
•

•

•

Operating System/3 (OS/3)

Extended COBOL

Programmer Reference

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating

System/3 (OS/3) Extended COBOL Programmer Reference", UP-8059 Rev. 3.

This update includes changes to the job control procedure for release 7 .1:

• Specification of catalog files

• Expanded explanation of parameters

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8059 Rev. 3-A. To receive the complete manual, order UP-8059 Rev. 3 .

Mailing Lists
BZ, CZ, (less DE,
GZ, HA) MZ, 18U,
19U, 20U, 21 U,
75U and 76U

Mailing Lists DE, GZ, HA, 18, 19, 20,
21, 75 and 76

(Package A to UP-8059 Rev. 3,
23 pages plus Memo)

September, 1981

•

•

•

•

•

•

i Operating System/3 (OS/3)
t~N'"'~,"~' ~ ,~,~,,,,,w"~"''~"-~~,~-~c-C~"NN
i

Extended COBOL

Programmer Reference

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3)
Extended COBOL Programmer Reference", UP-8059 Rev. 3.

This revision includes the following additions and changes:

• Addition to Table 4-1 (Rules for Special Names)

• Change to BLKFAC formula

• Deletion in //6 EXEC operand

• Change to Table 11-5 Exceptions to COBOL verbs

• Addition of error messages

• Replace printout examples in Section E

• Addition of new pages and examples to Section E

• Addition to Reserved Word List

• Addition to DISPLAY rule

Other minor technical changes were also made.

Additional copies may be ordered by your local Sperry Univac representative .

Mailing Lists
BZ,CZ (less DE,GZ,HA)
MZ, 18U, 19U,20U,21 U,
75U and 76U

Mailing Lists DE, GZ, HA, 18, 19, 20, 21, 75 and 76
(Covers and 298 pages)

October, 1980

•

•

•

•

Extended COBOL

•

Environment: 90/25, 30, 308, 40 Systems

•
H UNIVAC UP-8059 Rev. 3

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please consult the appropriate release documentation or contact
your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer Information Distribution Center
(CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

"1974, 1975, 1976, 1977 - SPERRY CORPORATION PRINTED IN U.S.A.

•

•

•

•

•

•

UP-8059 Rev. 3

Part/Section
Page

Number

Cover/Disclaimer

PSS 1

Acknowledgmen~ 1

Preface 1 thru 3

Contents 1, 2
3
4 thru 9

PART 1
Title Page

1 1, 2

2 1 thru 10

PART2
Title Page

3 1, 2

4 1thru13

5 1thru14
15
16 thru 35

6 1 thru 3
4
5 thru 47
48
49 thru 61

PART3
Title Page

7 1 thru 7

8 1, 2

9 1 thru 5

10 1 thru 3

11 1 thru 4
5
6 thru 28

12 1 thru 5

13 1 thru 7

SPERRY UNIVAC OS/3
EXTENDED COBOL

PAGE STATUS SUMMARY

ISSUE: Update B - UP-8059 Rev. 3
RELEASE LEVEL: 7.1 Forward

Update
Level Part/Section

Page Update
Number Level

Orig. PART4
Title Page Orig.

B
14 1 thru 4 Orig.

Orig.
PARTS

Orig. Title Page Orig.

Orig. Appendix A 1, 2 Orig.
B
Orig. Appendix B 1, 2 Orig.

Appendix C 1, 2 Orig.
Orig.

Appendix D 1 thru 33 Orig.
Orig. 34 A

Orig. Appendix E 1 thru 15 Orig.

Appendix F 1 thru 13 Orig.
Orig.

Appendix G 1 Orig.
Orig. 2 thru 4 A

4a A
Orig. 5 thru 9 Orig.

10 A
Orig. 10a thru 10c A
A 11 thru 13 A
Orig. 14, 15 Orig.

Orig. Appendix H 1, 2 Orig.
B
Orig. Index 1 thru 4 Orig.
A 5 B
Orig. 6 thru 8 Orig.

User Comment
Orig. Sheet

Orig.

Orig.

Orig.

Orig.

Orig.
B
Orig.

Orig.

Orig.

Part/Section

PSS 1
Update B

Page
Number

Update
Level

All tne technical changes are denoted by an arrow r-1 in the margin. A downward pointing arrow (t l next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (• l is found. A horizontal arrow r-1 pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

, ..

•

•

•

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

Acknowledgment 1

Acknowledgment

This manual is based on American National Standard COBOL, X3.23-1974 developed by the American National
Standards Institute. In response to their request the following acknowledgment is reproduced in its entirety:

"Any organization interested in using the COBOL specifications as the basis for an instruction manual or for any
other purpose is free to do so. However, all such organizations are requested to reproduce this section as part of the
introduction to the document. Those using a short passage, as in a book review, are requested to mention 'COBOL'
in acknowledgment of the source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company or group of companies, or of any
organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the COBOL Committee as to the accuracy
and functioning of the programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

"Procedures have been established for the maintenance of COBOL. Inquiries concerning the procedures for
proposing changes should be directed to the Executive Committee of the Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC Programming for the UNIVAC I and II, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM Commercial Translator Form No. F28-8013, copyrighted 1959 by IBM;
FACT, OSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL specifications in programming manuals or similar
publications.

"This complete USA Standard edition of COBOL may not be reproduced without permission of the USA Standards
Institute."

•

•

•

•
UP-8059 Rev. 3 SPERRY UNIVAC OS/3

EXTENDED COBOL
Preface 1

Preface

This manual is one of a series designed to instruct and guide the programmer in the use of the SPERRY UNIVAC
Operating System/3 (OS/3). This manual specifically describes the OS/3 COBOL extended compiler and its effective
use. Its intended audience is not the novice, but the experienced programmer new to SPERRY UNIVAC operating
systems, and to OS/3 in particular.

Two other manuals also are available for instruction and guidance in the use of OS/3 COBOL: one is a fundamental
manual, and the other is the basic compiler manual. The fundamental COBOL manual, UP-7503.1 (current version)
is useful for reviewing the language in some depth; however, it does not present the COBOL implementation for
OS/3. The basic COBOL programmer reference manual, UP-8057 (current version) is intended for the novice
programmer; some of the enhancements included in the extended compiler, such as sorting, additional verbs, and
move options with various statements, are not discussed.

• This manual is divided into the following parts:

•

• PART 1. COBOL LANGUAGE STRUCTURE

Defines the rules, symbols, and minimum system configurations required to compile an OS/3 COBOL
program. Also describes the character set, types of words, qualification, and subscripting and indexing and
presents the layout of a coding form.

• PART 2. DIVISIONS IN COBOL

Discusses the four divisions of COBOL, which are as follows:

IDENTIFICATION - labels a program, providing entries of pertinent information regarding the author and
installation of the program, when it was written and compiled, any security that might be involved, and its
intended use.

ENVIRONMENT - immediately follows the identification division entries and is coded to reflect specific user
system configurations.

DATA - divided into three sections:

File Section - describes the records to be processed and the physical structure of files on which these
records reside.

Working-Storage Section - describes areas for intermediate or temporary storage of data that does not
belong to any file .

Linkage Section - describes data items that are passed by a calling program to a called program and are
referred to by both the calling and the called program.

PROCEDURE - specifies the instructions for the processor to use in solving the problem.

---..
UP-8059 Rev. 3 SPERRY UNIVAC OS/3

EXTENDED COBOL
Preface 2

• PART 3. COMPILER FEATURES AND CAPABILITIES

Describes options that can be used with the extended COBOL compiler, in addition to furnishing pertinent
information that may be helpful in preparing a problem program.

COMPILER OPTIONS AND LIBRARY TECHNIQUES - explains how to use specific COBOL options, such
as generating certain listings in conjunction with compiling a problem program. The library techniques
paragraphs describe SOURCE and COPY library input specifications.

RERUN CLAUSE - provides a method of restarting the execution of a COBOL program at a checkpoint
position, rather than at the beginning of the execution.

USE OF ACCEPT AND DISPLAY STATEMENTS - defines the statements to use in retrieving or displaying
low-volume data from or to system hardware.

TABLE HANDLING - examines the methods of table definition and referencing available in OS/3 COBOL.
For a complete discussion of table handling, see the fundamentals of COBOL-table handling manual,
UP-7503.2 (current version).

PROCESSING TECHNIQUES FOR DIRECT ACCESS DEVICES - Explains the various access methods
available on the OS/3 system and describes the COBOL statements needed to interface with them.

SORTING - explains the use of the OS/3 COBOL SORT feature, which offers an efficient means for sorting
records against a set of specified keys and for adding, deleting, or modifying records in the sort file.

ASCII PROCESSING - describes the option for using ASCII data and processing files encoded in ASCII
(American Standard Code for Information Interchange).

• PART 4. DEBUGGING AIDS

Illustrates the techniques of detecting, diagnosing, and correcting errors in the COBOL source program with
the aid of the compiler.

• PART 5. APPENDIXES

Presents the following appendixes:

A. CHARACTER SET - contains conversion tables for characters and the character collating sequence.

B. RESERVED WORDS - lists words that are part of the COBOL language structure but are not used as
user-defined words.

C. INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS - describes the internal work areas for
certain arithmetic statements.

D. COMPILER DIAGNOSTICS - lists the texts of the numbered diagnostic messages issued by the
compiler, their severity codes, the probable reason for the error or condition detected by the compiler,

the COBOL rules that apply, and the recovery actions taken by the compiler. Also listed are the system
console messages that require programmer action.

•

•

E. COMPILER LISTINGS - describes the listings received through the use of the PARAM statements in •
the job control stream.

F. CONVERSION MODE - describes a facility allowing users of IBM/360 DOS COBOL level-D to transfer
into OS/3 COBOL.

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

Preface 3

G. JOB CONTROL STREAM REQUIREMENTS - lists and describes the keyword parameters of the
procedure call statement used to generate job control statements needed for compilation. Examples of
call statements and generated control streams are included.

H. SHARED CODE INTERFACE - describes the interface necessary when under control of the Series 90
Information Management System (I MS/90).

Other OS/3 publications, referenced in this manual, will be necessary or useful to the programmer working with the
extended COBOL compiler:

• Supervisor user guide, UP-8075 (current version)

Provides information needed to access the communication region of the OS/3, through which one job step
may communicate with a following job step.

• Job control user guide, UP-8065 (current version)

Provides information on the format and usage of job control statements for accessing UPSI switches, allocating
devices, and passing parameters to the object program.

• Data management system user guide, UP-8068 (current version)

•

Provides SPERRY UNIVAC OS/3 standard file label specifications.

Sort/merge user guide/programmer reference manual, UP-8074 (current version)

Contains detailed information, including job control language, on the use of the OS/3 sort/merge facility,
which the extended COBOL compiler employs for all sort operations.

• Error messages programmer/operator reference manual, UP-8076 (current version)

Lists and describes the system console messages issued during compilation by the compiler, emphasizing error
conditions during execution, and relating to sort operations .

•

•

•

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

PAGE STATUS SUMMARY

ACKNOWLEDGMENT

PREFACE

CONTENTS

PART1.COBOLLANGUAGESTRUCTURE

1. INTRODUCTION

1.1. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

1.2. EXTENDED COBOL COMPILER

2. GENERAL SPECIFICATIONS

2.1. COBOL CHARACTER SET

2.1.1. Characters Used for Words
2.1.2. Characters Used for Punctuation
2.1.3. Characters Used in Relational Expressions
2.1.4. Characters Used in Arithmetic Expressions

2.1.5. Characters Used in Editing

2.2. TYPES OF WORDS

2.3. QUALIFICATION

2.4. SUBSCRIPTING AND INDEXING

2.5. CODING FORM

PART 2. DIVISIONS IN COBOL

3. IDENTIFICATION DIVISION

3.1. GENERAL

Contents 1

Contents

1-1

1-2

2-1
2-2
2-2
2-3
2-3
2-3

2-4

2-7

2-9

2-9

3-1

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

4. ENVIRONMENT DIVISION

4.1. GENERAL

4.2. CONFIGURATION SECTION
4.2.1. SOURCE-COMPUTER Paragraph
4.2.2. OBJECT-COMPUTER Paragraph
4.2.3. SPECIAL-NAMES Paragraph

4.3. INPUT -OUTPUT SECTION
4.3.1. FILE-CONTROL Paragraph
4.3.2. 1-0-CONTROL Paragraph

5. DATA DIVISION

5.1. GENERAL
5.1.1. Data Definition

5.2. FILE SECTION
5.2.1. File Description
5.2.1.1. BLOCK CONT Al NS Clause
5.2.1.2. RECORD CONTAINS Clause
5.2.1.3. LABEL RECORDS Clause
5.2.1.4. RECORDING MODE Clause
5.2.1.5. VALUE OF Clause
5.2.1.6. DATA RECORDS Clause
5.2.2. Sort File Description

5.3. DATA DESCRIPTION
5.3.1. Level Number and Unqualified-data-name/FILLER Clause
5.3.2. REDEFINES Clause
5.3.3. OCCURS Clause
5.3.4. PICTURE Clause
5.3.5. USAGE Clause
5.3.6. SYNCHRONIZED Clause
5.3.7. JUSTIFIED Clause
5.3.8. VALUE Clause
5.3.9. BLANK WHEN ZERO Clause
5.3.10. MAP Clause
5.3.11. RENAMES Clause
5.3.12. Condition-name Clause
5.3.13. SIGN Clause

5.4. WORKING-STORAGE SECTION
5.4.1. Independent Entries
5.4.2. Record Description Entry

5.5. LINKAGE SECTION

6. PROCEDURE DIVISION

6.1. GENERAL
6.1.1. USING Statement

6.2. DECLARATIVES SECTION

Contents 2

• 4-1

4-1
4-2
4-2
4-3

4-8
4-8
4-11

5-1
5-2

5-3
5-3
5-3
5-5
5-7
5-8
5-9 • 5-9
5-10

5-11
5-12
5-12
5-13
5-15
5-22
5-24
5-28
5-28
5-30
5-30
5-30
5-31
5-32

5-33
5-33
5-33

5-34

• 6-1
6-1

6-2

•

•

•

UP-8059 Rev. 3

6.3.

6.4.

6.5.
6.5.1.
6.5.2.
6.5.3.
6.5.4.

6.6.
6.6.1.
6.6.1.1.
6.6.1.2.
6.6.1.3.
6.6.1.4.
6.6.1.5.
6.6.2.
6.6.2.1.
6.6.2.2.
6.6.2.3.
6.6.2.4.
6.6.3.
6.6.3.1.
6.6.3.2.
6.6.3.3 .
6.6.3.4.
6.6.4.
6.6.4.1.
6.6.4.2.
6.6.4.3.
6.6.4.4.
6.6.4.5.
6.6.4.6.
6.6.4.7.
6.6.4.8.
6.6.4.9.

SECTION

PARAGRAPH

SPERRY UNIVAC OS/3
EXTENDED COBOL

STATEMENTS AND SENTENCES
Imperative Statements
Conditional Statements
Compiler-Directing Statements
Overlapping Operands

VERB TYPES
Arithmetic Verbs

ADD Statement
DIVIDE Statement
MULTIPLY Statement
SUBTRACT Statement
COMPUTE Statement

Procedure Branching Verbs
ALTER Statement
GO TO Statement
PERFORM Statement
EXIT Statement

Data Movement Verbs
EXAMINE Statement
MOVE Statement
SET Statement
TRANSFORM Statement

Input/Output Verbs
ACCEPT Statement
CLOSE Statement
DISPLAY Statement
OPEN Statement
READ Statement
WRITE Statement
INSERT Statement
REWRITE Statement
SEEK Statement

6.6.4.10. RELEASE Statement
6.6.4.11. RETURN Statement
6.6.4.12. SORT Statement
6.6.5. Ending Verb (STOP)
6.6.6. Conditional Verbs
6.6.6.1. IF Statement
6.6.6.2. SEARCH Statement
6.6.7. Compiler-Directing Verbs
6.6.7.1. COPY Statement
6.6.7.2. ENTER Statement
6.6.7.3. NOTE Statement
6.6.7.4. USE Statement
6.6.8. lnterprogram Communications
6.6.8.1. CALL Statement
6.6.8.2 . ENTRY Statement

6.7. SEGMENTATION
6.7.1. Program Segments
6.7.1.1. Fixed Portion
6.7.1.2. Independent Segments

Contents 3
Update B

6-2

6-3

6-3
6-3
6-4
6-4
6-4

6-5
6-5
6-7
6-8
6-9
6-9
6-11
6-12
6-12
6-13
6-14
6-19
6-19
6-20
6-21
6-23
6-24
6-27
6-28
6-29
6-30
6-31
6-31
6-32
6-34
6-34
6-35
6-36
6-36
6-37
6-39
6-40
6-40
6-45
6-48
6-48
6-49
6-51
6-51
6-53
6-53
6-54

6-54
6-54
6-54
6-54

~

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

6.7.2. SECTION
6.7.3. Restrictions
6.7.3.1. ALTER Statement
6.7.3.2. PERFORM Statement
6.7.3.3. Linkage Editor Considerations

6.8. CALLING AND CALLED PROGRAMS
6.8.1. Treatment of Data Items
6.8.2. Linking
6.8.3. OS/3 COBOL CALL/ENTRY Interface

PART 3. COMPILER FEATURES AND CAPABILITIES

7. COMPILER OPTIONS AND LIBRARY STATEMENTS

7.1. COMPILER OPTIONS
7.1.1. List Options
7.1.2. Output Options

7.2. SOURCE AND COPY LIBRARY INPUT SPECIFICATIONS
7.2.1. Object Module Version/Revision Number
7.2.2. Compiler Source Library Input and Copy Library Input

7.3. LIBRARY
7.3.1. Using the COPY Statement

8. RERUN CLAUSE

8.1. GENERAL

8.2. RERUN CLAUSE

8.3. CHECKPOINTING

8.4. RESTARTING

8.5. NOTES AND RESTRICTIONS

9. USE OF ACCEPT AND DISPLAY STATEMENTS

9.1. ACCEPT STATEMENT
9.1.1. Job Control Stream ACCEPT
9.1.1.1. 80-Column Card ACCEPT
9.1.1.2. 96-Column Card ACCEPT
9.1.1.3. 8413 Diskette ACCEPT
9.1.2. Console ACCEPT
9.1.3. Current Date ACCEPT
9.1.4. Time of Day ACCEPT
9.1.5. Julian Date ACCEPT
9.1.6. UPSI Byte ACCEPT
9.1.7. Communications Region ACCEPT

Contents 4

6-55 • 6-55
6-55
6-55
6-56

6-56
6-56
6-57
6-57

7-1
7-1
7-2

7-3
7-4
7-4

7-5
7-5 •
8-1

8-1

8-1

8-2

8-2

9-1
9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-3 • 9-3
9-4

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

9.2. DI SPLAY STATEMENT

9.2.1. Console DISPLAY

9.2.2. Log File DISPLAY

9.2.3. UPSI Byte DI SPLAY

9.2.4. UPSI Bit DISPLAY

9.2.5. Communications Region DI SPLAY

9.2.6. Printer Listing DISPLAY

10. TABLE HANDLING

10.1. GENERAL

10.2. DEFINING A TABLE

10.3. TABLE REFERENCE

10.4. SUBSCRIPTING

10.5. INDEXING

10.6. SEARCHING

11 . PROCESSING TECHNIQUES FOR DIRECT ACCESS DEVICES

11.1. INTRODUCTION

11.2. FILE ORGANIZATION

11.2.1. Sequential Organization

11.2.2. Relative Organization

11.2.3. Indexed Organization

11.3. ACCESS METHODS

11.3.1. Sequential Access

11.3.2. Random Access

11.3.3. Extended Access

11.4. CLAUSES REQUIRED FOR FILE PROCESSING

11.4.1. Sequential File Processing

11.4.2. Relative File Processing

11.4.3. Indexed File Processing

11.4.4. Summary of Imperative Statements and Error Conditions

11.4.4.1. ORGANIZATION IS SEQUENTIAL Clause

11.4.4.2. ORGANIZATION IS RELATIVE Clause

11.4.4.3. ORGANIZATION IS INDEXED Clause

11.4.4.4. SYSERR Messages

11.4.4.5. COBOL Disc Processing Techniques

12 . SORTING

12.1. GENERAL

12.2. ORGANIZATION OF A SORT PROGRAM

Contents 5

9-4
9-4
9-4
9-4
9-5
9-5
9-5

10-1

10-1

10-1

10-2

10-2

10-3

11-1

11-1
11-1
11-2
11-2

11-2
11-2
11-2
11-2

11-2
11-3
11-4
11-7
11-13
11-13
11-13
11-14
11-27
11-27

12-1

12-1

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

12.3. SORT STATEMENT FORMATS
12.3.1. Sort File SELECT Entry
12.3.2. SAME AREA Clause
12.3.3. Sort File Description
12.3.4. RELEASE Statement
12.3.5. RETURN Statement
12.3.6. SORT Statement
12.3.7. Use of the Sort Feature

13. ASCII TAPE PROCESSING

13.1. GENERAL

13.2. DECLARATION OF ASCII FILES

13.3. RECORDING MODE CLAUSE

PART 4. DEBUGGING AIDS

14. DEBUGGING LANGUAGE

14.1. GENERAL

14.2. READY TRACE

14.3. RESET TRACE

14.4. EXHIBIT

14.5. DEBUGGING PACKET

PART 5. APPEND! XES

A. CHARACTER SET

B. RESERVED WORDS

C. INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS

C.1 GENERAL

C.2. ADD AND SUBTRACT STATEMENTS

C.3. EXPRESSIONS

D. COMPILER DIAGNOSTICS

D.1. GENERAL

D.2. DIAGNOSTIC MESSAGES

D.3. SYSTEM CONSOLE MESSAGES

Contents 6

12-2 • 12-2
12-2
12-2
12-3
12-3
12-3
12-4

13-1

13-1

13-2

14-1

14-1 • 14-2

14-2

14-3

C-1

C-1

C-2

D-1 • D-1

D-32

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

Contents 7

E . COMPILER LISTINGS

E.1. SOURCE CODE LISTING E-1

E.2. DATA DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING E-3

E.3. PROCEDURE DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING E-4

E.4. OBJECT CODE LISTING AND EXTERNAL REFERENCES E-6

E.5. DIAGNOSTIC ERROR LISTING E-10

E.6. ALPHABETICALLY ORDERED DATA DIVISION CROSS-REFERENCE LISTING E-13

E.7. ALPHABETICALLY ORDERED PROCEDURE DIVISION CROSS-REFERENCE LISTING E-13

F. CONVERSION MODE

F.1. GENERAL F-1

F.2. CONVERSION MODE OPERATION F-1

F.3. CONVERSION MODE SYNTAX F-2

F.3.1. Identification Division F-2

F.3.2. Environment Division F-2

F.3.3. Data Division F-5

F.3.4. Procedure Division F-6

F.3.5. Reserved Words F-9

F.4. PRINTER Fl LE SUPPORT F-10

F.5. DISC FILE SUPPORT F-12

F.5.1. Sequential Organization F-12

F.5.2. Indexed Organization F-12

F.5.3. Direct Organization F-13

F.5.4. Error Testing in USE AFTER ERROR Procedures F-13

G. JOB CONTROL STREAM REQUIREMENTS

G.1. INTRODUCTION G-1

G.2. PROCEDURE CALL STATEMENT (COBOL) G-1

G.3. COMPILER STATUS INDICATORS G-14

G.4. SOURCE CORRECTION FACILITY G-14

G.5. DATA DEFINITION (DD) JOB CONTROL STATEMENT KEYWORD PARAMETERS G-15

H. SHARED CODE INTERFACE

H.1. GENERAL

H.2. ACTION PROGRAM

~

~

H--1

H-1

~

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

INDEX

USER COMMENT SHEET

FIGURES

2-1. Example of Oualification Entries
2-2. COBOL Programming Form

3-1. Example of Identification Division Entries

4-1. Example of Environment Division Entries

5-1. Example of Data Division Entries

6-1. PERFORM Logic: Varying Two Identifiers
6-2. PERFORM Logic: Varying Three Identifiers
6-3. SEARCH Logic
6-4. Example of Calling Program
6-5. Example of Called Program
6-6. Example of Called Assembly Subprogram

13-1. ASCII Physical Tape Formats

E-1. Example of Source Code Listing
E-2. Example of Data Division Storage Map and Cross-Reference Listing
E-3. Example of Procedure Division Storage Map and Cross-Reference Listing
E-4. Example of Object Code Listing and External References
E-5. Example of Diagnostic Listing
E-6. Example of Alphabetically Ordered Data Division Cross-Reference Listing
E-7. Example of Alphabetically Ordered Procedure Division Cross-Reference Listing

TABLES

1-1. SPERRY UNIVAC OS/3 COBOL Module/Level Implementation

2-1. User-Supplied Words
2-2. Reserved Words
2-3. Programming Form Column Usage

4-1. Rules for SPECIAL-NAMES

5-1. Main Storage Allocation
5-2. Control Field Sizes
5-3. Block Size Ranges
5-4. Label Record Specifications
5-5. PICTURE Symbols
5-6. Precedence Rules in PICTURES
5-7. Source and Receiving Fields

6-1. MOVE Sending and Receiving Fields
6-2. Combination of FROM and TO Options in a TRANSFORM Statement
6-3. Logical Operator/Condition Relationships
6-4. Logical Operator/Condition Combinations
6-5. Program/Subprogram Relationships

Contents 8

•
2-8
2-9

3-2

4-13

5-34

6-17
6-18
6-47

6-58
6-59
6-59

13-3

E-2
E-5 • E-7
E-11
E-12
E-14
E-15

1-2

2-4
2-6
2-10

4-7

5-2
5-4
5-6
5-8
5-18
5-20
5-21

6-22 • 6-26
6-41
6-41
6-61

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

11-1. Logical Record Retrieval by Sequential Read
11-2. Warning Exception Conditions for Indexed File Processing
11-3. AT END/INVALID KEY Exception Conditions for Indexed

File Processing
11-4. Unrecoverable File Error Conditions for Indexed File Processing
11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing
11-6. System Error Messages (SYSERR) for INDEXED and RELATIVE Files
11-7. Summary of COBOL Disc Processing Techniques

13-1. Characteristics of Tape Files Available to COBOL Users

13-2. ASCII/EBCDIC Conversion

D-1. Diagnostic Messages
D-2 . System Console Messages

Contents 9

11-10
11-14

11-15
11-15
11-18
11-27
11-28

13-4
13-5

D-2
D-33

•

•

•

•

PART1.COBOLLANGUAGESTRUCTURE

•

•

•

•

•

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

1.1. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

1-1

1. Introduction

The various language elements comprising a COBOL program must be written in formats that adhere to fixed and
precise rules of presentation. Each format statement indicates the following information:

• order of presentation;

• words requisite to proper functioning of the statement;

• optional words included at the discretion of the user;

• information that must be supplied by the user;

• elements in the statement involving a choice by the user; and

• optional functions of the statement.

In accordance with the foregoing, the following conventions are used in this manual:

• The order of presentation is indicated by the format statement itself.

• All COBOL reserved words appear in all capitals. They are also listed in Appendix B.

• Words in underlined capitals are key words, which must be present when the functions in which they appear
are used. Those capitalized words not underlined are optional and may be included at the user's discretion to
improve readability; there is no compiler action. All completely capitalized words, whether underlined or not,
are part of the COBOL language and must be spelled exactly as indicated.

• All lowercase words represent generic terms to be supplied by the user when the functions of which they are a
part are used.

• Braces {} enclose elements of a statement to indicate that one of the elements must be selected. If one of the
choices within the braces has no key words, it is a default option; i.e., if none of the elements within the
braces is specified, the action will be the same as if the default option had been specified.

• Brackets [) enclose optional functions to indicate their inclusion or omission at the user's direction. When two
or more options are stacked within brackets, one or none of them may be specified .

• In some statements, certain portions may be used as many times as needed by the programmer. The ellipsis ...
indicates this repeatability. If there is a choice to be made from stacked options or if there is only a single
possibility, brackets or braces are used as delimiters to indicate that portion of the statement which is
repeatable.

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

1.2. EXTENDED COBOL COMPILER

1-2

The SPERRY UNIVAC Operating System/3 (OS/3) extended COBOL compiler conforms to the specifications in the
American National Standard COBOL, XJ.23-1968. The modules and levels implemented are shown in Table 1-1;
where OS/3 COBOL features are an extension to these requirements, an annotation is made in the text.

Table 1-1. SPERRY UNIVAC OS/3 COBOL Module/Leve/ Implementation

Module Level

Nucleus 2

Sequential access 2

Random access 2

Sort 2

Segmentation 2

Table handling 3

Library 2

The minimum system configuration required for this compiler includes:

• 3 disc work areas and 1 system disc

• 1 card reader or substitute device

• 1 printer or substitute device

• 65,536-byte main storage

The extended COBOL compiler requires the micrologic expansion feature for both the compiler and the generated
object program.

The compiler and all compiler-produced object programs normally operate on data represented in Extended Binary
Coded Decimal Interchange Code (EBCDIC) under control of the OS/3.

A COBOL source program can be entered in the compiler from the job stream file or from a disc library file. The
compiler produces, as its final output, a relocatable object program on disc. This object module must be processed
by the linkage editor being executed.

•

•

•

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

2-1

2. General Specifications

2.1. COBOL CHARACTER SET

The SPERRY UNIVAC Operating System/3 (OS/3) COBOL character set is a 52-character subset of the OS/3

character set, which contains 256 characters.

The COBOL character set consists of the following characters:

0,1, ... ,9

A,B, ... ,Z

Blank or space (written on coding form as llor a blank space)

Period

< Less than

Left parenthesis

+ Plus sign

$ Currency sign

* Asterisk (if used in column 7, indicates that the entire source line is commentary)

Right parenthesis

Semicolon

Minus sign or hyphen

Comma

> Greater than

Apostrophe (alternate character for quotation mark)

Equal sign

Quotation mark (see apostrophe)

I Slash

The collation sequence for these characters is given in Appendix A.

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

2-2.

The OS/3 COBOL charac::ter set may be used anywhere in a program; however, the additional characters, which •
together with the COBOL set make up the system set, may be used only in the following instances:

• anywhere in the identification division except in the PROGRAM-ID paragraph;

• in the NOTE statement of the procedure division; or

• in nonnumeric literals.

The apostrophe or the quotation mark may be embedded in a nonnumeric literal by invoking the appropriate LST
PARAM option to specify one or the other as the delimiter. (See Section 7.) Only one of the parameters may be
used in any given program. The use of either overrides the interchangeability of the apostrophe and quotation mark.

The following paragraphs describe the general usage of the various OS/3 COBOL characters.

2.1.1. Characters Used for Words

A COBOL word is a sequence of not more than 30 of the following characters:

0,1, ... ,9

A,B, ... ,Z

- (hyphen)

A word may neither begin nor end with a hyphen, or contain a space.

2.1.2. Characters Used for Punctuation

COBOL punctuation characters are:

NOTE:

Apostrophe (character used as delimiter for a nonnumeric literal and as an optional character for the
quotation mark)

Left parenthesis

Right parenthesis

Blank or space (written on coding form as/'). or a blank space)

Period

Comma

Semicolon

Quotation mark (See apostrophe.)

•

The normal mode for the compiler is to equate the apostrophe and the quotation mark as meaning the same thing. •
To embed either character within a nonnumeric literal, the PA RAM options described in 7.1 may be used.

The comma and semicolon, when used in the general format descriptions, are for readability only and are not
required. When used, the comma and semicolon always must be followed by a space.

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

• 2.1.3. Characters Used in Relational Expressions

The COBOL characters used to represent relational operators are:

Equals

> Greater than

< Less than

2.1.4. Characters Used in Arithmetic Expressions

The characters used in arithmetic expressions are:

+ Plus sign (addition)

Minus sign (subtraction)

* Asterisk (multiplication)

I Slash (division)

** Two asterisks (exponentiation)

• 2.1.5. Characters Used in Editing

The characters used in editing are:

B Blank or space insertion

0 Zero insertion

+ Plus sign

Minus sign

CR Credit

DB Debit

z Zero suppression

* Check protection

$ Currency symbol

Comma

• Decimal point

2-3

UP-8059 Rev. 3

2.2. TYPES OF WORDS

SPERRY UNIVAC OS/3
EXTENDED COBOL

2-4

Two types of words are used in OS/3 COBOL: user-supplied and reserved. The user-supplied words are listed and
defined in Table 2-1. Reserved words are used for syntactical purposes and may not appear as user-defined words.
The various types of reserved words are described in Table 2-2. Appendix B contains a complete list of OS/3
COBOL reserved words.

Table 2-1. User-Supplied Words (Part 1 of 3)

User-Supplied Words Rules

Data-name 1. Contains 1 through 30 characters

2. Permissible characters are 0 through 9, A through Z, and hyphen(-).

3. Must include at least one alphabetic character

4. Hyphen (-)cannot be the first or last character.

5. May be qualified; may not be subscripted

Unqualified 1. Rules 1 through 4 for data-name
data-name

2. May not be qualified; may not be subscripted

Identifier 1. Rules 1 through 4 for data-name

2. May be qualified and/or subscripted

Condition-name 1. Rules 1 th rough 4 for data-name

2. Value may be established in a level-88 entry or in a SPECIAL-NAMES
switch status declaration.

3. Referenced only in conditions

Conditional 1. Rules 1 through 4 for data-name
variable

2. Data-name immediately followed by one or more associated level-number
88 entries

Procedure-name 1. Rules 1, 2, and 4 for data-name

2. Must precede each referenced paragraph

3. A procedure-name is a section-name if it is followed by the word
SECTION.

External-name 1. A nonnumeric literal of 1 to 8 characters

2. A user-supplied label that duplicates the LFD name used in the job
control stream to name a COBOL file

File-name 1. Rules 1 through 4 for data-name

2. A word that names a file described in the data division

Sort-name 1. Rules 1 through 4 for data-name

2. A word that names a file described in the data division but which may
be used by the sort function only

•

•

•

UP-8059 Rev. 3

• User-Supplied Words

Index-name 1.

2.

3.

4.

5.

6.

Index data-item 1.

2.

3.

Fixed-point 1.
numeric literal

2.

• 3.

4.

5.

6.

Floating-point 1.
numeric literal

2.

3.

4.

5.

6.

7 .

•

SPERRY UNIVAC OS/3

EXTENDED COBOL

Table 2-1. User-Supplied Words (Part 2 of 3)

Rules

Rules 1 through 4 for data-name

Value of index-name corresponds to an occurrence number for a table
dimension.

Initialized and modified only by the SET statement

Defined by the INDEXED BY clause

Table references using indexing are specified by the data-name of the
table element followed by parentheses including an index-name for each
table dimension.

Storage areas are assigned by compiler.

Rules 1 through 3 for index-name

Defined by USAGE IS INDEX clause

May be part of a group referred to in a MOVE or 1-0 statement

A string of not more than 20 characters, including 0 through 9, sign
(+or-), and decimal point

Must contain at least one and not more than 18 digits plus a sign and
a decimal point

May contain only one sign, which must be leftmost character; if
unsigned, literal is positive

May contain only one decimal point, treated as an assumed decimal
point; if no decimal point, the literal is an integer

Decimal point cannot be the last character in a numeric literal.

When a literal is restricted to numeric, the only figurative constant
permitted is ZERO.

A string of not more than 22 characters, including 0 through 9, signs
(+or-), decimal point, and the character E

A floating-point numeric literal must be of the form: [{ ±}]
mantissa E [{ ±} J exponent.

The mantissa must contain at least one and not more than 16 digits
and a decimal point.

The exponent must contain one or two digits.

If the mantissa or the exponent is unsigned, it is assumed to be
positive.

The maximum magnitude is 0.72 x 10
76

The minimum magnitude is 5.4 x 10-79

2-5

UP-8059 Rev. 3

User-Supplied Words

Nonnumeric literal

Reserved Words

Verbs

Key words

Optional words

TALLY

Figurative constants

1.

SPERRY UNIVAC OS/3
EXTENDED COBOL

Table 2-1. User-Supplied Words (Part 3 of 3)

Rules

A string of any characters of the OS/3 character set, excluding the
quotation mark and the apostrophe (unless these have been embedded by
use of the appropriate LST parameter (7 .1)); reserved words may be used .

2. Must contain at least one and not more than 132 characters

3. Must be enclosed within quotation marks or apostrophes

4. Any spaces enclosed in the quotation marks are part of the literal
and, therefore, are part of the value.

5. All nonnumeric literals are in the alphanumeric category.

6. A figurative constant can be used whenever a nonnumeric literal appears
in the format.

Table 2-2. Reserved Words (Part 1 of 2)

Rules

Denote actions performed by the object program or the COBOL compiler

1. A word which must be present in a particular clause

2. Key words are indicated by underlining where they appear in the general
formats.

1. Used in COBOL to improve readability

2. Presence or absence does not alter handling of statement during
compilation or execution of program

3. Not underlined when shown in generalized format

1. TALLY is the name of a special register designated by the compiler
whose implicit description is that of a COMPUTATIONAL-3 integer of five
digits without an operational sign.

2. TALLY holds the count produced by the EXAMINE statement.

3. TALLY may also be used in the procedure division as a data-name
whenever an elementary data item of integral value may appear.

1. ZERO, ZEROS, or ZEROES generates one or more O's.

2. SPACE or SPACES generates one or more spaces.

3. HIGH-VALUE or HIGH-VALUES generates one or more hexadecimal
FF characters (all binary 1's); this character has the highest value in the
OS/3 collating sequence.

4. LOW-VALUE or LOW-VALUES generates one or more hexadecimal 00
characters (all binary O's); this character has the lowest value in the
OS/3 collating sequence.

2-6

•

•

•

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3

EXTENDED COBOL

Table 2-2. Reserved Words (Part 2 of 2)

2-7

Reserved Words Rules

Figurative constants 5. QUOTE or QUOTES generates one or more apostrophes('), hexadecimal 7D;

(cont) QUOTE(S) cannot be used in place of quotation marks(") or an apostrophe
to bound a nonnumeric literal.

6. The ALL literal generates one or more of the literals following the
ALL; the literal must be either a nonnumeric literal or a figurative
constant other than the word ALL; when a figurative constant is used,
the word ALL is redundant and is used for readability only; the ALL
literal may not be used with DISPLAY, EXAMINE, STOP, or COPY.

Connectives 1. The qualifier connectives OF and IN are used to associate a data-name

or paragraph-name with its qualifier.

2. The logical connectives AND, OR, and NOT are used to form compound conditions.

3. A series connective is the comma, which links two or more consecutive
operands or statements; the use of a series connective is optional.

2.3. QUALIFICATION

Every name used in an OS/3 COBOL source program must be unique either because of different spelling or because
of qualification .

Definition:

Qualification is a means of making a name within a hierarchy unique by appending a prepositional phrase
containing the name of a higher level of the hierarchy. It is accomplished by appending one or more phrases
composed of a qualifier preceded by IN or OF to a data-name or paragraph-name. IN and OF are logically

equivalent.

Rules:

1. The name associated with the highest level entry in a hierarchy is the highest level qualifier available for
a data-name within that hierarchy.

2. Each qualifier must be of a successively higher level and within the same hierarchy as the name it

qualifies.

3.

4.

5.

6.

7 .

The same name must not appear at two different levels in the same hierarchy.

If a data-name or condition-name is assigned to more than one item, it must be qualified each time it is
referenced.

A data-name cannot be subscripted when it is being used as a qualifier.

A paragraph-name must not be duplicated within a section.

Only a section-name can qualify a paragraph-name; the word SECTION must not appear as part of the

qualifier.

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 2-8
EXTENDED COBOL

8. A paragraph-name need not be qualified when referred to from within the same section.

9. A name may be qualified even though it does not require qualification.

10. FD names, SD names, level 77 names, level 66 names, level 01 names (not in the file section). and
section-names must be unique in themselves as they cannot be qualified.

11. A data-name being qualified may be subscripted or indexed. The subscripts/indexes must appear to the

right of the last qualifier name.

Format 1:

{
condition-name-1} [{

0
1NF } J [[J J data-name-2 . . . (sub-1 , sub-2, sub-3))

data-name-1

Format 2:

paragraph-name [{ ~F } section-name J

NOTE:

Figure 2-1 illustrates examples of qualification entries.

..-----...,.r:::=COl'HINUATION

5~~~:~~E t IA B TE x T ---------------...
6 7 8 11 12 20 30 40 60 so

I N,G, , s,L~Rl_ALGJ~. ls_e c:_uA~".J.__;_j_--'----1......J---'--'-..J_~, ~ .. L.l _. _l _L_l....1_L_-"---'--L....L....J--L._J__L..L_L_

<3 t.. D "PI C. t. (. I 0) VAL U1 E SP ,C E g .

l i l J J. .L._J _ _L_J_.J._j_...J.._L_L_j_I _J __

03 c l TY'. p, I~,-- _XL(2,0J ;" LLL-.L .. .L-L~.L...L_L_J--L.--L~L-L_L_Jc___C_L_L--1.__._____c_.___c_L...L....L.....L_L__c--L_

._.,_~--L.-'--t-- .,___~_...0,3 ,"'{___l\B.PJJ.i.C X,(1,0), . I I

01

--'---'- -
L 0 3 .C IT Y p, 1 C X (2 0) · L~ , _ _,_ c_'. -'--'--'-_.____c...-'---'-__J_L-L-..L.J_J__j___J___[__J_l~

03 WAR,"D, ,P l,C, X ~2.l_~J___ _, 1. i

- - L.__.._ - l __ l -~ ~---.L ...l - _! _ ___i______,_ __ .t____,, _ _L_j--L._L_J_.J.__j__L_.~_L_J_.J..--L...J__L...L_L_.L_

p ~cEDuRE Dtv1gr~ .

-.L-L'-+-~--'--'---'--'-~-~-l___ . _l._ _L _ _.__..____L_......_,.l____l.__j~.......______l_...__j _ __..____._ _ _. _i

<9'.VE WABJ>1H O_F __ _J' ENNA 1T_<!.__Ll,G'L.1), ., .

_....L______.L__~~' - - . - ~ _ _____,.________L_J____j__.........__,___l_ _ __.. __ ... "J-~ L_ ____ - J _ l l ·-....___i__---'--'--'_J__J_j_ _J_j _ _J__.L-L-'--'--~

*° N~.TE IF THE:, ,DATA NA ES, Cl TY AN.D ARD WERE :VNIQUE

Figure 2-1. Example of Qualification Entries

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

2-9

• 2.4. SUBSCRIPTING AND INDEXING

•

•

Definition:

Subscripting and indexing are techniques used to refer to individual table elements within a table of like
elements that have not been assigned individual data-names.

Rules:

1. Up to three levels of subscripting or indexing are permitted.

2. Subscripted or indexed identifiers may not be used as qualifiers.

3. When condition-names are assigned to items requiring subscripting or indexing, these condition-names
must be subscripted or indexed when referenced.

4. Relative indexing (index-name ± integer) is permitted. The integer must not be zero. Zero is considered
out of the scope of an OCCURS clause.

5. When more than one subscript or index is used in a reference, each must be separated by a comma and a
space.

NOTE:

Table handling is discussed in Section 10. For a complete discussion of table handling, see the fundamentals of
COBOL - table handling manual, UP-7503.2 (current version).

2.5. CODING FORM

Figure 2-2 shows the layout of the COBOL programming form. On this form the programmer enters all information
needed by the COBOL compiler, observing the rules of format and content defined in this manual. Each line of
written information represents the information to be entered into one 80-column punched card. The divisions of the
form are explained in Table 2-3.

rr;CONT tNUAT ION

SEQUENCE
A B NUMBER TEXT--

1 6 7 8 1112 20
IDENTIFICATION

72 80 40 50 60

I

_l '
J ' ' __ ;...__j_______.:______~-~--~ ~ _[__ ._ __ ; l c_______i__[_____._.L__._.__~_l_~_L--~

' ._L j__ __.___L _ _.:.__~ ~- -- _,, ___ ~-- .L l ~ l - •

J. I

_l __:______L _ _.L~

;

' -' L-L---L

Figure 2-2. COBOL Programming Form

UP-8059 Rev. 3

Columns Designation

1-6 SEQUENCE NUMBER

7 CONTINUATION

7 COMMENT

7 EJECT

8-72 TEXT

73-80 IDENTIFICATION

SPERRY UNIVAC OS/3
EXTENDED COBOL

2-10

Table 2-3. Programming Form Column Usage

Contents

A numeric entry, used only by the programmer (not the COBOL

processor) to establish a sequence among the various lines of
coding (optional).

A hyphen (-) is used when an entry extends past one
noncomment line. A break is used in the middle of a word,

and the hyphen is written in column 7 of the next contiguous

line on which the word is completed. A word may be interrupted
in any column, the rest of the line space filled, and the
word completed on the next line. If the continued line
contains a nonnumeric literal without a closing
delimiter (apostrophe or quotation mark), the first
nonblank character in Area B of the continuation line must be

one of these delimiters and the continuation starts with the
character immediately after the delimiter.

An asterisk (*)in column 7 signifies a comment line which

will be printed but ignored by the compiler. A comment

may appear anywhere in the program except between a continuation
set and can contain any printable combination of characters,
including reserved words. If a comment entry extending past one

line has a break occurring in the middle of a word, the continuation
line must contain an asterisk in column 7. (The hyphen is used only
for noncomment continuation lines.) This is an extension to

American National Standard COBOL (1968).

A slash (/) in column 7 signifies a comment line that causes the compiler
to direct the printer to skip to the head of the form and print the
comment. If the comment line is continued, it must follow the rules
for comment continuation, as explained in the preceding paragraph.

All COBOL-formatted information, in the form of names,
statements, information, instructions, etc., that is to be
compiled into the object program.

Note that two left-margin limits designated "A" and "B"
are shown. These are needed for program alignment. Major
definitive names are begun at margin A (column 8). Margin
B (column 12) is used for subordinate items and for

continuation of entries from the last preceding line.

Card deck information (optional)

•

•

•

---------~-~-----------

•

PART 2. DIVISIONS IN COBOL

•

•

•

•

•

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

3-1

3. Identification Division

3.1. GENERAL

The identification division identifies or labels the source program and provides other pertinent information
concerning the program. All information given in this division is listed by the printer during compilation; however,
only the PROGRAM-ID paragraph will affect the object program in the SPERRY UNIVAC Operating System/3
(OS/3).

Format:

IDENTIFICATION DIVISION .

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry.] ...]

[INSTALLATION. [comment-entry.] ...]

[DATE-WRITTEN. [comment-entry.] ...]

[DATE-COMPILED. [comment-entry.] ...]

[SECURITY. [comment-entry.] ...]

[REMARKS. [comment-entry.] ...]

Rules:

1. The identification division must be present in all source programs.

2. PROGRAM-ID always must be present as the first paragraph of the identification division.
Program-name may consist of 1 to 30 alphabetic or numeric characters, the first character being
alphabetic. The sequence formed by the first six characters must be unique (within user's library) since it
will identify the source program, object program elements, and associated documents. Hyphens within
the first six characters are removed by the compiler due to OS/3 naming conventions.

If the program name is not supplied or not accepted due to an error, the compiler automatically supplies
the program name NOCOBNAM .

3. AUTHOR is for documentation only.

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 3-2
EXTENDED COBOL

4. INSTALLATION is for documentation only.

5. DATE-WRITTEN is for documentation only.

6. DATE-COMPILED is for documentation only. Date of compilation appears on listing regardless of
whether this paragraph is present. Comment-entry is printed when this paragraph is present.

7. SECURITY is for documentation only.

8. REMARKS is for documentation only.

9. A comment-entry can consist of any printable combination of characters, including reserved words.

Example:

An example of identification division entries is shown in Figure 3-1.

;-CCl\iTINUATlON

.---Sf--'.J-U-E ""'-, C-f--..1 i
;LA

NJMB-=:rf i I
6 7 i 8

T E X T ----···-·--·---·-·-····

QP, l_pl 9,~r r"QAT E+:.CQMPJ.:r:J.J;Jt~ l . ,D J;.k, ~L ~L -'. Lt~LJ '~-'-'-• ... L. I. .• ' . .J ... L '

Q.9_1.Q0.7: rj ~J~_(;_\.!,R'lJiY'i.!_J_~,o'N .. ~-~"-' .L : , ,_ , _,J L.~ .. -L._L~--'---'-...t--'__'._ __L . ..c •• LL.~.
~19~tQ.Q"Si B__gJv'~t"B...~~· '·"Y,S'J~:J~.:- H,_~J>§R.lI~_L!_i.'.~L~ . .J._L l .. l , • . . •... L.L ~-

~ I

Figure 3-1. Example of Identification Division Entries

•

•

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

4-1

4. Environment Division

4.1. GENERAL

The environment division (Figure 4-1) specifies those elements of the COBOL program that depend upon the
physical aspects of the SPERRY UNIVAC 90/30, 90/25, or 90/40 System.

Format:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. {UN IV AC-9030.}
UNIVAC-9025.
UN IV AC-9040 .

OBJECT-COMPUTER. {UNIVAC-9030}
UNIVAC-9025
UNIVAC-9040

[{

CHARACTERS}]
, MEMORY SIZE integer MODULES

WORDS

Rules:

[SPECIAL-NAMES. entry.]

[

INPUT-OUTPUT SECTION.]
FILE-CONTROL.{ entrv.} ...
[l-0-CONTROL. entry.]

[SEGMENT-LIMIT IS priority-number).

1. The environment division must be present in all source programs in the SPERRY UNIVAC Operating
System/3 (OS/3). It may need to be rewritten when a program is to be compiled or executed on a
different system configuration.

2. Section and paragraph headers are required when their associated entries are present.

3. Section and paragraph headers must begin in margin A (columns 8-10); their associated entries must
begin in margin B (columns 12-71).

4.2. CONFIGURATION SECTION

Definition:

The configuration section specifies the characteristics of the source and object processors and relates
implementor-names to user-names.

UP-8059 Rev. 3

Format:

CONFIGURATION SECTION.

SOURCE-COMPUTER. entry.
OBJECT-COMPUTER. entry.
[SPECIAL-NAMES. entry.]

SPERRY UNIVAC OS/3
EXTENDED COBOL

4.2.1. SOURCE-COMPUTER Paragraph

Function:

Names the processor that will compile the source program.

Format:

Rules:

SOURCE-COMPUTER. { UNIVAC-9030.}
UNIVAC-9025.

UNIVAC-9040.

4-2

The SOURCE-COMPUTER paragraph is for documentation only and does not affect the object program.

4.2.2. OBJECT-COMPUTER Paragraph

Function:

To specify the processor that will execute the object program and the size of main storage and the
segment-limit priority number.

Format:

OBJECT-COMPUTER. { UNIVAC-9030}
UNIVAC-9025
UNIVAC-9040

[MEMORY SIZE ;ntege•
{

CHARACTERS } J
MODULES [SEGMENT-LIMIT IS priority-number].
WORDS

Rules:

1. The OBJECT-COMPUTER paragraph has no effect on the object program unless the SEGMENT-LIMIT
clause is specified.

2. MEMORY SIZE is an optional clause defining main storage as an integer number (no sign, comma, or
decimal point permitted) of WORDS, CHARACTERS, or MODULES for documentation only. The
equivalent number of bytes for each is as follows:

• CHARACTER= 1 byte

• WORD= 4 bytes

• MODULE= 16,384 bytes

•

•

•

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

4-3

3. The SEGMENT-LIMIT priority number must be an integer ranging in value from 1 through 49.

4. When the SEGMENT-LIMIT clause is specified, only those sections having priority-numbers from 0 up
to, but not including, the priority number designated as the limit are considered as part of the fixed
permanent segment.

5. Sections having priority numbers from the SEGMENT-LIMIT through 49 are considered as fixed
overlayable segments.

6. When the SEGMENT-LIMIT clause is omitted, all sections having priority numbers from 0 through 49
are considered as belonging to the fixed permanent segment.

4.2.3. SPECIAL-NAMES Paragraph

Function:

Relates implementor-names to user-supplied mnemonic-names

Format:

SPECIAL-NAMES.

[CURRENCY SIGN .!§_literal]

[; DECIMAL-POINT!§ COMMA]

[; SYSCOM !§ mnemonic-name-1)

[; SYSDATE ~ mnemonic-name-2)

[; SYSTIME !§. mnemonic-name-3)

[; SYSCONSOLE §.mnemonic-name-4)

[; SYSCHAN-t IS mnemonic-name-5) ...

[; SYSLST IS mnemonic-name-6)

[

. SYSERR [-m] J
{

ON STATUS IS condition-name-3 [,OFF STATUS !§_condition-name-4) }
OFF STATUS!§ condition-name-4 [,ON STATUS IS condition-name-3)

; SYSSWCH[-n]

~
IS mnemonic-name-7 [ON STATUS IS condition-name-5 [OFF STATUS IS condition-name-6)] ~
IS mnemonic-name-7 [OFF STATUS IS condition-name-6 [ON STATUS §.condition-name-5]] .

QN STATUS IS condition-name-5 [OFF STATUS ~condition-name-6)
OFF STATUS IS condition-name-6 [ON STATUS IS condition-name-5)

[; SYSIN l§_mnemonic-name-8)

[; SYSIN-96 IS mnemonic-name-9)

[; SYSIN-128 1.§. mnemonic-name-10]

[; SYSLOG ~ mnemonic-name-11].

UP-8059 Rev. 3

where:

t

m

n

Rules:

Is any digit 1 through 15.

Is any digit 0 through 31.

Is any digit 0 through 7.

SPERRY UNIVAC OS/3
EXTENDED COBOL

4-4

1. A comma or semicolon may separate each entry, and a period must follow the last entry.

2. The CURRENCY clause literal is used in the PICTURE clause to represent the currency symbol.

3.

Absence of this clause specifies that $ is the currency symbol. The literal must be a nonnumeric literal
consisting of one character from the OS/3 COBOL character set and must not be one of the following
characters:

• Digits: 0 through 9

• Alphabetic characters: A, B, C, D, E, P, R, S, V, X, Z, or space

• Special characters: * , + - . ; () "

The DECIMAL-POINT IS COMMA clause causes the functions of the decimal point and the comma to
be interchanged in PICTURE clause character strings and in numeric literals.

Examples:

SPECIAL-NAMES. CURRENCY SIGN IS 'F' DECIMAL-POINT IS COMMA.

Source PICTURE

9(6)V99
9(5)V99
9(9)V9(4)

Source Data

00003232
1234567
0000098211289

Receiving Field PICTURE

FFFFFF,99
F* *. ***,99
Z(3).ZZ9,9(4)

Receiving Field Result

~32,32

F12.345,67
M9.821, 1289

4. SYSCOM permits accessing the communications region in the preamble of the job in which the object
program is being executed via user-supplied mnemonic-name-1. See the supervisor user guide, UP-8075
(current version) for an explanation of data.

5. SYSDATE permits access to current date via the user-supplied mnemonic-name-2. Mnemonic-name-2
may not appear in a DISPLAY statement. Date may be set or changed in the job control stream.

6. SYSTIME permits access to time-of-day via a mnemonic-name-3. Mnemonic-name-3 may not appear in
DISPLAY statement.

7.

8.

SYSCONSOLE permits access to the system console (using ACCEPT or DISPLAY statement; see Section
9) via mnemonic-name-4.

SYSCHAN-t equates a particular channel (t) on the printer loop to mnemonic-name-5.
Mnemonic-name-5 may appear only in a WRITE statement. SYSCHAN 1 and 7 are normally used for
form overflow and top-of-page, respectively.

•

•

•

•

•

•

UP-8059 Rev. 3

9.

SPERRY UNIVAC OS/3
EXTENDED COBOL

4-5

SYSE RR [-ml permits access to system error codes. The status of a particular error (m) or the presence
of any error can be checked with the ON/OFF STATUS option. SYSERR [-ml is a feature of the
compiler random access module. Condition-names in ON/OFF STATUS phrases are defined and equated
with ON or OFF as required by the compiler and should not be defined elsewhere in the COBOL
program.

10. SYSSWCH [-nl and its various options permit the programmer to access all or part of the user program
switch indicator (UPSI) byte. The eight bits in the UPSI byte (bits 0 through 7) constitute a set of eight
programmable software switches, SYSSWCH-0 through SYSSWCH-7. The status of these switches can be
set to ON or OFF, altered, or interrogated as required. A switch containing a 1 bit is ON; a 0 bit is OFF.
The following examples show the various ways of using SYSSWCH.

• To set or change the contents of SYSSWCH, the DISPLAY verb may be used as follows:

ENVIRONMENT DIVISION.
SPECIAL-NAMES.

PROCEDURE DIVISION.
DISPLAY 00010001 UPON SWITCH
DISPLAY 1 UPON SWITCH-3.

DISPLAY identifier UPON SWITCH.

NOTE:

SYSSWCH IS SWITCH
SYSSWCH-3 IS SWITCH-3.

SYSSWCH will now contain 00010001.
SYSSWCH-3 will now contain 1; the other switches
remain unchanged.

The eight switches in SYSSWCH (0 through 7)
are set ON or OFF, depending on the contents
of the 8-character identifier.

Any character other than a hexadecimal FO will set a switch to ON.

• An individual switch can be interrogated by using condition-name in the ON/OFF STATUS
option. For instance, in the following example control is transferred to procedure-name-1 if switch
5 is ON.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SYSSWCH-5 ON STATUS IS FIVON, OFF STATUS IS FIVOFF.

PROCEDURE DIVISION.

IF FIVON GO TO procedure-name-1 .

In essence, SYSSWCH-5 is a conditional variable with the condition-names FIVON and
FIVOFF, which are similar to level-88 entries.

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

4-6

The condition-names FIVON and FIVOFF are defined and equated with ON and OFF, •
respectively, by the COBOL compiler and must not be defined elsewhere in the COBOL program.
The compiler uses the hexadecimal characters FO and F 1, respectively, to represent the OFF and
ON status of a switch.

• The entire UPSI byte may be interrogated by use of the ACCEPT verb. This is shown in the
following example where procedure-name-1 is performed if the SYSSWCH-2, SYSSWCH-4, and
SYSSWCH-6 switches are ON and the others are OFF.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SYSSWCH IS mnemonic-name-1.

DATA DIVISION.

identifier PICTURE X(8).

PROCEDURE DIVISION.

ACCEPT identifier FROM mnemonic-name-1.

IF identifier= 00101010 PERFORM procedure-name-1.

• Another way to interrogate switches is:

SPECIAL-NAMES.

SYSSWCH ON STATUS IS OK, OFF STATUS IS NIX.

PROCEDURE DIVISION.

IF OK GO TO procedure-name-1.

In this example, if any switch is set to 1, the program will branch to procedure-name-1.

• The mnemonic-name option allows the user to equate his mnemonic-name with the
implementor-name SYSSWCH [-n]. For instance:

SPECIAL-NAMES.
SYSSWCH IS MYSWITCH, ON STATUS IS MYSWITCHON.
or
SYSSWCH-4 IS TAKETAX, ON STATUS IS LOFICA; OFF STATUS IS EOFICA.

The mnemonic-name option is for use only with the ACCEPT or DISPLAY verbs.

•

•

•

•

•

UP-8059 Rev. 3

•

SPERRY UNIVAC OS/3
EXTENDED COBOL

The UPSI switches also can be accessed by the following job control statements:

SET statement - used to set switches ON or OFF (1 or 0).

4-7

SKIP statement - used to conditionally bypass control statements. If the UPSI switch
settings match the bit pattern specified in the SKIP statement, the specified number of
statements will be skipped.

The format and usage of these statements are shown in the job control user guide, UP-8065
(current version).

11. SYSLST permits access to the printer by way of mnemonic-name-7 for DISPLAY functions.

12. SYSIN permits access to embedded data in the control stream when the embedded data is supplied on
80-column cards. Access is made via mnemonic-name-8 and the ACCEPT statement.

13. SYSIN-96 permits access to embedded data in the control stream when the embedded data is supplied
on 96-column cards. Access is made via mnemonic-name-9 and the ACCEPT statement.

14. SYSIN-128 permits access to embedded data in the control stream when the embedded data is supplied
on an 8413 diskette. Access is made via mnemonic-name-10 and the ACCEPT statement.

15. SYSLOG permits access to the system console and log file via mnemonic-name-11 and the DISPLAY
statement.

16. Table 4-1 shows how SPECIAL-NAMES are handled by the compiler. Note that if the PICTURE clause
is other than shown in the "Implied Description" column in the table, the rules for the MOVE statement
determine the storing of the result. The effect is that of a MOVE in which the sending item is described
as shown in the "Stored as" column and the receiving item description is that supplied by the user for
identifier when accepting. The sending and receiving fields are reversed when displaying.

NOTE:

See Section 9 for further discussion of ACCEPT and D!SPLA Y statements.

