
•

Basic COBOL

•

Environment: 90/25, 30, 308, 40 Systems

•
H

UNIVAC UP-8057 Rev. 2

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are register£ 1

trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS a
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1974, .1975, 1976, 1977 - SPERRY CORPORATION PRINTED IN U.S.A.

•

•

•

•

•

•

SPERRY UNIVAC
Operating System/3 (OS/3)

Basic COBOL
Supplementary Reference

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please contact your local Sperry Univac representative .

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Rand Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Rand Corporation. AccuScan, ESCORT, PAGEWRITER, PIXIE, and
UNIS are additional trademarks of the Sperry Rand Corporation.

This document was printed and distributed by the Customer Information Distribution
Center (CIDC), 555 Henderson Rd .. King of Prussia, Pa .. 19406 .

©1974, 1975, 1976, 1977 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

Part/Section

Cover/Disclaimer

PSS

Acknowledgmen

Preface

Contents

PART 1

1

2

PART2

3

4

5

6

Page
Number

1

1

1 thru 3

1, 2
3
4 thru 6
7 thru 9

Title Page

1, 2

1 thru 8
9
10

Title Page

1, 2

1, 2
3
4
5 thru 7
8
9
10
11 thru 14

1 thru 3
4,5
6 thru 8
9
10 thru 17
18
19 thru 25

1 thru 3
4
5 thru 21
22
23
24,25
26 thru 36
37
38 thru 44
45
46

SPERRY UNIVAC Operating System/3

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update D - UP-8057 Rev. 2
7.1 Forward

Update
Level Part/Section

Page Update
Number Level

B PART3
Title Page Orig.

D
7 1 Orig.

Orig. 2 c
3 Orig.

Orig. 4 B
5 Orig.

Orig. 6 B
D
Orig. 8 1, 2 Orig.
B

9 1 B
2,3 Orig.

Orig. 4 B
5 Orig.

Orig.
10 1 Orig.

Orig. 2,3 B
B
Orig. 11 1 thru 4 Orig.

5 D
6 thru 12 Orig.

Orig. 13, 14 B
15 thru 18 Orig.

Orig. 19,20 B
21 Orig.

A 22 A
Orig. 23 Orig.
A 24 B
Orig. 25 A
B 26,27 Orig.
Orig.
A 12 1, 2 Orig.
Orig. 3 B

4 thru 7 Orig.
Orig.
B PART4
Orig. Title Page Orig.
c
Orig. 13 1 B
c 2 thru 4 Orig.
Orig.

PARTS
Orig. Title Page Orig.
D
Orig. 14 1 A
B 2 thru 6 Orig.
Orig.
B 15 1 thru 9 Orig.
Orig.
B 16 1 thru 6 Orig.
Orig.
A
Orig .

D PSS 1

UPDATE LEVEL PAGE

Part/Section
Page Update

Number Level

PARTS
Title Page Orig.

Appendix A 1, 2 Orig.

Appendix B 1 A
2 B

Appendix C 1 Orig.

Appendix D 1 thru 9 Orig.
10 B
11 Orig.
12, 13 B
14 thru 35 Orig.

Appendix E 1 Orig.
2 B
3 Orig.
4,5 B
6, 7 Orig.
8 B
9 thru 11 Orig.
12 thru 16 B

Appendix F 1 thru 9 Orig.
10 B
11 A
12 B
13 thru 15 Orig.

Appendix G 1 Orig.
2 thru 4 c
5 thru 11 Orig.
12, 13 B

Index 1 Orig.
2 B
3,4 Orig.
5 D
6 Orig.
7 B
8 Orig.

User Comment
Sheet

All the technical changes are denoted by an arrow r-1 in the margin. A downward pointing arrow (t l next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (+ l is found. A horizontal arrow r-1 pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 Acknowledgment 1
UPDATE LEVEL PAGE

Acknowledgment

This manual is based on American National Standard COBOL, X3.23 - 1968 developed by the American National
Standards Institute. In response to their request the following acknowledgment is reproduced in its entirety:

"Any organization interested in using the COBOL specifications as the basis for an instruction manual or for any
other purpose is free to do so. However, all such organizations are requested to reproduce this section as part of the
introduction to the document. Those using a short passage, as in a book review, are requested to mention 'COBOL'
in acknowledgment of the source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company or group of companies, or of any
organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the COBOL Committee as to the accuracy
and functioning of the programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

"Procedures have been established for the maintenance of COBOL. Inquiries concerning the procedures for
proposing changes should be directed to the Executive Committee of the Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC Programming for the UNIVAC I and II, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM Commercial Translator Form No. F28-8013, copyrighted 1959 by IBM;
FACT, OSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL specifications in programming manuals or similar
publications.

"This complete USA Standard edition of COBOL may not be reproduced without permission of the USA Standards
Institute."

•

•

•

•

•

•

0057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 Preface 1
UPDATE LEVEL PAGE

Preface

This manual is one of a series designed to instruct and guide the programmer in the use of the SPERRY UNIVAC
Operating System/3 (OS/3). This manual specifically describes the OS/3 COBOL basic compiler and its effective use.
Its intended audience is the novice programmer with a basic knowledge of data processing, but with limited
programming experience, and the programmer whose experience is limited to non-UNIVAC systems.

Two other manuals also are available for instruction and guidance in the use of OS/3 COBOL; one is a fundamental
manual, and the other is the extended compiler manual. The fundamental COBOL manual, UP-7503.1 (current
version) is useful for reviewing the language in some depth; however, it does not present the COBOL implementation
for OS/3. The extended COBOL supplementary reference manual, UP-8059 (current version) includes the same
information as this manual, but incorporates enhancements to the basic compiler, such as sorting, additional verbs,
and more options, for the basic compiler verbs to provide more efficient use of the COBOL language.

This manual is divided into the following parts:

• PART1. COBOLLANGUAGESTRUCTURE

Defines the rules, symbols, and minimum system configurations required to compile an OS/3 COBOL
program. ALSO describes the character set, types of words, qualification, and subscripting and indexing and
presents the layout of a coding form.

• PART 2. DIVISIONS IN COBOL

Discusses the four divisions of COBOL.which are as follows:

IDENTIFICATION - labels a program, providing entries of pertinent information regarding the author and
installation of the program, when it was written and compiled, any security that might be involved, and its
intended use.

ENVIRONMENT - immediately follows the identification division entries and is coded to reflect specific user
system configurations.

DATA - Divided into three sections:

File Section - describes the records to be processed and the physical structure of files on which these records
reside.

Working-Storage Section - describes areas for intermediate or temporary storage of data that does not belong

to any file .

Linkage Section - describes data items that are passed by a calling program to a called program and are
referred to by both the calling and the called program.

PROCEDURE - specifies the instructions for the processor to use in solving the problem.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 Pretace2
UPDATE LEVEL PAGE

• PART 3. COMPILER FEATURES AND CAPABILITIES

Describes options that can be used with the basic COBOL compiler, in addition to furnishing pertinent
information that may be helpful in preparing a problem program.

COMPILER OPTIONS AND LIBRARY TECHNIQUES - explains how to use specific COBOL options, such
as generating certain listings in conjunction with compiling a problem program. The library techniques
paragraphs describe SOURCE and COPY library input specifications.

RERUN CLAUSE - provides a method of restarting the execution of a COBOL program at a checkpoint
position, rather than at the beginning of the execution.

USE OF ACCEPT AND DISPLAY STATEMENTS - the statements to use in retrieving or displaying
low-volume data from or to system hardware.

TABLE HANDLING - examines the methods of table definition and referencing available in OS/3 COBOL.
For a complete discussion of table handling, see the fundamentals of COBOL-table handling manual,
UP-7503.2 (current version).

PROCESSING TECHNIQUES FOR DIRECT ACCESS DEVICES - explains the various access methods
available on the OS/3 system and describes the COBOL statements needed to interface with them.

ASCII PROCESSING - describes the option for using ASCII data and processing files encoded in ASCII
(American Standard Code for Information Interchange).

• PART 4. DEBUGGING AIDS

Illustrates the techniques of detecting, diagnosing, and correcting errors in the COBOL source program with
the aid of the compiler.

• PART 5. SAMPLE PROGRAMS

Some of the COBOL statements defined in this manual are collected and presented in example operating
programs.

• PART 6. APPENDIXES

Presents the following appendixes:

A. CHARACTER SET - contains conversion tables for characters and the character collating sequence.

B. RESERVED WORDS - lists words that are part of the COBOL language structure but are not used as
user-defined words.

C. INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS - describes the internal work areas for
certain arithmetic statements.

D. COMPILER DIAGNOSTICS - lists the texts of the numbered diagnostic messages issued by the
compiler, their severity codes, the probable reason for the error or condition detected by the compiler,

the COBOL rules that apply, and the recovery actions taken by the compiler. Also listed are the system
console messages that require programmer action.

•

•

E. COMPILER LISTINGS - describes the listings received through the use of the PARAM statements in •
the job control stream.

F. CONVERSION MODE - describes a facility allowing users bf IBM/360 DOS COBOL level-D to transfer
into OS/3 COBOL.

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 Preface 3

UPDATE LEVEL PAGE

G. JOB CONTROL STREAM REQUIREMENTS - lists and describes the keyword parameters of the
procedure call statement used to generate job control statements needed for compilation. Examples of
call statements and generated control streams are included.

Other OS/3 publications, referenced in this manual, will be necessary or useful to the programmer working with the
basic COBOL compiler:

• Supervisor user guide, UP-8075 (current version)

Provides information needed to access the communication region of the OS/3, through which one job step
may communicate with a following job step.

• Job control user guide, UP-8065 (current version)

Provides information on the format and usage of job control statements for accessing UPSI switches, allocating
devices, and passing parameters to the object program.

• Data management system user guide, UP-8068 (current version)

Provides SPERRY UNIVAC OS/3 standard file label specifications.

• Error messages programmer/operator reference manual, UP-8076 (current version)

Lists and describes the system console messages issued during compilation by the compiler, emphasizing error
conditions during execution, and relating to sort operations .

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

PAGE STATUS SUMMARY

ACKNOWLEDGMENT

PREFACE

CONTENTS

PART1. COBOLLANGUAGESTRUCTURE

1. INTRODUCTION

1.1. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

1.2. COBOL COMPILER

2. GENERAL SPECIFICATIONS

2.1. COBOL CHARACTER SET
2.1.1. Characters Used for Words
2.1.2. Characters Used for Punctuation
2.1.3. Characters Used in Relational Expressions
2.1.4. Characters Used in Editing

2.2. TYPES OF WORDS

2.3. QUALIFICATION

2.4. SUBSCRIPTING AND INDEXING

2.5. CODING FORM

PART 2. DIVISIONS IN COBOL

3. IDENTIFICATION DIVISION

3.1. GENERAL

Contents 1
UPDATE LEVEL PAGE

Contents

1-1

1-2

2-1
2-2
2-2
2-3
2-3

2-3

2-6

2-9

2-9

3-1

8057 Rev. 2
UP-NUMBER

4.

5.

6.

SPERRY UNIVAC Operating System/3

ENVIRONMENT DIVISION

4.1. GENERAL

4.2. CONFIGURATION SECTION

4.2.1. SOURCE-COMPUTER Paragraph

4.2.2. OBJECT-COMPUTER Paragraph

4.2.3. SPECIAL-NAMES Paragraph

4.3. INPUT-OUTPUT SECTION

4.3.1. FILE-CONTROL Paragraph

4.3.2. 1-0-CONTROL Paragraph

DATA DIVISION

5.1. GENERAL

5.1.1. Data Definition

5.2. FILE SECTION

5.2.1. File Description

5.2.1.1. BLOCK CONTAINS Clause

5.2.1.2. RECORD CONTAINS Clause

5.2.1.3. LABEL RECORDS Clause

5.2.1.4. RECORDING MODE Clause

5.2.1.5. VALUE OF Clause

5.2.1.6. DATA RECORDS Clause

5.3. DATA DESCRIPTION

5.3.1. Level Number and Unqualified-data-name/Fl LLER Clause

5.3.2. REDEFINES Clause

5.3.3. OCCURS Clause

5.3.4. PICTURE Clause

5.3.5. USAGE Clause
5.3.6. SYNCHRONIZED Clause

5.3.7. JUSTIFIED Clause

5.3.8. VALUE Clause

5.3.9. BLANK WHEN ZERO Clause

5.3.10. MAP Clause

5.3.11. Condition-name Clause

5.3.12. SIGN Clause

5.4. WORKING-STORAGE SECTION

5.4.1. Independent Entries

5.4.2. Record Description Entry

5.5. LINKAGE SECTION

PROCEDURE DIVISION

6.1. GENERAL
6.1.1. USING Statement

6.2. DECLARATIVES SECTION

Contents 2
UPDATE LEVEL PAGE

• 4-1

4-1
4-2
4-2
4-3

4-9
4-9
4-12

5-1
5-2

5-2
5-3
5-3
5-6
5-6
5-7
5-8
5-8 • 5-9
5-9
5-10
5-11
5-12
5-18
5-19
5-19
5-20
5-21
5-21
5-21
5-22

5-23
5-23
5-24

5-24

6-1 • 6-1

6-2

•

•

•

8057 Rev. 2
UP-NUMBER

6.3.

6.4.

6.5.
6.5.1.
6.5.2.
6.5.3.
6.5.4.

6.6.
6.6.1.
6.6.1.1.
6.6.1.2.
6.6.1.3.
6.6.1.4.
6.6.2.
6.6.2.1.
6.6.2.2.
6.6.2.3.
6.6.2.4.
6.6.3.
6.6.3.1.
6.6.3.2.
6.6.3.3.
6.6.3.4.
6.6.4.
6.6.4.1.
6.6.4.2.
6.6.4.3.
6.6.4.4.
6.6.4.5.
6.6.4.6.
6.6.4.7.
6.6.4.8.
6.6.4.9.
6.6.5.
6.6.6.
6.6.7.
6.6.7.1.
6.6.7.2.
6.6.7.3.
6.6.7.4.
6.6.8.
6.6.8.1.
6.6.8.2.

6.7.
6.7.1.
6.7.1.1.
6.7.1.2.
6.7.2.
6.7.3.
6.7.3.1. -
6.7.3.2.
6.7.3.3.

SPERRY UNIVAC Operating System/3 D Contents 3
UPDATE LEVEL PAGE

SECTION 6-2

PARAGRAPH 6-3

STATEMENTS AND SENTENCES 6-3
Imperative Statements 6-3
Conditional Statements 6-4
Compiler-Directing Statements 6-4
Overlapping Operands 6-4 ~

VERB TYPES 6~::>

Arithmetic Verbs 6-5
ADD Statement 6-6
DIVIDE Statement 6-7
MULTIPLY Statement 6-8
SUBTRACT Statement 6-9

Procedure Branching Verbs 6-10
ALTER Statement 6-10
GO TO Statement 6-11
PERFORM Statement 6-12
EXIT Statement 6-13

Data Movement Verbs 6-14
EXAMINE Statement 6-14
MOVE Statement 6-15
SET Statement 6-17
TRANSFORM. Statement 6-18

Input/Output Verbs 6-21
ACCEPT Statement 6-21
CLOSE Statement 6-22
DISPLAY Statement 6-23
OPEN Statement 6-24
READ Statement 6-25
WRITE Statement 6-25
INSERT Statement 6-27
REWRITE Statement 6-27
SEEK Statement 6-28

Ending Verb (STOP) 6-29
Conditional Verb (IF) 6-29
Compiler-Directing Verbs 6-33

COPY Statement 6-33
ENTER Statement 6-34
NOTE Statement 6-35
USE Statement 6-36

lnterprogram Communications 6-38
CALL Statement 6-38
ENTRY Statement 6-39

SEGMENTATION 6-39
Program Segments 6-39

Fixed Portion 6-39
Independent Segments 6-39

Section 6-40
Restrictions 6-40

ALTER Statement 6-40
PERFORM Statement 6-41
Linkage Editor Considerations 6-41

8057 Rev. 2
UP-NUMBER

7.

8.

+
9.

SPERRY UNIVAC Operating System/3

6.8. CALLING AND CALLED PROGRAMS
6.8.1. Treatment of Data Items
6.8.2. Linking
6.8.3. OS/3 COBOL CALL/ENTRY Interface

PART 3. COMPILER FEATURES AND CAPABILITIES

COMPILER OPTIONS AND LIBRARY STATEMENTS

7.1. COMPILER OPTIONS
7.1.1. List Options
7.1.2. Output Options

7.2. SOURCE AND COPY LIBRARY INPUT SPECIFICATIONS

7.2.1. Object Module Version/Revision Number
7.2.2. Compiler Source Library Input and Copy Library Input

7.3. LIBRARY
7.3.1. Using the COPY Statement

RERUN CLAUSE

8.1. GENERAL

8.2. RERUN CLAUSE

8.3. CHECKPOINTING

8.4. RESTARTING

8.5. NOTES AND RESTRICTIONS

USE OF ACCEPT AND DISPLAY STATEMENTS

9.1. ACCEPT STATEMENT
9.1.1. Job Control Stream ACCEPT
9.1.1.1. 80-Column Card ACCEPT
9.1.1.2. 96-Column Card ACCEPT
9.1.1.3. 8413 Diskette ACCEPT
9.1.2. Console ACCEPT
9.1.3. Current Date ACCEPT
9.1.4. . Time of Day ACCEPT
9.1.5. Julian Date ACCEPT
9.1.6. UPSI Byte ACCEPT
9.1.7. Communications Region ACCEPT

9.2. DISPLAY STATEMENT
9.2.1. Console DI SPLAY
9.2.2. Log File DI SPLAY
9.2.3. UPSI Byte DISPLAY
9.2.4. UPSI Bit DISPLAY
9.2.5. Communications Region DI SPLAY
9.2.6. Printer Listing DISPLAY

Contents 4
UPDATE LEVEL PAGE

6-41 • 6-41
6-42
6-42

7-1
7-1
7-2

7-3
7-3
7-4

7-5
7-5

8-1

8-1 • 8-1

8-2

8-2

9-1
9-1
9-1
9-2
9-2
9-3
9-3
9-3
9-3
9-3
9-4

9-4
9-4
9-4
9-4 • 9-5
9-5
9-5

•

•

•

8057 Rev. 2
UP-NUMBER

10 .

11.

12.

SPERRY UNIVAC Operating System/3

TABLE HANDLING

10.1. GENERAL

10.2. DEFINING A TABLE

10.3. TABLE REFERENCE

10.4. SUBSCRIPTING

10.5. INDEXING

PROCESSING TECHNIQUES FOR DIRECT ACCESS DEVICES

11.1. INTRODUCTION

11.2. FILE ORGANIZATION
11.2.1. Sequential Organization
11.2.2. Relative Organization
11.2.3. Indexed Organization

11.3. ACCESS METHODS
11.3.1. Sequential Access
11.3.2. Random Access
11.3.3. Extended Access

11.4. CLAUSES REQUIRED FOR FILE PROCESSING
11.4.1. Sequential File Processing
11.4.2. Relative File Processing
11.4.3. Indexed File Processing
11.4.4. Summary of Imperative Statements and Error Conditions
11.4.4.1. ORGANIZATION IS SEQUENTIAL Clause
11.4.4.2. ORGANIZATION IS RELATIVE Clause
11.4.4.3. ORGANIZATION IS INDEXED Clause
11.4.4.4. SYSER R Messages
11.4.4.5. COBOL Disc Processing Techniques

ASCII TAPE PROCESSING

12.1. GENERAL

12.2. DECLARATION OF ASCII Fl LES

12.3. RECORDING MODE CLAUSE

Contents 5
UPDATE LEVEL PAGE

10-1

10-1

10-1

10-2

10-2

11-1

11-1
11-1
11-2
11-2

11-2
11-2
11-2.
11-2

11-2
11-3
11-4
11-7
11-13
11-13
11-13
11-13
11-26
11-26

12-1

12-1

12-2

8057 Rev. 2
UP-NUMBER

13.

14.

15.

16.

A.

B.

c.

SPERRY UNIVAC Operating System/3

PART 4. DEBUGGING AIDS

DEBUGGING LANGUAGE

13.1. GENERAL

13.2. READY TRACE

13.3. RESET TRACE

13.4. EXHIBIT

13.5. DEBUGGING PACKET

PARTS. SAMPLEPROGRAMS

SAMPLE PROGRAM 1

14.1. GENERAL

14.2. PROG01

14.3. SOURCE CODE LISTING

14.4. OUTPUT LISTING

SAMPLE PROGRAM 2

15.1. GENERAL

15.2. PROG02

15.3. SOURCE CODE LISTING

15.4. OUTPUT LISTING

SAMPLE PROGRAM 3

16.1. GENERAL

16.2. PROG03

16-3. SOURCE CODE LISTING

16.4. OUTPUT LISTING

PART 6. APPENDIXES

CHARACTER SET

RESERVED WORDS

INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS

Contents 6
UPDATE LEVEL PAGE

•
13-1

13-1

13-1

13-2

13-3

14-1

14-1

14-2

14-6 •
15-1

15-1

15-2

15-9

16-1

16-1

16-2

16-6

•

•

•

•

8057 Rev. 2
UP-NUMBER

D.

E.

F.

SPERRY UNIVAC Operating System/3 B Contents 7
UPDATE LEVEL PAGE

C.1. GENERAL C-1

C.2. ADD AND SUBTRACT STATEMENTS C-1

COMPILER DIAGNOSTICS

D.1. GENERAL D-1

D.2. DIAGNOSTIC MESSAGES D-1

D.3. SYSTEM CONSOLE MESSAGES D-33

COMPILER LJSTINGS

E.1. SOURCE CODE LISTING E-1

E.2. DATA DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING E-3

E.3. PROCEDURE DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING E-4

E.4. OBJECT CODE LISTING AND EXTERNAL REFERENCES E-6

E.5. DIAGNOSTIC ERROR LISTING E-11

E.6. ALPHABETICALLY ORDERED DATA DIVISION CROSS-REFERENCE LISTING E-14
t

E.7. ALPHABETICALLY ORDERED PROCEDURE DIVISION CROSS-REFERENCE
LISTING E-14

+
CONVERSION MODE

F.1. GENERAL F-1

F.2. CONVERSION MODE OPERATION F-1

F.3. CONVERSION MODE SYNTAX F-2
F.3.1. Identification Division F-2
F.3.2. Environment Division F-2
F.3.3. Data Division F-5
F.3.4. Procedure Division F-7
F.3.5. Reserved Words F-10

F.4. PRINTER Fl LE SUPPORT F-11

F.5. DISC FILE SUPPORT F-13
F.5.1. Sequential Organization F-13

F.5.2. Indexed Organization F-14

F.5.3. Direct Organization F-15

F.5.4. Error Testing in USE AFTER ERROR Procedure F-15

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

G. JOB CONTROL STREAM REQUIREMENTS

G.1. INTRODUCTION

G.2. PROCEDURE CALL STATEMENT (COBOLB)

G.3. COMPILER STATUS INDICATORS

G.4. DATA DEFINITION (DD) JOB CONTROL STATEMENT
KEYWORD PARAMETERS

INDEX

USER COMMENT SHEET

FIGURES

2-1. Example of Qualification Entries
2-2. COBOL Programming Form

3-1. Example of Identification Division Entries

4-1. Example of Environment Division Entries

5-1. Example of Data Division Entries

6-1. Example of Calling Program
6-2. Example of Called Program
6-3. Example of Called Assembly Subprogram

12-1. ASCII Physical Tape Formats

E-1. Example of Source Code Listing
E-2. Example of Data Division Storage Map and Cross-Reference Listing
E-3. Example of Procedure Division Storage Map and Cross-Reference Listing
E-4. Example of Object Code Listing and External References
E-5. Example of Diagnostic Listing
E_-6. Example of Alpha_betically Ordered_ Data 01vision Cross-Reference Listing
E-7. Example of Alphabetically Ordered Procedure Division Cross-Reference Listing

TABLES

1-1. SPERRY UNIVAC OS/3 COBOL Module/Level Implementation

2-1. User-Supplied Words
2-2. Reserved Words
2-3. Programming Form Column Usage

4-1. Rules for,SPECIAL-NAMES

B Contents 8
UPDATE LEVEL PAGE

• G-1

G-1

G-12

G-12

2-8
2-9

3-2

4-14 • 5-25

6-43
6-44
6-45

12-3

E-2
E-5
E-8
E-12
E-13
E-15
E-16

1-2

2-4
2-5
2-10 • 4-8

•

•

•

8057 Rev. 2

UP-NUMBER

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.

6-1.
6-2.
6-3.

11-1.
11-2.
11-3.
11-4.
11-5.
11-6.
11-7.

12-1.
12-2 .

SPERRY. UNIVAC Operating System/3 B Contents 9
UPDATE LEVEL PAGE

Main Storage Allocation 5-2
Control Field Sizes 5-4
Block Size Ranges 5-5
Label Record Specifications 5-7
PICTURE Symbols 5-14
Precedence Rules in PICTURES 5-16
Source and Receiving Fields 5-17

MOVE Sending and Receiving Fields 6-16
Combination of FROM and TO Options in a TRANSFORM Statement 6-20
Program/Subprogram Relationships 6-46

Logical Record Retrieval by Sequential Read 11-10
Warning Exception Conditions for Indexed File Processing 11-13
AT END/INVALID KEY Exception Conditions for Indexed File Processing 11-14
Unrecoverable File Error Conditions for Indexed File Processing 11-14
Exception Handling for COBOL Verbs Used for Indexed File Processing 11-17
System Error Messages (SYSERR) for INDEXED and RELATIVE Files 11-26
Summary of COBOL Disc Processing Techniques 11-27

Characteristics of Tape Files Available to COBOL Users 12-4
ASCII/EBCDIC Conversion 12-5

•

•

•

•

• PART 1. COBOL LANGUAGE STRUCTURE

•

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

1.1. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

1-1
UPDATE LEVEL PAGE

1. Introduction

The various language elements comprising a COBOL program must be written in formats that adhere to fixed and
precise rules of presentation. Each format statement indicates the following information:

• order of presentation;

• words requisite to proper functioning of the statement;

• optional words included at the discretion of the user;

• information that must be supplied by the user;

• elements in the statement involving a choice by the user; and

• optional functions of the statement.

In accordance with the foregoing, the following conventions are used in this manual:

• The order of presentation is indicated by the format statement itself.

• All COBOL reserved words appear in all capitals. They are also listed in Appendix B.

• Words in underlined capitals are key words, which must be present when the functions in which they appear
are used. Those capitalized words not underlined are optional and may be included at the user's discretion to
improve readability; there is no compiler action. All completely capitalized words, whether underlined or not,
are part of the COBOL language and must be spelled exactly as indicated.

• All lowercase words represent generic terms to be supplied by the user when the functions of which they are a
part are used.

• Elements of a statement imcolving a choice, one of which must be chosen, are enclosed in braces {}. If one of
the choices within the braces has no key words, it is a default option; i.e., if none of the elements within the
braces is specified,.the action will be the same as if the default option had been specified.

• Optional functions, which may be included or omitted at the user's discretion, are enclosed in brackets [] .
When two or more options are stacked within brackets, one or none of them may be specified .

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 1-2
UPDATE LEVEL PAGE

• In some statements, certain portions may be used as many times as needed by the programmer. The ellipsis ...
indicates this repeatability. If there is a choice to be made from stacked options or if there is only a single
possibility, brackets or braces are used as delimiters to indicate that portion of the statement which is
repeatable.

Program examples are shown in 14.2, 15.2, and 16.2.

1.2. COBOL COMPILER

The SPERRY UNIVAC Operating System/3 (OS/3) COBOL compiler conforms to the specifications of the
American National Standards Institute entitled American National Standard COBOL, X3.23-1968. The modules
and levels implemented are shown in Table 1-1; where OS/3 COBOL features are an extension to these
requirements, an annotation is made in the text.

Table 1-1. SPERRY UNIVAC OS/3 COBOL Module/Leve/ Implementation

Module Level

Nucleus 1

Sequential access 2

Random access 2

Segmentation 1

Table handling 2

Library 1

The minimum system configuration required for this compiler includes:

• 3 disc work areas and 1 system disc

• 1 card reader or substitute device

• 1 printer or substitute device

• 32,768-byte main storage

The compiler and all compiler-produced object programs normally operate on data represented in Extended Binary
Coded Decimal Interchange Code (EBCDIC) under control of the OS/3.

A COBOL source program can be entered in the compiler from the job stream file or from a disc library file. The
compiler produces, as its final output, a relocatable object program on disc. This output module must be processed

by the linkage editor before being executed.

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-1
UPDATE LEVEL PAGE

•

•

•

2. General Specifications

2.1. COBOL CHARACTER SET

The SPERRY UNIVAC Operating System/3 (OS/3) COBOL character set is a 52-character subset of the OS/3
character set, which contains 256 characters.

The COBOL character set consists of the following characters:

0,1, ... ,9

A,B, ... ,Z

Blank or space (written on coding form as b.or a blank space)

Period

< Less than

Left parenthesis

+ Plus sign

$ Currency sign

* Asterisk (if used in column 7, indicates that the entire source line is commentary)

Right parenthesis

Semicolon

Minus sign or hyphen

Comma

> Greater than

Apostrophe (alternate character for quotation mark)

Equal sign

Quotation mark (see apostrophe)

I Slash

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

The collation sequence for these characters is given in Appendix A.

2-2
UPDATE LEVEL PAGE

The OS/3 COBOL character set may be used anywhere in a program; however, the additional characters, which
together with the COBOL set make up the system set, may be used only in the following instances:

• anywhere in the identification division except in the PROGRAM-ID paragraph;

• in the NOTE statement of the procedure division; or

• in nonnumeric literals.

The apostrophe or the quotation mark may be embedded in a nonnumeric literal by invoking the appropriate LST
PA RAM option to specify one or the other as the delimiter. (See Section 7.) Only one of these parameters may be
used in any given program. The use of either overrides the interchangeability of the apostrophe and quotation mark.

The following paragraphs describe the general usage of the various OS/3 COBOL characters.

2.1.1. Characters Used for Words

A COBOL word is a sequence of not more than 30 of the following characters:

0,1, ... ,9

A,B, ... ,Z

- (hyphen)

A word may neither begin nor end with a hyphen, or contain a space.

2.1.2. Characters Used for Punctuation

COBOL punctuation characters are:

NOTE:

Apostrophe (character used as delimiter for a nonnumeric literal and as an optional character for the
quotation mark)

Left parenthesis

Right parenthesis

Blank or space (written on coding form as fior a blank space)

Period

Comma

Semicolon

Quotation mark (See apostrophe.)

The normal mode for the compiler is to equate the apostrophe and the quotation mark as meaning the same thing.
To embed either character within a nonnumeric literal, the PA RAM options described in 7.1 may be used.

The comma and semicolon, when used in the general format descriptions, are for readability only and are not
required. When used, the comma and semicolon always must be followed by. a space.

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 2-3
UPDATE LEVEL PAGE

• 2.1.3. Characters Used in Relational Expressions

•

•

The COBOL characters used to represent relational operators are:

Equals

> Greater than

< Less than

2.1.4. Characters Used in Editing

The characters used in editing are:

B Blank or space insertion

0 Zero insertion

+ Plus sign

Minus sign

CR Credit

DB Debit

z Zero suppression

* Check protection

$ Currency symbol

Comma

Decimal point

2.2. TYPES OF WORDS

Two types of words are used in OS/3 COBOL: user-supplied and reserved. The user-supplied words are listed and
defined in Table 2-1. Reserved words are used for syntactical purposes and may not appear as user-defined words.
The various types of reserved words are described in Table 2-2. Appendix B contains a complete list of OS/3
COBOL reserved words .

8057 Rev. 2
UP-NUMBER

------------------------------------~----------------

SPERRY UNIVAC Operating System/3 2-4
UPDATE LEVEL PAGE

Table 2-1. User-Supplied Words (Part 1 of 2) • User-Supplied Words Rules

Data-name 1. Contains 1 through 30 characters

2. Permissible characters are 0 through 9, A through Z, and hyphen (-).

3. Must include at least one alphabetic character

4. Hyphen(-) cannot be the first or last character.

5. May be qualified; may not be subscripted

Unqualified 1. Rules 1 through 4 for data-name
data-name

2. May not be qualified; may not be subscripted

Identifier 1. Rules 1 through 4 for data-name

2. May be qualified and/or subscripted

Condition-name 1. Rules 1 through 4 for data-name

2. Value may be established in a level-88 entry or in a SPECIAL-NAMES
switch status declaration.

3. Referenced only in conditions

Conditional 1. Rules 1 through 4 for data-name
variable

2. Data-name immediately followed by one or more associated level-number • 88 entries

Procedure-name 1. Rules 1, 2, and 4 for data-name

2. Must precede each referenced paragraph

3. A procedure-name is a section-name if it is followed by the word
SECTION.

External-name 1. A nonnumeric literal of 1 to 8 characters

2. A user-supplied label that duplicates the LFD name used in the job
control stream to name a COBOL file

File-name 1. Rules 1 through 4 for data-name

2. A word that names a file described in the data division

Index-name 1. Rules 1 through 4 for data-name

2. Value of index-name corresponds to an occurrence number for a table
dimension.

3. Initialized and modified only by the SET statement

4. Defined by the INDEXED BY clause

5. Table references using indexing are specified by the data-name of the
table element followed by parentheses including an index-name for each
table dimension. • 6. Storage areas are assigned by compiler.

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
2-5

UPDATE LEVEL PAGE

Table 2-1. User-Supplied Words (Part 2 of 2)

User-Supplied Words Rules

Index data-item 1. Rules 1 through 3 for index-name

2. Defined by USAGE IS INDEX clause

3. May be part of a group referred to in a MOVE or 1-0 statement

Numeric literal 1. A string of not more than 20 characters, including 0 through 9, sign
(+or-), and decimal point

2. Must contain at least one and not more than 18 digits plus a sign and
a decimal point

3. May contain only one sign, which must be leftmost character; if
unsigned, literal is positive.

4. May contain only one decimal point, treated as an assumed decimal
point; if no decimal point, the I iteral is an integer

5. Decimal point cannot be the last character in a numeric literal.

6. When a literal is restricted to numeric, the only figurative constant
permitted is ZERO.

Nonnumeric literal 1. A string of any characters of the OS/3 character set, excluding the
quotation mark and the apostrophe (unless these have been embedded by
use of the appropriate LST parameter (7 .1)); reserved words may be used

2. Must contain at least one and not more than 132 characters

3. Must be enclosed within quotation marks or apostrophes

4. Any spaces enclosed in the quotation marks are part of the literal
and, therefore, are part of the value.

5. All nonnumeric literals are in the alphanumeric category.

6. A figurative constant can be used whenever a nonnumeric literal appears
in the format.

Table 2-2. Reserved Words (Part 1 of 2)

Reserved Words Rules

Verbs Denote actions performed by the object program or the COBOL compiler

Key words 1. A word which must be present in a particular clause

2. Key words are indicated by underlining where they appear in the general
formats.

Optional words 1. Used in COBOL to improve readability

2 . Presence or absence does not alter handling of statement during
compilation or execution of program

3. Not underlined when shown in generalized format

8057 Rev. 2
UP-NUMBER

Reserved Words

TALLY

Figurative constants

Connectives

SPERRY UNIVAC Operating System/3 2-6
UPDATE LEVEL PAGE

Table 2-2. Reserved Words (Part 2 of 2)

Rules

1. TALLY is the name of a special register designated by the compiler
whose implicit description is that of a COMPUTATIONAL-3 integer of five
digits without an operational sign.

2. TALLY holds the count produced by the EXAMINE statement.

3. TALLY may also be used in the procedure division as a data-name
whenever an elementary data item of integral value may appear.

1. ZERO, ZEROS, or ZEROES generates one or more O's.

2. SPACE or SPACES generates one or more spaces.

3. HIGH-VALUE or HIGH-VALUES generates one or more hexadecimal
FF characters (all binary 1's); this character has the highest value in the
OS/3 collating sequence.

4. LOW-VALUE or LOW-VALUES generates one or more hexadecimal 00
characters (all binary O's); this character has the lowest value in the
OS/3 collating sequence.

5. QUOTE or QUOTES generates one or more apostrophes('), hexadecimal 70;
QUOTE(S) cannot be used in place of quotation marks(") or an apostrophe
to bound a nonnumeric literal.

6. The ALL literal generates one or more of the literals following the
ALL; the literal must be either a nonnumeric literal or a figurative
constant other than the word ALL; when a figurative constant is used,
the word ALL is redundant and is used for readability only; the ALL
literal may not be used with DISPLAY, EXAMINE, STOP, or COPY.

1. The qualifier connectives OF and IN are used to associate a data-name
or paragraph-name with its qualifier.

2. A series connective is the comma, which links two or more consecutive
operands or statements; the use of a series connective is optional.

2.3. QUALIFICATION

Every name used in an OS/3 COBOL source program must be unique either because of different spelling or because
of qualification.

Definition:

Qualification is a means of making a name within a hierarchy unique by appending a prepositional phrase
containing the name of a higher level of the hierarchy. It is accomplished by appending one or more phrases
composed of a qualifier preceded by IN or OF to a data-name or paragraph-name. IN and OF are logically
equivalent.

Rules:

1. The name associated with the highest level entry in a hierarchy is the highest level qualifier available for
a data-name within that hierarchy.

2. Each qualifier must be of a successively higher level and within the same hierarchy as the name it
qualifies.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

3.

4.

5.

6.

7.

8.

9.

10.

11.

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

The same name must not appear at two different levels in the same hierarchy.

If a data-name or condition-name is assigned to more than one item, it must be qualified each time it is
referenced.

A data-name cannot be subscripted when it is being used as a qualifier.

A paragraph-name must not be duplicated within a section.

Only a section-name can qualify a paragraph-name; the word SECTION must not appear as part of this
qualifier.

A paragraph-name need not be qualified when referred to from within the same section.

A name may be qualified even though it does not require qualification.

FD names, level-77 names, level-66 names, level-01 names not in the file section, and section-names must
be unique in themselves as they cannot be qualified.

A data-name being qualified may be subscripted or indexed. The subscripts/indexes must appear to the
right of the last qualifier name.

Format 1:

{::~:~::~~!me-1 } [{ ~F} data-name-2 J ... [(sub-1 [, sub-2 [,sub-3)])]

Format 2:

paragraph-name [{ ~F} section-name]

2-7

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

NOTE:

Figure 2-1 illustrates examples of qualification entries.

r-----.... r::::CONTINUATION

s~~~~~~E +IA B Tex T ---------------!·~
6 7 8 11 12 20 30 40 50

2-8
UPDATE LEVEL PAGE

60

l--"-'-_...__~---+---+----'-'---+--~~J_~.--1---L ---- -·"-·· ..i.. J -_ _L _.. '_..L _J__~_J..._J __L__l

........ __.__...__~---+---+---D_.~T~ D,I,\/'. IS, l,O'~L~.t~ .. t-'- i. -----'- .. .LJ L L.L - ~ L--'._ L.L-~--~~--LL .J •. .t. .. L l , _ _...___~__.__,__._..__..__..___.
I,N,G,-,5'.L~-'-RAl.9,E. ,$_,_~~'._L_;_L.__C___.____i__.LLLL "----· I L-' Ll-.J_J ~~~~~~~~~
b~D PIC XllO) VA~UE SP CES .

......_~~-'--+-+--L- J.. ~3. I c I I, r. y: ,PI I CL~ XL(~,~J .t '..LL.t....L-'--L-' ~~~.
1--"--'--'--'-'-·+-•~~~'-+-0,3, .~ABJ>, ,'P1l,C, X,(, 1,0,),. · I , .L .. L.Ll l..l .•.. I

0.1 PE' N

•. L. LL Q.!_,_c;J, T Y, ,'Pi l,C, ,X (, 2 ,0.)' . I .L.J_L . .L .. .L L.t .L L- ..t.-·~~~~~~..L..l...t....L.L_j_L_L~
Le L 0,3 WAJ\l>, ,P;l,C, ,X {, 1,0_J_l~L:. LJ. .l ,,[L .J [__ ,_ .. L_~! _...__L.t~J_L.J.-L...LJ....L..J....L...L.. I I I j I I ..L.J

Figure 2-1. Example of Qualification Entries

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

2.4. SUBSCRIPTING AND INDEXING

Definition:

B 2-9
UPDATE LEVEL PAGE

Subscripting and indexing are techniques used to refer to individual table elements within a table of like
elements that have not been assigned individual data-names.

Rules:

1. Up to three levels of subscripting or indexing are permitted.

2. Subscripted or indexed identifiers may not be used as qualifiers.

3. When condition-names are assigned to items requiring subscripting or indexing, these condition-names
must be subscripted or indexed when referenced.

4. Relative indexing (index-name ± integer) is permitted. The integer must not be zero. Zero is considered
out of the scope of an OCCURS clause.

5. When more than one subscript or index is used in a reference, each must be separated by a comma and a
space.

NOTE:

Table handling is discussed in Section 10. For a complete discussion of table handling, see the fundamentals of
COBOL - table handling manual, UP-7503.2 (current version) .

2.5. CODING FORM

Figure 2-2 shows the layout of the COBOL programming form. On this form the programmer enters all information
needed by the COBOL compiler, observing the rules of format and content defined in this manual. Each line of
written information represents the information to be entered into one 80-column punched card. The divisions of the
form are explained in Table 2-3.

UNIVAC COBOL
P ROCRAMMIHC FORM

PROGRAM PROGRAMMER

~---...r::::CONT!NUAT!ON

s~~~~~~E ! IA 8 T E X T --
6 7 8 11 12 20 40 so 60

1--'-~L~-'--jf-+-~j_-'--+-~~~~~j_ ~_.____L ~-~-'- _L._, __ .

.__,_~~-'--j'-'--~-'--+1~~~~~.L " _ " '~- __ L_L_____ -" _, . L_l 1 :----.-L .. _l_..J.....__j__;__ _ _J_~-----j_-~-·

J_ _l

-~ i _L_~_L___L__L j__ ~ L .L _). _j • _1_

L-L-'-'--'-'-+-~- - •

P---i--L___L_J_- -··-"----'--+~-~~~-- _ _j_ _ ___L_

I

Figure 2-2. COBOL Programming Form

72

~QOGPA.V l.D. ~----·
80

_L J

DATE

72

_____ PAGE

IDEHTIFICATIOH
80

8057 Rev. 2
UP-NUMBER

Columns

1-6

7

7

7

8-72

73-80

SPERRY UNIVAC Operating System/3 2-10

UPDATE LEVEL PAGE

Table 2-3. Programming Form Column Usage •
Designation Contents

SEQUENCE NUMBER A numeric entry, used only by the programmer (not the COBOL
processor) to establish a sequence among the various lines of
coding (optional!.

CONTINUATION A hyphen (-) is used when an entry extends past one
noncomment line. A break is used in the middle of a word,
and the hyphen is written in column 7 of the next Contiguous
line on which the word is completed. A word may be interrupted
in any column, the rest of the line space filled, and the
word completed on the next line. If the continued line
contains a nonnumeric literal without a closing
delimiter (apostrophe or quotation mark), the first
nonblank character in Area B of the continuation line must be
one of these delimiters and the continuation starts with the
character immediately after the delimiter.

COMMENT An asterisk(*) in column 7 signifies a comment line which
will be printed but ignored by the compiler. A comment
may appear anywhere in the program except between a continuation
set and can contain any printable combination of characters,
including reserved words. If a comment entry extending past
one line has a break occurring in the middle of a word, the
continuation line must contain an asterisk in column 7.
(The hyphen is only used for noncomment continuation
lines.) This is an extension to American National Standard
COBOL (1968).

EJECT A slash (/) in column 7 signifies a comment line that causes • the compiler to direct the printer to skip to the head of the
form and print the comment. If the comment line is continued,
it must follow the rules for comment continuation, as explained
in the preceding paragraph.

TEXT All COBOL-formatted information, in the form of names,
statements, information, instructions, etc., that is to be
compiled into the object program.
Note that two left-margin limits designated "A" and "B"
are shown. These are needed for program alignment. Major
definitive names are begun at margin A (column 8). Margin
B (column 12) is used for subordinate items and for
continuation of entries from the last preceding line.

IDENTIFICATION Card deck information (optional)

•

•

• PART 2. DIVISIONS IN COBOL

•

•

•

•

•

•

•

8057 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 3-1

UPDATE LEVEL PAGE

3. Identification Division

3.1. GENERAL

The identification division identifies or labels the source program and provides other pertinent information
concerning the program. All information given in this division is listed by the printer during compilation; however,
only the PROGRAM-ID paragraph will affect the object program in the SPERRY UNIVAC Operating System/3
(OS/3).

Format:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name .

[AUTHOR. [comment-entry.] ...]

[INSTALLATION. [comment-entry.] .. .l

'[DATE-WRITTEN. [comment-entry.] ...]

[DATE-COMPILED. [comment-entry.] ...]

[SECURITY. [comment-entry.I ...]

[REMARKS. [comment-entry.I .. .I

Rules:

1. The identification division must be present in all source programs.

2. PROGRAM-ID always must be present as the first paragraph of the identification division.

3.

Program-name may consist of 1 to 30 alphabetic or numeric characters, the first character being
alphabetic. The sequence formed by the first six characters must be unique (within user's library) since it
will identify the source program, object program elements, and associated documents. Hyphens within
the first six characters are removed by the compiler due to OS/3 naming conventions.

If the program name is not supplied or not accepted due to an error, the compiler automatically supplies
the program name NOCOBNAM .

AUTHOR is for documentation only.

SPERRY UNIVAC Operating System/3 3-2 8057 Rev. 2
UP-NUMBER UPDATE LEVEL PAGE

4. INSTALLATION is for documentation only.

5. DATE-WRITTEN is for documentation only.

6. DATE-COMPILED is for documentation only. Date of compilation appears on listing regardless of
whether this paragraph is present. Comment-entry is printed when this paragraph is present.

7. SECURITY is for documentation only.

8. REMARKS is for documentation only.

9. A comment-entry can consist of any printable combination of characters, including reserved words.

Example:

An example of identification division entries is shown in Figure 3-1.

------.. r:;:::CCt-.TlNUATION

SEQUENCE t A B
NUMBER

6 7 8 1112
TEXT------··------------·

20 30 40

o o l O o I I:D E N i I. F I .C A T 1 D .D I V I S I V.~_L __ _,_ -'---- .
00 \ O.&.:_ - ~1.1> .. L _1;E.o_$_'{,Q_l,:_~--"---·L_l __ _t__L_c_;_ l

oo 1 Oo3 A.u 1J}:i ,SY,S.L?iM~LJ',U.BJ'.'.JJCAiT,l,D;~S.·L---~ LL----" _

•

~~,: 1~1~-L~ - ii~~~~~ ~L-,L,~,~·;~~·~'.-'~~1~:{~;~i:L~J3~ .. -L ___ . ~· . "--~ • _, __ .
1 1

•

Q_~LL_Q..9.l~ - 1? T1E-CQMPiI_,_~_Jh.~ .. }~J¥iG. _J_,~L)_19.].~L·. . j .! J •.. .L .. j I '
oo 1 001 se..:..c:~ll .'1.u~~,o.N~~..'..L. , .lo., , , 1 ~. ~--'-·_;__._ _ _c__J_.__; ·--'---~ . .L_J __ _

001 D~18 __ R6MA~-·-~-LL~~Jl;J~~g"P,OR,T # I \L._~L~--'--' ' '. j ... J' LL~
I

Figure 3- 1. Example of Identification Division Entries

•

•

•

8057 R,ev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 4-1
UPDATE LEVEL PAGE

4. Environment Division

4.1. GENERAL

The environment division specifies those elements of the COBOL program that depend upon the physical aspects of

the SPERRY UNIVAC 90/30, 90/25, or 90/40 System.

Format:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

{

UNIVAC-9030.}
SOURCE-COMPUTER. UNIVAC-9025.

UNIVAC-9040 .

{

UNIVAC-9030 }
OBJECT-COMPUTER. UNIVAC-9025

UNIVAC-9040

[
,MEMORY SIZE integer { ~~~~~~~ERS}]·

WORDS

[SPECIAL-NAMES. entry.]

[

INPUT-OUTPUT SECTION.]
FILE-CONTROL. {entry.} ...
[l-0-CONTROL. entry.]

Rules:

1. The environment division must be present in all source programs in the SPERRY UNIVAC Operating
System/3 (OS/3). It may need to be rewritten when a program is to be compiled or executed on a
different system configuration.

2. Section and paragraph headers are required when their associated entries are present.

3. Section and paragraph headers must begin in margin A (columns 8-11); their associated entries must
begin in margin B (columns 12-71).

4.2. CONFIGURATION SECTION

• Definition:

The configuration section specifies the characteristics of the source and object processors and relates
implementor-names to user-names.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Format:

CONFIGURATION SECTION.
SOURCE-COMPUTER. entry.
OBJECT-COMPUTER. entry.
[SPECIAL-NAMES. entry.]

4.2.1. SOURCE-COMPUTER Paragraph

Function:

Names the processor that will compile the source program.

Format:

Rule:

{

UNIVAC-9030.}
SOURCE-COMPUTER. UNIVAC-9025.

UNIVAC-9040.

A 4-2
UPDATE LEVEL PAGE

The SOURCE-COMPUTER paragraph is for documentation only and does not affect the object program.

4.2.2. OBJECT-COMPUTER Paragraph

Function:

To specify the processor that will execute the object program and the size of main storage.

Format:

Rule:

{

UNIVAC-9030}
OBJECT-COMPUTER. UNIVAC-9025

UNIVAC-9040

[
MEMORY SIZE integer {~~~~~~~ERS }] ·

WORDS

MEMORY SIZE is an optional clause defining main storage as an integer number (no sign, comma, or decimal
point permitted) of WORDS, CHARACTERS, or MODULES (for documentation only). The equivalent
number of bytes for each is as follows:

• CHARACTER= 1 byte

• WORD= 4 bytes

• MODULE= 16,384 bytes

•

•

•

SPERRY UNIVAC Operating System/3 4-3 , 8057 F}ev. 2
UP-NUMBER UPDATE LEVEL PAGE

• 4.2.3. SPECIAL-NAMES Paragraph

Function:

•

•

Relates implementor-names to user-supplied mnemonic-names

Format:

SPECIAL-NAMES.

[CURRENCY SIGN IS literal]

[; DECIMAL-POINT IS COMMA]

[; SYSCOM IS mnemonic-name-1]

[; SYS DA TE IS mnemonic-name-2]

[; SYSTIME IS mnemonic-name-3]

[; SYSCONSOLE IS mnemonic-name-4]

[; SYSCHAN-t IS mnemonic-name-5] ...

[; SYSLST IS mnemonic-name-6]

[

; SYSERR [-m]

{
ON STATUS IS condition-name-3[, OFF STATUS ~condition-name-4]
OFF STATUS~ condition-name-4(, ON STATUS IS condition-name-3]

; SYSSWCH [-n]

~
IS mnemonic-name-7 [ON STATUS IS condition-name-5 [OFF STATUS IS condition-name-6]] ~
IS mnemonic-name-7[0FF STATUS IS condition-name-6[0N STATUS iS condition-name-5)]

00 STATUS IS condition-name-5[0FF STATUS J.S.condition-name-6)
OFF STATUS IS condition-name-6[0N STATUS IS condition-name-5]

[; SYSIN IS mnemonic-name-8]

[; SYSIN-96 IS mnemonic-name-9]

[; SYSIN-128 IS mnemonic-name-10]

[; SYSLOG IS mnemonic-name-11] .

where:

t
Is any digit 1 through 15 .

m
Is any digit 0 through 31.

n
Is any digit 0 through 7.

8057 Rev. 2
UP-NUMBER

Rules:

1.

SPERRY UNIVAC Operating System/3 A 4-4
UPDATE LEVEL PAGE

A comma or semicolon may separate each entry, and a period must follow the last entry.

2. The CURRENCY clause literal is used in the PICTURE clause to represent the currency symbol.
Absence of this clause specifies that $ is the currency symbol. The literal must be a nonnumeric literal
consisting of one character from the OS/3 COBOL character set and must not be one of the following
characters:

t

• Digits: 0 through 9

• Alphabetic characters: A, B, C, D, P, R, S, V, X, Z, or space

• Special characters: * , + - . ; () "

3. The DECIMAL-POINT IS COMMA clause causes the functions of the decimal point and the comma to
be interchanged in PICTURE clause character strings and in numeric literals.

Examples:

SPECIAL-NAMES. CURRENCY SIGN IS 'F' DECIMAL-POINT IS COMMA.

Source PICTURE Source Data Receiving Field PICTURE Receiving Field Result

9(6)V99 00003232 FFFFFF,99 ~F32,32

9(5)V99 1234567 F**.***,99 F12.345,67

9(9)V9(4) 0000098211289 Z(3).ZZ9,9(4) M9.821, 1289

4. SYSCOM permits accessing the communications region in the preamble of the job in which the object
program is being executed via user-supplied mnemonic-name-1. See the supervisor user guide, UP-8075
(current version) for an explanation of data.

5. SYSDATE permits access to current date via the user-supplied mnemonic-name-2. Mnemonic-name-2
may not appear in a DISPLAY statement. Date may be set or changed in the job control stream.

6. SYSTIME permits access to time-of-day via a mnemonic-name-3. Mnemonic-name-3 may not appear in
DISPLAY statement.

7. SYSCONSOLE permits access to the system console (using ACCEPT or DISPLAY statement; see Section
9) via mnemonic-name-4.

8. SYSCHAN-t equates a particular channel (t) on the printer loop to mnemonic-name-5.
Mnemonic-name-5 may appear only in a WRITE statement. SYSCHAN 1 and 7 are normally used for
form overflow and top-of-page, respectively.

9. SYSE RR [-m] permits access to system error codes. The status of a particular error (m) or the presence
of any error can be checked with the ON/OFF STATUS option. SYSERR[-m) is a feature of the
compiler random access module. Condition-names in ON/OFF STATUS phrases are defined and equated
with ON or OFF as required by the compiler and should not be defined elsewhere in the COBOL
program.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

4-5
UPDATE LEVEL PAGE

SPERRY UNIVAC Operating System/3

10. SYSSWCH [-n] and its various options permit the programmer to access all or part of the user program
switch indicator (UPSI) byte. The eight bits in the UPSI byte (bits 0 through 7) constitute a set of eight
programmable software switches, SYSSWCH-0 through SYSSWCH-7. The status of these switches can be

set to ON or OFF, altered, or interrogated as required. A switch containing a 1 bit is ON; a 0 bit is OFF.
The following examples show the various ways of using SYSSWCH.

• To set or change the contents of SYSSWCH, the DISPLAY verb may be used as follows:

•

ENVIRONMENT DIVISION.
SPECIAL-NAMES.

SYSSWCH IS SWITCH
SYSSWCH-3 IS SWITCH-3.

PROCEDURE DIVISION.
DISPLAY00010001 UPON SWITCH SYSSWCHwill nowcontain00010001.
DISPLAY 1 UPON SWITCH-3. SYSSWCH-3 will now contain 1; the other switches

remain unchanged.

DISPLAY identifier UPON SWITCH. The eight switches in SYSSWCH (0 through 7) are set
ON or OFF, depending on the contents of the
8-character identifier.

NOTE:

Any character other than a hexadecimal FO will set a switch to ON.

An individual switch can be interrogated by using condition-name in the ON/OFF STATUS option .
For instance, in the following example control is transferred to procedure-name-1 if switch 5
is ON.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SYSSWCH-5 ON STATUS IS FIVON, OFF STATUS IS FIVOFF.

PROCEDURE DIVISION.

IF FIVON GO TO procedure-name-1.

In essence, SYSSWCH-5 is a conditional variable with the condition-names FIVON and FIVOFF,
which are similar to level-88 entries.

The condition-names FIVON and FIVOFF are defined and equated with ON and OFF,
respectively, by the COBOL compiler and must not be defined elsewhere in the COBOL program.
The compiler uses the hexadecimal characters FO and F 1, respectively, to represent the OFF and
ON status of a switch .

8057 Rev. 2
UP-NUMBER

•

SPERRY UNIVAC Operating System/3 4-6
UPDATE LEVEL PAGE

The entire UPSI byte may be interrogated by use of the ACCEPT verb. This is shown in the
following example where procedure-name-1 is performed if the SYSSWCH-2, SYSSWCH-4, and
SYSSWCH-6 switches are ON and the others are OFF.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SYSSWCH IS mnemonic-name-1.

DATA DIVISION.

identifier PICTURE X(8).

PROCEDURE DIVISION.

ACCEPT identifier FROM mnemonic-name-1.

IF identifier= 00101010 PERFORM procedure·name-1.

• Another way to interrogate switches is:

SPECIAL-NAMES.

SYSSWCH ON STATUS IS OK, OFF STATUS IS NIX.

PROCEDURE DIVISION.

IF OK GO TO procedure-name-1.

In this example, if any switch is set to 1 the program will branch to procedure-name-1.

• The mnemonic-name option allows the user to equate his mnemonic-name with the
implementor-name SYSSWCH [-n]. For instance:

SPECIAL-NAMES.
SYSSWCH IS MYSWITCH, ON STATUS IS MYSWITCHON.
or
SYSSWCH-4 IS TAKETAX, ON STATUS IS LOFICA; OFF STATUS IS EQFICA.

The mnemonic-name option is for use only with the ACCEPT or DISPLAY verbs.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

11.

12.

13.

14.

15.

16.

•

SPERRY UNIVAC Operating System/3 4-7
UPDATE LEVEL PAGE

The UPSI switches also can be accessed by the following job control statements:

SET statement - used to set switches ON or OFF (1 or 0).

SKIP statement - used to conditionally bypass control statements. If the UPSI switch
settings match the bit pattern specified in the SKIP statement, the specified number of
statements will be skipped.

The format and usage of these statements are shown in the job control user guide, UP-8065
(current version).

SYSLST permits access to the printer by way of mnemonic-name-7 for DISPLAY functions.

SYSIN permits access to embedded data in the control stream when the embedded data is supplied on
80-column cards. Access is made via mnemonic-name-8 and the ACCEPT statement.

SYSIN-96 permits access to embedded data in the control stream when the embedded data is supplied
on 96-column cards. Access is made via mnemonic-name-9 and the ACCEPT statement.

SYSIN-128 permits access to embedded data in the control stream when the embedded data is supplied
on an 8413 diskette. Access is made via mnemonic-name-10 and the ACCEPT statement.

SYSLOG permits access to the system console and log file via mnemonic-name-11 and the DISPLAY
statement.

Table 4-1 shows how SPECIAL-NAMES are handled by the compiler. Note that if the PICTURE clause
is other than shown in the "Implied Description" column in the table, the rules for the MOVE statement
determine the storing of the result. The effect is that of a MOVE in which the sending item is described
as shown in the "Stored as" column and the receiving item description is that supplied by the user for
identifier when accepting. The sending and receiving fields are reversed when displaying.

NOTE:

See Section 9 for further discussion of ACCEPT and D/SPLA Y statements .

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table 4-1. Rules for SPECIAL-NAMES

Usable With Implied Description
SPECIAL-NAME Stored as Format for ACCEPT or

ACCEPT DISPLAY DISPLAY@

SYS COM 12 Yes Yes 12 EBCDIC PIC X(121

alphanumeric characters
characters

SYSDATE 6 numeric Yes No yymmdd PIC9(6)

characters

SYSTIME 8 numeric Yes No hhmmssOO PIC9(8)

characters

SYSCONSOLE Variable-length Yes Yes For DISPLAY: PIC X(nl
alphanumeric 55 characters per
characters line, up to 250

For ACCEPT:
60 characters "'1ax.)

SYSCHAN·t® Not applicable No No Not applicable Not applicable

SYSERR[-m] Not applicable No No Not applicable Not applicable

SYSSWCH 8 alphanumeric Yes Yes 8 EBCDIC PIC X(8)
characters characters

SYSSWCH-n 1 alphanumeric No Yes 1EBCDIC PIC X
character character

SYSLST Variable-length No Yes 1 20 characters/ PIC X(n)

alphanumeric line
characters

SYSIN Variable-length Yes No 80 characters/ PIC X(n)
alphanumeric card
characters

SYSIN-96 Variable-length Yes No 96 characters/ PIC X(n)
alphanumeric card
characters

SYSIN-128 Variable-length Yes No 128 characters PIC X(n)
alphanumeric on diskette
characters

SYS LOG Variable-length No Yes 55 characters PIC X(n)

alphanumeric
characters

ONSTATus© Not applicable No No Not applicable Not applicable

OFF STATUs© Not applicable No No Not applicable Not applicable

NOTES:

© Can be used only in conditional variable tests.

@ Can be used only in ADVANCING clause of WRITE statement.

@ See 4.2.3, rule 14.

B 4-8
UPDATE LEVEL PAGE

•
Explanation

See the supervisor user

guide, UP-8075 (current version). .
Current day

Time of day

System console

To assign name to
printer loop channel

Refer to Section 11 .

To call or change UPSI
bits

To change UPSI bits
individually

Printer with LFD name
of SYSLST

Embedded control stream
data cards (80-column) •
Embedded control stream
data cards (96-col umn)

Embedded control stream
data (8413 diskette)

System console and log
file (no operator
response)

To interrogate user
program switch indicators
(UPSI) for ON or OFF
condition

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 4-9
UPDATE LEVEL PAGE

• 4.3. INPUT-OUTPUT SECTION

•

•

Definition:

This section of the environment division is used to specify the input/output media for the files used by the
source program and to provide information needed for most efficient transmission of data between this media
and the object program.

Format:

[

INPUT -OUTPUT SECTION.
FILE-CONTROL. {entry.}

[1-0-CONTROL. entry.]
... J

4.3.1. FILE-CONTROL Paragraph

Function:

The FI LE-CONTROL paragraph names each file, identifies the hardware medium containing it, permits
specific hardware assignments for the program, and specifies alternate input/output areas. The clauses
following SELECT and ASSIGN under FILE CONTROL may be specified in any order.

Format:

FILE-CONTROL. {SELECT [OPTIONAL] file-name

ASSIGN TO [external-name] [integer-1] implementor-name-1 [OR implementor-name-2]

[FOR MULTIPLE { ~~~~} J
RESERVE { ~~ger-2 } ALTERNATE [AREA J J

AREAS

{
Fl LE-LIMIT IS } { data-name-1} THRU {data-name-2}
FILE-LIMITS ARE literal-1 -- literal-2

[; {~ata-name-3} THRU {~ata-name-4}]···]
hteral-3 -- hteral-4

[
; ACCESS MODE!..§. { :~~~~~D }]

SEQUENTIAL

[; PROCESSING MODE ~SEQUENTIAL]

[{

INDEXED } J
; ORGANIZATION IS RELATIVE

SEQUENTIAL

[{
ACTUAL KEY IS data-name-5 }]

' RELATIVE KEY !§.data-name-6

[; SYMBOLIC KEY IS data-name-7)

[; RECORD KEY!..§. data-name-8] . } ...

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 4;-10
UPDATE LEVEL PAGE

Rules:

1. The comma or semicolon may separate each clause, and a period must follow the entry.

2. A SELECT clause must be specified for the following:

• Every file that is the subject of an FD.

• The external-name operand of a RERUN clause for which no FD is supplied.

3. The keyword OPTIONAL, which may be applied to input files only, is required for files that are not
necessarily present each time the object program is run. The status of the optional file at run time is
determined by the job control stream. If the file is not present in the job stream, control takes the path
specified by the AT END statement on the first READ statement. The keyword OPTIONAL can be
applied to input files only, and these files must be sequential.

4. The ASSIGN clause designates a particular hardware device, or class of devices, to which a specific file is
assigned. External-name is a nonnumeric literal (1 to 8 characters) which is associated with a file. This is
the name used in the job control stream to assign devices to the file (using the LFD job control
statement). The external name must be unique within a job step. If external-name is omitted, the first
eight characters of file-name are assumed for external-name. lnteger-1 serves as documentation only,
referring to the number of devices associated with the file. SPERRY UNIVAC OS/3 COBOL assigns the
following implementor-names:

5.

Device

51-column card reader
66-column card reader
80-column or 96-column card reader or
8413 diskette subsystem

Card punch or 8413 diskette subsystem
Line printer
8411 disc subsystem
8414 disc subsystem
8415 disc subsystem
8416 disc subsystem
8418 disc subsystem
8430 disc subsystem
8433 disc subsystem

UNI SERVO Vl-C Magnetic Tape Subsystem
All other tapes

Implementor-Name

CARD-READER-51
CARD-READER-66

CARD-READER

CARD-PUNCH
PRINTER
DISC-8411
DISC-8414
DISC-8415
DISC or DISC-8416
DISC-8418
DISC-8430
DISC-8433

TAPE-6
TAPE

The implementor-name, DISC, specifies an assignment to the SPERRY UNIVAC 8416 Disc Subsystem.
Because of track size differences, the user must ensure that the proper implementor-name is used when
assigning discs.

The implementor-name, CARD-READER, is used when reading 80-column or 96-column cards or when
reading data from an 8413 diskette device. If the record size specified in the data division is greater than
the physical record size of the medium, the remaining character positions in the record will contain
spaces.

The MUL Tl PLE clause, when present, specifies that the file exists on more than one volume. This clause
is accepted for documentation purposes only, since the actual function is provided via the job control
stream, which specifies the devices needed for the problem program.

•

•

•

r---- ------ -----
1

•

•

•

8057 Rev. 2
UP-NUMBER

6.

SPERRY UNIVAC Operating System/3
4-11

UPDATE LEVEL PAGE

Number of Additional
1/0 Areas Allocated Reserve

Device if Clause Integer

Not Specified Allowed

CARD-READER 1 Yes

CARD-PUNCH 1 Yes

PRINTER 1 Yes

TAPE 1 Yes

ORGANIZATION
SEQUENTIAL 1 Yes
(or omitted)

DISC ORGANIZATION
0 Yes

INDEXED

ORGANIZATION
RELATIVE

0 No

The RESERVE clause indicates the number of additional 1/0 areas desired. The keyword NO causes no
additional 1/0 areas to be reserved; integer-2 reserves one additional 1/0 area. lnteger-2 must be a 1; if
not and the word NO is not specified, a warning diagnostic will be issued. Omission of this clause may
result in the allocation of one additional 1/0 area as indicated in the following chart:

7. FILE-LIMIT clause serves as <:Jocummtation only.

8. ACCESS MODE specifies the manner in which the records of a file are read and/or written. Absence of
this clause results in assumpti~ sequential access.

9. PROCESSING MODE clause is for documentation only. Sequential processing is always assumed,
regardless of the absence or presence of this clause.

10. The ORGANIZATION clause designates the physical structure of the file. Sequential organization is
assumed if the clause is omitted. This clause is an extension to American National Standard COBOL
(1968).

11. ACTUAL KEY IS data-name-5. (See RELATIVE KEY explanation.)

12.

For compatibility with SPERRY UNIVAC 9300 System COBOL, ACTUAL KEY may be specified in
place of SYMBOLIC KEY when used with indexed file organizations. (Note that in this case the
ORGANIZATION clause must appear first.)

RELATIVE KEY IS data-name-6 is used with relative organization files to supply the physical position
of a record with respect to the beginning of the file. Records in a relative organization file are addressed
as relative record numbers 1, 2, 3, and so on. The ACTUAL KEY clause may be substituted for the
RELATIVE KEY clause. Data-name-6 must be defined as an unsigned numeric integer according to the
rules for numeric items. This clause is an extension to American National Standard COBOL (1968) .

