOCB-name

(1)

Specifies the symbolic address of the physical 1/0 control block. These characters
appear in the first eight bytes of the PIOCB and are used as a search key to identify the
desired file control block.

Indicates that register 1 has been preloaded with the address of the PIOCB.

Positional Parameter 2:

error-addr
Specifies the symbolic address of an error routine to be executed if an error occurs.

(r)
Specifies that register n (other than 0 or 1) has been preloaded with the address of the
error routine.

If omitted, the calling task will be abnormally terminated if an error occurs.

The RDFCB macro instruction is used to locate the file control block and read it into the physical
1/0 control block in main storage. To accomplish this function, positional parameter 1 of the
RDFCB macro instruction must be the address of a physical 1/0 control block that contains an
8-byte character string identifying the desired file control block. This character string is used
when locating the file control block. Any references to a physical 1/0 block, by means of an
EXCP macro instruction, before the device assignment fields are filled by the RDFCB macro
instruction results in a software validation error. Therefore, each physical 1/0 block should be
initialized by RDFCB macro instruction before the block is referenced by an EXCP macro
instruction. Figure 4-1 shows the interrelationship among the command control block, buffer
control word, physical 1/0 control block, file control block, and physical unit block.

Examples:

1. Read file control block for logical file INFILE and return control to symbolic address
ERROR if error occurs.

LABEL OOPERA TIONl:; OPERAND
1 10 16

I
......... ~~~~-'--1>-+-~~~-+-~~~~~~~~~~~~~~-~~~~·~1~~~~!._J__J_

I j_i

' ! I I

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

4-28

UPDATE LEVEL PAGE

2. Read file control block for logical file INFILE and return control to symbolic address
error.

LABEL f10PERAT!ON.6 OPERAND
t 10 16

--~EILQ_J_L.LJ_j_L _ _L_LJ_J_j __ L_J. I I L_L I I I I

LQ,.a:&IDR1 i LL .. J._L.L_J..L.LL_L_L I . __ LJ._l_i_

-+-!"-Lio"" -""~t-+ J..(.d. 1) I ')I (I I 10!) I I I I. I I I I .. LL_.Li__i__L_L _ _c__l_i_

.~~~1_1 ... LL

i i !

4.2.8. Execute Channel Program (EXCP)

Function:

The EXCP macro instruction requests that an 1/0 operation be executed by the physical
1/0 control system.

Format:

LABEL L10PERATION L1 OPERAND

[symbol] EXCP

Positional Parameter 1:

CCB-name
Specifies the symbolic address of the CCB.

(1)
Indicates that register 1 has been preloaded with the address of the CCB.

Positional Parameter 2:

c
Specifies that the 1/0 request is conditional on the peripheral device not being shared

•

•

with another job running in the system. This enables you to issue conditional seek •
commands when running in a multijobbing environment.

If omitted, the 1/0 request is assumed to be unconditional.

8075 Rev. 2
SPERRY UNIVAC Operating System/3

4-29

UP-NUMBER UPDATE LEVEL PAGE

•

•

•

The EXCP macro instruction communicates directly with the 110 scheduler for the purpose of
submitting 1/0 requests to the system. Before the EXCP macro instruction is executed, you
must construct an 1/0 packet consisting of the following:

• Use a CCB macro instruction to define the CCB.

• Use a PIOCB macro instruction to define the physical 1/0 control block.

• Use one or more CCW macro instructions or a BCW to construct the channel program.

• Use an RDFCB macro instruction to identify the 1/0 device and to obtain file information
specified by job control.

Linkage between these components is as follows:

• The EXCP macro instruction passes the address of the CCB to the physical IOCS routines.

• The address of a 2-byte field in a physical 1/0 control block is stored in the CCB. This field
contains the address of the physical unit block for the peripheral device concerned.

• The address of the first CCW or BCW is stored in the CCB.

• Each CCW or BCW contains the address of an input/output data area .

Whenever an EXCP macro instruction is executed, the 1/0 request counter in the task control
block of the requester is incremented and a status indicator in the CCB is set to signify thatthe
order is outstanding. Control is returned to the calling program immediately by the supervisor
with the degree of completion of this 1/0 order uncertain. You must use the WAIT orWAITM
macro instruction for synchronization with this 1/0.

An EXCP issued to a magnetic tape which is rewinding will result in the posting of the
CCB with unique error status. The EXCP should be reexecuted until the status does not
occur. At that time the EXCP is considered completed.

4.2.9. Swap 1/0 (SWAP)

Function:

The SWAP macro instruction is used for multivolume files to access the next physical 1/0
device in the sequence in which the volumes have been defined in the job control stream.

The SWAP macro instruction replaces the location of the currently active PUB address
entry in the CCB with the location of the next PUB address entry from the PIOCB. The PUB
addresses are swapped in a sequential and circular manner. After the last PUB address
entry in the PIOCB has been accessed, the next execution of a SWAP macro instruction
with the same CCB will access the first PUB address entry .

If more volumes have been defined than PUBs assigned, a console message will request
the operator to mount the currently required volume on the device specified in the earliest
assigned PUB.

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

4-30

UP-NUMBER

The complete FCB must reside within the PIOCB when this macro instruction is •
executed. Also, the CCB must be pointing to the currently active PUB address in
the PIOCB.

Format:

LABEL

[symbol]

Positional Parameter 1:

CCB-name

Li OPERATION Li

SWAP {
CCB-name}

(1)

OPERAND

Specifies the symbolic address of the command control block used to control the 1/0
operations to this file.

(1)
Indicates that register 1 has been preloaded with the address of the CCB.

4.3. INPUT /OUTPUT SYNCHRONIZATION

Macros are available that provide the means by which a task can await the completion of one or
more outstanding 1/0 operations. Specifically the task can await one, several, or all
outstanding I/Os; however, the 1/0 being waited for must have been requested by the task
doing the waiting.

Tasks are waited by setting a unique wait bit within thattaskcontrol block(TCB). These wait bits
signal the switcher that this task is nondispatchable and indicate the reason forthe wait. Upon
clearing the wait bits, the task becomes dispatchable and can be activated.

Two macro instructions are available for 1/0 synchronization:

• WAIT

Wait for one or all 1/0 requests to complete.

• WAITM

Wait for one of several 1/0 requests to complete.

These macro instructions can also be used (with different parameters) to synchronize a task
with the execution of other tasks. For 1/0 synchronization, the macro instruction references a
CCB; and for task synchronization, the macro instruction references an event control block.
Task synchronization is described in 7.4.

It must be remembered when you use these macro instructions that only the task having
executed an 1/0 request can await its completion; and when you await a task, it is not valid to
await the executing task.

•

•

--------~-------- -

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 4-31

UPDATE LEVEL PAGE

• 4.3.1. Wait for 1/0 Completion (WAIT)

Function:

•

•

The WAIT macro instruction temporarily suspends program execution until a specified 1/0
operation is completed (or until all 1/0 operations in the task are completed). If the related
operation is completed, control is returned to the point immediately following the WAIT
macro instruction. If the operation is not complete, the task is placed in a wait state and
control is passed to another task.

Format:

LABEL /:::,.OPERATION /:::,. OPERAND

[symbol] WAIT (1)
{

CCB-name}

[{
branch-addr } J

ALL
, (15)

Positional Parameter 1:

CCB-name

(1)

ALL

Specifies the symbolic address of the CCB to be tested for completion .

Indicates that register 1 has been preloaded with the address of the CCB.

Specifies that the 1/0 counter in the task control block is tested instead of the status
byte in the CCB. If no orders. are outstanding, the problem program continues
execution with the instruction following the WAIT macro instruction. If 1/0 orders are
outstanding, the program is suspended until the 1/0 counter is zero (indicating all
orders are completed).

Positional Parameter 2:

branch-addr
Specifies the symbolic address to which program control is transferred if the
requested 1/0 operation is completed and an exception has occurred. The cause of
the exception is posted in the appropriate CCB.

NOTE:

When using a label as positional parameter 2, the contents of register 15 are not altered by
the WAIT macro instruction even though transfer of control may occur. Also, it is assumed
that the base register coverage is provided in the problem program to permit branching to
this alternate address .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 4-32

UPDATE LEVEL PAGE

(15)
Indicates that register 15 has been preloaded with the branch address.

If omitted, the WAIT macro instruction tests for complete or incomplete status without
testing for exceptions. If ALL is specified as positional parameter 1, this parameter must be
blank.

The WAIT macro instruction is written in the problem program at the point where
processing cannot logically proceed until either the completion of related 1/0 requests
initiated by the EXCP macro instruction or synchronization with another task. When
utilized for 1/0, the WAIT macro instruction is executed in reference to a single CCB or
to the 1/0 counter in the task control block. If the related 1/0 operation is completed,
control is returned immediately and processing continues without interruption. If the 1/0
operation is not complete, the task is placed in a wait state and program control is
passed to another task. As each 1/0 operation is completed, the interrupt servicing
routine posts the CCB as complete, decrements the 1/0 counter in the task control block
and clears the wait bit so that control can be returned by the program switching routine.
When a task being awaited completes, the waiting task is reactivated and control is
returned to the point of interruption (immediately following the WAIT macro instruction
that resulted in the delay).

Examples:

LABEL !.\OPERATIONL'i OPERAND
10 16

CCBLy&'lSJ;IRE__L~--_L_L_L__l . : .. L_L_i __ "---L_Ll _ _;_ j_

J:."82,__ __ _._ -· 1-l _ l__;___ L i L .. L ... L_.L ..L .. , _ _j l .. L ... L .l _l -"--'-- -'. __ i- J __ L

.. ~~~·'-'J·-1{_1L5J.) I i I _l_ : _ __j_l_l____i__L_;_ __ L _ _L__L_J_J___l_j_i_L __

4.3.2. Multiple 1/0 Wait (WAITM)

Function:

The WAITM macro instruction temporarily suspends program execution until any one of
several 1/0 operations specified by the instruction is completed. Upon completion of one
of the 1/0 operations, control is returned to the program at the point immediately following
the WAITM macro instruction, with register 1 containing the address of the CCB
associated with the 1/0 operation. The appropriate wait indicators will be cleared with
regard to the unfinished 1/0 operation.

Format:

LABEL llOPERATION ll

[symbol] WAITM

OPERAND

{

CCB-name-1,CCB-name-2 [, ... ,CCB-name-n] }
list-name
(1)

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

4-33

UPDATE LEVEL PAGE

Positional Parameter 1:

CCB-name-1,CCB-name-2,[, ... ,CCB-name-n]
Specifies the symbolic addresses of the CCBs to be tested that are associated
with the 1/0 operations to be awaited. At least two CCBs must be specified.

list-name

(1)

This is a single entry which specifies the symbolic address of a list containing
full-word addresses of CCBs associated with the 1/0 operations to be awaited.
The byte following the last full word must be nonzero to indicate end of table.

Indicates that register 1 has been preloaded with the address of the list of CCB
addresses.

NOTE:

The WA/TM macro instruction also may specify a combination of CCB and ECB addresses
as parameters. See also the multiple task wait macro instruction described in 7.4.3.

When this macro instruction is executed, each referenced CCB is marked as being awaited.
Upon completion of a marked CCB, the waiting task is activated and the remaining CCBs that
are marked as being awaited are cleared.

The WAITM macro instruction always requires more than one event to be tested. If only one
event is to be tested, use the WAIT macro instruction.

4.4. BLOCK NUMBERED TAPE FILES

OS/3 can process magnetic tapes with or without block numbers. The use of block
numbers reduces the possibility of incorrect tape positioning and therefore incorrect tape
processing. This is especially helpful for error recovery on read and write commands and
in restarting at a checkpoint.

4.4.1. Block Number Field

When the block numbering capability is being used, all blocks on tape except tape marks
will include a 3-byte block number field as the first three bytes of the block. This 24-bit
block number field consists of a 4-bit tape mark counter and a 20-bit block number
counter. The block number counter reflects the number of blocks (including tape marks)
written; the tape mark counter reflects the number of contiguous preceding tape marks
since the last data block. The format of the block number field is shown in Figure 4-9.

+

•

8075 Rev. 2

UP-NUMBER

Tape Mark
Counter

SPERRY UNIVAC Operating System/3 4-34

UPDATE LEVEL PAGE

Block Number Field

Block Number Counter

Field Bit Description

Tape mark counter 0 0 = Preceding block is not a tape mark
1 = Preceding block is a tape mark

1-3 All zeros if bit 0 = 0

0 to 716 if bit 0 = 1. Number of
contiguous preceding tape marks
(modulo 8)

Block number counter 0-19 Tape block number in binary

Figure 4-9. Tape Block Number Field Format

The first block on tape that is not a tape mark will contain a block number field with a
block count of 1 plus the number of tape marks that preceded it. This block number count
is incremented by 1 for each block and tape mark on the tape. If a volume contains more
than one file, the count is continued from the preceding file on the volume and the blocks
are consecutively numbered to the end of the tape.

All label, data, and checkpoint blocks are counted and numbered; tape marks do not
contain a block number field and are counted only. When a tape mark is written, the block
number is incremented but is not written. When a tape mark is read, the count is merely
incremented because there is no number to check.

During input, the 3-byte actual block number (including the tape mark counter) in the
physical block is checked against the expected block number. If there is a mismatch,
appropriate error recovery is performed. Use of the tape mark counter in the block number
field will have no effect on block numbered tapes that were written without the tape mark
counter by an earlier supervisor. On input tapes, the first data block after a tape mark will
indicate whether or not the tape contains a tape mark counter in the block number field. If
there is a tape mark counter in the block number field of this block, it is assumed there
are tape mark counters throughout the entire tape and these will be checked. If there is no
tape mark counter in this block, it is assumed there are none throughout the entire tape
and this field (bits 0-3) will not be checked. On output tapes, all block numbered tapes
will be written with a tape mark counter as part of the block number. The counter will
contain a nonzero value only in the first data block following one or more tape marks.

•

•

•

•

•

8075 Rev. 2 SPERRY UNIVAC Operating System/3
4-35

UP-NUMBER UPDATE LEVEL PAGE

4.4.2. Tape Restrictions

The 3-byte block number fields are added to standard labels on block numbered tapes. The
three bytes precede the label identifier (VOL1, HOR 1, etc.) making the label 83 bytes long.
This is true for tapes written in ASCII as well as EBCDIC. Note that in the case of ASCII
tapes, the 83-byte label is nonstandard. It can be used for internal processing, but cannot
be used for information interchange. Block number processing will be exactly the same for
both EBCDIC and ASCII tape files. Tape label formats for block numbered EBCDIC tapes
are shown in Figures 6-17 through 6-21.

Block numbers will be volume dependent and file independent. Files on a volume and
volumes in a multivolume file must be all numbered or all unnumbered, not mixed.

Block number processing is available for magnetic tapes on selector or multiplexer
channels. These may be 9-track tapes, or 7-track odd parity tapes operating in data
conversion mode. Block size of 7-track tapes operating in data conversion mode must be a
multiple of 3.

4.4.3. Input/Output Buffer

When processing block numbered tapes you must reserve a 4-byte storage area
immediately preceding your input/output area for supervisor processing of the block
number. This 4-byte block number area, and the input/output area, must be aligned on a
full-word boundary. Do not include these four bytes in either the location or the block size
of the input/output area.

Block numbers will be checked when reading in either direction. When reading backward,
you must be sure your input/output area is large enough to hold the entire block of data.
If the data is truncated on a backward read, the block number will be lost and incorrect
positioning of the tape may result.

4.4.4. Processing

A number of software components are affected by block number processing; these include
system generation, tape preparation, job control, automatic volume recognition, physical
lOCS, data management, and system access technique (SAT) on tape files. Several control
tables in main storage are also affected, including the systems information block, the
device PUB trailer, and the CCB. These tables contain fields that are updated and bits that
are set. tested, and cleared to reflect user options and processing events.

Physical IOCS will perform block number processing for data management, tape SAT, and
EXCP-level physical IOCS users. A general description of required and optional parameters
and processing performed is contained on the following pages. Details pertinent to
physical IOCS users are contained in 4.4.5. Details of the requirement for tape SAT are
contained in 6.5 to 6.10 of this manual. For data management details, refer to the data
management user guide, UP-8068 (current version) .

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

4-36

UP-NUMBER

The supervisor must be configured to process block numbered tapes, in which case, the •
generated supervisor can process both numbered and unnumbered tapes. A bit in the SIB
is set to indicate that the supervisor supports block numbering. If the supervisor does not
have the block numbering capability, only unnumbered tapes can be processed; otherwise,
misalignment and possible truncation of data will result because of the block number field.

To use the block numbering capabHity of the supervisor, you must also reserve a 4-byte
storage area, aligned on a full-word boundary, immediately preceding the input/output
area. If you are a data management user, you indicate that you have reserved this 4-byte
area by using the BKNO=YES parameter in the DTFMT macro instruction. If you are a tape
SAT user, you do this by using the BKNO=YES parameter in the TCA macro instruction. If
you are a physical IOCS user at the EXCP level, you must also indicate that you have
reserved the 4-byte area by setting a bit in the CCB (4.4.5).

You have the option not to use block number processing even though the supervisor has
the capability and you have indicated there is a block number field preceding the
input/output area. If you enter N as the first parameter in the VOL job control statement,
block numbers will not be written on output tapes, and will be ignored if present on input
tapes.

Automatic volume recognition will read and store volume serial numbers and will set
appropriate bits in the PUB trailer to indicate whether or not it is processing standard
labeled tapes and block numbered tapes.

The PUB trailer for a block numbered tape file will contain an expected block number. This
number will reflect the next block number anticipated in a forward read and will be
adjusted accordingly for backward reads. When the tape is read in either direction, the
block number read from tape is stored in the PUB trailer and compared with the expected
block number. If there is no discrepancy (and no other errors), control is returned to the
user program. If there is a discrepancy, physical IOCS attempts to find the correct block by
moving the tape backward or forward the number of blocks implied by the discrepancy. If
the correct block is found, control is returned to the user. If the correct block cannot be
found, the tape is left positioned where it was on the last attempt and an error message is
sent to the console.

When processing control macros, block number processing will not be performed, because
no data transfer is involved. However, for commands involving single blocks (FSB, BSB),
the block number count will be updated.

On block numbered tapes, CCW chains with more than one tape movement command and
multiblock BCW commands can be processed only through the first tape movement
command.

4.4.5. Physical IOCS Requirements and Options

Physical IOCS users at the EXCP level have an additional requirement. Before issuing any
EXCP macro instruction for a block numbered tape, you must set byte 3, bit 7, in the CCB.
This indicates that the 4-byte block number field preceding the input/output buffer has
been reserved. If this bit is not set, the job will be cancelled.

•

•

•

•

•

8075 Rev. 2 4-37
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE UP-NUMBER

You can request that block numbering be ignored on input tapes by setting byte 0, bit 3, in
the CCB before issuing an EXCP. In this case, block numbered tapes will be read, but the +
block numbers will not be verified. You must set this bit each time you want to ignore
block number processing on a read.

Another option available at the physical IOCS level is to accept unrecoverable errors. You
can do this by setting byte 3, bit 1, in the CCB. You don't have to reset this bit for each
EXCP; it need only be set once and stays set.

On a read, if physical IOCS detects a variance between the expected block number and the
actual block number and is unable to resolve this variance after ten retries, a console
message is issued. If byte 3, bit 1 (accept unrecoverable errors) is set, the console
message gives the operator opportunity to request a retry or accept the error. If retry is
requested but is still unsuccessful, the operator will again be asked to request a retry or
accept the error. If he accepts the error (or if he first requests retry and it is still
unsuccessful), physical IOCS sets byte 2, bit 5 (block numbers not equal), and byte 2, bit 1
(unrecoverable error). Physical IOCS then sets byte 2, bit 0, to indicate that CCB
processing is complete and returns control to your program. On input, you should test byte
2, bit 5, after the WAIT is executed to ensure that the correct block has been processed.

If byte 3, bit 1 (accept unrecoverable errors) was not set, the operator has the option only
to request a retry or cancel. If retry is requested but is still unsuccessful, the operator will
again be asked to request a retry or cancel.

On a write, if byte 3, bit 1, is set and the tape cannot be positioned correctly, a console
message gives the operator the opportunity to accept the error or cancel. If this bit is not
set, he must cancel.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

5-1

UPDATE LEVEL PAGE

5. Disk Space Management

5.1. GENERAL

Space management comprises a group of routines that provide you an efficient and
completely automatic disk and diskette space accounting capability. These routines relieve
you of the responsibility of knowing the precise contents of disk and diskette volumes.
These routines also resolve competing demands for space allocation and establish
standard interfaces with your other programs as well as job control, utility, and service
programs.

Using job control statements in your job stream at run time, you can enter the information
required by these routines as parameters in your job control statements. For example,
within your device assignment set you can use the EXT job control statement to allocate
space to a new disk or diskette file, or to extend a disk file. You can use the SCR
statement to deallocate (scratch) a disk or diskette file.

These functions can also be requested within your program. The following macro
instructions are available:

• ALLOC

Allocates files.

• EXTEND

Extends files already allocated (disk only).

• SCRTCH

Scratches files that are no longer needed.

• RENAME

Renames files (disk only).

• OBTAIN

Retrieves label and extent information .

8075 Rev. 2

UP-NUMBER SPERRY UNIVAC Operating System/3 5-2
UPDATE LEVEL PAGE

For disk file processing, you may use all five of these macro instructions; for diskette file
processing, you may use only ALLOC, SCRTCH, and OBTAIN. Diskette space management
macro instructions are a compatible subset of the disk space management macro
instructions. Although the formats are the same, there are some differences due to the
different labelling patterns and physical characteristics. For convenience, disk and diskette
macro instructions are described separately in this manual.

5.2. DISK SPACE MANAGEMENT ROUTINES

The disk space management routines are transient service routines. Allocation is
accomplished by maintaining the volume table of contents (VTOC) through standard
procedure for all files: system, temporary, and those considered permanent by the user.
The VTOC is a permanently allocated, unmovable file which exists on every disk volume.
The VTOC is addressed by the standard volume label and is included in a disk volume by
the disk volume initialization program. The VTOC file comprises a control block, or set of
control blocks, for each file on the volume and for all unused space on the volume. Refer
to the data management user guide, UP-8068 (current version) for the formats and
description of the VTOC and disk file labels.

The disk space management routines maintain the VTOC by creating control blocks for
new files and deleting control blocks for files removed from the volume. When a file is to
be created, unused space is found for it by searching the appropriate blocks in the VTOC,
allocating the space as the extents of the file, and removing the amount from free space.

•

When a file is deleted, the control block for the file is removed from the VTOC; the extents •
previously assigned to the file are again available for allocation.

Both disk space management and the system access technique (SAT) allocate file space
according to the characteristics of the device. Also, in the case of the 8418 Mod I disk
subsystem, allocated file space is based on 400 cylinders; while on the 8418 Mod II disk
subsystem, allocated file space is based on 800 cylinders.

5.2.1. Allocate Routine

The allocate routine assigns space to a new file or an existing file. After the validity of the
request is ensured, the allocate routine locates space on the disk by using a format 5 label
in the VTOC that satisfies the request. The routine then removes the definition of the
available space from the format 5 label and assigns it to the requesting file. If the
requesting file is new, a format 1 label and format 2 label, along with any needed format 3
labels, are created and placed in the VTOC.

For a new split cylinder file, the allocation of the primary member results in the creation of
a format 1 label, a format 2 label, a format 3 label (all physical extent information for a
split file is kept in a common format 3 label), a format 6 label (all internal bookkeeping for
a split file; e.g., available heads and format 1 pointers, are kept in a common format 6
label). Allocation of subsequent members to the split file results in only the creation of
format 1 and format 2 labels. Note that because all physical extent information about a
split file is kept in a common format 3 label, the file limit is 13 extents (the limit is 16 for a
nonsplit cylinder file). Note also that the acquisition of more space for an already existing •
split file, via the ALLOC macro instruction with the OLD parameter, must be requested for
the primary member of the file.

•

•

•

8075 Rev. 2

UPDATE LEVEL PAGE

5-3
SPERRY UNIVAC Operating System/3

UP-NUMBER

The services of the allocation routine are requested through the ALLOC macro instruction .
Allocation is performed on a volume-by-volume basis; the inputs to the allocate routine for
each file are the file control blocks (FCBs) of the file, or 8-byte file name. In the case of
multivolume files, the volume sequence number must be set in register 0 by your calling
program. The FCB must include a pointer to the extent request block (ERB); in a
multivolume file, there is one ERB for each volume. The first FCB has 22 ERB pointers.
When more than 22 volumes are allocated to this file, the first FCB has a next FCB
pointer.

Special considerations are given to allocations for run libraries which are created by job control
for each job. The FCB and accompanying ERB are in main storage with the pointer to the ERB
filled with zeros. The disk space management then assumes that the ERB immediately
follows the FCB in storage.

5.2.2. Extend Routine

The extend routine assigns additional space to a file after that file's initial space allocation
has been exhausted. This secondary allocation (or extension) is handled automatically for
data management by the system access technique (SAT), which provides a common
interface to all disk subsystem types. When split files are extended, all files which belong
to the same group are also extended. Any member of the split file, primary or subsequent,
may be dynamically extended. The dynamic extension of a split file results in a new
physical extent entry in the appropriate format 3 label. To avoid exceeding the limit of 13
extent entries, a secondary allocation increment greater than 1 should be considered for
heavily used (and extended) split files.

The request for extension is made through the EXTEND macro instruction. When the file
exhausts its initial allocation of space, data management calls the extend transient routine
and the space (if available) is allocated in amounts specified by the secondary allocation of
the format 1 label of that file.

The extend routine always tries to assign space contiguous to the last space assigned to a
file. This minimizes the number of separate extents required. If this attempt fails or if
insufficient space is available, then space is assigned by first fit. For example, if four
cylinders are requested, the space is assigned from the first format 5 extent encountered
that has at least four cylinders.

In the event that there is not sufficient space available to satisfy the extension increment
specified in the format 1 label with contiguous space, disk space management will allocate the
largest extent possible. If more space is required after a partial extension, additional extent
requests can be made, as required.

5.2.3. Scratch Routine

The scratch routine deallocates disk space from a file and makes it available for future
use. Scratch, after ensuring that the request is valid, removes the extents from format 1 or
format 3, and records and updates format 5 records. The extent freed is placed in the
correct position of the format 5 records, which are in ascending seqeunce. Format 1, 2,
and 3 records are deleted from the VTOC and replaced with format 0 records if a file is
scratched.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 5-4

UPDATE LEVEL PAGE

Scratching a member file of a split cylinder file results in the deletion of the corresponding •
format 1 and format 2 labels. Because the physical space allocated to the file is common
to all its members, the space is returned to free space only when the last member of the
file is scratched. At that point, the format 5 and format 6 labels are also deleted from the
VTOC. Note that scratching the primary member of the split file will prevent the
acquisition of new space for the file via ALLOC OLD.

There are three basic scratch routines available:

• scratch entire file;

• scratch files by prefix; and

• scratch all expired files.

5.2.3.1. Scratch Entire File

The VTOC is searched for a format 1 label that matches the 44-byte physical ID retrieved
from the FCB. That entire file is then scratched.

5.2.3.2. Scratch by Prefix

The ability to scratch certain files which have identification fields beginning with the first four
characters specified in a SCRTCH macro instruction parameter also is available. This allows •
you to deallocate temporary work files by a single call on space management routines. The
characters Y cannot be included in this prefix; this prevents you from scratching system files
by mistake.

5.2.3.3. Scratch All by Date

This function permits you to scratch all files which have passed an expiration date that was
included in the format 1 label expiration date field. The expiration date is compared to the date
supplied by you; each format 1 label expiration date field is compared to this date and if it has
expired, the file is scratched and that space is now available for reallocation.

5.2.4. Rename Routine

The rename routine allows you to apply a new file ID to a format 1 label. You can rename any file
except a system scratch file ($SCR). The RENAME macro instruction initiates the rename
routine.

5.2.5. Obtain Routine

The obtain routine allows you to access any block of the VTOC. The obtain routine is
initiated by using the OBTAIN macro instruction; you have to provide the 8-byte file name, •
the absolute disk address of the block to be accessed, or have the FCB in main storage.

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

5-5

UPDATE LEVEL PAGE

5.3. DISK MACRO INSTRUCTIONS

The imperative macro instructions available to you with disk space management are:
ALLOC, EXTEND, SCRTCH, RENAME, and OBTAIN. The ALLOC, EXTEND, and SCRTCH
macro instructions are concerned with basic space accounting (allocating, extending, and
deleting file space), while the RENAME and OBTAIN macro instructions provide support
operations to allow you to change file ID and to access certain VTOC information. The
following paragraphs give you a detailed description of each macro instruction.

5.3.1. Assign Space to a New Disk File or to an Existing Disk File (ALLOC)

Function:

The ALLOC macro instruction assigns space to a new file or to an existing file.
Allocation is performed on a volume-by-volume basis. For each volume of a file, the t
inputs to the allocate routine are the file control block (FCB) of the file and the
corresponding extent request block (ERB), if required.

Format:

LABEL

[symbol]

fl OPERATION fl

ALLOC

OPERAND

{ ~~~~F~dr} [{ erro;;~ddr}]
[' { vol-seq·n~~LD,NOFCB}]

Positional Parameter 1:

FCB-name
Specifies the symbolic address of the file control block.

filename-addr

(1)

Specifies the symbolic address of an 8-byte area in main storage in which you
have stored the file name (as listed on the LFD job control card of the file). NOFCB
must be entered as positional parameter 5.

Indicates that register 1 has been preloaded with the address of the file control block,
or the address of the file name if NOFCB has been entered as positional parameter 5.

Positional Parameter 2:

error-addr
Specifies the symbolic address to which control is transferred if an error is
encountered.

8075 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-6
UPDATE LEVEL PAGE

(r)
Indicates that a register (other than 0 or 1) has been preloaded with the error address.

If omitted, the calling task will be abnormally terminated if an error occurs.

Positional Parameter 3:

vol-seq-no
Specifies the volume number of a multivolume file to be allocated.

If omitted, the value 1 is assumed.

Positional Parameter 4:

OLD
Specifies that an old file is extended with information contained in the specified
FCB and ERB rather than with the EXTEND macro instruction.

If omitted, a new file is assumed.

Positional Parameter 5:

NOFCB
Specifies that positional parameter 1 refers to a file name instead of an FCB. In this

•

case, space management will issue an RDFCB macro instruction to read the FCB from •
the run library into the transient area.

If omitted, it is assumed that positional parameter 1 refers to an FCB and that you have
issued an RDFCB macro instruction for this file.

(0)

Examples:

Indicates that register 0 has been preloaded with the information for positional
parameters 3, 4, and 5:

Bit

22 1 = NOFCB

23 1 = OLD (See positional parameter 4.)

24-31 Volume sequence number.

LABEL OOPERATIONG OPERAND
10 16

.,_,.__.___.._____L__]__.___L_J_ __ .i_ _i __ j__ __ .L._ L_....l.____.__4._ _..1-.... L __ _l ~- i L.--1. _ _L____L_L ___ .___l __ l_ . .i.. _ _l__ _l_ _l _.J__j__ _J__j_~

1--'---'--L---'-J__j____l_.~L.Jl.etl!"""""""'~_J_(JJ_)+(i_~ ,.2 ,0i LD ' _J_ I I I '_j__LL_L_;____;___j__~~ •

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 5-7

UPDATE LEVEL PAGE

• 5.3.2. Assign Additional Space to an Existing Disk File (EXTEND)

•

•

Function:

The EXTEND macro instruction allows you to assign additional space to a Sequential
Access Method (SAM) or a System Access Technique (SAT) file after its initial
allocation of space has been exhausted. The extend routine is called by data
management, or any user, only after the file runs out of space; the additional space,
if available, is allocated in increments specified at the time of primary allocation.

Format:

LABEL fl OPERATION fl OPERAND

[symbol] EXTEND { ~~~~::ddr} [, { err(;jaddr} J
[·{ {~~}.{vol-~;~~} [,FCBCORE]}]

Positional Parameter 1:

FCB-name
Specifies the symbolic address of the file control block.

filename-add r

(1)

Specifies the symbolic address of an 8-byte area in main storage in which you
have stored the file name (as listed on the LFD job control card) of the file to be
extended.

If FCBCORE is entered as positional parameter 5 or if bit 6 of register 0 is set to
1, indicates that register 1 has been preloaded with the address of the file
control block.

If positional parameter 5 is omitted, indicates that register 1 has been preloaded
with the address of the file name.

Positional Parameter 2:

error-addr

(r)

Specifies the symbolic address to which control is transferred if an error is
encountered.

Indicates that a register (other than 0 or 1) has been preloaded with the error address .

If omitted, the calling task will be abnormally terminated if an error occurs.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 5-8

UPDATE LEVEL PAGE

Positional Parameter 3:

01
Specifies that the file is a SAM file.

80
Specifies that the file is a SAT file.

Positional Parameter 4:

vol-seq-no
Specifies the volume number of a multivolume file to be extended.

If omitted, the value 1 is assumed.

Positional Parameter 5:

FCBCORE
Specifies that positional parameter 1 refers to the address of an FCB. This
assumes you have issued an RDFCB macro instruction for this file.

If omitted, it is assumed that positional parameter 1 refers to the address of a file

•

name. In this case, space management will issue an RDFCB macro instruction to read •
the FCB from the run library into the transient area.

(0)
If filename-addr was specified as positional parameter 1, indicates that register 0
has been preloaded with the following information:

Bit

16-23 File type

24-31 Volume sequence number

If FCB-name was specified as positional parameter 1, indicates that register 0
has been preloaded with the following information:

Bit

6 1 = FCBCORE

16-23 File type

24-31 Volume sequence number

This is an alternative to entering FCBCORE as positional parameter 5, and
assumes that you have issued an RDFCB macro instruction for this file.

SPERRY UNIVAC Operating System/3
5-9 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

• Examples:

•

•

LABEL .0.0PERA TIONfl OPERAND
10 16

5.3.3. Scratch a Disk File (SCRTCH)

Function:

The SCRTCH macro instruction allows you to deallocate one or more files, identified
by the 44-byte file ID, and make that space available for future use. Do not issue the
SCRTCH macro instruction to a file that is currently open.

Format:

LABEL fl OPERATION fl OPERAND

[symbol] SC RT CH I FCB-name l [{~~~FIX}] [, ~ error-addr t]
), (1) \ (O)) (r) \

Positional Parameter 1:

FCB-name

(1)

Specifies the symbolic address of the file control block (FCB) in main storage.

Indicates that register 1 has been preloaded with the address of the FCB in main
storage.

Positional Parameter 2:

ALL
Specifies that all files whose expiration date has been exceeded are to be
deallocated. The expiration date must be included in the 3-byte expiration date
field of the FCB.

PREFIX
Specifies that all files that have the specified 4-byte prefix are to be deallocated.
The 4-byte prefix must be placed in bytes 76-79 of the FCB .

UP-NUMBER
SPERRY UNIVAC Operating System/3

.UPDATE LEVEL PAGE

5-10 8075 Rev. 2

Indicates that register 0 has been preloaded with the following information: • (0)

Bit

0-7 Hexadecimal function code:

Code Interpretation

00 Scratch file.
82 Scratch all by date.
83 Scratch by prefix.

If omitted, the file specified by the 44-byte file ID in the FCB is scratched.

Positional Parameter 3:

error-addr

Specifies the symbolic address that receives control if an error is encountered.

(r)

Indicates that a register (other than 0 or 1) has been preloaded with the address
of the error routine. •

If omitted, the calling task is abnormally terminated if an error occurs.

Examples:

LABEL 60PERATION6 OPERAND
10 16

5.3.4. Rename a Disk File (RENAME)

Function:

The RENAME macro instruction permits you to assign a new physical file name to any
file except a system scratch file. This is accomplished by specifying the new name to
be used and the file ID as contained in the format 1 label. Do not issue the RENAME
macro instruction to a file that is currently open.

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 5-11

UPDATE LEVEL PAGE

Format:

LABEL fl OPERATION fl OPERAND

[symbol] RENAME

Positional Parameter 1:

pa ram-list
Specifies the symbolic address of a parameter list containing the 8-byte file
name (as listed on the LFD job control card) and a new 44-byte file identifier.

(1)
Indicates that register 1 has been preloaded with the address of the parameter list.

Positional Parameter 2:

error-addr
Specifies the symbolic address to which control is transferred if an error is
encountered .

(r)
Indicates that a register (other than 0 or 1) has been preloaded with the error address.

If omitted, the calling task will be abnormally terminated if an error occurs.

Positional Parameter 3:

vol-seq-no
Specifies the volume number of a multivolume file to be renamed.

If omitted, the value 1 is assumed.

Examples:

LABEL (\OPERATIONL'\. OPERAND
10 16

j l

l i i L j_

.J.. ...

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 5-12

UPDATE LEVEL PAGE

5.3.5. Access VTOC User Block (OBTAIN)

Function:

The OBTAIN macro instruction allows you to access any user block in the VTOC. You
must first construct the parameter list which specifies the file, the particular area of
the VTOC that is of interest to you, and the address of a buffer in main storage where
you want the retrieval data stored.

Format:

LABEL b. OPERATION b. OPERAND

[symbol] OBTAIN { para~-: ist} [{ error;~ddr} J [{ vol-se1q-no} J
[,FCBCORE]

Positional Parameter 1:

pa ram-list
Specifies the symbolic address of a parameter list containing the following:

Bytes 0-7
An 8-byte file name (as listed on the LFD job control card).

Byte 8
Function code of the requested service for the disk pack containing the
volume sequence number specified by positional parameter 3:

Code

00
01
02
03
04
05
06
80
81
82
83
84
85
86
87

NOTE:

Interpretation

VOL 1 address in form Occchhrr
Format 1 address in form Occchhrr
Format 2 address in form Occchhrr
Format 3 address in form Occchhrr
Format 4 address in form Occchhrr
Format 5 address in form Occchhrr
Format 6 address in form Occchhrr
Contents of VOL 1 label
Contents of format 1 label
Contents of format 2 label
Contents of format 3 label
Contents of format 4 label
Contents of format 5 label
Contents of format 6 label
Contents of label record located at the disk address which is
in the first word of the buffer in the form Occchhrr.

Addresses in the form Occchhrr are in discontinuous binary, where ccc is
the cylinder number, hh is the head number, and rr is the record number.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

(1)

5-13
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Bytes 9-11
Buffer address of the storage area into which the addresses or label
contents requested through byte eight are loaded. For codes 00 through
06, the first word of the buffer contains the disk address of the label
record. For code 87, you must store the disk address (in the form
Occchhrr) of the label desired in bytes 0 through 3 of this buffer area.

Bytes 12-15

Symbolic address of the FCB in main storage. This field is required only
if positional parameter 4 is specified.

Indicates that register 1 has been preloaded with the address of the parameter
list.

Positional Parameter 2:

error-addr

(r)

Specifies the symbolic address to which control is transferred if an error is
encountered.

Indicates that a register (other than 0 or 1) has been preloaded with the error
address .

If omitted, the calling task will be abnormally terminated if an error occurs.

Positional Parameter 3:

vol-seq-no
Specifies the volume number of a multivolume file from which you retrieve the
VTOC information.

If omitted, a value of 1 is assumed.

Positional Parameter 4:

FCBCORE
Specifies that the FCB is in main storage. The address of the FCB is contained
within bytes 12-15 of the parameter list whose address is specified by
positional parameter 1.

If omitted, space management reads the FCB from disk, using the 8-byte file name
contained in the parameter list.

Examples:

LABEL OOPERATION{\ OPERAND
10 16

SPERRY UNIVAC Operating System/3 5-14 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

t
5.4. DISKETTE SPACE MANAGEMENT ROUTINES

The diskette space management routines are transient service routines. Space management
is accomplished by maintaining information on the index track about the volume and files on
the diskette. The index track on physical tack 0 has a fixed format. This track is divided into
26 sectors with each sector 128 bytes long. Sectors 1 through 6 are reserved for physical
information. Sector 7 is referred to as the volume label and is used to describe the diskette
volume. Sectors 8 through 26 are referred to as file labels and define the files recorded on
cylinders 1 through 74 of the diskette. Refer to the data management user guide, UP-8068
(current version) for the format and description of the diskette file labels.

5.5. DISKETTE MACRO INSTRUCTIONS

Of the five macro instructions available for space management, only ALLOC, SCRTCH, and
OBTAIN may be used for diskette space management. Also, you will note some variations
in the parameter specifications. For example, the fourth parameter of the ALLOC macro
instruction and the second parameter of the SCRTCH macro instruction are not used, and
you can choose from only two types of label information in the first parameter of the
OBTAIN macro instruction.

5.5.1. Assign Space to a New Diskette File (ALLOC)

Function:

The ALLOC macro instruction assigns space on the diskette to a new file. The
increments of allocation are sectors (128 bytes per sector). After ensuring the request
is valid, the allocate routine locates space on the diskette by reading the index track
and calculates the available space on the volume from user file labels 8 through 26.
The routine then writes a new file label on the index track to allocate space to the file.

Format:

LABEL .60PERATION .6 OPERAND

{
~CB-name } [{ error-addr }J
f1lename-addr ' (r)

(1)

[symbol] ALLOC

[. { vol-seq-n~o; NOFCB} J
Positional Parameter 1:

FCB-name
Specifies the symbolic address of the file control block.

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

5-15

filename-addr

(1)

Specifies the symbolic address of an 8-byte area in main storage in which you
have stored the file name (as listed on the LFD job control card of the file).
NOFCB must be entered as positional parameter 5.

Indicates that register 1 has been preloaded with the address of the file control
block, or the address of the file name if NOFCB has been entered as positional
parameter 5.

Positional Parameter 2:

error-addr

(r)

Specifies the symbolic address to which control is transferred if an error is
encountered.

Indicates that a register (other than 0 or 1) has been preloaded with the error
address.

If omitted, the calling task will be abnormally terminated if an error occurs.

Positional Parameter 3:

vol-seq-no
Specifies the volume number of a multivolume file to be allocated.

If omitted, the value 1 is assumed.

Positional Parameter 4:

This parameter is not applicable, but a comma must be entered in this position if
positional parameter 5 is used.

Positional Parameter 5:

NOFCB
Specifies that positional parameter 1 refers to a file name instead of an FCB. In
this case, space management will issue an RDFCB macro instruction to read the
FCB from the run library into the transient area.

If omitted, it is assumed that positional parameter 1 refers to an FCB and that you
have issued an RDFCB macro instruction for this file.

(0)
Indicates that register 0 has been preloaded with the information for positional
parameters 3, 4, and 5:

t

t

8075 Rev. 2 5-16
SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL PAGE

t
Bit

22 1 = NOFCB

23 0 = new allocation

24-31 Volume sequence number

5.5.2. Scratch a Diskette File (SCRTCH)

Function:

The SCRTCH macro instruction deallocates diskette space for a file and makes it
available for future use. After ensuring that the request is valid, the scratch routine
searches the file labels for a file identifier (17 bytes) that matches the first 17 bytes of
the 44-byte file ID retrieved from the FCB. If a match occurs, the file's extent is
scratched by marking the file label 'deleted'. Do not issue the SCRTCH macro
instruction to a file that is currently open.

Format:

LABEL fl OPERATION fl OPERAND

Lsymbol] SCRTCH

Positional Parameter 1:

FCB-name
Specifies the symbolic address of the file control block (FCB) in main storage.

(1)
Indicates that register 1 has been preloaded with the address of the FCB in main
storage.

Positional Parameter 2:

This parameter is not applicable, but a comma must be entered in this position if
positional parameter 3 is used.

Positional Parameter 3:

error-addr
Specifies the symbolic address that receives control if an error is encountered .

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

5-17

(r)

UPDATE LEVEL PAGE

Indicates that a register (other than 0 or 1) has been preloaded with the address
of the error routine.

If omitted, the calling task is abnormally terminated if an error occurs.

5.5.3. Obtain Diskette Label Information (OBTAIN)

Function:

The OBTAIN macro instruction retrieves the volume label or any file label on the
index track. After ensuring that the request is valid, the obtain routine locates the
requested label and returns it in a buffer area in main storage. You must construct a
parameter list which specifies the type of label requested and gives. the address of
your buffer.

Format:

LABEL [).OPERATION[). OPERAND

[symbol] OBTAIN {
param-list }

(1) [
, { error-addr }] [, { vol-~.~~-no }]

(r) I:
[,FCBCORE]

Positional Parameter 1:

pa ram-list
Specifies the symbolic address of a parameter list containing the following:

Bytes 0-7
An 8-byte file name (as listed on the LFD job control card).

Byte 8
Function code specifying the type of label requested.

Code Interpretation

80 Contents of index track label 7
81 Contents of index track label for the file name specified in

bytes 0-7

Bytes 9-11
Buffer address of the storage area into which the label contents are to
be loaded. This buffer must be at least 128 bytes .

Bytes 12-15
Symbolic address of the FCB in main storage. This field is required only
if positional parameter 4 is specified.

t

8075 Rev. 2 5-18

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

t

+

(1)
Indicates that register 1 has been preloaded with the address of the parameter
list.

Positional Parameter 2:

error-addr

(r)

Specifies the symbolic address to which control is transferred if an error is
encountered.

Indicates that a register (other than 0 or 1) has been preloaded with the error
address.

If omitted, the calling task will be abnormally terminated if an error occurs.

Positional Parameter 3:

vol-seq-no
Specifies the volume number of a multivolume file.

If omitted, a value of 1 is assumed.

Positional Parameter 4:

FCBCORE
Specifies that the FCB 1s in main storage. The address of the FCB is contained
within bytes 12-15 of the parameter list whos_e address is specified by positional
parameter 1.

If omitted, space management reads the FCB from disk, using the 8-byte file name
contained in the parameter list.

5.6. SPACE MANAGEMENT ERROR CODES

Errors that occur during processing of your disk and diskette space management macro
instructions cause a transient routine to be called into main storage. This error transient
overlay routine places an appropriate error code into register 0, depending upon the type of
error. If the error is not catastrophic (one that necessitates termination of your program),
control is then switched to your error-handling routine (through the error-addr parameter of
your macro instructions). If you do not include an error handling routine in your program,
your task is terminated and control is returned to the supervisor.

The system messages programmer reference, UP-8076 (current version) contains a list of
space management error codes and their interpretation.

•

•

•

•

•

•

8075 Rev. 2 6-1

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

UP-NUMBER

6. System Access Technique

6.1. GENERAL

The OS/3 includes several data management packages that allow you to process a wide
variety of file types in several different ways. System access technique (SAT) is a
specialized block level device handler that provides great efficiency in handling disk and
tape files.

This section provides you with a brief functional description of SAT operation techniques,
and an explanation of the interface that is available to modify SAT operation or to
construct your own handler modules.

SAT techniques and macro instructions to define and control disk files are described
starting at 6.2. SAT techniques and macro instructions to define and control tape files are
described starting at 6.5.

6.2. DISK SAT FILE ORGANIZATION AND A,DDRESSING METHODS

SAT files may be segmented into logical parts called partitions with each partition having
distinct physical and logical characteristics. Each partition is defined by a PCA macro
instruction, which generates a partition control appendage to the DTF file table. Up to
seven partitions may be defined within a single file.

6.2.1. PCA Table Entries Used in Addressing

The addressing of physical blocks being accessed from a partition is controlled by two
entries in the partition control appendage (PCA) table in main storage. A PCA table (Figure
6-1) is created for each partition processed and is used as a reference by the program.
The two entries in the PCA table that affect addressing are:

• Current ID

• End of data ID

The current ID is the starting address of the logical partition or the address of the current
block being processed.

8075 Rev. 2 6-2 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL PAGE

The end of data ID is the last logical block of the partition.

When you open your file with the OPEN macro instruction, the current ID and end of
data ID for each partition in the file referenced are initialized to the start and end of that
partition. When sequential processing (SEQ keyword parameter) is performed, successful
completion of the GET and PUT macro instructions results in the current ID being
incremented to the next physical block of the partition. This incrementation, which occurs
after the wait, continues until the end of data ID is encountered; this indicates that all
blocks in a file have been processed.

Provisions are also made to allow you to access blocks in other than sequential method.
The current ID is the same address as the label of your PCA (partition). This is a 4-byte
field containing a right-justified hexadecimal number representing the block to be
referenced relative to the first block of the partition.

When first initialized, this field contains a 1 corresponding to the first block of the partition. If
you wish to access a particular individual block, you must load the relative block number into
the PCA address; this causes the current ID to reflect the block you want to access.

Byte 0 l 1 l 2 l 3

0 current ID

4 max relative block

8 logical blocks/track

12 PCA ID EODID

16 1/0 count IOAR EA/address

20 block size reserved sectors/block

24 lace factor/key length unit of store

28 DTF address

32 PCA flags EOD address

PCA FLAGS

Bit Bit
0 Format write 4 Verify required/initial allocation
1 Interlace 5 No extension permitted
2 SEQ= Yes 6 Interlace adjust/keyed data
3 Write verify 7 LBLK specified

Figure 6-1. Partition Control Appendage (PCAJ Table Format

•

•

•

•

•

•

UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

6-3 8075 Rev. 2

When searching by key (READE and READH macro instructions) you must know the relative
address of at least one block on the track you wish to search. Once again, when you open the
file, the current ID and end of data ID of the partition are intialized. However, you must initialize
the current ID to the relative block address of a block on the track you wish to search. Next, you
place the key for which you want a match (or match and higher) into the first key length bytes of
the 1/0 buffer area. When you issue the READE or READH macro instruction, a search of the
track begins. A successful search results in the current ID field being loaded with the address of
the block retrieved by the match. If the SEQ keyword parameter was specified in the PCA
macro instruction, the address contained in the current ID field will be the block just read plus 1.

When using the SEEK macro instruction, there is no updating of the PCA table entries. In this
case, after the file is opened, place the relative block number of any block on the track you want
to access into the current ID field of the PCA.

6.2.2. Block Addressing by Key

Blocks are addressed either by key or by relative ID. You create a partition using keyed data
blocks (Figure 6-2) by specifying the KEYLEN keyword parameter of the PCA declarative
macro instruction. The key is placed in the first part of the 1/0 buffer area and is left-justified;
when the PUT macro instruction is issued, the block is then written from the 1/0 area and to
disk by PIOCS. To read data blocks by key, place the key ID into the first key length area of
1/0 buffer area. The instruction to read allows you two options. First, you can access a
specific block by using the READE macro instruction which searches for a matching
(equal) key; this block is then read into the 1/0 area for you to process. You can use the
READH macro instruction where the key is placed in the first part of the 1/0 buffer area.
As the block with the matching key or higher is located, that block is read into the 1/0
buffer area.

6.2.3. Block Addressing by Relative Block Number

When you address by relative block number, the current ID field of the PCA will contain the
relative block number of the current block being referenced. (The first block of each partition is
relative block 1, the second is 2, etc.) Load the relative block number of the block you wish to
access, then issue a GET macro instruction to read the block or a PUT macro instruction to write
the block.

WITH KEYS

[count rm i key dot' I

~c-r-==-K-----s~~D-=--=--===·I
Figure 6-2. Record Formats for Disk Devices (Part 1 of 2)

8075 Rev. 2

UP-NUMBER

WITHOUT KEYS

:--- i

SPERRY UNIVAC Operating System/3 6-4

UPDATE LEVEL PAGE

data I count !
L-~~--L-~~~~~~~~~~~~~~~~~~~~~~~~~~~~___J

~c-11-----~---~
LEGEND:

C Count field length (8 bytes). Count field is used only by data management.
K Key field length (3-255 bytes)
D Data field length
B Block length (< track length and cannot span track boundaries)

Figure 6-2. Record Formats for Disk Devices (Part 2 of 2)

6.2.4. Disk Space Control

Space required for new files is allocated and scratched using the standard disk space
management routines. Requests for temporary disk space are handled through job control;
space allocated in this manner is released at the end of job step.

Allocation of disk space to your partitions is on a serial basis; first, the partition 1 space

•

requirements are filled from the first available tracks of the extents, then the other •
partitions are satisfied in sequence.

Specify the initial space allocation to a partition using the SIZE keyword parameter of the PCA
macro instruction. This is represented as a percentage value of the overall file.

To calculate the SIZE entry, use the following formula:

SIZE= BLKSIZE x Percentage
Total

For example, if you have a file requiring three partitions, as follows:

Partition 1

Block size is 1024 bytes. Approximately 40% of the blocks in the file are this size.

Partition 2

Block size is 256 bytes. Approximately 50% of the blocks in the file are this size.

Partition 3

Block size is 768 bytes. Approximately 10% of the blocks in the file are this size .

NOTE:

Block size is specified for each partition by the BLKSIZE keyword parameter in the
PCA macro instruction.

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

6-5

UPDATE LEVEL PAGE

Then, divide the result of each BLKSIZE times the percentage value by the total for all the
partitions. If necessary, round the results so that the total for all partitions does not exceed 100
percent. Use this value as the specification for the SIZE keyword parameter in the PCA macro
instruction for the partition.

Partition No. BLKSIZE Percentage Result SIZE

1 1024 40 40960 67

2 256 50 12800 21

3 768 10 7680 12

Total 61440 100

If all the blocks in your file are of equal size and each partition will contain the same
number of words, you would simply use the percentage of the overall file with the SIZE
keyword entry. For example, if your file consisted of three partitions, each containing the
same number of blocks of the same size, the entry in the PCA macro instruction for each
partition of the file would be SIZE=33.

Dynamic allocation is given as a unit of store (UOS keyword parameter). The unit of store is a
percentage of secondary allocation and cannot exceed 100 percent. The total of secondary
allocation is given by an EXT job control statement. If you do not use the SIZE keyword
parameter to specified initial space allocation, the initial allocation to the partition is equal to
the percentage specified in th.e UOS keyword parameter. When the UOS keyword parameter is
not specified, no extension to your file can be made. When you do not specify either the SIZE or
UOS keyword parameter, an amount of disk space equal to 1 percent of your files is
allocated to the partition.

Once the file is established and you have specified a UOS, the partition can be extended by this
percentage. This occurs each time your PUT macro instruction references a block beyond the
current maximum block address for the partition. If the new allocation cannot satisfy the
current PUT macro instruction demands, an error will be indicated. However, partitions will not
be extended beyond the volume on which the file resides.

6.2.5. Record Interlace

Record interlace is a technique available to you that reduces the effects of rotational
delay when processing partitioned files, accessed sequentially. The interlace function is
optional and, when specified, is completely controlled by SAT.

During file creation, the interlace function automatically arranges the physical records
(blocks) in the file so that several blocks can be accessed during one disk rotation and, at
the same time, provides the necessary interval between block accesses (time frame). This
time frame is based on a lace factor specified in the LACE keyword parameter when you
define a partition by using the PCA macro instruction (6.3.2). When the file is opened by
the OPEN macro instruction, this lace factor is applied to the performance of the particular
device type being used.

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

6-6

UP-NUMBER

The lace factor determines the spacing of sequential blocks on the track; a lace factor of 4 •
results in the next logical block occurring at a minimum interval of 4 blocks. Calculation of
the lace factor is described in 6.2.5.2.

Figure 6-3 illustrates some of the factors involved in accomplishing interlace:

• Number of physical blocks on each track

• 1/0 time (time required to input or output a block)

• Sector time (average interval available to each block)

• Time frame (time between block accesses)

Physical Block Number

Logical Block Number

Logical Blocks Read
or Written During First
Disk Revolution

1/0
Time
~

D

2 3

6 4

4

9

Sector
Time
~

----------Time Frame

Track

5

2

6

7

Figure 6-3. Definition of Interlace Variables

6.2.5.1. Interlace Operation

7 8

5 10

9 10

3 8

Figure 6-4 illustrates the advantage of interlace accessing. For example, assume that a
file contains ten 1024-byte blocks per track and the disk subsystem being used has a
rotational speed of 21.4 ms per revolution. If the blocks were stored sequentially on the
track in contiguous locations, it would require ten revolutions to sequentially access all ten
blocks, or a total of 214 ms (exclusive of head positioning and latency for initial access~.
However, using an interlace factor of 4, all ten blocks could be accessed in 81.32 ms
because the last block would be retrieved before completion of the fourth disk revolution.
This performance can be obtained only if your required time between block accesses is not
more than the actual time frame.