Table 4-1. Rules for SPECIAL-NAMES

SPECIAL-NAME Stored•

" alphanumeroc

6numeric

Snumeric

SYSCONSOLE Variable-length

alphanumeric

DISPLAY

12 EBCDIC
characters

yymmdd

Implied Description
for ACCEPT or

DISPLAY @

I
, ~~,c~~'~.~~e~>y PIC XlnJ

perl1ne

~p 10 250

Explanation

See the supervisor user
guode, UP-8075!currentvemonl

Current day

Time of day

System console

SYSCHAN-t @ Not applicable

I ForACCEPT +
60characte"

~~~~t--~~~~~----; 

SYSERR [·ml Not applicable 

SYSSWCH 8 alphanumeric 

SYSLST 

1alphaflumeric 

Vanable·leflgth 
alphanume"c 
characters 

Var1able·leflgth 
alphanumer•c 

Notappl<cab!e ! No1appl1cable 

Not applicable Not applicable 

8 EBCDIC PIC X{8) 

: PIC X 

I 

120charactersl I PIC XlnJ 

llfle i 

~:~=~~e~:~.~lh i ~:,~haracter>I 

r--svs.,:-N-'2-8 -+:~::~:::=::~~!:,,-,,-, +----+---t 128characters PIC X{nl 

alphanume<1c ond,.kette 

alphanumenc 

To assign name to 
pronte<loopchannel 

Refer toSect<on 11 

To call or change UPSI 

To change UPSI bots 

Embedded control stream 
dataca,dsl80..:olumnl 

Embeddedcontrol•tream 
datacafdsl96·column) 

Embedded control stream 
datal8413d,,kettel 

Sys1emcnnsoleandlog 
i>le(nooperator 

SYSLO~Variable·length No 

\------------- c~·~- t-----+-----+----~+-----+--'~-''-"'-''-----j 
ON STATUS CD Not appjicable No Notappl:cable Not applicable 

1 
OFF STATUS Ci) Not applicable No!applocable Notapplocable 

NOTES. 

G) Can be used only in conditional vanable tests @ See 4 2 3, rule 14 

@ Can be used only in AOVANCING clause of WRITE statement 

To interrogate user 
programsw11ch1nd1cators 
lUPSI) for ON or OFF 

+ 



UP-8059 Rev. 3 

4.3. INPUT-OUTPUT SECTION 

Definition: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

4-8 

This section of the environment division is used to specify the input/output media for the files used by the 
source program and to provide information needed for most efficient transmission of data between this media 

and the object program. 

Format: 

[

INPUT-OUTPUT SECTION. J 
FILE-CONTROL. {entry.} ... 

[l-0-CONTROL. entry.) 

4.3.1. FILE-CONTROL Paragraph 

Function: 

The FI LE-CONTROL paragraph names each file, identifies the hardware medium containing it, permits 
specific hardware assignments for the program, and specifies alternate input/output areas. The clauses 
following SELECT and ASSIGN under FILE CONTROL may be specified in any order. 

Format: 

FILE-CONTROL. {SELECT [OPTIONAL) file-name 
ASSIGN TO [external-name) [integer-1) implementor-name-1 [OR implementor-name-2) 

[FOR MULTIPLE {~~~~ }] 

RESERVE { ~~ger-2 } 

{
FILE-LIMIT IS } 
FILE-LIMITS ARE 

ALTERNATE 

{ 
data-name-1 } 
literal-1 

[ AREA J J 
AREAS 

THRU {data-name-2} 
-- literal-2 

[ 
; {~ata-name-3} THRU {~ata-name-4 }] .. ·] 

hteral-3 -- hteral-4 

[ ; ACCESS MODE IS m~~:~:J] 
[ ; PROCESSING MODE ~SEQUENTIAL) 

[ {

INDEXED t J ; ORGANIZATION IS RELATIVE 
SEQUENTIAL 

[ {
ACTUAL KEY IS data-name-5 }] 

' RELATIVE KEY ~data-name-6 

[; SYMBOLIC KEY IS data-name-7) 

[ ; RECORD KEY IS data-name-8) . } ... 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

Rules: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

4-9 

1. The comma or semicolon may separate each clause, and a period must follow the entry. 

2. A SELECT clause must be specified for the following: 

• Every file that is the subject of an FD or SD. 

• The external-name operand of a RERUN clause for which no FD or SD is supplied. 

3. The keyword OPTIONAL, which may be applied to input files only, is required for files that are not 
necessarily present each time the object program is run. The status of the optional file at run time is 
determined by the job control stream. If the file is not present in the job stream, control takes the path 
specified by the AT END statement on the first READ statement. The keyword OPTIONAL can be 
applied to input files only, and these files must be sequential. 

4. The ASSIGN clause designates a particular hardware device, or class of devices, to which a specific file is 
assigned. External-name is a non numeric literal ( 1 to 8 characters) which is associated with a file. This is 
the name used in the job control stream to assign devices to the file (using the LFD job control 
statement). The external name must be unique within a job step. If external-name is omitted, the first 
eight characters of file-name are assumed for external-name. lnteger-1 serves as documentation only, 

referring to the number of devices associated with the file. SPERRY UNIVAC OS/3 COBOL assigns the 

following implementor-names: 

Device 

51-column card reader 
66-column card reader 
80- or 96-column card reader or 8413 diskette subsystem 
Card punch or 8413 diskette subsystem 
Line printer 
SPERRY UNIVAC 8411 Disc Subsystem 
SPERRY UNIVAC 8414 Disc Subsystem 
SPERRY UNIVAC 8415 Disc Subsystem 
SPERRY UNIVAC 8416 Disc Subsystem 
SPERRY UNIVAC 8418 Disc Subsystem 
SPERRY UNIVAC 8430 Disc Subsystem 
SPERRY UNIVAC 8433 Disc Subsystem 
UNISERVO Vl-C Magnetic Tape Subsystem 
All other tapes 

Implementor-Name 

CARD-READER-51 
CARD-READER-66 
CARD-READER 
CARD-PUNCH 
PRINTER 
DISC-8411 
DISC-8414 
DISC-8415 
DISC or DISC-8416 
DISC-8418 
DISC-8430 
DISC-8433 
TAPE-6 
TAPE 

The implementor-name, DISC, specifies an assignment to the 8416 disc subsystem. Because of track size 
differences, the user must ensure that the proper implementor-name is used when assigning discs. 

The implementor-name, CARD-READER, is used when reading 80- or 96-column cards or when reading 
data from an 8413 diskette device. If the record size specified in the data division is greater than the 
physical record size of the medium, the remaining character positions in the record will contain spaces. 

5. The MUL Tl PLE clause, when present, specifies that the file exists on more than one volume. This clause 
is accepted for documentation purposes only, since the actual function is provided via the job control 
stream, which specifies the devices needed for the problem program . 

6. The RESERVE clause indicates the number of additional 1/0 areas desired. The keyword NO causes no 
additional 1/0 areas to be reserved; integer-2 reserves one additional 1/0 area. lnteger-2 must be a 1; if 
not and the word NO is not specified, a warning diagnostic will be issued. Omission of this clause may 
result in the allocation of one additional 1/0 area as indicated in the following chart: 



UP-8059 Rev. 3 

7. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Number of Additional 

Device 1/0 Areas Allocated 
if Clause 

Not Specified 

CARD-READER 1 

CARD-PUNCH 1 

PRINTER 1 

TAPE 1 

ORGANIZATION 

SEQUENTIAL 1 
(or omitted) 

DISC ORGANIZATION 
INDEXED 

0 

ORGANIZATION 

RELATIVE 0 

Fl LE-LIMIT clause serves as documentation only. 

4-10 

Reserve 
Integer 

Allowed 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

8. ACCESS MODE specifies the manner in which the records of a file are read and/or written. Absence of 
this clause results in assumption of sequential access. 

9. PROCESSING MODE clause is for documentation only. Sequential processing is always assumed, 
regardless of the absence or presence of this clause. 

10. The ORGANIZATION clause designates the physical structure of the file. Sequential organization is 

assumed if the clause is omitted. This clause is an extension to American National Standard COBOL 
(1968). 

11. ACTUAL KEY IS data-name-5. See RELATIVE KEY explanation. 

For compatibility with SPERRY UNIVAC 9300 System COBOL, ACTUAL KEY may be specified in 
place of SYMBOLIC KEY when used with indexed file organizations. 

NOTE: 

In this case, the ORGANIZATION clause must appear first. 

12. RELATIVE KEY IS data-name-6 is used with relative organization files to supply the physical position 
of a record with respect to the beginning of the file. Records in a relative organization file are addressed 
as relative record numbers 1, 2, 3, and so on. The ACTUAL KEY clause may be substituted for the 

RELATIVE KEY clause. Data-name-6 must be defined as an unsigned numeric integer according to the 
rules for numeric items. The RELATIVE KEY clause is an extension to American National Standard 
COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

4-11 

13. SYMBOLIC KEY IS data-name-7 is used for indexed file organizations to supply the record 
identification for random retrieval and sequential positioning. The information associated with the 
RECORD KEY clause must be identical with the information associated with the SYMBOLIC KEY 
clause. Data-name-7 must consist of 3 to 249 characters (may be numeric computational). This clause is 
an extension to American National Standard COBOL (1968). 

14. RECORD KEY IS data-name-8 is used for indexed-organized files to supply the record identification 
field. Data-name-8 must consist of 3 to 249 bytes. This clause is an extension to American National 
Standard COBOL ( 1968). 

A detailed explanation of the various keys and types of file organization is given in Section 11. 

4.3.2. 1-0-CONTROL Paragraph 

Function: 

Specifies the following: 

• Input/output techniques 

• Main storage area shared by various files 

• Location of each file on multiple-file-reel 

• Intervals at which rerun is to be established 

Format: 

1-0-CONTROL. 
[RERUN ON external-name EVERY integer-1 RECORDS OF file-name-1 [, file-name-2) ... ] ... 

[ ; SAME [ {=~~~RD} J AREA FOR file-name-3 {, file-name-4} ... ] 

[;MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-2) 
[file-name-6 [POSITION integer-3) ] ... ] ... 

[;APPLY VERIFY ON file-name-8 [. file-name-n] ... ] ... 

[ 
. y OC -COUNT ON { file-name-9 [file-name-10) .. ·}] 
, APPL BL K _ TAPES .. . 

t [·APPLY MASTER-INDEX ON file-name-11 [. file-name-12) ... ] .. . 
[· ~PPLY CYLINDER-INDEX AREA OF integer-5 INDICES ON file-name-13 [. file-name-14) ... ] .. . 
[;APPLY CYLINDER-OVERFLOWAREA OF integer-6 PERCENT ON file-name-15 [. file-name-16) ... ] 

t [;APPLY EXTENDED-INSERTION AREA ON file-name-17 [. file-name-18) ... ] ... 
[;APPLY Fl LE-PREPARATION ON file-name-19 [. file-name-20) ... ] 

[; APPLY ASCII 

[ { 
FOR BLOCK-LENGTH-CHECK }] 

WITH BUFFER-OFFSET OF integer CHARACTERS 

ON file-name-21 [. file-name-22) ... ] 

tAccepted for SPERRY UNIVAC Operating System/4 (OS/4) and Operating System/7 (OS/7) compatibility only. 



UP-8059 Rev. 3 

Rules: 

1. 

2. 

3. 

4. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

A comma or semicolon may separate each entry, and a period must follow the last entry. 

4-12 

The RERUN clause specifies that checkpoint records are to be written on the disc or tape unit specified 
by external-name. A checkpoint record is the recording of the status of the processor at a given point 
during the execution of the object program. All the information required to restart the program at that 
point is contained in the checkpoint record. These records are written whenever integer-1 records occur 
for file-name-1. File-name-1, file-name-2 ... can appear in only one RERUN statement; external-name 
can appear in any number of RERUN statements. The allowable range of integer-1 is 1 to 9,999,999. 

The SAME AREA clause specifies that two or more files are to use the same main storage area during 
processing. When the key word RECORD is omitted, the area being shared includes all storage areas 
assigned to the files; therefore, only one file may be open at a time. If RECORD is specified, any 
number of files may use the same storage area for processing the current logical record (the record 
formats of such files must not conflict). The SAME RECORD AREA clause should be used only when 
necessary because it reduces efficiency. 

IF the SAME SORT AREA clause is used, at least one of the file-names must be a sort file and the 
subject of an SD. Storage areas assigned to files that are not sort files will be allocated in the sort file 
area if they appear in this clause. These files must not be open during the execution of a sort. 

Files that appear in a SAME AREA and a SAME SORT AREA clause share the same space within the 
sort file area. If any nonsort file is mentioned in both clauses, all files in the SAME AREA clause must 
appear in the SAME SORT AREA clause. 

The MUL Tl PLE Fl LE clause is for documentation only. This feature is supported by job control. 

5. The APPLY VERIFY clause requests verification (READ after WRITE) of disc records after they have 
been written. Absence of this clause results in no verification of records written. 

6. The APPLY BLOCK-COUNT causes a 3-byte block number to be inserted at the beginning of each block 
on tape for each file-name designated. If the TAPES option is specified, all tape files present are 
affected. This clause must be present for all input files which contain a block count. 

7. The APPLY FILE-PREPARATION clause indicates that the tracks allocated to a relative organized file 
are to be recorded with initializing data prior to creation of a file. The track initialization occurs after an 
OPEN OUTPUT command is issued. 

8. The APPLY MASTER-INDEX clause is only accepted for OS/4 and OS/7 compatibility. In OS/3, this 
clause serves for documentation only. 

9. The APPLY CYLINDER-INDEX integer-5 clause, used only with indexed files, indicates that sufficient 
main storage area is to be allocated to contain integer-5 top index entries. 

10. The APPLY CYLINDER-OVERFLOW integer-6 clause, used only with indexed-sequential files, indicates 
that integer-6 percent of each cylinder in the prime data area is to be reserved for the purpose of 
cylinder overflow. If this clause is omitted, 20 percent of the cylinders specified are automatically 
allocated. If no overflow is desired, 0 percent should be specified. If no overflow exists, then no new 
records can be inserted into the file. lnteger-6 is an unsigned number. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

4-13 

11. The APPLY EXTENDED-INSERTION clause is accepted for OS/4 and OS/7 compatibility. In OS/3, this 
clause serves for documentation only. 

12. The use of the APPLY ASCII clause, which identifies each file that contains or receives ASCII data, is 
explained in Section 13. _. 

NOTE: 

APPLY clauses (rules 5 through 12) are extensions to American National Standard COBOL (1968). Further 
discussion of 1-0-CONTROL is given in Section 11. 

PROGRAM _______ _ 

SE OU ENCE 
NUMBE'l 

00. 1.0 I 0 

00,10 I I 

Q_Ot012. 

q_~LQ.L~. 

001014-

TEX T -------------··-·····------
20 30 40 

EN,V; I DI I <9'N. L..... . .L.-L . .L.L-~ • ..L...l_J ___ L,;, __ , _ __,__.L,.,,,i._ 

CC!/ F I.6,VRA1 ,I.L~~L.L~E_,_C,l,!,<9'N, -~--L-L...L.-· -· -1 ...... .L .. ..L.. .. L.L_, __ ; ..... l. j .L,,, 

S.l9'.u1R C.E - C,C'!Jl'1E ,U.TiSB.~ lllt1!:LY1A~.c:,91P1~,0.~~L.L~_,l__,LH 

C9".B-'-J_J:C.T-C,<9';_~_BV,JL~B·1JlNJ.V.~'r:.9~.J1~ . .LLLL . .J_• " .1 ... .i. 

S.P.ECIAL-NA £S1.,, 

og I ,0, L!5 --- ··--L-· ' S.Y.S,C,c<,!NJ.~~,_,E, .Jl~1:fY'P,E, l!L:.L.c_L.J._L.J __ ,_,L_,l Le. L ' ' 

OO.L9 l,6 I.N_:_P:Vi _ _,_:1.~V.T,1',U,T, 1 S,E.C.c..T1l1~.L..~~l .. LLL~ . ..J.....L....L_ L,,,!__L_J __ _;___, 

00 I QJ_l~ F.l-"L1E ::i.~filJ\~bL.:.l . ' .L-l ' I ! _ _;_L..L..J.._L l .... L ....... . 1 '·-·'· ,L_J._,,;_, 

Q (), I , 0 I 5'. E,L E C,T. , I, ~LR_VJi_L _ _A_$,~I_1<?1~L-'-I_~--"J.iA_E_E.:Lb :__1_ ... ..1. ·' .. L .L 

00\0L $ELEC.T 1...lS'T SSIGN 11<' :PRINT R .. 

Figure 4-1. Example of Environment Division Entries 



• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

5.1. GENERAL 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-1 

5. Data Division 

Every data item referenced in the procedure division of a SPERRY UNIVAC Operating System/3 (OS/3) COBOL 
program must be described in the data division (Figure 5-1) except for the special register TALLY, index-names, 
figurative constants, and literals. File structures are described by file description entries; data items and records are 
described by record description or single item entries as described in 5.3. 

Format: 

DATA DIVISION. 

FILE SECTION . 

WORKING-STORAGE SECTION. 

LINKAGE SECTION.* 

*Extension to American National Standard COBOL (1968). 



UP-8059 Rev. 3 

Rules: 

1. 

2. 

3. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

The division header DATA DIVISION must be present in all COBOL programs. 

5-2 

Sections are written in the order shown; if a section is not required, it may be omitted entirely. 

Data-names used in FD, SD, or 77 level entries must be unique because they cannot be qualified. The 
same is true for data-names used in 01 entries within the working-storage and linkage sections of the 
source program. 

5.1.1. Data Definition 

Table 5-1 shows the allowable sizes of data items in OS/3 COBOL. Data type is determined by the PICTURE and 
USAGE clauses. See 5.3.4 for legal PICTURE characters for each data type. 

Table 5-1. Main Storage Allocation 

COBOL Characters Area in Bytes 
Data Type 

Minimum Maximum Minimum Maximum 

Group (working- 1 65,535 1 65,535 
storage) 

Group (file or 1 4092 1 4092 
I inkage section) 

Alphanumeric 1 4092 1 4092 

Alphabetic 1 4092 1 4092 

Alphanumeric 2 132 2 132 

edited 

Numeric edited 2 132 2 132 

Decimal numeric 1 18 1 18 
display 

Floating-point 6 22 6 22 

numeric display 

Numeric COMP or 1 18 2 8 
numeric COMP 4 

Numeric COMP-1 Not applicable Not applicable 4 4 

Numeric COMP-2 Not applicable Not applicable 8 8 

Numeric COMP-3 1 (plus sign) 18 (plus sign) 1 10 

Index name Not applicable Not applicable 8 8 

Index data item Not applicable Not applicable 8 8 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-3 

• 5.2. Fl LE SECTION 

• 

• 

The file section consists of: 

• File description (FD) entries describing the structure of all files and naming the data records contained in each. 

• Record description entries immediately follow each file description entry and describe in detail each record 

format used in the file. 

Format: 

{ 

FD file-name-1 (file description clauses) 

{ 01 record-name-1 (record description clauses)} ... } ... 
5.2.1. File Description 

Function: 

Provides information concerning the physical structure, labeling, and record names of a given file. 

Format: 

FD file-name 

[ {
CHARACTERS}] 

; BLOCK CONTAINS [integer-1 TO] integer-2 RECORDS 

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS] 

{

OMITTED } 
· LABEL {RECORDS ARE} STANDARD 
' -- RECORD IS 

data-name-1 [ , data-name-2) ... 

[ REOORDING MODEIS { UJ 
[ ~ {

d.ata-name-3} ~ ... J ; VALUE OF unqualified-data-name IS 
hteral-1 

[: DATA {~~~~~~~:RE} data-name-4 [, data-name-5) ... J 
Rule: 

The various clauses may appear in any order after file-name. 

5.2.1.1. BLOCK CONTAINS Clause 

Function: 

Specifies the size of a physical record. 



UP-8059 Rev. 3 

Format: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-4 

. . { CHARACTERS } 
BLOCK CONTAINS [mteger-1 !QJ mteger-2 RECORDS 

Rules: 

1. lnteger-1 and integer-2 must be unsigned integers other than 0. 

2. If the RECORDS option is specified and RECORDING MODE is F, this clause specifies the number of 
records per block. 

If the RECORDS option is specified and RECORDING MODE is V or D, this clause specifies the 
number of the longest records per block. It is also possible for a block to contain a greater number of the 
shorter records, depending on the differences in record sizes. 

3. When CHARACTERS is specified, this clause specifies the number of characters (bytes) per block 
(physical record). 

a. For files not assigned to disc devices, this does not include the three bytes for the APPLY 
BLOCK-COUNT for tape, but does include the block header and record header bytes if recording 
mode is V. (The block header is four bytes per block, and the record header is four bytes per 

logical record.) 

b. For files assigned to disc devices, this number includes all the control fields associated with the 
data portion of the disc block. This number does not include the key field and count field lengths 
associated with those fields of the disc block. Table 5-2 shows the size of the control fields 
associated with the block. 

Table 5-2. Control Field Sizes 

Bytes per Field 

Organization: Sequential, Relative Organization: Indexed 
Field 

Recording Mode Recording Mode 

F v F v 

Block Header (BLKHDR) 0 4 2 2 

Record Header (RECHDR) 0 4 0 2 

Indexed Record Pointer (LINK) 0 0 5 5 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-5 

The values are defined according to the recording mode and organization of the file. The programmer 
must define the values for the logical record size and a blocking factor. The blocking factor (BLKFAC) 
equals the number of logical records per physical block. The logical record size (LOGRECSIZE) is also 
determined by the recording mode. 

If the recording mode is F, the logical record size is the size of the 01 record defined in the file FD. If 
the recording mode is V, the size of the logical record is equal to the size of the largest logical record. 

Thus, the size of the physical block may be calculated according to the following formula: 

BLKHDR + (BLKFAC * (RECHDR + LOGRECSIZE +LINK)) 

4. This clause may be specified for CARD-READER and CARD-PUNCH files to provide greater processing 
efficiency if the device is an 8413 diskette subsystem. In this case, the BLOCK clause does not specify 
the size of a physical block, but specifies the size of the buffer areas to be used for multi sector 1/0. 

a. If the RECORDS option is used, the size of the buffer area may be calculated by using the 
following formula: 

BLKFAC*(RECHDR + LOGRECSIZE) 

The maximum buffer size is 1024 bytes; therefore, the blocking factor (BLKFAC) the programmer 
selects must be equal to or less than 1024 divided by (RECHDR + LOGRECSIZE). 

b. If the CHARACTERS option is used and RECORDING MODE IS F, the BLOCK CLAUSE integer 
may be any multiple of (RECHDR + LOGRECSIZE) up to 1024. 

5. When CHARACTERS and RECORDS are both omitted, CHARACTERS is assumed. 

6. When this clause is omitted, it is assumed that records are recorded one per block and the record size is 
fixed. 

7. If both integer-1 and integer-2 are specified, integer-1 is treated as documentation only. Block size ranges 
are given in Table 5-3. 

5.2.1.2. RECORD CONTAINS Clause 

Function: 

Specifies the size of data records. 

Format: 

Rules: 

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS 

1. lnteger-1 and integP.r-2 must be unsigned integers other than O; integer-2 must be greater than integer-1. 

2. The size of each data record is completely defined within the record description entry; therefore, this 
clause is optional. When present, however, the following notes apply: 

• If integer-2 is used alone, all the data records in the file must have the same size. In this case, 
integer-2 represents the exact number of characters in the data record. 

• If both integer-1 and integer-2 are shown, they refer to the minimum and maximum size data 

record. 

t 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 5-3. Block Size Ranges 

5-6 

Bytes per Block 

Hardware Device Organization: Sequential, Relative 
and 

Implementor Name Recording F & U Recording V 

Min Max Min Max 

CARD-READER 1 1024® 9 1024® 

CARD-READER-51 1 51 - -

CARD-READER-66 1 66 - -

CARD-PUNCH 1 1024® 9 1024® 

PRINTER 1 CD 9 @ 

UNISERVO Vl-C 
13@ 13@ (TAPE-6) 4,096 4,096 

UNISERVO Vl-C 
13@ 13@ (TAPE-6) with 4,092 4,092 

block numbering 

Other tapes @ 
13@ 13@ (TAPE) 32,767 32,767 

Other tapes @ 
13@ 13@ (TAPE) with 32.763 32,763 

block numbering 

8411 disc 
(DISC-8411) 1 3,625 9 3,625 

8414 disc 

(DISC-8414) 1 7,294 9 7,294 

8415disc 
(DISC-8415) 1 10,240 9 10,240 

8416 disc 
(DISC-8416 or DISC) 1 10,240 9 10,240 

8418 disc 
(DISC-8418) 1 10,240 9 10,240 

8430 disc 
(DISC-8430) 1 13,030 9 13,030 

8433 disc 
(DISC-8433) 

1 13,030 9 13,030 

NOTES: 

CD For 768 size = 132; for 770 size = 160; for 773 size = 144. 

@ For 768 size= 140; for 770 size= 168; for 773 size= 152. 

@ 

© 

Minimum size is 20 if tape is RERUN receiver. 

Maximum size is 8192 if multiplexer channel is used. 

Organization: Indexed 

Recording F & U Recording V 

Min Max Min Max 

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

4 3,625 14 3,625 

4 7,294 14 7,294 

10 10,240 12 I 10,240 

10 10,240 12 10,240 

10 10,240 12 10,240 

10 13,030 12 13,030 

10 13,030 12 13,030 

® Note that the maximum physical block is 128 characters (8413 diskette), 96 characters (96-cofumn card), or 80 
-characters (80-column card). The larger block size is used to specify multisector 1/0 when the device is an 8413 
diskette. (See 5.2.1.1, Rule 4.) 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-7 

• 5.2.1.3. LABEL RECORDS Clause 

• 

• 

Function: 

Enables the compiler to cross-reference the description of a label record with its associated file. 

Format: 

Rules: 

LABEL { RECORDS ARE} 
-- RECORDIS {

OMITTED } 
STANDARD 
data-name-1 [,data-name-2] ... 

1. 

2. 

3. 

The OMITTED clause specifies that no standard labels exist for the file or the device to which the file is 
assigned. Any nonstandard labels must be described and processed as data records. 

The STANDARD clause specifies that standard file labels exist for the file or the device to which the file 
is assigned, and the labels conform to OS/3 label specifications. (Refer to the data management user 
guide, UP-8068 (current version).) Standard user labels may also be present, but the STANDARD clause 
specifies that they are not to be checked on input files, or written on output files. 

Data-name-1 [.data-name-2] ... specifies that standard labels are to be checked (or created), and that 
OS/3 standard user labels are present. User labels must conform, in content and format, to the OS/3 
standard u~er label specifications . 

The following rules apply when data-name-1 is specified: 

• Data-name-1 [,data-name-2] ... must have a record description subordinate to this file description. 

• For input files, data management provides access to standard user label information in the area 
described by data-name-1. 

• For output files, the user moves user label information into the area described by data-name-1 for 
data managment to write to the output file. 

• User label records can be referenced only in USE procedures in the declaratives section (6.2). 

4. The label record specifications for the various device types are as shown in Table 5-4 . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 5-4. Label Record Specifications 

Device 
Labels Labels 

Omitted Standard 

PRINTER Yes No 

CARD-READER Yes No 

CARD-PUNCH Yes No 

TAPE Yes Yes 

ORGANIZATION 
SEQUENTIAL No Yes 

DISC 
ORGANIZATION 
RELATIVE No Yes 

ORGANIZATION 
INDEXED No Yes 

5.2.1.4. RECORDING MODE* Clause 

Function: 

Specifies the format of the logical record comprising the file. 

Format: 

RECORDING MODE IS { ~ t 
Rules: 

Labels 
Data-name 

No 

No 

No 

Yes 

Yes 

Yes 

No 

1. The D mode may be specified for ASCII tape files with variable-length records. 

5-8 

2. The F mode (fixed-length format) is specified when all the logical records in the file are of the same 
length. 

3. The U mode (undefined format) states that the records of this file are not blocked and may vary in 
length. This mode is not allowed in SORT files (SD). nor is it available for disc files. 

4. The V mode (variable-length format) is specified when records within a file vary in length. 

5. The following chart describes the recording mode assumed when the clause is omitted. 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Device 

PRINTER 

CARD-READER 

CARD-PUNCH 

TAPE 

ORGANIZATION 
SEQUENTIAL 

DISC 
ORGANIZATION 
RELATIVE 

ORGANIZATION 
INDEXED 

5.2.1.5. VALUE OF Clause 

Function: 

5-9 

Assumed 
Format 

F 

F 

F 

v 

v 

F 

F 

Describes a particular item in the standard file label record associated with a file; this clause serves as 
documentation only. 

Format: 

VALUE OF unqualified-data-name IS . 
[ 

. { data-name-3 } J 
- hteral-1 

5.2.1.6. DATA RECORDS Clause 

Function: 

Specifies the names of the logical records in a file. 

Format: 

DATA {RECORDS ARE} data-name-4 [, data-name-5] ... 
RECORD IS 

Rules: 

1. This clause is optional and serves as documentation only . 

2. Each data-name specified must appear at a 01 level number following the FD entry. 



UP-8059 Rev. 3 

5.2.2. Sort File Description 

Function: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Identifies the beginning of a sort file description (SD) and supplies the name of the file. 

Format: 

SD file-name 
[ ; RECORD CONTAINS [integer-1 TO) integer-2 CHARACTERS) 

[; RECORDING MODE IS { ~} J 
[ j RECORDS ARE l 

; DATA / RECORD IS ~ data-name-1 [ , data-name-2) ... ] 

Rules: 

1. An SD clause is required for each file to be sorted. 

2. Each data-name specified must appear as a 01 level-number following the SD entry. 

5-10 

3. The RECORD CONTAINS, RECORDING MODE*, and DATA RECORD clauses are described under 
the FD entry. 

4. Recording mode Vis assumed when the RECORDING MODE clause is omitted. 

5. File-name may appear only in the SORT and RETURN statements within the procedure division, and 
only those file-names which appear in SD entries may be used in those statements. File-name may also 
appear in SAME RECORD AREA and SAME SORT AREA clauses in the environment division. 

6. A summary of the OS/3 COBOL SORT formats is given in Section 12. 

*Extension ta American National Standard COBOL (1968). 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-11 

• 5.3. DATA DESCRIPTION 

• 

• 

Function: 

Defines the characteristics of a particular data item. 

Format 1: 

level-number 
{

FILLER } 

unqualified-data-name-1 

[;REDEFINES unqualified-data-name-2] 

OCCURS integer-2 TIMES [ { ~~~~~~~~~G} KEY IS data-name-2 [. data-name-2] .. ·] 

[INDEXED BY index-name-1 [ • index-name-2] ... ] 

; OCCURS [integer-1 TO] integer-2 TIMES DEPENDING ON data-name-1 

[{
ASCENDING } J DESCENDING KEY IS data-name-2 [, data-name-3] ... 

[INDEXED BY index-name-1 [. index-name-2] ... l 

[ · { PIC } IS character-string J 
' PICTURE 

COMP 
COMPUTATIONAL 
COMP-1 
COMPUTATIONAL-1 

COMP-2 

; [USAGE IS] 
COMPUTATIONAL-2 
COMP-3 
COMPUTATIONAL-3 
COMP-4 
COMPUTATIONAL-4 
DISPLAY 
INDEX 

[ ; MAP IS integer-3 CHARACTERS] 

[; { ~HRONIZED } [ { ~~~~T } J J 
[; {~IFIED} RIGHT J 
[;VALUE IS literal] 
[ ; BLANK WHEN ZERO] 

[ {

[SIGN IS] {LEADING } SEPARATE CHARACTER }] 
-- TRAILING 

' 
[SIGN IS] TRAILING 

Format 2: 

66 unqualified-data-name-1; RENAMES data-name-2 [THRU data-name-3] 

Format 3: 

{
VALUES ARE} 

88 condition-name; VALUE IS literal-1 [THRU literal-2] 

[literal-3 [THRU literal-4]] ... 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5.3.1. Level Number and Unqualified-data-name/Fl LLER Clause 

Function: 

5-12 

The level number shows the hierarchy of data within a logical record. In addition, it is used to identify entries 
for condition-names, noncontiguous working-storage items, and the RENAMES clause. 

Format: 

level-number .. {
FILLER } 
unqualified-data-name 

Rules: 

1. A level number is required as the first element in each data description entry. 

2. Level-number 01 through 09 may be expressed without the leading O's. 

3. Level-number 01 identifies the first entry in each record description. 

4. Level numbers start at 01 for records, and become successively higher for subsets of records, such as 
group and elementary items. The maximum level-number permitted is 49, except for levels 66, 77, and 
88. 

5. Level-number 66 is used only for the RENAMES clause. 

6. Level-number 77 is used in the working-storage section to describe noncontiguous data items and 
constants. 

7. Level-number 88 is assigned to entries which defined condition-names associated with a conditional 
variable. 

8. FILLER may be used to name an elementary item in a record. Under no circumstances can a FILLER 
item be referred to directly. Also, FILLER must not be used with a level-number 88, but may be used to 
name the associated conditional variable. 

5.3.2. REDEFINES Clause 

Function: 

Allows the same area of computer main storage to be described by different data descriptions. 

Format: 

level-number unqualified-data-name-1 ; REDEFINES unqualified-data-name-2 

Rules: 

1. The REDEFINES clause must immediately follow unqualified-data-name-1. 

2. The level numbers of unqualified-data·name-1 and unqualified-data-name-2 must be identical, and may 
not be 66 or 88. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

3. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-13 

The REDEFINES clause must not be applied to level 01 entries in the file or linkage sections, although 
this is permissible in the working-storage section. 

4. Redefinition begins at unqualified-data-name-2 and continues until a level number less than, or equal to, 
that of unqualified-data-name-2 is detected. A REDEFINES clause may be used within the range of 
another REDEFINES with a maximum of five levels permitted. 

5. When the level number being redefined is other than 01, unqualified-data-name-1 must specify a storage 
area equal to the storage area for unqualified-data-name-2. 

6. Unqualified-data-name-2 must not contain, or be subordinate to, an OCCURS clause. 

7. Entries described under unqualified-data-name-1 must not contain VALUE clauses except in 
condition-name entries (level-number 88). 

8. Multiple redefinition of the same storage area is permitted. The entries giving the new descriptions of the 
storage area must follow the entries defining the area being redefined; no intervening entries defining 
new storage are permitted. Multiple redefinitions of the same storage area must use the data-name of the 
entry that originally defined the area. 

9. See rule 5 in 5.3.6 for use of REDEFINES with SYNCHRONIZED clause. 

5.3.3. OCCURS Clause 

Function: 

Eliminates the need for separate entries for repeated data, and supplies information required for the 
application of subscripts or indexes. 

Format 1: 

. [ { ASCENDING } OCCURS mteger-2 TIMES DESCENDING KEY IS data-name-2 

[ , data-name-3) ... J ... [INDEXED BY index-name-1 [ , index-name-2) ... J 
Format 2: 

[{
ASCENDING } 

OCCURS [integer-1 TO] integer-2 TIMES DEPENDING ON data-name-1 DESCENDING 

Rules: 

KEY IS data-name-2 [, data-name-3) ... J ... [INDEXED BY index-name-1 [, index-name-2] .. .) 

1. The OCCURS clause is used in defining tables and other homogeneous sets of repeated data items. 

2. 

Whenever the OCCURS clause is used, the data-name that is the subject of this entry must be either 
subscripted or indexed whenever it is referred to in a statement other than the SEARCH statement. 
Further, if the subject of this entry is the name of a group item, all data-names belonging to the group 
must be subscripted or indexed whenever they are used as operands . 

An INDEXED BY clause is required if the subject of this entry, or a group item within it, is to be 
referenced by indexing. Index-name is not defined elsewhere by the user, since its format is dependent 
on the hardware and storage is allocated by the compiler. 



UP-8059 Rev. 3 

3. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-14 

The data description clauses associated with an item that includes an OCCURS clause apply to each 
repetition of the item described. 

4. The OCCURS clause cannot be specified in a data description entry that: 

• contains an 01, a 66, a 77, or an 88 level-number; and 

• describes an item whose size is variable. The size of an item is variable if the data description of 
any subordinate item contains format 2 of the OCCURS clause. 

5. Three levels of subscripting and indexing are permitted. 

6. Data-name-1, data-name-2, data-name-3, ... may be qualified. 

7. The KEY IS clause is used to indicate that the repeated data is arranged in ascending or descending order 
according to the values contained in data-name-2, data-name-3, etc. The data-names are listed in their 
descending order of significance. 

8. Data-name-2 must be either the name of the entry containing the OCCURS clause or the name of an 
entry subordinate to the entry containing the OCCURS clause. If data-name-2 is not the subject of this 
entry, then: 

• all of the items identified by the data-names in KEY IS must be within the group item which is the 
subject of this entry; and 

• none of the items identified by data-names in KEY IS can be described by an entry which either 
contains an OCCURS clause or is subordinate to an entry which contains an OCCURS clause. 

9. Data-name-3, etc., must be the name of an entry subordinate to the group item that is the subject of this 

entry. 

10. In format 1, the value of integer-2 represents the exact number of occurrences. The area allocated 
multiplied by the number of occurrences cannot exceed 65,535. 

11. Format 2 specifies that the subject of this entry has a variable number of occurrences. The value of 
integer-2 represents the maximum number of occurrences and the value of integer-1 represents the 
minimum number of occurrences. This does not imply that the length of the subject is variable but that 
the number of occurrences is variable. lnteger-2 must be a positive or unsigned integer (not 0). The area 
allocated, multiplied by the number of occurrences, cannot exceed 65,535. lnteger-1 may be positive or 

O but must be less than integer-2. The integer-1 TO option is an extension to American National 

Standard COBOL (1968). 

12. A data description entry that contains format 2 of the OCCURS clause may be followed, within that 
record description, only by data description entries which are subordinate to it. 

13. Any entry which contains, or has a subordinate entry which contains, format 2 cannot be the object of 
the REDEFINES clause. 

14. In format 2, the data item defined by data-name-1 must not occupy a computer storage position within 
the range of the first computer storage position defined by the data description entry containing the 
OCCURS clause and the last computer storage position defined by the record description entry 
containing that OCCURS clause. 

• 

• 

• 



• 

• 

• 

l.IP-8059 Bev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-15 
Update A 

15. The value of data-name-1 is the count of the number of occurrences of the subject and its value must fall 
within the range integer-1 through integer-2. Reducing the value of data-name-1 makes the contents of 
data items, whose occurrence number now exceed the value of data-name-1, unpredictable. The data 
description of data-name-1 must describe a positive integer. 

16. When the user references a group item whose subordinate entry has a format 2 of the OCCURS clause, 
the actual length of the group item is determined by the current value of data-name-1. The user, 
therefore, should initialize the value of data-name-1 before any operation on the group item takes place. 

17. The DEPENDING keyword (format 2) is required only, and should be used only when the end of the 
occurrences cannot otherwise be determined. 

18. The VALUE clause must not be stated in a data description entry containing an OCCURS clause or in 
any entry subordinate to an entry containing an OCCURS clause. This rule does not apply to 
condition-name entries. 

19. See rule 3 in 5.3.6 for use of OCCURS with the SYNCHRONIZED clause. 

5.3.4. PICTURE Clause 

Function: 

Describes the general characteristics and editing requirements of an elementary data item. 

Format: 

[ ; { ~TURE } IS character-string J 
Rules: 

1. The PICTURE clause can be present only with an elementary item. 

2. The PICTURE character-string can consist of 1 to 30 characters. 

3. Five categories of data can be described with a PICTURE clause: 

• Alphabetic 

• Numeric 

• Alphanumeric 

• Alphanumeric edited 

• Numeric edited 

Table 5-5 lists the allowable picture symbols and the rules for their usage . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-16 

4. To define an item as alphabetic: 

• Its picture character-string may consist of only the symbol A . 

• Its contents, when represented in standard data format, must be any combination of the 26 letters 
of the alphabet and the space. 

• Maximum number of character positions allowed is 4092. 

5. To define an item as numeric: 

There are two types of numeric items: fixed-point numeric items and floating-point numeric items. To 
define an item as fixed-point numeric: 

• The PICTURE character-string may consist of only the symbols 9, P, S, V, and H. 

• The PICTURE character-string must contain at least one 9. 

• The maximum number of digits is 18. 

• The maximum number of occurrences of P in a picture-string is 17. 

• The contents, when represented in standard data format, must be a combination of the numerals 0 
through 9. The item may include an operational sign. 

There are two kinds of floating-point numeric items*: computational (COMP-1 or COMP-2) and display. 
To define a floating-point display numeric item: 

• A floating-point display item has a picture-string in the form: 

{ ±} mantissaE { ±} exponent 

• A plus or minus sign must begin the picture-string. The plus sign is used when both plus and minus 
signs are present in the data. When a positive quantity in the data is represented by a space, the 
minus sign is used in the picture-string. This sign occupies one byte of storage. 

• Only certain symbols (. 9 V) may be used in the mantissa. Up to 16 occurrences of 9 are 
permitted. The period is used to represent an actual decimal point, and V is used to represent an 
assumed decimal point. One or the other is necessary in the mantissa. The V does not occupy any 
storage. 

• E is used to signal the exponent portion of the item. This character occupies one byte of storage. 

• A second sign precedes the exponent. The same rules apply as described for the sign preceding the 
mantissa. 

• The exponent is represented by two 9 symbols. 

• The value of a floating-point display numeric item is equal to the product of the mantissa and the 
power of 10 represented by the exponent. The value must fall within the range: 

±5.4 x 10- 79 to ±0.72 x 1076 . 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

• 

SPERRY UNIVAC 05/3 
EXTENDED COBOL 

A VALUE clause cannot be associated with a floating-point display numeric item . 

5-17 

To define an item as floating-point numeric computational (COMP-1, COMP-2), the PICTURE clause is 
not used; see USAGE clause, rule 9, 5.3.5. 

6. To define an item as alphanumeric: 

• Its character-string is restricted to X's or at least two of the symbols A, X, and 9, and is treated as 
if the picture-string were X's. 

• Its contents, when represented in standard data format, are any combination of characters in the 
UNIVAC OS/3 system character set. 

• Maximum number of character positions allowed is 4092. 

7. To define an item as alphanumeric edited: 

• Its character-string is restricted to combinations of the symbols A, X, 9, B, and 0 and must 
contain: 

• 

• 

at least one B and one X; or 

at least one 0 and one X; or 

at least one 0 and one A; or 

at least one A and one B. 

Its contents, when represented in standard data format, are any combination of characters in the 
OS/3 system character set. 

The maximum number of character positions allowed is 132 . 

8. To define an item as numeric edited: 

9 . 

• Its character-string is restricted to certain combinations of the symbols: 

B P V Z CR DB 9, . * + - 0 (zero) $ (currency sign) 

The allowable combinations are determined by the sequence in which the symbols appear, and by 
the editing rules. The number of digit positions must not exceed 18. 

• The maximum number of P's permitted is 17. 

• Its contents, when represented in standard data format, must consist of only the numerals 0 
through 9, plus editing symbols indicated. 

• The maximum number of character positions allowed is 132. 

The following symbols may appear only once in a given picture-string: 

S V. CR DBE H 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 5-18 
EXTENDED COBOL 

10. An integer enclosed in parentheses following any of the symbols: • A,X9PZ*BO+-$ 

indicates the number of consecutive occurrences of the symbol. 

11. See Table 5-6 for the order of precedence for characters used as symbols in a character-string. 

12. See Table 5-7 for examples of source fields and receivir.g fields. 

Table 5-5. PICTURE Symbols (Part 1 of 2) 

Picture Represents Can Be Used in Special Picture 
Symbol Combination With Position 

9 A numeric character Any other symbol None 

s An operational sign is associated PV9H Can be preceded 
with the data item only by H; only one 

S is permitted 

v Assumed decimal point in data Any symbol except A Only one is permitted; 

item and X;and is redundant can precede leading P 
with P or follow trailing P 

p Assumed decimal point outside of Any symbol except A Must be first or last 

data item; each P represents one and X symbol or symbols of 

character position PICTURE except for 
S CR DB V or single 
+, - or$ but cannot be • both first and last 

A An alphabetic character or space X9BO None 

x An alphanumeric character A9BO None 

z Suppression of leading O's Any symbol except: * A Can be preceded only by: 

(replaced by blanks or spaces) X S H or more than V . , $ + - P B 0 (zero) 

one$+ or -

* Check protection, replaces Any symbol except: Z A Can be preceded only by: 

leading O's with asterisks X S H or more than one V . , $ + - P B 0 (zero) 

$-or+ 

Insert comma in character Any symbol except: AX None 
(comma) position unless the preceding SH 

position is blank or 
asterisk-filled 

Actual decimal point to be Any symbol except: A X May not be last character 
(period) inserted in character position PVSH 

unless following positions have 
been blanked 

B Insert a blank or space in Any symbol except S and None 
character position unless H 
previous character is 
blank or asterisk-filled 

CR Insert the two characters CR Any symbol except: A X Must be last symbol except • if data item is of negative + - S DB H for P or V 

value: insert two blanks or 
spaces if value is positive 



• 

• 

• 

UP-8059 Rev. 3 

Picture 
Symbol 

DB 

$ 
(currency 
sign) 

0 
(zero) 

+ 

-
(minus) 

H 

* E 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 5-5. PICTURE Symbols (Part 2 of 2) 

Represents Can Be Used in 
Combination With 

Insert the two characters DB Any symbol except: A X 
if data i tern is of negative +-S CRH 
value; insert two blanks if 
value is positive 

Insert $ sign in character Any symbol except: one $ 
position; if more than one, cannot be used with: A 
indicates floating$ sign XS H; more than one$ 

cannot be used with: S 
H A X * Z or more than 
one+ -

Insert 0 in character position Any symbol except 
unless previous character is Sand H 
blank or asterisk-filled 

Insert+ in character position Any symbol except: one 
if data item value positive +cannot be used with: 
and - if value negative; if AX - S CR DB H; more 
more than one +, indicates than one consecutive+ 
floating sign cannot be used with A 

X - S CR DB Z H * or 
more than one $ sign 

Insert - in character position Any symbol except: one 
if data item value negative - cannot be used with: 
and blank if positive; if more AX+ S CR DB H: more 
than one - , indicates floating than one consecutive -
sign cannot be used with: A 

X + S CR DB * Z H or 
more than one $ sign 

COMP-3 SPV9 

Denotes exponentiation +-9. v 

*Extension to American National Standard COBOL (1968) . 

5-19 

Special Picture 
Position 

Must be last symbol except 
for P or V 

Must be first symbols when 
more than one except for 
single+ or - PB 0 (zero). 
If only one used, it can 
only be preceded by + - or 
PorV 

None 

If only one+ is used, it 
must be either first or last 
(except for P and V, and 
excepting its use with E 
where it may be first and 
also immediately follow the 
El; if more than one is used, 
it must be the first symbol 
except for the $ sign 

If only one - is used, it 
must be either first or last 
(except for P and V, and 
excepting its use with E 
where it may be first and 
also immediately follow the 
El; if more than one is used, 
it must be the first symbol 
except for the $ sign 

None 

Between mantissa and exponent 
of a floating-point numeric 
display item 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-20 

c 
0 ·e 
! 
1l 
)( 

i.: 

.. 
0 
..Q 

E ... 
(J) 

a; 
-s 
0 

Table 5-6. Precedence Rules in PICTURES 

Fixed Insertion Other Symbols 

f + I J + l fcRI f A} f zl f z I f + I j+f 
B 0 1- I l - J IDBj cs Ix p p s v )• J I • J 9 l-J l- cs 

B x x x x x x x x x x x x x x x 

0 x x x x x x x x x x x x x x x x 

x x x x x x x x x x x x x x 

x x x x x x x x x x 

f + I 
I - I x 

f + I 
1- j x x x x x x x x x x x 

lrnl 
IDBJ x x x x x x x x x x x 

cs x x x 

(A I 
ix .f x x x x 

p x x x 

p x x x x x x x x x x x x x 

s 

v x x x x x x x x x x x 

f z l 
1.· f x x x x x x 

lz I , . I x x x x x x x x x x 

9 x x x x x x x x x x x x x x 

I+ I 
1- J x x x x x 

I+ I 
I- I x x x x x x x x x 

cs x x x x x 

cs x x x x x x x x 
-

NOTES: 

1. This chart shows the order of precedence when using characters as symbols in a character-string. An X at an 
intersection indicates that the symbols at the top of the column may precede, in a given character-string, the 
symbols at the left of the row. Arguments appearing in braces indicate that the symbols are mutually 
exclusive. The currency symbol is indicated by the symbol cs. 

2. At least one of the symbols A X Z 9 * or at least two of the symbols + - or cs must be present in a 
picture-string. 

3. P, fixed insertion+, and - appear twice. The first occurrence represents their use to the left of the numeric 
character positions and the second their use to the right of the numeric character positions. 

4. Z, *, nonfixed insertion cs, + and - appear twice. The first occurrence represents the use before the decimal 
point position; the second, the use after the decimal point position. 

• 
cs 

x 

x 

x 

x 

x 

• 

x 

• 



UP-8059 Rev. 3 

• 
PICTURE 

9(5)V99 

9(5) 

9(4)V99 

9(4) 

S9(4) 

S9(4) 

S9(4)V99 

S9999V99 

S9(4) 

S9(4) 

S999V99 

9999 • 9(5) 

X(5) 

A(5) 

9(4) 

9(5) 

9V9(5) 

AA 

A(5) 

99PPP 

VPPP99 

V9(5) 

V9(5) 

• 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 5-7. Source and Receiving Fields 

Source Field Receiving Field 

Data To Be Moved PICTURE Data After Move 

1234500 ZZ,ZZZ.99 12,345.00 

00123 ZZ,ZZZ.99 123.00 

123456 $$,$$$.99 $1,234.56 

0012 $$,$$$.99 $12.00 

+1234 $$,$$$.99DB $1,234.00 

-1234 $$,$$$.99DB $1,234.00DB 

+001209 $$,$$$.99CR $12.09 

-000123 $$,$$$.99CR $1.23CR 

+1234 ++,+++.99 +1,234.00 

-0010 - -.- - -.99 -10.00 

001234 $****.99 $**12.34 

1234 990099 120034 

12345 9B9B9B99 1L'Q[',3[',45 

A1B2C XBXOOXXX A[', 100B2C 

ABC DE ABBOAAAOBX AMOBCDOL'iE 

1234 9(5) 01234 

12345 999.99 345.00 

123456 9(5).99 00001.23 

AB A(5) ABt:/'i::, 

ABC DE AA AB 

12 9(5) 12000 

12 .9(5) .00012 

12345 Z(5).99 ~.12 

12345 9(5).999 00000.123 

5-21 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-22 

5.3.5. USAGE Clause 

Function: 

Specifies the format of a data item in main storage. 

Format: 

COMP 
COMPUTATIONAL 
COMP-1* 
COMP UT ATIONAL-1 * 
COMP-2* 

[USAGE IS] 
COMPUT ATIONAL-2* 
COMP-3* 

Rules: 

1. 

COMPUT ATIONAL-3* 
COMP-4* 
COMPUTATIONAL-4* 
INDEX 
DISPLAY 

The USAGE clause can be written at any level. At a group level, it applies to each elementary item in 
that group. The USAGE clause of an elementary item cannot contradict the USAGE clause stated for 
the group to which the item belongs. The USAGE clause of an elementary item cannot contradict the 
PICTURE clause for that item. 

2. The USAGE IS DISPLAY option specifies that the item is stored in character form, one character per 
byte; it is used for alphabetic, alphanumeric, alphanumeric edited, numeric edited, decimal numeric 
display, and floating-point numeric display. 

The compiler performs the necessary conversions when decimal numeric display items or floating-point 
numeric display items are used for computations; for instance, the latter items are converted to their 
equivalent floating-point values in the form of the number used in arithmetic operations. 

3. An elementary item described with the USAGE IS INDEX clause is called an index data item and 
contains a value corresponding to the occurrence number of a table element. PICTURE clause must not 
be present in this instance. 

4. An index data item can be referred to directly only in a SET statement or in a relation condition. Also, 
an index data item can be part of a group which is referred to in a MOVE or an input-output statement, 
in which case no conversion will take place. 

5. Except for the level number and data-name necessary for definition, no additional clauses are used to 
describe index data items. 

6. COMP-3 specifies packed decimal format, where: 

• If the number of digits in the item is odd, the object program main storage area allocated for this 
item is an even number of half bytes. 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-23 

Example: 

PIC 999 VALUE 123 USAGE COMP-3. 

Main Storage: 

I 1 I 2 13 1. F I 
BYTE 1 BYTE 2 

If the number of digits in an item is even, an extra half byte is in the object program main storage allocated for 

this item. The item's PICTURE is unchanged. 

Example: 

PIC S99 VALUE 12 USAGE COMP-3. 

Main Storage: 

The compiler ensures that the unused half byte is always set to 0 when information is stored !n this item. The 
compiler assumes that when the item is referenced it contains a valid packed decimal number, with 0 in the 
leftmost half byte . 

7. If the USAGE clause is omitted, DISPLAY is assumed unless the PICTURE clause contains an H in its 

character-string. 

8. COMP and COMP-4 specify the binary format. The amount of storage allocated depends on the number 

of digits in the PICTURE: 

9. 

Number of 9's in the PICTURE Storage Allocated 

1 to 4 2 bytes 

5 to 9 4 bytes 

10 to 18 8 bytes 

COMPUTATIONAL items are logically equivalent to signed COMP-3 items except for their internal 

representation and storage allocation. 

In general, COMP-3 items may be manipulated more efficiently than COMP or COMP-4 items. COMP or 
COMP-4 items are more efficient that COMP-3 items when used as subscripts. ~ 

COMP-1 and COMP-2 specify the floating-point computational format. COMP-1 specifies a single 
precision floating-point item. A COMP-1 item occupies 4 bytes. COMP-2 specifies a double precision 
floating-point item which occupies 8 bytes. 

In the procedure division, a floating-point item is disallowed wherever an integral value is necessary . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-24 

5.3.6. SYNCHRONIZED Clause 

Function: 

When computations are performed in COBOL, the data items involved must be aligned before the operations 
can be performed. Normally the compiled object program aligns the items automatically before performing 
computations, but the user may align items requiring arithmetic operations in the data division by using the 
SYNCHRONIZED clause. This results in the use of more storage for the program, but the execution times for 
arithmetic operations may be greatly reduced. 

Format: 

{ SYNC } [{LEFT }] 
SYNCHRONIZED RIGHT 

Rules: 

1. The optional keywords LEFT and RIGHT are included in the format for compatibility only. 

2. The SYNC clause operates by adding slack bytes to records containing items to be synchronized. Slack 
bytes are unused bytes inserted preceding each synchronized item in the record and padding the record 
so that the synchronized item appears on the proper boundary. The boundary used depends on the 
format of the item as it is defined by the USAGE clause: 

Item Length of Item Alignment Boundary 

{COMP } One to four 9's in the PICTURE Half word 
COMP-4 Five to eighteen 9's in the PICTURE Full word 

COMP-1 Full word 

COMP-2 Double word 

For DISPLAY and COMP-3 items, the SYNC clause has no effect. 

The SYNCHRONIZED clause may appear on either an elementary item or a level-01 item. If used on a 
level-01 item, the SYNCHRONIZED clause applies to every elementary item within the level-01 item. 
The SYNCH RON IZ.ED clause does not affect the length of elementary items. 

Assume a record is described as: 

01 A. 

02 A1. 

03 A1A. 

04 A1A1 PICX. 

04 A1A2 PIC S9 USAGE COMP. 

03 A1B USAGE COMP-2. 

02 A2 USAGE COMP-1. 

• 

• 

• 



UP-8059 Rev. 3 

• 

• 

• 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Without using the SYNC clause, this results in storage assigned as follows: 

A A A1B A2 
1 1 
A A 
1 2 

0 1 2 3 10 11 14 

5-25 

If the fifth line is changed to specify that A1A2 is to be synchronized (04 A1A2 PIC S9 USAGE COMP 
SYNC.), one slack byte is inserted to align A 1 A2 on 'a half-word boundary: 

A s A A1B A2 
1 L 1 
A A A 
1 c .... 

<. 

K 

0 1 2 34 11 12 15 

The slack byte is inserted in position 1; in essence, it is a 04 level item and is included in the length of 
A 1 A. Only this one slack byte was necessary to achieve the necessary alignment. 

The SYNC clause could be specified for the entire record (01 A SYNC.). In this case, every elementary 
item is affected, yielding storage assignments as follows: 

A s A s A1B A2 
1 L 1 L 
A A A A 
1 c 2 c 

K K 

0 1 2 3 4 78 15 16 19 

In the example, A 1A 1 need not be aligned because it is not a computational item. A 1A2 is a COMP item 
and is aligned on a half-word boundary by the insertion of one slack byte. A 1 B is a COMP-2 item and 
requires alignment on a double-word boundary; this is provided by the insertion of four slack bytes. A2 
fell on a double-word boundary and since it required only a full-word boundary, no slack bytes were 
needed. 

The algorithm used by the compiler to determine the insertion of slack bytes is: 

• As each item to be synchronized is encountered, the total number of bytes occupied by all the 
elementary items up to but not including this one is added to the total number of slack bytes 
already inserted . 



UP-8059 Rev. 3 

• 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

This total divid ed by x, where: 

x Item Length 

2 COMP 1to4 digits 
4 COMP 5 to 18 digits 

4 COMP -1 

8 COMP -2 

5-26 

• If there is no remainder for the division, no slack bytes are necessary. If there is a remainder, the 
number of slack bytes required is equal to x minus the remainder. 

For the last example, the algorithm would be used as follows: 

• For the first synchronized item, A 1 A2, the total number of bytes in the record so far is 1; x for 
this COMP item is 2; the remainder of the division is 1. Thus, x (2) minus 1 equals 1; therefore, 1 
is the number of slack bytes required. 

• For A 1 B, a COMP-2 item, the storage already occupied is 1 (for A 1A1) + 1 (the first slack byte) + 
2 (for A1A2), a total of 4. The value of x to be used is 8, and the remainder of the division is 4; 
therefore, x (8) minus 4 equals 4, so four slack bytes were inserted in positions 4 through 7 to 
align A1B. 

• When A2 is encountered, the total storage already occupied is 16; when this is divided by 4, the 
value of x for A2, there is no remainder. No slack bytes were required. 

3. Should synchronized items be specified for a record which contains an OCCURS clause, slack bytes are 
inserted as described in rule 2, and slack bytes may also be inserted between group items within the 
record to ensure the alignment of each occurrence of the group. 

NOTE: 

Even without the SYNCHRONIZED clause, if the first occurrence of an item resides on its natural 
machine boundary, the compiler adds any slack bytes necessary to ensure alignment of each occurrence. 

For example: 

01 A SYNC. 

02 A1 OCCURS 3 

03 A1A PIC X. 

03 A 1 B PIC S9 USAGE COMP. 

03 A1C USAGE COMP-1. 

03 A1D PIG S9 USAGE COMP. 

One occurrence would be synchronized as: 

A 
s 

A A1C 

1 
L 

1 

A 
A 

c B 

K 
0 1 2 3 4 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-27 

If the second occurrence began immediately with byte 10, slack bytes in the second occurrence would 

have to be: 

s s 
A L A L A1C A 
1 A A 1 
A c B c D 

K K 
10 11 12 13 1415 16 

because A 1 C must be aligned on a full-word boundary. Of course, the group cannot have different 
lengths with each occurrence. Therefore, slack bytes are inserted between occurrences so that each 
occurrence has the same length and the proper alignment of elementary items. The actual storage use for 
the example is: 

A s A A1C A s A s A A1C A s A s A A1C A s 
1 L 1 1 L 1 L 1 1 L 1 L 1 1 L 
A A B D A A A B D A A A B D A 

c c c c c c 
K K K K K K 

0 1 2 3 4 78 9 10 11 12 13 14 15 16 19 20 21 22 23 124 25 26 27 28 31 3233 34 35 

The slack bytes in positions 10 and 11, and in positions 22 and 23, were inserted between groups. The 
algorithm used is: 

• The total number of bytes occupied by the group, including slack bytes, is divided by the largest 
value of x necessary in the group. 

• If there is no remainder, no slack bytes are inserted between groups. Otherwise, the number of 
slack bytes necessary is equal to x minus the remainder. 

For the example given, the process would be: 

• The total number of bytes occupied in one occurrence of the group is 10 bytes. This is divided by 
4, the x value for A 1 C, a COMP-1 item. 

• The remainder of the division is 2; x (4) minus 2 equals 2, so the number of slack bytes necessary 
for each occurrence of the record is 2. 

4. The compiler aligns all 01 level entries on double-word boundaries . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

The algorithm to be used by the programmer in these cases is: 

5-28 

• Add the lengths of all elementary data items and slack bytes in this record. Add 4 more to the 
total if variable-length records are used. 

• Divide the total by the largest value of x required for an item in the record. 

• If there is no remainder, no slack bytes are required. If there is a remainder, x minus the remainder 
is the number of slack bytes which must be inserted. This can be accomplished by including a 02 
level FILLER defined as the correct length. 

5. If the SYNCHRONIZED clause appears on an item with a REDEFINES clause, the user must ensure that 
the item being redefined is properly aligned for the data item that REDEFINES it. No slack bytes are 
added. 

Likewise, if synchronization is necessary for the first elementary item under an item with a REDEFINES 
clause, no slack bytes are added. 

5.3.7. JUSTIFIED Clause 

Function: 

Specifies nonstandard positioning of data within a receiving data item. 

Format: 

[ ; {~FIED} RIGHT J 
Rules: 

1. The JUSTIFIED clause may be specified only at the elementary item level. 

2. This clause may not be used for numeric or numeric-edited data, because numeric data is aligned by its 
decimal point, when present, or right-justified when not present. 

3. Alphabetic, alphanumeric, and alphanumeric-edited data is left-justified with space fill when the 
JUSTIFIED clause is not specified. 

4. When the receiving data items is described with the JUSTIFIED clause and the sending data item is 
larger, the leftmost characters are truncated. When the receiving data item is justified and larger than the 
sending data item, the data is aligned at the rightmost character position in the data item with space fill. 

5.3.8. VALUE Clause 

Function: 

Defines the initial value of a working-storage item, or specifies the value associated with a condition-name . 

Format 1: 

VALUE IS literal 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-29 

Format 2: 

Rules: 

{
VALUES ARE} VALUE IS literal-1 [THRU literal-2) ... [, literal-3[THRU literal-4)) ... 

1. Format 1 is used to specify the initial value of a data item in the working-storage section. The following 
rules apply to format 1: 

• This format causes the item to assume the specified value at the start of the object program. If the 
VALUE clause is not used in an item description, the initial value may be unpredictable. 

• The VALUE clause must not conflict with other clauses in the data description of the item or in 
the data description within the hierarchy of the item. 

• In the file section and the linkage section, the VALUE clause must not be used except for 
condition-name entries. 

• The VALUE clause cannot be used in a record-description entry containing a REDEFINES clause 
or in an entry subordinate to an entry containing a REDEFINES clause. 

• The VALUE clause must not be stated in a record description entry containing an OCCURS clause 
or in an entry subordinate to an entry containing an OCCURS clause except for condition-names 
entries . 

• The VALUE clause must not be specified for a group item containing items with descriptions 
including JUST, SYNC, any COMP usage, or USAGE INDEX. 

• The VALUE clause is not permitted for floating-point display entries. 

• If the VALUE clause is used in an entry at the group level, literal must be a figurative constant or a 
nonnumeric literal, and the group area is initialized without consideration for the individual 
elementary or group items contained within this group. The VALUE clause must not be stated at 
the subordinate levels within the group. 

2. Format 2 can be used only in a condition-name entry. The following rules apply to format 2: 

3. 

4. 

5. 

6. 

• All condition-name entries are level-number 88. See 5.3.12 for a full description of 
condition-name. 

• When the TH RU keyword is used, literal-1 must be less than literal-2, literal-3 less than literal-4, 
and so on. 

In the file section, only the VALUE clauses stated for condition-name entries are valid. 

A figurative constant may be substituted in either format 1 or format 2 when a literal is specified. 

During compilation, a diagnostic is issued when the VALUE and PICTURE clauses conflict in any 
manner. Compilation continues with the VALUE clause ignored . 

Floating-point numeric literals may be used only on COMP-1 and COMP-2 operands. 



UP-8059 Rev. 3 

5.3.9. BLANK WHEN ZERO Clause 

Function: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Sets the value of a receiving item to space when the value of the sending item is 0. 

Format: 

BLANK WHEN ZERO 

Rules: 

5-30 

1. This clause can be specified only at the elementary item level, and can be used only with a numeric or 
numeric-edited item. When used with a numeric item, the category of the item is considered 
numeric-edited. 

2. The effect is not necessarily the same as zero suppression editing via the PICTURE clause, because the 
item is affected only when its numeric value is 0. 

5.3.10. MAP* Clause 

Function: 

Specifies the size of a data item in bytes in main storage. 

Format: 

Rule: 

MAP IS integer-3, CHARACTERS 

The MAP clause does not affect the object program in OS/3 COBOL; however, it is acceptable to the compiler 
for compatibility purposes. 

5.3.11. RENAMES Clause 

Function: 

Permits alternate, possibly overlapping, groupings of elementary items. 

Format: 

66 unqualified-data-name-1 ; RENAMES data-name-2 [THRU data-name-3) 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-31 

Rules: 

1. All RENAMES entries associated with a given logical record must immediately follow its last data 
description entry. 

2. Data-name-2 and data-name-3 must be names of elementary items or groups of elementary items in the 
associated logical record, and cannot be the same data-name. 

3. Level-numbers 66, 77, 88, and 01 cannot be renamed. 

4. Neither data-name-2 nor data-name-3 may have an OCCURS clause in its data description, nor can it be 
subordinate to an entry with an OCCURS clause. 

5. Data-name-2 must precede data-name-3 in the record description. 

6. Data-name-3 cannot be subordinate to data-name-2. 

7. Data-name-2 and data-name-3 may be qualified. 

8. One or more RENAMES entries can be written for a logical record. 

5.3.12. Condition-name Clause 

Function: 

Assigns a name for a specific value or range of values. 

Format: 

. . {VALUES ARE} 88 cond1t1on-name; VALUE IS literal-1 [THRU literal-2] [ , literal-3 [THRU literal-4] 

Rules: 

1. The VALUE clause is used as described in 5.3.8 . 

• 
2. Each condition-name requires a separate entry with a separate level-number 88. 

3. The condition-name entries for a particular conditional-variable must immediately follow the entry 
describing the conditional-variable item with which the condition-name is associated. 

4. A condition-name may be associated with any group or elementary item except a level-number 66 item, 
or an index data item. 

5. Examples of use of condition-name: 

• Elementary item: 

02 data-name-1. 
03 data-name-2 PIG XX . 
88 condition-name VALUE 'AB'. 

02 data-name-3 
PROCEDURE DIVISION. 
IF condition-name GO TO procedure-name. 

Instead of: 
IF data-name-2 ='AB' GO TO procedure-name. 



UP-8059 Rev. 3 

• Group Item: 

02 data-name-1. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

88 condition-name VALUE IS '20' THRU '25'. 
03 data-name-2 PIC 9. 
03 data-name-3 PIC 9. 

02 data-name-4. 
PROCEDURE DIVISION. 

IF condition-name GO TO procedure-name. 
Instead of: 

IF data-name-1 NOT< '20' AND NOT;> '25' GO TO procedure-name. 

5.3.13. SIGN* Clause 

Function: 

5-32 

Specifies the position and the mode of representation of the optional sign when it is necessary to describe 
these properties expl icity. 

Format 1: 

{
LEADING } 

[SIGN IS] TRAILING SEPARATE CHARACTER 

Format 2: 

[SIGN IS] TRAILING 

Rules: 

1. The SIGN clause may be specified only for a numeric data description entry whose picture contains the 
character S, or a group item containing at least one such numeric data description entry. 

2. The numeric data description entries to which the SIGN clause applies must be described, either 
explicitly or implicitly, as USAGE IS DISPLAY, excepting floating-point display. 

3. At most, one SIGN clause may apply to any given numeric data description entry. 

4. If format 1 is used, the character S in the picture is counted in determining the size of the item. The 
operational signs for positive and negative are the characters+ and -, respectively. 

5. If the optional SEPARATE CHARACTER clause is not present, the character S in the picture is not 
counted in determining the size of the item. Format 2 specifies that the operational sign is in the zone 
portion of the least significant digit position of the item. A positive sign is represented by a hexadecimal 
C, a negative sign by a hexadecimal D. 

6. A numeric data item whose picture contains the character S, but to which no optional SIGN clause 
applies, has an operational sign in the zone portion of the least significant digit position. The sign 
representation is as described for format 2 of the SIGN clause. 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Hev. 3 

5.4. WORKING-STORAGE SECTION 

Defin ~tion: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-33 

That section of the data division used to describe areas of main storage that are to contain intermediate results 
of processing and other temporarily stored data at object program run time, as well as named constants. 

Format: 

WORKING-STORAGE SECTION. 

[ 
77-level-description-entry] 
record-description-entry 

[88 (condition-name entry)] 

5.4.1. Independent Entries 

Function: 

Describe noncontiguous single items in working-storage, each of which is neither subdivided nor a subdivision 
of another data-name. 

Format: 

77 unqualified-data-name; { ~TURE } IS picture-string [optional clauses] 

Rules: 

1. Level-numer 77 is assigned only to single-item areas. 

2. Each independent entry must have a unique data-name. 

3. All level-number 77 entries should be grouped together in the beginning of the working-storage section. 

4. The VALUE clause may be used to specify the initial or constant value of any level-number 77 entry. 

5.4.2. Record Description Entry 

Function: 

Describes contiguous data areas which are not part of a file. 

Format: 

01 record-name 
(subordinate data items and clauses) 



UP-8059 Rev. 3 

Rules: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

5-34 

1. Data elements in working-storage bearing a definite relationship to each other may be grouped into 
records through the same descriptive clauses used in data-description entries in the file section, including 
the OCCURS and REDEFINES clauses. 

2. Each record-name must be unique because it cannot be qualified by a file-name or section-name. 
Subordinate data-names need not be unique if they can be qualified. 

5.5. LINKAGE SECTION* 

Definition: 

That section of the data division used to describe data available in a calling program, but referenced in both 
the calling and the called programs. 

Rules: 

1. Organization and structure follow the rules described under the working-storage section, with one 
exception: the VALUE clause may not be specified for other than level-number 88 entries. 

2. Record description entries in the linkage section provide names and descriptions, but storage within the 
program is not reserved because the data exists elsewhere. 

3. The linkage section is required in any program containing an ENTRY statement with a USING option or 
the procedure division USING option for a called program. 

4. See 6.8 for examples of calling and called programs. 

r---CON 1 !NU AT !ON 

--SE_Q_U_E N_C_E__,. I 
NUMBER t A I 15 T EX T ·------·----·-··-----------··' 

6 7 8 11 20 40 

__,__+-i::-~."-L E ~J;~. _Lt(1J'4. • , .. l __ ---· -~--"'-_;_~· -L--'---.L. -··- .... 

i-=i.=i.::;:C1,..;_L::...J.!'"+-4-F;__o,,-pL_j_ CDS. L_c ........ J .. l J l , ' ; l. ,C,,,L.-'---'--.'.__L~-c-. 
l_.L_L L.A.i..:£:3~~L .°R, EC ~"R D ,S, ,i'\1\g, __ 1<9'Lfv'\ !"'LL!: °2L..:. ·--· .. --~ __ 

.RE,C<9'1R1> .1.S C.A l>!.IN. 

Q~-'--1.C:::BJ.:> lJ:>1 . '-"-" ... PJ~_ C . X · , L_L_.L_~__;, __ , 1 , . l 

0,3 ,C,R,1>.~l'..J.1_'(_, __ }',J:,C::L )<.. (,3LQL:_k. ·---'----· ~-..... : ........ .. 
03 C "t>NAME "PJ:.C l<il,215),. 

002 OJ .. .J.4 .. f··"- .l .... L. 0 i_ ... c::~_J?'P.\:L.O'N.~J?_1f..._~_~,l~?.~2L'..L 
QQ~p__J_,_~I i .L t. l g_3 __ ,;,,~1~J?"<'.:..:.@~EL.L . .P.J,c;, _)(, •, 

i 
1--''--'----'--'---"-+-·+-~·~L. __ i_ __ ,,i ... t.··-· ~.. ~~~--~· _L_A • _____ L. ... _. i 

r-o~.o~z.~o~. l~, 5=+--l-F-=-J)'--'-+-1 C!ld..IJ?.L~-r L _ . ~""-~----·-· _ 
0020,1.b L.A13,EL- ~E.C~RDS. A'RE ~MITT.E.D 

Figure 5-1. Example of Data Division Entries (Part 1 of 2) 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

20 

5-35 

30 40 

i..:::.i:~::i..::::.J-'-Lll+-+---'-'--"-1--IBt_~1~~L'8J?,'t,N,G1 ,tl\<YD e, .:t..S1_ .. J::1 .L.L L.J ... .,.,.L_LJ-L' ... L .... L. 

1-==::i..=:L'....ll14--!-...L..;L-L-+=-LL-'-'<!1._..c.::.J...:.K-'L. -'--c:.L~~·-I1.~JL~L$..L...J..1 . o, ;e., E,Ci<"1R1l>1S, , ...L.J ... Ll . 1 .. L ... L .. L. 

1-==.:=:L:.J...!...!.--t--_J__j_--"---.f"D=A-'1T-'-'--A1-L'Rc...L~.~~~~L.Lt~__J), 11$,C I~ · ..... J 

029-i~P 
002021 

o. I DI s ,c <':'I _L__.:__l __ LL.LLl i...J.___L___L_L_L.L.LL .. L.L LL_;_L_'-._ 

03 Sc.NO i'P'LC X( b.,) .1 

00202. 2. .l .... L.. .I.1"D, I I i'P11&LL~'.J .... L . .l ... L .... LL .. L.L_L_Lj_.;_ __ LLL.LLL.J . .l .•. 

0010 3 ... J i_L.9L~LL~l1T~ 1'P,t,C1 .l~L(~:'?r)t•L.LL.L.L 1 .. L .. L .. .L ... ..l L. 

0 a 2 0 2 Lt _j_.(,.L .. 9l_ ,cl~~~L 1i=>iitC..J .... i>51,1?1~) L' ... L . .i._L..LLLJ. ...... L.J .. :.J ... i .. L .. L .. LLL 

OQbf> . ..1..2=5+-1--L--'-·-' ..... 19~L)?1~~~gL :'Pl I&i_~.LLLJ,), . i ... L .. L .... L ... J .. LLL-· - .. .L...L. ........ L..j .... L ... L .. . 

00.2. 02 I 0 3 CO'DE 'PI,C 

Figure 5-1. Example of Data Division Entries (Part 2 of 2) 



• 

• 

• 



• 

• 

• 

UP-8059 F:ev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-1 

6. Procedure Division 

6.1. GENERAL 

The procedure division in the SPERRY UNIVAC Operating System/3 (OS/3) COBOL program contains the 
instructions or steps necessary to solve a given problem. 

Format: 

PROCEDURE DIVISION [USING unqualified-data-name-1 [unqualified-data-name-2] ... ] . 

[DECLARATIVES. 
{section-name SECTION. declarative-sentence. 
{paragraph-name. { sentence} ... } ... } ... 

END DECLARATIVES.] 
{[section-name SECTION [priority-number].] 
{paragraph-name. { sentence} ... } ... } ... 

6.1.1. USING* Statement 

Function: 

When the USING statement immediately follows the heading PROCEDURE DIVISION, it serves as an entry 
point declaration and can appear only if this program is a called subprogram. 

Format: 

USING unqualified-data-name-1 [unqualified-data-name-2] ... 

Rules: 

1. If the USING option is present, the external symbol (ENTRY name) associated with this entry point is 
the same as PROGRAM-ID. 

2. If the USING option is not present, the beginning of the procedure division is not one of the entry 
points in this particular subprogram. 

3. Data-names present refer to data 'items described in this subprogram. Their level numbers are restricted 
to 01 or 77, and they must be defined in the linkage section . 

*Exteosion to American National Standard COBOL (1968). 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-2 

6.2. DECLARATIVES SECTION 

Function: 

The declaratives section of the procedure division contains compiler-directing statements that specify the 
circumstances under which a procedure is to be executed. 

Format: 

DECLARATIVES. 
{section-name SECTION. declarative-sentence. 
{ paragraph-name. {sentence} ... } ... } ... 
END DECLARATIVES. 

Rules: 

1. Declarative sections are grouped at the beginning of the procedure division. 

2. The keyword DECLARATIVES must immediately follow the division header PROCEDURE DIVISION 
on a separate line. The keywords ENO DECLARATIVES must follow the last line of the declaratives on 
a separate line. 

3. Each declarative section must begin with a section-name, followed by a USE statement. The remainder 
of the section consists of one or more procedural paragraphs. 

4. No priority number is allowed on section-names in the declaratives section. 

5. See 6.6.7.4, USE statement. 

6.3. SECTION 

Definition: 

The most inclusive procedural unit in the procedure division to which a procedure name can be assigned. 

Format: 

[section-name SECTION [priority-number].] 

{paragraph-name. {sentence} ... } ... 

Rules: 

1. The procedure division must be divided into sections with appropriate priority numbers when the 
program is to be segmented or when the declarative section is present. 

2. Priority-number must be an unsigned integer ranging in value from 0 through 99. 

3. Sections belonging to the declaratives portion of the procedure division are associated with the fixed 
segment, and must not contain priority-numbers in their section headings. 

4. Priority-numbers 0 through 49 are used for the fixed and the fixed overlayable segments, and priority 