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 4-12
UPDATE LEVEL PAGE

13. SYMBOLIC KEY IS data-name-7 is used for indexed file organizations to supply the record
identification for random retrieval and sequential positioning. The information associated with the
RECORD KEY clause must be identical with the information associated with the SYMBOLIC KEY
clause. Data-name-7 must consist of 3 to 249 bytes. This clause is an extension to American National
Standard COBOL (1968).

14. RECORD KEY IS data-name-8 is used for indexed-organized files to supply the record identification
field. Data-name-8 must consist of 3 to 249 bytes. This clause is an extension to American National
Standard COBOL (1968).

A detailed explanation of the various keys and types of file organization is given in Section 11.

4.3.2. 1-0-CONTROL Paragraph

Function:

Specifies the following:

• Input/output techniques

• Main storage area shared by various files

• Location of each file Oil multiple-file-reel

• Intervals at which rerun is to be established

Format:

1-0-CONTROL.
[RERUN ON external-name EVERY integer-1 RECORDS OF file-name-1 [. file-name-2) ...]

[; SAME [RECORD] AREA FOR file-name-3 (, file-name-4} ... J
[;MULTIPLE FILE TAPE CONTAINSfile-name-5 [POSITION integer-2)

[file-name-6 [POSITION integer-3]] ...] ...

[; APPLY VERIFY 0"! file-name-8 [. file-name-n] ...] ...

[{
file-name-9 [. file-name-1 OJ ... }]

; APPLY BLOCK-COUNT ON TAPES

t[; APPLYMASTER-INDEXONfile-name-11 [.file-name-12] ...] ...
[;APPLY CYLINDER-INDEX AREA OF integer-5 INDICES ON file-name-13 [. file-name-14) ...] .. .
[;APPLY CYLINDER-OVERFLOW AREA OF integer-6 PERCENT ON file-name-15 [. file-name-16) ...] ...

t [; APPLY EXTENDED-INSERTION AREA ON file-name-17 [. file-name-18) ...] ...
[;APPLY FILE-PREPARATION ON file-name-19 [, file-name-20) ...]
[; APPLY ASCII

[WITH BUFFER-OFFSET {
FOR BLOCK-LENGTH-CHECK}]
OFi~~erCHARACTERS

ON file-name-21 [. file-name-22) ...] ...

tAccepted for SPERRY UNIVAC Operating System/4 (OS/4) compatibility only.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
4-13

UPDATE LEVEL PAGE

Rules:

1. A comma or semicolon may separate each entry, and a period must follow the last entry.

2. The RERUN clause specifies that checkpoint records are to be written on the disc or tape unit specified
by external-name. A checkpoint record is the recording of the status of the processor at a given point
during the execution of the object program. All the information required to restart the program at that
point is contained in the checkpoint record. These records are written whenever integer-1 records occur
for file-name-1. File-name-1, file-name-2 ... can appear in only one RERUN statement; external-name
can appear in any number of RERUN statements. The allowable range of integer-1 is 1to9,999,999.

3. The SAME AREA clause specifies that two or more files are to use the same main storage area during
processing. When the key word RECORD is omitted, the area being shared includes all storage areas
assigned to the files; therefore, only one file may be open at a time. If RECORD is specified, any
number of files may use the same storage area for processing the current logical record (the record
formats of such files must not conflict). The SAME RECORD AREA clause should be used only when
necessary because it reduces efficiency.

4. The MUL Tl PLE Fl LE clause is for documentation only. This feature is supported by job control.

5. The APPLY VERIFY clause requests verification (READ after WRITE) of disc records after they have
been written. Absence of this clause results in no verification of records written.

6.

7.

The APPLY BLOCK-COUNT causes a 3-byte block number to be inserted at the beginning of each block
on tape for each file-name designated. If the TAPES option is specified, all tape files present are
affected. This clause must be present for all input files which contain a block count .

The APPLY Fl LE-PREPARATION clause indicates that the tracks allocated to a relative organized file
are to be recorded with initializing data prior to creation of a file. The track initialization occurs after an
OPEN OUTPUT command is issued.

8. The APPLY MASTER-INDEX clause is only accepted for OS/4 and OS/7 compatibility. In OS/3, this
clause serves for documentation only.

9. The APPLY CYLINDER-INDEX integer-5 clause, used only with indexed files, indicates that sufficient
main storage area is to be allocated to contain integer-5 top index entries.

10. The APPLY CYLINDER-OVERFLOW integer-6 clause, used only with indexed-sequential files, indicates
that integer-6 percent of each cylinder in the prime data area is to be reserved for the purpose of
cylinder overflow. If this clause is omitted, 20 percent of the cylinders specified are automatically
allocated. If no overflow is desired, 0 percent should be specified. If no overflow exists, no new records
can be inserted into the file. lnteger-6 is an unsigned number.

11. The APPLY EXTENDED-INSERTION clause is accepted for OS/4 and OS/7 compatibility. In OS/3, this
clause serves for documentation only.

12. The use of the APPLY ASCII clause, which identifies each file that contains -or receives ASCII data, is
explained in 12.5 .

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 4-14
UPDATE LEVEL PAGE

NOTE:

APPLY clauses (rules 5 through 12) are extensions to American National Standard COBOL (1968). Further
discussion of 1-0-CONTROL is given in Section 11.

An example of the envrionment division entries is shown in Figure 4-1.

~--~---r-..--c_c_~_11_Nv~A-T_1o_N __ ~

i A B
SEQUENCE
NUMBE'<

6 7 8 11 12
T EX T ---------------·- --·- -· -- ---··

20 30 40

AA' 0 I 0 ENV;!!R,t>NMEN.T DIV! $!,bN_.:.h.-l-__ ,_L__ ,_, --'--'-~-' , •-··-L-'---~-
&,QJ._Q,_ l 1 c.o ~ F r 6 u R L' t, r.,P.Nt _._~ ~J~JJ:r_o NL'.- _ ~-__ _L _ _ ----'- ~-------····· ·- • L _ , . , ..

9Q 1.0 __ J 2. gD~B+fEi.:~.Q1111J>_lJ_J_;_~B_ .. _U.N.I.V.A,Ci-.9,0,3_0,.,_-"-'---'-- ~--'---------'-----~
QO"LQ.L~-·- 91aJJ_E:;~L:-~J2J"\PiV.T,EiR·, _U_NJ_Yl\,CC,9-,0i3_Q.~---'--'-" l _ _i_. " ,

00 1.0 I Lt SP E1C I A 1.- - NAM£ S'.. ...1.

op.1,Q1"5 _ __j_ ~-~~.,,-~Lc.O.N~~~~'~--J~_,'T.'(pJ:-'-1T:.·-'-'- -'---- , _, , .. ,
.QC> I 0 I 6 I NP:UIT-L~J)Tl1UT-L~~..sf_TJ})J'~.' l L -- _ _j___L ___ J_ __ 1~· ~~

QO L_Qj-'-[_J:_j.J~-~--'-~.Q_J!JLl_QJ ... ~--~--'---'--_L_ _ _c_~-~--1 --'---·'-' , .1. . . .t
Q_()J_Qj_J3f- - . -~-L.§'J:.L.,SC T _._L_N P.Y.IJ_. -~~j_$.S_I.G,N, ."LQ _J',MJ;_:-J> .. __ l ' l l ··---

00\01_9_1 1 Se:L.ec.T L-lST ASSIGN, :nJ. 'P,RINTE.'R .. , ,

Q~Q_ l-'-Q_~Q-+ ~ " J _ $._E L.J;,C.T _;_cJL~--'-AS S 1 ,<H!_TD" _,<;A °RiD, --::,'R :EAJ»E_.R_:. ~-'--~-
0,QJPJ..J +-tI'--"tll""""tcLO~NI_LlS.~J,,,-'-!.-'-----L-~--~ _j__J_ - .•. i I • J ; • j ; .L ' .L ~ ---'--'----'---·-

l<?.Q LQZ4+ ..L-LJ--f~f_2L,Y~L.~iC.J'L-:-_~~,Y1"4_Ti. P~NLi_W_J?~_J_J_L"--j- __ .. il l L _,

Figure 4-1. Example of Environment Division Entries

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

5.1. GENERAL

SPERRY UNIVAC Operating System/3 5-1
UPDATE LEVEL PAGE

5. Data Division

Every data item referenced in the procedure division of a SPERRY UNIVAC Operating System/3 (05/3) COBOL

program must be described in the data division except for the special register TALLY, index-names, figurative
constants, and literals. File structures are described by file description entries; data items and records are described
by record description or single item entries as described in 5.3.

Format:

DATA DIVISION.

FILE SECTION .

WORKING-STORAGE SECTION.

LINKAGE SECTION.*

*Extension to American National Standard COBOL (1968).

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-2
UPDATE LEVEL PAGE

Rules:

1.

2.

3.

The division header DATA DIVISION must be present in all COBOL programs.

Sections are written in the order shown; if a section is not required, it may be omitted entirely.

Data-names used in FD or 77 level entries must be unique because they cannot be qualified. The same is
true for data-names used in 01 entries within the working-storage and linkage sections of the source
program.

5.1.1. Data Definition

Table 5-1 shows the allowable sizes of data items in OS/3 COBOL. Data type is determined by the PICTURE and
USAGE clauses. See 5.3.4 for legal PICTURE characters for each data type.

Table 5-1. Main Storage Allocation

COBOL Characters Area in Bytes
Data Type

Minimum Maximum Minimum Maximum

Group (working- 1 65,535 1 65,535
storage)

Group (file or 1 4092 1 4092
linkage section)

Alphanumeric 1 4092 1 4092

Alphabetic 1 4092 1 4092

Alphanumeric 2 132 2 132
edited

Numeric edited 2 132 2 132

Decimal numeric 1 18 1 18
display

Numeric COMP or 1 (plus sign) 18 (plus sign) 1 10
Numeric COMP-3

Index name Not applicable Not applicable 8 8

Index data item Not applicable Not applicable 8 8

5.2. FILE SECTION

The file sect\on consists of:

• File description (FD) entries describing the structure of all files and naming the data records contained in each.

• Record description entries immediately follow each file description entry and describe in detail each record
format used in the file.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Format:

{

FD file-name-1 (file description dauses)

{ 01 record-name-1 (record description dauses) } ... } ...

5.2.1. File Description

Function:

5-3
UPDATE LEVEL PAGE

Provides information concerning the physical structure, labeling, and record names of a given file.

Format:

Rule:

FD file-name

[{
CHARACTERS}]

; BLOCK CONTAINS [integer-1 TO] integer-2 RECORDS

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

{
RECORD IS } {OMITTED }

; LABEL RECORDS ARE STANDARD
data-name-1 [. data-name-2) ...

[RECORDING MODE IS { UJ
[VA LUE 0 F l unqua1•;od-data..,ome IS { ~::;,me-3} I · · ·]
[: DATA {:~~~=~Sl~RE} data-name-4 [. data-name-5) ... J.

The various clauses may appear in any order after file-name.

5.2.1.1. BLOCK CONTAINS Clause

Function:

Specifies the size of a physical record.

Format:

{
CHARACTERS }

BLOCK CONTAINS [integer-1 TO] integer-2 RECORDS

Rules:

1. lnteger-1 and integer-2 must be unsigned integers other than 0.

2. If the RECORDS option is specified and RECORDING MODE is F, this clause specifies the number of
records per block.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 B 5-4
UPDATE LEVEL PAGE

If the RECORDS option is specified and RECORDING MODE is V or D, this clause specifies the •
number of the longest records per block. It is also possible for a block to contain a greater number of the
shorter records, depending on the differences in record sizes.

3. When CHARACTERS is specified, this clause specifies the number of characters (bytes) per block
(physical record).

a. For files not assigned to disc devices, this does not include the three bytes for the APPLY
BLOCK-COUNT for tape, but does include the block header and record header bytes if recording
mode is V. (The block header is four bytes per block, and the record header is four bytes per
logical record.)

b. For files assigned to the disc devices, this number includes all the control fields associated with the
data portion of the disc block. This number does not include the key field and count field lengths
associated with those fields of the disc block.

Table 5-2 shows the size of the control fields associated with the block.

Table 5-2. Control Field Sizes

Bytes per Field

Organization: Sequential, Relative Organization: Indexed
Field -

Recording Mode Recording Mode

F v F v

Block header (BLKHDR) 0 4 2 2

Record header (RECH DR) 0 4 0 2

Indexed record pointer (LINK) 0 0 5 5

The values are defined according to the recording mode and organization of the file. The
programmer must define the values for the logical record size and a blocking factor. The blocking
factor (BLKFAC) equals the number of logical records per physical block. The logical record size
(LOGRECSIZE) is also determined by the recording mode.

If the recording mode is F, the logical record size is 01. If the recording mode is V, the size of the
logical record is equal to the size of the largest logical record.

Thus, the size of the physical block may be calculated according to the following formula:

BLKHDR + (BLKFAC * (RECHDR + LOGRECSIZE +LINK))

4. This clause may be specified for CARD-READER and CARD-PUNCH files in order to provide greater
processing efficiency if the device is an 8413 diskette. In this case, the BLOCK clause does not specify
the size of a physical block, but specifies the size of the buffer areas for multisector 1-0.

a. If the RECORDS option is used, the size of the buffer area may be calculated by using the
following formula:

BLKFAC*(RECHDR + LOGRECSIZE)

-.

The maximum buffer size is 1024 bytes; therefore, the blocking factor (BLKFAC) the programmer •
selects must be equal to or less than 1024 divided by (RECHDR + LOGRECSIZE).

•

•

8057 Rev. 2
UP-NUMBER

b.

SPERRY UNIVAC Operating System/3 B 5-5
UPDATE LEVEL PAGE

If the CHARACTERS option is used and RECORDING MODE IS F, the BLOCK CLAUSE integer
may be any multiple of (RECHDR + LOGRECSIZE) up to 1024.

5. When CHARACTERS and RECORDS are both omitted, CHARACTERS is assumed.

6. When this clause is omitted, it is assumed that records are recorded one per block and the record size is

fixed.

7. If both integer-1 and integer-2 are specified, integer-1 is treated as documentation only. Block size ranges
are given in Table 5-3.

Table 5-3. Block Size Ranges

Bytes per Block

Hardware Device Organization: Sequential, Relative Organization: Indexed, Direct(!)
and

Implementor Name Recording F & U Recording V Recording F & U Recording V

Min Max Min Max Min Max Min Max

CARD-READER i 1024® 9 io24® - - - -

CARO-READER-5i i 5i - - - - - -

CARD-READER-66 i 66 - - - - - -

CARO-PUNCH i io24® 9 io24® - - - -

PRINTER i G) 9 @ - - - -

UNISERVO Vl-C
is@ is@ (TAPE-6) 4,096 4,096 - - - -

UNISERVO Vl-C
is@ is@ (TAPE-6) with 4,092 4,092 - - - -

block numbering

Other tapes@)
(TAPE) 4 ia@ 32,767 18@ 32,767 - - - -

Other tapes
is@ 18@ (TAPE) with 32,763 32,763 - - - -

block numberin~

S4i i disc
(DISC-84i i) i 3,625 9 3,625 io 3,625 i2 3,625

S4i4 disc
(01SC-84i4) i 7,294 9 7,294 io 7,294 i2 7,294

8415 disc
(OISC-8415) i 10,240 9 10,240 10 10,240 12 10,240

S416 disc
(DISC-S416 or DISC) i i0,240 9 10,240 io 10,240 i2 10,240

841S disc
(01SC-84iS) 1 10,240 9 10,240 10 10,240 12 10,240

8430 disc
(0 I SC-8430) i i3,030 9 13,030 io 13,030 i2 13,030

S433 disc
(DISC-8433l 1 13,030 9 13,030 10 13,030 12 13,030

NOTES:

G)

@

@

©
®

For 768 size= 132; for 770 size== 160; for 773 size= 144.

For 768 size = 140; for 770 size = 168; for 773 size = 152.

Minimum size 1s 20 if tape •S RERUN receiver.

Maximum size is 8192 if multiplexer channel is used.

Note that the maximum physical block is 128 characters (8413 diskette), 96 characters (96-column card), or 80
characters (80-column card). The larger block size is used to specify multisector 1-0 when the device is an 8413

diskette. (See 5-2.1.1, Rule 4_)

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-6
UPDATE LEVEL PAGE

5.2.1.2. RECORD CONTAINS Clause

Function:

Specifies the size of data records.

Format:

RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS

Rules:

1. I nteger-3 and integer-4 must be unsigned integers other than 0; integer-4 must be greater than integer-3.

2. The size of each data record is completely defined within the record description entry; therefore, this
clause is optional. When present, however, the following notes apply:

• If integer-4 is used alone, all the data records in the file must have the same size. In this case,
integer-4 represents the exact number of characters in the data record.

• If both integer-3 and integer-4 are shown, they refer to the minimum and maximum size data
record.

5.2.1.3. LABEL RECORDS Clause

Function:

Enables the compiler to cross-reference the description of a label record with its associated file.

Format:

{
RECORD IS }

~ RECORDSARE {

OMITTED }
STANDARD .
data-name-1 [. data-name-2] ...

Rules:

1. The OMITTED clause specifies that no standard labels exist for the file or the device to which the file is
assigned. Any nonstandard labels must be described and processed as data records.

2. The STANDARD clause specifies that standard file labels exist for the file or the device to which the file
is assigned, and the labels conform to OS/3 label specifications. (Refer to the data management user
guide, UP-8068 (current version).) Standard user labels may also be present, but the STANDARD clause
specifies that they are not to be checked on input files, or written on output files.

3. Data-name-1 L data-name-2] ... specifies that standard labels are to be checked (or created), and that
OS/3 standard user labels are present. User labels must conform, in content and format, to the OS/3
standard user label specifications.

The following rules apply when data-name-1 is specified:

• Data-name-1 L data-name-2] ... must have a record description subordinate to this file description.

•

•

•

•

•

-·

8057 Rev. 2
UP-NUMBER

•

SPERRY UNIVAC Operating System/3 5-7
UPDATE LEVEL PAGE

For input files, data management provides access to standard user label information in the area
described by data-name-1.

• For output files, the user moves user label information into the area described by data-name-1 for
data managment to write to the output file.

• User label records can be referenced only in USE procedures in the declaratives section (6.2).

4. The label record specifications for the various device types are shown in Table 5-4.

Table 5-4. Label Record Specifications

Device
Labels Labels Labels

Omitted Standard Data-name

PRINTER Yes No No

CARD-READER Yes No No

CARD-PUNCH Yes No No

TAPE Yes Yes Yes

ORGANIZATION
SEQUENTIAL No Yes Yes

DISC ORGANIZATION
RELATIVE No Yes Yes

ORGANIZATION
INDEXED No Yes No

5.2.1.4. RECORDING MODE *Clause

Function:

Specifies the format of the logical record comprising the file.

Format:

Rules:

RECORDING MODE IS

1. The D mode may be specified for ASCII tape files with variable-length records.

2. The F mode (fixed-length format) is specified when all the logical records in the file are of the same
length.

3. The U mode (undefined format) states that the records of this file are not blocked and may vary in
length (not available for disc files).

4. The V mode (variable-length format) is specified when records within a file vary in length.

5. The following chart describes the recording mode assumed when the clause is omitted.

*Extension to American National Standard COBOL (1968).

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Device

PRINTER

CARD-READER

CARD-PUNCH

TAPE

ORGANIZATION
SEQUENTIAL

DISC
ORGANIZATION
RELATIVE

ORGANIZATION
INDEXED

5.2.1.5. VALUE OF Clause

Function:

5-8
UPDATE LEVEL PAGE

Assumed
Format

F

F

F

v

v

F

F

Describes a particular item in the standard file label record associated with a file; this clause serves as
documentation only.

Format:

VALUE OF [unqualified-data-name IS { d~ta-name-3 } J
--- - hteral-1

5.2.1.6. DATA RECORDS Clause

Function:

Specifies the names of the logical records in a file.

Format:

{
RECORD IS }

DATA RECORDS ARE data-name-4 [. data-name-5] ...

Rules:

1. This clause is optional and serves as documentation only.

2. Each data-name specified must appear at a 01 level number following the FD entry.

•

•

•

•

•

•

8057 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

5.3. DATA DESCRIPTION

Function:

Defines the characteristics of a particular data item.

Format 1:

level-number {FILLER }
unqualified-data-name-1

[;REDEFINES unqualified-data-name-2]

OCCURS integer-2 TIMES
[INDEXED BY index-narne-1 [. index-narne-2]

{ ~TURE} IS character-string J
[USAGE IS] t ~~::~TATIONAL-3 JJ

DISPLAY
INDEX

[; MAP IS integer-3 CHARACTERS]

[' { ~~~~HRONIZED} [{ ~~~~T} J J
[; { lliNIFIED} RIGHT J
[; VALUE IS literal]

[; BLANK WHEN~]

[

; {[SIGN IS] { ~~~~~~NGG }iSEPARATE CHARACTER}]

[SIGN IS] TRAILING

Format 2:

88 condition-name; VALUE IS literal-1

5.3.1. Level Number and Unqualified-data-name/Fl LLER Clause

Function:

c 5-9
UPDATE LEVEL PAGE

The level number shows the hierarchy of data within a logical record. In addition, it is used to identify entries

for condition-names and noncontiguous working-storage items.

Format:

level-number {
FILLER }
unqualified-data-name

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-10
UPDATE LE'VEL PAGE

Rules:

1. A level number is required as the first element in each data description entry.

2. Level-number 01 through 09 may be expressed without the leading O's.

3. Level-number 01 identifies the first entry in each record description.

4. Level numbers start at 01 for records, and become successively higher for subsets of records, such as
group and elementary items. The maximum level-number permitted is 49, except for 77 or 88 levels.

5. Level-number 77 is used in the working-storage section to describe noncontiguous data items and
constants.

6. Level-number 88 is assigned to entries which define condition-names associated with a conditional
variable.

7. FILLER may be used to name an elementary item in a record. Under no circumstances can a FILLER
item be referred to directly. Also, Fl LLER must not be used with a level-number 88, but may be used to
name the associated conditional variable.

5.3.2. REDEFINES Clause

Function:

Allows the same area of computer main storage to be described by different data descriptions.

Format:

level-number unqualified-data-name-1 ; REDE Fl NES unqualified-data-name-2

Rules:

1. The REDEFINES dause must immediately follow unqualified-data-name-1.

2. The level numbers of unqualified-data-name-1 and unqualified-data-name-2 must be identical, and may
not be 88.

3. The REDEFINES clause must not be applied to level 01 entries in the file or linkage sections, although
this is permissible in the working-storage section.

4. Redefinition begins at unqualified-data-name-2 and continues until a level number less than, or equal to,
that of unqualified-data-name-2 is detected. A REDEFINES clause may be used within the range of
another REDEFINES with a maximum of five levels permitted.

5. When the level number being redefined is other than 01, unqualified-data-name-1 mu!it specify a storage
area equal to the storage area for unqualified-data-name-2.

6. Unqualified-data-name-2 must not contain, or be subordinate to, an OCCURS clause.

7. Entries described under unqualified-data-name-1 must not contain VALUE clauses except in
condition-name entries (level-number 88).

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

8.

SPERRY UNIVAC Operating System/3 5-11
UPDATE LEVEL PAGE

Multiple redefinition of the same storage area is permitted. The entries giving the new descriptions of the
storage area must follow the entries defining the area being redefined; no intervening entries defining
new storage are permitted. Multiple redefinitions of the same storage area must use the data-name of the
entry that originally defined the area.

5.3.3. OCCURS Clause

Function:

Eliminates the need for separate entries for repeated data, and supplies information required for the
application of subscripts or indexes.

Format:

OCCURS integer-2 TIMES [INDEXED BY index-name-1 [, index-name-2] ... I

Rules:

1. The OCCURS clause is used in defining tables and other homogeneous sets of repeated data items.

2 .

Whenever the OCCURS clause is used, the data-name that is the subject of this entry must be either
subscripted or indexed whenever it is referred to in a statement. Further, if the subject of this entry is
the name of a group item, all data-names belonging to the group must be subscripted or indexed
whenever they are used as operands.

An INDEXED BY clause is required if the subject of this entry, or a group item within it, is to be
referenced by indexing. Index-name is not defined elsewhere by the user, since its format is dependent
on the hardware and storage is allocated by the compiler.

3. The data description clauses associated with an item that includes an OCCURS clause apply to each
repetition of the item described.

4. The OCCURS clause cannot be specified in a data description entry that contains a 01, a 77, or an 88
level-number.

5. Three levels of subscripting and indexing are permitted.

6. In the format, the value of integer represents the exact number of occurrences. The area allocated
muliplied by the number of occurrences cannot exceed 65,535.

7. The VALUE clause must not be stated in a data description entry containing an OCCURS clause or in
any entry subordinate to an entry containing an OCCURS clause. This rule does not apply to
condition-name entries .

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-12
UPDATE LEVEL PAGE

5.3.4. PICTURE Clause

Function:

Describes the general characteristics and editing requirements of an elementary data item.

Format:

[; { ~TURE } IS character-string J
Rules:

1. The PICTURE clause can be present only with an elementary item.

2. The PICTURE character-string can consist of 1 to 30 characters.

3. Five categories of data can be described with a PICTURE clause:

• Alphabetic

• Numeric

• Alphanumeric

• Alphanumeric edited

• Numeric edited

Table 5-5 lists the allowable picture symbols and the rules for their usage.

4. To define an item as alphabetic:

• Its picture character-string may consist of only the'Symbol A.

• Its contents, when represented in standard data format, must be any combination of the 26 letters
of the alphabet and the space.

• Maximum number of character positions allowed is 4092.

5. To define a fixed-point numeric item:

• The PICTURE character-string may consist of only the symbols 9, P, S, V, and H.

• The PICTURE character-string must contain at least one 9.

• The maximum number of digits is 18.

• The maximum number of occurrences of Pin a picture-string is 17.

• The contents, when represented in a standard data format, must be a combination of the numerals
0 through 9. The item may include an operational sign.

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

(

6 .

SPERRY UNIVAC Operating System/3 5-13
UPDATE LEVEL PAGE

To define an item as alphanumeric:

• Its character-string is restricted to X's or at least two of the symbols A, X, and 9, and is treated as
if the picture-string were X's.

• Its contents, when represented in standard data format, are any combination of characters in the
UNIVAC OS/3 system character set.

• Maximum number of character positions allowed is 4092.

7. To define an item as alphanumeric edited:

• Its character-string is restricted to combinations of the symbols A, X, 9, B, and 0, and must
contain:

at least one B and one X;

at least one 0 and one X;

at least one 0 and one A; or

at least one A and one B.

• Its contents, when represented in standard data format, are any combination of characters in the
OS/3 system character set .

• The maximum number of character positions allowed is 132 .

8. To defined an item as numeric edited:

• Its character·string is restricted to certain combinations of the symbols:

B P V Z CR DB 9 , . * + - 0 (zero) $ (currency sign)

The allowable combinations are determined by the sequence in which the symbols appear, and by
the editing rules. The number of digit positions must not exceed 18.

• The maximum number of P's permitted is 17.

• Its contents, when represented in standard data format, must consist of only the numerals 0
through 9, plus editing symbols indicated.

• The maximum number of character positions allowed is 132.

9. The following symbols may appear only once in a given picture-string:

S V. CR DB

10. An integer enclosed in parentheses following any of the symbols:

A,X9PZ*BO+-$

• indicates the number of consecutive occurrences of the symbol.

11. See Table 5-6 for the order of precedence for characters used as symbols in a character-string.

12. See Table 5-7 for examples of source fields and receiving fields.

8057 Rev. 2
UP-NUMBER

Picture
Symbol

9

s

v

p

A

x

z

*

.
(comma)

(period)

B

CR

DB

SPERRY UNIVAC Operating System/3

Table 5-5. PICTURE Symbols (Part 1of2)

Can Be Used in
Represents

Combination With

A numeric character Any other symbol

An operational sign is associated PV9H
with the data item

Assumed decimal point in data Any symbol except A
item and X; and is redundant

with P

Assumed decimal point outside of Any symbol except A
data item; each P represents one and X
character position

An alphabetic character or space X9BO

An alphanumeric character A9BO

Suppression of leading O's Any symbol except: * A
(replaced by blanks or spaces) X S H or more than

one$+ or -

Check protection, replaces Any symbol except: Z A

leading O's with asterisks X S H or more than one
$-or+

Insert comma in character Any symbol except: AX
position unless the preceding SH

position is blank or
asterisk-filled

Actual decimal point to be Any symbol except: A X
inserted in character position PVSH
unless following positions have
been blanked

Insert a blank or space in Any symbol except S and
character position unless H
preceding character position
is asterisk-filled.

Insert the two characters CR Any symbol except: A X
if data item is of negative + - S DB H
value: insert two blanks or
spaces if value is positive

Insert the two characters DB Any symbol except: AX
if data item is of negative +-S CRH
value; insert two blanks if
value is positive

5-14
UPDATE LEVEL PAGE

• Special Picture
Position

None

Can be preceded
only by H; only one
S is permitted

Only one is permitted;
can precede leading P
or follow trailing P

Must be first or last
symbol or symbols of
PICTURE except for
S CR DB V or single
+, - or$ but cannot be
both first and last

None

None

Can be preceded only by:
V . , $ + - P B 0 (zero)

Can be preceded only by:
V . , $ + - P B 0 (zero) •
None

May not be last character

None

Must be last symbol except
for P or V

Must be last symbol except
for P or V

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Table 5-5. PICTURE Symbols (Part 2 of 2)

Picture Can Be Used in
Symbol Represents Combination With

$ Insert$ sign in character Any symbol except: one $
(currency position; if more than one, cannot be used with: A
sign) indicates floating $ sign XS H; more than one$

cannot be used with: S
HA X * Z or more than
one+ -

0 Insert 0 in character position Any symbol except S and H
(zero) unless preceding character is

blank or asterisk-filled

+ Insert+ in character position Any symbol except: one
if data item value positive + ca1:mot be used with:
and - if value negative; if AX- S CR DB H; more
more than one+, indicates than one consecutive +
floating sign cannot be used with A

X - S CR DB Z H * or
more than one $ sign

- Insert - in character position Any symbol except: one
(minus) if data item value negative - cannot be used with:

and blank if positive; if more AX+SCRDBH:more
than one-, indicates floating than one consecutive -
sign cannot be used with: A

X + S CR DB * Z H or
more than one$ sign

H COMP-3 SPV9

*Extension to American National Standard COBOL (19681.

5-15
UPLJA -.- t: 1.EVEL PAGE

Special Picture
Position

Must be first symbols when
more than one except for
single+ or - PB 0 (zero).
If only one used, it can
only be preceded by + - or
P or V

None
\

If only one+ is used, it
must be either first or last
(except for P and V, anp
excepting its use with E
where it may be first and
also immediately follow the
El; if more than one is used,
it must be the first symbol
except for the $ sign

If only one - is used, it
must be either first or last
(except for P and V, and
excepting its use with E
where it may be first and
also immediately follow the
El; if more than one is used,
it must be the first symbol
except for the $ sign

None

8057 Rev. 2
UP-NUMBER

..
0
.Q
E
>

(/,) ..
CD • 0

c
0
"f
9l .:
i
)(

ii:

B

0

j+ I
I - I

l--
I• I
1- I

ICRI
IDBI

cs

f A I
1x I

p

p

s

v

lz I
1· J

lz I
1· I

9

I+ I
1- j

!+ I
I - j

cs

cs

B 0

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

x x

SPERRY UNIVAC Operating System/3

Table 5-6. Precedence Rules in PICTURES

Fixed Insertion

I+ I I+ I !CR(j At
1- I l - j IDBJ cs Ix J p p s v

x x x x x x x

x x x x x x x x

x x x x x x

x x x x

x

x x x x x

x x x x x

x x x

x

x x x

x x x x x x x

x x x x x

x x x

x x x x x x

x x x x x x x x

x x

x x x x x

x x

x x x x x

5-16
UPDATE LEVEL PAGE

Other Symbols

(z I
·' z ff I+ I I + t

) • J 1 • J 9 I- j 1-J cs cs

x x x x x x x

x x x x x x x

x x x x x x x

x x x x

x x x x x

x x x x x

x

x x x x

x x x x

x

x x

x x x x

x

x x

x

x x

NOTES:

1. This chart shows the order of precedence when using characters as symbols in a character-string. An X at an intersection
indicates that the symbols at the top of the column may precede, in a given character-string, the symbols at the left of the
row. Arguments appearing in braces indicate that the symbols are mutually exclusive. The currency symbol is indicated by the
symbol cs.

2. At least one of the symbols A X Z 9 * or at least two of the symbols+ - or cs must be present in a picture-string.

3. P, fixed insertion+, and - appear twice. The first occurrence represents their use to the left of the numeric character positions
and the second their use to the right of the numeric character positions.

4. Z, *, nonfixed insertion cs, + and - appear twice. The first occurrence represents the use before the decimal point position,
the second the use after the decimal point position.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-17
UPDATE LEVEL PAGE

Table 5-7. Source and Receiving Fields

Source Field Receiving Field

PICTURE Data To Be Moved PICTURE Data After Move

9(5)V99 1234500 ZZ,ZZZ.99 12,345.00

9(5) 00123 ZZ,ZZZ.99 123.00

9(4)V99 123456 $$,$$$.99 $1,234.56

9(4) 0012 $$,$$$.99 $12.00

89(4) +1234 $$,$$$.99DB $1,234.00

59(4) -1234 $$,$$$.99DB $1,234.00DB

S9(4)V99 +001209 $$,$$$.99CR $12.09

S9999V99 -000123 $$,$$$.99CR $1.23CR

59(4) +1234 ++,+++.99 +1,234.00

59(4) -0010 -- - --.99 -10.00

S999V99 001234 $****.99 $**12.34

9999 1234 990099 120034

9(5) 12345 9B9B9B99 1 IXi. Di3 f;A5

X(5) A1B2C XBXOOXXX ALl100B2C

A(5) ABC DE ABBOAAAOBX AMOBCDOLlE

9(4) 1234 9(5) 01234

9(5) 12345 999.99 345.00

9V9(5) 123456 9(5).99 00001.23

AA AB A(5) AB!::l:fj,

A(5) ABC DE AA AB

99PPP 12 9(5) 12000

VPPP99 12 .9(5) .00012

V9(5) 12345 Z(5).99 ~.12

V9(5) 12345 9(5).999 00000.123

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 c 5-18
UPDATE LEVEL PAGE

5.3.5. USAGE Clause

Function:

Specifies the format of a data item in main storage.

Format:

[USAGE IS] COMPUTA TIONAL-3*

{

COMP-3* l
DISPLAY
INDEX

Rules:

1. The USAGE clause can be written at any level. At a group level, it applies to each elementary item in
that group. The USAGE clause of an elementary item cannot contradict the USAGE clause stated for
the group to which the item belongs. The USAGE clause of an elementary item cannot contradict the
PICTURE clause for that item.

2. The USAGE IS DISPLAY option specifies that the item is stored in character form, one character per
byte; it is used for alphabetic, alphanumeric, alphanumeric edited, numeric edited, and decimal numeric
display.

3.

The compiler performs the necessary conversions when decimal numeric display items are used for
computations.

An elementary item described with the USAGE IS INDEX clause is called an index data item and
contains a value corresponding to the occurrence number of a table element. PICTURE clause must not
be present in this instance.

4. An index data item can be referred to directly only in a SET statement or in a relation condition. Also,
an index data item can be part of a group which is referred to in a MOVE or an input-output statement,
in which case no conversion will take place.

5. Except for the level number and data-name necessary for definition, no additional clauses are used to
describe index data items.

6. COMP-3 specifies packed decimal format; if the number of digits in the item is odd, the object program

main storage area allocated for this item is an even number of half bytes.

Example:

PIC 999 VALUE 123 USAGE COMP-3.

Main Storage:

If the number of digits in an item is even, an extra half byte is in the object program main storage

•

•

allocated for this item. The item's PICTURE is unchanged. •

*Extension to American National Standard COBOL (1968).

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-19
UPDATE LEVEL PAGE

Example:

PIC S99 VALUE 12 USAGE COMP-3.

Main Storage:

The compiler ensures that the unused half byte is always set to 0 when information is stored in this item. The
compiler assumes that when the item is referenced it contains a valid packed decimal number, with 0 in the

leftmost half byte.

7. If the USAGE clause is omitted, DISPLAY is assumed unless the PICTURE clause contains an Hin its

character-string.

5.3.6. SYNCHRONIZED Clause

Function:

Specifies positioning of data items within a processor word or words.

Format:

{ ~~~~HRONIZED } [{ ~~~~T } J
Rules:

1. The SYNCHRONIZED clause does not affect the object program in OS/3 Basic COBOL; however, it is
acceptable to the compiler for compatibility purposes.

2. The LEFT and RIGHT optional keywords are included in the format for compatibility only.

5.3.7. JUSTIFIED Clauses

Function:

Specifies nonstandard positioning of data within a receiving data item.

Format:

[
; {JUST }

JUSTIFIED RIGHT J

8057 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 5-20

UPDATE LEVEL PAGE

Rules:

,_ The JUSTIFIED clause may be specified only at the elementary item level.

2. This clause may not be used for numeric or numeric-edited data, because numeric data is aligned by its
decimal point, when present, or right-justified when not present_

3. Alphabetic, alphanumeric, and alphanumeric-edited data is left-justified with space fill when the
JUSTIFIED clause is not specified.

4. When the receiving data item is described with the JUSTIFIED clause and the sending data item is larger,
the leftmost characters are truncated. When the receiving data item is justified and larger than the
sending data item, the data is aligned at the rightmost character position in the data item with space fill.

5.3.8. VALUE Clause

Function:

Defines the initial value of a working-storage item, or specifies the value associated with a condition-name.

Format:

VALUE IS literal

Rules:

1. This clause specifies the initial value of a data item in the working-storage section.

• The VALUE IS specifies the item to assume the specified value at the start of the object program.
If the VALUE clause is not used in an item description, the initial value may be unpredictable.

• The VALUE clause must not conflict with other clauses in the data description of the item or in
the data description within the hierarchy of the item.

• In the file section and the linkage section, the VALUE clause must not be used except for
condition-name entries.

• The VALUE clause cannot be used in a record description entry containing a REDEFINES clause
or in an entry subordinate to an entry containing a REDEFINES clause.

• The VALUE clause must not be stated in a record description entry containing an OCCURS clause
or in an entry subordinate to an entry containing an OCCURS clause except for condition-names
entries.

• The VALUE clause must not be specified for a group item containing items with descriptions
including JUST, SYNC, any COMP usage, or USAGE INDEX.

• If the VALUE clause is used in an entry at the group level, literal must be a figurative constant or a
nonnumeric literal, and the group area is initialized without consideration for the individual
elementary or group items contained within this group. The VALUE clause must not be stated at
the subordinate levels within the group.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-21
UPDATE LEVEL PAGE

2 . In the file section, only the VALUE clauses stated for condition-name entries are valid.

3. A figurative constant may be substituted in the format when a literal is specified.

4. During compilation, a diagnostic is issued when the VALUE and PICTURE clauses conflict in any
manner. Compilation continues with the VALUE clause ignored.

5.3.9. BLANK WHEN ZERO Clause

Function:

Sets the value of a receiving item to space when the value of the sending item is 0.

Format:

BLANK WHEN ZERO

Rules:

1. This clause can be specified only at the elementary item level, and can be used only with a numeric or
numeric-edited item. When used with a numeric item, the category of the item is considered
numeric-edited.

2. The effect is not necessarily the same as zero suppression editing via the PICTURE clause, because the
item is affected only when its numeric value is 0 .

5.3.10. MAP* Clause

Function:

Specifies the size of a data item in bytes in main storage.

Format:

Rule:

MAP IS integer-3 CHARACTERS

The MAP clause does not affect the object program in OS/3 COBOL; however, it is acceptable to the compiler
for compatibility purposes.

5.3.11. Condition-name Clause

Function:

Assigns a name for a specific value or range of values.

Format:

88 condition-name; VALUE IS literal-1

*Extension to American National Standard COBOL (1968).

8057 Rev. 2
UP-NUMBER

Rules:

1.

SPERRY UNIVAC Operating System/3

The VALUE clause is used as described in 5.3.8.

2. Each condition-name requires a separate entry with a separate level-number 88.

5-22

UPDATE LEVEL PAGE

3. The condition-name entries for a particular conditional-variable must immediately follow the entry
describing the conditional-variable item with which the condition-name is associated.

4. A condition-name may be associated with any group or elementary item except an index data item.

5. Examples of use of condition-name:

• Elementary item:

02 data-name-1.
03 data-narne-2 PIC XX.
88 condition-name VALUE 'AB'.

02 data-name-3
PROCEDURE DIVISION.
IF condition-name GO TO procedure-name.
Instead of:
IF data-name-2 ='AB' GO TO procedure-name.

• Group Item:

02 data-name-1.
88 condition-name VALUE IS '20'.

03 data-name-2 PIC 9.
03 data-name-3 PIC 9.

02 data-name-4.
PROCEDURE DIVISION.
IF condition-name GO TO procedure-name.
Instead of:
IF data-name-1 = '20' GO TO procedure-name.

5.3.12. SIGN* Clause

Function:

Specifies the position and the mode of representation of the optional sign when it is necessary to describe
these properties explicity.

Format 1:

{
LEADING }

[SIGN IS] TRAILING SEPARATE CHARACTER

Format 2:

[SIGN IS] TRAILING

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-23
UPDATE LEVEL PAGE

Rules:

1. The SIGN clause may be specified only for a numeric data description entry whose picture contains the
character S, or a group item containing at least one such numeric data description entry.

2. The numeric data description entries to which the SIGN clause applies must be described, either
explicitly or implicitly, as USAGE IS DISPLAY.

3. At most, one SIGN clause may apply to any given numeric data description entry.

4. If format 1 is used, the character S in the picture is counted in determining the size of the item. The
operational signs for positive and negative are the characters+ and -, respectively.

5. If the optional SEPARATE CHARACTER clause is not present, the character S in the picture is not
counted in determining the size of the item. Format 2 specifies that the operational sign is in the zone
portion of the least significant digit position of the item. A positive sign is represented by a hexadecimal
C, a negative sign by a hexadecimal D.

6. A numeric data item whose picture contains the character S, but to which no optional SIGN clause
applies, has an operational sign in the zone portion of the least significant digit position. The sign
representation is as described for format 2 of the SIGN clause.

5.4. WORKING-STORAGE SECTION

Definition:

That section of the data division used to describe areas of main storage that are to contain intermediate results
of processing and other temporarily stored data at object program run time, as well as named constants.

Format:

WORKING-STORAGE SECTION.

[
77 -level-description-entry J ...
record-description-entry

[88 (condition-name-entry)]

5.4.1. Independent Entries

Function:

Describe noncontiguous single items in working-storage, each of which is neither subdivided nor a subdivision
of another data-name.

Format:

77 unqualified-data-name; { ~TURE } IS picture-string[optional clauses]

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-24
UPDATE LEVEL PAGE

Rules:

1. Level-numer 77 is assigned only to single-item areas.

2. Each independent entry must have a unique data-name.

3. All level-number 77 entries should be grouped together in the beginning of the working-storage section.

4. The VALUE clause may be used to specify the initial or constant value of any level-number 77 entry.

5.4.2. Record Description Entry

Function:

Describes contiguous data areas which are not part of a file.

Format:

01 record-name
(subordinate data items and clauses)

Rules:

1. Data elements in working-storage bearing a definite relationship to each other may be grouped into
records through the same descriptive clauses used in data-description entries in the fife section, including
the OCCURS and REDEFINES clauses.

2. Each record-name must be unique because it cannot be qualified by a file-name or section-name.
Subordinate data-names need not be unique if they can be qualified.

5.5. LINKAGE SECTION*

Definition:

That section of the data division used to describe data available in a calling program, but referenced in both
the calling and the called programs.

Rules:

1. Organization and structure follow the rules described under the working-storage section, with one
exception: the VALUE clause may not be specified for other than level-number 88 entries.

2. Record description entries in the linkage section provide names and descriptions, but storage within the
program is not reserved because the data exists elsewhere.

3. The linkage section is required in any program containing an ENTRY statement with a USING option or
the procedure division USING option for a called program.

4. See 6.8 for examples of calling and called programs.

*Extension to American National Standard COBOL (1968).

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 5-25
UPDATE LEVEL PAGE

• An example of the data division entries is shown in Figure 5-1.

----~r:::COtHINUATION

SEQUENCE t IA B TE x T ----------
NUMBER 6 7 8 11 12 20 30 40

-'--L-.+~~~~ ~1E.Ci);R'D15', it\~-'-~-~~_J_L:L_E°l?.1 .~--.L-.L .L"--·-··· , 1 j l ... l

"RE c O!R 1> 1 S GA D 1 N ..

. =-.!-'--.L-fC.~A_,_R~D,_l.1N~-.L_.L._J __ L_.L .. c..-_J__.;. __ ~.L....L_c __ L __ L.L_L_c --~_J·. l .L L.L~ i ; .J l •. l I .l

!l.=-=-'----'-"'-~=-+--+--'-·L-L 0,3, ,c,B'D,L.§&L ___ LJ',I"c .. ,X,(161t_~-- _L_L.i_L_L_j_J_ __ J__.;_:__ __ L_L.__J__ L.J.

1-==::i.=~-"'G ~~__,_QL<;:~~ J .. D . . ~! ~· L ."P,l ~l_<....._:_;__J_L-' .L-L.l _l 1 ... L . j ' .1 L.L ... ~__L_J__J_
11--l---'-'-~'--"-"'~+- _j__L_L 0 3 c l>.C.:L.11.Yi.. L.;..'PL~J..<;L .l<.1<1~1QJ~_._J. ___ ~~--_j_J_--'--'-L.- .. L .. ! l L .. 1-..l--L-L

03 C. l> A E 1>I >< < 2 5.) .
. 0,3 .. C,R~,'PH~)',NE, .'PI.C, ~C,l12_2L~L L

.LLl .. Q.~L__LC;R,D,C,6;ptE~~---·l<i_·1 .. ~ .. J 1 1 t 1 1 .i J. ~_t_l__L_;_ __ LL_!_.L.-1

•
'b) .

"'-"--'-="=-'--'--"---- ·fil.L~..L- . ..1.~L.· J j • l l J.. ~l.-~ ,,_ -.L~.L_L_ .. ~. _, i. __ l. .. 1 1 l l i i _.. l L l

Q~Lh!J~ ... __ 'P,1,CL -~(J3,01)1.
,__,_~~--'-+-+--'-_,__L q3L~~~~1',I.C_1 ,~(1 '2,5) ···'

_J_l_L q~J ;P1t\.~~L_J_J;1~1.1.~1{1\ ,7,),.
' I

03 C E 1l'lC

Figure 5-1. Example of Data Division Entries

•

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-1
UPDATE LEVEL PAGE

6. Procedure Division

6.1. GENERAL

The procedure division in the SPERRY UNIVAC Operating System/3 (OS/3) COBOL program contains the
instructions or steps necessary to solve a given problem.

Format:

PROCEDURE DIVISION [USING unqualified-data-name-1 [, unqualified-data-name-2) ...]

[DECLARATIVES.

{section-name SECTION. declarative-sentence.

{paragraph-name. {sentence} ... } ... } ...

END DECLARATIVES.]

{[section-name SECTION [priority-number].]

{paragraph-name. { sentence } ... } ... } ...

6.1.1. USING* Statement

Function:

When the USING statement immediately follows the heading PROCEDURE DIVISION, it serves as an entry
point declaration and can appear only if this program is a called subprogram.

Format:

USING unqualified-data-name-1 [, unqualified-data-name-2) ..•

Rules:

1. If the USING option is present, the external symbol (ENTRY name) associated with this entry point is
the same as PROGRAM-ID.

2. If the USING option is not present, the beginning of the procedure division is not one of the entry
points in this particular subprogram .

3. Data-names present refer to data items described in this subprogram. Their level numbers are restricted
to 01 or 77, and they must be defined in the linkage section.

*Extension to American National Standard COBOL (1968).

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-2
UPDATE LEVEL PAGE

6.2. DECLARATIVES SECTION

Function:

The declaratives section of the procedure division contains compiler-directing statements that specify the
circumstances under which a procedure is to be executed.

Format:

DECLARATIVES.

{section-name SECTION. declarative-sentence.

{ paragraph-name. { sentence } ... } ... } ...

END DECLARATIVES.

Rules:

1. DECLARATIVES sections are grouped at the beginning of the procedure division.

2. The keyword DECLARATIVES must immediately follow the division header PROCEDURE DIVISION
on a separate line. The keywords END DECLARATIVES must follow the last line of the declaratives on
a separate line.

3. Each DECLARATIVES section must begin with a section-name, followed by a USE statement. The
remainder of the section consists of one or more procedural paragraphs.

4. No priority number is allowed on section-names in the DECLARATIVES section.

5. See 6.6.7.4, USE statement.

6.3. SECTION

Definition:

The most inclusive procedural unit in the procedure division to which a procedure name can be assigned.

Format:

[section-name SECTION [priority-number].]

{ paragraph-name. {sentence } ... } ...

Rules:

1. The procedure division must be divided into sections with appropriate priority numbers when the
program is to be segmented or when the declarative section is present.

2. Priority-number must be an unsigned integer ranging in value from 0 through 99.

3. Section priority-numbers must be in ascending sequence, and sections with the same priority number
must be contiguous.

4. Sections belonging to the declaratives portion of the procedure division are associated with the fixed
segment, and must not contain priority-numbers in their section headings.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

5.

SPERRY UNIVAC Operating System/3 6-3
UPDATE LEVEL PAGE

Priority-numbers 0 through 49 are used for the fixed segments, and priority numbers 50 through 99
designate independent segments. (See 6.7 for a complete discussion of segmentation.)

6. Sections comprising the fixed segment, if any, must precede all sections with priority numbers greater
than 49.

6.4. PARAGRAPH

Definition:

A body of one or more procedural sentences with a procedure name by which it may be identified and
referenced.

Format:

{paragraph-name. {sentence } •.. } ...

Rules:

1. A paragraph must contain at least one sentence, and may consist of any practical number of sentences. It
must be headed by an identifying procedure name, since transfer references within the procedure
division are made to entire paragraphs.

2. Any practical number of paragraphs may be combined into a section .

3. Generally, the object coding for a single sentence must be less than 4096 bytes.

6.5. STATEMENTS AND SENTENCES

Definition:

A statement consists of a verb and any other reserved words and user-supplied words necessary to fulfill one of
the valid verb formats.

A sentence consists of one or more statements terminated by a period.

Format:

statement-1 [{ statement-2) •.•].

6.5.1. Imperative Statements

Definition:

Those statements which are neither compiler-directing statements nor conditional statements (including
conditional-causing arithmetic or input-output statements), which indicate a specific action to be taken by the
object program .

8057 Rev. 2
UP-NUMBER

Format:

verb word-string.

Rules:

SPERRY UNIVAC Operating System/3 D 6-4
UPDATE LEVEL PAGE

1. The verb must be one of those listed in 6.6, excluding the compiler-directing and conditional verbs and
those input-output or arithmetic verbs for which the statement specifies one of the conditional options
AT END, SIZE ERROR, or INVALID KEY (6.5.2).

2. Word-string consists of all words (reserved words, names, literals) and punctuation necessary to complete
a valid format for that verb.

6.5.2. Conditional Statements

Conditional statements specify that the truth value of a condition is to be determined, and that the subsequent
action of the object program is dependent upon this truth value.

A conditional statement is:

• an IF statement;

• an input/output verb that specifies an INVALID KEY or an AT END option; or

• an arithmetic verb that specifies an ON SIZE option .

6.5.3. Compiler-Directing Statements

Definition:

Statements directing the compiler to take certain actions at compilation time.

Format:

verb word-string

Rules:

1. All rules for compiler-directing statements are stated in the discussion of the verbs:

COPY, ENTER, NOTE, USE

2. A word-string consists of reserved words and user-supplied words necessary to complete a valid format
for that verb.

3. Compiler-directing statements must not appear within conditional statements.

6.5.4. Overlapping Operands

•

•

When a sending and a receiving item in an arithmetic statement or in an EXAMINE, MOVE, or TRANSFORM •

t
statement share portions of their storage areas, the results are undefined when these statements are executed.

•

•

•

8057 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-5

UPDATE LEVEL PAGE

6.6. VERB TYPES

A verb is a reserved word, used in the procedure division, denoting an action to be performed by the processor or the
compiler. There are eight general categories of verbs in OS/3 COBOL. These categories, and the verbs in each are:

• Arithmetic: ADD, DIVIDE, MULTIPLY, SUBTRACT

• Procedure Branching: ALTER, GO TO, PERFORM, EXIT

• Data Movement: EXAMINE, MOVE, SET, TRANSFORM

• Input-Output: ACCEPT, CLOSE, DISPLAY, INSERT, OPEN, READ, REWRITE, SEEK, WRITE

• Ending: STOP

• Conditional: IF

• Compiler Directing: COPY, ENTER, NOTE, USE

• lnterprogram Communication: CALL, ENTRY

A description of the categories, and the verbs contained in each, is presented in the ensuing paragraphs.

6.6.1. Arithmetic Verbs

The arithmetic verbs permit basic calculations to be performed on the data. Four verbs corresponding to the four
basic arithmetic operations are provided: ADD, SUBTRACT, MULTIPLY, and DIVIDE.

Rules:

1. All data items referenced in arithmetic statements must be represent numeric elementary data items
previously defined in the data division. A data item following the word GIVING may be a numeric
edited item.

2. All literals used in arithmetic statements must be numeric.

3. The maximum size of each operand is 18 decimal digits. The composite of operands (the data item
resulting from the superimposition of all operands, aligned by decimal points) must not contain more
than 18 digits.

4. The data descriptions (PICTURE) of the operands may differ from each other. Decimal point alignment
is supplied automatically throughout computations. Conversion of items with unlike usage also is

automatic.

5. If, after decimal-point alignment, the number of places in the fraction of the result of an arithmetic
operation is greater than the number of places provided for the fraction of the resultant identifier,
truncation is relative to the size provided for the resultant identifier. When the ROUNDED option is
used, the absolute value of the resultant identifier is increased by 1 whenever the most significant digit
of the excess is equal to or greater than 5 .

8057 Rev. 2
UP-NUMBER

6.

SPERRY UNIVAC Operating System/3 6-6
UPDATE LEVEL PAGE

If, after decimal-point alignment, the value of the result exceeds the largest value that can be contained
in the associated resultant identifier, a size error condition exists. In the event of a size error condition,
one of two possibilities occurs, depending on whether the ON SIZE ERROR option has been specified:

• If ON SIZE ERROR is not specified, and a size error condition arises, the effect is unpredictable.

• If the ON SIZE ERROR option has been specified, and a size error condition arises, the value of
the resultant identifier will not be altered. The imperative-statement associated with the ON SIZE
ERROR option is executed after the last resultant identifier is considered.

7. Statements with multiple results are considered by the compiler as though they were written:

• as a statement that performs all the arithmetic necessary to arrive at the result to be stored in the
receiving items, and stores that result in a temporary storage location; or

• as a sequence of statements transferring or combining the value of this temporary location with a
single result. These statements are considered to have been written in the same left-to-right
sequence in which the multiple results are listed. For example, the result of the statement

ADD A, B, C TO C, D(C), E

is equivalent to

ADD A, B, C GIVING temp

ADD temp TO C

ADD temp TO D(C)

ADD temp TOE

where:

temp
Is an intermediate result item.

6.6.1.1. ADD Statement

Function:

The ADD statement adds two or more numeric operands and stores the result.

Format 1:

{
identifier-1 }

ADD
literal-1 [

• identifier-2 J
• literal-2

... TO identifier-m [ROUNDED]

[, identifier-n [ROUNDED]] ... [; ON SIZE ERROR imperative-statement]

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-7
UPDATE LEVEL PAGE

Format 2:

ADD { identifier-1 } { identifier-2 }
literal-1 ' literal-2 [

, i~entifier-3 J ... GIVING
• hteral-3

identifier-n [ROUNDED] [; ON SIZE ERROR imperative-statement]

Rules:

1. In formats 1 and 2, each identifier must refer to an elementary numeric item, except identifiers to the
right of the word GIVING, which may be numeric edited items.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. The composite of operands, which is that data
item resulting from the superimposition of all operands, excluding the data items that follow the word
GIVING, aligned on their decimal points, must not contain more than 18 digits.

4. If format 1 is used, the values of the operands preceding the word TO are added together, and the sum is
added to the current value in each identifier, identifier-m, identifier-n, ... ,and the result is stored in each
resultant identifier, identifier-m, identifier-n, ... ,respectively.

5. If format 2 is used, the values of the operands preceding the word GIVING are added together; the sum
is stored as the new value of identifier-n, which is the resultant identifier .

6. For a description of the ROUNDED and SIZE ERROR options, see 6.6.1, rules 5 and 6.

6.6.1.2. DIVIDE Statement

Function:

The DIVIDE statement divides one numeric data item into another and sets the value of a data item equal to
the results; identifier-1 may be either dividend or divisor, depending on whether INTO or BY is specified.

Format 1:

DIVIDE

Format 2:

DIVIDE

{
identifier-1} INTO identifier-2 [ROUNDED]
literal

[; ON SIZE ERROR imperative-statement]

{
i~entifier- 1 } INTO {i~entifier-2} GIVING identifier-3 [ROUNDED]
hteral-1 -- hteral-2

[; ON SIZE ERROR imperative-statement]

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

6-8
PAGE

Format 3:

DIVIDE {
identifier-1} BY {identifier-2} GIVING identifier-3 [ROUNDED)
literal-1 - literal-2

[; ON SIZE ERROR imperative-statement)

Format 4:

DIVIDE
{

identifier-1} INTO {identifier-2} GIVING identifier-3 [ROUNDED)
literal-1 -- literal-2

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement)

Format 5:

DIVIDE { i~entifier- 1 } BY {i~entifier-2 } GIVING identifier-3 [ROUNDED)
hteral-1 - hteral-2

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement)

Rules:

1. Each identifier must refer to a numeric elementary item, except the identifiers immediately to the right
of the word GIVING may contain editing symbols.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. The composite of operands, which is the data
item resulting from the superimposition of all receiving data items aligned on their decimal points, must
not contain more than 18 digits.

4. When format 1 is used, the resulting quotient replaces identifier-2.

5. When either format 2 or 3 is used, the result is stored in identifier-3.

6. For a description of the ROUNDED and SIZE ERROR options, see rules 5 and 6 in 6.6.1.

7. Formats 4 and 5 are used when a remainder from the division operation is desired, namely identifier-4. A
remainder in COBOL is defined as the result of subtracting the product of the quotient and the divisor
from the dividend. If the ROUNDED option is specified, the quotient is rounded after the remainder is
determined.

6.6.1.3. MULTIPLY Statement

Function:

The MULTIPLY statement multiplies numeric data items and sets the value of a data item equal to the results .

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-9
UPDATE LEVEL PAGE

Format 1:

MULTIPLY {li~ent•1"t1ier- 1 } BY identifier-2 [ROUNDED]
1tera - -

[; ON SIZE ERROR imperative-statement]

Format 2:

MULTIPLY {i~entifier- 1 } BY {i~entifier-2 } GIVING identifier-3 [ROUNDED]
hteral-1 - hteral-2

[; ON SIZE ERROR imperative-statement]

Rules:

1. Only identifier-3, in format 2, may refer to a data item containing editing symbols. All other identifiers
must refer to numeric elementary items.

2. Each literal must be a numeric literal.

3. When format 1 is used, the initial value of identifer-1 or literal-1 is multiplied by the initial value of
identifier-2. The value of the multiplier (identifier-2) is replaced by the product resulting from operation
on that identifier.

4.

5.

6.

When format 2 is used, the initial value of identifier-1 or literal-1 is multiplied by identifier-2 or literal-2,
and the result is stored in identifier-3 .

The maximum size of each operand is 18 decimal digits.

For a description of the ROUNDED and SIZE ERROR options, see rules 5 and 6 in 6.6.1.

6.6.1.4. SUBTRACT Statement

Function:

The SUBTRACT statement subtracts one, or the sum of two or more, numeric data items from one or more
items, and sets the value of one or more items equal to the results.

Format 1:

SUBTRACT { i~entifier-1 } [· identifier-2]
llteral-1 , literal-2

FROM identifier-m [ROUNDED] [,identifier·n [ROUNDED]]

[; ON SIZE ERROR imperative-statement]

8057 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-10

UPDATE LEVEL PAGE

Format 2:

SUBTRACT { identifier-1 } [· identifier-2]
literal-1 , .literal-2

{
identifier-m} . . .

FROM
1
• I GIVING 1dent1f1er-n [ROUNDED]

-- 1tera-m

[; ON SIZE ERROR imperative-statement]

Rules:

1. When format 1 is used, all literals and identifiers preceding the word FROM are added together, and the
total is subtracted from identifier-m, identifier-n, etc. The result of the subtraction is stored as the new
value in identifier-m, identifier-n, etc.

2. The maximum size of each operand is 18 decimal digits. The composite operand, which is that data item
resulting from the superimposition of all operands, excluding the data item that follows the word
GIVING, aligned on their decimal points, must not contain more than 18 digits.

3. In format 2, identifier-n may refer to a data item that contains editing symbols. All other identifiers
must refer to numeric elementary items.

4. When format 2 is used, all literals or identifiers preceding the word FROM are added together, the total
is subtracted from literal-m or identifier-m, and the result of the subtraction is stored as the new value in
identifier-n.

5. For a description of the ROUNDED and SIZE ERROR options, see rules 5 and 6 in 6.6.1.

6.6.2. Procedure Branching Verbs

Normally, the statements in the procedure division are executed consecutively, in order of their appearance. This is
also true of the execution of each paragraph and section. However, it is often necessary to alter this normal sequence
of operation and branch to a different point in the program to execute a number of statements before returning to
the next statement. The procedure branching verbs permit this sequencing of logical operations:

ALTER, GO TO, PERFORM, EXIT

6.6.2.1. ALTER Statement

Function:

The ALTER statement modifies a predetermined sequence of operations.

Format:

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2
- -

[. procedure-name-3 TO [PROCEED TO] procedure-name-4]

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-11
UPDATE LEVEL PAGE

Rules:

1. Procedure-name-1, procedure-name-3, ... is the name of a paragraph that contains only one sentence
consisting of a GO TO statement without the DEPENDING ON option.

2. Procedure-name-2, procedure-name-4, ... is the name of a paragraph or section in the procedure division.

3. During execution of the object program, the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-1, procedure-name-3, ... replacing the object of the GO TO by
procedure-name-2, procedure-name-4, ... , respective!','.

4. A GO TO statement in a section with a priority equal to or greater than 50 must not be referred to by an
ALTER statement in a section with a different priority.

6.6.2.2. GO TO Statement

Function:

The GO TO statement transfers control from one part of the procedure division to another. GO TO (format 3)
is used as a special exit from a USE procedure.

Format 1:

GO TO [procedure-name]

Format 2:

GO TO procedure-name-1 [, procedure-name-2) ... , procedure-name-n
DEPENDING ON identifier

Format 3:

GO TO MORE-LABELS

Rules:

1.

2.

3.

4.

5.

6.

Each procedure-name is the name of a paragraph or section in the procedure division of the program.

Identifier is the name of a fixed-point numeric elementary item described without any positions to the
right of the assumed decimal point.

When format 1 is used, control is transferred to procedure-name or to another procedure-name if the GO
TO statement has been affected by an ALTER statement.

If procedure-name is omitted in format 1, an ALTER statement referring to this GO TO statement must
be executed prior to execution of this GO TO statement.

For a GO TO statement to be alterable, it must be the only statement in a paragraph. Only format 1 may
be altered .

When a GO TO statement is altered, control is transferred to the new procedure-name each time the GO
TO statement is executed, until the GO TO statement is altered again with a different procedure-name.

8057 Rev. 2
UP-NUMBER

7.

SPERRY UNIVAC Operating System/3 6-12
UPDATE LEVEL PAGE

When format 2 is used, control is transferred to procedure-name-1, procedure-name-2, ... ,
procedure-name-n, depending on the value of identifier being 1, 2, ... , n. If the value of identifier is
greater than n or equal to 0, control is passed to the sentence following this statement.

8. The maximum number of procedure-names allowed in format 2 is 64; the minimum is two.

9. Format 3 transfers control from a USE procedure to the 1/0 control system and is an extension to
American National Standard COBOL (1968). The following rules apply to the GO TO MORE-LABELS
option:

• Format 3 can appear only within a label-processing section in the declarative section.

• When an input file is being processed, format 3 is a request to the 1/0 control routine to make the
next standard user label record available, and transfer control to the beginning of the USE
procedure. If there are no more labels to be processed, control is returned to procedure division.

• When an output file is being processed, format 3 requests the 1/0 control routine to write the label
in the user label area and return control to the first statement in the USE procedure so as to
permit another label record to be created in the user label area.

6.6.2.3. PERFORM Statement

Function:

This verb permits a temporary departure from the normal sequence of execution to execute one or more
procedures, a specified number of times, after which control is automatically returned to the normal sequence.

Format 1:

PERFORM procedure-name-1 [THRU procedure-name-2]

Format 2:

{
i_dentifier-1 }

PERFORM procedure-name-1 [THRU procedure-name-2] TIMES
mteger-1

Rules:

1. Each procedure-name is the name of a section or paragraph in the procedure division.

2. An identifier represents a numeric elementary item described in the data division; it also can represent a
numeric item with no positions to the right of the assumed decimal point.

3. When the PERFORM statement is executed, control is transferred to the first statement after
procedure-name-1. An automatic return to the statement following the PER FORM statement is

established as follows:

• If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, return occurs
after execution of the last statement of procedure-name-1.

• If procedure-name-1 is a section name and procedure-name-2 is not specified, return occurs after
execution of the last statement of the last paragraph in procedure-name-1.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

•

SPERRY UNIVAC Operating System/3 6-13
UPDATE LE'VEL PAGE

If procedure-name-2 is specified and is a:

paragraph-name, return occurs after execution of the last statement of the paragraph,

section-name, return occurs after execution of the last sentence of the last paragraph in the
section.

4. If there are two or more direct paths to a return point in a group of procedures being performed,
procedure-name-2 may be the name of a paragraph consisting of the EXIT statement, to which all these
paths must lead. If control passes to these procedures by other than a PER FORM statement, control
passes through the last statement of the procedure to the following statement, regardless of use of the
EXIT statement.

5. Format 1 is the basic PERFORM statement. A procedure referred to by this type of PERFORM
statement is executed once after which control is passed to the statement following the PERFORM
statement.

6. Format 2 is the TIMES option. When the TIMES option is used, the procedures are performed the
number of times specified by identifier-1 or integer-1. Control then is transferred to the statement
following the PERFORM statement. The value of identifier-1 or integer-1 must not be negative, and if
the value is 0, control passes immediately to the statement following the PERFORM statement. Once
the PERFORM statement is initiated, any redefinition of identifier-1 has no effect in varying the number
of times the procedures are executed.

7. A PERFORM statement within a section which has a priority number less than 50 can have, within its
range, only the following:

• sections with priority numbers of less than 50; and

• sections entirely contained in a single segment with a priority number greater than 49.