•

•

•

•

8075 Rev. 2
6-7

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE UP-NUMBER

Without Interlace With Interlace

Physical Block No. 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Logical Block No. I 1 I 2 I 3 I 415 I 61 1 I s I 9110 I ! 1 1 61 41 9 I 2 I 1 I s I 10! 31 s I
Revolution

No.

1 Q GJ GJ GJ
2 GJ G GJ
3 [2J GJ 0 0

Logical Blocks
4 0 ~ ~

Read or Written GJ During Each 5

Disk Revolution

G 6

7 0
8 GJ
9 G

10 ~

Figure 6-4. Interlace Accessing

Successful interlace operation requires that the 1/0 orders must be issued within a
specific time frame. The lace factor, therefore, determines how blocks are to be spaced on
the track to ensure that the actual time frame (which includes both user and SAT
overhead) is equal to or greater than your estimate of required time between block
accesses.

A lace factor of 4 means that the blocks will be spaced in sufficient intervals (every 4th
block) to produce an actual time frame that is equal to or greater than the estimated
required time frame.

To calculate the lace factor, use the formula described in 6.2.5.2. Although the formula is
based on the use of the 8416 disk subsystem, all lace factor calculations must be
performed by using this formula, regardless of the actual disk subsystem being used.
When the file is opened by the OPEN macro instruction, the specified lace factor will be
applied to the performance of the particular disk subsystem being accessed. If necessary,
SAT will adjust the lace factor to the capacity and speed of the specific device so that a
similar time frame will be maintained for interlaced. files processed on all supported disk
subsystems .

SPERRY UNIVAC Operating System/3 6-8 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

6.2.5.2. Lace Factor Calculation

The lace factor is calculated in two steps by using the following formula:

1.

2.

BLKSIZE
256

x .535 =Calculated Sector Time

Required Time Frame
Calculated Sector Time

+ 1 (rounded high) = Lace Factor

For example, if you are using a block size of 1024 bytes, first calculate the sector time in
milliseconds:

1.
1024
256

x .535 = 2.14 ms

Then calculate the lace factor using an estimate of the processing time required between
block accesses. For this example, let us use a required time frame estimate of 7.48 ms:

2.
7.48
2.14

= 3.49 + 1 = 4.49 rounded to 4

The result is a lace factor of 4. In the PCA macro instruction statement for this partition,
enter the keyword parameter LACE=4.

NOTE:

When the time frame exceeds 21.4 ms, it should be divided by 21.4 and the remainder
should be used as the time frame in the foregoing calculation.

6.2.6. Accessing Multiple Blocks

When you are engaged in sequential processing (SEO=YES specified in PCA macro
instruction), you can read or write more than one block with each SAT imperative macro
instruction that is issued. This is done by specifying the number of blocks you wish to access
together by using the LBLK keyword parameter of the PCA macro instruction. However, when
you use multiple buffer accessing, be certain that your 1/0 buffer area has enough contiguous
space to contain the blocks. Also, if you are creating the partition by using the format write
option, (FORMAT=NO), an additional 8-byte area, used to construct the count field, must
immediately precede the first buffer area. During input operations, fewer than the requested
number of blocks may be read if the end of data ID is encountered. The 1/0 count field (bytes 44
and 45) of the DTF (Figure 6-5) will contain the number of buffers not acted upon.

Normally, SAT makes a single reference to physical IOCS forthe number of blocks requested. If
an end-of-track condition is encountered for any block other than the last block of the request,
SAT makes an additional reference to physical IOCS to access the next track. For interlaced
files, SAT makes one reference to physical IOCS for each block requested. If an end-of-block

•

•

condition is encountered on the last, or only, block requested, an information bit will be set in •
the error status field (byte 50, bit 0, of the DTF) to indicate the last block on that track has
been accessed.

The LBLK keyword parameter specifies the number of blocks required, within a range from 1 to
255; however, the total size of the buffer cannot exceed 32,767 bytes.

•

•

•

8075 Rev. 2

UP-NUMBER

Byte

0

4

8

12

16

20

24

28

36

40

44

48
I
I

52

56

60

64

68

72

76

80

84

88

92

~

6-9
SPERRY UNIVAC Operating System/3 UPDATE LEVEL PAGE

0 1 2 3

control 1 1/0 error count transmission byte control 2

next CAW

residual byte count reserved

CCW address

PIOCB address

sense byte 0 sense byte 1 sense byte 2 sense byte 3

sense byte 4 sense byte 5 device status channel status

filename

module flags number of vols current vol no.

current PCA address

110 count DTF type code I

DTF type code (cont) function code error flags

IOCS module address

err msg code error exit address

command code current I /0 address

current block size reserved sectors/block

reserved current head reserved

current cylinder current sector reserved

address of extent storage

PCA count allocation incr share flags ext table entries available

tracks per cylinder

file low head file high head

PCA ID 1 address of PCA 1

~

PCA ID 7 address of PCA 7 (if present)

Figure 6-5. Define the File (DTF) Table Format (Part 1 of 2)

SPERRY UNIVAC Operating System/3 6-10 8075 Rev. 2

UP-NUMBER .UPDATE LEVEL PAGE

MODULE FLAGS ERROR FLAGS

Byte 1 Bit 0 Open Byte 1 Bit 0 Access to last record on track
1 Wait required 1 Invalid ID
2 WAIT= Yes 2 Invalid PCA
3 Sector type disk 3 Hardware error
4 F2 active 4 Reserved
5 No extension made 5 Reserved
6 FCB not found 6 Reserved
7 Multiple 1/0 permitted 7 Reserved

Byte 2 Bit 0 Search wait required Byte2 Bit 0 1/0 complete
1 Cylinder alignment 1 Unrecoverable error
2 Format entered by extend 2 Unique unit error
3 Reserved 3 No record found
4 Library lock required 4 Unit exception

5 FCB in core 5 Reserved
6 Single mount 6 End of track
7 Unassigned space available 7 End of cylinder

Figure 6-5. Define the File (DTFJ Table Format (Part 2 of 2)

6.3. DISK SAT FILE INTERFACE

Interface with SAT files is through declarative and imperative macro instructions. The DTFPF
declarative macro instruction is used to define your overall file structure, while a separate PCA
declarative macro instruction is required to define each of the partitions which make up a
particular file.

The imperative macro instructions allow you to control file activity; the set of imperative macro
instructions varies slightly, depending upon the type of accessing you specify. The following
paragraphs describe these interfaces in detail.

6.3.1. Define a New File (DTFPF)

When organizing your partitioned file, you must assign a unique name (filename) to the file and
describe certain operating characteristics as well as physical characteristics of your file. This is
accomplished by the define the file partitioned file (DTFPF) macro instruction which creates a
table in main storage (Figure 6-5) that can be referenced by the system.

This is a declarative macro instruction and must not appear in a sequence of executable code.

Format:

LABEL A OPERATION A

filename DTFPF

OPERAND

PCA 1=partition-name

[.~CA 7=pa'1;t;on-name]
EXC
EXCR

,ACCESS= SRDO
SRD
SUPD
SADD

[,ALINE=YES]
[.ERROR=symbol]
[,EXTENTS=n]
[.FCB=YES]
[,LIBUP=YES]
[,WAIT= YES]

•

•

•

•

•

•

807"i Rev. 2

UP-NUMBER

SPERRY UNIVAC Operating System/3 6-11
UPDATE LEVEL PAGE

The DTFPF macro instruction provides up to six operating/physical characteristic
specifications and allows you to name from 1 to 7 file partitions. In its most abbreviated
form, the DTFPF macro instruction contains only the required partition names (one for each
PCA macro instruction) supplied by using the PCA1 through PCA7 keyword parameters. For
file operation, these keywords must be specified in sequence with no intervening keywords
missing. The remaining six keyword parameters, when not specifically listed in your DTFPF
macro instruction, assume a predetermined value or condition (default). These keyword
parameter defaults are as follows:

Keyword

ALINE

ERROR

EXTENTS

FCB

LIBUP or
ACCESS

WAIT

Default

PCAs start on track boundaries.

Program will terminate when a major file error occurs.

No extent table will be generated with the DTFPF macro instruction.

The file control block (FCB), which controls file 1/0, is placed into the
transient area of main storage during file open operations.

The file being accessed cannot be written into. This is a read-only lock
for the file.

You must issue a WAITF macro instruction after each 1/0 operation
(GET, PUT, READE, or READH).

The defau It values and characteristics applied to your file partition represent the most common
usage. However, you have the option of specifying your own parameters for these keywords.
This enables tailoring the file to suit your own particular needs. For example, you may want to
use your own error routine to handle file errors. The following options are available:

• When creating a file, you can have your PCAs start and end on cylinder boundaries by
specifying ALINE=YES in your DTFPF macro instruction.

• When you want the program to branch to your own error routine when a file error occurs,
provide the address (symbol) of the error routine by specifying ERROR=symbolic address.

• An extent table can be generated for you if you specify the EXTENTS keyword parameter.
When your DTFPF macro instruction references one of .the standard system library
files (YLOD, YSRC, YMAC, Y0BJ, or YJCS), you must use the EXTENTS
keyword parameter to specify the number of extent entries you want to be allocated.
The number of extents required is calculated by added the number of extents
allocated (to the file) to the number of partitions in the file.

When standard system libraries are being accessed, 18 extents are recommended to be
specified as EXTENTS=18 .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-12

UPDATE LEVEL PAGE

t

t

• File control blocks (FCBs) are used to make information available about a file or
partition to the system. Normally, the FCB is placed in the transient area when the
OPEN macro instruction is issued. However, you may place an FCB in the 1/0 area
specified in the PCA macro instruction for the first or only partition of the file. This area
address is specified by the IOAREA 1 keyword parameter of the PCA macro instruction
(6.3.2).

•

•

There are several ways to request a specific type of filelock. If you use UBUP=YES,
when the file is opened, it is reserved for exclusive use of the job step until it is
closed. No access by any other task will be permitted.

You can request the same type of filelock using the ACCESS=EXC keyword parameter
entry instead of LIBUP=YES. The ACCESS parameter provides an expanded filelock
capability with more options available (see 6.3.1.1).

Normally, you must issue a WAITF macro instruction after each 1/0 function to assure
completion of the input or output operation and to set particular status bytes in the DTFPF
reference table. However, you can have SAT initiate this waiting period by specifying
WAIT=YES. When specifying the WAIT keyword parameter, you don't have to use the
WAITF macro instruction.

6 .3 .1 .1 . Filelocks

The use of filelocks enables you to restrict access to your files. A filelock is applied when a
file is opened and remains in effect until it is closed. You can choose the specific type of
restriction you want for a file during the execution of your job step. For example, you may
want exclusive use of the file, or you may want to permit other tasks to read but not write.

The files that may be locked and the type of filelock processing performed are determined
by a combination of system generation, job control, and SAT options. The FILELOCK
parameter at system generation (refer to the system installation user guide, UP-8074
(current version) specifies the type of filelocks available and the types of files affected. The
LIBUP (6.3.1) or ACCESS (6.3.1.2) parameter in your DTFPF macro instruction, specifies
the type of lock you want to be applied to that file. The LBL job control statement assigns a
lock ID to your user file (refer to the job control user guide, UP-8065 (current version)), and
the ACCESS parameter in the DD job control statement at run time adds or changes the
ACCESS parameter in the DTFPF.

•

•

•

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

6-13

UP-NUMBER

6.3.1.2. Shared Filelock Capability

The ACCESS parameter provides a greater filelock capability than the LIBUP parameter.
They should not be used together. If both appear in the same DTFPF, the ACCESS
parameter supersedes LIBUP. The ACCESS options can only be used if
FILELOCK=SHARED was specified at system generation. The filelock options available
with ACCESS are:

ACCESS= EXC

Requests exclusive use of the file. You may read, update, and extend the file. No
access is permitted by any other task. This type of filelock is the same as that
requested by the LIBUP=YES parameter entry.

ACCESS=EXCR

Requests exclusive-read use of the file. You may read, update, and extend the file.
Other tasks may also read the file, but may not write.

ACCESS=SRDO

Requests shared-read-only access to the file. You intend only to read the file. Other
tasks may also read the file. No writing is permitted. This type of filelock is the same
as the default of LIBUP .

ACCESS=SRD

Requests shared-read access to the file. You intend to read the file. Other tasks may
read, update, or extend the file.

ACCESS=SUPD

Requests shared-update access to the file. You intend to read and update the file, but
will not be extending it. Other tasks may only read the file.

ACCESS=SADD

Requests shared-add access to the file. You intend to read, update, and extend the
file. Other tasks may only read the file .

t

--~- ·-- -~-------------------

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

6.3.2. Defining a Partition (PCA)

6-14
UPDATE LEVEL PAGE

Once your file is defined and each file partition is listed by using the PCA 1 through PCA7
keyword parameters of the DTFPF macro instruction, the characteristics of each partition
appendage must be described. This is done by using the partition control appendage (PCA)
macro instruction.

This is a declarative macro instruction and must not appear in a sequence of executable code.

Format:

LABEL

partition
name

~OPERATION~

PCA

OPERAND

BLKSIZE=n
,IOAREA1=symbol

[,EODADDR=symbol]
[,FORMAT=NO]
[,KEYLEN=n]
[,LACE=n]
[,LBLK=n]
[,SEO=YES]
[,SIZE=n]
[,UOS=n]
[,VERIFY= YES]

The partition name for a particular PCA macro instruction is the same as that assigned by
the PCAn keyword parameter in the DTFPF macro instruction. The keywords allow you to
specify up to 10 operating and physical characteristics for each partition; these
characteristics are placed in a PCA table in main storage together with a current ID and end
of data ID. In its most abbreviated form, it is required only that you specify the size, in bytes,
of the blocks in the partition (BLKSIZE=n) and the address of an input/output area where
the blocks are going to be processed (IOAREA 1 =symbol). The size of the 1/0 area is the
same as the BLKSIZE specification. The remaining keywords, when not specifically listed,
assume their default conditions as follows:

•

•

•

•

•

6-15 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Keyword

EODADDR

FORMAT

KEYLEN

LACE

LBLK

SEO

SIZE

uos

VERIFY

Default

When the GET macro instruction accesses the block with the relative
block number equal to the end of data ID for that partition, SAT assumes
there is no end of data routine for this partition and indicates that an
invalid ID has been requested.

Space allocated to the partition on 8411, 8414, and 8430 disk
subsystems is preformatted. This is used when writing new files in
which each block is written in format (count field followed by either a
data field or a key field and data field).

Assumes blocks will not be referenced by key.

Assumes that no interlace is to be applied. LACE and FORMAT keyword
parameters are mutually exclusive.

One block (the size as specified in the BLKSIZE keyword parameter)
comprises one logical block (LBLK=1).

The file is not treated as a sequential file and you must provide the 4-byte
current ID field at the address of the PCA being referenced for each 1/0
request (WRITE ID and READ ID macro instructions) .

The new file partition being defined requires one percent of the total file
allocation (SIZE= 1).

The Unit Of Store (secondary allocation of disk space) has a value of 1.

No verification (parity check) of block writing is performed.

The default values of the PCA macro instruction represent the most common usage. However,
you have the option of specifying your own parameters for these keywords. Certain keywords
are interrelated; the following are some examples:

• Some of these are mutually exclusive, like the FORMAT and LACE keyword parameters
since you cannot use format write (WRITE ID) and interlace simultaneously.

• Some are required together, like the SEO and EODADDR keyword parameters.

• The LACE keyword parameter must be specified for interlace files. The lace factor is based
upon the 8416 disk subsystem and is adjusted by SAT for all other disk subsystems.

• The SIZE keyword parameter is applicable only to files being created.

• The BLKSIZE, IOAREA 1, and the LBLK keyword parameters are also interrelated .

•

8075 Rev. 2 6-16

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

UP-NUMBER

User-supplied options to the PCA macro instruction keywords are as follows:

• When specifying blocksize (BLKSIZE keyword parameter), also specify the size of the 1/0
area. When using 8416 disk subsystem, specify this value in multiples of 256 since
this is the size of the fixed sectors on that device. The multiple buffer keyword
parameter (LBLK) specifies the number of blocks that can fit within this 1/0 area.

• If specifying sequential file processing (SEQ=YES), inform the program at which point file
processing should terminate. This is done by specifying the end of data (EODADDR)
keyword parameter address. When the GET ma!:ro instruction accesses the block with the
relative block number equal to the end of data ID for that partition, SAT transfers control to
the address specified by the EODADDR keyword parameter.

• If loading your file on a device where the space allocated is not preformatted
(FORMAT=NO), a format write command is issued by SAT for each PUT macro instruction
that references a relative block number equal to the end-of-data address of the partition
being accessed. A data write command is issued by SAT for each PUT macro instruction
that references relative block numbers less than the current end of data address.

This means that data written in the area outside the existing file partition area is written as
a new file while those within the existing file partition are written as update records.

• The address of the input/output area needed to process records is specified by the
IOAREA keyword parameter. The length of this area is specified by the BLKSIZE keyword
parameter.

• When you have interlaced creation or retrieval of sequential files, specify the LACE
keyword parameter to achieve most efficient processing. This value is computed for the
8416 disk subsystem and is modified by SAT to make other disk subsystems conform
to a similar access pattern. A thorough discussion of interlace operation and
computation is provided in 6.2.5.

• Under certain circumstances, you may desire to retrieve more than one physical block to
construct one logical block. In this case, specify the block size through the BLKSIZE
keyword parameter. The LBLK keyword parameter would then specify the number of
physical blocks within the logical block. For example, assume that your physical blocks
are 256 bytes long and that you must have four of these tomakeupyourlogical block.

256

The following would be specified:

BLKSIZE=256
LBLK=4

256

PHYSICAL BLOCK

256 256

LOGICAL BLOCK

•

•

•

•

•

•

8075 Rev. 2 6-17
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE UP-NUMBER

• When you wish to process a file sequentially, you can specify SEQ=YES. When the OPEN
macro instruction is issued, the open transient routine sets the current ID field to relative
block 1 of the partition. Each subsequent GET or PUT macro instruction that is issued will
transfer the next block in sequence to or from main storage. The current ID is updated after
each GET or PUT macro instruction has been waited.

Random processing of the sequential file can be achieved as well as sequential processing
of random portions of the file by supplying the new value in the current ID field before any
GET or PUT macro instruction is issued.

• At the time that you are organizing your file, specify the space required for the partition in
the terms of a percentage of the overall file allocation. For example, if your file contained
four partitions of equal size, you would specify SIZE=25.

• If you feel that additional space may be needed to expand your file partition, specify this
space in increments called units of store (UOS). A unit of store is a percentage of
secondary allocation.

•

•

Each time an attempt is made to write a block with a relative block number larger than the
current maximum for the partition, a unit of store is added to the partition. For example,
suppose that you had a secondary allocation of 10 cylinders and you wished to add 2
cylinders to your partition each time you needed more space. You would specify: UOS=20
since 2 cylinders are 20 percent of your secondary allocation .

If the block chosen to be added to the partition exceeds the unit of store, an invalid ID
indication would be returned to the error field in your DTFPF table in main storage.

If writing records to disk and you wish to be certain that the block written is complete
and accurate, use the VERIFY=YES option. The blocks are check-read for parity. An
additional disk rotation must be allowed for the verification process.

If blocks are to be addressed by key, use the KEYLEN keyword parameter to specify
the length (3 to 255 bytes) of the key field in formatted records.

6.3.3. Processing Partitioned SAT Files

Once you have established your file on disk (that is, you have issued DTFPF and PCA
macro instructions to describe and name your file), use the imperative macro instructions
to open, control, and close your file processing. These macro instructions are universal,
but are normally grouped according to their use as follows:

• Processing Blocks by Key - OPEN, PUT, WAITF, READE/READH, SEEK, CLOSE

• Processing Blocks by Relative Number - OPEN, GET, PUT, WAITF, SEEK, CLOSE

The following paragraphs give a brief functional description of these imperative macro
instructions. This description is followed by listing these macro instructions in 6.4 and includes
a detailed description of their parameters and characteristics.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

6-18

UPDATE LEVEL PAGE

6.3.3.1. Processing Blocks by Key

Macro Instruction

OPEN

PUT

WAITF

READE

READH

SEEK

CLOSE

Function

Initiates the open transient routine and identifies the file (as listed
in the DTFPF macro instruction) to be processed.

Identifies the file and partition to be accessed. Issues the write for
the indicated block.

Identifies the file and ensures completion of the current 1/0. If the
current 1/0 was a successful READE or READH, it places the ID of
the block accessed in the current ID field. Updates the current ID
by 1 if the SEQ=YES keyword parameter was specified.

Initiates the search for a block by key of a particular track. You
must place a relative block number, that is on the track to be
searched, in the current ID field of the PCA table. You must also
place the key of the block to be accessed in first key length bytes of
the buffer area.

Same as for READE except that the search is for a block that is
equal to the key specified or higher than the key.

Initiates movement of the disk heads to a particular track or
disk. It is your responsibility to place the relative address of a
block on that track in the current ID field of the PCA table.

Identifies the file. After the file processing has been completed or
when the end of data ID has been detected, it initiates the
transient file close routine.

•

•

•

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

6-19 8075 Rev. 2

• 6.3.3.2. Processing by Relative Block Number

•

•

Macro Instruction

OPEN

GET

PUT

WAITF

SEEK

CLOSE

Function

Initiates the open transient routine and identifies the file (as listed
in the DTFPF macro instruction) to be processed. Initializes the
start ID entry in the PCA tables of the file.

Identifies the file and partition to be accessed. Issues the read for
the indicated block.

Identifies the file and partition to be accessed. Issues the write for
the indicated block.

Identifies the file and assures completion of the current 1/0.
Updates the current ID by 1 if the SEO=YES keyword parameter
was specified.

Initiates movement of the disk heads to a particular track on
disk. It is your responsibility to place the relative address of a
block on that track in the current ID field of the PCA table.

Identifies the file. After the file processing has been concluded or
when the end of data ID has been detected, it initiates the
transient file close routine.

6.4. CONTROLLING YOUR DISK FILE PROCESSING

After you have specified the details of the file and partition you wish to access through the
declarative macro instructions, the imperative macro instructions described in the following
paragraphs actually control your file accessing. The sequence of these macro instructions for a
particular type of processing is listed in 6.3.3.1 and 6.3.3.2, together with a brief description of
their function.

6.4.1. Open a Disk File (OPEN)

Function:

The OPEN macro instruction opens a file defined by the DTFPF and PCA macro instructions
so that it can be accessed by the logical IOCS.

Format:

LABEL

[symbol]

to OPERATION to

OPEN

OPERAND

{
filename-1 [, ... ,filename-n] }

(1)

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-20

UPDATE LEVEL PAGE

Positional Parameter 1:

filename-1

(1)

Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file to be opened.

Indicates that register 1 has been preloaded with the address of the DTFPF macro
instruction.

Positional Parameter n:

filename-n
Successive entries specify the symbolic addresses of the DTFPF macro instructions in
the program corresponding to the additional files to be opened.

Use this form (for example, OPEN FILE1, FILE2) when more than one lockable file
is to be accessed by a single task. This opens all the files named and applies the
required read or write locks at the same time. In this way you can avoid the
possibility of two jobs locking each other out with each one waiting for the other
to give up its file. The operator would then have to cancel one of the jobs to
remove the stalemate and continue processing.

After the file has been defined by the DTFPF and PCA macro instructions, you must issue an

•

OPEN macro instruction to initialize the file before any other access can be made. Use the GET •
macro instruction to access the first (or next) data block.

The transient routine called by the OPEN macro instruction allocates disk space to each of
the partition control appendages from the VTOC file extents; these areas are then
preformatted if necessary. If too little disk space has been allocated to a file to satisfy all
PCA requirements, partitions requiring space may be extended during processing.

6.4.2. Retrieve Next Logical Block (GET)

Function:

The GET macro instruction reads a logical block from disk into main storage and
makes it accessible for processing. The address into which the data is read is
specified in the associated PCA macro instruction by the keyword parameter
IOAREAl.

Format:

LABEL !J.OPERATION /J. OPERAND

[symbol] GET {
filename} { PCA-name}

(1) , (0)

Positional Parameter 1:

filename
Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file being read.

•

•

•

•

8075 Rev. 2

UP-NUMBER

(1)

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

6-21
PAGE

Indicates that register 1 has been preloaded with the address of the DTFPF macro
instruction.

Positional Parameter 2:

PCA-name

(0)

Specifies the symbolic address of the PCA macro instruction associated with the
partition to be accessed.

Indicates that register 0 has been preloaded with the address of the PCA macro
instruction.

PCA Table Content

The OPEN macro instruction initializes the current ID field in the PCA table to the start ID of
the partition. If the SEQ keyword parameter in the PCA macro instruction is used, the
current ID field will be updated after each GET macro instruction has been waited.

If the SEQ keyword is not used, or random access is desired, it is your responsibility to
pre load the current ID field with the relative ID of the data block to be read. The current ID
field is located at the address (label) of the PCA being referenced. This is a 4-byte field and
contains a right-justified hexadecimal number representing the number of the block
(relative to the first block in the partition) to be read.

6.4.3. Output a Logical Block (PUT)

Function:

The PUT macro instruction writes a logical block from main storage to disk. The main
storage address from which the data is written is specified in the associated PCA
macro instruction by the keyword parameter IOAREA 1.

Format:

LABEL LlOPERATION Ll OPERAND

[symbol] PUT {
filename } { PCA-name }

(1) ' (O)

Positional Parameter 1:

filename

(1)

Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file being written.

Indicates that register 1 has been preloaded with the address of the DTFPF macro
instruction.

8075 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-22
UPDATE LEVEL PAGE

Positional Parameter 2:

PC A-name
Specifies the symbolic address of the PCA macro instruction associated with the
partition to be written.

(0)
Indicates that register 0 has been preloaded with the address of the PCA macro
instruction.

PCA Table Content:

The OPEN macro instruction initializes the current ID field in the PCA table to the start ID of
the partition. If the SEQ keyword parameter in the PCA declarative macro instruction is
used, the current ID field will be updated after each PUT macro instruction has been
waited.

If the SEQ keyword is not used, or random access is desired, it is your responsibility to
preload the current ID field with the relative ID of the data block to be written. The current
ID field is located at the address (label) of the PCA being referenced. This is a 4-byte field
and contains a right-justified hexadecimal number representing the number of the block
(relative to the first block in the partition) to be written.

6.4.4. Wait for Block Transfer (WAITF)

Function:

The WAITF macro instruction ensures that a command initiated by a preceding GET, PUT,
READE, or READH macro instruction has been completed. When completed, the error
status field contains the error status information pertaining to the 1/0 request. It is your
responsibility to check these bits, which are in bytes 50 and 51 of the DTF table.

If the keyword parameter WAIT=YES was not speCified in the DTFPF macro instruction,
the WAITF macro instruction must be issued after a GET, PUT, READE, or READH macro
instruction and before another imperative macro instruction is issued for that file.

Format:

LABEL .6.0PERATION .6.

[symbol] WAITF

Positional Parameter 1:

{
filename}

(1)

OPERAND

•

•

filename
Specifies the symbolic address of the DTFPF macro instruction in the program •
corresponding to the file being accessed.

•

•

•

8075 Rev. 2

UP-NUMBER

(1)

SPERRY UNIVAC Operating System/3 6-23

UPDATE LEVEL PAGE

Indicates that register 1 has been preloaded with the address of the DTFPF macro
instruction.

6.4.5. Read by Key Equal/Read by Key Equal or Higher (READE/READH)

Function:

The READE and READH macro instructions initiate a search by key for a block having a key
equal to or equal and higher to the key specified.

Format:

LABEL t.OPERATION t. OPERAND

[symbol] {
READE}
READH {

filename} {PCA-name}
(1) ' (0)

Positional Parameter 1:

filename

(1)

Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file being processed.

Indicates that register 1 has been preloaded with the address of the DTFPF macro
instruction.

Positional Parameter 2:

PC A-name

(0)

Specifies the symbolic address of the PCA macro instruction associated with the
partition to be accessed.

Indicates that register 0 has been preloaded with the address of the partition to be
accessed.

PCA Table Content:

After a successful search, the current ID entry in the PCA table is updated to reflect
the relative number of the record retrieved. However, if SEQ=YES has been specified
in the PCA macro instruction, the current ID field in the PCA table will be the relative
block number plus 1 .

6-24 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

6.4.6. Access a Physical Block (SEEK)

Function:

The SEEK macro instruction initiates movement of the disk read/write head to the
position specified in the current ID field of the PCA. This is a 4-byte field which
contains a right-justified hexadecimal number representing any block number on the
track (relative to the first block in the partition) to which head movement will be
initiated. It is your responsibility to store the desired relative block number in this
field.

Format:

LABEL !::. OPERATION !::. OPERAND

[symbol] SEEK {
filename}

(1) {
PCA-name}

, (O)

Positional Parameter 1:

filename

(1)

Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file being accessed.

Indicates that register 1 has been preloaded with the address of the DTFPF
macro instruction.

Positional Parameter 2:

PCA-name

(0)

Specifies the symbolic address of the PCA macro instruction associated with
the partition to be accessed.

Indicates that register 0 has been preloaded with the address of the PCA macro
instruction.

6.4.7. Close a Disk File (CLOSE)

Function:

The CLOSE macro instruction performs the required termination operations for a file.
Once the CLOSE macro instruction has been issued for a file, only the OPEN macro
instruction may reference. that file.

•

•

•

•

•

•

8075 Rev. 2·

UP-NUMBER
SPERRY UNIVAC Operating System/3

6-25

UPDATE LEVEL PAGE

Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] CLOSE {

filename-1 [, ... ,filename-n]}
(1)

*ALL

Positional Parameter 1:

filename-1

(1)

*ALL

Specifies the symbolic address of the DTFPF macro instruction in the program
corresponding to the file to be closed.

Indicates that register 1 has been preloaded with the address of the DTFPF
macro instruction.

Specifies that all files currently open in the job step are to be closed.

Positional Parameter n:

filename-n
Successive entries specify the symbolic addresses of the DTFPF macro
instructions in the program corresponding to the additional files to be closed.

6.5. SAT FOR TAPE FILES

The OS/3 tape system access technique (TSAT) is a generalized input/output control
system that provides a standard interface to physical IOCS for magnetic tape subsystems.
It performs the basic functions of a tape data management system and provides block level
1/0 for sequential tape files.

Interface with TSAT files is through declarative and imperative macro instructions. You
use the SAT and TCA declarative macro instructions to define the characteristics of the file
and the data management technique to be used to process the file. The SAT macro
instruction creates the DTF table for the file, and the TCA macro instruction creates the
appendage to the table. These macro instructions are described in 6.8. You use the OPEN,
GET, PUT, CNTRL, WAITF, and CLOSE imperative macro instructions to control file
processing. These are described in 6.9.

All files processed by TSAT are written in a forward direction, and can be read forward
and backward. The CNTRL macro instruction initiates nondata operations on the device
and can be issued whether or not the file is open.

To use TSAT, you must observe tape label conventions (described in 6.6) and tape volume
and file organization conventions (described in 6.7).

If you are processing block numbered tapes, you must also observe the special
conventions applicable to these tapes. Requirements and processing for block numbered
tapes are summarized in 6.10.

------~~ -------------------

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

6-26

UP-NUMBER

6.6. SYSTEM STANDARD TAPE LABELS

Magnetic tapes may be labeled or unlabeled, and a labeled tape may contain either
standard or nonstandard labels. You indicate this using the FILABL parameter in the TCA
macro instruction. TSAT assumes that tapes have standard labels. If nonstandard labels
exist on input files, TSAT bypasses them.

All standard tape labels are in blocks of 80 bytes and are always recorded at the same
density as the data. The first three bytes of each label identify the type, and fourth byte
indicates its position within the group. For example, VOL 1 indicates this is the first volume
label for this file.

For block numbered tapes, each label includes a 3-byte block number field as the first
three bytes of the label, making the label 83 bytes long.

There are five tape label groups; three are required and two are optional. The tape label
groups are:

• Volume label group VOL

• File header label group HOR

• User header label group (optional) UHL

• File trailer label group EOF or EOV

• User trailer label group (optional) UTL

TSAT does not process user header (UHL) or user trailer (UTL) labels. No provision is made
for creating these labels on output files; if they exist on input files, TSAT bypasses them.

TSAT label processing is limited to one volume label (VOL 1), two file header labels (HDR1
and HDR2), and two file trailer labels (EOF1 and EOF2 or EOV1 and EOV2). No provision is
made for creating additional labels on output files; if they exist on input files, TSAT
bypasses them.

Tape label formats for block numbered files are shown in Figures 6-17 through 6-21.
Tape label formats for files without block numbers are shown in Figures 6-6 through
6-10 and are described on the following pages.

•

•

•

.......... ---~------------ -- -

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

6-27

PAGE

• 6.6.1. Volume Label Group

•

•

A volume label group consists of a single volume label (VOL 1). The VOL 1 label identifies
the tape reel and its owner, and it is used to check that the proper reel is mounted. When
a tape is first used at an installation, its volume serial number (VSN) and other volume
information, as shown in Figure 6-6, are specified by parameter cards supplied to a
standard utility routine that writes the label. The serial number is also written on the
exterior of the reel for visual identification.

If you want logical IOCS to prep the volumes of a standard labelled file, NEW must be
specified as a parameter of the LFD job control statement associated with that file. Logical
IOCS will then prep the volumes from the information supplied on the associated VOL and
LBL job control statements.

When you issue an OPEN macro instruction to an output tape, its open-and-rewind
options are executed first, and then the tape is checked to see if it is at the load point. If it
is at the load point, the VOL 1 label is read (if in a nonprepping mode) and the volume
serial number is checked and saved for use in the file header labels (HDR1 and HDR2).
The tape is then positioned so that the volume labels are not destroyed, and no further
volume label processing is performed.

If the output tape is not at the load point after the open-and-rewind options are performed,
TSAT assumes that the tape is positioned between the two ending tape marks of the
previous file or just prior to the HDR1 label of an existing file. In either case, no volume
label checking or creation is performed .

For an input tape, the OPEN transient first executes the open-and-rewind options and then
checks to see whether the tape is at the load point. If it is, the VOL 1 label is read and the
volume serial number is used to check the file serial number in the appropriate file header
or trailer label. The tape is. then positioned to the proper file header or trailer label as
specified in the file sequence number field of the associated LBL job control statement,
and no further volume label processing is performed.

If the input tape is not at the load point after the open-and-rewind options are performed,
TSAT assumes that the tape is positioned between the two ending tape marks of a
previously created file or just prior to the HDR1 label of an existing file. In either case, no
further volume label processing is performed.

When any volume label is encountered during the processing of a CLOSE macro
instruction for an input tape and you have specified READ=BACK in the TCA macro
instruction, the label is bypassed without processing.

The format of the volume label is shown in Figure 6-6. The fields are described in Table
6-1 .

8075 Rev. 2

UP-NUMBER

Bytes

LEGEND:

0

v

SPERRY UNIVAC Operating System/3

2

0 L

volume serial number

reserved

reserved

reserved

owner identification

reserved

• Generated by TSA T or reserved for system expansion.

Written by TSAT from user-supplied data.

Figure 6-6. Tape Volume 1 (VOLT) Label Format for an EBCDIC Volume

6-28

UPDATE LEVEL PAGE

• 3

•

•

•

•

•

SPERRY UNIVAC Operating System/3 6-29 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

Table 6-1. Tape Volume 1 (VOL1) Label Format, Field Description for an EBCDIC Volume

Field Initialized By Bytes Code Description

Label Tape prep 0-2 EBCDIC Contains VOL to indicate
identifier that this is a volume label

Label number Tape prep 3 EBCDIC Always 1 for the initial
volume label

Volume serial Tape prep 4-9 EBCDIC Unique identification number
number assigned to this volume by

your installation. TSAT
expects 1- to 6-alphanumeric
characters, the first of which
is alphabetic

Volume TSAT 10 EBCDIC Reserved for future use by
security installations requiring

security at the reel level.
Currently blank

(Reserved) -- --- 11-20 EBCDIC Contains blanks (40
16

)

(Reserved) --- -- 21-30 EBCDIC Contains blanks (40
16

)

(Reserved) -- - -- 31-40 EBCDIC Contains blanks (40
16

)

Owner Tape prep 41-50 EBCDIC Unique identification of the
identification owner of the reel: any

combination of alphanumerics

(Reserved) ----- 51-79 EBCDIC Contains blanks (40
16

)

NOTE:

For ASCII files, Bytes 0-36 of a VOL 1 label have the same significance as shown in the preceding
example. Bytes 37-50 indicate the owner identification field. Bytes 51-78 are blank and are
reserved for future standardization. Byte 79 indicates the label standard level, and when set to 1,
indicates formats on this volume meet the American National Standard, X3.27-1969.

6.6.2. File Header Label Group

The file header label group consists of two labels: the file header 1 label (HOR 1) and the
file header 2 label (HOR2).

6.6.2.1. First File Header Label (HOR 1)

The first file header label (HOR1), which identifies the file, is written at the beginning of
each file. The HOR1 label is required and has the fixed format shown in Figure 6-7; its
fields are described in Table 6-2. All fields in the HOR1 label may be specified in the job
control stream.

For input files, all fields up to and including the system code in the HOR 1 label, are
checked against values specified in the LBL job control statement. Only those fields for
which values have been supplied are checked. However, if you specified REAO=BACK in
the TCA macro instruction, the HOR1 label is bypassed without processing, For multifile
input volumes, you should specify the file sequence number in the LBL job control
statement to ensure proper tape positioning.

8075 Rev. 2

UP-NUMBER

6-30

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

For output files, the tape must be positioned properly before the files can be opened. On
file open, the expiration date in the HDR1 label is checked against the current or actual
calendar date to determine if the associated file has expired. If the file has expired, the
tape is positioned so that the old HDR1 label is written over. The new HDR1 label is set up
from values specified by the LBL job control statement and is written on the tape.

Bytes

0 2 3

0 H D R

4

8

file identifier
12

16

20

file serial number

24 volume ...

28 . . . sequence number file ...

32 ... sequence number generation ...

36 . . . number version ...

40 ... number
creation date

44

48 expiration date

52

56
unused

60

64
system code

68

72
reserved

76

LEGEND:

Generated by TSAT or reserved for system expansion.

Written by TSAT from user-supplied data.

Figure 6-7. First File Header Label (HORT} Format for an EBCDIC Tape Volume

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

6-31

UP-NUMBER UPDATE LEVEL PAGE

•

•

•

Table 6-2. First File Header Label (HDR1), Field Description

Field Bytes Description

Label identifier 0-2 Contains HOR to indicate a file header label•el

Label number 3 Always 1

File identifier 4-20 A 17-byte configuration that uniquely identifies
the file. It may contain embedded blanks and is
left-justified in the field if fewer than 17 bytes
are specified.

File serial number 21-26 The same as the VSN of the VOL 1 label for the
first reel of a file or a group of multifile reels

Volume sequence 27-30 The position of the current reel with respect
number to the first reel on which the file begins.

This number is used with multivolume files only.

File sequence number 31-34 The position of this file with respect to the
first file in the group

Generation number 35-38 The generation number of the file (0000-9999)

Version number of 39-40 The version number of a particular generation
generation of a file

Creation date 41-46 The date on which the file was created, expressed
in the form YYDDD and right-justified. The
leftmost position is blank.

Expiration date 47-52 The date the file may be written over or used
as scratch, in the same form as the creation
date

File security indicator 53 Reserved for file security indicator. Indicates
whether additional qualifications must be met
before a user program may have access to the file.

0 = No additional qualifications are required.

1 = Additional qualifications are required.

(Unused) 54-59 Unused field, containing EBCDIC O's

System code 60-72 Reserved for system code, the unique identification
of the operating system that produced the file

(Reserved) 73-79 Reserved field, containing blanks (40
16

1.

6.6.2.2. Second File Header label (HDR2)

The second file header label (HDR2) acts as an extension of the HDR1 label and is a
required label. Unless the HDR2 label was created by the OS/3 or OS/7 operating system
as indicated in the system code field of the HDR1 label, the HDR2 label is ignored by
TSAT. Figure 6-8 shows the format of the HDR2 label; Table 6-3 describes its fields.

8075 Rev. 2
6-32

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

UP-NUMB EA

LEGEND:

- Generated by TSA T or reserved for system expansion.

Written by TSAT from user-supplied data.

Figure 6-8. Second File Header Label (HDR2) Format for an EBCDIC Tape Volume

•

•

•

•

8075 Rev. 2

UP-NUMBER

6-33
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Table 6-3. Second File Header Label (HDR2). Field Description

Field Bytes Description

Label identifier 0-2 Contains HDR to indicate a file header label

Label number 3 Always 2

Record format character 4 Character Meaning ---
D Variable-length (ASCII), with length

fields specified in decimal
F Fixed-length
s Spanned
u Undefined
v Variable-length (EBCDIC), with length

fields specified in binary

Block length 5-9 Five EBCDIC characters specifying the maximum
number of characters per block

Record length 10-14 Five EBCDIC characters specifying the record length for
fixed-length records. For any other record format, this
field contains O's.

(Reserved) 15-35 Reserved for future system use

Printer control 36 One EBCDIC character indicating which control character
character set was used to create the data set.

A= Special (ASA) control character present
D=Device independent control character present
M"' I BM control character present
U=SPERRY UNIVAC control character present

(Reserved) 37-79 Reserved for future system use

NOTE:

For ASCII files, bytes 0-14 of a HDR2 label have the same significance as shown in the preceding
example. Bytes 50 and 51 indicate the buffer offset field which must be included in the block
length. All other fields are recorded as ASCII spaces.

6.6.3. File Trailer Label Group

The file trailer label group comprises either of two pairs of labels, depending on whether
the reel contains an end-of-file or an end-of-volume condition. In the first condition, the
first label of the pair is the EOF1 label, in a format identical to the HDR1 label; the second
label is the EOF2 label. Its format is identical to the HDR2 label. In the end-of-volume
condition, these labels are the EOV1 and EOV2 labels; again, the formats of these labels
are identical to their counterparts in the file header label group, HDR1 and HDR2.

The contents of the EOF1 and EOV1 labels are identical to the HDR1 label except for the
label identifier, label number, and block count fields. The contents of the EOF2 and EOV2
labels are identical to the HDR2 label except for the label identifier and label number
fields .

When you issue an OPEN macro instruction to an input tape file, with READ=BACK
specified in the TCA macro instruction, the OPEN transient checks the fields in an EOF1 or
EOV1 label against the values you have specified in the LBL job control statement. This
processing is similar to that of the HDR1 label.

8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

6-34

Figure 6-9 illustrates the format of the EOF1 or EOV1 label, Table 6-4 summarizes the •
contents of its fields. Figure 6-10 illustrates the format of the EOF2 or EOV2 label; Table
6-5 presents the contents of its fields.

Bytes

0 2

label identifier

file identifier

file serial number

. . . sequence number

. . . sequence number

. . . number

. . . number
creation date

expiration date

block count

system code

reserved

LEGEND:

- Generated by TSAT or reserved for system expansion.

Written by TSAT from user-supplied data.

Figure 6-9. Tape File EOF1 and EOV1 Label Formats for EBCDIC Tapes

3

label
number

volume ...

file ...

generation ...

version ... •

•

•

•

•

8075 Rev. 2

UP-NUMBER .UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

6-35

Table 6-4 Tape File EOF1 and EOV1 Labels, Field Description

Field Bytes Description

Label identifier 0-2 Indicates that this is a file trailer label;
contains EOF for an end-of-file label,
or EOV for an end-of-volume label

Label number 3 Always 1

File identifier 4-20 A 17-byte configuration that uniquely identifies
the file. It may contain embedded blanks and is

left-justified in the field if fewer than 17
bytes are specified.

File serial number 21-26 The same as the VSN of the VOL 1 label

for the first reel of a file or a group of
multifile reels

Volume sequence number 27-30 The position of the current reel with respect
to the first reel on whi(:h the file begins.
This number is used with multivolume files only.

File sequence number 31-34 The posit-ion ot this file with respect to the

first file in the group

Generation number 35-38 The generation number of the file (0000-9999)

Version number of 39-40 The version number of a particular generation
generation of a file

Creation date 41-46 The date on which the file was created, expressed
in the form YYDDD and right-justified. The left-
most position is blank.

Expiration date 47-52 The date the file may be written over or used as
scratch, in the same form as the creation date

File security indicator 53 Reserved for file security indicator. Indicates
whether additional qualifications must be met before
a user program may have access to the file.

0 = No additional qualifications are required.

1 =Additional qualifications are required.

Block count 54-59 In the first file trailer label, indicates the
number of data blocks: either in th is file of
a multifile reel, or on the current reel of a
multivolume file. TSAT checks the block
count for input files or writes the count for
output files.

System code 60-72 Reserved for system code, the unique identification
of the operating system that produced the file

(Reserved) 73-79 Reserved field, containing blanks (40
16

)

8075 Rev. 2

UP-NUMBER

Bytes

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

LEGEND:

SPERRY UNIVAC Operating System/3

0 2

label identifier

record format block length
character

record length

reserved

printer control
character

reserved

• Generated by TSAT or reserved for system expansion.

Written by TSAT from user-supplied data.

Figure 6-10. Tape File EOF2 and EOV2 Label Formats for EBCDIC Tapes

6-36

UPDATE LEVEL PAGE

3

label
number

•

•

•

•

•

•

8075 Rev. 2 SPERRY UNIVAC Operating System/3
6-37

UPDATE LEVEL PAGE UP-NUMBER

Table 6-5. Tape File EOF2 and EOV2 Labels, Field Description

Field Bytes Description

Label identifier 0-2 Indicates that this is a file trailer label; contains
EOF for an end·of-file label, or EOV for
an end·of·volume label

Label number 3 Always 2

Record format character 4 Character Meaning ---
D Variable-length (ASCII). with length

fields specified in decimal
F Fixed-length

s Spanned
u Undefined
v Variable-length (EBCDIC), with

length fields specified in binary

Block length 5-9 Five EBCDIC characters specifying the maximum
number of characters per block

Record length 10-14 Five EBCDIC characters specifying the record length
for fixed-length records. For any other record
format, this field contains O's.

(Reserved) 15-35 Reserved for future system use

Printer control 36 One EBCDIC character indicating which control
character character set was used to create the data set.

A Special (ASA) control character present
D Device independent control character present
M I BM control character present
u SPERRY UNIVAC control character present

(Reserved) 37-79 Reserved for future system use

6.7. TAPE VOLUME AND FILE ORGANIZATION

As was stated earlier, magnetic tape files processed by TSAT must observe certain label
conventions. These were described in 6.6. Magnetic tape files must also observe
conventions as to volume and file organization. The following paragraphs and figures
describe the organization of files and volumes with respect to standard labeled,
nonstandard labeled, and unlabeled files used with OS/3 tape sequential acccess method
(SAM). Except where noted otherwise, these conventions also apply to tape files used with
TSAT.

Remember that TSAT assumes only standard labeled files. TSAT bypasses user header
labels, user trailer labels, and nonstandard labels. These labels are included in the
following figures and descriptions only to show their relative location within the various
volume organizations .

8075 Rev. 2 6-38

UPDATE LEVEL PAGE UP-NUMBER
SPERRY UNIVAC Operating System/3

6.7.1. Standard Tape Volume Organization

A standard volume has standard labels, required tape marks, and is capable of being
processed by the logical IOCS. Figures 6-11, 6-12, and 6-13 illustrate the reel
organization for standard volumes with either an end-of-file (EOF) or end-of-volume (EOV)
condition. The logical IOCS assumes that the labels appear in the order shown. A volume
processed by TSAT will end in either an end-of-file or end-of-volume label group (EOF1
and EOF2 or EOV1 and EOV2) followed by two tape marks. The second tape mark signifies
that no valid information follows. .

User header (UHL) and user trailer (UTL) labels are optional. Tape SAM permits you to
specify a special label handling routine to process these labels. If you do not specify such
a routine, the optional labels are simply bypassed. However, with TSAT, you cannot specify
your own label handling routine for optional labels. TSAT always bypasses these labels,
and your program is not made aware of them.

On output operations no provision is made in TSAT for the creation of additional volume
labels, file header labels, or file trailer labels. If these additional labels exist on input files,
TSAT bypasses them.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

6-39
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

WITH END-OF-Fl LE CONDITION

VOL1 label

HDR1 label

HDR2 label

user header labels
UHL1-UHL8

tape mark

data
blocks

tape mark

EOF1 label

EOF2 label

user trailer labels
UTL 1-UTLB

tape mark

LEGEND:

D

-
Contents supplied by user.

Required and generated by TSAT.

Generated by TSAT; user supplies content for certain fields.

WITH END-OF-VOLUME CONDITION

VOL1 label

HDR1 label

HDR2 label

user header I abel
UHL1-UHL8

tape mark

data
blocks

tape mark

EOV1 label

EOV2 label

user trailer labels
UTL1-UTL8

tape mark

tape mark

Generated by user at his option. Content is at user's option except for content of 4-byte label ID fields. User is
limited to eight UHL and eight UTL. Bypassed by TSAT.

Figure 6-11. Reel Organization for EBCDIC Standard Labeled Tape Volumes Containing a Single File

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

LEGEND:

VOL 1 label

HOR 1 label of file A

HDR2 label of file A

tape mark

data blocks
of file A

tape mark

EOF 1 label of file A

EOF2 label of file A

tape mark

HOR 1 label of file B

HDR2 label of file B

tape mark

data blocks
fo file B

tape mark

EOF1 label of file B

EOF2 label of file B

tape mark

tape mark

D Content supplied by user.

• Required and generated by TSAT.

Generated by TSAT; user supplies content for certain fields.

NOTE:

Assume that file B completes on this volume.

6-40

UPDATE LEVEL PAGE

Figure 6-12. Reel Organization for EBCDIC Standard Labeled Tape Volume: Multifile Volume With End-of-File Condition

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

6-41
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

LEGEND:

D

-
NOTE:

REEL 1

VOL 1 label

HOR 1 label of file A

HDR2 label of file A

tape mark

data blocks
of file A

tape mark

EOF1 label of file A

EOF2 label of file A

tape mark

HDR1 label of file B

HDR2 label of file B

tape mark

data blocks
of file B

tape mark

EOV1 label of file B

EOV2 label of file B

tape mark

Content supplied by user.

Required and generated by TSAT.

Generated by TSAT; user supplies content for certain fields .

REEL 2

VOL 1 label

HDR1 label of file B

HDR2 label of file B

tape mark

data blocks
of file B

tape mark

EOF2 label of file B

EOF2 label of file B

tape mark

HDR1 label of file C

HDR2 label of file C

tape mark

data blocks
of file C

tape mark

EOV1 label of file C

EOV2 label of file C

tape mark

tape mark

Assume that file C is not completed on reel 2, but carries over Uike file B) onto another volume.
If file C were completed on reel 2, its EOV1 and EOV2 labels shown here would be replaced with
EOF1 and EOF2 labels.

Figure 6-13. Reel Organization for EBCDIC Standard Labeled Tape Volumes: Multifile Volumes With End-of-Volume
Condition

8075 Rev. 2 6-42

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

6.7.2. Nonstandard Tape Volume Organization

A nonstandard volume is any volume that has nonstandard labels and is capable of being
processed by the logical IOCS. Figures 6-14 and 6-15 illustrate the reel organization for
nonstandard volumes.

Nonstandard user header and trailer labels (UHL and UTL) are optional. These may be of
any format, length, or number because they are handled by the user's label routine. When
processing tapes using tape SAM, the address of the user's label handling routine to
process nonstandard labels is usually specified, in which case the tape mark following the
UHL may be omitted. It is required only if label checking is to be omitted or a read
backward operation is specified. If nonstandard labels appear on an input file but are not
to be checked when the file is read, the user omits specifying the address of his label
handling routine - but the tape mark must be present.

The tape mark following the data blocks is required and is written by logical IOCS, which
also writes two required tape marks after the UTL, if they are present. If the optional UTL
are not present, logical IOCS writes only one additional tape mark after the one following
the data blocks. This second tape mark is always present when this file is the only file or
the last file on the reel. It is overwritten by the next file to be written on a multifile
volume.

LEGEND:

D Contents supplied by user .

optional user

header labels

tape mark

data blocks

tape mark

optional user

trailer labels

tape mark

tape mark

• Required and generated by TSAT; only two tape marks follow data blocks if UTL are not present.

r i I Generated by TSAT unless user specifies TPMARK=NO; required only if label checking is omitted or
user specifies READ=BACK.

II Presence, content, format, and number entirely at user's option. Bypassed by TSAT.

Figure 6-14. Reel Organization for EBCDIC Nonstandard Volume Containing a Single File

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

optional user
header I abels

tape mark

data blocks
of file A

tape mark

optional user
trailer labels

tape mark

optional user
header labels

tape mark

data blocks
of file B

tape mark

optional user
trailer labels

tape mark

tape mark

6-43

UPDATE LEVEL PAGE

LEGEND:

D

-
II
II

Content supplied by user.

Required and generated by TSAT; only two tape marks follow data blocks of last file on volume
if UTL are not present.

Generated by TSAT unless user specifies TPMARK=NO; required only if label checking is omitted
or user specifies R EAD=BACK.

Presence, content, format, and number entirely at user's option. Bypassed by TSAT.

Always present; written by TSAT

Figure 6-15. Reel Organization for EBCDIC Nonstandard Multifi/e Volume

8075 Rev. 2

UP-NUMBER

6.7.3.

SPERRY UNIVAC Operating System/3

Unlabeled Tape Volume Organization

.UPDATE LEVEL

6-44

PAGE

An unlabeled volume is any volume that has no labels and is capable of being processed
by the logical IOCS. The user specifies FILABL=NO, or omits this parameter in the TCA
macro instruction, to indicate an unlabeled volume or file. A tape mark is expected or
written by logical IOCS preceding the data blocks unless the user has specified
TPMARK=NO in the TCA macro instruction.

Figure 6-16 illustrates the reel organization for unlabeled volumes. The tape mark
following the data blocks is required on both single-file and multifile volumes and is
supplied by TSAT on output operations. A second tape mark is always written by TSAT
following the last or only file on each volume and is overwritten by the next file to be
written on a multifile volume.

tape mark tape mark

data blocks
data blocks

of file A

tape mark tape mark

tape mark
data blocks

of file B

SINGLE-FILE VOLUME

tape mark

tape mark

MULTI FILE VOLUME

LEGEND:

D Content supplied by user.

• Required and generated by TSAT; two tape marks follow data blocks of last file on volume.

Generated by TSAT unless user specifies TPMARK=NO; required only when user specifies

READ=BACK.

Figure 6-16. Reel Organization for Unlabeled EBCDIC Volumes

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-45

UPDATE LEVEL PAGE

6.8. TAPE SAT FILE INTERFACE

Each file to be processed by TSAT must be predefined by two declarative macro
instructions:

• SAT

Defines a TSAT magnetic tape file.

• TCA

Defines a tape control appendage.

The SAT macro instruction describes the physical characteristics of the file, and the TCA
macro instruction describes the logical attributes of the file.

6.8.1. Define a Magnetic Tape File (SAT)

This is the DTF macro instruction for TSAT files. The assembler also accepts the name
DTFPF; however, the name SAT is used here to avoid confusion between the DTF macro
instruction for disk SAT files and tape SAT files.

Function:

The SAT macro instruction defines a magnetic tape file to be processed by SAT. It
generates a DTF table in main storage containing the file name and operating and
physical characteristics of your file that can be referenced by the system.

This is a declarative macro instruction and must not appear in a sequence of
executable codes.

Format:

LABEL /::.OPERATION/::. OPERAND

filename SAT TCA=TCA-name
[,CKPTR EC= YES]
[,ERROR=error-addr]
[,FCB=YES]
[,WAIT=YES]

Label:

filename
Specifies the name used to identify the file. This is the same as the 8-character
name in the LFD job control statement.

Keyword Parameter TCA:

TCA=TCA-name
Specifies the symbolic address of the TCA for the file. This name must be
entered in the label field of the corresponding TCA macro instruction describing
the tape control appendage.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-46

UPDATE LEVEL PAGE

Keyword Parameter CKPTREC:

CKPTREC=YES
Specifies that any checkpoint records occurring in an input tape file are to be
bypassed by TSAT. In this case, your BLKSIZE specification in the TCA macro
instruction must equal or exceed the length of a header or trailer label of the
checkpoint set.