numbers 50 through 99 designate independent segments. (See 6.7 for a complete discussion of 
segmentation.) 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-3 

• 6.4. PARAGRAPH 

• 

• 

Definition: 

A body of one or more procedural sentences with a procedure name by which it may be identified and 
referenced. 

Format: 

{paragraph-name. {sentence} ... } ... 

Rules: 

1. A paragraph must contain at least one sentence, and may consist of any practical number of sentences. It 
must be headed by an identifying procedure name, since transfer references within the procedure 
division are made to entire paragraphs. 

2. Any practical number of paragraphs may be combined into a section. 

3. Generally, the object coding for a single sentence must be less than 4096 bytes. 

6.5. STATEMENTS AND SENTENCES 

Definition: 

A statement consists of a verb and any other reserved words and user-supplied words necessary to fulfill one of 
the valid verb formats. 

A sentence consists of one or more statements terminated by a period. 

Format: 

statement-1 [ { statement-2 } .. .] . 

6.5.1'. Imperative Statements 

Definition: 

Those statements which are neither compiler-directing statements nor conditional statements (including 
conditional-causing arithmetic or input-output statements), which indicate a specific action to be taken by the 
object program. 

Format: 

verb word-string. 

Rules.: 

1 . The verb must be one of those listed in 6.6, excluding the compiler-directing and conditional verbs and 
those input-output or arithmetic verbs for which the statement specifies one of the conditional options 
AT END, SIZE ERROR, or INVALID KEY (6.5.2). 

2. Word-string consists of all words (reserved words, names, literals) and punctuation necessary to complete 
a valid format for that verb. 

--- -----~-------------------



t 

UP-8059 Rev. 3 

6.5.2. Conditional Statements 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-4 
Update B 

Conditional statements specify that the truth value of a condition is to be determined, and that the subsequent 
action of the object program is dependent upon this truth value. 

A conditional statement is: 

• an IF statement, a SEARCH statement, or a PERFORM statement with the UNTIL option; 

• an input/output verb that specifies an INVALID KEY or an AT END option; or 

• an arithmetic verb that specifies an ON SIZE option. 

6.5.3. Compiler-Directing Statements 

Definition: 

Statements directing the compiler to take certain actions at compilation time. 

Format: 

verb word-string 

Rules: 

1. All rules for compiler-directing statements are stated in the discussion of the verbs: 

COPY, ENTER, NOTE, USE 

2. A word-string consists of reserved words and user-supplied words necessary to complete a valid format 
for that verb. 

3. Compiler-directing statements must not appear within conditional statements. 

6.5.4. Overlapping Operands 

When a sending and a receiving item in an arithmetic statement or in an EXAMINE, MOVE, or TRANSFORM 
statement share portions of their storage areas, the results are undefined when these statements are executed. 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-5 

• 6.6. VE RB TYPES 

• 

• 

A verb is a reserved word, used in the procedure division, denoting an action to be performed by the processor or the 
compiler. There are eight general categories of verbs in OS/3 COBOL. These categories, and the verbs in each, are: 

• Arithmetic: ADD, DIVIDE, MULTIPLY, SUBTRACT, COMPUTE 

• Procedure Branching: ALTER, GO TO, PERFORM, EXIT 

• Data Movement: EXAMINE, MOVE, SET, TRANSFORM 

• Input-Output: ACCEPT, CLOSE, DISPLAY, INSERT, OPEN, READ, RELEASE, RETURN, REWRITE, 
SEEK, SORT, WRITE 

• Ending: STOP 

• Conditional: IF, SEARCH 

• Compiler Directing: COPY, ENTER, NOTE, USE 

• lnterprogram Communication: CALL, ENTRY 

A description of the categories, and the verbs contained in each, is presented in the ensuing paragraphs. 

6.6.11. Arithmetic Verbs 

The arithmetic verbs permit basic calculations to be performed on the data. Four verbs corresponding to the four 
basic arithmetic operations are provided: ADD, SUBTRACT, MULTIPLY, and DIVIDE. The COMPUTE verb is 
provided to allow the programmer to specify arithmetic calculations through the use of arithmetic expressions. 

Rules.: 

1. All data items referenced in arithmetic statements must represent numeric elementary data items 
previously defined in the data division. A data item following the word GIVING, or a receiving identifier 
of a COMPUTE verb, may be a numeric edited item. 

2. All literals used in arithmetic statements must be numeric. 

3. Except for floating-point items, the maximum size of each operand is 18 decimal digits. The composite 
of operands (the data item resulting from the superimposition of all operands, aligned by decimal points) 
must not contain more than 18 digits unless the receiving data item is defined as floating point. 

4. The data descriptions (PICTURE) of the operands may differ from each other. Decimal point alignment 
is supplied automatically throughout computations. Conversion of items with unlike usage also is 
automatic . 



, 

UP-8059 Rev. 3 

5. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-6 

If, after decimal-point alignment, the number of places in the fraction of the result of an arithmetic 
operation is greater than the number of places provided for the fraction of the resultant identifier, 
truncation is relative to the size provided for the resultant identifier. When the ROUNDED option is 
used, the absolute value of the resultant identifier is increased by 1 whenever the most significant digit 
of the excess is equal to or greater than 5. If the resultant identifer is a floating-point item, the 
ROUNDED option is meaningless. 

6. If, after decimal-point alignment, the value of the result exceeds the largest value that can be contained 
in the associated resultant identifier, a size error condition exists. In the event of a size error condition, 
one of two possibilities occurs, depending on whether the ON SIZE ERROR option has been specified: 

• If ON SIZE ERROR is not specified, and a size error condition arises, the effect is unpredictable. 

• If the ON SIZE ERROR option has been specified, and a size error condition arises, the value of 
the resultant identifier will not be altered. The imperative-statement associated with the ON SIZE 
ERROR option is executed after the last resultant identifier is considered. 

• An ON SIZE ERROR option is meaningless for a floating-point receiver, except in a DIVIDE 
statement where the size error imperative statement is executed only on an attempt to divide by 
zero. 

7. The CORRESPONDING option may be used with the ADD and SUBTRACT verbs. In the following 
paragraphs, d

1 
and d

2 
refer to the group items involved. A pair of data items, one from each group item, 

correspond if the following conditions exist: 

• A data item in d
1 

and a data item in d
2 

have the same name and qualification up to, but not 
including, d 

1 
and d

2
• 

• Both of the data items are elementary numeric items. 

• Neither d 
1 

nor d
2 

can be a data item with level-number 66, 77, or 88. 

• A data item subordinate to d
1 

or d
2 

and containing a RENAMES, REDEFINES, or OCCURS 
clause is ignored. However, d

1 
and d

2 
may have REDEFINES or OCCURS clauses, or be 

subordinate to data items with REDEFINES or OCCURS clauses. 

8. Statements with multiple results are considered by the compiler as though they were written: 

• as a statement that performs all the arithmetic necessary to arrive at the result to be stored in the 
receiving items, and stores that result in a temporary storage location; or 

• as a sequence of statements transferring or combining the value of this temporary location with a 
single result. These statements are considered to have been written in the same left-to-right 
sequence in which the multiple results are listed. For example, the result of the statement 

ADD A, B, C TO C, D(C), E 

is equivalent to 

ADD A, B, C GIVING temp 

ADD temp TO C 

ADD temp TO D(C) 

ADD temp TOE 

• 

• 

• 



• 
UP-8059 Rev. 3 

where: 

temp 

6.6.1.1. ADD Statement 

Function: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Is an intermediate result item. 

The ADD statement adds two or more numeric operands and stores the result. 

Format 1: 

ADD { i~entifier-1} 
--- hteral-1 [

' identifier-2 J TO "d "f" [ROUNDED] 
I
. 

1 2 
. . . 1 ent1 1er-m 

, 1tera - -

[,identifier-n [ROUNDED]] ... [;ON SIZE ERROR imperative-statement] 

Format 2: 

{ 
identifier-1 } { identifier-2 } 

t~DD literal-1 ' literal-2 [
, i~entifier-3] ... GIVING 
• .hteral-3 

identifier-n [ROUNDED] [;ON SIZE ERROR imperative-statement) 

6-7 

• Format3: 

• 

.ADD { ~ESPONDING } identifier-1 TO identifier-2 [ROUNDED) 

[; ON SIZE ERROR imperative-statement) 

Rules:: 

1. In formats 1 and 2, each identifier must refer to an elementary numeric item, except identifiers to the 
right of the word GIVING, which may be numeric edited items. 

2. Each literal must be a numeric literal. 

3. If floating-point operands are not used, the maximum size of each operand is 18 decimal digits. The 
composite of operands, which is that data item resulting from the superimposition of all operands, 
excluding the data items that follow the word GIVING, aligned on their decimal points, must not 
contain more than 18 digits. 

4. If format 1 is used, the values of the operands preceding the word TO are added together, and the sum is 
added to the current value in each identifier, identifier-m, identifier-n, ... , and the result is stored in each 
resultant identifier, identifier-m, identifier-n, ... , respectively. 

5. If format 2 is used, the values of the operands preceding the word GIVING are added together; the sum 
is stored as the new value of identifier-n, which is the resultant identifier . 

6. If format 3 is used, data items in identifier-1 are added to, and stored in, corresponding data items in 
identifier-2. 

7. For a description of the ROUNDED, SIZE ERROR, and CORRESPONDING options, see 6.6.1, rules 5, 
6, and 7. 



UP-8059 Rev. 3 

6.6.1.2. DIVIDE Statement 

Function: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-8 

The DIVIDE statement divides one numeric data item into another and sets the value of a data item equal to 
the results; identifier-1 may be either dividend or divisor, depending on whether INTO or BY is specified. 

Format 1: 

DIVIDE {i~entifier-1} INTO identifier-2 [ROUNDED] [ ; ON SIZE ERROR imperative-statement] literal 

Format 2: 

DIVIDE 
{ 

identifier-
1
} INTO {i~entifier-2} GIVING identifier-3 [ROUNDED] 

literal-1 -- hteral-2 

[; ON SIZE ERROR imperative-statement] 

Format 3: 

DIVIDE { identifier-
1

} BY { identifier-2} GIVING identifier-3 [ROUNDED] 
literal-1 - literal-2 

[; ON SIZE ERROR imperative statement] 

Format 4: 

DIVIDE { identifier-1} INTO {identifier-2} GIVING identifier-3 [ROUNDED] 
literal-1 -- literal-2 

REMAINDER identifier-4 [ ; ON SIZE ERROR imperative-statement] 

Format 5: 

DIVIDE { i~entifier- 1 } BY {i~entifier-2 } GIVING identifier-3 [ROUNDED] 
hteral-1 - hteral-2 

REMAINDER identifier-4 [; ON SIZE ERROR imperative statement] 

Rules: 

1. Each identifier must refer to a numeric elementary item, except identifiers immediately to the right of 
the word GIVING may contain editing symbols. 

2. Each literal must be a numeric literal. 

3. The maximum size of each operand is 18 decimal digits. The composite of operands, which is the data 
item resulting from the superimposition of all receiving data items aligned on their decimal points, must 
not contain more than 18 digits. The rule does not apply if any of the operands are floating-point items . 

4. When format 1 is used, the resulting quotient replaces identifier-2. 

5. When either format 2 or 3 is used, the result is stored in identifier-3. 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

6. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

For a description of the ROUNDED and SIZE ERROR options, see rules 5 and 6 in 6.6.1. 

6-9 

7. Formats 4 and 5 are used when a remainder from the division operation is desired, namely identifier-4. A 
remainder in COBOL is defined as the result of subtracting the product of the quotient and the divisor 
from the dividend. If the ROUNDED option is specified, the quotient is rounded after the remainder is 
determined. When the REMAINDER option is specified, none of the operands may be floating-point. 

6.6.1.3. MULTIPLY Statement 

Function: 

The MULTIPLY statement multiplies numeric data items and sets the value of a data item equal to the results. 

Format 1: 

MULTIPLY {li~enti1f1ier-l} BY identifier-2 [ROUNDED] 
1tera - -

[ ; ON SIZE ERROR imperative-statement] 

Format 2: 

MULTIPLY {identifier-1} BY {identifier-2 } GIVING identifier-3 [ROUNDED] 
literal-1 - literal-2 

[; ON SIZE ERROR imperative-statement] 

Rules: 

1. Only identifier-3, in format 2, may refer to a data item containing editing symbols. All other identifiers 
must refer to numeric elementary items. 

2. Each literal must be a numeric literal. 

3. When format 1 is used, the initial value of identifer-1 or literal-1 is multiplied by the initial value of 
identifier-2. The value of the multiplier (identifier-2) is replaced by the product resulting from operation 
on that identifier. 

4. When format 2 is used, the initial value of identifier-1 or literal-1 is multiplied by identifier-2 or literal-2, 
and the result is stored in identifier-3. 

5. The maximum size of each operand, except for floating point, is 18 decimal digits. 

6. For a description of the ROUNDED and SIZE ERROR options, see rules 5 and 6 in 6.6.1. 

6.6.1.4. SUBTRACT Statement 

Function: 

The SUBTRACT statement subtracts one or the sum or two or more numeric data items from one or more 
items, and sets the value of one or more items equal to the results. 



UP-8059 Rev. 3 

Format 1: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

SUBTRACT { i~entifier-1 } [· identifier-2 J 
hteral-1 , literal-2 

Format 2: 

FROM identifier-m [ROUNDED] [,identifier-n [ROUNDED]] ... 

[; ON SIZE ERROR imperative statement] 

SUBTRACT { i~entifier-1 } [· identifier-2] 
hteral-1 , I iteral-2 

FROM {
identifier-m} GIVING "d ·t· [ 0 ] 
I
. I 1 ent1 1er-n R UNDED 

-- 1tera-m 

[ ; ON SIZE ERROR imperative-statement] 

Format 3: 

SUBTRACT { ~ESPONDING} identifier-1 

FROM identifier-2 [ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

Rules: 

6-10 

1. When format 1 is used, all literals and identifiers preceding the IQ/Ord FROM are added together, and the 
total is subtracted from identifier-m, identifier-n, etc. The result of the subtraction is stored as the new 
value in identifier-m, identifier-n, etc. 

2. Except for floating point, the maximum size of each operand is 18 decimal digits. The composite of 
operands, which is that data item resulting from the superimposition of all operands, excluding the data 
item that follows the word GIVING, aligned on their decimal points, must not contain more than 18 
digits unless floating-point operands are used. 

3. In format 2, identifier-n may refer to a data item that contains editing symbols. All other identifiers 
must refer to numeric elementary items. 

4. When format 2 is used, all literals or identifiers preceding the word FROM are added together, the total 
is subtracted from literal-m or identifier-m, and the result of the subtraction is stored as the new value in 
identifier-n. 

5. If format 3 is used, data items under identifier-1 are subtracted from and stored in corresponding data 
items under identifier-2. 

6. For a description of the ROUNDED, SIZE ERROR, and CORRESPONDING options, see rules 5, 6, and 
7 in 6.6.1. 

---------------------------------------------··-··· 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-11 

6.6.1.5. COMPUTE Statement 

Function: 

The COMPUTE statement assigns to a data item the value of a numeric data item, literal, or arithmetic 
expression. 

Format: 

{

arithmetic-expression} 
COMPUTE identifier-1 [ROUNDED] '.: identifier-2 

literal 

[ ; ON SIZE ERROR imperative-statement] 

Rules: 

1. Literal must be a numeric literal. 

2. Each identifier must refer to an elementary numeric item, except for identifier-1, which may be a 
numeric edited item. 

3. 

4 . 

5. 

6. 

7. 

8. 

The arithmetic-expression option permits the use of any meaningful combination of identifiers, numeric 
literals, and arithmetic operators, parenthesized as required. 

The maximum size of each operand, except floating-point operands, is 18 decimal digits. 

The identifier-2 and literal options provide a method for setting the value of identifier-1 equal to the 
value of identifier-2 or literal. 

The final result of operations evaluated in the arithmetic-expression is placed in identifer-1. 

The arithmetic-expression option allows the user to combine arithmetic operations without the 
restrictions on composite of operands or on receiving data items imposed by the arithmetic statements. 

Intermediate results are possible in a COMPUTE statement containing two or more operands. The 
compiler treats a statement as a succession of operations, and reserves memory areas for required 
intermediate results. The compiler also determines the number of integer and decimal places reserved for 
intermediate results. The ON SIZE ERROR option applies to division by zero and to final results. See 
Appendix C for a discussion of how the compiler handles intermediate results. 

• Arithmetic operators character representation: 

Addition + 

Subtraction 

Multiplication * 

Division I 

Exponentiation ** 

Unary plus and minus +, -



UP-8059 Rev. 3 

• 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-12 

Parentheses may be used to specify the order in which elements are to be evaluated. Expressions 
within parentheses are evaluated first; within a nest of parentheses, evaluation proceeds from the 
least inclusive set to the most inclusive set. 

• When parentheses are not used or parenthesized expressions are at the same level of inclusiveness, 
the following order of evaluation is implied: 

unary+ and - signs 

** 

*and I 

+and -

6.6.2. Procedure Branching Verbs 

Normally, the statements in the procedure division are executed consecutively, in order of their appearance. This is 
also true of the execution of each paragraph and section. However, it is often necessary to alter this normal sequence 
of operation and branch to a different point in the program to execute a number of statements before returning to 
the next statement. The procedure branching verbs permit this sequencing of logical operations: 

ALTER, GO TO, PERFORM, EXIT 

6.6.2.1. ALTER Statement 

Function: 

The ALTER statement modifies a predetermined sequence of operations. 

Format: 

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2 

Rules: 

[ , procedure-name-3 TO [PROCEED TO] procedure-name-4) 

1. Procedure-name-1, procedure-name-3, ... is the name of a paragraph that contains only one sentence 
consisting of a GO TO statement without the DEPENDING ON option. 

2. Procedure-name-2, procedure-name-4, ... is the name of a paragraph or section in the procedure division. 

3. During execution of the object program, the ALTER statement modifies the GO TO statement in the 
paragraph named procedure-name-1, procedure-name-3, ... replacing the object of the GO TO by 
procedure-name-2, procedure-name-4, ... ,respectively. 

4. A GO TO statement in a section with a priority equal to or greater than 50 must not be referred to by an 
ALTER statement in a section with a different priority. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-13 

6.6.2.2. GO TO Statement 

Function: 

The GO TO statement transfers control from one part of the procedure division to another. GO TO (format 3) 
is used as a special exit from a USE procedure. 

Format 1: 

GO TO [procedure-name] 

Format 2: 

GO TO procedure-name-1 [ , procedure-name-2) ... , procedure-name-n 

DEPENDING ON identifier 

Format 3: 

GO TO MORE-LABELS 

Rules: 

1. 

2 . 

3. 

4. 

5. 

6. 

7. 

Each procedure-name is the name of a paragraph or section in the procedure division of the program. 

Identifier is the name of a fixed-point numeric elementary item described without any positions to the 
right of the assumed decimal point. 

When format 1 is used, control is transferred to procedure-name or to another procedure-name if the GO 
TO statement has been affected by an ALTER statement. 

If procedure-name is omitted in format 1, an ALTER statement referring to this GO TO statement must 
be executed prior to execution of this GO TO statement. 

For a GO TO statement to be alterable, it must be the only statement in a paragraph. Only format 1 may 
be altered. 

When a GO TO statement is altered, control is transferred to the new procedure-name each time the GO 
TO statement is executed, until the GO TO statement is altered again with a different procedure-name. 

When format 2 is used, control is transferred to procedure-name-1, procedure-name-2, ... , 
procedure-name-n, depending on the value of identifier being 1, 2, ... , n. If the value of identifier is 
greater than n or equal to 0, control is passed to the sentence following this statement. 

8. The maximum number of procedure-names allowed in format 2 is 64; the minimum is two. 

9. Format 3 transfers control from a USE procedure to the 1/0 control system and is an extension to 
American National Standard COBOL (1968). The following rules apply to the GO TO MORE-LABELS 
option: 

• Format 3 can appear only within a label-processing section in the declarative section . 

• When an input file is being processed, format 3 is a request to the 1/0 control routine to make the 
next standard user label record available, and transfer control to the beginning of the USE 
procedure. If there are no more labels to be processed, control is returned to procedure division. 

-----------~-~~--~~----------------------------------



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-14 

• When an output file is being processed, format 3 requests the 1/0 control routine to write the label 
in the user label area and return control to the first statement in the USE procedure so as to 
permit another label record to be created in the user label area. 

6.6.2.3. PERFORM Statement 

Function: 

This verb permits a temporary departure from the normal sequence of execution to execute one or more 
procedures, either a specified number of times or until a specified condition is satisfied, after which control is 
automatically returned to the normal sequence. 

Format 1: 

PERFORM procedure-name-1 [THRU procedure-name-2) 

Format 2: 

{ 
i_dentifier-1 } 

PERFORM procedure-name-1 [THRU procedure-name-2) TIMES 
mteger-1 

Format 3: 

PERFORM procedure-name-1 [THRU procedure-name-2) UNTIL condition-1 

Format 4: 

PERFORM procedure-name-1 [THRU procedure-name-2) 

~ "d "f" 1 ~ { identifier-2 } 
VARYING ~ enti ier- FROM index-name-2 

mdex-name-1 ---
1
• 

1 2 1tera -

By l identifier-3 ( UNTIL d" . _1 
I
. 

1 3 
con 1t1on 

- 1tera- ---

AFTER ~ enti ier FROM index-name-5 ~ l .d ·t· -4 ! {identifier-5 } 

mdex-name-4 literal-5 

By ~ id. entifier-6 f 
- hteral-6 

UNTIL condition-2 

[ AFTER l ~dentifier-7 ! FROM { :~::~~~:::e-8} 
mdex-name-7 -- 1• l-8 1tera 

BY l ~:~:'.~" .g ! UNTIL oon<UHon·3 J J 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

Rules: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-15 

1. Each procedure-name is the name of a section or paragraph in the procedure division. 

2. Each identifier represents a numeric elementary item described in the data division. In format 2, the 
identifier represents a numeric item with no positions to the right of the assumed decimal point; a 
floating-point operand is not permitted in format 2. 

3. Each literal represents a numeric literal. 

4. When the PERFORM statement is executed, control is transferred to the first statement of 
procedure-name-1. An automatic return to the statement following the PERFORM statement is 
established as follows: 

5. 

6. 

• If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, return occurs 
after execution of the last statement of procedure-name-1. 

• If procedure-name-1 is a section name and procedure-name-2 is not specified, return occurs after 
execution of the last statement of the last paragraph in procedure-name-1. 

• If procedure-name-2 is specified and is a: 

paragraph-name, return occurs after execution of the last statement of the paragraph, 

section-name, return occurs after execution of the last sentence of the last paragraph in the 
section . 

If there are two or more direct paths to a return point in a group of procedures being performed, 
procedure-name-2 may be the name of a paragraph consisting of the EXIT statement, to which all these 
paths must lead. If control passes to these procedures by other than a PERFORM statement, control 
passes through the last statement of the procedure to the following statement, regardless of use of the 
EX IT statement. 

Format 1 is the basic PERFORM statement. A procedure referred to by this type of PERFORM 
statement is executed once after which control is passed to the statement following the PERFORM 
statement. 

7. Format 2 is the TIMES option. When the TIMES option is used, the procedures are performed the 
number of times specified by identifier-1 or integer-1. Control then is transferred to the statement 
following the PERFORM statement. The value of identifier-1 or integer-1 must not be negative, and if 
the value is 0, control passes immediately to the statement following the PERFORM statement. Once 
the PERFORM statement is initiated, any redefinition of identifier-1 has no effect in varying the number 
of times the procedures are executed. 

8. Format 3 is the UNTIL option. The specified procedures are performed until the condition specified by 
the UNTIL option is true. Then, control is transferred to the statement following the PERFORM 
statement. Note that if the condition specified by the UNTIL option is true at the beginning of the 
execution of the PERFORM statement, the specified procedure is not executed and control passes to the 
statement following the PERFORM statement. 

9 . Format 4 is the VARYING option. This option is used to change the value of one or more identifiers or 
index-names during the execution of a PERFORM statement. When index-names are used, the FROM 
and BY clauses have the same effect as in a SET statement. In rules 10 through 12, references to 
identifier as the object of VARYING and FROM phrases also refer to index-name. 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 6-16 
EXTENDED COBOL 

10. When one identifier is varied: 

• ldentifier-1 is set to its initial value, either identifier-2 or literal-2. 

• If condition-1 is false, the sequence of procedures is executed once, and the value of identifier-1 is 
incremented or decremented by identifier-3 or literal-3, and condition-1 is evaluated again. This 
cycle continues until condition-1 is true, after which control is passed to the statement following 
the PERFORM statement. 

• If condition-1 is true at the beginning of execution of the PERFORM statement, control passes 
directly to the statement following the PERFORM statement. 

11. When two identifiers are varied: 

• ldentifier-1 and identifier-4 are set to their initial values, identifier-2 and identifier-5, respectively. 
During execution, these initial values must be positive. 

• Condition-1 is evaluated. If true, control is passed to the statement following the PERFORM 
statement. If false, condition-2 is evaluated. 

• If condition-2 is false, the sequence of procedures is executed once, after which identifier-4 is 
changed by identifier-6, and condition-2 is evaluated again. This cycle continues until condition-2 
is true. 

• When condition-2 is true, identifier-4 is set to initial value (identifier-5), identifier-1 is changed by 
identifier-3, and condition-1 is reevaluated. 

• The PERFORM statement is completed when condition-1 is true; if false, the cycle continues until 
condition-1 is true. 

• Figure 6-1 illustrates the logic of the PERFORM statement when two identifiers are varied. At 
the termination of this PERFORM statement, identifier-4 contains its initial value, while 
identifier-1 contains a value that differs from the last used setting by an increment or decrement 
depending on identifier-3. If condition-1 was true when the PERFORM statement was initiated, 
identifiers-1 and -4 contain their initial values. 

12. When three identifiers are varied: 

• Logic is the same as for two identifiers, except that identifier-7 goes through a complete cycle each 
time identifier-4 is changed by identifier-6 which, in turn, goes through a complete cycle each time 
identifier-1 is varied. 

• Figure 6-2 illustrates the logic of the PERFORM statement when three identifiers are varied. At 
the termination of this PERFORM statement, identifier-4 and identifier-7 contain their initial 
values, while identifier-1 contains a value that differs from the last used setting by an increment or 
decrement depending on identifier-3. If condition-1 was true when the PERFORM statement was 
initiated, identifier-1, identifier-4, and identifier-7 each contains its initial value. 

13. A PERFORM statement within a section which has a priority number less than the SEGMENT-LIMIT 
can have, within its range, only the following: 

• sections with priority numbers of less than 50; and 

• sections entirely contained in a single segment with a priority number greater than 49. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-17 

14. A PERFORM statement that appears in a section which has a priority number equal to or greater than 
the SEGMENT-LIMIT can have, within its range, only the following: 

• sections with the same priority number as the section containing the PERFORM statement; and 

• sections with a priority number less than the SEGMENT-LIMIT. 

15. Independent segments are made available in their initial state. Fixed overlayable segments are made 
available in their last used state. 

16. If a sequence of statements referred to by a PERFORM statement includes another PERFORM 
statement, the sequence of procedures associated with the included PERFORM statement must itself be 
either totally included in, or totally excluded from, the logical sequence referred to by the first 
PERFORM statement. Thus, an active PERFORM statement, the execution of which begins within the 
range of another active PERFORM statement, must not allow control to pass to the exit of the other 
PERFORM statement; furthermore, two or more such active PERFORM statements may not have a 
common exit. 

LEGEND: 

I = identi tier 
n 

L = literal 
n 

C = condition 
n 

P n = procedure-name 

SET 

i
1
tol

2
[L

2
] 

1
4 

to 1
5 

[L
5

] 

EXECUTE 

P
1 

[THRU P
2

] 

TRUE 

TRUE 

EXIT 

INITIALIZE 

Figure 6-1. PERFORM Logic: Varying Two Identifiers 

VARY 



UP-8059 Rev. 3 

Legend: 

I = identifier 
n 

L =literal 
n 

C =condition 
n 

P n = procedure-name 

SET 

1
1 

to 12 or L2 
14 to 15 or L5 
17 to la or La 

EXECUTE 

VARY 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

TRUE 

INITIALIZE 

TRUE 
14 to 15 or L5 

INITIALIZE 

TRUE 
17 to la or La 

EXIT 

VARY 

14 by 16 or L6 

Figure 6-2. PERFORM Logic: Varying Three Identifiers 

6-18 

• 
VARY 

11 by 13 or L3 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-19 

• 6.6.2.4. EXIT* Statement 

• 

• 

Function: 

The EXIT statement provides a common end point for a series of procedures, or marks the logical end of a 
called program. 

Format: 

EXIT [PROGRAM] 

Rules: 

1. The EXIT statement must be preceded by a paragraph-name and be the only sentence in the paragraph. 
The EXIT statement must appear in a sentence by itself. 

2. The point to which control is transferred may be at the end of a range of procedures governed by a 
PERFORM statement or at the end of a declarative section. The EXIT statement is provided to enable a 
procedure-name to be associated with such a point. 

3. If control reaches an EXIT statement without the optional word PROGRAM, and no associated 
PERFORM or USE statement is active, control passes through the EXIT point to the first sentence of 
the next paragraph. 

4 . 

NOTE: 

If control reaches an EXIT PROGRAM statement while operating under the control of a CALL 
statement, control returns to the point in the calling program immediately following the CALL 

statement. 

For examples of called or calling programs, see 6.8. 

6.6.3. Data Movement Verbs 

Four verbs are provided by OS/3 COBOL for the specific purpose of moving or manipulating data: 

EXAMINE, MOVE, SET, TRANSFORM 

These are verbs in addition to the several verbs which, as a secondary function, move or manipulate data in some 
manner. For example, an arithmetic verb may cause some data movement and/or manipulation. This, however, is 
secondary to its main function of effecting an arithmetic calculation . 

*Extension to American National Standard COBOL (1968). 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-20 

6.6.3.1. EXAMINE Statement 

Function: 

The EXAMINE statement replaces or counts the number of occurrences of a given character in a data item. 

Format: 

{

ALL } 
LEADING 
UNTIL FIRST 

TALLYING literal-1 [REPLACING BY literal-2) 

{

ALL } 
LEADING 
[UNTIL] FIRST 

EXAMINE identifier 
literal-3 BY literal-4 REPLACING 

Rules: 

1. The description of the identifier must be such that USAGE IS DISPLAY (explicitly or implicitly). 
Floating-point display identifiers are examined as if they were nonnumeric. 

2. Each literal must consist of a single character belonging to a class consistent with that of identifier. A 
literal may be any figurative constant except ALL. 

3. Examination of identifier proceeds as follows: 

• Nonnumeric examination starts at the leftmost character and proceeds to the right; each character 
is examined individually. 

• Numeric examination starts at the leftmost character and proceeds to the right. Each character 
except the sign (which is ignored) is examined individually. 

4. The count derived as a result of the TALLYING option is placed in a special register called TALLY. 
Depending upon which option is selected, the count represents the following: 

• ALL option: the number of occurrences of literal-1. 

• LEADING option: the number of occurrences of literal-1 prior to encountering a character other 
than literal-1. 

• UNTIL FIRST option: the number of occurrences of characters not equal to literal-1 encountered 
before the first occurrence of literal-1. 

5. When either of the REPLACING options is used, the replacement rules are as follows: 

• ALL option: literal-2 or literal-4 substituted for each occurrence of literal-1 or literal-3. 

• LEADING option: the substitution of literal-2 or literal-4 terminates as soon as a character, other 
than literal-1 or literal-3, is encountered. 

• UNTIL FIRST option: the substitution of literal-2 or literal-4 terminates as soon as literal-1 or 
literal-3 is encountered. 

• Fl RST option: the first occurrence of literal-3 is replaced by literal-4 . 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-21 

• 6.6.3.2. MOVE Statement 

• 

• 

Function: 

The MOVE statement transfers data, in accordance with the rules of editing, to one or more data areas. 

Format 1: 

{ 
identifier-1 } 

MOVE literal-1 TO identifier-2 [. identifier-3) 

Format 2: 

MOVE {
CORR } identifier-1 TO identifier-2 
CORRESPONDING 

Rules: 

1. If the CORRESPONDING option is used, selected items within identifier-1 are moved to selected items 
within identifier-2 according to rule 7 in 6.6.1, except that identifiers need not be numeric and may be 
either both elementary items, or one elementary item and one group item. 

2 . 

Only one identifier may appear to the right of the word TO, and the results are the same as if the user 
had referred to each pair of corresponding identifiers in separate MOVE statements. 

When moving to more than one area, the data designated by literal-1 or identifier-1 is moved first to 
identifier-2, then to identifier-3, etc. 

3. Any MOVE in which both the sending and receiving items are elementary items is an elementary MOVE. 
Every elementary item belongs to one of the following categories: 

• Numeric 

• Alphabetic 

• Alphanumeric 

• Numeric edited 

• Alphanumeric edited 

Table 6-1 shows legal categories of sending and receiving fields . 



UP-8059 Rev. 3 

Sending 

Numeric 

Alphabetic 

Alphanumeric 

Numeric edited 

Alphanumeric 
edited 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 6-1. MOVE Sending and Receiving Fields 

Receiving 

Numeric 
Numeric Alphabetic Alphanumeric 

Edited 

Yes No Yes* Yes 

No Yes Yes No 

Yes Yes Yes Yes 

No No Yes No 

No Yes Yes No 

6-22 

Alphanumeric 
Edited 

Yes* 

Yes 

Yes 

Yes 

Yes 

*A floating-point item or a numeric item with an implicit decimal point not immediately to the right of 
the least significant digit must not be moved to an alphanumeric or alphanumeric edited data item. 

4. The following rules apply to legal elementary moves: 

• When the receiving field is alphanumeric edited, alphanumeric, or alphabetic, justification and any 
necessary space filling takes place as defined under the JUST! Fl ED option. If the size of the 
sending item is greater than the size of the receiving item, the excess characters are truncated after 
the receiving item is filled. 

• When the receiving field is a numeric or numeric edited item, alignment by decimal point and any 
necessary zero filling takes place, except where zeros are replaced because of editing requirements. 
If the receiving item has no operational sign, the absolute value of the sending item is used. 
Truncation occurs if the sending item has more digits to the left or right of the decimal point than 
the receiving item can contain. The result at object time is undefined if the sending item contains 
any nonnumeric characters. 

• Any necessary conversion of data from one form of internal representation to another takes place 
during the move, together with any specified editing in the receiving item. 

• When the sending field is an edited item, it is treated as an alphanumeric item. 

• An index data item cannot appear as an operand in a MOVE statement. 

5. Any MOVE that is not an elementary MOVE is treated as if it were an alphanumeric-to-alphanumeric 
elementary MOVE, except that no conversion of data from one form of internal representation to 
another occurs. 

6. The figurative constant ZERO (ZEROS, ZEROES) belongs in the numeric category. The figurative 
constant SPACE (SPACES) belongs in the alphabetic category. All other figurative constants belong in 
the alphanumeric category. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-23 

6.6.3.3. SET Statement 

Function: 

The SET statement establishes reference points for table handling operations by setting index-names associated 
with table elements. 

Format 1: 

SET 
{ 

identifier-1 } [' identifier-2 ] 
index-data-item-1 • index-data-item-2 
index-name-1 • index-name-2 

Format 2: 

... TO l identifier-3 ~ 
index-data-item-3 
index-name-3 
literal-1 

SET index-name-1 [. index-name-2) ... {DOWN BY} { identifier-1 } 
-- UP BY literal-1 

Rules: 

1. All identifiers must be either index data items or numeric elementary items described without any 
positions to the right of the assumed decimal point, i.e., no floating-point, except that identifier-1 in 
format 2 must not be an index-data-item. 

2. All literals must be positive integers; floating-point literals are not permitted . 

3. All index-names are considered related to a given table and are defined by being specified in the 
INDEXED BY clause. 

4. In format 2, the contents of index-name-1, index-name 2 ... are incremented (UP BY) or c'~cremented 
(DOWN BY) by a value that corresponds to the number of occurrences represented by the value of 
identifier-1 or literal-1. 

5. The following explain the allowable combinations of choices in the SET statement. 

• SET index-name-1 TO index-name-3 
~- --

The occurrence number value of index-name-3 computes a new displacement value for 
index-name-1. Also, the occurrence number value of index-name-3 replaces that of index-name-1. 
If the length of one occurrence is the same for both, no computation is necessary. 

• SET index-name TO index-data-item 

• 

Same as SET index-name-1 TO index-name-2, except that no computation takes place. If the value 
contained in the index-data-item does not correspond to an occurrence number of an element in 
the table indexed by index-name, the result is undefined. 

{
DOWN BY} {'d 'f' } -- - 1 ent1 1er 

SET index-name TO 
1
• 

1 UP BY 1tera 

When identifier or literal is a numeric data item and usage is not index. The value of identifier or 
literal is treated as an occurrence number and is used to compute a new displacement value for 
index-name. Identifier or literal must be elementary unsigned integer. Also, the value of identifier 
or literal replaces, increments, or decrements the occurrence number value of index-name. 



UP-8059 Rev. 3 

• 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

in ex- ata-1tem- . SET . d d . 1 TO { index-data-item-2 } 
-- -- index-name 

6-24 

A move with no conversion is executed. lndex-data-item-1 has no associated table element length; 
therefore, there is no unique displacement value for a given occurrence number value. 

• SET identifier TO index-name 

The value of the occurrence number of index-name replaces the value of identifier with 
appropriate conversion to the data type of identifier; i.e., conversion of binary occurrence number 
to packed decimal. Rules for MOVE statement with integer numeric sending field apply. Identifier 
must be a numeric data item, an alphanumeric data item, or a group item. 

6. Internal format of index-name and index-data-item: 

Description Occurrence Number Displacement 
of Contents in Binary in Binary 

Format 32 bits 32 bits 

Range 0 to 65,535 0 to 65,535 

---8 bytes---------. 

Index-name items are word aligned, but index-data-items are not aligned. 

7. Formula for calculating displacements for index-name: 

Displacement= (occurrence-number-1) x (length of one occurrence) 

6.6.3.4. TRANSFORM* Statement 

Function: 

The TRANSFORM statement may be used to alter characters of an identifier according to a user-defined 
transformation rule or table. It may also be used to effect code base translation between EBCDIC and ASCII 
via compiler-supplied tables. 

Format 1: 

TRANSFORM identifier-3 [, identifier-4] ... CHARACTERS 

{ 

figurative-constant-1 } { figurative-constant-2 } 
FROM identifier-1 TO identifier-2 

nonnumeric-literal-1 nonnumeric-literal-2 

Format 2: 

TRANSFORM identifier-3[. identifier-4] ... CHARACTERS 

FROM { ASCII TO EBCDIC } 
-- EBCDIC TO ASCII ---

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



UP-8059 Rev. 3 

• Format3: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-25 

TRANSFORM identifier-3[, identifier-4) ... CHARACTERS 

Rules: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

• 

• 

{ ~~ } identifier-5 

All identifiers used in this statement must be described either explicitly or implicitly as USAGE IS 
DISPLAY. ldentifier-1, identifier-2, or identifier-5 may not be variable-length operands. 

The least significant digit position of a signed, decimal numeric display item without a SEPARATE 
SIGN clause is treated as a single character, not as a signed digit. 

In format 1, identifier-1 and identifier-2 must not exceed 256 characters in length. The length of 
identifier-2 must equal the length of identifier-1, or identifier-2 must have a length of 1 character. 

In format 1, all figurative constants are permitted except ALL. 

In format 1, a character must not be repeated in identifier-1 or in nonnumeric-literal-1. 

In format 3, identifier-5 must be a length of 256 characters. 

The following paragraphs and Table 6-2 explain the allowable combinations of choices in the 
TRANSFORM statement . 

• The following rules apply to these combinations in format 1: 

identifier-1 TO identifier-2 

identifier-1 TO nonnumeric-literal-2 

identifier-1 TO figurative-constant-2 

nonnumeric-literal-1 TO identifier-2 

nonnumeric-literal-1 TO nonnumeric-literal-2 

nonnumeric-literal-1 TO figurative-constant-2 

If the FROM and the TO operands are the same length, any occurrence in identifier-3, 
identifier-4, and so on, of a character (or the single character) in operand-1 is replaced by the 
character (or the single character) in the corresponding position of operand-2. 

If the FROM operand exceeds one character and the TO operand is only one character, any 
occurrence in identifier-3, identifier-4, and so on, of any character in operand-1 is replaced 
by the single character in operand-2 . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-26 

• The following rule applies to these combinations in format 1: 

figurative-constant-1 TO identifier-2 

figurative-constant-1 TO nonnumeric-literal-2 

figurative-constant-1 TO figurative-constant-2 

Length of operand-1 and operand-2 must be one character. Any occurrence in identifier-3 of 
the single character in operand-1 is replaced by the single character in operand-2. 

• The following applies to format 2: 

ldentifier-3 is transformed from ASCII to EBCDIC or from EBCDIC to ASCII, depending on 
the FROM and TO operands. 

• The following rules apply to format 3: 

ldentifier-3 may be described as having any length up to a maximum of 65,535 characters. 

ldentifier-5 is a 0-255 binary value positional translate table, i.e., any character in 
identifier-3 with a binary value of 0 will be transformed to the character in the first position 
of identifier-5; any character in identifier-3 with a binary value of 1 will be transformed to 
the character in the second position of identifier-5, etc. 

Table 6-2. Combination of FROM and TO Options in a TRANSFORM Statement (Part 1 of 2) 

Operands Rule 
ldentifiar-3 
Before 

FROM TO 
ldantifiar-3 

After 

FROM All occurrences of figurative-constant-1 in the 1"2""3 QUOTE ZERO 102003 

figurative-constant-1 item represented by identifier-3 are replaced by 

TO figurative-constant-2. (Each operand must be a 
figurative-constant-2 single character.) 

FROM All occurrences of figurative-constant-1 in the 1[263 SPACE "7" 17273 

figurative-constant-1 item represented by identifier-3 are replaced 
TO by nonnumeric-literal-2. (Each operand must 
nonnumeric-literal-2 be a single character.) 

FROM All occurrences of figurative-constant-1 in the 16263 SPACE ALPHA 18283 

figurative-constant-1 item represented by identifier-3 are replaced by (current 

TO the item represented by identifier-2. (Each value of 

identifier-2 operand must be single character.) ALPHA= Bl 

FROM All occurrences of any character of nonnumeric- AB12X7P "1234567890" SPACE ABMX :">P 
nonnumeric-literal-1 literal-1 in the item represented by identifier-3 
TO are replaced by the single-character figurative-
figurative-constant-2 constant-2. 

FROM Nonnumeric-literal-1 and nonnumeric-literal-2 ABC012X "ABCOEFGHIJ" "1234567890" 123412X 
nunnumeric-literal-1 must be equal in length, or nonnumeric-
TO literal-2 must be a single character. 
nonnumeric-literal-2 

If the operands are equal in length, any character 
in the item represented by identifier-3 that i~ 
equal to a character in nonnumeric-literal-1 is 
replaced by the character in the corresponding 
position of nonnumeric-literal-2. 

If nonnumeric-literal-2 is a single character, then AB21X73 "1234567890" "L" ABLLXLL 
all occurrences of any character of nonnumeric-
literal-1 in the item represented by identifier-3 
are replaced by the single character in nonnumeric-
literal-2. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 6-2. Combination of FROM and TO Options in a TRANSFORM Statement (Part 2 of 2) 

Operands Rule 
ldentifier-3 

FROM TO 
Before 

FROM The two operands must be equal in length, or 1 l'i21'iDEF ""l'i12DEF'' BETA 
nonnumeric-literal-1 identifier-2 must represent a single-character item. (current value 
TO of BETA= 
identifier-2 If the operands are equal in length, any character FED21 /'i.) 

in the item represented by identifier-3 that is 
equal to a character in nonnumeric-literal-1 is 
replaced by the character in the corresponding 
position of the item represented by identifier-2. 

If identifier-2 is a single character. then all ABC ADE GAMMA 
occurrences of any c~aracter of nonnumeric-literal-1 (current value 
in the item represented by identifier-3 are replaced of GAMMA= 1) 
by the character represented by identifier-2. 

FROM All occurrences of any character of the item repre- A12B GAMMA QUOTE 
identifier-1 sented by identifier-1 in identifier-3 are replaced (current 
TO by the single character figurative-constant-2. value of 
figurative-constant-2 GAMMA= ABC.) 

FROM The two operands must be equal in length, or ABCD ALPHA "DCBA" 
identifier-1 nonnumeric-literal-1 must be a single-character (current value 
TO item. of ALPHA= 
nonnumeric-literal-2 A12BI 

If the operands are equal in length, any character in 
the item represented by identifier-3 that is equal to 
a character in the item represented by identifier-1 
is replaced by the character in the corresponding 
position of nonnumeric-literal-2. 

If nonnumeric-literal-2 is a single character, then ABCD DELTA "6" 
all occurrences of any character of the item repre- (current value 
sented by identifier-1 in the item represented by of DELTA= 
identifier-3 are replaced by nonnumeric-literal-2. ABCDEFI 

FROM Any character in the item represented by 1AB4 ITEM-A ITEM-8 
identifier-1 identifier-3 that is equal to a character in the item (current value (current value 

TO represented by identifier-1 is replaced by the of item-A= of ITEM·B = 
identifier-2 character in the corresponding position of the 1234.) ABCD.) 

item represented by identifier-2. 

Both operands must be of equal length. Each 
of the operands may contain one or more 
characters. 

6.6.4. Input/Output Verbs 

6-27 

ldentifiar-3 
After 

EFDF21 l'i 

lBC 

'"12" 

DAGO 

6666 

AABD 

In any data processing application, quantities of data are passed between storage and external media such as card, 
tape, or disc devices. The input/output verbs control and coordinate the flow of data, enabling the COBOL 
programmer to obtain records for processing and return the processed record to the external media. The 

input/output verbs are: 

ACCEPT 
CLOSE 
DISPLAY 
OPEN 

READ 
WRITE 
INSERT 
RELEASE 

RETURN 
REWRITE 
SEEK 
SORT 



UP-8059 Rev. 3 

6.6.4.1. ACCEPT Statement 

Function: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-28 

Reads low volume data from an appropriate hardware device, system main storage location, or UPSI (user 
program switch indicator) byte. 

Format: ~ l mnemonic-name ~ J 
. . DATE* 

ACCEPT ident1f1er ~ DAY* 

TIME* 
Rules: --

1. The ACCEPT statement causes the next set of data available at the mnemonic-name to replace the 
contents of the data item named by the identifier. Data is moved, left-justified. 

2. The job control stream is assumed to be the input source when the FROM option is not specified. The 
description of identifier determines the number of cards accepted. One card from the job control stream 
contains up to 80 characters. The maximum length specified by identifier is 4095 characters, which 
would require 52 cards. 

3. To indicate that input is to be accepted from the system console, the following message is displayed: 

CA10 ACCEPT READY 

Program operation is suspended until a type-in occurs (CA 10 indicates a COBOL ACCEPT). The 
maximum number of characters that can be transmitted from the system console for a single ACCEPT is 
60. 

4. The mnemonic-name must be associated with an implementor-name in the SPECIAL NAMES paragraph 
of the environment division. Special-names that can be the source of accepted data are: 

5. 

6. 

NOTE: 

SY SC OM 

SYSDATE 

SYSTIME 

SYSCONSOLE 

SYSIN 

SYSIN-96 

SYSIN-128 

SYSSWCH 

See Table 4-1 for specific interpretation of implementor-names. 

The identifier must be defined implicitly or explicitly as USAGE IS DISPLAY. 

The DATE and DAY options make the current date available in the formats yymmdd and yyddd, 
respectively. The TIME option makes the current time of day available in the format hhmmssOO. 

The use of ACCEPT statements is illustrated in Section 9. 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-29 

6.6.4.2. CLOSE Statement 

Function: 

Terminates processing of one or more input or output reels, units, or files with optional rewind with or 
without lock. 

Format: 

CLOSE file-name-1 [ REEL] [wlTH 
UNIT {

LOCK }] 
NO REWIND 

[
. [REEL] [ flle-name-2 UNIT WITH {

LOCK }] 
NO REWIND 

.Rules: 

1. File-name must not be the name of a sort file. 

2. After a CLOSE statement without a REEL/UNIT phrase has been executed for a file, an OPEN 
statement must be executed before any other references are made to the file. 

3. 

4. 

The REEL/UNIT option effects reel or unit swapping in a sequential file process. When specified, it 
terminates the current reel or unit of a multivolume file. Processing continues with the next reel or unit 
of the file. Unless early termination of the current reel or unit is desired, the REEL/UNIT phrase is 
unnecessary because swapping occurs automatically at the end of the current reel or unit. If the reel/unit 
is to be dismounted from the device, the LOCK option should be used. After execution of a CLOSE 
statement with a REEL/UNIT option, the file is still open. 

The UNIT option is applicable for direct access files only when ACCESS MODE IS SEQUENTIAL is 
specified. 

5. The REEL, NO REWIND, and LOCK options are applicable only to magnetic tape files and are 
meaningless when operating with any other device. 

6. When the LOCK option is specified for reel, the current reel of the tape file is rewound and unloaded. 
When the LOCK option is used without a REEL option, the file is closed and the current volume is 
rewound and unloaded. As a result, the file cannot be reopened without operator intervention. 

7. Each file-name refers to an FD name in the data division. 

8. If neither LOCK nor NO REWIND is specified, the current reel of the file is rewound and all other reels 
belonging to the file are rewound. However, this rule does not apply to those reels controlled by a prior 
CLOSE REEL entry. 

9. If the NO REWIND option is specified, the current reel of the file remains in whatever position it is in at 
the time the CLOSE is given . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-30 

t 

6.6.4.3. DISPLAY Statement 

Function: 

The DISPLAY statement writes low volume data to an appropriate hardware device or system main storage 
location. It can also be used to set the UPSI switches. (See Section 9 for a detailed explanation of DISPLAY 

statement usage.) 

Format: 

DISPLAY{
id_ entifier-1} [· i_dentifier-2] 
hteral-1 , hteral-2 

... [UPON mnemonic-name] 

Rules: 

1. When the UPON option is omitted, the data is written on the system console (SYSCONSOLE). 

2. When the UPON option is specified, the mnemonic-name must be associated with an implementor-name 
in the SPECIAL-NAMES paragraph (4.2.3) in the environment division. 

3. The special-names that may be associated with the DI SPLAY statement via mnemonic-name are: 

SY SC OM 

SYSCONSOLE 

SYS LOG 

SYSSWCH 

SYSSWCH-n 

SYSLST 

See Table 4-1 for more detailed information. 

4. If the system console is the hardware device, the sum of the sizes of operands in a DI SPLAY statement 
may not exceed 250 characters. The data is displayed on the system console a line at a time. Each line is 
preceded by CD10.6. (CD11.6. if SYSLOG is used), followed by 55 characters of the contents of the 
operands. 

5. COMP-3 numeric items and binary items are converted to DISPLAY decimal. For signed numeric items, 
a separate sign character is displayed immediately following the operand. Floating-point computational 
items are converted to floating-point display items. 

6. The number of printer characters displayed is a multiple of 120. An advance of one line precedes each 

line of output. Each operand displayed is limited to 4092 characters. For signed numeric items, a 
separate sign character is displayed immediately following the operand. 

NOTE: 

The use of D/SPLA Y statements is illustrated in Section 9. 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-31 

• 6.6.4.4. OPEN Statement 

• 

• 

Function: 

The OPEN statement initiates processing of both the input and output files. It initiates checking or writing of 
labels and other input/output operations. 

Format: 

INPUT {file-name [ :~~~~~E~EWIND J} · · · ~ 
1-0 {file-name} ... 

OUTPUT {file-name [WITH NO REWIN~] } ... 

Rules: 

1. At least one of the options INPUT, OUTPUT, or 1-0 must be specified. They may appear in any order. 

2. The 1-0 option pertains only to mass storage files. 

3. 

4. 

The REVERSED and NO REWIND options apply only to sequential single reel processing. 

The REVERSED option requires that the file be positioned at its end prior to the execution of the 
OPEN statement. The NO REWIND option requires that the file be positioned at its beginning prior to 
the execution of the OPEN statement. 

The OPEN statement must be applied to all files except sort files. 

5. File-name refers to the FD name in the file section of the data division. 

6. The OPEN statement for a file must be executed prior to the first READ, INSERT, REWRITE, SEEK, 
or WRITE statement for that file. 

7. A second OPEN statement for a file must not be executed prior to the execution of a CLOSE statement 
for that file. 

8. The OPEN statement does not obtain or release the first data record. When checking or writing labels, 
the user's beginning label subroutine is executed if one was specified by a USE statement (6.6.7.4). 

6.6.4.5. READ Statement 

Function: 

For sequential file processing, the READ statement makes available the next logical record from a file and 
allows performance of a specified imperative-statement when end of file is detected. 

For random file processing of mass storage files, the READ statement makes available a specific record from a 
file, and allows performance of a specified imperative-statement if the contents of the associated keys are 
found to be invalid . 

Format: 

READ file-name RECORD [INTO identifier] {; ~~V~D KEY} imperative-statement 



UP-8059 Rev. 3 

Rules: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-32 

1. An OPEN statement (INPUT or 1-0) must be executed for a file prior to the execution of the first 

READ statement for that file. 

2. When a file consists of more than one type of record, the records automatically share the same storage 
area. 

3. The AT END or INVALID KEY clause is required for all file organizations except indexed organization, 
where its use is optional. The execution of the imperative statement AT END or INVALID KEY is 
dependent upon file organization and file usage. See Section 11 for detailed information on these 
conditions. 

4. If an input file described with the keyword OPTIONAL is not present, the imperative-statement in the 
AT END option is executed on the first READ statement. 

5. The READ statement performs the functions of the SEEK statement implicitly for random access files. 

6. The INTO option may be used only when the input file contains just one size record, and file-name 
cannot be the name of a sort file. Reading INTO is performed according to the rules of a group MOVE 
(6.6.3.2). 

7. Data items of a logical record cannot be accessed prior to the read of the associated record. The record 
area may not be accessed prior to a read or after the AT END condition is detected. 

6.6.4.6. WRITE Statement 

Function: 

The WRITE statement releases a logical record for an output file. It can also be used for vertical positioning of 
the printer. The WRITE statement permits performance of a specified imperative statement if the contents of 
the associated keys are found to be invalid. 

F~·-mat1: 

WRITE record-name [FROM identifier-1] 

[{
AFTER } ADVANCING { :~;;;!ie~-~N~ISNES }] 

BEFORE mnemonic-name 

WRITE record-name [FROM identifier-1] ; INVALID KEY imperative-statement 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-33 

Rules: 

1. A file must be opened (OUTPUT or 1/0) prior to execution of the first WRITE statement for that file. 

2. The record-name is the name of a logical record in the file section of the data division and must not be 
part of a sort file. 

3. When the FROM option is used, data is moved from identifier-1 to record-name according to the rules 
specified for a group MOVE. 

4. After the WRITE statement is executed, information in record-name is no longer available, but 
identifier-1 information is available. The record area associated with an output file may not be accessed 
prior to the open for that file. 

5. The INVALID KEY clause in format 2 is used when processing direct access files and is required for 
RELATIVE file organization; for SEQUENTIAL and INDEXED organizations its use is optional. The 
conditions that cause execution of the INVALID KEY imperative statement depend upon file 
organization and file usage. For more detailed information, see Section 11. 

6. The ADVANCING option controls the vertical positioning of each record on the printed page. If this 
option is omitted for a printer file, the printer automatically advances one line before printing (i.e., 
WRITE record-name AFTER ADVANCING 1 LINE). Any form of the ADVANCING option overrides 

this automatic advance. 

• 

• 

The identifier represents a numeric item with no positions to the right of the assumed decimal 
point; a floating-point operand is not permitted . 

The contents of identifier-2 or the value of integer must not exceed 127. A value of 0 is 
permissible (where overprinting is desired). 

• Mnemonic-name specifies a channel in the forms control paper tape loop. This channel is identified 
in the SPECIAL-NAMES paragraph of the environment division, using SYSCHAN-t IS 
mnemonic-name, where t is the channel (4.2.3). 

7. The USE FOR FORM-OVERFLOW clause in the declaratives section of the procedure division permits 
the programmer to perform special procedures when a form overflow condition exists. Form overflow is 
detected during the print and space functions of the printer. If form positioning by paper tape loop is 
specified (ADVANCING mnemonic-name), the form overflow condition does not occur . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-34 

6.6.4.7. INSERT* Statement 

Function: 

The INSERT statement adds a logical record to indexed organization files. 

Format: 

INSERT record-name [FROM identifier-1] [;INVALID KEY imperative-statement] 

Rules: 

1. The INSERT verb can be used only when access is random or extended and organization is indexed. 

2. A file must be opened (1-0) prior to execution of the first INSERT statement for that file. 

3. The record-nan).e is the name of a logical record in the file section of the data division and must not be 
part of a sort file. 

4. When the FROM option is used, data is moved from identifier-1 to record-name, according to the rules 
specified for a group MOVE. 

5. After the INSERT statement is executed, information in record-name is no longer available, but 
identifier-1 information is available. 

6. The INVALID KEY clause is required for all file organizations except indexed organization, where its 
use is optional. See Section 11 for detailed information on these conditions. 

6.6.4.8. REWRITE* Statement 

Function: 

The REWRITE statement releases a logical record for an output file for the purpose of updating an existing 
record. 

Format 1: 

REWRITE record-name [FROM identifier] 

Format 2: 

Rules: 

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement] 

1. A file must be opened (1-0) and a record read prior to execution of the first REWRITE statement for 
that file. 

2. The record-name is the name of a logical record in the file section of the data division and must not be 
part of a sort file. 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-35 

3. When the FROM option is used, data is moved from identifier-1 to record-name according to the rules 
specified for a group MOVE. 

4. After the REWRITE statement is executed, information in record-name is no longer available, but 
identifier-1 information is available. 

5. The INVALID KEY imperative statement in format 2 is used when processing direct access files. See 
Section 11 for detailed information on these conditions. 

The INVALID KEY clause is required for all file organizations except indexed organization, where its 
use is optional. 

6.6.4.9. SEEK Statement 

Function: 

The SEEK statement initiates access of a mass storage data record for subsequent reading or writing. 

Format: 

SEEK file-name RECORD 

Rules: 

1. A SEEK statement pertains only to the disc files specified in the following chart . 

Organization 
Type 

Sequential 

Relative 

Indexed 

Access 
Method 

Sequential 

Sequential 

Random 

Sequential 

Random 

Extended 

SEEK Allo wed 

No 

Yes 

Yes 

Yes 

No 

Yes 



UP-8059 Rev. 3 

2. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-36 

The value of the identifier in the ACTUAL or RELATIVE key clause is used by the SEEK statement to 
determine the location of the record to be accessed when ORGANIZATION is RELATIVE. When 
ORGANIZATION is INDEXED, the value of the identifier in the SYMBOLIC KEY clause is used. 

3. Two SEEK statements for the same file may logically follow each other. Any validity check associated 
with the first SEEK statement is negated by the execution of a second SEEK statement. 

6.6.4.10. RELEASE Statement 

Function: 

The RE LEASE statement transfers records to the initial phase of a sort operation. 

Format: 

RELEASE record-name [FROM identifier] 

Rules: 

1. Record-name must be part of a logical record described in the associated sort file description (SD). 

2. Identifier in the FROM option must refer to a data item in working-storage or in an input record area. 

3. The identifier and record-name must name different data items. 

4. It the FROM option is used, the contents of the storage area associated with identifier are moved to the 
storage area associated with record-name; the contents of the record-name area are released to the 
sort-file. Moving takes place according to the rules specified for a group MOVE. The information in the 
record-name area is no longer available, but the information in the data area associated with identifier is 
available. 

5. A RELEASE statement may be used only within the range of an input procedure associated with a 
SORT statement for file-name. 

6.6.4.11. RETURN Statement 

Function: 

The RETURN statement obtains sorted records from the final phase of the sort operation. 

Format: 

RETURN file-name RECORD [INTO identifier]; AT END imperative-statement 

Rules: 

1. File-name must be a sort file with an SD entry in the data division. 

2. A RETURN statement may be only used within the range of an output procedure associated with a 
SORT statement for file-name. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

3. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-37 

The identifier in the INTO option must be the name of a working-storage area or output record area, and 
the output file must contain only one type of record. The data is available in both the output record 
area and the identifier area. 

4. The execution of a RETURN statement causes the next record to be made available in the order 
specified by the keys listed in the SORT statement for processing in the record area associated with the 
sort file. 

5. Moving is performed according to the rules of a group MOVE. 

6. After execution of the AT END phrase, no RETURN statements may be executed within the current 
output procedure. 

6.6.4.12. SORT Statement 

Function: 

The SORT statement creates a sort file by executing input procedures or by transferring records from another 
file. It sorts the records in the sort file on a set of specified keys, and makes each record from the sort file (in 
sorted order) available to one or more output procedures or to an output file. 

Format: 

. {ASCENDING } { } ~ file-name-1 ON DESCENDING KEY data-name-1 ... 

Rules: 

[ {
ASCENDING } { } J ; ON DESCENDING KEY data-name-2 . . . . .. 

{
INPUT PROCEDURE IS section-name-1 [THRU section-name-2]} 
USING file-name-2 

{
OUTPUT PROCEDURE IS section-name-3 [THRU section-name-4]} 
GIVING file-name-3 

1. File-name-1 must be described in an SD entry in the data division (5.2.2). 

2. Each data-name must represent data items described in records associated with file-name-1. Nonnumeric 
key items must not exceed 256 characters. Floating-point display items are considered alphanumeric. 
Key data-names may not be described with an OCCURS clause, nor may they be subordinate to an entry 
which contains an OCCURS clause. 

3. Section-name-1 and section-name-3 are names of an input and output procedure, respectively. 

4. 

5. 

File-name-2 and file-name-3 must be described in an FD entry in the data division. They may not be 
described in an SD entry. However, the record format of file-name-2 and/or file-name-3 must be 
specified for the sort file. The size of the logical records described for file-name-2 and file-name-3 must 
be equal to the size of the logical records described for file-name-1. File-name-2 and file-name-3 may not 
be described as containing undefined format records (RECORDING MODE IS U) . 

More than one SORT statement may appear in the procedure division of a program, but none may 
appear in the declarative section, nor in the input and output procedures associated with another SORT 
statement. The use of the SORT feature is discussed in detail in Section 12. 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 6-38 
EXTENDED COBOL 

6. Input procedure 

• This procedure must consist of one or more consecutive sections that do not form a part of any 
output procedure. 

• This procedure must include at least one RE LEASE statement in order to transfer records to the 
sort file. 

• RELEASE statements in the input procedure have no meaning unless they are controlled by a 
SORT statement; therefore, control must not be passed to the input procedure except when a 
related SORT statement is being executed. 

• The input procedure may include any procedures needed to select, create, or modify records. 

• The input procedure must not contain a SORT statement. 

7. Output procedure 

• This procedure must consist of one or more consecutive sections that do not form a part of any 
input procedure. 

• This procedure must include at least one RETURN statement in order to make sorted records 
available for processing. 

• The output procedure must not contain a SORT statement. 

• RETURN statements in the output procedure have no meaning unless they are controlled by a 
SORT statement; therefore, control must not be passed to the output procedure except when a 
related SORT statement is being executed. 

• The output procedure may include any procedures needed to select, modify, or copy the records 
that are being returned, one at a time in sorted order, from the sort file. 

8. ALTER, GO TO, and PERFORM statements are not permitted to refer to procedure-names outside the 
input and output procedures. ALTER, GO TO, and PERFORM statements in the remainder of the 
procedure division must not refer to procedure-names within the input and output procedures. 

9. When the ASCENDING option is used, the sorted sequence is from lowest value of key to highest value 
according to the character collating sequence shown in Appendix A. The sorted sequence is reversed 
when the DESCENDING option is used. In the format, data-name-1 is the most significant key, 
data-name-2 is the next most significant key, and so on. Floating-point display keys are considered 
alphanumeric. 

10. Every record description for the sort file must contain the key items data-name-1, data-name-2, and so 
on. When the key item appears in more than one record, the data descriptions must be equivalent, and 
their starting position must always be the same number of character positions from the beginning of 
each record. Key items must not exceed 256 characters. When variable-length records are used, the key 
items must be within the length of the shortest record. 

11. If INPUT PROCEDURE is specified, control is passed to section-name-1 before file-name-1 is sequenced 
by the SORT statement. When control passes the last statement of the input procedure, the records that 
have been released to file-name-1 are sorted. 

12. If the USING option is specified, all the records in file-name-2 are transferred to file-name-1. The SORT 
statement automatically performs the functions of the OPEN, READ, USE, and CLOSE statements for 
file-name-2. File-name-2 must be a sequential access file. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-39 

13. If OUTPUT PROCEDURE is specified, control passes to section-name-3 after file-name-1 has been 
sequenced by the SORT statement. When control passes the last statement of the output procedure, the 
sort is terminated and control is passed to the next statement after the SORT statement. The RETURN 
statements in the output procedure are the requests for the next sorted record. 

14. If the GIVING option is specified, all the sorted records in file-name-1 are transferred to file-name-3 as 
the implied output procedure for this SORT statement. File-name-3 is automatically opened before 
transferring the records and closed after the last record in the sort file is returned. F ile-name-3 must be a 
sequential access file. 

6.6.5. Ending Verb (STOP) 

This statement is used to halt execution of the object program either permanently or temporarily, with or without a 
display of a literal. 

Format: 

STOP {literal} 
RUN 

Rules: 

1. The literal may be numeric or nonnumeric, fixed- or floating-point, or any figurative constant except 
ALL. 

2. The literal is communicated to the operator through the system console, and continuation of the 
program begins with execution of the next statement after the STOP statement. The literal option is 
equivalent to a DISPLAY statement, but requires a reply from the operator to continue the program. 

For example, the error routine 

SEO-ERROR. 

STOP 'CARDS OUT OF SEQUENCE, CORRECT SEQUENCE, REPLACE CARDS IN READER, 
ANSWER R WHEN READY'. 

causes the literal to be displayed as follows: 

CD10 CARDS OUT OF SEQUENCE, CORRECT SEQUENCE, REPLACE CARDS IN READER, 

ANSWER R WHEN READY. 

This is followed by 

CA10 ACCEPT READY 

and program operation is suspended pending operator reply. 

3. When the RUN option is used, the object program is halted permanently; therefore, when this option 
appears in an imperative statement, it should appear as the last statement in a sequence of imperative 

statements . 



UP-8059 Rev. 3 

6.6.6. Conditional Verbs 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-40 

Conditional expressions are used in situations in which the outcome of a test determines the next logical step to be 
performed. The verb IF is the principal conditional verb used with conditional expressions. 

The conditional verbs are IF and SEARCH. 

6.6.6.1. IF Statement 

Function: 

The IF statement causes a condition to be evaluated. The subsequent action of the object program depends on 
whether the value of the condition is true or false. 

Format: 

[THEN]*{~ SENTENCE} [.·{ELSE } {NEXT SENTENCE}] !f condition; -- statement-1 OTHERWISE* statement-2 

Rules: 

1. Statement-1 and statement-2 represent either a conditional statement or an imperative statement. 

2. The ELSE NEXT SENTENCE option may be omitted if it immediately precedes the terminal period of 
the sentence. 

3. Execution of an IF statement takes the following action: 

• Condition TRUE: statements immediately following the condition (statement-1) are executed; 
control then passes implicitly to the next sentence. 

• Condition FALSE: either statement-2 is executed or, if ELSE is omitted, the next sentence is 
executed. 

4. Statement-1 and statement-2 may contain an IF statement, and the IF is considered nested. IF 
statements within IF statements are considered as paired IF and ELSE combinations, proceeding from 
left to right. Thus, any ELSE statement encountered is considered to apply to the immediately 
preceding IF statement that has not been already paired with an ELSE statement. The maximum 
number of IF statements that may be nested is 30 in OS/3 COBOL. 

5. When control is passed to the next sentence, it is transferred to the next sentence as written or to a 
return mechanism of a PERFORM or a USE statement. 

6. The condition ih an IF statement causes the object program to select between alternate control paths, 
depending on the true value of a test. Five types of conditions are po~ible: 

• Relation condition 

• Class condition 

• Condition-name condition 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

• Switch-status condition 

• Sign condition 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

These conditions are discussed in rules 7 through 11. 

The logical operators used in combination with these conditions are: 

OR 

AND 

NOT 

Table 6-3 indicates the relationship between the logical operators and conditions A and B. 

Table 6-3. Logical Operator/Condition Relationships 

Condition Condition and Value 

A B IF A ANDB IF A ORB IF NOT A 

True True True True False 

False True False True True 

True False False True False 

False False False False True 

The ways in which conditions and logical operators may be combined are shown in Table 6-4. 

Table 6-4. Logical Operator/Condition Combinations 

First 
Second Symbol 

Symbol 
Condition OR AND NOT ( ) 

Condition No Yes Yes No No Yes 

OR Yes No No Yes Yes No 

AND Yes No No Yes Yes No 

NOT Yes No No No Yes No 

( Yes No No Yes Yes No 

) No Yes Yes No No Yes 

6-41 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 6-42 
EXTENDED COBOL 

7. Relation Condition 

A relation condition causes a comparison of two operands, each of which may be an identifier, a literal, 
or an arithmetic expression. General format for a relation condition is: 

{ 

arithmetic-expression-1} 
identifier-1 
literal-1 

{ 

arithmetic-expression-2 } 
relational-operator identifier-2 

literal-2 

The first operand is called the subject of the condition; the second operand is called the object of the 