8. Independent segments are made available in their initial state.

9. If a sequence of statements referred to by a PERFORM statement includes another PERFORM
statement, the sequence of procedures associated with the included PERFORM statement must itself be
either totally included in, or totally excluded from, the logical sequence referred to by the first
PERFORM statement. Thus, an active PERFORM statement, the execution of which begins within the
range of another active PERFORM statement, must not allow control to pass to the exit of the other
PERFORM statement; furthermore, two or more such active PERFORM statements may not have a
common exit.

6.6.2.4. EXIT* Statement

Function:

The EXIT statement provides a common end point for a series of procedures, or marks the logical end of a
called program.

Format:

EXIT [PROGRAM]

*Extension to American National Standard COBOL (1968).

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-14
UPDATE LEVEL PAGE

Rules:

1. The EXIT statement must be preceded by a paragraph-name and be the only sentence in the paragraph.

2. The point to which control is transferred may be at the end of a range of procedures governed by a
PERFORM statement or at the end of a declarative section. The EXIT statement is provided to enable a
procedure-name to be associated with such a point.

3. If control reaches an EXIT statement without the optional word PROGRAM, and no associated
PERFORM or USE statement is active, control passes through the EXIT point to the first sentence of
the next paragraph.

4. If control reaches an EXIT PROGRAM statement while operating under the control of a CALL
statement, control returns to the point in the calling program immediately following the CALL
statement.

NOTE:

For examples of called or calling programs, see 6.8.

6.6.3. Data Movement Verbs

Four verbs are provided by OS/3 COBOL for the specific purpose of moving or manipulating data:

EXAMINE, MOVE, SET, TRANSFORM

These are verbs in addition to the several verbs which, as a secondary function, move or manipulate data in some
manner. For example, an arithmetic verb may cause some data movement and/or manipulation. This, however, is
secondary to its main function of effecting an arithmetic calculation.

6.6.3.1. EXAMINE Statement

Function:

The EXAMINE statement replaces or counts the number of occurrences of a given character in a data item.

Format:

{

ALL }
LEADING
UNTIL FIRST

literal-1 [REPLACING BY literal-2] TALLYING

EXAMINE identifier

{

ALL }
REPLACING LEADING literal-3 BY literal-4

[UNTIL] FIRST

Rules:

1. The description of the identifier must be such that USAGE IS DISPLAY (explicitly or implicitly).

2. Each literal must consist of a single character belonging to a class consistent with that of identifier. A
literal may be any figurative constant except ALL.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

3.

SPERRY UNIVAC Operating System/3 6-15
UPDATE LEVEL PAGE

Examination of identifier proceeds as follows:

• Nonnumeric examination starts at the leftmost character and proceeds to the right; each character
is examined individually.

• Numeric examination starts at the leftmost character and proceeds to the right. Each character
except the sign (which is ignored) is examined individually.

4. The count derived as a result of the TALLYING option is placed in a special register called TALLY.
Depending upon which option is selected, the count represents the following:

• ALL option: the number of occurre11ces of literal-1.

• LEADING option: the number of occurrences of literal-1 prior to encountering a character other
than I iteral-1.

• UNTIL FIRST option: the number of occurrences of characters not equal to literal-1 encountered
before the first occurrence of literal-1.

5. When either of the REPLACING options is used, the replacement rules are as follows:

• ALL option: literal-2 or literal-4 substituted for each occurrence of literal-1 or literal-3.

• LEADING option: the substitution of literal-2 or literal-4 terminates as soon as a character, other
than literal-1 or literal-3, is encountered .

• UNTIL FIRST option: the substitution of literal-2 or literal-4 terminates as soon as literal-1 or
literal-3 is encountered.

• FIRST option: the first occurrence of literal-3 is replaced by literal-4.

6.6.3.2. MOVE Statement

Function:

The MOVE statement transfers data, in accordance with the rules of editing, to one or more data areas.

Format:

Rules:

{
identifier-1}

MOVE literal-1 TO identifier-2 [, identifier-3] ...

1. When moving to more than one area, the data designated by literal-1 or identifier-1 is moved first to
identifier-2, then to identifier-3, etc .

8057 Rev. 2
UP-NUMBER

2.

SPERRY UNIVAC Operating System/3 6-16
UPDATE LEVEL PAGE

Any MOVE in which both the sending and receiving items are elementary items is an elementary MOVE.
Every elementary item belongs to one of the following categories:

• Numeric

• Alphabetic

• Alphanumeric

• Numeric edited

• Alphanumeric edited

Table 6-1 shows legal categories of sending and receiving fields.

Table 6-1. MOVE Sending and Receiving Fields

Receiving

Sending
Numeric Alphanumeric

Numeric Alphabetic Alphanumeric
Edited Edited

Numeric Yes No Yes* Yes Yes*

Alphabetic No Yes Yes No Yes

Alphanumeric Yes Yes Yes Yes Yes

Numeric edited No No Yes No Yes

Alphanumeric
edited No Yes Yes No Yes

*A numeric item with an implicit decimal point not immediately to the right of the least significant digit

must not be moved to an alphanumeric or alphanumeric-edited data item.

3. The following rules apply to legal elementary moves:

• When the receiving field is alphanumeric edited, alphanumeric, or alphabetic, justification and any
necessary space filling takes place as defined under the JUSTIFIED option. If the size of the
sending item is greater than the size of the receiving item, the excess characters are truncated after
the receiving item is filled.

• When the receiving field is a numeric or numeric edited item, alignment by decimal point and any
necessary zero filling takes place, except where zeros are replaced because of editing requirements.
If the receiving item has no operational sign, the absolute value of the sending item is used.
Truncation occurs if the sending item has more digits to the left or right of the decimal point than
the receiving item can contain. The result at object time is undefined if the sending item contains
any nonnumeric characters.

• Any necessary conversion of data from one form of internal representation to another takes place
during the move, together with any specified editing in the receiving item.

• When the sending field is an edited item, it is treated as an alphanumeric item .

• An index data item cannot appear as an operand in a MOVE statement.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

4 .

SPERRY UNIVAC Operating System/3 6-17
UPDATE LEVEL PAGE

Any MOVE that is not an elementary MOVE is treated as if it were an alphanumeric-to-alphanumeric
elementary MOVE, except that no conversion of data from one form of internal representation to

another occurs.

5. The figurative constant ZERO (ZEROS, ZEROES) belongs in the numeric category. The figurative
constant SPACE (SPACES) belongs in the alphabetic category. All other figurative constants belong in
the alphanumeric category.

6.6.3.3. SET Statement

Function:

The SET statement establishes reference points for table handling operations by setting index-names associated
with table elements.

Format 1:

SET
{

identifier-1 } [, identifier-2 J
index-data-item-1 , index-data-item-2 ... TO

(identifier-3 l
' index-data-item-3 f
/

I index-name-3
literal-1 ~ index-name-1 , .index-name-2

Format 2:

. {DOWN BY } { identifier-1 }
SET mdex-name-1 [. index-name-2). . . UP BY - literal-1

Rules:

1. All identifiers must be either index data items or numeric elementary items described without any
positions to the right of the assumed decimal point, except that identifier-1 in format 2 must not be an
index-data-item.

2. All literals must be positive integers.

3. All index-names are considered related to a given table and are defined by being specified in the
INDEXED BY clause.

4. In format 2, ttie contents of index-name-1, index-name 2 ... are incremented (UP BY) or decremented
(DOWN BY) by a value that corresponds to the number of occurrences represented by the value of
identifier-1 or literal-1.

5. The following explain the allowable combinations of choices in the SET statement.

• SET index-name-1 TO index-name-3

•

The occurrence number value of index-name-3 computes a new displacement value for
index-name-1. Also, the occurrence number value of index-name-3 replaces that of index-name-1.
If the length of one occurrence is the same for both, no computation is necessary .

SET index-name TO index-data-item

Same as SET index-name-1 TO index-name-2, except that no computation takes place. If the value
contained in the index-data-item does not correspond to an occurrence number of an element in
the table indexed by index-name, the result is undefined.

8057 Rev. 2
UP-NUMBER

•

SPERRY UNIVAC Operating System/3 6-18
UPDATE LEVEL PAGE

{

DOWN BY} {"d .f. }
SET . d _ T-O - 1 ent1 1er in ex name

1
•

1 -- UP BY itera

When identifier or literal is a numeric data item and usage is not index. The value of identifier or
literal is treated as an occurrence number and is used to compute a new displacement value for
index-name. Identifier or literal must be elementary unsigned integer. Also, the value of identifier
or literal replaces, increments, or decrements the occurrence number value of index-name.

• SET . d d . 1 TO { index-data-item-2} in ex- ata-1tem- .
-- - index-name

A move with no conversion is executed. lndex-data-item-1 has no associated table element length;
therefore, there is no unique displacement value for a given occurrence number value.

• SET identifier TO index-name

The value of the occurrence number of index-name replaces the value of identifier with
appropriate conversion to the data type of identifier; i.e., conversion of binary occurrence number
to packed decimal. Rules for MOVE statement with integer numeric sending field apply. Identifier
must be a numeric data item, an alphanumeric data item, or a group item.

6. Internal format of index-name and index-data-item:

Description Occurrence Number Displacement

of Contents in Binary in Binary

Format 32 bits 32 bits

Range 0 to 65,535 0 to 65,535

8 bytes

Index-name items are word aligned, but index-data-items are not aligned.

7. Formula for calculating displacements for index-name:

Displacement=(occurence-number-1) x (length of one occurrence)

6.6.3.4. TRANSFORM* Statement

Function:

The TRANSFORM statement may be used to alter characters of an identifier according to a user-defined
transformation rule or table. It may also be used to effect code base translation between EBCDIC and ASCII
via compiler-supplied tables.

Format 1:

TRANSFORM identifier-3(. identifier-4) ... CHARACTERS

{

figurative-constant-1 } { figurative-constant-2 }
FROM identifier-1 TO identifier-2

nonnumeric-literal-1 nonnumenc-llteral-2

*Extension to American National Standard COBOL (1968).

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
6-19

UPDATE LEVEL PAGE

Format 2:

TRANSFORM identifier-3(. identifier-4] ... CHARACTERS

Format 3:

{
ASCII TO EBCDIC }

FROM EBcDICTO ASCII

TRANSFORM identifier-3[, identifier-4] ... CHARACTERS

{ ~~ } identifier-5

Rules:

1. All identifiers used in this statement must be described either explicitly or implicitly as USAGE IS
DISPLAY. ldentifier-1, identifier-2, or identifier-5 may not be variable-length operands.

2. The least significant digit position of a signed, decimal numeric display item without a SEPARATE
SIGN clause is treated as a single character, not as a signed digit.

3. In format 1, identifier-1 and identifier-2 must not exceed 256 characters in length. The length of
identifier-2 must equal the length of identifier-1, or identifier-2 must have a length of 1 character.

4 . In format 1, all figurative constants are permitted except ALL.

5. In format 1, a character must not be repeated in identifier-1 or in nonnumeric-literal-1.

6. In format 3, identifier-5 must be a length of 256 characters.

7. The following paragraphs and Table 6-2 explain the allowable combinations of choices in the
TRANSFORM statement.

• The following rules apply to these combinations in format 1:

identifier-1 TO identifier-2

identifier-1 TO nonnumeric-1 iteral-2

identifier-1 TO figurative-constant-2

nonnumeric-1 iteral-1 TO identifier·2

nonnumeric-1 iteral-1 TO nonnumeric-1 iteral-2

nonnumeric-literal-1 TO figurative-constant-2

If the FROM and the TO operands are the same length, any occurrence in identifier-3,
identifier-4, and so on, of a character (or the single character) in operand-1 is replaced by the
character (or the single character) in the corresponding position of operand-2 .

If the FROM operand exceeds one character and the TO operand is only one character, any
occurrence in identifier-3, identifier-4, and so on, of any character in operand-1 is replaced
by the single character in operand-2.

8057 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-20

UPDATE LEVEL PAGE

• The following rule applies to these combinations in format 1:

figurative-constant-1 TO identifier-2

figurative-constant-1 TO nonnumeric-literal-2

figurative-constant-1 TO figurative-constant-2

Length of operand-1 and operand-2 must be one character. Any occurrence in identifier-3 of
the single character in operand-1 is replaced by the single character in operand-2.

• The following applies to format 2:

ldentifier-3 is transformed from ASCII to EBCDIC or from EBCDIC to ASCII, depending on
the FROM and TO operands, according to Table 12-2.

• The following rules apply to format 3:

ldentifier-3 may be described as having any length up to a maximum of 65,535 characters.

ldentifier-5 is a 0-255 binary value positional translate table, i.e., any character in
identifier-3 with a binary value of 0 will be transformed to the character in the first position
of identifier-5; any character in identifier-3 with a binary value of 1 will be transformed to
the character in the second position of identifier-5, etc.

Table 6-2. Combination of FROM and TO Options in a TRANSFORM Statement (Part 1of2)

Operands
ldentifier-3

FROM TO
ldantifier-3

Rule
Before After

FROM All occurrences of figurative-constant-1 in the 1'"2''"'3 QUOTE ZERO 102003
figurative-constant-1 item represented by identifier-3 are replaced by
TO f igu rative-constant-2. (Each operand must be a
figurative..constant-2 single character.I

FROM All occurrences of figurative-constant-1 in the 1Li2 63 SPACE 'T' 17273

figurative-constant-1 item represented by identifier-3 are replaced
TO by nonnumeric-literal-2. (Each operand must

nonnumeric-literal-2 be a single character.)

FROM All occurrences of figurative-constant-1 in the 16263 SPACE ALPHA 18283
figu rative-constant-1 item represented by identifier-3 are replaced by (current

TO the item represented by identifier-2. (Each value of

identifier-2 operand must be single character.) ALPHA= 8)

FROM All occurrences of any character of nonnumeric- A812X7P '"1234567890'" SPACE ABti'iX!:J>
nonnumeric-literal-1 literal-1 in the item represented by identifier-3

TO are replaced by the single-character figurative-
figurative-constant-2 constant-2.

FROM Nonnumeric-literal-1 and nonnumeric-literal-2 ABCD12X '"A8CDEFGHIJ'" "1234567890'" 123412X
nunnumeric-literal-1 must be equal in length, or nonnumeric-

TO literal-2 must be a single character.

nonnumeric-literal-2

If the operands are equal in length, any character
in the item represented by identifier-3 that is
equal to a character in nonnumeric-literal-1 is
replaced by the character in the corresponding

position of nonnumeric-literal-2.

If nonnumeric-literal-2 is a single character, then AB21X73 '"1234567890'" '"L'" A8LLXLL
all occurrences of any character of nonnumeric-

literal-1 in the item represented by identifier-3
are replaced by the single character in nonnumeric-

literal·2.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-21
UPDATE LEVEL PAGE

Table 6-2. Combination of FROM and TO Options in a TRANSFORM Statement (Part 2 of 2)

Operands Rule
ldentifier-3 FROM TO

ldantifier·3

Before After

FROM The two operands must be equal in length, or 1 li2liDEF "li12DEF" BETA EFDF21 li

nonnumeric-literal-1 identifier-2 must represent a single-character item. (current value

TO of BETA=

identifier-2 If the operands are equal in length, any character FED21 li.I

in the item represented by identifier-3 that is
equal to a character in nonnumeric-literal-1 is
replaced by the character in the corresponding
position of the item represented by identifier-2.

If identifier-2 is a single character, then all ABC ADE GAMMA 1BC

occurrences of any character of nonnumeric-literal-1 (current value

in the item represented by identifier-3 are replaced of GAMMA= 1)

by the character represented by identifier-2.

FROM All occurrences of any character of the item repre- A12B GAMMA QUOTE ··12··

identifier-1 sented by identifier-1 in identifier-3 are replaced (current

TO by the single character figurative-constant-2. value of
figurative-constant-2 GAMMA= ABC.I

FROM The two operands must be equal in length, or ABCD ALPHA "DCBA" DACD

identifier-1 nonnumeric-literal-1 must be a single-character (current value

TO item. of ALPHA=

nonnumeric-literal-2 A12BI
If the operands are equal in length, any character in
the item represented by identifier-3 that is equal to
a character in the item represented by identifier-1
is replaced by the character in the cGrresponding
position of nonnumeric-literal-2.

If nonnumeric-literal-2 is a single character, then ABCD DELTA ··s·· 6666
all occurrences of any character of the item repre- (current value
sented by identifier-1 in the item represented by of DELTA=
identifier-3 are replaced by nonnumeric-literal-2. ABCDEF)

FROM Any character in the item represented by 1AB4 ITEM-A ITEM-B AABD

identifier-1 identifier-3 that is equal to a character in the item (current value (current value

TO represented by identifier-1 is replaced by the of item-A= of ITEM-B =

identifier-2 character in the corresponding position of the 1234.) ABCD.)

item represented by identifier-2.

Both operands must be of equal length. Each
of the operands may contain one or more
characters.

6.6.4. Input/Output Verbs

In any data processing application, quantities of data are passed between storage and external media such as card,
tape, or disc devices. The input/output verbs control and coordinate the flow of data, enabling the COBOL
programmer to obtain records for processing and return the processed record to the external media. The
input/output verbs are:

ACCEPT
CLOSE

DISPLAY
OPEN

6.6.4.1. ACCEPT Statement

Function:

READ
WRITE

INSERT
REWRITE

SEEK

Reads low volume data from an appropriate hardware device, system main storage location, or UPSI (user
program switch indicator) byte.

Format:

ACCEPT identifier ~ {

mnemonic-name

FROM DATE*
-- DAY*

TIME*

*Extension to American National Standard COBOL (1968).

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 8 6-22
UPDATE LEVEL PAGE

Rules:

1. The ACCEPT statement causes the next set of data available at the mnemonic-name to replace the
contents of the data item named by the identifier. Data is moved, left-justified.

2. The job control stream is assumed to be the input source when the FROM option is not specified. The
description of identifier determines the number of cards accepted. One card from the job control stream
contains up to 80 characters. The maximum length specified by identifier is 4095 characters, which
would require 52 cards.

3. To indicate that input is to be accepted from the system console, the following message is displayed:

CA10 ACCEPT READY

Program operation is suspended until a type-in occurs (CA 10 indicates a COBOL ACCEPT). The
maximum number of characters that can be transmitted from the system console for a single ACCEPT is
60.

4. The mnemonic-name must be associated with an implementor-name in the SPECIAL NAMES paragraph
of the environment division. Special-names that can be the source of accepted data are:

SYSCOM

SYSDATE

SYSTIME

SYSCONSOLE

SYSIN-96

SYSSWCH

See Table 4-1 for specific interpretation of implementor-names.

5. The identifier must be defined implicitly or explicitly as USAGE IS DISPLAY.

6.

NOTE:

The DATE and DAY options make the current date available in the formats yymmdd and yyddd,
respectively. The TIME option makes the current time of day available in the format hhmmssOO.

The use of ACCEPT statements is illustrated in Section 9.

6.6.4.2. CLOSE Statement

Function:

Terminates processing of one or more input or output reels, units, or files with optional rewind with or
without lock.

Format:

CLOSE file-name-1 [~~~~ J [WITH { ~~c:EWIND } J
[file-name-2 [~~~~ J [WITH { ~~c:EWIND} J] · · ·

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-23
UPDATE LFVEL PAGE

Rules:

1. After a CLOSE statement without a REEL/UNIT phrase has been executed for a file, an OPEN
statement must be executed before any other references are made to the file.

2. The REEL/UNIT option effects reel or unit swapping in a sequential file process. When specified, it
terminates the current reel or unit of a multivolume file. Processing continues with the next reel or unit
of the file. Unless early termination of the current reel or unit is desired, the REEL/UNIT phrase is
unnecessary because swapping occurs automatically at the end of the current reel or unit. If the reel/unit
is to be dismounted from the device, the LOCK option should be used. After execution of a CLOSE
statement with a REEL/UNIT option, the file is still open.

3. The UNIT option is applicable for direct access files only when ACCESS MODE IS SEQUENTIAL is
specified.

4. The REEL, NO REWIND, and LOCK options are applicable only to magnetic tape files and are
meaningless when operating with any other device.

5. When the LOCK option is specified for reel, the current reel of the tape file is rewound and unloaded.
When the LOCK option is used without a REEL option, the file is closed and the current volume is
rewound and unloaded. As a result, the file cannot be reopened without operator intervention.

6. Each file-name refers to an FD name in the data division.

7. If neither LOCK nor NO REWIND is specified, the current reel of the file is rewound and all other reels
belonging to the file are rewound. However, this rule does not apply to those reels controlled by a prior
CLOSE REEL entry .

8. If the NO REWIND option is specified, the current reel of the file remains in whatever position it is in at
the time the CLOSE is given.

6.6.4.3. DISPLAY Statement

Function:

The DISPLAY statement writes low volume data to an appropriate hardware device or system main storage
location. It can also be used to set the UPSI switches. (See Section 9 for a detailed explanation of DISPLAY
statement usage.)

Format:

DISPLAY {i~entifier-1 } [· identifier-2 J ... [UPON mnemonic-name]
literal-1 , literal-2

Rules:

1. When the UPON option is omitted, the data is written on the system console (SYSCONSOLE).

2. When the UPON option is specified, the mnemonic-name must be associated with an implementor-name
in the SPECIAL-NAMES paragraph (4.2.3) in the environment division .

3. The special-names that may be associated with the DISPLAY statement via mnemonic-name are:

SYSCOM SYSSWCH
SYSCmJSOLE SYSSWCH-n

SYSLST
SYS LOG

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 B 6-24
UPDATE LEVEL PAGE

t

See Table 4-1 for more detailed information.

4. If the system console is the hardware device, the sum of the sizes of operands in a DISPLAY statement
may not exceed 250 characters. The data is displayed on the system console a line at a time. Each line is
preceded by CD10L}. (CD11L}. if SYSLOG is used), followed by 55 characters of the contents of the
operands.

5. COMP-3 numeric items are converted to DISPLAY decimal. For signed numeric items, a separate sign
character is displayed immediately following the operand.

6. The number of printer characters displayed is a multiple of 120. An advance of one line precedes each
line of output. Each operand displayed is limited to 4092 characters. For signed numeric items, a
separate sign character is displayed immediately following the operand.

NOTE:

The use of D/SPLA Y statements is illustrated in Section 9.

6.6.4.4. OPEN Statement

Function:

The OPEN statement initiates processing of both the input and output files. It initiates checking or writing of
labels and other input/output operations.

Format:

OPEN ~
INPUT {file-name [:~:~:~E~EWIND J} · · · ~
1-0 {file-name} ...

OUTPUT {file-name [WITH NO REWIND]} ...

Rules:

1. At least one of the options INPUT, OUTPUT, or 1-0 must be specified. They may appear in any order.

2. The 1-0 option pertains only to mass storage files.

3. The REVERSED and NO REWIND options apply only to sequential single reel processing.

The REVERSED option requires that the file be positioned at its end prior to the execution of the
OPEN statement. The NO REWIND option requires that the file be positioned at its beginning prior to
the execution of the OPEN statement.

4. The OPEN statement must be applied to all files.

5. File-name refers to the FD name in the file section of the data division.

6. The OPEN statement for a file must be executed prior to the first READ, INSERT, REWRITE, SEEK,
or WRITE statement for that file.

7. A second OPEN statement for a file must not be executed prior to the execution of a CLOSE statement
for that file.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

8.

SPERRY UNIVAC Operating System/3 B 6-25
UPDATE LEVEL PAGE

The OPEN statement does not obtain or release the first data record. When checking or writing labels,
the user's beginning label subroutine is executed if one was specified by a USE statement (6.6.7.4).

6.6.4.5. READ Statement

Function:

For sequential file processing, the READ statement makes available the next logical record from a file and
allows performance of a specified imperative-statement when end of file is detected.

For random file processing of mass storage files, the READ statement makes available a specific record from a
file, and allows performance of a specified imperative-statement if the contents of the associated keys are
found to be invalid.

Format:

{
ATEND } READ file-name RECORD [INTO identifier) INVALID KEY imperative-statement

Rules:

1. An OPEN statement (INPUT or 1-0) must be executed for a file prior to the execution of the first
READ statement for that file .

When a file consists of more than one type of record, the records automatically share the same storage
area.

3. The AT END or INVALID KEY clause is required for all file organizations except indexed organization,
where its use is optional. The execution of the imperative statement AT END or INVALID KEY is
dependent upon file organization and file usage. See Section 11 for detailed information on these
conditions.

4. If an input file described with the keyword OPTIONAL is not present, the imperative-statement in the
AT END option is executed on the first READ statement.

5. The READ statement performs the functions of the SEEK statement implicitly for random access files.

6. The INTO option may be used only when the input file contains just one size record. Reading INTO is
performed according to the rules of a group MOVE (6.6.3.2).

7. Data items of a logical record cannot be accessed prior to the read of the associated record. The record
area may not be accessed prior to a read or after an AT END condition is detected.

6.6.4.6. WRITE Statement

Function:

The WRITE statement releases a logical record for an output file. It can also be used for vertical positioning of
the printer. The WRITE statement permits performance of a specified imperative statement if the contents of
the associated keys are found to be invalid.

8057 Rev. 2
UP-NUMBER SPERRY UNIVAC Operating System/3 6-26

UPDATE LEVEL PAGE

t

Format 1:

WRITE record-name [FROM identifier-1]

[{ } {

identifier-2 LINES }]
:;;~:E ADVANCING integer LINES

mnemonic-name

Format 2:

WRITE record-name [FROM identifier-1] [; INVALID KEY imperative-statement]

Rules:

1. A file must be opened (output or 1-0) prior to execution of the first WRITE statement for that file.

2. The record-name is the name of a logical record in the file section of the data division.

3. When the FROM option is used, data is moved from identifier-1 to record-name according to the rules
specified for a group MOVE.

4. After the WRITE statement is executed, information in record-name is no longer available, but
identifier-1 information is available. The record area associated with an output file may not be accessed
prior to the open for that file.

5.

6.

The INVALID KEY clause in format 2 is used when processing direct access files and is required for
RELATIVE file organization; for SEQUENTIAL and INDEXED organization, its use is optional. The
conditions that cause execution of the INVALID KEY imperative-statement depend upon file
organization and file usage. For more detailed information, see Section 11.

The ADVANCING option controls the vertical positioning of each record on the printed page. If this
option is omitted for a printer file, the printer automatically advances one line before printing (i.e.,
WRITE record-name AFTER ADVANCING 1 LINE). Any form of the ADVANCING option overrides
this automatic advance.

• The identifier represents a numeric item with no positions to the right of the assumed decimal
point.

• The contents of identifier-2 or the value of integer must not exceed 127. A value of 0 is
permissible (where overprinting is desired).

• Mnemonic-name specifies a channel in the forms control paper tape loop. This channel is identified
in the SPECIAL-NAMES paragraph of the environment division, using SYSCHAN-t IS
mnemonic-name, where tis the channel (4.2.3).

7. The USE FOR FORM-OVERFLOW clause in the declaratives section of the procedure division permits
the programmer to perform special procedures when a form overflow condition exists. Form overflow is
detected during the print and space functions of the printer. If form positioning by paper tape loop is
specified (ADVANCING mnemonic-name), the form overflow condition does not occur.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-27
UPDATE LEVEL PAGE

6.6.4.7. INSERT* Statement

Function:

The INSERT statement adds a logical record to indexed organization files.

Format:

INSERT record-name [FROM identifier-1] [; INVALID KEY imperative-statement]

Rules:

1. The INSERT verb can be used only when access is random or extended and organization is indexed.

2. A file must be opened (1-0) prior to execution of the first INSERT statement for that file.

3. The record-name is the name of a logical record in the file section of the data division.

4. When the FROM option is used, data is moved from identifier-1 to record-name according to the rules
specified for a group MOVE.

5. After the INSERT statement is executed, information in record-name is no longer available, but
identifier-1 information is available.

6. The INVALID KEY clause is required for all file organizations except indexed organization, where its
use is optional. See Section 11 for detailed information on these conditions .

6.6.4.8. REWRITE* Statement

Function:

The REWRITE statement releases a logical record for an output file for updating an existing record.

Format 1:

REWRITE record-name [FROM identifier]

Format 2:

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Rules:

1. A file must be opened (1-0) and a record read prior to execution of the first REWRITE statement for
that file.

2. The record-name is the name of a logical record in the file section of the data division.

3. When the FROM option is used, data is moved from identifier-1 to record-name according to the rules
specified for a group MOVE .

*Extension to American National Standard COBOL (1968}.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-28
UPDATE LEVEL PAGE

4. After the REWRITE statement is executed, information in record-name is no longer available, but
identifier-1 information is available.

5. The imperative statement INVALID KEY in format 2 is used when processing direct access files. The
INVALID KEY clause is required for all file organizations except indexed organization, where its use is
optional.

6.6.4.9. SEEK Statement

Function:

The SEEK statement initiates access of a mass storage data record for subsequent reading or writing.

Format:

SEEK file-name RECORD

Rules:

1. A SEEK statement pertains only to the disc files specified in the following chart.

Organization Access
SEEK Allowed

Type Method

Sequential Sequential No

Sequential Yes
Relative

Random Yes

Sequential Yes

Indexed Random No

Extended Yes

2. The value of the identifier in the ACTUAL or RELATIVE key clause is used by the SEEK statement to
determine the location of the record to be accessed when ORGANIZATION is RELATIVE. When
ORGANIZATION is INDEXED, the value of the identifier in the SYMBOLIC KEY clause is used.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

3 .

6-29 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Two SEEK statements for the same file may logically follow each other. Any validity check associated
with the first SEEK statement is negated by the execution of a second SEEK statement.

6.6.5. Ending Verb (STOP)

This statement is used to halt execution of the object program either permanently or temporarily, with or without a
display of a literal.

Format:

STOP {literal}
-- RUN

Rules:

1. The literal may be numeric or nonnumeric or any figurative constant except ALL.

2. The literal is communicated to the operator through the system console, and continuation of the
program begins with execution of the next statement after the STOP statement. The literal option is
equivalent to a DISPLAY statement, but requires a reply from the operator to continue the program_

For example, the error routine

SEO-ERROR.

STOP 'CARDS OUT OF SEQUENCE, CORRECT SEQUENCE, REPLACE CARDS IN READER,
ANSWER R WHEN READY'.

causes the literal to be displayed as follows:

CD10 CARDS OUT OF SEQUENCE, CORRECT SEQUENCE, REPLACE CARDS IN READER,
ANSWER R WHEl\J READY.

This is followed by

CA10 ACCEPT READY

and program operation is suspended pending operator reply.

3. When the RUN option is used, the object program is halted permanently; therefore, when this option
appears in an imperative statement, it should appear as the last statement in a sequence of imperative
statements.

6.6.6. Conditional Verb (IF)

Conditional expressions are used in situations in which the outcome of a test determines the next logical step to be
performed. The verb IF is used with conditional expressions. The IF statement causes a condition to be evaluated.
The subsequent action of the object program depends on whether the value of the condition is true or false.

Format:

[THEN] * {NEXT SENTENCE} [{ELSE } {NEXT SENTENCE}]
-
IF condition; ; -- --

-- statement-1 OTHERWISE* statement-2

*Extension to American National Standard COBOL (1968).

8057 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 6-30

UPDATE LEVEL PAGE

Rules:

1. A condition must be simple. A simple conditional expression contains only one of the following: a
relational expression, condition-name, or item class test.

2. Statement-1 and statement-2 represent either a conditional statement or an imperative statement.

3. The NEXT SENTENCE option may be omitted if it immediately precedes the terminal period of the
sentence.

4. Execution of an IF statement takes the following action:

• Condition TRUE: Statements immediately following the condition (statement-1) are executed;
control then passes implicitly to the next sentence.

• Condition FALSE: Either statement-2 is executed or, if ELSE is omitted, the next statement is
executed.

5. Statement-1 and statement-2 may contain an IF statement, and the IF is considered nested. IF
statements within IF statements are considered paired IF and ELSE combinations, proceeding from left
to right. Thus, any ELSE statement detected is considered to apply to the immediately preceding IF
statement not already paired with an ELSE statement. The maximum number of IF statements that may
be nested in OS/3 Basic COBOL is 30.

6. When control is passed to the next sentence, it is transferred to the next sentence as written or to a
return mechanism of a PERFORM or a USE statement.

7. The condition in an IF statement causes the object program to select between alternate control paths,
depending on the truth value of a test. Five types of conditions are possible:

• Relation condition

• Class condition

• Condition-name condition

• Switch-status condition

• Sign condition

8. Relation Condition

A relation condition causes a comparison of two operands, each of which may be an identifier or a
literal. The general format for a relation condition is:

{
identifier-1 } 1 . 1 { identifier-2 }
literal-1 re at1ona -operator literal-2

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-31
UPDATE LEVEL PAGE

The first operand is called the subject of the condition; the second operand is called the object of the
condition. The subject and object may not both be literals; they may, however, be an identifier and a
literal. The operator specifies the type of comparison to be made in a relational condition. The
relational-operators and the format in which they are used are:

IS [NOT EQUAL TO
[NOT]..::.

IF {identifier-1}
literal-1

IS [NOT] GREATER THAN
[NOT]>

{
identifier-2 }
literal-2

EQUALS*
UNEQUAL*
EXCEEDS*

Comparison of the various types of operands is accomplished as follows:

• Numeric operands

•

For numeric operands, comparison is with respect to the algebraic value of the operands. The
number of digits in the operands is not significant. Zero is considered a unique value regardless of
the sign .

Comparison of these operands is permitted regardless of their usage. Unsigned numeric operands
are considered positive for purposes of comparison.

Nonumeric operands

For nonnumeric operands or one numeric and one nonnumeric operand, a comparison is with
respect to a specified collating sequence of characters. The size of an operand is the total number
of characters in the operand. Numeric and nonnumeric operands may be compared only when
their usage is the same. The two cases to be considered are operands of equal size and operands of
unequal size.

Operands of equal size

Corresponding character pos1t1ons are compared, starting from the high-order end and
continuing until either a pair of unequal characters is detected or the low-order end of the
item is reached, whichever is first. The items are equal if all pairs of characters are equal.

The first pair of unequal characters encountered is compared for relative location in the
OS/3 COBOL collating sequence. The operand containing the character that is positioned
higher in the collating sequence is the greater operand.

Operands of unequal size

Comparison proceeds as though the shorter operand were extended on the right by sufficient
spaces to make the operands of equal size .

*Extensions to American National Standard COBOL (1968).

8057 Rev. 2
UP-NUMBER

•

6-32 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Index-names and/or index data-items

Two index-names

The result is the same as if the corresponding occurrence numbers were compared.

Index-name and data-item or literal

The occurrence number corresponding to the value of the index-name is compared to the
data-item or literal, both of which must be elementary unsigned integers.

Index data-item and index-name or two index data-items

The actual values are compared without conversion.

The result of the comparison of an index data-item with any data-item or literal not specified
above is undefined.

9. Class Condition

The class condition determines whether the operand is numeric or alphabetic. The general format for the
class condition is:

{
ALPHABETIC}

!£identifier IS [NOT] NUMERIC

The operand being tested must be described, implicitly or explicitly, as USAGE IS DISPLAY or USAGE
ISCOMP-3.

• Numeric test

The identifier can be described as alphanumeric or numeric with USAGE COMP-3 or DISPLAY. If
the record description of the item being tested does not contain an operational sign, the item is
considered numeric only if the contents are numeric and a sign is not present.

• Alphabetic test

The identifier must be described as alphabetic. The item being tested is considered alphabetic only
if the contents consist of any combination of the characters A through Zand the space.

10. Condition-Name Condition

A conditional variable is tested to determine whether its value is equal to the value associated with a
condition-name.

The format for a condition-name condition is:

tE [NOT] condition-name

11. Switch-Status Condition

Determines the ON or OFF status of a switch, as described in 4.2.3, rule 10. The condition-name
specified in the ON or OFF STATUS IS option is tested in the format:

IF [NOT] condition-name

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-33
UPDATE LEVEL PAGE

12. Sign Condition

Determines whether the value of an operand is less than, greater than, or equal to zero. An operand is
positive if its value is greater than zero, negative if its value is less than zero, and zero if its value is equal
to zero. The format for a sign condition is:

{

NEGATIVE}
IF identifier IS [NOT] POSITIVE

ZERO

6.6.7. Compiler-Directing Verbs

Certain verbs direct the compiler to perform a specific action and do not directly cause any object coding to be
produced. These verbs affect the object program indirectly, except for the verb NOTE which has absolutely no
effect on the object program.

The compiler-directing verbs are:

COPY, ENTER, NOTE, USE

6.6.7 .1. COPY Statement

Function:

The COPY statement copies text from the COBOL library into the source program with a capability of word
substitution as the text is copied (see 7.3).

Format:

COPY library-name.

Rules:

1. The COPY statement may appear anywhere in a COBOL program.

2. The library-name may contain no more than eight characters; the name may be composed of
alphanumeric characters and the hyphen, but it must contain at least one alphabetic character.

3. The remainder of the line on which a COPY statement is terminated must be blank. In other words,
nothing may follow a COPY statement on the same source program line.

4. The copying process is terminated by the end of the library text.

5. Both the COPY statement and the statements of the library text to which it refers appear in the output
listing, unless printing of the library text is suppressed through use of the LST=I option on the COBOL
compiler PA RAM statement. (See 7 .1.1.)

6. The text contained in the library must not contain any COPY statements.

t

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-34
UPDATE LEVEL PAGE

6.6.7.2. ENTER* Statement

Function:

The ENTER statement, in conjunction with the CALL or ENTRY statements, permits run-time
communications between the main COBOL program and previously compiled subprograms in OS/3 COBOL or
other languages. ENTRY also may be used with the EXIT PROGRAM or RETURN options.

Format 1 ·

ENTER LINKAGE.

CALL entry-name luSING {~~~~~: }
[procedure-name ···]

ENTER COBOL.

Format 2:

ENTER LINKAGE.
ENTRY entry-name [USING {unqualified-data-name } .. _] .

ENTER COBOL.

Format 3:

Rules:

ENTER LINKAGE.

{
EXIT PROGRAM. }
RETURN.

ENTER COBOL.

1. Format 1 transfers control from one object program to another within the run unit.

• Entry-name must be the external symbol of an entry point in the subprogram being called.
Entry-name may be a nonnumeric literal-

• Each of the identifiers in the USING clause of the CALL statement must be a reference to any
level data item except an 88 level in the file, working-storage, or linkage sections of the calling
program.

• Procedure-name and file-name can be used only if the called subprogram is written in a language
other than COBOL.

• If the subprogram is written in COBOL, there are two ways to call the subprogram, depending on
the entry point of the subprogram:

If the entry point is the beginning of the procedure division (USING after the division
heading), entry-name in format 1 must be the same as the PROGRAM-ID of the called
subprogram.

If the entry point in the subprogram is designated by the ENTRY statement (format 2). the
entry-name in format 1 must be the same as the entry-name in format 2.

*Extension to American National Standard COBOL (1968):

•

•

•

•

•

•

8057 Rev. 2

UP-NUMBER

SPERRY UNIVAC Operating System/3 6-35
UPDATE LEVEL PAGE

• If the called program is written in assembler language, entry points are labels specified by
assembler directive ENTRY or labels of ST ART and CSE CT assembler directives.

2. Format 2, in the called subprogram, designates an ENTRY point; it may not appear in the declaratives

portion.

• If the calling program is written in OS/3 COBOL, entry-name in format 2 must be the same as
entry-name in format 1.

• Data-name can be neither qualified nor subscripted.

• Data-names are the names of 01- or 77-level data items specified in the linkage section of this
particular subprogram.

• The sequence of appearance of the operands in the two USING clauses is extremely significant
because corresponding operands refer to a single common data item; i.e., correspondence is by
position and not by name. Each reference to an operand in the called program USING clause is
treated as if it were a reference to the corresponding operand in the USING clause of the calling
program.

• An entry name may be enclosed in quotation marks.

3. Format 3, in the called subprogram, returns control to the calling program.

• All OS/3 COBOL subprograms must contain this clause .

• Control returns to the point in the calling program immediately following the CALL statement .

• The EXIT PROGRAM and RETURN options are equivalent. RETURN is included for
compatibility with other COBOL implementations.

4. See 6.8 for sample calling and called programs.

6.6.7.3. NOTE Statement

Function:

The NOTE statement allows programmers to write commentary to be produced in the listing but not be
compiled.

Format:

NOTE character-string.

Rules:

1. Any combination of the characters from the character set may be included in the character-string.

2. If a NOTE sentence is the first sentence of the paragraph, the entire paragraph is considered a part of the
character-string, whereas a comment line is not (Table 2-3) .

3. If a NOTE sentence appears as other than the first sentence of a paragraph, the commentary ends with
the first occurrence of a period followed by a space.

6-36 8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

6.6.7.4. USE Statement

Function:

The USE statement specifies procedures for input/output label and error handling in addition to the standard
procedures specified by the input/output system. Three format options are available:

• Label writing and checking

• Error checking

• Printer form-overflow

Format 3 is an extension to American National Standard COBOL (1968).

Format 1:

USE {AFTER } STANDARD [BEGINNING] [~IELEEL]
- BEFORE ENDING UNIT

l file-name-1 [. file-name-2] ... t
INPUT

LABEL PROCEDURE ON ~

OUTPUT

Format 2:

1
file-name-1 [. file-name-2] ... }
INPUT

USE AFTER STANDARD ERROR PROCEDURE ON l-O

OUTPUT

Format 3:

USE FOR FORM-OVERFLOW ON file-name-1

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

Rules:

SPERRY UNIVAC Operating System/3 B 6-37
UPDATE LEVEL PAGE

1. A USE statement must immediately follow a section header in the declaratives section of the procedure
division, and must be followed by a period. The remainder of the section must consist of one or more

procedural paragraphs that define the procedures to be used.

2. The USE statement defines the conditions calling for the execution of the USE procedures; the USE

statement itself is never executed.

3. When format 1 is used:

• If the file-name option is present, the FD entry for file-name-1 must contain a LABEL RECORDS

ARE data-name clause (5.2.1.3).

• If the BEGINNING or ENDING options are omitted, the designated procedures are executed for
both beginning and ending labels. The ENDING option is not applicable for direct access files

whose organization is other than sequential.

• If the REEL or UNIT option is used, the designated procedures are executed for each new reel or
unit of a file but not for the start or end of the file itself. If the FILE, UNIT, or REEL option is
omitted, the designated procedures are executed for the reel or unit, whichever is applicable, and
the file. The REEL option is not applicable to mass storage files and the UNIT option is not
applicable to files in the random access mode.

•

•

When the INPUT, OUTPUT, or 1-0 option is specified, the USE procedure refers to all appropriate
files except those described with the LABEL RECORDS OMITTED or STANDARD clause .

The BEFORE option is not applicable to the OS/3 COBOL but is accepted for compatibility. The
BEFORE option is processed as if AFTER were specified.

• For files opened for input, the designated USE procedure is executed only when a user label is
encountered. This label can be checked by referencing the record defined by the LABEL
RECORD clause in the FD. If further labels exist they can be accessed by issuing a GO TO MORE
LABELS verb. User label processing is terminated upon execution of the last statement in the USE
procedure.

• For files opened for output, the designated USE procedure is executed after system label
processing is completed. A user label is written from the record area defined by the LABEL
RECORD clause after execution of the last statement in the USE procedure. A label is also written
upon execution of a GO TO MORE LABELS verb and control is then transferred to the beginning
of the same USE procedure.

4. When format 2 is used, the USE procedure is initiated when system standard 1/0 error recovery

procedures are exhausted. After a format 2 USE procedure is executed, do not access the file in error.

5. When format 3 is used, control is transferred to the USE procedure when a printer carriage overflow
condition is detected. See data management user guide, UP-8068 (current version). ...,

Overflow is detected during the print and space functions of the printer. If form positioning by

ADVANCING mnemonic-name is specified, a form-overflow condition does not occur. ...,

8057 Rev. 2
UP-NUMBER

6.

SPERRY UNIVAC Operating System/3 6-38
UPDATE LEVEL PAGE

Input/output statements or the STOP verb with the literal option are not allowed inside USE procedures
except for the following verbs:

• ACCEPT (not from jobstream or system console)

• DISPLAY

• WRITE to a printer within a FORM-OVERFLOW procedure

NOTE:

At least one DISPLAY to SYSLST must be performed in the nondeclarative portion of the procedure
division before any are performed with the declarative section. Accepts from the job control stream are
not permitted inside a USE statement for LABEL PROCEDURE.

7. ENTRY statements are not allowed within USE procedures.

8. In a USE procedure, there must be no reference to any nondeclarative procedures. Conversely, in the
nondeclarative portion, there must be no reference to procedure-names that appear in the declarative
portion, except that PERFORM statements may refer to a USE declarative in formats 1 or 2, or to the

procedures associated with such a USE declarative.

9. See 6.2, declaratives section.

6.6.8. lnterprogram Communications

Communications between an OS/3 COBOL program (caller) and either an OS/3 COBOL or another language
program (called) are established by the CALL verb. An entry point in the called program is established by the

ENTRY verb.

6.6.8.1. CAL l * Statement

Function:

In conjunction with the ENTER verb in the main program, communicates with subprogram entry points.

Format:

CALL entry-name USING ~ :~·:~~~:; { ... l procedure-name)

Rule:

See the ENTER verb, 6.6.7.2, for information regarding use of the CALL statement.

*Extension to American National Standard COBOL (1968).

•

•

•

•

•

•

8057 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3

6.6.8.2. ENTRY* Statement

Function:

6-39
UPDATE LEVEL PAGE

The ENTRY* statement, in conjunction with the ENTER statement in a called program, establishes an entry
point.

Format:

ENTRY entry-name [USING unqualified-data-name ...

Rule:

See 6.6.7.2.

6.7. SEGMENTATION

Segmentation is a method of communication with the compiler to specify object program overlay requirements.
Since OS/3 COBOL deals just with segmentation of procedures, only the procedure division is considered in
determining segmentation requirements for an object program.

6.7.1. Program Segments

When segmentation is used, it is mandatory that the procedure division be written in sections. Each section must be
classified as belonging either to the fixed portion or to one of the independent segments of the object program.
Segmentation does not negate the need to qualify procedure-names to ensure uniqueness.

6.7 .1.1. Fixed Portion

The fixed portion is that part of the object program which is always in main storage. This portion of the program
cannot be overlaid by any other part of the program.

6. 7 .1.2. Independent Segments

An independent segment is a part of the object program that can overlay, and be overlaid by, another independent
segment. An independent segment is in its initial state each time it is available to the program .

*Extension to American National Standard COBOL (1968).

SPERRY UNIVAC Operating System/3 6-40 8057 Rev. 2

UP-NUMB EA UPDATE LEVEL PAGE

6.7 .2. Section

Function:

SECTION classification is performed through a system of priority-numbers included in the section header.

Format:

section-name SECTION [priority-number].

Rules:

1. The priority-number must be an integer ranging in value from 0 through 99.

2. If priority-number is omitted from the section header, the priority is assumed to be 0.

3. Segments with priority-number 0 through 49 belong to the fixed portion of the object program.
Segments with priority-number 50 through 99 are independent.

4. All sections with the same priority-number must be together in the source program, because they
constitute a program segment. All priority-numbered sections must appear in sequentially ascending
sequence. Sections with a priority-number out of sequence will be diagnosed and assigned the last valid

priority-number.

5. Sections in the declaratives must not contain priority-numbers in section headers.

6.7 .3. Restrictions

When segmentation is used, the following restrictions are placed on the ALTER and PERFORM statements.

6.7.3.1. Al TER Statement

Any GO TO statement in a fixed segment (priority-number 49 or less) can be altered by an ALTER statement
located in any other segment of the program. A GO TO statement in an independent segment (priority-number 50 or
greater) can be altered only by an ALTER statement located in the same segment as the GO TO statement.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

6.7.3.2. PERFORM Statement

6-41
UPDATE LEVEL PAGE

A PERFORM statement that appears in a section with a priority-number less than 50 can have within its range only
the following:

• Sections with a priority less than 50.

• Sections entirely contained in a single segment having a priority-number greater than 49.

A PERFORM statement that appears in a section with a priority-number equal to or greater than 50 can have within
its range only the following:

• Sections with the same priority-number as that containing the PERFORM statement.

• Sections with a priority-number less than 50.

6.7.3.3. Linkage Editor Considerations

When linking a segmented COBOL program, the linkage editor control stream must have a LOADM control
statement followed by an I NC LU DE statement for the root section of the program (fixed-permanent segment).

6.8. CALLING AND CALLED PROGRAMS

Run-time communication between a main OS/3 COBOL program and any other separately compiled or assembled
subprogram is accomplished by the ENTER statement and its associated statements:

• CALL

• ENTRY

• EXIT PROGRAM or RETURN

• USING clause with PROCEDURE DIVISION heading

Actual transfer of control from a calling program to a called program is effected via a CALL statement with an
entry-name identical with the entry-name in the ENTRY statement of the called program. Return of control to the
calling program is effected by execution of an EXIT PROGRAM statement in the called program. Control is
returned to the statement following the CALL statement in the calling program.

A called program need not be an OS/3 COBOL program. In such cases, the COBOL calling program may include
procedure-names in its USING argument list.

For a description of register usage requirements, see the CALL, SAVE, and RETURN macro instructions in the
supervisor programmer reference, UP-8241 (current version).

6.8.1. Treatment of Data Items

Data items declared in the calling program and referenced in the called program are described in the file or
working-storage sections in the data division of the calling program. In the called program, the data items are
described, once again, but in the linkage section. Items described in the linkage section are not allocated main
storage by the compiler since these items already occupy storage in the calling program, which furnishes their
addresses to the called program at object time.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 6-42
UPDATE LEVEL PAGE

Data items common to both programs are shared by use of corresponding USING clauses in each program. The •
operands in the USING clause of the calling program name the data items contained in the data division to be shared
with the called program. The USING clause in the called program can either follow the PROCEDURE DIVISION
heading or be contained in an ENTRY statement. The operands must name data items described by 01· or 77-level
entries in the linkage section.

The sequence of appearance of the operands in the two USING clauses is extremely significant since corresponding
operands refer to a single common data item; i.e., correspondence is by position and not by name. Each reference to
an operand in the called program USING clause is treated as if it were a reference to the corresponding operand in
the USING clause of the calling program. The calling program is responsible for ensuring physical data alignment if
the description of a linkage section data item implies a hardware alignment requirement.

A called program also may be a calling program sharing common data items in its data division (including linkage
section items) with still another called program.

6.8.2. Linking

A sample linker job control stream for calling and called programs is:

/$
LO ADM CALLXX
INCLUDE CALLEROO
INCLUDE CALLEDOO
INCLUDE ADD ROUT

/*

When an object module created by the COBOL compiler is included in a load module, it must be referred to in the
I NC LU DE statement by the 8-character program name assigned by the compiler. The first six characters contain the
program name specified in the identification division of the source program; the last two characters, decimal
numbers from 00 to 99, indicate the segment number of the object module within the COBOL program. (All single
segment programs are numbered 00.) If the program name specified in the source program is less than six characters,
the compiler pads it with zeros before appending it with the 2-digit segment number.

6.8.3. OS/3 COBOL CALL/ENTRY Interface

Figures 6-1, 6-2, and 6-3 illustrate the use of CALL and ENTRY statements. The examples consist of a COBOL
program, CALLER (Figure 6-1), which shares data-items and calls upon a COBOL subprogram, CALLED (Figure
6-2). and an assembly language subprogram, ADD ROUT (Figure 6-3). for operations upon the shared data-items.
Table 6-3 shows the relationship between these programs.

For more detailed information concerning the linking of subprograms, refer to the system service programs user
guide, UP-8062 (current version).

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

LINE NO •

00001

00002

00003

00004

00005

00006

00007

00008

00009

00010

00011

00012

00013

00014

00015

00016

00017
00018

00019

00020

00021

00022

00023

00024

00025

00026

00027

00028

00029

00030

00031

00032

00033

6-43 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

SOURCE STATEMENT

IDENTIFICATION DIVISION.

PROGRAM-ID. CALLER.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. UNIVAC-9030.

OBJECT-COMPUTER. UNIVAC-9030.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 DATAl PIC 9999.

77 DATA2 PIC 99.

77 CTR

01 DATAX.

PIC 99 VALUE 01.

02 DATA3 PIC 99.

02 DATA4 PIC 99.

PROCEDURE DIVISION.

PO .

MOVE CTR TO DATA2, DATA3, DATA4.
POD.

Pl.

P3.

P4.

ENTER LINKAGE.

CALL ASMBLRAD USING DATA2, DATAX, DATAl.

ENTER COBOL.

DISPLAY ' CALLER RECVD ' DATA2 ' + ' DATA3 ' + ' DATA4 I = I

DA TAl ' FROM ASMBLRAD '.

ADD 1 TO DATA4.

ENTER LINKAGE.

CALL COBOLADD USING DATA2, DATAX, DATAl.

ENTER COBOL.

DISPLAY ' CALLER RCVD ' DATA2 ' + ' DATA3 ' + ' DATA4 ' = '
DATAl ' FROM COBOLADD'.

IF CTR LESS THAN 12'ADD 1 TO CTR GO TO PO ELSE

DISPLAY 'END OF RUN' STOP RUN •

Figure 6-1. Example of Calling Program

8057 Rev. 2
UP-NUMBER

LINE NO.

00001

00002

00003

00004

00005

00006

00007

00008

00009

00010

00011

00012

00013

00014

00015

00016

00017

00018

SPERRY UNIVAC Operating System/3

SOURCE STATEMENT

IDENTIFICATION DIVISION.

PROGRAM-ID. CALLED.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. UNIVAC-9030.
OBJECI'-COMPUTER. UNIVAC-9030.

DATA DIVISION.

LINKAGE SECTION.

01 DATAX.

02 DATA3 PIC 99.

02 DATA4 PIC 99.

77 DATAl PIC 9999.

77 DATA2 PIC 99.
PROCEDURE DIVISION.

6-44
UPDATE LEVEL PAGE

PO. ENTER LINKAGE. ENTRY COBOLADD USING DATA2 DATAX DATAl.

ENTER COBOL.

Pl. ADD DATA2 DATA3 DATA4 GIVING DATAl.

P9. ENTER LINKAGE. EXIT PROGRAM. ENTER COBOL.

Figure 6-2. Example of Called Program

•

•

•

. 8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 6-45
UPDATE LEVEL PAGE

•

•

•

ADDROUT START 0

PRHIT NOGEN

Rl$ EQU

R2$ EQU

R3$ EQU

R4$ EQU

RF$ EQU

RE$ EQU

RC$ EQU

RD$ EQU

PRINT

DUMMY DSECT

DATA2ASM DS

DATAXASM DS

DATA3ASM DS

1

2

3

4

15

14

12

13

GEN

CL2

OCL4

CL2

DATA4ASM DS CL2

DATAlASM DS CL4

ADDROUT CSECT

USING DATA2ASM,R2$

USING DATAXASM,R3$

USHC '..:JATA1ASI.1,R4$

USING *,RF$

ASMBLRAD STM RE$,RC$,12(RD$)

ENTRY ASMBLRAD

LR

LA

STM

R2$,RD$

RD$,SAVEAREA

R2$,R2$,4(RD$)

A DSECT IS A DESCRIPTION NOT TO

BE MAPPED SINCE IT WILL RESIDE

ELSEWHERE AT OBJECT TIME

R2 WILL BE USED TO COVER DATA2

R3 WILL BE USED TO COVER DATA3/4

R4 WILL BE USED TO COVER DATA!

COVER FOR THIS ROUTINE

SAVE CALLERS REGS IN HIS SAVEAREA

DECLARES ENTRY POINT LABEL

SAVE ADR OF CALLERS SAVEAREA

LOAD RD$ WITH ADDR OF THIS ROUT S-A

SA VE CALLER S-A ADR IN THIS ROUT SA

STM RD$,RD$,8(R2$) SAVE THIS ROUT SA ADR IN CALLER SA

LM R2$,R4$,0(Rl$) LOAD ~OVER REGS WITH ARG'S

PACK HOLD2(2),DATA2ASM(2)

ZAP ACCUM(3),HOLD2(2)

PACK HOLD2 (2) , DA TA3A SM (2)

AP ACCUM(3),HOLD2(2)

PACK HOLD2 (2) ,DATA4ASf.1 (2)

AP ACCUM(3),HOLD2(2)

UNPK DATAlASM (4) ,ACCUfJ1 (3)
01 DATA1ASM+3,X'FO'

Figure 6-3. Example of Called Assembly Subprogram (Part 1 of 2)

t

8057 Rev. 2
UP-NUMBER

SAVEAREA

ACCUM

HOLD2

Routine

CALLER

CALLED

AD DR OUT

6-46
UPDATE LEVEL PAGE

SPERRY UNIVAC Operating System/3

L RD$, 4 (, RD$) ADDR OF CALLERS SA • L'vl RE$,RC$,12(RD$) RESTORES CALLERS REGS
MVI 12 (RD$) 'x I FF I SET CALLED TO RETU::tNED STATUS
BR RE$

OS 18F

OS CL3

OS CL2

END

Figure 6-3. Example of Called Assembly Subprogram (Part 2 of 2)

Table 6-3. Program/Subprogram Relationships

Type Language Interface Function Comment

Program COBOL Calls COBO LADD Sets values in data- Note that any 01- or 77-
in CALLED. Calls items and calls on level data-item can be
ASMBLRAD in subprograms to add used as operand in CALL
ADDROUT. values and provide statement (shared with

results. Results are subprogram).
displayed on console. • Subprogram COBOL Entry point is Adds values in Items to be shared with

COBOLADD. Exit several shared data- a calling program are
accomplished via items and leaves described as 01- or 77-
exit program. results in a shared level data-items in

data-item. linkage section.

Subprogram ASM Entry point is Same as CALLED Items to be shared with
ASMB LRAD. Exit above. a calling program may be
accomplished via described within a DSECT.
BR RE$. The arguments passed

represent the address of
each item in the calling
program storage.

•

•

• PART 3. COMPILER FEATURES AND CAPABILITIES

•

•

•

•

f,

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 7-1

7.1. COMPILER OPTIONS

UPDATE LEVEL PAGE

7. Compiler Options and
Library Statements

In SPERRY UNIVAC Operating System/3 (OS/3) COBOL, the optional PARAM statement provides a method of
presenting parameters to the compiler to exercise specific COBOL options. The format of the PARAM statement is:

//.6PARAM6parameters

When PARAM statements are used, they must be positioned immediately following the EXEC job control statement
in the compilation job control stream. The PA RAM statements are printed on the first page of the compiler output
listing_

If a PARAM statement format error or an illegal parameter is encountered, a system console message is produced
and the compilation is terminated .

If no PARAM statements are supplied, the compiler produces a source program listing and a source program
diagnostic report, and generates an object module.

Only one blank may precede the P of the word PAR AM_

Absence of PARAM statements implies:

//tfARAMb.LST=(S)

7.1.1. List Options

Format:

//tfARAMb.LST=(spec 1, ... ,spec n)

where:

spec 1, ... , spec n
Is one or more of the following:

A Activate ambiguity mode of reference resolution. Normally, references are resolved by the first
appropriate definition encountered for the referenced name. The definition search process begins
with the first entry in the appropriate division and continues through to the last entry in that
division.

8057 Rev. 2
UP-NUMBER

c 7-2 SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

In the ambiguity mode, the definition search process is not terminated when the reference is
resolved, but continues in an attempt to uncover and report duplicate definitions. When the search
of the division that corresponds to the reference type is completed, the other divisions also are
searched to determine if the highest possible qualifier rule has been violated. Diagnostic messages
151 through 154 report the presence of ambiguous references/definitions.

C Produce storage map and cross-reference listing for the data division and procedure division.

D Produce data divisions alphabetized cross-reference listing.

E Ignore printer mismatch errors during compilation.

Inhibit listing of lines included from COPY libraries.

K Inhibit source item sequence number checking (columns 1 through 6 of the source item) . .
L Single-space all listings requested. If no listings were requested, a single-spaced diagnostic listing is

produced.

M Produce data division storage map listing.

N Inhibit all listable output except PARAM statement listing.

0 Produce object code listing.

P Produce procedure division storage map listing.

R Allow quote character to be used in a nonnumeric literal bounded by apostrophes.

S Produce source program listing.

T Allow apostrophe character to be used in a nonnumeric literal bounded by quotes.

W Inhibit listing of all precautionary diagnostics. These errors are identified by a severity code of P.

X Produce procedure division alphabetized cross-reference I isting.

NOTES:

1. When LST=(C,M), only the data division storage map has cross-references. When LST=(C,P), only the
procedure storage map has cross-references.

2. LST=R and T are not allowed within the same program. Use of either option overrides the
interchangeability of the apostrophe and quotation mark.

7.1.2. Output Options

Format:

//llPARAMOOUT=(spec 1, .. .,spec n)

where:

spec 1, ... ,spec n
Is one or more of the following:

C Conversion mode.

K The word COMP or COMPUTATIONAL is permitted in the USAGE clause and is treated as
COMP-3 or COMPUTATIONAL-3.

L Inhibit generation of linker control statements in object module.

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 7-3
UPDATE LEVEL PAGE

N Inhibit generation of object module.

P Disregard mismatch errors for all object program print files.

R The word QUOTE is translated as quotation marks.

T Inhibit compiler generation of a transfer address in the object module. When invoked, the program
cannot be executed unless it is called.

V Suppress automatic page overflow in the object program.

7.2. SOURCE AND COPY LIBRARY INPUT SPECIFICATIONS

The following PARAM statements describe the method of reading a source program either from the job control
stream or from a disc library.

The formats for the source and copy library PARAM statements are presented in the following paragraphs.

• Source library Input

Format:

11 f:I' AR AMtJ N=progra m-na melfi le-name

where:

program-name
Is a 1- to 8-character name of source program to be com pi led.

file-name
Is a 1- to 8-character name used to identify the file on which the source program resides. This
name must appear on the LFD job control statement used to define the device to the job control
program.

If the file-name is omitted, the name YSRC is automatically supplied.

• Copy Library Input

Format:

llf:I'ARAML'.'iLIN=file-name

where:

file-name
Is a 1- to 8-character name used to identify the file on which the COPY library resides. This name
must appear on the LFD job control statement used to define the device to the job control
program.

if the file-name is omitted, the name COPY$ is automatically supplied.

The COPY element-name is supplied in the source program via the COPY clause.

• 7.2.1. Object Module Version/Revision Number

Format 1:

llL:.PARAML'i VER=vvlrr

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 B 7-4
UPDATE LEVEL PAGE

where:

VY

Is the version number.

rr
Is the revision number.

These numbers are applied to compiler output module.

If the source program is coming from a library and this PAR AM statement is not specified, the version number from
that library module is used.

If the PA RAM statement is not specified and the source program is coming from the job control stream, the version
and revision numbers 00100 are used.

Format 2:

111::!.PARAMl::!.OBJ=file-name

where:

file-name
Is the file where the object mode generated is to be placed.

If this PARAM statement is omitted, the generated object module is placed in the temporary job run library file
(YRUN).

7.2.2. Compiler Source Library Input and Copy Library Input

The source program may be read from the job control stream or a disc library. Any copy library modules referenced
by the source program may be read from a disc library. Any library structures to be accessed by the compiler must
have been created by the OSl3 disc librarian.

Any library structures to be accessed by the compiler must be defined in the job control stream, and the LFD names
must appear on PARAM statements (keyword IN for the source library; LIN for the copy library). If no copy library
modules are referenced by the source program, the copy library need not be defined.

Example:

Source and copy library definitions:

111::!.DVCNJO II VOL dspxxx

ll&BL.Mile-id-1 llt.LFDMile-name-1

111::!.DVCNJO 11 t. VO Ll:!s:Jspxxx

ll&BLMile-id-2 11 &FDMile-name-2

with PARAM statements:

11/:PARAMbJ N=program-namelfile-name-1

11/:PARAMl::!.LI N=file-name-2

}
}

Job control statements for
source input

Job control statements for
copy input

Source file

Copy file

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 7-5
UPDATE LEVEL PAGE

In the foregoing example, file-name-1 and file-name-2 are programmer-supplied names. File-id-1 and file-id-2 are
file-id names used at the time the disc library was created. Program-name is the name of the source library module
that contains the source program.

7.3. LIBRARY

The library module specifies text to be copied from the OS/3 COBOL library, which contains text available to a
source program at compile time. The effect of the compilation of library text is the same as if the text were actually
written as part of the source program. OS/3 COBOL library text is placed in the COBOL library as a function
independent of the OS/3 COBOL program.

The following paragraphs contain library information applicable to the OS/3 COBOL user. For a complete discussion
of the COBOL library module, see the fundamentals of COBOL - language manual, UP-7503.1 (current version).

7.3.1. Using the COPY Statement

The COBOL library contains text which, through the use of the COPY statement, may be included into a COBOL
source program during compilation. The rules for the COPY statement are given in 6.6. 7 .1. ~

In addition to referencing the library module through the COPY statement, the programmer must define the device
and file which contain the library module in his job control stream. The LFD name given to this file also must be

present on a PARAM statement with keyword LIN .

The compiler performs no editing of library modules. Whatever is contained in the library under the specified
library-name is copied into the program. Lines of code taken from the library are marked with a C to the right of the
line number on the source listing.

Example:

If a COBOL program contains the following lines of code:

FILE SECTION.
FD FILE01 COPY LIB-FD01.
01 TAX-A.

and the assigned library file contains a module named LIB-FD01 with the lines:

LABEL RECORDS ARE STANDARD

BLOCK CONTAINS 1 RECORD
DATA-RECORD IS TAX-A .

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

at compilation time the source listing would be:

LINE NO. SOURCE STATEMENT

00033
00034
00035C
00036C
00037C
00038

FILE SECTION.
FD FILE01 COPY LIB-FD01

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 1 RECORD
DATA-RECORD IS TAX-A.
01 TAX-A.

The effect on the program is the same as if the programmer had written:

FILE SECTION.
FD FILE01

01 TAX-A.

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 1 RECORD
DATA-RECORD IS TAX-A.

PARAM statements for use with the COPY statement are defined in 7.2.2.

B 7-6
UPDATE LEVEL PAGE

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

8.1. GENERAL

SPERRY UNIVAC Operating System/3 8-1
UPDATE LEVEL PAGE

8. RERUN Clause

The RERUN facility of the SPERRY UNIVAC Operating System/3 (OS/3) provides a means of recording the status
and environment of an OS/3 COBOL program at a specified point in the processing of that program. Once recorded,
this status and environment may be reestablished and execution of the COBOL program may be resumed from this

point. The RERUN facility causes linkage between the COBOL program and the checkpoint facility. The restart
ability is provided by the original job control stream with the addition of an RST job control statement placed

immediately prior to the JOB job control statement.

8.2. RERUN CLAUSE

The RERUN clause may appear in the 1-0-CONTROL paragraph of the environment division. The format of the
RERUN clause is:

RERUN ON external-name EVERY integer RECORDS OF file-name-1 [, file-name-2)

The external-name in the format must appear in a SELECT entry. The device specified by external-name is the
RERUN receiver, which receives the checkpoint records containing the status and environment of the COBOL

program. File-name-1, file-name-2, etc., are RERUN controllers and dictate when the checkpoint records are to be
issued. The same RERUN receiver may appear in any number of RERUN clauses; a RERUN controller may appear

in only one RERUN clause. The allowable range for integer is 1 through 9,999,999.