In OS/3 tape files, the first and last blocks of a checkpoint dump begin with the
following:

I I b.CHKPT b./ /nnttCsss

where:

nn

tt

c

SSS

Is the number, in binary, of image records plus control blocks, less 1,
not including the header or trailer labels.

Is the total number, in EBCDIC, of checkpoint records following the
header label, including the trailer label; tt is 00 in a trailer label.

Is a constant, coded in EBCDIC as shown.

Is the serial number of the checkpoint, in EBCDIC.

If omitted, any checkpoint records occurring are accepted as data by TSAT and your
program must include the coding to recognize them.

Keyword Parameter ERROR:

ERROR=error-addr
Specifies the symbolic address of your error routine that receives control if an
error occurs.

If omitted, the job is abnormally terminated if an error occurs.

Keyword Parameter FCB:

FCB=YES
Specifies that before issuing the OPEN macro instruction, you have placed the
FCB for this file in the 1/0 area specified by the IOAREA 1 keyword parameter of
the TCA macro instruction associated with this file, instead of in the transient
area where it is normally placed.

If omitted, the FCB, which controls file 1/0, is placed into the transient area of main
storage during file-open operations.

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-47

UPDATE LEVEL PAGE

• Keyword Parameter WAIT:

•

•

WAIT=YES
Specifies that TSAT is to issue the required WAITF macro instruction after each
1/0 function (GET, PUT). This initiates a waiting period to assure completion of
the input or output operation and sets certain status bytes in the DTF table.

If omitted, you must issue a WAITF macro instruction after each 1/0 operation.

6.8.2. Define a Tape Control Appendage (TCA)

Function:

The TCA macro instruction defines the logical attributes of a magnetic tape file to be
processed by TSAT. It generates a tape control appendage to the DTF table for the file.

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:

LABEL ~OPERATION~

TC A-name TCA

OPERAND

IOAR EA 1 =area-name
,BLKSIZE=n

[,BKNO=YES]

[,CLRW={~~~WD}]
[,EOFADDR=encl-of-data-addr

[.Fl LABL={ ~~~D}]
[,LBLK=n]

[,OPRW=NORWD]

[,READ={ :~:'lllJ}]

[REWIND= {UNLOAD}]
I NORWD

[,TPMARK=NO]

[,TYPEFLE=OUTPUT]

UP-NUMBER
SPERRY UNIVAC Operating System/3

6-48

UPDATE LEVEL PAGE

8075 Rev. 2

Label:

TCA-name
Specifies the symbolic address of the TCA table generated by this macro
instruction. This must be the same name specified in the TCA parameter of the
SAT macro instruction for this file.

Keyword Parameter IOAREA 1:

IOAREA1=area-name
Specifies the symbolic address of an input/output area in main storage where
the blocks are to be processed. The size of this area is specified in the BLKSIZE
keyword parameter.

When processing block numbered tapes (BKNO=YES), you must reserve a 4-byte
storage area immediately preceding your input/output area for supervisor
processing of the block number. The 4-byte block number area and the
input/output area must be aligned on a full-word boundary. Do not include these
four bytes as part of the IOAREA 1 specification.

Keyword Parameter BLKSIZE:

BLKSIZE=n
Specifies the size in bytes of the area in main storage named by the IOAREA 1

•

keyword parameter. •

When processing block numbered tapes (BKNO=YES), you must reserve a 4-byte
storage area immediately preceding your input/output area. Do not include these
four bytes as part of the BLKSIZE specification.

If you are reading input tapes backward (READ=BACK), your BLKSIZE
specification must accommodate the largest block on tape, otherwise the data at
the beginning of the block may be lost. If the data is truncated on a backward
read of a block numbered file, the block number field will be lost and incorrect
positioning of the tape may result.

Keyword Parameter BKNO:

BKNO=YES
Specifies that you have reserved a 4-byte storage area, aligned on a full-word
boundary, immediately preceding your input/output area. Do not include these
four bytes as part of either the IOAREA 1 specification or the BLKSIZE
specification. Processing of block numbered tape files is described in 6.10.

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-49

UPDATE LEVEL PAGE

Keyword Parameter CLRW:

CLRW=NORWD
Specifies that a tape is not to be rewound when a file is closed.

CLRW=RWD
Specifies that a tape is to be rewound without interlock when a file is closed.

If omitted, the tape is rewound with interlock when a file is closed, which causes the
tape to be unloaded from the take-up reel.

Keyword Parameter EOFADDR:

EOFADDR=end-of-data-addr
Specifies the symbolic address of your end-of-data routine to which TSAT
transfers control when the tape mark following the last block of input data is
sensed. This keyword parameter is required for all input files. The optional
spelling, EDDADDR, of this parameter is also acceptable.

Keyword Parameter FILABL:

FILABL=STD
Specifies that a tape contains standard labels.

FILABL=NSTD
Specifies that a tape contains nonstandard labels. These labels are not checked
by TSAT. No provision is made in TSAT to create this type of label.

FILABL=NO
Specifies that labels are undefined or absent .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-50

UPDATE LEVEL PAGE

Keyword Parameter LBLK:

LBLK=n
Specifies the number of physical blocks (of the length specified in the BLKSIZE
keyword parameter) comprising a logical block. The entry for n specifies the
number of contiguous buffers supplied at the address specified by the I OAR EA 1
keyword parameter. Use this parameter when you want to act upon more than
one physical block to construct one logical block.

If omitted, one physical block comprises one logical block (LBLK=1).

Keyword Parameter OPRW:

OPRW=NORWD
Specifies that a tape is not to be rewound before labels are checked during the
processing of the OPEN macro instruction. When read-backward processing is
specified, NORWD is assumed. This keyword parameter must not be used if the
REWIND keyword parameter is specified. If both are used, they are mutually
exclusive.

If omitted, the tapes are rewound at open time.

Keyword Parameter READ:

READ=FORWARD
Specifies that an input file is to be read forward.

READ=BACK
Specifies that an input file is to be read backward. If this is specified, you are
limited to a single volume file. Also, your BLKSIZE specification must
accommodate the largest block on tape.

If omitted, read forward is assumed.

Keyword Parameter REWIND:

REWIND=UNLOAD
Specifies that a tape is to be rewound to load point at open time, and rewound
with interlock at close time or when an end-of-volume condition is encountered.

REWIND=NORWD
Specifies that a tape is not to be rewound at open time, and is to be positioned
between the two file marks at close time.

If omitted, the OPRW or CLAW parameters are selected.

Keyword Parameter TPMARK:

TPMARK=NO
Specifies that, for output files with nonstandard labels or no labels, logical IOSC
is not to write the tape mark that normally separates header labels from data. In
this case, it is your responsibility to distinguish between header labels and data.
In a multifile reel environment, this keyword parameter should not be used for
files that are to be processed backward.

•

•

•

8075 Rev. 2 6-51

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

• Keyword Parameter TYPEFLE:

•

•

TYPEFLE=OUTPUT
Specifies that this is an output file.

If omitted, an input file is assumed.

6.9. CONTROLLING YOUR TAPE FILE PROCESSING

There are six imperative macro instructions available for controlling your tape file
processing using TSAT:

• OPEN

Opens a tape file.

• GET

Gets the next logical block.

• PUT

Outputs the next logical block .

• WAITF

Waits for block transfer.

• CNTRL

Controls tape unit functions.

• CLOSE

Closes a tape file.

6.9.1. Open a Tape File (OPEN)

Function:

After the file has been defined by the SAT and TCA declarative macro instructions,
the OPEN macro instruction must be issued to initialize the file before any other
access can be made. This macro instruction validates the DTF and TCA tables and
performs any required tape positioning functions.

Format:

LABEL 60PERATION6 OPERAND

[symbol] OPEN {
filename-1 [, ... ,filename-n]}
. (1)

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-52

.UPDATE LEVEL PAGE

Positional Parameter 1:

filename-1

(1)

Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file to be opened.

Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter n:

filename-n
Successive entries specify the symbolic addresses of the SAT macro instructions
in the program corresponding to the additional files to be opened.

Use this form (for example, OPEN FILE1, FILE2) when more than one lockable file is
to be accessed by a single task. This opens all the files named and applies the
required read or write locks at the same time. In this way, you can avoid the
possibility of two jobs locking each other out with each one waiting for the other to
give up its file. The operator would then have to cancel one of the jobs to remove the
stalemate and continue processing.

6.9.2. Get Next Logical Block (GET)

Function:

The GET macro instruction reads a logical block from tape into main storage and
makes it accessible for processing. The address into which the data is read is
specified in the associated TCA macro instruction by the keyword parameter
IOAREA1.

Format:

LABEL £'.:.OPE RATION £'.:. OPERAND

[symbol] GET { filename} {TCA-name}
(1) , (0)

Positional Parameter 1:

filename

(1)

Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file being read.

Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

•

•

•

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

6-53

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 2:

TCA-ndme

(0)

Specifies the symbolic address of the TCA macro instruction associated with the
partition to be accessed.

Indicates that register 0 has been preloaded with the address of the TCA macro
instruction.

6.9.3. Output Next Logical Block (PUT)

Function:

The PUT macro instruction writes a logical block from main storage to tape. The main
storage address from which the data is written is specified in the associated TCA
macro instruction by the keyword parameter IOAREA 1.

Format:

LABEL fl OPERATION fl OPERAND

[symbol] PUT {
filename } { TCA-name}

(1) I (0)

Positional Parameter 1:

filename

(1)

Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file being written.

Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter 2:

TC A-name

(0)

Specifies the symbolic address of the TCA macro instruction associated with the
partition to be written.

Indicates that register 0 has been preloaded with the address of the TCA macro
instruction .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-54

UPDATE LEVEL PAGE

6.9.4. Wait For Block Transfer (WAITF)

Function:

The WAITF macro instruction ensures that a command initiated by a preceding GET or
PUT macro instruction has been completed. When completed, the error status field
contains the error status information pertaining to the 1/0 request. It is your
responsibility to check these bits, which are in bytes 50 and 51 of the DTF table.

If the keyword parameter WAIT=YES was not specified in the SAT macro instruction,
the WAITF macro instruction must be issued after a GET or PUT macro instruction
and before another imperative macro instruction is issued for that file.

Format:

LABEL

[symbol]

Positional Parameter 1:

fl OPERATION fl

WAITF
{

filename}
(1)

OPERAND

•

filename •
Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file being accessed.

(1)
Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

6.9.5. Control Tape Unit Functions (CNTRL)

Function:

This macro instruction initiates nondata operations on a tape unit. All tape control
functions may be issued whether or not the file is open. Do not issue a WAITF macro
instruction following a CNTRL macro instruction.

Format:

LABEL fl OPERATION fl OPERAND

[symbol] CNTRL {
filename} de

(1) ,co

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

6-55

UPDATE LEVEL PAGE

Positional Parameter 1:

filename

(1)

Specifies the symbolic address of the corresponding SAT macro instruction in the
program.

Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter 2:

code
Is a mnemonic 3-character code specifying the tape unit function to be
performed:

BSF Backspace to tape mark*

BSR Backspace to interrecord gap*

ERG Erase gap (writes blank tape)

FSF Forward space to tape mark*

FSR Forward space to interrecord gap*

REW Rewind tape

RUN Rewind tape with interlock (unloads tape)

WTM Write tape mark

6.9.6. Close a Tape File (CLOSE)

Function:

The CLOSE macro instruction performs the required termination operations for a file;
for example, construction of the EOF label group. Once the CLOSE macro instruction
has been issued for a file, only the OPEN macro instruction may reference that file.

Format:

LABEL

[symbol]

*Applies only to input files.

.0. OPERATION .0.

CLOSE

OPERAND

{
filename-1 [,. .. ,filename-n]}

(1)

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-56

UPDATE LEVEL PAGE

Positional Parameter 1:

filename-1

(1)

Specifies the symbolic address of the SAT macro instruction in the program
corresponding to the file to be closed.

Indicates that register 1 has been preloaded with the address of the SAT macro
instruction.

Positional Parameter n:

filename-n
Successive entries specify the symbolic addresses of the SAT macro instructions
in the program corresponding to the additional files to be closed.

6. 10. BLOCK NUMBER PROCESSING

TSAT can process magnetic tapes with or without block numbers. The use of block
numbers reduces the possibility of incorrect tape positioning and, therefore, incorrect tape
processing. This is especially helpful for error recovery on read and write commands and
for restarting at a checkpoint.

Processing of block numbered tapes for TSAT files will be executed by physical IOCS. The
general requirements and processing are the same as detailed for physical IOCS in 4.4.1
to 4.4.4. Some of these are noted here for convenience.

• When the block numbering capability is being used, all blocks on tape except tape
marks will include a 3-byte block number field as the first three bytes of the block.
This 24-bit block number field is composed of a 4-bit tape mark counter and a 20-bit
block number counter. Physical IOCS uses both of these counters when reading and
writing block numbered tapes. The format of the tape block number field is shown in
Figure 4-9.

• The first block on tape that is not a tape mark will contain a block count of 1 plus the
number of tape marks preceding it.

• Block numbers are incremented sequentially by 1. All label, data, and checkpoint
blocks are counted and numbered. Tape marks are counted, but no number is written.

• For both EBCDIC and ASCII tapes, the 3-byte block number field is added to a
standard label immediately preceding the label identifier (VOL1, HDR1, etc.), making
the label 83 bytes long. The 83-byte ASCII label is nonstandard for information
interchange. Tape label formats for block numbered EBCDIC tapes are shown in
Figures 6-17 through 6-21.

• Block number processing will be exactly the same for both EBCDIC and ASCII tape
files.

• Block numbers will be volume dependent and file independent. If a volume contains
more than one file, the block count is continued from the preceding file on the volume
and the blocks are consecutively numbered to the end of the tape.

•

•

•

•

•

•

8075 Rev. 2
UP-NUMBER

•

SPERRY UNIVAC Operating System/3 6-57

UPDATE LEVEL PAGE

Files on a volume and volumes in a multivolume file must be all numbered or all
unnumbered, not mixed.

• The 7-track odd parity tapes operating in convert mode may be block numbered if the
block size is a multiple of 3.

The PUB trailer for a block numbered tape file will contain an expected block number. This
. number will reflect the next block number anticipated in a forward read and will be
adjusted accordingly for backward reads. When the tape is read in either direction, the
block number read from tape is stored in the PUB trailer and compared with the expected
block number. If there is no discrepancy (and no other errors) control is returned to the
user program. If there is a discrepancy, physical IOCS attempts to find the correct block by
moving the tape backward or forward the number of blocks implied by the discrepancy. If
the correct block is found, control is returned to the user. If the correct block cannot be
found, the tape is left positioned where it was on the last attempt and an error message is
sent to the console.

6.10.1. Facilities Required for Block Number Processing

To process block numbered tape files, three conditions (called preliminary conditions) are
required:

1. So that the generated supervisor can process both numbered and unnumbered tapes,
you must operate with a supervisor configured to process block numbered tapes .

2. You must reserve a full-word aligned, 4-byte storage area immediately preceding your
input/output area for supervisor processing of the block number. Do not include these
four bytes as part of either the address or the length specifications (IOAREA and
BLKSIZE keyword parameters of the TCA declarative macro instruction).

3. You must indicate to TSAT that you have reserved the 4-byte block number area by
specifying BKNO=YES in the TCA macro instruction (6.8.2).

If these three preliminary conditions exist, you may then control block number processing
through either job control (JCL) or automatic volume recognition (AVR). This permits you to
leave the 4-byte storage area and the BKNO parameter in your program even though you
may at times be processing unnumbered tapes.

6.10.2. Specifications for Block Number Processing

Several factors determine when and how block number processing is employed. If a tape
is not at load point when the file is opened, the file will be handled according to the
specifications existing when the tape was opened at load point. Therefore, you cannot
have both numbered and unnumbered files on the same volume.

If a tape is at load point when it is opened, processing will proceed as described on the
following pages .

The various methods of tape file processing can be divided into two categories: processing
with tape initialization, and processing without tape initialization. These will be referred to
simply as initialized or noninitialized processing.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Ope!:.ating System/3 6-58

UPDATE LEVEL PAGE

6.10.2.1. Initialized Processing

Initialized processing includes:

• TPREP utility routine processing, described in the system service programs user
guide, UP-8062 (current version);

• processing output files with standard labels (FILABL=STD specified in the TCA macro
instruction) and PREP specified in the VOL job control statement; or

• processing input or output files with nonstandard labels (FILABL=NSTD) or no labels
(FILABL=NO specified in the TCA macro instruction).

For initialized processing, you control the presence or absence and the processing of block
numbers by the first parameter of the VOL job control statement as follows:

You Specify Preliminary Conditions Result

Nothing All present Block number processing

Some missing No block number processing

N Ignored No block number processing

6.10.2.2. Noninitialized Processing

Noninitialized processing includes:

• processing output files with standard labels (FILABL=STD specified in the TCA macro
instruction), but without PREP specified in the VOL job control statement; or

• processing input files with standard labels (FILABL=STD specified in the TCA macro
instruction).

For noninitialized processing, TSAT ignores the first parameter of the VOL job control
statement. Instead, the specification is obtained from the tape content (which was
detected by AVR), as follows:

Tape Content Preliminary Conditions Result

Block numbers All present Block number processing

Some missing No block number processing

No block numbers Ignored No block number processing

For processing of multivolume files, you must ensure that all volumes have (or do not
have) block numbers. You cannot mix numbered and unnumbered volumes within a file.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

NOTE:

SPERRY UNIVAC Operating System/3

Bytes

0 2

0 block number

4 0 L

8 volume serial number

12

16
reserved

reserved

reserved

owner identification

reserved

LEGEND:

~ Generated by TSAT or reserved for system expansion.

l\\\\\i\i\\\\:I Written by TSAT from user-supplied data.

6-59

UPDATE LEVEL PAGE

3

v

The first three bytes (bytes 0--2) of the tape file label contain a 24-bit block number field. The contents of the remainder of ~
the VOL 1 label are the same as described in Table 6-1, except that each field is offset three bytes.

Figure 6-17. Tape Volume 1 (VOLT) label Format for an EBCDIC Volume With Block Numbers

6-60 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Bytes

0 2 3

0 block number H

4 D R

8

12
file identifier

16

20

24 file serial number

28 volume.

32 . . . sequence number file ...

36 . . . sequence number generation ...

40 ... number version number

44 creation date

48

52 expiration date

56 file security
unused

60

64

68 system code

72

76
reserved

80

LEGEND:

~ Generated by TSAT or reserved for system expansion.

li:i\\l\\\j Written by TSAT from user-supplied data.

NOTE:

The first three bytes (bytes 0--2) of the tape file label contain a 24-bit block number field. The contents of the remainder of
the HDR1 label are the same as described in Table 6-2. except that each field is offset three bytes.

Figure 6-18. First Fife Header Label (HORT) Format for an EBCDIC Tape Volume With Block Numbers

•

•

•

•

•

•

8075 Rev. 2 6-61

.UPDATE LEVEL PAGE UP-NUMBER
SPERRY UNIVAC Operating Systam/3

Bytes

0 2 3

0 block number H

4 D R 2
record format

character

8 block length

12 record length

16

24

reserved
28

32

printer control
character

40

48

52

56

60
reserved

64

68

72

76

LEGEND:

~ Generated by TSAT or reserved for system expansion.

l::::l::fl Written by TSAT from user-supplied data .

NOTE:

The first three bytes (bytes 0-2) of the tape file label contain a 24·bit block number field. The contents of the remainder of
the HDR2 label are the same as described in Table 6-3, except that each field is offset three bytes.

Figure 6-19. Second File Header Label (HDR2J Format for an EBCDIC Tape Volume With Block Numbers

8075 Rev. 2
SPERRY UNIVAC Operating System/3 6-62

UP-NUMBER UPDATE LEVEL PAGE

Bytes

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

NOTE:

0

block number

... identifier

file identifier

file serial number

. . . sequence number

. . sequence number

... number

creation date

expiration date

file security
block count

system code

reserved

LEGEND:

~ Generated by TSAT or reserved for system expansion.

IJlJ:i::iJJ:JI Written by TSAT from user-supplied data.

2

label
number

volume ...

file ...

generation ...

version number

3

label.

The first three bytes (bytes 0-2) of the tape file label contain a 24-bit block number field. The contents of the remainder of
the EOF1 and EOV1 labels are the same as described in Table 6-4 except that each field is offset three bytes.

Figure 6-20. Tape File LEOF1 and EOV1 Label Formats for Block Nu17Jbered EBCDIC Files

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

NOTE:

SPERRY UNIVAC Operating System/3

Bytes

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

0

block number

... identifier

block length

record length

reserved

reserved

LEGEND:

~ Generated by TSAT or reserved for system expansion.

I .I Written by TSAT from user-supplied data .

2

label
number

6-63

UPDATE LEVEL PAGE

3

label.

record format
character

printer control
character

The first three bytes (bytes 0-2) of the tape file label contain a 24-bit block number field. The contents of the remainder of ~
the EOF2 and EOV2 labels are the same as described in Table 6-5, except that each field is offset three bytes.

Figure 6-21. Tape File EOF2 and EOV2 Label Formats for Block Numbered EBCDIC Files

•

•

•

•

• PART 3. MULTITASKING

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

7.1. GENERAL

SPERRY UNIVAC Operating System/3

7 .1 .1 . M ultijobbing and Multitasking

7-1
UPDATE LEVEL PAGE

7. Multitasking

The SPERRY UNIVAC 90/30 Data Processing System can concurrently process from one
to seven jobs, each job consisting of one or more job steps (programs) which are
executed serially. A job step will also have one or more tasks which may be executed
concurrently. This capability allows you greater flexibility in attaining maximum use of
the system's resources .

Multijobbing consists of scheduling multiple jobs (up to seven) for concurrent execution.
The allocation of processor tinie to these jobs is based on a system switch list which
contains information regarding task priorities, synchronization, and 1/0 utilization. While
one job is awaiting the completion of an external ev.ent (such as completion of an 1/0
request), the operating system activates another job that is ready to ensure optimum
utilization of the processor's capabilities. Since the majority of programs require support
other than processing instructions, multijobbing provides an effective method for you to
reduce processor idle time and increase system productivity (throughput).

Multitasking is the concurrent execution of multiple tasks. Because every job has at least
one task to which control of the processor is dispatched, the term multitasking is
sometimes applied (from the point of view of the task switcher within the supervisor) to
the concurrent execution of several jobs each having one task. However, multitasking, as
used here, refers to the concurrent execution of several tasks asynchronously within a
given job step. Multitasking enables you to overlap processing with external occurrences
within a program to obtain maximum throughput in the same manner as the system
achieves optimum utilization using multijobbing .

•

UP-NUMBER
SPERRY UNIVAC Operating System/3 7-2

UPDATE LEVEL PAGE

8075 Rev. 2

7.1.1.1. Primary Task

Every job step submitted to OS/3 is established as a primary task. A task is the lowest
viable entity that can compete for processor time. OS/3 permits up to 256 tasks per job.
The switch list has the capacity to allow you to specify up to 60 levels of processing
priority for tasks. The maximum number of task priority levels that the supervisor will
recognize is established at system generation time. The technical limit is 60; however, a
more practical limit of 3 to 15 is sufficient to achieve a high degree of processor
utilization. When a task is interrupted to perform external processing (external to the
instruction processor), it frees the processor and OS/3 searches the switch list for the
highest priority task that is not waiting for an external event to be completed. This task
could be in the same job or it could be from any other job currently being processed.

7.1.1.2. Subtask

OS/3 has another level of multitasking which may occur within a job step. The primary
task is capable of initiating other tasks, called subtasks, within the job step. Primary
tasks and subtasks are simply two categories of tasks; each is processed in the same
manner. However, the primary task is automatically initiated into the multitasking
environment by OS/3 at job step initiation, while subtasks must be created by the
program in the job step. Subtasks can be given the same priority as the primary task or
they can have a lower priority. Thus, a job step may consist of a primary task and
several subtasks, all of which compete independently for processor time.

7.2. TASK MANAGEMENT

7.2.1. General

The supervisor is designed with multitasking capability which is utilized by the supervisor
and extended to the user through macros. In a multitasking environment, several tasks
may compete for control of the processor on a priority basis.

A task is defined as a point of control within an environment which is capable of
utilizing the processor asynchronously with other tasks. It refers to a level of control only
and not the physical code itself.

Every task, regardless of the code the task executes, will be identified to the supervisor
by a task control block (TCB). The TCB contains or points to all control information
associated with a task. This includes register/program status word save areas and other
task-oriented information.

Each job step has a task (and thus a TCB) inherited at job step initialization from job
control which is referred to as the primary task. Additional tasks may be attached as
subtasks and cause additional TCBs to be created to identify the new tasks to the
supervisor. The primary task is considered to represent the job step. As such, any

•

•

termination, normal or abnormal, of this task will cause the job step to terminate. •

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 7-3

UPDATE LEVEL PAGE

Additional tasks (subtask, other than primary) are created by the ATIACH macro
instruction which causes task management to create a TCB and initialize it with the
attaching task's environment. Once a subtask has been created it is entered on the
switch list to compete for the processor control on a priority basis. Each task competes
independently for the processor. When the switcher gains control, it selects the highest
priority nonwaited task and dispatches control. A task is nonwaited (active) if it can use
the processor and waited (not active) if some event must take place before the task can
use the processor.

A subtask terminates when a DETACH macro instruction is executed for that task or an
error occurs which prevents the task from successfully completing its work. A DETACH
in behalf of the primary task is interpreted as an end-of-job step (8.3.4). When a subtask
terminates normally, a completion code is posted within the task's event control block
(ECB) which can be examined by the attaching task to determine the result of the task
processing. If a subtask terminates abnormally, an error code is posted for examination
by the attaching task, and control is passed to the abnormal termination island code.

All tasks of a job have all the capabilities of the primary task; that is, a task can create
additional tasks of its own and perform all communication functions with these tasks.
The exception is that unsolicited operator messages can only be accepted at the job step
level.

7.2.2. Task Creation

Task creation is performed by the ATIACH macro instruction, which causes entry into
the attach function to create a subtask. The code to be executed by the task specified on
the ATIACH macro instruction call must be in main storage, within the user region,
when the ATIACH macro instruction is issued.

The number of tasks which may be created by a user is limited to the number
designated to job control with a maximum of 255 subtasks. The space for creation of
task control blocks is reserved by job control when the job region is established. The
number of possible simultaneous tasks must be specified as a parameter on the JOB
statement in the job control stream. The maximum number of ATIACH/DETACH
sequences permissible per job step is also limited to 255.

Tasks may create other subtasks in a pyramidal fashion with a limit of four total or three
subtask levels. This hierarchical structure is not intended to provide a means of task
synchronization. This structure is composed of subtask families so that when a subtask
terminates, the family it has created is also terminated.

When a task is created, the originating task must pass the address of an area in the
user storage to be used as an event control block (ECB) for the newly created task. This
ECB address is placed in the newly created task's TCB and may be considered as an
extension to the TCB for the purpose of task synchronization by user. The separation of
the ECB and TCB is a system requirement since a TCB cannot be addressed by the user
programs .

8075 Rev. 2

UP-NUMBER

7.2.3. Task Priority

SPERRY UNIVAC Operating System/3 7-4
UPDATE LEVEL PAGE

When a primary task is created, job control assigns it a dispatching (switch list) priority
as requested on the job control EXEC statement. Any subtask created by the primary task
or other subtask can have a priority based on the primary task priority as specified on
the ATTACH call. The attaching task may request the same or a lower priority for the
new subtask.

7.2.4. Task Termination

A task executes a DETACH macro instruction to cause entry into the task termination
function for processing. The DETACH function determines whether the DETACH was
executed from abnormal termination island code to determine if termination was normal
or abnormal. For normal termination, the ECB for that task is posted by the termination
routines and all tasks in the subtask family of this task are terminated.

Task control posts completion codes for the terminating task, notifies any other task
awaiting the completion of the terminating task, and unlinks the TCB from the system.
The task termination routines recognize the TCB for a primary task and treat that as a
job step termination (EOJ).

An abnormally terminating task is one that executed a CANCEL either intentionally or
imposed by the system. Task control when processing an abnormally terminating task,
posts the task's ECB, and activates abnormal termination island code under the primary
task but in behalf of this task.

7.2.5. Queue Driven Task

The AWAKE function is provided for queue driven tasks to allow for better
synchronization and less overhead. AWAKE can only be issued to a task which has been
previously created by ATTACH. If the AWAKE function is addressed to a nonexistent task
(no ATTACH), an abnormal termination is initiated. The AWAKE is utilized to activate an
existing but idle task.

The queue driven task continues to process until it has exhausted all queue entries and
then can execute the TYIELD macro instruction to mark itself nondispatchable until
further queue entries have been made. Each time an AWAKE macro instruction is
executed, the addressed task will be removed from the idle state. This is accomplished
whether the task is idle or active and will permit a task to be dispatched.

7.2.6. Hierarchical Structure

Subtasks are attached as members of task families providing a hierarchical structure
similar to a pyramid. This structure provides the family naming conventions which allow
a task to terminate and have all its subtasks also terminated. The hierarchy is not
imposed as a restriction to task synchronization or control. Therefore, tasking functions
may reference across family lines. Additionally, this structure has no relationship to the
dispatching priority. The hierarchical structure is illustrated in the following diagram:

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 7-5

UPDATE LEVEL PAGE

•

•

•

SUBTASK
X'01'

SUBTASK
X'0101'

SUBTASK
X'010101'

PRIMARY TASK

SUBTASK SUBTASK
X'0102' X'0201'

SUBTASK
X'02'

SUBTASK
X'0202'

Subtasks are named by concatenating the count of this task as a subtask of the
attaching task to the attaching task's name. For example, if a task named X'0102'
attaches its third subtask, the subtask will be named X'010203'. The primary task does
not have a name since it is not a member of a subtask family. The family names can
extend to three bytes which imposes the limit of three subtask levels below the primary
task.

7.3. TASK MANAGEMENT MACRO INSTRUCTIONS

Task management macros provide the interface by which jobs can create and control a
multitasking environment. Each job step by definition has at least one task, which is
referred to as the primary task. The following macros allow for the creation, activation,
deactivation and deletion of additional tasks within a job step.

The user must inform job control via job control statements of the maximum number of
tasks that can be created for a job step. This allows job control to reserve the main
storage required for TCB within the job's prologue. Likewise, you must provide storage
for and control of the ECBs. These ECBs are 2-word (8 bytes) fields· which task
management utilizes to communicate with the user to allow for task synchronization and
to identify the task. You can look at the information but should not write into these
words which are unique to a given task. The primary task doesn't have an ECB and is
identified by an ECB address of zero.

The following macro instructions are available for multitasking:

• ECB

Generates an event control block for task identification and status.

• ATTACH

Creates and activates an additional task.

8075 Rev. 2

UP-NUMBER

•

SPERRY UNIVAC Operating System/3

DETACH

Terminates a task normally.

• TYIELD

Deactivates a task.

• AWAKE

Reactivates an existing nonactive task.

• CHAP

Changes (reduces) the relative priority of a task.

7.3.1. Generate an Event Control Block (ECB)

Function:

7-6
UPDATE LEVEL PAGE

The ECB macro instruction generates and initializes an event control block. The
event control block is used by task management to identify a task and to indicate
status to the other tasks within a job step. The current status of the associated task

•

is reflected by bits within the ECB (Figure 7-1). •

This is a declarative macro instruction and must not appear in a sequence of
executable code.

Format:

LABEL f). OPERATION f). OPERAND

[symbol] ECB

There are no parameters for the ECB macro instruction.

The ECB is utilized to communicate between task management and the job step. The
following programming considerations and conditions are set into the ECB.

1. The ATTACH macro specifies an ECB when the task is created. The specified ECB is
linked to the TCB and is reserved for this task until this task is detached.

2. As with 1/0, only one task can wait for a given command control block (CCB) or
ECB. However, unlike 110, which allows only the task that submitted the CCB to
wait for it, task management allows only one of the other tasks to wait for the task •
which is identified by the ECB.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

7-7

.UPDATE LEVEL PAGE

•

•

•

3. A primary task does not have an ECB associated with it, therefore, the primary task
cannot be awaited. This task can synchronize with 1/0 by utilizing the WAIT and
WAITM macros and can synchronize with other tasks by the AWAKE and TYIELD
macros.

Example:

LABEL llDPERATIONll OPERAND COMMENTS
10 16

t-'-~-'-'-.J_J_++-.J_J_-'--'-++--'-'---'--'--'-'---'-'---'-'--'---'--'--'"--'---'--'-"--'-"--'-"--'-"--'-"--"---'---L....l.--'---'-__L__i__J__[__L__l__L__l_J_ - l _l_ _l__ j l . . l l J ! [

t-'-~-'-'-.L..L+-l""""""--'-+-+--'-'---'----'--'-'---'---'--'--'--'---'--'--'--'---'-...1-..L...1-..L..J._J_..J._J___L_j___L_j__l__j_-L.J....J__J_...J__J_~_;__LJ___._~J l_ ~_J .I. j j : \ l

Explanation:

1. Line 1 attaches a subtask whose ECB name is ECB 1. The subtask will begin
execution at the address of START. If the priority of PRIMTASK is two, the
priority of the subtask being attached is four.

2. At line 2, the primary task gives up control until the subtask is completed.

3. Line 3 generates the ECB called ECB 1 associated with the subtask. Note that
this macro does not appear in a sequence of executable code.

4.&5.
Lines 4 and 5 represent the beginning and ending of the subtask execution .

SPERRY UNIVAC Operating System/3 7-8 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

Byte 0 1 2 3

0 control byte attaching task's ID activity byte unused

4 address of TCB waiting for this ECB

0 Control Byte

2

Bit 0

1-4
5

6-7

1 = This is an ECB.

Not used

1 = This task completion is being awaited.

Not used

Attaching Task's ID

Task identification number of task with which this ECB is associated. This ID number is not related to subtask

name. It is the number of the TCB counting from the job step TCB which is number 0.

Activity Byte

Bit 0 0 = Task is active in that it has not executed either a TYIELD or DETACH macro.

1 = Task is idle in that it has executed a TYIELD or DETACH macro.

1-6 Not used

7 1 = Task has abnormally terminated and should be detached.

3 Unused

4-7 Address of TCB which is awaiting completion of the task with which this ECB is associated.

Figure 7-1. Event Control Block (ECB) Format

•

•

•

•

•

•

7-9 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

7.3.2. Create an Additional Task (ATTACH)

Function:

The ATTACH macro instruction creates and activates a task desiring control of the
processor. It generates an additional task control block and enters the task onto the
switch list.

Format:

LABEL ll.OPERATION [). OPERAND

[symbol] ATTACH {
ECB-name} { entry-point-name}

(1) ' (O)

[, { err(~-,addr} J [,n]

Positional Parameter 1:

ECB-name

(1)

Specifies the symbolic address of the ECB used to identify and control this task.

Indicates that register 1 has been preloaded with the address of the event
control block.

Positional Parameter 2:

entry-point-name

(0)

Specifies the symbolic address of the point in the program at which this task
will receive control. The coding to be executed for the task must be in main
storage when the ATTACH macro instruction is issued.

Indicates that register 0 has been preloaded with the address of the entry point.

Positional Parameter 3:

error-addr

(r)

Specifies the symbolic address of an error routine to receive control if an error
occurs.

Indicates that the register designated (other than 0 or 1) has been preloaded
with the address of the error routine.

If omitted, the task will be abnormally terminated if an error occurs .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 7-10

UPDATE LEVEL PAGE

Positional Parameter 4:

n
Specifies a 1-byte value to be added to the switch list priority of the originating
task. This raises the dispatching priority value resulting in a lesser priority for the
task. (The higher the priority number, the lower the priority.) The result is
assigned as the switch list priority of the new task unless it exceeds the limit of
this system, in which case the highest number (lowest priority) for this system is
used.

The use of this parameter always results in a lesser priority. There is no way to
attach a task with a priority higher than that of the primary task.

If omitted, the new task will be created at the same priority as the originating task.

Example:

LABEL OOPERA TIONll OPERAND COMMENTS
10 16

'I

ii
1--L-L-LJ'--LJL.Yl-Pl~~~,!=,(;Bl[~~;:r:, J;;;R&b:K+Jb _, ' L J -- ' • L - ' I ,__, - ' : -

1-L--'-'--~~t-+-~'-'-'f--+--'·-~~~~~J.~~~'___L__~__l__;___i_____l__________L_L_1 __ ~--L- _L __ ____L_j__: • : L.

1--L--'--'--'---'-'--'--1-+-'--LJ'--L.11-+-'--'--'-___c_,_~_,___,_._,__i~~· -1--'----"-' ~~L~~· _ .L _ ___.___l__l _____ J _.________i_____l , • • l :
l _l _l i

j _j_ L~~- ;_--L..L..l._i_~ ~---LJ . i, ;,·

~ITE.l!Rili__l_n;;Q,!,,1~~---L"__i_l___c_,__,_,_,_,~;_,_,_,_,_,_,_,_,i1_,_,~~6u:iul8~~~A~$~K. J:;KE.e_~T..If)~~. \-\ERE.

l--L--'--'--~'---'-l-+-'--LJ'--L.11-+-'--'--'----'---'---'---'~-'-_J~~~~~-1~~~_!~-~~~-"-'--'--------~-- '
'_J _j

u;.f~IN__-'--'--~~c_L.j~__,__,__ -~~~J.~~-L• ~1 ~· ~· ~· ~C""\9'!J,,_..,_::ffibL.:&E;_TilfillS1 HERE _.ill cASE. 0F
1-L--'-'--~L_L_t-+-'--'--'--'-"~~---'---'~~~~~--1~~~-~~I ' _ _l___L_____l~ _ _l .1.~'~----_!__;_ - •

i
I,

'"'"~
I I

Attach a task identified by the event control block named ECB 1. The subtask will
receive control at the instruction whose address is labeled ENTRYPT. If an error is
encountered during the execution of the ATIACH macro instruction, control will be
transferred to the error processing routine labeled ERROR. The dispatching priority
of the newly created task will be two greater than that of the originating task.

7.3.3. Terminate a Task (DETACH)

Function:

The DETACH macro instruction terminates a task by delinking the TCB from the
switch list and returning the TCB to the job's free TCB queue. If this macro
instruction is executed by the primary task, it will be interpreted as an end of job
step. All subtasks of the task being detached will also be detached.

This macro instruction also clears all 1/0 locks for the task.

Format:

LABEL LlOPERATION Ll OPERAND

[symbol] DETACH

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

7-11

UPDATE LEVEL PAGE

Positional Parameter 1:

ECB-name

(1)

Specifies the symbolic address of the event control block of the task to be
detached.

Indicates that register 1 has been preloaded with the address of the ECB.

If omitted, indicates that the task issuing the DETACH instruction is terminating. No
task other than the primary can terminate the primary task.

Positional Parameter 2:

error-addr

(r)

Specifies the symbolic address of an error routine to be executed if an error
occurs.

Indicates that the register designated (other than 0 or 1) has been preloaded
with the address of the error routine.

If omitted, the executing task will be abnormally terminated if an error occurs.

Example:

LABEL OOPERATION~ OPERAND
10 16

l j

Detach the task identified by the event control block labeled ECB 1. If an error occurs
during the DETACH macro instruction, transfer control to error processing routine
labeled ERROR.

7 .3.4. Yield Until Task Completion (TYIELD)

Function:

The TYIELD macro instruction relinquishes control of the processor and sets the TCB
in a waiting state. The ECB is tested and if there is a task awaiting the yielding
task, the waiting task is activated.

8075 Rev. 2
SPERRY UNIVAC Operating System/3

7-12

UP-NUMBER UPDATE LEVEL PAGE

The TYIELD macro instruction is used in combination with the AWAKE macro
instruction which reactivates a task made dormant by the TYIELD macro instruction.

Format:

LABEL /).OPERATION !:J. OPERAND

[symbol] TY I ELD

There are no parameters for the TYIELD macro instruction.

7.3.5. Reactivate a Task (AWAKE)

Function:

The AWAKE macro instruction reactivates a task made dormant by a TYIELD macro
instruction. It clears the TYIELD bit within the wait bytes of the TCB regardless of
whether or not the task is idle, thereby activating the task to receive control of the
processor from the switcher.

Format:

LABEL b.OPERATION /). OPERAND

[symbol] AWAKE

Positional Parameter 1:

ECB-name

(1)

Specifies the symbolic address of the event control block of the task to be
reactivated.

Indicates that register 1 has been preloaded with the address of the ECB.

If omitted, or if this macro instruction is executed with a zero address in register 1,
the primary task will be taken out of a TYIELD condition.

•

•

•

7-13 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

• Examples:

•

LABEL flOPERAT!ONl; OPERAND
10 16

L-L .. I ! I I '

Explanations:

Examples and 2 will take the primary task out of a TYIELD condition.

Examples 3 and 4 indicate that the task identified by the ECB named ECB1 will be
taken out of a TYIELD condition.

7.3.6. Change a Priority (CHAP)

Function:

The CHAP macro instruction reduces the dispatching priority of the task issuing the
instruction. The increment entered as the operand is added to the current dispatching
priority of the task (specified by the switch-priority parameter in the EXEC job control
statement). This raises the dispatching priority value resulting in a lesser priority for the
task. This macro instruction does not change the priority to a specific level; instead, it
adjusts the priority relative to the level under which it is executed .

8075 Rev. 2

UP-NUMBER

Format:

LABEL

[symbol]

,

SPERRY UNIVAC Operating System/3

/').OPERATION/').

CHAP

Positional Parameter 1:

n

7-14

UPDATE LEVEL PAGE

OPERAND

Specifies a 1-byte value to be added to the dispatching priority for the task.

(1)
Indicates register 1 has been preloaded with the increment.

Example:

LABEL OOPERATIONfi OPERAND
10 16

Change the dispatching priority of the task by two. This will raise the dispatching
priority value by two, which will result in a priority two less than the current
priority. Both examples perform the same function.

7.4. TASK SYNCHRONIZATION

7.4.1. General

Task synchronization provides a task with a means of waiting for one or more other
tasks. The waiting task is awaiting the completion of the specified task or tasks which is
signaled by the deactivation of an awaited task or by the execution of the POST macro
instruction.

Tasks are waited by setting a unique wait bit within that TCB. These wait bits signal the
switcher that this task is nondispatchable and indicate the reason for the wait. Upon
clearing the wait bits, the task becomes dispatchable and can be activated.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

7-15

UPDATE LEVEL PAGE

The ECB address, which is specified as a parameter to task management macros, points
to an event control block which allows for task to task synchronization. The ECB format
is compatible with the first two words of 1/0 CCBs as far as the WAIT and WAITM
macro instructions are concerned. These macros are utilized to synchronize tasks in a
manner similar to 1/0 synchronization.

When the performance of a task is dependent on any other task or tasks, the tasks
involved may synchronize themselves via the ECB associated with a task from the
ATTACH macro instruction. The ECB is posted with a completion code when a task
terminates or executes the TYIELD macro instruction. The ECB may be specified on a
WAIT and WAITM instruction in order to hold processing of a task until the awaited task
terminates or by the POST macro instruction when some event is completed.

Three macro instructions are available for task synchronization:

• WAIT

Wait for a task request to complete.

• WAITM

Wait for one of several task requests to complete.

• POST

Activate a waiting task.

These macro instructions can also be used (with different parameters) to synchronize a
task with its 1/0. For task synchronization, the macro instruction references an event
control block; and for 1/0 synchronization, the macro instruction references a command
control block. 110 synchronization is described in 4.3.

7.4.2. Wait for Task Completion (WAIT)

Function:

The WAIT macro instruction temporarily suspends program execution until the
specified task is completed or executes a POST macro instruction in behalf of the
waiting task. If the related task is completed, control is returned to the point
immediately following the WAIT macro instruction. If the awaited task is not complete,
the issuing task is placed in a wait state and control is passed to another task.

The ECB indicates the status of the task. When a WAIT macro instruction is issued, the
issuing task relinquishes control until the ECB is marked complete or until a POST macro
instruction is executed by the awaited task in behalf of the waiting task .

- -~-------~~~-------------

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

7-16

PAGE

Format:

LABEL !J. OPERATION /J.

[symbol] WAIT

Positional Parameter 1:

ECB-name

JECB-name}
l (1)

OPERAND

Specifies the symbolic address of the event control block to be tested for completion.

(1)

Example:

Indicates that register 1 has been preloaded with the address of the event control
block.

LABEL /\OPERATION/'\ OPERAND
10 16

7.4.3. Multiple Task Wait (WAITM)

Function:

The WAITM macro instruction temporarily suspends program execution until any one
of several tasks specified by the instruction is completed or executes a POST macro
instruction in behalf of the waiting task. Upon completion of one of the tasks,
control is returned to the program at the point immediately following the WAITM
macro instruction, with register 1 containing the address of the event control block
associated with the completed task.

Format:

LABEL /:::,.OPE AA TION /:::,.

[symbol] WAITM

OPERAND

{
ECB-name-1,ECB-~ame-2 [, ..• ,ECB-name-n]}

I 1st-name
(1)

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 7-17

UPDATE LEVEL PAGE

• Positional Parameter 1:

•

•

ECB-name-1,ECB-name-2, .. .,ECB-name-n
Specifies the symbolic addresses of the event control blocks to be tested that are
associated with the tasks to be awaited. At least two ECBs must be specified.

list-name

(1)

This is a single entry which specifies the symbolic address of a list containing full
word addresses of ECBs associated with the tasks to be awaited. The byte following
the last full word must be nonzero to indicate end of list.

Indicates that register 1 has been preloaded with the address of the list of ECB
addresses.

NOTE:

The WA/TM macro instruction may also specify a combination of ECB and CCB addresses
as parameters. See also the multiple 110 wait macro instruction described in 4.3.2.

When this macro instruction is executed, each referenced ECB is marked as being awaited.
Upon completion of a marked ECB, the waiting task is activated and the remaining ECBs that
are marked as being awaited are cleared .

The WAITM macro instruction always requires more than one event to be tested. If only one
event is to be tested, use the WAIT macro instruction.

7 .4.4. Activate the Waiting Task (POST)

Function:

The POST macro instruction activates the waiting task without requiring the awaited
task to terminate. When the POST macro instruction is issued by a task, the task
waiting on the event completion which was posted will be reactivated at the point
immediately following the WAIT or WAITM macro instruction.

Format:

LABEL !::. OPERATION !::. OPERAND

[symbol] POST

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 7-18

UPDATE LEVEL PAGE

The task being activated by the POST macro instruction is the one waiting for the task •
executing the POST macro instruction, therefore, there are no parameters for this macro
instruction.

Examples:

LABEL L\OPERATIONL\ OPERAND
10 16

i !

w......1.......L_L_l....JL.L-l-_p,-*6J>...1r:.i++.h.l.~L-"'~rrLLic~c-Bu.-.L1 ~IL-J.l_J_I _.j_I _j___L__l__L.-l-.-l.-L-1--'--''--'---'--'--L-Ll_L

l-l.....L...L...L_L..L.-L-J--IDll!::L~'-'-.f-li-"'"'"'"-""1--.l!!:IJ...~---'-1__._• _,_l~_..__.__.__.__.._~~_.__~1.--' I 1

l-l-1.......L_L_.l...JL..1-l--_µ:..l!o!!u..1-LL-1---l--.1__L-L_;__.J._! _..it_J_t j__L-.J..I _.___.__.__.'--'-_.__ ...___..__.._~__._ .-'--'--'--'-I _!__ •

•

•

• PART 4. SUPERVISOR SERVICES

•

•

•

•

•

•

•

8075 Rev. 2 8-1

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE UP-NUMBER

8. Program Management

8.1. GENERAL

Although the supervisor of the OS/3 manages the system resources for efficient overall
operation, management of problem program resources is performed by the individual
programs. The supervisor assists the program in using its allocated main storage space
and allotted processor time by providing services that, when invoked by certain macro
instructions, support flexibility in program design and economy of program execution.

The services are:

• Program initiation and loading

Dynamic allocation of main storage at job initiation.

Dynamic loading of program modules.

• Program termination

Orderly release of sv.stem reso1,1rces assigned to a problem program.

8.1.1. Program Initiation and Loading

Before a program is actually brought into main storage for execution, job control has already
built the prologue for the job. The supervisor is responsible for locating and loading the proper
program or segment. The supervisor uses the job prologue area for communication between
job control and itself. The supervisor accesses information in the prologue and also enters
information in the prologue area.

The supervisor must then:

• Assign relocation register number and value

• Set proper storage protection keys in key storage

• Load program into main storage for execution

SPERRY UNIVAC Operating System/3
8-2 8075 Rev. 2

-UPDATE LEVEL PAGE UP-NUMBER

• Link user job step at proper execution priority

• Pass control to task switcher

8.2. PROGRAM LOADER

The program loader is responsible for locating and loading program modules or overlays output
by the linkage editor in theform of phases.A load module phase maybe thought of as a program
segment that can perform one or more specific processing operations. The following macro
instructions are available:

• LOAD

Load a phase and return control.

• LOADR

Load a phase, relocate address constants, and return control.

• LOADI

Locate a phase and return its phase header in a work area.

• FETCH

Load a phase and give it control.

The use of these macro instructions is described on the following pages.

In addition, the loader is capable of modifying data in any phase of a problem program whenever
that phase is loaded. The job control ALTER statement is used to specify such changes to the
loader.

8.2.1. Block Loader

The LOAD, LOADR, LOADI, and FETCH macro instructions handle both standard load
modules, which are loaded by the regular program loader, and block modules, which are
loaded by the block loader, an extension of the program loader. The program loader reads
one sector at a time from disk, and then moves this data one record at a time to the user
job region in main storage. The block loader reads an entire track of data at a time directly
into the user job region in main storage. You can take advantage of the faster block loader
by using the BLK control statement in the system librarian to convert a load module phase
from the standard load module format to block format (described in the system service
programs user guide, UP-8062 (current version)). This may be done at any time before the
job is executed and there is no need to specify in the macro instructions loading the phase
whether the load module phase is in the standard format or in block format.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-3

UPDATE LEVEL PAGE

8.2.2. Relocation

The loader can perform positive or negative relocation on 8-bit, 16-bit, 24-bit. or 32-bit
fields as specified by the relocation list dictionary (RLD) information in the text/RLD
records of the load module.

Because of the relocation register, user programs do not require location of address
constants (A-cons) when the phase is loaded at the address at which it was linked. If an
alternate load address is specified on LOAD or LOADR, however, the loader handles it as
follows:

• LOAD

No relocation is performed. You must ensure that the phase being loaded is self
relocating.

• LOADR

Relocation is performed on all A-cons specified by the linker which refer to addresses
in that same phase. A-cons which point inside another phase are not relocated since
the loader has no way of knowing where that phase was loaded.

The following examples illustrate when the loader performs relocation:

User Program
Macro Call Relocation

LOAD NAME No

LOADR NAME No

FETCH NAME No

LOAD NAME.AL TAD No*

LOADR NAME.AL TAD Yes

FETCH NAME,ENTPT No

*Phase being loaded should be self-relocating.

SPERRY UNIVAC Operating System/3 8-4 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

8.2.3. Library Search Order

The default order of search employed by the loader is:

1. Load library file (YLOD)

2. Temporary job run library file (YRUN)

If the temporary job run library file (YRUN) is specified on the EXEC job control card, the
order of search is:

1. Temporary job run library file (YRUN)

2. Load library file (YLOD)

If an alternate library is specified on the EXEC job control card, the order of search is:

1. Alternate load library

2. Load library file (YLOD)

3. Temporary job run library file (YRUN)

To minimize search time, the loader always begins searching a library at the last root
phase loaded from that library for that job. This means that it is generally more efficient
to link modules together than to create a series of smaller, separately linked load modules.

8.2.4. Read Pointer for Repetitive Loads

Another way to minimize search time is to reduce the need for a directory search. This can
be done by using a read pointer for repetitive loads of a particular load module. When the
disc address (DA) optional parameter is used with the LOAD, LOADR, or FETCH macro
instruction, the 8-byte ·EBCDIC phase name in the user program (possibly within the
macro-generated code) is overwritten with a read pointer during the first execution of the
macro. This read pointer contains the relative disk address of the phase being loaded. The
next execution of the same macro call uses this read pointer to find the phase, instead of
performing a directory search.

With the DA option, only the first load of a module requires a directory search. All
subsequent loads of the same module use the read pointer and do not have to repeat the
directory search. In this case, the larger the directory, the more efficient the use of the
read pointer.

When using the DA option, you must be certain that the module is not being updated by
another job at the same time that it is being loaded by your job; otherwise, an error will
result. Remember, the DA option may be used only with the LOAD, LOADR, and FETCH
macro instructions, and should only be used for repetitive loads of the same module. It is

•

•

not available for use with the LOADI macro instruction. If you do not wish to add the DA •
capability to an assembled program, there is no need to reassemble.

•

•

•

8075 Rev. 2 8-5
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE UP-NUMBER

8.2.5. Loader Error Processing

When an error is detected by the loader, a binary error code is set up in register 0. If an
error address was specified, the macro-generated code branches to that address. If no
error address was specified (or if the call was a FETCH), the calling task is abnormally
terminated.

The 4-byte error code set up in register 0 has the following format:

Byte 0

Bytes 1, 2

Byte 3

EBCDIC A, R, or L specifying whether the error occurred while
loading from alternate, run, or load library respectively.

0

Binary error code. For descriptions, refer to the system messages
programmer/operator reference, UP-8076 (current version).

8.2.6. Load a Program Phase (LOAD}

Function:

The LOAD macro instruction locates a program phase in a load library on disk, loads it
into main storage, and transfers control to the calling program immediately following
the LOAD macro instruction .

After execution of this macro instruction, register 0 contains the job-relative address
at which the phase was loaded, and register 1 contains the entry-point address. This
entry point address is determined at linkage edit time. If an alternate load address is
provided (positional parameter 2), the load point address specified to the linkage editor
is overridden and the phase is loaded at the specified address. This new override
address is returned in register 0.

This macro instruction does not relocate address constants regardless of whether an
alternate load address is specified (positional parameter 2) .

8075 Rev. 2 8-6
SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL PAGE

Format:

LABEL !J. OPE RATION !J. OPERAND

[symbol] LOAD

Positional Parameter 1:

phase-name

(1)

Specifies the name of the program phase to be loaded. This may be either the 1-
to 6-character user-assigned alias phase name or the 8-character linker-assigned
phase name in the format nnnnnnpp where nnnnnn is the program name and pp
is the phase number.

Indicates that register 1 has been preloaded with the address of the 8-character
phase name.

Positional Parameter 2:

load-addr
Specifies the symbolic address at which the phase is to be loaded.

(0)
Specifies that register 0 has been preloaded with the load address.

If omitted, the program phase will be loaded at the address specified by the linkage
editor.

Positional Parameter 3:

error-addr

(r)

Specifies the symbolic address of an error routine that is to be executed if a load
error occurs.

Specifies that the designated register (other than 0 or 1) contains the address of
the error routine.

If omitted, the calling task will be abnormally terminated if a load error occurs.

Positional Parameter 4:

R
Specifies that only the system load library is to be searched for the phase.

If omitted, a full search is to be performed (8.2.3.).

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER.
SPERRY UNIVAC Operating System/3

8-7

UPDATE LEVEL PAGE

Positional Parameter 5:

DA
Specifies that the 8-byte phase name specified in positional parameter 1 will be
overwritten with a read pointer during the first execution of this macro
instruction. This read pointer is used to find the phase on the second and all
subsequent executions of this macro instruction.

If omitted, a search is performed on the phase name specified in positional parameter
1 each time this macro instruction is executed, and the 8-byte phase name is not
overwritten.

8.2.7. Load a Program Phase and Relocate (LOADR)

Function:

The LOADR macro instruction locates a program phase in a load library on disc, loads
it into main storage, and transfers control to the calling program immediately
following the LOADR macro instruction.

After execution of this macro instruction, register 0 contains the job-relative address
at which the phase was loaded, and register 1 contains the job-relative entry-point
address. This entry point address is determined at linkage edit time. If an alternate
load address is provided (positional parameter 2), the load point address specified to
the linkage editor is overridden and the phase is loaded at the specified address. This
new override address is returned in register 0.

The format and operation of the macro instruction is identical to the LOAD macro
instruction except that all address constants in the phase are relocated if an alternate
load address is specified (positional parameter 2).