condition. The subject and object may not both be literals. The relational-operator specifies the type of 
comparison to be made in a relational condition. The relational-operators and the format in which they 
are used are: 

{ 

arith metic-expression-1 } 
I F identifier-1 

literal-1 

is{(!'!Q!] GREATER THAN} 
[NOT] > 

IS { [NOT] ~THAN} 
[NOT]< 

IS {[NOT] EQUAL TO} 
[NOT] :_ 

EQUALS* 
UNEQUAL* 
EXCEEDS* 

{ 

arithmetic-expression-2} 
identifier-2 
literal-2 

When relation conditions are written in a consecutive sequence, any relation condition except the first 
may be abbreviated by: 

• the omission of the subject of the relation condition; or 

• the omission of the subject and relational-operator of the relation condition. 

Within a sequence of relation conditions, both forms of abbreviation may be used. The effect of using 
such abbreviations is as if the omitted subject were replaced by the last preceding stated subject, or the 
omitted relational-operator were replaced by the last preceding stated relational-operator. 

A logic error with unexpected results may follow the use of NOT with abbreviated relational conditions. 
Programmers should remember that the compiler interprets NOT as a logical operator in these situations, 
not as a part of a relational operator. Thus: 

A> B AND NOT > C OR D 

is equivalent to: 

A> BAND NOT A> CORA> D 

or 

A> BAND (NOT A>C) OR A> D 

*Extension to American National Standard COBOL ( 1968). 

• 

• 

• 



UP-8059 Rev. 3 

• 

• 

• 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Comparison of the various types of operands is accomplished as follows: 

• Numeric operands 

6-43 

For numeric operands comparison is made with respect to the algebraic value of the operands. The 
number of digits in the operands is not significant. Zero is considered a unique value regardless of 
the sign. 

Comparison of these operands is permitted regardless of their usage. Unsigned numeric operands 
are considered positive for purposes of comparison. 

• Nonnumeric operands 

For nonnumeric operands or one numeric and one nonnumeric operand, a comparison is made 
with respect to a specified collating sequence of characters. The size of an operand is the total 
number of characters in the operand. Numeric and nonnumeric operands may be compared only 
when their usage is the same. The two cases to be considered are operands of equal size and 
operands of unequal size. 

Operands of equal size 

Corresponding character positions are compared, starting from the high order end and 
continuing until either a pair of unequal characters is encountered or the low order end of 
the item is reached, whichever is first. The items are equal if all pairs of characters are equal. 

The first pair of unequal characters encountered is compared for relative location in the 
OS/3 COBOL collating sequence. The operand which contains that character which is 
positioned higher in the collating sequence is determined to be the greater operand. 

Operands of unequal size 

Comparison proceeds as though the shorter operand were extended on the right by sufficient 
spaces to make the operands of equal size. 

• Index-names and/or index data-items 

Two index-names 

The result is the same as if the corresponding occurrence numbers were compared. 

Index-name and data-item or literal 

The occurrence number that corresponds to the value of the index-name is compared to the 
data-item or literal, both of which must be elementary unsigned integers. 

Index data-item and index-name or two index data-items 

The actual values are compared without conversion. 

The result of the comparison of an index data-item with any data-item or literal not specified 
above is undefined . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 6-44 
EXTENDED COBOL 

8. Class Condition 

The class condition determines whether the operand is numeric or alphabetic. The general format for the 

class condition is: 

{
ALPHABETIC} 

IF identifier IS [NOT] NUMERIC 

The operand being tested must be described, implicitly or explicitly, as USAGE IS DISPLAY or USAGE 
IS COMP-3. 

• Numeric test 

Identifier can be described as alphanumeric or numeric with usage COMP-3 or DISPLAY, but not 
as floating-point display. If the record description of the item being tested does not contain an 
operational sign, the item is considered numeric only if the contents are numeric and a sign is not 
present. 

• Alphabetic test 

Identifier must be described as alphabetic. The item being tested is considered alphabetic only if 
the contents consist of any combination of the characters A through Zand the space. 

9. Condition-Name Condition 

A conditional variable is tested to determine whether its value is equal to one of the values associated 
with a condition-name. A condition-name may be associated with a range of values; the conditional 
variable is then tested to determine whether its value falls within this range of values. 

The format for a condition-name condition is: 

IF [NOT] condition-name 

10. Switch-Status Condition 

Determines the ON or OFF status of a switch as described in 4.2.3, rule 10. The condition-name 
specified in the ON or OFF STATUS IS option is tested in the following format: 

IF [NOT] condition-name 

11. Sign Condition 

Determines whether the value of an operand is less than, greater than, or equal to zero. An operand is 
positive if its value is greater than zero, negative if its value is less than zero, and zero if its value is equal 
to zero. The format for a sign condition is: 

1 F {~rith~~tic-expression} IS [NOT] 
- 1dent1f1er -- {

NEGATIVE} 
POSITIVE 
ZERO 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-45 

6.6.6.2. SEARCH Statement 

Function: 

The SEARCH statement is used to search a table for a table-element that satisfies the specified condition and 
to adjust the associated index-name to indicate that table-element. 

Format 1: 

SEARCH identifier-1 [VARYING {~dentifier-2 }] 
mdex-name-1 

[; AT ~ imperative-statement-1] 

. WHEN d" . 1 { imperative-statement-2 } 
' - con ition- NEXT SENTENCE 

[
.'WHEN d" . _2 { imperative-statement-3 } J 
' - con ition NEXT SENTENCE 

Format 2: 

SEARCH ALL identifier-1 [;AT END imperative-statement-1] 

Rules: 

1. 

{ 
imperative-statement-2 } 

; ~ condition-l NEXT SENTENCE 

In both formats 1 and 2, identifier-1 identifies the table to be searched and must not be subscripted or 
indexed. Its description must contain an OCCURS clause and an INDEXED BY clause. The description 
of identifier-1 in format 2 must also contain the KEY IS option in its OCCURS clause. 

2. ldentifier-2, when specified, must be described as USAGE IS INDEX or as a numeric elementary data 
item without any positions to the right of the assumed decimal point. It may not be a floating-point 
item. 

3. In format 1, condition-1, condition-2, etc., may be any condition as described in 6.6.6.1. 

4. In format 2, condition-1 may consist of a relation condition incorporating the relation EQUALS or 
EQUAL TO or equal sign, or a condition-name condition, where the VALUE clause that describes the 
condition-name contains only a single literal. Alternatively, condition-1 may be a compound condition 
formed from simple conditions of the type just mentioned, with AND as the only connective. Any 
data-name that appears in the KEY clause of identifier-1 may appear as the subject or object of a test or 
be the name of the conditional variable with which the tested condition-name is associated; however, all 
preceding data-names in the KEY clause must also be included within condition-1. No other tests may 
appear within condition-1. 

5. If format 1 of the SEARCH statement is used, a serial type of search operation takes place, starting with 
the current index setting. 

• If, at the start of execution of the SEARCH statement, the index-name associated with identifier-1 
contains a value that corresponds to an occurrence number that is greater than the highest 
permissible occurrence number for identifier-1, the SEARCH is terminated immediately. Then, if 
the AT END option is specified, imperative-statement-1 is executed; if the AT END option is not 
specified, control passes to the next sentence. 



UP-8059 Rev. 3 

• 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-46 

If, at the start of execution of the SEARCH statement, the index-name associated with identifier-1 
contains a value that corresponds to an occurrence number that is not greater than the highest 
permissible occurrence number for identifier-1, the SEARCH statement operates by evaluating the 
conditions in the order in which they are written, making use of the index settings, wherever 
specified, to determine the occurrence of those items to be tested. If none of the conditions is 
satisfied, the index-name for identifier-1 is incremented to obtain reference to the next 
occurrence. The process is then repeated, using the new index-name settings, unless the new value 
of the index-name settings for identifier-1 corresponds to a table element which exceeds the last 
element of the table by one or more occurrences, in which case the search terminates. If one of the 
conditions is satisfied upon its evaluation, the search terminates immediately and the imperative 
statement associated with that condition is executed; the index-name remains set at the occurrence 
which caused the condition to be satisfied. 

6. In a format 2 SEARCH statement, the results of the SEARCH ALL operation are predictable only when 
the data in the table is ordered in the same manner as described in the ASCENDING/DESCENDING 
KEY clause associated with the description of identifier-1. 

7. If format 2 of the SEARCH statement is used, a nonserial type of search operation takes place, in which 
case the initial setting of the index-name for identifier-1 is ignored and its setting is varied during the 
search operation using a binary search technique. 

If condition-1 cannot be satisfied for any setting of the index within the range of the table, control is 
passed to imperative-statement-1 when the AT END phrase appears, or to the next sentence when this 
phrase does not appear; in either case the final setting of the index is set to the first occurrence. If 
condition-1 can be satisfied, the index indicates an occurrence that allows condition-1 to be satisfied and 
control passes to imperative-statement-2. 

8. After execution of an imperative statement that does not terminate with a GO TO statement, control 
passes to the next sentence. 

9. In format 2, the index-name that is used for the search operation is the first {or only) index-name that 
appears in the INDEXED BY clause of identifier-1. Any other index-names for identifier-1 remain 
unchanged. 

10. In format 1, if the VARYING option is not used, the index-name that is used for the search operation is 
the first {or only) index-name that appears in the INDEXED BY clause of identifier-1. Any other 
index-names for identifier-1 remain unchanged. 

11. In format 1, if the VARYING index-name-1 option is specified, and if index-name-1 appears in the 
INDEXED BY phrase of identifier-1, that index-name is used for this search. If this is not the case, or if 
the VARYING identifier-1 option is specified, the first {or only) index-name given in the INDEXED BY 
clause of identifier-1 is used for the search. In addition, the following operations will occur: 

• If the VARYING index-name-1 option is used, and if index-name-1 appears in the INDEXED BY 
clause of another table entry, the occurrence number represented by index-name-1 is incremented 
by the same amount as, and at the same time as, the occurrence number represented by the 
index-name associated with identifier-1 is incremented. 

• If the VARYING identifier-2 option is specified, identifier-2 is incremented by the same amount 
as, and at the same time as, the occurrence number represented by the index-name associated with 

• 

• 

identifier-1 is incremented. If identifier-2 has a USAGE IS INDEX clause, it is assumed to contain • 
a value appropriate as an index setting for identifier-1. 



• 

UP-8059 R.ev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-47 

12. If identifier-1 is a data item subordinate to a data item that contains an OCCURS clause (providing for a 
2- or 3-dimensional table), an index-name must be associated with each dimension of the table through 
the INDEXED BY phrase of the OCCURS clause. Only the setting of the index-name associated with 
identifier-1 (and the data item identifier-2 or index-name-1, if present) is modified by the execution of 
the SEARCH statement. To search an entire 2- or 3-dimensional table, it is necessary to execute a 
SEARCH statement several times. Prior to each execution of a SEARCH statement, SET statements 
must be executed whenever index-names must be adjusted to appropriate settings. 

A diagram of the Format 1 SEARCH operation containing two WHEN phrases is shown in Figure 6-3. 

START 

INCREMENT INDEX
NAME FOR IDENTl

FIER-1 (INDEX-NAME-1 
IF APPLICABLE). 

INCREMENT INDEX
NAME·l (FOR A 

DIFFERENT TABLE) 
OF IOENTIFIER-2. 

> 

TRUE 

TRUE 

AT END• 

IMPERATIVE
STATEMENT-1 

IMPERATIVE
STA TEMENT -2 

IMPERATIVE 
STATEMENT-3 

*These operations are options included only when specified in the SEARCH statement. 
••Each of these control transfers is to the next sentence unless the imperative·statement ends with a GO TO 

statement. 

Figure 6-3. SEARCH Logic 



UP-8059 Rev. 3 

6.6.7. Compiler-Directing Verbs 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-48 
Update A 

Certain verbs direct the compiler to perform a specific action and do not directly cause any object coding to be 
produced. These verbs affect the object program indirectly, except for the verb NOTE which has absolutely no 
effect on the object program. 

The compiler-directing verbs are: 

COPY, ENTER, NOTE, USE 

6.6. 7 .1. COPY Statement 

Function: 

The COPY statement copies text from the COBOL library into the source program with a capability of word 
substitution as the text is copied (7.3). 

Format 1: 

COPY library-name. 

Format 2: 

[ { 

identifier-1} 
COPY library-name REPLACING word-1 BY literal-1 

word-2 

[ { 
identifier-2 } J J 

, word-3 BY :::~2 . . . . 

Rules: 

1. The COPY statement may appear anywhere in a COBOL program. 

2. The library-name is an element name in the COBOL libraries. It may contain no more than eight 
characters; the name may be composed of alphanumeric characters and the hyphen, but it must contain 
at least one alphabetic character. 

3. The remainder of the line on which a COPY statement is terminated must be blank. In other words, 
nothing may follow a COPY statement on the same source program line. 

4. The copying process is terminated by the end of the library text. 

5. Both the COPY statement and the statements of the library text to which it refers appear in the output 
listing, unless printing of the library text is suppressed through use of the LST=I option on the COBOL 
compiler PA RAM statement (7.1.1 ). 

6. The text contained in the library must not contain any COPY statements. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-49 

7. If the REPLACING option is used, each occurrence of word-1, word-3, etc., in the text being copied 
from the library is replaced by the word, identifier, or literal associated with it in the REPLACING 
option. 

8. Use of the REPLACING option does not alter the material as it appears on the library. 

9. Word-1, word-2, etc., may be a data-name, procedure-name, condition-name, mnemonic-name, file-name, 
or sort-name. 

10. The literals may be numeric or nonnumeric, fixed or floating-point, or any figurative constant except 
ALL 

6.6.7.2. ENTER* Statement 

Function: 

The ENTER statement, in conjunction with the CALL or ENTRY statements, permits run-time 
communications between the main COBOL program and previously compiled subprograms in OS/3 COBOL or 
other languages. ENTRY also may be used with the EXIT PROGRAM or RETURN options. 

Format 1: 

ENTER LINKAGE. 

~ 1 
file-name t J 

USING identifier ... 
--- procedure-name 

sort-name 

CALL entry-name 

ENTER COBOL. 

Format 2: 

ENTER LINKAGE. 
ENTRY entry-name [USING {unqualified data-name } ... ] . 
ENTER COBOL. 

Format 3: 

ENTER LINKAGE. 

{
EXIT PROGRAM.} 
RETURN. 

ENTER COBOL. 

*Extension to American National Standard COBOL (1968). 



UP-8059 Rev. 3 

Rules: 

1. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-50 

Format 1 transfers control from one object program to another within the run unit. 

• Entry-name must be the external symbol of an entry point in the subprogram being called. 
Entry-name may be a nonnumeric literal. 

• Each of the identifiers in the USING clause of the CALL statement must be a reference to any 
level data item except an 88 level in the file, working-storage, or linkage sections of the calling 
program. 

• Procedure-name, file-name, and sort-name can be used only if the called subprogram is written in a 
language other than COBOL. 

• If the subprogram is written in COBOL, there are two ways to call the subprogram, depending on 
the entry point of the subprogram: 

• 

If the entry point is the beginning of the procedure division (USING after the division 
heading). entry-name in format 1 must be the same as the PROGRAM-ID of the called 
subprogram. 

If the entry point in the subprogram is designated by the ENTRY statement (format 2), the 
entry-name in format 1 must be the same as the entry-name in format 2. 

If the called program is written in assembler language, entry points are labels specified by 
assembler directive ENTRY or labels of START and CSECT assembler directives. 

2. Format 2, in the called subprogram, designates an ENTRY point; it may not appear in the declaratives 
portion. 

• If the calling program is written in OS/3 COBOL, entry-name in format 2 must be the same as 
entry-name in format 1. 

• Data-name can be neither qualified nor subscripted. 

• Data-names are the names of 01- or 77-level data items specified in the linkage section of this 
particular subprogram. 

• The sequence of appearance of the operands in the two USING clauses is extremely significant 
because corresponding operands refer to a single common data item; i.e., correspondence is by 
position and not by name. Each reference to an operand in the called program USING clause is 
treated as if it were a reference to the corresponding operand in the USING clause of the calling 
program. 

• An entry name may be enclosed in quotation marks. 

3. Format 3, in the called subprogram, returns control to the calling program. 

• All OS/3 COBOL subprograms must contain this clause. 

• Control returns to the point in the calling program immediately following the CALL statement . 

• The EXIT PROGRAM and RETURN options are equivalent. RETURN is included for 
compatibility with other COBOL implementations. 

4. See 6.8 for sample calling and called programs. 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-51 

• 6.6.7.3. NOTE Statement 

• 

• 

Function: 

The NOTE statement allows programmers to write commentary to be produced in the listing but not be 
compiled. 

Format: 

NOTE character-string. 

Rules: 

1. Any combination of the characters from the character set may be included in the character-string. 

2. If a NOTE sentence is the first sentence of the paragraph, the entire paragraph is considered a part of the 
character-string, whereas a comment line is not (Table 2-3). 

3. If a NOTE sentence appears as other than the first sentence of a paragraph, the commentary ends with 
the first occurrence of a period followed by a space. 

6.6.7.4. USE Statement 

Function: 

The USE statement specifies procedures for input/output label and error handling in addition to the standard 
procedures specified by the input/output system. Three format options are available: 

• Label writing and checking 

• Error checking 

• Printer form-overflow 

Format 3 is an extension to American National Standard COBOL (1968). 

Format 1: 

USE {AFTER } STANDARD [BEGINNING] [ :IEL:L] 
- BEFORE ENDING UNIT 

Format 2: 

1 
file-name-1 [,file-name-2] ... ~ 
INPUT 

LABEL PROCEDURE ON ~ 

OUTPUT 

\

file-name-1 [.file-name-2] . . . t 
INPUT 

USE AFTER STANDARD ERROR PROCEDURE ON l-O 

OUTPUT 



UP-8059 Rev. 3 

Format 3: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-52 

USE FOR FORM-OVERFLOW ON file-name-1 

Rules: 

1. A USE statement must immediately follow a section header in the declaratives section of the procedure 
division, and must be followed by a period. The remainder of the section must consist of one or more 
procedural paragraphs that define the procedures to be used. 

2. The USE statement defines the conditions calling for the execution of the USE procedures; the USE 
statement itself is never executed. 

3. When format 1 is used: 

• If the file-name option is present, the FD entry for file-name-1 must contain a LABEL RECORDS 
ARE data-name clause (5.2.1.3). 

• If the BEGINNING or ENDING options are omitted, the designated procedures are executed for 
both beginning and ending labels. The ENDING option is not applicable for direct access files 
whose organization is other than sequential. 

• If the REEL or UNIT option is used, the designated procedures are executed for each new reel or 
unit of a file but not for the start or end of the file itself. If the Fl LE, UNIT, or REEL option is 
omitted, the designated procedures are executed for the reel or unit, whichever is applicable, and 
the file. The REEL option is not applicable to mass storage files and the UNIT option is not 
applicable to files in the random access mode. 

• When the INPUT, OUTPUT, or 1-0 option is specified, the USE procedure refers to all appropriate 
files except those described with the LABEL RECORDS OMITTED or STANDARD clause. 

• The BEFORE option is not applicable to the OS/3 COBOL but is accepted for compatibility. The 
BEFORE option is processed as if AFTER were specified. 

• For files opened for input, the designated USE procedure is executed only when a user label is 
encountered. This label can be checked by referencing the record defined by the LABEL 
RECORD clause in the FD. If further labels exist, they can be accessed by issuing a GO TO MORE 
LABELS verb. User label processing is terminated upon execution of the last statement in the USE 
procedure. 

• For files opened for output, the designated USE procedure is executed after system label 
processing is completed. A user label is written from the record area defined by the LABEL 
RECORD clause after execution of the last statement in the USE procedure. A label is also written 
upon execution of a GO TO MORE LABELS verb and control is then transferred to the beginning 
of the same USE procedure. 

4. When format 2 is used, the USE procedure is initiated when system standard 1/0 error recovery 
procedures are exhausted. After a format 2 USE procedure is executed, no attempt should be made to 
access the file in error. 

5. When format 3 is used, control is transferred to the USE procedure when a printer carriage overflow 
condition is detected. See data management user guide, UP-8068 (current version). 

Overflow is detected during the print and space functions of the printer. If form positioning by 
ADV A NCI NG mnemonic-name is specified, a form-overflow condition does not occur. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-53 

6 . 

7. 

File-name must not represent a sort file in any format. 

Input/output statements or the STOP verb with the literal option .are not allowed inside USE procedures 
except for the following verbs: 

• ACCEPT (not from jobstream or system console) 

• DISPLAY 

• WRITE to a printer within a FORM-OVERFLOW procedure 

NOTE: 

At least one DISPLAY to SYSLST must be performed in the nondeclarative portion of the procedure 
division before any are performed with the declarative section. Accepts from the job control stream are 
not permitted inside a USE statement for LABEL PROCEDURE. 

8. ENTRY statements are not allowed within USE procedures. 

9. In a USE procedure, there must be no reference to any nondeclarative procedures. Conversely, in the 
nondeclarative portion, there must be no reference to procedure-names that appear in the declarative 
portion, except that PERFORM statements may refer to a USE declarative in formats 1 or 2, or to the 
procedures associated with such a USE declarative. 

10. See 6.2, declaratives $ection . 

6.6.8. lnterprogram Communications 

Communications between an OS/3 COBOL program (caller) and either an OS/3 COBOL or another language 
program (called) are established by the CALL verb. An entry point in the called program is established by the 
ENTRY verb. 

6.6.8.1. CALL* Statement 

Function: 

In conjunction with the ENTER verb in the main program, communicates with subprogram entry points. 

Format: 

CALL entry-name USING l file-name ~ 
identifier 
procedure-name · · · 

sort-name 

Rule: 

See the ENTER verb, 6.6.7.2, for information regarding use of the CALL statement . 

*Extension to American National Standard COBOL (1968). 



UP-8059 Rev. 3 

6.6.8.2. ENTRY* Statement 

Function: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-54 

The ENTRY statement, in conjunction with the ENTER statement in a called program, establishes an entry 
point. 

Format: 

ENTRY entry-name [USING unqualified-data-name .. .] 

Rule: 

See 6.6.7.2. 

6.7. SEGMENTATION 

Segmentation is a method of communication with the compiler to specify object program overlay requirements. 
Since OS/3 COBOL deals just with segmentation of procedures, only the procedure division is considered in 
determining segmentation requirements for an object program. 

6. 7 .1. Program Segments 

When segmentation is used, it is mandatory that the procedure division be written in sections. Each section must be 
classified as belonging either to the fixed portion or to one of the independent segments of the object program. 
Segmentation does not negate the need to qualify procedure-names to ensure uniqueness. 

6.7.1.1. Fixed Portion 

The fixed portion is that part of the object program which is logically treated as if it were always in main storage. 
This portion of the program is composed of two types of segments, the fixed permanent segment and the fixed 
overlayable segment. 

A fixed permanent segment is a segment in the fixed portion which cannot be overlaid by any other part of the 
program. A fixed overlayable segment is a segment in the fixed portion which, although logically treated as if it were 
always in memory, can be overlaid by another segment to optimize memory utilization. Variation of the number of 
fixed permanent segments in the fixed portion can be accomplished by using a special facility called the 
SEGMENT-LIMIT clause (4.2.2). Such a segment, if called for by the program, is always made available in its last 
used state. 

if the SEGMENT-LIMIT clause is not specified, an implicit segment-limit of 50 is in effect. 

6. 7 .1.2. Independent Segments 

An independent segment is a part of the object program that can overlay, and be overlaid by, either a fixed 
overlayable segment or another independent segment. An independent segment is in its initial state when control is 
transferred to that segment from a segment with a different priority-number. 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

6.7.2. SECTION 

Definition: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Segments are classified by priority numbers included in the section header. 

Format: 

section-name SECTION [priority number]. 

{paragraph-name. {sentence} ... } ... 

Rules: 

1. The priority-number must be an integer ranging in value from 0 through 99. 

2. If priority-number is omitted from the section header, the priority is assumed to be 0. 

3. Sections in the declaratives must not contain priority-numbers in their section headers. 

6-55 

4. The logical sequence of the object program execution is the same as the physical sequence of the source 
program except for specific user-supplied transfers of control. Sections with the same explicit or implicit 
priority-number, however, physically comprise a single object program segment. 

5. Sections with priority-number 0 up to, but not including, the SEGMENT-LIMIT priority-number 
constitute the fixed permanent segment of the object program. Sections with priority-numbers ranging 
from the SEGMENT-LIMIT to 49 are fixed overlayable segments. Sections with priority-numbers 50 
through 99 constitute independent segments. Sections with the same priority-number need not be 
grouped together in the source program. 

6. 7 .3. Restrictions 

When segmentation is used, the following restrictions are placed on the ALTER and PERFORM statements. 

6.7.3.1. ALTER Statement 

Any GO TO statement in a fixed segment (priority-number 49 or less) can be altered by an ALTER statement 
located in any other segment of the program. A GO TO statement in an independent segment (priority-number 50 or 
greater) can be altered only by an ALTER statement located in the same segment as the GO TO statement. 

6.7.3.2. PERFORM Statement 

A PERFORM statement that appears in a section with a priority-number less than the implicit or explicit 
SEGMENT-LIMIT priority-number can have within its range only the following: 

• Sections with a priority less than 50. 

• Sections entirely contained in a single segment having a priority-number greater than 49 . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-56 

A PERFORM statement that appears in a section with a priority-number equal to or greater than the implicit or 
explicit SEGMENT-LIMIT priority-number can have within its range only the following: 

• Sections with the same priority-number as that containing the PERFORM statement. 

• Sections with a priority-number less than the implicit or explicit SEGMENT-LIMIT priority-number. 

6.7.3.3. Linkage Editor Considerations 

VI/hen linking a segmented COBOL program, the linkage editor control stream must have a LOADM control 
statement followed by an I NC LU DE statement for the root section of the program (fixed-permanent segment). The 
module-name parameter on the INCLUDE statement must be padded on the right with zeros for a total of eight 
characters. 

6.8. CALLING AND CALLED PROGRAMS 

Run-time communication between a main OS/3 COBOL program and any other separately compiled or assembled 
subprogram is accomplished by the ENTER statement and its associated statements: 

• CALL 

• ENTRY 

• EXIT PROGRAM or RETURN 

• USING clause with PROCEDURE DIVISION heading 

Actual transfer of control from a calling program to a called program is effected via a CALL statement with an 
entry-name identical with the entry-name in the ENTRY statement of the called program. Return of control to the 
calling program is effected by execution of an EXIT PROGRAM statement in the called program. Control is 
returned to the statement following the CALL statement in the calling program. 

A called program need not be an OS/3 COBOL program. In such cases, the COBOL calling program may include 
procedure-names in its USING argument list. 

For a description of register usage requirements, see the CALL, SAVE, and RETURN macro instructions in the 
supervisor programmer reference, UP-8241 (current version). 

6.8.1. Treatment of Data Items 

Data items declared in the calling program and referenced in the called program are described in the file or 
working-storage sections in the data division of the calling program. In the called program, the data items are 
~escribed, once again, but in the linkage section. Items described in the linkage section are not allocated main 
Jforage by the compiler since these items already occupy storage in the calling program, which furnishes their 
addresses to the called program at object time. 

Data items common to both programs are shared by use of corresponding USING clauses in each program. The 

• 

• 

operands in the USING clause of the calling program name the data items contained in the data division to be shared • 
with the called program. The USING clause in the called program can either follow the PROCEDURE DIVISION 
heading or be contained in an ENTRY statement. The operands must name data items described by 01- or 77-level 
entries in the linkage section. 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

6-57 

The sequence of appearance of the operands in the two USING clauses is extremely significant since corresponding 
operands refer to a single common data item; i.e., correspondence is by position and not by name. Each reference to 
an operand in the called program USING clause is treated as if it were a reference to the corresponding operand in 
the USING clause of the calling program. The calling program is responsible for ensuring physical data alignment if 
the description of a linkage section data item implies a hardware alignment requirement. 

A called program also may be a calling program sharing common data items in its data division (including linkage 
section items) with still another called program. 

6.8.2. Linking 

A sample linker job stream for calling and called programs is: 

/$ 

/* 

LO ADM 
INCLUDE 
INCLUDE 
INCLUDE 

CALLXX 

CALLEROO 
CALLEDOO 
ADD ROUT 

When an object module created by the COBOL compiler is included in a load module, it must be referred to in the 
INCLUDE statement by the 8-character program name assigned by the compiler. The first six characters contain the 
program name specified in the identification division of the source program; the last two characters, decimal 
numbers from 00 to 99, indicate the segment number of the object module within the COBOL program. (All single 
segment programs are numbered 00.) If the program name specified in the source program is less then six characters, 
the compiler pads it with zeros before appending it with the 2-digit segment number. 

6.8.3. OS/3 COBOL CALL/ENTRY Interface 

The following example is provided to illustrate the use of CALL and ENTRY statements. The example consists of a 
COBOL program, CALLER (Figure 6-4). which shares data-items and calls upon a COBOL subprogram, CALLED 
(Figure 6-5), and an assembly language subprogram, ADDROUT (Figure 6-6), for operations upon the shared 

data-items. Table 6-5 shows the relationship between these programs. 

For more detailed information concerning the linking of subprograms, refer to the system service programs user 
guide, UP-8062 (current version) . 



UP-8059 Rev. 3 

LINE NO. 

00001 

00002 

00003 

00004 

00005 

00006 

00007 

00008 

00009 

00010 

00011 

00012 

00013 

00014 

00015 

00016 

00017 

00018 

00019 

00020 

00021 

00022 

00023 

00024 

00025 

00026 

00027 

00028 

00029 

00030 

00031 

00032 

00033 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

SOURCE STATEMENT 

IDENTIFICATION DIVISION. 

PROGRAM-ID. CALLER. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. UNIVAC-9030. 

OBJECT-COMPUTER. UNIVAC-9030. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 

77 DATAl 

77 DATA2 

77 CTR 

01 DATAX. 

PIC 9999. 

PIC 99. 

PIC 99 

02 DATA3 PIC 99. 

02 DATA4 PIC 99. 

PROCEDURE DIVISIO!J. 

PO. 

VALUE 01. 

MOVE CTR TO DATA2, DATA3, DATA4. 
POD. 

ENTER LINKAGE. 

CALL ASMBLRAD USING DATA2, DATAX, DATAl. 

ENTER COBOL. 

6-58 

DISPLAY ' CALLER RECVD ' DATA2 ' + ' DATA3 ' + ' DATA4 ' = ' 

DATAl I FROM ASMBLRAD I 

Pl. 

P3. 

ADD 1 TO DATA4. 

ENTER LINKAGE. 

CALL COBOLADD USING DATA2, DATAX, DATAl. 

ENTER COBOL. 

DISPLAY ' CALLER RCVD ' DATA2 ' + ' DATA3 ' + ' DATA4 ' 

DATAl ' FROM COBOLADD'. 

P4. IF CTR LESS THAN 12,ADD 1 TO CTR GO TO PO ELSE 

DISPLAY 'END OF RUN' STOP RUN. 

Figure 6-4. Example of Calling Program 

= I 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

LINE NO. 

00001 

00002 

00003 

00004 

00005 

00006 

00007 

00008 

00009 

00010 

00011 

00012 

00013 

00014 

00015 

00016 

00017 

00018 

ADDROUT 

Rl$ 

R2$ 

R3$ 

R4$ 

RF$ 

RE$ 

RC$ 

RD$ 

DUMMY 

START 

PRINT 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 

PRINT 

DSECT 

DATA2ASM DS 

DATAXASM DS 

DATA3ASM DS 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

SOURCE STATEMENT 

IDENTIFICATION DIVISION. 

PROGRAM-ID. CALLED. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. UNIVAC-9030. 

OBJECT-COMPUTER. UNIVAC-9030. 

DATA DIVISION. 

LINKAGE SECTION. 

77 DATAl 

77 DATA2 
01 DATAX. 

PIC 9999. 

PIC 99. 

02 DATA3 PIC 99. 

02 DATA4 PIC 99. 

PROCEDURE DIVISION. 

6-59 

PO. ENTER LINKAGE. ENTRY COBOLADD USING DATA2 DATAX DATAl. 

ENTER COBOL. 

Pl. ADD DATA2 DATA3 DATA4 GIVING DATAl. 

P9. ENTER LINKAGE. EXIT PROGRAM. ENTER COBOL. 

Figure 6-5. Example of Called Program 

0 

NOGEN 

1 

2 

3 

4 

15 

14 

12 

13 

GEN 

CL2 A DSECT IS A DESCRIPTION NOT TO 

OCL4 BE MAPPED SHJCE IT WILL RES.IDE 

CL2 ELSEWHERE AT OBJECT TIME 

Figure 6-6. Example of Called Assembly Subprogram (Part 1 of 2) 



UP-8059 Rev. 3 

DATA4ASM OS CL2 

DATAlASM DS CL4 

ADDROUT CSECT 

USING DATA2ASM,R2$ 

USING DATAXASM,R3$ 

USHJ'.3 9ATA1ASM,R4$ 

USING *,RF$ 

ASMBLRAD STM RE$,RC$,12(RD$) 

ENTRY ASMBLRAD 

LR 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

R2 WILL BE USED TO COVER DATA2 

R3 WILL BE USED TO COVER DATA3/4 

R4 WILL BE USED TO COVER DATAl 

COVER FOR THIS ROUTINE 

SAVE CALLERS REGS IN HIS SAVEAREA 

DECLARES ENTRY POINT LABEL 

SAVE ADR OF CALLERS SAVEAREA 

6-60 

LA 

STM 

STM 

R2$,RD$ 

RD$,SAVEAREA 

R2$,R2$,4(RD$) 

RD$,RD$,8(R2$) 

LOAD RD$ WITH ADDR OF THIS ROUT S-A 

SAVE CALLER S-A ADR IN THIS ROUT SA 

SAVE THIS ROUT SA ADR IN CALLER SA 

LM 

PACK 

ZAP 

PACK 

AP 

PACK 

AP 

UNPK 

01 

L 

D1 

MVI 

BR 

SAVEAREA DS 

ACCUM DS 

HOLD2 DS 

END 

R2$,R4$,0(Rl$) LOAD SOVER REGS WITH ARG'S 

HOLD2(2),DATA2ASM(2) 

ACCUM(3),HOLD2(2) 

HOLD2(2),DATA3ASM(2) 

ACCUM(3),HOLD2(2) 

HOLD2(2) ,DATA4ASM( 2) 

ACCUM(3),HOLD2(2) 

DATAlASM( 4) ,ACCUM( 3) 

DATA1ASM+3,X'FO' 

RD$, 4 ( , RD$) 

RE$,RC$,12(RD$) 

12 (RD$), X' FF' 

RE$ 

18F 

CL3 

CL2 

.-'tDDR OF c;LLERS S.\ 

RESTORES c;LLERS REGS 

SET Cr\LLtD -;-o RE:u::u:::D s-;-;\-;-us 

Figure 6-6. Example of Called Assembly Subprogram (Part 2 of 2) 

• 

• 

• 



UP-8059 Rev. 3 

• 
Routine Type 

CALLER Program 

CALLED Subprogram 

AD DR OUT Subprogram 

• 

• 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 6-5. Program/Subprogram Relationships 

Language Interface Function 

COBOL Calls COBO LADD Sets values in data-
in CALLED. Calls items and calls on 
ASMBLRAD in subprograms to add 
ADDROUT. values and provide 

results. Results are 
displayed on console. 

COBOL Entry point is Adds values in 
COBOLADD. Exit several shared data-
accomplished via items and leaves 
exit program. results in a shared 

data-item. 

ASM Entry point is Same as CALLED 
ASMB LRAD. Exit above. 
accomplished via 
BR RE$. 

6-61 

Comment 

Note that any 01- or 77-
level data-item can be 
used as operand in CALL 
statement (shared with 
subprogram). 

I terns to be shared with 
a calling program are 
described as 01- or 77-
level data-items in 
linkage section. 

Items to be shared with 
a calling program may be 
described within a DSECT. 
The arguments passed 
represent the address of 
each item in the calling 
program storage . 



• 

• 

• 



• 

P~RT 3. COMPILER FEATURES AND CAPABILITIES 
I 

• 

• 



-----------------

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

7.1. COMPILER OPTIONS 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

7-1 

7. Compiler Options and 

Library Statements 

In SPERRY UNIVAC Operating System/3 (OS/3) COBOL, the optional PARAM statement provides a method of 
presenting parameters to the compiler to exercise specific COBOL options. The format of the PA RAM statement is: 

//!:::,PARAM6parameters 

When PA RAM statements are used, they must be positioned immediately following the EXEC job control statement 
in the compilation job control stream. The PARAM statements are printed on the first page of the compiler output 
listing. 

If a PARAM statement format error or an illegal parameter is encountered, a system console message is produced 
and the compilation is terminated. 

If no PARAM statements are supplied, the compiler produces a source program listing and a source program 
diagnostic report, and generates an object module. 

Only one blank may precede the P of the word PARAM. 

Absence of PARAM statements implies: 

//!:::,PARAM!:::, LST=(S) 

7.1.1. List Options 

Format: 

//!:::,PARAM6LST=(spec 1, ... ,spec n) 

where: 

spec 1, ... , spec n 
Is one or more of the following: 

A Activate ambiguity mode of reference resolution. Normally, references are resolved by the first 
appropriate definition encountered for the referenced name. The definition search process begins 
with the first entry in the appropriate division and continues through to the last entry in that 
division. 

If the file-name is omitted, the name $Y$SRC is automatically supplied. 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

7-2 

In the ambiguity mode, the definition search process is not terminated when the reference is • 
resolved, but continues in an attempt to uncover and report duplicate definitions. When the search 
of the division that corresponds to the reference type is completed, the other divisions also are 
searched to determine if the highest possible qualifier rule has been violated. Diagnostic messages 
151 through 154 report the presence of ambiguous references/definitions. 

C Produce storage map and cross-reference listing for the data division and procedure division. 

D Produce data division alphabetized cross-reference listing. 

E Ignore printer mismatch errors during compilation. 

Inhibit listing of lines included from COPY libraries. 

K Inhibit source item sequence number checking (columns 1 through 6 of the source item). 

L Single-space all listings requested. If no listings were requested, a single-spaced diagnostic listing is 
produced. 

M Produce data division storage map listing. 

N Inhibit all listable output except PARAM statement listing. 

0 Produce object code listing. 

P Produce procedure division storage map listing. 

R Allow quote character to be used in a nonnumeric literal bounded by apostrophes. 

S Produce source program listing. 

T Allow apostrophe character to be used in a nonnumeric literal bounded by quotes. 

W Inhibit listing of all precautionary diagnostics. These errors are identified by a severity code of P. 

X Produce procedure division alphabetized cross-reference listing. 

NOTES: 

1. When LST=(C,M), only the data division storage map has cross-references. When LST=(C,P), only 
the procedure storage map has cross-references. 

2. LST=R and T are not allowed within the same program. Use of either option overrides the 
interchangeability of the apostrophe and quotation mark. 

7.1.2. Output Options 

Format: 

//llPARAMl'>OUT=(spec 1, ... ,spec n) 

where: 

spec 1, ... ,spec n 
Is one or more of the following: 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

c Conversion mode. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

E Inhibit display of ISAM file status on system console. 

7-3 

K All data items described as USAGE IS COMP or COMPUTATIONAL are treated as packed decimal 
(COMP-3 or COMPUTATIONAL-3). 

L Inhibit generation of linker control statements in object module. 

M Produce shared-code COBOL action program to be executed under the control of the information 

management system (IMS/90). 

N Inhibit generation of object module. 

P Disregard mismatch errors for all object program print files. 

R The word QUOTE is translated as quotation marks. 

S Disable object program SORT PARAM card processing. If this parameter is not specified in the 
compilation, during the execution of an object program SORT atatement, the SORT routine will 
accept parameters from the job control stream. For a list of SORT/MERGE parameters, refer to 
the SORT/MERGE user guide and programmer reference, UP-8054 (current version). 

T Inhibit compiler generation of a transfer address in the object module. When invoked, the program 

cannot be executed unless it is called . 

v Suppress automatic page overflow in the object program. 

7.2. SOURCE AND COPY LIBRARY INPUT SPECIFICATIONS 

The following PARAM statements describe the method of reading a source program either from the job control 

stream or from a disc library. 

The formats for the source and copy library PARAM job control statements are presented in the following 

paragraphs. 

• Source library Input 

Format: 

//6.PARAM6.IN=program-name/file-name 

where: 

program-name 
Is a 1· to 8-character name of source program to be compiled. 

file-name 
Is a 1- to 8-character name used to identify the file on which the source program resides. This 
name must appear on the LFD job control statement used to define the device to the job control 

program. 



UP-8059 Rev. 3 

• Copy Library Input 

Format: 

//l:,PARAM!:, LIN=file-name 

where: 

file-name 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

7-4 

Is a 1- to 8-character name used to identify the file on which the COPY library resides. This name 
must appear on the LFD job control statement used to define the device to the job control program. 

If the file-name is omitted, the name COPY$ is automatically supplied. 

The COPY element-name is supplied in the source program via the COPY clause. 

7.2.1. Object Module Version/Revision Number 

Format 1: 

//l:,PARAM!:, VER=vv/rr 

where: 

vv 
Is the version number. 

rr 
Is the revision number. 

These numbers are applied to compiler output module. 

If the source program is coming from a library and this PARAM statement is not specified, the version number from 
that library module is used. 

If the PA RAM statement is not specified and the source program is coming from the job control stream, the version 
and revision numbers 00/00 are used. 

Format 2: 

//l::,.PARAM!:::,.OBJ=file-name 

where: 

file-name 
Is the file where the object mode generated is to be placed. 

If this PARAM statement is omitted, the generated object module is placed in the temporary job run library file 
($Y$RUN). 

7.2.2. Compiler Source Library Input and Copy Library Input 

The source program may be read from the job control stream or a disc library. Any copy library modules referenced 
by the source program may be read from a disc library. Any library structures to be accessed by the compiler must 
have been created by the OS/3 librarian. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

7-5 

Any library structures to be accessed by the compiler must be defined in the job control stream, and the LFD names 
must appear on PARAM statements (keyword IN for the source library; LIN for the copy library). If no copy library 
modules are referenced by the source program, the copy library need not be defined. 

Example: 

Source and copy library definitions: 

11 f':D V C!::EO ll6.VOL6.dspxxx 

116.LBLAfile-id-1 ll6.LFD6.file-name-1 

11 f':D V C!::EO 116.VOL&Jspxxx 

116.LBL6.file-id-2 116.LFDAfile-name-2 

with PARAM statements: 

116.PARAMlll N=program-namelfile-name-1 

l/6.PARAM6.LIN=file-name-2 

} 
} 

} 

Job control statements for 
source input 

Job control statements 
for copy input 

Source file copy file 

In the foregoing example, file-name-1 and file-name-2 are programmer-supplied names. File-id-1 and file-id-2 are 
file-id names used at the time the disc library was created. Program-name is the name of the source library module 
that contains the source program . 

7.3. LIBRARY 

The library module specifies text to be copied from the OS/3 COBOL library, which contains text available to a 
source program at compile time. The effect of the compilation of library text is the same as if the text were actually 
written as part of the source program. OS/3 COBOL library text is placed in the COBOL library as a function 
independent of the OS/3 COBOL program. 

The following paragraphs contain library information applicable to the OS/3 COBOL user. For a complete discussion 
of the COBOL library module, see the fundamentals of COBOL - language manual, UP-7503.1 (current version). 

7.3.1. Using the COPY Statement 

The COBOL library contains text which, through the use of the COPY statement, may be included in a COBOL 
source program during compilation. The rules for the COPY statement are given in 6.6.7.1 . 



UP-8059 Rev. 3 SPERRY UNIVAC 05/3 
EXTENDED COBOL 

7-6 

In addition to referencing the library module through the COPY statement, the programmer must define the device • 
and file which contain the library module in his job control stream. The LFD name given to this file also must be 
present on a PARAM statement with keyword LIN. 

The compiler performs no editing of library modules. Whatever is contained in the library under the specified 
library-name is copied into the program. Lines of code taken from the library are marked with a C to the right of the 
line number on the source listing if the text is copied without replacement. Lines of code which have one or more 
words of text replaced are marked with an R. Note that the source listing does not reflect the text change, as 
replacement is internal. Any reference to a text word which has been replaced causes a diagnostic to be issued. 

Example: 

If a COBOL program contains the following lines of code: 

FILE SECTION. 
FD FILE01 COPY LIB-FD01 REPLACING DN-1 BY TAX-A. 
01 TAX-A. 

and the assigned library file contains a module named LIB-FD01 with the lines: 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 1 RECORD 
DATA-RECORD IS DN-1. • 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

at compilation time the source listing would be: 

LINE NO. SOURCE STATEMENT 

00033 FILE SECTION. 
00034 FD Fl LE01 COPY LI B-FD01 REPLACING DN-1 BY TAX-A. 
00035C LABEL RECORDS ARE STANDARD 
00036C BLOCK CONTAINS 1 RECORD 
00037R DATA-RECORD IS DN-1. 
00038 01 TAX-A. 

The effect on the program is the same as if the programmer had written: 

FILE SECTION. 
FD FILE01 

01 TAX-A . 

LABEL RECORDS ARE STANDARD 
BLOCK CONTAINS 1 RECORD 
DATA-RECORD IS TAX-A. 

PARAM statements for use with the COPY statement are defined in 7.2.2 . 

7-7 



• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

8.1. GENERAL 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

8-1 

8. RERUN Clause 

The RERUN facility of the SPERRY UNIVAC Operating System/3 (OS/3) provides a means of recording the status 
and environment of an OS/3 COBOL program at a specified point in the processing of that program. Once recorded, 
this status and environment may be reestablished and execution of the COBOL program may be resumed from this 
point. The RERUN facility causes linkage between the COBOL program and the checkpoint facility. The restart 
ability is provided by the original job control stream with the addition of an RST job control statement placed 
immediately prior to the JOB job control statement. 

8.2. RERUN CLAUSE 

The RERUN clause may appear in the 1-0-CONTROL paragraph of the environment division. The format of the 
RERUN clause is: 

RERUN ON external-name EVERY integer RECORDS OF file-name-1 [, file-name-2) 

The external-name in the format must appear in a SELECT entry. The device specified by external-name is the 
RERUN receiver, which receives the checkpoint records containing the status and environment of the COBOL 
program. File-name-1, file-name-2, etc., are RERUN controllers and dictate when the checkpoint records are to be 
issued. The same RERUN receiver may appear in any number of RERUN clauses; a RERUN controller may appear 
in only one RERUN clause. The allowable range for integer is 1 through 9,999,999. 

8.3. CHECKPOINTING 

Checkpoint records are issued whenever integer records occur for a RERUN controller. The RERUN controller 
record counter is set to 0 when the controller is opened and incremented by 1 before each READ, WRITE, or 
INSERT statement is issued to the controller. When the RERUN controller is opened as 1-0, a WRITE statement 
does not cause the record counter to be incremented. 

If the RERUN receiver is a tape device, it may be dedicated to receiving checkpoint records or it may receive other 
program output. If the RERUN receiver is dedicated, it is opened automatically with the assumption that label 
records are standard. If the RERUN receiver is being shared with other program output, it is the programmer's 
responsibility to ensure that the receiver is opened for OUTPUT whenever checkpoint records are issued. Checkpoint 
records are not issued if the receiver is not open for OUTPUT . 

If the receiver is a disc device, it must be dedicated to receiving checkpoint records. The device must appear in a 
SELECT entry but not in an FD entry. 



UP-8059 Rev. 3 

8.4. RESTARTING 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

8-2 

To initiate the restart of a previously checkpointed program, an RST job control statement must immediately 
precede the JOB job control statement in the original job control stream; the job may then be restarted. The format 
of the RST job control statement is: 

II RST filename, checkpoint-id, number 

where: 

filename 
Is the name of the checkpoint file. 

checkpoint-id 
Is the checkpoint number identifying the checkpoint to be used to restart the job. 

number 
Is the job step number within the job to be restarted. 

8.5. NOTES AND RESTRICTIONS 

• A RERUN controller may have only one RERUN receiver and may appear in only one RERUN clause. If more 
than one receiver is specified for a RERUN controller, the compiler writes the checkpoint records on the 
first-mentioned external-name and ignores the second one. 

• ACCESS and ORGANIZATION, if specified for a RERUN receiver, must be SEQUENTIAL. 

• If the RERUN receiver is a magnetic tape unit, SD must not be specified. If FD is specified, the tape must have 
standard labels and a block size greater than or equal to 20 bytes. 

• ASCII tape files are not permitted. 

• The USE declarative statement does not apply to a dedicated RERUN receiver file. 

• When errors occur on RERUN receiver files, diagnostic messages are displayed and processing continues. 

• 

However, no further attempts are made to issue checkpoint records to that receiver. 

Checkpoints issued when a sort is active cannot be used for restarting due to the temporary nature of the sort 
work-files. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

9-1 

9.1. ACCEPT STATEMENT 

Format: 

~ { mnemonic-name~] 
ACCEPT identifier FROM ~:~~* 

TIME* 

9.1.1. Job Control Stream ACCEPT 

9. Use of ACCEPT and 
DISPLAY Statements 

In the SPERRY UNIVAC Operating System/3 (OS/3). COBOL programs are permitted to access their control 
streams to retrieve PA RAM statements and data images. 

9.1.1.1. 80-Column Card ACCEPT 

An ACCEPT for which the FROM option is not specified or an ACCEPT for which mnemonic-name is associated 
with SYSIN permits retrieval of data images and PARAM statements from the job control stream. A maximum of 
4095 bytes of data may be retrieved with a single ACCEPT statement. The number of bytes accepted is not required 
to be a multiple of 80. Two ACCEPT statements of 20 character items require two cards. 

Job Control Stream Format: 

//L'IEXECL'loperand 1, operand 2, operand 3 

The EXEC statement (execute) is the last statement processed by job control before the execution of the 

program (job step) named in the statement. PA RAM statements, if any, must directly follow the EXEC 

statement. 

/$ 

The /$ statement is used to indicate the beginning of a stream of data that is to be diverted to a file for 
subsequent retrieval by the job. All statements following the /$ statement up to and including the first /* 
(end-of-data) statement are filed on the resident direct access storage device. Although this statement is 
required by job control, it is not transferred to the COBOL program . 

*Extension to American National Standard COBOL (1968). 



UP-8059 Rev. 3 

DATA IMAGE 1 
DATA IMAGE 2 

DATA IMAGE n 
/* 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

9-2 

The /* statement indicates the end of a data stream introduced with the job control stream. This statement is 
required by job control but is not transferred to the OS/3 COBOL program. An attempt to retrieve this 
statement results in an error condition in the COBOL program. 

Job Control Stream Errors: 

When the job control stream is unable to deliver an image to the COBOL program (that is, if the next 
sequential record in the job control stream is not a PARAM statement, or a data image), control is transferred 
to the object time error subroutine. The subroutine logs the following message on the system console: 

CE01 ERROR-DATA FOR ACCEPT NOT AVAILABLE 

If the COBOL program attempts to retrieve a/* image from the job control stream, an error condition results. 
Control is transferred to the object time error subroutine. The subroutine logs the following message on the 
system console: 

CE02 ERROR-INSUFFICIENT DATA FOR ACCEPT 

These errors abort the run. 

ACCEPTS from the job control stream are not permitted inside a USE for LABEL PROCEDURE. 

9.1.1.2. 96-Column Card ACCEPT 

An ACCEPT with mnemonic-name associated with SYSIN-96 allows the COBOL program to retrieve embedded data 
cards from the job control stream when using 96-column cards with data extending beyond column 80. When the 
job control stream is punched on 96-column cards, but the embedded data is contained in only the first 80 columns, 
the SYSIN-96 option should not be used. 

All rules regarding job control stream format and job control stream errors (9.1.1.1) apply to ACCEPT with 
SYSIN-96. 

9.1.1.3. 8413 Diskette ACCEPT 

An ACCEPT with mnemonic-name associated with SYSIN-128 allows the COBOL program to retrieve embedded 
data images from the job control stream when using an 8413 diskette with data extending beyond position 80. When 
the job control stream is recorded on 8413 diskette, but the embedded data is contained in only the first 80 
columns, the SYSI N-128 option should not be used. 

All rules regarding job control stream format and job control stream errors (9.1.1.1) apply to ACCEPT with 
SYSIN-128. 

9.1.2. Console ACCEPT 

An ACCEPT with mnemonic-name associated with SYSCONSOLE allows the program to receive data from the 
system console. 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

9-3 

• The maximum number of characters that may be entered for a single ACCEPT is 60. 

• 

• 

When the ACCEPT statement is encountered in the COBOL program, the following message is displayed: 

CA10 ACCEPT READY 

The operator, when replying to a system console ACCEPT, must enter "message number" followed by the text. 

When the operator types less than the number of characters expected, the remaining positions are space-filled 
(X'40'). 

The identifier must be implicitly or explicitly defined as USAGE IS DISPLAY (5.3.5). 

9.1.3. Current Date ACCEPT 

An ACCEPT with mnemonic-name associated with SYSDATE or an ACCEPT with the DATE option makes the date 
available to the program in the format yymmdd (PIC 9(6)). This information is moved to the identifier under the 
rules for a COBOL MOVE (6.6.3.2). 

When the date is set through the job control stream (//tsET6DATE, VY/MM/DD) the date is stored in the user's job 
preamble. If the date is not set via the job control stream, job control moves the date from the system information 
block (SIB) into the user's job preamble. The date in the SIB is entered via the system console by the operator. This 
is accomplished by using the operator SET command to enter the current date. 

By setting the date from the job control stream, the user can predate or postdate jobs . 

9.1.4. Time of Day ACCEPT 

An ACCEPT with mnemonic-name associated with SYSTIME or an ACCEPT with the TIME option makes the time 
of day available to the program in the format hhmmssOO (PIC 9(8)), where hh is the hour, mm is the minute, and ss 
is the second (hhmmss does not exceed 235959). This information is moved to the identifier under the rules for a 
COBOL MOVE (6.6.3.2). 

9.1.5. Julian Date ACCEPT 

An ACCEPT with the DAY option makes the date available to the program in the format yyddd (PIC 9(5)). This 
information is moved to the identifier under the rules for a COBOL MOVE (6.6.3.2). See 9.1.3, Current Date 
ACCEPT, for information on setting the date with the job control //tsET6DATE command. 

9.1.6. UPSI Byte ACCEPT 

An ACCEPT with mnemonic-name associated with SYSSWCH permits the COBOL program to access the user 
program switch indicator (UPSI) byte, which is the last byte of the 12-byte communications region in the job 
preamble. An 8-byte item is created containing EBCDIC 0 to represent the OFF status and an EBCDIC 1 to 
represent the ON status of the individual UPSI bits/switches, respectively (e.g., if SYSSWCH-0 and SYSSWCH-2 are 
ON and all others are OFF, the ACCEPT statement makes available to the program an 8-character item containing 
10100000) . 



t 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

9.1.7. Communications Region ACCEPT 

9-4 

An ACCEPT with mnemonic-name associated with SYSCOM allows the COBOL program to receive information 
from the communication region in the job preamble. When this ACCEPT is encountered, the 12-byte 
communication region is moved to the 12 bytes described by the identifier. It is through the communication region 
that one job step may communicate with a following job step. 

NOTE: 

The twelfth byte of the communication region is the UPS/ byte. 

9.2. DISPLAY STATEMENT 

Format: 

DISPLAY . - ' ... [UPON mnemonic-name { 
l·dent1"f1"er 1 } [ identifier-2 J . ] 

---- hteral-1 , literal-2 --

9.2.1. Console DISPLAY 

A DISPLAY with mnemonic-name associated with SYSCONSOLE permits the COBOL program to display messages 
upon the system console. A display on the system console is assumed if the UPON option is omitted. The sum of the 
sizes of operands may not exceed 250 characters. The data is displayed a line at a time. Each line is prefixed with the 
code CD10 and followed by a maximum of 55 characters of the contents of the operands. 

All displays are action-type messages and must be responded to by the operator with a GO command. 

9.2.2. Log File DISPLAY 

A DISPLAY with mnemonic-name associated with SYSLOG permits the COBOL program to display messages to the 
system console and the system log file. Message size is limited to 55 contiguous characters. COBOL displays are 
prefixed with the code CD11. This display is an informational-type message and does not require the operator to 
respond with a GO command (unlike SYSCONSOLE). 

9.2.3. UPSI Byte DISPLAY 

A DISPLAY with mnemonic-name associated with SYSSWCH permits the COBOL program to change the entire 
UPSI byte. 

The eight bytes described by the identifier are converted into individual bit settings, and the resultant eight bits are 
stored in the UPSI byte. A value of X'F1' causes a bit (UPSI switch) to be turned ON (1 value). 

The UPSI byte may be initialized prior to execution by the SET statement in the job control stream (//~ETL'i.LJPSI, 
switch-setting). 

• 

• 

• 



• 
UP-8059 Rev. 3 

9.2.4 UPSI Bit DISPLAY 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

9-5 

A DI SPLAY with mnemonic-name associated with SYSSWCH-n allows the COBOL program to change an individual 
switch (bit setting) in UPSI. The eight switches in UPSI are numbered 0 through 7 from left to right. A 1-byte 
identifier (PIC X) is used to alter UPSI SWITCH-n. A value of 0 (X'FO') causes the switch to be turned OFF (0 
value); any other value causes the switch to be turned ON (1 value). 

9.2.5. Communications Region DISPLAY 

A DISPLAY with mnemonic-name associated with SYSCOM allows the COBOL program to alter the contents of the 
communications region. The 12 bytes described by the identifier are moved into the 12-byte communications region 
in the job preamble. 

The communications region is initialized to binary O's prior to the first job step by job control. Through use of the 
SET statement (//f\SETOCOMREG, character-string), the communications region may be set to an initial value. 
Information may be passed from job step to job step in the region. The region is not changed during job steps. 

9.2.6. Printer Listing DI SPLAY 

A DISPLAY with mnemonic-name associated with SYSLST permits the COBOL programmer to display messages on 
the printer. Displays are in 120-character multiples and are printed after advancing paper one line. For signed 
numeric items, a separate sign character is displayed immediately following the operand. 

• The LFD name assigned to the printer in the job control stream must be SYSLST. 

• 

At least one DISPLAY associated with SYSLST must be performed in the nondeclarative portion of the procedure 
division before any are performed within the declarative portion . 



• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

10.1. GENERAL 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

10-1 

10. Table Handling 

The table-handling module provides a means of defining contiguous data items in a tabular form, thereby permitting 
easy access to any item regardless of its position in the table. 

This section contains the methods of table definition and referencing available to the COBOL user in the SPERRY 
UNIVAC Operating System/3 (OS/3). For a complete discussion of table handling, see the fundamentals of COBOL 
table handling manual, UP-7503.2 (current version). 

10.2. DEFINING A TABLE 

Each data item in a table (called a table element) must be the subject of an OCCURS clause in the data description. 
This clause specifies the number of times that the table element appears in the table. 

To define a 1-dimensional table, an OCCURS clause is written as a part of the data description for the repeated item. 
Any practical number of occurrences may be specified (5.3.3). 

Defining a 1-dimensional table within each occurrence of a table element gives rise to a 2-dimensional table. This is 
done by writing an OCCURS clause for a data item subordinate (i.e., with a numerically larger level number) to 
another item for which an OCCURS clause was written. Tables with up to three dimensions can be defined in this 
manner in OS/3 COBOL. Each dimension must be defined by an OCCURS clause, and must be defined on a 
different hierarchical level. 

10.3. TABLE REFERENCE 

To reference a table element, it is necessary to specify which occurrence of the table element is intended. 

Occurrence numbers are specified by one of two methods: subscripting or indexing. In either method, the reference 
is made by immediately following the data·name with a set of occurrence specifications (subscripts or index-names) 
enclosed in parentheses. 

Up to three subscript or index levels may appear in the reference, depending upon the number of dimensions 
involved. One subscript or index level for each OCCURS clause must be in the defined hierarchy containing the 
element name, including the one for the element name. Multiple subscripts and index-names are written left to right 
in descending order of inclusiveness . 



,_·,""';--::: 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

10-2 

·~~ ,j<'i" 

/i' 10.4. SUBSCRIPTING 
'iil 

~l Definition: 
~,-.-;<;'{ ' 

Subscripting is a technique used to reference individual table elements within a table of like elements not 
assigned individual data-names. A subscript value identifies elementary items in the table. 

data-name (subscript-1 [, subscript-2 [, subscript-3]]) 

Rules: 

1. The subscript value must be a positive or unsigned integer and may be represented as a numeric literal or 
as a data-name defined elsewhere as an elementary numeric data item with no character positions to the 

't '\ right of the assumed decimal point. Data-name subscripts may be mixed with numeric literal subscripts 
within a reference. 

3. 

".\,'~ .,,,...., .< 
i· 

The lowest valid subscript is 1; the highest valid subscript is the number of item occurrences specified in 
the OCCURS clause. The area allocated, multiplied by the number of occurrences, cannot exceed 
65,535. 

References are made to individual items within a table of homogeneous elements by specifying the name 
of the table, followed by one or more spaces, followed by its related subscripts in parentheses. A left 
parenthesis may not be followed by a space; a right parenthesis may not be preceded by a space. 

When more than one subscript is used in a reference, each must be separated, within the parentheses, by 
a comma and a space. 

·:10.5. INDEXING 

Definition: 

Indexing is a technique used to reference individual table elements within a table of like elements not assigned 
individual data-names. An index-name contains the occurrence number of a table element used for: 

• direct indexing by using the index-name as a subscript; or 

• relative indexing by appending to the index-name the +or - operator followed by an unsigned integer. 
This integer must not be 0. 

Format: 

data-name (index-name 1 [ { ±} integer-1] 
[, index-name-2 [ { ±} integer-2] ] 
l,index-name-3 [ {±} integer-3]]) 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

Rules: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

10-3 

1. Index-names are defined by the INDEXED BY option in the OCCURS clause. Further data description is 
not used because allocation and format are hardware-dependent. The index-name may be used only in 
reference to the table element described by the OCCURS clause or to one of its subordinate items. 

2. Index-names are initialized and modified in the object program by the SET statement. 

3. References are made to individual items within a table of homogeneous elements by specifying the name 
of the table element, followed by its related index-names in parentheses. 

4. When more than one index is used in a reference, each must be separated, within the parentheses, by a 
comma and a space. 

5. A data item in a file can be described by a USAGE IS INDEX clause. This data item value can then be 
transferred to an index-name, without conversion by the SET statement. 

10.6. SEARCHING 

Data that has been arranged in the form of a table is often searched. In COBOL, the SEARCH statement provides 
facilities, through its two options, for producing serial and nonserial (binary) searches. In using the SEARCH 
statement, the programmer may vary an associated index-name or an associated data-name. This statement also 
provides facilities for execution of imperative statements when certain conditions are true and includes an AT END 
phrase (6.6.6.2) . 



• 

• 

• 
--------------~--·--··- --~----------~='---"-----



• 

• 

• 

UP-8059 Rev. 3 

11.1. INTRODUCTION 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-1 

11. Processing Techniques 

for Direct Access Devices 

This section describes the techniques available to the COBOL programmer for processing files assigned to direct 
access devices. The technique chosen to process a particular file depends upon the file organization and the manner 
in which records within the file are accessed. Each file organization has its particular advantages and disadvantages. 
No attempt is made in this section to select one organization over another. In selecting a file organization, the user 
should consider factors such as device characteristics, file size, activity, growth potential, etc. This section is 
intended to inform the user of the capabilities, construction, and usage of the file organizations available on direct 
access devices. 

11.2. FILE ORGANIZATION 

File organization specifies the format and control of the logical file structure. Once a file is created under a specific 
organization, that organization cannot be altered for subsequent file processing. COBOL provides three classes of file 
organizations: 

1. Sequential 

2. Relative 

3. Indexed 

A file organization is specified by the ORGANIZATION clause in the SELECT entry for this file. 

11.2.1. Sequential Organization 

The logical file structure is such that each logical record (except the first and last) has a unique predecessor and 
unique successor record. The predecessor-successor relationship was established by the order of the WRITE function 
when the logical file structure was created. The control of placing records to, or retrieving records from, a 
sequentially organized file is the predecessor-successor relationship; i.e .. the sequence in which records are created is 
the sequence in which they are retrieved. No other control information is required to access records from sequential 
files . 



UP-8059 Rev. 3 

11.2.2. Relative Organization 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-2 

The logical file structure is characterized by the physical relationship (location) of each record to the first record; 
i.e., logical record 1 occupies the first physical location in the file, record 2, the second, etc. In addition to 
sequential processing capabilities, records in a relative-organized file can be read or written directly by specifying the 
record number of the desired record. This control of the file is referred to as random access. For example, the 
fifteenth record of a relative-organized file may be accessed directly, whereas access to the fifteenth record of a 
sequentially organized file can be achieved only after retrieving the first 14 records. The ability to randomly access 
records provides an advantage over sequentially organized files; however, the data management techniques used with 
relative files restrict the format of records to fixed-length, unblocked. 

11.2.3. Indexed Organization 

Indexed files comprise two elements: the prime data set consisting of the logical records of the file and an index 
which expedites access to records in the prime data area. Each logical record of the file contains a field designated as 
the key. The key is the control which the access method uses in constructing the file as well as for subsequent 
retrievals. The access method uses a search of the index to locate the address of the record containing the requested 
key. The access method requires that indexed files be created in key sequence; hence, the name, indexed sequential. 
Records may be added to an existing indexed file; each added record is placed in overflow areas and the sequence of 
the file is maintained logically. Retrieval time of records increases as the number of records in overflow increases. 
Periodic reorganization of indexed files should be practiced to alleviate this condition. 

11.3. ACCESS METHODS 

Three modes of access (the manner in which records are read or written to a file) are available to the COBOL 
programmer: sequential access, random access, and extended access. 

11.3.1. Sequential Access 

Sequential processing involves the serial placement or retrieval of records to or from a file. The control in a 
sequential access method is the order in which records are written to or read from a file. No control information 
(key) need be supplied by the programmer to the access method (data management) other than the request to read 
or write a record. Any file organization can be accessed sequentially. 

11.3.2. Random Access 

Random processing assumes no serial dependency of records within a file. Each request to access a record is treated 
individually, without regard to prior requests. Information (key) is supplied at the time of request to designate the 
desired record. Random access is available only on files with relative or indexed organization. 

11.3.3. Extended Access 

Extended processing indicates that random and sequential access may be mixed. It is only available on files with 
indexed organization. 

11.4. CLAUSES REQUIRED FOR FILE PROCESSING 

The specification of file organization, access method, and OPEN usage (input, output, 1/0) dictates the file 
processing technique. Each file processing technique is described, in turn, with emphasis on the COBOL clauses 
required to define the file, and the effects these clauses have during file processing. Refer to Table 11-8 for a 
summary of the following information. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-3 

11.4.1. Sequential File Processing 

The following COBOL clauses are used when processing sequentially organized files: 

1. ORGANIZATION IS SEQUENTIAL 

The ORGANIZATION IS SEQUENTIAL clause states that the file is organized in a serial manner. Records are 
accessed one after the other. Sequential organization is assumed if this clause is omitted. Keys are not allowed 
with sequential files. 

2. ACCESS MODE IS SEQUENTIAL 

The ACCESS MODE IS SEQUENTIAL clause specifies the manner in which the records are to be written or 
retrieved from the file. Only sequential access is permitted indicating serial retrieval. 

3. RECORDING MODE IS { ~ } 

F signifies fixed mode and V signifies variable mode. Fixed-length or variable-length records may be blocked or 
unblocked. 

4. RESERVE { ~~ger-n} ALTERNATE [ { ~~~~S } J 

5. 

The RESERVE ALTERNATE AREAS clause indicates the number of additional 1/0 areas desired. Omission 
of the clause results in the allocation of one additional 1/0 area. If NO is specified no additional area is 
allocated. The only allowable integer is 1 . 

. { CHARACTERS } 
BLOCK CONTAINS mteger-n RECORDS 

Indicates the number of records or characters per block. The actual space allocated to an 1/0 area is always a 
multiple of 256 bytes. 

The following input/output statements are applicable to sequential files: 

1. OPEN INPUT file-name 

The OPEN INPUT statement indicates that the file operates in a read-only mode. Standard labels are checked 
and user labels, if specified, are made available to the USE for beginning label procedure. 

2. OPEN OUTPUT file-name 

The OPEN OUTPUT statement indicates that the file will operate in a write-only mode. Standard labels are 
written and user labels, if specified, are made available to the user for beginning label procedure. 

3. OPEN 1-0 file-name 

4 . 

---

The OPEN 1-0 statement indicates that the file is to be updated. Each WRITE statement must be preceded by 
a READ statement. Alteration of record length, insertion of new records, or deletion of existing records is not 
permitted. 

READ file-name RECORD AT END imperative-statement 

The READ AT END statement causes the next sequential record in the file to be made available (after 
deblocking), or if the end of file is detected, performs the special imperative statement following the AT END 
clause. 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-4 