8.3. CHECKPOINTING

Checkpoint records are issued whenever integer records occur for a RERUN controller. The RERUN controller
record counter is set to 0 when the control I er is opened and incremented by 1 before each READ, WRITE, or

INSERT statement is issued to the controller. When the RERUN controller is opened as 1-0, a WRITE statement

does not cause the record counter to be incremented.

If the RERUN receiver is a tape device, it may be dedicated to receiving checkpoint records or it may receive other
program output. If the RERUN receiver is dedicated, it is opened automatically with the assumption that label
records are standard. If the RERUN receiver is being shared with other program output, it is the programmer's
responsibility to ensure that the receiver is opened for OUTPUT whenever checkpoint records are issued. Checkpoint
records are not issued if the receiver is not open for OUTPUT_

If the receiver is a disc device, it must be dedicated to receiving checkpoint records. The device must appear in a
SELECT entry but not in an FD entry.

8057 Rev. 2

UP-NUMBER

8.4. RESTARTING

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

To initiate the restart of a previously checkpointed program, an RST job control statement must immediately
precede the JOB job control statement in the original job control stream; the job may then be restarted. The format
of the RST job control statement is:

II RST filename, checkpoint-id, number

where:

filename
Is the name of the checkpoint file.

checkpoint-id
Is the checkpoint number identifying the checkpoint to be used to restart the job.

number
Is the job step number within the job to be restarted.

8.5. NOTES AND RESTRICTIONS

• A RERUN controller may have only one RERUN receiver and may appear in only one RERUN clause. If more
than one receiver is specified for a RERUN controller, the compiler writes the checkpoint records on the
first-mentioned external-name and ignores the second one.

• ACCESS and ORGANIZATION, if specified for a RERUN receiver, must be SEQUENTIAL.

• If the RERUN receiver is a magnetic tape unit, SD must not be specified. If FD is specified, the tape must have
standard labels and a block size greater than or equal to 20 bytes.

• ASCII tape files are not permitted.

• The USE declarative statement does not apply to a dedicated RERUN receiver file.

• When errors occur on RERUN receiver files, diagnostic messages are displayed and processing continues;
however, no further attempts are made to issue checkpoint records to that receiver.

8-2

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 B 9-1
UPDATE LEVEL PAGE

9. Use of ACCEPT and DISPLAY Statements

9.1. ACCEPT STATEMENT

The format for the ACCEPT statement is:

~ {

mnemonic-name } J
ACCEPT identifier FROM ~:~~*

TIME*

9.1.1. Job Control Stream ACCEPT

In the SPERRY UNIVAC Operating System/3 (OS/3), COBOL programs are permitted to access their control
streams to retrieve PARAM statements and data images.

9.1.1.1. 80-Column Card ACCEPT

An ACCEPT for which the FROM option is not specified or an ACCEPT for which mnemonic-name is associated
with SYSI N permits retrieval of data images and PARAM statements from the job control stream. A maximum of
4095 bytes of data may be retrieved with a single ACCEPT statement. The number of bytes accepted is not required
to be a multiple of 80. Two ACCEPT statements of 20 character items require two cards.

Job Control Stream Format:

//.6EXECt.operand1, operand 2, operand 3

The EXEC statement (execute) is the last statement processed by job control before the execution of the
program (job step) named in the statement. PARAM statements, if any, must directly follow the EXEC
statement.

/$

The /$ statement is used to indicate the beginning of a stream of data that is to be diverted to a file for
subsequent retrieval by the job. All statements following the /$ statement up to and including the first /*
(end-of-data) statement are filed on the resident direct access storage device. Although this statement is
required by job control, it is not transferred to the COBOL program .

*Extension to American National Standard COBOL (1968).

8057 Rev. 2
UP-NUMBER SPERRY UNIVAC Operating System/3 9-2

UPDATE LEVEL PAGE

t

/$
DATAIMAGE1
DATAIMAGE2

DATA IMAGE n
/*

The /* statement indicates the end of a data stream introduced with the job control stream. This statement is
required by job control but is not transferred to the OS/3 COBOL program. An attempt to retrieve this
statement results in an error condition in the COBOL program.

Job Control Stream Errors:

When the job control stream is unable to deliver an image to the COBOL program (that is, if the next
sequential record in the job control stream is not a PARAM statement, or a data image), control is transferred
to the object time error subroutine. The subroutine logs the following message on the system console:

CE01 ERROR-DATA FOR ACCEPT NOT AVAILABLE

If the COBOL program attempts to retrieve a/* image from the job control stream, an error condition results.
Control is transferred to the object time error subroutine. The subroutine logs the following message on the
system console:

CE02 ERROR-INSUFFICIENT DATA FOR ACCEPT

These errors abort the run.

ACCEPTs from the job control stream are not permitted inside a USE for LABEL PROCEDURE.

9.1.1.2. 96-Column Card ACCEPT

An ACCEPT with mnemonic-name associated with SYSIN-96 allows the COBOL program to retrieve embedded data
cards from the job control stream when using 96-column cards with data extending beyond column 80. When the
job control stream is punched on 96-column cards, but the embedded data is contained in only the first 80 columns,
the SYSIN-96 option should not be used.

All rules regarding job control stream format and job control stream errors (9.1.1.1) apply to ACCEPT with
SYSIN-96.

9.1.1.3. 8413 Diskette ACCEPT

An ACCEPT with mnemonic-name associated with SYSIN-128 allows the COBOL program to retrieve embedded
data images from the job control stream when using 8413 diskette with data extending beyond position 80. When
the job control stream is recorded on 841~ diskette but the embedded data is contained in only the first 80 columns,
the SYSI N-128 option should not be used.

All rules regarding job control stream format and job control stream errors (9.1.1.1) apply to ACCEPT with
SYSIN-128.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 9-3
UPDATE LEVEL PAGE

9.1.2. Console ACCEPT +
An ACCEPT with mnemonic-name associated with SYSCONSOLE allows the program to receive data from the
system console.

The maximum number of characters that may be entered for a single ACCEPT is 60.

When the ACCEPT statement is encountered in the COBOL program, the following message is displayed:

CA10 ACCEPT READY

The operator, when replying to a system console ACCEPT, must enter "message number" followed by the text.

When the operator types less than the number of characters expected, the remaining positions are space-filled
(X'40').

The identifier must be implicitly or explicitly defined as USAGE IS DISPLAY (5.3.5).

9.1.3. Current Date ACCEPT

t

An ACCEPT with mnemonic-name associated with SYSDATE or an ACCEPT with the DATE option makes the date
available to the program in the format yymmdd (PIC 9(6)). This information is moved to the identifier under the t
rules for a COBOL MOVE (6.6.3.2).

When the date is set through the job control stream (//ffiET6DATE, YY/MM/DD) the date is stored in the user's job
preamble. If the date is not set via the job control stream, job control moves the date from the system information
block (SIB) into the user's job preamble. The date in the SIB is entered via the system console by the operator. This
is accomplished by using the operator SET command to enter the current data.

By setting the date from the job control stream, the user can predate or postdate jobs.

9.1.4. Time of Day ACCEPT

An ACCEPT with mnemonic-name associated with SYSTIME or an ACCEPT with the TIME option makes the time
of day available to the program in the format hhmmssOO (PIC 9(8)), where hh is the hour and mm is the minute
(hhmmss does not exceed 235959). This information is moved to the identifier under the rules for a COBOL MOVE
(6.6.3.2).

9.1.5. Julian Date ACCEPT

An ACCEPT with the DAY option makes the date available to the program in the format yyddd (PIC 9(5)). This
information is moved to the identifier under the rules for a COBOL MOVE (6.6.3.2). For information on setting the
date with the job control 11 SET DA TE command, see 9. 1.3.

9.1.6. UPSI Byte ACCEPT

An ACCEPT with mnemonic-name associated with SYSSWCH permits the COBOL program to access the user
program switch indicator (UPSI) byte which is the last byte of the 12-byte communications region in the job
preamble. An 8-byte item is created containing EBCDIC 0 to represent the OFF status and an EBCDIC 1 to
represent the ON status of the individual UPSI bits/switches, respectively (e.g., if SYSSWCH-0 and SYSSWCH-2 are
ON and all others are OFF, the ACCEPT statement makes available to the program an 8-character item containing
10100000). t

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 B 9-4
UPDATE LEVEL PAGE

t

9.1.7. Communications Region ACCEPT

An ACCEPT with mnemonic-name associated with SYSCOM allows the COBOL program to receive information
from the communications region in the job preamble. When this ACCEPT is encountered, the 12-byte
communications region is moved to the 12 bytes described by the identifier. It is through the communications
region that one job step may communicate with a following job step.

NOTE:

The twelfth byte of the communications region is the UPS/ byte.

R2. DIBPLAYSTATEMENT

The format for the D ISP LAY statement is:

DISPLAY { identifier-1} [· identifier-2 J ... [UPON mnemonic-name]
literal-1 , literal-2

9.2.1. Console DI SPLAY

A DISPLAY with mnemonic-name associated with SYSCONSOLE permits the COBOL program to display messages
upon the system console. A display on the system console is assumed if the UPON option is omitted. The sum of the
sizes of operands may not exceed 250 characters. The data is displayed a line at a time. Each line is prefixed with the
code CD10 and followed by a maximum of 55 characters of the contents of the operands.

All displays are action-type messages, and the operator must respond with a GO command.

9.2.2. Log File DI SPLAY

A DISPLAY with mnemonic-name associated with SYSLOG permits the COBOL program to display messages to the
system console and the system log file. Message size is limited to 55 contiguous characters. COBOL displays are
prefixed with the code CD11. This display is an informational-type message and does not require the operator to
respond with a GO command (unlike SYSCONSOLE).

9.2.3. UPSI Byte DI SPLAY

A DISPLAY with mnemonic-name associated with SYSSWCH permits the COBOL program to change the entire
UPSI byte.

The eight bytes described by the identifier are converted into individual bit settings, and the resultant eight bits are
stored in the UPSI byte. A value of X'F1' causes a bit (UPSI switch) to be turned ON (1 value).

The UPSI byte may be initialized prior to execution by the SET statement in the job control stream (//l\SET.61.JPSI,
switch-setting).

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 9-5
UPDATE LEVEL PAGE

• 9.2.4. UPSI Bit DI SPLAY

•

•

A DISPLAY with mnemonic-name associated with SYSSWCH-n allows the COBOL program to change an individual
switch (bit setting) in UPSI. The eight switches in UPSI are numbered 0 through 7 from left to right. A 1-byte
identifier (PIG X) is used to alter UPSI switch-n. A value of 0 (X'FO') causes the switch to be turned OFF (0 value);
any other value causes the switch to be turned ON (1 value).

9.2.5. Communications Region DISPLAY

A DISPLAY with mnemonic-name associated with SYSCOM allows the COBOL program to alter the contents of the
communications region. The 12 bytes described by the identifier are moved into the 12-byte communications region
in the job preamble.

The communications region is initialized to binary O's prior to the first job step by job control. Through use of the
SET statement (//ffiETOCOMREG, character-string), the communications region may be set to an initial value.
Information may be passed from job step to job step in the region. The region is not changed during job steps.

9.2.6. Printer Listing DISPLAY

A DISPLAY with mnemonic-name associated with SYSLST permits the COBOL programmer to display messages on
the printer. Displays are in 120-character multiples and are printed after advancing paper one line. For signed
numeric items, a separate sign character is displayed immediately following the operand.

The LFD name assigned to the printer in the job control stream must be SYSLST .

At least one DISPLAY associated with SYSLST must be performed in the nondeclarative portion of the procedure
division before any are performed within the declarative portion.

t

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 10-1
UPDATE LEVEL PAGE

10. Table Handling

10.1. GENERAL

The table-handling module provides a means of defining contiguous data items in a tabular form, thereby permitting
easy access to any item regardless of its position in the table.

This section contains the methods of table definition and referencing available to the COBOL user in the SPERRY
UNIVAC Operating System/3 (OS/3). For a complete discussion of table handling see the fundamentals of COBOL
- table handling manual, UP-7503.2 (current version).

10.2. DEFINING A TABLE

Each data item in a table (called a table element) must be the subject of an OCCURS clause in the data description.
This clause specifies the number of times that the table element appears in the table.

To define a 1-dimensional table, an OCCURS clause is written as a part of the data description for the repeated item.
Any practical number of occurrences may be specified (5.3.3).

Defining a 1-dimensional table within each occurrence of a table element gives rise to a 2-dimensional table. This is
done by writing an OCCURS clause for a data item subordinate (i.e., with a numerically larger level number) to
another item for which an OCCURS clause was written. Tables with up to three dimensions can be defined in this
manner in OS/3 COBOL. Each dimension must be defined by an OCCURS clause, and must be defined on a
different hierarchical level.

10.3. TABLE REFERENCE

To reference a table element, it is necessary to specify which occurrence of the table element is intended.

Occurrence numbers are specified by one of two methods: subscripting or indexing. In either method, the reference
is made by immediately following the data-name with a set of occurrence specifications (subscripts or index-names)

enclosed in parentheses.

Up to three subscript or index levels may appear in the reference, depending upon the number of dimensions
involved. One subscript or index level for each OCCURS clause must be in the defined hierarchy containing the
element name, including the one for the element name. Multiple subscripts and index-names are written left to right

in descending order of inclusiveness .

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 B
UPDATE LEVEL

10-2
PAGE

10.4. SUBSCRIPTING

Definition:

Subscripting is a technique used to reference individual table elements within a table of like elements not
assigned individual data-names. A subscript value identifies elementary items in the table.

Format:

data-name (subscript-1 [. subscript-2 [, subscript-3)])

Rules:

1. The subscript value must be a positive or unsigned integer and may be represented as a numeric literal or
as a data-name defined elsewhere as an elementary numeric data item with no character positions to the
right of the assumed decimal point. Data-name subscripts may be mixed with numeric literal subscripts
within a reference.

2. The lowest valid subscript is 1; the highest valid subscript is the number of item occurrences specified in
the OCCURS clause. The area allocated, multiplied by the number of occurrences, cannot exceed
65,535.

3. References are made to individual items within a table of homogeneous elements by specifying the name
of the table, followed by one or more spaces, followed by its related subscripts in parentheses. A left
parenthesis may not be followed by a space; a right parenthesis may not be preceded by a space.

4. When more than one subscript is used in a reference, each must be separated, within the parentheses, by
a comma and a space.

10.5. INDEXING

Definition:

Indexing is a technique used to reference individual table elements within a table of like elements not assigned
individual data-names. An index-name contains the occurrence number of a table element used for:

• direct indexing by using the index-name as a subscript; or

• relative indexing by appending to the index-name the + or - operator followed by an unsigned integer.

This integer must not be 0.

Format:

data-name (index-name-1 [{ ±} integer-1]
L index-name-2 [{ ±} integer-211
[, index-name-3 [{ ±} integer-3)])

Rules:

1. Index-names are defined by the INDEXED BY option in the OCCURS clause. Further data description is
not used because allocation and format are hardware-dependent. The index-name may be used only in
reference to the table element described by the OCCURS clause or to one of its subordinate items.

2. Index-names are initialized and modified in the object program by the SET statement.

•

•

•

•

•

/

••

8057 Rev. 2
UP-NUMBER

3.

4.

SPERRY UNIVAC Operating System/3 B

UPDATE LEVEL PAGE

References are made to individual items within a table of homogeneous elements by specifying the name
of the table element, followed by its related index-names in parentheses.

When more than one index is used in a reference, each must be separated, within the parentheses, by a
comma and a space.

5. A data item in a file can be described by a USAGE IS INDEX clause. This data item value can then be
transferred to an index-name, without conversion by the SET statement .

10-3

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 11-1

11.1. INTRODUCTION

UPDATE LEVEL PAGE

11. Processing Techniques for
Direct Access Devices

This section describes the techniques available to the COBOL programmer for processing files assigned to direct
access devices. The technique chosen to process a particular file depends upon the file organization and the manner
in which records within the file are accessed. Each file organization has its particular advantages and disadvantages.
No attempt is made in this section to select one organization over another. In selecting a file organization, the user
should consider factors such as device characteristics, file size, activity, growth potential, etc. This section is
intended to inform the user of the capabilities, construction, and usage of the file organizations available on direct
access devices.

11.2. FILE ORGANIZATION

File organization specifies the format and control of the logical file structure. Once a file is created under a specific
organization, that organization cannot be altered for subsequent file processing. COBOL provides three classes of file
organizations:

1. Sequential

2. Relative

3. Indexed

A file organization is specified by the ORGANIZATION clause in the SELECT entry for this file.

11.2.1. Sequential Organization

The logical file structure is such that each logical record (except the first and last) has a unique predecessor and

unique successor record. The predecessor-successor relationship was established by the order of the WRITE function
when the logical file structure was created. The control of placing records to, or retrieving records from, a
sequentially organized file is the predecessor-successor relationship; i.e., the sequence in which records are created is
the sequence in which they are retrieved. No other control information is required to access records from sequential
files .

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

11.2.2. Relative Organization

11-2
UPDATE LE'VEL PAGE

The logical file structure is characterized by the physical relationship (location) of each record to the first record;
i.e .. logical record 1 occupies the first physical location in the file, record 2, the second, etc. In addition to

sequential processing capabilities, records in a relative-organized file can be read or written directly by specifying the
record number of the desired record. This control of the file is referred to as random access. For example, the
fifteenth record of a relative-organized file may be accessed directly, whereas access to the fifteenth record of a
sequentially organized file can be achieved only after retrieving the first 14 records. The ability to randomly access
records provides an advantage over sequentially organized files; however, the data management techniques used with
relative files restrict the format of records to fixed-length, unblocked.

11.2.3. Indexed Organization

Indexed files are comprised of two elements: the prime data set consisting of the logical records of the file and an
index which expedites access to records in the prime data area. Each logical record of the file contains a field
designated as the key. The key is the control which the access method uses in constructing the file as well as for
subsequent retrievals. The access method uses a search of the index to locate the address of the record containing the
requested key. The access method requires that indexed files be created in key sequence; hence, the name, indexed
sequential. Records may be added to an existing indexed file; each added record is placed in overflow areas and the
sequence of the file is maintained logically. Retrieval time of records increases as the number of records in overflow
increases. Periodic reorganization of indexed files should be practiced to alleviate this condition.

11.3. ACCESS METHODS

Three modes of access (the manner in which records are read or written to a file) are available to the COBOL
programmer: sequential access, random access, and extended access.

11.3.1 . Sequential Access

Sequential processing involves the serial placement or retrieval of records to or from a file. The control in a
sequential access method is the order in which records are written to or read from a file. No control information
(key) need be supplied by the programmer to the access method (data management) other than the request to read

or write a record. Any file organization can be accessed sequentially.

11.3.2. Random Access

Random processing assumes no serial dependency of records within a file. Each request to access a record is treated
individually, without regard to prior requests. Information (key) is supplied at the time of request to designate the
desired record. Random access is only available on files with relative or indexed organization.

11.3.3. Extended Access

Extended processing indicates that random and sequential access may be mixed. It is only available on files with
indexed organization.

11.4. CLAUSES REQUIRED FOR FILE PROCESSING

The specification of file organization, access method, and OPEN usage (input, output, 1/0) dictates the file
processing technique. Each file processing technique is described, in turn, with emphasis on the COBOL clauses
required to define the file, and the effects these clauses have during file processing. Refer to Table 11-8 for a
summary of the following information.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 11-3
UPDATE LEVEL PAGE

11.4.1. Sequential File Processing

The following COBOL clauses are used when processing sequentially organized files:

1. ORGANIZATION IS SEQUENTIAL

The ORGANIZATION IS SEQUENTIAL clause states that the file is organized in a serial manner. Records are
accessed one after the other. Sequential organization is assumed if this clause is omitted. Keys are not allowed
with sequential files.

2. ACCESS MODE IS SEQUENTIAL

The ACCESS MODE IS SEQUENTIAL clause specifies the manner in which the records are to be written or
retrieved from the file. Only sequential access is permitted indicating serial retrieval.

3. RECORDING MODE IS { ~ }

F signifies fixed mode and V signifies variable mode. Fixed-length or variable-length records may be blocked or
unblocked.

4. RESERVE { ~~eger-n} ALTERNATE [{ ~:~~S } J

5.

The RESERVE ALTERNATE AREAS clause indicates the number of additional 1/0 areas desired. Omission
of the clause results in the allocation of one additional I /0 area. If NO is specified no additional area is
allocated. The only allowable integer is 1 .

. { CHARACTERS }
BLOCK CONTAINS integer-n RECORDS

Indicates the number of records or characters per block. The actual space allocated to an 1/0 area is always a
multiple of 256 bytes.

The following input/output statements are applicable to sequential files:

1. OPEN INPUT file-name

The OPEN INPUT statement indicates that the file operates in a read-only mode. Standard labels are checked
and user labels, if specified, are made available to the USE for beginning label procedure.

2. OPEN OUTPUT file-name

The OPEN OUTPUT statement indicates that the file will operate in a write-only mode. Standard labels are
written and user labels, if specified, are made available to the user for beginning label procedure.

3. OPEN 1-0 file-name

4 .

The OPEN 1-0 statement indicates that the file is to be updated. Each WRITE statement must be preceded by
a READ statement. Alteration of record length, insertion of new records, or deletion of existing records is not
permitted.

READ file-name RECORD AT END imperative-statement

The READ AT END statement causes the next sequential record in the file to be made available (after
deblocking), or if the end of file is detected, performs the special imperative statement following the AT END
clause.

8057 Rev. 2

UP-NUMBER

5.

6.

SPERRY UNIVAC Operating System/3 11-4
UPDATE LEVEL PAGE

WRITE record-name [; INVALID KEY imperative statement]

The WRITE statement causes the specified record to be written in the next sequential area of the file (after

blocking). An INVALID KEY condition occurs when there is insufficient space in the file to add another

record.

CLOSE file-name

The CLOSE statement causes orderly termination of file processing. (At the end of the file or volume, user
labels are checked and created if specified.)

11.4.2. Relative File Processing

The following COBOL clauses are used in processing relative organized files:

1. ORGANIZATION IS RELATIVE

The ORGANIZATION IS RELATIVE clause designates the file as relatively organized. The file is accessed via

relative record number. The ORGANIZATION IS RELATIVE clause causes data management relative access

method routines to be linked into object program. This is a required clause.

{
RANDOM }

2. ACCESS MODE~ SEQUENTIAL

The ACCESS MODE clause specifies the manner in which records are written to or retrieved from the file .

a. The RANDOM option indicates no serial dependency of record processing. The relative record to be

read, written, or sought is specified by the contents of the actual or relative key.

b. The SEQUENTIAL option demands serial processing of records to or from the file and requires no key
when accessing records. Sequential is assumed if this clause is omitted.

3. RECORDING MODE IS F

Only fixed-length record format is available for relative organized files.

{
CHARACTERS}

4. BLOCK CONTAINS integer-n RECORDS

5.

Relative files may not be blocked. This clause is not required. Space allocated to the 1/0 area is a multiple of
256 bytes.

{
ACTUAL }

KEY IS data-name
RELATIVE

The ACTUAL or RELATIVE KEY IS clause specifies the data-name containing the relative record number to
be read, written, or sought. This field is set by the programmer and/or the data management access method
under the following conditions:

a. Random access

Programmer moves a relative record number to the field prior to every READ, WRITE, or SEEK verb .
The contents of the field are unchanged after execution of the 1/0 command.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

b .

SPERRY UNIVAC Operating System/3

Sequential access

D
UPDATE LEVEL

11-5
PAGE

The contents of the actual or relative key are not required for READ or WRITE statements; therefore,
the field is ignored by the data management access method. Pointers to the next sequential record are
maintained by the access method while advancing through the file. After execution of a READ or
WRITE statement, the contents of the actual key reflect the relative record number of the record just
processed. Under sequential access, the programmer may issue a SEEK statement to position the file to a
particular record. In this case, the programmer's relative record number is moved to the actual key prior
to issuance of the SEEK statement. This technique of issuing a SEEK statement before each READ or
WRITE statement has the effect of randomly accessing a relative file defined under sequential access.

c, File open output (either access method)

In the event that file preparation is requested on output files, the actual key should contain the relative
record number on which file preparation is to begin. The file is prepped from this point to the end of the
user's file extent.

NOTE:

It is the programmer's responsibility to ensure that the actual key contains the relative record number
prior to opening the file.

6. APPLY FILE-PREPARATION ON file-name

The APPLY Fl LE-PREPARATION clause specifies the relative-organized file name on which file preparation is
required. For relative-organized files, file preparation consists of writing initializing data on each track of the
user's extent, starting at the relative record number contained in the actual key location and proceeding to the
end of the user's extent. This initializing data, required by data management access methods, consists of an
8-byte count field plus a dummy record of length equal to the fixed size of records within the file. The
dummy record consists of an X'FF' followed by all O's up to a maximum of 255 bytes. (If the record size is
greater than 256, undetermined data follows byte 256.) This file prepping guarantees that a physical record
exists in every possible area of the user's extent, making it possible to access these record areas directly
(randomly).

When the initial allocation of disk space is exhausted, relative files are not extended automatically. If APPLY
FILE PREPARATION is specified and the relative key data item contains a record number one higher than the
highest record in the file (i.e., the first record in the next extent), the file is extended by one secondary
increment of disk space when the OPEN OUTPUT statement is executed.

NOTE:

For initial creation of a relative file, the programmer should set the ACTUAL KEY field to 1 prior to opening

the file.

The following input/output statements are applicable to relative files:

1. OPEN INPUT file-name

2 .

The OPEN INPUT statement indicates that the file is used in a read-only mode. Standard labels are checked
and user labels, if specified, are made available to the USE for BEGINNING LABEL procedure. For sequential
access, the file is positioned to the first record.

OPEN OUTPUT file-name

The OPEN OUTPUT statement indicates that the file is used in a write-only mode. The file is formatted if the
APPLY FILE-PREPARATION clause was specified starting at the record number contained in actual key and
proceeding to the end of the user's extent. The USE for BEGINNING LABEL procedure is executed if

specified. The file is positioned to the first record for sequential access.

t

8057 Rev. 2
UP-NUMBER

3.

SPERRY UNIVAC Operating System/3 11-6
UPDATE LEVEL PAGE

OPEN 1-0 file-name ---
The OPEN 1-0 statement designates the existing file as the one to be updated. (Both READ and WRITE
statements may be issued to the file.) Label processing is the same as when the file is opened for input. This
type of OPEN statement affects the manner in which WRITE statements function. Each WRITE statement is
dependent upon a READ or SEEK READ statement previously ,issued for the file. The WRITE order is issued
for the relative record specified on the previous READ or SEEK statement.

4. Sequential access

a. READ file-name RECORD AT END imperative-statement

The READ AT END statement for sequential access method delivers the next logical record from an
input file, or performs the specified imperative statement following the AT END clause if the end of the

file is detected.

b. WRITE record-name; INVALID KEY imperative-statement

The WRITE INVALID KEY statement releases a logical record to an output file. The imperative
statement following the INVALID KEY clause is executed when the end of file is detected and an
attempt is made to execute a WRITE statement for that file.

c. SEEK file-name RECORD

The SEEK statement positions the file to the relative record number specified by the contents of the
actual key. No error indication is available if the record is not located. Error indications are available on
the succeeding READ or WRITE statements.

5. Random access

a. READ file-name RECORD INVALID KEY imperative-statement

The READ INVALID KEY statement delivers the logical record specified by the contents of the actual
key, or executes the imperative statement following INVALID KEY clause if the record specified by the

actual key does not" exist with in the user's extent.

{
WRITE } .

b. REWRlTE record-name INVALID KEY imperative-statement

The WRITE or REWRITE INVALID KEY statement writes the logical record to the physical area of the
disc specified by the relative record number contained in the actual key. If that record does not exist in
the user's extent, the INVALID KEY imperative statement in the INV.ALID KEY clause is executed.

c. SEEK file-name RECORD

The SEEK statement positions the file to the relative record number specified by the contents of the
actual key.

6. CLOSE file-name

See CLOSE statement under sequential file processing (11.4.1).

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 11-7
UPDATE LEVEL PAGE

11.4.3. Indexed File Processing

The following clauses are used in processing indexed sequential files:

1. ORGANIZATION IS INDEXED

The ORGANIZATION IS INDEXED clause denotes file organization as indexed sequential, and causes data
management indexed sequential access method (ISAM) routines to be linked into the object program.

{

EXTENDED }
2. ACCESS MODE~ RANDOM

SEQUENTIAL .

The ACCESS MODE clause specifies the order in which records are written to, or read from, the file.

a. Sequential

The sequential access mode requires a serial processing of records to or from the file; therefore, no key
need be presented when retrieving records. Indexed files can be created under sequential access.

b. Random

c.

The random access mode requires no serial dependency of record processing. The key of the record to be
read or sought is specified in the SYMBOLIC KEY clause. New records can be inserted in an existing
indexed file under random access .

Extended

The extended access mode combines sequential and random record processing.

3. RECORDING MODE~ { ~}
The RECORDING MODE IS F clause indicates fixed-length records. The RECORDING MODE IS V clause
indicates variable-length records. Fixed- or variable-length blocked records are the only formats available for

indexed files.

4. RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

5.

6.

The RECORD CONTAINS clause indicates the size of the records. If the records are variable in length, a

high/low range can be specified.

. {RECORDS } BLOCK CONTAINS 1nteger-n
CHARACTERS

The BLOCK CONTAINS clause indicates the number of records or characters per block. Space allocated to the

I /0 area is a multiple of 256 bytes.

SYMBOLIC KEY IS data-name

The SYMBOLIC KEY clause specifies the data-name containing the key of the record to be read or sought.
This key field must match the size and description of the record key field .

8057 Rev. 2
UP-NUMBER

7.

SPERRY UNIVAC Operating System/3 11-8
UPDATE LEVEL PAGE

RECORD KEY IS data-name

The RECORD KEY clause specifies the field within each record containing the record identification. This field
is used at file creation time to build the indexes required for subsequent file processing. At retrieval time, the
contents of the programmer-supplied SYMBOLIC KEY field are compared against the defined RECORD KEY
field in accessing indexed records randomly. The key field must be greater than 2 and less than or equal to 249
bytes in length.

8. APPLY CYLINDER-INDEX AREA OF integer-n INDICES ON file-name

The APPLY CYLINDER-INDEX AREA clause establishes levels of indexes to expedite the retrieval of records.
When an indexed file is created, data blocks containing records are loaded sequentially. Each record contains
an embedded key. (See RECORD KEY, 11.4.3.) As each data block is filled with records and written to disc,
the key of the highest record in the block is recorded in a block-index entry, along with the disc address of the
block. When a track on the disc becomes filled with blocks of block-index entries, an entry in the top index is
created containing the highest key on the track of block-index entries. Retrieval of records reverses the
process. To eliminate the disc reads required to access the top index for retrieval, sufficient storage should be
allocated to contain a number of top index entries. I nteger-n specifies the number of top index entries to be
held in storage. If all top index entries can be held in storage, all reads to access the top index are eliminated.

9. APPLY MASTER-INDEX ON file-name

The APPLY MASTER-INDEX clause is accepted for OS/4 and OS/7 compatibility. In OS/3 this clause serves
for documentation only.

10. APPLY CYLINDER-OVERFLOW AREA OF integer-n PERCENT ON file-name

To keep disc head movement to a minimum in retrieving records from overflow, a percentage of each cylinder
in the prime data area can be allocated to contain overflow records. If this clause is omitted, 20 percent of
each cylinder is set aside to contain overflow records. If no cylinder overflow is desired, 0 percent should be
specified. In this case, no new records may be inserted into the file. If specified, integer-n is an unsigned
number.

11. APPLY EXTENDED-INSERTION AREA ON file-name

The APPLY EXTENDED-INSERTION AREA clause is accepted for OS/4 and OS/7 compatibility. In OS/3,
th is clause serves for documentation only.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 11-9
UPDATE LEVEL PAGE

12. APPLY VERIFY ON file-name

13.

The APPLY VERIFY clause requests verification (READ after WRITE) of disc records after they have been
written. If this clause is omitted, no verification of records is performed.

RESERVE {integer-n} ALTERNATE [AREA J
NO AREAS

The RESERVE ALTERNATE clause indicates the number of additional 1/0 areas desired. The key word NO
causes no additional 1/0 areas to be reserved; integer-n (which must be a one) reserves one additional 1/0 area.
If this clause is omitted, no additional 1/0 areas are allocated.

{
RECORD IS }

14. LABEL RECORDS ARE STANDARD

The reserved word STANDARD specifies that system file labels are to be checked (or created) and that the
labels conform to OS/3 label specification.

The following input/output statements are used for processing indexed files:

1. OPEN OUTPUT file-name

2 .

The OPEN OUTPUT statement indicates the file is to be loaded or extended. The creation of a file (load) with
standard labels is assumed unless the file already exists, in which case file extension is implied. This statement
can only be specified for sequential access or extended access.

OPEN INPUT file-name

The OPEN INPUT statement indicates that the file is to be used in a read-only mode. Standard labels are
checked. For sequential and extended access, the file is positioned to the first record. This statement can also
be specified for random access.

3. OPEN 1-0 file-name

The OPEN 1-0 statement indicates that the file is to be used in a read and write mode. Standard labels are
checked. For sequential and extended access, the file is positioned to the first record. This statement can also
be specified for random access.

4. SEEK file-name RECORD

5.

For sequential file processing, the SEEK statement causes the programmer-supplied value in the SYMBOLIC
KEY item to specify the RECORD KEY value of the logical record within the file which is to be positioned
for subsequent sequential retrieval. If a logical record is not found with that key, positioning is made to the
record with the next higher key.

The SEEK statement can only be used under sequential or extended access mode when opened for INPUT or
1-0.

READ file-name RECORD [INTO identifier] [; { ~:V~D KEY} imperative-statement J
For sequential file processing, the READ statement makes available the next logical record from a file and
allows performance of a specified imperative-statement when the end of the file is detected. The logical record
retrieved is determined by the preceding input/output statements as shown in Table 11-1 .

8057 Rev. 2

UP-NUMBER
SPERRY UNIVAC Operating System/3 11-10

UPDATE LEVEL PAGE

Table 11-1. Logical Record Retrieval by Sequential Read

Preceding Input/Output Logical Record Retrieved
Statement by Sequential Read

OPEN First record of file

SEEK Record with SEEK key or, if key does not exist, record
with next higher record key

READ Record with next higher record key after last retrieved
record

WRITE/REWRITE/INSERT Does not affect positioning for sequential read.

For random file processing, the READ statement makes available the record specified by SYMBOLIC KEY,
and allows performance of a specified imperative-statement if a logical record with that key does not exist.

When AT END is specified, the READ statement is treated as a sequential read, and the access mode must be
sequential or extended. When INVALID KEY is specified, the READ statement is treated as a random read,
and the access mode must be random or extended. If neither AT END nor INVALID KEY is specified, the
type of read is determined by the access mode. If access is extended or random, the read is a random read. The
file must be opened for INPUT or 1-0 for the READ to be valid.

6. WRITE record-name [FROM identifier-1] [; INVALID KEY imperative-statement]

The WRITE statement releases a logical record for an output file.

• File loading, extending.

When loading or extending a file, the WRITE statement is used to add logical records sequentially in the
prime data area of the file and to create the necessary index entries for later retrieval of the logical
records. The logical records must be presented for loading in ascending record key sequence. If the file is
being extended, the RECORD KEY value of the first logical record written must be higher than the
highest RECORD KEY value currently in the file. The WRITE statement allows performance of a
specified imperative-statement if the RECORD KEY is equal to, or out of key sequence with, the last
RECORD KEY.

The WRITE statement can only be used for file loading or extension under sequential or extended access
when opened for OUTPUT.

• Record update

When updating an existing record, the WRITE statement must be preceded by a successful READ
statement. The WRITE statement causes the updated record to be rewritten into its original physical
area. Neither the length nor the RECORD KEY value can be changed. The WRITE statement allows
performance of a specified imperative-statement if the length or key value has been modified.

The WRITE statement can only be used for record updating under sequential, random, or extended
access when opened for 1-0.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

•

SPERRY UNIVAC Operating System/3 11-11
UPu~. l::: LEVEL PAGE

Record insertion

When inserting a new record into an indexed file, the WRITE statement causes a new logical record to be

added to the file at the logical position designated by its RECORD KEY value. No other logical record
may exist in the file with the same RECORD KEY value. The WRITE statement allows performance of a
specified imperative-statement if a logical record with that RECORD KEY already exists.

The WRITE statement can only be used for record insertion under RANDOM or EXTENDED access
when opened for 1-0.

7. REWRITE record name [FROM identifier][; INVALID KEY imperative-statement]

The REWRITE statement can be used in place of the WRITE statement for record update. The same rules used
for record update for the WRITE statement apply.

8. INSERT record-name [FROM identifier-_1) [; INVALID KEY imperative-statement]

The INSERT statement can be used in place of the WRITE statement for record insertion. The same rules used
for record insertion for the WRITE staement apply.

9. CLOSE file-name

See CLOSE statement for sequential file processing (11.4.1).

The following is a summary of input/output statements permitted for each access method and open mode:

• ORGANIZATION IS INDEXED, ACCESS I§ SEQUENTIAL

Sequential Output Sequential Input Sequential 1-0
Processing Processing Processing

OPEN OUTPUT OPEN INPUT OPEN 1-0

WRITE [INVALID KEY](!) READ [AT END]@ READ [AT END]@

CLOSE SEEK SEEK

CLOSE WRITE [INVALID KEY](!)

REWRITE [INVALID KEY]

CLOSE

NOTES:

G) When access is SEQUENTIAL and the file is opened for OUTPUT, the WRITE statement is a
request for loading or extending file. When opened for 1-0, the WRITE statement is a request for
an update of an existing record.

@ When access is SEQUENT! AL, a READ statement is always treated as a sequential read .

8057 Rev. 2
UP-NUMBER

•

11-12 SPERRY UNIVAC Operating System/3
UPDATE LE'VEL PAGE

ORGANIZATION IS INDEXED, ACCESS IS RANDOM

Random Output Random Input Random 1-0
Processing Processing Processing

Invalid OPEN mode OPEN INPUT OPEN 1-0

READ [INVALID KEY]@ READ [INVALID KEY]@

CLOSE WRITE [INVALID KEY](!)

REWRITE [INVALID KEY]

INSERT [INVALID KEY]

CLOSE

NOTES:

CD When access is RANDOM and the file is opened for 1-0, the WRITE statement is
either a request for an update of an existing record or a request for insertion of a
new record.

@ When access is RANDOM, a READ statement is always treated as a random read.

• ORGANIZATION IS INDEXED, ACCESS!§ EXTENDED

Extended Output Extended Input Extended 1-0
Processing Processing Processing

OPEN OUTPUT OPEN INPUT OPEN 1-0

WRITE [INVALID KEY](!)
[{AT END }]@

READ INVALID KEY
[{AT END }]@

READ INVALID KEY

CLOSE
SEEK SEEK

CLOSE WRITE [INVALID KEY]G)

REWRITE [INVALID KEY]

INSERT [INVALID KEY]

CLOSE

NOTES:

G) When access is EXTENDED and the file is opened for OUTPUT, the WRITE statement is a
request for loading or extending the file. When opened for 1-0, the WRITE statement is a
request for either an update of an existing record or a request for inserting a new record.

•

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 B 11-13

UPDATE LEVEL PAGE

@ When access is EXTENDED and the file is opened for INPUT or 1-0, if neither AT END nor
INVALID KEY is specified for a READ statement, the READ statement is treated as a
random read. If AT END is specified, the READ statement is treated as a sequential read. If
I NV ALI D KEY is specified, the READ statement is treated as a random read.

11.4.4. Summary of Imperative Statements and Error Conditions

The use of the AT END/INVALID KEY imperative-statement with the ORGANIZATION clause, system error
messages, and COBOL disc processing techniques are summarized in the following paragraphs.

11.4.4.1. ORGANIZATION IS SEQUENTIAL Clause

The AT END imperative-statement is executed when the logical end of file is detected.

The INVALID KEY imperative-statement is executed when no space is left on the file for the record to be written.

11.4.4.2. ORGANIZATION IS RELATIVE Clause

The AT END imperative-statement is executed when an access to a record beyond the file is attempted.

The INVALID KEY imperative-statement is executed when the relative-record number or relative-track number is
beyond the file extents .

11.4.4.3. ORGANIZATION IS INDEXED Clause

The AT END/INVALID KEY imperative-statement clauses are executed according to the explanation given in
11.4.3. See also Table 11-3 for a list of the AT END/INVALID KEY exception conditions.

Exception conditions for indexed files are handled in the following manner:

• Warning Exceptions

When a warning exception condition arises during COBOL verb processing for indexed files, control is returned
immediately following the input/output verb with the appropriate SYSERR setting. The warning exception
conditions are shown in Table 11-2.

Table 11-2. Warning Exception Conditions for Indexed File Processing

Warning Exception Condition COBOL Verb

End of file detected when positioning SEEK

unit for subsequent sequential retrieval

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

• End-of-File/Invalid Key Exceptions

B 11-14

UPDATE LEVEL PAGE

When an end-of-file condition or invalid key condition arises during COBOL verb processing for indexed files, •
SYSERR is appropriately set, and the AT END/INVALID KEY imperative-statement is executed. If no AT
END/INVALID KEY imperative-statement is specified when this condition occurs, control is transferred to
the appropriate USE AFTER ERROR procedure. If this latter procedure is not specified, the COBOL ERROR
procedure is called and results in an end-of-job sequence.

The AT END/INVALID KEY exception conditions are shown in Table 11-3.

Table 11-3. AT END/INVALID KEY Exception Conditions for Indexed File Processing

AT END/INVALID KEY Exception Conditions COBOL Verb

End of file detected (AT END Sequential READ
condition)

During file creation or extension, a Load WRITE
record-key value is found out of key
sequence (INVALID KEY condition)

A duplicate record-key value is detected Load WRITE
(INVALID KEY condition) Insert WRITE

INSERT

A specified record-key value cannot be Random READ
found (INVALID KEY condition)

A record-key value or length value for a Update WRITE
record update has been modified (I NV ALI D WRITE
KEY condition)

• Unrecoverable File Errors

When unrecoverable file errors occur during COBOL verb processing for indexed files, control is transferred to

the applicable USE AFTER ERROR procedure with the appropriate SYSERR message set. If a USE AFTER
ERROR procedure is not provided, the COBOL ERROR procedure is called and results in an end-of-job
sequence. The unrecoverable file error conditions are shown in Table 11-4.

Table 11-4. Unrecoverable File Error Conditions for Indexed File Processing (Part 1of2)

Unrecoverable File Error Conditions COBOL Verb

General OPEN errors OPEN

General CLOSE errors CLOSE

Invalid use of COBOL verb: All COBOL verbs
- COBOL verb not valid for open mode
- OPEN issued to file currently opened
- Verb other than OPEN issued to file

not currently opened
- Update not preceded by a successful

READ
- Because of previous errors, only CLOSE

verb permitted

Insufficient file space CLOSE
Load WRITE
Insert WRITE

•

•

•

•

•

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table 11-4. Unrecoverable File Error Conditions for Indexed File Processing (Part 2 of 2)

Unrecoverable File Error Conditions COBOL Verb

No AT END/INVALID KEY imperative-statement Sequential READ

specified for COBOL verb and exception Random READ

condition occurred when processing verb Load WRITE
Update WRITE
Insert WRITE
REWRITE INSERT

Hardware error All COBOL verbs

Invalid record size Load WRITE
Insert WRITE
INSERT

Data portion of track index destroyed OPEN SEEK

(invalid ID) or invalid index search Sequential READ
Random Read
Insert WRITE
INSERT

• Storage Dump

If an unrecoverable file error occurs and control is transferred to the COBOL ERROR procedure, this
procedure takes a dump of the job region before job termination. The following information is available:

Register values

Register Value

0 SYSERR setting (Table 11-6)
1 Address of DTF of file in error
2 Address of prefix of file in error

14 Address of return location in program
if error had not occurred

File prefix format

The shaded area is the prefix to the DTF module.

11-15

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

Indicator 1 - Byte 14

Bits 0-1 Used by COBOL internally
Bits 2-3 Access mode

00 - Sequential
10- Random
01 - Extended

Bits 4-7 Used by COBOL internally

Indicator 2 - Byte 15

Bits 0-2 Open mode
100- Input
010 - Output
001 - 1/0

Bits 3-7 Used by COBOL internally

Current COBOL verb - Byte 18

UPDATE LEVEL PAGE

Code for COBOL verb processed for indexed file when exception condition occurred

Previous COBOL verb - Byte 19

Code for COBOL verb processed for indexed file that preceded current COBOL verb

Code COBOL Verb

00 OPEN
01 CLOSE
02 SEEK
03 READ (sequential)
04 READ (random)
05 WRITE (load)
06 WRITE/REWRITE (update)
07 Not used
08 WRITE/INSERT (insert)

RECORD KEY area - Bytes 40-n

Record-key used for sequential retrieval positioning.

The exception conditions for each input/output COBOL verb used for processing indexed files are summarized in
Table 11-5.

11-16

•

•

•

• •
Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 1 of 9) ·

+
COBOL Verb PREFIX

SYSERR File Processing
or Indexed Verb Exception Condition

Setting Status
File Code

OPEN 00 General OPEN error SYSERR-2 OPEN not completed;
SYSERR-4 file processing cannot

continue

File currently opened SYSERR-6 OPEN not completed;
file processing cannot
continue

Hardware error:
When one occurs, SYSERR-3 is SYSERR-3 OPEN not completed;
always set along with one or file processing cannot
more of the following. continue

Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

Invalid ID when positioning to beginning of file SYSERR-1 OPEN not completed;
(opened INPUT; 1-0; access SEQUENTIAL or file processing cannot
EXTENDED) continue; file may

not be valid

Invalid index search when positioning to SYSERR-28 OPEN not completed; file
beginning of file (opened INPUT; 1-0; processing cannot continue;
access SEQUENTIAL or EXTENDED) file may not be valid

CLOSE 01 General CLOSE error SYSERR-5 CLOSE not completed;
file may not be valid

File not currently opened SYSERR-6 CLOSE not completed;
file still valid

t

•
Transfer of

Control

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

c 00
7' 0 z 01
c-..1
s: JJ
OJ "' m ~
:JI""

SQ
m
:xi
:xi
-<
c z
<
~
0
i
;
~ ..
:J

CCI

!R s
3 -w

c ..,,
0
)>
-I
m
r
m
< m
r
-..,,
)>
Gl
m

--
.!..
-.J

Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 2 of 9)

COBOL Verb PREFIX
or Indexed Verb Exception Condition

SYSERR File Processing

File Code
Setting Status

CLOSE (cont) 01 Hardware error: .. When one occurs, SYSERR-3 is SYSERR-3 CLOSE not completed; file
always set along with one or may not be valid
more of the following:

Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21

+
STOP state SYSERR-22
Device check SYSERR-23

File not successfully loaded because of SYSERR-26 CLOSE not completed;
insufficient space file not valid and must

be reloaded

SEEK 02 File not currently opened SYSERR-6 SEEK not completed

SEEK not valid for SYSERR-6 SEEK not completed
open OUTPUT

Hardware error:
When one occurs, SYSERR-3 is SYSERR-3 SEEK not completed; file
always set along with one or may not be valid

t more of the following:

Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

• •

Transfer of
Control

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

c---' •

c 00
7' 0 z U1
c -..J

s: JJ
OJ"' m::::
:II""

(/)
"'ti
m
:IJ
:IJ
-<
c
z
<
)>
0
0
'i
D1

c
"ti
0
)>
-I
m
r
m
<
m
r

r+ :;·
cc

!f
i
3
~

-
"ti
)>
Gl
m

--
.!..
00

• •
Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 3 of 9)

COBOL Verb PREFIX
or Indexed Verb Exception Condition

SYS ERR File Processing

File Code
Setting Status

SEEK (cont) 02 No record with key equal or greater SYSERR-11 SEEK completed; if READ
than SEEK key found (end of file and SYSERR-25 issued, AT END patch will be

~ detected) (both always executed; normal file process-
set) and ing may continue
SYSERR-3 not
set

Invalid ID SYSERR-1 SEEK not completed; file
may not be valid

Invalid index search SYSERR-28 SEEK not completed; file
may not be valid

Due to preceding errors, only SYSERR-27 SEEK not completed
CLOSE verb permitted

Sequential 03 File not currently opened SYSERR-6 READ not completed
READ

READ not valid for open OUTPUT SYSERR-6 READ not completed

Hardware error:
When one occurs, SYSERR-3 is SYSERR-3 READ not completed
always set along with one or
more of the following:

Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

•
Transfer of

Control

Immediately after SEEK

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

c
"~ z U1
c~
s: :D
UI ~ m·
JI r-.J

en
""C
m
::J:1
::J:1
-<
c
z
<
~
0

l :;·
CCI

!f s
3 -w

c ,,
c
)>
-I
m ID
r
m
< m
r -,,
)>
Gl
m

-
!.
CD

Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 4 of 9)

COBOL Verb PREFIX SYSERR File Processing
or Indexed Verb Exception Condition Setting Status

File Code

~ Sequential 03 End of file detected SVSERR-25 READ not completed; before
READ (cont) any further sequential retrieval

can continue, it is necessary
to reposition in the file;
normal file processing may
continue

Invalid ID SVSERR-1 READ not completed; file may not
be valid

Invalid index search SVSERR-28 READ not completed; file may not
be valid

Due to preceding errors, only CLOSE SVSERR-27 READ not completed
verb permitted

Random READ 04 File not currently opened SYSERR-6 READ not completed

READ not valid for open OUTPUT SYSERR-6 READ not completed

Hardware error:
When one occurs, SYSERR-3 is SVSERR-3 READ not completed
always set along with one or
more of the following:

Unrecoverable error SYSERR-9
"Uniqve unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

• •

Transfer of
Control

If specified, AT END
path; if not specified,
USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

•

c 00
-a 0
• CJ1 z
c :D
:!:: <1>
m <
;::~

en
"'V
m
:lJ
:lJ
<
c z
<
~
0
i
iil ... :;·
CD

j

c
-a
0
)>
-I

3 w

m ID
r
m
<
m
r -
-a
)>
c;)
m

-
I

"' 0

• •
Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 5 of 9)

+
COBOL Verb PREFIX

SVSERR File Processing
or Indexed Verb Exception Condition

Setting Status
File Code

Random 04 Specified record-key: value cannot be SYSERR-11, not READ not completed; record not
READ (cont) found because a record with that key SYSERR-3 retrieved but normal file proc-

value never added to file essing may continue

Invalid ID SYSERR-1 READ not completed; file may not
be valid

Invalid index search SYSERR-28 READ not completed; file may not
be valid

Due to preceding errors, only CLOSE SYSERR-27 READ not completed
verb permitted

Load WRITE 05 File not currently opened SYSERR-6 WRITE not completed

WRITE not valid for open INPUT SYSERR-6 WRITE not completed

Hardware error:
When one occurs, SYSERR-3 is SYSERR-3 WRITE not completed
always set along with one or
more of the following:

+ Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

•
Transfer of

Control

If specified, INVALID
KEY path; if not

specified, USE AFTER
ERROR procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

Coo
73 0 z en
c -..J

S:· J)
OJ C1l
m ~
JI tV

c
-0
0
)>
-I
m
r
m
< m
r -
-0
)>
Gl
m

en
-0
m
:ti
:ti
-<
c
z
<
~
0
i
;
!:t.
:J
ca

!R s
3 -w

-
I
~

Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 6 of 9)

COBOL Verb PREFIX
File Processing

or Indexed Verb
SVSERR

Exception Condition
Setting Status

Fila Coda

Load 05 Invalid record size SYSERR-24 WRITE not completed
WRITE (cont)

~ Prime data area full or index SVSERR-1 WRITE not completed;
area full record not written because

of inadequate space; file
should be closed

Duplicate record key SYSERR-30 WRITE not completed;
and SYSERR-29 because key already exists
(both always in file; normal file proc-
set) essing can continue

Record-key sequence error SYSERR-29 WRITE not completed because
key not greater than last key
in file; normal file processing
continues