This macro instruction is used to load a phase at an address other than that at which
it was linked.

Format

LABEL L'>OPERATION 6 OPERAND

LOADR
{ phase-name}[{load-addr} J[{error-addr} Jr R][DA]

(1) ' (O) ' (r) ' '
[symbol]

Positional Parameter 1:

phase-name
Specifies the name of the program phase to be loaded. This may be either the 1-
to 6-character user-assigned alias phase name or the 8-character linker-assigned
phase name in the format nnnnnnpp where nnnnnn is the program name and pp
is the phase number.

8075 Rev. 2

UP-NUMBER

(1)

SPERRY UNIVAC Operating System/3
8-8

UPDATE LEVEL PAGE

Indicates that register 1 has been preloaded with the address of the 8-character
phase name.

Positional Parameter 2:

load-addr
Specifies the symbolic address at which the phase is to be loaded.

(0)
Specifies that register 0 has been preloaded with the load address.

If omitted, the program phase will be loaded at the address specified by the linkage
editor.

Positional Parameter 3:

error-addr

(r)

Specifies the symbolic address of an error routine that is to be executed if a load
error occurs.

Specifies that the designated register (other than 0 or 1) contains the address of
the error routine.

If omitted, the calling task will be abnormally terminated if a load error occurs.

Positional Parameter 4:

R
Specifies that only the system load library is to be searched for the phase.

If omitted, a full search is to be performed (8.2.3).

Positional Parameter 5:

DA
Specifies that the 8-byte phase name specified in positional parameter 1 will be
overwritten with a read pointer during the first execution of this macro
instruction. This read pointer is used to find the phase on the second and all
subsequent executions of this macro instruction.

This option is designed to reduce the search time for separately linked load
modules which are loaded repeatedly. When using this option, you must ensure
that there is no possibility of another job deleting or moving the load module you
are trying to load. For example, if another job uses the librarian to pack the
library, this may cause a load error in your job. If you can be sure this doesn't
happen, you may be able to reduce considerably the load time for some modules,
particularly in large libraries.

If omitted, a search is performed on the phase name specified in positional parameter
1 each time this macro instruction is executed, and the 8-byte phase name is not
overwritten.

•

•

•

SPERRY UNIVAC Operating System/3 8-9 8075 Rev. 2

UP-NUMBER .UPDATE LEVEL PAGE

• 8.2.8. Locate a Program Phase Header (LOADI)

Function:

•

•

The LOADI macro instruction locates the header record of a program phase and
stores it in a work area.

You may then examine the information contained in the program phase header to
determine if it is desirable to load the program phase. If the phase is to be loaded,
you must use one of the other load instructions to load the program phase.

The format of the phase header record is shown in 8.2.8.1.

Format:

LABEL /j. OPERATION /j. OPERAND

[symbol) LOADI { phase-name } {work-area-addr} [{work-a~!~:length}J
(1) ' (O) ' ~II;;

Positional Parameter 1:

phase-name

(1)

Specifies the name of the program phase to be loaded. This may be either the 1-
to 6-character user-assigned alias phase name of the 8-character linker-assigned
phase name in the format nnnnnnpp where nnnnnn is the program name and pp
is the phase number.

Indicates that register 1 has been preloaded with the address of the 8-character
phase name,

Positional Parameter 2:

work-area-addr

(0)

Specifies the symbolic address of the area in main storage where the phase
header is to be placed.

Specifies that register 0 has been preloaded with the work area address.

Positional Parameter 3:

work-area-length
Specifies the number of bytes of the phase header that are to be placed in the
work area.

8075 Rev. 2
SPERRY UNIVAC Operating System/3 8-10

UP-NUMBER UPDATE LEVEL PAGE

If omitted, the value 1310 is assumed. This specifies that the portion of the phase •
header up to and including the phase load address and the phase length is to be
placed in the work area.

Positional Parameter 4:

error-addr
Specifies the symbolic address of an error routine that is to be executed if a load
error occurs.

(r)
Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the error routine.

If omitted, the calling task will be abnormally terminated if a load error occurs.

Positional Parameter 5:

R
Specifies that only the system load library is to be searched for the phase.

If omitted, a full search is to be performed (8.2.3).

8.2.8.1. Program Phase Header

The format of the phase header is as follows:

Bytes Contents

0,1 Systems use

2 Phase number

3,4 System flags

5-8 Phase load address (linker assigned)

9-12 Phase length

13-20 Phase name (linker assigned)

21-23 Date (packed decimal - yymmdd)

24-26 Time (packed decimal - hhmmss)

27-30 Module length

31-38 Alias phase name

39-68 Comments

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-11

UPDATE LEVEL PAGE

8.2.9. Load a Program Phase and Branch (FETCH)

Function:

The FETCH macro instruction locates a program phase in a load library on disk, loads
it into main storage, and transfers control to the address specified in the phase
transfer record, unless an alternate address has been specified (in positional
parameter 2).

After execution of this macro instruction, register 0 contains the job-relative address
at which the phase was loaded, and register 1 contains the job-relative entry point
address. This entry point address is determined at linkage edit time. If an alternate
entry point address is provided (positional parameter 2), the entry point address
specified to the linkage editor is overridden and the phase is given control at the
specified address. This new entry point address is returned in register 1.

Format:

LABEL l::.OPERATIONl::. OPERAND

[symbol] FETCH { pha~~)name} [,{ entry-p~~t-name} J [,R] [,DA]

Positional Parameter 1:

phase-name

(1)

Specifies the name of the program phase to be loaded. This may be either the 1-
to 6-character user-assigned alias phase name or the 8-character linker-assigned
phase name in the format nnnnnnpp where nnnnnn is the program name and pp
is the phase number.

Indicates that register 1 has been preloaded with the address of the 8-character
phase name.

Positional Parameter 2:

entry-point-name

(0)

Specifies the symbolic address of the point in the program at which control is to
be passed after a successful load.

Indicates that register 0 has been preloaded with the entry point address.

If omitted, control will be passed to the address specified in the phase transfer record .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-12

UPDATE LEVEL PAGE

Positional Parameter 3:

R
Specifies that only the system load library is to be searched for the phase.

If omitted, a full search is to be performed (8.2.3).

Positional Parameter 4:

DA
Specifies that the 8-byte phase name specified in positional parameter 1 will be
overwritten with a read pointer during the first execution of this macro
instruction. This read pointer is used to find the phase on the second and all
subsequent executions of this macro instruction.

If omitted, a search is performed on the phase name specified in positional parameter
1 each time this macro instruction is executed, and the 8-byte phase name is not
overwritten.

8.3. PROGRAM TERMINATION

The program termination macro instructions cause the system facilities assigned to a job
or to a task to be relinquished for assignment to other jobs or to other tasks. When
terminating a task, the EOJ, CANCEL, and DETACH macro instructions will also clear all
1/0 locks for the task.

The following macro instructions are available:

• EOJ

Causes normal job step termination.

• CANCEL

Causes abnormal job termination and prints out the job main storage.

There are two other macro instructions used for job and task termination:

• DETACH

Causes normal termination of a task (7.3.3).

• DUMP

Causes normal job step termination in addition to printing out the job main storage
(9.1.2).

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8.3.1. Normal Termination

8-13

UPDATE LEVEL PAGE

Normal program termination is requested by means of the EOJ or DUMP macro
instructions, the DUMP operator command, or the self detaching of a primary task. This
implies normal completion of the job step and continuation of the job. These functions
will allow all task and 1/0 to idle down prior to terminating the program and passing
control to the next phase of job control.

The termination of a job step which has open data files will cause an immediate
cancellation of the job.

The DUMP macro instruction provides a printout of the contents of the job region.
Subsequent to printing the region the DUMP transient routine overlays itself with the end
of-job step transient routine which provides normal job step termination.

The DUMP console command sets the job step to execute its own DUMP macro
instruction.

8.3.2. Abnormal Termination

Abnormal job termination can be requested by you through the CANCEL macro instruction,
by the operator through the CANCEL command, or as a result of a system detected error.
The latter case includes: systems function errors with no error address specified, program
exception errors without program check island code, and unrecoverable hardware errors .

The cancel function detaches all subtasks, delinks all outstanding 1/0 and waits for all
outstanding system functions to be completed. It provides a printout of the contents of the
job region if the DUMP option was specified on the OPTION statement, and either there is
a printer assigned to this job or there is a printer available.

8.3.3. Printout

Both the CANCEL and DUMP macro instructions provide for a printout of the contents of
the job main storage which will occur if a printer was assigned to the job using the DVC
and LFD job control statements, or is available for assignment. and the DUMP, JOBDUMP,
or SYSDUMP parameter was specified in the OPTION job control statement. Otherwise,
both macro instructions will execute normally; however, no printout will occur.

8.3.4. End-of-Job Step {EOJ)

Function:

The EOJ macro instruction causes normal job step termination. It terminates a
primary task or a subtask. If an EOJ macro instruction is issued from a primary task
with active subtasks, all subtasks are terminated. If an EOJ macro instruction is
issued from a subtask, only the subtask and any subtasks it created are terminated.

This macro instruction also clears all 1/0 locks for the task .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-14

UPDATE LEVEL PAGE

Format:

LABEL LOPERATION 6 OPERAND

[symbol] EOJ

There are no parameters for the EOJ macro instruction.

The EOJ macro instruction is used to cause normal job step termination. It is usually
invoked by the job step task after all attached subtasks have been detached and all data
files have been closed. Job control is then loaded in the problem program area to
prepare the next scheduled job step, or to terminate the job if it is the last job step of
the job.

The EOJ macro instruction may be used to force subtask termination for the job step. If
a subtask encounters a fatal (abnormal termination) error condition before the EOJ
function receives control, the job may be cancelled (depending on the existence and
function of an abnormal termination island code routine). An EOJ macro instruction
executed by a subtask is treated as a request for the DETACH macro instruction
function.

Error Conditions:

The job will be cancelled if errors which prevent normal termination are encountered
by the EOJ routine. A hexadecimal error code is provided for display in the diagnostic

•

storage dump produced by the CANCEL function. The error codes and their meaning •
are shown in the system messages programmer/operator reference, UP-8076
(current version).

8.3.5. Cancel a Job (CANCEL)

Function:

The CANCEL macro instruction causes abnormal termination of a job. It terminates
the current job step, prevents execution of any remaining job steps for that job,
detaches all subtasks, delinks all outstanding I/Os, and waits for all outstanding
system functions to complete.

This macro instruction also displays an abnormal termination message on the
operator console indicating which job is being terminated and the error code defining
the error. In addition, this macro instruction provides a diagnostic storage dump of
the job region similar to that produced by the DUMP macro instruction. (See 9.1.2 for
details of the dump printout.)

This macro instruction also clears all 1/0 locks for the task.

Format:

LABEL LOPE RATION 6 OPERAND

[symbol] CANCEL •

•

•

8-15 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Positional Parameter 1:

error-code

(0)

Specifies a 1- to 3-digit hexadecimal error code to be displayed on the system
console and included in the diagnostic storage dump.

Indicates that register 0 has been preloaded with the error code.

If omitted, the error code is set to binary zero.

The CANCEL macro instruction is used to cause abnormal job termination when error
conditions are encountered which prevent further processing. The abnormal job
termination function may be requested by you through the CANCEL macro instruction,
by the operator through the CANCEL command, or as a result of a system detected
error.

If an error occurs during the execution of a macro instruction, control will be passed to
the error routine if an error address was specified or, if none was specified, to the
abnormal termination island code if it is present. The use of island code permits you to
take additional action prior to terminating the task or job step which is in error.

Error Conditions:

A number of conditions may exist when the cancel routine is entered, however, the
error code displayed in the diagnostic storage dump will always represent the original
cause of entry to the abnormal termination function.

A printout is produced if:

• the DUMP, JOBDUMP, or SYSDUMP option was specified via job control; and

• a printer was assigned to the job or is available.

8.4. TIMER SERVICES

During execution of a job, you may want to record the date and time that an event occurred,
for example, the date a credit was posted to an accounts receivable record, the date and
time a message was received from a remote communications terminal, or the date and time
a job step was completed. You can do this by using the GETIME macro instruction.

At times you may want to request an interrupt to your program after a specified interval.
For example, you may wish to allow 30 seconds for a response from a terminal, and if no
response is received within that time, branch to another subroutine or to another task. You
can do this by using the SETIME macro instruction.

•
The date capability is always available. The GETIME macro instruction can be used to
obtain the date even if the timer services module is not part of the resident supervisor .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-16

UPDATE LEVEL PAGE

Day clock and timer facilities are optional functions which must be requested during system
generation. For full use of the GETIME macro instruction, and to use the SETIME macro
instruction, the timer services module must be resident. For example, if the statement
TIMER=MAX was specified at system generation, the timer services module is included in
the generated operating system and stored in the resident supervisor portion of main
storage. This allows you to use the GETIME macro instruction (for both date and time) and
the SETIME macro instruction.

8.4.1. Date and Time Facilities

8.4.1.1. Current Date

The current date is placed in the systems information block (SIB) by the operator during
initial program load. The date is automatically advanced each day at midnight unless the
supervisor was configured at system generation time not to update. In that case, the
operator must change the date through a console command. This date is referred to herein
as the system date to distinguish it from the job date.

SIB

system date

There is a date for each job, which is stored in the preamble for the job. This is the date you
get when you use the GETIME macro instruction. Normally, the job date is the same as the
system date. However, you can change it using the SET job control statement which
changes the date for your own job and does not disturb the system date or the job dates for
other jobs being processed. For example, if your application calls for statements to be
produced on the fifteenth of each month but no processing was done that day because of a
holiday or because of machine maintenance, you could change the job date in the preamble
the next day from 16 to 15 so that the statements and other records produced will show the
date the job was intended to be run.

Job Preamble

job date

•

•

•

•

•

•

8075 Rev. 2

UP-NUMB EA
SPERRY UNIVAC Operating System/3

8-17

UPDATE LEVEL PAGE

8.4.1.2. Time of Day

If the timer services module is resident, the GETIME macro instruction gives you the time
along with the date. The current time of day is maintained by a simulated day clock in the
SIB. This day clock specifies the amount of time that elapsed since midnight. The clock can
show a maximum of 99 hours and may be permitted to run past midnight if jobs were
processing at that time. The time of day is automatically reset at midnight along with the
date unless the supervisor was configured not to update. Otherwise, the operator must
reset the clock each day. A common use of the clock is to record the time of day a job was
run and to calculate the length of time required to run it. The job log you receive with your
listing shows the start and stop times for your job steps. The run time could be used to
charge an account number, or to invoice your department for the computer time required
to run your job.

SIB

day clock

8.4.1.3. Get Current Date and Time (GETIME)

Function:

The GETIME macro instruction obtains the calendar date and the current time of day
from the simulated day clock function of the supervisor. The date is returned in
register 0, and the time is returned in register 1. If the timer services module is not
part of the resident supervisor, the contents of register 1 are unpredictable.

Format:

LABEL 6.0PERATION 6. OPERAND

[symbol] GETIME [{~}]

Positional Parameter 1:

M

s

Specifies that the current time of day is to be. expressed in milliseconds in binary
representation .

Specifies that the current time of day is to be expressed in packed decimal format.

If omitted, the parameter S is assumed.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-18

.UPDATE LEVEL PAGE

The current calendar date is returned in register 0 expressed in packed decimal in the
form:

Oyymmdd+

where:

yy = year

mm= month

dd = day

The high-order half byte is always zero, and the low-order half byte is the sign, which is
always positive.

The current time of day is returned in register 1. If you write this macro instruction
with the S parameter or with no parameter, the time is expressed in packed decimal
format in the form:

Ohhmmss+

where:

hh =hours

mm= minutes

ss =seconds

The high-order half byte is always zero, and the low-order half byte is the sign, which is
always positive.

The following entries:

LABEL OOPERATION~ OPERAND
10 16

or

I I I I I I I I I ~1E.;\'J:,rl~ I

return the date and time in registers 0 and 1 in packed decimal format. You can then
store the contents of these registers, and edit the fields for a printout of the date and
exact time that an event occurred.

For example, let us assume you wish to print the date and exact time a job step is
completed. The subroutine shown in Figure 8-1 gets the date and time from the job
preamble and the SIB, unpacks the contents of registers 0 and 1 into an 18-byte buffer
for editing and printing, then terminates the job step.

• I

I

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

LABEL

SPERRY UNIVAC Operating System/3

COMMENTS

8-19

UPDATE LEVEL PAGE

80

l.µ_L.J_c_Lc_cji-$~1.l'.ll~~_,__l_J_j_J_j_L.i_L.LJJ-1_LJ.___.__l_L_L_l_L.lill'.~~~L!fl_l<'"1~!UJ""-'"IJ!il..llLJi!ll!~~:P"'"'-L-Pf-U'Ulu1~1~!~!.
2.1-1-L.L_L.LJL.L.Ji-l""~--'-+-t'-"'~=
3,µ_Ll....J...l.J.._4~-1..LLj._IM.-i~~...L.L.LLLLJLLl-'-L_L.1_.L_J_J_~~9...!.ll!.1'<'1..!Ll'Mi!!_~~"'-'-L_LL'"-"'"""""=....L-L.L--Lf-+-'-J_j_L..LJ'-'-I
4..l.LL1....J..LJ.-4~~"-l-!DiY.Jbbl;,]ISCtct.1.J9.JJ..>-JW~v:n.u_,_.LL.J_j_LJ\,!J~~~~!l.!2_~=:.1~..L.L_J_LL.J_Ll....J-L.L~+-'--J_j_'--'-''-'-l
5..l,....._Ll....J-1...i....J.....j.~hl'..!S.4-~bbl~~~o.L+~"'-UiiL...L...J_j_J....!!,!,~~!.J..ill!l!a..!!!!E~!DJ:.l~...J...L.L.l-L.J_L.i....J:-'--"--Lt-t-:'--'-:::1-:.l.....L...L....L...J
~l-c-i...L...L.L......L..j_~----'-"-~~!:::_J;f~t+JIJ..:..i.l::&a:..t_i__,__,__,__c_L'-'-.L~d.!!Ul~LQ;!l'l!Bnl!S.!D:JdSnLila.Dla.~L{!]i:_ga:~~IJg'f}Lloj-'J-""'-~J_j_~
1L...c..L.LJl.L.Li.bI...i...Jj]~Ea::.±ili'~~~L.L.L_J___,_...L.L~~~iril:e:l~:f...i:iafttthmdJ:~d]lme.:;![kl:!l!!ll.f.1!chJ:~~
&w_L.L..J._L._..i.J_Jl"IY~LU~:.b!;1&1,bJ__._._u;;IYLlwi;.u~lLL-LL.L.L-~,_.L.L_,_i_-'-L-'-'---LL.'--'--'_Lc-'--'--..LJ_J_j_L.L.JLL.J.-'-Li++-1-J_j_L-L.J-Y
q•!-i-JL.LJ._L_._4__p..'L.l.._-L.J-_µ:!,!Ll::.~~¥-J,--1L..c-'--'-_LJ_iJ...L..l._L_L_-1..L~L.L_L..LL.LJ-L.l_L.!...L.L--'--.L..LL..L.L-1..L-LL.L..LL.L.'-'-j--t-'-'-L--'--'~
IQ!-i-Jw.....l-1...l.._4~u,,,,,,,-L.J-~1.1:Jt..BJ:.~~.L.J+1~::1!:..1!"1Doil[J§.L...L.L-1..L.Lf-.w....L..LL.LJ-Ll_LJ.-'---'---'--'--'--'--...L.L-1..L-1..L.L..L'-'-'-'-J--t-'_LJ.--'--'~
11. L-L.L..l..LJ._J~'L.__4J~EB~~,&L.~LL1..L.L-'-'-Lc...L.L.LJ../;-L.l..L1-__l_LJ_j_LL.,_,___,..LJ.-L..L..Li..L.1-L.J-LL.l_LJ.-4+1-.LLL..LJ'---'-1
1'2.L_.....LL.Li...JjM\U:.__,__LJB,!Jfi:.EllSd:&~~IJEJ!Ea~G.__c__l_LJ.\i-L.L.L_LJ____l_L_k.L.c__l_Li.LL.L.L_,_l___l_L_L.LJ_L_J_LLl--1-+_L_J_J__~LL-Lj
13.µ_L..LJLG~-J!1Y.i.i.L--'--l--ltll.Ll:.ir~=~LL-uuc.J.-l-'-L-'-1...L.L..L.L-1.JL_>Ml:mn::-""--'"-'E~'4-J;op~~"""l"""......_.llll,,,,...f"t
'*·i-L...JL-L.L_L_..4---~.J..._,_-+--!];~ibSJlSctl'.!J+,\,.LL..Ll_,_L_c__L_L__c__l_L.J._J-"..1.+1-_L_L_LL.l_L.L_i_._L_l_L_LL.l-'-L..L.L_L_L_LL.l_l_LJ_L"-t--11-'-'-'-L...L.L"-1
15µ_L...L...JL...Lc..J....)-0:~..L,J.-!.9!dJ!:..i!::.El!i!U.l!.l.\..l.6.,L4JD,Ul:J.bQ.JSa:l.!6._L_J_..L4...L.L.l...l....LJ_.L..J....LL.L...L.J....L..1.....L-.J.-'-1...L.L...L.L...L.L.J.....J.....1....LH-L.L.LL.lL....1....i..-j
lb1.j____,_..L.L.L_L_-4--~1-L-l-JlSiU.Eil~ffilJ~;..;_'_,_,_Llj_LJ_J..j_L..i_LL..L.4-L..LJ-LL.L.LL.Li--1..L_Ll_L.LJ...LL
~.L_,-'--'-__L___J_Jf!Wf,;,_,__~UEJ~mll~?,Jui;t:S.U'EB~LLl.h_L_Ll..J--L.LJ.--1..L..L..Lk.L.c_L_L_u_L.LJ_
~'i-.L-J...LL.1-L..LJ_.j!.'.lllJ:!<--"--4__µ.l'.!JD!'.:i9.!XII..'~~~~L.LL.LJL.L.l_L.!.--L..L-1L.L-L.L..L.L_L_L_L_l_LLLL-L.L.L.L~c.J..l_L_L..L.LiJ.~-'----'-L++
1q •. L_.L.L.L.Li...JjBU;:'~~KlJ~~EB;JS...,___u....LL..L..LL____._L_Lill"!~-~~rulJlmi!~un.J~~LL.l_L_L..L..L~_L_Li..L..~

Figure 8-1. Example of GET/ME Macro Instruction

Let us assume the GETIME macro instruction was executed October 24, 1977 at 13
seconds after 9:30 A.M. The job date from the preamble would be returned in register
0, and the time from the day clock in the SIB would be returned in register 1. The
registers would contain:

Preamble I job date SIB day clock

Register O I 07 , 71 I 02 , 4C I Register 1 I 00 193 I 01 I 3C I

Following execution of line 7, BUFFER contains:

Following execution of line 18, BUFFER contains the date (year/mon/day) and the time
(hours.min.sec):

The date and time are printed:

77 /10/24 09.30.13

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-20

UPDATE LEVEL PAGE

If you write this macro instruction using the M parameter, the date is expressed in •
packed decimal in register 0, but the time is expressed in milliseconds in binary
representation in register 1. For example, if the following macro instruction were
executed at 10 seconds after midnight, September 26, 1977, registers O and 1 would
contain:

LABEL OOPERATIONL2. OPERAND
10 16

I I I I I I I I I

Register o I 07 I 10 192 I ac I Register 1 I 00 I 00 I 21 I 10 I

8.4.2. Timer Interrupt Facilities

The timer services module also enables you to request a scheduled timer interrupt in the
requesting task. Using the SETIME macro instruction you may request an interrupt after any
time period greater than 1 millisecond. You may:

• continue processing the task until the interrupt, then transfer control to the task's timer
island code;

• suspend processing the task until the interrupt, then continue with the next instruction;
or

• cancel a previous SETIME request.

The time interval requested in the SETIME macro instruction is added to the current time of
day to calculate the time when the interrupt is scheduled to occur, and this SETIME
expiration time is stored in the task control block (TCB).

TCB

SETI ME expiration time

timer island code address

•

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

8-21

UP-NUMBER

If timer island code is to be executed, a STXIT macro instruction must have been previously
issued to link the island code to this task. Timer island code is described in 8.6. If no timer
island code is present, or if the interrupt request was cancelled, the interrupt is ignored.
There may only be one set of timer island code per task.

If the task is to be suspended, the next available task in the switch list is executed. When
the interrupt occurs, control is returned to the next instruction in the task immediately
following the SETIME macro instruction.

8.4.2.1. Set Timer Interrupt (SETIME)

Function:

The SETIME macro instruction requests a scheduled timer interrupt in the requesting
task and continues executing the requesting task. When the specified time interval
elapses, the task's timer island code (as specified by a STXIT macro instruction) is
executed.

Note that in this case the STXIT macro instruction must have been previously issued to
set up timer island code for this task. There may be only one set of timer island code
per task.

If written with the WAIT parameter, this macro instruction requests a timer interrupt
and suspends execution of the requesting task until the timer interval elapses. At this
time, the task resumes execution with the next instruction following the SETIME macro
instruction.

This macro instruction cancels any previous SETIME request if entered with no
parameters.

Format:

LABEL fl OPERATION fl OPERAND

[symbol] SETIME

Positional Parameter 1:

time-interval

(1)

Specifies the interval of time that must expire before the interrupt is generated.
This interval is expressed either in seconds or milliseconds depending on the entry t
in positional parameter 3. The maximum value that may be entered as positional
parameter 1 is 409510. To specify a value greater than 4095, enter (1) as
positional parameter 1 and preload register 1 with the required time interval
value .

Indicates that register 1 has been preloaded with the time interval value.

If omitted, any previous SETIME request for this task is cancelled, preventing the
scheduled interrupt.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-22

UPDATE LEVEL PAGE

Positional Parameter 2:

WAIT
Specifies that the problem program is to relinquish control until the specified time
interval expires, at which time control is returned to the point immediately
following the SETIME macro instruction.

If omitted, the requesting program retains program control. When the time interval
expires, the timer island code is activated.

Positional Parameter 3:

M

s

Specifies that the time interval entered as positional parameter 1 is expressed in
mi 11 iseconds.

Specifies that the time interval entered as positional parameter 1 is expressed in
seconds.

If omitted, the parameter S is assumed.

8.4.2.2. Continue Processing Until Interrupt

•

If you omit the WAIT parameter, the task retains program control and continues processing •
at the instruction immediately following the SETIME macro instruction. When the time
interval elapses, the timer island code for this task is executed. For example, the
instruction:

LABEL OOPERATIONl::. OPERAND
10 16

\ 0,,

or

requests a timer interrupt in 30 seconds. The task continues processing until the 30-second
time interval elapses; then the timer island code is executed.

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

If you want to specify an interval smaller than a second, the instruction:

LABEL OOPERATIONi:. OPERAND
10 16

ion

8-23

UPDATE LEVEL PAGE

requests a timer interrupt in 200 milliseconds. The task continues processing until the 200-
millisecond time interval elapses; then the timer island code is executed.

Figure 8-2 is an example of the use of the SETIME macro instruction to request an
interrupt in 25 seconds so that a time limit of 25 seconds can be placed on the computation
that follows.

LABEL OOPERA TIONL'I OPERAND COMMENTS
10 16

l.~Ll.i.!.J.!:_li;;,_~~'IJ!hl'.~t--C-~.l.Jl.".lbil.L~~'i!Ji_l_~~~___il_!~~_bhl;J;...c;~~...LJ...Ll_j_j__l_L_l__i_j_j__i...l."...LJ._Ll-!-l-i
2.~~~--L..+-+-'-~-'-+-+--'---~-~~~-"--'-~~~~'--'-'--"-"--"--'-~~_l_L
3.t"'-LL.L..L.L.L++!-1-..LJ.--+-t_[_J_[_J---1.C""'-'.J!:!Jl.""""~LLLLJ..!.<l:.ll=J.~~~~L_!,..,~~.t..U;~:l!&'~~_td,,~~~~...L...L_t_L+.+-i
4.l-:"'-"-'--~-"-'-Hi""-'-"-""'"-'+-+"'-llP.w="'"""""""""""'-J.l-""""~"'-"""L..J_l._L_...L.l__l_l_LJL..J_j_L.J......1......L..L..LJ._L_L...L.L.L...L..L..LJ._j_j__L_Ll._L_.L_l_L_l_J.--1--t
~f""-~~....L..l.+-if-:.l-L...L~f--L....L..L-"-.l"!°-'-"-"-""-!.l.....Ll.J.!.il.:..l.....,,.!Oll-~11...l.11:~.uolk=WLL.LL.J......1......L...1...LJ.....l-L...LLL.....L..L...L..l._l_l....l-!....L.L.L...L...L...L..j.+_.J.
6.'-'-'-_L_L_LL__c4-f;;~~~~~L.1.._L_Ll_.L__J_J,_l__i__L_L_j__iTu~J"J'(i__ifil.\,{£~~~~L.1.._L_i_l_i_
1f"'-L.LL..L_L.Lt-+LLL..Lt-+L.LL.L"""--'~'-'-l_~_i___i..~~hl~;i__,j,~;.u:::L_l_L_L..L_l_L_l_L..L.J.-'--.L...L,j__L_l___L_L_l_i__L_L_i__,l__L_L-'-l.~-l-1
8f"'=ILJ.LJ""-'-'-''=Y_,,.,....,,.,_-"--f--f'i-_l_L_L_L_L_L_l_L.L.l.._.LJ_j_[_.L.1_L..L_Li_~L.1-.J-L.l_J_j---.L.J.---.L.J._J__i_j_j__i_L_l_L--L-LLL.J.._j__c_L_L_L.L.1_LJ_J_i.
q'P"-'...L1--'-~-L-t+:--.LJ_1-\-~...LJ..i.\.ll=1l...l..L_Ll.J\,;,L~l!;;,,_i...l.LLJ_Lh.l..i.!!ll;;c__u~JJJ.ULitl~LJQl~~~~;[l.!t;M__Ll__Jc_L__i_i_l-+-J-i
to.~-L...L..L...-4-~LL.....t...j...fl~~r:GJ:;~ill.!1filili&&.i~~~iLEi...£WillAAflLS.ifill~~;;8.J,,~~~~.l-!....c
I\ .1-'--L.L.L..L.L.L+t''"""'-.L...1.--t-t-"""'~""""ML.L..LL.L.L.L...L...L..LJ...LJ.~~~LD._.k!o.!:Ll.[~'IHL_u._i.~;hC[.l..LJLLLLLL.L..L.L.L.L.L_t_L++-i
~-1-:"'-"-'--~-"-'-He-L-L...L"-f--f-L..L...L-'-'L...LL...L..L..L_l_L..L..J._L_L...LL_L-'+-~--'--:!~!:+-:':::-L.J......1.....LJ._J_J;f---L..L.L.L...L..L..LJ.__L_J__L_Ll.._L_.L..J.._J._~+-1
l~.t--'-~~..L...L-+-JL_l_L...L"--++~..L...L-'-''-'-L...L~...L..L..L..J.-'--L...LL..L.-'-\-...L..L--'--"----'-L...L"-'--.J......1.....LJ.-'-J_l_L...L.L.L...L..L..L..J._LJ__J_LL.L.L...LJ
'~--t-'-~..L..J......._,'-+-t--'-.L...L-'-+·-t-'__L_JL...LL..L.J.....L..L...L-'-J-"-L..L...L.L..L..L...L.:J..__J_J__L_L...L.L...L..L...L...LJ._L.j__L_L_L-'-L_l_L..J.....l....LJLLLL.L.L...L..L..J.....l_l__j>-J-1
f5.l-:"'-.........._J....L........,_+-f~-'-'-H~c.u.....L....L...L...LJ....L..J....J......L..L....L...L....L..1.....L..1.....LIJ==<L.!.1...'-'-'=....._,,,""""'.........,.t.1.U..J=i:""'-'"'-"'!.J~w.l."""1:'-lo!...._..il:fo~OLL.,+...µ
(b.1-'-.L..L.L...l.....L..L++""°"""-'-H"""'"'Oo.l.Lll.lll_~_LL.J....J......L..L...Ll._L..1_[_J__i..,,~1D_~"""-'"-U"1D__Jl"!!.~_i__l_L.JLLL_L_L_l__.L.1_
l'f. !TI'-L.L.L..LL.LW-LL.L...L.W-.L.LLL~~~~~d.U__thl<,U.!"LJ,,~~JLU;c__L~~-1....J.....L..1.-1......l__!__L_J__i_l._i....LL. -~~~....-.
~-1-"--L.L..l.....L.L---'-+...p..!l..ib.!"-lf-~L_J__j___l__!....L...L....L..l_j_J__Lj_LLL...L..Ll\,!i~~d;;i;~!a.!,,&t:!'1L.:~W;l-'--'--'--"-..l._i_..J.....J....J....LL.L..JL.Ll_~4

• E e.T,E;R ,$A\/E, ,Al'REA, ~Q,UJ:J~1~-~~-+-+~
I I I 1LN.L\,I1A,LU{, IZ,ERO..l.. _j_j_..LJ.J__L~~-+-l~

-~~~ __ L__J_L &:r, i=I ,I, WHIEJ..l ~APS,E,9 I .1~.~~~

Figure 8-2. Example of SET/ME Macro Instruction

SPERRY UNIVAC Operating System/3
8-24 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

Line 4 links the timer island code (lines 27 to 29) which sets a flag when the time interval •
expires. Line 6 requests an interrupt in 25 seconds and the compute routine (lines 8 to 16)
is entered. Line 18 is the normal exit which occurs if computation is completed before the
time elapses. Lines 20 to 25 are the error routine which is executed if the time elapses
before the computation is completed.

8.4.2.3. Wait for Interrupt

If you use the WAIT parameter, the task suspends processing and program control is
transferred to the next available task. When the time interval elapses, program control is
returned to the next instruction in the task immediately following the SETIME macro
instruction. For example, the instruction:

LABEL 00PERATION6 OPERAND
10 16

requests a timer interrupt in 30 seGonds. The task is suspended until the 30-second time •
interval elapses, then processing continues with the next instruction. This instruction could
be used following a message to the console operator or a question to a user at a remote
terminal allowing a period of time (in this case, 30 seconds) to reply or to enter additional
data.

8.4.2.4. Cancel a Previous Timer Interrupt Request

To cancel a previous timer interrupt request, simply use the SETIME macro instruction
without parameters. For example:

''J--L-'---L-...L-'---L-...L-l-""""''=L.Ll~--J.!=l~""-=l=-=µ.!..l!l-'--'l.o!!~~__J__J__[_-'------l.__[_..L.-1__l_..L.-1__l_-'------l.__l_-'------l.__l__L__l____J_
2.

~_.__._~___.___.___+-----ll--'-'--=~'---+-'-+'-'-'='-'-'-L--'-='-'--'-"--'--'--='-"-'--'-'----'---'----'-'--'----'-----'-'--'----'------"---'-'-'---'---'-'----'-----'---~

3.l--'-......._...._.._.__......_.__..-+-..L........L-'----'--<l--l---'--'--'----'--L-.l-'--'-.L--1..---'-.....__,_._......_'-----'----'-..L........l.--'----'-'--'---'--_,_____,_--'---......_'--'-

4._...__.__.__..._..._..__.--l-+-~'-'--+~..___,___.___,_,___-'-'--J_._.__--'-----'---.___._..__.___.___-'----'----L-L-'--~L-L-"-~
5,.._._ _._....._'-+-+-..L........l.--'-...........,1-+-'-.._.__._.....__._.__._ _._ _._...._ _._ _._...._ _._ _._...._........._

b.t-"--....L.....J'---'---L....l-'--t--f'-=~-=...il-""l---'-----'-'--'--'--'--'----'---l.--.l.......L....L.....J-'-_l___l__l__.L_L.....J...._~__!.__1-L.....L.....J'--L....L.-1----1-

Line 1 requests a wait and timer interrupt in 300 milliseconds. Line 6 cancels the request.
The next time these instructions are executed, the wait and interrupt requested by line 1 are
ignored and program control goes immediately to line 2.

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8-25

UPDATE LEVEL PAGE

8.5. PROGRAM LINKAGE

A program may consist of several phases or routines produced by an assembler, compiler, or
other language translator, and then combined by the linkage editor. Control can be passed
from one routine to another within the program. This is referred to as direct linkage.
Linkage can proceed through as many levels as necessary. During the execution of a job
step, a routine (referred to as the calling program) passes control to another routine (the
called program), which can in turn become the calling program passing control to a third
routine (the called program), etc. This branch and linking process requires that the contents
of certain registers be saved, then restored, so that control can be returned to the calling
program.

The following macro instructions are used for direct linkage:

• CALL/VCALL

Calls a program module and gives it control.

• ARGLST

Generates an argument (parameter) list.

• SAVE

Saves the contents of specified registers .

• RETURN

Restores registers and returns control.

The CALL and VCALL macro instructions can also be used to pass parameters from the
calling program to the called program.

8.5.1. Linkage Register Conventions

During the direct linkage process, certain registers are used for specific purposes to avoid
conflicts in register use. These registers and their uses in the linkage procedure are:

• Register 0 - Reserved for system use

• Register 1 - Parameter or parameter list register

Register 1 is used for passing parameters between linked programs (each parameter is
four bytes long and is aligned on a word boundary). This register is loaded with the
parameter to be passed, or, in the case of a parameter list, the address of the first
parameter in the list. The last parameter in a parameter list has its sign bit set to 1.

• Register 2 through 12 - Free registers

•
These registers are never used or referenced by the direct linkage macro instructions .

Register 13 - Save area register

If a save area is provided for the called program by the calling program (for temporary
register storage), the address of the save area, which must be aligned on a full-word
boundary, is loaded in register 13 by the calling program.

SPERRY UNIVAC Operating System/3
8-26 8075 Rev. 2

UP-NUMBER .UPDATE LEVEL PAGE

• Register 14 - Return address register

This register is loaded by the calling program with the address to which control should
be returned following the execution of the called program.

• Register 15 - Entry point register

This register is loaded by the calling program with the address of the entry point in the
called program. This register can be used to provide initial addressability in the called
program.

8.5.2. Linkage Procedure

The calling program establishes direct linkage with another program by means of the CALL
or VCALL macro instruction. If registers are used in the called program (other than 0, 1, and
15), the SAVE macro instruction must be used to save their content. The RETURN macro is
used to return control to the calling program.

The calling program is responsible for the following:

• Loading register 13 with the address of a 72-byte save area (if one is required by the
called program). The save area must be aligned on a full-word boundary.

• Loading the parameter register, if necessary .

• Loading register 14 with the return address.

• Loading register 15 with the entry point in the called program.

The called program is responsible for the following:

• Saving the content of all registers used by it, with .the exception of registers 0, 1, and
15 which are considered volatire. The contents of registers are saved in the area
addressed by register 13.

• Following its execution, the called program must reload the saved registers and
transfer program control to the return address loaded in register 14 by the called
program.

You can have the CALL, VCALL, SAVE, and RETURN macro instructions perform the linkage
functions for you. Or if you prefer, depending on how you code the parameters in the SAVE
and RETURN macro instructions, you can perform some of these functions yourself.

If you use the SA parameters in the SAVE and RETURN macro instructions, the macro
establishes a save area and loads the address of the save area into register 13. If you do not
use the SA parameters, you must establish the save area in the calling program and load
the address of the save area into register 13 before issuing the CALL or VCALL macro
instruction.

If you use the COVER and COVADR parameters in the SAVE macro instruction, the macro
loads the base register addresses. If you do not use the COVER and COVADR parameters,
you must perform your own base register loading.

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

8-27

PAGE

• 8.5.3. Register Save Area

•

•

A save area is established by one program (the calling program) for use by a second program
(the called program). If the called program finds it necessary to use any of registers 2
through 14 thereby destroying their contents, the called program must store the original
contents of these registers in the save area provided by the calling program, before using
them. The called program itself can be a calling program, and must provide a save area for
its called program (the third program in the chain). Any number of programs can be chained
together in this manner. It is not necessary to have a save area in the last program of a
chain.

Standard register save areas are used with the CALL, VCALL, SAVE, and RETURN macro
instructions. Note that this register save area is different from the save area used with
island code linkage for register and PSW storage (described in 8.6).

The format of the register save area is shown in Figure 8-3, and further explained in Table
8-1.

Word Byte Content

1 0 RESERVED FOR SYSTEM USE

2 4 SAVE AREA BACKWARD LINK ADDRESS

3 8 SAVE AREA FORWARD LINK ADDRESS

4 12 CALLING PROGRAM RETURN ADDRESS

5 16 CALLED PROGRAM ENTRY POINT ADDRESS

6 20 REGISTER 0

7 24 REGISTER 1

8 28 REGISTER 2

9 32 REGISTER 3

10 36 REGISTER 4

11 40 REGISTER 5

12 44 REGISTER 6

13 48 REGISTER 7

14 52 REGISTER 8

15 56 REGISTER 9

16 60 REGISTER 10

17 64 REGISTER 11

18 68 REGISTER 12

NOTE:

Each word in the save area is aligned on a full-word boundary.

Figure 8-3. Register Save Area Format

8075 Rev. 2 8-28

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

UP-NUMBER

Table 8-1. Register Save Area

Word Content

1 Reserved for system use.

2 If zero, indicates the first save area of a chain. Otherwise, this is the address of the save area used by the
calling program which is located in the higher level program that called the calling program. For example,
bytes 4-7 of SAVE 8 (a save area in program 8 for the use of program C) contains the address of SAVE A
(a save area in program A for the use of program 8). It is the responsibility of the calling program to store
the backward link address in this field from register 13 before loading the current save area address in
register 13.

3 If zero, indicates the last save area in a chain. Otherwise, this is the address of the save area in the most
recently called program. It is the responsibility of this called program to store the save area address in this
field before calling a lower level program.

4 The address in the calling program (as loaded in register 14) to which control is to be returned. This address
must be stored in this field by the called program if that program intends to alter the contents of register
14.

5 The entry point address of the called program (as stored in register 15) to which control is to be transferred.
This address must be moved to this field by the calling program.

6 to 8 A storage area provided to contain the contents of registers 0 through 12. The called program determines
the number of registers, if any, to be saved.

8.5.4. Call a Program (CALL/VCALL)

The CALL and VCALL macro instructions pass control from a program to a specified entry
point in another program. They are written in the calling program to establish linkage with
a called program. CALL is used to establish a direct linkage with a program already in main
storage. It loads an A-type address constant, and branches. VCALL is used to establish a V
CON type linkage with a program not necessarily in main storage. It loads a V-type address
constant, and branches. No SVCs are generated by either macro instruction.

The CALL or VCALL entry point need not have a manually coded EXTRN. All other labels
used on these calls, which appear outside the assembly, must have manually coded
EXTRNs.

You can use positional parameter 2 of the CALL or VCALL macro instruction to pass
parameters from the calling program to the called program. In this case, you can enter the
parameters themselves, enclosed in parentheses; the macro expansion will generate a
parameter list in the required format. Or, you can enter the address of a parameter list
defined elsewhere in your program in the format required by the macro.

•

•

Another convenient method is to use the ARGLST macro instruction to generate this list •
for you. You then enter the symbolic address of the macro call as positional parameter 2 of
the CALL or VCALL macro instruction.

+

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8-29

UPDATE LEVEL PAGE

• Format:

•

•

LABEL 6. OPE RATION 6. OPERAND

[symbol] {
CALL }
VCALL {

entry-point}

(15)
[{(para~-1, ... ,param-n) }]

, list-address
(1)

Positional Parameter 1:

entry-point

(15)

Specifies the symbolic address of the entry point in the called program to which
program control is to be given.

Indicates that register 15 has been preloaded with the address of the called
program.

Positional Parameter 2:

(param-1, ... ,param-n)
Specifies one or more parameters to be passed to the called program. These
parameters are written enclosed in parentheses, and are included in the CALL or
VCALL macro expansion in the same sequence as entered on the call line. Each
parameter is considered as one full word and is aligned on a full-word boundary.
The three low-order bytes of each generated word contain the address of a
parameter. To mark the end of the parameter list, the sign bit of the last
parameter in the list is set to 1. The address loaded in register 1, prior to control
being transferred to the called program, is the address of the first parameter in
the list.

The parameter entries can represent actual values. However, for compatibility
with higher-level languages, this parameter is usually used to pass address
constants to the called program.

list-address

(1)

Specifies the symbolic address of a user-defined parameter list. You can define
the list in the required format, or you can use the ARGLST macro instruction to
generate the list for you.

Indicates that register 1 has been preloaded with the address of the parameter list.

If omitted, no parameters are assumed .

8075 Rev. 2

UP-NUMB EA
SPERRY UNIVAC Operating System/3 8-30

UPDATE LEVEL PAGE

t

Examples:

LABEL 60PERATION6 OPERAND
10 16

TEST

8.5.5. Generate an Argument List (ARGLST)

The ARGLST macro instruction generates an argument list (list of parameters) in the
format required by the CALL/VCALL macro instruction.

This is a declarative macro instruction and must not appear in a sequence of executable
code.

Format:

LABEL 6 OPE RATION 6 OPERAND

symbol ARGLST param-1, ... ,param-n

Positional Parameter 1:

symbol
Specifies the symbolic address of the generated parameter list. This name can be
used in the CALL/VCALL macro instruction to refer to the parameter list.

param-1, ... ,param-n

Example:

Specifies one or more parameters to be included in the parameter list generated
by this macro.

8.5.6. Save Register Contents (SAVE)

•

•

The SAVE macro instruction is written at the entry point of the called program. It saves the •
contents of the calling program registers, loads one or more base registers, establishes
addressability, and sets the linking pointers of the save areas. All code is generated inline
with no inner subroutine calls or SVCs.

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

8-31

UP-NUMBER

Format:

LABEL ~OPERATION~ OPERAND

[symbol] SAVE [(r1,r2)] [.Tl [.COVER= { ~~,r2, ... ,rn)} J
[,COVADR= { ~ase-addr} J [.SA=savearea-name]

Positional Parameter 1:

(r1 ,r2)
Specifies that the registers designated in r1 through r2 are to be saved in the
calling program save area. The registers are always stored in their respective
fields of the save area. For example, if register 2 is specified, it is stored in word 8.
All combinations of valid r1 and r2 register addresses are acceptable. If r1 > r2,
the register addresses wrap around from 15 to 0. If register 13 is included within
this range, it is ignored. However, if the SA keyword parameter is coded, the
contents of register 13 are stored in the save area specified .

If omitted, no registers are saved by this parameter.

Positional parameter 2:

T
Specifies that if the return and entry point registers (14 and 15) are not saved by
positional parameter 1, these registers are to be stored in the calling program save
area in words 4 and 5.

If omitted, registers 14 and 15 are not saved by this parameter.

Keyword Parameter COVER:

The COVER and COVADR keyword parameters are used to establish addressability.
The values specified by COVADR are loaded in the registers specified by COVER.

COVER=r
Specifies the register designated as base register for the called program.

COVER=(r1 ,r2, ...• rn)
Specifies the registers to be designated as base registers. A total of nine registers
can be designated.

If omitted, register 15 is assumed to be the base register .

SPERRY UNIVAC Operating System/3 8-32 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

Keyword Parameter COVADR:

COVADR=base-addr
Specifies the base address for the called program. If only one register is specified
by the COVER keyword parameter, this base address is loaded in that register. If
several registers are specified by the COVER keyword parameter, they are
successively loaded with 4096 increments of COVADR. A USING statement is
generated indicating the base address and all cover registers, regardless of
whether this parameter is specified or omitted.

If omitted, the base address is assumed to be the address of this SAVE macro
instruction, that is, the contents of the location counter at the time this macro
instruction is assembled.

Keyword Parameter SA:

SA=savearea-name
Specifies the symbolic address of a 72-byte register save area. This address is
loaded into register 13 after register 13 (which is assumed to contain the address
of a previous save area if there is one) is stored in word 2 of the save area. This
process provides linkage to a higher level save area if there is one.

If omitted, register 13 is unaltered.

Examples:

LABEL OOPERATION6 OPERAND
10 16

.Su

8.5.7. Restore Registers and Return (RETURN)

The RETURN macro instruction is written at the exit point of the called program. It restores
the contents of the calling program registers, branches back to the calling program, and
reserves storage for the current save area. All code is generated inline with no inner
subroutine calls or SVCs.

Format:

LABEL 6 OPERATION 6 OPERAND

[symbol] RETURN [(rl,r2)] [,T] [,sA={ !8vearea-name} J

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8-33

UPDATE LEVEL PAGE

• Positional Parameter 1:

•

•

(r1 ,r2)
Specifies that the registers designated in r1 through r2 are to be restored from the
calling program save area. The address of the save area is assumed to be in
register 13. All combinations of valid r1 and r2 register addresses are acceptable.
If r1 > r2, the register addresses wrap around from 15 to 0. If register 13 is
included within this range, it is ignored. However, if the SA parameter is coded,
register 13 is reloaded from word 2 of the save area before the registers are
restored.

If omitted, no registers are restored by this parameter.

Positional Parameter 2:

T
Specifies that if the return and entry point registers (14 and 15) are not restored by
positional parameter 1, these registers are to be restored from the calling program
save area (words 4 and 5).

If omitted, registers 14 and 15 are not saved by this parameter.

Keyword Parameter SA:

The SA keyword parameter creates a 72-byte save area, or else it indicates that you
have created the save area elsewhere in the routine. It reloads register 13 (from word
2 of this program's save area) with the pointer to the calling program's save area. It
generates a branch via register 14 as the last executable instruction.

SA=savearea-name
Specifies the symbolic address of a 72-byte register save area to be created by this
macro instruction.

SA=*
Specifies that you have defined a save area elsewhere in the routine.

If omitted, a save area is not created by this macro instruction. and register 13 is
unaltered.

Examples:

LABEL flOPERA TIONfl OPERAND
10 16

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8.6. ISLAND CODE LINKAGE

8-34
UPDATE LEVEL PAGE

As you know, there are six levels of interrupts in OS/3. Two of these interrupts are handled
by system routines; however, there are four interrupts that you must handle yourself. These
interrupts are:

1. Program Check - An operation in your program causes a program check interrupt,
such as an addressing error, arithmetic overflow, or operation exception.

2. Interval Timer - A time interval, which you specified using the SETIME macro
instruction (WAIT parameter omitted), elapses.

3. Abnormal Termination - An error occurs that makes continuation of your program
impossible.

4. Operator Communication - The operator entered an unsolicited message at the
system console.

To handle these interrupts, you must write closed routines, called island code, and link
these routines to tasks in your program. When one of these interrupts occurs, the
supervisor stores the contents of the program status word (PSW) and general registers, and
then transfers control to your island code routine. If you elect to resume processing the
interrupted task, the supervisor uses this stored information to return control to the task at
the point of interrupt.

The purpose of the program check, interval timer, and operator communication island code
routines is to handle program contingencies or to notify your program that the interrupt has
occurred. In the case of abnormal termination, the function of your island code routine is to
terminate either a task or a job step rather than the entire job (normal procedure for
abnormal termination if there is no abnormal termination island code routine).

The supervisor provides two macro instructions that automatically generate the linkages
between your island code routine and your program. The macro instructions are:

• STXIT

Attach and detach your island code routine.

• EXIT

Exit from your island code routine.

You must use the STXIT macro instruction in your program to attach your island code
routines to your tasks. You use the EXIT macro instruction in your program check, interval
timer, and operator communication island code routines to return control to the interrupted
task. Do not use the EXIT macro instruction in the abnormal termination island code
routine. Instead, use:

• a DETACH macro instruction to detach the task;

• a DUMP or EOJ macro instruction to terminate the job step; or

• a CANCEL macro instruction to terminate the job.

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-35

UPDATE LEVEL PAGE

• 8.6.1. Attaching Island Code to a Task (STXIT)

•

•

You use the STXIT macro instruction to attach island code routines to a task. An important
point to remember is that STXIT only sets up the linkage, it does not call in the island code
routine. Control passes to the island code routine only when the interrupt for which it was
written occurs.

There are two formats for the STXIT macro instruction. One is for program check, abnormal
termination, and interval timer island code routines; and one is for operator communication.

8.6.1.1. · Attaching Program Check, Abnormal Termination, and Interval Timer
Island Code

Function:

This form of the STXIT macro instruction establishes or terminates linkage between
your task and the user island code routine specified by the parameters. If only
parameter 1 is supplied, the previous linkage with the island code specified is
terminated.

If a program check or an abnormal termination condition occurs for which no linkage is
provided, the task is terminated. If the task is a primary task, the entire job is
terminated; if it is a subtask, only the subtask is terminated .

If a timer interrupt occurs for which no linkage is provided, the interrupt is ignored.

Format:

The format for the STXIT macro instruction when it is used for program check,
abnormal termination, or interval timer island code linkage is:

LABEL 6 OPERATION 6 OPERAND

[symbol] STXIT [{
entry-point}

, (1) {
save-area } J

, (O)

Positional Parameter 1:

PC
Establishes linkage with the program check island code routine.

AB
Establishes linkage with the abnormal termination island code routine.

IT
Establishes linkage with the interval timer island code routine .

If only positional parameter 1 is specified, the previous linkage with the particular user
island code routine is terminated; otherwise, a linkage is established.

8075 Rev. 2 8-36
SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 2:

entry-point

(1)

Specifies the symbolic address of the entry point of the user island code routine
that processes the interrupt.

Indicates that register 1 has been preloaded with the address of the entry point.

If positional parameters 2 and 3 are omitted, the previous linkage with the island code
specified in positional parameter 1 is terminated.

Positional Parameter 3:

save-area

(0)

Specifies the symbolic address of an 18-word save area for PSW and general
register storage. This save area must be aligned on a full-word boundary. The
format for the save area is:

Byte

0 PSW save area

8
,..i... register save area ...J.-

68 T._ __ (r-eg-is-te_r_s o_-_,_5_) _ __.J

Indicates that register 0 has been preloaded with the address of the save area.

If positional parameters 2 and 3 are omitted, the previous linkage with the island code
specified in positional parameter 1 is terminated.

As you can see from the format, parameters 2 and 3 are indicated as being optional. They
are shown this way only because these parameters are omitted when you use the STXIT
macro instruction to detach an island code routine (8.6.2). Remember, when attaching an
island code routine, you must specify parameters 2 and 3; when you detach an island code
routine, you must omit them. Examples of the STXIT macro instruction for program check,
abnormal termination, and interval timer, are shown in 8.6.5, 8.6.6, and 8.6.7.

8.6.1.2. Attaching Operator Communication Island Code

Function:

This form of the STXIT macro instruction establishes or terminates linkage between
your task and the operator communication island code specified by the parameters. If
only parameter 1 is supplied, the previous linkage with the operator communication
island code is terminated.

If an unsolicited console message interrupt occurs for which no linkage is provided, the
interrupt is ignored.

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8-37

UPDATE LEVEL PAGE

Format:

The format for the STXIT macro instruction when it is used for unsolicited operator
communication linkage is:

LABEL !:::,. OPERATION !:::,. OPERAND

[symbol] STXIT oc [, { entry-point,sav~iata,msg-area,length} J

Positional Parameter 1:

oc
Establishes linkage with the operator communication island code routine.

If only positional parameter 1 is specified, the previous linkage with the operator
communication island code routine is terminated; otherwise, a linkage is established.

Positional Parameter 2:

entry-point

(1)

Specifies the symbolic address of the entry point of the operator communication
user island code routine that processes the interrupt.

Indicates that register 1 has been preloaded with the address of a 4-word table
containing parameters 2, 3, 4, and 5 in the following format:

Byte

0 save area address

4 entry point address

8 message area address

12 message area length

Positional Parameter 3:

save-area
Specifies the symbolic address of an 18-word save area for PSW and general
register storage. This save area must be aligned on a full-word boundary. The
format for the save area is:

Byte

0 PSW save area

8
~ register save area ,...i..

68 1 (registers 0-15) I

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8-38

UPDATE LEVEL PAGE

Positional Parameter 4:

msg-area
Specifies the symbolic address of an input area reserved for unsolicited messages
from the operator.

Positional Parameter 5:

length
Specifies the length (in bytes) of the message area. The size of the area can be
from 1 to 60 bytes; any message exceeding the specified length is truncated, while
any message smaller is left-justified and space-filled.