5. WRITE record-name [;INVALID KEY imperative statement] 

The WRITE statement causes the specified record to be written in the next sequential area of the file (after 
blocking). An INVALID KEY condition occurs when there is insufficient space in the file to add another 
record. 

6. CLOSE file-name 

The CLOSE statement causes orderly termination of file processing. (At the end of the file or volume, user 
labels are checked and created if specified.) 

11.4.2. Relative File Processing 

The following COBOL clauses are used in processing relative organized files: 

1. ORGANIZATION IS RELATIVE 

The ORGANIZATION IS RELATIVE clause designates the file as relatively organized. The file is accessed via 
relative record number. The ORGANIZATION IS RELATIVE clause causes data management relative access 
method routines to be linked into object program. This is a required clause. 

{
RANDOM } 

2. ACCESS MODE!.§_ SEQUENTIAL 

The ACCESS MODE clause specifies the manner in which records are written to or retrieved from the file . 

a. The RANDOM option indicates no serial dependency of record processing. The relative record to be 
read, written, or sought is specified by the contents of the actual or relative key. 

b. The SEQUENTIAL option demands serial processing of records to or from the file and requires no key 
when accessing records. Sequential is assumed if this clause is omitted. 

3. RECORDING MODE IS .E. 

Only fixed-length record format is available for relative organized files. 

{ 
CHARACTERS } 

4. BLOCK CONTAINS integer-n RECORDS 

Relative files may not be blocked. This clause is not required. Space allocated to the 1/0 area is a multiple of 
256 bytes. 

{
ACTUAL } 

5. RELATIVE KEY IS data-name 

The ACTUAL or RELATIVE KEY IS clause specifies the data-name containing the relative record number to 
be read, written, or sought. This field is set by the programmer and/or the data management access method 
under the following conditions: 

a. Random access 

• 

• 

Programmer moves a relative record number to the field prior to every READ, WRITE, or SEEK verb. • 
The contents of the field are unchanged after execution of the 1/0 command. 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-5 
Update B 

b . 

c. 

Sequential access 

The contents of the actual or relative key are not required for READ or WRITE statements; therefore, 
the field is ignored by the data management access method. Pointers to the next sequential record are 
maintained by the access method while advancing through the file. After execution of a READ or 
WRITE statement, the contents of the actual key reflect the relative record number of the record just 
processed. Under sequential access, the programmer may issue a SEEK statement to position the file to a 
particular record. In this case, the programmer's relative record number is moved to the actual key prior 
to issuance of the SEEK statement. This technique of issuing a SEEK statement before each READ or 
WRITE statement has the effect of randomly accessing a relative file defined under sequential access. 

File open output (either access method) 

In the event that file preparation is requested on output files, the actual key should contain the relative 
record number on which file preparation is to begin. The file is prepped from this point to the end of the 
user's file extent. 

NOTE: 

It is the programmer's responsibility to ensure that the actual key contains the relative record number 
prior to opening the file. 

6. APPLY FILE-PREPARATION ON file-name 

The APPLY FILE-PREPARATION clause specifies the relative-organized file name on which file preparation is 
required. For relative-organized files, file preparation consists of writing initializing data on each track of the 
user's extent, starting at the relative record number contained in the actual key location and proceeding to the 
end of the user's extent. This initializing data, required by data management access methods, consists of an 
8-byte count field plus a dummy record of length equal to the fixed size of records within the file. The 
dummy record consists of an X'FF' followed by all O's up to a maximum of 255 bytes. (If the record size is 
greater than 256, undetermined data follows byte 256.) This file prepping guarantees that a physical record 
exists in every possible area of the user's extent, making it possible to access these record areas directly 
(randomly). 

When the initial allocation of disk space is exhausted, relative files are not extended automatically. If APPLY 
FILE PREPARATION is specified and the relative key data item contains a record number one higher than the 
highest record in the file (i.e., the first record in the next extent), the file is extended by one secondary 
increment of disk space when the OPEN OUTPUT statement is executed. 

NOTE: 

For initial creation of a relative file, the programmer should set the ACTUAL KEY field to 1 prior to opening 
the file. 

The following input/output statements are applicable to relative files: 

1. OPEN IN PUT file-name 

2 . 

The OPEN INPUT statement indicates that the file is used in a read-only mode. Standard labels are checked 
and user labels, if specified, are made available to the USE for BEGINNING LABEL procedure. For sequential 
access, the file is positioned to the first record. 

OPEN OUTPUT file-name 

The OPEN OUTPUT statement indicates that the file is used in a write-only mode. The file is formatted if the 
APPLY FILE-PREPARATION clause was specified starting at the record number contained in actual key and 
proceeding to the end of the user's extent. The USE for BEGINNING LABEL procedure is executed if 
specified. The file is positioned to the first record for sequential access. 



• 
UP-8059 Rev. 3 SPERRY UNIVAC 05/3 

EXTENDED COBOL 
11-6 

3. OPEN 1-0 file-name 

The OPEN 1-0 statement designates the existing file as the one to be updated. (Both READ and WRITE 
statements may be issued to the file.) Label processing is the same as when the file is opened for input. This 
type of OPEN statement affects the manner in which WRITE statements function. Each WRITE statement is 
dependent upon a READ or SEEK READ statement previously issued for the file. The WRITE order is issued 
for the relative record specified on the previous READ or SEEK statement. 

4. Sequential access 

a. READ file-name RECORD AT END imperative-statement 

The READ AT END statement for sequential access method delivers the next logical record from an 
input file, or performs the specified imperative statement following the AT END clause if the end of the 
file is detected. 

b. WRITE record-name; INVALID KEY imperative-statement 

The WRITE INVALID KEY statement releases a logical record to an output· file. The imperative 
statement following the INVALID KEY 'clause is executed when the end of file is detected and an 
attempt is made to execute a WRITE statement for that file. 

c. SEEK file-name RECORD 

The SEEK statement positions the file to the relative record number specified by the contents of the 

• 

actual key. No error indication is available if the record is not located. Error indications are available on • 
the succeeding READ or WRITE statements. 

5. Random access 

a. READ file-name RECORD INVALID KEY imperative-statement 

The READ INVALID KEY statement delivers the logical record specified by the contents of the actual 
key, or executes the imperative statement following INVALID KEY clause if the record specified by the 
actual key does not exist within the user's extent. 

b. {~TE} record-name INVALID KEY imperative-statement 

The WRITE or REWRITE INVALID KEY statement writes the logical record to the physical area of the 
disc specified by the relative record number contained in the actual key. If that record does not exist in 
the user's extent, the INVALID KEY imperative statement in the INVALID KEY clause is executed. 

c. SEEK file-name RECORD 

The SEEK statement positions the file to the relative record number specified by the contents of the 
actual key. 

6. CLOSE file-name 

See CLOSE statement under sequential file processing ( 11.4.1). 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-7 

• 11.4.3. Indexed File Processing 

• 

• 

The following clauses are used in processing indexed sequential files: 

1. ORGANIZATION IS INDEXED 

The ORGANIZATION IS INDEXED clause denotes file organization as indexed sequential, and causes data 
management indexed sequential access method (ISAM) routines to be linked into the object program. 

2. ACCESS MODE§_ { =:~~~N~IAL } 
EXTENDED 

The ACCESS MODE clause specifies the order in which records are written to, or read from, the file. 

a. Sequential 

The sequential access mode requires a serial processing of records to or from the file; therefore, no key 
need be presented when retrieving records. Indexed files can be created only under sequential access. 

b. Random 

c. 

The random access mode requires no serial dependency of record processing. The key of the record to be 
read or sought is specified in the SYMBOLIC KEY clause. New records can be inserted into an existing 
indexed file under random access . 

Extended 

The extended access mode combines sequential and random record processing. 

3. RECORDING MODE~ { ~} 
The RECORDING MODE IS F clause indicates fixed-length records. The RECORDING MODE IS V clause 
indicates variable-length records. Fixed- or variable-length blocked records are the only formats available for 
indexed files. 

4. RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS 

The RECORD CONTAINS clause indicates the size of the records. If the records are variable in length, a 
high/low range can be specified. 

. {CHARACTERS} 
5. BLOCK CONTAINS integer-n RECORDS 

The BLOCK CONTAINS clause indicates the number of records or characters per block. Space allocated to the 
1/0 area is a multiple of 256 bytes. 

6. SYMBOLIC KEY IS data-name 

The SYMBOLIC KEY clause specifies the data-name containing the key of the record to be read or sought. 
This key field must match the size and description of the record key field . 



UP-8059 Rev. 3 

7. RECORD KEY IS data-name 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-8 

The RECORD KEY clause specifies the field within each record containing the record identification. This field 
is used at file creation time to build the indexes required for subsequent file processing. At retrieval time, the 
contents of the programmer-supplied SYMBOLIC KEY field are compared against the defined RECORD KEY 
field in accessing indexed records randomly. The key field must be greater than 2 and less than or equal to 249 
bytes in length. 

8. APPLY CYLINDER-INDEX AREA OF integer-n INDICES ON file-name 

The APPLY CYLINDER-INDEX AREA clause establishes levels of indexes to expedite the retrieval of records. 
When an indexed file is created, data blocks containing records are loaded sequentially. Each record contains 
an embedded key (see RECORD KEY, item 7). As each data block is filled with records and written to disc, 
the key of the highest record in the block is recorded in a block index entry, along with the disc address of the 
block. When a track on the disc becomes filled with blocks of block index entries, an entry in the top index is 
created containing the highest key on the track of block index entries. Retrieval of records reverses the 
process. To eliminate the disc reads required to access the top index for retrieval, sufficient storage should be 
allocated to contain a number of top index entries. lnteger-n specifies the number of top index entries to be 
held in storage. If all top index entries can be held in storage, then all reads to access the top index are 
eliminated. 

The method used to calculate the value of integer-n in the APPLY CYLINDER-INDEX AREA clause is 
described in detail in 10.2.4 (Calculating Space for the ISAM Index Area) in the data management user guide, 
UP-8068, current version. 

If the file already exists, use the following formula to determine the value of integer-n: 

n = b/(s + 3) 

where: 

n 

b 

s 

NOTE: 

Is integer-n of the APPLY clause. 

Is bytes that are required for main storage and that can be obtained from a display of the VTOC. 
The number of bytes is shown under the heading: Bytes Required for Main Storage. 

Is size of the record key. 

If the remainder of the divide operation in the above formula is not equal to zero, add 1 to the quotient, i.e., 
ton. 

9. APPLY MASTER-INDEX ON file-name 

The APPLY MASTE R-1 NDEX clause is accepted for OS/4 and OS/7 compatibility. In OS/3, this clause serves 
for documentation only. 

10. APPLY CYLINDER-OVERFLOW AREA OF integer-n PERCENT ON file-name 

To keep disc head movement to a minimum in retrieving records from overflow, a percentage of each cylinder 
in the prime data area can be allocated to contain overflow records. If this clause is omitted, 20 percent of 
each cylinder is set aside to contain overflow records. If no overflow is desired, 0 percent should be specified. 
In this case, no new records may be inserted into the file. If specified, integer-n is an unsigned number. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-9 

11. APPLY EXTENDED-INSERTION AREA ON file-name ---------- --- --
The APPLY EXTENDED-INSERTION AREA clause is accepted for OS/4 and OS/7 compatibility. In OS/3, 
this clause serves for documentation only. 

12. APPLY VER I FY ON file-name 

13. 

14. 

The APPLY VERIFY clause requests verification (READ after WRITE) of disc records after they have been 
written. If this clause is omitted, no verification of records is performed. 

RESERVE {integer-n} ALTERNATE [AREA J 
NO AREAS 

The RESERVE ALTERNATE clause indicates the number of additional 1/0 areas desired. The key word NO 
causes no additional 1/0 areas to be reserved; integer-n (which must be a one) reserves one additional 1/0 area. 
If this clause is omitted, no additional 1/0 areas are allocated. 

{
RECORD IS } 

LABEL RECORDSARE STANDARD 

The reserved word STANDARD specifies that system file labels are to be checked (or created) and that the 
labels conform to OS/3 label specification. 

The following input/output statements are used when processing indexed files: 

1. OPEN OUTPUT file-name 

The OPEN OUTPUT statement indicates the file is to be loaded or extended. The creation of a file (load) with 
standard labels is assumed unless the file already exists, in which case file extension is implied. This statement 
can only be specified for sequential access or extended access. 

2. OPEN INPUT file-name 

The OPEN INPUT statement indicates that the file is to be used in a read-only mode. Standard labels are 
checked. For sequential and extended access, the file is positioned to the first record. Th is statement can also 
be specified for random access. 

3. OPEN 1-0 file-name 

The OPEN 1-0 statement indicates that the file is to be used in a read and write mode. Standard labels are 
checked. For sequential and extended access, the file is positioned to the first record. This statement can also 
be specified for random access. 

4. SEEK file-name RECORD 

For sequential file processing, the SEEK statement causes the programmer-supplied value in the SYMBOLIC 
KEY item to specify the RECORD KEY value of the logical record within the file which is to be positioned 
for subsequent sequential retrieval. If no logical record is found with that key, positioning is made to the 
record with the next higher key . 

The SEEK statement can be used only under sequential or extended access mode when opened for INPUT or 
1-0. 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-10 

5. 
READ file-name RECORD [INTO identifier] [; { ~NTV¥iTD KEY} imperative-statement J 
For sequential file processing, the READ statement makes available the next logical record from a file and 
allows performance of a specified imperative-statement when the end of the file is detected. The logical record 
retrieved is determined by the preceding input/output statements as shown in Table 11-1. 

Table 11-1. Logical Record Retrieval by Sequential Read 

Preceding Input/Output Logical Record Retrieved 
Statement by Sequential Read 

OPEN First record of file 

SEEK Record with SEEK key or, if key does not exist, 
record with next higher record key 

READ Record with next higher record key after last 
retrieved record 

WRITE/REWRITE/INSERT Does not affect positioning for sequential read 

For random file processing, the READ statement makes available the record specified by SYMBOLIC KEY, 
and allows performance of a specified imperative-statement if a logical record with that key does not exist. 

• 

When AT END is specified, the READ statement is treated as a sequential read and the access mode must be • 
sequential or extended. When I NV ALI D KEY is specified, the READ statement is treated as a random read 
and the access mode must be random or extended. If neither AT END nor INVALID KEY is specified, the 
type of read is determined by the accesss mode. If access is sequential, the read is a sequential read. If access is 
extended or random, the read is a random read. The file must be opened for INPUT or 1-0 for the READ to be 
valid. 

6. WRITE record-name [FROM identifier-1] [; INVALID KEY imperative-statement] 

The WRITE statement releases a logical record for an output file. 

• File loading, extending 

When loading or extending a file, the WRITE statement is used to add logical records sequentially in the 
prime data area of the file and to create the necessary index entries for later retrieval of the logical 
records. The logical records must be presented for loading in ascending record key sequence. If the file is 
being extended, the RECORD KEY value of the first logical record written must be higher than the 
highest RECORD KEY value currently in the file. The WRITE statement allows performance of a 
specified imperative-statement if the RECORD KEY is equal to, or out of key sequence with, the last 
RECORD KEY. 

The WRITE statement can be used only for file loading or extension under sequential or extended access 
when opened for OUTPUT. 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-11 

• Record update 

When updating an existing record, the WRITE statement must be preceded by a successful READ 
statement. The WRITE statement causes the updated record to be rewritten into its original physical 
area. Neither the length nor the RECORD KEY value can be changed. The WRITE statement allows 
performance of a specified imperative-statement if the length or key value have been modified. 

The WRITE statement can be used only for record updating under sequential, random, or extended 
access when opened for 1-0. 

• Record insertion 

When inserting a new record into an indexed file, the WRITE statement causes a new logical record to be 
added to the file at the logical position designated by its RECORD KEY value. No other logical record 
may exist in the file with the same RECORD KEY value. The WRITE statement allows performance of a 
specified imperative-statement if a logical record with the RECORD KEY already exists. 

The WRITE statement can be used only for record insertion under random or extended access when 
opened for 1-0. 

7. REWRITE record-name [FROM identifier] [; INVALID KEY imperative statement] 

8 . 

The REWRITE statement can be used in place of the WRITE statement for record update. The same rules used 
for record update for the WRITE statement apply. 

INSERT record-name [FROM identifier-1] [; INVALID KEY imperative-statement] 

The INSERT statement can be used in place of the WRITE statement for record insertion. The same rules used 
for record insertion for the WRITE statement apply. 

9. CLOSE file-name 

See CLOSE statement for sequential file processing (11.4.1 ). 

A summary of input/output statements permitted for each access method and open mode follows . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-12 

• ORGANIZATION is INDEXED, ACCESS is SEQUENTIAL 

NOTES: 

Sequential 
Output Processing 

OPEN OUTPUT 

WRITE [INVALID KEY]© 

CLOSE 

Sequential 
Input Processing 

OPEN INPUT 

READ [AT END]@ 

SEEK 

CLOSE 

Sequential 
1-0 Processing 

OPEN 1-0 

READ [AT END]@ 

SEEK 

WRITE [INVALID KEY]© 

REWRITE [INVALID KEY] 

CLOSE 

(j) When access is sequential and the file is opened for OUTPUT, the WRITE sratement is a request for 
loading or extending the file. When opened for 1-0, the WRITE statement is a request for an update of 

an existing record . 

. ® When access is sequential, a READ statement is always treated as a sequential read. 

• ORGANIZATION is INDEXED, ACCESS is RANDOM 

NOTES: 

Random 
Output Processing 

Invalid OPEN mode 

Random 
Input Processing 

OPEN INPUT 

READ [INVALID KEY] @ 

CLOSE 

Random 
1-0 Processing 

OPEN 1-0 

READ [INVALID KEY)@ 

WRITE [INVALID KEY]© 

REWRITE [INVALID KEY] 

INSERT [INVALID KEY] 

CLOSE 

(j) When access is random and the file is opened for 1-0, the WRITE statement is either a request for an 
update of an existing record or else a request for insertion of a new record. 

® When access is random, a READ statement is always treated as a random read. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-13 

• ORGANIZATION is INDEXED, ACCESS is EXTENDED 

Extended Extended Extended 
Output Processing Input Processing 1-0 Processing 

OPEN OUTPUT OPEN INPUT OPEN 1-0 

WRITE [INVALID KEY]G) 
[{ATEND }J® 

READ INVALID KEY 
[{ATEND }J® 

READ INVALID KEY 

CLOSE SEEK SEEK 

CLOSE WRITE [INVALID KEY]G) 

REWRITE [I NV ALI D KEY] 

INSERT [INVALID KEY] 

CLOSE 

NOTES: 

(j) When access is ex'tended and the file is opened for OUTPUT, the WRITE statement is a request for 
loading or extending the file. When opened for 1-0, the WRITE statement is a request for either an 
update of an existing record or else a request for inserting a new record. 

@ When access is extended and the file is opened for INPUT or 1-0, if neither AT END or INVALID KEY 
is specified for a READ statement, the READ statement is treated as a random read. If AT END is 
specified, the READ is treated as a sequential read. If INVALID KEY is specified, the READ is treated 
as a random read. 

11.4.4. Summary of Imperative Statements and Error Conditions 

The use of the AT END/INVALID KEY imperative-statement with the ORGANIZATION clause, system error 
messages, and COBOL disc processing techniques are summarized in the following paragraphs. 

11.4.4.1. ORGANIZATION IS SEQUENTIAL Clause 

The AT END imperative-statement is executed when the logical end of file is detected. 

The I NV ALI D KEY imperative-statement is executed when no space is left on the file for the record to be written. 

11.4.4.2. ORGANIZATION IS RELATIVE Clause 

The AT END imperative-statement is executed when an access to a record beyond the file is attempted . 

The I NV ALI D KEY imperative-statement is executed when the relative-record number is beyond the file extents. 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11.4.4.3. ORGANIZATION IS INDEXED Clause 

11-14 

The AT END/INVALID KEY imperative-statement clauses are executed according to the explanation given in 
11.4.3. See also Table 11-3 for a list of the AT END/INVALID KEY exception conditions. 

Exception conditions for indexed files are handled in the following manner: 

• Warning Exceptions 

When a warning exception condition arises during COBOL verb processing for indexed files, control is returned 
immediately following the input/output verb with the appropriate SYSERR setting. The warning exception 
condition is shown in Table 11-2. 

Table 11-2. Warning Exception Conditions for Indexed File Processing 

Warning Exception Condition 

End of file detected 
when positioning unit for 
subsequent sequential retrieval 

• End-of-File/Invalid Key Exceptions 

COBOL Verb 

SEEK 

• 

When an end-of-file condition or invalid key condition arises during COBOL verb processing for indexed files, • 
SYSERR is appropriately set and the AT END/INVALID KEY imperative-statement is executed. If no AT 
END/INVALID KEY imperative-statement clause is specified when this condition occurs, control is 
transferred to the appropriate USE AFTER ERROR procedure. If this latter procedure is not specified, the 
COBOL ERROR procedure is called and results in an end-of-job sequence. The AT END/INVALID KEY 
exception conditions are shown in Table 11-3. 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-15 

• 

Table 11-3. AT END/INVALID KEY Exception Conditions for Indexed File Processing 

AT END/INVALID KEV Exception Conditions COBOL Verb 

End of file detected (AT END Sequential READ 

condition) 

During file creation or extension, Load WRITE 

a record-key value is found out 
of key sequence (INVALID KEY 
condition). 

A duplicate record-key value is Load WRITE 
detected (INVALID KEY condition). Insert WRITE 

INSERT 

A specified record-key value Random READ 
cannot be formed (INVALID KEY 
condition). 

A record-key value or length Update WRITE 
value for a record update has WRITE 
been modified (INVALID KEY 
condition). 

Unrecoverable File Errors 

When unrecoverable file errors occur during COBOL verb processing for indexed files, control is transferred to 
the applicable USE AFTER ERROR procedure with the appropriate SYSERR message set. If a USE AFTER 
ERROR procedure is not provided, the COBOL ERROR procedure is called and results in an end-of-job 
sequence. The unrecoverable file error conditions are shown in Table 11-4. 

Table 11-4. Unrecoverable File Error Conditions for Indexed File Processing (Part 1 of 2) 

Unrecoverable File Error Conditions COBOL Verb 

General OPEN errors OPEN 

General CLOSE errors CLOSE 

Invalid use of COBOL verb: All COBOL verbs 

- COBOL verb not valid for open mode 
- OPEN issued to file currently 

opened 

- Verb other than OPEN issued to file 
not currently opened 

- Update not preceded by a successful 
READ 

- Because of previous errors, only 
CLOSE verb permitted 

Insufficient file space CLOSE 

Load WRITE 
Insert WRITE 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 11-4. Unrecoverable File Error Conditions for Indexed File Processing (Part 2 of 2) 

Unrecoverable File Error Conditions COBOL Verb 

No AT END/INVALID KEY imperative- Sequential READ 
statement specified for COBOL verb Random READ 
and exception condition occurred Load WRITE 
when processing the verb Update WRITE 

Insert WRITE 
REWRITE 
INSERT 

Hardware error All COBOL verbs 

Invalid record size Load WRITE 
Insert WRITE 
INSERT 

Data portion of track index OPEN 
destroyed (invalid ID) or SEEK 
invalid index search Sequential READ 

Random READ 
Insert WRITE 
INSERT 

• Storage Dump 

11-16 

If an unrecoverable file error occurs and control is transferred to the COBOL ERROR procedure, this 
procedure takes a dump of the job region before job termination. The following information is available: 

Register values 

Register 

0 
1 
2 

Value 

SYSERR setting 
Address of DTF of file in error 
Address of prefix if file in error 

14 Address of return locations in program if error had not occurred 

File prefix format 

12 

16 

20 

24 

28 

32 

36 

The shaded area is the prefix to the DTF module. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

Name 

Indicator 1 

Indicator 2 

Current COBOL 
Verb 

Previous COBOL 
Verb 

RECORD KEY 
Area 

Byte 

14 

15 

18 

19 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-17 

Bits 

0-1 
2-3 

Description 

Used by COBOL internally 
Access mode 

00 - sequential 
10 - random 
01 - extended 

4-7 Used by COBOL internally 

0-2 Open mode 

100 - input 
010 - output 
001 - 1-0 

3-7 Used by COBOL internally 

0-7 

0-7 

Code for COBOL verb processed for indexed file when exception 

condition occurred 

Code for COBOL verb processed for indexed file that preceded 

current COBOL verb 

Code COBOL Verb 

00 OPEN 
01 CLOSE 
02 SEEK 
03 READ (sequential) 

04 READ (random) 

05 WRITE (load) 

06 WRITE/REWRITE (update) 

07 Not used 
08 WRITE/INSERT (insert) 

40-20 - Record-key used for sequential retrieval positioning 

Table 11-5 summarizes the exception conditions for each input/output COBOL verb used for processing indexed 

files . 



Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 1of9) 

COBOL Verb Prefix 
SYS ERR File Processing 

for Indexed Verb Exception Condition 
Setting Status 

File Code 

OPEN 00 General OPEN error SYSERR-2, OPEN not completed. 
SYSERR-4 File processing cannot 

continue. 

File currently opened SYSERR-6 OPEN not completed. 
File processing cannot 
continue. 

Hardware error: 
When one occurs, SYSERR-3 is always SYSERR-3 OPEN not completed. 
set along with one or more of the File processing cannot 
following: continue. 

Unrecoverable error SYSERR-9 
Unique unit error SYSERR-10 
Record not found (hardware search) SYSERR-11 
Unit exception SYSERR-12 
Wrong length found SYSERR-13 
Command rejection SYSERR-16 
Intervention required SYSERR-17 
Output parity check SYSERR-18 
Equipment check SYSERR-19 
Data check SYSERR-20 
Overrun SYSERR-21 
STOP state SYSERR-22 
Device check SYSERR-23 

Invalid 1-0 when positioning to beginning of SYSERR-1 OPEN not completed. 
file (opened INPUT, 1-0; access SEQUENTIAL File processing cannot 
or EXTENDED) continue. File may not 

be valid. 

Invalid index search when positioning to SYSERR-28 OPEN not completed. 
beginning of file (opened INPUT, 1-0; File processing cannot 
access SEQUENTIAL or EXTENDED) continue. File may not 

be valid . 

• • 

Transfer of 
Control 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

• 

c .,, 
00 
0 
(11 
(l) 

:0 

~ 
w 

Ul m.,, 
xm 
-I :0 
m :o z -< 
oc mz 
o< 
("') )> 
on 
al 0 
0 Ul 
r '-

w 

.!... 
CXl 



• • 
Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 2 of 9) 

COBOL Verb Prefix 
File Processing 

for Indexed Verb Exception Condition SYSERR 

File Code 
Setting Status 

CLOSE 01 General CLOSE error SYSERR-5 CLOSE not completed. 
File may not be 
valid. 

File not currently opened SYSERR-6 CLOSE not completed. 
File sti II valid. 

Hardware error: SYSERR-3 CLOSE not completed. 
When one occurs, SYSERR-3 is always File may not be 

set along with one or more of the valid. 
following: 

Unrecoverable error SYSERR-9 
Unique unit error SYSERR-10 
Record not found (hardware search) SYSERR-11 
Unit exception SYSERR-12 
Wrong length found SYSERR-13 
Command rejection SYSERR-16 
Intervention required SYSERR-17 
Output parity check SYSERR-18 
Equipment check SYSERR-19 
Data check SYSERR-20 
Overrun SYSERR-21 
STOP state SYSERR-22 
Device check SYSERR-23 

File not successfully loaded because of SYSERR-26 CLOSE not completed. 
insufficient space File not valid and 

must be reloaded. 

SEEK 02 File not currently opened SYSERR-6 SEEK not completed 

SEEK not valid for open OUTPUT SYSERR-6 SEEK not completed 

Transfer of 
Control 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

• 
c 
"'tl 
Cxi 
0 
(11 
(0 

::0 
C1l 
~ 
w 

CJ) 
"'tl mm x ::0 

-l ::0 
~ -< 
oc 
mz o< 
(") l> 
on 
CD 0 
0 CJ) 

r " w 

I 
~ 

(0 



Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 3 of 9) 

COBOL Verb Prefix 
SYSERR File Processing 

for Indexed Verb Exception Condition 
File Code 

Setting Status 

SEEK (cont) 02 (contl Hardware error: SYSERR-3 SEEK not completed. 
When one occurs, SYSERR-3 is always File may not be 
set along with one or more of the valid. 
following: 

Unrecoverable error SYSERR-9 
Unique unit error SYSERR-10 
Record not found (hardware search) SYSERR-11 
Unit exception SYSERR-12 
Wrong length found SYSERR-13 
Command rejection SYSERR-16 
Intervention required SYSERR-17 
Output parity check SYSERR-18 
Equipment check SYSERR-19 
Data check SYSERR-20 
Overrun SYSERR-21 
STOP state SYSERR-22 
Device check SYSERR-23 

No record with key equal or greater SYSERR-11 SEEK completed. 
than SEEK key found (end of file and SYSERR-25 If READ issued, AT END 
detected) (both always set) path will be executed. 

and SYSERR-3 not Normal file processing 
set may continue. 

Invalid ID SYSERR-1 SEEK not completed. 
File may not be 
valid. 

Invalid index search SYSERR-28 SEEK not completed. 
File may not be valid. 

Because of preceding error(s), only SYSERR-27 SEEK not completed 
CLOSE verb permitted 

• • 

Transfer of 
Control 

USE AFTER ERROR 
procedure 

Immediately after 
SEEK 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

• 

c 
"O 

00 
0 
(11 
(0 

:c 
CD 
:-:: 
w 

en 
"O mm 

~ :c 
m :c z -< 
oc mz o-

); 8 (') 
OJ 0 o en 
r- " w 

I 
N 
0 



• • 
Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 4 of 9) 

COBOL Verb Prefix 
SYSERR File Processing 

for Indexed Verb Exception Condition 
Setting Status 

File Code 

Sequential 03 File not currently opened SYSERR-6 READ not completed 
READ 

READ not valid for open OUTPUT SYSERR-6 READ not completed 

Hardware error: SYSERR-3 READ not completed 
When one occurs, SYSERR-3 is always 
set along with one or more of the 
following: 

Unrecoverable error SYSERR-9 
Unique unit error SYSERR-10 
Record not found (hardware search) SYSERR-11 
Unit exception SYSERR-12 
Wrong length found SYSERR-13 
Command rejection SYSERR-16 
Intervention required SYSERR-17 
Output parity check SYSERR-18 
Equipment check SYSERR-19 
Data check SYSERR-20 
Overrun SYSERR-21 
STOP state SYSERR-22 
Device check SYSERR-23 

End of file detected SYSERR-25 READ not completed. 
Before any further sequen-
tial retrieval can continue, 
it is necessary to reposi-
tion in the file. Normal 
file processing can continue. 

Invalid ID SYSERR-1 READ not completed. 
File may not be valid. 

Invalid index search SYSERR-28 READ not completed. 
File may not be valid. 

Because of preceding error(s), only SYSERR-27 READ not completed 
CLOSE verb permitted 

Transfer of 
Control 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

If specified, AT 
END path; if not 
specified, USE AFTER 
ERROR procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

• 
c 
-u 
00 
0 
0'1 
co 
:::0 

~ 
w 

(/) 
-u mm x :::0 

-i :::0 
m -< 
zc 
~z o< 
("") )> 
on 
OJ 0 
0 (/) 
r '-

w 

I 
N 



Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 5 of 9) 

COBOL Verb Prefix 
SYSERR File Processing 

for Indexed Verb Exception Condition 
Setting Status 

File Code 

Random 04 File not currently opened SYSERR-6 READ not completed 
READ 

READ not valid for open OUTPUT SYSERR-6 READ not completed 

Hardware error: SYSERR-3 READ not completed 
When one occurs, SYSERR-3 is always 
set along with one or more of the 
following: 

Unrecoverable error SYSERR-9 
Unique unit error SYSERR-10 
Record not found (hardware search) SYSERR-11 
Unit exception SYSERR-12 
Wrong length found SYSERR-13 
Command rejection SYSERR-16 
Intervention required SYSERR-17 
Output parity check SYSERR-18 
Equipment check SYSERR-19 
Data check SYSERR-20 
Overrun SYSERR-21 
STOP state SYSERR-22 
Device check SYSERR-23 

Specified record-key. Value cannot be SYSERR-11 READ not completed. 
found because a record with that key value and not Record not retrieved, but 
was never added to the file. SYSERR-3 normal file processing 

may continue. 

Invalid ID SYSERR-1 READ not completed. File may 
not be valid. 

Invalid index search SYSERR-28 READ not completed. 
File may not be valid; 

Because of preceding errors, only CLOSE SYSERR-27 READ not completed 
verb is permitted 

• • 

Transfer of 
Control 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

If specified, INVALID 
KEY path; if not specified, 
USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

• 

c 
-0 

Co 
0 
(11 
CD 
::c 
~ 
w 

en 
-0 mm 

~ ::c 
m ::c z -< 
oc mz 
o:;::: 
() )> 
0 () 
roo 
Oen 
r- '-

w 

I 
N 
N 



• • 
Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 6 of 9) 

COBOL Verb Prefix 
File Processing 

for Indexed Verb Exception Condition 
SYSERR 

File Code 
Setting Status 

Load 05 File not currently opened SYSERR-6 WRITE not completed 
WRITE 

WRITE not valid for open INPUT SYSERR-6 WRITE not completed 

Hardware error: SYSERR-3 WRITE not completed 
When one occurs, SYSERR-3 is always 
set along with one or more of the 
following: 

Unrecoverable error SYSERR-9 
Unique unit error SYSERR-10 
Record not found (hardware search) SYSERR-11 
Unit exception SYSERR-12 
Wrong length found SYSERR-13 
Command rejection SYSERR-16 
Intervention required SYSERR-17 
Output parity check SYSERR-18 
Equipment check SYSERR-19 
Data check SYSERR-20 
Overrun SYSERR-21 
STOP state SYSERR-22 
Device check SYSERR-23 

Invalid record size SYSERR-24 WRITE not completed 

Prime data area full or index SYSERR-1 WRITE not completed. 
area full Record not written because 

of inedequate space. File 
should be closed. 

Duplicate record key SYSERR-30 WRITE not completed. 
SYSERR-29 because key already exists 
(both always set) in file. Normal file proces-

sing can continue. 

Transfer of 
Control 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure. 

If specified, INVALID 
KEY path; if not specified, 
USE AFTER ERROR 
procedure 

• 
c: 
iJ 

Oo 
0 
01 
<O 
)J 
ct> 
:<= 
w 

CJ) 
iJ mm x )J 

-I )J 

~ -< 
0 c: mz o:::: 
() )> 
0 () 
rxio 
0 CJ) 
r '-

w 

I 
N 
w 



Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 7 of 9) 

COBOL Verb Prefix 
SYSERR File Processing 

for Indexed Verb Exception Condition 
Setting Status 

File Code 

Load 05 (cont) Record-key sequence error SYSERR-29 WRITE not completed 
WRITE because key is not greater 
(cont) than last key in file. 

Normal file processing 
can continue. 

Because of preceding error(s), only SYSERR-27 WRITE not completed 
CLOSE verb permitted 

Update 06 File not currently opened SYSERR-6 Update not completed 
WRITE/ 
REWRITE 

Update not valid for open INPUT SYSERR-6 Update not completed 
or OUTPUT 

Hardware error: SYSERR-3 Update not completed 
When one occurs, SYSERR-3 is always 
set along with one or more of the 
following: 

Unrecoverable SYSERR-9 
Unique unit error SVSERR-10 
Record not found (hardware search) SYSERR-11 
Unit exception SYSERR-12 
Wrong length found SYSERR-13 
Command rejection SYSERR-16 
Intervention required SYSERR-17 
Output parity check SYSERR-18 
Equipment check SYSERR-19 
Data check SYSERR-20 
Overrun SYSERR-21 
STOP state SYSERR-22 
Device check SYSERR-23 

Update not preceded by random or sequential SYSERR-6 Update not completed 
READ 

.;a 

• • 

Transfer of 
Control 

If specified, INVALID 
KEY path; if not specified, 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

• 

c ,, 
Cc 
0 
CTI 
CD 
:0 

~ 
w 

en ,, 
mm 
x :0 
-t :0 
~ -< 
oc 
mz o-
~ 8 (') 

OJ 0 o en 
r- ' w 

I 
N 
~ 



(. • 
Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 8 of 9) 

t 
COBOL Verb Prefix 

SYSERR File Processing 
for Indexed Verb Exception Condition 

File Code 
Setting Status 

Update 06 (cont) End of file detected for preceding sequential SYSERR-6 Update not completed 
WRITE/ READ 
REWRITE 
(cont) Record not found detected for preceding SYSERR-6 Update not completed 

random READ 

·A record-key value or length value None Update not completed. 

- for a record update has been modified. Processing can continue. 

Because of preceding error(s), only CLOSE SYSERR-27 Update not completed 
verb permitted. 

Insert 08 File not currently opened SYSERR-6 Insert not completed 
WRITE/ 
INSERT 

Insert not valid for open INPUT or SVSERR-6 Insert not completed 
OUTPUT 

Hardware error: SYSERR-3 Insert not completed 
When one occurs, SYSERR-3 is always 
set along with one or more of the + 
following: 

Unrecoverable error SVSERR-9 
Unique unit error SYSERR-10 
Record not found (hardware search) SYSERR-11 
Unit exception SYSERR-12 
Wrong length found SYSERR-13 
Command rejection SVSERR-16 
Intervention required SYSERR-17 
Output parity check SYSERR-18 
Equipment check SVSERR-19 
Data check SYSERR-20 
Overrun SYSERR-21 
STOP state SYSERR-22 
Device check SYSERR-23 

Transfer of 
Control 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

If specified, INVALID 
KEY path; if not specified, 
USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

• 
c 
-0 

6 
0 
(Jl 
co 
:Il 
CD 
<: 
w 

en 
-0 mm x :Il 

-i :Il 
~ -< 
Cl c 
mz 
Cl < 
(') )> 
0 (') 
CJ 0 o en 
r '-

w 

I 
N 
(Jl 



Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 9 of 9) 

COBOL Verb Prefix 
for Indexed Verb Exception Condition SYSERR File Processing 

File Code 
Setting Status 

Insert 08 (cont) Invalid record size SYSERR-24 Insert not completed 
WRITE/ 
REWRITE 
(cont) Overflow area full SYSERR-26 Insert not completed. 

Record not written because 
of inadequate space. Proces-
sing can continue. 

..... Insert 08 ADD rejected because of error on SYSERR-31 Insert not completed. 
WRITE/ preceding insert Processing can continue. 
INSERT 

Duplicate record key SYSERR-29 Insert not completed 
SYSERR-30 because key already exists 

in file. Normal file proces-
sing can continue. 

Invalid ID SYSERR-1 Insert not completed. File 
may not be valid. 

Invalid index search SYSERR-28 Insert not completed. File 
may not be valid. 

Because of preceding errods). only SYSERR-27 Insert not completed 
CLOSE verb permitted 

Zero percent overflow allocated SYSERR-31 Insert not completed 

• • 

Transfer of 
Control 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

If specified, INVALID 
KEY path; if not specified, 
USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

• 

c 
"'O 
Cc 
0 
U1 
co 
::c 
~ 
w 

CJ> 
m -o xm 
-I ::c 
m ::c z -< 
oc mz 
o:;::: 
(') )> 
0 (') 
CJJo 
0 CJ> 
r '-

w 

I 
I\) 
Ol 



• 

• 

• 

UP-8059 Rev. 3 

11.4.4.4. SYSERR Messages 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

11-27 

Table 11-6 contains the definitions of the 32 SYSERR messages for ORGANIZATION INDEXED and 
ORGANIZATION RELATIVE. SYSERR is set whenever data management indicates an error has occurred. If no 
error occurs, all SYSERR settings will be off. 

Table 11-6. System Error Messages (SYSERR) for INDEXED and RELATIVE Files 

Message Definition Message Definition 

SYSERR-0 Last block on track accessed SYSERR-17 Intervention required 

SYSERR-1 Invalid ID SYSERR-18 Output parity check 

SYSERR-2 Invalid DTF (Indexed) SYSERR-19 Equipment check 
Invalid PCA/DTF (Relative) 

SYSERR-20 Data check 
SYSERR-3 Hardware error 

SYSERR-21 Overrun 
SYSERR-4 Error found in OPEN 

SYSERR-22 STOP state 
SYSERR-5 Error found in CLOSE 

SYSERR-23 Device check 
SYSERR-6 Invalid macro sequence 

SYSERR-24 Invalid record size 
SYSERR-7 Reserved (Indexed) 

WAITF required (Relative) SYSERR-25 Logical end of file 

SYSERR-8 1/0 complete SYSERR-26 File space exhausted (Indexed) 
Logical end of volume (Relative) 

SYSERR-9 Unrecoverable error 
SYSERR-27 Processing inhibited 

SYSERR-10 Unique unit error 

SYSERR-11 Record not found SYSERR-28 Invalid index (Indexed) 
Reserved (Relative) 

SYSERR-12 Unit exception 

SYSERR-29 Key sequence error (Indexed) 
SYSERR-13 Wrong length found Reserved (Relative) 

SYSERR-14 End of track SYSERR-30 Duplicate key error (Indexed) 
Reserved (Relative) 

SYSERR-15 End of cylinder 

SYSERR-31 ADD rejected (Indexed) 
SYSERR-16 Command rejection Reserved (Relative) 

Additional information regarding error conditions can be found in the OS/3 data management user guide, UP-806'e. 
(current version). 

11.4.4.5. COBOL Disc Processing Techniques 

Table 11-7 contains a summary of COBOL disc processing techniques . 



... 

Processing Technique Required 
Addressing 

Key 
TechniqUe 

Clauses Organization Access 

SEQUENTIAL SEQUENTIAL NONE 
OR OR ALLOWED 

OMITTED OMITTED 

RELATIVE SEQUENTIAL RELATIVE ACTUAL 

CD OR RECORD OR 
OMITTED 0 RELATIVE 

RELATIVE RANDOM RELATIVE ACTUAL 
OR RECORD OR 

OMITTED 0 RELATIVE 

INDEXED SEQUENTIAL RECORD 

CD OR AND 
OMITTED [SYMBOLIC] 

® 

INDEXED RANDOM RECORD 
CD AND 

[SYMBOLIC) 

® 

INDEXED EXTENDED RECORD 

CD AND 
[SYMBOLIC] 

® 

American National Standard language element extension CD 

0 Requires preformatting of entire file prior to creatmn 

© 

® 
@ Default RECORD FORMAT is underlined . 

• 

Table 11-7. Summary of COBOL Disc Processing Techniques 

Record 
Format 

Open Allowable 1/0 

@ Verb Statements 

F INPUT READ AT END 

OUTPUT WRITE INVALID KEY 

1-0 READ AT END 

~ WRITE INVALID KEY 

INPUT READ AT END, SEEK 
F 

OUTPUT WRITE INVALID KEY, 
SEEK 

1-0 READ AT END, WRITE© 
INVALID KEY, SEEK@ 

INPUT READ INVALID KEY, 
SEEK 

F 
OUTPUT WRITE INVALID KEY, 

SEEK 

1-0 READ INVALID KEY, 
WRITE© INVALID KEY, 
SEEK@ 

F INPUT READ [AT END]. 
- SEEK 
v 

OUTPUT WRITE [INVALID KEY] 

1-0 READ [AT END]. 
SEEK 
WRITE [INVALID KEY), 
REWRITE [INVALID KEY) 

F INPUT READ [INVALID KEY) 
-
v 1-0 READ [INVALID KEY]. 

WRITE [INVALID KEYi. 
REWRITE [INVALID KEY]. 
INSERT [INVALID KEY) 

[AT END JQ) F INPUT - READ INVALID KEY ' 

v SEEK 

OUTPUT WRITE [INVALID KEY) 

1-0 [AT END JD 
READ INVALID KEY ' 

SEEK, 
WRITE [INVALID KEY]. 
REWRITE [INVALID KEY), 
INSERT [INVALID KEY) 

REWRITE accepted as synonym for WRITE. 

SEEK not permitted between READ and WRITE 

• 
® 
Q) 

Required Optional Restricted 
Clauses Clauses Clauses 

SELECT ASSIGN SELECT OPTIONAL, APPLY RESTRICTED SEARCH, 
LABEL RECORDS MULTIPLE UNIT, APPLY Fl LE-PR EPA RATION, 

RESERVE, SAME !RECORD) APPLY CYLINDER-OVERFLOW 
ARE {STANDARD } AREA, BLOCK CONTAINS, 

DATA-NAME 
RECORD CONTAINS, DATA 
RECORDS, APPLY VERIFY, 

CLOSE USE LABEL, USE ERROR, 
CLOSE UNIT, READ INTO, 
WRITE FROM 

SAME (RECORD! AREA, RESERVE INTEGER, OPTIONAL, 
RECORD CONTAINS, BLOCK BLOCK CONTAINS > 1 RECORD, 
CONTAINS 1 RECORD, DATA USE ENDING LABEL 
RECORD, APPLY VERIFY, 
APPLY FILE-PREPARATION 
RESERVE NO ALTERNATE 
AREA. READ INTO, WRITE 
FROM, INSERT FROM 

SELECT/ASSIGN FOR MULTIPLE UNIT, FOR MULTIPLE REEL, 
LABEL RECORDS ARE RESERVE NO ALTERNATE MULTIPLE FILE TAPE, 
STANDARD AREA, RESERVE APPLY RESTRICTED SEARCH, 

INTEGER ALTERNATE APPLY BLOCK COUNT ON, 
CLOSE AREA, FILE LIMIT, APPLY FILE PREPARATION ON, 

PROCESSING MODE IS APPLY ASCII, 
SEQUENTIAL, RERUN ON, LABEL RECORDS ARE OMITTED 
SAME IRECDRDI AREA. OR DATA NAME, 
APPLY VERIFY, APPLY USE LABELS, 
MASTER INDEX ON, APPLY OPTIONAL 
CYLINDER OVERFLOW ON, 
APPLY CYLINDER INDEX 
AREA OF, APPLY EXTEND-
ED-INSERTION AREA ON, 
BLOCK CONTAINS, RECORD 
CONTAINS, VALUE OF, 
DATA RECORDS ARE, USE 
ERROR INTO, FROM 

ACTUAL KEY may be used m place of SYMBOLIC KEY for UNIVAC 9300 System compatibility. 

If AT END is specified, READ is treated as a sequential read. 

• 

c 
"'ti 
00 
0 
01 
c.o 
::0 

~ 
w 

Ul 
"'ti mm x ::0 

;ri ::0 
z -< 
oc 
mz o-
~ 8 (") 

CJ 0 
0 Ul 
r "-

w 

I 
N 
CXl 



• 

• 

• 

UP-8059 Rev. 3 

12.1. GENERAL 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

12-1 

12. Sorting 

In the SPERRY UNIVAC Operating System/3 (OS/3) the COBOL sort feature offers the user an efficient means of 
sorting records against a set of specified keys in addition to a variety of processing considerations, such as adding or 
deleting records, or modification of records within the file. 

12.2. ORGANIZATION OF A SORT PROGRAM 

A sort file, like any other file, is a set of records. It is described in the data division by a special type of file 
description called a sort file description (SD) (5.2.2). The sort file may be thought of as an internally contained 
intermediate representation of the file, following the initial input of unsorted records and preceding the final output 
of sorted records. 

A COBOL program may contain any number of sort operations. In general, a sort operation proceeds as follows: 

1. Control passes to a SORT statement .. The SORT statement specifies the sort file to be created and the data 
keys that guide the sort operation. It either identifies the input procedure and output procedure or names the 
source of the unsorted input records and that file which is to receive the sorted output records. 

2. The input procedure, if named in the SORT statement, is executed. This input procedure must contain at least 
one RELEASE statement. If no input procedure is specified, the input file is named in the USING option of 
the SORT statement. The effect of either option is to make input records available to the sort operation. 

3. The records made available to the sort operation are sorted on a set of specified keys as shown in the KEY 
clause. 

4. The SORT statement passes control to the output procedure, if one is named. The output procedure must 
contain at least one RETURN statement, the effect of which is to return the sorted record from the sort file to 
the COBOL program. If no output procedure is used, the GIVING option must specify the output file. 

5. The operation of the SORT statement is terminated and control passes to the next statement in sequence. 

When the input or output procedure is in control, all transfers of control must refer to procedures contained within 
that input or output procedure. Conversely, control cannot be transferred into an input or output procedure from 
points in the procedure division outside the physical limits of the input or output procedure. Neither an input nor an 
output procedure may contain a SORT statement . 

For a detailed discussion of COBOL sorting, consult the fundamentals of COBOL sorting manual, UP-7503.3 
(current version). 



UP-8059 Rev. 3 

12.3. SORT STATEMENT FORMATS 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

The following paragraphs summarize the entries used in OS/3 COBOL sorts. 

12.3.1 .. Sort File SELECT Entry 

Function: 

12-2 

The SELECT entry is used to name the sort file and to identify the hardware storage medium used during the 
sorting process. 

Format: 

SELECT file-name ASSIGN TO [external-name] [integer-1] implementor-name-1 [OR implementor-name-2] 

Rules: 

1. The SELECT entry is discussed in detail in 4.3.1. 

2. The external name is not required in the sort file SELECT entry, as fixed external names are used. 

3. Tape or disc subsystems are the only applicable devices for a sort file. Note that, regardless of which 
device is specified, the temporary storage medium used is determined at execution time using the 
external name (SM01, SM02, SM03, ... , SM06 for tape; DM01, ... ,DM08 for disc). 

4. The optional OR clause serves only as documentation since the actual temporary medium is determined 
at execution time through the job control stream. 

12.3.2. SAME AREA Clause 

Function: 

The SAME AREA clause of the 1-0-CONTROL paragraph is used to specify that two or more files are to use 
the same main storage area during processing. 

Format: 

{
RECORD} . SAME ~ AREA FOR file-name-1 [, file-name-2 J ... 

Rules: 

This clause, and the effect of the SORT option, are discussed in detail in 4.3.2, rule 3. 

12.3.3. Sort File Description 

Function: 

The sort file description (SD) defines the structure of the file to be sorted. 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

12-3 

• Format: 

• 

• 

SD file-name 
(;RECORD CONTAINS [integer-5 TO] integer-6 CHARACTERS] 

[ RECORDING MODE" IS u } J 
[ DATA{ ::~~:~~~RE} data-name-1 [, data-name-2] .. .J 

Rules: 

Paragraph 5.2.2 lists the rules applicable to this statement. 

12.3.4. RELEASE Statement 

Function: 

The RELEASE statement is used in the input procedure of a SORT statement to transfer records to the initial 

phase of a sort operation. 

Format: 

RELEASE record-name [FROM identifier) 

Rules: 

This statement is discussed in detail in 6.6.4.10. 

12.3.5. RETURN Statement 

Function: 

The RETURN statement is used in the output procedure of a SORT statement to obtain sorted records from 

the final phase of a sort operation. 

Format: 

RETURN file-name RECORD [INTO identifier); AT END imperative-statement 

Rules: 

This statement is discussed in detail in 6.6.4.11. 

12.3.6. SORT Statement 

Function: 

The SORT statement controls the creation of the sort file by specifying the means of input, the sorting keys, 

and the means of output. 

*Extension to American National Standard COBOL (1968). 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Format: 

. {ASCENDING } 
SORT flle-name-1 ON DESCENDING KEY { data-name-1} ... 

Rules: 

[ {
ASCENDING } { } J ; ON DESCENDING KEY data-name-2 . . . . .. 

{
INPUT PROCEDURE IS section-name-1 [!!::!!!.!! section-name-2] } 
USING file-name-2 

{
OUTPUT PROCEDURE IS section-name-3 [~ section-name-4] } 
GIVING file-name-3 

The rules governing this format are discussed in detail in 6.6.4.12. 

12.3.7. Use of the Sort Feature 

12-4 

The OS/3 Extended COBOL compiler generates linkage code to the OS/3 subroutine sort merge for all SORT 
operations. Tape-only, disc-only, or internal-only sorts are possible, depending on record volume and environment. 
These sorts are specified through job control device assignments and, optionally, through PARAM statements in the 
job control stream. (See the sort/merge user guide/programmer reference manual, UP-8074 (current version).) 

Other considerations are: 

• Record size 

The maximum COBOL record size of 4092 characters may be sorted. 

• Record format 

Record format may be fixed (F). ASCII (D). or variable (V). When variable-length records are to be sorted, the 
BIN size (subrecord size used for internal sort purposes) provided to OS/3 sort merge by the compiler will be 
the size of the smallest record described in the sort file description (SD). 

NOTE: 

If the USING/GIVING options of the SORT statement are used, the record format of the US/NG/GIVING 
files must agree with the SD record format. 

• Storage allocation 

The compiler ensures that the object program obtains the minimum storage required for sorting by including a 
RES linker control statement in the generated output module. Linking the compiler output then produces an 
object program which includes an area reserved to satisfy the minimum sort needs. This area is referenced 
within the object program module by an external reference (EXTRN) to label KE$ALP. 

NOTE: 

• 

• 

If the programmer inhibits the compiler generation of linker control statements (optional OUT=L (7.1.2)), he • 
must construct linker control specifications to satisfy this area requirement. 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

12-5 

• 

• 

• 

• 

The method employed by the compiler ensures that the sort area is the last storage associated with the object 
program. If the programmer allocates additional storage for program execution, all storage from KE$ALP to 
the end of the program storage is used by the sort/merge processor for internal processing. Additional storage 
can greatly increase the efficiency of the sort operation and should be allocated when possible. 

Device allocation 

If the storage allocated for sorting is not adequate to allow an internal sort, external devices must be allocated 
for intermediate storage. Magnetic tape or disc devices, but not both, may be assigned for this purpose through 
job control statements. 'Tapes are assigned using fixed sort file-names of SM01, SM02, ... , SM06. If tapes are 
assigned, a minimum of three is required, and a maximum of six may be used. Disc devices (maximum of 
eight). which must contain system scratch area, are assigned using fixed sort file-names of DM01, 
DM02, ... ,DM08. 

Job control stream parameters 

When the sort is executed by the object program, the job control stream is examined for the presence of SORT 
II PARAM statements. Use of SORT job stream parameters allows the programmer to override or add to the 
parameters specified in the object program. 

Multiple sorts 

The OS/3 extended COBOL compiler does not restrict the programmer from using two or more SORT 
statements which refer to the same SD (sort file description), or from using a number of SORT statements 
which refer to different sort file descriptions. However, only one SORT statement may be active at any one 
time; multicycle sorting is not supported. A SORT statement may not appear in an input or output procedure 
of another SORT statement. If an object program attempts to execute a sort during a previously initiated sort 
operation, a system console message is displayed, and processing is terminated. (For a listing of system console 
messages, see the error message programmer/operator reference manual, UP-8076 (current version).) 

Merging 

American National Standard COBOL (1968) does not support a merge facility; consequently such a feature is 
not supported in the UNIVAC OS/3 COBOL compilers. 

• Checkpoi nting 

Checkpoints will not be issued if a sort is active. (See 8.5.) 

t 



• 

• 

• 



• 
UP-8059 Rev. 3 

13.1. GENERAL 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

13-1 

13. ASCII Tape Processing 

When the user requests it, the SPERRY UNIVAC Operating System/3 (OS/3) COBOL compiler processes and 
produces ASCII tapes. Data management automatically translates the tapes to EBCDIC when reading and to ASCII 

when writing. 

13.2. DECLARATION OF ASCII FILES 

ASCII files must be declared to the compiler by the APPLY ASCII* ON file-name clause. A mix of ASCII and 
non-ASCII files is permitted in the COBOL program. 

• Format: 

• 

[ {
FOR BLOCK-LENGTH-CHECK }] 

APPLY ASCII WITH BUFFER-OFFSET 
OF integer CHARACTERS 

ON file-name [ , file-name] 

Rules: 

1. The APPLY ASCII clause identifies each tape file that contains or receives ASCII data (4.3.2). 

2. The integer CHARACTERS option specifies the number of additional characters that appear at the front 
of each data block in the file. Integer may have a value of 0 to 99. The specified offset applies only to 
files open for input. The offset area cannot be referenced by the program nor can it be created when the 
file is open for output. 

3. The BLOCK-LENGTH-CHECK option applies only to files with a RECORDING MODE IS D clause. 
When specified, input data blocks are assumed to possess a 4-character buffer offset, which contains the 
length of the block. Data management routines validate that each block read contains the number of 
characters specified in this field. When the file is being created, the block length is placed in the 
4-character buffer offset area . 

* Extension to American National Standard COBOL (1968). 



UP-8059 Rev. 3 

13.3. RECORDING MODE* CLAUSE 

Format: 

~ --D~Fu l RECORDING MODE IS l ) 
Rules: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

13-2 

1. The RECORDING MODE clause is expanded to include the specification of D-type records (5.2.1.4). 

2. A recording mode of D may be specified for ASCII tape tiles with variable-length records. 

3. Tape files declared as ASCII may also have a recording mode of V because, for ASCII files, D and V are 
synonymous. The D mode is provided for compatibility with other implementors. 

4. The RECORDING MODE IS D clause may be specified for ASCII tape tiles which contain 
variable-length records. An option within the APPLY ASCII ON file-name clause allows the specification 
of a buffer offset for any tape input tile or the activation of the block length check feature on tape files 
with RECORDING MODE D. 

NOTE: 

Figure 13-1 and Table 13-1 show the physical tape formats and characteristics. 
Table 13-2 lists the ASCII/EBCDIC conversions. 

* Extension to American National Standard COBOL (1968). 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

U FORMAT RECORDS 

F FORMAT RECORDS 

D FORMAT RECORDS 

s 

buffer offset 

DODO 

dddd 

UNBLOCKED 

BLOCKED 

UNBLOCKED 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

r---r----
1 I buffer 
I S I offset data data 
L ___ L ____ ...._ ____ ~ ___ _. 

r---r----
1 I 
I s I DODD dddd data· 

L ___ L __ _ 

13-3 

BLOCKED 

r--------

L~ __ L _0~0~1 ._ __ d_d_d_d_--'...___da_t_a __ ,___ __ dd_d_d _ __._ __ d_a_ta __ _, 

Optional 1-character block sequence indicator whose presence is specified by the 
APPLY BLOCK-COUNT clause. 

Optional field at the front of each input data block. Offset may be 

0 to 99 characters in length. This area cannot be referenced by 
program nor can it be created on output files; presence specified by 

the APPLY ASCII WITH BUFFER-OFFSET OF integer CHARACTERS clause. 

Optional block length fiE;ld in an implified buffer offset area of four characters. 
Block length is created and validated by data management programs. This option 

is specified by the APPLY ASCII BUFFER- OFFSET FOR BLOCK-LENGTH-CHECK 
clause. 

Record length. 

S, ODDO, dddd are all in ASCII decimal format. 

Figure 13-1. ASCII Physical Tape Formats 



UP-8059 Rev. 3 

Recording 
Mode Is 

D 
blocked or 
unblocked 

F 
blocked or 
unblocked 

u 

v 
blocked or 
unblocked 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 13-1. Characteristics of Tape Files Available to COBOL Users 

File Apply Apply 

Declared Label Records Buffer-Offset Block-

As Specifications Input Output Length-
Check 

EBCDIC 

ASCII STANDARD 0 Oto 99 0 Optional 
data-name 0 © 
OMITTED 

EBCDIC STANDARD CD 
data-name 0 

ASCII STANDARD ® Oto 99 
data-name 0 
OMITTED 

EBCDIC STANDARD CD 
data-name 0 

ASCII STANDARD 0 Oto 99 
data-name G) 
OMITTED 

EBCDIC STANDARD CD Automatic 

data-name @ 

ASCII 

13-4 

Apply 
Block-
Count 

Optional 

® 
Optional 

Optional 

® 
Optional 

Optional 

® 
Optional 

NOTES: 

CD 
0 
® 
© 

De facto standard as defined by the data management system user guide, UP-8068 (current version) 

American National Standard COBOL ( 1968) 

Implies presence of system standard labels 1 or 2 

BLOCK-LENGTH-CHECK specifies that a buffer offset of four characters contains the length of the block 
for verification by data management programs. 

Specifies a 1-character cyclic block sequence indicator (input files only) 

• 

• 

• 



UP-8059 Rev. 3 

• ASCII 

Hex Dec 

00 0 
01 1 
02 2 
03 3 
04 4 
05 5 
06 6 
07 7 
08 8 
09 9 
OA 10 
OB 11 
oc 12 
OD 13 
OE 14 
OF 15 
10 16 
11 17 
12 18 
13 19 
14 20 
15 21 
16 22 

• 17 23 
18 24 
19 25 
1A 26 
1B 27 
1C 28 
1D 29 
1E 30 
1F 31 
20 32 
21 33 
22 34 
23 35 
24 36 
25 37 
26 38 
27 39 
28 40 
29 41 
2A 42 
2B 43 
2C 44 
20 45 
2E 46 
2F 47 
30 48 

• 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 13-2. ASCII/EBCDIC Conversion (Part 1 of 3) 

EBCDIC 
Control Character Symbol 

Hex Dec 

NUL 00 0 
SOH 01 1 
STX 02 2 
ETX 03 3 
EOT 37 55 
ENO 20 45 
ACK 2E 46 
BEL 2F 47 
BS 16 22 
HT 05 05 
LF 25 37 
VT OB 11 
FF oc 12 
CR OD 13 
so OE 14 
SI OF 15 
OLE 10 16 
DC1 11 17 
DC2 12 18 
DC3 13 19 
DC4 3C 60 
NAK 30 61 
SYN 32 50 
ETB 26 38 
CAN 18 24 
EM 19 25 
SUB . 3F 63 
ESC 27 39 
FS 1C 28 
GS 1D 29 
RS 1E 30 
us 1F 31 
SP, SPACE 40 64 

! 4F 79 .. 7F 127 
# 7B 123 
$ 5B 91 
% 6C 108 
& 50 80 . 70 125 
( 40 77 
) 50 93 
* 5C 92 
+ 4E 78 . 6B 107 
- 60 96 

4B 75 
I 61 97 
0 FO 240 

13-5 

Signed 
Number 



UP-8059 Rev. 3 

ASCII 
Hex Dec 

31 49 
32 50 
33 51 
34 52 
35 53 
36 54 
37 55 
38 56 
39 57 
3A 5B 
3B 59 
3C 60 
30 61 
3E 62 
3F 63 
40 64 
41 65 
42 66 
43 67 
44 6B 
45 69 
46 70 
47 71 
4B 72 

49 73 
4A 74 
4B 75 
4C 76 
40 77 
4E 78 
4F 79 
50 BO 
51 B1 
52 B2 
53 B3 
54 B4 
55 B5 
56 B6 
57 B7 
58 88 
59 B9 
5A 90 
5B 91 
5C 92 
50 93 
5E 94 
5F 95 
60 96 
61 97 
62 9B 
63 99 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 13-2. ASCII/EBCDIC Conversion (Part 2 of 3) 

EBCDIC Control Character Symbol 
Hex Dec 

1 F1 241 
2 F2 242 
3 F3 243 
4 F4 244 
5 F5 245 
6 F6 246 
7 F7 247 
B FB 

I 
24B 

9 F9 I 249 
: 7A 122 
; 5E 94 
< 4C 76 
= 7E 126 
> 6E 110 
? 6F 

: 
111 

@ 7C 124 
A C1 193 
B C2 194 
c C3 195 
D C4 196 
E C5 197 
F C6 19B 
G C7 199 
H CB 200 
I C9 201 
J D1 209 
K 02 210 
L 03 211 
M D4 212 
N D5 213 
0 D6 214 
p D7 215 
Q DB 216 
R D9 217 
s E2 226 
T E3 227 
u E4 22B 
v E5 229 
w E6 230 
x E7 231 
y EB 232 
z E9 233 
[ 4A 74 
\ EO 224 
l 5A 90 
/\ 5F 95 

6D 109 
' 79 121 

a 81 129 
b B2 130 
c B3 131 

13-6 

• 
Signed 
Number 

+1 
+2 
+3 
+4 
+5 
+6 
+7 
+B 
+9 
-1 • -2 
-3 
-4 
-5 
-6 
-7 
-B 
-9 

• 



UP-8059 Rev. 3 

• 

• 

• 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Table 13-2. ASCII/EBCDIC Conversion (Part 3 of 3) 

ASCII EBCDIC 
Control Character Symbol 

Hex Dec Hex Dec 

64 100 d 84 132 

65 101 e 85 133 

66 102 f 86 134 

67 103 g 87 135 

68 104 h 88 136 

69 105 i 89 137 

6A 106 j 91 145 

68 107 k 92 146 

6C 108 I 93 147 

6D 109 m 94 148 

6E 110 n 95 149 

6F 111 0 96 150 

70 112 p 97 151 

71 113 q 98 152 

72 114 r 99 153 

73 115 s A2 162 

74 116 t A3 163 

75 117 u A4 164 

76 118 v A5 165 

77 119 w A6 166 

78 120 x A7 167 
79 121 y AB 168 
7A 122 z A9 169 
78 123 { co 192 
7C 124 I 6A 106 

I 

7D 125 } DO 208 
7E 126 ......, Al 161 
7F 127 DEL 07 07 
80 128 ISR 20* 32 
81 129 SS8 21* 33 
82 130 FS8 22* 34 

*For edit mask conversion only . 

13-7 

Signed 
Number 



• 

• 

• 



• 

PART 4. DEBUGGING AIDS 

• 

• 



• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

14-1 

14. Debugging Language 

14.1. GENERAL 

The source program debugging statements, READY TRACE, RESET TRACE, EXHIBIT, and *DEBUG in SPERRY 
UNIVAC Operating System/3 (OS/3) COBOL are extensions to American National Standard COBOL (1968). 

The output resulting from the execution of a debugging statement is displayed upon the printer ( LFD) name = 

SYSLST. The output may be transferred to tape or disc by including the appropriate job control statement options 
and format information. Printing is performed after a 1-line paper advance. ...-

The debugging statements may be included between procedure division statements, or the statements may be put in 
packet form at the end of the procedure division (14.5) . 

14.2. READY TRACE 

Function: 

The execution of a READY TRACE statement produces the output: 

TRACE ON AT line-number. 

When a section or a paragraph is entered for execution, the following output is produced: 

section-name (or unqualified-paragraph-name) line-number 

Format: 

READY TRACE. 

Rule: 

This statement may appear anywhere in the procedure division or in a compile time debugging packet . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

14-2 

14.3. RESET TRACE 

Function: 

The execution of the RESET TRACE statement terminates the functions initiated by READY TRACE and 
produces the following output: 

TRACE OFF AT line-number 

Format: 

RESET TRACE. 

Rule: 

This statement may appear anywhere in the procedure division or in a debugging packet. 

14.4. EXHIBIT 

Function: 

The execution of the EXHIBIT statement results in a formatted display of identifiers or nonnumeric literals 
listed in the statement. 

Format: 

EXHIBIT 
{

CHANGED } 
CHANGED NAMED 
NAMED 

{
identifier-1 } [ { identifier-n } J 
nonnumeric-literal-1 ' nonnumeric-literal-n · · · · 

Rules: 

1. An identifier may not be an index-data-item. 

2. An identifier length may not exceed 256 bytes. 

3. Nonnumeric literals may not exceed 132 characters in length. 

4. Displayed operands are continued as described by the DISPLAY statement. A maximum logical record 
size of 132 characters is assumed. 

5. An EXHIBIT statement may appear anywhere in the procedure division or in a debugging packet. 

6. The NAMED option produces a noncolumnar display of all operands specified in the EXHIBIT 
statement. The operands are displayed in source order and are formatted as follows: 

• Identifier 

identifying-namei}.equal-signi}.identifier-valuel}. 

• 

• 

The identifying-name includes qualifiers and subscripts. A maximum of 130 characters is 
displayed. • 

The identifiers-value may be a maximum of 256 characters. If the identifier is a signed numeric 
elementary item, a sign is also displayed following the value. 



• 

• 

• 

UP-8059 Rev. 3 

• Nonnumeric-literal 

non numeric-literal 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

14-3 

7. The CHANGED NAMED option produces a noncolumnar display of nonnumeric literals and, 
conditionally, the identifiers specified in the EXHIBIT statement. The format sequence of the displayed 
operands is as described in rule 6. If the value of the identifier has not changed since the previous 
execution of this EXHIBIT statement, the identifier is not displayed and space is not reserved for the 

value in the print record. 

All identifier values are considered changed on the initial execution of the statement. If the EXHIBIT 
statement does not contain nonnumeric literals and the value of all identifiers is the same as when this 
EXHIBIT was previously executed, neither a display nor a form advance occurs. 

8. The CHANGED option produces a columnar display of all nonnumeric literals and the changed values of 

all identifiers. 

If the value of the identifier has not changed since the previous execution of this EXHIBIT statement, 
the positions reserved for the identifier value are displayed containing spaces. All identifier values are 
considered changed on the initial execution of the EXHIBIT statement. 

When the statement contains only identifiers and none of the values has changed, one line of space is 
displayed. The operands are displayed in the order in which they appear in the statement and in the 
following format: 

• Identifier 

identifier-value~ 

The identifier-value may be a maximum of 256 characters. If the identifier is a signed numeric 
elementary item, its sign is displayed following the value. 

• Nonnumeric literals 

nonnumeric-literal~ 

9. If two distinct EXHIBIT CHANGED NAMED or two EXHIBIT CHANGED statements appear in one 
program, each specifying the same identifiers, the changes in value of the identifiers are associated with 
each of the two separate statements. Depending on the path of program flow, the values of the identifier 
saved for comparison may differ for each of the two statements. 

10. Variable-length identifiers are not permitted as operands with the CHANGED or CHANGED NAMED 
options. 

14.5. DEBUGGING PACKET 

A packet contains debugging statements referring to a paragraph name or a section name in the procedure division. 
The debug packets are grouped together and placed immediately following the source program. The packet 
statements are compiled with the source program and are executed at object time; the packets produce the same 
result as placing the debug statements directly in the source program following a section name or a paragraph name . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Each debug packet is preceded by a control card with the following format: 

8 

*DEBUG location 

14-4 

Location refers to a section or paragraph name which starts anywhere within margin A; a period is not permitted 
immediately following location. The name, which may be qualified, indicates the starting point in the program 
where execution of the packet is to begin. Location cannot be a paragraph name within any debug packet and the 
same location must not be used in more than one debug control card. 

A debug packet may consist of procedural statements such as GO TO, PERFORM, or ALTER, which may refer to a 
procedure name in any debug packet or in the main body of the procedure division. 

When the source COBOL program is on a library file, the library module containing the source program may also 
contain *DEBUG control cards. Regardless of whether the library module contains any *DEBUG cards, when the 
compiler reaches the end of the library module, it will determine if any additional *DEBUG cards are present in the 
job control stream. If *DEBUG cards are in the job control stream, they are processed as if they were contained at 
the end of the library module. If no *DEBUG cards are present in the job control stream, the process of reading 
COBOL input to the compiler is terminated. 

Example: 

II EXEC COBOL.library-name 
II PARAM IN= PROGNAMEILIBIN 
II PA RAM LST = (O,C,S) 
1$ 
*DEBUG---------

*DEBUG---------

/* 

• 

• 

• 



• 

PART 5. APPENDIXES 

• 

• 



• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

A-1 

CONSOLE 
HEXA- 80-COLUMN KEYBOARD DECIMAL 

DECIMAL EBCDIC CA.RD CODE CODE 
(EBCDIC) 

0 00 NUL 12-0-9-8-1 
1 01 12-9-1 
2 02 12-9-2 
3 03 12-9-3 
4 04 PF 12-9-4 
s OS HT 12-9-S 
6 06 LC 12-9-6 
7 07 OEL 12-9-7 
8 08 12-9-8 
9 09 12-9-8-1 
10 OA 12-9-8-2 
11 OB 12-9-8-3 
12 oc 12-9-8-4 
13 OD 12-9-8-S 
14 OE 12-9-8-6 
lS OF 12-9-8-7 

16 10 12-11-9-8-1 
17 11 11-9-1 
18 12 11-9-2 
19 13 11-9-3 
20 14 RES 11-9-4 
21 lS NL 11-9-S CARR. RET(CR) 

22 16 BS 11-9-6 
23 17 IL 11-9-7 
24 18 11-9-8 
2S 19 11-9-8-1 
26 IA 11-9-8-2 
27 lB 11-9-8-3 
28 IC 11-9-8-4 
29 ID 11-9-8-S 
30 IE 11-9-8-6 
31 IF 11-9-8-7 
32 20 OS 11-0-9-8-1 
33 21 sos 0-9-1 
34 22 FS 0-9-2 

3S 23 0-9-3 
36 24 BYP 0-9-4 
37 2S LF 0-9-S LINE FEED( LF) 

38 26 EOB 0-9-6 
39 27 PRE 0-9-7 
40 28 0-9-8 
41 29 0-9-8-1 
42 2A SM 0-9-8-2 
43 2B 0-9-8-3 

44 2C 0-9-8-4 
4S 20 0-9-8-S 
46 2E 0-9-8-6 

47 2F 0-9-8-7 
48 30 12-11-0-9-8-1 
49 31 9-1 

so 32 9-2 

SI 33 9-3 

S2 34 PN 9-4 
S3 3S RS 9-S 
S4 36 UC 9-6 

SS 37 EQT 9-7 $! (EOM) 

S6 38 9-8 

S7 39 9-8-1 

S8 3A 9-8-2 

S9 3El 9-8-3 
60 3C 9-8-4 
61 30 9-8-S 

62 3E 9-8-6 

63 3F 9-8-7 

64 40 SP NO PUNCHES SPACE (SP) 

6S 41 12-0-9-1 

66 42 12-0-9-2 

67 43 12-0-9-3 

68 44 12-0-9-4 

G) Punch patterns used to store the corresponding hexadecimal 
representation in the indicated bit positions of a byte. 

COMPRESSED 
CARD 

CODE CD 

NO PUNCH 
3112 
41 ll 
1112,11 

s: 0 
2, 12,0 
7111,0 
6: 12,11,0 
918 

9,318,12 
9,418,11 
9,1:8,12,11 
9,Sr 8,0 
9,218,12,0 
9,7/ 8.11,0 
9,'!.J.8,12,11,0 

n t 
B B 
I I 

T T 

p p 
0 0 
s s 
I I 

T T 
I I 
0 0 
N N 
s s 

0, 4, 
I, s, 
2, 6, 
3. 7 

Appendix A. Character Set 

CONSOLE 

DECIMAL 
HEXA-

EBCDIC@ 
80-COLUMN KEYBOARD 

DECIMAL CARD CODE CODE 
(EBCDIC) 

69 4S 12-0-9-S 
70 46 12-0-9-6 
71 47 12-0-9-7 
72 48 12-0-9-8 
73 49 12-8-1 [ 
74 4A [ 12-8-2 
7S 4B 12-8-3 

< 76 4C < 12-8-4 
77 40 ( 12-8-S ( 

78 4E + 12-8-6 + 
79 4F I 12-8-7 ! 
80 so & 12 & 
81 SI 12-11-9-1 
82 S2 12-11-9-2 
83 S3 12-11-9-3 
84 S4 12-11-9-4 
8S SS 12-11-9-S 
86 S6 12-11-9-6 
87 S7 12-11-9-7 
88 S8 12-11-9-8 
89 S9 11-8-1 I 
90 SA I 11-8-2 
91 SB $ 11-8-3 $ 

92 SC * 11-8-4 * 
93 SD I 11-8-S I 
94 SE 

;.., 
11-8-6 

9S SF 11-8-7 /\ 
96 60 - 11 -
97 61 I 0-1 I 
98 62 11-0-9-2 
99 63 11·0·9-3 

100 64 11·0-9-4 
IOI GS 11-0-9-S 
102 66 I 1·0-9-6 
103 67 I 1·0-9-7 
104 68 I 1·0-9-8 
lOS 69 0-8-1 
106 6A I (Vert. Bar) 12-11 I (Vert. Bar) 
107 6B .(Comma) 0-8·3 ,(Comma) 

108 6C % 0-8-4 % 

109 60 _(Underscore) 0-8-S -(Underscore) 
110 GE > 0-8-6 > 
111 6F ? 0-8-7 ? 
112 70 12·11-0 
113 71 12-11-0-9-1 
114 72 12-11-0-9-2 
11S 73 12-11-0-9-3 
116 74 12·11-0-9-4 
117 7S 12· 11-0-9-S 
118 76 12-11-0-9-6 
119 77 12·11-0-9-7 
120 78 12-11-0-9-8 

121 79 8-1 
122 7A : 8-2 : 
123 7B # 8-3 # 
124 7C @ 8-4 @ 

12S 70 '(PrimeorApos) 8-S •(Prime or Apes. 
126 7E = 8-6 = 
127 7F ••(Quotes) 8-7 "(Quotes) 
128 80 12-0-8-1 
129 81 a 12-0-1 

@ Lowercase letters are an industry standard and are not printable on the 
SPERRY UNIVAC Series 90 Printers without special print options. 

NOTE: 

Some graphic, card code, and hexadecimal assignments may differ depending 
upon the device, application, or installation policy. 



UP-8059 Rev. 3 

EBCDIC@ DECIMAL HEXA-
DECIMAL 

130 82 b 
131 83 c 
132 84 d 
133 85 e 
134 86 f 
135 87 g 
136 88 h 
137 89 I 

138 8A 
139 8B 
140 BC 
141 80 
142 8E 
143 8F 
144 90 
145 91 J 
146 92 k 
147 93 I 

148 94 m 
149 95 n 
150 96 0 

151 97 p 
152 98 q 
IS3 99 r 
IS4 9A 
!SS 9B 
IS6 9C 
!S7 90 
!S8 9E 
IS9 9F 
160 AO 
161 Al 
162 A2 s 
163 A3 t 
164 A4 u 
16S AS r 
166 A6 w 
167 A7 x 
168 A8 y 
169 A9 z 
170 AA 
171 AB 
172 AC 
173 AD 
174 AE 

175 AF 
176 BO 
177 Bl 
178 B2 
179 B3 
180 B4 
181 BS 
182 B6 
183 87 
184 B8 
18S B9 
186 BA 
187 BB 
188 BC 
189 BO 
190 BE 
191 BF 

80-COLUMN 
CARD CODE 

12-0-2 
12-0-3 
12-0-4 
12-0-5 
12-0-6 
12-0-7 
12-0-8 
12-0-9 
12-0-8-2 
12-0-8-3 
12-0-8-4 
12-0-8-5 
12-0-8-6 
12-0-8-7 
12-11-8-1 
12-11-1 
12-11-2 
12-11-3 
12-11-4 
12-11-5 
12-11-6 
12-11-7 
12-11-8 
12-11-9 
12-11-8-2 
12-11-8-3 
12-11-8-4 
12-11-8-S 
12-11-8-6 
12-11-8-7 
11-0-8-1 
11-0-1 
11-0-2 
11-0-3 
11-0-4 
11-0-S 
11-0-6 
11-0-7 
11-0-8 
11-0-9 
11-0-8-2 
11-0-8-3 
11-0-8-4 
11-0-8-S 
11-0-8-6 

11-0-8-7 
12-11-0-8-1 
12-11-0-1 
12-11-0-2 
12-11-0-3 
12-11-0·4 
12-11-0·S 
12-11-0-6 
12-11-0-7 
12-11·0-8 
12-11·0·9 
12-11-0·8-2 
12·11-0-8·3 
12-11-0-8-4 
12· l J.0-8-S 
12-11 ·0·8-6 
12·11·0·8·7 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

CONSOLE 
KEYBOARD DECIMAL 

SET 
(EBCDIC) 

192 
193 
194 
19S 
196 
197 
198 
199 
200 
201 
202 
203 
204 
20S 
206 
207 
208 
209 
210 
211 
212 
213 
214 
21S 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
23S 
236 
237 
238 

239 
240 
241 
242 
243 
244 
24S 
246 
247 
248 
249 
250 
2Sl 
252 
2S3 
2S4 
2S5 

0 Lowercase letters are an industry standard and are not printable on the 
SPERRY UNIVAC Series 90 Printers without special print options. 

A-2 

CONSOLE 
HEXA-

EBCDIC 
80-COLUMN KEYBOARD 

DECIMAL CARD CODE SET • (EBCDIC) 

co PZ 12-0 
Cl A 12-1 A 
C2 B 12-2 B 
C3 c 12·3 c 
C4 D 12-4 D 
cs E 12-5 E 
C6 F 12-6 F 
C7 G 12·7 G 
ca H 12-8 H 
C9 I 12-9 I 
CA 12-0-9-8·2 
CB 12·0·9-8-3 
cc 12-0-9-8-4 
CD 12·0-9-8-S 
CE 12·0-9·8-6 
CF 12-0-9·8-7 
DO MZ 11-0 
DI J IJ.l J 
02 K 11·2 K 
03 L 11-3 L 
04 M 11-4 M 
OS N ll·S N 
06 0 IJ.6 0 
07 p 11-7 p 
08 Q 11-8 Q 
09 R 11-9 R 
DA 12-11-9-8·2 
DB 12-11-9-8·3 
DC 12·11-9-8·4 
DD 12-11-9-8-5 
DE 12·11·9-8-6 
OF 12-11-9·8-7 
EO 0-8-2 
El 11·0-9-1 
E2 s 0-2 s 
E3 T 0-3 T 
E4 u 0·4 u 
E5 v 0-S v 
E6 w 0·6 w 
E7 x 0-7 x 
E8 y 0-8 y 

E9 z 0·9 z 
EA 11-0-9-8·2 
EB 11-0-9·8-3 • EC 11·0-9-8·4 
ED 11-0-9-8·5 
EE 11-0-9-8·6 

EF l 1·0-9·8·7 
FO 0 0 0 
Fl I I I 
F2 2 2 2 
F3 3 3 3 
F4 4 4 4 
FS s s 5 
F6 6 6 6 
F7 7 7 7 
F8 8 8 8 
F9 9 9 9 
FA 12·11·0·9·8-2 
FB 12-11·0-9-8·3 
FC 12-11-0·9·8·4 
FD 12-11-0-9·8-S 
FE 12-11·0·9-8·6 
FF 12·11·0·9·8·7 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

B-1 

Appendix 8. Reserved Words 

Reserved words are part of the COBOL language structure and cannot be used for data or procedure names. 

ACCEPT COMP-1* END INDICES* 

ACCESS COMP-2* ENDING INITIATE 

ACTUAL COMP-3* ENTER INPUT 

ADD COMP-4* ENTRY* INPUT-OUTPUT 

ADVANCING COMPUTATIONAL ENVIRONMENT INSERT* 

AFTER COMPUTATIONAL-1 * EQUAL INSTALLATION 

ALL COMPUTATIONAL-2* EQUALS* INTO 

ALPHABETIC COMPUTATIONAL-3* ERROR INVALID 

ALTER COMPUTATIONAL-4* EVERY IS 

ALTERNATE COMPUTE EXAMINE JUST 

AND CONFIGURATION EXCEEDS* JUSTIFIED 

APPLY* CONTAINS EXHIBIT* KEY 

ARE COPY EXIT LABEL 

AREA CORR EXTENDED LEADING 

AREAS CORRESPONDING EXTENDED-INSERTION* LEFT 

ASCENDING CURRENCY FD LESS 

ASCII* CYLINDER-INDEX* FILE LINE 

ASSIGN CYLINDER-OVERFLOW* Fl LE-CONTROL LINES 

AT DATA FILE-LIMIT LINKAGE* 

AUTHOR DATE-COMPILED Fl LE-LIMITS LOCK 

BEFORE DATE-WRITTEN Fl LE-PREPARATION* LOW-VALUE 

BEGINNING DECIMAL-POINT FILLER LOW-VALUES 

BLANK DECLARATIVES FIRST MAP* 

BLOCK DEPENDING FOR MASTER-INDEX* 

BLOCK-COUNT* DESCENDING FORM-OVERFLOW* MEMORY 

BLOCK-LENGTH-CHECK* DIRECT* FROM MODE 

BUFFER-OFFSET* DISC* GENERATE MODULES 

BY DISC-8411* GIVING MONITOR* 

CALL* DISC-8414* GO MORE-LABELS* 

CARD-PUNCH* DISC-8415* GREATER MOVE 

CARD-READER* DISC-8416* HIGH-VALUE MULTIPLE 

CARD-READER-51 * DISC-8418* HIGH-VALUES MULTIPLY 