Due to preceding errors, only SYSERR-27 WRITE not completed
CLOSE verb permitted

Update WRITE/ 06 File not currently opened SYSERR-6 Update not completed
REWRITE

Update not valid for open INPUT SYSERR-6 Update not completed
or OUTPUT

• •

Transfer of
Control

USE AFTER ERROR
procedure

USE AFTER ERROR
procedure

~~~---

If specified, 
INVALID KEY path; 
if not specified, 
USE AFTER ERROR 
procedure 

If specified, 
INVALID KEY path; 
if not specified, 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

• 

!ij ~ 
• c.n z -...J 

c Jl 
:!: <D 
m < 
m~ 
ll 

~ 
m 
:ti 
:ti 
< 
c 
z 
< 
l> 
0 
0 

"C 
CD 
~ ... s· 

CCI 

!f s 

c 
"ti 
0 
l> 
-I 

3 w 

m )> 
r 
m 
< m 
r -
"ti 
l> 
G> 
rn 

-
I 

f\J 
f\J 



• • 
Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 7 of 9) 

COBOL Verb PREFIX 
SVSERR File Processing 

or Indexed Verb Exception Condition 
Setting Status 

File Code 

Update WRITE/ 06 Hardware error: 

~ REWRITE (cont) When one occurs, SVSERR-3 is SYSERR-3 Update not completed 
always set along with one or 
more of the following: 

Unrecoverable error SYSERR-9 
Unique unit error SYSERR-10 
Record not found (hardware search) SYSERR-11 
Unit exception SYSERR-12 
Wrong length found SYSERR-13 
Command rejection SYSERR-16 
Intervention required SYSERR-17 
Output parity check SVSERR-18 
Equipment check SYSERR-19 
Data check SYSERR-20 
Overrun SYSERR-21 
STOP state SYSERR-22 

~ Device check SYSERR-23 

Update not preceded by random or SYSERR-6 Update not completed 
sequential READ 

End of file detected for preceding SYSERR-6 Update not completed 
sequential READ 

Record not found detected for SYSERR-6 Update not completed 
preceding random READ 

Record-key value or length value None Update not completed; 
for a record update was modified. processing can continue 

Due to preceding errors, only CLOSE SYSERR-27 Update not completed 
verb permitted 

+ 

• 
Transfer of 

Control 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

If specified, 
INVALID KEY path; 
if not specified, 
USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

~~ z U1 
c""' 
3:: :D 
Ill ~ m· 
lJ "-> 

c ,, 
a 
)> 
-I 
m 
r 
m 
< m 
r 

,, 
)> 
GI 
m 

~ 
m 
::::0 
::::0 
< 
c: z 
< 
~ 
0 

l :;· 
ca 

!f 
~ 
"W 

I 
~ 



Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 8 of 9) 

COBOL Verb PREFIX 
File Processing or Indexed Verb Exception Condition 

SYSERR 

File Code Setting Status 

Insert WRITE/ 08 File not currently open SYSERR-6 Insert not completed 
INSERT 

Insert not valid for open INPUT or SYSERR-6 Insert not completed 
OUTPUT 

Hardware error: 
When one occurs, SYSERR-3 is SYSERR-3 Insert not completed 
always set along with one or 
more of the following: 

Unrecoverable error SYSERR-9 
Unique unit error SYSERR-10 
Record not found (hardware search) SVSERR-11 
Unit exception SYSERR-12 
Wrong length found SYSERR-13 
Command rejection SYSERR-16 
Intervention required SYSERR-17 
Output parity check SYSERR-18 
Equipment check SYSERR-19 

-
Data check SYSERR-20 
Overrun SYSERR-21 
STOP state SYSERR-22 
Device check SYSERR-23 

Invalid record size SYSERR-24 Insert not completed 

Overflow area full SYSERR-26 Insert not completed; record 
not written because of inadequate 
space; processing may continue 

~ 
ADD rejected due to error on preceding SYSERR-31 Insert not completed; processing 
insert can continue 

Duplicate record key SYSERR-29 Insert not completed because 
SYSERR-30 key already exists in file; 

normal file processing can 
continue 

• • 

Transfer of 

Control 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

If specified, 
INVALID KEY path; 
if not specified, 
USE AFTER ERROR 
procedure 

• 

c~ 
~<11 z -..J 
c :D 
s:: ~ m. 
~I\.) 

SQ 
m 
::D 
::D 
-< 
c: z 
< 
)> 
n 
0 
i a ;· 
ca 

j 

c .,, 
0 
)> 
-t 

3 w 

m OJ 
r 
m 
< 
m 
r -.,, 
)> 
G) 
m 

--
I 

I\.) 
~ 



• • 

Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 9 of 9) 

COBOL Verb PREFIX 
SYSERR File Processing 

or Indexed Verb Exception Condition 
Setting Status 

File Code 

Insert WRITE/ 08 Invalid ID SYSERR-1 Insert not completed; 
INSERT (cont) file may not be valid 

Invalid index search SYSERR-28 Insert not completed; 
file may not be valid 

Due to preceding error.;, only SYSERR-27 Insert not completed 
CLOSE verb permitted 

~ 
Zero percent overflow SYSERR-31 Insert not 
allocated completed 

• 

Transfer of 
Control 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

USE AFTER ERROR 
procedure 

c <XI -;a 0 
z U1 c -...J 

s:: · Jl 
al CD m:::: 
::0 I\) 

c ,, 
0 
)> 
-i 

~ 
m 
::0 
::0 
< 
c z 
< 
~ 
0 
'i 
iii 
r+ :;· 

CCI 

!f 
~ 
'(,;) 

m )> 
r 
m 
< m 
r -,, 
)> 
(;) 
m 

-
I 

I\) 
U1 



' 11-26, 8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

11.4.4.4. SYSERR Messages 

Table 11-6 contains the definitions of the 32 SYSERR messages for ORGANIZATION INDEXED and 
ORGANIZATION RELATIVE. SYSERR is set whenever data management indicates an error has occurred. If no 
error occurs, all SYSERR settings will be off. 

Table 11-6. System Error Messages (SYSERR) for INDEXED and RELATIVE Files 

Message Definition l\llessage Definition 

SYSERR-0 Last block on track accessed SVSERR-17 Intervention required 

SVSERR-1 Invalid ID SVSERR-18 Output parity check 

SVSERR-2 Invalid DTF (Indexed) SVSERR-19 Equipment check 
Invalid PCA/DTF (Relative) 

SVSERR-20 Data check 
SVSERR-3 Hardware error 

SVSERR-21 Overrun 
SVSERR-4 Error found in OPEN 

SVSERR-22 STOP state 
SVSERR-5 Error found in CLOSE 

SVSERR-23 Device check 
SVSERR-6 Invalid macro sequence 

SVSERR-24 Invalid record size 
SYSERR-7 Reserved !Indexed) 

WAITF required (Relative) SVSERR-25 Logical end of file 

SYSERR-8 1/0 complete SVSERR-26 File space exhausted !Indexed) 
Logical end of volume (Relative) 

SYSERR-9 Unrecoverable error 

SVSERR-27 Processing inhibited 
SYSERR-10 Unique unit error 

SVSERR-28 Invalid index !Indexed) 
SYSERR-11 Record not found Reserved (Relative) 

SVSERR-12 Unit exception SVSERR-29 Key sequence error (Indexed) 
Reserved (Relative) 

SYSERR-13 Wrong length found 

SVSERR-30 Duplicate key error !Indexed) 
SVSERR-14 End of track Reserved (Relative) 

SVSERR-15 End of cylinder SVSERR-31 ADD rejected !Indexed) 
Reserved (Relative) 

SYSERR-16 Command rejection 

Additional information regarding error conditions can be found in the OS/3 data management user guide, UP-8068 
(current version). 

11.4.4.5. COBOL Disc Processing Techniques 

Table 11-7 contains a summary of COBOL disc processing techniques. 

• 

• 

• 



• 
Processing Technique Required 

Addressing 
Key 

Technique 
Clauses Organization Access 

SEQUENTIAL SEQUENTIAL NONE 

OR OR ALLOWED 

OMITTED OMITTED 

RELATIVE SEQUENTIAL RELATIVE ACTUAL 

CD OR RECORD OR 

OMITTED @ RELATIVE 

RELATIVE RANDOM RELATIVE ACTUAL 

OR RECORD OR 

OMITTED @ RELATIVE 

INDEXED SEQUENTIAL RECORD 

CD OR AND 

OMITTED [SYMBOLIC! 

® 

INDEXED RANDOM RECORD 

CD AND 

[SYMBOLIC] 

® 

INDEXED EXTENDED RECORD 

CD AND 

[SYMBOLIC! 

® 

NOTES 

G) American National Standard language element extension © 

® @ Requires preformatting of entire file prior to creation 

® Default RECORD FORMAT 1s underlined. 

• • Table 11-1. Summary of COBOL Disc Processing Techniques 

Record 
Format 

Open Allowable 1/0 

® Verb Statements 

F INPUT READ AT END 

OUTPUT WRITE INVALID KEY 

1-0 READ AT END 

~ WRITE INVALID KEY 

INPUT READ AT END, SEEK 

F 

OUTPUT WRITE INVALID KEY, 

SEEK 

1-0 READ AT END, WRITE@) 

INVALID KEY, SEEK@ 

INPUT READ INVALID KEY, 

SEEK 

F 
OUTPUT WRITE INVALID KEY, 

SEEK 

1-0 READ INVALID KEY, 

WRITE@) INVALID KEY, 

SEEK@ 

F INPUT READ (AT END!, 
- SEEK 

v 
OUTPUT WRITE [INVALID KEYi 

1-0 READ JAT ENDI. 

SEEK, 
WRITE [INVALID KEY], 

REWRITE [INVALID KEYi 

F INPUT READ [INVALID KEYJ 
-

v 1-0 READ !INVALID KEY], 

WRITE !INVALID KEYi. 

REWRITE [INVALID KEYi, 

INSERT [INVALID KEY] 

_.!:._ INPUT [AT END JD 
READ INVALID KEY ' 

v SEEK 

OUTPUT WRITE [INVALID KEY] 

1-0 [AT END ]Ci) 
READ INVALID KEY ' 

SEEK, 

WRITE [INVALID KEY], 

REWRITE [INVALID KEYi, 

INSERT [INVALID KEY] 

REWRITE accepted as synonym for WRITE. 

SEEK not permitted between READ and WRITE 

® 
(j) 

Required Optional Restricted 
Clauses Clauses Clauses 

SELECT ASSIGN SELECT OPTIONAL, APPLY RESTRICTED SEARCH, 

LABEL REGOR OS MULTIPLE UNIT, APPLY FILE-PREPARATION, 

{STANDARD } 
RESERVE, SAME IRECORDI APPLY CYLINDER-OVERFLOW 

ARE 
DATA-NAME 

AREA, BLOCK CONTAINS, 

RECORD CONTAINS, DATA 

RECORDS, APPLY VERIFY, 

CLOSE USE LABEL, USE ERROR, 

CLOSE UNIT, READ INTO, 

WRITE FROM 

SAME (RECORDI AREA, RESERVE INTEGER, OPTIONAL, 

RECORO CONTAINS, BLOCK BLOCK CONTAINS >1 RECORD, 

CONTAINS 1 RECORO, DATA USE ENDING LABEL 

RECORD, APPLY VERIFY, 

APPLY FILE-PREPARATION 

RESERVE NO ALTERNATE 
AREA, READ INTO, WRITE 

FROM, INSERT FROM 

SELECT/ASSIGN FOR MULTIPLE UNIT, FOR MULTIPLE REEL, 

LABEL RECORDS ARE RESERVE NO ALTERNATE MULTIPLE FILE TAPE, 

STANDARD AREA, RESERVE APPLY RESTRICTED SEARCH, 

INTEGER ALTERNATE APPLY BLOCK COUNT ON, 

AREA, FILE LIMIT, APPLY FILE PREPARATION ON, 

CLOSE PROCESSING MODE IS APPLY ASCII, 

SEQUENTIAL, RERUN ON, LABEL RECORDS ARE OMITTED 

SAME (RECORDI AREA. OR DATA NAME, 
APPLY VERIFY, APPLY USE LABELS, 

MASTER INDEX ON, APPLY OPTIONAL 

CYLINDER OVERFLOW ON, 

APPLY CYLINDER INDEX 

AREA OF, APPLY EXTEND-

ED-INSERTION AREA ON, 

BLOCK CONTAINS, RECORD 

CONTAINS, VALUE OF, 

DATA RECORDS ARE, USE 

ERROR INTO, FROM 

ACTUAL KEY may be used 1n place of SYMBOLIC KEY for UNIVAC 9300 System compatibility. 

If AT END is specified, READ is treated as a random read. 

c 00 
!I 0 zm 
c -.i 

s: :D 
ID ~ m· 
:D l<.l 

SQ 
m 
:D 
:D 
-< 
c 
z 
< 
~ 
0 
i 
Cl ... 
5· 
ca 

!f 
i 

c 
"ll 
0 
)> 
-I 
m 
r 
m 
< m 
r 

"ll 
)> 
Gl 
m 

3 -w 

I 
l<.l 
-.i 



• 

• 

• 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 12-1 
UPDATE LEVEL PAGE 

• 

• 

• 

12. ASCII Tape Processing 

12.1. GENERAL 

When the user requests it, the SPERRY UNIVAC Operating System/3 (OS/3) COBOL compiler processes and 
produces ASCII tapes. Data management automatically translates the tapes to EBCDIC when reading and to ASCII 
when writing. 

12.2. DECLARATION OF ASCII FILES 

ASCII files must be declared to the compiler by the APPLY ASCII* ON file-name clause. A mix of ASCII and 
non-ASCII files is permitted in the COBOL program. 

Format: 

APPLY ASCII [w1TH BUFFER-OFFSET {FOR BLOCK-LENGTH-CHECK}] 
---- OF integer CHARACTERS 

Rules: 

ON file-name[. file-name] ... 

1. The APPLY ASCII clause identifies each tape file that contains or receives ASCII data (4-3.2). 

2. The integer CHARACTERS options specifies the number of additional characters that appear at the 
front of each data block in the file. Integer may have a value of 0 to 99. The specified offset applies only 
to files open for input. The offset area cannot be referenced by the program nor can it be created when 
the file is open for output. 

3. The BLOCK-LENGTH-CHECK option applies only to files with a RECORDING MODE IS D clause. 
When specified, input data blocks are assumed to possess a 4-character buffer offset, which contains the 
length of the block. Data management routines validate that each block read contains the number of 
characters specified in this field. When the file is being created, the block length is placed in the 
4-character buffer offset area . 

*Extension to American National Standard COBOL (1968). 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 12-2 
UPDATE LEVEL PAGE 

12.3. RECORDING MODE* CLAUSE 

Format: 

RECORDING MODE IS { ~ t 
Rules: 

1. The RECOR DI NG MODE clause is expanded to include the specification of D-type records (5.2.1.4). 

2. A recording mode of D may be specified for ASCII tape files with variable-length records. 

3. Tape files declared as ASCII may also have a recording mode of V because, for ASCII files, D and V are 
synonymous. The D mode is provided for compatibility with other implementors. 

4. The RECORDING MODE IS D clause may be specified for ASCII tape files which contain 
variable-length records. An option within the APPLY ASCII ON file-name clause allows the specification 
of a buffer offset for any tape input file or the activation of the block length check feature on tape files 
with RECORDING MODE D. 

NOTE: 

Figure 12-1 and Table 12-1 show the physical tape formats and characteristics. Table 12-2 lists the 
ASCII/EBCDIC conversions. 

*Extension to American National Standard COBOL (1968). 

• 

• 

• 



-------------------

• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 B 12-3 
UPDATE LEVEL PAGE 

U FORMAT RECORDS 

F FORMAT RECORDS 

D FORMAT RECORDS 

s 

buffer offset 

DODD 

dddd 

UNBLOCKED 

BLOCKED 

r---r----
1 I buffer 
I S I offset data data 
L ___ L ____ ......_ ____ .....__ ___ ~ 

UNBLOCKED 

r---r----
1 I I s I DODD dddd data 

L ___ L __ _ 

BLOCKED 

r--------

L: __ l_o::_ .... I __ d-dd_d __ ...___d_at_a __ ....__d_d_d_d_....._ __ da_t_a __ 

Optional 1-character block sequence indicator whose presence is specified by the 
APPLY BLOCK-COUNT clause. 

Optional field at the front of each input data block. Offset may be 
0 to 99 characters in length. This area cannot be referenced by 
program nor can it be created on output files; presence specified by 
the APPLY ASCII WITH BUFFER-OFFSET OF integer CHARACTERS clause. 

Optional block length field in an implified buffer offset area of four characters. 
Block length is created and validated by data management programs. This option 
is specified by the APPLY ASCII BUFFER- OFFSET FOR BLOCK-LENGTH-CHECK 
clause. 

Record length. 

S, DODD, dddd are all in ASCII decimal format. 

Figure 12-1. ASCII Physical Tape Formats 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 12-4 
UPDATE LEVEL PAGE 

Table 12-1. Characteristics of Tape Files Available to COBOL Users 

File APPLY APPLY APPLY 
RECORDING Declared LABEL RECORDS BUFFER-OFFSET BLOCK- BLOCK-
MODE IS As Specifications LENGTH- COUNT INPUT OUTPUT CHECK 

EBCDIC 
D 
blocked or 

unblocked 

STANDARD 0 © ASCII Oto 99 Optional Optional 

data-name 0 © ® 
OMITTED 

EBCDIC STANDARD CD Optional 
F data-name 0 
blocked or 
unblocked 

ASCII STANDARD ® 0 to 99 Optional 
data-name 0 ® 
OMITTED 

EBCDIC STANDARD 0 Optional 
data-name @ 

u 

ASCII STANDARD 0 Oto 99 Optional 
data-name 0 ® 
OMITTED 

EBCDIC STANDARD CD Automatic Optional 
v data-name @ 
blocked or 

unblocked ASCII 

NOTES: 

De facto standard as defined by the data management system user guide, UP-8068 (current version). 

American National Standard COBOL (1968) 

I mp lies presence of system standard labels 1 or 2. 

BLOCK-LENGTH-CHECK specifies that a buffer offset of four characters contains the length of the block for 
verification by data management programs. 

Specifies a 1-character cyclic block sequence indicator (input files only). 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

Table 12-2_ ASCII/EBCDIC Conversion (Part 1 of 3) 

ASCII EBCDIC 

Hex Dec 
Control Character Symbol 

Hex Dec 

00 0 NUL 00 0 
01 1 SOH 01 1 
02 2 STX 02 2 
03 3 ETX 03 3 
04 4 EOT 37 55 
05 5 ENO 2D 45 
06 6 ACK 2E 46 
07 7 BEL 2F 47 
08 8 BS 16 22 
09 9 HT 05 05 
OA 10 LF 25 37 
OB 11 VT OB 11 
oc 12 FF OC 12 
OD 13 CR OD 13 
OE 14 so OE 14 
OF 15 SI OF 15 
10 16 OLE 10 16 
11 17 DC1 11 17 
12 18 DC2 12 18 
13 19 DC3 13 19 
14 20 DC4 3C 60 
15 21 NAK 30 61 
16 22 SYN 32 50 
17 23 ETB 26 38 
18 24 CAN 18 24 
19 25 EM 19 25 
1A 26 SUB 3F 63 
1B 27 ESC 27 39 
1C 28 FS 1C 28 
10 29 GS 1D 29 
1E 30 RS 1E 30 
1F 31 us 1F 31 
20 32 SP, SPACE 40 64 
21 33 I 4F 79 
22 34 .. 7F 127 
23 35 # 7B 123 
24 36 $ 5B 91 
25 37 % 6C 108 
26 38 & 50 80 
27 39 70 125 
28 40 ( 40 77 
29 41 ) 50 93 
2A 42 * 5C 92 
2B 43 + 4E 78 
2C 44 6B 107 
20 45 - 60 96 
2E 46 4B 75 
2F 47 I 61 97 
30 48 0 FO 240 

12-5 
UPDATE LEVEL PAGE 

Signed 
Number 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

Table 12-2. ASCII/EBCDIC Conversion (Part 2 of 3) 

ASCII EBCDIC 

Hex Dec 
Control Character Symbol 

Hex Dec 

31 49 1 F1 241 
32 50 2 F2 242 
33 51 3 F3 243 
34 52 4 F4 244 
35 53 5 F5 245 
36 54 6 F6 246 
37 55 7 F7 247 
38 56 8 F8 248 
39 57 9 F9 249 
3A 58 7A 122 
38 59 5E 94 
3C 60 < 4C 76 
30 61 = 7E 126 
3E 62 > 6E 110 
3F 63 ? 6F 111 
40 64 @ 7C 124 
41 65 A C1 193 
42 66 8 C2 194 
43 67 c C3 195 
44 68 0 C4 196 
45 69 E C5 197 
46 70 F C6 198 
47 71 G C7 199 
48 72 H C8 200 

49 73 I C9 201 
4A 74 J 01 209 
48 75 K 02 210 
4C 76 L 03 211 
40 77 M 04 212 
4E 78 N 05 213 
4F 79 0 06 214 
50 80 p 07 215 
51 81 Q 08 216 
52 82 R 09 217 
53 83 s E2 226 
54 84 T E3 227 
55 85 u E4 228 
56 86 v E5 229 
57 87 w E6 230 
58 88 x E7 231 
59 89 y E8 232 
5A 90 z E9 233 
58 91 [ 4A 74 
5C 92 \ EO 224 
50 93 J 5A 90 
5E 94 5F 95 
5F 95 - 60 109 
60 96 79 121 
61 97 a 81 129 
62 98 b 82 130 
63 99 c 83 131 

12-6 
UPDATE LEVEL PAGE 

• 
Signed 
Number 

+1 
+2 
+3 
+4 
+5 
+6 
+7 
+8 
+9 
-1 
-2 • -3 
-4 
-5 
-6 
-7 
-8 
-9 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

Hex 

64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
6D 
6E 
6F 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
78 
7C 
7D 
7E 
7F 
80 
81 
82 

SPERRY UNIVAC Operating System/3 12-7 
UPDATE LEVEL PAGE 

Table 12-2. ASCII/EBCDIC Conversion (Part 3 of 3) 

ASCII 
Control Character Symbol 

EBCDIC Signed 

Dec Hex Dec Number 

100 d 84 132 
101 e 85 133 
102 f 86 134 
103 g 87 135 
104 h 88 136 
105 i 89 137 
106 j 91 145 
107 k 92 146 
108 I 93 147 
109 m 94 148 
110 n 95 149 
111 0 96 150 
112 p 97 151 
113 q 98 152 
114 r 99 153 
115 s A2 162 
116 t A3 163 
117 u A4 164 
118 v A5 165 
119 w A6 166 
120 x A7 167 
121 y A8 168 
122 z A9 169 
123 { co 192 
124 I 6A 106 I 

125 } DO 208 
126 ~ Al 161 
127 DEL 07 07 
128 !SR 20* 32 
129 SSB 21* 33 
130 FSB 22* 34 



• 

• 

• 



• 

• PART 4. DEBUGGING AIDS 

• 



• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 B 13-1 
UPDATE LE'VEL PAGE 

13. Debugging Language 

13.1. GENERAL 

The source program debugging statements, READY TRACE, RESET TRACE, EXHIBIT, and *DEBUG in the 
SPERRY UN I VAC Operating System/3 (OS/3) COBOL, are extensions to American National Standard COBOL (1968). 

The output resulting from the execution of a debugging statement is displayed upon the printer (LFD) name= 
SYSLST. The output may be transferred to tape or disc by including the appropriate job control statement options 
and format information. Printing is performed after a 1-line paper advance. 

The debugging statements may be included between procedure division statements, or the statements may be put in 
packet form at the end of the procedure division ( 13.5). 

13.2. READY TRACE 

Function: 

The execution of a READY TRACE statement produces the output: 

TRACE ON AT line-number. 

When a section or a paragraph is entered for execution, the following output is produced: 

section-name (or unqualified-paragraph-name) line-number 

Format: 

READY TRACE. 

Rule: 

This statement may appear anywhere in the procedure division or in a compile time debugging packet. 

13.3. RESET TRACE 

Function: 

The execution of the RESET TRACE statement terminates the functions initiated by READY TRACE and 
produces the following output: 

TRACE OFF AT line-number 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 13-2 
UPDATE LEVEL PAGE 

Format: 

RESET TRACE. 

Rule: 

This statement may appear anywhere in the procedure division or in a debugging packet. 

13.4. EXHIBIT 

Function: 

The execution of the EXHIBIT statement results in a formatted display of identifiers or nonnumeric literals 
listed in the statement. 

Format: 

EXHIBIT CHANGED NAMED 
{

CHANGED } 

{ 
identifier-1 } [ { identifier-n } J 
nonnumeric-literal-1 ' nonnumeric-literal-n · · · 

NAMED 

Rules: 

1. An identifier may not be an index-data-item. 

2. An identifier length may not exceed 256 bytes. 

3. Nonnumeric literals may not exceed 132 characters in length. 

4. Displayed operands are continued as described by the DISPLAY statement. A maximum logical record 
size of 132 characters is assumed. 

5. An EXHIBIT statement may appear anywhere in the procedure division or in a debugging packet. 

6. The NAMED option produces a noncolumnar display of all operands specified in the EXHIBIT 
statement. The operands are displayed in source order and are formatted as follows: 

• Identifier 

identifying-name~equal-sign~identifiers-value~ 

The identifying-name includes qualifiers and subscripts. A maximum of 130 characters is 
displayed. 

The identifiers-value may be a maximum of 256 characters. If the identifier is a signed numeric 
elementary item, a sign is also displayed following the value. 

• Nonnumeric-literal 

nonnumeric-literal 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

7 . 

SPERRY UNIVAC Operating System/3 13-3 
UPDATE LEVEL PAGE 

The CHANGED NAMED option produces a noncolumnar display of nonnumeric literals and, 

conditionally, the identifiers specified in the EXHIBIT statement. The format sequence of the displayed 
operands is as described in rule 6. If the value of the identifier has not changed since the previous 
execution of this EXHIBIT statement, the identifier is not displayed and space is not reserved for the 
value in the print record. 

All identifier values are considered changed on the initial execution of the statement. If the EXHIBIT 
statement does not contain nonnumeric literals and the value of all identifiers is the same as when this 
EXHIBIT was previously executed, neither a display nor a form advance occurs. 

8. The CHANGED option produces a columnar display of all nonnumeric literals and the changed values of 

all identifiers. 

If the value of the identifier has not changed since the previous execution of this EXHIBIT statement, 
the positions reserved for the identifier value are displayed containing spaces. All identifier values are 
considered changed on the initial execution of the EXHIBIT statement. 

When the statement contains only identifiers and none of the values has changed, one line of space is 
displayed. The operands are displayed in the order in which they appear in the statement and in the 
following format: 

• Identifier 

• 

identifier-value6 

The identifier-value may be a maximum of 256 characters. If the identifier is a signed numeric 
elementary item, its sign is displayed following the value. 

Nonnumeric literals 

nonnumeric-literal6 

9. If two distinct EXHIBIT CHANGED NAMED or two EXHIBIT CHANGED statements appear in one 
program, each specifying the same identifiers, the changes in value of the identifiers are associated with 
each of the two separate statements. Depending on the path of program flow, the values of the identifier 
saved for comparison may differ for each of the two statements. 

10. Variable-length identifiers are not permitted as operands with the CHANGED or CHANGED NAMED 
options. 

13.5. DEBUGGING PACKET 

A packet contains debugging statements referring to a paragraph name or a section name in the procedure division. 
The debug packets are grouped together and placed immediately following the source program. The packet 
statements are compiled with the source program and are executed at object time; the packets produce the same 
result as placing the debug statements directly in the source program following a section name or a paragraph name. 

Each debug packet is preceded by a control card with the following format: 

8 

*DEBUG location 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 13-4 
UPDATE LEVEL PAGE 

Location refers to a section or paragraph name which starts anywhere within margin A; a period is not permitted 
immediately following location. The name, which may be qualified, indicates the starting point in the program 
where execution of the packet is to begin. Location cannot be a paragraph name within any debug packet and the 
same location must not be used in more than one debug control card. 

A debug packet may consist of procedural statements such as GO TO, PERFORM, or ALTER, which may refer to a 
procedure name in any debug packet or in the main body of the procedure division. 

When the source COBOL program is on a library file, the library module containing the source program may also 
contain *DEBUG control cards. Regardless of whether the library module contains any *DEBUG cards, when the 
compiler reaches the end of the library module, it will determine if any additional *DEBUG cards are present in the 
job control stream. If *DEBUG cards are in the job control stream, they are processed as if they were contained at 
the end of the library module. If no *DEBUG cards are present in the job control stream, the process of reading 
COBOL input to the compiler is terminated. 

Example: 

II EXEC COBOL.library-name 
II PARAM IN= PROGNAMEILIBIN 
II PARAM LST = (O,C,S) 
1$ 
*DEBUG----------

/* 

• 

• 

• 



• 

• PART5.SAMPLEPROGRAMS 

• 



• 

• 

• 



• 

• 

• 

8057 ,Rev. 2 
UP-NUMBER 

14.1. GENERAL 

SPERRY UNIVAC Operating System/3 A 14-1 
UPDATE LEVEL PAGE 

14. Sample Program 1 

In the SPERRY UNIVAC Operating System/3 (OS/3), job control defines the job and directs its execution. The 
control stream interfaces the OS/3 COBOL program with the job control. 

Each job executed in the system must have a unique name, which is used by the system to identify and locate the 
job control stream. Devices are assigned for each input or output file required by job control and the program. 
Device assignments for direct access devices must include the volume number (identifies disc pack). extent request 
(establishing a new file or extending an existing file), and file label information. 

The following program does not show any job control statements required for compilation, linking, or execution. 
See the job control user guide, UP-8065 (current version) for a complete discussion of job control; also see the 
system service programs user guide, UP-8062 (current version) for a complete discussion of the linkage editor. 

14.2. PROG01 

This program illustrates the creation of an indexed sequential file from the card reader. The PROGRAM-ID is 
PROG01. 

The disc file consists of 80 character records, 10 records per block. The sequence of the records is by department 
number. 

The INVALID KEY is activated when a sequence or duplicate error occurs within the department number field. The 
record in error is printed on the report, with a message DUPLICATE OR SEQ ERROR, and is bypassed from being 
written on the disc, and card processing from the reader continues until end of file is sensed. 

The end-of-job routine prints the total number of records processed, prints the message END OF JOB, closes all files, 
and terminates the job . 



~~ z 01 
c""" 
:s:: :D .... Im~ 

~ 
m· 
ll N 

LINE NOo SEiil, 50URCE STATEME'H I D(>i, PAGE oonn1 ~ 
00001 001001 JDE~TIFICATION OIVl~ION, PROc;rJ I Cl> 

0 
00002 001002 PRObRAM•IDo PRoGOlo PRQGOI c 

::0 
00003 001003 AUT~ORo SYSTEMS PUl!I !CATIONS, PROGrJI (") 

m 
0000'1 00100~ INSTALLATION, DEPT A866o PHOGOI (") 

00005 OOIOOS OATE•WRITTE~o C'CT ., 19730 PRDGOI 
0 
0 
m 

00006 001006 DATE•CDMPILEO, DEC I 2 1973. PRO GO I r Cl> 
00007 001007 REMARKSo INDEXED SECl!IF:•IT !AL F ILEo c;; .,, 

CREATING AN PROGOI m 
::! ::0 

00008 001000 E~VIRONMENT DIVIS I ON• PROGOI z ::0 
C> -< 

00009 001009 CONFIGURATION SECTlnN, PROG01 c 
0001n on I 0 I a sou~c E•C OM P!J TER. UN!VA(•"0)Q, PROGOI z 
00011 00 I 0 I I Ol!JECT•COl"PUTERo UNrVAC-9030, PROGOI < 

)> 

00012 001012 SPECIAL•NAMESo PROC.01 
(") 

0 
00013 001013 SYSLST IS PRINTrT, f'llOGOI i 
0001'1 00101'1 INPUT•OUTPUT SECT ID"• PROGOI i :;· 
00015 001015 FILE•CONTROLo PROr.01 cc 

00016 oo I 016 SELECT ~ENFIL aSS!GN TO Ol~C-P'll6 PRoc;o I ~ 
00017 001017 ACCESS IS <;EQlJE,,TIAL PROGOI ii 

3 
00018 001018 ORGAl'dZATION IS INOEXEro PROGOI (;; 

00019 00 Io I 'I RESEPVE NO ALTE01NATE ARlA PROGOI 

00020 001020 RECORD KEY IS OrPHIO, PROt;OI 

00021 001021 SELECT CDS ASSlr.N TO CARO•RfA1EP, PROGOI 

00022 001022 SELECT LIST ASSJGN TO PRINTfR• PlllJGO 1 

00013 001023 DATA 01V!5l!HI, PRIJGOI 
c 
"II 

0002'1 00102'1 flLE 5ECT10'Jo PROGDI c 
)> 

noozs 001025 FD r.EHIL PROGOI -I 
m 
r 

00026 001026 RECOROl'JG MOOE ,s f PROGOI m 
< m 

00027 001027 LABEL RECORDS ARE STANDARD PROGOI r 

00028 Dfl I 021! BLOCK CONTl INS In 'lECORr>S PROGOI I I "II 
)> ... 
Cl.,.. 
m~ 

• • .; 



• • • !ij~ 
z~ c 
~ :a 
II>~ 

LINE NO• SEQ, SOURCE STATEMENT ID.EN, PAGE 00002 I ]J l>l I m . 

OOOH 00102'1 r AT A RECORD IS 111sea1. PROGOl 

00030 0(1l030 0 l DISCO!• PRQr,O 1 

00031 002001 (13 DEPTNO PIC xxxx. PROGOl 

00032 CJ02110? f13 FILLER PIC x. PROGOl 

(101) 3 3 f'(l2f103 03 SUPPLY-"0 Plr xx xx. PROGDI 

nooJ• r.0200• 03 F!LLf.ll PIC )l(#.). PROGul 

00035 no2ro'> 03 NA~E Pl( X I 3 l l , PROC.!11 
en 
"ti 
m 

QOOH U(1200b []3 FILLER PIC x ~ x. PR0(,01 :D 
:D 

(10037 nn2nu7 03 0111 TY P!( q9. PRQC,01 < 
fJ003P lJ02QUB Ol F !LLE~ PIC XIS), PROG'11 c z 
1100 39 nn2Po" 03 AMOU'Jl PIC 9 I 6 l • PR1c,o 1 < 

)> 
ooo.,r. r;n2r11 <" 03 FILLER PIC X I l l l , PROGOl (") 

noO•l r: 020 l I n3 I' ATE PIC XI bl, PRDGDl 0 
"C 
CD 

iJOr:'I ~ 2 0(12(11 2 03 llC(JDE PI ( x. PROGOl ... 
I» 
r+ 

!100•3 fJ02f1 l 3 Fil (QC PROGOl :;· 
cc 

(100 •• :in2r11• LAP EL RECORllS A~E QMITTEr PRQr.,O I ~ 
ruo•s IJC2rJ Is RECO~n l'tG ''Ol'F rs F PROGOl i 
ooo•~ llU2ll l 6 R[(O~n CON TA I '·5 PO (HARACTfR<; PROGOl 3 -w 
no0•7 [102017 DATA ~£rORn IS rARD t l>J • PROr,o I 

00048 no201 o IJI C. ARD ( d, PR060l 

fJQ049 iJ0201 q (' 3 COf PT P!C q4). PROt,01 

DO'J5n Jr2Q2n 1)3 F!LLEP PIC x. PROuO l 

~01)51 c-.02021 03 CSUP•io PI C x ( 'iJ • PRl)Gn I 

c 
nooo;z ntJ2'J22 03 F!LL<:P PIC x ( b). PROc,01 -a 

0 
~0053 002023 n 3 (t, AMF PIC x f 31). PROGOI 

)> 
-I 
m 

n00'>• f:02J24 03 FILLER Pl( x )l),. P~OGOI r 
m 
< 

0005'> 0()2025 C3 ((•TY P!C 99, PROr,'11 m 
r 

OOOSI> DC202~ 03 FILLER Pl( XIS l, PROGOI 
-a 
)> 

~OOS7 r'r 2•121· r. 3 (AMT P!C 91 bl. PROGOl Gl ... 
mf 

w 



LI NE NO. 5EQ. snul!cE ST A Tf M~!JT 

OOOSP 002028 C3 f IL LEI> PIC X I I I l • 

000~9 U02029 [l3 CO•TE PIC XI 6 l • 

'JOO~U no 2 o 3 'l f13 CDCODf PIC x; 

OOObl no1nJ1 FU LI ST 

noob2 an20J7 LA~EL RECnl!DS A Qf. O~ITTEr 

00063 (1'11033 C• ATA RECl'!Rn I 5 ;iVT • 

0001>~ Q0203~ 0 I our. 

"0065 '1(1300 I 03 fJLLc" PIC X r In)• 

n0066 noJroz [l3 PDF.PT PIC x. l( x. 

•JOO~ 7 nuJnUJ I)) f ILLE" PIC XI I 0 I, 

nO(lfA 1rJOO~ nJ PSUP"r) PIC X l( x XI 

naobq r,03oos '13 f!LLf"' PIC XI I 0 I, 

00f'7fl nn~"D 1 n3 PtiA¥-F Pl( XI 'I I , 

nf)071 flf1~'102 (l) F!LLF~ "IC x f s) • 

rJ0072 nn~r.u3 P3 Pt. TY P!C 99, 

oon73 rio~'JO~ n3 fllLE<> PIC xx xx. 

1007~ nr~C•u"> [I 3 PAMT "IC 9 ( 6 J. 

a007S 1n~no~ 03 f I LLf.R PI C Xf 11 I, 

Gi107b '10~007 nJ PDATf.: "IC X f ~I, 

noc11 'lD~nOF< 03 FILLF:o "IC X I I I I , 

0007a 0(1~[)09 PJ PC '."ID~ PJ( x. 

r<:JO 7 9 nn~o1.1 [13 FILLER Pl( XI l 7l • 

nQQ9n Qll~O 11 '0~< l~c;-5TO<tAGf 5ECrlo~ .. 

10'"18 l rJQ~O 12 77 CTR PIC '1999 V Al UE ZE'>O • 

'l0f1~2 no~n 1 J DI Tll~E. 

OO!'oJ or.qo r ~ 03 F" I LLF<> PIC XI SS l VAL Uf 

QQ08~ rJO~Cl 1 "> 03 DE5CRP P!C XI 7 3 I VALUE 

IJOOA"> ()[1~('116 03 FILLE'l Pl( x ( s) VAL IJF. 

000~6 nn~o 1 7 03 PCTk PIC zzzq, 

• 

I DE•J, PAGE oonn3 

PROGOI 

PROGOI 

PHOGOI 

PROGOI 

PROr,01 

PROGOI 

PROGOI 

PRr)GOI 

PROGOI 

PROGOI 

PROGOI 

PHOGOI 

PROGOI 

PPOc;Ql 

PROc;Ol 

PROGQ I 

PRO(;Q I 

PHOGr'l I 

PROr,o I 

PROG(' I 

PRO'i'1 I 

PRQr,f) I 

PROGDI 

PRO GO I 

PROGOI 

~F' A ("l!:t; • PROGIJI 

'TC' T AL f,U,M~E~ f'f lff(O l[1~', PROGOI 

SPACF"S: PROC.01 

PROGOI 

• • 

~~ zc.n c..., 
s: :D 
tD \! m· 
JI "3 

c .,, 
0 
)> 
-I 
m 
r 
m 
·< 
m 
r 

.,, 

Cl) .,, 
m 
:::0 
:::0 
-< 
c: z 
< 
~ 
0 
i 
iiJ ... :;· 

CQ 

f 
3 
W' 

)> ... 
Gl .,. 

mJ.. 



• • 
LI "IE "10, SEii o SOIJRCE ST ATE'1E"lT 

oooq1 ooqo1e 03 FILLER PIC X1•Sl VALUE SPACE~. 

800?8 OCl•Ol9 PROtEDURf DIVl~IQN, 

nOC'6'1 ooqnz~ 1~111ALILF· 

rJ009(1 on•o21 QPEN I NPIJT C!'>S. 

00091 00•02Z OPEN OUTPUT ~·'EW1 IL, LIST, 

')0092 00•023 ~OVE SPACE5 TO nUT, 

00093 on•oz• ~1. 

0009• OO•Cl25 t'EAD (05 AT El'<D r.o Tll fOJ, 

00095 00•~2~ MOVE CDEf'T TO ll>PH1'l, PDfPT, 

00096 nn•u21 MOVE CSIJP~O T0 c;t..'PPLY-N0 1 P511PM(') • 

00Cl97 01"'~(•28 '°'OVE CNA~E Tl' ~ • ..,E.:. PNAf-'[ • 

oooqq DO•f'Z9 t'O\/E (AuT TD AMn 1JNT 1 PA1·IT • 

0009'1 Of'~D3•J "ovE COATE Tc f) a TE, PIH TE, 

JUlOr 00~031 ~OVE CDC'lDF TO ~conE, PCl'OE, 

JO l n 1 OO~G32 < R !TE DISCnl INvALID KEY GC' TO E~RnR1 • Anl.l I TO CTR, 

OU1'l2 00~033 •RI TE O•JT ~EFURF ADVA'ICING 2 Lp1rs. r,O Tl"> ~o. 

no1u3 OOSPOI £RFUJQ1• 

001r• Q '15 ~10 2 DISPLAY 'DUPLICATE OR SEO fQQOR• UPO~ P~IHTITo 

oo 105 onsu03 DISPLAY CAi>Dll'< !1POt: P'llNTlro 

nOICo ~"5L·O~ e.ovE SPACE~ TC• C'l•T .'IRITE OUT AFTF• Ai·VA~(Jt,G 2 LJl<LS. 

~0107 ori'>rG~ (,0 To H0. 

no l n q rinsoos EDJ, 

00109 005(1 06 MOVE CT~ TC' PCTQ• ~~VE TL!NE Tn nuT. 'RITE ouT 8EfORF 

DO 110 005007 AD~A~Cl~G 1 LINF• 

00111 ~05(108 DISPLAY 'E~D OF JOP' UPON PRJ"T!To 

OU 112 (1(1<;Q0'1 CLC'SF crys, NE•F1L1 LIST. 

'JO 113 on!>o 1 ~ STCP RU•J, 

• 
IDEN, PAG1' oonoq 

P~OGOI 

Pl<OGOI 

PROGOI 

PROGOI 

PROGOI 

PROC.01 

PROGOI 

PROc;OI 

PROGOI 

Pf<Oc,01 

PRor,01 

PROGOI 

PROGOI 

Pf'OGOI 

PR0601 

PROc,01 

PROGOI 

PROGDI 

P11or,o l 

PROGOI 

PROGOI 

PROGOI 

PRIJGOI 

PRIJGO I 

PROGOI 

P~O~Ol 

PRC~OI 

~~ z (J1 
c ...... 
s: i' 
::: :c: 
JI ~ 

Cl> .,, 
m 
::D 
::D 
< 
c z 
< 
l:; 
0 

l :;· 
ca 

!R en 
~ 
3 -w 

c ,, 
0 
)> 
-I 
m 
r 
m 
< m 
r 

,, 
)> ... 
G>~ 
m1 

UI 



~~ 
ZUI c ..... 
3:: :0 .... Im '° ~ m :C: 

~ lJ "' 

0 c 
-I 
"V c 
-I 
r-
en 

680~ 11 o I A 8 Ck!CAGS 20 ln0173 A ::! 
6801 1106 A C LIST ~5 100173 A z 

I en C) 
"V 

6802 1106 D f NUMBE.R ~5 ln0173 A m 
:::0 
:::0 

~u~LICATE OR SEQ tRROri -< 
uu< 1106 l C. PAGE !> ~~ IUl973A c 

6803 11 o2 T T TOMAS 25 1riU17 3 A z 
< 

680~ 11 o I c C ORIJS 20 I oCJ I 7 3 A )> 
(") 

680~ 11 o2 u C. GARl<Y 25 I nO I 7 3 A 0 
680~ 11o1 ~ K KL 1 NK 20 lr.:1973 A i ... 

C» 

68U7 11 c·3 P P PAUL 30 In 1973 A ... s· 
6&0f l 1 u5 R k kOBtl<T ~CJ 101973 A ca 

6BU9 1 I u7 S S SANfORO 50 101973 A !f 
ii 

6810 11(11 " ~ ~ILL I AM 20 101973 A 3 
6811 1106 ( c COM~AH ~5 ln1Y73 A w 
oe12 11 cl G G GOt.t: 30 101973 A 

6813 11 nl K K KL I NE 20 1ri19 7 3 A 

TOTAL NUMBE.R OF hEcOROs 1~ 

E.N~ OF JOB 
r-

c ,, 
0 
)> 
-I 
m 
r 
m 
< m 
r -,, 
)> ... 

Gl "' m1 
en 

I 
• • • 



• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 15-1 
UPDATE LEVEL PAGE 

15. Sample Program 2 

15.1. GENERAL 

In the SPERRY UNIVAC Operating System/3 (OS/31, job control defines the job and directs its execution. The 
control stream interfaces the COBOL program with the job control. 

Each job executed in the system must have a unique name, which is used by the system to identify and locate the 
job control stream. 

Devices are assigned for each input and output file required by job control and the COBOL program. Device 
assignments for direct access devices must include the volume number (identifies disc pack), extent request 
(establishing a new file or extending an existing file). and file label information. 

The following program does not illustrate any job control statements required for compilation, linking, or execution . 
See the job control user guide, UP-8065 (current version) for a complete discussion of job control; also see the 
system service programs manual, UP-8403 (current version) for a complete discussion of the linkage editor. 

15.2. PROG02 

The PROGRAM-ID is PROG02. This program illustrates the use of random retrieval from the file created in the 
previous program (PROG01 ). 

Newfil is now labeled as an input-output file {1-0). This allows both retrieval and updating. 

The data division is basically the same as loading the file except that the ACCESS IS RANDOM clause is used in lieu 
of ACCESS IS SEQUENTIAL. 

SYMBOLIC and RECORD KEY clauses are required in this type of file organization. The data-names for these 
clauses must be unique; however, the information must be identical. 

The INVALID KEY is activated when a matching record is not found. The no-hit routine identifies the record and 
then branches to read the next record from the card reader. 

The end-of-job routine prints the total number of records, displays the END OF JOB message, closes all files, and 
terminates the job . 

• 



~~ 
2 <Tl 

c ""' .... 1! ~ U'I 
LINE NOe SEQe SOURCE STATEMENT IOEN. PAGE OOnOI ~ ]J 11.J 

00001 001001 IDENTIFICATION DIVl~IONe PROG02 (I) 
0 

00002 001002 PROGRAH•IOe PROG02e PROG02 c 
:ti 

00003 001003 AUTHOR. YOUR 1\IAME • PROG02 0 
m 

0000'1 00100'1 INSTALLATIO'le oEPT 4866• PROG02 0 

oooos 001005 OATE••RITTE'le OCT 11 1973. PROG02 0 
0 

00006 001006 DATE•COMPILEOe OCT 12 1973. PROG02 
m 
r- (I) 

00007 001007 R(MARl<Se SUPPLY REPORT BY DEPART~EN,, PRDG02 (I) .,, 
::! m 

00008 001008 ENVIRONMENT DIVISION• PROG02 :ti z :ti 
00009 001009 CONFIGURATION SECTl~N, PROG02 

G) -< 
c 

00010 001010 SOUHCE•COMPUTERo UNI VAC•9030o PHOG02 z 
00011 001011 QijJfCT•COMPUTERo UNJVAC•9030o PROG02 < 

)> 
00012 001012 SPECIAL•NAMcs. PROr,02 0 

00013 001013 SYSCHAN-15 IS NF"XT•PAGEt PROG02 
0 

"C 
CD 

0001'1 00101'1 SYSLST IS PRINT(T, PROG02 i:il ... 
00015 001015 INPuT•OUTPUT SECTION• PROG02 :r 

cc 

00016 001015 FILE•CONTROLo PROG02 !f 
00017 001016 SELECT CDS ASSlr,N TO CARO•RE-DE~. PROG02 s 

3 
00018 00 I 0 l 7 SELECT ~E~FIL AsSlGN TO OISC•q'f 16 PROG02 -w 
00019 00101~ ACCESS rs RANDO~ PROG02 

00020 00I019 ORGANIZHION IS INOEXEOo PROG02 

00021 001021) SYl'<BOLIC KEY IS KEv-ro PROC.02 

00022 001021 liECOHO t<EY IS Dr:-PTNOe PROG02 

00023 001022 SELECT LIST ASS1GN TO PRINTfq, PROC.02 
c 

0002'1 003001 DATA OIVISl'.lNo PROG02 "D 
0 
)> 

00025 003002 FILE SECTION, PROG02 -I 
m 

00026 003003 FU cos. PROG02 r 
m 
< 

00027 00300'1 LABEL RECORDS ARE O~ITTED PROG02 m 
r 

00028 003005 RECOROl>jG MODE 15 F PHDG02 
"D 
)> _, 
Gl <Tl 
m1 

11.J 

I • • • 



• • • ~~ 
' CJ1 z -.I 
c JJ 
S: CD 
m < 

LINE NOo SEQo SOURCE STATEMENT I DE No PAGE oono2 I I~;,., 
00029 on3006 RECORD CONTAINS 80 CHARACTERS PROGOZ 

00030 003007 DATA RECORD IS MDCARDo PROG02 

00031 003D08 01 HDC1!R0o PROG02 

00032 003009 03 DATE-co p I c x I 8 l • PROG02 

00033 003010 03 FILLER p!C x1121. PROG02 

0003'1 003011 0 I CARO I No PROG02 

00035 003012 Ol COEPT P!C xxxx. PROGOZ en 
"'U 
m 

00036 003013 03 f"JLLER PIC x. PROG02 :D 
:D 

00037 00301'1 03 CSUP'IO PIC XI q l • PROG02 -< 
00038 003015 03 FILLER PIC X1blo PROG02 c z 
00039 003016 03 CNAME PIC XI 31 l • PROG02 < 
000~0 003017 03 f"JLLER PIC xxx. PROG02 

)> 
(") 

000'11 003018 03 CQTY f' IC 9•h PROG02 0 
i 

000'12 003019 03 FILLER PIC x 1 S,. f'R0(,02 ... 
I» 
r+ 

000'13 003020 03 CA~T PJC 999qV99o PROG02 :;· 
CCI 

000'1'1 003021 al f"JLLER PIC x 111,. PROG02 !f 
000'15 003022 03 COATE PJC Xl~lo PROG02 i 
000'16 003023 03 CDCODE PIC X. PROG02 3 -w 
000'17 00302'1 f"D lllEWF" IL PROG02 

000'18 003025 RECORDl'IG MODE 15 F PROG02 

000'19 003026 LABEL RECORDS ARE STANDARD PROG02 

ooosn 003027 BLOCK CON TA INS JO RECORDS PROG02 

00051 003028 CATA RECORD JS olSCOlo PROG02 

c 
00052 003029 01 OISCOlo PROGOZ .,, 

0 

00053 003030 03 OEPT'lO PIC xx xx. PllOG02 
)> 
-I 
m 

0005~ 003031 03 FILLER PIC x. PROG02 r 
m 
< 

00055 003032 03 OSUP'IO f'IC X1'llo PROG02 m 
r 

00056 003033 03 FILLER PIC x ( 6,. PRQG02 .,, 
00057 00303'1 03 ONAME PJC XI JI l • PROC.02 )> ... 

Gl CJ1 
m1 

w 



~~ 
z~ 
~ :n 

LINE N0 0 SEOo SOURCE STATEMENT I DE'l, PAGE oono3 I Im~ m· 
J:J N 

0005e 003035 al FILLER PIC XxX 0 PROG02 

00059 003036 03 DQTY PIC ,,. PROG02 

00061) 003037 03 FILLER PIC x1s1. PROG02 

0006 I 003030 03 AMOUNT PIC 9999V99o PROG02 

0001>2 003039 03 FILLER PIC XI I I I o PROG02 

00063 0030'10 03 DATE PIC X16lo PROG02 

0006'1 0030'11 Ol DCODE PIC x; PROG02 (/) 
"ti 

00065 00 .. 001 FO LI ST PROG02 m 
::D 

0001>6 00'1002 LABEL RECORDS ARE OMITTED PROG02 ::D 
-< 

00067 00'1003 IJATA RECORI) IS our. PROG02 c 
OOOH 00'100'1 0 I OUT PIC XI J 321 o PROG02 :z 

< 
00069 00'100!1. o I LI NE I• PROG02 )> 

(") 
00070 00'1006 03 FILLER PIC XllOlo PROG02 0 
00071 00'1007 03 PDEPT PIC XxXXo PROG02 i 

ii1 
00072 00'1008 03 FILLER PIC X 110 Io PROG02 r+ s· 
00073 00'1009 03 PDATE PIC X16lo PROr,02 CCI 

0007 .. 00'1010 03 FILLER PIC X 110 Io PROG02 !t 
0 s 

00075 00'1011 03 PSUPNO PIC XXXXo PROG02 3 
00076 00'1012 03 FILLER PIC X 11 O I• PROG02 w 
00077 00'1013 Ol PNAME PIC x ( 311. PROG02 

00078 00'101 't 03 FILLER PIC X!IOlo PROG02 

00079 00'1018 03 PBAL PIC z,zzz.99. PROG02 

00080 00.'tO 19 03 FILLER PIC x1s1. PROG02 

00081 00'102·0 03 PAMT PIC z,zzz,99, PROG02 c 
"'D 

00082 00'1021 03 FILLER PIC X!61, PROG02 0 
)> 
-t 

00083 00'1022 03 PNBAL PIC zz.zzz,99, PROG02 m 
r 

0008'1 00'1023 03 FILLER PIC X, PROG02 
m 
< 
m 

00085 00'1027 01 TOTLINE, PROG02 r 

00086 00'1028 03 FILLER PIC X1971o l'ROG02 "'D 

)> -G> UI 

m J. 

I • • • 



• • • ·~ ~ 
z~ 
c:IJ 
ii:: II> 
OJ< 

LINE NO. SEQ. SOURCE STATEMENT IDEN. PAGE OOnO'I I Im. 
ll "' 

00087 00'1029 03 PFINAL PIC Xllll. PROG02 

00088 00'1030 03 FILLER PIC X1l'll, PR'OG02 

00089 00'1031 03 PTOT PIC zz.zzz,99, PROG02 

00090 00'1032 03 FILLER PIC x; PROG02 

00091 006001 WOR~ING•STORAGE SECTION, PROG02 

00092 ooi.002 77 PF PIC XI I I I VALUE 'F' I NAL TOTAL•, PROG02 

00093 006003 77 TOTAMT PIC S9999V99 VALUE ZERO, PROG02 en 
"'CJ 

0009'1 00600'1 77 KEY•IO P!C xxxx: PROGOZ m 
::IJ 

00095 0011012 77 Lll\IE•COUNT PIC 9~ VALUE ZERO, PROG02 ::IJ 
-< 

00096 0(16013 77 PGCT PIC 9999 VALUE ZERO, PROG02 c 
z 

00097 0060 I 5 77 CAMTI PIC S9999v99 VALUE ZEROo PROG02 < 
00098 ooi.021 01 HEADING!, PROG02 )> 

n 
000'19 006022 03 F'ILLER PIC X 135 I VALUE SPACES• PROG02 0 
00100 006023 03 REPT PIC XI 27) VALUE •SUPPLY REPORT HY OEPARTME'T'• PROG02 i ... 

I» 
00101 001t02'1 03 F'ILLER PIC x 1 '17) VALUE SPACES• PROG02 

... s· 
CQ 

00102 001t025 03 MOOAYR, PROG02 

!f 
00103 001t026 O'I MO PIC xx. PROG02 i 
0010'1 006027 Q'I MOS PIC X VAtUE •I' • PR0(;02 3 -00105 006028 O'I OA PIC xx. PROG02 

w 

00106 006029 O'I DAS PIC x VA1UE t, .. PRDG02 

DOI07 006030 O'I YR PIC xx. PROG02 

00108 006031 03 F'ILLER PIC XI 5 I VALUE SPACES: PROG02 

00109 006032 03 PPAGE PIC x 1 <,) VALLIE 'PAGE•: PROG02 

00110 001t033 03 PPAG~O PIC Z7Z9 VALUE ZERO, PROG02 c ,, 
0 

00111 001103'1 03 flLLER PIC X VALUE SPACES, PROG02 )> 
-i 

00112 007001 01 HEADllllGZ, PROG02 
m 
r 
m 

00113 007002 03 flLLER PIC X 1I0 I VALUE SPACES• PROG02 < m 
r 

0011'1 007Q03 03 Tl P[( Xx XX VALUE •OEPTt, PROG02 

00115 00700'1 03 flLLER PIC x 111) VALUE SPACES• PROG02 
,, 
)> ... 
(;) (JI 

ml 
(JI 



~~ z 01 c -.J 
3:: ::0 
ID ~ 

LINE NO, SEQ, ·SOURCE STATE'1E"IT JDEN, PAGE OOnO!i I ::UN Im. 

00116 007005 Ol TZ PIC xx xx VALUE 'OATf.•: PROG02 

00117 007001> Ol f ILL.ER PIC x ( 9' VALUE SPACES; PROG02 

00118 007007 Ol Tl PIC X171 VALUE 'ITEM NO•, PROG02 

00119 00700A 03 fill.ER PIC XI 151 VALUE SPACES• PROG02 

00120 007009 03 T~ PIC XIA I VALUE 'EMPLOYEE•, PROG02 

00121 007(110 03 flLLfR PIC x ( 2") VALUE SPACES• PROG02 

00122 00701!> 03 OLDBAL PIC x < 11 I VALUE 'OLD BALANCE', PROG02 Cl> 
"O m 

00123 00701" Ol flLLER PIC XXXX VALUE SPA(FS; PROG02 ::IJ 
::IJ 

0012~ 007017 rJl NEllA'1T PIC x ( l>I VALUE 1 A"'OUNT' • PROC.02 -< 
00125 0070111 Cl3 flLLfR PIC x ( !>) VALUE SPACES, F'ROG02 c: 

2 
00126 ()07(' I 'I Ol "E•BAL PIC X r 11 I VALUE •NE~ BALANCE'. PROG02 < 
00127 007020 03 flLLER F'IC x VALIJE SPACE, PROG02 

)> 
0 

00128 l'J0800 I PilO(EDURE DIVJSIO~. PROG02 0 
i 

00129 noBOID l"JllALllE• PROG02 iil ... 
OOIJn on11011 OPEN INPUT CDS, PRor,nz :;· 

ca 
00131 OOP012 OPE~· l•O llf~flL; PROr,02 Cl> 

< 
00132 ClO!lt! 13 OPEN OUTPUT LIST• PROr;OZ i 
00133 008(11<; MOVE ZE~O TO TOTAMTt LI ~E·COiJtJT: PROG02 3 w 
0013~ 00801~ RO, PRQc,02 

()013!> 008017 READ CDS AT END GO TO EUJ, PROG02 

0013" 008018 MOVE r>ATE·CD TO MQOAYR, PERfOR" PTITE, PROc,02 

00137 008019 ~DI, PROG02 

00138 0(18020 READ coo; AT END GO TO EOJ, PROG02 

00139 (l['.18021 If LPJE•COUNT > l>O PfRfORM PTITf, PROGD2 c 
"D 
0 

001~0 008022 MOVE CDEPT TO KF"Y-10, PROG02 )> 
..; 
m 

001~1 008023 READ NE.Vfll INV~LID KEY GO TO MO-hlT, PROG02 r 
m 

001~2 00802~ MO\"E DEPTNO TO pDEPT, PROG02 < m 
r 

001~3 00802!> MOVE ONA ME TO Pt<AME, PR0(:,02 
"D 

DOI~~ 0080l6 "'OVE AMOUNT TO p8AL, PHOG02 
)> 

Gl -
m 'f' 

en 

I • • • 



• • 
LINE NO. SEQ. SOU!!CE STATEMENT 

OOlqS 008027 "10VE OSUPNO TO P~UPNO. 

OOlq6 008028 MOVE COATE TO POATE. 

OOlq7 008029 MOVE CAMT TD PA"T• 

ODI '+8 008030 MOVE CA"'T TO CAl"TI• 

00 I q9 008031 ADD A"'OUNT TO Cal'ITt. 

00150 008032 MOVE CA"l·l TO PNBAL. 

00151 008033 ADD CA.,T I TO T!"TAMT. 

OOIS2 00803'+ MOVE CA"T I TO Al'OUNT. 

OOIS3 ooao3i; y,R I TE LINE! AFTFR ADVANCING 2 LlN~S. 

0015q OD803b ADO 3 TO LINE•CoUNT. MOVE 5PACES To our. 

DDISS rJQ8037 "RI TE DI c;co I I Nv.ALI D KEY G(l Tll ND·~IT• 

001i;1> 008038 .. ovE ZERO TO CA~.Tt. 

00157 008039 GO TO RD I• 

00158 OD80qO f'T I TE• "'DYE 0 TO L1NE•COUNT. 

00 I 59 008D'+I >'DYE SPACES TO our. WR !TE OUT AFTEll ADVA"CJNC, r.EXT•PAGE• 

0016Cl DD8oqz AOCl I TO PGCT• "OVE PGCT TO PPAGNO. 

OOlbl 008D'+3 f"OV E hEAOINGI To OUT. <'RI TE OUT AFTER ADVANCING I LINE. 

00162 onaoq~ MOVE. SPACES TO r: lJ T • ••RI TE OUT AFTE" ADVANCING I L 1 r.E • 

00163 ooeoqs f"OllE HEAD I 'IG2 T0 OUT ,YR I TE 011T AFTER AOVAt<C I NC, 2 LINES. 

0016'+ (1Q8(1q6 MOVE SPACE5 TO 01_1T • ADD q Tn LI NE•COIJNT • 

OOlbS 0090SO fQJ, 

00166 Qn90S2 MOVE TOTA MT TO pTOT. 

00167 009US3 ~OVE PF TO PFINAL• 

0016!1 on9oSq l1R I TF: ToTLJt.E A.-TEI' AOVANCJNr. 2 Llr.ES• 

00169 009Q!>r; DISPLAY 'EtJD llF JOB• UPON Plll"TIT• 

0017n 0090!>6 CLOSE (f)S' 'lf"F IL• LIST. 

00171 0090!>7 STOP RUN. 

00172 009060 NO•HIT• 

00173 009061 DISPLn 'TH IS RF CORO IS NOT FOUND• UPON FRINTIT• 

• 
IDEN. PAGE oono6 

PROG02 

PROG02 

PROG02 

PROG02 

PROG02 

PROGOZ 

PROG02 

PROG02 

PROGD2 

PROGD2 

PROGIJZ 

PllOGO.l 

PROG02 

PROG02 

PROG02 

PROG02 

PROGOZ 

PROG02 

PROGOZ 

RROGOZ 

PROGOZ 

PROGOZ 

PROGOZ 

PROG02 

PROGDZ 

PROG02 

PROGOZ 

PROG02 

PROG'12 

~~ z (JI 
c ..... 
s:: JJ 
m !1! m· 
:II "3 

~ 
m 
::0 
::0 
-<; 
c: 
z 
< 
~ 
0 
i 
; 
r+ :;· 

CQ 

!f 
s 

c ,, 
0 
)> 
-I 
m 
r 
m 
< m 
r 

,, 

3 -w 

)> ... 
G> (JI 

m1 
..... 



8057 Rev. 2 
UP-NUMB EA 

SPERRY UNIVAC Operating System/3 

.. 
0 
c 
0 
0 

... 
"' ... ... 

z .... 
0 

.... 
z .., 
:r: .... .... 
c .... 
"' 
.... 
v .. 
::> 
0 
111 

. 
Of .... 
"' 
.; 
z 

"' z 
_J 

N N 
0 0 

"' "' 0 0 

"' "' ... ... 

"' z 
_J 

l!J 
z 
u 
z 
c 
> 
0 ... 
"' ... .... ... 
.... 
"' 0 .... .... .... .... 

z 

"' "' .. ... 
z 
0 ... -::; c 

0 0 .... 
I 

>- 111 .... .... 
"' v 

c 
>- ... 
c "' _J ... ... 
Ill > 

0 
0 :c 

N .., ... ... 
0 0 ... ... 
0 c 
0 0 

~ "' .. ,.. 
0 0 
0 0 

N N 
0 0 
l!J "' 0 0 

"' rr ... ... 

.... 
z 
::; 
c 
u 
I ... 
z 
_J 

c " .... "' .., c .... 
Cl 
0 0 

"' 

~ tr> ... ... 
0 0 ... ... 
Cl 0 
a 0 

... .. 
0 0 
c 0 

UPDATE LEVEL 
15-8 

PAGE 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

15.4. 

SPERRY UNIVAC Operating System/3 

OUTPUT LISTING 

... D D D 0 D 0 "' u • D .. 0 D D N 
z . . 
c N N ... ... c 

"' .. 
c ... • ... 

z 

#' ... "' Ill 0 Ill 0 D Ill .... .... #' N N N Ill N <r 
0 z 

:> .... 0 
:r 

D c 

.... 
u 
z Ill Ill D Ill D D 0 
c .., ... ... ... Ill .. .. _, • c .. 
0 _, 
0 

.... .... 
> 
0 0 :r .... _, 

"' c "' L "' "' > 0 c .... :r .... c 0 "' ... ... ... 
z ... "' :r "' "' z ... :r .... 0 c c c 0 
r ... .... u "' "' • u .... 
"' u .... u "' "' • u 
c ... c .... u "' "' • u ... 
0 

> .. 
.... 
"' 0 
L 0 ... z ... N N ... ... 
"' C> C> C> 0 0 0 C> 

:r 
> ... ... .... 
L 
L 
:> 

"' 

.., .., .., .., .., .., .., ... ... ... ... ... ... ... ... .... 
c D C> C> D C> C> D 
0 D D D 0 D 0 0 

.... .., 
~ "' • D 

a. 0 0 0 0 D ... .. .. .. .. .. .. .. 
0 ... ... ... ... ... • • 

"' .. 
... 

... 
c .... 
D .... 
... 
c 
z 
... 

"' 0 .., 
... 
0 

0 
z 
w 

UPDATE LEVEL 
15-9 

PAGE 



• 

• 

• 



• 
8057 Rev. 2 

UP-NUMBER 

16.1. GENERAL 

SPERRY UNIVAC Operating System/3 16-1 
UPDATE LEVEL PAGE 

16. Sample Program 3 

In the SPERRY UNIVAC Operating System/3 (OS/3). job control defines the job and directs its execution. The 
control stream interfaces the COBOL program with the job control. 

Each job executed in the system must have a unique name which is used by the system to identify and to locate the. 
job control stream. Devices are assigned for each input and output file required by job control and the COBOL 
program. Device assignments for direct access devices must include volume number (identifies disc pack), extent 
request (establishing a new file or extending an existing one), and file label information. 

The following program does not illustrate any job control statements required for either compilation, linking, or 
execution. See the job control user guide, UP-8065 (current version) for a complete discussion of job control; also 

• see system service programs manual, UP-8403 (current version) for a complete discussion of the linkage editor. 

• 

16.2. PROG03 

The PROGRAM-ID is PROG03. This program adds new records to the indexed sequential file created with program 
PROG01. 

Newfil must be opened for 1-0. The INSERT statement is used in placed of the WRITE statement. The clauses: 
ACCESS IS RANDOM, SYMBOLIC KEY, and RECORD KEY must be specified when this type of processing is 
desired. 

The INVALID KEY no-hit is activated if a duplicate record is detected . 



~~ 
' U'1 z ....i 

~ :D .... Im~ 0) m· 
LINE NOe SEQo SOURCE SrATE"'ENT I DE'l. PAGE ~ 

:JI I\.) 

OOnOI 

00001 001001 IDENTIFICATION OIVJ~IDNe PROG03 en 
0 

00002 001002 PROGRAM-JO. PRnGo3. PROG03 c: 
:a 

00003 001003 AUTHOR, YOU'! NAMEo PROG03 0 
m 

0000'1 00100'1 INSTALLATION, nEPT ,.e66o PROGOJ 0 
0 

00005 001005 DATE•WRITTENo OCT " 1973, PROG03 c 
m 

00006 001006 DATl•COMPILED, OCT ,2 1973. PROGOJ r- en 
001007 REMARKS, ADO NEW RErORDS TO EXISTING INDfXEO SEQUENTIAL FILE, PROG03 en "O 

00007 
::! m 

:a 
00008 001008 ENVIRON"'ENT 0 IV IS I ON• PROG03 z :a 

C> -< 00009 001009 CONFIGURATION SECTJnNo PROr.03 
c: 

00010 001010 SOURCE•COMPuTEPo UNI VAC•9Cl3De PROGOJ z 
00011 00I011 OBJECT•COMPUTF.Ro UN I VAC• 903i0e PRO'iOJ < 

)> 

00012 001012 SPECJAL•NAMfSe PROGOJ 0 
0 

00013 OD I 0 I 'I SYSLST IS PRINT!To PROG03 i ... 
000 I 'I OOIOIS INPUT•OUTPUT SFCTIOl\Jo PR'JGOJ Q) 

r+ :;· 
OOOl!i ODIOl!i FILE•CONTROL, PROG03 CCI 

00016 001016 SELECT COS ASSJr,M TO CARD·READEP. PROG03 !t 
00017 001017 SELECT •JENF IL Ac;SJGN TO OISC•A'I! 6 PROGDJ i 

3 
00018 00101~ ACCESS IS l!ANDOI" PROGOJ -w 
00019 001019 ORGANIZATION IS INDEXEDt PROG03 

00020 001020 SYMBOLIC KEY IS KEY•ID PROGOJ 

00021 001021 RECORD l(EY IS DFPTNO, PROG03 

00022 001022 SELECT LIST ASSIGN TO PRINTE'!. PROG03 

00023 002001 l•O•CDNTROL, PRJG03 
c 
"ti 

0002'1 002002 APPLY VERIFY ON NEWFILo PROG03 a 
)> 

00025 003001 DATA DIVISION, PROG03 -I 
m 
r 

00026 003002 FILE SECTION. PROGOJ m 
< m 

00027 003003 fD cos PROGDJ r 

00028 OOJIJO'I LABEL RECORDS APE OMITTED PROG03 "ti 
)> 
Cl ... 
m~ 

I\.) 

I • • • 



• • • I 

!ij ~ 
' U1 z -.J 
c ::0 
~ 11' 
OJ < 

LINE NO, SEQ, SrJURCE STATE'1ENT IDEN, PAGE oonc2 I I ~ ;_, 
0002'1 00300'1 RECORD I "IG '!ODE 1S F PROG03 

00030 00300S RECORD CONTAINS RO CHARACTERS PROG03 

00031 003001> DATA RECORD 15 rARCIN, PROG03 

00032 003007 01 CARO I No PROG03 

00033 003008 03 COEPT Pl( xxxx. PROG03 

0003 .. 00300'1 03 FILLER PIC x; PROG03 

0003S 003010 03 CSUP"lll PIC XI q l, PR0(,03 
Cl) 
-g 
m 

00036 0030 I I 03 FILLER PIC XI bl, PROG03 :J:J 
:J:J 

00037 no3012 03 CNAMF P!C X ('I I, PROG03 < 
00038 003013 03 FILLE~ PIC xxx. PROG03 c: 

z 
00039 00301'4 03 CQTY PIC 99, PROG03 < 
000'40 003015 03 FILL~R PIC XI r; l, PROG03 

)> 
n 

000'4 I 003016 03 (AMT Pl( 99'1'1V99, PROG03 0 
'i 

000'42 0031) I 7 (13 FILLER PIC XI I II, PR0(,03 .. 
m ... 

000'43 00 31)1 8 03 COATE PIC xc~>. PROG03 :r 
CCI 

000'4'4 003019 03 COCOIJE P IC x; PROG03 !f 
000'15 003020 FD NE~·F IL PROG03 ii 
000'46 003021 RECO>IDl"4G MOOE rs F PROG03 3 -w 
000'17 003022 LA~fL RECORDS Apf STA"IDARD PROG03 

000'48 00-3023 tlLOCK CON TA I f>.5 10 RECIJRIJS PROG03 

ODO'l'I 00302'1 DATA RECORD IS nISCDlo PROG03 

oooso 00302S 01 DISCOlo PROG03 

OOOSI 003021> n3 DEPTNO P IC xxxx, PROG03 

c 
OOOS2 003027 03 FILLER PIC x. PROG03 -ii 

0 

OOOS3 003028 03 OSUPNO PIC X!'tl, PROG03 
)> 
-I 
m 

1'1005'4 01)3029 03 FILLER PIC ~(Id. PROG03 I"" 
m 
< oooss 003030 03 DNAME PJC xc111. PROG03 m 
I"" 

00056 003031 03 FILLER PIC xxx. PROG03 
-ii 

OOOS7 003032 D3 DQTY PIC '19. PROG03 )> ... 
Cl O> 
m1 

w 



LI NE .. o. SE~. SOURCE STATEME"T 

00058 003033 03 FILLER PIC X151, 

00059 00303'1 03 A,.OU>JT P(( 9999V99, 

00060 003035 ('3 F'JLLE:q PIC x f 11 I, 

ooou 003036 03 DATE PIC x f 61. 

00062 003037 03 DC ODE PIC x. 

00063 110'100 I FD LI ST 

0006'1 00'1002 LABEL RECORDS ARE OMJTTE[I 

00065 00'1003 DATA ~ECORD IS nUT, 

00066 00'100'1 O I OUT PIC X (I 32 I, 

00067 006001 ~ORKJNG•STO'!lGE SECTION, 

00068 00600'1 77 KEY•ID Pl( xxxx. 

00069 008001 PROCEDURE 0 IV 1 'i I ON, 

1)0070 008010 INJTJALIZEo 

00071 008011 OPE"' I NPIJT cos. 

00072 008012 OPEN 1-0 ~fNFIL. 

00073 008013 OPEN OUTPUT LIST• 

0007'1 008(\)6 RD I, 

00075 1)08017 ~EAD CD<; AT END GO TO F:OJ. 

00076 008018 MOVF COEPT TO KrY•IDo 

00077 008019 RE.lD NE·~F' IL INV•LID KEY GO 

0007~ 008020 NEN•RECOP.Oo 

00079 008022 ,.ovE CA'!DIN TO ,,ur, 

00080 008023 v.R (TE OUT AFTER ADVANCING 

00081 008027 MOVE SPACE'i TO ,,uT. 

00082 008028 INSERT DISCOI F'ROM CAROIN 

00083 008029 GO TO RO I, 

0008'1 009050 EOJ, 

00085 0090S2 MOVE SPACEc; TO nUT, 

00086 0090Sl NR I TE OUT AF'TER ADVANCING 

• 

IDEN. 

PkOC,03 

PRQ(,03 

PROG03 

PROG03 

PROG03 

PROr.Ol 

PROC,03 

PROr,03 

PROG03 

PROG03 

PROGOl 

PROG03 

PRUG03 

PROG03 

PROGOl 

PROC,03 

PRDG03 

PROG03 

PROG03 

Tn NF'••RECOR~. PROGOl 

PROG03 

PROG03 

' LINFS• PROG03 

PROG03 

INVALID KEY GO TO NO-t; IT, PR0(',03 

PROG03 

PROG03 

PROG03 

' LI "IF'S, PROG03 

• 

PA Gt 00n03 

• 

~ gs 
~ gi 
~ :II 
m CD 
m ~ 
:0 i'J 

SQ 
m 
::ti 
::ti 
-< 
c 
z 
< 
l> n 
0 
i 
iil ... :;· 

CQ 

~ 
i 
3 
~ 

c 
-0 
0 
)> 
-I 
m 
r 
m 
< m 
r 

-0 
)> .. 

~ er 
• 



• • 

LINE· NO, SE·;J, SOURCE STATE~ENT I DEN, 

00087 'lOYIJSS DISPLAY 'E~D OF JO~' UPON PRl~T!To PHOG03 

00088 009·')~6 CLOSE Cn• 1 NfhFJLo LIST, PROG03 

DIJQ69 'l09U57 ~TOP h'U"'l • PROG03 

00090 0091160 NO•» IT, PROG03 

nQ091 009rJb I DISPLAY ·T~IS R•CORO IS ~OT FOU~n· upnN P•JNTIT. PHOG03 

U0092 'l09[J62 DISPLAY KEY•(Q 'IPO'J PR!.ITIT, PROG03 

00[193 no9nb3 KOVE •PACE~ TO nYT, NRITE O~T AFfEq ADVA~C!NG I llNFo PROG03 

'1009~ J09P6S c,IJ T 0 I'~ I , PRQC,03 

• 

PAGE. oono~ I I 

!ii~ 
' (JI z ..... 
c ::0 
:S: CD m< 
~~ 

(/) 
-0 
m 
:0 
:0 
-< 
c: 
2 

< 
)> 
0 
0 

'C 

c .,, 
0 
)> 
-l 
m 
r 
m 
< m 
r 

.,, 
)> 

(1) ... 
DI 
r+ :;· 

CCI 

!f 
Cit 

ii 
3 -w 

G> ... mf 
(JI 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

16.4. OUTPUT LISTI NG 

.. .. c .. .. 
'T T 'T 'T 'T ... ... ... .... 
c ~ c c c ..., N "' N N 
c c C' C"• c 

> 

"' ... .. >c ... er " >--
:. ..: 7 

Q. "' .. c ... "' "- :>: u 

=:. :--

a: "' "' '" 

"" " 
.,. .. ... " c 

c " -, 

... 
0 

c. , L" 
a; "' ... " "' "' "' <r "' ~ 

..c -< ,. .,. < 

16-6 
UPDATE LEVEL PAGE 

• 

• 

• 



• 

• PART 6. APPENDIXES 

•• 



• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

Decimal 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 
20 
21 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

38 
39 
40 
41 
42 
43 
44 
45 
46 

47 
48 

49 
50 
51 
52 
53 
54 
55 

56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

Hexa

decimal 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
QA 

08 
QC 

OD 
OE 
OF 

10 

11 

12 
13 
14 
15 

16 
17 
18 
19 
1A 

18 
1C 
1D 
1E 

1F 

20 
21 
22 
23 
24 
25 

26 
27 
28 
29 
2A 

28 
2C 
2D 

2E 

2F 
30 
31 
32 
33 
34 
35 
36 
37 

38 
39 
3A 
38 
3C 

3D 

3E 
3F 

40 
41 
42 
43 
44 

SPERRY UNIVAC Operating System/3 A-1 
UPDATE LEVEL PAGE 

Appendix A. Character Set 

EBCDIC 

NUL 

PF 

HT 

LC 
DEL 

RES 

NL 

BS 

IL 

DS 

sos 
FS 

BYP 
LF 

EOB 
PRE 

SM 

PN 

RS 

UC 
EDT 

SP 

BO-Column 

Card Code 

12-0-9-8-1 

12-9-1 
12-9-2 
12-9-3 

12-94 
12-9-5 

12-9-6 
12-9-7 
12-9-8 

12-9-8-1 

12-9-8-2 

12-9-8-3 

12-9-B-4 

12-9-8-5 

12-9-8-6 

12-9-8-7 

12-11-9-8-1 

11-9-1 

11-9-2 

11-9-3 
11-9-4 

11-9-5 

11-9-6 
11-9-7 

11-9-8 

11-9-8-1 

11-9-8-2 

11-9-8-3 
11-9-BA 

11-9-8-5 

11-9-8-6 
11-9-8-7 

11-0-9-8-1 

0-9-1 
0-9-2 

0-9-3 
0-9-4 

0-9-5 

0-9-6 
0-9-7 

0·9·8 
0-9-8-1 

0-9-8-2 

0-9-8-3 

0-9-8-4 

0-9-8-5 

0-9-8-6 

0-9-8-7 
12-11-0-9-8-1 

91 
9-2 
9.3 
9.4 
9~5 

9,; 
9.7 

98 
9-8-1 

9-8-2 

9-8-3 
9-8-4 

9-8-5 

9-8-6 
9-8-7 
NO PUNCHES 

12-0-9-1 
12-0-9-2 

12-0-9-3 

12-0-9-4 

Console 
Keyboard 

Code 

!EBCDIC) 

CARR RET(CR) 

LINE FEEO(LF) 

~{EOMl 

SPACE (SP) 

NO PUNCH 
3 I 12 
4 I 11 

1I12,11 

5 Io 
2 I 12.0 
1I11.0 
6 ! 12,11,0 

918 
9.318.12 
9,418.11 
9,1 JB,12,11 

9.518.0 
9,218,12,0 

9,718,11,0 

9,6 8,12,11,0 

l l 
8 8 

p p 

0 0 
s 

I 

T 
I 

0 
I 

0 
N N 

s 

0, 4, 

1, 5, 

2, 6, 
3, 7, 

Decimal 

69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

85 
86 
87 
88 

89 
90 
91 
92 
93 
94 

95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 

110 
111 
112 

113 
114 

115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 

Hexa
decimal 

45 
46 
47 
48 

49 
4A 

48 

4C 

4D 
4E 

4F 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
5A 

58 
5C 

5D 

5E 

5F 

60 
61 
62 
63 
64 

65 
66 
67 
68 
69 
6A 
68 
6C 

6D 
6E 
6F 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
78 
7C 
7D 
7E 
7F 

80 
81 

EBCDIC ® 

< 

+ 
! 
& 

/I 

BO-Column 

Card Code 

12-0-9-5 

12-0-9-6 

12-0-9-7 

12-0-9-8 
12-8-1 

12-8-2 

12-8-3 

12-8-4 

12-8-5 

12-8-6 

12-8-7 

12 
12-11-9-1 

12-11-9-2 

12-11-9-3 

12-11-9-4 

12-11-9-5 

12-11-9-6 
12-11-9-7 

12-11-9-8 

11-8-1 

11-8-2 

11-8-3 

11-8-4 

11-8-5 

11-8-6 

11-8-7 

11 
0·1 
11-0-9-2 

11-0-9-3 

11-0-9-4 

11-0-9-5 

11-0-9-6 
11-0-9-7 

11-0-9-8 

0-8-1 
l(vert. bar) 12-11 

,(Comma) 0-8-3 

% 0-8-4 
~ (Underscore) 0-8-5 