8.6.2. Detaching Island Code From a Task (STXIT)

Function:

This form of the STXIT macro instruction terminates linkage between your task and the
user island code routine specified by the parameter.

Format:

LABEL f:.OPERATION f:. OPERAND

[symbol] STXIT

Positional Parameter 1:

PC
Terminates linkage with the program check island code routine.

AB
Terminates linkage with the abnormal termination island code routine.

IT
Terminates linkage with the interval timer island code routine.

oc
Terminates linkage with the operator communication island code routine.

The specific island code routine remains in the program, but it is not entered the next time
that type of interrupt occurs. Later in the program, if you want to attach the island code
routine again, use the STXIT macro instruction with the same parameters or with other
appropriate parameters. You may want to link another set of island code to the same task, in
which case you would detach the old routine and attach the new. Remember, except for
program check and interval timer island code in a multitasking environment, there can only
be one current island code routine of one type in a job step, that is, one island code routine
of one type currently linked to the task.

•

•

•

•

•

•

8075 Rev. 2 8-39
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE UP-NUMBER

8.6.3. Island Code Entrance

As we have described earlier, you attach your island code routine with the STXIT macro
instruction, specifying the type of island code routine, the routine's entry point, and a save
area. When the event occurs for which your routine was written, the instruction being
executed at that time completes, and the PSW and the general register contents are stored
in the save area. Control is then transferred to your island code routine. If the last
instruction in the routine is an EXIT macro instruction, the supervisor uses the stored PSW
and general register contents to return control to the interrupted task at the instruction
following the point of interrupt.

Program check, abnormal termination, and interval timer island code routines receive
control under the task control block (TCB) of the task, or subtask, causing the interrupt.
Operator communication island code routines receive control under the TCB of the primary
task. When your island code routine is activated, the contents of the PSW and the register
save area of the TCB are moved to the island code routine's save area. Your island code
routine should not change entries in this save area. If it does, the state of the system and
your program are different after the interrupt is processed than it was before the interrupt
occurred. You may not be able to resume program execution or you may get erroneous
results. Floating point registers are undisturbed from the time of interrupt; however, any
changes made during island code routine execution are returned to the interrupted task.

Your island code routines are given control by the task switcher even though the associated
task is in a wait state. This override of normal waits (e.g., wait for 1/0 synchronization, or
for interval timer) is referred to as island code override and remains in effect during island
code execution. For example, your task can issue a wait for an 1/0 operation and
immediately enter island code regardless of whether the wait has completed. When you
exit from the island code routine, the island code override is removed; but if the 1/0 wait is
still set, your program cannot return to the interrupted task until the 1/0 operation has
completed. Also, if a wait within your island code routine is followed by an EXIT macro
instruction, control is transferred immediately to the interrupted task even though this wait
is still set. If another interrupt occurs, control is not transferred from your task to your
island code routine until the wait within the island code routine has elapsed.

8.6.4. Island Code Exit (EXIT)

At the close of your island code routine, you can:

• use the EXIT macro instruction to return control to the interrupted task; or

• use the DETACH, EOJ, DUMP, or CANCEL macro instruction to terminate the task.

8.6.4.1. Exiting From Program Check, Interval Timer, and Operator Communication
Island Code

The normal procedure for program check, interval timer, and operator communication island
code is to return control to the interrupted task. You do this by coding the EXIT macro
instruction as the last executable instruction of the island code routine.

8075 Rev. 2
SPERRY UNIVAC Operating System/3

8-40

UP-NUMBER UPDATE LEVEL PAGE

Function:

The EXIT macro instruction terminates a user island code routine, restores the contents
of the registers and the PSW, and returns program control to the point immediately
following the interrupt. This macro instruction must be the last executable instruction
within the island code routine (except for abnormal termination).

Format:

LABEL 6. OPE RATION 6. OPERAND

[symbol] EXIT {~}

Positional Parameter 1:

PC
Specifies that exit is from the program check island code routine.

IT
Specifies that exit is from the interval timer island code routine.

oc
Specifies that exit is from the operator communications island code routine.

8.6.4.2. Exiting from Abnormal Termination Island Code

You do not have the option to return to the interrupted task from abnormal termination
island code. However, you do have a choice of four macro instructions. You may use the
DETACH, EOJ, DUMP, or CANCEL macro instruction. The use of these macro instructions
to terminate abnormal termination island code is described in 8.6.6.

8.6.5. Program Check

Your program check island code routine receives control as the result of a hardware
program check interrupt. The island code routine gains control at the entry point specified in
the STXIT macro instruction in your program that linked the island code to the task. At this
time, the least significant eight bits of register 0 contains an error code, and register 1
contains the address of the event control block (ECB) of the task causing the interrupt. A
value of zero in register 1 indicates a primary task, otherwise it is the address of the ECB of
a subtask. All other registers are as they were when the task was interrupted.

The program check error code returned in register 0 does not necessarily indicate an error

•

•

condition since occurrences such as arithmetic overflow can cause the interrupt. These •
codes, which range from hexadecimal 01 to OF, are listed and described in the system
messages programmer/operator reference, UP-8076 (current version).

---------------- -------~-

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

8-41

UP-NUMBER

Program check island code enables you to take some corrective action so that a program
check interrupt does not cause abnormal termination of the job step. You can take whatever
action is necessary to correct the situation, then return to the interrupted task by executing
the EXIT macro instruction.

If a program check interrupt is caused by a task for which there is no program check island
code routine, or the island code routine was detached using a STXIT macro instruction with
only the first parameter, the task enters abnormal termination island code with an error
code of hexadecimal 20. If there is no abnormal termination island code to handle the
situation, the task is abnormally terminated. When the task is a primary task, the entire job
is terminated; when it is a subtask, only the subtask is terminated.

Now let us look at how you would use the STXIT macro instruction with symbolic addresses.
Figure 8-4 illustrates this.

LABEL t:.OPERATIONt:. OPERAND
10 16

(.

2.
3.
4.
s.
b.
7.
8.
q,

10.

I\, L

• I I I I I I

5'1.
53.

bl.
1--'-'--'---'--.JL-1......L...+-!1-='~::U.........____.-+'c..l.::J.......1-L.-'--..1......J--'-...:..L.......l......L......1.......L~L..-1_L-'---'--l_l_....L..._J__.L....J.........L....l.......L.J._j__L

62~::u..i-1-..i......-'-!1-1-l!!ll=.-l-.l....+4-l-i~...L-l.-l-.i-.i-...J...,..jL.......l.......L.......L-l-.i-.i-...J...,..jL.......l.......i........-i.-.1-..J.....J.......1---L.....i........-1-.i.........

Figure 8-4. Example of Program Check Island Code Linkage Using Symbolic Addresses

8075 Rev. 2 8-42
SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL PAGE

In this example, we've coded a program check STXIT in line 6. The entry point address is
AROVFL and the save area address is PC1. The STXIT macro instruction is not part of the
island code routine, nor does it call the island code routine. It only attaches the island code
routine to the task. The island code routine is coded in lines 57 through 61. You should
place the island code routine in the nonexecutable portion of your program. Nothing,
however, prevents you from coding it inline in your program. If you do this, you must
unconditionally branch around the island code routine. The reason for this is that you want
the island code routine executed only when a program check interrupt occurs, not every
time it is encountered in the main line of your program. Line 62 reserves the main storage
save area needed by the island code routine.

From the format, you can see that you can also code STXIT using register addresses instead
of symbolic addresses. Let's take a look at the same program using the alternate method of
coding STXIT, as shown in Figure 8-5 .

LABEL .60PERATION.6 OPERAND
to 16

L. t--t----'-...1.........l----L...J_L...J-4'=:J..:...>.J-'--_._1-i'~"-4-"'--'-'-''-'-L-L-'--'----'----'---'---'-'--'-.L....l.---'-...L-J-'--'--'--L_._...J.......J.-'--'-'--'-
2.

l--J._J_-1.__J..__J_J__J_+--lf-L_J_..J__L..+-*--'--'--L-'----'--.L...l-'--L-_;_JL__L-1--'----.J'-----L-1.....-'-.L-.L-'----'---L-.l-'--'---'---'------'----'--'---

~ 1--L_J_L....L_J_L....1...-J-1-'-_J_L......L-l-1----'--'--''-'--'--'----L-'--'----L-'--''-'----'---''-'--'--.l--L-...1.......J.----'----'--.I--'--'--'----'----'------'-'-

'1-.
1--J._j._-1.__J..__J_J__J_+--lf-L_J_..J__L..+-*--'--.L....l.-'----'--.L...l-'--'--'--L__L-1-....L......'---1.-'---....L....L-.L-'----'-.L__l-1......J---'---L.......l..--'--'---

5. l--L.....l-1......L.....L......1--l-~~IL-.l......L...~.-..rl~~:....M:::IL......L_._ _.__..__._....._.~...1.......J.--"-.......... _._ _.__..__._......_.._._

b.l-J........l.........--'---'---L-'-J-F=-:.l--'-.J..4-f..L.>Ll...J..'J~~!LILU.....L.o=L-J.......1.......J.-'--'-'--'--'L-J......J-C-'-'-'--'-'-'-...__,_-'-'--'-
7. l-L_J_L....L_J_L...L_j_i!='J.!..!.l..-L...L-l-µ.ll!o.~~.:L!...JL-J_...J...._JL...L-L.....J----L---'---'-'--'--''-'----'---'----L-1..-1--'--'--'----'----'--.I-'-
8.L.LC~Llll~_l_~!!o!L.!...LQ..L,=u_i.......J..!-=~oJ...!_l-J-l...)~~..L.....L_J_L......L..-'-L..L...1.......J._J_..L_L-'-..L.....L-'-L......1....-'--JL_.L
q,l-J..._j_.L....L._J__1-L-J-p=..'-L-L......L-l-1---'--1-"~L.!....!l:....J.JL>.JL..LLL.3l!.....>Jc=.L..-'--JL-L--'--'-----'--'--'-'--'--'-'--'-'-'-.............. -'--'--'-'-

ro.L-l.-L-_._L-.L.--L......J.......<l--+--L......L.....l--L..-l-........... ...,....L-_._l-.L_.__._L......J..--L......1..-J--'--'-........... --'--I.-.......... _..__._ _.__._ _..._.....__._

l (. l-L_l._L...L_J_L...L_j_l--J.-....L..JL...L-l-1----'--'--'-'-...J...._J----L....L..._----L-'--l----L---'---'-'--'--'----L---'---'----L-1..-1--L--'--1._L.J_

12.1--l-J.......L-'-L....L~....+-L....L...l._l.....+-~...1.......J.--'-.l.......L-'--L--'-.l.......L-'--L--'-.L....l...-'--'--'--'--'--'--'--'-.l.--'-_J_J'-'-J.-'--
(j,l-L-J........L.....L-1_.L_J'-4-.J.=..:L..-'--'--'--1~'--:u.a...:i~'--ll..!...>.J~lL..l....L.....L.......L--L-1-L-"--'---'--'--L--<--'--.......__.._--'--'-~--'--.......__.._-'---

sq,j!....!Ll~L..ll!-=1.......L--t-~--'-..J...__Jl-1--~'--'-L.:~1=.:""'-'-.ll.....LL---L..lµ_J.--'--'-'----'------'-..JL_L-L.-L......J...-'---.J..___.L_-L-...J.......J.----'----'-'----'--
i:JJ.1-'--'--L.......L..---'-.L......L--t-+-'---'-..J...__Jl-l--+--'L_L--'--1-J...-'-.J..___.L_--'l---'-:--1--.-'-........,..----'----'--'L_L-'--~-'---.J..___.L_-L--'--'----'----'-'----'--
b\.1-J...-'--.l........L---'-.l...-.L--t-+-'--'-..J...__Jl-l---t--L_L--'--.l........L--L-.!-l.-f-...J........1.----'----'-'----'----'-'-'--'--'--'---'----'-----'--L---'-'-'--'--'----'--

/Ol...l-L-l-L-L-l-L.....l..-l--ij..:...L..J.......Jl........L-l--il--l-....L......1--L......L.......l--L......L.......ll..\-l-....L.......l--L......L......1--L......L......l--l.-....L......l--L......L.......l--l.-....L......1-J........L......l--L...

b3.l--l-J.......L-'-L....L..L-!~~..L.L.1-J_~::L-.l.--'-.L.....L-'--L_L_.L.....L.....1.........__L_.L....1...-1........l--'-.L.....L-1........l--'-..L.....l..-'-'--'-...l....-L
64.µ._..i:::~--'-.J.......J........1.......-11-f..'=-<L-'-.i.._.+.-f-'--'""'1.?....L.......l.-'-.L.....L.....l.........-'---'--L-'--'--'--'--'--'--"---L-'-'-'--'-'-'---'--'--'-'--'-

Figure 8-5. Example of Program Check Island Code Linkage Using Register Addresses

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8-43

UPDATE LEVEL PAGE

Except for three lines of coding, the programs are identical. In order to use register
addresses in the STXIT macro instruction, you must preload them. Register 1 must be
preloaded with the entry point address (line 6) and register 0 with the save area address
(line 7). When you code the STXIT macro instruction in line 8, you simply write the register
numbers as shown in the format.

When the STXIT macro instruction is encountered, the supervisor takes the addresses in
registers O and 1 and stores them in a control table. These entries in the control table are
referenced when the interrupt occurs and the island code routine is needed. Once the
addresses in the registers are stored, these registers are freed. It is advisable to code the
load address instructions immediately preceding the STXIT macro instruction because
these registers are frequently used by the system and their contents are dynamic. Other
than the exceptions just noted, the points brought out in the previous example about
island code routine placement and reserving main storage still apply.

8.6.6. Abnormal Termination

Abnormal termination island code is similar to program check island code in that an
interrupt can occur at any time during the execution of the task; however, the action to be
taken differs radically. Your program check island code routine must return control to the
interrupted task; your abnormal termination island code routine cannot.

Abnormal termination island code receives control when a task enters cancel processing.
The cancel can be either intentional (execution of a CANCEL macro instruction) or
unintentional, as with a system imposed cancellation due to a software detected error. This
permits you to intervene to prevent the abnormal termination of a job. For example, the
operating system can abnormally terminate a job because of a physical IOCS error. Instead,
you may prefer to terminate the job step in error, but process the next job step of the job.
Or, in the case of a subtask causing the abnormal termination interrupt, you may want to
detach only the subtask in error, and continue processing the remaining active subtasks or
the primary task.

Your abnormal termination island code gains control at the entry point specified in the
STXIT macro instruction that linked the island code routine to the job step. At this time, the
least significant 12 bits of register 0 contain an error code, and register 1 contains the
address of the ECB of the task causing the cancellation. A value of 0 in register 1 indicates a
primary task, otherwise, it is tl;le address of the ECB of a subtask.

The error codes that may cause cancellation are listed and described in the system
messages programmer I operator reference, UP-8076 (current version). Because you cannot
return to the interrupted task, you cannot use the EXIT macro instruction to exit from
abnormal termination island code. Instead you may use any of the following macro
instructions to terminate the task:

• DETACH

Terminate the task or subtask normally .

• EOJ

Terminate the job step normally.

SPERRY UNIVAC Operating System/3 8-44 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

• DUMP

Print out the job region contents and terminate the job step normally.

• CANCEL

Print out the job region contents and terminate the job abnormally.

The EOJ macro instruction is described in 8.3.4, CANCEL in 8.3.5, DUMP in 9.1.2, and
DETACH in 7.3.3.

If an abnormal termination interrupt is caused by a task for which there is no abnormal
termination island code routine, or the island code routine was detached, the task is
abnormally terminated. If the task is a primary task, the entire job is terminated; if it is a
subtask, only the subtask is terminated.

If a program check interrupt is caused by a task for which there is no program check island
code routine, or the island code routine was detached, the task enters the abnormal
termination island code routine with an error code of hexadecimal 20. If there is no
abnormal termination island code routine or the island code routine was detached, the job is
abnormally terminated.

Figure 8-6 is an example of how you use the STXIT macro instruction to attach abnormal
termination island code routine to your task. Note that in this case we have chosen to use
the DUMP macro instruction to exit from the island code routine.

LABEL t.OPERATIONt. OPERAND
10 16

Figure 8-6. Example of Abnormal Termination Island Code Linkage Using Symbolic Addresses

•

•

•

- ---------------------------.

SPERRY UNIVAC Operating System/3 8-46 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

LABEL OOPERATIONll OPERAND II COMMENTS
10 16 72

1q.i=--~~......_.--+-<~__._.._,__,_~-~~~~~~C.OOB_~~I_~1 1~F~J".IM!E1 ~.b.Ai?,~ L_ .
2o.~r.;L!=~f:lL~~<-L+-!ll"-l....-'--L.L..L-'--L.L..L..LJ......LJ......L..L..LJ......L.L.J......J......LL...L.L...LL-L-.l....J......L.-L.!....l.....L-L.1.....i.....l.....i.........-L.J....l....J......L..l--.L..!.....L..l.....L..l_.l.__j-+
21. t--'--~~~-+--l"~~-'+--1~~~~.LJ._J.__L____L_-L_L__L__L_L_...L_.C--""~
'22 ~J___j__J_L.L_L++_L_L_L__J_-+-f__j__J--1._L.J..L'-"""..,,,._,-'--""'-"'-'"'-'-'""--""-"'"<"'1Wln"1.~1¥--~ l _l__J__l_ l___j______L__j__J__l__L _ _l_l l L_l__J l l _l____l _J_ I _L

_L_l__J_L_j__L_~_J _l_i_~-~-J~ ,_j__J___[___c l l J_L_J .l J_ l i l l I .L L i l I
erv-o\f" pnnl r~.' 1ne

t--'--~~~+-+...L..L~-+-i~~~~_L_L_J.__L___L__L_Ll_____i___L__L__J__ L ~-L ___i___J__l______i_____ ___L Ll .L_L__.L_j__ l J L 1 l L 1 LL_L-1

I

31. '"""'"""'.,,_,,,"--'-~......,,__J_i-+--1_._._._. _L__L_J_J_Li_.LJ._.LJ.__L_

3'2. l.!-"'"-""......_,LI...L.!>'1---f'~--'--'--+-IL-'--'=
33.µi.i,,£u;;;!LJl.,«'.'IH-I- _µ;;~L

...L..L...L..L~L.1 t _i__1__l J Ll_l__l__L__l__L_l 1 1 L_l_ Ll l_l _.LL_l_

~~·~i'R~E~@....I.~T,EE. ~<'Wi=-1 -~ 1~_.QillRIE"Di , 1 l , , , _, l

l l 1LN.L\~'(l ~LRb__l__l__L .L_j__l__L_LL l j l l l l l i L l ,_j __

...L..L_L__L_l -""j8I=;L__c=1 I I ,WHJE."-l J""_l.j_f'1.E~1Af>SJ;,'St_J_l l l j U...L..L L

Figure 8-7. Example of Interval Timer Island Code Linkage Using Symbolic Addresses (Part 2 of 2)

In this example, the SETIME macro instruction (line 6) requests a timer interrupt in 25
seconds so that a time limit of 25 seconds can be placed on the computation (lines 8 to 16)
that follows. The STXIT macro instruction (line 4) attaches the interval timer island code
routine (lines 27 to 29) to the task. The routine sets a flag when the time interval expires.
The STXIT macro instruction is used again (lines 18 and 21) to detach the island code
routine. The EXIT macro instruction (line 29) returns control from the island code routine to

..,.. the interrupted task. Line 18 is the normal exit from the compute loop, which occurs if
computation is completed before the timer elapses. Lines 20 and 25 are the error routine
which is executed if the time elapses before the computation is completed. Line 31 defines
the save area needed when the interrupt occurs.

8.6.8. Operator Communication

Your operator communication island code routine receives control when the operator enters
an unsolicited message at the system console. He does this by typing the job number and a
zero, followed by the message text. For additional details of the operating procedure at the
system console, refer to the appropriate operations handbook for your system.

You can use the WTLD and QPR macro instructions to communicate with the operator. In
these cases, your program displays a message on the system console and requests a reply.
However, the use of operator communication island code routines permits the operator to
enter a message for the attention of your program at any time during the execution of a job
step without being prompted by your program. He could enter one of several predefined
messages to acknowledge an event or a condition external to your program, for example, an
infrequent request for statistics at the end of a particular job step.

The island code routine gains control at the entry point specified in the STXIT macro
instruction that linked the island code routine to the job step. At this time, register O

•

contains the length of the message entered by the operator, while the contents of register 1 •
are unpredictable. (Register 1 would not contain an ECB address because operator
communication island code routines always execute under the primary task TCB.)

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-47

UPDATE LEVEL PAGE

To exit from operator communication island code, use the EXIT macro instruction to return
to the interrupted task.

If the operator attempts to enter an unsolicited message for a job step for which there is no
operator communication island code routine, or the island code routine has been detached,
the message is rejected.

Figure 8-8 is an example of the use of the STXIT and EXIT macro instructions for operator
communication island code routine using symbolic addresses. The general operation is
similar to that described for program check (8.6.5). However, you will note that, in addition
to the entry point and save area, the STXIT macro instruction also specifies a message area
and message length.

Following the format, the STXIT macro instruction in line 21 specifies that it is attaching an
operator communication island code routine (QC). The island code routine's entry point is
SYSCON, the save area address is OC1, and the message from the system console is stored
in a reserved 60-byte area whose address is OPRMSG.

LABEL LiOPERATIONLi OPERAND
10 16

•

ffi.
t--'--'---'-'-----'-----'-_.__+-lf""'.!~'1...LL.....+-+~~L..J..-1...._l_.L-l___l__---'-.L....J'-L---'-_L__JL....l.-1...._J__l-J.-1...._l_..L.....1-----'----'-..l..-L.L__J_...L

Cb.
t='-=1--'-'-'-----'-----'-_.__+-lf.-"==-..L.._L.....+-+'LJ>..l"--L-1....-'-J__J___l__---'-.L....JL.L---'-_L__jL....l.-1...._J__l-J.-1........L_..L.....1-----'--L..l..-L.L__J__L_

ql.1=-lUQl~~-'--J--1..!i~....J......i_+_µ~...1...-.1.....J......1......1......L-L......L.J......1.~.L..J......L.....JL......L...L.....J.....l..-.l..-l.....J......JL......L...L.....J.-1-.L.......1....

Figure 8-8. Example of Operator Communication Island Code Linkage Using Symbolic Addresses

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-48

UPDATE LEVEL PAGE

Figure 8-9 is an example of how your program would look if you elect to use register •
addresses instead of symbolic addresses. The load address instruction in line 21 places
the address of a 16-byte area, called OCSETUP, into register 1. The format of this area is:

Byte

0 save area address

4 entry point address

8 message area address

12 message area length

What we have done is taken the last four parameters of the STXIT OC format and converted
them to a short table. This short table is referenced as the (1) parameter in line 22. Line 93
reserves the main storage area for this table. Note that in the table the save area address is
the first field and the entry point address is the second field. Do not confuse this with how
these parameters are listed in the STXIT macro instruction if you are using symbolic
addresses. Remember also that at the time the operator communication interrupt occurs,
this 16-byte field (OCSETUP) must contain the appropriate addresses and message area
length.

LABEL i0.0PERATIONi0. OPERAND
10 16

•

2.1.1--L..J.......J-L.l...J.-1......J.....+~il......J....-1........ll-+l:ll...l~:!bd:~:l.1..l::il!._L.J......L..J--1-.L.l.--1....J.....J..-LL...L....L....JL.L..J........l--1-..J....-1.-L
2:2.

9o.1--L--L-l........L.--'-.L-..-.L---J--¥""-UW.,.__.._,--+-..J="""-....L.......JL__L--L-J-'---'--'---'----"-.L......l.__J._..L-l--'--..L-l'---L-'-'---'----L-.l-J---'--'----L--'-

q l, i=..::::u.L....L.-1-L......L...+-..-::1111.........1L......L..-"-"µ....a.4'--J--L.......l....-l-l-....l-.l-'-....l-.l-'-....L....J.--L.......L....J.-l..........L....J.-l........J.......J.-l........J.......J.-l........J.......J.-I....

'l2.
t=J..!...ll~L=i:=L.....1....+-!f.W.l.'""---'--L-+_µ~ '"'-'---'--_L_.L...l--L.....1......l........l-'-_J_..l........l'---L-'-...L__L-L---'--_L_.L...l--L.....1....-'--'-L-'-..L

'll.~~~~-1--t~___t_L...l--~2...'..L_l_L_J__L_L_J___t_LJ_L.L_J_j___L_L_J_l.__L_l_LJLl_J___J.__J___L_...L.l__

Figure 8-9. Example of Operator Communication Island Code Linkage Using Register Addresses

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-49

UPDATE LEVEL PAGE

• 8.6.9. Use of Island Code With Multitasking

•

•

8.6.9.1. Program Check and Interval Timer With Multitasking

In a multitasking environment, you can specify discrete program check and interval timer
island code routines using a separate STXIT macro instruction in each task to link the task to
its island code routine.

Figure 8-10 depicts a job step with three tasks (the primary task and two subtasks). The
STXIT macro instruction in each task specifies a separate island code routine, and a
separate save area. Note that upon exit, control returns to the interrupted task at the point
of interrupt.

PRIMARY TASK
ISLAND CODE ROUTINE

PRIMTASK.

INTERRUPT ICR
STXIT PC,ICR,SAVE

RETURN

EXIT PC

SAVE DS 18F

SUBTASK 1
ISLAND CODE ROUTINE

SUBTASK1

INTERRUPT ICR1
STXIT PC,ICR1,SAVEA

RETURN

EXIT PC

SA VEA DS 18F

ISLAND CODE ROUTINE

SUBTASK2 .

INTERRUPT ICR2
STXIT PC,ICR2,SAVEB

RETURN

EXIT PC

SAVEB DS 18F

Figure 8-10. Example of Discrete Program Check Island Code for Each Task in a Job Step

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8-50

UPDATE LEVEL PAGE

You can also use a common program check island code routine or a common interval timer •
island code routine for all the tasks within a job step. In this case, you use a separate STXIT
macro instruction for each task to link the task to the common island code routine,
specifying the same entry point but with a different save area for each task. When you use
a common island code routine, the island code routine must be reentrant, that is, it can't
make any changes to itself or to its common parts.

Remember, this common island code routine can be entered from any of its associated tasks
and program control returns to the interrupted task via the EXIT macro instruction. Also,
make sure you don't disturb the affected save area because the task environment must be
restored so that control can be returned to the interrupted task.

Figure 8-11 shows how all the tasks in a job step (in this case, a primary task and two
subtasks) could use a common island code routine. The STXIT macro instruction in each
task specifies the same entry point; however, each STXIT specifies a separate save area.
When a program check interrupt occurs in any of the tasks, control is transferred to the one
island code routine. Upon exit, control returns to the interrupted task at the point of
interrupt.

PRIMARY TASK

PRIMTASK.

INTERRUPT
STXIT PC,ICR,SAVE

RETURN

SAVE OS 18F

SUBTASK 1
ISLAND CODE ROUTINE

SUBTASK1 .

ICR

STXIT PC,ICR,SAVEA INTERRUPT

RETURN

EXIT PC
SA VEA OS 18F

SUBTASK 2

SUBTASK2.

INTERRUPT
STXIT PC,ICR,SAVEB

RETURN

SAVEB OS 18F

Figure 8-11. Example of Common Program Check Island Code for Alf Tasks in a Job Step

•

•

•

•

•

8-51 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

.UPDATE LEVEL PAGE

8.6.9.2. Abnormal Termination With Multitasking

There can be only one abnormal termination island code routine current in a job step at any
one time. You can use a STXIT macro instruction in any task to attach the island code
routine. The abnormal termination island code routine is associated with the job preamble;
however, it may be entered from any task in the job step.

If several tasks in a job step are each causing an abnormal termination interrupt, these
cancellation requests are queued for entry into the one abnormal termination island code
routine for the job step.

You can have several abnormal termination island code routines in a job step (for example,
one for each overlay), but only the routine linked by the current STXIT macro instruction is
effective when an interrupt occurs. In this case, each succeeding STXIT macro instruction
supersedes the previous one, and you do not have to issue a STXIT macro instruction to
detach each previous island code routine.

8.6.9.3. Operator Communication With Multitasking

There can be only one operator communication island code routine current in a job step at
one time. You can use a STXIT macro instruction in any task to attach the island code
routine. The operator communication island code routine is associated with the primary
TCB; however, it may be entered at any time regardless of which task is processing at the
time the operator enters the job number and a zero at the system console to cause an
operator communication interrupt.

Multiple activations of an operator communication island code routine are not possible. If
the island code routine is executing, it must exit before it can be reentered. If the island
code routine is handling an operator communication interrupt when the operator attempts
to enter another unsolicited message for the same job step, the later unsolicited message is
rejected.

As is the case with an abnormal termination island code routine, you can have several
operator communication island code routines in a job step, but only the code linked by the
current STXIT macro instruction is effective when an interrupt occurs.

8.7. SYSTEM INFORMATION CONTROL

Each problem program is assigned a variable-length storage area within the program region
which is known as the job prologue and contains the job preamble and task control blocks.
You can retrieve or read information from the job prologue only through the supervisor. In
addition, you can establish, change, or cancel information only within the 12-byte
communication region of the job preamble. You cannot alter any other part of the contents
of these critical storage areas. The communication region is most commonly used to pass
information from one job step to the next; 12 bytes of data can be stored by one job step
and retrieved by subsequent job steps associated with the same job. The user program
switch indicator (UPSI) can be retrieved using the GETCOM macro instruction or set using
the PUTCOM macro instruction. The UPSI is the last byte in the 12-byte communication
region in the job preamble and is tested by a subsequent SKIP job control statement. The
job control user guide, UP-8065 (current version) contains a description of the UPSI bit
values, how to set and change the bits, and how to use the UPSI to branch around JCL
statements.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

8-52

PAGE

The following macro instructions are provided to assist you in accessing these restricted
storage areas:

• GETCOM

Retrieves the contents of the 12-byte communication region from within the job
preamble.

• PUTCOM

Writes a 12-byte character string into the communication region within the job
preamble.

• GETINF

Retrieves information from the SIB, PUBs, TCBs, or preamble.

8.7.1. Get Data From Communication Region (GETCOM)

Function:

The GETCOM macro instruction retrieves the contents of the 12-byte communication
region from within the job preamble and stores it in an area specified in positional
parameter 1:

Format:

LABEL

[symbol]

,0, OPERATION i0.

GETCOM {
to-addr}

(1)

OPERAND

Positional Parameter 1:

to-addr

(1)

Specifies the symbolic address of a 12-byte area in main storage to which the
contents of the communication region is to be moved.

Indicates that register 1 has been preloaded with the address of the area in main
storage.

•

•

•

•

•

•

8075 Rev. 2 8-53

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

UP-NUMBER

8.7.2. Put Data Into Communication Region (PUTCOM)

Function:

The PUTCOM macro instruction moves the contents of a 12-byte area in main storage
specified in positional parameter 1 to the communication region within the job
preamble.

Format:

LABEL

[symbol]

LOPERATIONL

PUTCOM {
from-addr }

(1)

OPERAND

Positional Parameter 1:

from-addr

(1)

Specifies the symbolic address of a 12-byte area in main storage containing the
data characters to be moved into the communication region within the job
preamble.

Indicates that register 1 has been preloaded with the address of the area in main
storage.

8.7.3. Get Data From System Control Tables (GETINF)

Function:

The GETINF macro instruction retrieves data from the task control block (TCB), systems
information block (SIB), physical unit block (PUB), or the job preamble and stores it in a
work area in main storage specified in positional parameter 2.

NOTE:

If you use the GET/NF macro instruction in your program, you must reassemble your
program upon every major release of the system software.

Format:

LABEL LOPE RATION L OPERAND

GETINF
{

TCB! SIB work-area .
PRE , { (l) } ,number-of-bytes,d1splacement

PUB

[symbol]

8-54 8075 Rev. 2

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

UP-NUMBER

Positional Parameter 1:

TCB

SIB

PRE

PUB

Specifies that the data requested is from the job task control block.

Specifies that the data requested is from the systems information block.

Specifies that the data requested is from the job preamble.

Specifies that the data requested is from the physical unit block. In this case,
register 1 must be preloaded with the address of the PUB or with the identifying
number of the PUB. The PUB identifying number is its position within the PUBs
specified at SYSGEN. That is, the first PUB is 0, the second PUB is 1, and so on.

Positional Parameter 2:

work-area

(1)

Specifies the symbolic address of the work area in the problem program to which
the data is to be moved. This area must be large enough to contain the data
requested.

If positional parameter 1 is TCB, SIB, or PRE, indicates that register 1 has been
preloaded with the address of the work area.

If positional parameter 1 is PUB, indicates that register 1 has been preloaded with
the address of the PUB or with the identifying number of the PUB.

Positional Parameter 3:

number-of-bytes
Specifies the number of bytes of data requested.

Positional Parameter 4:

displacement
Specifies the displacement, that is, the number of bytes from the beginning of the
table to the beginning of the data requested.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8.8. CONTROL STREAM READER

8-55

UPDATE LEVEL PAGE

The control stream reader allows you to access data that was entered into the system with
the job control stream. This provides a convenient method to handle small quantities of
input that would normally have been handled as a card or diskette file. Because the data is
embedded within the job control stream, there is no need to define a card file, nor is a
device assignment set required for the card reader.

This embedded data might consist of transactions or changes to be processed against a
master file, source code or control statements to be processed by a utility routine; or it
might consist of PARAM job control statements to introduce parameters that can be used
during program execution. Refer to the job control user guide, UP-8065 (current version)
for a description of statements within embedded data.

When job control reads the job stream, it stores the embedded data in compressed form in
the job's run library file. During the execution of the job step, this file is read into main
storage and may be accessed by GETCS macro instructions (8.8.3) in your program. The
requested records are expanded to their original form and stored in an input area you
specify.

You can retrieve one or more records at a time from your embedded data file, and you can
retrieve records from more than one set of embedded data belonging to the same job step.
Images are read sequentially from the start of the entire data file. However, you can alter
the sequence or reread data by using the SETCS macro instruction (8.8.5) .

Each returned record is an exact image of the source statement which may be from 1 to
128 bytes. Thus, you can read 80- or 96-byte images from punched cards or 128-byte
images from diskette.

NOTE:

Although PARAM and other job control statements may be handled as part of an
embedded data set, they must still observe the job control statement conventions.
Remember that job control statement information cannot extend past character position
71, and that position 72 is used to indicate continuation of a statement.

+

SPERRY UNIVAC Operating System/3 8-56 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

8.8.1. Embedded Data

Embedded data is delimited by a pair of 1$ (start-of-data) and I* (end-of-data) statements.
They must follow the EXEC statement in the control stream or, if used, any PARAM
statements. Note that PARAM statements are considered to be a part of the data set that
follows. For example: ·

11 EXEC
II PARAM
11 PARAM
1$

Data
Set
1

I*

II PARAM
1$

Data
Set
2

I*

1$

Data
Set
3

I*

8.8.2. Reading Embedded Data

If you are reading one record at a time from this embedded data file, the first GETCS
macro instruction executed retrieves the first PARAM statement of data set 1, the second
retrieves the second PARAM statement, the third retrieves the 1$ statement, the fourth
retrieves the first data card, etc.

•

•

•

--------------------~-----~------

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-57

UPDATE LEVEL PAGE

Following the successful execution of a GETCS macro instruction, program control is
returned to the issuing program at the point immediately following the GETCS macro
instruction. Register 0 and 1 will contain:

RO The binary count of records retrieved.

0 16 if a /* that terminates a data set is the first image in the input area.

OOFFFFFF16 when all embedded data images have been read.

R1 The reread pointer (8.8.4). When passed to the SETCS macro instruction
(8.8.5), it allows you to reread embedded data at this pointer.

If two or more records are requested by a single GETCS macro instruction, the first
occurrence of a real /* image terminates the control stream reader function. The /* is not
returned until the next GETCS macro instruction call, at which time register 0 is set to
zero and register 1 contains the reread pointer.

Since control streams may themselves be embedded data, the GETCS macro instruction
indicates the end of a data set by signalling which end-of-data (/*) image actually
terminates the data set. This is referred to as a real /* image as opposed to an embedded
/* image. An embedded /* image is treated like any other image.

8.8.3. Get File From Control Stream (GETCS)

Function:

The GETCS macro instruction retrieves embedded data images and control statements
that were entered in the system through the job control stream. You can retrieve one
or more data images at a time from your embedded data file. The images may be from
1 to 128 bytes in length and may be obtained from more than one set of embedded ~
data belonging to the same job step. Each retrieved record is an exact image of the
source statement.

Images are read sequentially from the start of the entire data file. You can alter the
sequence or reread data by using the SETCS macro instruction.

Format:

LABEL LOPERATION [l OPERAND

[symbol] GETCS {
input-area }

(1) [
,
{

number-(o~f)-records }]

[, { erro~~~ddr} J [, {;,}]

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-58

UPDATE LEVEL PAGE

Positional Parameter 1:

input-area

(1)

Specifies the symbolic address of an input area in main storage that is to receive
the records or records. When more than one record is requested at a time, as
each record is retrieved from the control stream, it is stored in contiguous byte
locations beginning with this address. This area must be large enough to contain
the retrieved records. The record image size is specified in positional parameter
4.

Indicates that register 1 has been preloaded with the address of the main storage
input area.

Positional Parameter 2:

number-of-records

(0)

Specifies the number of records requested.

Indicates that register 0 has been preloaded with the number of records
requested.

If omitted, one record is assumed.

Positional Parameter 3:

error-addr

(r)

Specifies the symbolic address of an error routine to be executed if an error
occurs.

Indicates that register r (other than 0 or 1) has been preloaded with the address of
the error routine.

If omitted, the calling task is abnormally terminated if an error occurs.

Positional Parameter 4:

n
Specifies the size of the data images to be retrieved. To retrieve the entire
record, make sure this value equals the data stream record size.

If images smaller than n were originally written, the returned image will be left
justified and the remainder of the input area filled to the right with spaces. If
images larger than n were originally written, only the number of bytes specified
in this parameter will be returned and the remaining bytes in the data stream
record will be ignored.

If omitted, 80-byte images are retrieved. If smaller images were originally written, the
returned image will be left-justified and space-filled to the right. If larger images were
originally written, only the first 80 bytes will be returned.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 8-59

.UPDATE LEVEL PAGE

8.8.4. Rereading Embedded Data

Following execution of a GETCS macro instruction, register 1 contains a full-word reread
pointer consisting of the data set number, record displacement, and block number for the
first record of the data just retrieved. If you intend to reread data, store this pointer in
main storage and use the address of the pointer as parameter 1 of a SETCS macro
instruction. A succeeding GETCS macro instruction will read the same data into your
embedded data input area.

The pointer is advanced for every GETCS issued. If one image is requested, the pointer will
point to the location in the data file of the record just returned. If more than one image is
requested (parameter 2 of the GETCS macro instruction), the pointer will point to the
location in the data file of the first record of the group of records just returned. For
example, if an execution of a GETCS macro instruction has just returned five images, the
reread pointer would point to the first image in the data file, not the fifth.

8.8.5. Reset Control Stream Reader (SETCS)

Function:

The SETCS macro instruction alters the sequence in which a subsequent GETCS
macro instruction retrieves embedded data images from the job control stream. To do
this, you may back up the GETCS pointer, skip backward or forward to the start of any
embedded data set, or resume sequential reading of the data file at the beginning of
the next data set.

Format:

LABEL 60PERATION 6 OPERAND

SETCS
{

pointer t
data{5

1
e:-no [, { ; } J

NEXT

[symbol]

Positional Parameter 1:

pointer
Specifies the symbolic address of a full word embedded data file pointer provided
by a previous GETCS macro instruction.

Upon successful completion of a GETCS macro instruction, control is returned to
the program at the point immediately following the GETCS macro instruction, and
register 1 contains a pointer to the last set of data images read from the embedded
data file in the run library. When passed to the SETCS macro instruction, it allows
embedded data to be reread starting at the pointer. Note that the pointer points to
the first data image.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

8-60

UPDATE LEVEL PAGE

data-set-no

(1)

The number of the embedded data set from which subsequent GETCS macro
instructions are to retrieve data images. Data sets are numbered sequentially
starting with 1.

Indicates that register 1 has been preloaded with either the 4-byte GETCS pointer
itself or with a data set number.

NEXT
Indicates that subsequent GETCS macro instructions are to retrieve data images
starting at the beginning of the next data set.

Positional Parameter 2:

R

s

Specifies that the entry in positional parameter 1 is the address of the reread
pointer provided by a previous GETCS macro instruction.

Specifies that the entry in positional parameter 1 is a data set number.

If omitted, the parameter S is assumed.

Positional Parameter 3:

error-addr

(r)

Specifies the symbolic address of an error routine to be executed if an error
occurs.

Indicates that register r (other than 0 or 1) has been preloaded with the address of
the error routine.

If omitted, the calling task is abnormally terminated if an error occurs.

8.8.6. Minimizing Disk Accesses

The job control stream embedded data reader operates as a transient within the supervisor
and is called by the GETCS macro instruction. The transient is not replaced in main
storage unless absolutely necessary. It can recognize whether or not the same user is
recalling it. If so, there is no need to reread the embedded data file from disk unless the
final record of the data file block was returned for the previous call. This reduces disk
accesses while reading the embedded data.

Note that the use of a D option as positional parameter 4 is no longer more efficient than

•

•

a GETCS without the D option. The D option is still supported even though it is pointless to •
use it. If your program contains GETCS macro instructions with the D option, it need not
be changed.

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

9-1

UP-NUMBER UPDATE LEVEL PAGE

9. Diagnostic and Debugging Aids

9.1. STORAGE DISPLAYS

Most programs don't run properly on the first try. Sometimes, there may only be minor
coding errors, but other times, there may be logic errors. Coding errors are relatively easy
to find, but logic errors tend to be elusive. This is why Sperry Univac has provided a
method of obtaining printouts of main storage areas. These printouts are commonly called
dumps.

Dumps are most helpful when you, not the operating system, control when they occur.
This control is available through four macro instructions: CANCEL (8.3.5), SNAP, SNAPF,
and DUMP. For any of these macros, however, a dump is not provided if:

• a printer is not assigned to the job; or

• an OPTION job control statement with the DUMP, JOBDUMP, or SYSDUMP
parameter is not present in the job to override the default NODUMP condition of job
control.

9.1.1. Snapshot Dumps (SNAP/SNAPF)

A snapshot dump is, by definition, a selective dynamic dump performed at various times in
a run. The SNAP macro instruction produces this type of dump. It gives you a picture of
the job's 16 general registers as well as selected areas of main storage.

There are really two macro instructions for obtaining snapshot dumps: SNAP and SNAPF.
Each macro instruction performs the same function, except that the SNAPF macro
instruction is used in the spooling environment. To simplify this discussion, whenever we
mention the SNAP macro, we also mean the SNAPF macro instruction.

By using job control, you can initiate or suppress snapshot dumps at run time. You don't
have to recompile a program in order to dump or not dump, since the SNAP macro
instruction is only effective when combined with an OPTION job control statement (using
the DUMP, JOBDUMP, or SY~DUMP parameter) in the job step in which you want the ~
dump to occur. If the program is run without this OPTION job control statement, the SNAP
macro instruction is bypassed .

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

9-2

UP-NUMBER

A hexadecimal printout of the general registers and the job's main storage area is always •
given when the SNAP macro instruction executes. Program-relative addresses are listed
on the left and absolute addresses are listed on the right. After the SNAP macro
instruction executes, normal processing of the program continues. Control is returned to
the instruction immediately following the SNAP macro instruction.

The SNAPF macro instruction works the same way as the SNAP macro instruction, but it
allows you to direct the snapshot dump to a specified allocated printer or to a spool file via
a virtual printer. In a spooling environment, you can use the SNAPF macro to direct
snapshot dumps to a spool file other than the job log file. This enables you to obtain the
printed output prior to job termination by using the spool breakpoint feature or closing the
file.

The formats of the SNAP and SNAPF macro instructions are:

LABEL 60PERATION 6 OPERAND

[symbol] {
SNAP }
SNAPF

[{ start-addr-1,end-addr-~ fr .. ,start-addr-n,end-addr-n] }]

Either symbolic addresses or general register 1 can be used to indicate the areas to be
dumped. To use symbolic addresses, you code the starting address (start-addr parameter)
and the ending address (end-addr parameter) for each area you want dumped, up to a •
maximum of 50 separate areas per SNAP macro instruction.

If you use the SNAPF macro instruction, register 0 must be preloaded with the address of
either an allocated printer or a virtual printer physical unit block (PUB), as obtained from
execution of either a data management OPEN or a read file control block (RDFCB) macro
instruction.

Remember, when using symbolic addresses, an even number of parameters must be used
(start and end).

For example, if you coded the SNAP macro instruction like this:

I

r
LABEL 00PERATION6 OPERAND

10 16

----.....---- ----.....----
First Second
Area Area

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

and placed it in your program like this:

L0(• UHJECT CUOl AIJU~I AUOP7 1.INl snURCf 5TATEME~T

nuuuun
ouuuon osbrJ
OOUllU2
00t.JUU2 't7FU OUiu
01Jl.J006 ClClC3C't'tO'tu'tU'tU
OOUOO[C~lbC7Cd

QlJOO 12
OUULI I 2 117UD

OUUU I If lfS I tl bU2b
0000 I 8 onouno2A
0000 l c OUUOOOJU

nuou20 OOOUUO't 1J
0Ui.J04!'t BO
OUUU25 UOOO't[

OOu028 OA I lJ

UUOl 'l

I 1 ..
Y•

00028 "' IO+
II•
12•
I 3• ...
IS• , ..

~TAHT 0
bALH btU

USJNCI •1b
~KAN(M ••lb

UC cLa'ABCLl'
UC CL't'EfC:iH'

vs. O._.
UIOP 0, 't
HAL I 1•+(1f•'tl•"t
ll(A IT AG I I
UC AITAG11

UC Al tAGll
UC
vC

x_ I 80 I

AL3 IT AG't t
~ii(I.fl StlAP SY{.

OUUU2A 02£JJ bllUtt bUOC U!JUUA 01.Jtlrll l 7 T A(d

I H T Au?

MV(BRAN(~+Hl'fJ,hRANCH+l~

OOtJO 30
000030
OUUOJU 'tSIO bUJt:a
Q(JUU]'t 80
OUU03~ OOUUS8
OUUUJB OA2b

UOU.18
lll• T A1,,'
l I ..
22 ..
23•

,.. i'f•

uPEN 0111
(NOP O,'t
U1U
t' Al l t •+ f lf•.l I
\.JC X' HO'
UC ALJlQUl)
~vc JB ISSUl 5-wC

OUUOl.l C207 6lUZ bUO'f un1u'f ODOllb "
OOUU'fO A 27+fAG1
OOUU'fO SB I fl 6 l I Co 00 1 I 8 A l Fl•
OOUO'f'f 92.2U I OJ l UOUJ I A l.'I•
OUUU'f8 S8FU I OJ'f oun 3'1 A 10•
OUUU'fC ll!:>EF A J l •

I 32 T A(,lj lLOSE OUT I
OOOO'tE A J)+TA'1'4 IJ(OY l 0 I
OUUU'IE SR l U b 110 UO I I H 3"• l lt•ACnuTI LOA,) 1<1S, FIL.ENAJ1E. AOUHE~S

oouusz OA27 35• SVC 39 lSSUl. Sd
3b EOJ

OOUU!;'f 37• US UH
OUUDS'f QA II, JR+ SVC lb

9-3
UPDAl'E LEVEL PAGE

First Area
to Dump

you would get the following dump when you executed the program (provided you used an
OPTION DUMP job control statement):

General
Registers

TAG1-TAG2

TAG3-TAG4

{

Sr-UP IH SNAP5Yf1~ AT UOU'tUA

HlGS 0-1 oouuoouo dnouu'fCB

HEGS B-F OUOUOUUO U001.hJOOU

riunnouniJ

oounooo11

{

SNAP OObCUA TO IJUbCEO

!lUO'fU~ 0AIU02U3 b!JU6bUOC 't5

{

~llAP OUbCFO TO nobCFl

UUO'IFO sa10bl1~ ~'2UIU31

ununnnou ououuuou uuuouuuo uoooouoo

UOUl10£lOU ooou:.rnnn r1uuonuuo ououuoou uoououou

OlJ6C.08

01.JbCFO

Notice that the SNAP macro instruction is placed before the instruction areas to be
dumped.

If you code a large number of addresses to be dumped, the processor time to access the
addresses for the dump will increase. But, it takes less time if you access .these addresses
from a general register. You preload register 1 with the address of a predefined Hst of one
or more address pairs (full word) specifying the areas to be dumped. The leftmost bit of the
last ending address must be set to 1 (X'SQ') to indicate the end of the list to the routine
that interprets the SNAP macro instruction.

Borrowing from the example we just used, we'll alter it to set TAG1 through TAG4 in a
predef.ined list, load the symbolic address of this list into general register 1, and instruct
the SNAP macro instruction that this register contains the address by coding:

OOPERATIONLl OPERAND
10 16

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

9-4

PAGE

and inserting it in your program.

LUl• lJRJ(CT CUOE "OOkl ADOR2 LINE snURCf >TATEMENT

ouuuuo
oououo f;S6U

OUOUlJ2
0UUOU2 't7Ftl 60IU 00012
OUUUOb CI C2ClC't'tO'tU't0 .. U
OUUUUf CSCbC7CR
0UUOl2 't 11 u 6l!Ji. 00 I Olf

OUUUl6
oouu 16 OA ID
ouuo 18 D2U3 61Wd buOC UOOUA 0000£

ouuu l l:. u7uu
oouu20
OOU020 't5 I tl 60lb 00028 A

UUtJ02't Rll

oouo2~ DU0u't8
OUuU28 (JA26
OOUU2A r201 l!.UF i. bUO't unut- 't OU('lfl6

OUuUJ()
OUdO JO i.>A I 11 b I lb 00 11 ~
rJUllUJ't ~22L I Ul I LHIOJ 1

UUU038 ~8~ Ll l (JJ'f (JlJfl]lt •
OUUOJC O~l:.F

oouo J[
OOUOJE StilU b 11 b 00118
OUUO't2 OA27

Ot.JUOlflf

OOOOA't
OUUUAB
OUUOFtl
OOUUF'i
ouu 1 'J't 000000 Id
OOUlUtl oOOU002tJ

OUIJlUC U00llll03U
OUUI Ill HU

OUU 111 unooJE
rrnuurrn
UlliJ 118 unuonnlia

I PHOr.
BE C. IN

HHANCH

1-.;,....---~~~~~ •• .-~.~:~~~---::::::::::::::::::::t::::=::_~~
10•
II Af. I
12 T At:.7

13•
l 't +T A67
15+

16•

11 •
18• ..

I 2U f "" l
l I +T A6 '\
22•
23+ ,,.
2S•

I lb f AC•"
l 7+T At:.'f
28• ,..
30
31.

85

•• 5A 'ff

•1

•• 8Uf
LIST

YO
91
Y2

93 ..
•s

SVC 29 SNAP SVL
HV(B Af~CH+btli) 1URAN(H+lJ.

orEN our

CNOP O, ..

First Area _J--------- to Dump

Hill
bAL I ,••1'4e:iJ
oc ;('80'
UC ALJIOUTI
SVC 38 155Ul Svc
MVC BUFl8J1d~AN(H+'i

PUT OUT -----.(}
Li(UYIUI SlT ALJbl'U'tENT

• ··•1nur1 Lo•o ""• FILlNAH[•no•<>s Second Area
MVI "t91111X'20' SET fUNCTIUt-1 coot

1s,s2c ,1 t LOAD AODH ur coMHuN 110 to Dump
tiALR l"t.15 LINK To CuMMOrt
Cl OSE OU 1-.'--..-....--------.,

OC OY hl I
l1•AIOUll LOAD ~11, FILEt-IAHl ADOH(~S

~vc 39 ISSUE. 5vC
EOJ
OS OH

OS
us CL 7.l
.is
OS Zllb
oc • r.I
UC A IT A~2 I

0 DC A IT l<.13 I
Ii(X't;O'
oc A JI T AG"I I
lNO BEG I P'f

••tauTt

NOTES:

0
0

Designates the predefined list of areas to be dumped. The entire list is referenced as LIST. TAG1 through TAG3
are defined as full-word address constants (DC A). The X'80' sets the leftmost bit of TAG4 to 1 (80 = 1000
0000). The remaining three bits of TAG4 are specified by L3.

Loads the address of LIST into general register 1.

Is the SNAP macro instruction, indicating that general register 1 contains the address of the list of the areas to
be dumped.

The dump obtained is identical, in desired content, to the dump that was obtained using
symbolic addresses. The execution time for the program using register 1 was reduced. The
only differences in the output listings are minor, and do not affect the use of the dump as
a debugging aid. They are:

• The program-relative and absolute addresses differ for each method used.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

9-5

PAGE

The listing produced by either method aligns on a double-word boundary. Because
different inline expansion codes are generated by the different uses of the_ SNAP
macro instruction, there is a difference in the addresses of the areas to be dumped.
So, the listings may be slightly different (as they are in our two examples). You will
always get the exact area you want, but you can also receive the generated code of
the instruction before or after the area to be dumped, depending on where the
double-word alignment begins.

{

SNAP hY '5NAP~U1l AT UOU'tC.8

REGS o- 7 nouuoUull UflOUUSB'f

Hf's H•f nuriuoouo unouuoou

General oooouoou onunnroo OUOULlOOU ouuuouuu ooooouoo
Registers

nunnuonu uoonnnuu OUOULlUOO •lUlJUOOUO uuouuooo uoouuuoo

{

SNAP roocce l u no6CDU

TAG1 -TAG2
OCIC1'fC8 Dl1UbUU& b001...~17UU 'f5 OU6CC8

· TAG3-TAG4 {
S~AP OObCEO TO r1u6CE[

OUO't[O 58!.JblJb 'll.iUIOJI uuoc.Eu

Another benefit of using general register 1, rather than symbolic addresses, is when there
is a large string of addresses. If you wanted to remove one of the addresses, and it was
not at the end of the string, you would have to change the entire line that contains the
address. By using a predefined list, you only have to remove the DC instructions defining
the symbolic addresses.

If you code the SNAP macro instruction without any parameters,

LABEL OOPERATIONL°:I OPERAND
10 16

only the contents of the 16 general registers are printed.

NOTE:

The contents of general register 1 are destroyed by the SNAP or SNAPF macro instruction.
If you want to record the true contents of the register, store it in a field within the area of
main storage to be dumped. Also, if you do not specify full-word addresses, the nearest
half-word location to the left of the specified address is used.

9.1.2. Normal Termination Dumps (DUMP)

A normal termination dump of main storage differs from a snapshot dump in that it prints
out the entire contents of the job region or all main storage, not just selected areas. The
DUMP macro instruction causes this, and it is inserted in place of and acts as an EOJ
macro instruction (8.3). This means your job step runs to normal completion. Therefore, a
DUMP macro instruction terminates a job step without cancelling it, unless, of course,
something is wrong with your program .

9-6 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Just as with the SNAP macro instruction, you can initiate or suppress the dump at run
time through the OPTION job control statement. However, with the DUMP macro
instruction, there are three types of dump available: SYSDUMP, JOBDUMP, and DUMP.
Only one feature is functional per job step, and their hierarchy is in the order just stated.
In other words, if both SYSDUMP and JOBDUMP are specified, only SYSDUMP is
effective.

The specific meaning of each type of dump is explained in the system service programs
user guide, UP-8062 (current version). But briefly, they can be summarized as follows.

The DUMP feature gives you:

• The job's last executed program status word (PSW) and an identification code
indicating the source of the dump;

• the job's 16 general registers;

• the job's prologue area with the preamble and task control blocks (TCB); and

• the job's program region.

The SYSDUMP feature provides a method of determining why the system terminated
abnormally, which entails:

• a translation of the state of the entire operating system into charts and texts; and

• a hexadecimal dump of all of main storage.

The JOBDUMP feature is basically the same as the DUMP feature, except that the dump
listing is also translated from hexadecimal to a more easily readable, English-language
version of the dump. Additionally, whenever you want to use the JOBDUMP feature, you
must place the following device assignment set in your job control stream:

10 20 30 40 50

If this device assignment set is missing, the dump given is of the module (program) called
JOBDUMP, not of your module.