CARD-READER-66* DISC-8430* 1-0 NAMED* 

CHARACTER* DISC-8433* 1-0-CONTROL NEGATIVE 

CHARACTERS DISPLAY IDENTIFICATION 
NEXT 

CHANGED* DIVIDE IF 
NO 

CLOSE DIVISION IN 
NOT 

COBOL DOWN INDEX 
NOTE 

COMMA EBCDIC* INDEXED 
NUMERIC 

COMP ELSE OBJECT-COMPUTER 
OCCURS 

*Extensions to American National Standard COBOL (1968). 



~ 

~ 

UP-8059 Rev. 3 

OF 
OFF 
OMITTED 
ON 
OPEN 
OPTIONAL 
OR 
ORGANIZATION* 
OTHERWISE* 

OUK-90-250* 
OUK-90-300* 
OUK-90-400* 
OUK-90-600* 
OUK-90-700* 

OUTPUT 
PERCENT* 
PERFORM 
PIC 
PICTURE 
POSITION 
POSITIVE 
PRINTER* 
PROCEDURE 
PROCEED 
PROCESSING 
PROGRAM* 
PROGRAM-ID 
QUOTE 
QUOTES 
RANDOM 
READ 
READY* 
RECORD 
RECORDING* 
RECORDS 
REDEFINES 
REEL 
RELATIVE* 
RELEASE 
REMAINDER 
REMARKS 
RENAMES 
REPLACING 
RERUN 
RESERVE 
RESET 
RESTRICTED* 
RETURN 
REVERSED 
REWIND 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

REWRITE* SYSCOM* 
RIGHT SYSCONSOLE* 
ROUNDED SYSDATE* 
RUN SYSERR* 
SAME SYSERR-0* 
SD SYSERR-1* 
SEARCH SYSERR-2* 
SECTION SYSERR-3* 
SECURITY SYSERR-4* 
SEEK SYSERR-5* 
SEGMENT-LIMIT SYSERR-5* 
SELECT SYSERR-6* 
SENTENCE SYSERR-7* 
SEPARATE* SYSERR-8* 
SEQUENTIAL SYSERR-9* 
SET SYSERR-10* 
SIGN* SYSERR-11* 
SIZE SYSERR-12* 
SORT SYSERR-13* 
SOURCE-COMPUTER SYSERR-14* 
SPACE SYSERR-15* 
SPACES SYSERR-16* 
SPECIAL-NAMES SYSERR-17* 
STANDARD SYSERR-18* 
STATUS SYSERR-19* 
STOP SYSERR-20* 
SUBTRACT SYSERR-21* 
SYMBOLIC* SYSERR-22* 
SYNC SYSERR-23* 
SYNCHRONIZED SYSERR-24* 
SYSCHAN-1 * SYSERR-25* 
SYSCHAN-2* SYSERR-26* 
SYSCHAN-3* SYSERR-27* 
SYSCHAN-4* SYSERR-28* 
SYSCHAN-5* SYSERR-29* 
SYSCHAN-6* SYSERR-30* 
SYSCHAN-7* SYSERR-31* 
SYSCHAN-8* SYSIN* 
SYSCHAN-9* SYSIN-96* 
SYSCHAN-10* SYSIN-128* 
SYSCHAN-11 * SYS LOG* 
SYSCHAN-12* SYSLST* 
SYSCHAN-13* SYSSWCH* 
SYSCHAN-14* SYSSWCH-0* 
SYSCHAN-15* SYSSWCH-1* 

SYSSWCH-2* 
SYSSWCH-3* 
SYSSWCH-4* 

*Extension to American National Standard COBOL (1968). 

B-2 

SYSSWCH-5* • SYSSWCH-6* 
SYSSWCH-7* 
SYSTIME * 

TALLY 
TALLYING 
TAPE 
TAPE-6 * 
TAPES* 
TERMINATE 
THAN 
THEN* 
THROUGH 
THRU 
TIME* 
TIMES 
TO 
TRACE* 
TRACKS* 
TRAILING* 
TRANSFORM* 
UNEQUAL* 
UNIT 
UNIVAC-9000* 
UNIVAC-9025* 
UNIVAC-9030* • UNIVAC-9040* 
UNIVAC-9060* 
UNIVAC-9070* 
UNIVAC-920011* 
UNIVAC-9300* 
UNIVAC-930011 * 
UNIVAC-9400* 
UNIVAC-9480* 

UNIVAC-9700* 
UNTIL 
UP 
UPON 
USAGE 
USE 
USING 
VALUE 
VALUES 
VARYING 
VERIFY* 
WHEN 
WITH 
WORDS 
WORKING-STORAGE 
WRITE 
ZERO 
ZEROES • ZEROS 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

C-1 

Appendix C. Intermediate Results in 
Arithmetic Operations 

C.1. GENERAL 

For certain arithmetic statements in the SPERRY UNIVAC Operating System/3 (OS/3) COBOL, the COBOL 
compiler generates code that uses internal work areas for storage of intermediate results. Intermediate results may be 

required in the following types of statements: 

• Add, where more than one operand precedes TO or GIVING. 

• SUBTRACT, where more than one operand precedes FROM or GIVING. 

• Any statement containing an arithmetic expression which specifies more than one operation . 

Arithmetic expressions are simplified by the compiler to become a series of simple arithmetic operations that store 
partial results in intermediate result areas, which may then be used as operands in succeeding operations. 

The compiler provides a description for an intermediate result which is appropriate for use in the operation or series 
of operations for which it is required. The description can be expressed as a numeric PICTURE; however, an 
intermediate result used in the evaluation of an expression may contain as many as 30 digits. 

If at least one floating-point (COMP-1 or COMP-2) or floating-point display or floating-point literal operand is used, 
the range of intermediate results is ±5.4*10-19 to ±7.2*1075 ; the remainder of this appendix is applicable only to 
nonfloati ng-poi nt operands. 

C.2. ADD AND SUBTRACT STATEMENTS 

The description of the intermediate result area is determined by forming the composite of operands (6.6.1.1) and 
appending one additional digit in the most significant position to contain overflow when 10 or fewer operands 
immediately follow the verb, or two digits for more than 10 operands . 



UP-8059 Rev. 3 

C.3. EXPRESSIONS 

The following abbreviations are used: 

L Length in mappable digits. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

C-2 

pl Point location which is the ·number of places that the decimal point is displaced from the position 
it would occupy if the mappable digits were considered an integer. For example, for the PICTURE 
99V9, pl = 1, because the decimal point has been displaced one position; for the PICTURE PP999, 
pl = 5. A negative value in pl indicates trailing P's in the associated PICTURE, e.g., for the 
PICTURE 99PP, pl= -2. 

OP1 First operand 

OP2 Second operand 

ir Intermediate result 

comp Composite of operands 

mag Magnitude= L - pl 

The maximum value that a variable can assume is 10mag_10-P1-1 

When expressions are evaluated, a composite of all operands except those immediately to the right of the 
exponentiation operator is formed. The receiving data item, when present, is considered in determining the 
composite. The following rules apply: 

Operator Description 

+,- plir = max (plOP1. plop2l 

Lir =max (magOP1' magOP2) + plir + 1 

* plir = plOP1 + pl0P2 

Lir = magOP1 + magOP2 + P1;r 

I plir = plcomp 

l;r = P1oP2 - P1oP1 + LOP1 + plir 

.. plir = 12 

L;r = 30 

NOTE: 

""'1en an expression appears in a COMPUTE statement and the ROUNDED option is specified, one digit is added in 
the least significant position of the receiver description before the composite is formed. 

When application of the preceding rules produces an intermediate result length that is greater than 30, the 
description must be readjusted. In these cases, L

1
r = 30. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

D-1 

Appendix D. Compiler Diagnostics 

D.1. GENERAL 

The SPERRY UNIVAC Operating System/3 (OS/3) extended COBOL compiler generates system console and 
diagnostic messages during compilation. System console messages relate to the compilation environment and are 
displayed when the error condition is encountered. The job is terminated and the error condition must be corrected 
before the job can be rerun. The diagnostic messages flag errors encountered in the source program during 
compilation. A list of all diagnostic messages generated is output after all other printer options are satisfied. 

D.2. DIAGNOSTIC MESSAGES 

The diagnostic I isting is produced as its last printed output. Each diagnostic message contains the compiler-generated 
line number on which the error occurred, the diagnostic severity code, the diagnostic number, and the diagnostic 
message text. 

The diagnostic severity code definitions are: 

P (precautionary) 
No source language error was detected, but an unusual or potentially undesirable condition was noted by 
the compiler. 

C (changed) 
A character, word, clause, entry, or statement in the source program is omitted or used incorrectly. To 
compensate for the error, the item has been changed by the compiler to avoid its deletion and reduce the 
probability of error propagation. Execution of the object time program may give unpredictable results. 

U (uncorrectable) 

A source language error was detected which caused the compiler to delete a character, word, clause, 
entry. or statement from the source program. The compilation continues, but other errors may result 
because of the deleted item. Execution of the object program, in general, gives unpredictable results. 

S (compiler restriction exceeded) 

The compilation continues but, to generate code for the excessive items, a recompilation is necessary 
after source program modification or with more storage assigned to the compiler. 

Table D-1 explains the error messages and related recovery procedures. The messages are listed in ascending order 
based on the message number . 



Table D-1. Diagnostic Messages (Part 1 of 30) 

Message Severity Diagnostic Message 
Number Code 

Reason 

001 p ERROR IN SOURCE LINE SEQUENCE The characters in columns 
NUMBERING. 1 to 6 of the source line 

are alphanumerically less 

than columns 1 to 6 of the 

previous source line. 

002 c AREA-A NON-BLANK WITH HYPHEN A nonblank character was 

IN COLUMN 7. found in area A (columns 

8 to 11) when continuation 

was specified by a hyphen 

in column 7. 

003 c ERROR IN COLUMN 7 OF SOURCE An invalid character was 

LINE. found in column 7. 

004 c SPACE FOLLOWING LEFT One or more spaces were 

PARENTHESIS. detected following a left 

parenthesis. 

005 c NON-NUMERIC LITERAL CONTINUA· The continued portion of a 

TION DID NOT BEGIN WITH QUOTE nonnumeric literal did not 
OR APOSTROPHE. begin with a quote or 

apostrophe. 

006 c IMPROPER TERMINATION OF NON· The second of the two quotes 

NUMERIC LITERAL literal. or apostrophes that enclose 

a nonnumeric literal is not 

followed by a space or 

punctuation and a space. 

• • 

Explanation 

Rule 

The sequence number. 

columns 1 to 6 of the 

source line, is an 
optional entry used 

only by the programmer 

to es tab I ish a sequence 

among the various Ii nes 

of coding. 

When continuation is 
specified by hyphen in 

column 7, the contin· 
ued portion must begin 

in area B (columns 12 

to 72). 

The only acceptable 

characters for column 

7 are the space, hyphen 

(continuation), or 

asterisk (comment). 

In OS/3 COBOL, spaces 

must not separate left 

or right parentheses 

from that which they 

enclose. 

When continuation of a 

nonnumeric literal is 

specified by a hyphen 

in column 7, the con· 

tinued portion must 

begin with a quote or 

apostrophe in area B. 

The terminating quote 

or apostrophe enclosing 

a nonnumeric literal 

must be followed by a 

space or punctuation 

and a space . 

Recovery 

The source Ii ne is processed 
as though the error had not 

occurred. 

The first nonblank character 

after column 7 is accepted 

as the beginning of con· 

tinuation. 

A space is assumed to have 

been found in column 7. 

Processing continues as if the 

space had not occurred. 

Processing continues as if a 
quote or apostrophe occurred 

prior to the Ii rst nonblan k 

character. 

Processing continues as if a 

space had occurred. The first 

30 characters of the non numeric 

literal are noted in the 

diagnostic. 

• 

c 
-0 

cD 
0 
(11 

c.o 
::0 
Cl) 

:<: 
w 

(fl 
-0 mm x ::0 

-I ::0 

~ -< 
oc 
mz 
o< 
() ~ 
0 () 
al 0 
0 (fl 
r '-

w 

0 
I 

N 



• • 
Table D-1. Diagnostic Messages (Part 2 of 30) 

Message Severity Diagnostic Message 
Number Code 

Reason 

007 c EXCESSIVE CHARACTER STRING A character string which 
char-string. is greater than its maximum 

lega I size was detected. 

008 u INVALID CHARACTER DETECTED An invalid character was 

IN char-string. found in the character 
string displayed in the 

diagnostic. 

009 u ILLEGAL CHARACTER DETECTED An illegal character was 

IN char-string found in the character 
string displayed in the 

diagnostic. 

010 c NON-NUMERIC LITERAL OF Two quotes or apostrophes 

SIZE 0 ENCOUNTERED with no intervening 

characters were encountered. 

011 c HYPHEN EXPECTED IN COLUMN 7. A nonnumeric literal is 
being continued and a 

hyphen is missing from 
column 7. 

012 c HYPHEN IN COLUMN 7 AND There is no terminating 

QUOTE OR APOSTROPHE EXPECTED. quote or apostrophe on the 
previous source line and no 

hyphen in column 7 or quote 
or apostrophe on the current 
source line to indicate 
continuation. 

013 c SPACE PRECEDING RIGHT One or more spaces have been 

PARENTHESIS. detected preceding right 
parenthesis. 

Explanation 

Rule 

Maximum legal sizes are: 
132 characters for non-
numeric literals, 20 
characters for numeric 

literals (including sign 
and decimal point), 30 

characters for nonliterals. 

An invalid character is 

one which is in the COBOL 

character set but which is 
made invalid by the context 

in which it appears, e.g., 
P'CTURE. 

An illegal character is 

one that is not in the 

COBOL character set, 
e.g.,#. 

A nonnumeric literal 
must have at least one 

character between the 
enclosing quotes or 

apostrophes. 

A hyphen in column 7 and 

a quote or apostrophe in 

area B are needed to con-
tinue a nonnumeric literal. 

Continuation of a non-

numeric literal is specified 
by a hyphen in column 7 

and a quote or apostrophe 
in area B preceding the 
continued portion of the 

nonnumeric literal. 

In OS/3 COBOL, spaces 

must not separate left or 
right parentheses from 

that which they enclose. 

Recovery 

Processing continues after 
the excessive characters 
are discarded. The first 

30 characters of the string 
are noted in the diagnostic. 

The entire string is deleted. 

The entire string is deleted. 

A nonnumeric literal of one 

space character is assumed. 

Processing continues as if a 

hyphen were encountered. 

The nonnumeric literal is 

terminated on the previous 

source line at column 72. 

Processing continues as if 

the space had not occurred. 

•· 
c 
"'O 

OJ 
0 
0'1 
(!) 

:0 

~ 
w 

Ul 
"'O mm 

~ :0 
m :o 
z -< 
Cl c mz 
Cl < 
(") :t> 
on 
CJ 0 
0 Ul 
r '-

w 

Cl 
I w 



Table D-1. Diagnostic Messages (Part 3 of 30) 

Message Severity 
Explanation 

Diagnostic Message 
Number Code 

Reason Rule 

~ 014 u SYNTAX REQUIRES clause, The character-string listed See applicable language 

char-string INVALID. as invalid in the message formats in this manual. 
text has produced a syntax 
error. The required item 
is a source string that 
would have correctly 
completed the clause, 
entry, or statement in 

error. 

• ./ 

Recovery 

If the error appears within 
a clause, such as ACCESS or 
OCCURS, the clause is deleted. 

If the error appears within 
an entry, such as the assign 
device type or an invalid name 
following FD, the entire entry 
is discarded. 

If the error appears within a 
statement, the statement is 
ignored. 

When a syntax error occurs, 
source strings are ignored 
until one of the following 
listed recovery types is 
detected, whereupon processing 
resumes. Recovery is possible 
on the string listed as invalid 
in the diagnostic. 

IDENTIFICATION, PROGRAM-
ID, AUTHOR, INSTALLATION, 
DATE-WRITTEN, DATE-
COMP! LED, SECURITY, 
REMARKS, ENVIRONMENT 
CONFIGURATION, SOURCE-
COMPUTER, OBJECT-
COMPUTER, SPECIAL-NAMES, 
any SPECIAL-NAME definition, 
INPUT-OUTPUT, FILE-
CONTROL, SELECT, FOR, 
FILE-LIMIT. ACCESS, ACTUAL, 
SYMBOLIC, RELATIVE, 
ORGANIZATION, RESERVE, 
1-0-CONTROL, RERUN, SAME, 
APPLY, DATA, FILE, FD, SD, 
BLOCK, RECORD, LABEL, 
RECORDING, DATA, VALUE, 
OCCURS, PICTURE, USAGE 
SYNCHRONIZED, JUSTIFIED, 
BLANK, COMPUTATIONAL, 
COMP-1, COMP-2, COMP-3, 
COMP-4, DISPLAY, INDEX, 
SIZE, MAP, level-number 
WORKING-STORAGE, LINKAGE, 
PROCEDURE, Procedure-name 
in Area A, any verb . 

• 

c ,, 
00 
0 
(11 

<.O 
::IJ 
CD 
<: 
w 

en ,, 
mm x ::IJ 
-t ::IJ 

~ -< 
oc 
mz o-

); 8 (") 
OJ 0 o en r ....,_ 

w 

0 
.j,,. 

-, 



• • 
Table D-1. Diagnostic Messages (Part 4 of 30) 

Message Severity 

Number Code Diagnostic Message 
Reason 

015 s COMP! LER ERROR This diagnostic is issued 
only as the result of a 

compiler/system error. 

016 u Fl LE-NAME file-name NOT The file-name being refer-
PREVIOUSLY SELECTED. enced has not been defined 

in a SELECT entry. 

017 u EXTERNAL-NAME external-name The external-name being 
NOT PREVIOUSLY ASSIGNED. referenced was not assigned 

in a SELECI entry. 

018 u clause PREVIOUSLY SPECIFIED An entry, such as APPLY 
FOR filename. BLOCK-COUNT, was multiply 

specified for the listed 

file-name. 

019 u name PREVIOUSLY DEFINED AS The listed name appears 
EXTERNAL-NAME OR FILE-NAME. in more than one SELECT 

entry. 

020 u MISSING DATA DIVISION HEADER. The PROCEDURE DIVISION 

header has been en-
countered without prior 

detection of the DATA 

DIVISION header. 

021 u MISSING DATA AND PROCEDURE The end of the source 
DIVISION HEADER. program has been reached 

without a DATA DIVISION 

or PROCEDURE DIVISION 
header being encountered. 

Explanation 

Rule 

A I ile-name referenced 
in a RERUN, MULTIPLE, 

VERIFY, BLOCK-COUNT 
or SAME AREA entry 
must appear in a 
SELECT entry. 

The external-name speci-

lied in a RERUN entry 
must match the assigned 

external-name or, if 
external-name was not 

specified, the first eight 

characters of the 

SELECT file-name. 

An entry, such as APPLY 

BLOCK-COUNT, should be 

specified only once for 

a given file. 

File-names and external-
names specified in 
SELECT entries must be 
unique. 

Al I four division headers 

must appear in every source 

program and conform to 
the following order: 

IDENTIFICATION, ENVI-

RONMENT, DATA, 
PROCEDURE. 

All four division headers 
must appear in every 

source program and 
conform to the following 
order: IDENTIFICATION, 

ENVIRONMENT, DATA, 
PROCEDURE. 

• 
Recovery 

The occurrence of this 

diagnostic should be 

reported using the SUR 

procedure. 

The referenced file-name is 

deleted from the entry. 

The RERUN entry is deleted. 

The duplicate entry is deleted. 

, 

The entire SELECT entry is 

deleted. 

Processing continues with the 
PROCEDURE DIVISION header. 

If data division entries exist, 

they are ignored. 

If data division entries or 

procedure division statements 
exist, they are ignored. 

c 
\l 

00 
0 
C.11 
<D 
:0 
(1) 

~ 

w 

(/) 
\l mm x :0 

-I :0 
!;£ -< 
oc 
mz 
o;;;:: 
(') )> 
0 (') 
OJ 0 
0 (/) 
r--.... 

w 

Cl 
I 

C.11 



Table D-1. Diagnostic Messages (Part 5 of 30) 

Message Severity Diagnostic Message 
Number Code Reason 

022 c RESERVE INTEGER literal The number of alternate 

PROCESSED AS 1. areas specified in the 
RESERVE clause is not 
acceptable. 

023 u Fl LE-NAME file-name The listed file-name appears 

CONFLICTS WITH PREVIOUS in multiple SAME AREA 
SAME AREA CLAUSE. or SAME RECORD AREA 

clauses. 

024 u clause CLAUSE IS OUTSIDE A clause, such as SYM· 
SELECT ENTRY. BOLIC, is not associated 

with the previously com· 
pleted SELECT entry. 

025 u CURRENCY SIGN SYMBOL The currency sign specified 

character INVALID. is not contained within the 

valid currency sign character 

set. 

026 p EXTERNAL-NAME external-name The external-name contains 

TRUNCATED more than eight characters. 

027 c HEADER REQUIRED AT THIS POINT. The current source line 

must be preceded by the 
listed header. 

• • 

Explanation 

Rule 

The RESERVE clause 
must specify one alternate 
area, or none. 

A file-name cannot be 
specified in more than 

one SAME AREA or SAME 
RECORD AREA clause. 

Clauses associated with 
a SELECT entry must 
appear within the entry, 
i.e., prior to the period 
that terminates the entry. 

The currency sign symbol 
must be within the 
CO BO L character set 
but cannot be one of 
the following: The digits 
0 through 9 A B C D E P R 
S V X Z space • , + - . ; 
(I or". 

Only the first eight charac· 
ters of the external-name 
are meaningful. 

The Fl LE-CONTROL header 
must precede the first 
SELECT entry, the 
SPECIAL-NAMES header 
must precede the Ii rst 
special-name, and the 
1·0-CONTROL header must 
precede the first RERUN, 
SAME, APPLY, or 
MULTIPLE FILE entry. 

Recovery 

One alternate area is allocated 
for this file. 

The file-name in error 

is deleted from the SAME 
AR EA clause. 

The clause is deleted. 

The clause is deleted and the 
currency sign remains a $. 

The excess characters in the 
external-name are deleted. 

The header is assumed to have 
been encountered. 

• 

c 
"'ti 
Co 
0 
(.l'1 
co 
::0 
Cl> 
:< 
w 

en 
"'ti mm 

x ::0 
--i ::0 

~ -< 
oc 
mz 
o< 
() l> 
0 () 
CJ 0 
o en 
r '-

w 

0 
I 

()) 



• • 
Table D-1. Diagnostic Messages (Part 6 of 30) 

Message Severity 
Number Code Diagnostic Message 

Reason 

028 c CLAUSE CONFLICTS WITH ACCESS OPTIONAL and RESERVE 
METHOD SPECI Fl CATION. are applicable only to 

disc files with ACCESS 
SEQUENTIAL and 
ORGANIZATION 
SEQUENTIAL. 

029 u file-name PREVIOUSLY SPECI Fl ED The listed file-name appears 
AS RERUN CONTROLLER. in multiple RERUN entries 

as the RERUN controller. 

030 u INVALID SPECIFICATION OF The listed RERUN receiver 
RERUN RECEIVER external-name. is not a tape or disc. 

')31 s ADDITIONAL MEMORY REQUIRED FOR The compiler does not have 
SELECT PROCESSING. sufficient main storage 

to process all of the 
SELECT entries. 

032 u DUPLICATE CLAUSE OR HEADER. A clause such as ACTUAL 
or a header such as 
AUTHOR has been multiply 
specified. 

033 u HEADER OUT OF SEQUENCE. The header on the indicated 
line number is out of sequence. 

034 u CLAUSE APPLIES ONLY TO The clause or entry at the 
RANDOM ACCESS FILES. indicated line number applies 

only to random access files. 

Explanation 

Rule 

See Section 11. 

A given file may control 
no more than one RERUN 
receiver. 

RERUN receivers must be 
assigned to a tape or disc. 

Each SELECT entry requires 
26 bytes of main storage plus 
1 byte for each character in 
the file-name. To increase 
the number of SELECTS 
that can be processed, recom 
pile using smaller file-names 
or with more main storage 
assigned to the compiler. 

All clauses must be unique 
within their associated 
entries. Al I headers 
must be unique. 

The order of headers must 
be as deli ned. 

VERIFY, RANDOM, RE-
STRICTED, ORGANIZA-
TION, ACTUAL, SYMBOL-
IC, RELATIVE, or MUL-
TIPLE apply only to 
random access files. 

• 
Recovery 

The clause in error is deleted. 
Line number reflects last state-
ment in the SELECT clause. 

The RERUN entry is deleted. 

The RERUN entry is deleted. 

This SELECT entry and all others 
that follow are deleted. 

I 

The duplicate clause or header 
is deleted. 

The header is deleted. 

The clause or entry is deleted. 

c 
"'O 

00 
0 
en 
co 
:D 

~ 
w 

en 
"'O mm 

~ :D 
m :D z -< 
oc mz 
o:;:: 
(") }> 
0 (") 
OJ 0 o en 
r-...... 

w 

0 
.!.i 



Table 0-1. Diagnostic Messages (Part 7 of 30) 

Message Severity 
Number Code Diagnostic Message 

Reason 

035 u CLAUSE NOT APPLICABLE FOR The clause or entry at the 
file-name. indicated line number is 

not applicable for the 
listed file-name. 

036 c INVALID ACCESS-TYPE. An invalid combination of 

ACCESS, ORGANIZATION, 
and KEY clauses has been 
specified. 

037 c COPY STATEMENT REQUIRES Something other than a 
PERIOD. period was found following 

the library name of a COPY 
statement. 

038 c LABEL RECORDS CLAUSE OMITTED A LABEL RECORDS clause 
FROM file-name. has not been specified for 

the listed file-name. 

039 u MISSING PROCEDURE DIVISION The end of the source pro-
HEADER. gram has been reached 

without detecting the 
PROCEDURE DIVISION 
header. 

• • 

Explanation 

Rule 

. The following clauses 
or entries are not 

applicable for the 
indicated devices: 

BLOCK-COUNT, CARD-
READER, CARD-
PUNCH, PRINTER, 
RANDOM ACCESS 
DEVICE. 

MULTIPLE - CARD· 
READER, CARD· 
PUNCH, PRINTER. 

OPTIONAL - CARD-
PUNCH, PRINTER. 

The combinations of 
ACCESS, ORGANIZATION, 
and KEY clauses are 
invalid. See Section 11. 

A period must follow the 
library name of a 
COPY statement. 

The LABEL RECORDS 
clause is required for all 
files. 

All four division headers 
must appear in every 
program and conform 
to the following order: 
IDENTIFICATION, ENVIRON-
MENT,DATA,PROCEDURE. 

Recovery 

The clause or entry is deleted. 

The file is classified as ACCESS 
SEQUENTIAL, ORGANIZA· 
TION SEQUENTIAL. 

A period is assumed to have been 
present. 

LABEL RECORDS OMITTED 
is assumed. 

If procedure division statements 
exist, they are deleted. 

• 

c 
" cXi 
0 
(11 
c.o 
::0 
en 
<:: 
w 

Ul 

" mm x ::0 
-I ::0 

~ -< 
oc 
mz o-

); 8 (") 
IJJO 
0 Ul 
r '-.. 

w 

0 
I 

CXl 



• • Table D-1. Diagnostic Messages (Part 8 of 30) 

Message Severity 
Diagnostic Message Reason 

Number Code 

040 c literal NOT A VALID LEVEL NUMBER. The listed level number is 
erroneous because of its 
value or use. 

+ 041 u clause CLAUSE INVALID WITH The listed clause is not 
ASSOCIATED LEVEL NUMBER. allowed with the specified 

level number. 

t 

042 c REDEFINES MUST BE FIRST CLAUSE. The REDEFINES clause 
was not the first clause 
in the data description. 

*FD, RENAMES, and 66 available in extended rompiler. 

Explanation 
Rule 

1. Level number values 
are restricted to 01 
through 49, 66, 77, 
or 88. 

2. The level number of 
the first data descrip-
tion following an FD 
or SD must be 01. 

3. A level number 77 may 
not be used within the 
file section. 

1. A REDEFINES clause 
may not be used with 
a level number 66, 
88, or a 01 in the 
file section. 

2. A PICTURE clause 
may not be used with 
a level number 66 or 
88. 

3. The MAP clause is not 
allowed with level 
number 66 or 88. 

4. Multiple values can only 
appear with a level 
number 88. 

5. The OCCURS clause is 
not permitted with a 
level number 01, 66, 
or 88. 

6. A RENAMES clause can 
only be used with a level 
66. 

7. The value clause cannot 
be used with a level 
number 66. 

The REDEFINES clause 
must immediately follow 
the name of the data 
description. 

• 
Recovery 

1. If a level number other than 
01 through 49, 66, 77, or 88 
is encountered, the level 
number is changed to 49 if 
the WOR Kl NG-STORAGE or 
LINKAGE SECTION header 
has not been encountered; 
otherwise, the level number 
is changed to 01 . 

2. If the first data descriptor 
in a record is not 01, a 01 
fi lier is created by the com-
piler to precede the current 
data description. 

3. The level number is changed 
to 01. 

In rules 1 through 3, and 5 
through 7, the clause is 
deleted. For rule 4, the first 
value is accepted; all others 
are deleted. 

The REDEFINES clause is 
accepted. 

c 
"1l 

Co 
0 
C11 
CD 
::0 
CD 
:< 
w 

Ul 
"1l mm 

~ ::0 
m :o z -< 
oc mz 
o:;:: 
() )> 
0 () 
Ill 0 
0 Ul ., 

w 

0 
I 

CD 



Table D-1. Diagnostic Messages (Part 9 of 30) 

Severity Message 
Number Code 

Diagnostic Message 
Reason 

043 u clause NOT SUPPORTED An obsolete COBOL clause 
has been encountered. 

044 c LEVEL NUMBER number MUST BEGIN The level number 01 or 77 
IN AREA-A. did not begin in area A. 

045 c COPY STATEMENT REQUIRES LIBRARY A COPY verb was not 
NAME. character string INVALID. followed by a library name. 

046 c OCCURS CLAUSE INTEGER INVALID. An OCCURS clause integer 
is 0 or greater than 65,535. 

047 c LI BR ARY NAME character string The library name following 
EXCEEDS EIGHT CHARACTERS. the COPY verb was found 

to be longer than eight charac-
ters. 

048 u REMAINDER OF THE LINE A nonblank character was 
FOLLOWING COPY STATEMENT found in the remainder of 
MUST BE BLANK. the line on which the 

COPY statement appears. 

049 c DATA-NAME, FILE-NAME OR A. The name or number assigned 
to the file or data descrip-
tion begins in area A. 

• • 

Explanation 

Rule 

The SIZE clause is not 
within the OS/3 COBOL 
language. 

All 01 or 77 level numbers 
must start in area A. 

A library name: 

• is composed of no more 
than eight characters of the 
set A through Z, 0 
through 9, and the 
hyphen(-) . 

• has at least one al-
phabetic U character. 

• does not have a hyphen 
as the first or last 
character. 

• is not a COBOL reserved 
word. 

The minimum OCCURS 
value is 1. The maximum 
OCCURS value is 65,535. 
(In Format 2 of the 
OCCURS clause, integer-1 
may be O.l 

The name of a library 
structure may be a max-
imum of eight characters. 

Since the COPY statement 
directs the compiler to 
access new Ii nes of 
COBOL code, nothing 
may follow the COPY 
statement on the same 
line. 

File-names, data-names, 
level number, and filler 
must not begin in area A . 

Recovery 

The SIZE clause is deleted. 

The level number is accepted. 

The first eight characters of the 
string provided are used as a 
library name. 

If 0 is used in Format 1 or as 
integer-2 in Format 2, the 
OCCURS clause is ignored. 
If an integer exceeds 65,535 
the integer is assumed to be 1. 

The first eight characters of the 
name provided are used. 

The remainder of the line is 
deleted. 

The name or level number is 
accepted. 

• 

c 
-0 
00 
0 
(J1 

c.o 
::0 

~ 
w 

en 
-0 mm x ::0 

--i ::0 
~ -< 
oc 
mz o< 
() )> 
0 () 
coo o en 
r- ....... 

w 

0 
I 
~ 

0 



• • Table D-1. Diagnostic Messages (Part 10 of 30) 

+ 
Message Severity 

Diagnostic Message Reason 
Number Code 

050 c APPLY CLAUSE OR Sf.GM ENT-LIMIT Cylinder overflow of disc 
INTEGER INVALID. was specified as being 

greater than 80 percent. 
The bu ff er offset 
value is not from 0 to 99, 
or the SEGMENT-LIMIT 
value is not from 1 to 49. 

+ 051 c BLOCKING SPECIFIED WITH A BLOCK CONTAINS 
RECORDING MODE U. RECORDS clause has been 

specified with a recording 
mode of U. Buffer offset 
value exceeds 99. 

052 u CLAUSE NOT ASSOCIATED WITH A clause, such as DATA 
FD OR DATA-NAME. RECORDS or PICTURE, is 

not associated with the pre-
viously completed file or 
data descriptor. 

053 c NO DATA ENTRY FOR PREVIOUS FD The previous FD or SD does 
OR SD. not have at least one record 

description associated with it. 

054 u FD OR SD NOT IN FILE SECTION. An FD or SD was detected 
outside the file section. 

055 c LEVEL NUMBER number ENCOUNTERED A data descriptor was en-
PRIOR TO SECTION HEADER. countered prior to detection 

of a DATA DIVISION section 
header. 

Explanation 
Rule 

Cylinder overflow percent 
may not be greater than 
80 percent. 

Recording mode U states 
that records of the file 
are not blocked and may 
vary in length. 

Clauses associated with 
file or data descriptions 
must appear within the 
entry; i.e., prior to the 
period that terminates 
the entry. 

A record description, with 
level number 01, must 
follow every FD or SD 
description. 

Every file or sort descrip-
tion must be within the file 
section. 

If a data descriptor is the 
first entry in the data 
division, it must be 
preceded by a WORKING-
STORAGE or LINKAGE 
SECTION header. 

• 
Recovery 

The overflow percent is set to 
80 percent. The buffer offset 
is set at 99, or the SEGMENT-
LIMIT is set at 49. 

The BLOCK CONTAINS clause 
is deleted. The recording mode 
U is accepted or the buffer 
offset value is set to 99. 

The clause is deleted. 

The compiler creates a record 
description whose name is 
FILLER. The size of this record 
is set to the number of bytes 
specified in the RECORD 
CONTAINS CHARACTERS 
clause, if the clause was detected; 
otherwise, the size is set to 
30 bytes. 

The file or sort description is 
deleted. Any record descrip-
tions following the FD or SD are 
accepted. They are allocated to 
either the working-storage or 
linkage section, depending on 
which header was last encoun-
tered. 

The compiler assumes the 
WORKING-STORAGE SECTION 
header has been encountered 
and allocates the data item to 
that section. 

c 
-c 
00 
0 
(11 

co 
:JJ 

~ 
w 

Ul 
-c mm x :JJ 

-4 :JJ 
~ -< 
oc 
mz o-

);: 8 (") 
CD 0 
0 Ul 
r '-

w 

Cl 
.!... 



Table D-1. Diagnostic Messages (Part 11of30) 

+ 
Message Severity Diagnostic Message Reason 
Number Code 

056 u LANGUAGE ELEMENT NOT A COBOL language feature 
IMPLEMENTED. not supported by the compiler 

has been encountered. 

057 u DATA ENTRY REQUIRES RENAMES A data descriptor with level 

OR VALUE CLAUSE. number 66 has no RENAMES t 
clause or a data descriptor 
with a level number of 88 
has no VALUE clause. 

058 u LEVEL 88 condition-name NOT The level 88 entry is the 
PRECEDED BY DATA ENTRY. first entry in the data 

division. 

059 u LEVEL 66 data-name MUST APPEAR The level number 66 entry 
ONLY AT END OF A HIERARCHY. was not followed by one of 

the following: a level number 
01 entry, an FD or SD entry, 
a level number 77 entry, a 
level number 66 entry, or a 
PROCEDURE DIVISION 
header. 

• • 

Explanation 
Rule 

The following language 
elements are not available: 
1-0 verbs in USE 
ERROR or LABEL 
procedure and ENTRY 
with in a USE procedure. 

A data descriptor whose 
level number is 66 must 
have a RENAMES clause, 
and a data descriptor whose 
level number is 88 must 
have a VALUE clause. 

See rules for condition-name. 

See rules for RENAMES. 

Recovery 

The clause. entry, or statement 
is deleted. 

The data description is deleted. 

The compiler creates a level 01 
named Fl LLER, length 1, signed 
for the conditional variable. 

A level number 01 named 
FILLER is created to follow the 
level number 66 entry. 

• 

c ..,, 
00 
0 
(11 
C!l 

::0 
CD 
~ 

w 

en ..,, 
mm >< ::0 
-I ::0 

~ -< 
oc 
mz 
o< 
() )> 
0 () 
OJ 0 o en 
r "-

w 

0 
I 

N 



• • 
Table D-1. Diagnostic Messages (Part 12 of 30) 

Message Severity 

Number Code Diagnostic Message 
Reason 

060 u OCCURS DEPENDING ASSOCIATED The data-name with the 

WITH data-name. DEPENDING option of the 

OCCURS clause is not the 

last group entry in a 01 

hierarchy or the data-name 

is subordinate to another 

OCCURS clause. 

061 u LEVEL NUMBER literal IS NOT A data entry with a level 

SUBORDINATE TO AN 01. number between 02 and 49 

follows a level number 77 

or DATA DIVISION header. 

062 u CONSISTENCY ERROR: clause-1 Conflict between description 
INVALID WHEN USED WITH clause-2. cluases of the data entry, e.g., 

USAGE COMP-3 and 

ALPHANUMERIC PICTURE. 

063 p GO TO DEPENDING OPTION CONTAINS At least two procedure names 

ONLY ONE PROCEDURE NAME. are required in a GO TO 

statement with the DEPENDING 

option. 

064 u PICTURE INVALID for group item The data entry was determined 

data-name. to be a group item from level . number structure and a 
PICTURE clause conflicts with 

a group entry. 

065 u IMS ENVIRONMENT PROHIBITS USE The specified element is not 

OF LANGUAGE ELEMENT element. allowed under IMS processing 

mode. 

066 u PROCEDURE DIVISION USING-REQUIRED Procedure division USING 

IN IMS ENVIRONMENT. must be present in the I MS 

environment. 

Explanation 

Rule 

See rules for OCCURS 

clause with the DEPENDING 

option. 

See rules for level number. 

See Section 5 for rules 

on clauses in conflict. 

See Format 2 of GO TO 

statement. 

See rules for PICTURE. 

IMS mode requirement 

The procedure division USING 

is the only allowable entry 

point in a COBOL program 

in the IMS environment. 

• 
Recovery 

The DEPENDING option of the 

OCCURS clause is ignored (max-

imum number of occurrences is 
assumed). 

A level number 01 named FILLER 

is created to precede the data 

entry. 

Clause-1 is deleted. 

Control is transferred to 

procedure name if value of 

identifier is 1. Otherwise, 

control is passed to the next 

sentence. 

The compiler deletes the 

PICTURE clause on the 

group item. 

The specified element is deleted. 

No action is taken by the compiler. 

c 
"1J 
(xi 
0 
C11 
co 
:xi 

~ 
w 

en 
"1J mm 

~ :xi 
m :xi z -< 
oc mz 
o:;:: 
(') )> 
0 (') 
OJ 0 o en 
r '-

w 

Cl 
.!... 
w 



Table D-1. Diagnostic Messages (Part 13 of 30) 

Message Severity 
Number Code Diagnostic Message 

Reason 

069 c SAME SORT OR SAME RECORD AREA Some. but not all, filenames 

CONFLICTS WITH SAME AREA CLAUSE. in a SAME AREA clause appear 
in a SAME RECORD or SAME 
SORT AREA clause. 

073 c ONE LEVEL NUMBER ALLOWED PER More than one level number 

LINE. appears on the indicated 
line number. 

074 c USAGE of data-name CONFLICTS WITH A data entry usage conflicts 

USAGE OF GROUP. with the usage of one or 
more of the group entries 
which this data entry is 
subordinate to or usage 
conflicts with a value on 
a group level. 

075 u THE OCCURS CLAUSE ON data-name A data entry with an OCCURS 

INVALID, 4 DIMENSIONAL TABLE clause which would cause 

DESCRIBED. more than three levels of 
subscripting was encountered. 

076 u FILE file-name HAS NO DATA RECORD. A level 01 data record was 
not encountered for this file. 

• • 

Explanation 

Rule 

If one or more filenames of 
a SAME AR EA clause appears 
in a SAME RECORD or 
SAME SORT AREA clause; 
all the filenames in that 
SAME AREA clause must 
appear in the SAME SORT 
or SAME RECORD AREA 
clause. 

See formats of the data 
division. 

See rules for USAGE and 
VALUE IS. 

See rules for OCCURS. 

Format violated; see Ii le 
section. There must be a 
data record description for 
each file. 

Recovery 

No action is taken by the compiler. 

The level number is processed 
as though it were on a unique 
line number. 

Compiler assumes group entry's 
usage as proper usage. 

The compiler deletes the OCCURS 
clause on the data entry. 

No action is taken by the compiler 

• 

c 
" 00 
0 
(11 
to 
:c 
CD 
~ 

w 

en 
m " ~~ 
m :c z -< 
oc mz o< 
(") )> 
0 (") 
cco o en 
r '-

w 

0 
I -
""" 



• • 
Table D-1. Diagnostic Messages (Part 14 of 30) 

Message Severity 

Number Code Diagnostic Message 
Reason 

077 c BLOCK-LENGTH-CHECK CONFLICTS BLOCK-LENGTH-CHECK 
WITH RECORDING MODE FOR character- is not allowed with all 
string. recording modes. 

078 s ADDITIONAL MEMORY REQUIRED There is not enough main 
FOR LABEL RECORDS PROCESSING. storage available to hold 

all the label name definitions 
for this file. 

079 u BLOCK CONTAINS CHARACTERS NOT A A file with organization relative 
MU L Tl PLE OF RECORD SIZE FOR Fl LE with an inconsistent blocking 
filename. factor was encountered (block· 

ing from BLOCK CONTAINS 
clause). 

080 c FILE-NAME file-name DOES NOT APPEAR A file which does not have a 
IN A SELECT. SELECT entry (matched by 

file-name) was encountered. 

081 c INVALID RECORDING MODE FOR 1. A file assigned to card 
Fl LE file-name. reader and recording mode 

was V or U. 
2. File assigned to DISC 

with ORGANIZATION 
RELATIVE, and 
RECORDING MODE was 
Vor U. 

• 
Explanation 

Rule Recovery 

BLOCK-LENGTH-CHECK The BLOCK-LENGTH-CHECK 

is appropriate with recording is disregarded. 

mode V or D only. 

N/A Compiler assumes that label name 
definitions that will not fit 
into main storage do not exist. 
Main storage is required to hold 
the SELECTS and label name 
definitions. To allow processing 
of more label names, allocate 
more main storage, shorten the 
size of the SELECTS, or define 
fewer label names. 

N/A The compiler deletes the BLOCK 
CONTAINS clause. 

See rules for Fl LE CONTROL. Compiler assumes a SELECT entry 
defined with file-name (of file) 
assigned to tape-6. 

Device restriction (card Compiler assumes recording mode 
reader) access method F for this file. 
restriction (DISC, DISC-8414) 

c ,, 
00 
0 
(11 
CD 
:::0 

~ 
w 

(/) ,, 
mm 
~::JJ 
m ::o 
z -< 
oc mz 
o:;::: 
(") )> 
0 (") 
OJ 0 
0 (/) r ....._ 

w 

0 
.!... 
(11 



Table D-1. Diagnostic Messages (Part 15 of 30) 

Message Severity 
Number Code Diagnostic Message 

Reason 

082 c 80 CHARACTER BLOCK LIMIT EXCEEDED A BLOCK CONTAINS clause 
BY CARD Fl LE file-name. exceeds the maximum for 

a card device. 

083 c BLOCK CONTAINS EXCEEDS 1 RECORD A file assigned to a card device 
ON CARD-READER Fl LE file-name. was encountered with a 

BLOCK CONTAINS clause 
specifying two or more records. 

084 c FILE file-name MUST HAVE LABEL A file assigned to a unit 
RECORDS OMITTED. record device with other 

than LABEL RECORDS 
OMITTED was encountered. 

085 c BLOCK SIZE SPECIFIED FOR FILE BLOCK CONTAINS clause 
file-name EXCEEDS MAXIMUM. contains value which exceeds 

maximum length for the 
device the file is assigned to. 

006 c BLOCK SIZE SPEC! Fl ED FOR Fl LE A BLOCK CONTAINS clause 
file-name LESS THAN Ml NIMUM. value was encountered which 

is less than the minimum 
allowed for the device. 

007 u DESCRIPTION FOR LABEL RECORD A label name (from LABEL 
label name NOT ENCOUNTERED. RECORDS ARE clause) with 

no 01 label description was 
encountered. 

088 c Fl LE file-name MUST HAVE LABEL Filename is assigned to 
RECORDS STANDARD OR DATA NAME. direct access device but 

the LABEL RECORDS 
clause specifies OMITTED. 

089 c FILE file-name MUST HAVE LABEL Filename is assigned to a 
RECORDS STANDARD. direct access device with 

ORGANIZATION INDEXED, 
and LABEL RECORDS ARE 
OMITTED or data-name is 
specified. 

• • 

Explanation 

Rule 

See rules for BLOCK 
CONTAINS. 

Device restriction. 

Data management restric-
ti on. 

See BLOCK CONTAINS. 

See BLOCK CONTAINS. 

See rules for label records. 

File assigned to disc must 
have a LABEL RECORDS 
specification. 

File with ORGANIZATION 
INDEXED must have 
LABEL RECORDS 
STANDARD. 

Recovery 

The compiler assumes the max-
imum size (80) for BLOCK 
CONTAINS. 

Compiler assumes BLOCK 
CONTAINS one record. 

Compiler assumes labels to be 
omitted. 

The compiler assumes that the 
maxi mum length was specified. 

The compiler assumes the min-
imum length for the 
BLOCK CONTAINS clause. 

The compiler assumes that the 
label name does not exist. 

Compiler assumes LABEL 
RECORDS ARE STANDARD 
for the file. 

Compiler assumes label records 
to be standard for the file. 

• 

c 
" 00 
0 
0'1 
(!) 

::0 

~ 
w 

Ul 

m" xm 
-I ::0 
m :o 
2 -< 
oc 
m;z 
o-
~ 8 () 

tD 0 
0 Ul 
r '-

w 

0 
I 
~ 

m 



• • 
Table D-1. Diagnostic Messages (Part 16 of 30) 

Severity Message 
Diagnostic Message 

Number Code 
Reason 

091 u COPY SYNTAX REQUIRES character- The character-string listed 

string, character-string I NV ALI D. as invalid has produced a 

syntax error. The required 
type of character-string is 

indicated. 

092 s REP LACI NG character-string The main storage area used 

OVERFLOW CAUSED BY character-string to save replacing items has 
been exhausted or the number 
of qualifiers associated 

with an identifier has 

exceeded internal storage. 

093 c Sign condition test requires figurative Literal 0 invalid unless 
constant ZERO; literal 0 is invalid. preceded by a relational 

operator. 

094 c CHARACTER NUMBER literal IS INVALID An invalid PICTURE character, 
IN type PICTURE picture-string. a PICTURE character incon-

sistent with the PICTURE 

type, or a violation of the 

PICTURE precedence rules 

was detected. 

095 c THE type PICTURE picture-string IS As stated, the picture is 
INCOMPLETE. incomplete and cannot be 

processed, e.g., SPPPP. 

096 c CHARACTER NUMBER literal IS An invalid PICTURE 
INVALID IN PICTURE picture-string. character, a PICTURE 

character inconsistent with 

the PICTURE type, or a 
violation of the PICTURE 

precedence rules was 
detected. 

Explanation 

Rule 

See 6.6. 7.1 for COPY 
verb rules. 

Compiler restriction. 

When testing the condi-
tion of a data item for a 
0 condition. Syntax 
requires the use of 
figurative constant ZERO 
when no conditional opera-
tor is present in the test. 

See Section 5 for the 
allowable PICTURE symbols 

and the rules for their 

usage. 

See Section 5 for the 
allowable PICTURE 
symbols and the rules for 

tor their use. 

See Section 5 for the 
allowable PICTURE 

symbols and the rules for 

their usage. 

• 
Recovery 

The item in error and all items 
which follow it in the COPY 

clause are deleted. 

The compiler ignores the balance 
of the clause which causes over-

flow. Recompile with additional 

main storage allocated to the 

compiler or reduce the number 
of items, amount of qualification, 

or size of names in the REPLAC-

ING clause. 

Literal constant 0 is treated 
as figurative constant ZERO 

with code being generated 
as if statement was written: 
IF DATA-NAME ZERO. 

In order to delete the data 

descriptor, the compiler sets its 
PICTURE to S9. 

In order not to delete the data 

descriptor, the compiler sets its 
PICTURE to S9. 

The PICTURE characters prior to 
the character in error are accepted. 

c 
\l 

cXi 
0 
C11 
CD 
::c 
~ 
w 

(/) 
\l mm 

>< ::c 
-I ::c 
~ -< 
oc 
mz o< 
(") )> 
0 (") 
ell 0 
0 (/) 
r '-

w 

0 
I 
~ 

-...I 



Message Severity 
Number Code 

Diagnostic Message 

097 c SIZE LIMIT OF literal BYTES EXCEEDED 
BY PICTURE picture-string. 

098 c THE NUMBER OF DIGIT POSITIONS 
IN PICTURE picture-string 
EXCEEDS 18. 

099 c A VALUE CONTAINED WITHIN 
PARENTHESES IS =O OR >4092 IN 
PICTURE picture-string. 

100 c A NUMBER DOES NOT FOLLOW A LEFT 
PARENTHESIS IN PICTURE picture-string. 

101 c RIGHT PARENTHESIS MISSING FROM 
PICTURE picture-string. 

102 c BOTH LEADING AND TRAILING SIGN 
INSERTION SPECI Fl ED IN PICTURE 
picture-string. 

104 p LITERAL literal-string TRUNCATED 
DURING MOVE. 

105 c INITIAL VALUE TRUNCATED. 

• 

Table D-1. Diagnostic Messages (Part 17 of 30) 

Explanation 

Reason Rule 

The PICTURE specifies more The maximum size in bytes 
storage than the maximum of numeric PICTURE is 18, 
allowed for the PICTURE type. alphabetic or alphanumeric 

is 4092, numeric edited or 
alphanumeric edited is 132. 

The number of digit positions The maximum number of 
in the PICTURE exceeds 18. digits allowed in a numeric 

or numeric edited 
PICTURE is 18. 

A value contained within The number of ti mes a 
parentheses is either 0 or PICTURE character is 
greater than 4092. repeated as specified by the 

value in parentheses 
following it, must be 
greater than 0 and less 
than 4093. 

A left parenthesis within the Within parentheses, a numeric 
PICTURE is not followed by a integer is used to specify 
numeric integer. the number of times the 

preceding PICTURE character 
is repeated. 

A right parenthesis does not Each left parenthesis in a 
follow a numeric integer PICTURE must be followed 
preceded by a left parenthesis. by a numeric integer and a 

right parenthesis. 

Two insertion sign characters Specification of both leading 
were detected in the numeric- and trailing sign insertion 
edited PICTURE. is not permitted. 

The literal being moved contains Truncation occurs when any 
a greater number of character portion of the item being 
positions than the receiver, or, moved cannot be contained 
when decimal-point aligned, in the receiving field. 
contains a greater number of digit 
positi0ns than the receiver. 

The value specified for the The initial value cannot 
data item contains a greater contain more characters 
number of characters than the than can fit into the data 
data item, or is a numeric item. 
value that, when the decimal 
point is aligned, is larger 

than the maximum value the 
data item can con ta in. 

• 

Recovery 

In order not to delete the data 
descriptor, the compiler sets its 
PICTURE to S9. 

In order not to delete the data 
descriptor, the compiler sets 
the PICTURE to S9. 

The value within the parentheses 
is set to 1 and processing of the 
PICTURE continues. 

In order not to delete the data 
descriptor, the compiler sets the 
PICTURE to S9. 

In order not to delete the data 
descriptor, the compiler sets 
the PICTURE to S9. 

In order not to delete the data 
descriptor, the compiler sets the 
PICTURE to S9. 

The literal is moved and 
truncated. 

The excess characters are trun-
cated. 

• 

c 
\l 
Co 
0 
01 
co 
:0 

~ 
w 

en 
\l mm 

>< :0 
-l :0 
~ -< 
Cl c 
mz 
Cl < 
(") )> 
Q(") 
CD 0 
O en 
r '-

w 

Cl 
.!... 
CXl 



• • 
Table D-1. Diagnostic Messages (Part 18 of 30) 

Message Severity 
Number Code Diagnostic Message 

Reason 

106 u INVALID POSITIONING OF KEY data-name There must not be any item 
IN HIERARCHY. with an OCCURS clause be· 

tween the table item and its 
keys. 

107 s ADDITIONAL MEMORY REQUIRED TO Not enough main storage is 
PROCESS HIERARCHY CONTAINING available to contain all 
data-name. entries subordinate to the 

01 data entry. and too many 
entries for the 01 hierarchy 
for the amount of main 
storage allocated. 

108 s data-name EXCEEDS REDEFINES There are too many levels of 
NESTING LIMIT. redefinition. This data entry 

exceeds the limit of re-
definition. 

109 c data-name HAS IMPROPER REDEFINES The redefined area is a 
OBJECT data-name. redefining area; i.e .. the 

object of the REDEFINES 
clause has or is subordinate 
to a REDEFINES clause. 

110 s ADDITIONAL MEMORY REQUIRED TO Insufficient main storage is 
PROCESS RENAMES QUALi Fl ER. available to contain the 

RENAMES qualifier because 
of a large hierarchy and/or 
a lot of RENAMES 
qualifiers. 

111 u DESCRIPTION OF data-name NOT The definition of the entry is 
ENCOUNTERED. not in the current hierarchy. 

112 c RENAMES OCCURS CONFLICT BETWEEN The object of the RENAMES 
data-name-1 AND data-name-2. clause on data-name-1 has 

or is subordinate to an 
OCCURS clause. 

113 c REDEFINING AREA data-name UNEQUAL The calculated length of the 
TO SIZE OF REDEFINED AREA. redefined area is not the same 

as the length of the redefining 
area. 

114 c SIZE OF ELEMENTARY ITEM data-name An elementary item with a 
EXCEEDS MAXIMUM OF 4092. length larger than the max-

imum was detected. 

Explanation 

Rule 

See rules for KEY under 
OCCURS clause. 

See rules for REDEFINES. 

See rules for REDEFINES. 

See rules for qualification. 

See rules for level-number. 

See rules for REDEFINES. 

See data definition. 

• 
Recovery 

The named KEY is processed as a 
regular data item; the KEY infer-
mation is ignored. 

The compiler does not process the 
data entries not contained in 
main storage. To compensate, 
shorten the hierarchy, shorten 
narTies in data entries, or assign 
more main storage to compiler. 

The compiler assumes this entry 
does not contain a REDEFINES 
clause. 

The compiler assumes the redefini-
tion of the last-defined area 
with the same level as the 
subject of the REDEFINES clause. 

The compiler assumes the qualifier 
does not exist. 

The compiler assumes the qualifier 
name in error does not exist. 

The compiler assumes the last 
elementary item in the hierarchy 
is the object of the RENAMES 
clause. 

The compiler assumes the largest 
length was calculated for both 
areas. 

The compiler assumes the length 
to be 4092 for the elementary 
item. 

c 
'1J 

Co 
0 
01 
c.o 
::0 

~ 
w 

(/) 
'1J mm x ::0 

-i ::0 
S2 -< 
oc 
mz o< 
(") )> 
0 (") 
OJ 0 
0 (/) r, 

w 

0 
..:.. 
c.o 



Table D-1. Diagnostic Messages (Part 19 of 30) 

Message Severity 
Number Code Diagnostic Message 

Reason 

115 c SIZE OF WORKING-STORAGE GROUP A group entry in working· 

ITEM data-name EXCEEDS storage is a length· cal cu-

MAXIMUM OF 65.535. lated to exceed the maximum. 

116 c SIZE OF NON-WORKING-STORAGE The length of a file or 

GROUP ITEM data-name EXCEEDS I in kage section group item 

MAXIMUM OF 4092. was calculated to be greater 
than the maximum. 

117 u INVALID LEVEL NUMBER STRUCTURE A level number equal to the 

ENCOUNTERED AT data-name. level of the data entry should 
have appeared in the hierarchy 
directly subordinate to the 01. 

118 c THE FIRST OBJECT OF THE LEVEL The first object of a RE-

66 ENTRY data-name ENDS AFTER NAMES clause does not 

THE SECOND OBJECT. precede the area of the 
second object of the 
RENAMES clause. 

119 c THE SECOND OBJECT OF THE The second object of a 

LEVEL 66 ENTRY data-name STARTS RENAMES clause does not 

BEFORE THE FIRST OBJECT. precede the first object 
of the RENAMES clause. 

120 c USAGE INDEX INVALID FOR A condition name entry is 

CONDITIONAL VARIABLE data-name. defined for a data entry 
with a USAGE IS INDEX 
clause. 

121 c RECORD data-name A file described as F RE-
SIZE UNEQUAL TO PREVIOUS RECORDS CORDING MODE does not 
IN A FIXED RECORDING MODE FILE. have data records with the 

same length. 

122 c LABEL RECORD data-name SIZE A label record description 

NOTEOUAL80CHARACTERS. with a length other than 80 
was encountered . 

• • 

Explanation 

Rule 

See data definition. 

See data definition. 

See rules for RENAMES. 

See rules for RENAMES. 

See rules for condition 
name. 

See rules for RECORDING 
MODE. 

OS/3 label specification 
has a length of 80 for labels. 

Recovery 

The compiler assumes the length 
of the group item to be 65,535. 
The entire area specified is, 
however, allocated. 

The compiler assumes the maxi-
mum of 4092 was the calculated 
length of the group item. 

The compiler assumes a level 
number on a data entry directly 
subordinate to the 01, e.g., 
01 A 
LEVEL 02 MISSING 
05 B 
02 c 
INVALID LEVEL STRUCTURE 

The compiler assumes the second 
object does not exist. 

The compiler assumes the objects 
are reversed. (The first is the 
second and the second is the 
first.) 

The compiler assumes the alpha· 
numeric usage for the conditional 
variable. 

The compiler assumes the largest 
data record length for calculation 
of record length for the file. 

The compiler assumes the length 
of label records to be 80. 

• 

c ,, 
00 
0 
(.11 
(!) 

:0 

~ 
w 

en ,, 
mm 
~ :0 
m :o z -< 
oc mz o< 
(") l> 
on 
OJO o en 
r '-

w 

0 
I 

N 
0 



• • 
Table D-1. Diagnostic Messages (Part 20 of 30) 

Message Severity 

Number Code 
Diagnostic Message 

Reason 

123 u data-name NOT ALIGNED. The data-name is the subject of 

a REDE Fl NES clause and 
requires alignment due to a 

SYNC clause. However, the 

object of the REDEFINES 

is not aligned. 

124 c BLOCK SIZE FOR file-name SMALLER The BLOCK CONTAINS 

THAN LARGEST RECORD. CHARACTERS clause speci-

fies a block length smaller 

than length of largest data 

record. 

125 c SIZE OF data-name GREATER THAN The RECORD CONTAINS 

RECORD CONT Al NS FOR Fl LE clause specifies a record 

file-name. length smaller than largest 

record. 

126 c file-name clause LENGTH condition The BLOCK CONTAINS 

ALLOWED FOR DEVICE. clause or the RECORD 

CONTAINS clause exceeds 
maximum or is less than 
minimum for the device to 

which the file is assigned. 

127 c RECORD CONTAINS CLAUSE FOR Fl LE The RECORD CONTAINS 

file-name NOT EQUAL TO SIZE OF clause does not specify the 

LARGEST RECORD. length of the largest data 

record. 

12B p BLOCK LENGTH OF FILE file-name The length of the block for 

PROHIBITS RUN TIME SPECIFICATION the file is too large to allow 

OF BLOCK NUMBERING. block numbering. 

129 u REDEFINES NOT PERMITTED FOR A file section level 01 with 

RECORDS IN FILE SECTION. a REDEFINES clause was 

encountered. 

130 u SUBJECT OF REDE Fl NES, data-name, The subject of a REDEFINES 

NOT IN SAME SECTION AS OBJECT OF clause is not in same section 

REDEFINES. as entry with REDE Fl NES. 

• 
Explanation 

Rule Recovery 

See rules for SYNCHRONIZED. The SYNCHRONIZED clause is 

ignored. 

The compiler assumes the block 

length to be the length of the 

largest record. 

The compiler assumes that the 

largest hierarchy subordinate to 

the FD specifies the length of the 

largest data record for the file. 

·---·-

See BLOCK CONTAINS and The compiler assumes the limiting 

RECORD CONTAINS. length for the clause in error. 

The compiler assumes that the 

length of the largest data record 

is specified in the RECORD 

CONTAINS clause. 

No action. Precautionary warning. 

See rules for REDEFINES. The compiler assumes the RE-
DEFINES clause does not exist. 

See rules for REDEFINES. The compiler assumes the RE-

DEFINES clause does not exist. 

c 
-0 

6:i 
0 
c.n 
co 
jJ 

~ 
w 

(J) 
-0 mm 

~ jJ 
m :JJ z -< 
oc mz o:::: 
() :t> 
0 () 
CJ 0 
0 (J) 
r '-

w 

0 
I 

N 



Table D-1. Diagnostic Messages (Part 21of30) 

Message Severity 
Number Code Diagnostic Message 

Reason 

131 u OBJECT OF REDEFINES, data-name, The object of a REDEFINES 

WITHIN RANGE OF OCCURS. clause has or is subordinate 
to an OCCURS clause. 

132 u REDEFINES OBJECT, data-name, AND The object and subject of the 

SUBJECT, data-name, UNEQUAL REDEFINES clause do not have 

LEVEL NUMBER. the same level numbers. 

133 s INDEX NAME data-name EXCEEDS The current compiler limit 

COMPILER LIMITS. of index-names is 255. This 
entry is the 256th specified 
index·name. 

134 c ELEMENTARY ITEM data-name HAS NO An elementary item, deter-

LENGTH SPECI Fl ED. mined from level number 
structure, with no length 
specified or assumed was 
encountered. 

135 c OBJECT OF RENAMES data-name The object of the RENAMES 
NOT FOUND WITHIN HIERARCHY. clause was not found in the 

immediate hierarchy. 

136 c OBJECT OF RENAMES data-name The object of the RENAMES 

HAS ILLEGAL LEVEL NUMBER. clause has an illegal level 
number. 

137 u REDEFINES CLAUSE IN data-name The object of the REDEFINES 
ENTRY HAS INVALID OBJECT. clause is not a legal level for 

redefinition. 

138 s ADDITIONAL MEMORY REQUIRED FOR The compiler needs more 
PROCEDURE NAME PROCESSING. main storage in order to 

process the rest of the section 
and paragraph names. 

• • 

Explanation 

Rule 

See rules for REDE Fl NES. 

See rules for REDEFINES. 

See rules for RENAMES. 

See rules for RENAMES. 

See rules for REDE Fl NES. 

Each procedure-name 
definition requires 16 
bytes of storage plus one 
byte for each character in 
the name. To increase the 
number of procedure-names 
that can be processed, 
recompile using smaller 
names or with more main 

storage assigned to the 
compiler . 

Recovery 

The compiler assumes the 
REDEFINES clause does not 
exist. 

The compiler assumes the 

REDEFINES clause does not exist 

The compiler starts index-name 
main storage assignment over 
and reassigns the main storage 
to the index-names being 
processed. 

The compiler assumes a length of 
1, signed, was specified. 

The compiler assumes the last 
elementary item of the hierarchy 
as the specified object of the 
RENAMES clause. 

The compiler assumes the last 
elementary item as specified 
object of the RENAMES clause. 

The compiler assumes the RE DE-
FINES clause does not exit. 

This procedure-name definition 
and all others that foll ow are 
deleted. 

• 

c 
-0 

cXi 
0 
(}1 
(!) 

::0 
(!) 

<: 
w 

(fl 
-0 mm x ::0 

-I ::0 
~ -< 
oc 
mz o-
~ 8 (") 

OJ 0 
0 (fl 
r '-

w 

0 
I 

N 
N 



• • 
Table D-1. Diagnostic Messages (Part 22 of 30) 

Message Severity 

Number Code Diagnostic Message 
Reason 

139 c PRIORITY NUMBER INCORRECT OR Priority number value does not 

OUT OF SEQUENCE. fall in range of 0 to 99 or 

priority number > 50 is 

not in ascending sequence. 

140 u NEITHER EXIT PROGRAM NOR An entry point has been 
RETURN STATEMENT ASSOCIATED specified for this program 

WITH ENTRY OR USING STATEMENT. but the program contains no 

mechanism to return to caller. 

141 u NEITHER ENTRY NOR USING STATEMENT Program contains mechanism 

ASSOCIATED WITH EXIT PROGRAM OR to return to a calling program 

RETURN STATEMENT. but no mechanism has been 

coded where the calling program 

may enter this program. 

142 u NO ENTRY OR RETURN STATEMENT No entry point has been 

ASSOCIATED WITH LINKAGE SECTION. specified for this subprogram. 

143 u STRUCTURE OF CONDITIONAL ELSE encountered in IF 

SENTENCE INVALID, UNPAIRED statement with no preceding 

ELSE ENCOUNTERED. IF verb to match it. 

144 p PROCEDURE DIVISION DOES NOT No STOP RUN statement is 
CONTAIN A STOP RUN. coded in this program. There 

is no way to bring this program 

to an orderly halt. 

145 u EXIT WAS NOT THE ONLY STATEMENT EXIT statement is in paragraph 
IN PARAGRAPH. which contains statements 

other than EXIT. 

146 c THE BEFORE OPTION OF THE USE The BEFORE option is not 

STATEMENT IS NOT APPLICABLE IN allowed in SPERRY UNIVAC 

SYSTEM. OS/3 COBOL. 

Explanation 

Rule 

The priority number must be 
an integer ranging in value 

from 0 through 99. Segments 

with priority number 50-99 

are independent segments 

and must appear in the source 

program in ascending numeric 

order. 

All COBOL subprograms 

must contain either an 

EXIT PROGRAM or a 

RETURN statement. 

A COBOL program that is to 

be used as a subprogram must 
have an entry point. 

The use of the linkage 

section implies that this 

is a subprogram. Subprograms 

must have entry and exit points 

In a conditional statement, 
any ELSE encountered is 

considered to apply to the 

immediately preceding IF 

that has not been already 

paired with an ELSE. 

No rule has been violated; 
this diagnostic is strictly 

informative. 

The EXIT sentence must be 

preceded by a paragraph-

name and be the only 

sentence in the paragraph. 

The BEFORE option is not 
applicable to SPERRY UNIVAC 

OS/3 COBOL, but is accepted 

for compatibility 

• 
Recovery 

If segmentation has been specified 

(a previous segment with priority 

number> 50) the last valid 

priority number is assigned to 

this section. If segmentation 

has not been encountered, a 

priority number of 0 is assumed. 

No corrective action is possible 

for this error. If the program is 

executed as a subprogram it will 

not return to the calling program. 

No corrective action is possible 
for this error. It is impossible 

to execute this program as a 

subprogram. 

No corrective action is taken. 

The conditional statement is 

terminated at this point. 

Results during execution are 

unpredictable. 

Nothing is deleted from the 

program. The statement 

following the EX IT 

sentence is executed 
before the EXITs 

statements. 

The AFTER option is assumed. 

c 
"1J 
00 
0 
(J1 

<.O 
:0 

~ 

"' 

Ul 
"1J mm 

~ :0 
m :o 
z -< 
oc mz 
o:;:: 
(") l> 
0 (") 
!Xl 0 
0 Ul 
r "-

w 

CJ 
I 

I'-) 
w 



Table D-1. Diagnostic Messages (Part 23 of 30) 

Message Severity 

Number Code 
Diagnostic Message 

Reason 

147 c THE PROGRAM NAME IN CALL Program name exceeds eight 

STATEMENT EXCEEDS EIGHT characters in length. 

CHARACTERS. 

148 u REFERENCE TO name CANNOT BE A definition of the listed name 

RESOLVED. has not been encountered. 

149 u QUALIFIED REFERENCE TO name A definition of the listed 

CANNOT BE RESOLVED. name has not been encountered 

under the specified qualifiers. 

150 c REFERENCE TO PROCEDURE name A definition of the listed 

IS AMBIGUOUS. DEFINITION AT paragraph-name has not 

LINE literal USED. been encountered within 

the section from which the 
reference is made, while 

multiple definitions exist 

outside the section of 
reference. 

151 u REFERENCE TO name OF name Normally this diagnostic 

CANNOTBERESOLVEDDUETO indicates that a definition 

DEFINITION AT LINE literal. for the qualifier in a pro-

name of name UNRESOLVED cedure reference has been 

DUE TO DEF AT LINE literal. encountered but is not a 

section-name. In the 
ambiguity mode of reference 
resolution (PARAM LST:A), 

this diagnostic is also 

generated when: 

1. The highest qualifier of a 

data reference is not 

encountered in the data 

division but is encountered 

in the procedure division. 

2. The qualifier of a pro-
cedure reference is not 

encountered in the pro-

cedure division but is 

encountered in the data 

division. 

This implies that when the 
definition that will resolve the 

reference is added to the source 
program, the highest possible 

qualifier rule is violated . 

• • 

Explanation 

Rule 

A maximum of eight characters 

is allowed in subprogram 
names. 

Every name referenced must 
be defined. 

Every name referenced 

with qualification must 

be defined within the 

hierarchy associated 

with the highest level 
qualifier. 

A reference to a nonunique 
paragraph-name where all 

definitions are outside the 

section from which the 
reference is made must 
be qualified. 

The qualifier in a procedure 

reference must refer to a 

section-name. Highest 
possible qualifiers (level 

indicator names, section· 
names, level 01 and 77 

names) must be unique in a 
program since a reference 

to the name cannot be 
qualified. 

Recovery 

The program name in the CALL 

statement is truncated to eight 

characters. 

The statement containing the 
reference is deleted. 

The statement containing the 

reference is deleted. 

The reference is resolved by 

the paragraph-name at the 

listed line number. 

The statement containing the 
reference is deleted. 

• 

c 
"'O 
00 
0 
01 
c:o 
:::0 

~ 
w 

(/) 

m -o xm 
-I :::0 
m :o 
z -< 
oc mz o< 
(") )> 
0 (") 
CD 0 
0 (/) 
r" w 

0 
I 

N 
.p. 



• • 
Table D-1. Diagnostic Messages (Part 24 of 30) 

Message Severity 
Diagnostic Message 

Number Code Reason 

152 c REFERENCE TO name AMBIGUOUS This diagnostic is generated 

DUE TO DEF AT LINE literal. DEF only in the ambiguity mode 

AT LINE literal USED. of reference resolution 

(PAR AM LST=A) for an 

unqualified reference when a 

duplicate definition of the 

listed name has been en-
countered within the COBOL 

division implied by the 

reference type, e.g .. GO TO 

implies procedure division; 

MOVE implies data division. 

153 c IMPROPER DEFINITION OF name This diagnostic is generated 

AT LINE literal IMPLIED BY MANNER only in the ambiguity mode 

OF REFERENCE. of reference resolution 

(PARAM LST=AI for an 

unqualified reference when a 

duplicate definition of the 

listed name has been en-
countered in a COBOL 

division. other than the 
division implied by the 

reference type, and consti-

tutes a violation of the 

highest possible qualifier 

rule. 

154 c name MUST BE UNIQUE, DUPLICATE This diagnostic is generated 

DEFINITION FOUND AT LINE literal. only in the ambiguity mode 

of reference resolution 

(PAR AM LST=AI for qualified 

references when a redefinition 

of the highest qualifier 

violates the highest possible 

qualifier rule. 

155 c BEFORE OPTION NOT APPLICABLE The WRITE BEFORE 

INC-MODE. ADVANCING option is 

not available in the 

conversion mode. 

157 p name STATEMENT OPERAND name IS Index name used to address 

IMPROPERLY INDEXED table element is not asso~ 

c1ated with the table but 

is associated with another 

table which has the same 

element size. 

Explanation 

Rule 

Every name in a COBOL 

program must be unique, 

either because of different 

spelling, or because of 

qualification. 

Highest possible qualifiers 

(level indicator names, 

section-names, level 01 and 

77 names) must be unique 

since a reference to the 

name cannot be qualified. 

Highest possible qualifiers 

(level indicator names, 

section-names, level 01 

and 77 names) must be 

unique since a reference 

to the name cannot be 
qualified. 

Compatibility requirement 

When an item is indexed 

by an index name, that 

index name must be 
associated with that 

table name. 

• 
Recovery 

The reference is resolved by the 

name at the listed line number. 

If the reference cannot be 

resolved within the COBOL 

division corresponding to the 

reference type, the statement 

is deleted. 

If the reference cannot be 

resolved within the COBOL 

division corresponding to 

the reference type, the 

statement is deleted. 

The BEFORE option is treated 

as though the AFTER option 

had been specified. 

Precautionary warning. 

No corrective action is 

taken. 

c 
-0 
a, 
0 
(11 
c.o 
::lJ 
Cl) 

:<:: 

w 

en 
-0 mm x ::lJ 

-i ::lJ 
~ -< 
oc 
mz 
o:;:: 
(") )> 
0 (") 
OJ 0 o en r ....__ 

w 

0 
I 

N 
(J1 



Table D-1. Diagnostic Messages (Part 25 of 30) 

Message Severity 
Number Code Diagnostic Message 

Reason 

158 p verb CONTAINS WORKING-STORAGE Due to the shared nature of 
OPERAND data-name WHICH SHOULD programs operating under I MS 
NOT BE MODIFIED mode, errors could occur if 

working-storage elements are 
modified at object program 
execution time. 

159 u verb STATEMENT CONTAINS INVALID The specified data item does 
OPERAND data-name. not satisfy the requirements 

for the designated verb. for 
example, an alphabetic 
operand in an ADD 
statement. 

160 u verb STATEMENT OPERAND data-name The data item contains too 
IS IMPROPERLY SUBSCRIPTED. many subscripts, too few, or 

an improper type of subscript. 

161 u verb STATEMENT CONTAINS INCONSISTENT The combination of operands 
OPERAND data-name. in the statement conflict in 

their usage, for example, 
moving a numeric item to an 

alphabetic operand. 

162 c verb STATEMENT CONTAINS SIGNED A signed literal has been 
LITERAL literal. encountered. 

163 u COMPOSITE OF OPERANDS IN verb The superimposition of all 
STATEMENT EXCEEDS 18 DIGITS. operands to the left of the 

word GIVING exceeds 18digits. 

164 u GO TO PRECEDES IMPERATIVE A GO TO statement is 
STATEMENT. followed by other imperative 

statements. 

• , • 

Explanation 

Rule 

Do not modify WORKING 
STORAGE operands in the 
IMS environment. 

See the general rules 
specified for the desig-
nated verb. 

References to items in a 

table must have the correct 
number of subscripts or 
indexes, subnumeric integers, 

subscripts must be unsigned, 
subscripts and indexes must 
not be moved in a single 
data reference, and 
references to items not in 

a table must not be subscripted 

See the rules for the indicated 
verb statement. 

See the specific rules for 
the designated verb. 

See rules for composite of 
operands for the specified 
verb. 

A GO TO statement must be 
the last statement in a 
series of imperative state-
ments. In a conditional 
statement, a GO TO must be 
followed by ELSE, IF, or a 
period . 

Recovery 

No action. Precautionary warning. 

The statement containing the 
listed operand is deleted. 

The statement containing the 
subscript error is deleted. 

The statement containing the 

inconsistent operand is deleted. 

The sign of the literal is deleted. 

The statement containing the 
composite error is deleted. 

The statements between the GO 
TO and the ELSE, IF, or period 
are deleted. 

• 

c 
-0 

00 
0 
01 
co 
::0 

~ 
w 

(/) 
-0 mm 

~ ::0 
m ::o z -< 
oc mz o< 
(") )> 
0 (") 
en O 
0 (/) 
r '-

w 

0 
I 

N 
CJ) 



• • 
Table D-1. Diagnostic Messages (Part 26 of 30) 

Message Severity 
Diagnostic Message 

Number Code Reason 

165 u verb STATEMENT OPERAND data-name An operand not defined in 
NOT DEFINED IN LINKAGE SECTION. the linkage section has been 

encountered in an entry or in 
the procedure division USING 
statement. 

166 u verb STATEMENT OPERAND data-name An operand with a level 
IS NOT LEVEL NUMBER 01 OR 77. number other than 01 or 

77, has been detected in 
an ENTRY or procedure 
division USING statement. 

167 s ADDITIONAL MEMORY REQUIRED TO This statement exceeds the 
PROCESS STATEMENT CONTAINING internal main storage area 
verb. available to process statements 

with multiple operands. 

168 u verb EXCEEDS LIMIT OF TEMPORARY The maximum number of 
DATA AREAS. temporary arithmetic data 

areas has been exceeded. 

169 u verb STATEMENT OPERAND name IS NOT The input-output statement 
RECORD OR FILE-NAME. does not reference a record-

name or file-name. 

Explanation 

Rule 

Data-names in an entry or 
procedure division USING 
statement must be defined 
in the linkage section. 

Data items in an ENTRY 
or procedure division 
USING statement are 
restricted to items whose 
level number is 01 or 77. 

The main storage necessary 
to process a single operand 
varies from 18 to 250 bytes, 
depending on the number of 
characters in the data-name 
and whether the item 
OCCURS, has an edited 
picture, or is subscripted. 
The maximum main storage 
available for statement 
processing is a function of 
the total main storage 
available to the compiler. 
A limit of 100 symbols 
exists for a single condition 
A symbol in this context is an 
operand, an arithmetic opera· 
tor, a logical operator, a rela-
tional operator, or a class. (A 
condition-name test expands 
to multiple symbols depending 
on the number of values asso-
ciated with the condition· 
name.) 

The following verbs must 
refer to record or file-
names: OPEN, CLOSE, READ 
WRITE, SORT, RELEASE, 
RETURN, INSERT, SEEK. 

• 
Recovery 

The statement containing the 
listed operand is deleted. 

The verb is deleted from further 
compilation. 

The statement is deleted. Addi-
tional main storage should be 
assigned to the compiler or the 
statement must be rewritten as 
multiple statements. 

Reduce the complexity of the 
expression or reduce the number 
of expressions in the statement. 

The statement in error is deleted. 

c 
-0 
cXi 
0 
01 
CD 
:IJ 

~ 
w 

(/) 
-0 mm x :IJ 

--t :IJ 

~ -< 
oc 
mz o< 
(") )> 
0 (") 
CJ 0 
0 (/) 
r '-

w 

0 
I 

N 
-.J 



Table D-1. Diagnostic Messages (Part 27 of 30) 

Message Severity 
Number Code 0 iagnostic Message 

Reason 

170 u SENTENCE PRODUCES EXCESSIVE Object code cannot be 
OBJECT CODE. produced for the entire 

sentence because of the 
sentence size. 

171 u PERIOD ELSE OR WHEN MUST NEXT SENTENCE must be 
FOLLOW NEXT SENTENCE followed by ELSE, period, 

or WHEN. 

172 p PERFORM STATEMENT REFERENCES A PERFORM within the 
A NON-DECLARATIVE PROCEDURE declarative section 

referenced a procedure 
outside of the declarative 
section. 

173 u verb STATEMENT OPERAND name Both operands in the 

REFERS TO FILE RECORD AREA. statement refer to the same 
storage area. 

174 u verb STATEMENT RECORD-NAME The listed operand is not 
name IS NOT DEFINED IN FILE defined in the file section. 

SECTION. 

175 p COMPARISON FOR EQUALITY MAY BE A floating-point operand in a 

MEANINGLESS FOR A FLOATING POINT relational condition may cause 

OPERAND. the two operands not to be 
exact! y equal. 

176 u DIVIDE STATEMENT PRODUCES The description of the 

MEANINGLESS RESULT. operands in a DIVIDE 
statement is such that only 
zeros could result for the 
quotient in the specified 
receiver . 

• • 

Explanation 

Rule 

Generally. a complete 
sentence is limited to 
between 2048 and 4096 
bytes depending on the 
sentence structure. 

In an IF. NEXT 
SENTENCE must be followed 
by ELSE or a period. In 
a SEARCH, NEXT SENTENCE 
must be followed by 
WHEN, ELSE, or a period. 

Within a USE procedure, 
there must not be any 
reference to any non-
declarative procedures. 

The operand specified in 
the WRITE FROM, INSERT 
FROM, or READ INTO 
options, may not occupy 
the same storage area as 
the record or file-name. 

WRITE, INSERT. and 
RELEASE refer to items 
defined in the file section. 

No rule has been violated. 
Message is strictly 
informative. 

Recovery 

Reduce the sentence size by 
rewriting it as several sentences/ 
paragraphs. 

The NEXT SENTENCE phrase is 
ignored. 

No action. Precautionary 
warning. 

The statement is deleted. 

The statement is deleted. 

Expected results may not 
occur at execution ti me. 

The DI VI DE statement is deleted. 

• 

c 
" 00 
0 
C1l 
c.o 
:0 
Cl) 

~ 

w 

en 

" mm 
~ :0 
m :o 
z -< 
oc mz o-
~ 8 ("') 

roo o en 
r "-

w 

0 
I 

N 
co 



• • 
Table D-1. Diagnostic Messages (Part 28 of 30) 

Message Severity 
Number Code Diagnostic Message 

Reason 

177 u verb STATEMENT CONFLICTS WITH A procedure-branching verb 
SEGMENTATION RULES. is invalidly specified with 

respect to the rules of 
segmentation, or an ALTER 
statement refers to a 
paragraph that does not 
begin with a GO TO. 

178 u verb STATEMENT INCOMPLETE OR An operand conflicts with a 
CONTAINS INVALID OPERAND OR OPTION. specified option or with 

another operand, or an 
option that must be specified 
for a given statement was 
not encountered. For 
example, a WRITE to a mass 
storage device must contain 

an INVALID KEY clause. 

179 u INTERNAL LABEL TABLE OVERFLOW. Either a sentence requires 
more than 256 internal labels 
or more than 24 internal 
labels are active. 

180 u CLASS OF LITERAL CONFLICTS WITH A nonnumeric literal con-
CLASS OF data-name. taining numeric characters 

is being moved to an alpha-
betic item, or a nonnumeric 

literal containing non-

numeric characters is being 
moved to a numeric item. 

181 p data-name TRUNCATED The data-name being moved 
DURING MOVE. contains a greater number 

of character positions 
than the receiver or, 
when decimal point aligned, 
contains a greater number 
of digit positions than 
the receiw~r. 

182 u COMPLETE TRUNCATION OF Decimal point alignment is 
name /I itera I/result. such that no portion of the 

item being moved can be 
contained in the receiving 
operand. 

Explanation 

Rule 

See the rules on segmentation 
for the listed verb. 

See the rules for the specified 
verb. 

The class of all characters 
contained in nonnumeric 

literal must be consistent 
with the class of the 
receiving item. 

Truncation occurs when 
any portion of the item 
being moved cannot be 
contained in the receiving 

operand. 

• 
Recovery 

The statement in error is deleted. 

The statement is deleted. 

Requirements for internal labels 
may be lowered by reducing the 
number of statements in a sen-
tence. 

The statement is deleted. 

The data-name is moved and 
truncated. 

The MOVE statement or arith-
metic GIVING statement is 
deleted. 

c 
-0 
00 
0 
(11 
(!) 

:JJ 

~ 
w 

Ul 
-0 mm 

~ :JJ m :JJ 
z -< 
oc mz 
o< 
(") )> 
on 
OJ 0 
0 Ul 
r"-

w 

0 
I 

N 
(!) 



Table D-1. Diagnostic Messages (Part 29 of 30) 

Message Severity 

Number Code Diagnostic Message 
Reason 

183 p REDUNDANT ROUND OPERAND The numeric description 

data·name. of the arithmetic result is 
such that no excess digit 
positions are available for 
rounding into the listed 
operand. 

184 p REDUNDANT SIZE ERROR OPERAND The numeric description 

data-name of the arithmetic result is 

such that its value could 
never exceed the largest 
value that can be contained 
in the listed operand. 

185 u FILE-NAME IN insert STATEMENT The file-name referenced 
REQUIRES SYMBOLIC KEY by the verb requires the 

SYMBOLIC KEY clause 
under the SELECT 
clause. 

186 c PERFORM STATEMENT LITERAL The TIMES literal in the 

EXCEEDS 32,767. perform statement exceeds 
the maximum allowable value. 

187 c ADVANCING LITERAL EXCEEDS The WRITE ADVANCING 

LIMIT. literal exceeds the maxi-
mum allowable value. 

• • 

Explanation 

Rule 

Rounding is possible only 
when an arithmetic result 
contains at least one ex· 
cess digit from which the 
round operation can be 
based. 

A size error is possible 
only if the arithmetic 
result contains more 
significant digit positions 
than the resultant 
identifier. 

For ORGANIZATION 
INDEXED files, if 
ACCESS is 
SEQUENTIAL or 
EXTENDED, a 
symbolic key is 
required for the 
SEEK verb. If 
ACCESS is 
EXTENDED, a 
symbolic key is 
required for a 
READ that does 
not have the 
AT END clause. 

The maximum value of a 
PERFORM TIMES literal 
is 32,767. 

The maximum number of 
lines that can be advanced 
is 127 in the normal mode 
and three in the conversion 
mode. 

Recovery 

The round operation is deleted. 

The size error test is performed. 

The record key is 
used. 

The accepted TIMES count is the 
rightmost 15· bits of the original 
value when converted to binary. 
Th is value is between 1 and 
32,767. 

The advancing line count is set 
to 1. 

• 

c 
-0 

ai 
0 
(11 
C!) 

::0 
CD 
:< 
w 

(/) 

m -o 
~ gJ 
m :o z -< 
Cl c mz 
Cl < 
() )> 
0 () 
CXJO 
0 (/) 
r "-

w 

Cl 
I w 

0 



• • 
Table D-1. Diagnostic Messages (Part 30 of 30) 

Message Severity 
Number Code Diagnostic Message 

Reason 

188 u Fl LE AT LINE literal NOT An OPEN or CLOSE has not 

{CLOSED} been specified for the 
OPENED WITHIN PROGRAM. file, or the OPEN is 

inconsistent with the 
activity associated with 
the file. 

189 u verb STATEMENT PROHIBITED The only 1-0 verbs allowed in 
WITHIN USE PROCEDURE. a USE procedure are: 

ACCEPT (not from system con-

sole or job control stream) 
DISPLAY 
WRITE (to a printer only in 
USE FOR FORM OVERFLOW) 

190 s ADDITIONAL MAIN STORAGE The compiler does not have 
REQUIRED TO PRODUCE OBJECT sufficient main storage to 

CODE LISTI NG produce the object code 
listing. 

191 s ADDITIONAL MEMORY REQUIRED The compiler does not have 
TOPRODUCEO~ECTPROGRAM. sufficient main storage to 

maintain the compile time 
tables necessary to create 
the object module output 
for this program. 

192 c KEY SIZES FOR FILE AT LINE Record key size unequal to 
literal NOT EQUAL. symbolic key size. 

193 p TRUNCATION OF FLOATING POINT In any move from a floating-
OPERAND literal MAY OCCUR. point operand to a nonfloating-