> 0·8·6 
0-8·7 

12·11-0 

12-11-0-9-1 

12-11-0-9-2 

12-11-0-9-3 

12-11-\J-9-4 

12-11-0-9-5 

12-11-0-9-6 

12-11-0-9-7 

12-11-0-9-8 

8·1 
8-2 

# 8-3 

@ 84 
'(Prime or Apos) 8-5 

8·6 
"(Quotes) 8-7 

12-0-8-1 

12-0-1 

< 

& 

/I 

Console 

Keyboard 

Code 

IEBCDICI 

l!vert. bar) 
, ~Comma) 

% 
_(Underscore) 

> 

# 
@ 

'~Prime or Aposl 

"(Quotesl 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

Decimal 

130 
131 
132 
133 
134 
135 
136 
137 
13S 
139 
140 
141 
142 
143 
144 
145 
146 

147 

14S 
149 
150 
151 
152 
153 
154 
155 
156 
157 

158 

159 
160 
161 
162 

163 

164 
165 
166 
167 

168 

169 
170 
171 
172 
173 
174 
175 
176 
177 
17S 
179 
1SO 

1S1 
1S2 
1S3 
1S4 

1S5 
1S6 
187 

1SS 
1S9 
190 
191 

NOTES: 

Hexa
decimal 

82 

83 
84 

85 

86 

S7 
88 
S9 
SA 

SB 

SC 
so 
SE 
BF 

90 
91 
92 
93 
94 
95 
96 
97 
9S 
99 
9A 

9B 

9C 

90 
9E 

9F 

AO 
Al 

A2 

A3 
A4 

A5 

A6 
A7 

AS 

A9 

AA 
AB 

AC 

AO 

AE 

AF 

BO 
Bl 

82 

B3 
B4 

B5 
B6 

B7 

BS 

B9 

BA 

SB 

BC 
BO 
BE 

BF 

EBCDIC @ BO-Column 
Card Code 

12-0-2 
12-0-3 

12-0-4 
12-0-5 
12-0-6 
12-0-7 
12-0-8 
12-0 9 

12-0-8-2 

12-0-8-3 

12-0-8-4 

12-0-8-5 

12-0-8-6 

12-0-8 7 

12 11-8 1 

12 11-1 

12 11-2 
12-11-3 

12 11-4 

12 11-5 

12-11-6 

12-11-7 
12-11-8 

12-11-9 

12-11-8 2 

12-11-8 3 

12 11-8-4 

12-11-8-5 

12-11-8-6 

12 11-8 7 

11-0-8-1 

11-0-1 

11 0-2 

11-0-3 
11-0-4 
11-0-5 

11-0-6 
11-0-7 
11-0-8 

11-0-9 

11-0-8-2 

11-0-8-3 

11-0-8-4 

11-0-8 5 

t 1-0-8-6 
11-0-8-7 

12-11-0-B 1 

12 11-0-1 

12-11-0 2 
12-11-0-3 

12 11-0-4 

12-11-0-5 

12 11-0-6 
12 11-0-7 

12-11-0-8 

12-11-0-9 

12-11-0-82 

12-11-0-8-3 

12-11-0-8-4 

12 11-0-8-5 

12-11-0-8-6 

12-11-0-8-7 

G) Punch patterns used to store the 
corresponding hexadecimal 
representation in the indicated bit 
positions of a byte. 

QD Lowercase letters are an industry 
standard and are not printable on the 

SPERRY UNIVAC Series 90 Printers 
without special print options. 

,j~ Some graphic, card code, and 
hexadecimal assignments may differ 
depending upon the device, 
application, or installation policy. 

Console 
Keyboard 

Code 
(EBCDIC) 

Decimal 

192 
193 
194 
195 
196 
197 
19S 
199 
200 
201 
202 
203 
204 
205 
206 
207 
20S 
209 
210 

211 

212 

213 
214 

215 
216 

217 
21S 

219 

220 
221 
222 

223 
224 

225 

226 

227 

22S 
229 
230 
231 

232 
233 
234 
235 
236 

237 
23S 
239 
240 
241 

242 

243 
244 
245 

246 

247 
24S 
249 
250 
251 
252 
253 
254 

255 

co 
Cl 

C2 

C3 
C4 

C5 

C6 
C7 
cs 
cs 
CA 

CB 
cc 
CD 

CE 
CF 
DO 
01 
02 
03 
04 
D5 

D6 
07 
OS 

D9 

DA 

DB 

DC 

OD 
DE 
OF 
EO 
El 
E2 

E3 

E4 

E5 

E6 

E7 

ES 
E9 
EA 

EB 
EC 
ED 
EE 
EF 
FO 
F1 
F2 

F3 
F4 

F5 

F6 
F7 

FS 
F9 

FA 

FB 

FC 
FD 
FE 

FF 

PZ 

A 

0 

F 

G 

MZ 

M 

N 

0 
p 

Q 

R 

u 
v 
w 

y 

z 

EBCDIC 
BO-Column 
Card Code 

12-0 

12 1 
12-2 
12-3 

12-4 

12-5 

12-6 

12 7 
12 s 
12-9 
12-0-9 8-2 

12-0-9-8-3 
12-0-9 84 
12-0·9 8 5 

12-0-9-8-6 
12-0-9-8 7 

11-0 

11 1 

11 2 
11-3 

114 

11 5 

11-6 
11-7 

11-8 

11-9 
12-11-9-8 2 

12-11-9-8-3 

12-11-9-8-4 

12-11-9-8-5 

12-11-9-8-6 

12-11-9-8-7 

0-8-2 
11-0-9-1 

02 
03 

04 
05 
0-6 
07 
C>S 
09 
11-0-9-8 2 

11-0-9-8-3 

11-0-9-84 
11-0-9-8-5 

0

11-0-9-8-6 
l 1 ·0·9·8 7 
0 

12-11·0·9-8-2 

1 2-11 ·D-9·8-3 

1 2-11-0-9-8-4 

12 1 1-0-9-8-5 

12 11-0-9-8-6 

12-11-0-9-8-7 

UPDATE LEVEL 

M 

N 

0 
p 

Q 

T 

u 
v 
w 
x 
y 

z 

Console 
Keyboard 

Code 
(EBCDIC) 

A-2 
PAGE 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 A B-1 
UPDATE LEVEL PAGE 

Appendix B. Reserved Words 

Reserved words are part of the COBOL language structure and cannot be used for data or procedure names. 

ACCEPT CLOSE DISPLAY HIGH-VALUE 
ACCESS COBOL DIVIDE HIGH-VALUES 
ACTUAL COMMA DIVISION 1-0 
ADD COMP DOWN 1-0-CONTRO L 
ADVANCING COMP-1* EBCDIC* IDENTIFICATION 
AFTER COMP-2* ELSE IF 
ALL COMP-3* END IN 
ALPHABETIC COMP-4* ENDING INDEX 
ALTER COMPUTATIONAL ENTER INDEXED 
ALTERNATE COMPUTATIONAL-1 * ENTRY* INDICES* 
AND COMPUTATIONAL-2* ENVIRONMENT INITIATE 
APPLY* COMPUTATIONAL-3* EQUAL INPUT 
ARE COMPUTATIONAL-4* EQUALS* INPUT-OUTPUT 
AREA COMPUTE ERROR INSERT* 
AREAS CONFIGURATION EVERY INSTALLATION 
ASCENDING CONTAINS EXAMINE INTO 
ASCII* COPY EXCEEDS* INVALID 
ASSIGN CORR EXHIBIT* IS 
AT CORRESPONDING EXIT JUST 
AUTHOR CURRENCY EXTENDED JUSTIFIED 
BEFORE CYLINDER-INDEX* EXTENDED-INSERTION* KEY 
BEGINNING CY LI ND ER-OVERFLOW* FD LABEL 
BLANK DATA FILE LEADING 
BLOCK DATE-COMPILED Fl LE-CONTROL LEFT 
BLOCK-COUNT* DATE-WRITTEN FILE-LIMIT LESS 
BLOCK-LENGTH-CHECK* DECIMAL-POINT Fl LE-LIMITS LINE 
BUFFER-OFFSET* DECLARATIVES Fl LE-PREPARATION* LINES 
BY DEPENDING FILLER LINKAGE* 
CALL* DESCENDING FIRST LOCK 
CARD-PUNCH* DIRECT* FOR LOW-VALUE 

DISC* FORM-OVERFLOW* LOW-VALUES 

CARD-READER* DISC-8411* FROM MAP* 

CARD-READER-51* DISC-8414* GENERATE MASTER-INDEX* 

CARD-READER-66* DISC-8415* GIVING MEMORY 
CHARACTER DISC-8416* GO MODE 
CHARACTERS DISC-8418* GREATER MODULES 

CHANGED* DISC-8430* MONITOR* 

DISC-8433* MORE-LABELS* 
MOVE 

*Extension to American National Standard COBOL (1968). 



8057 Rev. 2 
UP-NUMBER 

MULTIPLE 
MULTIPLY 
NAMED* 
NEGATIVE 
NEXT 
NO 
NOT 
NOTE 
NUMERIC 
OBJECT-COMPUTER 
OCCURS 

OF 
OFF 
OMITTED 
ON 
OPEN 
OPTIONAL 
OR 
ORGANIZATION* 
OTHERWISE* 

~ OUK-90-250* 
OUK-90-300* 

t OUK-90-400* 
OUK-90-600* 
OUK-90-700* 

t OUTPUT 
PERCENT* 
PERFORM 
PIC 
PICTURE 
POSITION 
POSITIVE 
PRINTER* 
PROCEDURE 
PROCEED 
PROCESSING 
PROGRAM* 
PROGRAM-ID 
QUOTE 
QUOTES 
RANDOM 
READ 
READY* 
RECORD 
RECORDING* 
RECORDS 
REDEFINES 
REEL 
RELATIVE* 
RELEASE 
REMAINDER 
REMARKS 
RENAMES 

SPERRY UNIVAC Operating System/3 

REPLACING SYSCHAN-14* 
RERUN SYSCHAN-15* 
RESERVE SYSCOM* 
RESET SYSCONSOLE* 
RESTRICTED* SYSDATE* 
RETURN SYSERR* 
REVERSED SYSERR-0* 
REWIND SYSERR-1* 
REWRITE* SYSERR-2* 
RIGHT SYSERR-3* 
ROUNDED SYSERR-4* 
RUN SYSERR-5* 
SAME SYSERR-5* 
SD SYSERR-6* 
SEARCH SYSERR-7* 
SECTION SYSERR-8* 
SECURITY SYSERR-9* 
SEEK SYSERR-10* 
SEGMENT-LIMIT SYSERR-11 * 
SELECT SYSERR-12* 
SENTENCE SYSERR-13* 
SEPARATE* SYSERR-14* 
SEQUENTIAL SYSERR-15* 
SET SYSERR-16* 
SIGN* SYSERR-17* 
SIZE SYSERR-18* 
SORT SYSERR-19* 
SOU ACE-COMPUTER SYSERR-20* 
SPACE SYSERR-21* 
SPACES SYSERR-22* 
SPECIAL-NAMES SYSERR-23* 
STANDARD SYSERR-24* 
STATUS SYSERR-25* 
STOP SYSERR-26* 
SUBTRACT SYSERR-27* 
SYMBOLIC* SYSERR-28* 
SYNC SYSERR-29* 
SYNCHRONIZED SYSERR-30* 
SYSCHAN-1* SYSERR-31* 
SYSCHAN-2* SYSIN* 
SYSCHAN-3* SYSIN-96* 
SYSCHAN-4* SYSIN-128* 

SYS LOG* 
SYSCHAN-5* SYSLST* 

SYSSWCH* 
SYSCHAN-6* SYSSWCH-0* 
SYSCHAN-7* SYSSWCH-1* 
SYSCHAN-8* SYSSWCH-2* 
SYSCHAN-9* SYSSWCH-3* 
SYSCHAN-1 O* SYSSWCH-4* 
SYSCHAN -11 * SYSSWCH-5* 
SYSCHAN-12* SYSSWCH-6* 
SYSCHAN-13* SYSSWCH-7* 

SYSTIME* 

*Extensions to American National Standard COBOL (1968). 

B B-2 
UPDATE: LEVEL PAGE 

TALLY • TALLYING 
TAPE 
TAPE-6* 
TAPES* 
TERMINATE 
THAN 
THEN* 
THROUGH 
THAU 
TIME* 
TIMES 
TO 
TRACE* 
TRACKS* 
TRAILING* 
TRANSFORM* 
UNEQUAL* 
UNIT 

UNIVAC-9000* 
UNIVAC-9025* 
UNIVAC-9030* 

UNIVAC-9040* 
UNIVAC-9060* 
UNIVAC-9070* 
UNIVAC-920011* 
UNIVAC-9300* • UNIVAC-930011* 
UNIVAC-9400* 
UNIVAC-9480* 
UNIVAC-9700* 
UNTIL 
UP 
UPON 
USAGE 

USE 

USING 
VALUE 
VALUES 
VARYING 
VERIFY* 
WHEN 
WITH 
WORDS 
WORKING-STORAGE 
WRITE 
ZERO 
ZEROES 
ZEROS 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 C-1 
UPDATE LEVEL PAGE 

Appendix C. Intermediate Results 
in Arithmetic Operations 

C.1. GENERAL 

For certain arithmetic statements in the SPERRY UNIVAC Operating System/3 (OS/3) COBOL, the compiler 
generates code that uses internal work areas for storage of intermediate results. Intermediate results may be required 
in the following types of statements: 

• ADD, where more than one operand precedes TO or GIVING. 

• SUBTRACT, where more than one operand precedes FROM or GIVING. 

The compiler provides a description for an intermediate result which is appropriate for use in the operation or series 
of operations for which it is required . 

C.2. ADD AND SUBTRACT STATEMENTS 

The description of the intermediate result area is determined by forming the composite of operands (6.6.1.1) and 
appending one additional digit in the most significant position to contain overflow when 10 or fewer operands 
immediately follow the verb, or two digits for more than 10 operands . 



• 

• 

• ! 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 D-1 
UPDATE LEVEL PAGE 

Appendix D. Compiler Diagnostics 

0.1. GENERAL 

The SPERRY UNIVAC Operating System/3 (OS/3) basic COBOL compiler generates system console and diagnostic 
messages during compilation. System console messages relate to the compilation environment and are displayed 
when the error condition is encountered. The job is terminated and the error condition must be corrected before the 
job can be rerun. The diagnostic messages flag errors encountered in the source program during compilation. A list of 
all diagnostic messages generated is output after all other printer options are satisfied. 

0.2. DIAGNOSTIC MESSAGES 

The diagnostic listing is produced as its last printed output. Each diagnostic message contains the compiler-generated 
line number on which the error occurred, the diagnostic severity code, the diagnostic number, and the diagnostic 

message text. 

The diagnostic severity code definitions are: 

P (precautionary) 

No source language error was detected, but an unusual or potentially undesirable condition was noted by 

the compiler. 

C (changed) 

A character, word, clause, entry, or statement in the source program is omitted or used incorrectly. To 
compensate for the error, the item has been changed by the compiler to avoid its deletion and reduce the 
probability of error propagation. Execution of the object time program may give unpredictable results. 

U (uncorrectable) 

A source language error was detected which caused the compiler to delete a character, word, clause, 
entry, or statement from the source program. The compilation continues, but other errors may result 
because of the deleted item. Execution of the object program, in general, gives unpredictable results . 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 D-2 
UPDATE LEVEL PAGE 

S (compiler restriction exceeded) 

The compilation continues but, to generate code for the excessive items, a recompilation is necessary 
after source program modification or with more storage assigned to the compiler. 

The following chart exptains the error messages and related recovery procedures. The messages are listed in 
ascending order based on the message number. 

• 

• 

• 



• • 
Message Severity D iagnosto c Message 
Number Code l Reason 

001 p ERROR IN SOURCE LINE SEQUENCE The characters in columns 

NUMBERING. 1 to 6 of the source line 

are alphanumerically less 

than columns 1 to 6 of the 
previous source line. 

002 c AREA-A NON-BLANK WITH HYPHEN A nonblank character was 
IN COLUMN 7. found in area A (columns 

8 to 11) when continuation 

was specified by a hyphen 
in column 7. 

003 c ERROR IN COLUMN 7 OF SOURCE An invalid character was 
LINE. found in column 7. 

004 c SPACE FOLLOWING LEFT One or more spaces were 
PARENTHESIS. detected following a left 

parenthesis. 

005 c NON-NUMERIC LITERAL CONTINUA- The continued portion of a 

TION DID NOT BEGIN WITH QUOTE nonnumeric literal did not 
OR APOSTROPHE. begin with a quote or 

apostrophe. 

006 c IMPROPER TERMINATION OF NON- The second of the two quotes 
NUMERIC LITERAL literal. or apostrophes that enclose 

a nonnumeric literal is not 

followed by a space or 

punctuation and a space. 

Explanation 

Rule 

The sequence number, 

columns 1 to 6 of the 

source line, is an 
optional entry used 

only by the programmer 

to establish a sequence 

among the various lines 
of coding. 

When continuation is 
specified by hyphen in 

column 7, the contin-

ued portion must begin 
in area B (columns 12 

to 72). 

The only acceptable 

ch-aracters for column 

7 are the space, hyphen 

(continuation), or 

asterisk !comment). 

In OS/3 COBOL, spaces 

must not separate left 

or right parentheses 

from that which they 

enclose. 

When continuation of a 

nonnumeric literal is 

specified by a hyphen 

in column 7, the con-
tinued portion must 

begin with a quote or 

apostrophe in area B. 

The terminating quote 

or apostrophe enclosing 

a nonnumeric literal 
must be followed by a 

space or punctuation 

and a space. 

Recovery 

The source line is processed 

as though the error had not 

occurred. 

The first nonblank character 

after column 7 is accepted 
as the beginning of con-

tinuation. 

A space is assumed to have 

been found in column 7. 

Processing continues as if the 

space had not occurred. 

Processing continues as if a 

quote or apostrophe occurred 

prior to the first nonblank 

character. 

Processing continues as if a 

space had occurred. The first 
30 characters of the nonnumeric 

literal are noted in the 

diagnostic. 

• c 00 
~o z (11 

c-..i 
s: :D 
CD Cl> m::: 
::0 l\J 

c 
-0 
0 
)> 
-I 
m 
r 
m 
< m 
r 

-0 

en 
"'tJ 
m 
::0 
::0 
-< 
c 
z 
< 
)> 
(") 

0 
"C 
CD 
Q1 
r+ 
3· 

CCI 

!R 
i 
3 -w 

)> 
c;iO 
ml 

w 



I Message Severity Diagnostic Message 
Number Code 

I I Reason 

007 c EXCESSIVE CHARACTER STRING A character string which 
char-string. is greater than its maximum 

legal size was detected. 

008 u INVALID CHARACTER DETECTED An invalid character was 

IN char-string. found in the character 
string displayed in the 
diagnostic. 

009 u ILLEGAL CHARACTER DETECTED An illegal character was 

IN char-string found in the character 
string displayed in the 
diagnostic. 

010 c NON-NUMERIC LITERAL OF Two quotes or apostrophes 
SIZE 0 ENCOUNTERED with no intervening 

characters were encountered. 

011 c HYPHEN EXPECTED IN COLUMN 7. A nonnumeric literal is 
being continued and a 
hyphen is missing from 
column 7. 

012 c HYPHEN IN COLUMN 7 AND There is no terminating 

QUOTE OR APOSTROPHE EXPECTED. quote or apostrophe on the 
previous source line and no 
hyphen in column 7 or quote 
or apostrophe on the current 
source line to indicate 
continuation. 

013 c SPACE PRECEDING RIGHT One or more spaces have been 
PARENTHESIS. detected preceding right 

parenthesis. 

• •• 

Explanation 

Rule 

Maximum legal sizes are: 
132 characters for non-
numeric literals, 20 
characters for numeric 
literals (including sign 
and decimal point), 30 
characters for nonliterals. 

An invalid character is 
one which is in the COBOL 
character set but which is 
made invalid by the context 
in which it appears, e.g .. 
P'CTURE. 

An illegal character is 
one that is not in the 
COBOL character set, 

e.g .. # 

A nonnumeric literal 
must have at least one 
character between the 
enclosing quotes or 
apostrophes. 

A hyphen in column 7 and 
a qu ate or apostrophe in 
area B are needed to con-
tinue a nonnumeric literal. 

Continuation of a non· 
numeric literal is specified 
by a hyphen in column 7 
and a quote or apostrophe 
in area B preceding the 
continued portion of the 
nonnumeric literal. 

In OS/3 COBOL, spaces 
must not separate left or 
right parentheses from 
that which they enclose. 

Recovery 

Processing continues after 
the excessive characters 
are discarded. The first 
30 characters of the string 
are noted in the diagnostic. 

The entire string is deleted. 

The entire string is deleted. 

A nonnumeric literal of one 
space character is assumed. 

Processing continues as if a 
hyphen were encountered. 

The nonnumeric literal is 
terminated on the previous 
source line at column 72. 

Processing continues as if 
the space had not occurred. 

• 

c CX> 
"tl 0 
' (11 z -..J 

c JJ s: (I) 

CD :<: 
~ tV 

c 
"tl 
0 
)> 
-i 
m 
r 
m 
< 
m 
r 

(I) 
"g 
m 
:xJ 
:xJ 
< 
c 
2 
< 
~ 
0 

~ ... 
:;· 

CQ 

!f 
s 
3 w 

"tl 
)> 
Gl 0 
ml 
~ 



• • 
Explanation 

Mesage Seventy Diagnostic Mesage 
Number Code 1 Reason Rule 

014 u SYNTAX REQUIRES clause, The character-string listed See applicable language 

char-string INVALID. as invalid in the message formats in this manual. 
text has produced a syntax 
error. The required item 
is a source string that 
would have correctly 
completed the clause, 
entry, or statement in 

error. 

Recovery 

If the error appears within 
a clause, such as ACCESS or 
OCCURS, the clause is deleted. 

If the error appears within 
an entry, such as the assign 
device type or an invalid name 

following FD, the entire entry 
is discarded. 

If the error appears within a 
statement, the statement is 

ignored. 

When a syntax error occurs, 

source strings are ignored 
until one of the following 
listed recovery types is 
detected, whereupon processing 
resumes. Recovery is possible 
on the string listed as invalid 
in the diagnostic. 

IDENTIFICATION, PROGRAM-
ID, AUTHOR, INSTALLATION, 
DATE-WRITTEN, DATE-
COMPILED, SECURITY, 
REMARKS, ENVIRONMENT 
CONFIGURATION, SOURCE-
COMPUTER, OBJECT-
COMPUTER, SPECIAL-NAMES, 
any SPECIAL-NAME definition, 
INPUT-OUTPUT, FILE-
CONTROL, SELECT, FOR, 
FILE-LIMIT, ACCESS, ACTUAL, 
SYMBOLIC, RELATIVE, 
ORGANIZATION, RESERVE, 
1-0-CONTROL, RERUN, SAME, 
APPLY, DATA, FILE, FD, SD, 
BLOCK, RECORD, LABEL, 
RECORDING, DATA, VALUE, 
OCCURS, PICTURE, USAGE 
SYNCHRONIZED, JUSTIFIED, 
BLANK, COMPUTATIONAL, 
COMP-1, COMP-2, COMP-3, 
COMP-4, DISPLAY, INDEX, 
SIZE, MAP, level-number 
WORKING-STORAGE, LINKAGE, 
PROCEDURE, Procedure-name 
in Area A, any verb. 

• c -c 00 .o z Cl'1 
c -..J 

s: J'J 
CD CD 
m :"' 
:IJ r-.J 

(I) 
"'C 
m 
:c 
:c 
-< 
c 
2 

< 
)> 
n 
0 
i 
ii1 
~:::s 
cc 

!f 
~ 

c 
-c 
CJ 
~ 
-I 
m 
r 
m 
< m 
r 

-c 

3 -w 

~ 
QO 
ml 

Cl'1 



Message Severity 
Diagnostic Message 

Number Code 
Rmson 

015 s COMPILER ERROR This diagnostic is issued 
only as the result of a 
compiler /system error. 

016 u Fl LE-NAME file-name NOT The file-name being refer-
PREVIOUSLY SELECTED. enced has not been defined 

in a SELECT entry. 

017 u EXTERNAL-NAME external-name The external-name being 
NOT PREVIOUSLY ASSIGNED. referenced was 'not assigned 

in a SELECT entry. 

01B u clause PREVIOUSLY SPECIFIED An entry, such as APPLY 
FOR filename. BLOCK-COUNT, was multiply 

specified for the listed 
file-name. 

019 u name PREVIOUSLY DEFINED AS The listed name appears 
EXTERNAL-NAME OR FILE-NAME. in more than one SELECT 

entry. 

020 u MISSING DATA DIVISION HEADER. The PROCEDURE DIVISION 
header has been en-
countered without prior 
detection of the DATA 
DIVISION header. 

021 u MISSING DATA AND PROCEDURE The end of the source 
DIVISION HEADER. program has been reached 

without a DATA DIVISION 
or PROCEDURE DIVISION 
header being encountered. 

• • 

Explanation 

Rule 

A file-name referenced 
in a RERUN, MULTIPLE, 
VERIFY, BLOCK-COUNT 
or SAME AREA entry 
must appear in a 
SELECT entry. 

The external-name speci-
lied in a RERUN entry 
must match the assigned 
external-name or, if 

external-name was not 
specified, the first eight 
characters of the 
SELECT file-name. 

An entry, such as APPLY 
BLOCK-COUNT, should be 
specified only once for 
a given file. 

File-names and external-
names specified in 

SELECT entries must be 
unique. 

Al I four division headers 
must appear in every source 

program and conform to 
the following order: 
IDENTIFICATION, ENVI-
RONMENT, DATA, 
PROCEDURE. 

All four division headers 
must appear in every 
source program and 
conform to the following 
order: IDENTIFICATION, 
ENVIRONMENT, DATA, 
PROCEDURE. 

Recovery 

The occurrence of this 
diagnostic should be 
reported using the SUR 
procedure. 

The referenced file-name is 
deleted from the entry. 

The RERUN entry is deleted. 

The duplicate entry is deleted. 

The entire SELECT entry is 
deleted. 

Processing continues with the 
PROCEDURE DIVISION header. 
If data division entries exist, 
they are ignored. 

If data division entries or 
procedure division statements 
exist, they are ignored. 

., 

Coo 
7' 0 zC11 
c....i 
s: JJ 
(I] .. 

m~ 

:II "' 

Cl) 
"'Cl 
m 
:1' 
:1' 
-< 
c 
z 
< 
)> 
n 
0 
i 
Ql .... 
:r 
cc 

!f s 

c 
"O 
0 
)> 
-I 
m 
r 
m 
< m 
r 

"O 

3 
~ 

)> 
G>O 
ml en 



• • 
I 

Message Severity Diagnostic Message 

I 
Number Code 

Reason 

022 c RESERVE INTEGER literal The number of alternate 
PROCESSED AS 1. areas specified in the 

RESERVE clause is not 
acceptable. 

023 u Fl LE-NAME file-name The listed file-name appears 
CONFLICTS WITH PREVIOUS in multiple SAME AREA 
SAME AREA CLAUSE. or SAME RECORD AREA 

clauses. 

024 u clause CLAUSE IS OUTSIDE A clause, such as SYM-
SELECT ENTRY. BOLi C, is not associated 

with the previously com-

pleted SELECT entry. 

025 u CURRENCY SIGN SYMBOL The currency sign specified 
character I NV AL ID. is not contained within the 

valid currency sign character 
set. 

026 p EXTERNAL-NAME external-name The external-name contains 
TRUNCATED. more than eight characters. 

027 c HEADER REQUIRED AT THIS POINT. The current source line 

must be preceded by the 
listed header. 

Explanation 

Rule 

The RESERVE clause 
must specify one alternate 
area, or none. 

A file-name cannot be 
specified in more than 
one SAME AREA or SAME 
RECORD AREA clause. 

Clauses associated with 
a ;:>ELECT entry must 
appear within the entry, 

i.e., prior to the period 
that terminates the entry. 

The currency sign symbol 
must be within the 
CO BO L character set 
but cannot be one of 
the following: The digits 
0 through 9 A B C D E P R 
S V X Z space • , + ~ . ; 
()or". 

Only the first eight charac-
ters of the external-name 
are meaningfu I. 

The Fl LE-CONTROL header 
must precede the first 
SELECT entry, the 
SPECIAL-NAMES header 
must precede the first 
special-name, and the 
1-0-CONTROL header must 
precede the first RERUN, 
SAME, APPLY, or 
MULTIPLE FILE entry. 

• 
Recovery 

One alternate area is allocated 
for this file. 

The file-name in error 
is deleted from the SAME 
AR EA clause. 

The clause is deleted. 

The clause is deleted and the 
currency sign remains a $. 

The excess characters in the 
external-name are deleted. 

The header is assumed to have 
been encountered. 

c 00 
7' 0 z 01 
c -.J 
s: :0 
m"' m :"' 
Jl "" 

en 
-0 
m 
:0 
:0 
< 
c 
z 
< 
)> 
(") 

0 
'C 
CD ... 
Cl) 

!:!'. 
:I 
IQ 

!f s 

c ,, 
0 
)> 
-I 
m 
r 
'Tl 

< m 
r 

,, 

3 -w 

~ Cl 
ml 

-..! 



Message Severity 

Number Code 
Diagnostic Message 

R•son 

028 c CLAUSE CONFLICTS WITH ACCESS OPTIONAL and RESERVE 
METHOD SPECIFICATION. are applicable only to 

disc files with ACCESS 
SEQUENTIAL and 
ORGANIZATION 
SEQUENTIAL. 

029 u file-name PREVIOUSLY SPECI Fl ED The listed file-name appears 

AS RERUN CONTROLLER. in multiple RERUN entries 
as the RERUN controller. 

030 u INVALID SPECIFICATION OF The listed RERUN receiver 

RERUN RECEIVER external-name. is not a tape or disc. 

')31 s ADDITIONAL MEMORY REQUIRED FOR The compiler does not have 

SELECT PROCESSING. sufficient main storage 
to process all of the 
SELECT entries. 

032 u DUPLICATE CLAUSE OR HEADER. A clause such as ACTUAL 
or a header such as 
AUTHOR has been multiply 
specified. 

033 u HEADER OUT OF SEQUENCE. The header on the indicated 
line number is out of sequence. 

034 u CLAUSE APPLIES ONLY TO The clause or entry at the 

RANDOM ACCESS FILES. indicated line number applies 
only to random access files. 

• • 

Explanation 

Rule 

See Section 11. 

A given file may control 
no more than one RERUN 
receiver. 

RERUN receivers must be 
assigned to a tape or disc. 

Each SELECT entry requires 
26 bytes of main storage plus 
1 byte for each character in 
the file-name. To increase 
the number of SELECTS l 
that can be processed. re com 
pile using smaller file-names 
or with more main storage 

assigned to the compiler. 

All clauses must be unique 
within their assodated 
entries. All headers 

must be unique. 

The order of headers must 
be as deli ned. 

VERIFY, RANDOM. RE-
STRICTED, ORGANIZA-
TION, ACTUAL. SYMBOL-
IC, RELATIVE, or MUL-
TIPLE apply only to 
random access files. 

Recovery 

The clause in error is deleted. 
Line number reflects last state-
ment in the SELECT clause. 

The RERUN entry is deleted. 

The RERUN entry is deleted. 

This SELECT entry and all others 
that follow are deleted. 

The duplicate clause or header 
is deleted. 

The header is deleted. 

The clause or entry is deleted. 

• 

c 00 
7l 0 z en 
c -..J 

s: :0 
Ill CD 
m :"
JJ N 

c 
'ti 
c 
)> 
-I 
m 
r 
m 
< m 
r 

,, 

Cf) ,, 
m 
:0 
:0 
-< 
c 
z 
< 
)> 
n 
0 
i 
~ 
r+ 

:r 
CCI 

!f en s 
3 -w 

)> 0 
Gl I 
moo 



• • 
Message Severity 

Diagnostic Message 
Number Code 

Reason 

035 u CLAUSE NOT APPLICABLE FOR The clause or entry at the 
file-name. indicated line number is 

not applicable for the 
listed file-name. 

036 c INVALID ACCESS-TYPE. An invalid combination of 
ACCESS, ORGANIZATION, 
and KEY clauses has been 
specified. 

037 c COPY STATEMENT REQUIRES Something other than a 
PERIOD. period was found following 

the library name of a COPY 
statement. 

038 c LABEL RECORDS CLAUSE OMITTED A LABEL RECORDS clause 
FROM file-name. has not been specified for 

the listed file-name. 

039 u MISSING PROCEDURE DIVISION The end of the source pro-
HEADER. gram has been reached 

without detecting the 
PROCEDURE DIVISION 
header. 

Explanation 

Rule 

The following clauses 
or entries are not 
applicl!ble for the 
indicated devices: 

BLOCK-COUNT, CARD-
READER, CARD-
PUNCH, PRINTER, 
RANDOM ACCESS 
DEVICE. 

MULTIPLE - CARD-
READER, CARD-
PUNCH, PRINTER. 

OPTIONAL - CARD-
PUNCH, PAINTER. 

The combinations of 
ACCESS, ORGANIZATION, 
and KEY clauses are 
invalid. See Section 11. 

A period must follow the 
library name of a 
COPY statement. 

The LABEL RECORDS 
clause is required for all 
files. 

All four division headers 
must appear in every 
program and conform 
to the following order: 
IDENTIFICATION, ENVIRON-
MEN~DATA,PROCEDURE. 

• 
Recovery 

The clause or entry is deleted. 

The file is classified as ACCESS 
SEQUENTIAL, ORGANIZA-
TION SEQUENTIAL. 

A period is assumed to have been 
present. 

LABEL RECORDS OMITTED 
is assumed. 

If procedure division statements 
exist, they are deleted. 

~~ z U1 
c-.i 
~ JJ 
Ill (1) 

m :<= 
lJ I\.) 

c 
" 0 
)> 
-i 
m 
r 
m 
< m 
r 

sg 
m 
::0 
::0 
< 
c z 
< 
~ 
0 
i 
; 
..+ :;· 

CCI 

!f s 
3 -w 

" )> 
Gl Cl 
m I 

cc 



Explanation 
Meaage Severity Diagnostic M998ge 

Number Code 
Reason Rule 

040 c literal NOT A VALID LEVEL NUMBER. The listed level number is 1. Level number values 
erroneous because of its are restricted to 01 
value or use. through 49, 66*, 77, 

or 88. 
2. The level number of 

the ti rst data descri p-
tion following an FD* 
or SD must be 01. 

3. A level number 77 may 
not be used within the 
file section. 

t 
041 u clause CLAUSE I NV AUD WITH The listed clause is not 1. AREDEFINESclause 

ASSOCIATED LEVEL NUMBER. allowed with the specified may not be used with 
level number. or a statement a level number 66*, 
containing a value clause 88, or a 01 in the 
is not terminated with a file section. 
period. 2. A PICTURE clause 

may not be used with • a level number 66 * or 
88. 

3. The MAP clause is not 
allowed with level 
number 66* or 88. 

4. Multiple values can only 
appear with a level 
number 88. 

5. The OCCURS clause is 
not permitted with a 
level number 01, 66*, 
or 88. 

6. A RENAMES* clause can 
only be used with a level 
66*. 

7. The value clause cannot 
be used with a level 
number 66*. 

042 c REDEFINES MUST BE FIRST CLAUSE. The REDEFINES clause The REDEFINES clause 
was not the first clause must immediately follow 
in the data description. the name of the data 

description. 

*FD, RENAMES, and 66 available in extended compiler . 

• • 

Recov•y 

1. If a level number other than 
01 through 49, 66, 77, or 88 
is encountered, the level 
number is changed to 49 if 
the WORKING-STORAGE or 
LINKAGE SECTION header 
has not been encountered; 
otherwise, the level number 
is changed to 01. 

2. If the first data descriptor 
in a record is not 01, a 01 
filler is created by the com-
piler to precede the current 
data description. 

3. The level number is changed 
to 01. 

In rules 1 through 3, and 5 
through 7, the clause is 
deleted. For rule 4, the first 
value is accepted; all others 
are deleted. 

The REDEFINES clause is 
accepted. 

• 

~~ z U1 c -.J 

s: JJ 
CD "' m ~ 
JI r-.l 

c .,, 
0 
)> 

Cl> 
"'O 
m 
:tJ 
:tJ 
< 
c z 
< 
)> 
n 
0 
i 
D1 
r+ s· 
cc 

!R 
i 
3 w 

-I 
mm 
r 
m 
< m 
r 

.,, 
~o 
m.!. 

0 



• • 
Message Severity 

Diagnostic Message 
Number Code 

Reason 

043 u clause NOT SUPPORTED An obsolete COBOL clause 
has been encountered. 

044 c LEVEL NUMBER number MUST BEGIN The level number 01 or 77 
IN AREA-A. did not begin in area A. 

045 c COPY STATEMENT REQUIRES LIBRARY A COPY verb was not 
NAME, character string INVALID. followed by a library name. 

046 c OCCURS CLAUSE INTEGER INVALID. An OCCURS clause integer 
is 0 or greater than 65,535. 

047 c LIBRARY NAME character string The library name following 
EXCEEDS EIGHT CHARACTERS. the COPY verb was found 

to be longer than eight charac-
ters. 

048 u REMAINDER OF THE LINE A nonblank character was 
FOLLOWING COPY STATEMENT found in the remainder of 
MUST BE BLANK. the line on which the 

COPY statement appears. 

049 c DATA-NAME, FILE-NAME OR The name or number assigned 
A. to the file or data descrip-

tion begins in area A. 

Explanation 

Rule 

The SIZE clause is not 
within the OS/3 COBOL 
language. 

All 01 or 77 level numbers 
must start in area A. 

A library name: 

• is composed of no more 

than eight characters of the 
set A through Z, 0 
through 9, and the 
hyphen (-). 

• has at least one al-
phabetic U character. 

• does not have a hyphen 
as the first or last 
character. 

• is not a COBOL reserved 
word. 

The minimum OCCURS 
value is 1. The maximum 
OCCURS value is 65,535. 
(In Format 2of the 
OCCURS clause, integer-1 
may be 0.) 

The name of a library 
structure may be a max-
imum of eight characters. 

Since the COPY statement 
directs the compiler to 
access new Ii nes of 
COBOL code, nothing 
may follow the COPY 
statement on the same 
line. 

File-names, data-names, 
level number, and Iii ler 
must not begin in area A. 

• 
Recovery 

The SIZE clause is deleted. 

The level number is accepted. 

The first eight characters of the 
string provided are used as a 
library name. 

If 0 is used in Format 1 or as 
integer-2 in Format 2, the 
OCCURS clause is ignored. 
If an integer exceeds 65,535 
the integer is assumed to be 1. 

The first eight characters of the 
name provided are used. 

The remainder of the line is 
deleted. 

The name or level number is 
accepted. 

c 00 
~o z (11 
c-.i 
s: :0 
tll ~ m· 
ll f\.) 

~ 
m 
::0 
::0 
< 
c 
z 
< 
~ 
0 
i 
ii1 
r+ :;· 

CQ 

!f s 
3 -

c .,, 
0 
)> 
-I 
m 
r 
m 
< m 
r 

.,, 

w 

)> 0 

~.!... 



~ Severity Diagnostic Message 
Number Code 

t 
R•son 

050 c APPLY CLAUSE OR SEGMENT-LIMIT Cylinder overflow of disc 
INTEGER INVALID. was specified as being 

greater than 80 percent, 
the buffer offset 
value is not from 0 to 99, 
or the SEGMENT-LIMIT 
value is not from 1 to 49 . 

• 
051 c BLOCKING SPECIFIED WITH A BLOCK CONTAINS 

RECORDING MODE U. RECORDS clause has been 
specified with a recording 
mode of U. Buffer offset 
value exceeds 99. 

052 u CLAUSE NOT ASSOCIATED WITH A clause, such as DAT A 
FD OR DATA-NAME. RECORDS or PICTURE, is 

not associated with the pre-
viously completed file or 
data descriptor. 

053 c NO DATA ENTRY FOR PREVIOUS FD The previous FD or SD does 
OR SD*. not have at least one record 

description associated with it. 

054 u FD OR SD* NOT IN FILE SECTION. An FD or SD was detected 
outside the file section. 

055 c LEVEL NUMBER number ENCOUNTERED A data descriptor was en-
PRIOR TO SECTION HEADER. countered prior to detection 

of a DATA DIVISION section 
header. 

*SD available in extended compiler. 

• • 

Explanation 

Rule 

Cylinder overflow percent 
may not be greater than 
80 percent. 

Recording mode U states 
that records of the file 
are not blocked and may 
vary in length. 

Clauses associated with 
file or data descriptions 
must appear within the 
entry; i.e., prior to the 
period that terminates 
the entry. 

A record description, with 
level number 01, must 
follow every FD or SD 
description. 

Every file or sort descrip-
tion must be within the file 
section. 

If a data descriptor is the 
first entry in the data 
division, it must be 
preceded by a WORKING-
STORAGE or LINKAGE 
SECTION header. 

Rac:ovary 

The overflow percent is set 
to 80 or 90 percent according 
to the type of buffer offset 
disc, the buffer offset is set 
at 99, or the SEGMENT-LIMIT 
is set at 49. 

The BLOCK CONTAINS clause 
is deleted. The recording mode 
U is accepted or the buffer 
offset value is set to 99. 

The clause is deleted. 

The compiler creates a record 
description whose name is 
FILLER. The size of this 
record is set to the number of 
bytes specified in the RECORD 
CONTAINS CHARACTERS 
clause, if the clause was de-
tected; otherwise, the size is set 
to 30 bytes. 

The file or sort description is 
deleted. Any record descrip-
tions following the FD or SD are 
accepted. They are allocated to 
either the working-storage or 
linkage section, depending on 
which header was last encoun-
tered. 

The compiler assumes the 
WORKING-STORAGE SECTION 
header has been encountered 
and allocates the data item to 
that section. 

• 

~8 
zUI c ..... 
s: :0 
ID C1> 
m~ 
JJ I\) 

c 
"ti 
0 
)> 

(/) 
-g 
m 
:::XJ 
:::XJ 
< 
c 
z 
< 
~ 
0 
i 
; 
r+ 
3· 
cc 

!f 
i 
3 
"W 

-I 
mCll 
r 
m 
< m 
r 

"ti 

)> 0 

~.!.. 
I\) 



• • 
~ Severity Diagnostic Message 
Number Code 

t 
Reason 

056 u LANGUAGE ELEMENT NOT A COBOL language feature 
IMPLEMENTED. not supported by the compiler 

has been encountered. 

t 057* u DATA ENTRY REQUIRES RENAMES A data descriptor with level 
OR VALUE CLAUSE. number 66 has no RENAMES 

clause or a data descriptor 
with a level number of 88 
has no VALUE clause. 

058 u LEVEL 88 condition-name NOT The level 88 entry is the 
PRECEDED BY DATA ENTRY. first entry in the data 

division. 

059* u LEVEL 66 data-name MUST APPEAR The level number 66 entry 
ONLY AT END OF A HIERARCHY. was not followed by one of 

the following: a level number 
01 entry, an FD or SD entry, 
a level number 77 entry, a 
level number 66 entry, or a 
PROCEDURE DIVISION 
header. . 

*RENAMES available in extended compiler. 

Explanation 

Rule Recovery 

The following language The clause, entry, or statement 

elements are not available: is deleted. 

1-0 verbs in USE ERROR 
or LABEL procedure and 
ENTRY within a USE 
procedure. 

A data descriptor whose The data description is deleted. 
level number is 66 must 
have a RENAMES clause, 
and a data descriptor whose 
level number is 88 must 
have a VALUE clause. 

See rules for condition-name. The compiler creates a level 01 
named FILLER, length 1, signed 
for the conditional variable. 

See rules for RENAMES. A level number 01 named 
Fl LLER is created to follow the 
level number 66 entry. 

• ~~ z U"I c -.J 

s: ll 
ID <II 
m ~ 
ll l\J 

en 
"ti 
m 
::0 
::0 
-< 
c 
:z 
< 
~ 
0 

l s· 
ca 

!R s 

c .,, 
a 

3 w 

)> 
-I 
mo:i 

r 
m 
< 
m 
r 

.,, 
l>c 
Gl I m_. 

w 



Mesage Severity Diagnostic Mesage 
Number Code 

Reason 

060 u OCCURS DEPENDING ASSOCIATED The data-name with the 
WITH data-name. DEPENDING option of the 

OCCURS clause is not the 
last group entry in a 01 
hierarchy or the data-name 
is subordinate to another 
OCCURS clause. 

061 u LEVEL NUMBER literal IS NOT A data entry with a level 
SUBORDINATE TO AN 01. number between 02 and 49 

follows a level number 77 
or DATA DIVISION header. 

062 u CONSISTENCY ERROR: clause-1 Conflict between description 
INVALID WHEN USED WITH clause-2. clauses of the data entry e.g., 

USAGE COMP-3 and 
ALPHANUMERIC PICTURE. 

063 p GO TO DEPENDING OPTION CONTAINS At least two procedure names 
ONLY ONE PROCEDURE NAME. are required in a GO TO 

statement with the DEPENDING 
option. 

064 u PICTURE INVALID for group item The data entry was determined 
data-name. to be a group item from level 

number structure and a 
PICTURE clause conflicts with 
a group entry. 

065 u IMS ENVIRONMENT PROHIBITS USE The specified element is not 
OF LANGUAGE ELEMENT element. allowed under IMS processing 

mode. 

066 u PROCEDURE DIVISION USING-REQUIRED Procedure division USING 
IN IMS ENVIRONMENT. must be present in the IMS 

environment. 

• • 

Explanation 

Rule 

See rules for OCCURS 
clause with the DEPENDING 
option. 

See rules for level number. 

See Section 5 for rules 
on clauses in conflict. 

See Format 2 of GO TO 
statement. 

See rules for PICTURE. 

IMS mode requirement. 

The procedure division USING 
is the only allowable entry 
point in a COBOL program 
in the IMS environment. 

Recovery 

The DEPENDING option of the 
OCCURS clause is ignored (max-
imum number of occurrences is 
assumed). 

A level number 01 named FILLER 
is created to precede the data 
entry. 

Clause-1 is deleted. 

Control is transferred to 
procedure name if value of 
identifier is 1. Otherwise, 
control is passed to the next 
sentence. 

The compiler deletes the 
PICTURE clause on the 
group item. 

The specified element is deleted. 

No action is taken by the compiler. 

• 

c 00 
"!' 0 z (11 

c " s: ::0 
m CD 
m :=: 
Jl "-> 

c 
~ 

0 
)> 
-I 
m 
r 
m 
< 
m 
r 

~ 
)> 

(I) 
"ti 
m 
::0 
::0 
< 
c 
z 
< 
~ 
0 
i 
iil 
r+ s· 
ca 

~ 
i 
3 -w 

Gl 0 
m_!. 
~ 



• • 
Message Severity Diagnostic Mesage 
Number Code 

Reeson 

069 c SAME SORT* OR SAME RECORD AREA Some, but not all, filenames 

CONFLICTS WITH SAME AREA CLAUSE. in a SAME AREA clause appear 
in a SAME RECORD or SAME 

SORT AREA clause. 

073 c ONE LEVEL NUMBER ALLOWED PER More than one level number 

LINE. appears on the indicated 
line number. 

074 c USAGE of data-name CONFLICTS WITH A data entry usage conflicts 
USAGE OF GROUP. with the usage of one or 

more of the group entries 
which this data entry is 
subordinate to or usage 
conflicts with a value on 
a group level. 

075 u THE OCCURS CLAUSE ON data-name A data entry with an OCCURS 
INVALID, 4 DIMENSIONAL TABLE clause which would cause 
DESCRIBED. more than three levels of 

subscripting was encountered. 

076 u FILE file-name HAS NO DATA RECORD. A level 01 data record was 
not encountered for this file. 

*SORT and 66 level available in extended compiler. 

Explanation 

Rule 

If one or more filenames of 

a SAME AREA clause appears 
in a SAME RECORD or 
SAME SORT AREA clause; 
all the filenames in that 

SAME AREA clause must 
appear in the SAME SORT 
or SAME RECORD AREA 

clause. 

See formats of the data 
division. 

See rules for USAGE and 
VALUE IS. 

See rules for OCCURS. 

Format violated; see file 
section. There must be a 

data record description for 
each file. 

• 
Recovery 

No action is taken by the compiler. 

The level number is processed 
as though it were on a unique 
line number. 

Compiler assumes group entry's 
usage as proper usage. 

The compiler deletes the OCCURS 
clause on the data entry. 

No action is ta ken by the compiler 

Cro 
7" 0 z (11 
c -J 

~ :D 
ID <D 
m~ 
:D f\.) 

c ,, 
0 
)> 
-I 
m 
r 
m 

(I) 
'"ti 
m 
::0 
::0 
-< 
c 
z 
< 
l> n 
0 
"i ... 
Cl) 

~. 
:J 
cc 

!f 
s 
3 -w 

< 
m 
r 

,, 
)> 
Gl 0 
m .!.. 

(11 



Message Severity Diagnostic Message 
Number Code 

Reason 

077 c BLOCK-LENGTH-CHECK CONFLICTS BLOCK-LENGTH-CHECK 
WITH RECORDING MODE FOR character· is not allowed with all 

string. recording modes. 

078 s ADDITIONAL MEMORY REQUIRED There is not enough main 
FOR LABEL RECORDS PROCESSING. storage available to hold 

all the label name definitions 
for this file. 

079 u BLOCK CONTAINS CHARACTERS NOT A A file with organization relative 
MULTIPLE OF RECORD SIZE FOR Fl LE with an inconsistent blocking 
filename. factor was encountered (block· 

ing from BLOCK CONTAINS 
clause). 

080 c FILE-NAME file-name DOES NOT APPEAR A file which does not have a 
IN A SELECT. SELECT entry (matched by 

file-name) was encountered. 

081 c INVALID RECORDING MODE FOR 1. A file assigned to card 
Fl LE file-name. reader and recording mode 

was Var U. 
2. File assigned to DISC 

with ORGANIZATION 
RELATIVE, and 
RECORDING MODE was 
Var U. 

• • 

Explanation 

Rule Recovery 

BLOCK-LENGTH-CHECK The BLOCK-LENGTH-CHECK 
is appropriate with recording is disregarded. 
mode V or D only. 

N/A Compiler assumes that label name 
definitions that will not fit 
into main storage do not exist. 
Main storage is required to hold 
the SELECTS and label name 
definitions. To allow processing 
of more label names, allocate 
more main storage, shorten the 
size of the SELECTS, or define 
fewer label names. 

N/A The compiler deletes the BLOCK 
CONTAINS clause. 

See rules for Fl LE CONTROL. Compiler assumes a SELECT entry 
defined with file-name (of file) 
assigned to tape-6. 

Device restriction (card Compiler assumes recording mode 
reader) access method F for this file. 
restriction (0 ISC, D ISC-8414) 

• 

c 00 

~fil z ..... 
c :D 
:!:: "' Ill::: 
~N 

~ 
m 
::0 
::0 
-< 
c 
2 
< 
)> 
(') 

0 
i 
~ :;· 
cc 

f 

c 
"D 
0 
)> 
-I 
m 
r 
m 
< m 
r 

3 w 

"D 
)> 
Cl 0 
ml -O> 



• • 
Message Seventy 

Doagnostoc Message 
Number Code 

Reason 

082 c 80 CHARACTER BLOCK LIMIT EXCEEDED A BLOCK CONTAINS clause 
BY CARD Fl LE file-name. exceeds the maximum for 

a card device. 

083 c BLOCK CONTAINS EXCEEDS 1 RECORD A file assigned to a card device 
ON CARD-READER Fl LE file-name. was encountered with a 

BLOCK CONTAINS clause 
specifying two or more records. 

084 c FILE file-name MUST HAVE LABEL A file assigned to a unit 
RECORDS OMITTED. record device with other 

than LABEL RECORDS 
OMITTED was encountered. 

085 c BLOCK SIZE SPECIFIED FOR FILE BLOCK CONTAINS clause 
file-name EXCEEDS MAXIMUM. contains value which exceeds 

maximum length for the 
device the file is assigned to. 

006 c BLOCK SIZE SPECIFIED FOR FILE A BLOCK CONTAINS clause 
file-name LESS THAN Ml NIMUM. value was encountered which 

is less than the mini mum 
allowed for the device. 

007 u DESCRIPTION FOR LABEL RECORD A label name (from LABEL 
label name NOT ENCOUNTERED. RECORDS ARE clause) with 

no 01 label description was 
encountered. 

008 c FILE file-name MUST HAVE LABEL Filename is assigned to 
RECORDS STANDARD OR DATA NAME. direct access device but 

the LABEL RECORDS 
clause specifies OMITTED. 

089 c FILE file-name MUST HAVE LABEL Filename is assigned to a 
RECORDS STANDARD. direct access device with 

ORGANIZATION INDEXED, 
and LABEL RECORDS ARE 
OMITTED or data-name is 
specified. 

Explanation 

Rule Recovery 

See rules for BLOCK The compiler assumes the maxi-
CONTAINS. mum size (80) for BLOCK 

CONTAINS. 

Device restriction. Compiler assumes BLOCK 
CONTAINS one record. 

Data management restric- Compiler assumes labels to be 
ti on. omitted. 

See BLOCK CONTAINS. The compiler assumes that the 
maximum length was specified. 

See BLOCK CONTAINS. The compiler assumes the min-
imum length for the 
BLOCK CONTAINS clause. 

See rules for label records. The compiler assumes that the 
label name does not exist. 

File assigned to disc must Compiler assumes LABEL 
have a LABEL RECORDS RECORDS ARE STANDARD 
specification. for the file. 

File with ORGANIZATION Compiler assumes label records 
INDEXED must have to be standard for the file. 
LABEL RECORDS 
STANDARD. 

• c 00 
-u 0 
' (11 z -.J 
c:IJ 
S: CD 
OJ:::: 
~I\.) 

c ·o 
0 
)> 
-f 
m 
r 
'TI 
< 
m 
r 

-u 

en 
""C 
m 
:D 
:D 
-< 
c 
z 
< 
)> 
n 
0 

'O 
C1) ... m 
..+ :;· 
cc 

!f s 
3 -w 

)> 
QO 
m .!.. 

-.J 



Message Severity 
Diagnostic Message 

Number Code 
Reason 

091 u COPY SYNTAX REQUIRES character- The character-string listed 
string, character-string INVALID. as invalid has produced a 

syntax error. The required 
type of character-string is 
indicated. 

092 s REPLACING character-string The main storage area used 
OVERFLOW CAUSED BY character-string to save replacing items has 

been exhausted or the number 
of qualifiers associated 

with an identifier has 
exceeded internal storage. 

093 c Sign condition test requires figurative Literal 0 invalid unless 

constant ZERO; literal 0 is invalid. preceded by a relational 
operator. 

094 c CHARACTER NUMBER literal IS INVALID An invalid PICTURE character, 

IN type PICTURE picture-string. a PICTURE character incon-
sistent with the PICTURE 
type, or a violation of the 
PICTURE precedence rules 
was detected. 

095 c THE type PICTURE picture-string IS As stated, the picture is 

INCOMPLETE. incomplete and cannot be 
processed, e.g., SPPPP. 

096 c CHARACTER NUMBER literal IS An invalid PICTURE 
INVALID IN PICTURE picture-string. character, a PICTURE 

character inconsistent with 
the PICTURE type, or a 
violation of the PICTURE 
precedence rules was 
detected. 

• • 

Explanation 

Rule Recovery 

See 6.6. 7.1 for COPY The item in error and all items 
verb rules. which follow it in the COPY 

clause are deleted. 

Compiler restriction. The compiler ignores the balance 
of the clause which causes over-
flow. Recompile with additional 
main storage allocated to the 
compiler or reduce the number 
of items, amount of qualification, 
or size of names in the REP LAC-
ING clause. 

When testing the condi- Literal constant 0 is treated 
tion of a data item for a as figurative constant ZERO 
0 condition. Syntax with code being generated 
requires the use of as if statement was written: 
figurative constant ZERO IF DATA-NAME ZERO. 
when no conditional opera-

tor is present in the test. 

See Section 5 for the In order to delete the data 
allowable PICTURE symbols descriptor, the compiler sets its 
and the rules for their PICTURE to S9. 
usage. 

See Section 5 for the In order not to delete the data 
allowable PICTURE descriptor, the compiler sets its 
symbols and the rules for PICTURE to S9. 
for their use. 

See Section 5 for the The PICTURE characters prior to 
allowable PICTURE the character in error are accepted. 
symbols and the rules for 
their usage. 

• 

~~ z U1 
c ..... 
~:II 
Ill .. 
m :< 
JJ I\,) 

c 
"11 
0 
)> 
-I 
m 
r 
m 
< m 
r -
"ti 

(/) 
-0 
m 
:::c 
:::c 
-< 
c 
z 
< 
)> 
n 
0 
i ... 
Q) 

!:!'. 
:s 

l.Q 

!f 
i 
3 -w 

)> 
Gl 0 

.!.. m 
00 



• • 
Message Severity Diagnostic Message 
Number Code 

Reason 

097 c SIZE LIMIT OF literal BYTES EXCEEDED The PICTURE specifies more 
BY PICTURE picture-string. storage than the maximum 

allowed for the PICTURE type. 

098 c THE NUMBER OF DIGIT POSITIONS The number of digit positions 
IN PICTURE picture-string in the PICTURE exceeds 18. 
EXCEEDS 18. 

099 c A VALUE CONTAINED WITHIN A value contained within 
PARENTHESES IS =O OR >4092 IN parentheses is either 0 or 
PICTURE picture-string. greater than 4092. 

JOO c A NUMBER DOES NOT FOLLOW A LEFT A left parenthesis within the 
PARENTHESIS IN PICTURE picture-string. PICTURE is not followed by a 

numeric integer. 

101 c RIGHT PARENTHESIS MISSING FROM A right parenthesis does not 
PICTURE picture-string. follow a numeric integer 

preceded by a left parenthesis. 

102 c BOTH LEADING AND TRAILING SIGN Two insertion sign characters 
INSERTION SPECIFIED I PICTURE were detected in the numeric-
picture-string. edited PICTURE. 

104 p LITERAL literal-string TRUNCATED The literal being moved contains 
DURING MOVE. a greater number of character 

positions than the receiver, or, 
when decimal-point aligned 
contains a greater number of 
digit positions than the receiver. 

105 c INITIAL VALUE TRUNCATED. The value specified for the 
data item contains a greater 
number of characters than the 
data item, or is a numeric 
value that, when the decimal 
point is aligned, is larger 
than the maximum value the 
data item can contain. 

Explanation 

Rule 

The maximum size in bytes 
of numeric PICTURE is 18, 
alphabetic or alphanumeric 
is 4092, numeric edited or 
alphanumeric edited is 132. 

The maximum number of 
digits allowed in a numeric 
or numeric edited 
PICTURE is 18. 

The number of times a 
PICTURE character is 
repeated as specified by the 
value in parentheses 
following it, must be 
greater than 0 and less 
than 4093. 

Within parentheses, a numeric 
integer is used to specify 
the number of times the 
preceding PICTURE character 
is repeated. 

Each left parenthesis in a 
PICTURE must be followed 
by a numeric integer and a 
right parenthesis. 

Specification of both leading 
and trailing sign insertion 
is not permitted. 

Truncation occurs when any 

portion of the item being 
moved cannot be contained 

in the receiving field. 

The initial value cannot 
contain more characters 
than can fit into the data 

item. 

Recovery 

In order not to delete the data 
descriptor, the compiler sets its 
PICTURE to S9. 

In order not to delete the data 
descriptor, the compiler sets 
the PICTURE to S9. 

The value within the parentheses 
is set to 1 and processing of the 
PICTURE continues. 

In order not to delete the data 
descriptor, the compiler sets the 
PICTURE to S9. 

In order not to delete the data 
descriptor, the compiler sets 

the PICTURE to S9. 

In order not to delete the data 
descriptor, the compiler sets the 
PICTURE to S9. 

The literal is moved and 

truncated. 

The excess characters are trun-

cated. 

• c co 
"'!' 0 z C11 
c -.J 

s: ::0 

~ ~ 
Jl I\) 

c 
" 0 
)> 
-l 
m 
r 
m 
< 
m 
r 

" )> 

en 
""C 
m 
:::c 
lJ 
< 
c 
z 
< 
)> 
(') 

0 
i 
Q1 
r+ :;· 
cc 

!f 
~ 
CD 
3 -w 

Gl 0 
ml -<D 



Message Severity Diagnostic Mesage 
Number Code 

Reeson 

106 u INVALID POSITIONING OF KEY data-name There must not be any item 
IN HIERARCHY. with an OCCURS clause be-

tween the table item and its 
keys. 

107 s ADDITIONAL MEMORY REQUIRED TO Not enough main storage is 
PROCESS HIERARCHY CONTAINING available to contain all 

data-name. entries subordinate to the 
01 data entry, and too many 
entries for the 01 hierarchy 
for the amount of main 
storage allocated. 

108 s data-name EXCEEDS REDEFINES There are too many levels of 
NESTING LIMIT. redefinition. This data entry 

exceeds the Ii mi t of re-
definition. 

109 c data-name HAS IMPROPER REDEFINES The redefined area is a 
OBJECT data-name. redefining area; i.e., the 

object of the REDEFINES 
dause has or is subordinate 
to a REDEFINES clause. 

110 s ADDITIONAL MEMORY REQUIRED TO Insufficient main storage is 
PROCESS RENAMES QUALIFIER. available to contain the 

RENAMES qualifier because 
of a large hierarchy and/or 
a lot of RENAMES 
qualifiers. 

111 u DESCRIPTION OF data-name NOT The definition of the entry is 

ENCOUNTERED. not in the current hierarchy. 

112 c RENAMES OCCURS CONFLICT BETWEEN The object of the RENAMES 
data-name-1 AND data-name-2. clause on data-name-1 has 

or is subordinate to an 
OCCURS clause. 

113 c REDEFINING AREA data-name UNEQUAL The calculated length of the 
TO SIZE OF REDEFINED AREA. redefined area is not the same 

as the length of the redefining 
area. 

114 c SIZE OF ELEMENTARY ITEM data-name An elementary item with a 
EXCEEDS MAXIMUM OF 4092. length larger than the max-

imum was detected. 

• • 

Explanation 

Rule Recovery 

See rules for KEY under The named KEV is processed as a 
OCCURS clause. regular data item; the KEY infor-

mation is ignored. 

The compiler does not process the 
data entries not contained in 
main storage. To compensate, 
shorten the hierarchy, shorten 
names in data entries, or assign 
more main storage to compiler. 

See rules for REDEFINES. The compiler assumes this entry 
does not contain a REDEFINES 
clause. 

See rules for REDE Fl NES. The compiler assumes the redefi ni-
tion of the last-defined area 
with the same level as the 
subject of the REDEFINES clause. 

The compiler assumes the qualifier 
does not exist. 

See rules for qualification. The compiler assumes the qualifier 
name in error does not exist. 

See rules for level-number. The compiler assumes the last 
elementary item in the hierarchy 

is the object of the RENAMES 
clause. 

See rules for REDEFINES. The compiler assumes the largest 
length was calculated for both 
areas. 

See data definition. The compiler assumes the length 
to be 4092 for the elementary 
item. 

• 

~~ z (Jl 
c -..J 

s: :IJ 
OJ ~ m· 
ll l\J 

c .,, 
0 
)> 
-I 
m 
r 
m 
< m 
r 

.,, 
)> 

(JJ 
"'ti 
m 
:ti 
:ti 
-< 
c 
z 
< 
)> 
0 
0 

'O 
CD ... 
I» 
r+ s· 
cc 

!f s 
3 
(;) 

Gl 0 
ml 

l\J 
0 



• • 
Message Severity Diagnostic Message 
Number Code 

Reason 

115 c SIZE OF WORKING-STORAGE GROUP A group entry in working-
ITEM data-name EXCEEDS storage is a length calcu-
MAXIMUM OF 65,535. lated to exceed the maximum. 

116 c SIZE OF NON-WORKING-STORAGE The length of a file or 
GROUP ITEM data-name EXCEEDS linkage section group item 
MAXIMUM OF 4092. was calculated to be greater 

than the maximum. 

117 u INVALID LEVEL NUMBER STRUCTURE A level number equal to the 
ENCOUNTERED AT data-name. level of the data entry should 

have appeared in the hierarchy 
directly ~ubordinate to the 01. 

118 c THE Fl RST OBJECT OF THE LEVEL The first object of a RE-
66 ENTRY data-name ENDS AFTER NAMES clause does not 
THE SECOND OBJECT. precede the area of the 

second object of the 
RENAMES clause. 

119* c THE SECOND OBJECT OF THE The second object of a 
LEVEL 66 ENTRY data-name STARTS RENAMES claues does not 
BEFORE THE Fl RST OBJECT. precede the first object 

of the RENAMES clause. 

120 c USAGE INDEX INVALID FOR A condition name entry is 
CONDITIONAL VARIABLE data-name. defined for a data entry 

with a USAGE IS INDEX 
clause. 

121 c RECORD data-name A file described as F RE-
SIZE UNEQUAL TO PREVIOUS RECORDS CORDING MODE does not 
IN A.FIXED RECORDING MODE FILE. have data records with the 

same length. 

122 c LABEL RECORD data-name SIZE A label record description 
NOT EQUAL 80 CHARACTERS. with a length other than 80 

was encountered. 

*RENAMES available i11 extended compiler. 

• 
Explanation 

Rule Recovery 

See data definition. The compiler assumes the length 
of the group item to be 65,535. 
The entire area specified is, 
however, allocated. 

See data definition. The compiler assumes the maxi-

mum of 4092 was the calculated 
length of the group item. 

The compiler assumes a level 
number on a data entry directly 
subordinate to the 01, e.g., 
01 A 

LEVEL 02 MISSING 
05 B 
02 c 
INVALID LEVEL STRUCTURE 

See rules for RENAMES. The compiler assumes the second 
object does not exist. 

See rules for RENAMES. The compiler assumes the objects 
are reversed. (The first is the 
second and the second is the 
first.I 

See rules for condition The compiler assumes the alpha-
name. numeric usage for the conditional 

variable. 

See rules for RECORDING The compiler assumes the largest 

MODE. data record length for calculation 
of record length for the file. 

OS/3 label specification The compiler assumes the length 
has a length of 80 for labels. of label records to be 80. 

c 00 
-0 0 
' CTI z -..J 

c :a 
S:: CD OJ::: 
m l\J 
ll 

en .,, 
m 
::0 
::0 
-< 
c 
z 
< 
)> 
n 
0 
i 
@ 
::t 
:l 
(Q 

!f s 
3 -w 

c 
-0 
0 
)> 
-I 
m 
r 
m 
< m 
r 

-0 
)> 
Gl 0 
ml 
~ 



Message Sewrity Diagnostic Message 
Number Code 

Reeson 

123 u data-name NOT ALIGNED. The data-name is the subject of 
a REDEFINES clause and 
requires alignment due to a 
SYNC clause. However, the 
object of the REDEFINES 
is not aligned. 

124 c BLOCK SIZE FOR file-name SMALLER The BLOCK CONTAINS 

THAN LARGEST RECORD. CHARACTERS clause speci-
fies a block length small er 
than length of largest data 
record. 

125 c SIZE OF data-name GREATER THAN The RECORD CONTAINS 
RECORD CONTAINS FOR FILE clause specifies a record 
file-name. length smaller than largest 

record. 

126 c file-name clause LENGTH condition The BLOCK CONTAINS 
ALLOWED FOR DEVICE. clause or the RECORD 

CONTAINS clause exceeds 
maximum or is less than 
minimum for the device to 
which the file is assigned. 

127 c RECORD CONT Al NS CLAUSE FOR Fl LE The RECORD CONTAINS 
file-name NOT EQUAL TO SIZE OF clause does not specify the 

LARGEST RECORD. length of the largest data 
record. 

128 p BLOCK LENGTH OF FILE file-name The length of the block for 
PROHIBITS RUN TIME SPECI Fl CATION the file is too large to allow 

OF BLOCK NUMBERING. block numbering. 

129 u REDEFINES NOT PERMITTED FOR A file section level 01 with 

RECORDS IN FILE SECTION. a REDEFINES clause was 
encountered. 

130 u SUBJECT OF REDEFINES, data-name, The subject of a REDEFINES 

NOT IN SAME SECTION AS OBJECT OF clause is not in same section 
REDEFINES. as entry with REDEFINES. 

• • 

Exphm•tion 

Rule Recovery 

See rules for SYNCHRONIZED. The SYNCHRONIZED clause is 
ignored. 

The compiler assumes the block 
length to be the length of the 
largest record. 

The compiler assumes that the 
largest hierarchy subordinate to 
the FD specifies the length of the 
largest data record for the file. 

See BLOCK CONTAINS and The compiler assumes the limiting 
RECORD CONTAINS. length for the clause in error. 

The compiler assumes that the 
length of the largest data record 
is specified in the RECORD 
CONTAINS clause. 

No action. Precautionary warning. 

See rules for REDE Fl NES. The compiler assumes the RE-
DEFINES clause does not exist. 

See rules for REDEFINES. The compiler assumes the RE-
DEFINES clause does not exist. 

• 

c 
!' ~ 
ZC11 
c-..i 
s: :0 
(lJ"' 
m ~ 
:II I\.) 

en 
"'ti 
m 
:0 
:0 
< 
c 
z 
< 
)> 
("') 

0 
i 
ii.\ 
r+ 
3· 
cc 
en 
< 

c 
"ti 
CJ 
)> 
-I 
m 
r 
m 
< 
m 
r 

"ti 
)> 

s 
3 -w 

G) 0 
ml 

I\.) 
I\.) 



• • 
Message Severity Diagnostic Message 

Number Code 
Reason 

131 u OBJECT OF REDEFINES, data-name, The object of a REDE Fl NES 
WITHIN RANGE OF OCCURS. clause has or is subordinate 

to an OCCURS clause. 

132 u REDEFINES OBJECT, data-name, AND The object and subject of the 
SUBJECT, data-name, UNEQUAL REDEFINES clause do not have 
LEVEL NUMBER. the same level numbers. 

133 s INDEX NAME data-name EXCEEDS The current compiler limit 
COMPILER LIMITS. of index-names is 255. This 

entry is the 256th specified 
index~name. 

134 c ELEMENTARY ITEM data-name HAS NO An elementary item, deter-
LENGTH SPECI Fl ED. mined from level number 