For DUMP and SYSDUMP, a printer must be assigned to the job, but the LFD job control
statement does not have to have a file name of PRNTR; the file name is what you have
specified on your DTF macro instruction for the job's print file.

If an OPTION job control statement is not present in the control stream, the DUMP macro
instruction acts as an EOJ macro instruction (8.3.4). The OPTION job control statement
must appear in the job step in which you want the dump to occur.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

.UPDATE LEVEL

9-7

PAGE

For example, if you assemble, link edit, and execute your load module, and you want the
dump to occur when you execute your load module, you place the OPTION job control
statement in the job step that executes your load module, not in the one that assembles or
link edits.

The format of the DUMP macro instruction is:

LABEL .60PERATION .6 OPERAND

·[symbol] DUMP

The identification-code parameter is a 1- to 4-byte hexadecimal code you assign within the
program to indicate the source of the dump. If you use all four bytes, it can consist of four
alphabetic characters, eight numeric characters, or, since each byte can hold one
alphabetic character or two numeric characters, any combination that equals four bytes.
Examples of this are:

• 12345678

• A123456

• AB1234

• ABC12

• ABCD

One of the reasons for using an identification code is to uniquely identify the load module
producing the dump. This serves as an identifier, which can be used for easy reference
when several different dumps are involved.

If we used an identification code of ABCD in the DUMP macro instruction, like this:

LABEL OOPERATION.6 OPERAND
10 16

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 9-8

UPDATE LEVEL PAGE

and used an OPTION JOBDUMP job control statement, the identification code would show
up here (note also the program status word):

·-·-·-·-·-·~···-·
T A S K. C 0 ~ T R 0 L 8 I.. 0 (K

·-·

TASK CONTROL bLOCK AT AOORESS 006~00

TASK KEY • I
NEXT TCB ADDHESS • 006500
SACKWARO LINK AUORESS • 006SUO
sue TASK VERTICAL JO • ooouou
SUB TASK COUNT • U

~All FOH THANSIENT
OUTSTANO!NG 1/0 HEQU[~TS •
TASK SWJfCH PRJQ~JTY • 20
PR[AHHLE ADDRESS • 006~00

TRANSiENT JO/SVC CODE • 18
lCH AOOR~SS • uunOlJO
TIMEH ¥A1..UE • u:ou:no

T A 5 K - s •

PSllll,_~~~ ~ "1._•~·~o~&~•~·~·~~~T~A~T~u~s.,..;•£0~•~D~•~c~o~1~•~0~0µ1~•:,,,..~1~ngo~oo~•~F~•~
PROimRAK KEY • I , WHICH I JnB DU P
SYSTE" "OOl

CHARACTER MODE IS EHCDIC
RECJJSTER SET IS PfofOaiLE11
PROCESSOR STATE 15 PROBI U1
OPE.RATION MOOE 15 NATIVF
MONJTOH MODE 15 OFF

lNf~RUPT COUE • 18
CONUI TION CODE • l
INSlRUCTION ADDRESS • OOOltFA
NON.tEHO IN~fHUCTtON LENGTH I' AYTES I
UPltUTIO~: SVC DUMP INSTRUCTION: OAI~

Identification I ••• u Code ___ ,.,'"' oooo•sco Ht:.~ I
oouuo~uo

RE.1.1i 9
oouuoooo

q[C. 2
OUUJOUUO

REG A
OOtl1JUUun

R£G l
uununonn

here:

·-· -·-·-·-·-·-·-·-·-.
T C 8

RE<:. B
uouuoouu

PSW

HEG H
UtJOU!IOUO

...------Identification Code

HEb '4
ODt.Juouou

HEb {
unnunuuo

Rt.t.1 5
uouuooou

oouuoouo

HFG 7
ouoonuoo

REG f
.. unoo .. r•

000000-1 oou•soo uouoo2uo lOO 500 00000000 00000000 ooao61ton I Rououoo uuuuuouu • •. •.• • • • • ••006500

000020 (0160018 1ouuo1tr A Ot.JOOABCD 00000500 ooor1ouoo aouoouoo unouoooo uouuuoou •··••••••••••••••••••••••••••••··-oo•szo

0000'40-lt00U0'4B2 oouooouo uooooooo OOOUOtJOO 00000000 00000000 uoouooou ooouuouu • •••••••••••••••••••••••••••••··-oo•s•o

QOU060-'tOOOO'tEC 140UOQl4[b 00000000 onooouoo oonoouoo 00000000 uoouoaoo oooououu • , ••• ·•• ••••• ,., •••••••••• ,, ••• -oo•S•o

ooooso-00000000 001.JUOOOO 00000000 onooo1J00 ooooouoo 00000000 ooc~IEOO uouuoluo •···••••••••••••••••••••••••••••••006580

OOOOAO-OOOOO'fCC oouoooon uuoooono nnououoo 00000000 uoaoooan ooououoo oouaoouu ••••••••••••••••••••••••••••••••••Oo65ao

oouoco-oouooooo oovuoo1.rn • I I I I I I I I -oo•s.co

and here:

. -·-·- ... ·-·-·-·-·-·- ·-. -· -·-·-· -·-·-·-·-·-· ··-·-·
PRQtjl.f.H t(fGl~T(HS

·-·

Identification
Code ...-~~~

REG u
UlllJUAH(O

" G d
tJ!JOULJUlllJ

RUa I
nouun~oo

Rt:.b 9

fJGuuOOIJn

RE~ 2
ouuuuoun
~EG A

\JUUUUUUn

J 0 B U S E O C 0 A E

... ·-·-·-·-·-·-·- ·- ·-·-· -·- ·-·-·-·-· -·-·-·

REG l
00000000

H[G B
aouooooo

REu 1

uuououao
REb C

UOOUOOIJll

Rt.b 5
UOIJUOOUU

Rt:G D
UOUuOOllU

KE<i #,

'fUOUO'fS2
t<[b f

ltvOOO'f[C

HEG 7
uuoonuoo

NEG F
1tooon 'tE •

•

•

•

•

•

•

8075 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

9-9
PAGE

If we used the same DUMP macro instruction (with identification code ABCD), but used an
OPTION SYSDUMP job control statement, the identification code and the PSW again
appear in the task control block (TCB) area and register 0 of the problem registers of the
portion of the dump belonging to the particular program (job step) that issued the DUMP
macro instruction.

If an OPTION DUMP job control statement was used, it would appear as:

USER l:.OJ l)UMP
PS..i AT INTlRRUPT 1_01bU0ld700UO'tFA EH~OR rOOF. • onooA~CD TCti ADOR ., 006~00

Identification
Code

PHOSLfM PRO~RA~ riE~~

HE~5 n-1 000111Rlu uoou ~uu oonoootiu onanonou

HEGS R-F ouu ouu ooou oou nuoouuuo onon11ouu

JOH PRF:AMHLE
FFrcoo C'tE'tO'tu7 'tn"lu O'tO r1ooouoR't onuosoo~

FFF(20 030~02~3 06C't OFO 03050203 O~C'tFllfU

PSW----------'-'-'-c_•_o __ o_o o_u_o_o_u_o __ o_n_o_.u poo oouooo s~ E. ~ sao 9E,..

FFFC60 "IO'tU~O·rn U7bt.JI ISC ou .. colfur 'fOF7F6fO

Identification rFFCHO ooooeouo ooouuouo OUROOIOU On'fOcCOU

00000000 OUUUOOUO 'tUOULJ"h~2 UOOOOuOU

uonoouoo ouooouuo otuouu'tE(110000 .. r6

OOOU't(OO OUllUOSl 't UUOU680U UOUOUuOU

76011500 tJUOU7Ultlf OUOU7't58 OOUOOuUU

OS'tUlfOOO OUUUOOUO 1JOOUOOUU OOUOUuOU

r IFSOOOO Ou'fUUOUO uur.:olnU uoououou

OAFOOU'fl ouuooou1 u07trnSOI OAFOOUOU

Code ------,-,-,-,-.-o--o-u_o_u_u_o_u_l __ u_o_7_u_u_Ao-o--o-u_o_cru-o_o_u __ u_n_oo_u_r-10-u-~.ooououno ouuuuuuo uuouuuoo uooouuou

FFFCCO ooouo1~~ aooouooa ouorouuu onoor1nou

FFFcEO oouuoouo unouoooo ooo oou unaonnou
PSW---------------.

Tc us
rrrnno

FFF020

FFFDlfO

FFFnbO

FFF1>kO

FFFDAO

FFFDC"O

lOUUbSuO UOOU0200 200 SOU OOOOOC'OU

COlbOUJR 700Uu'fFA OUOOABCO oooonsou

1toouolfo2 ooouuooo ooonooou onoonooo

'fOUUO'fLC ~OOUU'f[b oonnoooo 00000000

ouuuoouo unou~oou ou~oouuu onuonnou

ooouo~LC ur1ouuoou nuooooou onunnodu

ooouuouo uoouuono

oonuuoou '1UlltJOuuu uuouu 1 su uouoouu 1

OOOOUOOU OUUUUOUO UCJO\JUOnO UOOOUuOU

ouoouono ouoooi.tuo 1 souuoou ooooouou

ououuooo ououuuuo ououuooo ooooouou

ouoouoon ouuouuuo uuouuoou uouoouoo

ooouonno nuuououo uuouooou uoooouno

uunuuuoo OUIJUOUUU uoeu l EOO oca 1ouou

ounooono nuuooouo ououuoou uouuouou

0061120

Otlb'f6U

006'4AU

U06"tCO

006500

006520

UUb!::i80

OOO!::iAO

0065CO

Just to
example
AB1234:

see what
using an

an alphanumeric identification code printout looks like, here is an
OPTION OUM P job control statement with an identification code of

U~l~ tOJ LlUMP
PS" AT INTERRUPT LDlbOOlt:!o700UO'fFA ER><OH roor .lonAAt2J'f I TlB A.DUH • uuosou
PHOdllM PHO,RAM RE~S

HtG5 u-7 J"t uouu sou oonnouuu onunL,11t1u t1untl1Jnno nLuuoouu 'funuu"tB2 uououunu

Identification
Code .JUt:l PR~ AMUL(

~ff(l1U (l(iFlt2 F3F•t O'fU OUCll')l1011't onon•;nou

Fffl20 DJU~02~J U6C~ Ufll DlO~DlUJ DAC'fftlFU

~Ff("tO OlJUUUUUO UllOU OOU OUfl(llJ(l!::id lASRn9E'f
PSW---------------

FF Fe t>tl 'fU'fU~(J~n U7b{JllbC ~Olf(Q!Jlll 'fnf7f6FU

FFfChU out1uaoun unnuuoou ooc i'u 1 nu on'fn,.cnu Identification
Code ----------------r-------'

~ Ff CA.fl 001JUUOut U07oUA!lU OUO UOU 0000!1000

Fff(CO nuuuu 1 i.;. c:i uoouuuou nun oou cH1Un1ir1nu

fff(fO ouooouua unolJuoou nun1 JUO!J uoun1Jflll11

PSW --~------------.
TCnS

Fff•,uu

fFFOln

FFrn'fO

Ff"fObO

CUlbUDIR 1nuu11'fF A OUAHll.3~ unCJCl·lSOl.J

'10UUU'fo2 uno11unou nunc1uuo...1 unuo11nnu

Olll"JUUOOU OUl1UUUUll 'fUOUU"f[('fUOUU~l b

(l!JUU'fCOO U\J{IU05l'f UUOUbtHIU U!IUlJOur.u

76nl1ono uuua7U~'f ouou7~5b uouuuur1u

o5~0'1000 out•UIJUuU uuouuonu u11c11lUulJU

F1Founno Ou'fUOOuU uuF20lOU UfJUOUuCU

dAFOlJ[l'fE OUl10:JOul UU7oulol UAFOUu{;U

uoouuuno ouuuouuu uuouullou unuoouou

ounuu,1c10 riuuuouuu uuouu1su 00000~02

uOou<JlJ<10 flul•UIJC..uO UUOUUOfJU UllOOUu(JU

uuno1inno 'lUUUb~U(I I oouuoou UOUOOU{l\J

uunoonnn 111..11.uuuuCJ uuouuooo oooouuou

uu11uoooo ouuuuuuo uunouono uooouuou

uunnuuno ounuouuu uoouuonu uuuuou11u

UtJb'fUO

uuo~20

uuo~'fO

uub~bu

UUO'f8Q

uub~cu

OUb'fEO

nuos.uo

nub~2o

UUh~'fO

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

9-10 8075 Rev. 2

You can preload register 0 with the identification code in the same manner as you load
the list of symbolic addresses for the SNAP or SNAPF macro instruction. By using register
0, you save on execution time and conserve main storage space.

If vou don't specify an identification code, either on the DUMP macro instruction or by
preloading it in register 0, an identification code of binary zeros is supplied by the
operating system.

NOTE:

A main storage dump and normal termination can also be requested by the console
operator entering the DUMP command at the system console. The results are the same as
for a DUMP macro instruction included within your program.

9.1.3. Abnormal Termination

A main storage dump can also be obtained by using the CANCEL macro instruction (8.3.5).
However, in this case, the issuing program is terminated (and any subsequent programs in
the job). This macro instruction terminates the issuing program when error conditions are
encountered that prevent further processing.

A main storage dump and abnormal termination can also occur when the operating
system performs abnormally. This is known as a system failure dump.

•

The functions of the CANCEL macro instruction can also be obtained by the console •
operator entering the CANCEL command at the system console.

9.2. CHECKPOINT AND RESTART CAPABILITY

Hardware and software malfunctions, can cause your job to terminate before its normal
completion. Another reason for termination could be that the operator cancelled your job
because a high-priority job required all the facilities of the computer. If the job is small,
you can rerun it without any really great loss. But, what if it is a long or complex job,
where rerunning the job could increase both processing time and cost, thereby reducing
productivity? OS/3 has provided the checkpoint facility, which allows you to periodically
record the operational status of your job.

The capability to generate checkpoint records is a function of the supervisor, and the
capability to use these checkpoint records to restart a job is a function of job control
(through the RST job control statement).

You might want to create a checkpoint record at some specific occurrence, such as the
end of a magnetic tape reel in a multivolume input file, or after processing a specific
number of records. Some people prefer to generate the checkpoint record at fixed time
intervals, say, every 15 minutes (by using the SETIME macro instruction to set a timer
interrupt).

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 9-11

UPDATE LEVEL PAGE

Macro instructions are available to define, open, and close files for checkpoint records.
These macro instructions are used in various combinations, depending on whether your
check-point record file and data files are on magnetic tape or disc, and whether you are
using data management or the physical input/output control system (PIOCS) to process
the data files.

The checkpoint and restart facilities are effective if you are sequentially updating magnetic
tape or disc files (using the sequential access method - SAM) where data is not being
overwritten. However, checkpoint records are not valid if you are processing disc data files
and are updating using either the indexed sequential access method (ISAM) or the direct
access method (DAM).

When a checkpoint is taken, a series of records are written to a checkpoint file on either
magnetic tape or disc. These records contain the data needed to restart the job, which
includes:

• the checkpoint header;

• the job preamble;

• the primary TCB (and any subtask TCBs);

• the remainder of the prologue;

• a list of the files open when the checkpoint was taken; and

• your program.

Each checkpoint is assigned a serial number, which is contained in a checkpoint header
record along with the checkpoint file name, job name, and job step number. This
information is displayed on the system console and written to the system log. When you
want to restart from a checkpoint, you enter this information as parameters on the RST job
control statement.

When you restart the job, it is reestablished to a condition functionally identical to the
condition at the time the checkpoint was reached. In this way, you do not have to rerun
the entire job; just the part that was not completed.

However, if the cause of the failure is in your program, the same error will reoccur.

When you use the restart facility, the job is returned to the status it held when the
checkpoint occurred. Tape files are repositioned to the point at which they were, and
control is returned to the program at the address specified by the checkpoint.

It is not practical to try to reposition data cards in the card reader when restarting from a
checkpoint. However, if you want to use the checkpoint facility with card files, you can
enter the cards as embedded data in the job control stream and use the GETCS macro
instruction to access the data.

NOTE:

The LFD job control statement in the device assignment set for the checkpoint file must
not contain the /NIT parameter. This parameter causes the file to be written from the
beginning of the file. In other words, the checkpoint records already existing on the file
will be overwritten.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 9-12

UPDATE LEVEL PAGE

In order to restart a job, you must reenter the original control stream with an RST job •
control statement, which must appear as the first job control statement of your job control
stream. Of course, all the files needed to complete the job must be available, along with
the file that contains the checkpoint records. For information on how to use the RST job
control statement, see the job control user guide, UP-8065 (current version).

9.2.1. How to Generate Checkpoint Records (CHKPT)

A series of checkpoint records are generated each time a CHKPT macro instruction is
executed in a program. These records must be written to either a magnetic tape file
(defined by a DTFMT macro instruction), or a disk file (defined by a DDCPF macro
instruction). The use of these macro instructions and those needed to open and close the
file are discussed later in this section (along with how the CHKPT macro instruction is
used in connection with these other macro instructions). The format of the parameters of
the CHKPT macro instruction is:

LABEL 6. OPERATION 6. OPERAND

[symbol] CHKPT filename [,restart-addr] [,list-name] [,error-addr]

All the parameters of this macro instruction are positional parameters.

The filename parameter specifies the symbolic address of the macro instruction that •
defines the checkpoint record file. This macro instruction is either a DTFMT macro
instruction for a magnetic tape, or a DDCPF macro instructions for a disk. The value
specified for this filename parameter is also the value you use for the filename parameter
of the LFD job control statement in the device assignment set that defines the checkpoint
file in the job control stream:

The restart-addr parameter is used to supply the symbolic address of an instruction in your
program that is to receive control when restarting the program from the series of records
taken by the execution of this CHKPT macro instruction.

You can have more than one CHKPT macro instruction in a program. Assume, for
instance, that your job could be broken down realistically into two separate processing
functions: first, it has to read 10 tape volumes as input; and second, it then updates a
master disk file with the data that was on these 10 tape volumes. You could open the
checkpoint file, take checkpoint records, and then close the checkpoint file in the first step
(tape-in), and then you could open, take checkpoint records, and close another checkpoint
file when updatinQ. In this way, you do not go through the series of code for tape-in if the
restart is to affect only the update portion of the program. You also will not need tape
drives that can be used by other jobs (thus you can omit the device assignment set for the
tape-in).

If you omit the restart-addr parameter, the instruction immediately following the CHKPT
macro instruction receives control. •

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

9-13

UPDATE LEVEL PAGE

The next parameter, list-name, is used only when working with PIOCS files. It specifies
the symbolic address of the DCFLT macro instruction that generates a list of files in your
program that are accessed via PIOCS.

If an error occurs during the execution of the CHKPT macro instruction, the job, by default,
is terminated abnormally. However, you can place an error routine in your program to
override this abnormal termination and continue processing without the checkpoint. The
error-addr parameter is used to specify the symbolic address of this error routine. In this
way, if an error does occur, the error routine receives control; no abnormal termination
occurs. After the execution of a CHKPT macro, the checkpoint routine checks register 0,
which contains the checkpoint status, and which is, in effect, an error code. If the error
code is equal to 0, it means the checkpoint completed successfully, and processing of the
job continues. If the code is other than 0, the error routine (or abnormal termination, if an
error-addr parameter is not used) receives control. The possible checkpoint error
conditions and error codes that may occur are listed in Table 9-1. Also listed are the
possible restart error conditions and codes that may occur when trying to restart the job.

Table 9-1. Checkpoint/Restart Error Codes

Error
Code Description

(in Hexadecimal)

Checkpoint Error Codes

AO Checkpoint file is not opened.

A1 Unrecoverable 1/0 error while writing a checkpoint record

A2 Checkpoint record cannot fit in checkpoint file.

NOTE:
If the checkpoint record cannot fit, an attempt is made to write it at the start of the checkpoint
file. If it still does not fit, this error code is returned.

A3 Illegal parameter specified on checkpoint macro

Restart Error Codes

A4 Unrecoverable 1/0 error while reading checkpoint file

AS At restart, processor could not locate designated checkpoint.

A6 At restart, processor could not position data tape files; unrecoverable 1/0 error.

A7 At restart, processor determined that supervisor was not compatible with the supervisor at the time of the
checkpoint.

AB At restart, processor determined that hardware incompatibilities existed between the system at checkpoint.
time and the system at restart time .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 9-14

.UPDATE LEVEL PAGE

Once again, if you do not provide a checkpoint error routine in your program and do not •
supply its symbolic address with the error-addr parameter of the CHKPT macro instruction,
the job terminates abnormally (if an error occurs), and the following message is displayed
at the system console:

JC03 JOB jobname TERMINATED ABNORMALLY.ERR CODE number

where number corresponds to the error code listed in Table 9-1. (These error codes are
also listed in the system messages programmer/operator reference manual, UP-8076
(current version).

9.2.2. Using Magnetic Tape as the Checkpoint File

If a magnetic tape is to receive the checkpoint records, you have to use the DTFMT data
management macro instruction to define the file. Two requirements of this macro
instruction when defining a checkpoint file are:

• It must indicate that standard labels are being used (FILABL=STD keyword
parameter).

• The block size (BLKSIZE keyword parameter) must be at least 80 bytes to meet the
requirements of data management. If you omit the BLKSIZE parameter, data
management assumes 256 bytes.

You can also intersperse data records with the checkpoint records on this file.

The DTFMT macro instruction does not generate executable code, so you must locate it in
your program separate from your BAL instructions and imperative macro instructions.

Before the checkpoint file can be accessed (first execution of the CHKPT macro instruction
for the file), you must open the file using the OPEN macro instruction. After the last
execution of the CHKPT macro instruction, you must close the file using the CLOSE macro
instruction. These macro instructions are fully explained in the data management user
guide, UP-8068 (current version). It is advisable to become familiar with them before you
attempt to structure a magnetic tape checkpoint file.

Here is a skeletal example, which shows basically what parameters the CHKPT macro
instruction agrees with in regard to the other instructions in your program when using
magnetic tape.

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

LABEL

SPERRY UNIVAC Operating System/3

t.OPERATIONt. OPERAND
10 16

w~~ P.~•M i!ot"b t:rc~n i~ rc•ta .. t-e.6)
I

9.2.3. Using a SAT Disk as a Checkpoint File

9-15

UPDATE LEVEL PAGE

I I I I

I I

In addition to using magnetic tape to receive checkpoint records, you can use disk. As
many checkpoint records as will fit are recorded in the disk space you allocate for the file
(with an EXT job control statement). When the space is exhausted, a wraparound, in
effect, takes place: the checkpoint records are written at the beginning of the file, over the
existing records, thus losing those checkpoint records taken earlier. For this reason, you
cannot intersperse any of your data with checkpoint records on disk, since you could lose
data if wraparound occurs .

9-16 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

9.2.3.1. Estimate Space Requirements for a Disk Checkpoint File

Each checkpoint consists of a series of 256-byte records of the following type:

Checkpoint
Data Records

Checkpoint header 1

Prologue
Preamble 1
TCB n (1 TCB record per task)
Remainder of prologue n (= remaining size)

n 256

File list 1

User program n (_ user program)
n - 256

Using this list, you can estimate the minimum disk space requirements. The total amount
of space required depends on the size of your program. For example, assume your program
consisting of one task occupies 8192 bytes of main storage plus a prologue of 1024 bytes.
The checkpoint records would consist of the following:

Checkpoint
Data Records Bytes

Checkpoint header 1

Prologue
Preamble (1 record - 256 bytes)
TCB (1 record - 256 bytes)
Remainder of prologue (2 records - 512 bytes)

Total prologue 4

File list 1

User program 32

Totals 38

256

1025

256

8192

9728

Thus, a checkpoint for this program would consist of 38 records of 256 bytes each, or a
total of 9728 bytes. If you were using an 8416 or an 8418 disk subsystem, one entire
checkpoint would fit on a single track (each track can hold 40 records).

If you allocate only one track, each checkpoint taken would overwrite the preceding
checkpoint. To avoid doing this, you must allocate at least twice the minimum space

•

•

required, which in this case is approximately two tracks. The current checkpoint would •
then overwrite the records recorded from an earlier checkpoint, while the most recent
checkpoint would always be available.

•

•

•

8075 Rev. 2

UPDATE LEVEL PAGE

9-17
SPERRY UNIVAC Operating System/3

UP-NUMBER

9.2.3.2. Define, Open, and Close a Disk Checkpoint File (DDCPF, DCPOPN,
DCPCLS)

When employing a disk checkpoint file, a different group of macro instructions are used to
define, open, and close the file. We will now explain each.

In order to define a disk checkpoint file, use the DDCPF macro instruction (versus the
DTFMT macro instruction used for tape). As you can see in the format, there are no
parameters associated with this macro instruction.

LABEL 6. OPERATION 6. OPERAND

filename DDCPF

There is only a filename in the label field. Just as with the DTFMT macro instruction, this
filename is the symbolic address and is used as positional parameter 1 (filename) of both
the CHKPT macro instruction and the LFD job control statement.

Since the DDCPF macro instruction does not generate executable code, it must be placed
separate from your BAL instructions and imperative macro instructions.

Use the DCPOPN macro instruction to open the disk checkpoint file (before the execution
of the CHKPT macro instruction). It has this format:

LABEL 6. OPE RATION 6.

[symbol] DCPOPN {
filename}

(1)

OPERAND

The filename parameter specifies the symbolic address of the DDCPF macro instruction
that defines the checkpoint file. You can also preload this address in general register 1,
and you indicate this by coding (1) in place of the filename parameter.

To close a disk checkpoint file, use the DCPCLS macro instruction (after the last time the
CHKPT macro instruction is executed). The format is:

LABEL 6.0PERATION 6.

[symbol] DCPCLS {
filename}

(1)

OPERAND

The two parameter choices, filename or (1), have the same meaning as the parameters of
the DCPOPN macro instruction: filename is the symbolic address of the DDCPF macro
instruction, and (1) indicates that the address is stored in general register 1.

Here is an example, showing the relationship between the parameters of the CHKPT
macro instruction and the new macro instructions we just discussed.

9-18 8075 Rev. 2

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

UP-NUMBER

LABEL b.OPERATIONL'.l OPERAND
10 16

9.2.4. Processing PIOCS Files (DCFLT)

The checkpoint routine uses a file table list to identify the files open when the checkpoint
occurs (thus indicating in the checkpoint record which files are needed to restart from this
checkpoint). If you use data management files, the list is automatically generated and
maintained by data management in the job prologue. However, if you are using PIOCS,
you have to generate the file table list by using the DCFLT macro instruction in your

. program. The generated list locates the file definitions known as phsyical input/output
control blocks (PIOCB) for all the files accessed via PIOCS. This list is required for the
repositioning and other file-related activities when restarting the checkpointed job.
(Remember, data management does this automatically, but PIOCS does not so you have to
use this macro instruction only with PIOCS files.)

•

•

•

•

•

•

SPERRY UNIVAC Operating System/3
9-19 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

The DCFLT macro instruction is declarative, just like the DTFMT and DDCPF macro
instructions; it does not generate executable code. So, it must be placed separate from
your BAL instructions and imperative macro instructions.

The format of the DCFLT macro instruction is:

LABEL fl OPERATION fl OPERAND

list-name DCFLT {
(disk-PIOCB-1) }
(tape-PIOCB-1,tmc-1,bc-1)

[{
,(...),(disk-PIOCB-n) }]
,(... , ... , ...) ,(tape-PIOCB-n, tmc-n,bc-n)

Before explaining the parameters, we will mention the coding conventions you have to
follow when using this macro instruction. For disc PIOCS files, each parameter must be
enclosed by parentheses, such as: (disk-PIOCB-1). For tape files, each parameter consists
of a group of three subparameters. Each group of subparameters must be enclosed by
parentheses, and each subparameter within the group must be separated by a comma,
such as: (tape-PIOCB-1, tmc-1, bc-1). If more than one PIOCS file is used, each
parentheses-enclosed parameter is separated from the next parentheses-enclosed
parameter by a comma. For example, if you used one disk file and two tape files, assigned
the values 01 to the disk file, and assigned T1, TMC1, BC1 to the parameter group for the
first tape file and T2, TMC2, BC2 to the parameter group for the second tape file, it would
be coded as:

commas separating parameters

LABEL OPERAND

li4t-~M
.i ...1. ...1. ..1 --'-.L......l--4-__...,.,=.J"-C!.._._,_+--l""-J.'~-"---'-"-'-~-l..LJ...4.J..L.l!..-"""-'-'--'-4J..1-!.J...LJLL-.L ~.._.__...,_._..._,'"""-.l.~µw~-""-'J--

\ t t I
commas separating subparameters of a group

Notice every parameter is enclosed by parentheses.

The list-name in the label field is the symbolic address of the PIOCS file list table. This is
also used as the list-name parameter (positional parameter 3) of the CHKPT macro
instruction.

The disk-P/OCB parameter specifies the symbolic address of a PIOCB for a disk file in your
program. You can have from 1 ton number of entries of the disk-PIOCB parameter, with n
depending on how many disk files are used in the program.

The tape-PIOCB subparameter does for tape files what the disk-PIOCB parameter does for
disk files. It specifies the symbolic address of a PIOCB for a tape file in your program. And
just as for disk, you can have from 1 to n number of entries of the tape-PIOCB
subparameter (and its associated subparameters), with n again depending on the number
of tape files being used.

8075 Rev. 2
SPERRY UNIVAC Operating System/3 9-20

UPDATE LEVEL PAGE UP-NUMBER

For every PIOCS tape file, there are also two other subparameters needed to complete the
parameter group: tme and be. The tme subparameter specifies the symbolic address of a •
half word in the program where you keep a binary count of the tape marks read between .
the tape load point and the current position of the tape (used to reposition the tape to the
correct file when restarting). The be subparameter specifies the symbolic address of a full
word in the program where you keep a binary count of the blocks (physical data records)
read from the most recent tape mark to the current tape position (used to position the tape
to the correct data record of the file when restarting). For instance, suppose you were
already processing the second file on a tape (which would be past the fourth tape mark)
and were at the tenth data record. This could be shown as:

LEGEND:

V H H
0 D D
L R R
1 1 2

VOL 1 Volume label 1
HDR1 File header label 1
HDR2 File header label 2
EOF1 End of file label 1
EOF2 End of file label 2

FOUR

DATA E E
RECORDS 0 0

FILE 1 F F
1 2

TWO
TAPE MARKS

I \
DATA E E

RECORDS 0 0
FILE 2 F F

1 2

READ/WRITE
HEADS

AT RECORD 10
OF FILE 2

If a machine error occurred at this time, you would want to reposition the tape to this
point when restarting the job. You would not want to read all the data from tape mark 1 to
tape mark 2 and from tape mark 2 to data block 10. By looking at the storage areas in your
program referenced by the tmc and be parameters, the checkpoint routine knows where to
reposition the tapes.

Entries for disk and magnetic tape files can be interspersed, such as:

LABEL OOPERATION.0. OPERAND
10 16

tape entry disk entry tape entry

•

•

•

•

•

8075 Rev. 2 9-21

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Here is an example (with the macro instructions needed to open, close, and define the
checkpoint file), showing the relationship of the parameters of the DCFLT macro
instruction to the CHKPT macro instruction and the macro instructions used by PIOCS.
Routines accessed by the restart-addr and error-addr parameters and also the end of job
(EOJ) instruction are not shown.

I.

2.

3.

~.

5.

"
1 .

LABEL 60PERATION6 OPERAND
10 16

I t I _L....L .1

,,(,r1r.~.=r. 9 ,TIM,C.1NT,, IB.N.c.,=r,) 1,A_,'P,x,b1.D2,) L _1

Generates a file list table for one tape file (TIOT) and two disk files (PIOD1 and
PIOD2).

2. Constructs a PIOCB for the tape file.

3. Constructs a PIOCB for one of the disk files.

4. Constructs a PIOCB for the other disk file.

5. Defines a storage area of one half word to keep a count of the tape marks read.

6. Defines a storage area of one full word to keep a count of the data records read
since the last tape mark was encountered .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

9.3. MONITOR AND TRACE CAPABILITY

9-22

.UPDATE LEVEL PAGE

Another means of debugging a program is the monitor routine_ It enables you to track (or
trace) the execution of a program (by using a hardware interrupt) so that errors can be
found and fixed. As input, you provide monitor statements that indicate the type of
diagnostic action to be performed at a specific point in the program.

The monitor routine interrupts each instruction before it is executed, and tests whether
any of the following test conditions are stated in the monitor statement input and have
been met by the instruction.

• A specified storage location is referenced (or the data stored at that location is
changed).

• A specified location in the program is reached.

• A specific sequence of instructions occurs.

• A specified register is changed.

If any of these conditions are met, you get a printout of various types of program
information, depending on which display option you chose. This is summarized in Table
9-1.

Then, you can:

• continue executing the program under monitor control;

• suspend program execution; or

• continue the normal execution of the program without intervention from the monitor
routine.

Depending on how you· call the monitor routine into main storage and the choice of
actions you select, an entire task or only part of a task can be monitored.

To activate the monitor routine, you must ensure that the following provisions are met:

• The monitor routine must be in main storage.

• The monitor bit in the PSW must be set.

• The task to be monitored, location options, and actions must be specified to the
monitor routine.

• A printer must be available.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

9.3.1. How to Call the Monitor Routine

9-23

UPDATE LEVEL PAGE

There are two ways to call the monitor routine into main storage. Which one you use
depends on whether you want to trace instructions from the beginning of the job or wait
until after the job begins executing.

Whenever you use the monitor routine, keep this in mind: it occupies 3K bytes of main
storage. If you specify the minimum main storage as a parameter of the JOB control
statement, make sure you do not overestimate the storage size needed by your job,
because it is possible that there might not be enough main storage available for the
monitor when you combine your job needs plus the 3K bytes needed by the monitor.

Another point to remember: the monitor routine cannot be run in a strict spooling
environment, because the job being monitored always requires the sole use of a printer.
You can accomplish this through the addr parameter of the DVC job control statement
which, in effect, dedicates a printer strictly to this job. It's coded immediately following the
logical unit number (separated by a comma). Every device has a hardware address number
associated with it. Your site manager can provide you with the number you need. (In most
cases, however, this number can be physically found on the device itself, generally on
some type of label.) This number is then coded in the device assignment set for the print
file in your job.

Assume the printer you want to dedicate has a hardware address number of 170. Using
20 as the logical unit number, the DVC job control statement would be:

It is also recommended that the job be run as the first job immediately after the system is
intialized (initial program load) to ensure that the job is scheduled; otherwise, you might
have to wait for the job to be scheduled, depending on the work load.

9.3.1.1. Monitoring From the Beginning of the Job

If you want to begin monitoring with the first instruction executed, you must call the
monitor routine into main storage before the job to be monitored is run. In this case, the
monitor input is entered as embedded data in the control stream.

The system operator types MO at the system console, which brings the monitor routine into
main storage. The monitor initializes itself and awaits activation.

NOTE:

This console procedure is a temporary expedient and will be replaced in a later release by
appropriate job control statements .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

9-24

PAGE

If you want to use the monitor beginning with the first instruction of the program, you •
must enter the monitor statements as embedded data in the job control stream. The job
step that contains the program to be monitored must include an OPTION job control
statement with the TRACE parameter specified. This parameter activates the monitor
routine by setting the monitor bit in the PSW and creates a link between this job step and
the monitor statements. If the OPTION job control statement is not present in the proper
job step (the one with the monitor statements- - the one you want to trace), it will not
activate the monitor routine because an OPTION job control statement is effective only in
the job step in which it is encountered. As soon as the program begins executing,
monitoring begins, and it continues until the program completes or until the monitor is
deactivated by meeting the conditions that accompany a 0 action (9.3.5.3).

The control stream you submit when you want to monitor from the beginning of the job
would look something like this:

10 20 30 40 so

I I •

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

9-25

UPDATE LEVEL PAGE

1. Is the JOB control statement, which must be present at the beginning of every
job.

2. Represents the device assignment sets and any other job control statements you
might need to define the requirements for the job.

3. Is the OPTION job control statement indicating you want to monitor the job step.
It is placed before the EXEC job control statement for the job step.

4. Calls the program from a library and initiates its execution.

5. Shows where you place the monitor statements. They are enclosed by the /$
and /* job control statements (start of data and end of data). The monitor
statements, in effect, are data for this job, but their presence does not affect
processing of any other data for this job.

6. Indicates where you would place any PARAM job control statements that pertain
to this job step: after the monitor statements, but before any other card data
files.

7. Is the start of data, card data file, and end of data.

8. Ends the job and terminates the card reader operations. Of course, there could
be more job steps than this, but for the sake of brevity, we have shown only a
single-job-step job .

9.3.1.2. Monitoring After Execution Begins

It should be noted that, when the monitor is in use, it executes several instructions of its
own for every monitored instruction in the program. For a large program, this could
require excessive amounts of processor time, expecially if the problem area is at the end
of the program. (If it is at the beginning of the program, a 0 action can be used to
deactivate the monitor after the necessary data is obtained. The Q action is described in
9.3.5.3.) However, once you determine the particular area in which the problem exists, you
can limit the monitor activities to this portion of the program. You do this by initiating the
monitor routine via a console type-in after the job begins execution, and then entering the
monitor statements through the card reader (or the system console if a card reader is not
available). This requires some form of communication between you and the console
operator, either oral or written.

The executing program must be temporarily suspended so the monitor can be activated
before the area of code to be monitored is passed. There are three different methods for
doing this .

8075 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 9-26
UPDATE LEVEL PAGE

First, if you have an instruction in the program that you do not need for this execution, you •
can use the ALTER job control statement to change that instruction to a supervisor call
(SVC) for the YIELD routine. This changed instruction must be at a point in the program
before the area to be monitored. The ALTER job control statement would look something
like this:

The ALTER job control statement and its parameter are explained in the job control user
guide, UP-8065 (current version). The X'OA04' (positional parameter 3) is what replaces
the existing instruction and makes it an SVC instruction for the YIELD routine. It causes
the program to halt at the address on the ALTER job control statement. You tell the
operator to have the monitor statements ready in the card reader. When the program
halts, the operator types in 00 MO R, which activates the monitor routine. (This acts just
like the TRACE parameter of the OPTION job control statement.) The monitor statements
are then read into the system, and the program named on the monitor statement is
matched against all the programs currently executing, until it arrives at the proper
program (this applies to all three methods). In 9.3.2, we explain the format for the monitor
statement input, which applies to input entered after execution begins or as embedded
data in the control stream. However, it should be noted that when monitor statements are
entered after execution begins, no /$ or /* job control statements are needed to enclose
the monitor input. Since all the job control statements are read before execution, an
OPTION TRACE job control statement is not included in that control stream to activate the
monitor. If you examine the control stream shown in 9.3.1.1 used to activate the monitor
from the beginning of the job, you will see the difference between it and the following
control stream used only to start the job and alter an instruction in your program. (It does
not activate the monitor; a consoln, type-in does.)

•

•

•

•

•

8075 Rev. 2

UPDATE LEVEL PAGE

9-27
SPERRY UNIVAC Operating System/3

UP-NUMBER

The explanation for each job control statement is the same as for the corresponding job
control statement in 9.3.1.1. Notice the absence of an OPTION job control statement and
the monitor statements, and the presence of the ALTER job control statement.

After the monitor statements have been read, the operator must issue the GO command,
using the same job name as that on the JOB control statement. This resumes program
execution under monitor control.

The second method for suspending the executing program is the use of an OPR macro
instruction with a REPLY parameter (10.3.2). By placing it in a location near the area you
want to monitor, you can use the halt when the program is suspended and the message it
generates to instruct the operator to activate the monitor. Once again, the operator must
have the monitor statements ready in the card reader (no /$ or /*). He then enters 00 MO
R, to activate the monitor. After the monitor statements have been read, he enters the
reply you requested with the QPR macro instruction to resume processing under monitor
control. The monitor input is exactly the same as when using the first method. That is, no
/$ or /* enclose it, and an OPTION TRACE job control statement is not submitted in the
control stream. (And, in this case, no ALTER job control statement is submitted.)

The third method is to instruct the operator to type in the PAUSE command at some
specific place in the program execution. This could be after a certain time limit has
expired, or when a certain milestone is reached, such as the end of an input tape file. The
operator places the monitor statements in the card reader and, when the system halts,
types 00 MO R to activate the monitor routine. After the monitor statements are read, he
finally types GO and the job name from the JOB control statement to resume program
execution under monitor control.

There might be a situation when there is no card reader available to read in the monitor
statement (or no keypunch readily available to prepare the monitor statements). If this is
the case, the operator can type in 00 MOC at the system console. The C indicates to the
system that the monitor statements are going to be input via the console, not via a card
reader. (This applies to entering the monitor statements during all three methods of
suspending program execution.) In this way the operator can enter the task, options, and
actions at the console. He enters one card at a time, a line on the screen corresponding to
a card in the monitor statement input, and indicates the end of each card by pressing the
TRANSMIT key. After all monitor statements are sent, he enters the GO command
followed by the job name.

9.3.2. Monitor Input Format

The monitor statements define what to monitor (task), when to monitor (option), and what
to do when you monitor (action). This applies to monitor statements submitted via the
control stream as embedded data before the job begins, and to the monitor statements
used by the operator after program execution was begun. (Remember, the /$ and /* job
control statements are only needed when the monitor statements are submitted as
embedded data.)

8075 Rev. 2
SPERRY UNIVAC Operating System/3

9-28

UP-NUMBER UPDATE LEVEL PAGE

For the program you want to monitor, only one task can be specified. It must be coded as
the first monitor statement of the input, and no options or actions can share this card with
the task. These tasks are explained in 9.3.3. For the task, however, you can specify up to
15 different options. (Each option must be on its own card; no two options can be present
on the same card.) Each option can specify as many actions as will fit on a single card. A
space must be used to separate the option from the first action on the card, and each
succeeding action is separated from the previous action by a semicolon (;).

So, if you want to specify one option and one action, it would be coded as:

20 30 40 50

! I I I l I) I I k l ! I I I I I l I I I I I I I I j I I

If you wanted three different options, each with two actions, it would be coded as:

The last card used in the monitor input stream is a $ card. (Do not confuse this with the
/$ job control statement, which indicates start of data.)

So, the order of a monitor input stream is:

• the task statement;

• the first option statement with its actions;

• any other option statements and their actions; and

• the $ card.

The options are described in 9.3.4, and the actions are defined in 9.3.5.

Figure 9-1 shows the format of the monitor statements.

•

•

•

•

•

•

9-29 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

First
Monitor

Statement

i----- task-----;

{

*U=jobname }
* P=phase-name
*S=symbiont-name

, *T=transient-number

Note 1 1-----option -----it,. ~--- first ------i -----succeeding ____ --I
action actions

Succeeding

{

(PR:xv) }
S (!!/D: bddd)

(8_BS:xv)

Monitor
Statements A(PR:xv) [Rnn]

l(xmcd)

R(n)

NOTES:

Dl:J.R [n [-Rnl]

{

(PR:xv) }
Dl:J.S [Lnn] (~/D:bddd)

(8.BS:xv)

Hccc

Q

D~R [n[-Rnij

{

(PR:xv) }
Dl:J.S[Lnn] (~/D:bddd)

(8_BS:xv

Hccc

a

1. If no option is specified, the monitor routine assumes a default option (9.3.4.5) and default display (9.3.5.1.3).

2. If no action is specified, the monitor routine produces a default display (9.3.5.1.3). Also, remember that the first
action is separated from the option by a blank space, and any succeeding actions are separated from the previous
action by a semicolon.

Figure 9-1. Monitor Input Format

9.3.3. Defining What You Want to Monitor

The task you want to monitor can be one of four types:

1. Your entire program

2. A certain phase of your program

3. A symbiont, which is a system utility routine

4. A transient, which is an OS/3 routine that is nonresident and is called into a
transient area when needed .

8075 Rev. 2 9-30
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE UP-NUMBER

In this format:

*U=jobname

* P=phase-name

*S=symbiont-name

*T-transient-number

you can see that each type has its own specification, and each type is preceded by an
asterisk.

If you want to monitor all the phases of your program, use the *U jobname entry. The
jobname is the same as the jobname parameter on the JOB control statement.
(Remember, if you have the operator enter the monitor statements after the program has
started, you can limit monitoring to a part of the job step; otherwise, the job step is
monitored from the beginning.)

For example, if the JOB control statement is:

20 30 40 so

I I I I I I I I

the monitor task statement would be:

Since a program can consist of more than one phase, it can be useful to use the specific
phase name with the *P phase-name entry. (A program can also have more than one
phase.) If you want to monitor a phase, you have to know its name. The names of the
phases used in a program are listed on the allocation map provided by the linkage editor.
(Remember, operator input can limit the monitor to a portion of a phase.)

If the phase name you want is this:

t'HASE N.01(

UH•LO[)OU

-

LOAD HODUlf • LN~LOU

TRAN~ A.DOH

NOOt. - ~oar

F AUTO•JNCLIJCH.D llf_MF1H<; -
7'5/ I U/0'1 uS.C.9 - 1-'l-t~ I fl(

PidJOt

t)l"J(IJM7

IH-'6(0Mll

Ul-'»COM l
UPICOl1b
OP1COM2
tlt>:ICOrtS
Dt'»COH't
01-'15(01'1)

•• ALLOCATlnN MAt' ••

s r ZE - nnouoc;u.

Tn•t:: t.. SI 0

O"J
CSE CT DI

ENTRT JI
f.hTHY U I
EI~ TRY 0 I
E1'4TRY U I
E~TRY u I
ENTRY U I
[NTR '(0 I
Et-.iTRT 0 I

LNll< U~l.:I

uuuuouuu

ouuuuuuu
ouuouuuu
LJUUOUUUU
ouuoouuu
uouuouou
onuoouuo
oououuuu
OUvUlHJUU
IJUUUOOut.J

HI AUOH
OOU!JUL,CR

OUUIJU'UF

LU111aTH
uooou~cc

OftJ OR<•

unoou'ii:tO ooouonun
ouooonun
00000000
00000000
oouuoooo
00000000
OOOODOUO
nooouooo
ouoooouo

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

the monitor task statement is:

20 30

I I I I j I I I I I I I I I I I I I I I

I I 9-31
~UPDATE LEVEL PAGE

40 50

I I I I I I I I I I., I

To monitor a symbiont, you have to obtain its nan:ie from the system load library file
(SYSLOD), and use the *S=symbiont-name entry. For example, the name of the system
utility symbiont (SU) is SL$$SU. To monitor it, you would code

I I I I I I I I I I I I I l

as the monitor task statement.

Every transient has a decimal number associated with it. A list of these decimal numbers
is maintained by the supervisor. If you want to monitor a supervisor transient your
program is using, your Sperry Univac systems analyst can help you in determining
the number of the transients you need. Once you have obtained it, you use it in the
* T transient-number entry. If, for example, the transient number is 24, you would code
the monitor task statement as:

~jf,:,2,,1.\., I l I I I I I I

9.3.4. Specifying Options

The second and succeeding cards used for monitor statements specify options and actions;
that is, points in the program where one or more actions are to be taken by the monitor
routine, and what is to occur.

The first entry in each of these cards specifies the option. This may be followed by one or
more actions to be performed at the specified location (or else a default action applies).
These actions are described in 9.3.5. In this discussion, all the options are discussed first,
then the actions. You can tie the appropriate options and actions to a task to obtain your
desired result.

If there are duplicate or overlapping options, only the first one specified is processed at
execution time. For example, if the same instruction location is specified by two separate
cards, the monitor routine performs the actions requested on the first card for that
location, then executes the instruction. The second card is never considered for that
location, even if the actions are totally different.

Options may be specified in any sequence; there is no need to list them according to any
pattern. Remember, in the case of duplicate or overlapping options, only the first option is
processed .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

There are four types of option you can specify, using the following format:

{

(PR:xv) }
S (~/D:bddd)

(ABS:xv)

A(PR:xv) [Rnn]
l(xmcd)
R(n)

9-32
PAGE

The S option is used for storage reference, the A option for instruction location, the I
option for instruction sequence, and the R option for register change. Each, along with its
associated parameters, is discussed in the following paragraphs.

9.3.4.1. Storage Reference Option (S)

This option requests the monitor routine to take action when the specified storage location
is referenced or the data at that location is changed. There are three ways to express the
location in a storage reference option:

1. Program relative (~R)

2. Base/displacement (_!!/D)

3. Absolute (ABS)

9.3.4.1.1. Program Relative Address (~R)

The format for the storage reference option using a program relative address is:

S(PR:xv)

The xv is the address, and can consist of from one to six hexadecimal characters, in the
range 0 16 to FFFFFF16. Notice that it is separated from the !:_R by a colon. For example:

20 30 40 50

I I I I I I I I I I I b I ! I I I I I I I I I I ! I I I I I I l J ! ! I I I

Since this format is shown with an underline under the P, you could also code it as:

~iC7P,: ,4.,5,c) I

This is explained in the statement conventions.

•

•

•

•

•

•

9-33 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

In this example, this option is selected if program execution reaches an instruction that
references storage at program relative address 43C. The location specified need not be the
first byte of a field. For example, a move instruction from location 42E for 18 bytes would
be detected because the specified program relative address 43C falls within the field
moved (42E to 43F).

For your program, a phase of your program, or a symbiont, a program-relative address is
relative to the start of the load module. In other words, the address in the assembly listing
must be added to the link origin (LNK ORG) address for the control section (CSECT) of your
program. This shows up in the allocation map produced by the linkage editor.

For example, if you wanted to monitor from address 2A in this program listing:

LOC• OBJECT COOL ADUkl AODR2 LINE snuRcE STATEMENT

label for the phase ---,.,...------------l••or. I
ouuooo 0560
000002
00UtJ02 'f7FO bOIU
OOU006 ClC2ClC'f'fU'fu'fO'fU
OOUOOE CSC6C7CB
000012 '1110 610.l

OOUU16
000016 OAID

oao 12

0010'1

00UUl8 D2UJ 6008 6UOC UOUUA OUOOE

0000 IE. 0700
oouozo

2 BE.C:t IN
3
'f RRANCH
s

..
A 10+

11 TAU I
12 TAU1
13+

OUUD20 '+SIU 6026
00002'1 80

00028 A
I 'f+T AG7

1 S+

0000.ZS OOOU'f8
000028 OA26

address ~0201 00F2 oun'f uouF'f 00006

OOUU30

A 16+
1 7+
18+
19

A 2l+TAC.~

START U
BALR • ,o
USING ...
6 •• 16
UC CLB'AACU'
DC Cllf'EFC:tH'
LA l IL I ST
~NAP Ill
us OH
SVC 29 SNAP SVL
MVC BRAN(H+81'fl,~RANtH+l2

tJPEN OUT
(NOP o,•
lQU
OAL I I•• I 'f•.l I
oc x•&o•
UC Alli OUT I
SVC 38 ISSUl s,c
MVC HUF(8),dfi.lf"ll(H+'t

PUT OUT
UC OY I 0 I SlT ALJGNME.NT

you would have to look at the allocation map for the LNK ORG of the CSECT (480):

ALLOCATION MAP ..
LOo\D MODULE - LNl'\LOO 5 T ZE - 000005(.(

1-'HASE NA Ml TRAN~ a.OOH FL AG L AfiEL T YP£ i:.S I 0 LN• """ HIAUUl'i LE1H..TH OtLJ t'RC.

LNl!..LOUUO 1'400t. - t<OOT oouooouu UOUUU~(t' uoouu!:Jc.C
ST ART OF AUTO• I N(L110l0 ELEMENTS -- 7S/IU/O't US •S'i - PRlli I Di:. OoJ

Pfii I OE . SECT O 1 oouououu uuuuu'tAf UOUtJll'hiU llOUOUOOU
OPiCOM7 Et-.TRY UI uuuouuuu uuuuouuu

DP I COMO ENTRY UC ouuuoouu LlOUUOUOll
L)Pi(.OM I ENTRY U I oouoouuu noooouuo
OPICOMb Ef>lTRY U I uouoouuu IJUUUUUUU
DP•COM2 ENTRY UC ouuuouuu UUU(JOUUU

OPICOMS ENTRY O I uuuuuuuu UIJrlOOOOO

OPICOM't ENTRY U I UUUUUU!lU uuuuoouu
DP!i(OMJ ENTR'Y U I UUUUOU\JU uuuuuoou ... ENO UF AUTO· I h(LUOED t:.LEMENTS -- 7b/UJ/ 11 00.33 - PHOG ObJ

IPROC:i c SECT 01 UuuUll'ttiU I rJUUUUSCb UUUUUllC nuuuooou
out ENTRY U I UOlJOfl'tf d UUUOUiJ'iB

OUTC Et-.TRY U I 0UtJUU5.lA UUUUOU711.

DUTE EfllTRY 01 UUlJUOSJU uuuuuuao
lJUUun'tSU

and add them together, producing 4DA as the program relative address. This applies to
both single-phase and multiphase load modules. However, with the multiphase modules,
additional considerations are necessary. One phase can overlay another phase, so the same
program relative address can be used in more than one phase. In order to monitor the
correct phase, you should use the *P=phase-name entry discussed in 9.3.3.

If you want to monitor a transient routine, the address is relative to the start of the
transient .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 9-34

UPDATE LEVEL PAGE

Another important point to note is that when using the storage reference option for a •
program relative address, you frequently will obtain two groups of monitor output for a
given option. The first printout is produced just before the execution of the instruction that
references the location. This may be either a read or write type of reference. The second
printout is produced on the next instruction, but only if the data at that location has been
changed. This may appear to be superfluous and even confusing (the second instruction
shown will probably not even reference the area), so this printout should be considered as
only a changed data confirmation.

The real value of this second printout comes in those cases where the data is not changed
directly, so no reference (first printout) occurs at all. This includes cases of areas changed
by execute instructions (EX), supervisor call instructions (SVC), 1/0 operations, and
occasionally even supervisor or symbiont routines running concurrently. So, in any case
where a storage reference option printout seems invalid (the instruction printed does not
reference the data location), check the preceding instruction in your program for an EX or
SVC instruction or an 1/0 operation.

9.3.4.1.2. Base/Displacement Address (!!ID)

To use the base/displacement address method for the storage reference option, you need
this format:

S(~/D:bddd)

Here, the b is the base register, and the ddd is the displacement; b can range from 0 16 to •
F16 , and ddd can range from 00016 to FFF16 . For example, if you used:

~ 10 10
30 40 50

J I I I I ! I I I I

an instruction that contains a storage reference of 4829 must occur to make the monitor
take action. In other words, for this option to be effective, your program must have a
storage reference using base register 4 and a displacement of 829. Notice the colon
separating the BID from 4829.

9.3.4.1.3. Absolute Address (ABS)

You use this type of option primarily when you are using system symbiont or transient
routines that can refer to locations that are outside of their area. But you might also find it
applicable to your program as well. It uses this format:

S(ABS:xv)

The xv is the absolute address, and can consist of one to six hexadecimal characters, in
the range of 0 16 to FFFFFF16 . •

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 9-35

UPDATE LEVEL PAGE

For example, if you want the monitor routine to take action when the program reaches an
instruction that references storage at absolute address 34AE, you would code:

~ 10 20
30 40 50

I I I I I I I I I I

9.3.4.2. Instruction Location Option (A)

This option requests the monitor routine to take action when the specified instruction
location is reached. Just as with the storage reference option, it uses the program relative
address. However, you can also add a range to continue this monitor action for a specific
number of bytes. It has only one format:

A(PR:xv) [Rnn]

The xv is the 1- to 6-hexadecimal-character program relative address (016 to FFFFFF16). If
the program reaches an instruction at this location (program relative), monitor action
begins. You can also continue monitor action for this option for a length of up to 255 bytes
by specifying a range (Rnn). The allowable values for this range field are 0216 to FF16.

For example, if you coded either:

I I ! I I I

or

IA, (jp,: ,c.p,'2.) I I I I I I I I I I I I I I !

the monitor takes action for this option if the instruction at program relative address is
reached.