point operand, the floating-
point value may not be able 
to be represented exactly in 
fixed-point format. 

Explanation 

Rule 

Every file must be 
opened and closed. Files 
written on must be opened 
for output or 1-0. files 
read from must be opened 
for input or 1-0. 

See rules for USE verb. 

Record key and symbolic 
key sizes must be equal. 

No rule has been violated. 
Message is strictly 
informative. 

• 
Recovery 

Results during execution are 
unpredictable. 

The 1-0 verb is dropped. 

The object module is produced. 
Recompilation is necessary 
with more main storage 

assigned to the compiler. 

A recompilation is necessary 
with more main storage 

assigned to the compiler. 

Symbolic key size is changed to 
record key size. 

Truncation may occur. 

c 
"1J 
00 
0 
(.Tl 

co 
::0 

~ 
w 

CJ) 
"1J mm 

~ ::0 
m :o z -< 
oc mz o-
~ 8n 

CD 0 
0 CJ) 

r '-
w 

0 
I w 
~ 



UP-8059 Rev. 3 

D.3. SYSTEM CONSOLE MESSAGES 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

D-32 

During compilation, COBOL source programs may encounter an error condition as indicated by a system console 
message. All operator system console messages are listed and described in the error messages programmer/operator 
reference manual, UP-8076 (current version). The programmer system console messages, those that are directed to 
the programmer, are given in Table D-2. The messages are listed in ascending order based on the message number 
and include the meaning and the corrective action to be taken. 

• 

• 

• 



• • 
Table D-2. System Console Messages (Part 1 of 2) 

Message 
Diagnostic Message Meaning 

Number 

CC01 INSUFFICIENT MEMORY Insufficient main storage provided to 
accommodate the processor. The job step is 
terminated. 

CC02 LOAD ERROR An error occurred while attempting to 
locate and load a job phase in the 
LOAD library. The job step is terminated. 

CC04 PATCH s aaaa IGNORED, SIZE INVALID A patch card format error has occurred 
in the control stream. The job step is 
terminated. 

where: 

s 
Is the segment number. 

aaaa 
Is the address where the error 
occurred. 

CC05 PATCH saaaa IGNORED, NO DELIMITER A patch card format error has occurred in the 
control stream. The job step is terminated. 

CC06 SNAP s aaaa IGNORED A snap card format error has occurred in the 
control stream. The job step is terminated. 

CC07 NO SOURCE PROGRAM An error occurred when the end-of-file card 
was read prior to the first source card in 
the control stream. The job step is terminated. 

CC08 PARAM CARD ERROR An error was detected in the PARAM card 
which specifies job options. The job step is 
terminated. 

CC10 SOURCE PROGRAM NOT FOUND A program designated as existing on a 
library file cannot be found. The job step is 
terminated. 

CC11 SOURCE LIBRARY FILE NOT ALLOCATED COBOL compiler cannot access the library 
file designated as containing the COBOL 
source program. Job step is terminated. 

Corrective Action 

Allocate sufficient main storage 
and rerun the job. 

Check the LOAD library to make sure 
that the phase is entered. If not, 
enter it and rerun. If the phase is 
in the I ibrary, contact your Sperry 
Univac customer representative. 

Correct the card format and rerun. 

Correct the card format and rerun. 

Correct the card format and rerun. 

Correct the control stream and 
rerun the job. 

Correct the PARAM card and rerun. 

Mount the correct library file 
and rerun the job. 

Correct volume mounting or control 
stream error and rerun the job. 

• 
c 
-0 

Co 
0 
C11 
<O 
:xi 

~ 
w 

en 
-0 mm x :;o 

-I :;o 
~ -< 
oc 
mz o-
~ 80 

°' 0 o en 
r '-

w 

0 
I w 
w 



Table D-2. System Console Messages (Part 2 of 2) 

Message Diagnostic Message Meaning 
Number 

CC12 rena~ ) 
For filename: 

1/0 ERROR ON JOB-STRM . CODE=nnnn An 1/0 error occurred on a work file, 
CORS<.;ARD source, copy, or object module file. 

The 4-digit code is a copy of the 
error status field settings. 

For JOB-ST RM: 
An 1/0 error occurred during job control 
stream processing. The 4-digit code is a 
copy of the control stream error code. 

For CORSCARD: 
An error was detected in the I ibrary 
update correction cards. CODE=0006 indicates 
error in the correction cards. CODE=0007 
indicates error in the SEQ card. 

In all cases, the job step is terminated. 

CC13 COMPILER ERROR phase indication An error has occurred while attempting to 
position a file, or attempting to process 
a phase. The job step is terminated. A 
storage dump is provided. 

C14 COPY LIBRARY MODULE module-name NOT FOUND The source COBOL program has requested 
that a module be included from the copy 
library, and the module cannot be found. 
The job step is terminated. 

CC15 COPY LIBRARY FILE filename NOT ALLOCATED The source COBOL program has requested 
that a module be included from the copy 
library and the compiler cannot access 
the designated library file. The job step is 
terminated. 

CC17 PRINTER NOT ASSIGNED An error has occurred while attempting 
to open the print file PRNTR. The DVC 
and LFD statements are missing or 
incorrect. The job step is terminated. 

_.. CC19 EXTENDED COBOL REQUIRES MICROLOGIC 
The extended COBOL compiler requires the 

EXPANSION 
micrologic expansion feature (2K COS), but 
the standard (1 K COS) microcode has been 
loaded. The job step is terminated . 

" • 

Corrective Action 

Rerun the job. If the error persists, 
contact your Sperry Univac customer 
representative. 

. 

Submit a Software User Report (SUR). 

Mount the correct library or correct 
the module-name reference and rerun 
the job. 

Correct the volume mounting or 
control stream error and rerun the 
job. 

Correct the control stream and rerun 
the job. 

Load the expanded microcode (2K 
COS) or use the Basic COBOL 
compiler. 

• 

c 
"'O 

~ 
U1 
to 
:0 

~ 
w 

en 
"'O mm x :0 

-t :0 
~ -< 
oc mz o-
~ 8n 

lllo o en 
,.... ' w 

co 
"8.~ 
!!! ""' "' > 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

E-1 

Appendix E. Compiler Listings 

E.1. SOURCE CODE LISTING 

A source code listing header line appears at the start of each source code listing. It identifies the compiler, the 
compiler version, the date of the compilation, and the time of day at which the COBOL program was compiled. If 
the date and time are to appear correctly in the source code listing header line, they must be set by the operator 
through the operator commands when the supervisor is loaded. The page heading of the source code listing locates 
the following information: 

CD LINE NO. 

® 

The line number (LINE NO.) is a compiler-generated number which identifies the particular line of COBOL 
source code with which it appears. The line number is used to reference lines of COBOL source code in the 
diagnostic listing, the object program listing, the data division memory map, the procedure division memory 
map, and the cross-reference listing. 

Cor R 

If the COPY verb is used, the letter C appears after the compiler-generated line number, to indicate lines of 
source code taken from the copy library. The letter R is used to indicate lines on which word substitution was 
made. 

@ SEO 

The source item sequence number is listed under SEO (card columns 1 to 6). The sequence number field (card 
columns 1 to 6) is optional. 

@) SOURCE STATEMENT 

The text (card columns .7 to 72) of the COBOL source program is listed. 

@) IDEN. 

Under IDEN., program identification information (card columns 73 to 80) is listed. This is an optional entry 
made by the programmer to provide identification or card deck information. The compiler takes no action 
upon it. 

@ PAGE 

Page number associated with compilation listing. 

A sample source code listing is shown in Figure E-1. 



~ 

t 

COMPILED BY UNIVAC OSl3E COBOL COMPILER VERSION D7.00l02 DATE 79107/26 TI HE 0 1 • OS • If 3 

II PARAH H1::TOL3T 

II PARAM LST::IS,L,c,c,o,x,Al 

SOURCE CREATION DATE 

G)L INE NO, G)SE C, 

OJO(; l 
00002 
occ 03 
OuOU4 
00005 
O~CC6 

CC007 
oocoe 
CGCU9 
00010 
(:~ 011 
CJC12 
rioo 13 
CL0!4 
oco 15 
l":0016 
CGC17 
r:JGO l 8 
0~019 

OGO 2C 
'10021 
o;,o z:? 
00023 
GG0.?4 
00025 
o..;r < E: 

00027 
cac2e 
C0029 
01,jfl 30 
coo 31 
'JU03 2 
OJ033 
OD034 
0L03S 
OJ036 
00037 
CU038 
00039 
00040 
00041 
OC.042 
00043 
000411 
OOOlfS 
00046 

• 

GOICl/74 TIHE 

©scuRCE 

10.03 

ST ATEME"'T 

IUE,..TlFICATIC"' DIVISION. 
PRObPAM-ID. TBL3T, 
REMAFlkS. THIS IS A TEST PROGRAM TO VALIDATE COMPILER PROCESSING 

©IOfN. 

CF ~ARIAPLE TABLES, VARIABLE GROUP ITE~S ANU THE SEARCH VERB. 
ENVIRONMENT DIVI51C,... 
CONFIGURATION SECTION, 
SOURCE-COMPLTER. UNIVAC-94CC. 
C8JlCT-CCMPUTER. UNIVAC-94CO. 
SPECIAL-NAMES. S~SLST IS Po 
INPuT-OuTPLT SECTION. 
•ILE-CONTROL. 

SELECT A ASSIGN TO TPFILl TAPE. 
SELECT B ASSIGN TO TPFIL2 TAPE, 

I-0-CONT"OL, 
SAME RECORD AREA FOR A, 8. 

r-ATA LI~ISILN. 

FILE SfCTIONo 
FL A 

FIECOPOING MOCE V 
BLOCK CCNTAI~S ~OLO ChA~ACT~RS 

LAPEL RECORD5 ARE OMITTED 
DATA hECORDS AFIE AA, AB. 

Cl AA. 
o; AAA PIC S999 COMP. 
03 AAR. 

CS AABA OCCURS 0 TO lCL TIMES DEPENDING ON AAA, 
1NOEX£0 BY AAbAXl, AABAX2, AAbAX3, 
ASCE~DING KEY AABAB, 
OESCENDlNG KEY AABAA IN AAB OF AA, 
ASCENDING KEY AABAC. 

07 AAbAA PIC S99, 
87 AAtiAB PIC S99. 
07 AABAC PIC 599. 

1'.11 Ai; • 

FO 

01 

03 ABA PIC S999 COMP. 
03 ABB, 

rs ABBA OCCURS 100 TIMES 

B 

INDEXED BY 
07 ABBAA 
07 ABB AB 
u7 ABBAC 

RECORDING HOCE U 

ABtlAX 1. 
PIC S99. 
PIC S99. 
PIC S99o 

LABEL RECORD5 ARE OMITTED 
DATA RECORD IS BA. 
BA. 

Figure E-1. Example of Source Code Listing 

• 

©PAGE 00001 

• 

c 
"'O 
00 
0 
01 
c.o 
::0 
Cl) 

~ 

w 

Ul 
m -o xm 
-i ::0 
m ::o z -< 
oc mz 
o:;:: 
() )> 
0 () 
OJ 0 
0 Ul 
r '-

w 

m 
I 

"' 

I 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

E-3 

• E.2. DATA DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING 

• 

• 

The storage map heading line contains the PROGRAM-ID name, the compiler version, and the date and time of 
compilation. 

The page heading locates the following information: 

CD LINE 

The compiler-generated line number on which the data item is defined. 

@ LEVEL 

The level indicator or level number assigned to the item. An * indicates that the item was generated by the 
compiler, as with TALLY. 

@ DATA-NAME 

The name of the item. 

@) REG 

® 

® 

Where applicable, the hardware register number which contains the address used as a base value for referencing 
the item. If a permanent register has not been dedicated to cover the item, an * is listed. 

DISP 

The displacement of the item relative to the address contained in the item's cover register. The number is 
expressed in hexadecimal. 

ADDR 

The address of the item, relative to the first byte of the program. If blank, the address varies due to blocking, 
double buffering, etc. The number is expressed in hexadecimal. 

<J) LENGTH 

The length in bytes of the item. 

@ TYPE 

The class or type of the item where: 

GP Group 
A/N Alphanumeric 
A Alphabetic 
NUP Numeric unpacked 
IDN Index-data-name 
IDX Index-name 
AE Alphabetic edited 
NE 
NP 
VGP 
B 

Numeric edited 
Numeric packed 
Variable group 
Binary (USAGE COMP, USAGE COMP-4) 

FPD Floating-point display 
LFP Long floating point (USAGE COMP-2) 
SFP Short floating point (USAGE COMP-1) 



UP-8059 Rev. 3 

@ PTLOC 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

The decimal point location of the item where: 

E-4 

- integer indicates the number of fractional digit positions plus the number of leading P's in the PICTURE, 
e.g., -5 for PIC PP999 or PIC 9.99999 or PIC 99V99999. 

+integer indicates the number of trailing P's in the PICTURE, e.g., +5 for PIC 99P(5) 

@) occ 

The number of occurrences of the item as specified by the OCCURS clause. 

@ LINE NUMBERS OF REFERENCES 

If the cross-reference list has been specified, the line numbers where one or more procedural references to the 
item were made are listed here. 

Figure E-2 is a sample data division storage map. The data division storage map is listed in ascending order 
according to line number. The information that is presented in the data division storage map may also be listed in 
alphabetical order based on the data names (7 .1.1, the alphabetized cross-reference listings). 

E.3. PROCEDURE DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING 

The storage map heading line will contain the PROGRAM-ID name, the compiler version, and the date and time of 
compilation. 

The page heading locates the following information: 

CD LINE 
The compiler-generated line number on which the item is defined. 

® SECTION 
If the item is a section-name, it is listed here. 

@ PARAGRAPH 
If the item is not a section-name, it is listed here. 

_,.. @) PRIOR 

The priority number of the section-name. 

@ ADDR 
The address of the procedure, relative to the first byte of the program. If the name is not referenced in 
the program, NO REF is listed here. The number is expressed in hexadecimal. 

@ GOTO 
An E indicates that the procedure is the object of a GO TO. 

(j) PERFORM 

@ ENTRY 
An E indicates that the procedure is the object of a PERFORM. 

@ EXIT 
An X indicates that the procedure contains a PERFORM exit point. 

• 

• 

• 



t 
,. • • 

I 
P~OGRAM-IO, TBL3T CO,., PILED !' y LlllIVAC OS/3E COBOL COMPILER VERSION 07.00/02 DATE 79/07/26 Til'E 0 le 05, 'I 3 I I c 

-0 

DATA OIVISIOlll MEMORY MAP PAGE 00068 exi 
0 
C11 
co 

L(DE LEVEL DATA l';A"E 
©D© mR LElllGTH ct/ PGr @ LINE NUMBERS OF REFERENCES jJ 

0 G) CD 10 ® C1l 
~ 

* * * SPECIAL NA,.ES * * * w 

OD 009 77 p 00'152 00454 00462 001!6'1 00473 
00475 

* * * FILE SfCTIOI\ * * * 
... *** * TALLY * c.;oc 000190 3 NP 

OJ 018 FL A 00152 00420 OC42l 00426 00431 
OJC'23 01 A A 5 CLC4 00189G 602 VGP G0022 00429 
JJ '.;24 "' U- ~AA 5 CL O'f 00189G 2 8 !Iii 00026 uOl5e 00166 00114 00182 

00191 00199 00209 00218 00226 
00238 u0248 QC251 00258 00261 
00272 00282 00293 00302 00307 
00315 00321 00361 00368 00375 
00386 00398 00407 00419 

00 0 25 03 A Ai' 5 Cu06 001892 6l0 VGP 00160 00168 00176 00184 00193 
00201 00211 00220 00227 00239 Ul 
00242 L0249 00252 00259 00262 m -o 

xm 
00273 00274 00275 00277 00284 -I jJ 

00285 U0286 00287 00295 00297 m :JJ 
z -< 

00305 00306 00308 00316 00322 ac 
00323 00363 00370 00371 00377 mz 

a:;:: 
00380 00381 00388 00400 00402 () )> 
0(1403 G0409 0 () 

OJ 0 26 C5 A AE A 5 DUOf;; 001892 6 GP 100 00161 00169 00177 00185 00202 CJ 0 
0 Ul 

00212 00221 00228 002'13 00253 r "-
00263 00292 00313 00379 00389 w 
C0423 

00 026 * AA'<AXl * r. c 1 e OOClAO 8 IOX 00423 00425 00440 
OJ 026 ·* A AP AX£ * C02C (00130 8 IDX 
DJ C26 " AA8AX3 * CC28 COClBc B IOX 
DO 031 07 AABAA 5 CG Cc 001892 2 !';UP 
OJ 032 07 A AS AE 5 rccoe 001894 2 lllUP 
00 03 3 07 AABAC 5 CUCA 001896 2 lllUP 
OJ 034 Cl ~8 5 CC04 C0189C 602 GP 00022 
OJ 0 35 C3 Ab A 5 c L.0 4 O(Jl 89G 2 blN 
00 c 36 03 Ac'< 5 OC06 001892 600 GP 00155 00165 00173 00181 00190 

U0198 00208 OC217 00225 00362 
00369 00376 00387 00408 00410 
00418 00422 OC433 00437 

OJ D 3 7 C5 ABS A 5 0006 001892 6 GP 100 
OJ 037 * ~oBAXl * (' l.3 c OOOlCO 8 IOX 
OJ C 39 07 ABBAA 5 rDC6 C01892 2 NUP 

I I m 
OJ 040 07 AbB AB 5 coo a 001894 2 lllUP 1-

C11 
JJ 041 07 A8BAC 5 t:OOA 001896 2 NUP 

OJ042 FD g 00152 00435 00436 00443 001!48 
OJ 046 01 8A 6 0000 001888 602 VGP 00045 001!'16 
00 047 03 BAA 6 cu cc 001888 2 BIN 00050 001!34 

+ Figure E-2. Example of Data Division Storage Map and Cross-Reference Listing 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

@ ALTER 
An A indicates that the procedure is altered. 

@ SORT 

@) ENTRY 
An E indicates that the procedure is the entry point of a SORT procedure. 

@ EXIT 
An X indicates that the procedure contains a SORT procedure exit point. 

@) DEBUG 
An * indicates that the procedure is the object of a debug packet. 

E-6 

If the cross-reference list has been specified, the line numbers where one or more references to the procedure have 
been made are listed under LINE NUMBERS OF REFERENCES. A sample procedure division storage map is shown 
Figure E-3. 

The procedure division storage map is listed in ascending order according to pnonty number above 
SEGMENT-LIMIT, and within priority number in ascending order according to line number. The information that is 
presented in the procedure division storage map may also be listed in alphabetic order based on the procedure names 
(7.1.1, the alphabetized cross-reference listings). 

E.4. OBJECT CODE LISTING AND EXTERNAL REFERENCES 

The object code listing heading line contains the compiler version number and the date and time of the compilation. 

Following the report heading line is a list of external reference symbols (EXTRN and ENTRY names). These are the 
symbols whose object time address cannot be calculated at compile time and must be resolved by the linker. The 
program name and segment names are also listed here so that their object time address can be determined by the 
linker. A 2-character ESID number (External Symbol Identification) follows each name. This number is used as a 
link between the ESID associated with all address constants and the element base to which that address is relative. 

The first entry in the list is the program name and its ESID number of 02. The program name is the PROGRAM-ID 
name from the identification division. If the COBOL program is segmented, the segment names follow. The 
8-character segment name is composed of the first six characters of the program-name and a 2-character segment 
number. The segment number 01 will be assigned to the first section-name whose priority number exceeds 49; 02 to 
the next section with a different priority number greater than 49, etc. The ESID of the first segment is 03, the next 
is 04, etc. 

The next group of names identifies various external programs required in the execution of the COBOL program, 
such as the data management modules and special COBOL object time subroutines. 

The symbols in the last group are names that appear in CALL statements. 

The object code listing page heading identifies the following information: 

LINE# 
The compiler-generated line number on which each procedure division statement exists. 

BASE/DISPL 
This field lists the hardware base register number used to contain the cover address for the line of code. 
The displacement from the address in the cover register to this line of code is also displayed. 

If this field is blank, either no cover is needed for the line of code, or the cover register assignment at 
object time varies and cannot be defined. 

• 

• 

• 



t 

+ 

• 
(!) 

LI NE 

OD 150 
DJ150 
OJ150 

OJ 151 
OJ 154 
OJ 164 
:JJ l 7 2 
OD l &O 
QJ 18" 
OJ 197 
'JO 207 
OJ 216 
OJ 2 24 
OJ 232 
OJ Z 3 7 
OJ 24 7 
OJ 25 7 
OJ 266 
OJ 271 
00 2 81 
OJ 291 
OD 3Cl 
OJ 312 
OJ 319 
OJ 3 30 
OJ 3 37 
'.JO 3 46 
OJ 35 5 
OJ 3 bO 
00 3 67 
OJ 374 
OJ 3 85 
OJ 392 
OJ 3'17 
QO 406 
OJ 41 7 
OD 428 
OD 430 
OJ 432 
OJ 445 
OJ 447 
00 4 49 
OJ 451 
OD 460 
OJ 465 

SECTIW NAME 
PARAG~ NAME 

* * * *\!..(.DEPENDING 
OP$UOOOO 
DP'iC':OOl 
DP$0C002 

PffiR 

SECTION • * * 

• 
PROCEDURE DIVISION MEMORY HAP 

{s) - - - - - VERB REFERENCES ~ - - -
A~C PERFORM A~R SOR I O~G 
~TC E~R EAlT \...!.) E~R EX T ~ 

* * 002738 
002752 
00276C 

~ ~ ~@ 
E 
E 
E 

x 
x 
x 

* * * * END DEPENDING SECTION 
0010 * * * * 002786 
lOCO-MOVE-V-TO-F-PADDED 
1010-MOVE-V-TO-F-TRLNC 
1C20-MOVE-V-TO-f-JUST-PAD 
1030-MOVE-V-TC-f-JUST-TRUNC 
1040-ZERC-LENGTH-TC-F 
1050-MOVE-F-TO-V-PADDED 
1060-MOVE-F-TO-V-TRUNC 
107U-MOVE-F-TO-ZERO-LE~GTH-V 

1080-MOVE-FIGUPATIVE-TC-V 
1090-uECI SION 
llCU-MOVE-V-TO-V-PADDED 
1110-MOVE-V-TO-V-TRLNC 
llZu-MOVE-V-TO-V-ZERO-LENGTH 
20CO-DECI SICf\ 
2010-IF-V-VS-LONGER-F 
2020-IF-V-VS-SHOPTER-F 
2030-IF-ZEPO-LENGTH-VS-F 
204U-IF-V-VS-V 
Zll50-IF-:-vs-z 
206L-IF-V-VS-FIGURATIVE 
2070-IF-ZtPO-LENGTH-V-VS-FCO~ 

20Bu-IF-V-ALPHAbETIC 
2090-IF-V-NUMEPIC 
30CO-DECISICN 
301U-EXAMINE-V-TALLY-ALL 
~020-EXAMINE-V-TALLY-REP-All 
3J30-EXAMINE-V-TALLY-REP-TIL 
3040-EXAMINE-ZERO-LENGT~-V 

40CG-DECISION 
4010-TRANSFORP'-V 
4020-TRANSFORM-ZERO-LENGTH-V 
5010-wRITE-V-REC-P'ODE-V 
5020 
5030 
504u-wRITE-v-REC-M0DE-U 
5050 
5060 
5070 
9000-SUMP'ARY 
9000-DISPLAY 
QOlC-PASS 

0027Alf 
00284C 
0028Fb 
OC299E 
002A48 
002AE6 
OC28AC 
0U2C5E 
002CFC 
002DSC 
oc2cea 
002ED6 
OG2FF4 
0031C6 
1"'03122 
OC3246 
0 u3 3 6 A 
00341f2 
0035CA 
C03b6'+ 
!J037A8 
003 87C 
CG395Z 
OC3A28 
003 A44 
003 AC4 
0038 1A 
0 U3 C 8 '+ 
OlJ3DCE 
00302A 
003EC2 
003F54 
001fll6A 
cc4oeo 
0041Cb E 
C0421E 
0L425C 
004284 E 
004284 E 
0043<10 
004408 

E 
E 

E 
E 

E 
E 

x 
x 

x 
x 

x 
x 

PAGE 00071 

LINE NUMBERS OF REFERENCES 

DOif 19 
001123 
00427 
C01f31f 
00438 
004411 
001177 
00457 
00162 00170 00178 00187 00195 
00205 00214 00222 00230 00245 
00255 002611 00278 00288 00298 
OC309 00317 00327 00335 00343 

Figure E-3. Example of Procedure Division Storage Map and Cross-Reference Listing 

• c 
"1J 
Co 
0 
(11 
(0 

:l) 

~ 
w 

Ul 
"1J mm 

~ :l) 
m :JJ z -< 
oc mz 
o:;:: 
(") )> 
0 (") 
to 0 
0 Ul 
r '-

w 

m 
I 

-..J 



UP-8059 Rev. 3 

ADDRESS 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

The program-relative address where the line of code resides. 

CONTENTS OF MEMORY 

E-8 

The actual hexadecimal description of the code or constants produced. An ESID number appears to the 
right of each address constant (DC A). 

OPERAND ADDRESS 

The program-relative address of the data or constant area being referenced. If this field is blank, the item 
is being addressed indirectly. 

OPCODE 

The mnemonic name for the constant or instruction produced on this line. If this field is blank, and the 
'contents of memory' field contains zeros, alignment is being effected for the next line of code. 

COMMENTS 

This field defines the purpose for which the code was generated. For code in the procedure division, the 
source program verb is listed. 

Prior to the procedure division, the following numbers, displayed under COMMENTS, are used to locate the 
indicated items and areas. 

CD lntersegment GO TO Subroutine 

Used when control is passed from one segment of a segmented program to another. 

@ lntersegment PERFORM Subroutine 

Used when a PERFORM references a section or paragraph in another segment. 

@ PERFORM EXIT Subroutine 

Called at end of paragraph or section referenced as PERFORM EXIT to determine if PERFORM is active or 
not. 

@) CVB 

Converts packed decimal to binary. 

® CVD 

Converts binary to packed decimal. 

@ Multiply Half-Word Subroutine 

Determines product of two binary half words. 

(j) CVB and Multiply Half-Word Subroutine 

Converts a packed decimal number to binary and multiplies it by another binary number. 

@ GO TO DEPENDING Subroutine 

PERFORM function required by GO TO DEPENDING function. 

® Converts separate sign to embedded sign. 

• 

• 

• 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

• @ Converts embedded sign to separate sign. 

@ Same as 10. 

@ Calculate occurrence number. 

@ Transient Storage Area 

Storage area used to perform certain intermediate calculations. 

@ Special Constants 

Constants required by verb generators. 

@ Address of USING Argument Area 

E-9 

Pointer to area used to pass USING arguments to called routines; also used by ACCEPT and DI SPLAY 
functions. 

@ Address of USE Procedure Table 

Pointer to table of USE procedure addresses. 

@ Address of Altered GO TO Table 

• Pointer to table of altered GOTOs in priority segements . 

@ Start of BAT Table 

A table of addresses used to reference data division entries. 

@ Start of PEP Table 

A table of addresses of referenced procedures. 

@ Start of DTF Block Addresses 

A table of addresses which define the starting points of DTFs and the COBOL prefixes for each. 

@ Start of EXTRNs for COBOL Subroutines 

EXTRNed address of subroutines required by certain COBOL functions. 

@ VCON Reference Table 

A table of addresses created by CALL statements compiled as VCONs. 

@ PERFORM EXIT Storage Area 

Area used to save address and other indicators for PERFORM functions. 

• @ Index-Name Storage Area 

Area used to store values of indexes: the value of TALLY is also stored in this area. 



UP-8059 Rev. 3 

@ PERFORM n TIMES Counters 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

A table containing the counters for the PERFORM verb. 

@ Start of DTF Tables 

A series of tables used to define files for input/output functions. 

@ Start of Altered GO TO Table 

A table of altered GOTOs in priority segments. 

@ Start of USE Procedure Table 

A table used to reference USE procedures containing necessary indicators and addresses. 

@ Start of Data Division Initial Values 

Start of listing of constants produced by VALUE clause in working-storage section. 

@ Start of Procedure Division Constants 

Area contains those values and constants required by procedure division literals and functions. 

A sample object code listing is shown in Figure E-4. 

E.5. DIAGNOSTIC ERROR LISTING 

E-10 

The diagnostic listing header line contains the program-ID name, the compiler version, the date, and the time of 
compilation. The page headings locate the following information: 

CD LINE# 
Compiler-generated number which identifies the particular line of source code with which it appears. 

® SVC 
Severity code letter 

@) ERROR 
Diagnostic number 

@) DIAGNOSTIC MESSAGE 
Brief explanation of the error condition 

Explanation of the text of the diagnostic error listing is in Appendix D. 

A sample diagnostic listing is shown in Figure E-5. 

• 

• 

• 



t 
(. (. ,. 

I 

I P .~ 0 GR A '4 - IO • T BL 3 T COP4PILED BY UNIV•C OS/3E COBOL COMPILER VERSION D7e00/02 DATE 79/07126 TIPIE 01.os.1+3 PAGE 00010 I c 
-0 

EXTERNAL REFERENCES 00 
0 
(11 

TH3TOOO 02 CCiEXl'9'1 0 3 CCiSJERR Olt CB i CAD OS C SciAL PH 06 CSiNUMU 07 CSiiANRP 08 CBiUNR 09 ID 

CM QlV'40VE OA DOST 111 Ob CCuBJER3 DC CfiOCP CD C•iHRANS OE CWiEB2AS OF CBiOPCL3 10 ::tJ 
CD 
:c: 

LINE # BASE/DISPL ADDRESS CONTENTS OF MEMORY OPERAND ADDRESSES OPCODE COMMENTS w 

occooo OS FO BALR 
F OGO CC[C02 115 Eli F CC& 000008 BAL 
F C'04 OCG006 07 FC BCR 
F 006 GOCOOB 98 AD F Cl2 000014 LH 
F CCA oocooc 98 59 A CFC 000124 LH 
F 0 .:f 000010 C4 Au SP" 
F '110 GOC.012 07 FE BCR 
F 012 GOC014 1.JOC00028 02 DC A 
F CH OCG018 COC01028 C2 DC A 
F OlA OOCOlC GCC027&6 02 OC A 
F Olf OCC.020 000026£8 02 DC A -
F c ;:2 CCL0,4 GOOOGCOO 

@ A 0 uo OCD028 58 F 0 l 00() L 
A CL4 LCCC;'.C lj 1 00 lJ coo LA 
A IJu8 OCC031J 19 FC CR 
A Q(.j c.iCC032 117 8G f. COO BC (/) 

m -o 
A t'CF: CCC036 58 co 1 COii L xm 
A Cl2 <:;CC03j '>5 OL l OCL cu -t ::tJ 

m:i::J 
A !116 OCC03£ 90 DC 1 QCO SHI z -< 
A Clj COL0112 47 DL F coo BC cc 

mz 
A C lE Of.C046 45 E 0 A C 12 0UDC3A BAL o:;:: 
A C22 uCC04A GOOD 

® 
("") l> 
on 

A rz11 CCC04C 96 OF A C37 OOOGSF OI O:I 0 
A r,2s cccoso 4F IC A 030 000058 CWB 0 (/) 
A r2c OOC054 L7 Ft. BCP r '-

w 
A 0.:'.E OCC.056 ODDO @ A ('3(1 GCC058 oogoocoocooooooo DC X 
A C38 OCCOt.G cs 4& 

®@ A r t.8 LCCC'90 0Du003EB DC X y 

A Doc OC'C094 l.JOu02734 02 DC A • 
A [170 OOC098 00002738 02 DC A @ 
A 074 CCC09C OOLC2752 02 DC A 
A C 7 B GO LOAD ()0C027bC 02 DC A 
A C7C CCCOA4 L0u04408 02 DC A 
A C&O OCCOA8 00u0442A 02 DC A 
A 084 OCCOAC GDLOll4A2 02 DC A 
A Ot>S ODQOBO 00i.l0406A 02 DC A 
A D!lC OCCOB4 LOC04080 02 OC A 
A f190 000088 000041LB 02 DC A 
A (194 ODCOBC 000042lE 02 OC A 
A D98 OD GO CO u000425C (lZ DC A 
A 09( LOGOC4 i.J00042b4 02 DC A I I m 

CAO ODGOC8 0000i14'1C 02 DC A 
I 

A ~ 

A 0A4 occocc 00004390 D2 DC A 
A OA8 000000 COG04284 02 DC A 

@ A CAC u0GC04 GOOOU210 02 OC A 
A OBO OOLODB 00000210 02 DC A 
A CBll CCGODC 00000308 02 DC A 

t 
Figure E-4. Example of Object Code Listing and External References 



t 

2 3 '4'\ CT(
PROmAM~D TBL3T COMPILED BY UNIVJC OS/3E COBOL COMPILER VERSION 07.00/02 DATE 79/07/26 

IN V RROR ~!AGNOSTIC MESSAGE 

OOlbO P 181 AAP TRUNCATED DURING HCVE. 
00 lb8 p 1 81 AAB TRUNCATED DUPING HCVE. 
0017b p 181 AAP TRUNCATED DURING HCVE. 
OJ18'1 P 181 AAP TRUNCATED CURING MCVE. 
OJ193 P 181 AAF TRUNCATED CURING HCVE. 
OJ274 P 181 AAP TRUNCATED DURING HC~E. 

***""l•fRPOR S u- (('(,0 s- 0000 c- ooco P- GOO& ••••• 
OS/3E CCbOL COMPILATION COMPLETE TbL3T START 01.05.43 END 01.07.59 

Figure E-5. Example of Diagnostic Listing 

t 

• • 

TIHE 0 lo OS• lt3 

PAGE OD077 

• 

c 
""CJ 
00 
0 
U1 
co 
:c 
~ 
w 

en 
""CJ mm x :c 

-I :c 
~ -< 
cc 
mz c< 
("') )> 
on 
CII 0 o en 
r '-

w 

m 
.!... 
N 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

E-13 

• E.6. ALPHABETICALLY ORDERED DATA DIVISION CROSS-REFERENCE LISTING 

• 

• 

This listing presents the same information as the data division storage map (Figure E-2). but the items are presented 

in ascending sequence by data-names. 

Figure E-6 is a sample alphabetically ordered data division cross-reference listing. 

E.7. ALPHABETICALLY ORDERED PROCEDURE DIVISION CROSS-REFERENCE LISTING 

This listing presents the same information as the procedure division storage map (Figure E-3), but the items are 
listed in ascending sequence by procedure-names. 

Figure E-7 shows a sample alphabetically ordered procedure division cross-reference listing. 

t 



t 
I 

P~OGRAM-IO, Tf:iL3T COMPILED By LNIVAC OS/3E COBOL COHP IL ER llERSION 07.00102 OATE 19101126 Til'E 01.05,113 c 
DATA DIVISION tROSS REFERENCE PAGE 

-0 
00073 00 

0 
DATA NAME LEVEL LINE REG DISP ADOR LENGTH TYPE PTLOC OCCURS 

01 
LINE NUMBERS OF REFERENCES c.o 

:JJ 
C1l A Fu CCC18 OC152 001120 001121 001126 001431 :<: 

AA Cl COCZ3 5 CDClf 001890 602 VGP O!J022 001129 w 
A A A ru rco211 5 Lif·Cll 001890 2 BIN OC026 00158 00166 001711 00182 

00191 00199 00209 00218 00226 
00238 0021f8 OC251 00258 00261 
00272 00282 00293 00302 00307 
Ot"315 00321 00361 00368 00375 
00386 00398 OCll07 001119 

A A f' G3 f(.!025 5 LOC6 OC1892 60~ VGP OC160 00168 00176 00181f 00193 
002rI 00211 00220 00221 00239 
OC242 00249 00252 00259 00262 
00273 U0274 00275 00277 00284 
OC285 UrJ'286 OC287 00295 00297 
OC305 00306 00308 00316 00322 
GC323 00363 OC370 00371 00377 
OC38G LiC381 00388 00400 00402 
cr4c3 00409 

A AP A c~ CC.026 5 LCC6 lJC 18<; 2 6 GP 100 00161 U0169 OC177 00185 00202 
Ul 

c~212 un221 00220 00243 002s3 m -c 
00263 00292 00313 00379 00389 xm 

-I :JJ 
00423 m :JJ 

A Ac AA 07 CG031 ~ UCC6 LlC1892 2 NOP z -< 
oc AA r· AB 07 CL.C32 5 ccce OC1894 2 NUP mz 

A A2A C r7 CC033 5 LC CA OCl 896 2 NUP o< 
AA ~O l * CLC.:'6 * uc1e UCOlAR e IOX 00423 u01125 CCll40 () )> 

0 () AA r. AX 2 .. rCC26 * ocn OCClbO 8 rnx tllo 
AAEAX3 * CL026 * GC28 00Ulb8 8 IOX Oui 
A3 "l CLC34 5 LCClf GC l 89 0 6[J2 GP cro2 2 

r ....._ 
w 

t. 3 A r3 rL035 5 UCCll OC1890 ? BIN 
A 3 D Cj c (, (3 €- 5 uCC6 G018S2 6LO Gf' 00155 00165 0(173 00181 00190 

00198 U0208 00217 00225 00362 
C0369 0037b OC387 001108 0041U 
CC416 00422 001133 001137 

A 3 ° A C!> c i:.!13 7 5 uCCf: JC1892 !:: Gf' 1 co 
A 3 ? A A 07 CU039 s OCC6 001892 2 NUP 
A 3 t AP 07 C C04r:J 5 00(8 OC18S4 2 NUP 
A 3 E AC G7 ( 8041 s OOOA 001896 2 NUP 
A3 PAXl * CC037 * 003C OOOlCIJ 8 !DX 
3 FU [(;04? DC152 001135 OC436 0014113 0011118 
BA 01 CC04€- 6 occo 001888 602 VGP OCOlfS U041f6 
3 A A (3 (U047 6 uOCO OC1988 2 BIN lJ0050 00434 
9 A 8 03 c uC4 e 6 OOC2 CC188A 600 VGP 
3AeA 05 (0049 6 COC2 C0186A 6 A /N 100 C01f38 
8 AB AX l * CU049 • 00 38 G001C8 8 IO X 001138 
"'A ILURE 88 ( c 14 8 7 OA2C 002510 1 NUP 00233 00267 00356 00393 I I m 

I p 77 ( 0009 00452 001154 001162 00461f 00473 -!>-
00475 

TA LL Y * ***•* * uCOC 000190 3 NP 
WA 01 (0053 7 coco OClAFO 602 VGP 
WA A 03 (0054 7 C;CCO OOlAFO 2 BIN COOS6 00238 OC21fl 0021f8 00258 

Figure E-6. Example of Alphabetically Ordered Data Division Cross-Reference Listing 

• .\ • • 



t 
i. • • 

PROCEDURE DIVISION CROSS REFERENCE PAGE 00075 I I c 
"'O 

PROCEDURE NAME TYPE LINE AODR GO PERFORM ALTER SORT DEBUG 
ix> 
0 

PR I TO ENTER t.X IT ENTER EXIT LINE NUMBERS Of REFERENCES 01 
co 
::0 

0~ 'fGGUCO PAR co1s n CD273b E x <I> 
:<: 

O"rnOOOl PAR C Cl 5 0 DU27S<: E x w 
o~ ioroo2 PAR C Cl 5 C 00276C E x 
OD l C PAR (0151 002786 
lJOO-MOVE-V-TO-F-PAODlO FAR CC154 C027A4 
lJlO-MOVE-V-TO-F-TPUNC PAR (01C4 CU284C 
lJZU-ViOvE-V-TO-F-JU~T~PAD PAR Cll 7 2 CC28Fb 
lJ?C-MOV~-V-TO-F-JUST-TRUNC PAR C Cl 8 0 C0299E 
1040-LERC-LENGTH-TO-F PAR (01&9 C02A4!! 
1050-f"OVE-F-TO-V-PADCED PAR CC197 C02AEb 
106C-f"OVE-F-TO-V-TPU";C PAR r C2U7 C02BAC 
lJ7G-f"CVE-F-TC-ZfRC-LENGTH-V PAR CG216 Cu2C5l 
lJ8C-MCVE-FlGURATIVt-TO-V PAR ( 022 4 C IJ 2 CFC 
1J9U-UECISIC'i PAR (0232 CD209C 
11 CC-f"OVE-V-TO-V-PAOJ:l~D PAR ( 023 7 0 C 2 DB 8 
11l0-MOVE-V-TO-V-TRUNC PAii ClJ247 CCZED6 
1 l 2L: - M 0 VE - V- T 0- V - Z F. R 0 -L EN GT h PAR ( U25 7 CU2ff 4 
2J rl.-GECI'.,IO'> PAR r CZb 6 DL31DL 
20 lG-IF-V-VS-LO!'<ftJl-F PAR CL271 CLl3122 en 
2~20-IF-V-V~-SHOrTfR-F PAR c 02tl CU321!L m -o 

xm 
2030-JF-?EqO-LENETH-VS-F PAR C C29 l Cu336A -i ::0 m :o 
2J i.c-IF-v-vs-v PAR CL.301 CU341!2 z -< 
20 SO-IF-1-VS-Z FAR ((;312 CU3SCA oc 

mz 
2D6LJ-IF-V-VS-FIGURATIVE PAR C G3 l 9 CG3E:64 o< 
2J7G-1F-?EPG-LENG1H-V-VS-FCON PAR C C3 3 0 CC37Ab (') )> 

2080-IF-V-ALPHA~ETIC PAR ( 033 7 CU387C 0 (') 
CD 0 2090-IF-V-NU"'ERIC PAR CC346 cu 3 '75 .< o en 

30 CO-DECISION PAR (0355 oo3n!l r '-
3JlO-lXAMI~l-V-lALLY-ALl PAR c 03t. n CU3A44 

w 

3J2C-EXA"'lNE-V-TALLY-REP-ALL PAR C C36 7 003 AC4 
3J3C-EXA~INE-V-TALLY-REP-TIL PAR CL374 CL367A 
3040-EX~MlNE-ZERO-LE~GTH-V PAR C C38 5 C03C84 
40 ro-DECISION PAR ( C.3<> 2 Cl.i3DOl 
4JlC-TRANSFOR .. -V PAR C C39 7 CU302A 
4020-TQANSFGRM-ZERO-LENGTh-V PAR CL:l!G6 CG3£C2 
5010-wRITE-V-REC-MODf-V PAR (0417 C03F54 
SJ 20 PAR ( 01! 2 8 OGl!06A [ x u0419 
SD 30 PAR CC430 OOl!CBO £ x 00423 
SJ40-.RITE-V-REC-MODE-U PAR (043 2 C041C& E 00427 
5J50 PAR (0445 C0421£ £ x 00434 
SD 60 PAR (0447 OG425C E x 00438 
SD 70 PAR (0449 (104284 E 00444 
9JOO-DISPLAY PAR C04b0 00439D l x 00457 
90 OD-SUMMARY PAR (0451 CC42Bll E 00477 
9010-PASS PAR C C4b5 COll408 E x 00162 00170 00178-00187 00195 

I I m 
00205 002111 00222 00230 00245 I 

~ 

00255 00264 00278 00288 00298 01 

00309 00317 00327 00335 00343 
00352 00365 00372 00382 00390 
004011 00411 00425 00441 

9020-FAIL PAR (0468 004112A E x 00163 00171 00179 00188 0019& 

• Figure E-7. Example of Alphabetically Ordered Procedure Division Cross-Reference Listing 



• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

F-1 

Appendix F. Conversion Mode 

F.1. GENERAL 

To facilitate the conversion of IBM/360 DOS COBOL level D to SPERRY UNIVAC Operating System/3(0S/3) 
COBOL, a conversion facility has been built into the OS/3 extended COBOL compiler. This facility, called the 
conversion mode (C-mode) accepts COBOL source code and alters it to American National Standard specifications, 
or issues diagnostics so the programmer is made aware of the need for changes. 

F.2. CONVERSION MODE OPERATION 

A PARAM statement option is available to energize the conversion mode of the OS/3 COBOL compiler . 

The conversion mode availability does not imply total source program transfer capability. Its intent is to minimize 
the volume and complexity of source program alterations necessary to compile successfully a given COBOL-D 
program. Every attempt is made to provide software support for those language differences that would, under a 
totally manual conversion process, require a knowledge of the source program intent and logic flow. Source program 
statements that must be altered prior to compilation are, in most cases, independent of program design. 

The conversion mode may sometimes assume the presence of a particular OS/3 COBOL clause in order to ensure the 
proper processing of a COBOL-D clause. An example of this technique is the fabrication of a SYNCHRONIZED 
clause for each appearance of a COBOL-D COMP, COMP-1, or COMP-2 clause. 

In the conversion mode, various compiler processing paths are altered to effect a change in the semantic 
interpretation of a COBOL-D clause or statement, as in the case of contradiction across compilers associated with 
the IF NUMERIC statement. 

Occasionally, an entire processing philosophy can be reversed. In the conversion mode, the compiler assumes that 
ASCII print control characters are utilized in all print files. In addition, a special COBOL-supplied object time 
subroutine is provided to ensure acceptable object program print speed. This software bridges the gap between the 
exclusive use in COBOL-D programs of the WRITE AFTER ADVANCING statement and the associated UNIVAC 
90/30 System hardware limitation. 

This appendix describes the known differences that exist between COBOL-D and UNIVAC OS/3 COBOL. It also 
defines the language differences that the conversion mode renders transparent. Those language differences for which 
no automatic software support is possible also are identified here, along with the appropriate source program change 
requirement. 

When functioning in the conversion mode, many of the compiler American National Standard language features are 
disabled. Therefore, it is not recommended that a COBOL-D program, once converted, be modified to take 
advantage of the many additional OS/3 COBOL language capabilities without first being totally converted to 
American National Standard COBOL. 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

F-2 

In the normal American National Standard COBOL mode, COBOL-D language differences are not permitted. The 
special processing interpretations and software extensions available in the conversion mode are not supported in the 
American National Standard mode; that is, control character print files are unique to the conversion mode. 

F.3. CONVERSION MODE SYNTAX 

The differences between COBOL-D and OS/3 COBOL are described in the following paragraphs within each program 
division. 

F .3.1. Identification Division 

• PROGRAM-ID. program-name. 

COBOL-D 
Program-name is one to eight characters enclosed in quotation marks. 

OS/3 COBOL 
Program-name is 1 to 30 characters not enclosed in quotation marks. Only the first 6 characters, 
excluding hyphens, are used to identify the object program. 

C-mode 
OS/3 accepts a 1- to 8-character name enclosed in quotation marks. Only the first 6 characters, 
excluding hyphens, are used to identify the object program. 

F.3.2. Environment Division 

• CONFIGURATION SECTION heading. 

COBOL-D 
Optional 

OS/3 COBOL 
Required 

C-mode 
Optional 

• SOURCE/OBJECT COMPUTER clause. 

COBOL-D 
IBM-360 model-number 

OS/3 COBOL 
UNIVAC-9030 

C-mode 
The compiler accepts any SOURCE/OBJECT COMPUTER entries valid for COBOL-D. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

F-3 

• SPECIAL-NAMES paragraph/DECIMAL-POINT IS COMMA clause 

COBOL-D 
Does not exist. Reversal of decimal point and comma is activated by a parameter on the CBL control 
card. 

OS/3 COBOL 
Reversal of decimal point and comma controlled by SPECIAL-NAMES entry. 

C-mode 
No automatic support. The converter must insert a special-names paragraph and the DECIMAL-POINT 
IS COMMA clause into the source program before compiling. 

If the CONSOLE or SYSLST option of an ACCEPT/DISPLAY statement is used in the program, the 
compiler automatically produces a special-names entry, internally, for the program. CONSOLE is 
equated to SYSCONSOLE, and SYSLST is equated to SYSLST. 

• SELECT/ASSIGN clause 

COBOL-D 

{ 

DIRECT-ACCESS } 
ASSIGN TO 'external-name' UNIT-RECORD 

UTILITY 

device-number UNIT(s) 

OS/3 COBOL 
ASSIGN TO 'external-name' integer implementor-name 

C-mode 
No automatic support. The COBOL-D SELECT statement, with respective ASSIGN clauses, must be 
replaced by the appropriate SELECT/ASSIGN clauses before compilation. 

• ACCESS clause 

COBOL-D 
The word 'IS' is optional. 

OS/3 COBOL 
The word 'IS' is required. 

C-mode 
The word 'IS' is optional. 

• KEY clauses 

COBOL-D 
The word 'IS' is optional. 

OS/3 COBOL 
The word 'IS' is required. 

C-mode 
The word 'IS' is optional. 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

F-4 

• 1-0-CONTROL paragraph entries 

COBOL-D 

Allows the clauses of the 1-0-CONTROL paragraph to be separated by periods. 

OS/3 COBOL 

Allows the clauses to be separated by a comma or a semicolon. A period must follow the last entry in 
the paragraph. 

C-mode 

No automatic support. The embedded periods within the 1-0-CONTROL paragraph must be removed 
prior to compilation or diagnostics will result. 

• RE RUN clause 

COBOL-D 

{ 
DIRECT ACCESS } 

RERUN ON 'external-name' UTILITY device-number 

UNIT(s) EVERY integer RECORDS OF file-name. 

External-name may not be the same as the external-name in an ASSIGN clause. 

Allows a maximum of 20 external devices to be used to store checkpoint records, only one of which can 
be a direct access device. 

• 

Checkpoint records are written preceding the execution of integer for a READ, WRITE, or REWRITE • 
statement. Integer may not exceed 8,388,607. 

OS/3 COBOL 
RERUN ON 'external-name' EVERY integer RECORDS OF file-name 

The external-name must be specified in an ASSIGN clause. 

The only restriction on the devices is the compiler limit of 63 devices per program. 

Integer may not exceed 9,999,999. 

C-mode 
No automatic support. The RERUN clause must be replaced by one that conforms to the OS/3 COBOL 
format. A SELECT statement must be added for each external-name in each RERUN clause. 

• APPLY clause for FORM-OVERFLOW 

COBOL-D 
APPLY overflow-name TO FORM-OVERFLOW ON file-name. 

OS/3 COBOL 
This clause is not supported. 

C-mode 
No automatic support. Remove the APPLY FORM-OVERFLOW clause from the source program. Add a 
USE FOR FORM-OVERFLOW procedure in the declaratives portion of the procedure division for 
detection of page breaks. • 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

F-5 

• APPLY clause for RESTRICTED SEARCH 

COBOL-D 
The word 'ON' is optional. 

OS/3 COBOL 
The word 'ON' is required. 

C-mode 
The word 'ON' is optional. 

• COPY library-name 

COBOL-D 
Library names are enclosed in quotation marks. 

OS/3 COBOL 
Library names are not enclosed in quotation marks. 

C-mode 
Library names are enclosed in quotation marks. All libraries are expected to be in OS/3 format. 

F.3.3. Data Division 

• LABEL RECORDS clause 

COBOL-D 
Optional clause. If omitted, LABEL RECORDS OMITTED is assumed. For LABEL RECORDS ARE 
data-name, the data names must be 01- or 77-level items in the linkage section. 

OS/3 COBOL 
Required clause. If the clause is omitted, a diagnostic is produced and OMITTED is assumed (unless 
device is disc, then labels are assumed to be STANDARD). For LABEL RECORDS ARE data-name, the 
data-name record description must be subordinate to the file description. 

C-mode 
Optional clause. Same default as COBOL-D. Label data-names must be in linkage section as 01- or 
77-level items. 

• PICTURE clause 

COBOL-D 
The sterling currency feature may be specified by extensions to the PICTURE clause. 

OS/3 COBOL 
The sterling currency feature is not supported in UNIVAC-9030 COBOL. 

C-mode 
The sterling currency feature is not supported . 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

F-6 

• COPY specifications 

COBOL-D 

The COPY statement is allowed on level-number 77 items in the working-storage and linkage sections. 

OS/3 COBOL 
The COPY statement is not allowed on level-number 77 items. 

C-mode 

The COPY statement is allowed on level-number 77 items in the working-storage and linkage sections. 
However, the implied replacing feature is not supported. Replacing can be accomplished by use of 
explicit REPLACING clauses. All COPY libraries are expected to conform to OS/3 COBOL formats. 

F .3.4. Procedure Division 

• ACCEPT statement 

COBOL-D 
A maximum of 72 characters may be accepted from the console. 

When the FROM option is not used, one logical record will be retrieved from the system logical input 
device (SYSIPT). 

Since a special-names paragraph is not available, the only acceptable FROM option is CONSOLE. 

If/* is encountered on an ACCEPT statement, a fall through to the next source statement is effected. 
End-of-file detection is the user's responsibility. 

OS/3 COBOL 
A maximum of 60 characters may be accepted from the system console. 

When the FROM option is not used, a maximum of 4095 characters (52 card images) is retrieved from 
the job stream. 

If /* is encountered on an ACCEPT statement, an object-time diagnostic is issued and the program is 
terminated. 

C-mode 
SYSIPT is equivalent to the UNIVAC OS/3 job control stream file. 

The compiler creates an internal special-name definition to equate CONSOLE to SYSCONSOLE. 

• DISPLAY statement 

COBOL-D 
When UPON option is omitted, SYSLST is assumed. 
Displays may be directed to SYSPUNCH. 
The sign of a numeric item is not displayed as a separate character, e.g., -32 displayed as 3K. 

OS/3 COBOL 
When the UPON option is omitted, SYSCONSOLE is assumed. 
Displays to a punch are not supported. 
The sign of a numeric item is displayed as a separate character, e.g., -32 displayed as 32-. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

F-7 

C-mode 
When the UPON option is omitted, SYSLST is assumed. The compiler creates an internal special-name 
definition to equate SYSLST to SYSLST. 

Restriction. Displays to a punch are not supported. The sign of a numeric item is displayed as a separate 
character. 

• IF statement 

COBOL-D 
A class test may be performed on an item whose usage is either DISPLAY or COMP-3 (packed decimal). 
An IF NUMERIC test always assumes the item is signed, for example: 

DATA-AA PIC X VALUE IS 'A'. 

An IF NUMERIC test on DATA-AA yields a 'yes'. 

OS/3 COBOL 

A class test may be performed on an item whose usage is either DISPLAY or COMP-3, but not 
floating-point display. 

An IF NUMERIC test does not assume an item is signed. The sign is interrogated only if the item is 
declared to be signed; for example: 

DATA-AA PIC X VALUE IS 'A' . 

An IF DATA-AA NUMERIC results in a 'no'. 

C-mode 

No automatic support. The item to be tested should be defined as signed. 

• INCLUDE Statement/COPY Function 

COBOL-D 
An INCLUDE statement in the procedure division implies a COPY function. 

OS/3 COBOL 
The INCLUDE statement is not supported. The COPY verb must be used. 

C-mode 
The INCLUDE statement is equated to the COPY function. Library names enclosed in quotation marks 
are accepted. COPY libraries are expected to be in OS/3 format. 

• MOVE statement 

COBOL-D 
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to 'F'. 

OS/3 COBOL 
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to plus. 

C-mode 
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to 'F'. 



UP-8059 Rev. 3 

• ON statement 

COBOL-D 
This statement is supported. 

OS/3 COBOL 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

This debugging statement is not supported. 

C-mode 
No automatic support. This clause is not supported. 

• READ statement 

See F .5 for disc considerations. 

• STOP statement 

COBOL-D 

F-8 

When the STOP RUN statement is encountered in a called program, control is returned to the calling 
program. 

OS/3 COBOL 
A STOP RUN statement causes an end-of-job termination sequence. 

C-mode 

When a STOP RUN statement is encountered in a called program, it is treated as an EXIT PROGRAM 

statement. 

• USE AFTER STANDARD ERROR PROCEDURE 

COBOL-D 
The word 'PROCEDURE' is optional. 

OS/3 COBOL 
The word 'PROCEDURE' is required. 

C-mode 
The word 'PROCEDURE' is optional. 

• USE FOR LABEL PROCEDURE 

COBOL-D 

US OR {CHECKING} { BEGINN~NG} LABELS 
___! F CREATING ENDING 

{
INPUT } . 

ON Ou'Ti>UT file-name 

OS/3 COBOL 

USE {AFTER } STANDARD {BEGINNING} 
- BEFORE ENDING 

~ 
file-name 1 

PROCEDURE ON INPUT 
1-0 
OUTPUT 

{

FILE } 
REEL LABEL 
UNIT 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

C-mode 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

F-9 

No automatic support. The USE statement for label procedures must be rewritten in accordance with 
OS/3 COBOL format. 

• WRITE statement 

See F .4 for printer considerations, and F .5 for disc considerations. 

• *DEBUG card 

COBOL-D 
*DEBUG packets precede the source deck. 

OS/3 COBOL 
*DEBUG packets follow the source deck. 

C-mode 
No automatic support. The *DEBUG packets must be moved from in front of the source program and 
placed behind the source program. 

F .3.5. Reserved Words 

C-mode 
The following OS/3 COBOL reserved words may currently exist in COBOL-D source programs as 
user-defined words. Their use as user names will not be allowed by the OS/3 extended COBOL compiler. 

ASCENDING DISC MAP SEPARATE 
ASCII DISC-8411 MASTER-INDEX SEEK 

DISC-8414 MEMORY SET 
BEFORE DISC-8415 MODULE SIGN 
BLOCK-COUNT DISC-8416 MORE-LABELS SORT 
BLOCK-LE NG TH-CH ECK DISC-8418 MULTIPLE SPECIAL-NAMES 
BUFFER-OFFSET DISC-8430 STATUS 

DISC-8433 OFF SYNC 
CARD-PUNCH DOWN OPTIONAL SYNCHRONIZED 
CARD-READER OUK-90-250 SYSCHAN-1 
CARD-READER-51 EQUALS OUK-90-300 SYSCHAN-2 
CARD-READER-66 EXTENDED OUK-90-400 SYSCHAN-3 
CHARACTERS EXTENDED-INSERTION OUK-90-600 SYSCHAN-4 
COMMA EBCDIC OUK-90-700 SYSCHAN-5 
COMPUTATIONAL SYSCHAN-6 
COMPUTATIONAL-3 FILE-LIMIT PERCENT SYSCHAN-7 
COMPUTATIONAL-4 FILE-LIMITS PIC SYSCHAN-8 
COMP FILE-PREPARATION POSITION SYSCHAN-9 
COMP-3 PRINTER SYSCHAN-10 
COMP-4 INDICES PROGRAM SYSCHAN-11 
CORR INDEX SYSCHAN-12 
CORRESPONDING INSERT SYSCHAN-13 
CURRENCY RELEASE SYSCHAN-14 
CYLINDER-INDEX JUST REMAINDER SYSCHAN-15 
CYLINDER-OVERFLOW RENAMES SYSCOM 
DECIMAL-POINT LINE SYSCONSOLE 
DESCENDING SEARCH SYSDATE 

SEGMENT-LIMIT 

~ 

~ 



UP-8059 Rev. 3 

SYSERR SYSERR-17 
SYSERR-0 SYSERR-18 
SYSERR-1 SYSERR-19 
SYSERR-2 SYSERR-20 
SYSERR-3 SYSERR-21 
SYSERR-4 SYSERR-22 
SYSERR-5 SYSERR-23 
SYSERR-6 SYSERR-24 
SYSERR-7 SYSERR-25 
SYSERR-8 SYSERR-26 
SYSERR-9 SYSERR-27 
SYSERR-10 SYSERR-28 
SYSERR-11 SYSERR-29 

SYSERR-12 SYSERR-30 

SYSERR-13 SYSERR-31 
SYSERR-14 SYSIN 

SYSERR-15 SYSIN-96 

SYSERR-16 SYSIN-128 

SYS LOG 

F.4. PRINTER FILE SUPPORT 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

SY SSW CH 
SYSSWCH-C 
SYSSWCH-1 
SYSSWCH-2 
SYSSWCH-3 
SYSSWCH-4 
SYSSWCH-5 
SYSSWCH-6 
SYSSWCH-7 
SYSTIME 

TAPE 
TAPES 
TAPE-6 
THROUGH 
TIME 
TRACKS 
TRAILING 

F-10 

UNIVAC-9000 
UNIVAC-9025 
UNIVAC-9030 
UNIVAC-9040 
UNIVAC-9060 
UNIVAC-9070 
UNIVAC-920011 
UNIVAC-9300 
UNIVAC-930011 
UNIVAC-9400 
UNIVAC-9480 
UNIVAC-9700 
UP 

VALUES 
VERIFY 

WORDS 
WHEN 

Support is available for printer files in the conversion mode of the compiler; the aim is to be as compatible as 
possible with COBOL-D printer file processing within the limits of hardware differences. 

• 

In the conversion mode, the compiler produces object code to change logical advance-then-print commands into .-
physical print-then-advance operations. This causes full-speed operation of the printer subsystem. All printer files 

must be defined and referenced according to COBOL-D rules. COBOL-D control characters must be used; 
consequently, neither a BEFORE ADVANCING nor an ADVANCING mnemonic-name is supported in the source 
language. The only acceptable format for a printer WRITE statement is: 

Rules: 

WRITE record-name FROM identifier 

AFTER ADVANCING {i~entifier} LINES 
hteral 

1. The printer file must have fixed recording mode. 

2. Each logical record defined in the printer file must have the first character position reserved for a control 
character. The control character is used to control printer spacing, but is not actually printed. The legal 
control characters are as follows: 

blank 
0 

+ 
1 through 9 
A through C 

Print and space 1 line. 
Print and space 2 lines. 
Print and space 3 lines. 
Print and space 0 lines. 
Print and skip to channel. 
Print and skip to channel. 

3. When the FROM phrase is used, the identifier specified in the FROM phrase must also reserve the first 
character position to contain a control character. • 



• 

• 

• 

UP-8059 Rev. 3 

4. 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

F-11 

When the AFTER phrase is used, the identifier specified in the AFTER phrase must be a 1-character 
alphanumeric item that contains a control character. 

5. When a literal is specified in the AFTER phrase, the literal must be numeric, with only the following 
being valid: 

0 
1 
2 
3 

Restrictions: 

Print and skip to home paper. 
Print and space 1 line. 
Print and space 2 lines. 
Print and space 3 lines. 

COBOL-D allows an APPLY FORM-OVERFLOW clause in the 1-0-CONTROL paragraph of the environment 
division. The APPLY FORM-OVERFLOW clause mus be converted to a USE FOR FORM-OVERFLOW procedure 
in the declaratives portion of the procedure division. 

In COBOL-D, when APPLY FORM-OVERFLOW is specfied, one line is printed after the overflow punch in the 
carriage control loop is detected. Because of the manner in which the logical write commands are converted into 
physical commands, three lines are printed after overflow is detected. 

To overcome the problem of three lines being printed, the overflow punch must be moved back on the carriage 
control loop by two logical print commands (two lines if single spacing, four lines if double spacing, etc.). If the 
overflow punch crosses or coincides with another carriage control punch, the program cannot produce the proper 
print formats when the program is executed and manual conversion is required . 

No action is taken when form overflow is detected unless specified by a USE FOR FORM-OVERFLOW procedure. 

Testing of the condition-name specified in the APPLY FORM-OVERFLOW clause must be deleted from the existing 
procedure division and must not be used in the USE FOR FORM-OVERFLOW procedure. An alternate method is to 
leave testing of the condition-name as is and to use the USE FOR FORM-OVERFLOW procedure as a place to set 
the condition-name to the true state. 

The IBM model 1403 printer supports carriage-control channels 1 through 12. The SPERRY UNIVAC printer 
subsystems support various carriage control channels, depending on the printer subsystem on line. The COBOL-D 
carriage control references are translated as follows: 

COBOL-D 
Carriage Control Punch 

Control Character 
0773 0770 0768 

1 (Home paper) 7 7 14, 15 
2 2 2 12 
3 3 3 13 
4 4 4 4 
5 5 5 5 
6 6 6 6 
7 7 7 15 
8 2 8 8 
9 1 9 9 
A 3 10 10 
B 4 11 11 
C (Form overflow) 1 12 9 



UP-8059 Rev. 3 

F.5. DISC FILE SUPPORT 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

F-12 

The following paragraphs detail considerations for conversion of COBOL source programs dealing with files assigned 
to direct access devices. 

To facilitate an understanding of the differences between the COBOL compilers, a clause-by-clause, verb-by-verb 
difference description follows, by file organization. 

F .5.1. Sequential Organization 

• SELECT/ASSIGN clause 

The SELECT/ASSIGN clause requires a source program change to meet the format requirements of OS/3 
COBOL. 

• APPLY VERIFY clause (not available in COBOL-D) 

When in C-mode, the compiler automatically sets the verify function without regard to the APPLY clause 
present in the source program. 

• LABEL RECORD definition 

In C-mode, the compiler accepts the LABEL RECORD definition in the linkage section. 

• REWRITE verb 

In C-mode, the compiler accepts the REWRITE verb when the file is opened for 1/0. 

• INVALID KEY phrase 

When C-mode is active, the compiler causes transfer to the USE FOR ERROR procedure or initiates an 
end-of-job sequence when an INVALID KEY condition is detected and there is no INVLAID KEY phrase 
specified. 

F.5.2. Indexed Organization 

• SELECT/ASSIGN clause 

The SELECT statement with its ASSIGN clause requires a source program change to meet the format 
requirements of OS/3 COBOL. 

• APPLY VERIFY clause (not available in COBOL-D) 

In C-mode, the compiler automatically sets the verify function without regard to the APPLY clause. 

• APPLY MASTER-INDEX clause (not available in COBOL-D) 

In OS/3, this clause serves for documentation only. 

NOTE: 

COBOL-D specifies this option via the job control stream. 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

• APPLY CYLINDER-OVERFLOW clause (not available in COBOL-D) 

F-13 

If this clause is not inserted in the source program, the compiler specifies that 20% of each prime data cylinder 

is to be reserved for cylinder overflow area. 

• APPLY CYLINDER-INDEX AREA clause (not available in COBOL-D) 

If this clause is not specified in the source program, the compiler does not allocate main storage area to 

accommodate the cylinder index. 

• APPLY EXTENDED-INSERTION AREA clause (not available in COBOL-D) 

IN OS/3, this clause serves for documentation only. 

• RECORD KEY description 

In C-mode, the record key size must not be less than 3 or greater than 249 bytes. 

• SYMBOLIC KEY description 

• 

In C-mode, the symbolic key size must not be less than 3 or greater than 249 bytes. 

OPEN verb 

In C-mode, the file is positioned to the logical record specified in the SYMBOLIC KEY item, or, if none is 
specified, the file is positioned to the first record . 

F .5.3. Direct Organization 

No conversion mode support is provided for ORGANIZATION IS DIRECT. 

F.5.4. Error Testing in USE AFTER ERROR Procedures 

When testing in USE AFTER ERROR procedures, the programmer should replace any calls on DTF interrogation 
subprograms by tests of SYSERRs (4.2.3) to determine error status. SYSERRs are described in Section 11 . 



• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

G-1 

Appendix G. Job Control Stream 
Requirements 

G.1. INTRODUCTION 

Any COBOL program you write must be compiled before it can be run. A language translator converts the 
instructions in your program into a form (an object module) understandable to the computer. The facilities of OS/3 
job control are used to relay information to the operating system regarding the requirements for compiling your 
program. There are two ways to do this: 

• Code and keypunch all the job control statements needed to execute the COBOL compiler. See the OS/3 job 
control user guide, UP-8065 (current version) for details on coding these statements. 

• Use a single job control procedure call statement (jproc call) provided by Sperry Univac . 

A jproc call generates all the job control statements needed to execute the COBOL compiler. When you specify the 
proper options for the keyword parameters, you tailor the generated control stream to meet the individual needs of 
your job. The jproc calls give you the ability to compile your source program (COBOL); compile and link-edit the 
generated object module to create a load module (COBOLL); or compile, link-edit, and immediately execute this 
load module (COBOLLG). 

G.2. PROCEDURE CALL STATEMENT (COBOL) 

Function: 

This procedure call statement generates the necessary job control statements to run the COBOL language 
processor. Optionally, it can generate the job control statements that specify the following: 

• Input-source library 

• Output-object library 

• Copy library 

• PARAM control statements to define the format of the compiler listing 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

G-2 
Update A 

t 

Format: 

(RES) 

{

COBOL } 
II [symbol] COBOLL [ l

(vol-ser-no,label))] 

,IN= (RES,label) 
(RUN,label) 
{*,label) 

COBOL LG 

Label: 

[ l
(vol-ser-no,label))] 
(RES.label) 

OBJ= (RUN.label) 
(*,label) 
(RUN,$Y$RUN) 

[
LIN= 1:=~~:::2tl) )] 

(*,label) 
(RES,$Y$SRC) 

[,OUT= (p-1, ... ,p-n)] [,LST=(p-1, ... ,p-n)] 

[.sCR1= { ~o~;er-no } J [ ,SCR2= { ~o~;er-no} J 
[.scRJ= { ~o~~r-no } J 

[ l
(vol-ser-no,label))] 
(RES.label) 

AL TLOD= (RUN.label) 
(*,label) 
(R ES,$Y$RUN) 

symbol 
Specifies the 1- to 6-character source module name; only needed when the IN parameter is used. 

Operation: 

COBOL 
This form of the procedure call statement is used to compile a COBOL source program. 

COBO LL 
This form of the procedure call statement is used to compile a COBOL source program and link-edit the 

object modules. 

COBOL LG 
This form of the procedure call statement is used to compile a COBOL source program, link-edit the 

object modules, and execute the load module.* 

*The COBOLLG procedure call statement cannot be used when operating with the shared code data management feature. Instead, 
use the COBOLL procedure call statement and provide a separate EXEC statement to execute the load module. 

• 

• 

• 



• 

• 

• 

Uf'>,8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

G-3 
Update A 

PRNTR Keyword Parameter: 

Specifies the logical unit number of the printer. N specifies that the device assignment set for the printer 
is to be manually inserted in the control stream. 

IN Keyword Parameter: 

This parameter specifies the input file definition and generates a PARAM IN control statement. The options 
are: 

IN=( vol-ser-no,label) 
Specifies the file identifier (label) and the volume serial number (vol-ser-no) where the source input is 
located. 

IN=(RES) 
Specifies that the source input is located on the SYS RES device in $Y$SRC. 

IN=( R ES,label) 
This is used if the source input is located on the SYSRES device, but the file identifier (label) is of 
user-own specification, not $Y$SRC. 

IN=(RUN,label) 

Specifies that the source input is located on the volume containing the job $Y$RUN file, with the file 
identifier (label) of user-own specification. 

IN=(* ,label) 
Specifies that the source input is located on a catalog file identified by the file identifier (label). 

If omitted, the source input is in the form of embedded data cards (/$,source deck,/*). 

Note that when this parameter is specified, it is assumed that the first embedded data set following the PARAM 
statements contains changes for the source program (G.4), the second contains input to the linkage editor (COBOLL 
or COBOLLG jproc only), and the third is control stream input to the COBOL source program (COBOLLG jproc 
only). It may be necessary to insert dummy data sets (/$followed immediately by/*) into the job stream to ensure 
that the embedded data sets remain in the sequence just described. For example, if only the third data set is needed, 
two dummy data sets must be inserted between the last PARAM statement and the third data set. For more 
information, see example 3c in this section. 

OBJ Keyword Parameter: 

This parameter specifies the output file definition and generates a PARAM OBJ control statement. The 
options are: 

OBJ=(vol-ser-no,label) 
Specifies the file identifier (label) and the volume serial number (vol-ser-no) where the object module is 
located . 

OBJ=(RES,label) 
Specifies that the object module is located on the SYSRES device, with the file identifier specified by 
the label parameter. 



t 

UP-8059 Rev. 3 

OBJ=(RUN,label) 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

G-4 
Update A 

Specifies that the object module is located on the volume containing the job $Y$RUN file, with a file 
identifier (label) of user-own specification. 

OBJ=(* ,label) 

Specifies that the object module is located on a catalog file identified by the file identifier (label). 

If omitted, the object module is located on the job $Y$RUN file. 

NOTE: 

The OBJ keyword parameter must not be used with COBOL L or COBOL LG. 

LIN Keyword Parameter: 

LI N=(vol-ser-no,label) 
Defines the volume serial number (vol-ser-no) and the file identifier (label) where the copy modules are 
located. The LFD name is COPY$. 

LIN=(RES,label) 
Specifies that the copy modules are located on the job's SYSR ES device, in the file identified by the file 
identifier (label). 

LIN=(RUN,label) 
Specifies that the copy modules are located on the job's $Y$RUN file with the file identifier (label) 
specified by the user. 

LIN=(* ,label) 
Specifies that the copy modules are located on a catalog file identified by the file identifier (label). 

If omitted, the copy modules are located on the SYSRES device in $Y$SRC. 

OUT Keyword Parameter: 

OUT=(p-1, ... ,p-n) 
Specifies the parameter definitions for the COBOL compiler. This parameter generates a PARAM OUT 
control statement. See 7 .1.2. 

LST Keyword Parameter: 

LST=(p-1, ... ,p-n) 
Specifies the format of the compiler listing. Generates a PAR AM LST control statement. See 7 .1.1. 

SCRl Keyword Parameter: 

SCR 1= { vol-ser-no} 
RES 

Specifies the volume serial number of the work file with an identifier of $SCR1. 

SCR2 Keyword Parameter: 

SCR2= { vol-ser-no } 
RES 

Specifies the volume serial number of the work file with an identifier of $SCR2. 

• 

• 

• 



• 

• 

• 

tJP-8059 Rev. 3 

SCR3 Keyword Parameter: 

SCR3= { vol-ser-no } 
RUN 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Specifies the volume serial number of the work file with an identifier of $SCR3. 

AL TLOD Keyword Parameter: 

AL TLOD=(vol-ser-no,label) 

Specifies the location of the compiler to be used, if other than $Y$LOD. 

AL TLOD=(RES,label) 

G-4a 
Update A 

Specifies that the alternate load library is located on the job's SYSRES device, in the file identified by 
the file identifier (label). 

AL TLOD=(RUN,label) 
Specifies that the alternate load library is located on the job's $Y$RUN file with the file identifier 
(label) specified by the user. 

AL TLOD=(* ,label) 
Specifies that the alternate load library is located on a catalog file identified by the file i9entifier (label). 

If omitted, the compiler is loaded from $Y$RUN. 

Example 1a: 

The following illustrates the use of the COBOL procedure call statement in its basic form: 

LABEL 60PERATION6 OPERAND 
10 16 

I IL-"'----'----'-"'-=-~~...,..'+""'=--"'-ll--=~f--L--'--.....1...-._L_J__l__j_.....l..-._L_J__l_--'--.....l..-...L....l--'-_._-"---_L_J-'-_._-"---..L....l--'---'---'-.l.__l-'

~ J.L-1.L..L-""~""""""'1""'+-+--'--_L_JL_l--+-+--'--..L....l--'--

31'-"""-'--_._..____.._.__-'---+--ll----'---'-_._'-+-+---'--.____._--'--.....l..-.~-'---'----'-''--'---'-~'---"---'-.....l..-...____..__.__-'---_._,-'----'-_._.____.___.__~ 

4 ............ _i_..L-..L--'---'--'-+-+--'--'---'----'--1-+~-'---'---'---'--'--'-__.__..__,___.___,__,~__.__~__.___,__,_,___.__~__.___,__,_,_~~ 
51--L-IJl"-==a&~~""'-li.i...:=-==-:1--4--+-......_ ........... _.__._..__.---'---'-.J......J-'---'-......_~_.__._ ......... _.___._.J......J_.__.._~~--'-~ 

~~---'----'--'---L-'.-'-'::.+-+-L...--1.--'---'-+-l---'---'----'-_L_J'--L--'----'-_L_J'--L--'----'-"--'-"---'----'--'---'-'---'----'-"--'-'----'---'--'---'-'-

7 1'-"'-'-l....-'--'---L-'.--'--4-+-'---1.--'---'-+-l-'--'---'-_L_J'--'---'----'-_L_J'--L-'---'-"'---'-"--'---'--'---'-'----'---'-"--'-'---'---'--'---'-'-



• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

Line Explanation 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Indicates that the name of the job is COBOL 1A 

2 Indicates the name of the procedure being called (COBOL). There are no 
keyword parameters specifying special options for this compilation. 

3 Indicates start of data 

4-6 Represents the source deck to be compiled 

7 Indicates end of data 

G-5 

As coded, this example can be the first step in a job to be followed by the link-edit jproc call, or it can be an 
entire job in itself by specifying a I& (end-of-job) statement and a II FIN (terminate card reader operations) 
statement on lines 8 and 9, respectively. The latter case could be used to test-compile a new program or an 
updated version of an existing program. 

Example lb: 

The basic form given in example la generates the following control stream: 

LABEL i'-.OPERATIONL'-. OPERAND 
10 16 

I I 



UP-8059 Rev. 3 

Line Explanation 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Indicates that the name of the job is COBOL 1 B 

2 Indicates the default logical unit number and LFD name of the printer 

3-5 Indicates that the first work file needed for compiling is, by default, on the 
SYSRES device, has both a file identifier and LFD name of $SCR1, and uses 
the sequential access technique; that allocation is contiguous, with three 
cylinders allocated for the secondary increment and one cylinder of initial 
allocation. 

6-8 Identifies the second work file needed for compiling. The only difference 
between this work file and the first work file is that the file identifier and 
LFD name are $SCR2 rather than $SCR1. 

9-11 Indicates that the third work file needed for compiling is, by default, on the 
device containing the job's $Y$RUN file. Both the file identifier and the LFD 
name are $SCR3, and the file extent specification is the same as the first 
and second work files. 

12 Loads the COBOL compiler from $Y$LOD 

13 Indicates start of data 

14-16 Represents the source deck to be compiled 

17 Indicates end of data 

G-6 

As with example 1a, this example can be the first step in a job, or it can be the entire job in itself by specifying 
the/& statement and the// FIN statement on lines 18 and 19, respectively. 

Example 2a: 

The following example illustrates the use of a COBOL procedure call statement that defines many of the 
keyword parameters: 

LABEL ~OPERATION~ OPERAND 
10 16 

~IL-Jj!:....J..L.J........J._J_.J-JL....J..--J.-.J........J._L.~~.llW""-L=-.!L..i=J~~.L.q..l!"'-l.'l'~~'_iJ__l.4-l--'--.L.......l-L_L_L..L_J_.L.......l_J_ 

4JL-U'-""':..L.....J'-'---'-~~-'--'--.l.---'---l-~OL.l!....:L-u...J..J~O.=J..LJ..!µ.>o0~'-LI .................... ......_,--U-J.....41.-'----'----'---'---'--'--.J'-'-

5~.,,.-..i.....-1-.1-1.-'-+-L_..........i._..-&WJ~:M.llLL..-.U~~...!.l..q~~Llo.Ll---L:~i=:.J.!....l4-i:i.=~.L.....L: ....... :J.4.J:~ 

h.......,....__._,_,__.__.__-1-1_._-'--'--''-+-+--'--'--'--'---'-'-..l..-L-L-..1........1--'--'--'-'--L-'----'----'--L-'---'-.L.-L---'----'--'--''-

, 1<-"'--L...JL.. ........ L-"---'--~c--'--'--'--''-+--+--'--'--'--'---'-L-l.-L......L......L..J_J_......l.......J...._J--L.-L--'----L..-1.-'--'-L-l.-L......l.......L......lL-

72 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

Line Explanation 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Indicates that the name of the job is COBOL2A 

2 Indicates the name of the procedure being called (COBOL). The source 
module name is PROGNM. The logical unit number of the printer is 21, 
and the input file is on the SYS RES device, with a file identifier of U$SRC. 

3 Indicates that the output file volume serial number is DSC2, with a file 
identifier of U$0BJ 

4 Indicates that the copy module volume serial number is DSC1, with a file 
identifier of COPYLIBl 

5 Indicates that the second work file needed for compiling is on the device 
with a volume serial number of DSC4, and the third work file is on the 
device with a volume serial number of DSCl. By default, the device for the 
first work file is the SYSRES device. The format of the compiler listing is 
supplied by the LST parameter. 

6 End of job 

7 Terminates card reader operations 

G-7 

As written, this example is a one-step job that compiles your source program. It produces a nonexecutable 
object module. Before your program could be executed, a job step would have to be inserted in the control 
stream that would link-edit the object module to produce an executable load module. 

Example 2b: 

Based on the keyword parameters specified in example 2a, the following control stream is generated: 

LABEL LOPERATIONL OPERAND 
10 16 

I 

2. 
B 
4 
5 
{p 

1 
e, I I 

9 
10 

II 

12. 

(continued) 



UP-8059 Rev. 3 

LABEL 
1 

OOPERATIONf:. 
10 16 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

OPERAND 

Line Explanation 

Indicates that the name of the job is COBOL2B 

2 Indicates that the printer is to be assigned to the logical unit number 21, 
with an LFD name of PRNTR. This was obtained from line 2 in example 2a. 

3 Indicates that the input file is on the device containing the SYSRES 
volume. This was obtained from the IN parameter on line 2 in example 2a. 

4 Indicates that the input file has a file identifier of U$SRC, 
with an LFD name of INCPUT. This was obtained from the IN 
parameter on line 2 in example 2a. 

5 Indicates that the output file volume serial number is DSC2. This was 
obtained from the OBJ parameter on line 3 in example 2a. It is assigned to 
the device with a logical unit number of 50, which was the first available 
number in the range of 50-54. 

6 Indicates that the output file has a file identifier of U$0BJ, 
with an LFD name of OUTCPUT. This was obtained from the 
OBJ parameter on line 3 in example 2a. 

7 Indicates that the copy library has a volume serial number of DSC1. It is 
assigned to the device with a logical unit number of 51, which was the 
next available number in the range of 50-54. Logical unit number 50 was 
already assigned to the device with a volume serial number of DSC2 (line 
5), so the next available logical unit number is used. This was obtained 
from the LIN parameter on line 4 in example 2a. 

8 Indicates that the copy library is labeled COPYLIB1, with an LFD name of 
COPY$. This was obtained from the LIN parameter on line 4 in example 2a. 

G-8 

• 

• 

• 



• 

• 

• 

UP-8059 Rev. 3 

Line 

9-11 

12-14 

15-17 

18 

19-21 

Explanation 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

Indicates that the first work file needed for compiling is, by default, on the 
SYSRES device, has both a file identifier and LFD name of $SCR1, uses 
the sequential access technique; that allocation is contiguous, with three 
cylinders allocated for the secondary increment and one cylinder of initial 
allocation. 

Indicates that the second work file needed for compiling has a volume 
serial number of DSC4. This volume serial number has not been previously 
used in this job, so the next available logical unit number (52) is assigned 
to this device. This work file has both a file identifier and LFD name of $SCR2, 
and has the same file extent specification as the first work file. This was 
obtained from the SCR2 parameter on line 5 in example 2a. 

Indicates that the third work file needed for compiling has a volume serial 
number of DSC1. Since this volume serial number was already used, this 
work file uses the same device logical unit number of 51. This work file 
has both a file identifier and LFD name of $SCR3, and has the same file extent 
specification as the first and second work files. This was obtained from the 
SCR3 parameter on line 5 in example 2a. 

Loads the COBOL compiler from $Y$LOD 

PARAM control statements which identify the processing options for the 
COBOL compiler. These are generated in the following manner: 

Line 19 - The module name PROGNM is generated from the label field in 
line 2 of example 2a. The filename I NCPUT is generated automatically 
when the IN parameter is specified. 

Line 20 - The filename OUTCPUT is generated automatically when the 
OBJ parameter is used. 

Line 21 - The Sand 0 COBOL list options are generated by the LST 
parameter on line 5 in example 2a. 

22 End of job 

23 Terminates card reader operations 

G-9 



UP-8059 Rev. 3 SPERRY UNIVAC OS/3 
EXTENDED COBOL 

G-10 
Update A 

t 
Example 3a: 

The following example illustrates the use of the COBOLL procedure call statement: 

LABEL L'IOPERA TIONL'I OPERAND 
10 16 

I J.L-.1-LL-'-"~ULl-ll~'Ja"l....L.l...,,_,=--+-t----t_J_---'--_J__L.__l_J____,__ . ..L._L__L_J___l__L__JL_L___l___l__L_L_l____l__J_J__JL_L__J____l_J__JL____L__J____,_~ 

zj-L-'<L...J.--1.'.._._..'-""'-'-----'--Lt=Jf--'--'---'----'-+-+-'--'--'---'---~-'---'---'----'--'-----'----'---'-~-'--'--'-----'--'---'-~-~_J___l_.~1~1_.__~_J__l__L 

~~L.-<-J._.L.:...C~=<--=-J"'-lf=L~--'--"-+-+-L___l.--'--'---L--'---'---L---'--'--'---'----'--'-'--'--'-----'---'-__l_i___i__Li_.__l___,_1 ~1_.._1___,__.__.____L---'--'-

.A.J.-L.JL...LL___L ..... ~=.e"1-.._,,,,1"'-11L-'-~ll<.l--"-+-+-L---1--'--'---L--'---'---L---'--'--'---'----L--'-'--'--'-----'---'--"--'--'---'--'---'----'----'---'-~-~l~1___,__1_.__1~ 
'?µ...&.1:.....1-L.:::=-=-i.......u:~~~"'--+-I--'-'--'--'-'--"-...._.--'-...._._......._.....__.__._....__._ ........... _.._.....__.__._~......_....__.__._..._.__.___._._ 

~1-LJJL.L..-=<-=..>o<.U!..J..!ql=--~_...,_;'-'-µ_+L4-...-.::1-f--"'"-'4-'---'---'----"-'-'--__,__'------'----'------"----J.-'--~'--'-~-~~~'--L--'-----~~ 
1~~_.L__L_L_L_1-+-__l_j_.L_~--+--L_L__J_____L_L__L__l_---'-----L____L--'---l_L__-'----'------'-----'---'--_L___J___J_-'--------'-----'-----J"---'-_L___J___J_-'----'---'-----J---'--

I I I I I I I l I 

I I I I I I I I 

'U-L'.:LL__.l_l_L_L_J._+--.L__.l_l_L_l-+-_l_L__l__J._L__L._L___l_L__J__L_L__LJ__L_L_j_J_~L_-l._J_L_...J__J_-L-J'---"-~~J.......L---'--L 

/Oµ...J"L'--'--'----'--L-i__1--1--'--'---'--"-+-~'--'--'---'---"--'---'---'----'~_.___.__.___._~.-L._L_l_._L__,__.__.___.___'----'_..__.____,__.__.____~___,__ 

If 1--1._L--'-""~=i.l""""'+L.11--1'o.<Uoo..._._'-=__...ID~...._,..,.___._,---L_..__,_'-L_l_Li___L_L__L__JL_L-'----L--L__L-L.....J__.l___l-L-L._~L___L___L 
1-JLJ_lJ~~~ll=.Jl-1µ.l"""'=..!--'-"'\-""'.1--L---1--'--'----'---L-J~'----'--'--'---'----'--'--1~.__l__L_L___L_J_.L___JL__J.__L_L__L___L_..l_!_j--'-

Line Explanation 

Indicates that the name of the job is MASTER 

2-5 Defines a file U$LOD on volume DSC1 to be used to hold the linked 
object module 

6 Indicates the name of the procedure being called (COBOLL) and 
indicates the compiler options for this compilation 

7 Indicates start of data 

8 Indicates the COBOL source program 

9 Indicates end of data 

10 Indicates start of data 

11 Indicates that the linkage editor is to write the load module to the file 
with the lfdname LNKLIB 

12 Indicates that the name of the load module is ABC123 

I I I I I _L_j_ 

• 

• 

• 



• 

• 

• 

UP-8059 Rt!v. 3 

Line Explanation 

13 Indicates end of data 

14 Indicates end of job 

15 Terminates card reader operations 

Example 3b: 

SPERRY UNIVAC OS/3 
EXTENDED COBOL 

G-10a 
Update A 

Based on the keyword parameters specified explicitly and implicitly in example 3a, the following control 
stream is generated: 

LABEL L'lOPERATIONL'l OPERAND COMMENTS 
10 16 

I ...,_..L.L_,_,,_ll.Ll....,.__....~,.LL......,"""'L-f~_J__L__l.-'-_L__L_L__t_ i_l __L__L_L_J_j_ 
z. .J)Ea__QL__,___LlLLd~uliL_ 11 ~,<f, L..e~, /,/, 11.., i::, a __JJJL__Kl..JJi_.L_~~~ 
3~L..L-'-"'l..L!'-"L--1-"'J-""lf--L-J..4-l.LL-f"'-JL--'-"L-LLU:"'-"'4J.-""-_L__L__J.__L_L__.L_l__L_IL_l_l_L__J__L_l___L_ 

~H.LI..-"--'.l'-'-"-"""'--'-'-¥-+='-_J._.U'--'-4---l'""'-=-'.L-"-o"'-.l..L,__""'1+L-"'+-""~"'+'-_LJ__J-LLL~ 
5~....L-J"'--"1"'"""'-'---'-'"t>q"""'-.L.-l..L.J...L..+-!'=-'>L..Ll...-'-"C!...l-f-"-"-f-l-"-+'-~~+'-'-.L.....L.'-'l-L......J.J."""""'.!::l....-"LJ.:::=.:::..==-.l.......l..u..!...l......J......_L.la.-=.l.£1:::::i=:;.... 
~l-f-"-'--=-'-~-'-"'.L...J_,,,.,9-"'L....L-L..l-'-l-{--f""'-=-'-L__LLLLJ_t-"'-"-t-1-Ll.;-"""L!..1..>~LLI__LJ_-1L.L_u,,~'-""'----=L"'"-'=-<=.......,__J_...L.LJ...µ_-1-!"'UiYL_-'='-1~"'-""''-"-

7µ.-'<--'---"c=Ll."-'=1"""--f"4"""-""""1J""'--!-+-'-L...L 

i~1.J.L.L_l..!_.l;Cll!"°'LLll1H"'-LLl-'...L__J.if-'q+l-"'1+-'=--l

'f l-+-'-'l'-'---'--'--J........L-'-+-+-' 

I I I I I I I I I I I I I I I I I I I 

t..L...L--'--~'-'-L-'-+--t---'-....L--'---'-+-+ ~~'-'---'--'--'--'---'---'--~L...L_l__,LJ_J__~'--L--'---'-'---'--'-~---'-~~~~~ 

I /,I I , L.JBI.., ·fi51C.W I 1 I /1 /, ibB~i6..c.ta (, I I 

~---'---'--~'--'---'--~'-'_._~LlL_l___l_J__L_L1-.LJ_LLL_l..-'-._l_~~~~