structure, with no length 
specified or assumed was 
encountered. 

T35* c OBJECT OF RENAMES data-name The object of the RENAMES 
NOT FOUND WITHIN HIERARCHY. dause was not found in the 

immediate hierarchy. 

136* c OBJECT OF RENAMES data-name The object of the RENAMES 
HAS ILLEGAL LEVEL NUMBER. clause has an illegal level 

number. 

137 u REDEFINES CLAUSE IN data-name The object of the REDEFINES 
ENTRY HAS INVALID OBJECT. clause is not a legal level for 

redefinition. 

138 s ADDITIONAL MEMORY REQUIRED FOR The compiler needs more 
PROCEDURE NAME PROCESSING. main storage in order to 

process the rest of the section 
and paragraph names. 

*RENAMES available in extended compiler. 

Explanation 

Rule 

See rules for REDEFINES. 

See rules for REDEFINES. 

See rules for RENAMES. 

See rules for RENAMES. 

See rules for REDE Fl NES. 

Each procedure-name 
definition requires 16 
bytes of storage plus one 
byte for each character in 
the name. To increase the 
number of procedure-names 
that can be processed, 
recompile using smaller 
names or with more main 

storage assigned to the 
compiler. 

• 
Recovery 

The compiler assumes the 
REDE Fl NES clause does not 
exist. 

The compiler assumes the 
REDEFINES clause does not exist 

The compiler starts index-name 
main storage assignment over 

and reassigns the main storage 
to the index-names being 
processed. 

The compiler assumes a length of 
1, signed, was specified. 

The compiler assumes the last 
elementary item of the hierarchy 
as the specified object of the 
RENAMES clause. 

The compiler assumes the last 
elementary item as specified 
object of the RENAMES clause. 

The compiler assumes the REDE-
FINES clause does not exit. 

This procedure-name definition 
and all others that follow are 
deleted. 

c~ 
7' U1 z -.I 

c JJ 
s: "' m :< 
m N 
:II 

en 
-0 
m 
:lJ 
lJ 
-< 
c z 
< 
)> 
(") 

0 
"C 
(I) ... 
Q) 

~
::::s 

CCI 

!f s 

c 
-0 
0 
)> 
-t 
m 
r 
m 
< m 
r 

-0 
)> 

3 -w 

Gl 0 
ml 

N w 



Message Severity Diagnostic Message 
Number Code 

Reason 

139 c PRIORITY NUMBER INCORRECT OR Priority number value does not 
OUT OF SEQUENCE. fall in range of 0 to 99 or 

priority number >50 is 

not in ascending sequence. 

140 u NEITHER EXIT PROGRAM NOR An entry point has been 

RETURN STATEMENT ASSOCIATED specified for this program 
WITH ENTRY OR USING STATEMENT. but the program contains no 

mechanism to return to caller. 

141 u NEITHER ENTRY NOR USING STATEMENT Program contains mechanism 
ASSOCIATED WITH EXIT PROGRAM OR to return to a calling program 
RETURN STATEMENT. but no mechanism has been 

coded where the calling program 

may enter this program. 

142 u NO ENTRY OR RETURN STATEMENT No entry point has been 

ASSOCIATED WITH LINKAGE SECTION. specified for th is subprogram. 

143 u STRUCTURE OF CONDITIONAL ELSE encountered in IF 
SENTENCE INVALID, UNPAIRED statement with no preceding 

ELSE ENCOUNTERED. IF verb to match it. 

144 p PROCEDURE DIVISION DOES NOT No STOP RUN statement is 
CONTAIN A STOP RUN. coded in this program. There 

is no way to bring this program 

to an orderly halt. 

145 u EXIT WAS NOT THE ONLY STATEMENT EXIT statement is in paragraph 
IN PARAGRAPH. which contains statements 

other than EX IT. 

146 c THE BEFORE OPTION OF THE USE The BEFORE option is not 
STATEMENT IS NOT APPLICABLE IN allowed in UNIVAC OS/3 

SYSTEM. COBOL. 

• • 

Explanation 

Rule 

The priority number must be 

an integer ranging in value 

from 0 through 99. Segments 
with priority number 50-99 

are independent segments 
and must appear in the source 

program in ascending numeric 

order. 

All COBOL subprograms 

must contain either an 

EXIT PROGRAM or a 

RETURN statement. 

A COBOL program that is to 

be used as a subprogram must 
have an entry point. 

The use of the linkage 

section implies that this is 

a subprogram. Subprograms 
must have entry and exit points. 

In a conditional statement 

any ELSE encountered is 
considered to apply to the 

immediately preceding IF 

that has not been already 

paired with an ELSE. 

No rule has been violated; 

this diagnostic is strictly 
informative. 

The EXIT sentence must be 
preceded by a paragraph-

name and be the only 

sentence in the paragraph. 

The BEFORE option is not 

applicable to UNIVAC OS/3 

COBOL, but is accepted for 

compatibility. 

--Recovery 

If segmentation has been specified 

(a previous segment with priority 
number> 50) the last valid 

priority number is assigned to 
this section. If segmentation 

has not been encountered, a 

priority number of 0 is assumed. 

No corrective action is possible 

for this error. If the program is 

executed as a subprogram it will 

not return to the calling program. 

No corrective action is possible 

for this error. It is impossible 
to execute this program as a 

subprogram. 

No corrective action is taken. 

The conditional statement is 
terminated at this point. 

Results during execution are 

unpredictable. 

Nothing is deleted from the 
program. The statement 

following the EX IT 

sentence is executed 

before the EXITs 
statements. 

The AFTER option is assumed. 

• 

Coo 
°110 z (]1 
c -..J 

s: :n 
CD !;g 
m· 
:D l\J 

c 
-0 
0 
)> 
-I 
m 
r 
m 
< m 
r 

-0 
)> 

(/) 
"ti 
m 
::D 
::D 
-< 
c 
2 

< 
1:; 
0 
i 
CJ 
:::!'. 
::::J 

CCI 

!R 
~ 
3 -w 

Gl CJ 
ml 

l\J 
-l>o 



• • ~ 

Message Severity Diagnostic Mn;age 
Number Code 

Reason 

147 c THE PROGRAM NAME IN CALL Program name exceeds eight 

STATEMENT EXCEEDS EIGHT characters in length. 

CHARACTERS. 

148 u REFERENCE TO name CANNOT BE A definition of the listed name 

RESOLVED. has not been encountered. 

149 u QUALIFIED REFERENCE TO name A definition of the listed 

CANNOT BE RESOLVED. name has not been encountered 

under the specified qualifiers. 

150 c REFERENCE TO PROCEDURE name A definition of the listed 

IS AMBIGUOUS, DEFINITION AT paragraph-name has not 

LINE literal USED. been encountered within 
the section from which the 

reference is made, while 
multiple definitions exist 

outside the section of 
reference. 

151 u REFERENCE TO name OF name Normally this diagnostic 

CANNOT BE RESOLVED DUE TO indicates that a definition 

DEFINITION AT LINE literal. for the qualifier in a pro-

name of name UNRESOLVED cedure reference has been 

DUE TO DEF AT LINE literal. encountered but is not a 

section-name. In the names, level 01 and 77 
ambiguity mode of reference 

resolution (PARAM LST=A), 

this diagnostic is also 

generated when: 

1. The highest qualifier of a 

data reference is not 

encountered in the data 

division but is encountered 

in the procedure division. 

2. The qualifier of a pro-

cedure reference is not 
encountered in the pro-

cedure division but is 

encountered in the data 

division. 

This implies that when the 

definition that will resolve the 

reference is added to the source 

program, the highest possible 

qualifier rule is violated. 

Explanation 

Rule 

A maximum of eight characters 
is allowed in subprogram 

names. 

Every name referenced must 

be defined. 

Every name referenced 

with qualification must 

be defined within the 

hierarchy associated 

with the highest level 

qualifier. 

A reference to a nonunique 

paragraph-name where al I 

definitions are outside the 

section from which the 
reference is made must 
be qualified. 

The qualifier in a procedure 

reference must refer to a 

section-name. Highest 
possible qualifiers (level 

indicator names, section-

names) must be unique in a 
program since a reference 

to the name cannot be 

qualified. 

• 
Recovery 

The program name in the CALL 

statement is truncated to eight 

characters. 

The statement containing the 

reference is deleted. 

The statement containing the 

reference is deleted. 

The reference is resolved by 

the paragraph-name at the 

listed line number. 

The statement containing the 

reference is deleted. 

~ gi 
' (11 z -..J 
c::D 
~ CD 
en ~ 
~I\.) 

~ 
m 
:::0 
:::0 
< 
c 
z 
< 
f; 
0 
i 
ii1 
!:!. 
::I 

CCI 

ff s 
3 -

c ,, 
0 
)> 
-I 
m 
r 
m 
< m 
r 

,, 

w 

)> 0 
Gl I 
ml\.l 

(11 



Mnsage Severity Diagnostic Message 
Number Code 

Reason 

152 c REFERENCE TO name AMBIGUOUS This diagnostic is generated 
DUE TO DEF AT LI NE literal, DEF only in the ambiguity mode 
AT LINE literal USED. of reference resolution 

(PAR AM LST=A) for an 

unqualified reference when a 

duplicate definition of the 
listed name has been en-

countered within the COBOL 
division implied by the 

reference type, e.g., GO TO 

implies procedure division; 

MOVE implies data divisiori. 

153 c IMPROPER DEFINITION OF name This diagnostic is generated 

AT LINE literal IMPLIED BY MANNER only in the ambiguity mode 

OF REFERENCE. of reference resolution 

(PARAM LST=Al for an 

unqualified reference when a 
duplicate definition of the 

listed name has been en-
countered in a COBOL 

division, other than the 

division implied by the 

reference type, and consti· 
tutes a violation of the 

highest possible qualifier 

rule. 

154 c name MUST BE UNIQUE, DUPLICATE This diagnostic is generated 

DEFINITION FOUND AT LINE literal. only in the ambiguity mode 

of reference resolution 
(PAR AM LST=A) for qualified 

references when a redefinition 

of the highest qualifier 

violates the highest possible 
qualifier rule. 

155 c BEFORE OPTION NOT APPLICABLE The WRITE BEFORE 

INC-MODE. ADVANCING option is 

not available in the 

conversion mode. 

157 p name STATEMENT Index name used to 

OPERAND name IS address table element is 

IMPROPERLY INDEXED. not associated with the 

table but is associated 

with another table which 

has the same element size. 

• • 

Explanation 

Rule Recovery 

Every name in a COBOL The reference is resolved by the 
program must be unique, name at the listed line number. 
either because of different 
spelling, or because of 

qualification. 

Highest possible qualifiers If the reference cannot be 
(level indicator names, resolved within the COBOL 
section-names, level 01 and division corresponding to the 

77 names) must be unique reference type, the statement 
si nee a reference to the is deleted. 
name cannot be qualified. 

Highest possible qualifiers If the reference cannot be 
(level indicator names, resolved within the COBOL 
section-names, level 01 division corresponding to 
and 77 names) must be the reference type, the 

unique since a reference statement is deleted. 
to the name cannot be 

qualified. 

Compatibility requirement The BEFORE option is treated 

as though the AFTER option 

had been specified. 

When an item is Precautionary warning. 

indexed by an index No corrective action 

name, that index is taken. 

name must be as-

sociated with that 

table name. 

• 

~~ z (11 
c -.J 

s: JJ 
tlJ CD 
m :" 
lJ "' 

(/) 
'"O 
m 
::0 
::0 
-< 
c 
2 

< 
:t> n 
0 
i 
iil ... s· 
cc 

!f 

c 
-0 
0 
)> 
-; 
m 
r 
m 
< m 
r 

-0 

s 
3 -w 

)> 0 
Gl I 
m"' m 



• • 
Message Severity Diagnostic Message 
Number Code 

Reason 

158 p verb CONTAINS WORKING-STORAGE Due to the shared nature of 
OPERAND data-name WHICH SHOULD programs operating under I MS 
NOT BE MODIFIED mode, errors could occur if 

working-storage elements are 
modified at object program 
execution time. 

159 u verb STATEMENT CONTAINS INVALID The specified data item does 
OPERAND data-name. not satisfy the requirements 

for the designated verb, for 
example, an alphabetic 
operand in an ADD 
statement. 

160 u verb STATEMENT OPERAND data-name The data item contains too 
IS IMPROPERLY SUBSCRIPTED. many subscripts, too few, or 

an improper type of subscript. 

161 u verb STATEMENT CONTAINS INCONSISTENT The combination of operands 
OPERAND data-name. in the statement conflict in 

their usage, for example, 
moving a numeric item to an 

alphabetic operand. 

162 c verb STATEMENT CONTAINS SIGNED A signed literal has been 
LITERAL literal. encountered. 

163 u COMPOSITE OF OPERANDS IN verb The superimposition of all 
STATEMENT EXCEEDS 18 DIGITS. operands to the left of the 

word GIVING exceeds 18 digits. 

164 u GO TO PRECEDES IMPERATIVE A GO TO statement is 
STATEMENT. followed by other imperative 

statements. 

Explanation 

Rule 

Do not modify WOR Kl NG 
STORAGE operands in the 
IMS environment. 

See the general rules 
specified for the desig-
nated verb. 

References to items in a 

table must have the correct 
number of subscripts or 
indexes, subnumeric integers, 

subscripts must be unsigned, 
subscripts and indexes must 
not be moved in a single 

data reference, and 

references to items not in 

a table must not be subscripted 

See the rules for the indicated 
verb statement. 

See the specific rules for 
the designated verb. 

See rules for composite of 
operands for the specified 
verb. 

A GO TO statement must be 
the last statement in a 
series of imperative state-

ments. h a conditional 
statement, a GO TO must be 
followed by ELSE, IF, or a 
period. 

• 
Recovery 

No action. Precautionary warning. 

The statement containing the 
listed operand is deleted. 

The statement containing the 
subscript error is deleted. 

The statement containing the 
inconsistent operand is deleted. 

The sign of the literal is deleted. 

The statement containing the 
composite error is deleted. 

The statements between the GO 
TO and the ELSE, IF, or period 
are deleted. 

~~ z U1 
c -..i 
s: )J 
OJ CD 
m ~ 
JI "" 

(I) 
""O 
m 
::0 
::0 
-< 
c 
2 
< 
)> 
(") 

0 
j ... 
Ill 
r+ 
3· 
cc 

~ 
~ 

c 
-u 
0 
)> 
-l 
m 
r 
m 
< m 
r 

3 -w 

-u 
)> 
G) 0 
m I 

"" -..i 



Message Severity Diagnostic Message 
Number Code 

Reason 

165 u verb STATEMENT OPERAND data-name An operand not defined in 

NOT DEFINED IN LINKAGE SECTION. the linkage section has been 
encountered in an entry or in 

the procedure division USING 
statement. 

166 u verb STATEMENT OPERAND data-name An operand with a level 
IS NOT LEVEL NUMBER 01 OR 77. number other than 01 or 

77, has been detected in 
an ENTRY or procedure 
division USING statement. 

167 s ADDITIONAL MEMORY REQUIRED TO This statement exceeds the 
PROCESS STATEMENT CONTAINING internal main storage area 

verb. available to process statements 
with multiple operands. 

168 u verb EXCEEDS LIMIT OF TEMPORARY The maximum number of 

DATA AREAS. temporary arithmetic data 
areas has been exceeded. 

169 u verb STATEMENT OPERAND name IS NOT The input-output statement 
RECORD OR FILE-NAME. does not reference a record· 

name or file-name. 

• • 

Explanation 

Rule 

Data-names in an entry or 
procedure division USING 
statement must be defined 
in the linkage section. 

Data items in an ENTRY 
or procedure division 
USING statement are 
restricted to items whose 
level number is 01 or 77. 

The main storage necessary 
to process a single operand 
varies from 18 to 250 bytes, 
depending on the number of 

characters in the data-name 
and whether the item 

OCCURS, has an edited 
picture, or is subscripted. 
The maximum main storage 
available for statement 
processing is a function of 
the total main storage 
available to the compiler. 
A limit of 100 symbols 
exists for a single condition. 

A symbol in this context is an 
operand, an arithmetic opera· 
tor, a logical operator, a rela-
tional operator, or a class. (A 
condition-name test expands 
to multiple symbols depending 
on the number of values asso-
ciated with the condition· 
name.) 

The following verbs must 
refer to record or file-
names: OPEN, CLOSE, READ 
WRITE, SORT, RELEASE, 
RETURN, INSERT, SEEK. 

Recovery 

The statemPnt containing the 
listed operand is deleted. 

The verb is deleted from further 
compilation. 

The statement is deleted. Addi-
tional main storage should be 
assigned to the compiler or the 
statement must be rewritten as 
multiple statements. 

Reduce the complexity of the 
expression or reduce the number 
of expressions in the statement. 

The statement in error is deleted. 

• 

c 
"V 00 .o 
201 c -..J 

s: JJ 
CD"' m::: 
Jl t-.J 

c 
"V 
0 
)> 
-I 
m 
r 
m 
< m 
r 

"V 

(I) 
"t1 
m 
:D 
:D 
-< 
c 
z 
< 
f; 
0 
i ... 
I» .... :.;· 
cc 

!f s 
3 -w 

)> 0 
Gl I 
m t-.J 

00 



• • 
Message Severity 0 iagnostic Message 
Number Code 

Reason 

170 u SENTENCE PRODUCES EXCESSIVE Object code cannot be 
OBJECT CODE. produced for the entire 

sentence because of the 
sentence size. 

171 u PERIOD ELSE OR WHEN MUST NEXT SENTENCE must be 
FOLLOW NEXT SENTENCE followed by ELSE, period, 

or WHEN. 

172 p PERFORM STATEMENT REFERENCES A PERFORM within the 
A NON-DECLARATIVE PROCEDURE declarative section 

referenced a procedure 
outside of the declarative 
section. 

173 u verb STATEMENT OPERAND name Both operands in the 
REFERS TO FILE RECORD AREA. statement refer to the same 

storage area. 

174 u verb STATEMENT RECORD-NAME The listed operand is not 
name IS NOT DEFINED IN FILE defined in the file section. 
SECTION. 

175 p COMPARISON FOR EQUALITY MAY BE A floating-point operand in a 
MEANINGLESS FOR A FLOATING POINT relational condition may cause 
OPERAND. the two operands not to be 

exactly equal. 

176 u DIVIDE STATEMENT PRODUCES The description of the 

MEANINGLESS RESULT. operands in a DIVIDE 
statement is such that only 
zeros could result for the 
quotient in the specified 
receiver. 

Explanation 

Rule 

Generally, a complete 
sentence is limited to 

between 2048 and 4096 
bytes depending on the 
sentence structure. 

In an IF, NEXT 
SENTENCE must be followed 
by ELSE or a period. In 

a SEARCH, NEXT SENTENCE 
must be followed by 
WHEN, ELSE, or a period. 

Within a USE procedure, 
there must not be any 
reference to any non· 

declarative procedures. 

The operand specified in 
the WRITE FROM, INSERT 
FROM, or READ INTO 
options, may not occupy 
the same storage area as 
the record or file-name. 

WRITE, INSERT, and 
RELEASE refer to items 
defined in the file section. 

No rule has been violated. 

Message is strictly 
informative. 

• 
Recovery 

Reduce the sentence size by 
rewriting it as several sentences/ 
paragraphs. 

The NEXT SENTENCE phrase is 
ignored. 

No action. Precautionary 
warning. 

The statement is deleted. 

The statement is deleted. 

Expected results may not 
occur at execution time. 

The DIVIDE statement is deleted. 

c 00 
7' 0 z (J1 
c -J 

s: :D 
CD <D 
m :<: 
::0 I\.) 

en 
"ti 
m 
::xJ 
::JJ 
< 
c 
2 

< 
)> 
(") 

0 
"C 
CD 
iil ..... s· 
cc 

!f s 

c 
"'II 
0 
)> 
-I 
m 
r 
m 
< m 
r 

3 -w 

"'II 
)> 
Gl 0 
ml 

!l:l 



Menage Severity Diagnostic Message 
Number Code 

Reason 

177 u verb STATEMENT CONFLICTS WITH A procedure-branching verb 
SEGMENTATION RULES. is invalidly specified with 

respect to the rules of 
segmentation, or an ALTER 
statement refers to a 
paragraph that does not 
begin with a GO TO. 

178 u verb STATEMENT INCOMPLETE OR An operand conflicts with a 
CONTAINS INVALID OPERAND OR OPTION. specified option or with 

another operand, or an 
option that must be specified 
for a given statement was 
not encountered. For 
example, a WRITE to a mass 
storage device must contain 

an INVALID KEY clause. 

179 u INTERNAL LABEL TABLE OVERFLOW. Either a sentence requires 
more than 256 internal labels 
or more than 24 internal 
labels are active. 

180 u CLASS OF LITERAL CONFLICTS WITH A nonnumeric literal con-

CLASS OF data-name. taining numeric characters 

is being moved to an alpha-
betic item, or a nonnumeric 
literal containing non-

numeric characters is being 

moved to a numeric item. 

181 p data-name TRUNCATED The data-name being moved 
DURING MOVE. contains a greater number 

of character positions 
than the receiver or, when 
decimal point aligned, 
contains a greater number 
of digit positions than 
the receiver. 

182 u COMPLETE TRUNCATION OF Decimal point alignment is 
name/I iteral/result. such that no portion of the 

item being moved can be 
contained in the receiving 
operand . 

• • 

Explanation 

Rule 

See the rules on segmentation 
for the listed verb. 

See the rules for the specified 
verb. 

The class of al I characters 
contained in nonnumeric 

literal must be consistent 
with the class of the 
receiving item. 

Truncation occurs when 

any portion of the item 
being moved cannot be 
contained in the receiving 
operand. 

Recovery 

The statement in error is deleted. 

The statement is deleted. 

Requirements for internal labels 
may be lowered by reducing the 
number of statements in a sen-
tence. 

The statement is deleted. 

The data-name is moved and 
truncated. 

The MOVE statement or arith-
metic GIVING statement is 
deleted. 

• 

~~ z U1 
c-..! 
s: :IJ 
Ill ~ m· 
:D r-..> 

c 
-0 
0 
l> 
-i 
m 
r 
m 
< m 
r 

-0 

en 
'"D 
m 
:0 
:0 
< 
c 
z 
< 
)> 
0 
0 
"i 
iil 
!:!'. 
::I 
cc 

!f 
~ 
3 
~ 

l> 
G>O 
m! 
~ 



• • 
Message Severity Diagnostic Message 
Number Code 

Reason 

183 p REDUNDANT ROUND OPERAND The numeric description 
data-name. of the arithmetic result is 

such that no excess digit 
positions are available for 
rounding into the listed 
operand. 

184 p REDUNDANT SIZE ERROR OPERAND The numeric description 
data-name. of the arithmetic result is 

such that its value could 
never exceed the largest 
value that can be contained 
in the listed operand. 

185 u FILE-NAME IN insert STATEMENT The file-name referenced 

REQUIRES SYMBOLIC KEY by the verb requires the 
SYMBOLIC KEY clause 
under the SELECT clause. 

186 c PERFORM STATEMENT LITERAL The TIMES literal in the 
EXCEEDS 32,767. perform statement exceeds 

the maximum allowable value. 

187 c ADVANCING LITERAL EXCEEDS The WRITE ADVANCING 
LIMIT. literal exceeds the maxi-

mum allowable value. 

188 u Fl LE AT LINE literal NOT An OPEN or CLOSE has not 

{CLOSED} WITHIN PROGRAM. 
been specified for the 
file, or the OPEN is 

OPENED 
inconsistent with the 
activity associated with 
the file. 

Explanation 

Rule 

Rounding is possible only 
when an arithmetic result 

contains at least one ex-

cess digit from which the 
round operation can be 

based. 

A size error is possible 

only if the arithmetic 
result contains more 

significant digit positions 
than the resultant 
identifier. 

For ORGANIZATION 
INDEXED files, if 
ACCESS is SEQUENTIAL 
or EXTENDED, a symbolic 
key is required for the 
SEEK verb. If ACCESS 
is EXTENDED, a symbolic 
key is required for a 
READ that does not have 
the AT END clause. 

The maximum value of a 
PERFORM TIMES literal 
is 32,767. 

The maximum number of 
lines that can be advanced 
is 127 in the normal mode 
and three in the conversion 
mode. 

Every file must be 
opened and closed. Files 
written on must be opened 
for output or 1-0, files 
read from must be opened 
for input or 1-0. 

• 
Recovery 

The round operation is deleted. 

The size error test is performed. 

The record key is used. 

The accepted TIMES count is the 
rightmost 15· bits of the original 
value when converted to binary. 
This value is between 1 and 

32, 767. 

The advancing line count is set 
to 1. 

Results during execution are 
unpredictable. 

Coo 
"lJ 0 
' (11 z ..... 
c :IJ 
?: ~ m. 
m f\J 
:D 

(/) 
""C 
m 
JJ 
JJ 
-< 
c 
z 
< 
~ 
(") 

0 
"tl 
(I) ... m 
!:!'. 
::J 

(Q 

!f 
~ 

c 
"lJ 
0 
)> 
-t 
m 
r 
m 
< 
m 
r 

3 -w 

"lJ 
)> 
G> Cl 
ml 
~ 



Message Severity Diagnostic Message 
Number Code 

Reason 

189 u verb STATEMENT PROHIBITED The only 1-0 verbs allowed in 
WITHIN USE PROCEDURE. a USE procedure are: 

ACCEPT (not from system con-
sole or job control stream) 
DISPLAY 
WRITE (to a printer only in 
USE FOR FORM OVERFLOW) 

190 s ADDITIONAL MAIN STORAGE The compiler does not have 
REQUIRED TO PRODUCE OBJECT sufficient main storage to 

CODE LISTING. produce the object code 
listing. 

191 s ADDITIONAL MEMORY REQUIRED The compiler does not have 

TOPRODUCEO~ECTPROGRAM. sufficient main storage to 
maintain the compile time 
tables necessary to create 
the object module output 
for this program. 

192 c KEY SIZES FOR FILE AT LINE Record key size unequal to 
literal NOT EQUAL. symbolic key size. 

193 * p TRUNCATION OF FLOATING POINT In any move from a floating-
OPERAND literal MAY OCCUR. point operand to a nonfloating-

point operand, the floating-
point value may not be able 
to be represented exactly in 
fixed-point format. 

*Floating point available in extended compiler. 

• • 

Explanation 

Rule Recovery 

See rules for USE verb. The 1-0 verb is dropped. 

The object module is produced. 
Recompilation is necessary 
with more main storage 

assigned to the compiler. 

A recompilation is necessary 
with more main storage 
assigned to the compiler. 

Record key and symbolic Symbolic key size is changed to 
key sizes must be equal. record key size. 

No rule has been violated. Truncation may occur. 
Message is strictly 
informative. 

I 

• 

c 00 
7' 0 z C11 c ....i 

~ :0 
CD <II 
m ~ 
:D N 

c 
"'D 
0 
)> 
-I 
m 
r 
m 
< m 
r -
"'D 

(I) 
""O 
m 
JJ 
JJ 
-< 
c 
2 

< 
)> 
C') 

0 
i 
Cil 
r+ s· 
cc 

!f s 
3 
(;) 

)> 
Gl 0 

I m w 
N 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

• 0.3. SYSTEM CONSOLE MESSAGES 

• 

• 

During compilation, COBOL source programs may encounter an error condition as indicated by a system console 
message. All operator system console messages are listed and described in the error messages programmer/operator 
reference manual, UP-8076 (current version). The programmer system console messages, those that are directed to 
the programmer, are given in the following table. The messages are listed in ascending order based on the message 
number and include the meaning and the corrective action to be taken . 

D-33 



+ 
Message 

Diagnostic Message Meaning 
\Number 

CC01 INSUFFICIENT MEMORY Insufficient main storage provided to 
accommodate the processor. The job step 
is terminated. 

CC02 LOAD ERROR An error occurred while attempting to 
locate and load a job phase in the 
LOAD library. The job step is terminated. 

CC04 PATCH s aaaa IGNORED, SIZE INVALID A patch card format error has occurred 
in the control stream. The job step is 
terminated. 

where: 

s 
Is the segment number. 

aaaa 
Is the address where the error 
occurred. 

CC05 PATCH s aaaa IGNORED, NO DELIMITER A patch card format error has occurred in the 
control stream. The job step is terminated. 

CC06 SNAP s aaaa IGNORED A snap card format error has occurred in the 
control stream. The job step is terminated. 

CC07 NO SOURCE PROGRAM An error occurred when the end-of-file card 
was read prior to the first source card in 
the control stream. The job step is terminated. 

CCOB PARAM CARD ERROR An error was detected in the PARAM card 

which specifies job options. The job step is 
terminated. 

CC10 SOURCE PROGRAM NOT FOUND A program designated as existing on a 
library file cannot be found. The job step is 
terminated. 

t 

• • 

Corrective Action 

Allocate sufficient main storage 
and rerun the job. 

Check the LOAD library to make sure 
that the phase is entered. If not, 
enter it and rerun. If the phase is 
in the I ibrary, contact your Sperry 
Univac customer representative. 

Correct the card format and rerun. 

Correct the card format and rerun. 

Correct the card format and rerun. 

Correct the control stream and 
rerun the job. 

Correct the PARAM card and rerun. 

Mount the correct library file 
and rerun the job. 

c 
-:ii g:i 
z (11 c -..J 
3:: JJ 
m co 
m~ 
:D I'..) 

en .,, 
m 
:::0 
:::0 
-< 
c z 
< 
)> 
n 
0 
i 
al ... 
3· 
ca 

!f s 
3 
(;;, 



• • 
Message Diagnostic Message Meaning 
Number 

CC11 SOURCE LIBRARY FILE NOT ALLOCATED COBOL compiler cannot access the library 
file designated as containing the COBOL 

~ source program. Job step is terminated. 

CC12 

{"''"'~ } For filename: 
1/0 ERROR ON JOB-STRM . CODE=nnnn An 1/0 error occurred on a work file, 

CORSCARD source, copy, or object module file. 
The 4-digit code is a copy of the 
error status field settings. 

For JOB-STRM: 
An 1/0 error occurred during job control 
stream processing. The 4-digit code is a 
copy of the control stream error code. 

For CORSCARD: 
An error was detected in the I ibrary 
update correction cards. CODE=0006 indicates 
error in the correction cards. CODE=0007 
indicates error in the SEQ card. 

t In all cases, the job step is terminated. 

CC13 COMPILER ERROR phase indication An error has occurred while attempting to 
position a file, or attempting to process 
a phase. The job step is terminated. A 
storage dump is provided. 

C14 COPY LIBRARY MODULE module-name NOT FOUND The source COBOL program has requested 
that a module be included from the copy 
library, and the module cannot be found. 
The job step is terminated. 

CC15 COPY LIBRARY FILE filename NOT ALLOCATED The source COBOL program has requested 
that a module be included from the copy 
library and the compiler cannot access 
the designated library file. The job step is 
terminated. 

CC17 PRINTER NOT ASSIGNED An error has occurred while attempting 
to open the print file PRNTR. The DVC 
and LFD statements are missing or 
incorrect. The job step is terminated. 

+ 

• I 

Corrective Action 

Correct volume mounting or control 
stream error and rerun the job. 

Rerun the job. If the error persists, 
contact your Sperry Univac customer 
representative. 

Submit a Software User Report (SUR). 

Mount the correct library or correct 
the module-name reference and rerun 
the job. 

Correct the volume mounting or 
control stream error and rerun the 
job. 

Correct the control stream and rerun 
the job. 

c~ 
"'!' (11 z -..J 

c :D 
S: CD 
m ~ 
~ l\J 

~ 
m 
::0 
::0 
-< 
c: 
2 

< 
)> 
0 
0 
'C 
CD ... 
I» 

=· ::::J 
CQ 

!f 
i 

c .,, 
a 
)> 
-I 
m 
r 
m 
< m 
r 

.,, 
)> 
GI 
m 

3 -w 

0 
I 
w 
(11 



• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

E-1 
UPDATE LEVEL PAGE 

SPERRY UNIVAC Operating System/3 

Appendix E. Compiler Listings 

E.1. SOURCE CODE LISTING 

A source code listing header line appears at the start of each source code listing. It identifies the compiler, the 
compiler version, the date of the compilation, and the time of day at which the COBOL program was compiled. If 
the date and time are to appear correctly in the source code listing header line, they must be set by the operator 
through the operator commands when the supervisor is loaded. The page heading of the source code listing locates 
the following information: 

LINE NO. 

The line number (LINE NO.) is a compiler-generated number which identifies the particular line of COBOL 
source code with which it appears. The line number is used to reference lines of COBOL source code in the 
diagnostic listing, the object program listing, the data division memory map, the procedure divisibn memory 
map, and the cross-reference listing. 

c 

If the COPY verb is used, the letter C appears after the compiler-generated line number, to indicate lines of 
source code taken from the copy library. 

@ SEO 

The source item sequence number is listed under SEQ (card columns 1 to 6). The sequence number field (card 
columns 1 to 6) is optional. 

@) SOURCESTATEMENT 

The text (card columns 7 to 72) of the COBOL source program is listed. 

@ IDEN. 

® 

Under IDEN., program identification information (card columns 73 to 80) is !isted. This is an optional entry 
made by the programmer to provide identification or card deck information. The compiler takes no action 
upon it. 

PAGE Page Number 

Page number associated with compilation listing . 

A sample source code listing is shown in Figure E-1. 



t 

t 

COMPILED BY UNIVAC 0S/3E COBOL COMPILER VERSION 07.00/02 DATE 79/07/26 TIME 01.os.113 

II PARAH IN=TBL3T 

II PARAM LST=IS,L,c,c,o,x,AI 

SOURCE CREATION DATE 

(!)LINE NO• ©SEC:, 

Oi.JOGl 
00002 
OCOC3 
0 ... 0011 
00005 
00006 
C0007 
oocoe 
COC09 
L!GOlO 
c.'0011 
CJ012 
IJGO 13 
CLO! 'I 
OC015 
00016 
oc.c l 7 
000!8 
0:-019 
0L02C 
!10021 
0(;022 
00023 
OC0211 
00025 
0G(!2f: 
00027 
ooc2e 
00029 
01.1030 
00031 
00032 
00033 
0003'1 
00035 
00036 
00037 
00038 
00039 
000'+0 
000'11 
OC.Olf2 
000113 
000'+11 
000115 
000116 

• 

ll0/011711 TIME 

©SOURCE 

10.03 

STATEMENT 

IDENTIFICATION DIVISION. 
PRObRAM-lD • TBL3T, 
REMARKS. THIS IS A TEST PROGRAM TO VALIDATE COMPILER PROCESSING 

©IDEN. 

OF ~ARIABLE TABLES, VARIABLE GROUP ITEMS AND THE SEARCH VERB. 
ENVIRONMENT DIVI51CN. 
CONFIGURATION SECTION, 
SOURCE-COMPLTER. uNIVAC-91fOG. 
OBJECT-CO~PUTER. ONIVAC-91fCO. 
SPECIAL-NAMES. S~SLST IS Po 
It.PuT-OUTPLT SECT IOt., 
FILE-CONTROL. 

SELECT A ASSIGN TO TPFILl TAPE. 
SELECT B ASSIGN TO TPFIL2 TAPE, 

I-0-CONTROL • 
SAl"E RECORD AREA FOR A, B, 

DATA OIWISICN. 
FILE SECTION. 
FD A 

RlCOPO ING 1'10CE V 
BLOCK CONTAINS lOLD CHARACTlRS 
LAPEL RECORDS ARE OMITTED 
DATA RECORDS ARE AA, AB, 

01 AA, 
03 AAA PIC S999 COMP. 
03 AAB. 

CS AABA OCCURS 0 TO lCu TIMES DEPENDING ON AAA, 
INDEXED BY AA&AX1 1 AABAX2 1 AAtiAX3 1 

Cl l 

FD 

01 

AS. 
03 AB A 
03 ABB, 

C'S 

B 

ASCE~Dit.G KEY AABAB, 
OESCEND~NG KEY AABAA IN AAB OF AA, 
ASCENDING KEY AABAC, 

07 AAbAA PIC 599. 
U7 AA6AB PIC S99. 
07 AABAC PIC S99. 

PIC S999 COMP• 

ABBA OCCURS 100 TIMES 
INDEXEO BY ABSAXlo 

07 ABBA A PIC S99 •. 
07 ABB AB PIC S99, 
(j 7 ABB AC PIC S99. 

RECORDING MOCE U 
LABEL RECORD5 ARE OMITTED 
DATA RECORD IS BA. 
BA. 

Figure E-1. Example of Source Code Listing 

• 

©PAGE 00001 

I 

• 

~~ z C11 c -..J 
s: :D 

~ ~ 
JJ r-..> 

en 
-0 
m 
::D 
::D 
-< 
c 
z 
< 
)> 
C") 

0 
't:I 
CD 

c .,, 
0 
:I> 
-I 

al 
!:!'. 
:l 

CQ 

!f 
i 
3 w 

m CJ 

r 
m 
< m 
r 

I~ m 
G> I 
m r-..> 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

E.2. DATA DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING 

E-3 
UPDATE LEVEL PAGE 

The storage map heading line contains the PROGRAM-ID name, the compiler version, and the date and time of 
compilation. 

The page heading locates the following information: 

CD LINE 

The compiler-generated line number on which the data item is defined. 

@ LEVEL 

The level indicator or level number assigned to the item. An * indicates that the item was generated by the 
compiler, as with TALLY. 

@ DATA-NAME 

The name of the item. 

@) REG 

® 

® 

Where applicable, the hardware register number which contains the address used as a base value for referencing 
the item. If a permanent register has not been dedicated to cover the item, an * is listed. 

DISP 

The displacement of the item relative to the address contained in the item's cover register. The number is 
expressed in hexadecimal. 

ADDR 

The address of the item, relative to the first byte of the program. If blank, the address varies due to blocking, 
double buffering, etc. The number is expressed in hexadecimal. 

(j) LENGTH 

The length in bytes of the item. 

@ TYPE 

The class or type of the item where: 

GP Group 
A/N Alphanumeric 
A Alphabetic 
NUP = Numeric unpacked 
IDN Index-data-name 
IDX Index-name 
AE Alphabetic edited 
NE Numeric edited 
NP Numeric packed 



-------------------------~----------------------------

8057 Rev. 2 
UP-NUMBER 

@ PTLOC 

SPERRY UNIVAC Operating System/3 

The decimal point location of the item where: 

B E-4 
UPDATE LEVEL PAGE 

- integer indicates the number of fractional digit positions plus the number of leading P's in the PICTURE, 
e.g., -5 for PIC PP999 or PIC 9.99999 or PIC 99V99999. 

+integer indicates the number of trailing P's in the PICTURE, e.g., +5 for PIC 99P(5) 

@) occ 

The number of occurrences of the item as specified by the OCCURS clause. 

@ LINE NUMBERS OF REFERENCES 

If the cross-reference list has been specified, the line numbers where one or more procedural references to the 
item were made are listed here. 

A sample data division storage map is illustrated in Figure E-2. 

The information in the data division storage map is listed in ascending order according to line number. The 
information presented in the data division storage map may also be listed in alphabetical order based on the 
data-names (see 7 .1.1 ) . 

E.3. PROCEDURE DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING 

The storage map heading line will contain the PROGRAM-ID name, the compiler version, and the date and time of 
compilation. 

The page heading locates the following information: 

CD LINE 

The compiler-generated line number on which the item is defined. 

@ SECTION 

If the item is a section-name, it is listed here. 

@ PARAGRAPH 

If the item is not a seetion-name, it is listed here. 

~ © PRIOR 

The priority number of the section-name. 

@ ADDR 

The address of the procedure, relative to the first byte of the program. If the name is not referenced in the 
program, NO REF is listed here. The number is expressed in hexadecimal. 

@ GOTO 

An E indicates that the procedure is the object of a GO TO. 

(j) PERFORM 

• 

• 

• 



• • • t c 00 
-;o g 
Z-.i 

!>~OGRAM-ID, TBL3T COMPILED BY lNIVAC OS/3E COBOL COMPILER VERSION 07,00/02 DATE 79/07/26 TIP'E 0 i. 05." 3 c :a 
S: CD 
OJ < 

DATA DIVISION HEHORY HAP PAGE 000&8 m· 
::Il I\) 

L(jjE LEV EL DAT A NAP'E ©o(D mR 
LENGTH 

©E par ® LINE NUMBERS OF REFERENCES 

CD 0 (i) 10 ® 
* * * SPECIAL NAMES * * * 

00009 77 p 001!52 00'154 001!62 00464 00473 
0047 5 

* * * •ILE SfCTIO~ * * * 
*" *** * TALLY * Cu DC 000190 3 NP 

OJ 018 FL A 00152 00'120 0Clf21 001!26 00431 (/) 
OJ C'23 01 AA 5 CLO'! C0189G 602 VGP GD022 00'129 ""D 
::JJ Cl£4 03 AAA 5 Oi,;Clf 00189G 2 BIN 00026 00158 00166 0017'1 00182 m 

:::0 00191 00199 00209 00218 00226 :::0 
002:l.B 002'18 oc2s1 00258 00261 -< 00272 00282 00293 00302 00307 c 00315 00321 00361 00368 00375 
G0386 00398 00407 00419 z 

00 D 25 Ci3 A Ab 5 Cu06 001892 6l0 VGP 00160 00168 0017& 00181! 00193 < 
00201 00211 00220 00227 00239 )> 
00242 C.0249 00252 00259 00262 n 
00273 00274 00275 00277 00284 0 
00285 U0286 00287 00295 00297 i 00305 00306 00308 0031& 00322 ... 
00323 00363 00370 00371 00377 I» 

r+ 
00380 00381 OC388 00400 00402 s· 
OO'I03 uO'I09 cc 

OJ 026 G5 A AE A 5 OUOt 001892 6 c,p !00 00161 00169 00177 00185 00202 !f 
00212 00221 00228 00243 00253 s 00263 00292 00313 00379 00389 
C0'123 3 

00 0 26 A A'< AXl r.c 1 e DOC 1 AO IOX 00423 00425 00440 -* * 8 w 
ao 026. "' AAPAX£ * C02C C00130 8 IDX 
OJ C26 " AABAX3 * CG28 COOlBE. e IDX 
00 0 31 07 AA8 AA 5 CO Cb 001692 2 "UP 
OJ 0 32 07 A A3 AE 5 l'.'UOe 001894 2 NUP 
OD 03 3 07 A AB AC 5 Ci.JC A 001896 2 NUP 
OJ 034 Cl AB 5 CCO'I C0169G 602 GP 00022 
OJ 0 35 (:3 ABA 5 CuO'I 00189l• 2 E:IN 
00 [' 36 03 Al:,'< 5 l'.'006 001892 600 GP 00155 00165 00173 00181 00190 

00198 00206 00217 00225 00362 c 
00369 00376 00387 00408 00410 "O 

00418 00422 0Clf33 00437 0 
)> 

OJ 037 05 AB 8 A 5 0006 001892 6 GP 100 -! 
0;) 037 * ~88AX1 * Ou3C OOOlCC 8 IOX m CD 

OJ 039 01 A&B H 5 rDC6 001892 2 NUP r 
'Tl 

00 040 07 AbB AB 5 0008 001891! 2 NUP < m 
JJ Olf l 07 ABBAC 5 CODA 001896 2 NUP r 

OJ 042 FD 9 00152 00435 001!36 004113 00448 "O 

OD 01!6 01 BA 6 0000 001888 602 VGP 000115 001!11& l> m 
Gl I 

00 047 03 BAA b cocc 001888 2 BIN 00050 00434 m <.n 

I • Figure E-2. Example of Data Division Storage Map and Cross-Reference Listing 



8057 Rev. 2 
UP-NUMBER 

@ ENTRY 

SPERRY UNIVAC Operating System/3 

An E indicates that the procedure is the object of a PE Fl FORM. 

@ EXIT 

An X indicates that the procedure contains a PERFORM exit point. 

@ ALTER 

An A indicates that the procedure is altered. 

@ SORT* 

@ ENTRY* 

An E indicates that the procedure is the entry point of a SORT procedure. 

@ EXIT* 

An X indicates that the procedure contains a SORT procedure exit point. 

@ DEBUG 

An * indicates that the procedure is the object of a debug packet. 

E-6 
UPDATE LEVEL PAGE 

If the cross-reference list has been specified, the line numbers where one or more references to the procedure have 
been made are listed under LINE NUMBERS OF REFERENCES. A sample procedure division storage map is shown 
in Figure E-3. 

The information in the procedure division storage map is listed in ascending order according to priority number 
above SEGMENT-LIMIT, and within priority number in ascending order according to line number. The information 
presented in the procedure division .storage map may also be listed in alphabetical order based on the procedure 
names (see 7.1.1). 

E.4. OBJECT CODE LISTING AND EXTERNAL REFERENCES 

The object code listing heading line contains the compiler version number and the date and time of the compilation. 

Following the report heading line is a list of external reference symbols (EXTRN and ENTRY names). These are the 
symbols whose object time address cannot be calculated at compile time and must be resolved by the linker. The 
program name and segment names are also listed here so that their object time address can be determined by the 
linker. A 2-character ESID number (External Symbol Identification) follows each name. This number is used as a 
link between the ESID associated with all address constants and the element base to which that address is relative. 

The first entry in the list is the program name and its ESID number of 02. The program name is the PROGRAM-ID 
name from the identification division. If the COBOL program is segmented, the segment names follow. The 
8-character segment name is composed of the first six characters of the program-name and a 2-character segment 
number. The segment number 01 will be assigned to the first section-name whose priority number exceeds 49; 02 to 
the next section with a different priqrity number greater than 49, etc. The ESID of the first segment is 03, the next 
is 04, etc. 

• 

• 

The next group of names identifies various external programs required in the execution of the COBOL program, 
such as the data management modules and special COBOL object time subroutines. • 

*SORT, ENTRY, and EX/Twill appear in the heading but these verbs are not available in the basic compiler. 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 E-7 
UPDATE LEVEL PAGE 

The symbols in the last group are names that appear in CALL statements. 

The object code listing page heading identifies the following information: 

LINE# 
The compiler-generated line number on which each procedure division statement exists. 

BASE/DISPL 
This field lists the hardware base register number used to contain the cover address for the line of code. 
The displacement from the address in the cover register to this line of code is also displayed. 

If this field is blank, either no cover is needed for the line of code, or the cover register assignment at 
object time varies and cannot be defined. 

ADDRESS 
The program-relative address where the line of code resides. 

CONTENTS OF 
MEMORY 

The actual hexadecimal description of the code or constants produced. An ESID number appears to the 
right of each address constant (DC A). 

OPERAND 
ADDRESS 

The program-relative address of the data or constant area being referenced. If this field is blank, the item 
is being addressed indirectly. 

OPCODE 
The mnemonic name for the constant or instruction produced on this line. If this field is blank, and the 
'contents of memory' field contains zeros, alignment is being effected for the next line of code. 

COMMENTS 
This field defines the purpose for which the code was generated. For code in the procedure division, the 
source program verb is listed. 

Prior to the procedure division, the following numbers, displayed under COMMENTS, are used to locate the 
indicated items and areas. 

G) lntersegment GO TO Subroutine 

Used when control is passed from one segment of a segmented program to another. 

@ lntersegment PERFORM Subroutine 

Used when a PERFORM references a section or paragraph in another segment. 

@ PERFORM EXIT Subroutine 

Called at end of paragraph or section referenced as PERFORM EXIT to determine if PERFORM is active or 
not . 



t 
I 

PROCEDURE DIVISION MEMORY "AP PAGE 00071 
c co 
7' 0 

CD 
SECTIW NAME 

z (J'I m ~ -----VERS REFERENCES m- ._ - c'-1 
s: :0 

LI NE P R AD&O PERFORM ·~:r SOR I D@G DJ ~ 

PARAGr.I!' NAME I TO E@R ~T I E&R EX T 11 LINE NUMBERS OF REFERENCES 
m· 
]] I\) 

* * * * l DEPENDING SECT ION • • • • • @ 
00 150 DPSUOOOO 002738 E x 
!JJ 150 DP'lC!;OOl 002752 [ x 
00150 DPSG0002 00276C E x 

* * * • ENO DEPENDING SECTION • • • • 
O::J 151 0010 002786 
O::J 154 lOCO-MOVE-V-TO-F-PADOEO 0027A4 
OJ 164 1010-MOVE-V-TO-F-TRUNC 00284C 
:JO 17 2 1020-MOVE-V-TO-F-JUST-PAD 0028Fb 
00 180 1030-MOVE-V-TO-F-JUST-TRUNC OC299E 
OJ 1 eq lOllG-ZERO-LENGTH-TC-F 002A48 en 
OD 197 1050-MOVE-F-TO-V-PADDEO 002AE6 

.,, 
l)J 207 1060-MOVE-F-TO-V-TRuNC OC2BAC 

m 
:0 

OJ 216 107~-MOVE-F-TO-ZEKO-LENGTH-V 002C5E :0 
OJ 224 1080-MOVf-FlGUPATlV[-TC-V 002CFC -< 
OJ 232 109u-GECISION OG20SC c: OJ 2 3 7 l1Cu-MOVE-V-TO-V-PAOC£0 OG2GB8 
OJ 21!7 1110-MOVf-V-TO-V-TRUNC 002ED6 z 
OJ 257 llZu-MOVE-V-TO-V-ZERO-LENGTH OC2Fflf < 
OJ 260 20CU-DECISICN 003106 )> 

OJ 2 71 2010-IF-V-VS-LONGER-F !'03122 0 

00 2 81 2020-IF-V-VS-SHORTER-F 003246 0 
OJ 291 2030-IF-~EPO-LENGTH-VS-F OU336A "'C 

ft) 

003C1 201!0-IF-V-VS-V 0034112 iiJ 
OJ 312 205c-IF-z-vs-z 0035CA r+ 

OJ 319 2060-IF-V-VS-FIGURATIVE C03b64 :;· 
OJ 3 30 2070-IF-ZERO-LENGTH-V-VS-FCO~ QG37AB 

cc 

OJ 3 37 208U-IF-V-ALPHA&ETIC 00387C ft 
'.)J 346 2090-IF-V-NUMEPIC ('03952 en 

OJ 355 30CLJ-DECISION 0G3A28 ~ 
OJ 3b0 301G-EXAl'INE-V-TALLY-ALL 003A4'1 3 

3020-EXAl'INE-V-TALLY-REF-ALL -00 367 003AC4 w 
OJ 37'1 3030-EXAl'INE-V-TALLY-REP-TIL 003B7A 
OJ 365 3040-EXAl'INE-ZERO-LENGT~-V 003C8'1 
OJ 392 40CG-OECISICN OU3DCE 
OJ 397 '1010-TRANSFORM-V 00302A 
!JO 406 1!020-TRA~SFORM-ZERO-LENGTH-V 003EC2 
OJ 41 7 5010-wRITE-V-REC-~ODE-V 003F54 
00 4 28 5020 00406A E x 00419 
00 1!30 5030 CC4Geo E x 00423 
O:J If 3 2 50'1U-wRITE-v-RE(-MODE-U 0041Co E 00427 c 
00 1!45 5050 00421£ E x 0043'1 .,, 
00 41!7 5060 0L425C E x 00438 0 

)> 

00 449 5070 004284 [ 00444 -; 

OJ 1!51 9000-SUMl'ARY 001!284 E 001!77 mill 

00 1!60 90CO-OI SPLAY 004390 [ x 00457 
r 
m 

00 465 9010-PASS 004408 E x 00162 00170 00178 00187 00195 < m 
00205 00214 00222 00230 00245 r 
00255 00264 00278 00288 00298 
00309 00317 00327 00335 0031!3 I I~ 

Gl m 
ml co 

I 

• Figure E-3. Example of Procedure Division Storage Map and Cross-Reference Listing 

• • • 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 E-9 
UPDATE LEVEL PAGE 

• 

• 

• 

© CVB 

Converts packed decimal to binary. 

® CVD 

Converts binary to packed decimal. 

® Multiply Half-Word Subroutine 

Determines product of two binary half words. 

0 CVB and Multiply Half-Word Subroutine 

Converts a packed decimal number to binary and multiplies it by another binary number. 

@ GO TO DEPENDING Subroutine 

PERFORM function required by GO TO DEPENDING function. 

® Converts separate sign to embedded sign. 

@) Converts embedded sign to separate sign. 

@ Same as 10 . 

@ Calculate occurrence number. 

@ Transient Storage Area 

Storage area used to perform certain intermediate calculations. 

@ Special Constants 

Constants required by verb generators. 

@ Address of USING Argument Area 

Pointer to area used to pass USING arguments to called routines; also used by ACCEPT and DISPLAY 
functions. 

@ Address of USE Procedure Table 

Pointer to table of USE procedure addresses. 

@ Address of Altered GO TO Table 

Pointer to table of altered GO TO's in priority segments . 



8057 Rev. 2 
UP-NUMBER 

@ Start of BAT Table 

SPERRY UNIVAC Operating System/3 

A table of addresses used to reference data division entries. 

@ Start of PEP Table 

A table of addresses of referenced procedures. 

@ Start of DTF Block Addresses 

E-10 
UPDATE LEVEL PAGE 

A table of addresses which define the starting points of DTF's and the COBOL prefixes for each. 

@ Start of EXTRN's for COBOL Subroutines 

EXTRNed address of subroutines required by certain COBOL functions. 

@ VCON Reference Table 

A table of addresses created by CALL statements compiled as VCON's. 

@ PERFO.RM EXIT Storage Area 

Area used to save address and other indicators for PERFORM functions. 

@ Index-Name Storage Area 

Area used to store values of indexes: the value of TALLY is also stored in this area. 

@ PERFORM n TIMES Counters 

A table containing the counters for the PERFORM verb. 

@ Start of DTF Tables 

A series of tables used to define files for input/output functions. 

@ Start of Altered GO TO Table 

A tab~ of altered GO TO's in priority segments. 

• 

• 

• 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 E-11 
UPDATE LEVEL PAGE 

• @) Start of USE Procedure Table 

• 

• 

A table used to reference USE procedures containing necessary indicators and addresses. 

@ Start of Data Division Initial Values 

Start of listing of constants produced by VALUE clause in working-storage section. 

@ Start of Procedure Division Constants 

Area contains those values and constants required by procedure division literals and functions. 

A sample object code listing is shown in Figure E-4. 

E.5. DIAGNOSTIC ERROR LISTING 

The diagnostic listing header line contains the program-ID name, the compiler version, the date, and the time of 
compilation. The page headings locate the following information: 

G) LINE# 

Compiler-generated number which identifies the particular line of source code with which it appears. 

@ SVC 

Severity code letter 

@ ERROR 

Diagnostic number 

© DIAGNOSTIC MESSAGE 

i Brief explanation of the error condition 

Explanation of the text of the diagnostic error listing is given in the system messages programmer/operator 
reference, UP-8076 (current version). 

A sample diagnostic listing is shown in Figure E-5 . 



t ------

P~OGRAM-ID. TBL3T COMPILED BY UNIV~C 0S/3E COBOL COMPILER VERSION D7oOD/D2 DATE 79/D7/Zb TIME 01.os.113 PAGE 00010 I I~~ EXTERNAL REFERENCES ~-.J 

T3L3TOOO 02 CCw[XM94 03 CCOlf>JERR 04 CBO.CAD 05 C Sei AL PH Ob CSciNU"IU 07 CSiilANRP 08 CB iilANR 09 I lu C"1 ~VMOV£ OA oDn 11 l Ob CC@BJER3 OC CfiilDCP CD C•eiTRANS OE CWiiEB2AS OF CBiiOPCL3 10 
m· 
:D N 

LINE # t>ASE/OIS~L ADDRESS CONTENTS CF MEMORY OPERAND ADDRESSES OPCODE COHHENTS 

GCCOOO US fO BALR 
F o;:.c CCtC02 '15 EL f CCb 0()0008 BAL 
F f'U4 OCCCO& C7 FC BCR 
F 006 coccus 98 AD F Cl2 000014 LH 
F C'CA occcoc 9 8 5 9 A Cf C OCD12'1 LH 
F o.::r 000010 C4 Ali SPI" 
F ri l c CCC..012 07 FE B CR 
F Cl2 CCC014 LOCC0028 C.2 DC A 
F CH OCC018 coco1oze c<: DC A Cl) 

F OlA OGCOlC CCC0276& 02 DC A "'O 
m 

F C:lf OCL.C20 OQC02H~ 02 DC A - :::D 
F C,2 LGC..0.<4 uOCOOCOO 

@) 
:::D 

A DUO OCG028 58 FO 1 COL L -< 
Cl.4 ccc.r.;:c "1 00 0 cou LA c 

A 'lu8 OC(.(130 19 f 0 CR z 
A OlA UCLC32 47 SL £. COO BC 

C't.:F: cr:rn3o 58 co l CO'I L < 
Cl2 ~c ... 03.a '15 OL l OCL CLI )> 

f'lb CCC03E 90 0 c 1 CC'G STM 
(") 

CH CCC..0'12 4 7 D L F COU BC 0 
'1lf OtC0'16 45 E 0 A C 12 0LOC3A BAL "C 

CD 
A C2::' CCCO'IA CCl.lO 

® 
Q1 

A r 24 CCcr14C 96 OF A C37 OGOGSF 01 r+ 

A r,25 CCC050 4f H A C3C OU0058 CVB :r 
CQ 

A r2c OOC054 L7 ft: BCR Cl) 
A c i.E UCC056 coco @ < 
A r 3r CCC058 cocoocoocooooooo DC X Cll s 
A C38 CCCObC cs 48 

®@ 3 
A r tB LCCt90 UCG003E 6 DC X y -A C tC OCCC911 GOu02734 CZ DC A 1 w 
A f'70 GCCC98 [JQ(.)02738 02 DC A @17 
A 0711 CCL09C OOC.02752 CZ DC A 
A 076 COLOAO OOC027i>C 02 DC A 

07C CCCCAll LOu041fL8 02 DC A 
A C!lO OCCOAB G0u0442A C2 DC A 
A o e4 OCLOAC (J(l(.0411A2 02 DC A 
A OllB GQGOE;O 00uD40bA 02 DC A 
A OBC 0C[Qb4 L0C040BO 02 DC A 
A 090 OCOOBB 00C041L8 02 DC A c 
A 094 LCCOBC GOL042lE 02 DC A "C 

0 
A ('98 oaooco LCC0425C 02 DC A ~ 

A 09C LlCOCC4 C00042b4 02 DC A -! 
m OJ 

A CAO occocs UOGO<ilf4C 02 OC A r 
A OA4 occocc OOC0439C 02 DC A m 
A DAB 000000 COL042B4 02 DC A < 

@ 
m 

A CAC UOGOD4 uOOOU210 02 DC A r 

A OBO OCGOOB 00000210 02 DC A 
A CB4 CCGODC 00C003U8 02 DC A I I~ m 

G'l I 

• Im~ 

Figure E-4. Example of Object Code Listing and External References 

• • ., 



t 

I 
• 

,. • 

(1)RO~~~ TBL3© COf"PILED BY Ut.JVjC OS/3E COBOL COMPILER VERSION 07.00/02 CATE 79/07/26 

\..:..(IN~V~RROR DIAGNOSTIC ~ESSAGE 

0 0 1 bO P 1 £11 
0Jlb8 p 181 
OJ17b P 1 Bl 
OJ18'+ P 181 
OJ193 P l 81 
OJ 274 P l 81 

AAP TRUNCATED DURING MCVE. 
AAP TKUNCATED DUPING MCVE. 
AAP TRUNCATED DUPING MCVE. 
AAP ThUNCATED DURING MCVE, 
AAP TRUNCATED DURING MCVE. 
AAP TRLNCATED DURING MCvE, 

***~*fRPORS U- (fGO S- COOO C-
OS/3E CCbOL CO~PILATION COMPLETE TbL3T 

ooco 
ST Ai'?T 

P- GOO& 
01.05,43 

***** 
END Dl,07.59 

Figure E-5. Example of Diagnostic Listing 

• 

TIME 01. 05 •If 3 

PAGE 00077 

c 00 
7' 0 z (11 c -.J 

s: :D 
ttJ ~ m· 
JI r-..> 

(/) ,, 
m 
:lJ 
:lJ 
-< 
c z 
< 
~ 
0 
i 
Di 

c ..., 
0 

~ 

r+ 
3· 

CQ 

!f 
s 
3 -w 

mm 
r 
m 
< m 
r 

..., 
}> 
G>m 
m.!_. 

w 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 B E-14 
UPDATE LEVEL PAGE 

t 
E.6. ALPHABETICALLY ORDERED DATA DIVISION CROSS-REFERENCE LISTING 

This listing presents the same information as the data division storage map (Figure E-2). but the items are presented 
in ascending sequence by data-names. 

Figure E-6 is a sample alphabetically ordered data division cross-reference listing. 

E.7. ALPHABETICALLY ORDERED PROCEDURE DIVISION CROSS-REFERENCE LISTING 

This listing presents the same information as the procedure division storage map (Figure E-3), but the items are 
listed in ascending sequence by procedure-names. 

Figure E-7 shows a sample alphabetically ordered procedure division cross-reference listing. 

• 

• 

• 



• • • t I c co "11 0 
' Cl1 z -.J 

P~ OGRAM-IO• TBL 3T COMPILED BY LNIVAC OS/3E COBOL COHP IL ER llERS ION 07.DD/D2 DATE 79/D7/26 T II' E 01.D5.q3 c :D s: co 
OJ :-:: 

DATA DIVISION CROSS REFERENCE PAGE OD073 ~ r-J 

OAT A NAME LEVEL LINE REG D ISP ADDR LENGTH TYPE PTLOC OCCURS LINE NUMBERS OF REFERENCES 

A f[J COClB D0152 D0420 00421 00426 00431 
AA Cl (0023 5 0004 001890 602 VGP 00022 00429 
AA A 03 C0024 5 0004 001890 2 BIN 00026 00158 00166 00174 00182 

00191 00199 00209 00218 00226 
00238 00248 00251 00258 00261 
00272 00282 00293 00302 00307 
00315 00321 00361 D0368 D0375 
D0386 00398 00407 00419 

AA P 03 rGIJ2 5 5 i.JOC6 OQ1892 60(1 VGP 00160 00168 00176 00184 OD193 Cl) 
00201 00211 00220 D0227 00239 "'tJ 
OC242 00249 00252 00259 00262 m 

::0 00273 00274 00275 00277 00284 ::0 
00285 OrT286 OC287 D0295 D0297 -< D0305 00306 00308 D0316 00322 
00323 00363 0037D 00371 00377 c 
00380 00381 00388 00400 00402 z 
Of'403 00409 < 

A A e A 05 CC026 5 GOG6 001892 6 GP 100 00161 00169 OC177 D0185 00202 ~ 00212 00221 00228 00243 00253 
00263 00292 00313 00379 00389 0 
00423 i A A". AA 07 (0031 5 0006 001892 2 NUP ~ A AP AB 07 cc. (3 2 5 ooce 001894 2 NUP ... 

AA e AC C7 (0033 5 GOCA D01896 2 NUP s· 
A A '3 AX 1 * ClJ026 * 0018 OC01A8 8 IOX C0423 00425 00440 cc 
AA 8AX2 * (0026 * OC.20 000180 8 IDX !R AA eAx3 * ( (J026 • uO 28 0001&8 8 IOX en 
A3 [' l COC3 4 5 GCC4 0(1890 602 GP C0022 s 
•BA 03 C(.)035 5 UOC4 001890 2 BIN 3 
A 3 e 03 (()(36 5 00(6 001892 61,;0 GP 00155 00165 00173 00181 00190 -w 

00198 00208 00217 00225 00362 
00369 00376 OC387 00408 00410 
00418 00422 00433 00437 

A3 EA 05 C0037 5 OCCE: 001892 6 GP lOD 
A3 BAA 07 DOD39 5 OOC6 001892 2 NUP 
A3 BAB 07 CCO'+O 5 00(8 OC1891f 2 NUP 
A3 B AC 07 (0041 5 OOC!A 001896 2 NUP 
A3 BAXl * (0037 * 003C OOOlCO 8 IDX 
B FD C0042 00152 00435 00436 00443 D0448 c 8A 01 C0046 6 OCCD 001888 602 VGP 00045 00446 "11 

BA A (3 (0047 6 0000 001888 2 BIN 00050 00434 0 
)> 

BAB 03 (004 8 6 0002 00188A 6DO VGP -I 
BA BA 05 (0049 6 0002 00188A 6 A/N 100 DD438 mro 

BAB AX 1 * (0049 • 0038 0001(8 8 IOX ODll38 r 
m 

FAILURE 88 C0148 1 OA20 002510 1 NUP D0233 OD267 00356 OD393 < 
p 77 COD09 00452 D0454 D0462 D0464 D0473 

m 
r 

OD475 
TA LL Y • ••••• • OODO OD0190 3 NP I I~ WA 01 C:0053 1 OOOD OOlAFD 6D2 VGP 
WA A D3 C:DDS4 7 OCCD DDlAFD 2 BIN D0056 00238 oc2q1 DD2q8 D0258 

m 
.:. 
Cl1 

I 

• Figure E-6. Example of Alphabetically Ordered Data Division Cross-Reference Listing 



t 
PROCEDURE DIVISION CROSS REFERENCE 

c Q) 

PAGE 00075 "'DO 
' U'I Z-.i 

PROCEDURE NAME TYPE l INE ADDR GO PERFORM Al TER SORT DEBUG c :a 
S: CD 

PRI T 0 ENTER EX IT ENTER EXIT LINE NUMBERS OF REFERENCES ID ~ 

~I'.) 
O? !00000 PAR COlSO 002738 E x 
OF' lOOOOl PAR COlSO 0027,2 E x 
oo !00002 PAR C0150 00276C E x 
0010 PAR C0151 002786 
1000-HOVE-V-TO-F-PAODED PAR C0154 C027A4 
1010-HOVE-V-TO-F-TRUNC PAR C0lb4 00284t 
1J20-HOVE-V-TO-F-JUST~PAD PAR C017 2 C028F6 
1J30-HOVE-V-TO-F-JUST-TRUNC PAR (0180 00299E 
1040-lERO-LENGTH-TO-F PAR C0189 C02A48 
lOSO-MOVE-F-TO-V-PAOOEO PAR (0197 002AEb 
1060-HOVE-F-TO-V-TRUNC PAR (0207 C028AC 
1070-MOVE-F-TO-ZERO-LENGTH-V PAR (0216 C02C5E en 
1080-HOVE-FlGURATIVE-TO-V PAR C0221f C02CFC "'Cl 

m 
1090-0ECISION PAR (0232 C0209C :D 
1100-MOVE-V-TO-V-P•DDlD PAR (0237 002088 :D 
1110-HOVE-V-TO-V-TRUNC PAR C0247 C02ED6 < 
11 20-MOVE-V-TO-V-ZERO-LENGTH PAR ( 0257 002ff 4 c: 2:JOG-DECISION PAR CC:266 003106 z 2010-IF-V-VS-LONGER-F PAR CG271 003122 
2020-IF-v-vs-SHOPTER-f PAR C02Bl 0032116 < 
2030-IF-ZERO-LENGTH-VS-f PAR CC291 00336A )> 
20 40-IF-v-vs-v PAR CC.301 G03111f2 (') 

20 50-IF-z-vs-z PAR C0312 C035CA 0 
2060-IF-V-VS-FIGURATIVE PAR ( 0319 COH64 "C 

CD 
2J7G-IF-ZERO-LENGTH-V-VS-FCON PAR C0330 OC37A8 iil 
2080-IF-V-ALPHABETIC PAR (0337 00387( r+ 

2090-IF-V-NU~ERIC PAR (0346 00395.2 :;· 
30 OD-DECISION PAR CD355 003A28 

ca 

3JlO-EXAMINE-V-TALLY-ALL PAR (0360 003A44 !f 
3020-EXAMINE-V-TALLY-REP-ALL PAR C0367 003AC4 en 
3::130-EXAMINE-V-TALLY-REP-TIL PAR Cll371f CL3B7A S' 
3QqO-EX~MlNE-ZERO-LENGTH-V PAR C038S C03C84 3 
40 OD-DECISION PAR C C39 2 CG3DOE w 
4010-TRANSFORM-V PAR CC397 00302A 
4020-TRANSFORM-ZERO-LENGTH-V P•R CC406 003EC2 
5010-WRITE-V-REC-HODE-V PAR coq11 003FS4 
so 20 PAR C0428 00406A E x 00419 
50 30 PAR (0430 004CBO E x 001123 
S040-•RITE-V-REC-HODE-U P•R (01132 004108 E 001127 
5JSO PAR (0445 C0421E E x 00434 
so 60 PAR (0447 004250 E x 00438 
50 70 PAR (Qlf49 0042811 E 0011411 c 
9JOO-DISPLAY PAR COlfbO 004390 E )!( 00457 "'D 

9000-SUMMARY PAR [0451 004284 E 00477 
0 
)> 

9010-PASS PAR CC4b5 0041108 E x 00162 00170 0017'8-00187 0019S -l 

00205 002111 00222 00230 00245 
m OJ 

r 
002SS 00264 00278 00288 00298 m 
00309 00317 00327 00335 00343 < m 
00352 00365 00372 00382 00390 r 
001104 00411 0042S 00441 

90 20-FAIL PAR (01168 00442A E x 00163 00171 00179 00188 00196 I 1; 
G) 
m 

m 
Figure E-7. Example of Alphabetically Ordered Procedure Division Cross-Reference Listing I .!.. • (l) .\ • .) 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 F-1 
UPDATE LEVEL PAGE 