If you coded (notice the convenient form P instead of PR):

monitor action begins when the instruction at program relative address C02 is reached,
and continues for 14 bytes (OE). This means the monitor action is to continue until
program relative address C10 is reached. Note that you must use two hexacecimal
characters for the range even when it can be expressed in one. In the last example, if the
leading 0 of OE was omitted, and it was coded as this:

I I I I I I I I I I

monitoring would continue for 224 bytes to program relative address CE2.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

9.3.4.3. Instruction Sequence Option (I)

9-36
UPDATE LEVEL PAGE

This option requests the monitor routine to take action when the exact instruction
sequence specified is reached. The monitor routine compares the machine code specified
in the option entry to the actual instruction sequence of each instruction to be executed in
the program being monitored, and takes action when an exact match occurs. The format
for the instruction sequence option is:

l(xmcd)

The xmcd stands for hexadecimal machine code. It may consist of from 2 to 64
hexadecimal characters (1 to 32 bytes). This is the value you want compared to the actual
machine code being processed.

There are three different types of machine code sequences you can select

• A single instruction

• Just the operation code of an instruction

• A string of instructions

For example, if you want monitor action to start when a supervisor call instruction for
supervisor routine 31 occurs (SVC 31 in machine code = OA 1 F), code it as:

~ " ,(,OA,1,iN' , , I

20 30 40 50

I I I I I I I I

If you want monitor action whenever any branch on condition instruction is reached
(hexadecimal code = 47), you would code:

lr.c,q,1.2 ... , , 1 , , , • , , , , , 1 , , ,

But if you want monitor action to occur whenever the following sequence of instructions
occur (even though we are showing a series of inline expansion codes):

ouuuuo I PHOr.
OOUOLJO f;S6U l Bf<~ IN
nuuuu2 3
0UUUU2 't7F1l 61) l Ll UUU I 2 ' tir-IANCH
0UUUfJ6 CI CZCJC<t'fO'fu'tfl'tU •
QIJlJUUf C5C6C7Ctl •
OULIO 12 lfllLI 61.Ui 001 n't 7

OOUU26 UA26 A IS•
nouo2a G207 hlJF~ buO't u11u~'t nuon6 t9

OUuUlU
OUl.JOJ0~.~.-1 ,,-. ,-,~.

OUUOl't 9221 IUJI
OUuOlB 58~ U lOj't
OUU03C 05-lf

~--~

OOUOJE
OOlJOJE SttlU 61lb
OOU01f2 OA27

JU T 11.c.'
A li+TAC:i1

UOll~ A 22+
'JfllJJ 1 A 2l+

llOIJSG l 24•

/..b T Ac, ii
A 27•TA~'I

OUI 18 A 28•
... 2'9•

~TART !)

HALH •.u
VS I NC:i •• 16
uc CL ti• All(U •

oc CL't'ErC:iti'
LA I tL I c-;T
SNAP '''
5'J(JR IS<iilJl S"C.
MVC ~UF(R),o~AhCtt+'f

'"'UT OIH
UC UYtlJI SLT ALllaNpt(NT
L l,•A1n111 LOAO hll, FILENAME ADORE~s

MVI 't9l I 1,x'20 1 SET FUlllCTIUN COlH:.
L 1is..~2t .I I LOAO AOOH ur ca""ON J/O
tULR I If .i 5 LI NI(Tu Cuf'IMO~

Cl. OU
DC OY 11.J I
L. I 1•Atnu1 I LOAD Hll, FIL.ll\IA'1l AOORE~s

~vc J9 IS5Ul Svc

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 9-37

-UPDATE LEVEL PAGE

• you would code it as:

•

•

40 50

I I I I

9.3.4.4. Register Change Option (R)

This option requests the monitor routine to take action whenever a specified register is
changed. It has only one format:

R(n)

The n is the hexadecimal number of the registers to be checked. Since this monitor action
is triggered by the comparison of the current register contents to its previous contents, the
instruction displayed when the change occurs will be the instruction following the
instruction that caused the change. This is similar to the storage reference option for a
program relative address (9.3.4.1 .1), which also occurs after the storage location changes.
(Remember, it is possible to get two displays from a single storage reference option: one
before and one after the area changes.)

For example, if you want monitor action to take place whenever the contents of register 10
change, you would code:

~(A,) I I I I I I l I I I I I I I I I

Since the contents of registers are changed frequently during the course of most
programs, the register change option may produce a large amount of display printout.

9.3.4.5. No Option Specified? You Get a Default

If you omit the option specifications (if your monitor input consists only of the *U, *P, *S,
or *T card, and the $ card), the monitor routine interrupts each instruction in the task
before its execution and prints out pertinent information at that point in the program. The
processor then executes the interrupted instru~tion (identified on the printout as the NEXT
INST). The succeeding instruction is then interrupted, the printout produced, and the
instruction executed. This interrupt, printout, and execution pattern is performed for each
instruction processed. This could require excessive processor time and could produce a
huge printout of unneeded information. Therefore, you would use the default option only
for special cases.

The program information printed is the same as for the default display described in
9.3.5.1 .3, except that there is no option mentioned on the printout,· since one is not
specified .

8075 Rev. 2
SPERRY UNIVAC Operating System/3

9-38

UP-NUMBER UPDATE LEVEL PAGE

9.3.5. Specifying Actions

Action entries follow the option entry on the monitor statements. They share the same
card; option is specified first, then any actions. Actions for an option must be completely
specified on one card; no continuation to the next card is permitted. If there are duplicate
or overlapping options, only the first one specified is processed, and any action specified
on this second card for the same option is never considered.

There are four different types of actions 06.R, 06.S, H, or Q (plus a default), as shown in
this format:

NOTE:

Dt.R [n [-Rn]]

{

(PR:xv) }
Dt.S[Lnn] (~/D:bddd

(ABS:xv)
Hccc
a

If no action is specified, the monitor routine produces a default display (9.3.5.1.3).

The OM and 06.S actions (for display register or display storage) print out program

•

information, including specified registers (OM) or storage (06.S), and continue monitor •
processing.

The H action (for halt) prints out the program information and suspends the job until it is
told to continue.

The Q action (for quit) prints out the program information, then deactivates the monitor
routine so that processing can return to normal.

If you omit an action entry, the monitor routine produces a default printout of program
information (including changed registers and storage) and continues monitor processing
until the end of the program.

9.3.5.1. Display Actions

There are two types of display specifications: register display (06.R) and storage display
(06.S). But the addition of a default display provides you with the capability of having three
types.

The three display actions have similar functions; that is, program information is printed,
then the instruction causing the printout is executed, and program processing continues
under monitor control. The printouts are basically the same, except for a few minor
differences, depending upon the type of display action requested. •

•

•

•

8075 Rev. 2 9-39
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE UP-NUMBER

9.3.6.1.1. Register Display (D~R)

If you select this type of action, you get the following items:

1. The jobname, TCB address, and program base address. Since this information does
not change during the course of program execution, it is given only for the first option
that causes a printout. Remember, you can have up to 15 different options; it would
be senseless to print any information about the program that does not change.

2. PSW contents

3. Next instruction to execute (which is the instruction causing the printout)

4. Option causing this printout

5. The contents of the specified general registers (four bytes)

After this printout is given, the instruction executes and the program continues processing
under monitor control (that is, all remaining instructions are traced to see if they match
any other options that might have been specified.

You can cause one or more general registers to print by selecting one of three ways to
display a register. The format shows the three different types (combined into one format):

•
•

•

D~R (n[-Rnl]

D~R, which prints the contents of all 16 general registers

D~Rn, which prints a specific register, with n being the hexadecimal number (0-F) of
the register you want

D~Rn-Rn, which allows you to print a consecutive number of registers. The first n
indicates the first register (0-F), and the second n indicates· the last register (0-F).

For example, if you wanted to display register 15 when the program reaches a program
relative address based on the instruction at assembly address 2A in this listing (remember,
the assembly address (2A) must be added to the LNK ORG address, which in this case is
480, to obtain the program relative address - 4BA):

8ddress

LOC• OBJECT coot ADDkl ADOR2 LINE snuRcE STATEMENT

000000
OOUOOO 0S60
000002
OOO!JD2 lf7f0 601U
OOU006 ClC2ClC't'tO'fu'tO'f0
00000[CSC6C7C8
000012 'tllO 6102

00012

OUI01

l PROr.
2 BE6 t ~
l
't BRANCH
s

8
OOU016 9+
000016 OAID A ID+
OOUUl8 0203 6008 6UOC UOOOA 0000[II TAGI

OOOOll 0700
oouozo
OUUOZO ifSIO 6020

12 T AC:17
A ll+
A llf+TAG?

00028 A 15+
OOUOZtf BO 16•
000025 OODOlfB 17+
OOU028 0126 A 18+

•I dbu62l 0207 6br2 61.1olf ooorlf Oooo• 1- 19

000030
ouuoJo Seto •110

20 TAG1
A 21•TA6J

00118 ... 22•

START U
BALR 6,0
USING •16
8 ••16
UC CLB'ABCO'
DC CL't'EFGH'
LA I 1LIST
SNAP 11 I
OS OH
SVC 29 SNAP SVL
"vc BRANCH•B' 't I, sRANCH•l 2
OPEN OUT
(NOP O,'t
E.QU •
BAL l1••l't•il
0(l'llO'
UC AlllOUTJ
SVC 38 ISSUE. SwC
"vc 8Ufl81,dRAh(H+'t
PUT OUT
UC nYlOI SlT ALIGN11ENT

1 1 •AIOUTI LOAD kll, FILENAl"ll AODRE~S

9-40 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

you would code:

1· 10

20 30 40 50

I I j I I I I I I

and your monitor printout would look like this:

Option Job Name TCB Address Program Base Address

I
~·.t:s.&',f• - DrJUtl8(1UrJ

Causing \ l
Printout~""" 1 '"" us£"· , u•~Ll 1 ich-onuurnou

o"Tlu• ... , 1.cuc<ur"""" This is also the instruction
n ~p5,..: (iJl6ltJ26 ul.JUuli'tDA l•l.kT f1i:,l z Dl!J7br'f'l~O!J<t ____ C8USl"ngtheprl"ntOUt.

Progra/- Hf- nuuoouurJ

Status f
Word register 15

If, for the same program, you coded:

I I

The contents of all 16 registers (plus items 1 through 4) are displayed, like this:

"ONI TOH USER- EXAMPLEl TC8-UOOU700U P.BAc;E. - oooueooo
OPTION ••Al l•LOlluOO'tDAI
PS•• COl61026 UUOuO"fDA NEXT INST • 02016nf2b00"t

HO- 00000061 RI• 80UOO"tf8 R2- OOOOUOUU f..3• 00000000 H't- uCJUOUOOO R~- OUOllOOOO ·~·- "IUOUO't~2 H7• 00000000
Rd• 00000000 H9• OOOOOUOO RA .. 00000000 i.,R- 00000000 RC- 1.JllOOOUOO ~ OOUUUOOO RE- IJUUUO'tUA Hf• OOUUUUOU

Both of these examples would have continued monitoring for the option until the end of
the job. However, if you add a quit action (0, which will be explained in 9.3.5.3) you would
have obtained the same printout and discontinued monitor control. This holds true for all
options. If you want to monitor only a specific area or instruction, it is advisable to end the
option with a quit action, so additional processor time is not wasted by having the monitor
search when there is nothing left to find. Coded with a quit action ending the option in the
last example, it would have looked like:

IA (jpjB. : i'tjOA,) I ID. 'jR. ; I~ I I I I I I I f I I I I I I I I

Notice that a semicolon is used to separate the actions.

9.3.5.1 .2. Storage Display (D.68)

Most of the information provided by a storage display type of action is similar to that of a
register display (9.3.5.1.1): you get items 1, 2, 3, and 4. However, item 5 is different; the
storage display action prints out the contents of specified storage locations.

After the printout is given, the instruction executes and program processing continues
under monitor control.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 9-41

UPDATE LEVEL PAGE

You can specify up to 256 consecutive bytes of main storage with a length option, or the
monitor prints (by default) 8 consecutive bytes starting at the specified storage location.

Just as in displaying registers, the storage display action has three different types, but
each is shown in its own format, because of their diverse range of actions:

0.6.S[Lnn](PR :xv)

D.6.S[Lnn](B/D:bccc)

D.6.S[Lnn](ABS :xv)

Each one has a length option, shown as Lnn, which allows you to specify how many
consecutive bytes of main storage you want displayed. L indicates that this is a length
specification, with nn as the length, in the range of 01 16 to FF16 (allowing you to display
256 bytes).

The item after each length expresses the method in which you want to display a specified
location in main storage. They have the same format and meaning as the storage
reference options explained in 9.3.4.1, but are not to be confused as to function (action
versus option):

• (PR:xv) is used to display a main storage area starting at a program relative address .

• (B/D:bddd) displays a main storage area using base/displacement .

• (ABS:xv) displays storage starting at an absolute address.

The xv is the address for program relative and absolute addressing locations, in the range
of 016 to FFFFFF16. The bddd is for the base displacement method, where b indicates the
number of the base register (the range is 016 to F16), and ddd is the displacement (in the
range of 00016 to FFF16).

For an example of the option, we will use an instruction sequence (I) to prevent any
confusion that might initially arise by seeing similar codes (such as a program relative
option (PR) and a storage display action starting at a program relative address) on the
same line:

30 40 50

I j I I t I I I I I ! ! I I I I I l I I

This displays 20 bytes (1416) starting at program relative address 3C. This happens
whenever any branch condition is reached in the program (hexadecimal code 47) .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

9-42

UPDATE LEVEL PAGE

If you want to display eight bytes (default) starting at the address using base register 1 and •
a displacement of 829 whenever any branch condition is reached, you would code:

30 40 so

I I I I I I I I

If you want to display the default eight bytes starting at absolute address 35AE whenever
any branch condition is reached, code:

I I

If you wanted only four bytes at absolute address 35AE whenever any branch condition is
reached, code:

I I I I

Notice that you must use two hexadecimal characters for the length even when it can be
expressed in one.

The following example uses a program relative option and a program relative address for
the action:

I I .I

When the instruction at program relative address 2A 'is reached, a storage display of eight
bytes starting at program relative address 3C is produced.

9.3.5.1.3. Default Display

You can omit the action specification; that is, you can enter an option without specifying
any particular action you want taken when the monitor option becomes effective. In this
case, the monitor routine prints out items 1, 2, 3, and 4 listed in 9.3.5.1.1, and (items 5
and 6):

5. The contents of any general registers that were changed since the last printout was
given. If this is the first action taken by the monitor routine for this program, the
present contents of all the general registers is printed.

6. The contents of the storage locations referenced by the instruction causing the
printout.

The instruction causing the printout is then executed, and program processing continues
under monitor control.

•

•

•

•

•

8075 Rev. 2 9-43

UPDATE LEVEL PAGE UP-NUMBER
SPERRY UNIVAC Operating System/3

For example, assume that the following option statement was the only input to the
monitor routine (and the task statement):

30 40 50

I l b I I ! I I I I I I I ! I I I I I I I I I I J l I I J I

When the program reaches an instruction that references an address using base register 4
and a displacement of B29, a default display is given.

Remember, you can also get a default by omitting the option statement (9.3.4.5). The only
difference between the default display caused by omittingthe option and the default
display caused by omitting the action is that the omission of the option means that the
option causing the display is not printed.

9.3.5.2. Halt Action (H)

This action, like the other actions, prints out items 1, 2, 3, and 4 (detailed in 9.3.5.1.1). It
then prints a halt message on the system console and suspends program execution until a
reply from the console operator allows execution to continue.

The halt message sent to the system console has the following format:

HALT ccc. TYPE-IN GO jobname TO RESUME

Program execution is then suspended until the operator issues the GO command followed
by the job name (same as that on the JOB control statement). You can then provide the
operator with special instructions about what to do before entering the GO command,
such as taking a main storage dump. After he completes these special instructions, and
enters the GO command, the instruction causing the halt is executed, and program
processing continues under monitor control.

The format for the halt action is:

Hccc

The ccc is a 3-character EBCDIC code that you specify to identify the halt, and corresponds
to the ccc in the halt message displayed to the operator.

For example, assume that your JOB control statement has a job name of TWESTMON, and
uses the following monitor statement:

I I I I I I I I I I

-- ----------------------------------
8075 Rev. 2 9-44

SPERRY UNIVAC Operating System/3
.UPDATE LEVEL PAGE UP-NUMBER

When the program reaches the instruction at program relative address 184, the monitor
routine prints out the program information and displays the following message on the
system console:

HALT DMP TYPE-IN GO TWESTMON TO RESUME

You would instruct the operator to take your desired action when he sees this message. In
this case, assume it is a dump. After issuing the DUMP command (and a dump of main
storage is given), the operator would then type:

GO TWESTMON

to reactivate the interrupted job. The instruction at program relative address 184 is then
executed, and program processing continues under monitor control.

9.3.5.3. Quit Action (Q)

The quit action (Q) prints out items 1 through 4 and nothing else. The instruction causing
the printout is then executed, and program processing continues without any further
monitor intervention (pertaining to the option to which this action applies).

This action is useful when you want to monitor a problem area in the beginning of your
program, and then exit from the monitor routine without tracing all the remaining
instructions in the program (thus not wasting execution time).

The format for the quit action is:

Q

For example, if you coded:

~ 10
20 30 40 so

A, C?iBi : ,5 1 a) , 1Q, I I I I t j I I ! I

the monitor routine would print out the program information when program execution
reaches the instruction at program relative address F18. This instruction is then executed,
and program processing continues without monitor intervention.

When the quit action is not used as one of the actions for an option, monitor processing
continues until the end of the job step.

Table 9-2 summarizes the program information that is displayed by each action.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 9-45

UPDATE LEVEL PAGE

Table 9-2. Summary of Actions and Program Information Printed

Action

Program Information Printed Display Display
Default Halt Ou it

Register Storage
Display (HI (Q)

(0 RI (OSI

Job name* x x x x x

TCB address* x x x x x

Program base address* x x x x x

PSW contents x x x x x

Next instruction to execute x x x x x

Option causing this printout x x x x x

Contents of specified registers x

Contents of specified storage x

Contents of changed registers x

Contents of referenced storage x

HALT message x

*These items are included for only the first option that causes a printout.

9.3.6. Cancel of Monitor

If the monitor routine is terminated abnormally, either by a CANCEL command or by a
program exception within the monitor routine, all programs requesting the monitor routine
will continue normal program processing without any type of monitor intervention. The
monitor routine itself will dump and leave the system.

9.4. SYSTEM DEBUGGING AIDS

Several debugging aids are built into the OS/3 supervisor to aid in solving system
problems which cannot be identified through a normal SYSDUMP. These aids are useful
only with some knowledge of the internal supervisor structure and are therefore not
intended for general use. This section is provided for informational purposes only.

Table 9-3 summarizes the debugging aids described on the following pages. Refer to the
appropriate operations handbook for your system for the correct procedure of altering main
storage using the maintenance panel.

8075 Rev. 2 9-46
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE UP-NUMBER

9.4.1. Supervisor Debug Option

The supervisor debug option is set at initial program load (IPL) time by entering D as the
final character (following the comma) of the initial IPL message. This is described in the
operations handbook. Use of this 0 option causes the supervisor being loaded to· be
expanded in size (by about 1 K or less) to support the supervisor debug option.

The following functions are provided:

• A normal halt (HPR code 99130001) between IPL and supervisor initialization. This
allows changes to be made to the supervisor (via the maintenance panel) prior to
loading the supervisor initialization load module. Normally, however, you should
simply press the RUN switch on the maintenance panel to continue.

• A pseudo monitor to detect when any byte within the supervisor has been changed.
This function is activated when a 2-byte (nonzero) address is stored into absolute
location OOOE via the maintenance panel. The byte specified by the address in
location E is checked on every interrupt and on every pass through the switcher.
When changed, the supervisor halts (HPR code 99130002) without restoring the
original contents. If you want to continue, simply press RUN. The new value becomes
the original value and the supervisor will halt if the byte is changed again.

• Verification of the 12 low-order bytes of main storage (locations 0-B) on every
interrupt and every pass through the switcher. When changed, the supervisor saves
the incorrect setting, restores the correct setting and halts (99130003). Although you
may continue past this HPR by pressing RUN, you should take a SYSDUMP here to
determine why these bytes are being altered.

• A resident supervisor monitor to detect when any byte within the supervisor has been
changed. This function is activated when a 2-byte (nonzero) address is stored into
absolute location 0002 via the maintenance panel. The byte specified by the address
in location 02 is monitored on every instruction executed by supervisor critical code
(interrupt processing), transients, symbionts, and job control. The only code not
monitored is code being executed under a key other than 0 (i.e., user jobs).
Monitoring user jobs is unnecessary because the hardware key protection feature of
the processor prevents user jobs from destroying any part of the supervisor.

When the byte specified by location 02 is changed, the resident monitor halts
(99130004) without restoring the original contents. The double word at location 80
contains the PSW at the time the byte was changed. If you want to continue, simply
press RUN. The new value becomes the original value and the supervisor will halt if
the byte is changed again.

When using the resident monitor, you may notice that the operating system is
performing slower than it normally would. This is because the software is not
executing approximately 8 instructions for every previous 1. For this reason, it is
advisable to set up the resident monitor as near to the suspected problem as possible .

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

9-47

UPDATE LEVEL PAGE
SPERRY UNIVAC Operating System/3

To change the byte being monitored, simply change the half word at location D2. To
turn off the resident monitor, reset location D2 to 0000. In both cases, the change will
automatically take effect at the next interrupt.

The resident supervisor monitor must not be used when either the standard monitor
(9.3) or the mini monitor (9.4.2) is active.

• History tables that provide the following information:

TCB History Table. This shows the absolute addresses of the last 6 TCBs given
control by the switcher. If the switcher gives control to the same task which had
control prior to an interrupt, the TCB address is not listed again.

Interrupt History Table. This shows the PSW (8 bytes) at the time of the last 8
interrupts. Bits 4-7 of each PSW is set to an interrupt ID, as follows:

0 = IOST interrupt
1 = Machine check interrupt
2 = Program exception interrupt
3 = SVC interrupt
4 = Timer interrupt

Alternate Transient History Table. This shows the transient IDs of the last 12
transients loaded from the alternate transient file (YTRANA). This table would
normally be all zeros.

Transient History Table. This shows the transient IDs (12 bits) of the last 32
transients loaded by transient management. These are listed in 2-byte entries,
with the high order 4 bits containing the transient area number (0 means
supervisor overlay· area (SOA).) Reused transients are not included.

The history tables always reside at the end of the supervisor. They can be easily
identified in a dump by the pattern OODEADOO repeated across the line immediately
following the tables. The entries in each table are always arranged from the oldest
(lower addresses) to the newest (higher addresses). Following is an example of a
history table maintained by the supervisor debug option .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 9-48

UPDATE LEVEL PAGE

t

Correct contents of

low-order storage Current contents of
bytes 0-B TCB history table low-order storage

b
bytes 0-B (example
shows no change)

oo 9f co -o oo EA ooJ .-'.1-o_,.o o~7-8_1 _8 .-o-J-00_8_A_8....,0 .-J-c_o_o1_a_1 -8 ..--0-0-00_8_1_8_0 .-0-00-01_8_1 _8 ,...oo_oo_8_A_8....,o ~~JI nterrupt history table

OC9f Eo..j .. 8oocooa 01r 001100 JD585Eul ooocaooo \ooooDO• onoo1100 10S85Eul oooEAOOO (inter~upt IDs in PSW
are circled)

ocaooc-@:ooooJ 10001E"" Q)J110000 5oDCa90E <@ocoo oo c 0009Es8 IQ)011oo01 s oooa 9EO

o ca 02 c @:o coou 10 00 lElf" c@b 0000 o 10 oo I("" cQ)l" oo a .. "oo:io Aa c ~00000 10aa1 Elf• Alternate transient '-=-------'-=------.i........;;._ _____ _._=--------' /history table
ooao lfG -o oauoo o loo ool'Xl oo Io oo rtJ oc ol oo OO]oc oo I oo ooloo oo lo oo'f oo o\ oo 00§000 I coo c• ooJ

.. a 6 11F 012 oo -- Transient history table

10 2 01 12 1
e:a (example shows activity in

transients #0 (SOA) and #3)
00 AC AO-u ODEA OOJ 00 Q[AOOO CJD EAOOO J 00[AOOC JCO[AO 0 c COO[AD 00 JOOE aoor 00Di: AO {'J

DOAOEO•OilOEADOO 000£ AOOO OJOEAOCO ooocaooc rtOOEADOO oocoooo OCO[IO!JC O'lOEAOOO

Supervisor ends here

9.4.2. Mini Monitor

The mini monitor is a small, specialized version of the standard monitor described in 9.3. It
is intended for system debugging only and does not replace the standard monitor
symbiont.

The mini monitor can monitor any one byte in main storage during execution of user,
transient, or supervisor resident code and will halt when the specified byte is changed. It
is called by the MM console command.

Format:

MM value,address,RTUE

• Positional Parameter 1:

value
A 2-character hexadecimal value that specifies the correct contents of the byte
being monitored.

Positional Parameter 2:

address
Specifies the absolute main storage addres of the byte to monitor. This must be
specified as a 5-character hexadecimal value (zero fill on the left).

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

9-49

UPDATE LEVEL PAGE

• Positional Parameter 3:

•

•

RTUE
Flags that specify how the mini monitor is to function. Any combination of 1 to 4
characters may be specified:

R - Monitor resident code, including 1/0, program exception, supervisor call
(SVC), and interval timer interrupt processing.

T - Monitor transients, including the supervisor overlay area (SOA).

U - Monitor user jobs and symbionts active at the time MM was keyed in.

E - Instead of halting when the specified byte is changed, the halt will occur
when the monitored byte equals the value specified in positional parameter 1.

The mini monitor HPR code is 9912. The monitor interrupt old PSW (low memory location
80-87) contains the address of the instruction that immediately follows the instruction
that altered the byte. If the byte was altered by code not being monitored, the halt will
occur at the first monitored instruction.

Once the mini monitor is called, it cannot be turned off or changed except by again loading
and initializing the system. Only one version of the mini monitor can be executed at a time
and it cannot be run with the standard monitor in main storage or with the resident
monitor.

Because execution time of monitored code is increased by a factor of about 9, use of the
mini monitor should be limited. It is advisable to make the MM keyin as near to the
suspected problem as possible.

You may have noticed that the mini monitor offers many of the same features as the
pseudo monitor and the resident supervisor monitor. All can monitor resident (critical)
code and transients (including SOA). The differences are:

• Mini Monitor

This monitor has the additional ability to halt when a byte is changed to a
specified value.

User jobs can be monitored (if the absolute address of the job is known).

Impact on the system can be minimized by monitoring only certain TCBs. For
example, you could monitor resident interrupt processing without monitoring
transients, symbionts, or user jobs.

t

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

9-50

UPDATE LEVEL PAGE

t

• Resident Supervisor Monitor

This monitor can be turned on while the processor is halted. This enables you to
monitor during a more precise period of time.

The monitor can be turned off or changed easily with no necessity to IPL again.

New tasks being created (e.g., new symbionts or new job control TCBs) will
automatically be monitored.

• Pseudo Monitor

All the advantages of the resident monitor except that the byte is only checked
on interrupts and switcher calls.

The impact on the system is unnoticeable. You can monitor over a long period of
time.

9.4.3. Console Debug Options

Three debug options that can be set by console commands are available for supervisor
debugging:

• PIOCS debug option. Causes system halt (HPR code 990F) on any CCB checksum
error or program check during PIOCS. The console command is:

SET DE,10

• Transient debug option. Causes system halt (HPR code 9908) on any transient error
(i.e., error normally producing a lxx error code). This is useful because normal
recovery from a lxx error code often causes the offending transient to be overlaid by
other transients. The console command is:

•
SET DE,TR

Loader debug option. Causes system halt (HPR code 9915) whenever the loader
detects any error other than 51 (module not found). A SYSDUMP taken at this halt
will provide useful information in determining the exact cause of any loader error
(52-5F) which cannot otherwise be diagnosed. The console command is:

SET DE,LD

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

9-51

UP-NUMBER -UPDATE LEVEL PAGE

• 9.4.4. Transient Halt location

•

•

When trapping system problems, it is often desirable to halt the processor whenever a
particular transient is loaded. Every transient is uniquely identified with a transient ID. By
storing this ID into location OOOC (2 bytes) in low order main storage, you can cause the
system to halt (HPR code 990C) whenever transient management loads that transient or
overlay into a transient area. The halt occurs less than 10 instructions before the transient
is given control and you can continue normally by pressing RUN.

Note that this halt occurs only when a transient has just been loaded from SYSRES. Some
transients can be reused in memory; the halt will, therefore, occur only when it is initially
loaded.

When this halt occurs, problem-register 15 can be used to find the address of the transient
area into which the transient was just loaded. The appropriate operations handbook for your
system describes the procedure for reading problem registers from the maintenance panel.

9.4.5. Symbiont Halt location

The symbiont halt location is a 4-byte field at location OODC in low-order main storage. It
is used to halt the processor whenever a particular symbiont or phase of a symbiont is
loaded. This could be useful when debugging a particular symbiont.

To set the symbiont halt, set the half word at location DC to the EBCDIC value of the 2-
character symbiont ID. If you want to stop a phase other than the root phase, also set the
half word at location DE to the EBCDIC phase number (00-99).

The halt (H PR code 997C) occurs less than 10 instructions prior to the symbiont phase
being given control following the LOAD or FETCH. To continue normally following the halt,
press RUN.

Examples:

Contents of symbiont
halt location

D7D9FOFO
D9E4F1 F4
E2E40000
E2E4FOFO

Processor halts when this
symbiont phase is loaded

SL$$0WOO
JL$$RU14
SL$$SUOO
SL$$SUOO

Symbiont
ID

PR
RU
SU
SU

t

8075 Rev. 2

UP-NUMBER

Function

Supervisor Debug Option

Pseudo monitor

Verify bytes 0-8

Resident monitor

History tables

Mini monitor

Console debug option

PIOCS

Transient

Loader

Transient halt location

Symbiont halt location

t

SPERRY UNIVAC Operating System/3

Table 9-3. Summary of System Debugging Aids

Use How to Set

Key in D in last blank of
initial IPL message

To identify the routine changing Set location E to address of
a particular byte byte to check

To identify the routine destroying Included automatically
low memory

To identify the instruction Set location 02 to address of
changing a particular byte byte to check

To provide some recent history Included automatically
information in SYSDUMPs

To identify the instruction Console command
changing a particular byte MM value, address,RTUE

Console command

To identify checksum errors or SET DE,10
internal PIOCS problems

To halt on 1 xx errors SET DE,TR

To halt on errors 52-5F SET DE.LO

To halt if and when a particular Maintenance Panel

transient is loaded put 2-byte transient

ID into location C

To find out if and when a Maintenance panel
particular symbiont (or DC-DD=EBCDIC ID
symbiont phase) is loaded. DE-DF=EBCDIC phase

number

9-52

UPDATE LEVEL PAGE

•
Results

Normal HPR code 99130001
at end of IPL (press RUN to
continue)

HPR code 99130002 (press RUN
to continue)

HPR code 99130003 (press RUN
to continue)

HPR code 99130004 (press RUN
to continue)

Continuous updating of resident
tables

HPR 9912 (press RUN to continue)

HPR code 990F

HPR code 9908

HPR code 9915 (press RUN to continue)

HPR code 990C (press RUN to continue) • HPR code 997C (press RUN to continue)

•

•
10-1 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

10.1. GENERAL

10. Message Display, Logging, and
Operator Communication

Successful operation of a computer system requires constant communication. You use job
control statements, assembler instructions, and supervisor macro instructions to tell the
CPU what to do, and how and when to do it. The operating system tells the operator what to
do, and tells you what was done and when. The operator gets a message from the
supervisor (or from you) and answers a question or performs an action.

OS/3 provides several methods by which you can communicate with the operating system
and with the console operator. These consist of a system log, display to the operator, and a
canned message file, which can be used singly or in combination.

• A system log file is maintained by the supervisor spooling function. Job logs are subfiles of
the system log file and receive all log and accounting information for the job including
messages you write to the log using macro instructions in your program. (See Section 11 for
a description of spooling, job logs, and job accounting.)

•

You can display a message to the operator at the system console. The message may be for
information only, or you may request a reply by the operator. Also, you can combine a log
entry and a display. In this case, the message displayed and any reply from the operator is
written to the system log, and also to a console log if one is configured at system
generation.

You can display or log a message either from main storage or from a file of "canned"
messages maintained on disk by the supervisor. The canned message file is a set standard
message identified by canned message numbers that may be used by any BAL program,
and may be examined, printed, displayed, logged, etc. A canned message may also contain
blanks which are replaced by variable characters from a buffer whose address is specified
as a parameter in a macro instruction. If a canned message is specified and there are user
supplied variable characters, these characters are automatically inserted into the canned
message before the completed message is displayed, logged, or stored in your specified
buffer area.

You may need a canned message for some output other than display or log. In this case you
can retrieve it from the canned message file, with or without variable characters, and store
it in a buffer specified in your program .

SPERRY UNIVAC Operating System/3 10-2 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

There are four macro instructions you can use to retrieve, log, or display messages; these
are:

• WTL

Writes a message into the system log file.

• WTLD

Writes a message into the system log file after displaying it on the system console.

• GETMSG

Gets a message from the canned message file.

• QPR

Displays a message to the operator on the system console.

The WTL, WTLD, and GETMSG macro instructions are described in 10.2. The QPR macro
instruction is described in 10.3. Table 10-1 shows some of the options and characteristics
of these four macro instructions.

Table 10-1. Summary of Message Macro Instructions

Message From Output To Message
Macro Length
Name Main Canned System System Main

Storage Message File Log Console* Storage Maximum Default

WTL x x x 120 60

WTLD x x x x 60 or 120** 60

OPR x x x 60 60

GETMSG x x 120 60

*Output also to console log if configured at system generation.

**Maximum 60 characters if operator reply is requested; maximum 120 characters if operator reply is not requested .

•

•

•

SPERRY UNIVAC Operating System/3 10-3 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

•

•

•

10.1.1. The Canned Message File

The canned message file is a contiguous data set embedded within the supervisor transient
file. This is a file of generalized messages used by all operating system modules for display,
logging, error notification, etc. The generalized messages are added to the canned message
file included with a release of the system. Each message is assigned a canned message
number by the message file librarian. This 2-byte number identifies the message and
specifies its position within the file, and is used by the macro instructions to locate the
message within the file.

10.1.1.1. Canned Messages

An important advantage of the use of canned messages is that communication can be
standardized between the operating system, the operator, and you. Console messages and
job log entries can be standardized within your job step and your job, and throughout the
entire installation. Also, it keeps the amount of main storage required in your program for
messages and log entries to a minimum. This is especially beneficial when your program
contains many messages, particularly long ones.

For each of the four macro instructions mentioned earlier, the first parameter specifies the
address of a buffer in main storage. This buffer contains either the actual message, or the
number of the canned message. If the buffer contains a message, this is the information
displayed or logged. If the buffer contains a canned message number, the routine gets this
message from the file of canned messages .

10.1.1.2. Inserting Variable Characters in a Canned Message

If you use a canned message in which variable characters are to be inserted, the buffer also
contains the actual insert characters. In this case, you create the canned message so that
an underline (EBCDIC hexadecimal code 6D) represents a byte into which a character is to
be inserted. The macro instruction routine scans the canned message from left to right and,
when an underline is found, moves a character from the string of insert characters in the
buffer to this position in the message. The next character in the string replaces the next
underline in the message, etc. This process continues until either an EBCDIC hexadecimal
08 is found in the character string or the length of the canned message has been scanned.

Messages that are not intended for the system console can contain a maximum of 120
characters after any variable characters have been inserted (WTL and GETMSG macro
instructions). Messages intended for the system console, but not the system log, are
limited to 60 characters (QPR macro instruction with or without a request for a reply).
Messages to be logged and displayed are limited to 60 charcters if a reply is requested,
and 120 characters if a reply is not requested (WTLD macro instruction).

The format for the canned message buffer is shown in Figure 10-1. The insertion of
variable characters from the buffer into a canned message is pictured in Figure 10-2 .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

10-4

Buffer Format for Canned Messages Without Insert Characters:

Byte 0 2 3

$ canned tJ.
message number

Buffer Format for Canned Messages With Insert Characters:

Byte

$

0 2 3 4 n

$ I cann:ed ~essage number
c I :: I c x·oa·

First character of the buffer; indicates that this buffer pertains to a canned
message. Do not use a dollar sign as the beginning character of any other type of
message.

canned message number
The (16 bit) canned message number as a binary value.

•

6(space)
A space in byte 3 indicates there are no characters to be inserted into the canned •

I

c

message.

A slash in byte 3 indicates there are characters to be inserted into the canned
message.

If present, the characters to be inserted into the canned message are contained in
the buffer starting at byte 4.

X'08'
Hex code '08' used to terminate the character string.

Figure 10-1. Canned Message Buffer Formats

•

8075 Rev. 2

UP-NUMBER

•

•

•

10-5
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

CANNED MESSAGE

CANNED

MESSAGE

FILE

ON 6DEV 6- - - 66MOUNT 6FORM 6 - - - - - - - - 66LPI 6-66BAND 6- - - - - -

BUFFER

ON 6DEV 6002 66MOUNT 6 FORM 6CK - 1113 666LPI 66 66BAND 648 - BUS

SYSTEM

LOG

FILE

JOB

LOG

Figure 10-2. Insertion of Variable Characters in a Canned Message

10-6 8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

10.1.2. The System Log

The system log file is a set of subfiles (job logs) within the system spoolfile that receives all
job log and accounting information for each job. The job log includes all system console
messages to the operator generated by the operating system; for example, device
assignments and any reply entered by the operator. The log should contain any information
which you may find pertinent to your job's execution. At a minimum, the log should contain
a concise message for all errors encountered and all milestones passed. You use the WTL
and WTLD macro instructions to write messages to the log file.

The job accounting portion includes accounting information generated by the operating
system for the job, such as the number of input/output operations, CPU time charged to the
job, etc.

Log file entries are destined for a printer and therefore are limited to 120 characters per
line. Each print line is considered to be a logical record within the log file. Each record
contains control information defining whether the record is a logged message or an
accounting record. Normally, the log for a job is printed on a high speed printer as soon after
job termination as possible, although printing of a job log can be initiated before the job
terminates. (See 11.1.) The log can also be retained on magnetic tape for later printing or
use.

10.2. MESSAGE AND LOGGING MACRO INSTRUCTIONS

10 .2 .1 . Write to the Log (WTL)

Function:

The WTL macro instruction writes a message to the system log file for subsequent
printing on a high speed printer. The message may be either currently in main storage
or retrieved from the canned message file. If you specify a canned message, the macro
instruction routine inserts any user-supplied variables into the message before writing
it to the log. The format of the canned message buffer is shown in Figure 10-1. The
insertion of variable characters is illustrated in Figure 10-2.

Because messages written to the log are destined for the printer, they are limited to a
maximum of 120 characters. Each message occupies one print line or less than a line.
Normally, job logs are printed as soon after job termination as possible. However,
printing of a job log can be initiated before job termination. (See 11.1.)

Format:

LABEL DaOPERATION D. OPERAND

[symbol) WTL

•

•

•

8075 Rev. 2 10-7

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

•

•

•

Positional Parameter 1:

buff-addr

(1)

Specifies the symbolic address of the message to be logged. This may be either the
address of a buffer area in main storage containing the complete message or the
address of a buffer area in main storage containing the canned message number
and any variable characters to be inserted.

If a canned message is specified, the buffer must be at least four bytes long (See
Figure 10-1.) The first character in the canned message buffer must be a dollar
sign ($). Do not use a dollar sign as the beginning character of any other type of
message.

Indicates that register 1 has been preloaded with the address of the message area.

Positional Parameter 2:

msg-length

(0)

Specifies the length in bytes of the message to be logged. For canned messages,
this specifies the length of the completed message including any inserted variable
characters. Maximum length for the completed message is 120 bytes.

Indicates that register 0 has been preloaded with the length of the message .

If omitted, a length of 60 bytes is assumed.

Positional Parameter 3:

error-addr

(rh

Specifies the symbolic address of an error routine that receives control if an error
occurs.

Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the error routine.

If omitted, the requesting task is abnormally terminated if an error occurs.

Following is an example of how the WTL macro instruction can be used to log a message
from main storage.

Example:

LABEL OOPERATIONll OPERAND COMMENTS
10 16

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 10-8

.UPDATE LEVEL PAGE

Line 1 writes a message consisting of 38 characters from main storage location BUFOUT1 •
to the log. If an error occurs during execution of this macro instruction, control is transferred
to line 5, which specifies a normal job step termination. Line 6 defines a 38-byte output
buffer containing the output message.

Assume that the same message 'COUNT COMPLETED FOR BRASS CASTING DEPT' is
message number 89 in the canned message file. You can log this message using a buffer of
only four bytes, as shown in the following example.

Example:

LABEL flOPERATIONfl OPERAND
10 16

l.l-L--'--'--'---'-J.__J_-+-~L-L>oo.'--L-+-~'"1l--J~llU-C'----~'-""'--_!_J'--'--'---l-L-'---l---'---'--'---'--'---'--'---'--'---'-_L__J_
L..--..~~~_._'---+--+--'--'_.___._t-+~~_.___,__,~_,_-'---'-_,__,__,~_.__,___,__,___,__,_.___._,___,_~-'---'_,____,_~

~t--'-~_.____.____.__,___,_-+--f--'-'---'---'--t--t-'----'-__.__.___.__._-'---'-___._-'---'--'--'---'L--'--'-'----'-__._-'---'-~-'----'--'--'--'--'--'---'-

4. t---'-~._.___._._._ __ t--'---'---''---'--f--t--'---"--'--'---'--''--'---'--''--'---'--'--'--'---'--'--'--'--'--'-'-'--'-'-'--'---'--'--'---'-

Line 1 logs a message specified in the output buffer BUFOUT2, which in this case contains •
the canned message number '89'. Thus we can write a 39-byte message using a buffer in
the program of only four bytes. In this example, we have omitted parameter 3, which means
the task is abnormally terminated if an error occurs. Lines 5, 6, and 7 define the 4-byte
output buffer.

Suppose we want to use the same canned message to refer to several departments, such
as: BRASS CASTING, BRONZE CASTING, SHOT BLASTING, PAPER BOX SUITING, etc. We
can store the variable characters, in this case BRASS CASTING, in the output buffer. These
characters will be inserted into the locations marked by underlines in canned message
number 90, which looks like:

COUNT COMPLETED FOR _ DEPT

After the variable characters have been inserted, the following message is logged:

COUNT COMPLETED FOR BRASS CASTING _ _ _ _ _ _ DEPT

•

------------------~~------~----

•

•

•

8075 Rev. 2

UPDATE LEVEL PAGE

10-9
SPERRY UNIVAC Operating System/3

UP-NUMBER

Following is an example of how we can write a 45-byte message using a buffer in the
program of only 17 bytes.

Example:

LABEL 60PERATION6 OPERAND
10 16

'' 1---'------'-L__L___L_L__L_-+-µ.>L.u.>-L.....1....--+-f-l'"'L"!!<l.!....J~"-'-'--""""'-\L-L~....l......L___J_---'--l_J_....l.......JL___J____J__J_J____L_J--'--___L_J--'-__L_L_
2 _.__.._.__.__.__,_-+---t-'---'-~L------f---+-'-'--'-.J.....J..--"-..l.......L-'---'---'--'-....l.......JL-L..-'-'-'--'-.J.....J..--"-~-'---'---'---'----'---'-
1 _.__._.__.__._._ __ ___.__._.._-+-l--'-....L.....JL.......J......J......L.......J......J......L.......J......J......L.......J...-'---1--'-....l.......JL.......J...-'---1--'--'-'--'-....l.......J---'----'---'-

4_...._.__ ___.__'-'--l--_...._.__._._.._1--'-....L.....JL.......J.......L.....JL.......J.......L.....JL.......J.......L.....J'-1--'---1--'-....l.......J'--'--'-'--'--'-'--'--'-'--'----'---'

S.,...&LL..~.U....:...i.a.u......+-~""'-L......L..-l-j.WL.....J.SJ-L.....1-JL.......L.....1-JL.......L.....1-JL.......L.....J...-1-L......1....-JL.......L.....J...-1-L......l....-J--l......l.....J--l......L.......I-

~L.....J'--'-~----'--+-+~-'-'---'-f-+'_,__,__,'--'-....L..Ll~..L-L-L--'-L--'-L.....l........L...J'--L-...L...J.----'--..L-L-'---.L.....l..--'-'--L-L-1-
7. _.__.._.__._--L-L-+-__.""""-~L------f---.µ<1.......1.:'-L-.L.-J..-'--.J.......1.-'--L-1......L.......l.......JL-L..-'-1-L.--'-.J.....J..-'--.i......L-'-..L-I-'-~~
B·.J..-1.--1__1___j_J_____l_L-+-IJ!JJ..C.l__L_j-WlkL-~~!J!2t!..~tl.!.i.J~~__l_l-1......l_LJ_L_LJ_LL.L....L..L..L

~ -L-1-'-..1......1.-'--~~_,_.J..4-!=L..l.>o~-'--'-L--'-L.....1.......L...J._L_J_L__J__JL.....l......J........1.-'--'-L_l._l-L..J........I.-'-~

Line 1 writes canned message 90 with a length of 45 bytes to the log. Lines 5 to 9 define
the 17-byte output buffer.

Other WTL macro instructions in the pr-0gram can use the same canned message,
substituting an output buffer containing another department name, such as: BRONZE
CASTING, SHOT BLASTING, etc, as we described earlier.

10.2.2. Display a Message and Write to the Log (WTLD)

This macro instruction operates in a manner similar to the WTL macro instruction in that
you specify a message from main storage or a canned message with or without variable
characters. However, the message to be logged is first displayed on the system console.
Also, there is the additional capability to request a reply by the operator. In this case, you
can specify a second buffer to receive the operator's reply.

Function:

The WTLD macro instruction writes a message to the system log file for subsequent
printing on a high speed printer and simultaneously displays the message on the
system console for operator reply or information. The message may be either
currently in main storage or retrieved from the canned message file. If you specify a
canned message, the macro instruction routine inserts any user-supplied variables
into the message before the visual display and writing to the log. The format of the
canned message buffer is shown in Figure 10-1. The insertion of variable characters
is illustrated in Figure 10-2 .

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

UPDATE LEVEL

10-10

PAGE

Because messages written to the log are destined for the printer, they are limited to a
maximum of 120 characters. Each message occupies one print line or less than a line.

Messages are displayed on the console 60 characters per line with messages longer
than 60 characters occupying two lines.

When an operator reply is requested, do not use a message longer than 60 characters
because the reply will be written with the message to the system log file making a total
of 120 characters.

Normally, job logs are printed as soon after job termination as possible. However,
printing of a job log can be initiated before job termination. (See 11.1.)

Format:

LABEL 60PERATION 6 OPERAND

[symbol] WTLD

[J [{ buff-addr-2}
, REPLY ' (r)

4
{

buff-length-2 }]
, (r)

5

Positional Parameter 1:

buff-addr-1

(1)

Specifies the symbolic address of the message to be logged and displayed. This
may be either the address of a buffer area in main storage containing the complete
message, or the address of a buffer area in main storage containing the canned
message number and any variable characters to be inserted.

lf a canned message is specified, the buffer must be at least four bytes long. (See
Figure 10-1 .) The first character in the canned message buffer must be a dollar
sign ($). Do not use a dollar sign as the beginning character of any other type of
message.

If the message to be displayed is a canned message with a reply but positional
parameters 5 and 6 are omitted, the reply will overlay this buffer area for the
number of bytes specified in positional parameter 2.

Indicates that register 1 has been preloaded with the address of the message
buffer area.

•

•

•

8075 Rev. 2
SPERRY UNIVAC Operating System/3

10-11

UP-NUMBER UPDATE LEVEL PAGE

• Positional Parameter 2:

•

•

msg-length

(0)

Specifies the length in bytes of the message to be logged and displayed. For
canned messages, this specifies the length of the completed message including
any inserted variable characters. If REPLY is specified in positional parameter 4
but positional parameter 5 and 6 are omitted, this is the length of the reply.
Maximum length for the completed message is 120 bytes. If an operator reply is
requested, maximum length is 60 bytes. Similar to the QPR macro instruction, a
minimum of 60 characters is displayed and logged when a canned message is
specified.

Indicates that register 0 has been preloaded with the length of the message buffer
area or the length of a canned message reply.

If omitted, a length of 60 bytes is assumed.

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine that receives control if an error
occurs .

Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the error routine.

If omitted, the requesting task is abnormally terminated if an error occurs.

Positional Parameter 4:

REPLY
Specifies that a reply is required from the operator. Program control is not
returned to the problem program until the operator's reply is received, written to
the log, and available in the appropriate buffer area. The message text of the reply
is stored beginning at the first byte of the buffer area specified in positional
parameter 5 for the length specified in positional parameter 6. If parameter 5 is
omitted, then the buffer area specified in positional parameter 1 is overlayed for
the length specified in positional parameter 2.

The maximum length of a reply is limited to 60 bytes or to the length of the
message buffer, whichever is smaller. Replies that exceed the length of the
message buffer area are truncated. If the reply is shorter than the message buffer
area, the remaining positions in the buffer area are space filled .

8075 Rev. 2
SPERRY UNIVAC Operating System/3

10-12

UP-NUMBER UPDATE LEVEL PAGE

After the reply is received, the message and the reply are written to the system log
file.

If omitted, the message is logged and displayed and no reply is expected.

Positional Parameter 5:

buff-addr-2
Specifies the symbolic address of a buffer area in main storage that is to receive a
reply from the operator.

This parameter gives the caller the option of specifying an output buffer that will
not be destroyed by an incoming reply.

If REPLY was not specified in positional parameter 4, this field is ignored.

Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the buffer area in main storage that is to receive a reply from the
operator.

If omitted and REPLY was specified in positional parameter 4, any reply will overlay the
buffer area specified in positional parameter 1 for the length specified in positional
parameter 2.

Positional Parameter 6:

buff-length-2
Specifies the length in bytes of the buffer area specified in positional parameter 5.
Length may be from 1 to 60 bytes.

This parameter must be present if positional parameter 5 was specified.

Specifies that the designated register (other than 0 or 1) has been preloaded with
the length of the buffer area specified in positional parameter 5.

If omitted and positional parameter 5 was specified, the macro instruction does not
execute.

•

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

10-13

UPDATE LEVEL PAGE

• In the following example we see how you might use the WTLD macro instruction.

•

•

Example:

LABEL L\oPERATION6 OPERAND COMMENTS
10 16

l J----L---'---'---'----'------'----'---+--1-~~_,___,_--~,l=J,F~1b~,U~1T~1~'f1___._,,~1_ =S~I ~1 ~1 ~1 ~1 ~I ~1~1~1~l~1~1 ~1 ~1 ~I ~1 ~1 ~1~~~~~_.i_J____L___i____~_LJ_______L_J_.l.J___l______L_

:J..-J----L--_L_i__~~-'---'-+-+~---'----'---+---<
3_ 1-J-LL-'-L__L_L---+-l___L__LL--'--4-+-'-__L_L---'----'-----'--'___L__L---'-----'---'---'----'------'--------L--'-----'--'-----"__,____~--'---'-__L_L~ _L_L__L--'-----l__J__j'---'--l__L__L_L__L_L_j___l__,_____,__,____LL-,__,___,

~l-LL_L_L_j__j___l_--+~_j_-L__L_-'---l-+---L__L_L__J___J___J__j_L__J___J__LL__l____J____j___j_----'--'__J__jLJ__l__L_J___L___L_L_j_j_----'--'---'--L---'----L---'----.L__L___L_L--'-----'--'-----"__,____L~J___L_~__j__

S.µ_.LL-1-L__j___j_--+--l.::J.:..l::J::..L.1---~~~~~~.LL-'--L----'----'-----'----1---'--.J---'-'---'-.l-L,..LL-'-l-__J__J---'-LL-'-L-'--L---'----'-----'--'---"-''-'-'----'---'--'----'----'---__J___L_
"' J----L---'---'---'----'------'----'---+--1__,____L---'-----'-+-+---'-__L_L---'----'---'-----"__,____L---'-----'---'-~~_,_____,~__,____L---'-----'---'-~---'----'-_,_____,__,____~~~~~~~.L..J.____L_L__l_ _ _l_ __ 1.__...L_

7 J----L---'---'---'-----'----'----'----i--1__,____L---'-----'-+-+---'-__L_L---'----'---'-----"__,____L---'-----'---'-~~_,_____,~__,____L~-'---'-~---'----'-_,_____,~ ~_,_____,__,____~~~~~_l__J _ _Lj _ __l____i___L_L_

g_ Li__j___j_ _ __L_L~~

q l---'---'--'----'-----'----'----'----+-l-=--'--=-'---l---1"'-L''-"---""-=.'J>U+""-'--'---'--}-4--"-''""'--"--=--c'----'--!___L__LL-l__L_.L__L___L_L_,_____,_,_____,___L__L_L_J___L___L_L__L_L--'-----'__,____~__j__j_ __ __L_L~~

10.l-l---'--'--..l......L----'----'--+-l---'-'-'-.1.-4-+-1---'--'-----'--'---"-'-"---'-L-'--'----'----'---..l.-l....J....J_J_'-1--'-LJ......L.__L_L----L-J._L_J---'--'-'---'-'--'"---"----'-'-----'--'---'--'-'---'----'--'--'----'---'-__J___L_

// .1----'--'---'---'-----'----'----'---+--l__,____~_,___,__+---'-__L_L--'-----'~~~~~---'----'-_,_____,__,____~J___L_~~~-~~~~__J__j- J__,______L_l__L__L_i__J___L_J___L_J___L_~

JJ_. ~' _l_i_i----'---'-1__--'----'----'-----'----'---'----'---'--

13.1---'--'---'---'-----'----'----'---+--l~~~-'--4-- D1W1bli~W1T1C 17,) I' 1D1Wi>!1w 01 1 1 I 1 1 I I 1 I 1 I 1 1 ~LL.~~~~LLL _ __L_L-'-----L~
/'f_ _BVF0\JT7,!t171,1)1R1E1P1L,Y,,,8,U1F;I,N,l,,13,q, I I I 1 I ,_i____L_i___i___,_____,~~~L---'----L---'----~LLJ____[___L

ISl-l---'--'----'-----'----'-'--+-l---'-'-'-.1.-4-+-'-----'----'---'-'-_,_____,-"--J_J_-'--'----'----'---..l.-l....J....J---'-'-'-J_j_-'--'---"--'---'-'-_,_____,__,_'-'---'--'---"---"----'-'-----'--'---'--'-'---'----'--'--'----'---'-__J___L_

'l!<ill~'-"'----L'-L-L---+-l"'--'-"''----'--'---l-~"'--'--L----'--'_L_JL__L_J_J___l____J____j___j__j___j___J__j__l_L__L_LL-'--L---'----'--'-----'__J__j_____J____~~__L_L---'----'-_,_____,~__l__i__L_J __ l __ L__,__J__

1"'1'!--"-----"''--"-'--L'--'---L~=.,,,L__L_-'---l-~=.L.!J.__l_L_JL__L_l_J___l____J____j___j__j___j____l__jw__L.1-LL-'--L_L__L__l____l_L__L_l___j__~_L_J-'--'---'--LL-'---'-_l_J_l__i_LL

For simplicity, assume all the messages are ·from main storage, and no error addresses are
specified. Line 1 of the example displays and logs a 15-byte message from the buffer area
BUFOUT4. The message is defihed in line 18. Because parameters 4, 5, and 6 are omitted,
no operator reply is expected.

Line 5 displays and logs -a 50-byte ·message from the buffer area BUFOUT5 and instructs
the operator to mount a special printed form on a printer. The message is defined in line
19. Again, because parameters 4, 5, and 6 are omitted, no operator reply is expected.

Line 9 displays and logs a 24-byte message from the buffer area BUFOUT6 and requests a
reply of Y or N. The message is defined in line 20. Because no input buffer is specified
(parameters 5 and 6), the reply will appear on the screen and in the first byte of the
BUFOUT6 buffer area.

Line 14 displays and logs a 47-byte message from the buffer area BUFOUT7 and requests
a reply. The message is defined in lines 20 and 21 with the actual drawing number
displayed having been moved to the output area by line 13. A 39-byte input buffer for the
reply is defined in line 23 .