~~~~~~~~~-~.L._L_L. J_L.L_L _[ __ LL. L 1_L~.LL.1 ~~~ 

._..-'--'-'<ilZIU'-<l<lll.'1--lLlll~'4-L04.o!f-_J__L-J.._L_._J__.L.J._t__i_.J_j__L__L__.L_l__L_L_..L___L..l__i__L__J_i__l_i__L_L_ Ll__l__ ,_ . _j__ L. L "_L__j__L...l .. L

--'--~~-_i_i__~ _ _j__j_~_.L_ .L._L_i_~ _i_J_ L. .L.L

Line Explanation

2

3

4-6

7

Indicates that the name of the job is MASTER

Defines a file U$LOD on volume DSC1 to be used to hold the linked
object module

Indicates that the printer is to be assigned to logical unit number 20
with an lfdname of PRNTR

Defines the three work files necessary for compiler execution

Loads and executes the COBOL compiler

t

UP-8059 Rev. 3

Line Explanation

8 Indicates parameter options

9 Indicates start of data

SPERRY UNIVAC OS/3
EXTENDED COBOL

10 Indicates the COBOL source program

11 Indicates end of data

12 Defines the work file necessary for LNKEDT execution

13 Loads and executes the linkage editor

14 Indicates start of data

15 Indicates that the linkage editor is to write the load module to the file
with the lfdname LNKLIB

16 Indicates that the name of the load module is ABC123

17 Indicates end of data

18 Indicates end of job

19 Terminates card reader operations

Example 4a:

G-10b ~
Update A

The following example illustrates the use of the COBOLLG procedure call statement. The input file and the
format of the output listings are defined.

LABEL LOPERATIONL OPERAND
10 16

I

~j.L..1.LJL--'=L-.l.l-'--il-=:l~"""-""£.ll.~"-+!~'IL__~-'-'·~--=L.Ll:::llioi~~"'-'-'U....,.LJ:=...l__IL_u::'L~__JJ__~

~ '--L-l--'---J'------'----L---'-----lf-+-----'-----'----'---'--+--.-...~--'-----LL"'---11..Jl~'--'J.""~µ-"<-l.L..J._----'----.L.--.L--'--'-.l._____.L----'-----'-----'------'---

41L-1'"""--'----'---'---'--'--+--+-.L..J.-'---'------ll------+-----'----.l_____L----'-----'------'-----'----'---'------L----'-----'------'-----'----'------'------L----'-----'------'_____j_---'--'------'---

5"-"'--"-.......... =---..._..__._-£-..,_._.._~ __._..__.___.._....._.__,_....._..__.___.._...._.__,_~~'--'---'-.J.........1-'----'-----._._

Line Explanation

2

Indicates that the name of the job is MASTER

Indicates that the name of the source module is MASTER
and that the name of the procedure being called is COBOL LG.
Therefore, this example compiles, link-edits, and executes the
source program MASTER. The input file is on the device with
a volume serial number of ABC123 and has a file identifier of
PAYMAST.

72

•

•

•

•

•

•

UP-8059 Rev. 3

Line

3

Exp1anation

SPERRY UNIVAC OS/3
EXTENDED COBOL

Indicates the format of the compiler listing

4 End of job

5 Terminates card reader operations

Example 4b:

G-10c
Update A

Based on the keyword parameters specified explicitly and implicitly in example 4a, the following control

stream is generated:

LABEL ,0,QPERATIQN,0, OPERAND
10 16

t'--'~~~~~-+--+-~~-'P-'~H=-1-T'-~~-'-'1-'-'-'--'--'--'--'-I --'-1 _,_1 ~1 _j___]_i__L_L _ _,__,___.__._ _ _._-'-...._,__.__.__,_-'---L

.'-'="L-LI'-'---'--~1~1 .. .l __ LL_l_i_~~~~~~~~

.,._.,~-=~"-=--~-+--l'-'=-'--""---'--+--1-~-'--'--'--''--'--'--'--'--'--'--'--'--'-l_L_j_J_j__J__~~~~~~~~~

.--.---...-~-~~~~=1.$p1~5,c.~1~R~Z~1~1~1. 1-_j_LL-.Ll--L.J_.~~~~~~
·.L.4--+---'-· -'--'--'---'--.L...-'.-'--'---'--.L...-'.--'-..Ll___i__L_i _LJ __ L_L..LL_LJ~~~~

Line Explanation

2

Indicates that the name of the job is MASTER

Indicates that the source program is to be link-edited and
then executed after it has been compiled. This was obtained
from COBOL LG specified on line 2 in example 4a .

•

•

•

•

•

•

•UP-805!YRev. 3

Line

3

4

5

Explanation

SPERRY UNIVAC OS/3
EXTENDED COBOL

Indicates, by default, that the printer is to be assigned to the
logical unit number 20, with an LFD name of PRNTR

Indicates that the input file is on the device with the logical
unit number of 50 and has a volume serial number of ABC123. This
was obtained from the IN parameter on line 2 in example 4a.

Indicates that the input file has a file identifier of PA YMAST,
with an LFD name of I NCPUT. This was obtained from the IN
parameter on line 2 in example 4a.

6-8 Indicates, by default, that the first work file needed for
compiling is on the SYSRES device, has both a file identifier
and LFD name of $SCR1, uses sequential access technique; that
allocation is contiguous, with three cylinders allocated for
the secondary increment and one cylinder of initial allocation

9-11 Indicates, by default, that the second work file needed for
compiling is on the SYSRES device. This work file has both a file
identifier and LFD namd of $SCR2. It has the same file extent
specification as the first work file.

12-14 Indicates, by default, that the third work file needed for
compiling is on the SYSRUN device. This work file has both a file
identifier and LF D name of $SCR3. It has the same file extent
specification as the first and second work file .

G-11
Update A

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

Line Explanation

15

16-17

Loads the COBOL compiler from YLOD

PARAM control statements that identify the processing options
for the COBOL compiler. These are generated as follows:

Line 16 - The module name MASTER is generated from the label field
on I ine 2 of example 4a. The file name I NCPUT is generated automatically
when the IN parameter is specified.

Line 17 - The A, C, 0, and S COBOL list options are generated by
the LST parameter on line 3 in example 4a.

18 End of job

19 Terminates card reader operations

G-12
Update A

Implicit in the // OPTION LINK.GO statement on line 2 of example 4b is the creation of a load module
named LNKLOD by the linkage editor and the execution.of that load module. This is performed after the
source program has been compiled. Any output is temporarily stored on the SYSRUN device.

Example 4c:

If the job requires that additional modules be included from a library, input to the linkage editor must be
included in the job control stream. The following example shows where that input would be inserted in job
MASTER as described in example 4a.

LABEL 60PERA TION6 OPERAND
10 16

I J..L.l.~....L-=-t.=1.~...l....._J.--t!~~....__,,."'"+'-'"t---'---'--L._.L....L__L_J__l_~---'---'---~-'--i.......l"--"--'--'-'-'---'---~~

tJ..L-lJ~Lll..Di~Ll""'=-!--+~~-"4-'=....f""P..,,___.J___L---""

~µ...LL..L.l..L.....1.___L__l__l--+-+-J___L_J__L+~"-=-.L.L..::Lµ~~#-J""'-'1---'-=-IJ-'--'----'-L--'---'---.J..._J__L_~~

I I I I I I I

72

•

•

•

•

•

•

~uP-8059' Rev 3

Line

1-3

Explanation

Same as example 4a

SPERRY UNIVAC OS/3
EXTENDED COBOL

4-5 Dummy data set to show there are no source corrections for the compiler.
This must be included to keep the linkage editor input in proper sequence.

(See page G-3.)

6-10 Data set that is input to linkage editor

11 End of job

12 Terminates card reader operations

G--13
Update A

The generated control stream would be the same as in example 4b, except for the inclusion of the two data

sets between lines 17 and 18.

Example 4d:

If job MASTER as described in example 4a had its source program on cards, and both linkage editor input and
control stream input to the program were to be included in the run, the control stream would be set up as

follows:

LABEL i'.OPERATIONL'. OPERAND
10 16

I l--'--'~~--L'-'-'!'-1-lo~-'-1--l~---"''--ll!"'-'-'-""'.:.µ_::l--JL_l__L_L_L__L.,__L_L_j_ i_J_L __ l_l_~l--'--'-~l__L.--1._~~~~~

2. I _& ,'5J ,-::: I ~1t-1-~~,$<-LJl)c__i_1 __ L__J__l_J__L_j__L__j___L__j__i__L

31-'--'--:LL-'--_i___--'---'--L-Ji---f-'--_.__-'---_L_~-1---l---'-_.__---L_...L _ _L_L_J___!___L_J__L__l__L_JL.J_L_L_L__l__J__[__l___,_.___'--'---'---'---'--

4 t---'---'---'--_i___--'---'-L--jf-t~_.__-'---_L_+-1---'---'-.-L---L___L____L_L_J___!___L-1. __ _L__l__L_JL.J__L__i _ _L__l___L_L.JLL___l__i_ I I I

51-'-_=:;~~...l.lo<J"""f--F.1..l=<'J-:::::.u.;~~-l-...l-.L....l..-'-_J_J----L--l...-.L....1..-L_J_J----L,...J_.L...J.._..L_.L....1----L....L,_.L....L....L..L..l___L....L,_L
G,

714-'--'--'---'---'---'--'--~L-l-J-_, _ _,_-'--<~+~_l___i___Ll-'---'---'---'------'--''--'---'---'--'---'---'--'----'---'--'---'--'----'-----"---'--'----'--'---'--
B ___L_j_____t_J_L_L-1.--L~J__L_L___L_,_-L---'---'--'----'---'---'---'--'----'-----"---'-'--·

9 l---'-_L._-'--.1---i____L_

1--'---'--'---'---'-~-~l---J _J__L,__i_ l--t--+--'--'-----"---L~---'.--'----'--'--~' --'--1 --'---'---'------'--'--'---'---'---'--'------'---L-l.---L--'-----1--'---'-l___

M-'-~--'----'--'--'._._ ~~'--'-__[__ _l_,[_l~--'--'---'---~~---'---'----'--'--'------'--'---'---'---'--'---'---'----'----'---"---'----'-

_l__J__ I_ L i__l__L_L__l_t__[__J__[I I I I ~L _ _l__L_~_l___[__J__L

l_1__~--+-+-~~-L__J___L __ J__J__L_l_ ~· _l_l_,[_L_ L...L_L _ _L_L__[__ L_L

L..J.--'---lc~~_L_~_j __ _L_L

UP-8059 Rev. 3

Line Explanation

SPERRY UllfJVAC OS/3
EXTENDED COBOL

Indicates that the name of the job is MASTER

2 Indicates that the name of the source module is MASTER and that the name of
the procedure being called is COBOL LG. The LST parameter indicates the format
of the compiler listing.

3-7 Source program

8-12 Linkage editor data set

13-17 Data set that contains control stream input to the source program

18 End of job

19 Terminates card reader operations

G-14

The generated control stream would be the same as in example 3b, except that lines 4 and 5 describing the
source input file would not be present, line 16 would be eliminated, and the three embedded data sets would
be inserted between lines 17 and 18. Note that, if control stream input is to be included and there is no linkage
editor input, a dummy data set must be inserted after the source deck to keep the control stream input data
set in its proper sequence.

G.3. COMPILER STATUS INDICATORS

The compiler sets the following status indicators in the user program switch indicator (UPSI) byte. These indicators
may be used in conjunction with the// SKIP job control card:

• Switch-0 (X'80') is set to 1 if the compiler does not create a complete object module. This condition might be
caused by an "insufficient memory available" diagnostic or a compiler abort.

• Switch-1 (X'40') is set to 1 if the compiler issues any diagnostic message with severity code Sor U.

• Switch-2 (X'20') is set to 1 if the compiler issues any diagnostic messages with the severity code C.

These bit settings are logically superimposed onto the UPSI byte; therefore, any of the 8 UPSI bits that were set
before the compilation still will be set after the compilation.

G.4. SOURCE CORRECTION FACILITY

When the source program resides on a library file, it is possible to change the source as it is read into the compiler. A
/$ and /* data set immediately following the PARAM statements may contain correction cards for the source
program. The method of correction is the same as the OS/3 system librarian correct module (COR) function. For
details, refer to the OS/3 system service programs (SSP) user guide, UP-8062 (current version). The corrections apply
only to the compilation. The original source program on the library is not changed.

•

•

•

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

G-15

• G.5. DATA DEFINITION (DD) JOB CONTROL STATEMENT KEYWORD PARAMETERS

•

•

The DD job control statement is used to change data management keywords at execution time. Instead of changing
the COBOL source code, the user can override data management keyword specifications when the COBOL object
program is executing. The DD statement keyword parameters that may be specified for a COBOL program are as

follows:

LACE=n
SIZE=n
UOS=n
ACCESS= EXC

EXCR
SRDO
SRD
SUPD
SADD

FILABL= {NO }
NSTD
STD

TPMARK=NO
VMNT=ONE

When the user specifies these keyword parameters, extreme care must be used so that the effect of changing one
parameter does not cause a conflict. To avoid conflicts, the user should carefully examine the file usage specified in
COBOL source programs and the default parameters set by the compiler-generated data management specifications.

The DD statement applies to basic data management users and consolidated data management users. For keyword
parameter information, see the basic data management user guide, UP-8068 (current version) or the consolidated
data management macroinstructions user guide, UP-8826 (current version). A complete description of the DD job
control statement is explained in the job control user guide, UP-8065 (current version) .

•

•

•
~~ ~ - ---- -----

•

•

•

UP-8059 Rev. 3

H.1. GENERAL

SPERRY UNIVAC OS/3
EXTENDED COBOL

H-1

Appendix H. Shared Code Interface

COBOL programs to be executed under control of the SPERRY UNIVAC Series 90 Information Management
System (IMS/90) should be compiled by using the shared-code parameter when used with the SPERRY UNIVAC

OS/3 Operating System (OS/3).

The format of the PARAM statement is:

II PARAM OUT=(M)

H.2. ACTION PROGRAM

A COBOL program running under control of IMS/90 is called an action program. A COBOL action program
compiled under the shared-code parameter is reentrant at CALL interrupts. The following rules and restrictions of
COBOL action programs are checked for, and diagnosed at compile time when OUT,.(M) is activated.

Rules:

1. The following COBOL verbs, clauses, and sections are illegal in the shared-code mode. They will be
diagnosed and deleted from the program.

ALTER RETURN SYSLST

CLOSE REWRITE WRITE

DECLARATIVE SECTION SEEK
ENTRY SEGMENT-LIMIT

EXHIBIT SORT
EXIT-PROGRAM STOP
Fl LE SECTION SYSCHAN-t
INPUT-OUTPUT SECTION SYSCONSOLE

INSERT SYSERR [-ml

OPEN SYSIN

READ SYSIN-96

READY TRACE SYSIN-128
RELEASE SYS LOG
RESET TRACE

2. The PROCEDURE DIVISION header must contain a USING clause and can be the only entry point in
the program.

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

H-2

3. For a list of the valid IMS/90 function names, refer to the Series 90 information management system/90
programmer reference, UP-8083 (current version).

4. A section priority number ~50 will be diagnosed and changed to 0.

5. The SPECIAL-NAMES paragraph may define only the following four implementor names.

SYSCOM
SYSDATE
SYSTIME
SYSSWCH

In conjunction with this restriction, the ACCEPT and DISPLAY verbs may be used only to reference the
allowable system names.

6. The following verbs must not have working-storage items as receiving operands. Upon detection of this
condition, the compiler will generate the statement and issue a precautionary diagnostic.

7.

ADD
COMPUTE
DIVIDE
EXAMINE (replacing option)
MOVE
MULTIPLY

PERFORM (varying option)
SEARCH (varying option)
SET
SUBTRACT
TRANSFORM

All USING arguments of the CALL verb must be datanames of any level (except 88) in the working-storage or
linkage sections.

For the COBOL object program to be reentrant at CALL interrupts, the volatile work area used by the program
must be saved and restored by the IMS/90 system. The size of the area (which varies between programs) is displayed
in decimal by the printer immediately prior to the COBOL COMPILATION COMPLETE message. The message
reads:

SHARED CODE VOLATILE DATA AREA= nnnn BYTES

This size is used in computing the SHRDSIZE parameter in the IMS/90 configurator. (Refer to the Series 90
information management system/90 programmer reference, UP-8083 (current version)).

Normally, execution-time errors result in a CE error message and program termination. In an action program,
execution-time errors result in a program check interrupt and a snapshot dump of the action program with the
address of the CE message in register 1. The action program is terminated.

•

•

•

UP-8059 Rev. 3

•

Term

A

ACCEPT statement
description
job control stream

ACCESS MODE clause
FILE-CONTROL paragraph
indexed files

• relative files
sequential files

Action program

ACTUAL KEY clause
FILE-CONTROL paragraph
relative file

ADD statement

Alphabetic data

Alphabetic move

Alphanumeric data

Alphanumeric edited data

Alphanumeric edited move

Alphanumeric move

ALTER statement
description
segmentation restriction

APPLY ASCII clause

• declaration
1-0-CONTROL paragraph

APPLY BLOCK-COUNT clause

SPERRY UNIVAC OS/3
EXTENDED COBOL

Reference Page Term

APPLY CYLINDER-INDEX clause
1-0-CONTROL paragraph
relative files

6.6.4.1 6-28
9.1 9-1 APPLY CYLINDER-OVERFLOW clause

1-0-CONTROL paragraph
relative files

4.3.1 4-8
11.4.3 11-7 APPLY EXTENDED-INSERTION clause

11.4.2 11-4
11.4.1 11-3 APPLY Fl LE-PREPARATION clause

1-0-CONTROL paragraph

H.2 H-1 relative files

APPLY MASTER-INDEX clause

4.3.1 4-10
11.4.2 11-4 APPLY VERIFY clause

1-0-CONTROL paragraph

6.6.1.1 6-7 relative files

5.3.4 5-16 Arithmetic expressions

6.6.3.2 6-21 Arithmetic operators

5.3.4 5-17 Arithmetic verbs

5.3.4 5-17 ASCENDING KEY clause
description

6.6.3.2 6-21 SORT statement

6.6.3.2 6-21 ASCII

ASCII files

6.6.2.1 6-12
6.7.3.1 6-55 ASCII tape format

ASSIGN clause

13.2 13-1
4.3.2 4-13 AUTHOR paragraph

4.3.2 4-12

Index 1

Index

Reference Page

4.3.2 4-12
11.4.2 11-8

4.3.2 4-12
11.4.2 11-8

4.3.2 4-13

4.3.2 4-12
11.4.2 11-5

4.3.2 4-12

4.3.2 4-12
11.4.2 11-8

2.1.4 2-3

6.6.1.5 6-11

6.6.1 6-5

5.3.3. 5-13
6.6.4.12 6-37

Table 13-213-5

13.1 13-1

Fig. 13-1 13-3

4.3.1 4-9

3.1 3-1

UP-8059 Rev. 3

Term

B

BLANK WHEN ZERO clause

BLOCK CONTAINS clause
block sizes
control field sizes
description

Block sizes

c
CALL statement

Calling/called programs

Characters
arithmetic expressions
editing
punctuation
relational expressions
set
words

Checkpointing
description
restriction

Class condition

CLOSE statement

Coding form

Comment

COMP option

Compiler

Compiler diagnostics
diagnostic messages

system console messages

Compiler-directing statement

Compiler listings
data division storage map and

cross-reference
diagnostic error
object code
procedure division storage map

and cross-reference
source code

SPERRY UNIVAC OS/3
EXTENDED COBOL

Reference Page Term

Compiler status indicators

5.3.9 5-30 COMPUTE statement

Condition-name

Table 5-3 5-6
Condition-name clause Table 5-2 5-4

5.2.1.1 5-3
Condition-name condition

Table 5-3 5-6
Conditional statement

Conditional variable

6.6.8.l 6-53 Configuration section

6.8 6-56 Connectives

Continuation

2.1.4 2-3
Conversion mode 2.1.5 2-3

disc files 2.1.2 2-2
operation 2.1.3 2-3
printer files 2.1 2-1
syntax 2.1.1 2-2

COPY statement
description 8.3 8-1
library 8.5 8-2

6.6.6.1 6-40 CORRESPONDING option
description

6.6.4.2 6-29 MOVE statement

2.5 2-9 CURRENCY SIGN clause

2.5 2-10

5.3.5 5-22 Data definition (DD)

1.2 1-2
job control statement

Data description entry
condition-name clause

D.2 D-1 description
Table D-1 D-2 RENAMES clause
D.3 D-32
Table D-2 D-33 Data division

conversion mode
6.5.3 6-4 cross-reference listing,

alphabetically ordered

data description
E.2 E-3 description
E.5 E-10 FILE SECTION

D

E.4 E-6 storage map and cross-reference
listing

E.3 E-4 WORKING-STORAGE
E.l E-1

Data-name

Index 2

Reference Page •
G.3 G-12

6.6.1.5 6-11

2.2 2-4

5.3.12 5-31

6.6.6.1 6-40

6.5.2 6-4

2.2 2-4

4.2 4-1

2.2 2-7

2.5 2-10

F.5 F-12
F.2 F-1
F.4 F-10
F.3 F-2 • 6.6.7.1 6-48
7.3.1 7-5

6.6.1 6-5
6.6.3.2 6-21

4.2.3 4-4

G.5 G-15

5.3.12 5-31
5.3 5-11
5.3.11 5-30

F.3.3 F-5

E.6 E-13
Fig. E-6 E-14
5.3 5-11
5.1 5-1 • 5.2 5-2

E.2 E-3
5.4 5-33

2.2 2-4

~·--·------~ ---- --

UP-8059 Rev. 3

• Term

DATA RECORDS clause

DATE-COMPILED paragraph

DATE-WRITTEN paragraph

Debugging
description
packet

DECIMAL-POINT clause

Declaratives section

DEPENDING ON clause

DESCENDING KEY clause
description
SORT

Diagnostic messages

Direct access

• file organization
processing

Disc processing

DISPLAY option

DISPLAY statement
description
use

DIV! DE statement

E

EBCDIC

Editing

Eject

ENTER statement
CALL statement
description
ENTRY statement

ENTRY statement

• Environment division
conversion mode
description

EXAMINE statement

EXHIBIT statement

SPERRY UNIVAC OS/3
EXTENDED COBOL

Reference Page Term

5.2.1.6 5-9 EXIT statement

3.1 3-1 Extended access

3.1 3-1 External-name

External references
14.1 14-1
14.5 14-3

4.2.3 4-4
FD entry

6.2 6-2 description
SORT statement

5.3.3 5-13
Figurative constant

description
5.3.3 5-13 MOVE statement

FILE-CONTROL paragraph
D.2 D-1
Table D-1 D-2 FILE-LIMIT clause
E.5 E-10

File-name
11.2 11-1
11.1 11-1 FILE SECTION

description
Table 11-7 11-28 FD entries

5.3.5 5-22 Fl LLER clause

Fixed portion
6.6.4.3 6-30
Section 9 Floating-point numeric literal

6.6.1.2 6-8

GIVING clause
DIVIDE statement

Table 13-2 13-5 MULTIPLY statement
SUBTRACT statement

2.1.5 2-3
GO TO statement

2.5 2-10

6.6.8.1 6-53
6.6.7.2 6-49 Identification columns
6.6.8.2 6-54

Identification division
6.6.8.2 6-54 conversion mode

description

F.3.2 F-2 Identifier
4.1 4-1

IF statement
6.6.3.1 6-20

14.4 14-2

Index 3

Reference Page

6.6.2.4 6-19

11.3.3 11-2

2.2 2-4

E.4 E-6

F

5.2.1 5-3
6.6.4.12 6-37

2.2 2-6
6.6.3.2 6-21

4.3.1 4-8

4.3.1 4-10

2.2 2-4

5.2 5-3
5.2.1 5-3

5.3.1 5-12

6.7.1.1 6-54

2.2 2-5

G

6.6.1.2 6-8
6.6.1.3 6-9
6.6.1.4 6-9

6.6.2.2 6-13

2.5 2-10

F.3.1 F-2
3.1 3-1

2.2 2-4

6.6.6.l 6-40

UP-8059 Rev. 3

Term

Imperative statement

Implementor names
ACCEPT statement
ASSIGN clause

Independent entries

Independent segment

Index data-item

Index-name

INDEX option

INDEXED BY clause

Indexed files
conversion mode
description
processing

Indexing
description
tables

1-0-CONTROL paragraph

Input-output section

INSERT statement
description
indexed files

INSTALLATION paragraph

lnterprogram communications
CALL statement
description
ENTRY statement

J

Job control stream

Jproc call

JUSTIFIED clause

K
Key words

SPERRY UNIVAC OS/3
EXTENDED COBOL

Reference Page Term

6.5.l 6-3 L

LABEL RECORDS clause
6.6.4.l 6-28 description
4.3.l 4-9 specifications

5.4.l 5-33 Level-number clause

6.7.1.2 6-54 Library module

2.2 2-5 LINKAGE section

2.2 2-5 Linking

5.3.5 5-22 Logical operators

5.3.3 5-13

M
F.5.2 F-12 MAP clause
11.2.3 11-2
11.4.3 11-7 MEMORY SIZE clause

OBJECT-COMPUTER paragraph
SEGMENT LIMIT

2.4 2-9
10.5 10-2 Mnemonic-name

ACCEPT statement
4.3.2 4-11 DISPLAY statement

4.3 4-8
SPECIAL-NAMES paragraph

MOVE statement

6.6.4.7 6-34 MULTIPLE FILE clause
11.4.3 11-11

MULTIPLE REEL/UNIT clause
3.1 3-1

MULTIPLY statement

6.6.8.l 6-53
6.6.8 6-53 N
6.6.8.2 6-54

Nonnumeric literal

NOTE statement

G.1 G-1 Numeric data

G.2 G-1 Numeric edited data

5.3.7 5-28 Numeric edited move

Numeric move

2.2 2-6

Index 4

Reference Page •
5.2.l.3 5-7
Table 5-4 5-8

5.3.l 5-12

7.3 7-5

5.5 5-34

6.8.2 6-57

6.6.6.l 6-40

5.3.10 5-30

4.2.2 4-2
4.2.2 4-2

6.6.4.1 6-28 • 6.6.4.3 6-30
Table 4-1 4-7

6.6.3.2 6-21

4.3.2 4-11

4.3.l 4-9

6.6.1.3 6-9

2.2 2-6

6.6.7.3 6-51

5.3.4 5-16

5.3.4 5-17

6.6.3 .2 6-21

6.6.3.2 6-21

•

UP-8059 Rev. 3

• Term

0
Object code listing

OBJECT-COMPUTER paragraph

OCCURS clause
description
table handling

ON SIZE ERROR option

OPEN statement
description
indexed files
relative files
sequential files

Optional words

ORGANIZATION clause
FILE-CONTROL paragraph
indexed files
relative files

• sequential files

Overlapping operands

p

Paragraphs

PARAM statement
copy library input
description
list options
object module
output options
source library input

Parameters, PARAM statement
copy library input
listing
object module
output
source library input

PERFORM statement
description
segmentation restrictions

PICTURE • clause
symbols

Priority number
ALTER statement
description
PERFORM statement

SPERRY UNIVAC OS/3
EXTENDED COBOL

Reference Page Term

Procedure branching verbs

E.4 E-6 Procedure call statement

4.2.2 4-2 Procedure division
conversion mode
cross-reference listing,

5.3.3 5-13 alphabetically ordered

10.2 10-1
description ·

6.6.1 6-5 storage map and cross-reference
listing

6.6.4.4 6-31 Procedure-name

11.4.3 11-7
11.4.2 11-4 PROCESS! NG MODE clause

11.4.1 11-3
PROGRAM-ID paragraph

2.2 2-6
Program segments

description

4.3.1 4-8 fixed portion

11.4.3 11-7 independent segment

11.4.2 11-4
11.4.1 11-3 Punctuation

6.5.4 6-4 a
Qualification

6.4 6-3 R

Random access
7.2 7-3
7.1 7-1 READ statement
7.1.1 7-1 description
7.2.1 7-4 indexed files
7.1.2 7-2 relative files
7.2 7-3 sequential files

READY TRACE statement
7.2 7-3
7.1.1 7-1 Receiving field
7.2.1 7-4 description
7.1.2 7-2 MOVE statement
7.2 7-3

RECORD CONTAINS clause

6.6.2.3 6-14 RECORD KEY clause
6.7.3.2 6-55 FILE-CONTROL paragraph

indexed files
relative files

5.3.4 5-15
Table 5-5 5-18 RECORDING MODE clause

ASCII files
description

6.7.3.1 6-55 indexed files
6.7.2 6-54 relative files
6.7.3.2 6-55 sequential files

Index 5
Update B

Reference

6.6.2

G.2

F.3.4

E.7
Fig. E-7
6.1

E.3

2.2

4.3.1

3.1

6.7.1
6.7.1.1 .
6.7.1.2

2.1.2

2.3

11.3.2

6.6.4.5
11.4.3
11.4.2
11.4.1

14.2

Table 5-7
Table 6-1

5.2.1.2

4.3.1
11.4.3
11.4.2

13.3
5.2.14
11.4.3
11.4.2
11.4.1

Page

6-12

G-1

F-6

E-13
E-15
6-1

E-4

2-4

4-10

3-1

6-54
6-54
6-54

2-2

2-7

11-2

6-31
11-7
11-4
11-3

14-1

5-21
6-22

5-5

4-11
11-10
11-8

13-2
5-8
11-7
11-4
11-3

UP-8059 Rev. 3

Term

REDEFINES clause

Relational condition

Relational expression

RELATIVE KEY clause
FILE-CONTROL paragraph
relative files

Relative organized files
description
processing

RELEASE statement

REMAINDER clause

REMARKS paragraph

RENAMES clause

REPLACING clause

RERUN clause
checkpointing
description
1-0-CONTROL paragraph
restrictions

RESERVE clause
FILE-CONTROL paragraph
indexed-files
sequential files

Reserved words
conversion mode
list

RESET TRACE statement

Restarting

RETURN statement

REWRITE statement
description
indexed files
relative files

ROUNDED option

s
SAME RECORD/SORT clause

SPERRY UNIVAC OS/3
EXTENDED COBOL

Reference Page Term

5.3.2 5-12 SD entry
description

6.6.6.l 6-40 SORT statement

2.1.3 2-3 SEARCH statement
description
table handling

4.3.l 4-10
11.4.2 11-4 Sections

description
segmentation

11.2.2 11-2
11.4.2 11-4 SECURITY paragraph

6.6.4.10 6-36 SEEK statement
description

6.6.1.2 6-8 relative file

3.1 3-1 SEGMENT-LIMIT clause

5.3.11 5-30 Segmentation
description

6.6.3.l 6-20 restrictions

Sending field
8.3 8-1
8.2 8-1 Sentences
4.3.2 4-11
8.5 8-2 Sequence numbers

Sequential access
4.3.l 4-8
11.4.3 11-7 Sequential files
11.4.1 11-3 description

processing

F.3.5 F-9 SET statement
Appendix B

Shared code parameter
14.3 14-2

SIGN clause
8.4 8-2

Sign condition
6.6.4.11 6-36

Sort file description

6.6.4.8 6-34 Sort-name
11.4.3 11-11
11.4.2 11-4 SORT statement

description
6.6.1 6-5 use

Sorting
organization
use

4.3.2 4-12
Source code listing

- Index 6

Reference Page •
5.2.2 5-10
6.6.4.12 6-37

6.6.6.2 6-45
10.6 10-3

6.3 6-2
6.7.2 6-55

3.1 3-1

6.6.4.9 6-35
11.4.2 11-4

4.2.2 4-2

6.7 6-54
6.7.3 6-55

Table 6-1 6-22

6.5 6-3 • 2.5 2-10

11.3.1 11-2

11.2.1 11-1
11.4.1 11-3

6.6.3.3 6-23

H.1 H-1

5.3.13 5-32

6.6.6.1 6-40

See SD entry.

2.2 2-4

6.6.4.12 6-37
12.3 12-2

12.2 12-1 • 12.3.7 12-4

E.l E-1

UP-8059 Rev. 3

• Term

SOURCE-COMPUTER paragraph

Source correction facility
description
use with COBOL jprocs

Source field

SPECIAL-NAMES paragraph
description
DISPLAY statement

Statements
compiler-directing
conditional
description
imperative

STOP statement

Storage allocation

Subscripting
description

• tables

SUBTRACT statement

Switch-status condition

SYMBOLIC KEY clause
FILE-CONTROL paragraph
indexed files

SYNCHRONIZED clause

SYSCHAN-t

SYSCOM clause
ACCEPT statement
SPECIAL-NAMES paragraph

SYSCONSOLE clause
ACCEPT statement
SPECIAL-NAMES paragraph

SYSDATE clause
ACCEPT statement
SPECIAL-NAMES paragraph

SYSERR clause
INDEXED and RELATIVE files
messages • SPECIAL-NAMES paragraph
USE FOR ERROR procedures

SPERRY UNIVAC OS/3
EXTENDED COBOL

Reference Page Term

4.2.1 4-2 SYSIN
ACCEPT statement
SPECIAL-NAMES paragraph

G.4 G-14
G.2 G-3 SYSIN-96

ACCEPT statement
Table 5-7 5-21 SPECIAL-NAMES paragraph

SYSIN-128
4.2.3 4-3 ACCEPT statement
6.6.4.3 6-30 SPECIAL-NAMES paragraph

SYSLOG clause
6.5.3 6-4 DISPLAY statement
6.5.2 6-4 SPECIAL-NAMES paragraph
6.5 6-3
6.5.1 6-3 SYSLST clause

DISPLAY statement
6.6.5 6-39 SPECIAL-NAMES paragraph

5.1.1 5-2 SYSSWCH
DISPLAY statement
SPECIAL-NAMES paragraph

2.4 2-9
10.4 10-2 System configuration

6.6.1.4 6-9 System console messages

6.6.6.1 6-40
SYSTIME clause

ACCEPT statement
4.3.1 4-10 SPECIAL-NAMES paragraph
11.4.3 11-7

5.3.6 5-24

4.2.3 4-4 Table
defining
indexing

9.1.7 9-4 reference
4.2.3 4-4 searching

subscripting

9.2.1 9-4 Table handling
4.2.3 4.4

TALLY

9.1.3 9-3 TALLING clause
4.2.3 4-4

Text

Table 11-6 11-27 TRANSFORM statement
11.4.4.4 11-27
4.2.3 4-5
F.5.4 F-13

Index 7

Reference Page

9.1.1.l 9-1
4.2.3 4-3

9.1.1.2 9-2
4.2.3 4-7

9.1.1.3 9-2
4.2.3 4-3

9.2.2 9-4
4.2.3 4-7

9.2.6 9-5
4.2.3 4-7

9.2.3 9-4
4.2.3 4-5

1.2 1-2

D.3 D-32
Table D-2 D-33

9.1.4 9-3
4.2.3 4-4

T

10.2 10-1
10.5 10-2
10.3 10-1
10.6 10-3
10.4 10-2

10.1 10-1

2.2 2-6

6.6.3.1 6-20

2.5 2-10

6.6.3.4 6-24

\j

UP-8059 Rev. 3 SPERRY UNIVAC OS/3
EXTENDED COBOL

Index 8

•

•

•

•

Q)

c:

en
c:
0

'"
" u

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving

subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

0 c
-I

•

•

•

.;
.!:
C>

·~ (.)

••

SFEF«Y+ UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

•

•

I
I
I

•:
I
I
I
I
I
I
I
I
I
I
I
I
I

. I
"' c:

~I -=I ::i

u I

••

I
I
I

ST=Er-«Y+ UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATIN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

.. ,
: .,

."'~,""

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

..
• • 1

•

•·

•