• 

• 

• 

Appendix F. Conversion Mode 

F.1. GENERAL 

To facilitate the conversion of IBM/360 DOS COBOL level D to SPERRY UNIVAC Operating System/3(0S/3) 
COBOL, a conversion facility has been built into the OS/3 extended COBOL compiler. This facility, called the 
conversion mode (C-mode), accepts COBOL source code and alters it to American National Standard specifications, 
or issues diagnostics so the programmer is made aware of the need for changes. 

F.2. CONVERSION MODE OPERATION 

A PA RAM statement option is available to energize the conversion mode of the OS/3 COBOL compiler . 

The conversion mode availability does not imply total source program transfer capability. Its intent is to minimize 
the volume and complexity of source program alterations necessary to compile successfully a given COBOL-D 
program. Every attempt is made to provide software support for those language differences that would, under a 
totally manual conversion process, require a knowledge of the source program intent and logic flow. Source program 
statements that must be altered prior to compilation are, in most cases, independent of program design. 

Several methods are available by which the conversion mode operates on a COBOL-D source program. In addition to 
accepting portions of the alien syntax and interpreting that syntax in a COBOL-D manner, the compiler alters the 
meaning of certain source clauses and statements. 

In the conversion mode, various compiler processing paths are altered to effect a change in the semantic 
interpretation of a COBOL-D clause or statement, as in the case of contradiction across compilers associated with 
the IF NUMERIC statement. 

Occasionally, an entire processing philosophy can be reversed. In the conversion mode, the compiler assumes that 
ASCII print control characters are utilized in all print files. In addition, a special COBOL-supplied object time 
subroutine is provided to ensure acceptable object program print speed. This software bridges the gap between the 
exclusive use in COBOL-D programs of the WRITE AFTER ADVANCING statement and the associated UNIVAC 
90/30 System hardware limitation. 

This appendix describes the known differences that exist between COBOL-D and UNIVAC OS/3 COBOL. It also 
defines the language differences that the conversion mode renders transparent. Those language differences for which 
no automatic software support is possible also are identified here, along with the appropriate source program change 
requirement. 

When functioning in the conversion mode, many of the compiler American National Standard language features are 
disabled. Therefore, it is not recommended that a COBOL-D program, once converted, be modified to take 
advantage of the many additional OS/3 COBOL language capabilities without first being totally converted to 
American National Standard COBOL. 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 F-2 
UPDATE LEVEL PAGE 

In the normal American National Standard COBOL mode, COBOL-0 language differences are not permitted. The 
special processing interpretations and software extensions available in the conversion mode are not supported in the 
American National Standard mode; that is, control character print files are unique to the conversion mode. 

F.3. CONVERSION MODE SYNTAX 

The differences between COBOL-D and OS/3 COBOL are described in the following paragraphs within each program 

division. 

F .3.1. Identification Division 

• PROGRAM-ID. program-name. 

COBOL-D 

Program-name is one to eight characters enclosed in quotation marks. 

OS/3 COBOL 

Program-name is 1 to 30 characters not enclosed in quotation marks. Only the first 6 characters, 
excluding hyphens, are used to identify the object program. 

C-mode 

OS/3 COBOL accepts a 1- to 8-character name enclosed in quotation marks. Only the first 6 characters, 
excluding hyphens, are used to identify the object program. 

F .3.2. Environment Division 

• CONFIGURATION SECTION heading. 

COBOL-0 
Optional 

OS/3 COBOL 
Required 

C-Mode 
Optional 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

• 

SPERRY UNIVAC Operating System/3 

SOURCE/OBJECT COMPUTER clause . 

COBOL-D 
IBM-360 model-number 

OS/3 COBOL 
UNIVAC-9030 

C-mode 

F-3 
UPDATE LEVEL PAGE 

The compiler accepts any SOURCE/OBJECT COMPUTER entries valid for COBOL-D. 

• SPECIAL-NAMES paragraph/DECIMAL-POINT IS COMMA clause 

• 

COBOL-D 
Does not exist. Reversal of decimal point and comma is activated by a parameter on the CBL control 
card. 

OS/3 COBOL 
Reversal of decimal point and comma controlled by SPECIAL-NAMES entry. 

C-mode 

No automatic support. The converter must insert a special-names paragraph and the DECIMAL-POINT 
IS COMMA clause into the source program before compiling. 

If the CON SO LE or SYSLST option of an ACCEPT /DISPLAY statement is used in the program, the 
compiler automatically produces a special-names entry, internally, for the program. CONSOLE is 
equated to SYSCONSOLE, and SYSLST is equated to SYSLST. 

SELECT/ASSIGN clause 

COBOL-D 

{ 

DIRECT-ACCESS} 
ASSIGN TO 'external-name' UNIT-RECORD 

UTILITY 

device-number UN IT(s) 

OS/3 COBOL 
ASSIGN TO 'external-name' integer implementor-name 

C-mode 

No automatic support. The COBOL-D SELECT statement, with respective ASSIGN clauses, must be 
replaced by the appropriate SELECT/ASSIGN clauses before compilation. 

• ACCESS clause 

COBOL-D 
The word 'IS' is optional. 

OS/3 COBOL 
The word 'IS' is required . 

C-mode 
The word 'IS' is optional. 



8057 Rev. 2 
UP-NUMBER 

• 

SPERRY UNIVAC Operating System/3 

KEY clauses 

COBOL-D 
The word 'IS' is optional. 

OS/3 COBOL 
The word 'IS' is required. 

C-mode 
The word 'IS' is optional. 

F-4 
UPDATE LEVEL PAGE 

• 1-0-CONTROL paragraph entries 

COBOL-D 
Allows the clauses of the 1-0-CONTROL paragraph to be separated by periods. 

OS/3 COBOL 
Allows the clauses to be separated by a comma or a semicolon. A period must follow the last entry in 

the paragraph. 

C-mode 
No automatic support. The embedded periods within the 1-0-CONTROL paragraph must be removed 

prior to compilation or diagnostics will result. 

• RERUN clause 

COBOL-D 

, , { DIRECT ACCESS } 
RERUN ON external-name UTILITY device-number 

UNIT(s) EVERY integer RECORDS OF file-name. 

External-name may not be the same as the external-name in an ASSIGN clause. 

Allows a maximum of 20 external devices to be used to store checkpoint records, only one of which can 

be a direct access device. 

Checkpoint records are written preceding the execution of integer for a READ, WRITE, or REWRITE 

statement. Integer may not exceed 8,388,607. 

OS/3 COBOL 

RERUN ON 'external-name' EVERY integer RECORDS OF file-name 

The external-name must be specified in an ASSIGN clause. 

The only restriction on the devices is the compiler limit of 63 devices per program. 
Integer may not exceed 9,999,999. 

C-mode 
No automatic support. The RERUN clause must be replaced by one that conforms to the OS/3 COBOL 
format. A SELECT statement must be added for each external-name in each RERUN clause. 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

• 

SPERRY UNIVAC Operating System/3 

APPLY clause for FORM-OVERFLOW 

COBOL-D 
APPLY overflow-name TO FORM-OVERFLOW ON file-name. 

OS/3 COBOL 
This clause is not supported. 

C-mode 

F-5 
UPDATE LEVEL PAGE 

No automatic support. Remove the APPLY FORM-OVERFLOW clause from the source program. Add a 
USE FOR FORM-OVERFLOW procedure in the declaratives portion of the procedure division for 
detection of page breaks. 

• APPLY clause for RESTRICTED SEARCH 

• 

COBOL-D 
The word 'ON' is optional. 

OS/3 COBOL 
The word 'ON' is required. 

C-mode 
The word 'ON' is optional. 

COPY library-name 

COBOL-D 
Library names are enclosed in quotation marks. 

OS/3 COBOL 
Library names are not enclosed in quotation marks. 

C-mode 

Library names are enclosed in quotation marks. All libraries are expected to be in UNIVAC OS/3 
format. 

F.3.3. Data Division 

• Data formats 

COBOL-D 

COMPUTATIONAL-1 specifies short floating-point format; COMPUTATIONAL-2 specifies long 
floating-point format. 

OS/3 COBOL 
COMPUTATIONAL-1and2 are not supported. 

C-mode 
COMP-1 and 2 are not supported . 



8057 Rev. 2 
UP-NUMBER 

• 

SPERRY UNIVAC Operating System/3 F-6 
UPDATE LEVEL PAGE 

LABEL RECORDS clause 

COBOL-D 
Optional clause. If omitted, LABEL RECORDS OMITTED is assumed. For LABEL RECORDS ARE 
data-name, the data names must be 01- or 77-level items in the linkage section. 

OS/3 COBOL 
Required clause. If the clause is omitted, a diagnostic is produced and OMITTED is assumed (unless 
device is disc, then labels are assumed to be STANDARD). For LABEL RECORDS ARE data-name, the 
data-name record description must be subordinate to the file description. 

C-mode 
Optional clause. Same default as COBO L-D. Label data-names must be in linkage section as 01- or 
77-level items. 

• PICTURE clause 

• 

COBOL-D 
An external floating-point item may be defined by a PICTURE, which contains an E and two sign 
characters. The sterling currency feature may be specified by extensions to the PICTURE clau~--

OS/3 COBOL 
Neither the sterling currency feature nor the external floating-point PICTURE description is supported. 

C-mode 
Neither the sterling currency feature nor the external floating-point PICTURE description is supported . 

USAGE clause 

COBOL-D 
The USAGE IS COMPUTATIONAL clause indicates that the data is in binary format. 

If USAGE IS COMP, COMP-1, or COMP-2, intra-record slack bytes are added by the compiler to ensure 
that the data is aligned on a half-word, full-word, or double-word boundary. 

OS/3 COBOL 
USAGE IS COMPUTATIONAL indicates that the data is in packed decimal format. Binary data formats 
are not supported. COMP-1 and 2 are not supported. 

C-mode 
There is no support for binary or floating-point data formats. 

• Working-storage section 

COBOL 
All 01 's are aligned on a double-word boundary. 

OS/3 COBOL 
All level 01 'sin working-storage section are aligned on a full-word boundary. 

C-mode 
All level 01 'sin working-storage section are aligned on a full-word boundary. 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

• 

SPERRY UNIVAC Operating System/3 F-7 
UPDATE LEVEL PAGE 

COPY specifications 

COBOL-D 
The COPY statement is allowed on 77 items in the working-storage and linkage sections. 

OS/3 COBOL 
The COPY statement is not allowed on 77 items. 

C-mode 
The COPY statement is allowed on level-number 77 items in the working-storage and linkage sections; 
however, the implied replacing feature is not supported. Replacing can be accomplished by use of 
explicit REPLACING clauses. ALL COPY libraries are expected to conform to UNIVAC OS/3 formats. 

F.3.4. Procedure Division 

• ACCEPT statement 

COBOL-D 
A maximum of 72 characters may be accepted from the console. 

When the FROM option is not used, one logical record will be retrieved from the system logical input 
device (SYSIPT). 

Since a special-names paragraph is not available, the only acceptable FROM option is CONSOLE . 

If /* is encountered on an ACCEPT statement, a fall through to the next source statement is effected. 
End-of-file detection is the user's responsibility. 

OS/3 COBOL 
A maximum of 60 characters may be accepted from the system console. 

When the FROM option is not used, a maximum of 4095 characters (52 card images) is retrieved from 
the job stream. 

If /* is encountered on an ACCEPT statement, an object-time diagnostic is issued and the program is 
terminated. 

C-mode 
SYSIPT is equivalent to the UNIVAC OS/3 job control stream file. 

The compiler creates an internal special-name definition to equate CONSOLE to SYSCONSOLE. 

• DISPLAY statement 

COBOL-D 
When UPON option is omitted, SYSLST is assumed. 
Displays may be directed to SYSPUNCH. 
The sign of a numeric item is not displayed as a separate character, e.g., -32 displayed as 3K. 

OS/3 COBOL 
When the UPON option is omitted, SYSCONSOLE is assumed. 
Displays to a punch are not supported .. 
The sign of a numeric item is displayed as a separate character, e.g., -32 displayed as 32-. 



8057 Rev. 2 
UP-NUMBER 

F-8 
UPDATE LEVEL PAGE 

SPERRY UNIVAC Operating System/3 

C-mode 
When the UPON option is omitted, SYSLST is assumed. The compiler creates an internal special-name 
definition to equate SYSLST to SYSLST. 

Restriction. Displays to a punch are not supported. The sign of a numeric item is displayed as a separate 
character. 

• IF statement 

COBOL-D 
A class test may be performed on an item whose usage is either DISPLAY or COMP-3 (packed decimal). 
An IF NUMERIC test always assumes the item is signed, for example: 

DATA-AA PIC X VALUE IS 'A'. 

An IF NUMERIC test on DATA-AA yields a 'yes'. 

OS/3 COBOL 
A class test may be performed on an item whose usage is either DI SPLAY or COMP-3. 

An IF NUMERIC test does not assume an item is signed. The sign is interrogated only if the item is 
declared to be signed; for example: 

DATA-AA PIC X VALUE IS 'A'. 

An IF DATA-AA NUMERIC results in a 'no'. 

C-mode 

No automatic support. The item to be tested should be defined as signed. 

• INCLUDE Statement/COPY Function 

COBOL-D 
An INCLUDE statement in the procedure division implies a COPY function. 

OS/3 COBOL 
The INCLUDE statement is not supported. The COPY verb must be used. 

C-mode 
The INCLUDE statement is equated to the COPY function. Library names enclosed in quotation marks 
are accepted. COPY libraries are expected to be in UNIVAC OS/3 format. 

• MOVE statement 

COBOL-D 
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to 'F'. 

OS/3 COBOL 
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to plus . 

C-mode 
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to 'F'. 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

• 

SPERRY UNIVAC Operating System/3 

ON statement 

COBOL-D 
This statement is supported. 

OS/3 COBOL 
This debugging statement is not supported. 

C-mode 
No automatic support. This clause is not supported. 

F-9 
UPDATE LEVEL PAGE 

• READ statement 

See F .5 for disc considerations. 

• STOP statement 

• 

COBOL-D 
When the STOP RUN statement is encountered in a called program, control is returned to the calling 
program. 

OS/3 COBOL 
A STOP RUN statement causes an end-of-job termination sequence. 

C-mode 
When a STOP RUN statement is encountered in a called program, it is treated as an EXIT PROGRAM 
statement . 

USE AFTER STANDARD ERROR PROCEDURE 

COBOL-D 
The word 'PROCEDURE' is optional. 

OS/3 COBOL 
The word 'PROCEDURE' is required. 

C-mode 
The word 'PROCEDURE' is optional. 

• USE FOR LABEL PROCEDURE 

COBOL-D 

USE FOR {CHECKING} {BEGINNING} 
- CREATING ENDING LABELS 

{
INPUT } . 

ON OiJTPUT file-name 

OS/3 COBOL 

( file-name t 
PROCEDURE ON) INPUT 

j 1-0 
f OUTPUT 

{

FILE } 
REEL LABEL 
UNIT 



8057 Rev. 2 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 B F-10 

UPDATE !...!''JEL PAGE 

.... 

.... 

C-mode 
No automatic support. The USE statement for label procedures must be rewritten in accordance with 
OS/3 COBOL format. 

• WRITE statement 

See F .4 for printer considerations, and F .5 for disc considerations. 

• *DEBUG card 

COBOL-D 
*DEBUG packets precede the source deck. 

OS/3 COBOL 
*DEBUG packets follow the source deck. 

C-mode 
No automatic support. The *DEBUG packets must be moved from in front of the source program and 
placed behind the source program. 

F .3.5. Reserved Words 

C-mode 
The following OS/3 COBOL reserved words may currently exist in COBOL-D source programs as user-defined 
words. Their use as user names will not be allowed by the OS/3 COBOL compiler. 

ASCENDING DECIMAL-POI NT MAP SEPARATE 

ASCII DESCENDING MASTER-INDEX SEEK 
DISC MEMORY SET 

BEFORE DISC-8411 MODULE SIGN 

BLOCK-COUNT DISC-8414 MORE-LABELS SORT 
DISC-8415 SPECIAL-NAMES 

BLOCK-LENGTH-CHECK DISC-8418 MULTIPLE 

BUFFER-OFFSET DISC-8416 STATUS 
DISC-8430 OFF SYNC 

CARD-PUNCH DISC-8433 OPTIONAL SYNCHRONIZED 

CARD-READER DOWN OUK-90-250 SYSCHAN-1 

CARD-READER-51 EQUALS OUK-90-300 SYSCHAN-2 

CARD-READER-66 EXTENDED OUK-90-400 SYSCHAN-3 
--

OUK-90-600 CHARACTERS EXTENDED-I NSE RTI ON SYSCHAN-4 
OOMMA EBCDIC OUK-90-700 SYSCHAN-5 
COMPUTATIONAL SYSCHAN-6 
COMPUTATIONAL-3 FILE-LIMIT PERCENT SYSCHAN-7 
COMPUTATIONAL-4 Fl LE-LIMITS PIC SYSCHAN-8 
COMP Fl LE-PREPARATION POSITION SYSCHAN-9 
COMP-3 PRINTER SYSCHAN-10 
COMP-4 INDICES PROGRAM SYSCHAN-11 
CORR INDEX SYSCHAN-12 
CORRESPONDING INSERT RELEASE SYSCHAN-13 
CURRENCY REMAINDER SYSCHAN-14 
CYLINDER-INDEX JUST RENAMES SYSCHAN-15 
CYLINDER-OVERFLOW 

SEARCH SYSCOM 
LINE 

SEGMENT-LIMIT SYSCONSOLE 
SYSDATE 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 SPERRY UNIVAC Operating System/3 A F-11 

UP-NUMBER UPDATE LEVEL PAGE 

SYSERR SYSERR-17 SYSSWCH-0 UNIVAC-9000 

SYSERR-0 SYSERR-18 SYSSWCH-1 UNIVAC-9025 

SYSERR-1 SYSERR-19 SYSSWCH-2 UNIVAC-9030 

SYSERR-2 SYSERR-20 SYSSWCH-3 UNIVAC-9040 

SYSERR-3 SYSERR-21 SYSSWCH-4 UNIVAC-9060 

SYSERR-4 SYSERR-22 SYSSWCH-5 UNIVAC-9070 

SYSERR-5 SYSERR-23 SYSSWCH-6 UNIVAC-920011 

SYSERR-6 SYSERR-24 SYSSWCH-7 UNIVAC-9300 

SYSERR-7 SYSERR-25 SYSTIME UNIVAC-930011 

SYSERR-8 SYSERR-26 UNIVAC-9400 

SYSERR-9 SYSERR-27 TAPE UNIVAC-9480 

SYSERR-10 SYSERR-28 TAPES UNIVAC-9700 

SYSERR-11 SYSERR-29 TAPE-6 UP 

SYSERR-12 SYSERR-30 THROUGH 
SYSERR-13 SYSERR-31 TIME VALUES 

SYSIN VERIFY 

SYSERR-14 SYSIN-96 TRACKS 

SYSIN-128 WORDS 
SYSERR-15 SYS LOG TRAILING WHEN 
SYSERR-16 SYSSWCH 

F.4. PRINTER FILE SUPPORT 

Support is available for printer files in the conversion mode of the compiler; the aim is to be as compatible as 
possible with COBOL-D printer file processing within the limits of hardware differences . 

In the conversion mode, the compiler produces object code to change logical advance-then-print commands into 
physical print-then-advance operations. This causes full-speed operation of the printer subsystem. All printer files 
must be defined and referenced according to COBOL-D rules. COBOL-D control characters must be used; 
consequently, neither a BEFORE ADVANCING nor an ADVANCING mnemonic-name is supported in the source 
language. The only acceptable format for a printer WRITE statement is: 

Rules: 

WRITE record-name FROM identifier 

AFTER ADVANCING {i~entifier} LINES 
literal --

1. The printer file must have fixed recording mode. 

2. Each logical record defined in the printer file must have the first character position reserved for a control 
character. The control character is used to control printer spacing, but is not actually printed. The legal 
control characters are as follows: 

Control Character 

blank 
0 

+ 
1 thru 9 
A thru C 

Meaning 

Print and space 1 line 
Print and space 2 lines 
Print and space 3 lines 
Print and space 0 lines 
Print and skip to channel 
Print and skip to channel 

3. When the FROM phrase is used, the identifier specified in the FROM phrase must reserve the first 
character position to contain a control character. 



8057 Rev. 2 
UP-NUMB EA 

SPERRY UNIVAC Operating System/3 B F-12 
UPDATE LEVEL PAGE 

4. When the AFTER phrase is used, the identifier specified in the AFTER phrase must be a 1-character 
alphanumeric item that contains a control character. 

5. When a literal is specified in the AFTER phrase, the literal must be numeric and only the following 
control characters are legal: 

Control Character 

0 
1 
2 
3 

Meaning 

Print and skip to home paper 
Print and space 1 line 
Print and space 2 lines 
Print and space 3 lines 

Restrictions: 

COBOL-D allows an APPLY FORM-OVERFLOW clause in the 1-0-CONTROL paragraph of the environment 
division. The APPLY FORM-OVERFLOW clause must be converted to a USE FOR FORM-OVERFLOW procedure 
in the declaratives portion of the procedure division. 

In COBOL-D, when APPLY FORM-OVERFLOW is specified, one line is printed after the overflow punch in the 
carriage control loop is detected. Because of the manner in which the logical write commands are converted into 
physical commands, three lines are printed after overflow is detected. 

To overcome the problem of three lines being printed, the overflow punch must be moved back on the carriage 
control loop by two logical print commands (two lines if single spacing, four lines if double spacing, etc.). If the 
overflow punch crosses or coincides with another ca_rriage control punch, the program cannot produce the proper 
print formats when the program is executed and manual conversion is required. 

• 

No action is taken when form overflow is detected unless specified by a USE FOR FORM-OVERFLOW procedure. • 

Testing of the condition-name specified in the APPLY FORM-OVERFLOW clause must be deleted from the existing 
procedure division and must not be used in the USE FOR FORM-OVERFLOW procedure. An alternate method is to 
leave testing of the condition-name as is and to use the USE FOR FORM-OVERFLOW procedure as a place to set 
the condition-name to the true state. 

The IBM model 1403 printer supports carriage-control channels 1 through 12. The UNIVAC Printer Subsystems 
support various carriage control channels, depending on the printer subsystem on line. The COBOL-D carriage 
control references are translated as follows: 

COBOL-D 
Carriage Control Punch 

Control Character 
0773 0770 0768 

1 (Home paper) 7 7 14, 15 
2 2 2 12 
3 3 3 13 
4 4 4 4 
5 5 5 5 
6 6 6 6 
7 7 7 15 
8 2 8 8 
9 1 9 9 
A 3 10 10 
B 4 11 11 
C (Form overflow) 1 12 9 • 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
F-13 

UPDATE L_EVEL PAGE 

• 

• 

• 

F.5. DISC FILE SUPPORT 

The following paragraphs detail considerations for conversion of COBOL source programs dealing with files assigned 

to direct access devices. 

To facilitate an understanding of the differences between the COBOL compilers, a clause-by-clause, verb-by-verb 
difference description follows, by file organization. 

F .5.1. Sequential Organization 

• SELECT/ASSIGN clause 

The SELECT/ASSIGN clause requires a source program change to meet the format requirements of OS/3 

COBOL. 

• APPLY VERIFY clause (not available in COBOL-D) 

When in C-mode, the compiler automatically sets the verify function without regard to the APPLY clause 
present in the source program. 

• LABEL RECORD definition 

In C-mode, the compiler accepts the LABEL RECORD definition in the linkage section. 

• REWRITE verb 

In C-mode, the compiler accepts the REWRITE verb when the file is opened for 1/0. 

• INVALID KEY phrase 

When C-mode is active, the compiler causes transfer to the USE AFTER ERROR procedure or initiates an _. 
end-of-job sequence when an INVALID KEY condition is detected and there is no INVALID KEY phrase 
specified . 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

F .5.2. Indexed Organization 

• SELECT/ASSIGN clause 

F-14 

UPDATE LEVEL PAGE 

The SELECT statement with its ASSIGN clause requires a source program change to meet the format 
requirements of OS/3 COBOL. 

• APPLY VERIFY clause (not available in COBOL-D) 

In C-mode, the compiler automatically sets the verify function without regard to the APPLY clause. 

• APPLY MASTER-INDEX clause (not available in COBOL-D) 

In OS/3, this clause serves for documentation only. 

NOTE: 

COBOL-D specifies this option via the job control stream. 

• APPLY CYLINDER-OVERFLOW clause (not available in COBOL-D) 

If this clause is not inserted in the source program, the compiler specifies that 20% of each prime data cylinder 
is to be reserved for cylinder overflow area. 

• APPLY CYLINDER-INDEX AREA clause (not available in COBOL-D) 

If this clause is not specified in the source program, the compiler does not allocate main storage area to 
accommodate the cylinder index. 

• APPLY EXTENDED-INSERTION AREA clause (not available in COBOL-D) 

In OS/3, this clause serves for documentation only. 

• RECORD KEY description 

In C-mode, the record key size must not be less than 3 or greater than 249 bytes. 

• SYMBOLIC KEY description 

In C-mode, the symbolic key size must not be less than 3 or greater than 249 bytes. 

• OPEN verb 

In C-mode, the file is positioned to the logical record specified in the SYMBOLIC KEY item, or if none is 
specified, the file is positioned to the first record. 

• 

• 

• 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 F-15 

UPDATE LEVEL PAGE 

• F.5.3. Direct Organization 

• 

• 

No conversion mode support is provided for ORGANIZATION IS DIRECT. 

F.5.4. Error Testing in USE AFTER ERROR Procedures 

Replace any calls on DTF interrogation subprograms by tests of SYSER Rs (defined in SPECIAL-NAMES paragraph, 

4.2.3) to determine error status . 



• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

Appendix G. Job Control Stream 
Requirements 

G.1. INTRODUCTION 

Any COBOL program you write must be compiled before it can be run. The language translator converts the 
instructions in your program into a form (an object module) understandable to the computer. The facilities of 
SPERRY UNIVAC Operating System/3 (OS/3) job control are used to relay information to the operating system 
regarding the requirements for compiling your program. There are two ways to do this: 

• Code and keypunch all the job control statements needed to execute the COBOL compiler. See the OS/3 job 
control user guide, UP-8065 (current version) for details on coding these statements. 

• Use a single job control procedure call statement (jproc call) provided by Sperry Univac. 

A jproc call generates all the job control statements needed to execute the COBOL compiler. When you specify the 
proper options for the keyword parameters, you tailor the generated control stream to meet the individual needs of 
your job. The jproc calls enable you to compile your source program (COBOLB); compile and link-edit the 
generated object module to create a load module (COBOLBL); or compile, link-edit, and immediately execute this 
load module (COBOLBLG). 

G.2. PROCEDURE CALL STATEMENT (COBOLB) 

Function: 

This procedure call statement generates the necessary job control statements to run the COBOL language 
processor. Optionally, it can generate the job control statements that specify the following: 

• input-source library; 

• output-object library; 

• copy library; and 

• PARAM control statements to define the format of the compiler listing . 

G-1 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 C G-2 

UPDATE LEVEL PAGE 

t 

Format: 

//[symbol] COBOLBL {

COBOLB } [PRNTR= { ~ { ~} [,vol-w-no]) }] 
COBO LB LG 

Label: 

(vol-ser-no,label) 
(RES) 

,IN= (RES,label) 
(RUN,label) 
(*,label) 

[ I 
(vol-ser-no,label) )] 
( R ES,label) 

,OBJ= (RUN,label) 
(*,label) 
(RUN,$Y$RUN) 

[
,LIN= 1i=o~E.~t•I) )] 

(*,label) 
(RES,$Y$SRC) 

[,OUT=(p-1, ... ,p-n)] [,LST= (p-1, ... ,p-n)] 

[ ,SCR1= { ~o~:r-no} J 
(vol-ser-no ,label) 
(RES, label) 

,AL TLOD= (RUN,label) 
(*,label) 
(RES,$Y$RUN) 

symbol 
Specifies the 1- to 6-character source module name; only needed when the IN parameter is used. 

Operation: 

COBO LB 
This form of the procedure call statement is used to compile a COBOL source program. 

COBOLBL 
This form of the procedure call statement is used to compile a COBOL source program then link-edit the 
object modules. 

COBOLBLG 
This form of the procedure call statement is used to compile a COBOL source program, link-edit the 
object modules, and execute the load module.* 

*The COBOLBLG procedure call statement cannot be used when operating with the shared code data management 
feature. Instead, use the COBOLBL procedure call statement and provide a separate EXEC statement to execute the 

load module. 

• 

• 

• 



• 

• 

• 

8057 H'ev. 2 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

C G-3 

UPDATE LEVEL PAGE 

Keyword Parameter PRNTR: 

PRNTR= lun 
{

N } 
I ho } [.,ol-m-oo]) 

Specifies the logical unit number of the printer. N specifies that the device assignment set for the printer 

is to be manually inserted in the control stream. 

Keyword Parameter IN: 

This parameter specifies the input file definition and generates a PARAM IN control statement. The options 

are: 

I N=(vol-ser-no,label) 
Specifies the file identifier (label) and the volume serial number (vol-ser-no) where the source input is 

located. 

IN=(RES) 
Specifies that the source input is located on the SYSRES device in $Y$SRC. 

IN=(RES,label) 
This is used if the source input is located on the SYSRES device, but the file identifier (label) is a 
user-own specification, not $Y$SRC . 

IN=(RUN,label) 

Specifies that the source input is located on the volume containing the job $Y$RUN file, with the file 
identifier (label) of user-own specification. 

IN=(*,label) 
Specifies that the source input is located on a catalog file identified by the file identifier (label). 

If omitted, the source input is in the form of embedded data cards (/$,source deck,/*). 

Keyword Parameter OBJ: 

This parameter specifies the output file definition and generates a PARAM OBJ control statement. The 

options are: 

OBJ=(vol-ser-no,label) 
Specifies the file identifier (label) and the volume serial number (vol-ser-no) where the object module is 

located. 

OBJ=( RES.label) 
Specifies that the object module is located on the SYSRES device, with the file identifier specified by 

the label parameter. 

OBJ=(RUN,label) 
Specifies that the object module is located on the volume containing the job $Y$RUN file, with a file 
identifier (label) of user-own specification . 

OBJ=(* ,label) 
Specifies that the object module is located on a catalog file identified by the file identifier (label). 

If omitted, the object module is located on the job $Y$RUN file. 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 C - G-4 
UPDATE LEVEL PAGE 

NOTE: 

The OBJ keyword parameter must not be used as the COBOLBL or COBO LB LG. 

Keyword Parameter LIN: 

..._ LIN=(vol-ser-no,label) 

t 

Defines the volume serial number (vol-ser-no) and the file identifier (label) where the copy modules are 
located. The LFD name is COPY$. 

LIN=( RES.label) 
Specifies that the copy modules are located on the job's SYSRES device, in the file identified by the file 
identifier (label). 

LIN=(RUN,label) 

Specifies that the copy modules are located on the job's $Y$RUN file with the file identifier (label) 

specified by the user. 

LIN=(* ,label) 
Specifies that the copy modules are located on a catalog file identified by the file identifier (label). 

If omitted, the copy modules are located on the $Y$SRC file. 

Keyword Parameter OUT: 

OUT=(p-1, ... ,p-n) 

• 

Specifies the parameter definitions for the COBOL compiler. This parameter generates a PARAM OUT • 

control statement. See 7 .1.2. 

t 

Keyword Parameter LST: 

i..ST(p-1, ... ,p-n> 
Specifies the format of the compiler listing. Generates a PAR AM LST control statement. See 7 .1.1. 

Keyword Parameter SCR 1: 

SCR1= { vol-ser-no} 
RES 

Specifies the volume serial number of the work file with an identifier of $SCR1. OS/3 basic COBOL 

requires only one work file. 

Keyword Parameter ALTLOD: 

AL TLOD=(vol-ser-no,labet) 
Specifies the location of the compiler to be used, if other than $Y$LOD. 

AL TLOD=(RES,label) 
Specifies that the alternate load library is located on the job's SYSRES device, in the file identified by 
the file identifier (label). 

AL TLOD=(RUN,label) 
Specifies that the alternate load library is located on the job's $Y$RUN file with the file identifier 
(label) specified by the user. 

AL TLOD=(* ,label) 
Specifies that the alternate load library is located on a catalog file identified by the file identifier (label). 

If omitted, the compiler is loaded from $Y$RUN. 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

Example 1a: 

The following illustrates the use of the COBOL procedure call statement in its basic form: 

LABEL l:.OPERATIONl:. OPERAND 
10 16 

3 
F--''"""'"-"-'--'--'--'--'--'~-'--'--'--'-+-f--.1--L-'---'--'--'-.L-J'-------'-'--'--L--'--'-1--J'-1--'--'--'--'--'-'--'-'--'--'--'--'--'--'~ 

4~~~___._~_._._~~~~~~~~~~~~~ 
5~~.ll..W~l§2J_~~~l--J-..L..l......L..L.....1-L.....L.L.....L.....L..L.....l-LL.L.....L.....L.J......l-L.....L..L..J......L.J......1-LL.L.....L.....L 
b 

1--''--'--'--'--'--'--'--'~-'--'--'--'-+-f--.I'--'--'--'--'--'--"'---''-------'-'--'--'--'-_,__'---''--'--'--'--'--'---'-'--'-'--'---'--'--'---'--'~ 

7 /,*. 

Line Explanation 

Indicates that the name of the job is COBOL1A. 

2 Indicates the name of the procedure being called (COBOLB). There are no keyword parameters 
specifying special options for this compilation . 

3 Indicates start of data. 

4-6 Represents the source deck to be compiled. 

7 Indicates end of data. 

As coded, this example can be the first step in a job to be followed by the link-edit jproc call. It also can be an 
entire job in itself by specifying a I& (end-of-job) statement and a II FIN (terminate card reader operations) 
statement on lines 8 and 9, respectively. The latter case could be used to test-compile a new program or an 
updated version of an existing program . 

G-5 



8057 Rev. 2 
UP-NUMBER 

Example lb: 

SPERRY UNIVAC Operating System/3 

The basic form given in example la generates the following control stream: 

LABEL fiOPERA TIONfi OPERAND 
10 16 

UPDATE LEVEL PAGE 

µ/.....J...:../.L.__[,,....,,~J.........1'~q.>ool"""-"""'--!.~l--+-'--'-'--'---'--.L__l.-'--'--.L......L-'---'---L......J...--'--'-L......J...~1--'--1-'-.L......L--'---'---''----'--'--'-
2 I I 
3 /,/ 
4 // 
5 /,/ 
o // 
7/ 

l I I I 

8~-1._J_l__L_L-=-f-+-"--'_.__..L..-f--1--L..L..L..L_J_.J....L_L_L..L...L...1._j_.._.__._'-'--'---"-'-.L....J..-'-''-'-~-'-.L......L.... 
't 

i_JLl~~!il.L~=t~""'-"'"'-""'"'-"''-+-+-'-..J...._L....l-L-L-'-...l..._L....l-L-L-'--'-L....J--'--'--'--'-L.....i--'--'--'---'-.1..........1--'--'-_,__ 

10~...L...Jl........L....LJl........L.+.-+_J_.J.........L.....J...._l-l--L...,...Ji........L.....l.-1.1........L...l-L_J_J......L....J...._J......J......l.-l-J-....L....11........L...l-L-L-J......L.-L-.L-...L.-'-'-'-
11 /.* 

Line Explanation 

Indicates that the name of the job is CO BO L 1 B. 

2 Indicates the default logical unit number and LFD name of the printer. 

3-5 Indicates that the work file needed for compiling is, by default, on the SYSRES device, has both a 
file identifier and LFD name of $SCR1, and uses the sequential access technique; that allocation is 
contiguous, with three cylinders allocated for the secondary increment and one cylinder of initial 
allocation. 

6 Loads the COBOL compiler from $Y$LOD. 

7 Indicates start of data. 

8-10 Represents the source deck to be compiled. 

11 Indicates end of data. 

As with example 1 a, this example can be the first step in a job, or it can be the entire job in itself by specifying 
the/& statement and the// Fl N statement on lines 12 and 13, respectively. 

G-6 

• 

• 

• 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

• Example 2a: 

• 

• 

The following illustrates the use of a COBOL procedure call statement that defines most of the keyword 
parameters: 

LABEL 60PERATION6 OPERAND 
10 16 72 

Line Explanation 

2 

3 

4 

5 

6 

7 

Indicates that the name of the job is COBOL2A. 

Indicates the name of the procedure being called (COBOLB). The source module name is PROGNM. The 
logical unit number of the printer is 21, and the input file is on the SYSRES device, with a file identifier 
of U$SRC. 

Indicates that the output file volume serial number is DSC2, with a file identifier of U$0BJ. 

Indicates that the copy module volume serial number is DSC1, with a file identifier of COPYLI B 1. 

The format of the compiler listing is supplied by the LST parameter. 

End of job. 

Terminates card reader operations. 

By default, the device for the work file is the SYSR ES device . 

G-7 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

Example 2b: 

Based on the keyword parameters specified in example 2a, the following control stream is generated: 

LABEL flOPERATIONfl OPERAND 
10 16 

Line Explanation 

Indicates that the name of the job is COBOL2B. 

2 Indicates that the printer is to be assigned to the logical unit number 21, with an LFD name of 
PRNTR. This was obtained from line 2 in example 2a. 

3 Indicates that the input file is on the device containing the SYSRES volume. This was obtained from 
the IN parameter on line 2 in example 2a. 

4 Indicates that the input file has a file identifier of U$SRC with an LFD name of INCPUT. This was 
obtained from the IN parameter on line 2 in example 2a. 

5 Indicates that the output file volume serial number is DSC2. This was obtained from the OBJ 
parameter on line 3 in example 2a. It is assigned to the device with a logical unit number of 50, which 
was the first available number in the range of 50-54. 

6 Indicates that the output file has a file identifier of U$0BJ, with an LFD name of OUTCPUT. This 
was obtained from the OBJ parameter on line 3 in example 2a. 

G-8 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
UPDATE LEVEL PAGE 

Line Explanation 

7 Indicates that the copy library has a volume serial number of DSC1. It is assigned to the device with a 
logical unit number of 51, which was the next available number in the range of 50-54. Logical unit 
number 50 was already assigned to the device with a volume serial number of DSC2 (line 5), so the 
next available logical unit number is used. This was obtained from the LIN parameter on line 4 in 
example 2a. 

8 Indicates that the copy library has a file identifier of COPY LIB 1, with an LFD name of COPY$. This 
was obtained from the LIN parameter on line 4 in example 2a. 

9-11 Indicates that the work file needed for compiling is, by default, on the SYSRES device, has both a 
file identifier and LFD name of $SCR1, uses the sequential access technique; that allocation is 
contiguous, with three cylinders allocated for the secondary increment and one cylinder of initial 
allocation. 

12 Loads the OS/3 Basic COBOL compiler from $Y$LOD. 

13-15 PARAM control statements that identify the processing options for the COBOL compiler. These are 
generated in the following manner: 

16 

17 

Line 13 - The module name PROGNM is generated from the label field on line 2 of example 2a. The 
filename INCPUT is generated automatically when the IN parameter is specified. 

Line 14 - The filename OUTCPUT is generated automatically when the OBJ parameter is used. 

Line 15 - The Sand 0 COBOL list options are generated by the LST parameter on line 5 in example 
2a. 

End of job. 

Terminates card reader operations. 

Example 3a: 

The following example illustrates the use of the COBO LB LG procedure call statement. The input file and the 
format of the output listings are defined. 

LABEL LOPERATIONL OPERAND 
10 16 72 

Line Explanation 

2 

Indicates that the name of the job is MASTER . 

Indicates that the name of the source module is MASTER and the name of the procedure being called is 
COBOLBLG; therefore, this example compiles, link-edits, and executes the source program MASTER. 
The input file is on the device with a volume serial number of ABC123 and has a file identifier of 
PAYMAST. 

G-9 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 

Line Explanation 

3 Indicates the format of the compiler listing. 

4 End of job. 

5 Terminates card reader operations. 

UPDATE LEVEL PAGE 

Example 3b: 

Based on the keyword parameters specified explicitly and implicitly in example 3a, the following control 
stream is generated: 

LABEL f10PERATIONL1 OPERAND 
10 16 

Line Explanation 

Indicates that the name of the job is MASTER. 

2 Indicates that the source program is to be link-edited and executed after it has been compiled. This 
was obtained from COBOLBLG specified on line 2 in example 3a. 

3 Indicates that, by default, the printer is to be assigned to the logical unit number 20, with an LFD 
name of PRNTR. 

4 Indicates that the input file is on the device with the logical unit number of 50 and has a volume 
serial number of ABC123. This was obtained from the IN parameter on line 2 in example 3a. 

5 Indicates that the input file has a file identifier of PAYMAST with an LFD name of INCPUT. This 
was obtained from the IN parameter on line 2 in example 3a. 

6-8 Indicates that the work file needed for compiling is on the SYSRES device, has both a file identifier 
and LFD name of $SCR1, uses sequential access technique; that allocation is contiguous with three 
cylinders allocated for the secondary increment and one cylinder of initial allocation. 

G-10 

• 

• 

• 



• 

• 

• 

8057 Rev. 2 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

UPDATE LEVEL PAGE 

Line Explanation 

9 Loads the OS/3 Basic COBOL compiler from $Y$LOD. 

10-11 PARAM control statements that identify the processing options for the COBOL compiler, which are 
generated as follows: 

Line 10 - the module name MASTER is generated from the label field on line 2 of example 3a. The 
filename INCPUT is generated automatically when the IN parameter is specified. 

Line 11 - The A, C, 0, and S COBOL list options are generated by the LST parameter on line 3 in 
example 3a. 

12 End of job. 

13 Terminates card reader operations. 

Implicit in the //OPTION LINK,GO statement on line 2 of example 3b is the creation of a load module 
named LNKLOD by the linkage editor and the execution of that load module. This is performed after the 
source program has been compiled. Any output is temporarily stored on the SYSRUN device. 

Example 3c: 

If linkage editor input or control stream input to the source program is needed for job MASTER as described 
in example 3a, the following job stream could be used: 

LABEL 60PERATION6 OPERAND 
10 16 72 

! I I I 

G-11 

t 



8057 Rev. 2 
UP-NUMB EA 

SPERRY UNIVAC Operating System/3 B G-12 
UPDATE LEVEL PAGE 

t 

t 

Line Explanation 

1-3 Same as described in example 3a. 

4-8 Embedded data set containing input to the linkage editor. 

9-13 Embedded data set containing control stream input to the source program. 

14 End of job. 

15 Terminates card reader operations. 

The generated control stream would be the same as in example 3b, except that the two embedded data sets 
would be inserted between lines 11 and 12. Note that if there is no linkage editor input, but control stream 
input to the program is to be included, a dummy data set (/$ followed immediately by /*) must be inserted 
into the job stream where the linkage editor input data set would have been included. 

G.3. COMPILER STATUS INDICATORS 

The compiler sets the following status indicators in the user program switch indicator (UPSI) byte. These indicators 
may be used in conjunction with the// SKIP job control card: 

• Switch-0 (X'80') is set to 1 if the compiler does not create a complete object module. This condition might be 
caused by an "insufficient memory available" diagnostic or a compiler abort. 

• Switch-1 (X'40') is set to 1 if the compiler issues any diagnostic messages with severity code Sor U . 

• Switch-2 (X'20') is set to 1 if the compiler issues any diagnostic messages with the severity code C. 

These bit settings are logically superimposed onto the UPSI byte; therefore, any of the eight UPSI bits that were set 
prior to the compilation will still be set after the compilation. 

G.4. DATA DEFINITION (DD) JOB CONTROL STATEMENT KEYWORD PARAMETERS 

The DD job control statement is used to change data management keywords at execution time. Instead of changing 
the COBOL source code, the user can override data management keyword specifications when the COBOL object 
program is executing. The DD statement keyword parameters that may be specified for a COBOL program are as 
follows: 

LACE=n 
SIZE=n 
UOS=n 
ACCESS= EXC 

EXCR 
SRDO 
SRD 
SUPD 
SADD 

FILABL={NO } 
NSTD 
STD 

TPMARK=NO 
VMNT=ONE 

• 

• 



• 

• 

• 

8057 Rev. 2 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 B G-13 

UPDATE LEVEL PAGE 

When the user specifies these keyword parameters, extreme care must be used so that the effect of changing one 
parameter does not cause a conflict. To avoid conflicts, the user should carefully examine the file usage specified in 
COBOL source programs and the default parameters set by the compiler-generated data management specifications. 

The DD statement applies to basic data management users and consolidated data management users. For keyword 
parameter information, see the basic data management user guide, UP-8068 (current version) or the consolidated 
data management macroinstructions user guide, UP-8826 (current version). A complete description of the DD job 
control statement is explained in the job control user guide, UP-8065 (current version). 

t 



• 

• 

• 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

Term 

ACCEPT statement 
communications region 
console 
current date 
description 
format 
job control stream 
Julian date 
time of day 
UPSI byte 
80-column cards 
96-column cards 
8413 diskette 

ACCESS MODE clause 
FILE-CONTROL paragraph 
indexed files 
relative files 
sequential files 

ACTUAL KEY clause 
FILE-CONTROL paragraph 
relative file 

ADD statement 

Alphabetic data 

Alphabetic move 

Alphanumeric data 

Alphanumeric edited data 

Alphanumeric edited move 

Alphanumeric move 

ALTER statement 
description 
segmentation restriction 

SPERRY UNIVAC Operating System/3 Index 1 

UPDATE LEVEL PAGE 

Index 

Reference Page Term Reference Page 

A APPLY ASCII clause 
declaration 12.2 12-1 
1-0-CONTROL paragraph 4.3.2 4-12 

9.1.7 9-4 
9.1.2 9-3 APPLY BLOCK-COUNT clause, 1-0-CONTROL 
9.1.3 9-3 paragraph 4.3.2 4-12 
6.6.4.1 6-21 
9.1 9-1 APPLY CYLINDER-INDEX clause 
9.1.1 9-1 indexed files 11.4.2 11-8 
9.1.5 9-3 1-0-CONTROL paragraph 4.3.2 4-12 
9.1.4 9-3 
9.1.6 9-3 APPLY CYLINDER-OVERFLOW clause 
9.1.1.1 9-1 indexed files 11.4.2 11-8 
9.1.1.2 9-2 1-0-CONTROL paragraph 4.3.2 4-12 
9.1.1.3 9-2 

APPLY EXTENDED-INSERTION clause 
indexed files 11.4.2 11-8 

4.3.1 4-9 1-0-CONTROL paragraph 4.3.2 4-12 
11.4.3 11-7 
11.4.2 11-4 APPLY FllE-PREPARATION clause 
11.4.1 11-3 indexed files 11.4.2 11-8 

1-0-CONTROL paragraph 4.3.2 4-12 

4.3.1 4-9 APPLY MASTER-INDEX clause 
11.4.2 11-4 indexed files 11.4 11-8 

1-0-CONTROL paragraph 4.3.2 4-12 
6.6.1.1 6-6 
C.2 C-1 APPLY VERIFY clause 

indexed files 11.4.2 11-8 
5.3.4 5-12 1-0-CONTROL paragraph 4.3.2 4-12 

6.6.3.2 6-15 Arithmetic expression, characters used 2.1.4 2-3 

5.3.4 5-12 Arithmetic operations, immediate 
results Appendix C 

5.3.4 5-12 
Arithmetic verbs 6.6.1 6-5 

6.6.3.2 6-15 
ASCENDING KEY clause, description 5.3.3 5-11 

6.6.3.2 6-15 
ASCII code Table 12-2 12-5 

6.6.2.1 6-10 ASCII files, processing 12.1 12-1 
6.7.3.1 6-40 



8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 B Index 2 

UPDATE LEVEL PAGE 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 Index 3 

UPDATE LEVEL PAGE 

Term Reference Page Term Reference Page 

Data division ENTER statement 

conversion mode F.3.3 F-5 CALL statement 6.6.8.1 6-38 

data description 5.3 5-9 description 6.6.7 .2 6-34 

description 5.1 5-1 ENTRY statement 6.6.8.2 6-39 

FILE SECTION 5.2 5-2 
storage map and cross-reference ENTRY statement 6.6.8.2 6-39 

listing E.2 E-3 
WORKING-STORAGE 5.4 5-23 Environment division 

conversion mode F.3.2 F-2 

Data name 2.2 2-4 description 4.1 4-1 

DATA RECORDS clause 5.2.1.6 5-8 EXAMINE statement 6.6.3.1 6-14 

DATA-COMPILED paragraph 3.1 3-1 EXHIBIT statement 13.4 13-2 

DATE-WRITTEN paragraph 3.1 3-1 EXIT statement 6.6.2.4 6-13 

Debugging Extended access 11.3.3 11-2 

description 13.1 13-1 
packet 13.5 13-5 External name 2.2 2-4 

DECIMAL-POINT clause, SPECIAL-NAMES External reference E.4 E-6 

paragraph 4.2.3 4-3 

Declaratives section description 6.2 6-2 F 

Diagnostic messages D.2 D-1 FD entry, description 5.2.1 5-3 

E.5 E-10 
Figurative constant 

Direct access description 2.2 2-6 

file organization 11.2 11-1 MOVE statement 6.6.3.2 6-15 

processing 11.1 11-1 
FILE-CONTROL paragraph, description 4.3.1 4-9 

Disc processing Table 11-7 11-27 
FILE-LIMIT clause, FILE-CONTROL 

DISPLAY option, USAGE clause 5.3.5 5-18 paragraph 4.3.1 4-9 

DISPLAY statement File-name 2.2 2-4 
communications region 9.2.5 9-5 
console 9.2.1 9-4 FILE SECTION 

format 9.2 9-4 description 5.2 5-2 

log file 9.2.2 9-4 FD entries 5.2.1 5-3 
printer listing 9.2.6 9-5 
UPSI bit 9.2.4 9-5 Fl LLER clause 5.3.1 5-9 

UPSI byte 9.2.3 9-4 
Fixed portion 6.7.1.1 6-39 

DIVIDE statement 6.6.1.2 6-7 

G 
E 

GIVING clause 

EBCDIC code Table 12-2 12-5 DIVIDE statement 6.6.1.2 6-7 
MULTIPLY statement 6.6.1.3 6-8 

Editing, characters used in 2.1.5 2-3 SUBTRACT statement 6.6.1.4 6-9 

Eject, coding form 2.5 2-10 GO TO statement 6.6.2.2 6-11 



8057 Rev. 2 
UP-NUMBER 

Term 

ldentifiLation columns, coding form 

Identification division 
conversion mode 
description 

Identifier 

IF statement 

Imperative statement 

Implementor names 
ACCEPT statement 
ASSIGN clause 

Independent entries 

Independent segment 

INDEXED BY clause 

Index data item 

Indexed files 
conversion mode 
description 
processing 

Indexing 
description 
tables 

Index-name 

INDEX option, USAGE clause 

Input-output section 

INSERT statement 
description 
indexed files 

INSTALLATION paragraph 

lnterprogram communications 
CALL statement 
description 
ENTRY statement 

1-0-CONTROL paragraph, description 

SPERRY UNIVAC Operating System/3 Index 4 

UPDATE LEVEL PAGE 

Reference Page Term Reference Page • J 

2-10 
Job control stream 

2.5 ACCEPT requirements 9.1.l 9-1 
G.l G-1 

F.3.1 F-2 jproc call See procedure 
3.1 3-1 call. 

2.2 2-4 Julian date ACCEPT 9.1.5 9-3 

6.6.6 6-29 JUSTIFIED clause 5.3.7 5-19 

6.5.1 6-3 

K 
6-21 6.6.4.1 Key words 2.2 2-5 

4.3.1 4-9 

5.4.1 5-23 L 
6.7.1.2 6-39 LABEL RECORDS clause 

description 5.2.1.3 5-6 
5.3.3 5-11 specifications Table 5-4 5-7 

2.2 2-5 Level-number clause 5.3.1 5-9 

F.5.2 F-14 
Library module 7.3 7-5 • 11.2.3 11-2 LINKAGE section 5.5 5-24 

11.4.3 11-7 

Linking 6.8.2 6-42 

2-9 2.4 Log file DISPLAY statement 9.2.2 9-4 
10.5 10-2 

2.2 2-4 M 
5.3.5 5-18 Main storage allocation Table 5-1 5-2 

4.3 4-9 MAP clause 5.3.10 5-21 

6.6.4.7 6-37 
MEMORY SIZE clause 4.2.2 4-2 

11.4.3 11-7 Mnemonic-name 
ACCEPT statement 6.6.4.1 6-21 

3.1 3-1 DISPLAY statement 6.6.4.3 6-23 
SPECIAL-NAMES paragraph Table 4-1 4-8 

6-38 6.6.8.l MOVE statement 6.6.3.2 6-15 
6.6.8 6-38 
6.6.8.2 6-39 MULTIPLE FILE clause, 1-0-CONTROL 

4.3.2 4-12 
paragraph 4.3.2 4-12 

MULTIPLE REEUUNIT clause, FILE- • CONTROL paragraph 4.3.1 4-9 

MULTIPLY statement 6.6.1.3 6-8 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

Term 

Nonnumeric literal 

NOTE statement 

Numeric data 

Numeric edited data 

Numeric edited move 

Numeric move 

Object code listing 

OBJECT-COMPUTER paragraph 

OCCURS clause 
description 
table handling 

ON SIZE ERROR option 

OPEN statement 
description 
indexed files 
relative files 
sequential files 

Optional words 

ORGANIZATION clause 
FILE CONTROL paragraph 
indexed files 
relative files 
sequential files 

Overlapping operands 

Paragraphs 

PARAM statement 
copy library input 
description 
list options 
object module 
output options 
source library input 

SPERRY UNIVAC Operating System/3 
D Index 5 

UPDATE LEVEL PAGE 

Reference Page Term Reference Page 

N Parameters, PARAM statement 
copy library input 7.2 7-3 

2.2 2-5 listing 7.1.l 7-1 
object module 7.2.1 7-4 

6.6.7.3 6-35 output 7.1.2 7-2 
source library input 7.2 7-3 

5.3.4 5-12 
PERFORM statement 

5.3.4 5-12 description 6.6.2.3 6-12 
segmentation restrictions 6.7.3.2 6--41 

6.6.3.2 6-15 
PICTURE 

6.6.3.2 6-15 clause 5.3.4 5-12 
symbols Table 5-5 5-14 

0 Printer listing DISPLAY 9.2.6 9-5 

E.4 E-6 Priority number 
ALTER statement 6.7.3.1 6-40 

4.2.2 4-2 description 6.7.2 6-40 
PERFORM statement 6.7.3.2 6-41 

5.3.3 5-13 Procedure branching verbs 6.6.2 6-10 
10.2 10-1 

Procedure call statement G.2 G-1 
6.6.1 6-5 

Procedure division 
conversion mode F.3.4 F-7 

6.6.4.4 6-24 description 6.1 6-1 
11.4.3 11-7 storage map and cross-reference 
11.4.2 11-4 listing E.3 E-4 
11.4.1 11-3 

Procedure-name 2.2 2-4 
2.2 2-5 

PROCESSING MODE clause, FILE-CONTROL 
paragraph 4.3.1 4-9 

4.3.1 4-9 
11.4.3 11-7 PROGRAM-ID paragraph 3.1 3-1 

11.4.2 11--4 
11.4.1 11-3 Program segments 

description 6.7.1 6-39 
6.5.4 6-4 fixed portion 6.7 .1.1 6-39 

independent segment 6.7.1.2 6-39 

p Punctuation, characters used 2.1.2 2-2 

6-4 6-3 a 
7.2 7-3 Qualification, description 2.3 2-6 
7.1 7-1 
7.11 7-1 

R 7.2.l 7-4 
7.1.2 7-2 
7.2 7-3 Random access 11.3.2 11-2 



8057 Rev. 2 

UP-NUMBER 
SPERRY UNIVAC Operating System/3 

Index 6 

UPDATE LEVEL PAGE 



• 

• 

• 

8057 Rev. 2 
UP-NUMBER 

SPERRY UNIVAC Operating System/3 
B Index 7 

UPDATE LEVEL PAGE 

Term Reference Page Term Reference Page 

SPECIAL-NAMES paragraph 
description 4.2.3 4-3 

SYSLOG clause 

DISPLAY statement 6.6.4.3 6-23 
DISPLAY statement 9.2.2 9-4 
SPECIAL-NAMES paragraph 4.2.3 4-3 

Statements 
compiler-directing 6.5.3 6-4 

SYSLST clause 

conditional 6.5.2 6-4 
DISPLAY statement 9.2.6 9-5 

description 6.5 6-3 
SPECIAL-NAMES paragraph 4.2.3 4-3 

imperative 6.5.l 6-3 SYSSWCH 

Status indicators, compiler G.3 G-10 
ACCEPT statement 9.1.6 9-3 
DISPLAY statement 9.2.3 9-4 

STOP statement 6.6.5 6-29 
SPECIAL-NAMES paragraph 4.2.3 4-3 

Subscripting System configuration 1.2 1-2 

description 2.4 2-9 
System console messages tables 10.4 10-2 D.3 D-33 

Subtract statement 6.6.1.4 6-9 SYSTIME clause 

C.2 C-1 ACCEPT statement 9.1.4 9-3 
SPECIAL-NAMES paragraph 4.2.3 4-3 

Switch-status condition 6.6.6 6-32 

SYMBOLIC KEY clause T 
FILE-CONTROL paragraph 4.3.l 4-9 

Table indexed files 11.4.3 11-7 defining 10.2 10-1 

SYNCHRONIZED clause, description 5.3.6 5-19 indexing 10.5 10-2 
referencing 10.3 10-1 

SYSCHAN-t, SPECIAL-NAMES paragraph 4.2.3 4-3 
searching 10.6 10-3 
subscripting 10.4 10-2 

SYSCOM clause 
ACCEPT statement 9.1.7 9-4 

Table handling, description 10.1 10-1 

DISPLAY statement 9.2.5 9-5 
SPECIAL-NAMES paragraph 4.2.3 4-3 

TALLY 2.2 2-6 

SYSCONSOLE clause 
TALLY I NG clause 6.6.3.1 6-14 

ACCEPT statement 9.1.2 9-3 
DISPLAY statement 9.2.1 9-4 

Text, coding form 2.5 2-10 

SPECIAL-NAMES paragraph 4.2.3 4-3 Time of day ACCEPT 9.1.4 9-3 

SYSDATE clause 
ACCEPT statement 9.1.3 9-3 TRANSFORM statement 6.6.3.4 6-18 

SPECIAL-NAMES paragraph 4.2.3 4-3 

SYSERR clause u 
messages 11.4.4.4 11-26 
SPECIAL-NAMES paragraph 4.2.3 4-3 UPSI bit, DISPLAY statement 9.2.4 9-5 

SYSIN UPSI byte 

ACCEPT statement 9.1.1.1 9-1 ACCEPT statement 9.1.6 9-3 

SPECIAL-NAMES paragraph 4.2.3 4-3 DISPLAY statement 9.2.4 9-5 
SKIP job control statement G.3 G-12 

SYSIN-96 
ACCEPT statement 9.1.1.2 9-3 USAGE clause 5.3.5 5-18 
SPECIAL-NAMES paragraph 4.2.3 4-3 

USE statement 6.6.7.4 6-36 
SYSIN-128 

ACCEPT statement 9.1.1.3 9-2 USING statement, procedure division 6.1.1 6-1 

SPECIAL-NAMES paragraph 4.2.3 4-3 



8057 Rev. 2 
UP-NUMBER 

Term 

VALUE clause 

VALUE OF clause 

Verbs 
arithmetic 
compiler-directing 
conditional 
data movement 
ending 
in put/ output 

v 

interprogram communications 
procedure branching 
types 

SPERRY UNIVAC Operating System/3 Index 8 
UPDATE LEVEL PAGE 

Reference Page Term Reference Page • w 
5.3.8 5-20 Words 

characters used 2.1.1 2-2 
5.2.1.5 5-8 reserved Table 2-2 2-5 

Appendix B 
types 2.2 2-3 

6.6.1 6-5 user-supplied Table 2-1 2-4 
6.6.7 6-33 WORKING-STORAGE section, description 5.4 5-23 
6.6.6 6-29 
6.6.3 6-14 WRITE statement 
6.6.5 6-29 conversion mode F.4 F-11 
6.6.4 6-21 description 6.6.4.6 6-25 
6.6.8 6-38 indexed files 11.4.3 11-7 
6.6.2 6-10 relative files 11.4.2 11-4 
6.6 6-5 sequential files 11.4.1 11~3 

• 

• 



• 

• 

ai 

·= 

SPE~Y+UNIVAC 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 

subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

FOLD 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

----------------------------------------~ --

• 

• 



I 
I 
I .: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.,; I 
.!: 

"'I 

·~I :J 
u 

• 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 

subsequent editions. 

Please note: This form is not intended to be used as an order blank. 

(Document Title) 

(Document No.) (Revision No.) (Update No.) 

Comments: 

From: 

(Name of User) 

(Business Address) 

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



FOLD 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 

BLUE BELL, PENNSYLVANIA 19424 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 
I 
I 
I 
I 
I 
I 

• 

In. ,~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

---------------------------------------------------! 
FOLD I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

'• I 
I 
I 
I 
I 
I 
I 



-------------------------
I 

.. l 
I 
I 
I 
I 

• 

• 

• 

.. 

Comments concerning this manual may be made in the space provided below. Please fill in the requested information. 

System:--------------------------------------------

Manual Title:------------------------------------------

BC No:------- Revision No:------- Update:--------

Name of Customer:----------------------------------------

Address of Customer: ______________________________________ _ 

Comments: 

NOTE: Do not use this form to order manuals. 



FOLD 

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY 

UNIVAC 
P.O. BOX 500 
BLUE BELL, PA. 

19424 
ATTN: SYSTEMS PUBLICATIONS DEPT. 

FOLD 

... _. ' . 

() 

c 
-t 

• 

• 

• 



• 

I
=> 
u 

• 

• 

Comments concerning this manual may be made in the space provided below. Please fill in the requested information. 

UP No:-------- Revision No:--------- Update:--------

Name of User:------------------------------------------------

Address of User:----------------------------------------------~ 

Comments: 



FOLD 

Bus IN ESS RE p Ly MA IL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY 

UNIVAC 
P.O. BOX 500 
BLUE BELL, PA. 

19424 
ATTN: SYSTEMS PUBLICATIONS DEPT. 

• 

() 

c 
-I :. 

I 
I 
I 
I. 
I 
I 
I 
I 
I 

---------------------------------------------------! 
FOLD I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 1• I 
I 
I 
I 
I 
I 
I 