SPERRY UNIVAC Operating System/3
10-14 8075 Rev. 2

UP-NUMBER UPDATE LEVEL PAGE

10.2.3. Get a Canned Message (GETMSG)

This macro instruction operates in a manner similar to the WTLD macro instruction, except
that its use is limited to canned messages and there is no display or log capability. However,
after bringing a canned message into main storage with the GETMSG macro instruction,
and perhaps making some modification, you can still log or display the message using a
WTL, WTLD, or QPR macro instruction.

Function:

The GETMSG macro instruction retrieves a message of variable length from the system
canned message file, inserts the variables if any are furnished, and stores the
completed message in the specified buffer area in main storage. This receiving buffer
area is specified either in positional parameter 5 or 1 and must be large enough to
contain the completed message text which can be from 1 to 120 characters in length.
The format of the canned message buffer is shown in Figure 10-1. The insertion of
variable characters is illustrated in Figure 10-2.

Format:

LABEL /:::,,.OPERATION /:::,,. OPERAND

[symbol] GETMSG

Positional Parameter 1:

buff-addr-1

(1)

Specifies the symbolic address of a buffer area in main storage containing the
number of the canned message to be retrieved and any variable characters to be
inserted into the message.

The first character in the canned message buffer must be a dollar sign ($). Do
not use a dollar sign as the beginning character of any other type of message.

If positional parameter 5 is blank, the retrieved message will overlay this area for
the length specified in positional parameter 2.

Indicates that register 1 has been preloaded with the address of the message
buffer area.

•

•

•

SPERRY UNIVAC Operating System/3
10-15

8075 Rev. 2

•

•

•

UP-NUMBER UPDATE LEVEL PAGE

Positional Parameter 2:

msg-length

(0)

Specifies the length in bytes of the message to be retrieved from the canned
message file. Length may be from 1 to 120 bytes.

Indicates that register 0 has been preloaded with the length of the buffer area.

If omitted, a length of 60 bytes is assumed.

Positional Parameter 3:

error-addr
Specifies the symbolic address of an error routine that receives control if an error
occurs.

Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the error routine.

If omitted, the requesting task is abnormally terminated if an error occurs.

Positional Parameter 4:

This parameter is not applicable, but a comma must be entered in this position.

Positional Parameter 5:

buff-addr-2
Specifies the symbolic address of a buffer area in main storage that is to receive
the retrieved message from the canned message file.

This parameter gives the caller the option of specifying another buffer that will not
destroy the original.

Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the buffer area in main storage that is to receive the retrieved
message.

If omitted, the retrieved message will overlay the buffer area specified in positional
parameter 1 for the length specified in positional parameter 2.

Positional Parameter 6:

buff-length-2
Specifies the length in bytes of the buffer area specified in positional parameter 5 .
Length may be from 1 to 120 bytes.

8075 Rev. 2

UP-NUMB EA

(r)5

10-16
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

This parameter must be present if positional parameter 5 was specified.

Specifies that the designated register (other than 0 or 1) has been preloaded with
the length of the buffer area specified in positional parameter 5.

If omitted and positional parameter 5 was specified, the macro instruction does not
execute.

As an example of how to use the GETMSG macro instruction, suppose you wish to get a
canned message and move it to an output area to be printed. This is shown in the following
illustration using the same canned message (message 90) that we used earlier for one of
the WTL macro instructions.

Example:

LABEL 60PERATION6 OPE:: RAND
10 16

•

•

•

•

•

•

SPERRY UNIVAC Operating System/3
10-17 8075 Rev. 2

UP-NUMBER .UPDATE LEVEL PAGE

Line 1 of the example refers to the buffer area (BUFOUT8 which specifies the canned
message number 90. Because a second buffer is not specified (parameters 5 and 6 are
omitted), the macro instruction retrieves message 90 from the canned message file, inserts
the variable characters BRASS CASTING, and stores the completed 45-byte message in
main storage starting at the first byte of BUFOUT8. Lines 5 to 11 define the 45-byte output
buffer BUFOUT8. Line 7 defines the canned message number 90, line 9 defines the insert
characters BRASS CASTING, and line 11 defines an additional 28 bytes to increase the size
of the buffer to 45 bytes to accommodate the completed canned message. For our example,
line 2 moves the completed message in BUFOUT8 to a work area (PRINT1) where it can be
edited and printed.

As you can see, when used this way the GETMSG macro instruction overwrites the buffer
specifying the canned message number and insert characters. If you want to avoid this, then
you specify a second buffer area. Line 15 does this by specifying BUFIN2 as parameter 5
with a length of 45 bytes (parameter 6). The macro instruction stores the completed
message in this buffer area and line 3 moves it from BUFIN2 to a work area PRINT2. Lines
20 to 24 define a 17-byte output buffer BUFOUT9. Line 21 defines the canned message
number 90, and line 23 defines the insert characters BRASS CASTING. Line 25 defines the
second buffer area BUFIN2 which receives the completed message.

10.3. USER-OPERATOR COMMUNICATION

10.3.1. General

The operating system communicates with Hie system operator via WTLD macro instructions
within the modules of the supervisor and other system elements. When the message is
displayed at the system console, it is automatically prefixed with a job identification (ID)
number and a message increment number. A message to the console operator can be for:

• Information

This type of message is issued when information is passed to the operator for his
information and for inclusion in the system log, as, for example, notification of normal
job termination.

• Reply

This type of message is issued when the operating system reaches a point in its
processing where a reply to a question (perhaps a choice between alternate courses of
action) must be made by the operator before processing can continue. For example, the
operator may be asked to decide whether to retry an error recovery procedure or to
abort the user program.

The job/message ID of this type of message is followed by a question mark (?). A
question is not deleted from the screen until it has been answered .

8075 Rev. 2
SPERRY UNIVAC Operating System/3

10-18

UP-NUMBER UPDATE LEVEL PAGE

I

• Action

This type of message is used when operator intervention and assistance are required
before processing of the requesting task can continue. For example, the operator may
be requested to mount a disk pack or turn on power to a device.

The job/message ID of this type of message is followed by an asterisk(*). An action
message is not deleted from the screen until the operator has complied with the
request and reactivated the job with a GO command.

Normally, the console operator replies to a message from the system. However, he can also
communicate with the system without any prompting or direction. This type of
communication is called an "unsolicited message" from the operator. If the operator enters
an unsolicited message for a job, control is passed to the job step's operator communication
island code, which is a routine you must write to handle a specific event. If there is no
island code for this job step, or the island code is busy, the unsolicited message is ignored.
This is described in 8.6 under the headings relating to operator communication. The
operator/system console communications procedure is described in the appropriate
operations handbook for operators, UP-8072 (current version).

The action type message is reserved for use by the operating system. However, you can use
·the WTLD macro instruction to display and log a message for operator information or to

· request a reply from the operator.

You can also display a message to the operator without making an entry in the system log .
In this case, you would use the QPR macro instruction.

10.3.2. Display a Message to the Operator (QPR)

This macro instruction operates in a manner similar to the WTLD macro instruction except
that the message is only displayed and not written to the system log. In this way you
would keep the size of the log file and subsequent printout to a minimum. You would use
the WTLD macro instruction to display messages that require an entry in the log, and use
the QPR macro instruction to display messages to the operator that you feel do not require
a log entry. However, if the system has a communications output printer (COP) at the
console and you use an QPR macro instruction to display a message to the operator, this
message will also be printed on the COP. Also, the QPR message, and any reply, will be
written to the console log if one was configured at system generation.

Function:

The QPR macro instruction displays a message on the system console for operator
reply or information. The message may be either currently in main storage or
retrieved from the canned message file. If you specify a canned message, the macro
instruction routine inserts any user-supplied variables into the message before the
visual display. The format of the canned message buffer is shown in Figure 10-1.
The insertion of variable characters is illustrated in Figure 10-2.

•

•

Use this macro instruction for console communication with the operator. Upon •
execution, program control is released until either the message is displayed, the reply
is transferred to the appropriate buffer, or an error is encountered.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 10-19

UPDATE LEVEL PAGE

•

•

•

Format:

LABEL L\ OPERATION t:. OPERAND

[symbol] QPR

[{
buff-length-2}1

[,REPLY] ' [{buff-~r~~r-2} J :;Js J

Positional Parameter 1:

buff-addr-1

(1)

Specifies the symbolic address of the message to be displayed. This may be either
the address of a buffer area in main storage containing the complete message or
the address of a buffer area in main storage containing the canned message
number and any variable characters to be inserted.

If a canned message is specified, the buffer must be at least four bytes long. (See
Figure 10-1.) The first character in the canned message buffer must be a dollar
sign ($). Do not use a dollar sign as the beginning character of any other type of
message.

If the message to be displayed is a canned message with a reply, but positional
parameters 5 and 6 are omitted, the reply will overlay this buffer area for the
number of bytes specified in positional parameter 2.

Indicates that register 1 has been preloaded with the address of the message
buffer area.

Positional Parameter 2:

msg-length

(0)

Specifies the length in bytes of the message to be displayed. For canned
messages, this specifies the length of the completed message including any
inserted variable characters. If REPLY is specified in positional parameter 4, but
positional parameters 5 and 6 are omitted, this is the length of the reply.

Maximum length is 60 bytes.

Indicates that register 0 has been preloaded with the length of the message buffer
area or the length of a canned message reply .

If omitted, a length of 60 bytes is assumed.

8075 Rev. 2 10-20
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE UP-NUMBER

Positional Parameter 3:

error-addr

(rb

Specifies the symbolic address of an error routine that receives control if an error
occurs.

Indicates that the designated register (other than 0 or 1) has been preloaded with
the address of the error routine.

If omitted, the requesting task is abnormally terminated if an error occurs.

Positional Parameter 4:

REPLY
Specifies that a reply is required from the operator. Program control is not
returned to the problem program until the operator's reply is received and
available in the appropriate buffer area. The first nonblank character of the
message text of the reply is stored, beginl}ing at the first byte of the buffer area
specified in positional parameter 5 for the length specified in positional parameter
6. If parameter 5 is omitted, then the buffer area specified in positional parameter
1 is overlayed for the length specified in positional parameter 2.

After the reply is received, register 0 contains the number of characters typed by

•

the operator, including the character under the cursor. •

The maximum length of a reply is limited to 60 bytes or to the length of the
message buffer, whichever is smaller. Replies that exceed the length of the
message buffer area are truncated. If the reply is shorter than the message buffer
area, the remaining positions in the buffer area are space filled. If the reply is all
spaces, the buffer will be space filled.

If omitted, the message will be displayed and no reply expected.

Positional Parameter 5:

buff-addr-2

(r)
4

Specifies the symbolic address of a buffer area in main storage that is to receive a
reply from the operator.

This parameter gives the caller the option of specifying an output buffer that will
not be destroyed by an incoming reply.

If REPLY was not specified in positional parameter 4, this field is ignored.

Specifies that the designated register (other than 0 or 1) has been preloaded with
the address of the buffer area in main storage that is to receive a reply from the
operator. •

•

•

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

10-21

UPDATE LEVEL PAGE

If omitted and REPLY was specified in positional parameter 4, any reply will overlay the
buffer area specified in positional parameter 1 for the length specified in positional
parameter 2.

Positional Parameter 6:

buff-length-2
Specifies the length in bytes of the buffer area specified in positional parameter 5.
Length may be from 1 to 60 bytes.

Specifies that the designated register (other than 0 or 1) has been preloaded with
the length of the buffer area specified in positional parameter 5.

If omitted and positional parameter 5 was specified, a length of 60 bytes is assumed.

There are three ways in which the QPR macro instruction differs from the WTLD macro
instruction. These are:

1. You cannot write to the system log; you can only display a message.

2. The length of the message to be displayed cannot exceed 60 bytes.

3. If you set up a second buffer to receive the operator reply (parameter 5), but omit the
buffer length (parameter 6), the macro instruction assumes a length of 60 bytes. (With
the WTLD macro instruction, if the second buffer is specified (parameter 5), the length
(parameter 6) must also be specified, else the macro instruction does not execute.

Following is an example of how to use the QPR macro instruction. In this case we've used
the same parameters as for the WTLD macro instruction example .

•

8075 Rev. 2

UP-NUMBER

Example:

SPERRY UNIVAC Operating System/3 10-22

UPDATE LEVEL PAGE

Assume that all the messages are from main storage, and also assume that no error
addresses are specified. Line 1 of the example displays a 15-byte message from the buffer
area BUFOUT4. The message is defined in line 14. Because parameters 4, 5, and 6 are
omitted, no operator reply is expected. Line 5 displays a 24-byte message from the buffer
area BUFOUT5 and requests a reply of Y or N. The message is defined in line 15. Because
no input buffer is specified (parameters 5 and 6), the reply will appear on the screen and in
the first byte of the BUFOUT5 buffer area.

Line 10 displays a 47-byte message from the buffer area BUFOUT6 and requests a reply.
The message is defined in lines 16 and 17 with the actual drawing number displayed having
been moved to the output area by line 9. A 40-byte input buffer for the reply is defined in
line 18.

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

11.1. SPOOLING

11 .1 .1 . General

SPERRY UNIVAC Operating System/3
11-1

UPDATE LEVEL PAGE

11. Other Services

Spooling is the technique of buffering data files for low speed input and output devices to a
high speed storage device independently of the program that uses the input data or
generates the output data. Data from card readers or from remote sites is stored on disk
for subsequent use by the intended program. Data output by the program is stored on disk
for subsequent punching or printing. The spooling function also handles diskette files. It
treats input from diskette as though it were from a card reader, and output to a diskette as
though it were to a card punch. In this description of spooling, any reference to a card
reader, card input, or card file also includes diskette input; any reference to a card punch,
card output, or card file also includes diskette output. The data management user guide,
UP-8068 (current version) shows the formats for diskette records.

Spooling enhances system performance by releasing large production programs and system
software from the constraint of the slower speed devices, thereby freeing the main storage
occupied by these programs sooner; and by driving the slower speed devices at their rated
speed on a continuous basis, thereby making full use of the devices during the time that is
normally lost to systems overhead or to job steps not using printers.

The spooling function comprises five elements: initialization, input reader, spooler, output
writer, and special functions. These elements are described on the following pages. Figure
11-1 gives a simplified picture of the relationship between the slow and high speed
input/output devices and the software components of the spooling function and the
supervisor.

11 .1.1 .1. Initialization

Spool initialization provides for the establishment, data recovery, or reestablishment of the
spoolfile at supervisor initialization. Based on system generation parameters or operator
specified options at supervisor initialization, it allocates the spoolfile and builds the system
spool control table, or it recovers an existing spoolfile. In the case of an existing spoolfile, it
clears the file, recovers closed subfiles, or recovers and closes all subfiles .

8075 Rev. 2 11-2
SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL PAGE

ICAM PIOCS ICAM

REMOTE
REAL CARD READER REAL DISK REAL PRINTER/PUNCH REMOTE

READER PRINTER/PUNCH

l

SPOOLER

VIRTUAL CARD READER VIRTUAL PRINTER/PUNCH

?_ 1

i

INPUT OUTPUT

READER WRITER

-- l
JOB CONTROL

USER ~ RUN
JOB

REMOTE
PROCESSOR REMOTE

BATCH --- BATCH

PROCESSOR PROCESSOR

Figure 11-1. Relationship of Spooling Devices and Programs

11.1.1.2. Input Reader

Using physical IOCS the input reader reads cards from a real card reader or records from a
diskette and writes these images to the spoolfile via a virtual card reader and the spooler.
It closes the previous subfile if one exists and opens a new subfile. A given input reader
can handle only one card reader or diskette at a time; however, any number of input
readers can be active.

11.1.1.3. Spooler

•

•

The spooler is the hub of the spooling package and is linked as part of the resident
supervisor. It provides record level input and output to and from the spoolfile for each
element in the system needing access to that file. It intercepts all input/output commands
to virtual printer, punch, and card reader devices, and accesses the disc when necessary
using the system access technique (SAT) for accesses to the spoolfile. All input/output
requests (EXCP macro instructions) addressing virtual devices are trapped and routed to the
spooler for processing rather than physical IOCS. The spooler supports both reads and
writes to virtual devices while simulating the action of physical IOCS as far as error
handling, page spacing, and synchronization are concerned. It allocates tracks to subfiles
and maintains control of the user's spool control tables. It can handle any number of print, •
punch, and read files simultaneously, including multiple files per job.

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

11-3

UP-NUMBER

• 11.1.1 .4. Output Writer

The output writer reads data from the system spoolfile and prints or punches this data on t
the physical devices. As an alternative, it can output this data to a tape so that the tape
may be reintroduced at a later time to the output writer as input, rather than using the
spool file as input, or for processing at a later time by the user.

PUNCH Fl LE------.i PUNCH FILE OUTPUT-----

PRINT FILE----~ OUTPUT PRINT FILE OUTPUT-----

LOG FILE------.i WRITER LOG FILE OUTPUT------

OUTPUT WRITER TAPE REDIRECTED OUTPUT TO TAPE•

The output writer configures itself dynamically to the printer or punch assigned, thereby
keeping main storage requirements to a minimum. It is loaded automatically whenever
there are files to be printed or punched and there is a printer or punch available. As with the
input reader, a copy of the output writer can handle only one printer or punch. However, for
every printer or punch on a system, there can be a version of this element running that
device.

• A number of capabilities and options are available:

•

• Processing may be handled in either burst or nonburst mode.

• The operator may refine burst mode by selecting a subcriteria.

• A maximum of 255 copies of a given file may be printed or punched.

• Subfiles may be retained after they have been printed or punched.

• Printer or punch output may be initially assigned, or redirected, to tape .

The output writer determines which file to process based on criteria entered at system
generation, or later by an operator system command or function to the output writer by the
operator. For example, let us assume nonburst was specified at system generation. This
means an output subfile cannot be printed or punched until after the job has terminated and
the job log has been closed. Also, each job's output is handled as a continuous entity. The
operator can change this to burst mode processing, which means that an output subfile can
be printed or punched after it has been closed, or after a breakpoint has been created (see
11.1.3), and does not have to wait until the job has terminated. He can specify file selection
by various criteria such as first-in/first-out by device type, account number, job number,
etc. Operator commands and responses are described in the appropriate operations
handbook for your syMem .

8075 Rev. 2
SPERRY UNIVAC Operating System/3

-UPDATE LEVEL PAGE

11-4

UP-NUMBER

If a system is generated with the block numbering capability, the output writer will always •
create output tapes with block numbers. When the output tape is reintroduced as input,
the input commands will be issued with the assumption that there is a block number. This
means that tapes created with block numbers by the output writer cannot be reintroduced
into a system without block numbering. Also, tapes created by the output writer on a
system that does not have the block numbering capability, cannot be reintroduced into a
system that does have block numbering. If an operator attempts to print or punch from a
spool tape that is not compatible with the system, the output writer will be terminated and
an INPUT SPOOL TAPE INVALID message will be displayed.

11.1.1.5. Special Functions

There are a number of special functions, such as open, close, find, delete, that can be used
by symbionts accessing the spoolfile but are not available for use by user programs.
However, the breakpoint function is available to user programs and to the operator. A
breakpoint is the closing and reopening of a spool subfile to permit output to the physical
device to start before the job step terminates. For example, if a spool subfile is getting full, a
message to the operator notifies him of this so that he can create a breakpoint to the output
file. The user program can also create a breakpoint by using the BRKPT macro instruction
(described in 11 .1 .3).

11.1.2. To Use Spooling

At system generation, you can select:

• no spooling;

• output spooling only;

• input/output spooling; or

.... . input/output and remote batch spooling .

Also, you can specify first-in/first-out processing in the nonburst mode, or accept the
burst mode, which is the default condition. This can be changed later or qualified by the
operator.

Statements input to job control enable it to set up the files, buffers, linkages, and control
tables by which the spooling functions are performed. If the system does not have the
spooling function, these job control statements are ignored.

Job control options for spooling are entered using the JOB, SPL, DATA, and DST job control
statements. These are described in the job control user guide, UP-8065 (current version).
Initialization options are also entered by the system operator. These are described in the
appropriate operations handbook for your system.

•

There are no changes required to a user program to use spooling. You can define your files •
using either data management macro instructions, or physical IOCS macro instructions. A
job that runs on a nonspooling system will also run on a spooling system, and vice versa. If
you use the BRKPT macro instruction in your program, it will be ignored if your job is run on
a nonspooling system.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 11-5

UPDATE LEVEL PAGE

• 11.1.3. Create a Breakpoint in a Spool Output File (BRKPT)

Function:

•

•

The BRKPT macro instruction creates a breakpoint in a printer or punch spoolfile. It
closes and reopens the subfile as it is being generated by the spooler. Each segment
created at this breakpoint is considered a logical subfile so that output to the physical
device can be started prior to job step termination.

If this macro instruction is included in a program executing in a system that does not
have the spooling capability, the macro instruction is ignored.

Format:

LABEL l::.OPERATIONl::. OPERAND

[symbol] BRKPT {
filename }
CCB-name

Positional Parameter 1:

filename
Specifies the symbolic address of the DTF macro instruction in the program
which defines the file in which a breakpoint is to be created. Use this parameter
if you are using data management macro instructions to define and access the
file.

CCB-name
Specifies the symbolic address of the command control block (CCB) associated
with the file in which the breakpoint is to be created. Use this parameter if you are
using physical IOCS macro instructions to define and access the file.

11.2. JOB ACCOUNTING

11.2.1. General

The job accounting package consists of resident routines which are linked with the
supervisor and elements of the job step processor at system generation time. These routines
provide a count of the facilities utilized by each job step during its execution within the
system. The message logging facility of the spooling function transfers this data from main
storage to disk as part of the output spoolfile. The output writer prints the job step and job
values as part of the normal message log output for each job. Optionally, the output writer
can write the accounting information to a standard SAM magnetic tape file for offline
processing by user-developed accounting routines or by OS/3 data utility routines. You
can assign an account number using the JOB job control statement which is carried along
with the accounting records. This enables you to accumulate statistics from the SAM file
for computer time and resources charged against an account number, which could
represent a project, department, cost center, etc. The job accounting function requires the
use of the spooling package and the optional timer facilities. These must be included at
system generation time. Also, the job accounting versions of SVC decode and the switcher
must be included within the supervisor at link edit time.

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

11.2.2. Accounting Data

11-6

UPDATE LEVEL PAGE

Accounting data is accumulated in a job accounting table (Figure 11-2) in the job prologue.
Fields in this table serve as counters for job step and job statistics.

Byte

0

4

8

12

16

20

24

28

32

36

40

44

48

52

0 l 1 l 2 l 3

count of SVCs in job step

count of SVCs in job

count of transient calls in job step

count of transient calls in job

CPU time used by job step

CPU time used by job

length of largest job step (in bytes)

time of day that job step started

time of day that job started

accumulated time of day of all job steps

count of EXCPs in job

count of I/Os not fitting in device count table

switch priority not used 1 termination code of job step

PUB acctg ID count of EXCPs to that PUB

v r0

f
(device count table - one entry for each device) r

1-------.---------1

PUB acctg ID count of EXCPs to that PUB _

Figure 11-2. Job Accounting Table Format

11.2.2.1. Job Step Level Data

•

•

Counters in the job accounting table are dynamically incremented during job step execution. •
The following data is collected for each job step:

•

•

8075 Rev. 2

UP-NUMBER

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

11-7

Central processor time

This consists of the total time in milliseconds charged to tasks of this job. or
supervisor tasks working for this job. This means that all supervisor overhead, such
as processing SVCs and the processing of supervisor tasks is charged to the
requesting job. Supervisor idle (wait) time is not charged to any job.

• Total SVCs executed

This consists of the total number of SVCs executed by the job's tasks or by supervisor
tasks working in behalf of the job.

• Total transient functions

This consists of the total number of transient functions executed by the job's tasks or
by supervisor tasks working in behalf of the job. This does not include overlays to
transients.

• Total 110 requests

This consists of the total number of 1/0 requests executed for each device by the job's
tasks or by supervisor tasks working in behalf of the job. 1/0 requests per device
include spooling activity in terms of the number of cards read from the spool file and
print lines written to the spool file by this job step .

In addition to the counts dynamically maintained in the job accounting table, the job step
processor furnishes the following values for job step accounting:

• Total wall clock time required for the job step to execute. This does not include time
during which the job step was rolled out, nor does it include the period between the
time a checkpoint was taken and the job step was restarted from the last checkpoint.

• Total main storage into which programs were loaded by the loader.

This value represents only that amount of main storage used by the job step as
recorded by the loader, and does not include the prologue or those available areas
within the job region which are used but not for loading.

• Initial switch priority of the job step.

• Termination code of the job step. Normal termination code is 000.

11.2.2.2. Job Level Data

Some of the data collected for the job steps of a particular job is totalled for the job's
accounting record. In addition, data is collected on the job level which cannot be acquired by
just summing the job step values. That data which is collected solely for the job is recorded

• at job termination time and consists of the following:

• Size of the largest job step.

t

8075 Rev. 2 11-8
SPERRY UNIVAC Operating System/3

UP-NUMB EA UPDATE LEVEL PAGE

• Job date

This is the date from the job preamble representing the date the job was run.

• Total job main storage including prologue.

• Total wall clock time for the job, including all of the job step processor overhead.

Wall clock time is defined as the point in time when a job is initiated to execute up to
the point in time when the job termination message is displayed, and does not include
spool time.

• Total wall clock time for all job steps.

This is a sum of the total wall clock time for each job step and does not include job
control time.

• Total CPU time for all job steps.

This is a sum of the CPU time for each job step and does not include job control time.

• Total SVC count for all job steps.

This is a sum of the SVC counts for each job step and does not include job control
counts.

• Total transients called for all job steps.

This is a sum of the transients called by the job steps and does not include job control
counts.

• Total 1/0 count for all job steps.

This is a sum of the I/Os executed by the job steps and does not include job control
counts.

11.2.3. Data Printout

When printing the job's log, the output writer also prints the accounting records for that job.
Also, the output writer can write all the job log records to a magnetic tape for offline
processing, or only the log records, or the accounting records. This gives you the ability to
create a system log file and a system accounting file for subsequent statistical processing
and evaluation. Figure 11-3 shows the format of the job accounting record printout.

•

•

•

• • •
sr=e~v+~D}El,Yv~S HIGH SPEED PRINTER FORMAT SHEET

t
Job Header

Step Header

Device Counts

Job Totals

t

JOB

SPECIAL

TAPE DATE
PROGRAMMER: PROGRAMMED: ______ _

FORM APPROX.NO.
__ FORM NO: PARTS: OF FORMS _____ ~

-NM•~w~wmlo-NM~~1~~~1~0-NM•~w~romo-NM ~w~oomo-NIM•~wi~oomo-NM•~w~oomo-NM•~W~oomo-NM•~w~oomo-NM•~w~oomg~~~~~~~~ii:J~:·~~~~~~~~~~~~~~1~~ -NM•~W~mm --------~NNNNNNNNNMMMMMMMMMM•••• •••••~~~J~~~~~~~wwwwwwwwww~~~~~~~~~~oooooooooooooooooooommmmmmmmmm----1-~--~- -------------- -~~

Wjq1 j;lfqe µ)$-~ ~ Jtic, tr.)tf'i. l#lxl ASS~~~~ '1EBm-l~P<><~~ ~$1 (A /J~ ~ITE f~Ll~Gjuepj w~:.rtFPf JAl hlbJ: · Q

A~11 jgj'dEIP I# l1: US')Ef~ ~'tjyj$1 E ~PSE J't.111Li~ ir.j~~r~~ [riijMl:=hlhJ:"1i.l:~s ·i><Jx !Tu:iiiiAJl: S~f-1 ~~ULr J. ~ : ·Isis
AC12]TERM CODE"!.

1
XX Si'i111TCH-P~~1oiR1TY•XX r.l1u1 If. !111.:l~h-, j ;Jhit*,.,:lsJs·M><i><- .filAil.JL:: ~ JI!· '

+I I I I I T I I
!AcH t drlE ~rl~'~ l..11 - , W~c1.- '·~lt~ixJ ~" 4:ui _ ~= 1

I 1 ' I)4j • • 1
t~ m rj j,. I ~ ii 11 I I I •'Ill I IL ' l'\gi JJl$ 1111'r~' µ~~1~ ~*~1 ,1t ~JEL~~~ 1-f~ ijn.-i~~!~ E~~hl:~.,_,~r1 .pc1~ l!Jtj~A~ ~~1r1~ ~~itl~~~ b<J ~ : :l~c:JI
c2.~ I ~il.41tr,; iu111;-:~ ir-i~·tAILL 1~ i>lili ,1~1e~r±:~~:~ -~ :~C.p•-.fil :: .111 :J~

Rf
T ' I T Tl: 11 . I I ! I I" I i ! · j t 1 I l 1 t ! t ~ r t f j : , •

mt, . I! f! I:. ii.' . I ', i. :I i,!1·,·.! 1:.1:·.··.1! I
i tt+-1 .. I ; ' ' . I . I I i I I I ! I I ' I I 1 1 j · I : I I

•

,,,,]I 1 j1 11 111· 11 ·• 1 1111
l-+-+-l-1-J..1.-.l-t·. - +1 . - f. . + 1 i · 1 · t.' ; 1 ·1 t H .J+t 1 :i. ~i· · - rtt++++++++-+++-1 •· ·+ f· +I I " ii ' I ' I ! I 't j I I j I . t

t
;

1
l ' i I . I ' II ' • '

. I ' I . I 1 ' ' ' I I I ' 1 I : : I j ' . . . -~-l-+++-J-1-.l-t -.f+.. ! ·I" I : : i 1; 'i' ,! It i [1:!11.: ' .. ' .Jt_n~ l l J.il' 1 i:·: I i jt f:: lr1.Liliili-:lH 11'.li1:1 aJUU11111111
i I I I I I l I I

Figure 11-3. Job Accounting Record Printout Format

c 00
"II 0
' -.J z U1
c :a
s: '°
CJ ~
m l\J
Jl

sg
m
:0
:0
-<
c z
<
~
0

l :;·
ca

!f
i
3 -w

c
"II
0
)>
-I
m
r
m
< m
r -
"II
)>
Cl -m -I

IC

•

•

•

•

•

•

8075 Rev. 2

UP-NUMBER

Term

Abnormal termination
description
dumps

Abnormal termination island code
attaching
description
example using symbolic

addresses
exiting
multitasking

Absolute address (ABS)

Accounting

Action messages

Actions, monitor statements
description
display (D)
halt (H)
quit (Q)
summary

Activate waiting table (POST)

Address adjustment module

ALLOC macro instruction
disk
diskette

Allocate routine, disk

ALTER statement

ARGLST macro instruction

Assembler coding form
comments field
continuation column

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Index 1

Index

Reference Page Term Reference Page

A description 3.3 3-5
Fig. 3-1 3-6

label field 3.3.1 3_:_6

8.3.2 8-13 operand field 3.3.3 3-7

9.1.3 9-10 operation field 3.3.2 3-7
sequence field 3.3.6 3-8

ATTACH macro instruction 8.6.1.1 8-35
8.6.6 8-13 function 7.3.2 7-9

multitasking 7.3 7-5

Fig. 8-6 8-44 task creation 7.2.2 7-3

8.6.4.2 8-40
8.6.9.2 8-51 Automatic volume recognition

description 2.2.10 2-8

9.3.4.1.3 9-34 interrupt module function 2.2.6 2-4

See job AWAKE macro instruction
function 7.3.5 7-12 accounting.
multitasking 7.3 7-6

10.3.l 10-18 queue driven task 7.2.5 7-4

B
9.3.5 9-38
9.3.5.1 9-38 Base displacement address (B/D) 9.3.4.1.2 9-34
9.3.5.2 9-43
9.3.5.3 9-44 BCW
Table 9-2 9-45 function 4.2.1 4-2

4.2.3 4-5
7.4.4 7-17 format for integrated disk adapter Fig. 4-2 4-7

format for integrated peripheral channel Fig. 4-3 4-10
2.2.2.4 2-4 format for multiplexer channel Fig. 4-4 4-13

Block addressing
5.3.l 5-5 by key. 8.2.2 8-3
5.5.1 5.14 by relative block number 8.2.3 8-4

5.2.1 5-2 Block level device handler 6.1 6-1

9.3. l.2 9-25 Block loader 8.2.1 8-2

8.5.5 8-30 Block modules 8.2 8-2

Block number processing, TSAT
3.3.4 3-7 description 6.10 6-56
3.3.5 3-7 facilities required 6.10.1 6-57

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Index 2

UP-NUMBER

Term Reference Page Term Reference Page • Block number processing, TSAT (cont) Canned message file
initialized 6.10.2.1 6-58 buffer formats Fig. 10-.-1 10-4
noninitialized 6.10.2.2 6-58 description 10.1.1 10-3

inserting variable characters 10.1.1.2 10-3
Block numbered tape files Fig. 10-2 10-5

block number field 4.4.1 4-33 messages 10.1.1.1 10-3
Fig. 4-9 4-34

description 4.4 4-33 CAW Fig. 4-6 4-17
in put/ output buffer 4.4.3 4-35
physical IOCS requirements 4.4.5 4-36 CCB
processing 4.4.4 4-35 format Fig. 4-7 4-22
tape restrictions 4.4.2 4-33 function 4.2.1 4-2

4.2.5 4-18
Block numbers, relative See relative

block numbers. ccw
format for selector channel Fig. 4-5 4-16

Block transfer, wait 6.4.4 6-22 function 4.2.1 4-2
6.9.4 6-54 4.2.4 4-15

Blocks Channel address word (CAW) Fig. 4-6 4-17
accessing multiple 6.2.6 6-8
accessing physical 6.4.6 6-24 Channel command word (CCW) See CCW.
logical See logical blocks.
output logical 6.4.3 6-21 Channel interrupt processor modules 2.2.2.8 2-5
retrieve next logica I 6.4.2 6-20
wait for transfer 6.4.4 6-22 Channel program, execute 4.2.8 4-28

Branch, FETCH macro Channel program processor module 2.2.2.1 2-2 • instruction 8.2.9 8-11
Channel schedular modules 2.2.2.5 2-4

Breakpoint function 11.1.1.5 11-4
11.1.3 11-4 Channels

integrated peripheral See integrated
BRKPT macro instruction 11.1.3 11-4 peripheral channel.

multiplexer See multiplexer
Buffer control word (BCW) See BCW. channel.

selector See selector
Buffer format, earned message 10.1.1.2 10-3 channel.

Fig. 10-1 10-4
CHAP macro instruction

Buffering data files, spooling 11.1.1 11-1 function 7.3.6 7-13
multitasking 7.3 7-6

Buffers, 1/0 4.4.3 4-35
Characters, canned messages 10.1.1.2 10-3

Fig. 10-1 10-4
c Fig. 10-2 10-5

CALL macro instruction Checkpoint and restart capability
function 8.5.4 8-28 description 9.2 9-10
program linkage 8.5 8-25 error codes Table 9-1 9-13

generating checkpoint records 9.2.1 9-12
CANCEL macro instruction processing PIOCS files 9.2.4 9-18

abnormal termination 8.3.2 8-13 using magnetic tape as a
function 8.3 8-12 checkpoint file 9.2.2 9-14

8.3.5 8-14 using SAT disk as a checkpoint
9-15. monitor 9.3.6 9-45 file 9.2.3

Cancel processing 8.6.6 E-43 Checkpoint dump 6.8.1 6-45

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Index 3

UP-NUMBER

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Index 4

UP-NUMBER

Term Reference Page Term Reference Page • Disk adapter, integrated See integrated DTF Fig. 6-5 6-9
disk adapter.

DTFMT macro instruction 9.2.1 9-12
Disk devices, record formats Fig. 6-2 6-3

DTFPF macro instruction 6.3.1 6-11
Disk 1/0 dispatching by head 2.2.15 2-10

DUMP macro instruction
Disk SAT files description 8.3 8-12

access a physical block normal termination 8.3.1 8-13
(SEEK) 6.4.6 6-24 9.1.2 9-5

close (CLOSE) 6.4.7 6-24
controlling processing 6.4 6-19 Dumps
defining new 6.3.1 6-10 abnormal termination 2.2.9.3 2-8
defining partition 6.3.2 6-14 9.1.3 9-10
interface 6.3 6-10 normal termination 9.1.2 9-5
opening (OPEN) 6.4.l 6-18 program or operator request 2.2.9.3 2-8
organization and addressing 6.2 6-1 system failure 2.2.9.3 2-8
output a logical block (PUT) 6.4.3 6-21
processing 6.3.3 6-17 DVC job control statement 9.3.1 9-23
processing partitioned 6.3.3 6-17
read by key equal or higher Dynamic allocation 6.2.4 6-5

(READE/READH) 6.4.5 6-23
retrieve next logical block

(GET) 6.4.2 6-20 E
using as checkpoint file 9.2.3 9-15
wait for block transfer ECB macro instruction

(WAITF) 6.4.4 6-22 format Fig. 7-1 7-8 • function 7.3.1 7-6
Disk seek separation 2.2.14 2-10 general 7.2.1 7-3

multitasking 7.3 7-5
Disk space control 6.2.4 6-4

Embedded data
Disk space management description 8.8.1 8-56

allocate routine 5.2.1 5-2 .reading 8.8.2 8-56
description 5.1 5-1 rereading 8.8.4 8-59
error codes 5.6 5-18
extend routine 5.2.2 5-3 End-of-data (/*) job control statement
macro instructions 5.3 5-5 control stream embedded data 8.8.3 8-57
obtain routine 5.2.5 5-4 monitor input 9.3.1.l 9-23
rename routine 5.2.4 5-4 9.3.1.2 9-25
scratch routine 5.2.3 5-3

End-of-file (EOF)
Diskette space management description 6.6.3 6-33

description 5.4 5-14 field description Table 6-4 6-35
error codes 5.6 5-18 Table 6-5 6-37
macro instructions 5.5 5-14 label format Fig. 6-9 6-34

Displacement address 9.3.4.1.2 9-34
Fig. 6-10 6-36

Display actions
End-of-job step 8.3.4 8-13

default 9.3.5.1.3 9-42 End-of-volume (EOV)
description 9.3.5.1 9-38 description 6.6.3 6-33
register 9.3.5.1.1 9-39 field description Table 6-4 6-35
storage 9.3.5.1.2 9-40 Table 6-5 6-37

label formats Fig. 6-9 6-34 • Displaying messages See message Fig. 6-10 6-36
display. Fig. 6-13 6-41

Displays, storage See storage Entry point address 8.6.8 8-46
displays.

8075 Rev. 2
SPERRY UNIVAC Operating System/3

UPDATE LEVEL PAGE

Index 5

UP-NUMB EA

• Term Reference Page Term Reference Page

EOFl and EOF2 labels See file F
trailer labels.

FCB
EOJ macro instruction format Fig. 4-8 4-25

function 8.3.4 8-13 general 4.2.1 4-2
general 8.3 8-12 location 4.2.7 4-26
normal termination 8.3.l 8-13

Features 1.2 1-2
EOVl and EOV2 labels See file

trailer labels. FETCH macro instruction 8.2.9 8-11

Error acceptance options 4.2.5 4-18 File control block (FCB) See FCB.

Error codes File header labels
checkpoint/ restart Table 9-1 9-13 first (HDRl) 6.6.2.1 6-29
disk space management 5.6 5-13 Fig. 6-7 6-30
program loader 8.2.5 8-5 Fig. 6-18 6-60

second (HDR2) 6.6.2.2 6-31
Error control, program and machine 2.2.7 2-7 Fig. 6-8 6-32

Error control module 2.2.2.9 2-5
Fig. 6-19 6-61

Error editing root overlay 2.2.2.10 2-5
File organization

disk SAT 6.2 6-1
tape SAT 6.7 6-37

Error logging 2.2.15 2-11

• File termination operations 6.4.7 6-24
Error message interface, standard

system 2.2.9.4 2-8 File trailer labels
description 6.6.3 6-33

Error reply overlay 2.2.2.12 2-5 EOFl and EOVl field descriptions Table 6-4 6-35
EOFl and EOVl formats Fig. 6-9 6-34

Error status field 6.4.4 6-22 Fig. 6-20 6-62
EOF2 and EOV2 field descriptions Table 6-5 6-37

Event control block EOF2 and EOV2 formats Fig. 6-10 6-36
format Fig. 7-1 7-8 Fig. 6-21 6-63
generating 7.3.1 7-6
program check 8.6.5 8-40 Filelocks 6.3.1.1 6-12

Exception branching 4.3.1 4-31 Files
assign space 5.3.1 5-5

EXCP 2.2.2.1 2-2 5.3.2 5-7
checkpoint See checkpoint

EXCP macro instruction 4.2.1 4-3 files.
4.2.8 4-28 defining new 6.3.1 6-10

disk SAT See disk SAT files.
EXCP processor 2.2.2.1 2-2 processing PIOCS 9.2.4 9-18

renaming 5.3.4 5-10
EXEC job control statement 9.3.1.1 9-23 scratching 5.2.3 5-3

5.3.3 5-9
Execute channel program (EXCP) processor 2.2.2.1 2-2 spooling 11.1.1 11-1

4.2.8 4-28 tape See tape
files.

EXIT macro instruction tape SAT See tape
function 8.6.4.1 8-39 SAT files. • general 8.6 8-34 First file header label See HDRl

label.
EXTEND macro instruction 5.3.2 5-7

Format illustrations 3.2 3-1
Extend routine 5.2.2 5-3

8075 Rev. 2

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Index 6

UP-NUMBER

•

•

•

8075 Rev. 2

UP-NUMBER

Term

Interval timing island code (cont)
example
exiting from

1/0 completion, wait

1/0 scheduler

1/0 status tables (IOST)

1/0 usage requirements

1/0 wait, multiple

IOST
description
interrupt module

Island code linkage
abnormal termination

attaching to a task

description
detaching from a task
entrance
exit

interval timer

multitasking
operator communication

program check

user-supplied

Job
cancel
definition
end-of-job step

Job accounting
data
data printout
description
job level data
job step level data
record printout format
table format

SPERRY UNIVAC Operating System/3
Index 7

UPDATE LEVEL PAGE

Reference Page Term Reference Page

Job control device assignments 4.2.6 4-24

Fig. 8-7 8-45
8.6.4.1 8-39 Job control statement 9.3.1.2 9-26

4.3.1 4-31 Job level data 11.2.2.2 11-7

4.2.8 4-28 Job preamble 8.6.9.2 8-51

See IOST. Job prologue 8.7 8-51

4.2.2 4-4 Job step level data 11.2.2.1 11-6

4.3.2 4-32
K

2.2.2.7 2-4 Keys
2.2.2.6 2-4 block addressing 6.2.2 6-3

processing blocks 6.3.3.1 6-18
READE/READH macro instructions 6.4.5 6-23

8.6.6 8-43
Fig. 8-6 8-44
8.6.1 8-35 L
8.6.1.1 8-35
8.6.1.2 8-36 Label field, coding form 3.3.1 3-6
8.6 8-34
8.6.2 8-38 Labels, tape See tape labels .
8.6.3 8-39
8.6.4 8-39 Lace factor
8.6.4.1 8-39 calculation 6.2.5.2 6-8
8.6.4.2 8-40 description 6.2.5 6-5
8.6.7 8-45
Fig. 8-7 8-45 LBL job control statement 6.6.1 6-27
8.6.9 8-49
8.6.8 8-46 LFD job control statement 6.6.1 6-27
Fig. 8-8 8-47
Fig. 8-9 8-48 Library search order 8.2.3 8-4
8.6.5 8-40
Fig. 8-4 8-41 Linkage
Fig. 8-5 8-42 island code See island
2.2.7 2-7 code linkage.

program See program linkage.

J Linkage procedure 8.5.2 8-26

8.3.5 8-14
Linkage register conventions 8.5.1 8-25

1.1 1-1
LOAD macro instruction 8.2.6 8-5

8.3.4 8-13

Loader, program See program

11.2.2 11-6
loader.

11.2.3 11-8 Loader error processing 8.2.5 8-5
11.2.1 11-5
11.2.2.2 11-7

LOADI macro instruction 8.2.8 8-9
11.2.2.1 11-6
Fig. 11-3 11-9

LOADR macro instruction 8.2.7 8-7
Fig. 11-2 11-6

Lockable file 6.9.1 6-51

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 Index 8

UPDATE LEVEL PAGE

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

Index 9

UPDATE LEVEL PAGE

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 Index 10

UPDATE LEVEL PAGE

Term Reference Page Term Reference Page • Output, logical block Preemptive scheduling priority 2.2.12 2-9
(PUT) 6.4.3 6-21

6.9.3 6-53 Prefix, scratch 5.2.3.2 5-4

Output writers 2.2.8 2-7 Primary task 7.1.1.1 7-2
11.1.1.4 11-3

Printout
job accounting record 11.2.3 11-8 p Fig. 11-3 11-9
program termination 8.3.3 8-13

PARAM job control statement 8.8.3 8-57
9.3.1.1 9-23 Priority, task 7.2.3 7-4

7.3.6 7-13
Partition control appendage (PCA) 6.2.1 6-1

Fig. 6-1 6-2 Program and machine error
control 2.2.7 2-7

Partitioned SAT files, processing 6.3.3 6-17
Program check island code

Partitions 6.3.2 6-14 attaching 8.6.1.1 8-35
common, all tasks in a job

PAUSE console command 9.3.1.2 9-26 step Fig. 8-11 8-50
description 8.6.5 8-40

PCA Fig. 6-1 6-2 discrete, each task in a job
step Fig. 8-10 8-49

PCA macro instruction examples Fig. 8-4 8-41
description 6.2 6-1 Fig. 8-5 8-42
function 6.3.2 6-14 exiting from 8.6.4.1 8-39.

Fig. 6-1 6-2 multitasking 8.6.9.1 8-49

Phase header format 8.2.8.1 8-10 Program initiation and loading 8.1.1 8-1

Physical block, accessing 6.4.6 6-24 Program linkage
call a program 8.5.4 8-28

Physical input/ output control 4.2.1 4-2 description 8.5 8-25
procedure 8.5.2 8-26

Physical unit block (PUB) 2.2.2.2 2-3 register conventions 8.5.1 8-25
register save area 8.5.3 8-27

PIOCB Fig. 4-8 4-25 Fig. 8-3 8-27
Table 8-1 8-28

PIOCB macro instruction 4.2.1 4-2 restore registers and return 8.5.7 8-32
4.2.6 4-24 save register contents 8.5.6 8-30

PIOCS Program loader
block numbered tape files 4.4 4-33 block loader 8.2.1 8-2
description 2.2.2 2-2 description 8.2 8-2
file processing 9.2.4 9-18 error processing 8.2.5 8-5
input/ output synchronization 4.3 4-30 library search order 8.2.3 8-4
1/0 usage 4.2.2 4-4 load a program phase (LOAD) 8.2.6 8-5
macro instructions, relationship Fig. 4-1 4-3 locate a program phase header
modular functions 2.2.2 2-2 (LOAD!) 8.2.8 8-9
physical 1/0 control 4.2.l 4-3 load a program phase and relocate
requirements and options 4.4.5 4-36 (LOADR) 8.2.7 8-7

read pointer, repetitive loads 8.2.4 8-4
PIOCS files, processing relocation 8.2.2 8-3

(DCFLT) 9.2.4 9-18 • Program management
POST macro instruction 7.4.4 7-17 control stream reader 8.8 8-55

description 8.1 8-1

8075 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

Index 11

UPDATE LEVEL PAGE

8075 Rev. 2
SPERRY UNIVAC Operating System/3 Index 12

UP-NUMBER UPDATE LEVEL PAGE

Term Reference Page Term Reference Page

s SETCS macro instruction 8.8.5 8-59 •
SAT SETIME macro instruction

block number processing 6.10 6-56 continue processing until
controlling disk file processing 6.4 6-19 interrupt 8.4.2.2 8-22
controlling tape file processing 6.9 6-51 example Fig. 8-2 8-23
description 6.1 6-1 function 8.4.2.l 8-21
disk file interface 6.3 6-10 interval timer 8.6.7 8-45
disk file organization and timer services 8.4 8-15

addressing methods 6.2 6-1
system standard tape labels 6.6 6-26 Shared filelock capability 6.3.1.2 6-13
tape file interface 6.8 6-45
tape files 6.5 6-25 SIB 8.4.1.1 8-16
tape volume and file organization 6.7 6-37
See also disk SAT files SNAP macro instruction 9.1.1 9-1

and tape SAT files.
SNAPF macro instruction 9.1.1 9-1

SAT macro instruction 6.8.l 6-45
Snapshot display 2.2.9.2 2-8

Save area, register 8.5.3 8-27
Fig. 8-3 8-27 Snapshot dumps 9.1.1 9-1
Table 8-1 8-28

Space assignment
Save area address 8.6.8 8-46 existing file 5.3.2 5-7

new file 5.3.l 5-5
SAVE macro instruction

function 8.5.6 8-30 Space control, disk 6.2.4 6-4
program linkage 8.5 8-25 • Spooler 11.1.1.3 11-2

Scratch routine, disk
description 5.2.3 5-3 Spooling
scratch all by date 5.2.3.3 5-4 breakpoint in output file 11.1.3 11-4
scratch by prefix 5.2.3.2 5-4 description 2.2.8 2-7
scratch file 5.2.3.l 5-4 initialization 11.1.1.1 11-1

input reader 11.1.1.2 11-2
Scratching files 5.2.3.l 5-4 output writer 11.1.1.4 11-3

5.3.3 5-9 relationship of devices and programs Fig. 11-1 11-2
special functions 11.1.1.5 11-4

SCRTCH macro instruction spooler 11.1.1.3 11-2
disk 5.3.3 5-9 use 11.1.2 11-4
diskette 5.5.2 5-16

Standard load modules 8.2 8-2

Search order, library 8.2.3 8-4 Standard system error message interface 2.2.9.4 2-8

Second file header label See HDR2 label. Standard tape labels

SEEK macro instruction 6.2.l 6-2
system 6.6 6-26

6.4.6 6-24
tape volume organization 6.7.1 6-38

Seek separation, disk 2.2.14 2-10
Standard tape volume organization

description 6.7.1 6-38

Selective dynamic dump 9.1.l 9-1
multifile volume with

end-of-file Fig. 6-12 6-40

Selector channel, BCW
multifile volumes with

end-of-volume Fig. 6-13 6-41 format Fig. 4-5 4-16 volumes containing a single file Fig. 6-11 6-39 • Sequence field 3.3.6 3-8 Start-of-data (/$) job control statement

Service request macro instructions
control stream embedded data 8.8.3 8-57
monitor input 9.3.1.l 9-23 (imperative) 4.2.l 4-3

9.3.1.2 9-25

8075 Rev. 2

UP-NUMB EA
SPERRY UNIVAC Operating System/3

Index 13

UPDATE LEVEL PAGE

• Term Reference Page Term Reference Page

Statement conventions 3.2 3-1 System information block (SIB) 8.4.1.l 8-16

Storage display action 9.3.5.1.2 9-40 System information control
description 8.7 8-51

Storage displays get data from communication region 8.7.1 8-52

abnormal termination 9.1.3 9-10 get data from system control tables 8.7.3 8-53

checkpoint and restart 9.2 9-10 put data into communication region 8.7.2 8-53

description 9.1 9-1
monitor and trace 9.3 9-22 System library file 6.3.1 6-14

normal termination dumps 9.1.2 9-5
snapshot dumps 9.1.l 9-1 System log 10.1.2 10-6

Storage reference option (S) 9.3.4.1 9-32 System standard tape labels See tape labels,
system standard.

STXIT macro instruction 8.6 8-34
8.6.l 8-35

T
Subtask 7.1.1.2 7-2

Table generation macro instruction
Supervisor (declarative) 4.2.1 4-2

description 1.1 1-1
diagnostic and debugging aids Section 9 Tape block number 4.4.1 4-33
disk space management Section 5 Fig. 4-9 4-34
interrupt handling 2.1 2-1
job accounting 11.2 11-5 Tape control appendage (TCA) See TCA macro

macro instructions Section 3 instruction.

• main storage requirements 1.2.2 1-2
message display and logging 10.1 10-1 Tape data management system 6.5 6-25

10.2 10-6
modular functions See modular Tape files, block numbered 4.4 4-33

functions.
multijobbing and multitasking 1.2.3 1-3 Tape labels, system standard

Section 7 description 6.6 6-26

operator communication 10.3 10-17 file header 6.6.2 6-29

operator intervention 1.2.4 1-3 file trailer 6.6.3 6-33

program management Section 8 nonstandard 6.7.2 6-42

PIOCS Section 4 standard tape volumes 6.7.1 6-38

spooling 11.l 11-1 unlabeled 6.7.3 6-44

system access technique Section 6 volume 6.6.1 6-27

SWAP macro instruction 4.2.1 4-1 Tape restrictions 4.4.2 4-33

4.2.9 4-29
Tape SAT files

Symbolic addresses block number processing 6.10 6-56

abnormal termination island close 6.9.6 6-55

code Fig. 8-6 8-44 control tape unit functions 6.9.5 6-54

interval timer island code Fig. 8-7 8-45 defining 6.8.1 6-45

operator communication island description 6.5 6-25

code Fig. 8-8 8-47 get next logical block 6.9.2 6-52

program check island code Fig. 8-4 8-41 interface 6.8 6-45
open 6.9.1 6-51

System access technique See SAT. output next logical block 6.9.3 6-53
processing 6.9 6-51

System control tables 8.7.3 8-53 system standard labels 6.6 6-26

• tape control appendage 6.8.2 6-47

System debugging aids volume and file organization 6.7 6-37

history tables 9.4.l 9-46 wait for block transfer 6.9.4 6-54

mini monitor 9.4.2 9-48
pseudo monitor 9.4.1 9-46 Tape system access technique See TSAT.

resident supervisor monitor 9.4.l 9-46
summary Table 9-3 9-52 Tape unit functions 6.9.5 6-54

8075 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 Index 14

UPDATE LEVEL PAGE

8075 Rev. 2

UP-NUMBER

• Term

VCALL macro instruction
function
program linkage

VOL job control statement

Volume labels, description

Volume recognition, automatic

Volume serial number (VSN)

Volume table of contents (VTOC)

Volumes
nonstandard tape

standard tape

VOLl label
description
field description
formats

• VTOC
description
disk space management
user block access

•

SPERRY UNIVAC Operating System/3

Reference Page Term

8.5.4 8-28
8.5 8-25 WAIT macro instruction

1/0 synchronization
6.6.1 6-27 task synchronization

6.6.1 6-27 WAIT parameter, SETIME
macro instruction

2.2.10 2-8

6.6.1 6-27 WAITF macro instruction
Fig. 6-6 6-28 disk processing

magnetic tape processing
See VTOC.

WAITM macro instruction
1/0 synchronization

See nonstandard task synchronization
tape volumes.
See standard WTL macro instruction
tape volumes.

6.6.1 6-27 WTLD macro instruction
Table 6-1 6-29
Fig. 6-6 6-28
Fig. 6-17 6-59

2.2.5 2-6
5.1 5-1
3.2.5 5-12

Index 15

UPDATE LEVEL PAGE

Reference Page

w

4.3.1 4-31
7.4.2 7-15

8.4.2.2 8-22
8.4.2.3 8-24

6.4.4 6-21
6.9.4 6-54

4.3.2 4-32
7.4.4 7-16

10.2.1 10-6
10.1 10-2
Table 10-1 10-2

10.2.2 10-9
10.1 10-2
Table 10-1 10-2

r ---~-~--------

•

•

•

•

I
=>
u

•

Comments concerning this manual may be made in the space provided below. Please fill in the requested information.

Manual Title:--

UP No:-------- Revision No:-------- Update:--------

Name of User:--~

Address of User: __ _

Comments:

FOLD

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

UNIVAC
P.O. BOX 500
BLUE BELL, PA.

19424
ATTN: SYSTEMS PUBLICATIONS DEPT.

I
---!
FOLD I

I
I
I
I
I
I
I

•

Comments concerning this manual may be made in the space provided below. Piease fill in the requested information.

UP No:-------
·Revision No: _______ _

Update:--------

Name of User: ___ __

Address of User=--~

Comments:

OLD

Bus IN ES s RE p Ly MA IL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

Si=E:~Y<(~LJNIVAC
P.O. BOX 500
BLUE BELL, PA.

19422
ATTN: SYSTEMS PUBLICATIONS DEPT.

·--::>LO

I
I
I
I
I
I ,
I \
1-9
I
I
I
I
I
I
I
I
I
I
I
I

•
---------------------------------·····--------------

