
•
BEM:BASIC - OS/3

User Reference

• s1=e~v UNIVAC

UA-0140 Rev. 3

•

•

•

••

•

•

UNIVAC
•

FROM APPLICATIONS SOFTWARE

DOCUMENT UPDATE MEMORANDUM

December 1980

TITLE: BEM:BASIC

User Reference

DOCUMENT NUMBER: UA-0140 Rev. 3 - Update c

OPERATING SYSTEM: 05/3

ABSTRACT: This update package incorporates all changes made necessary
by the latest release of this program product .

Proper insertion of these pages into your current UA-0140 Rev.
3 manual will provide an accurate description of the latest re
lease version of this applications software product.

NOTE: The application programs described in this document
are confidential information and proprietary products
of the Sperry Univac Division .

•

•

•

•

•

•

UNIVAC •

FROM APPLICATIONS SOFTWARE

DOCUl\l!ENTATION UPDATE MEMORANDUM

July 1978

TITLE: BEM:BASIC - OS/3
User Reference

DOCUMENT NUMBER:

ABSTRACT:

UA-0140 Rev. 3 - Update A

This announces the release and availability of Update Package
A for the BEM:BASIC User Reference, UA-0140.

This update package includes minor changes in the text, as
well as documentation of new features such as RESE
QUENCE, MERGE, and SYSTEM. Changes made for Level 5.0
BEM are also documented.

NOTE: The BEM:BASIC application programs described
in this document are confidential information and
proprietary products of the Sperry Univac
Division.

ORDERING PROCEDURE: The update package alone, or the manual plus the update
package may be requisitioned. To receive only the update,
order UA-0140 Rev. 3 Update A; to receive both the manual
and the update, order the current manual and the update
package.

Domestic offices order via Sales Help Requisition (form
UD1 -578) from Customer Information Distribution Center
(CIDC), 555 Henderson Road, King of Prussia, Pa. 19406.
Locations outside U.S.A. order from International Distribution
in the usual manner .

•

•

•

•

•

•

PAGE STATUS SUMMARY Update C to UA-0140 Rev. 3

Section
Page Update

Number Level
Section Page Update

Number Level
Section Page Update

Number Level

Cover Orig. A 1 Orig.

Title Orig. 2 c
Copyright c 3,4 Orig. --
Preface iii-iv Orig. 5-7 A

Contents v-ix A 8 Orig.

1 1 A B 1-2 B
2 Orig. c 1-27 A

3-4 A

5-9 Orig.

2 1-9 Orig.

10-11 A

3 1 Orig.

2 A

3-16 Orig.

16A A

17-20 Orig.

21 B

22 A

23 B

24 Orig.

25 A

26 Orig .

27 A

28-29 Orig.

30-31 A

32-47 Orig.

4 1-6 Orig.

7 c
8 c

9-19 Orig.

5 1 Orig.

2 B

3 Or.ill:

4 A

5 Or.!i,

6-7 A

6 1-11 Orig.

12 B

13 Orig.

14-16 B

17 Orig.

18 A

19-21 Orig.

7 1 A

2-3 Orig.

8 1-16 A

All technical changes are denoted by an arrow (-) in the margin. A downward arrow (+) next to a line
indicates that technical changes begin at this line and continue until an upward arrow (+) is found. A horizontal
arrow(-) pointing to a line indicates a technical change in only that line A horizontal arrow located between
two consecutive lines indicates technical changes in both lines or deletions.

•

•

•

•

•

•

BEM:BASIC - OS/3

User Reference

The BEM application programs described in this
document are confidential information and propri
etary products of the Sperry Univac Division .

UA-0140 Rev. 3 Update C

This document contains the latest information available at the time of publication. However,
Sperry Univac reserves the right to modify or revise its contents. To ensure that you have the
most recent information, contact your local Sperry Univac representative.

SPERRY UNIVAC NEWSCOMP Newspaper Composition Program
was used by Application Services in typesetting this publication.

A User Comment Sheet is provided at the back of this publica
tion for your comments. If the sheet has been removed, com
ments may be mailed to Sperry Univac, Attn: Manager, Applica
tion Services, P 0 Box 500, Blue Bell, PA. 19424.

Sperry Univac is a division of Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, and UNIVAC are registered trademarks of the Sperry
Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are additional trademarks of the Sperry
Corporation.

© 1976 - Sperry Corporation Printed in U.S.A.

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

BEM:BASIC .-... User Reference
TITl.E I PAGE REV I

PREFACE

This reference manual describes . the BASIC (Beginner's All-Purpose Symbolic
Instruction Code) system which permits the user to prepare, test, and execute
programs while operating from a remote terminal. This version of BASIC operates
under the SPERRY UNIVAC Basic Editor Monitor (BEM) of the OS/3 Operating
System.

The organization of the manual is as follows:

Section 1 - System Description - provides the reader with a general
overall knowledge of the components of the. BASIC system.

System 2 - Language Elements - discusses the elements that comprise
the language used in constructing programs.

Section 3 - Source Language Statements - describes each BASIC source
language statement that is available to the user in constructing the BASIC
program.

Section 4 - BASIC File Support - describes the file-related statements
and access methods supported under BASIC.

Section 5 - BASIC Commands - describes each BASIC edit command that
is available in preparing B~SIC programs. These commands allow the user
to name a program, execute a program, manipulate the source language
statements in a program. and return control to BEM.

Section 6 - BASIC Program Techniques - contains techniques used in
constructing BASIC programs. These techniques include the hierarchy of
arithmetic operations, and the use of programming aids such as lists, tables,
matrices, built-in functions. and multiline functions.

Section 7 - Errors and Debugging - describes the various user errors
which may occur in preparing a BASIC program and the required correction
facilities.

Section 8 - BEM Operation - details elements of the BEM monitor. and
how to use it.

Appendix A - Summary of BASIC Statement and Command Formats with
Examples - lists statement and command formats and descriptions. Exam
ples are provided for each entry.

Appendix B - Sample BASIC Session - shows a complete terminal
session.

Appendix C - System Error Messages - documents all of the BASIC and
BEM error messages.

iii
PAGE

iv
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TITLE DOCUMENT NO.

Although BASIC is a self-contained language system requiring minimal interaction
between the control program and the user, it is nevertheless advisable that the
user become acquainted with the information contained in the following
publications:

BEM - OS/3 Basic Editor Monitor, User Reference UA-0139
BEM:EDT - OS/3 Interactive Editor, User Reference UA-0141
BEM:RSP - OS/3 Remote Spoolout Processor, User Reference UA-0243

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO TITLE I PAGE Rev. I

CONTENTS

PREFACE

1 SYSTEM DESCRIPTION

1.1 GENERAL.. 1-1

1.2 TERMINALS SUPPORTED BY BASIC 1 -1

1.3 LOGON PROCEDURE • . 1-3

1.4 SOURCE PROGRAM CONSTRUCTION 1 -3

1.5 BASIC SYNTAX CHECKER....................................... 1-4

1.6 BASIC COMMAND PROCESSOR
1.6.1 Program Execution
1.6.2 Program Listing .. .
1.6.3 Saving a Program .. .
1.6.4 File Organization of a Saved File
1.6.5 Using a Saved Program
1.6.6 Returning Control to the Monitor
1.6. 7 Deleting Program Lines
1.6.8 Terminating BASIC

1-5
1-6
1-7
1-7
1-8
1-8
1-8
1-9
1-9

1. 7 LOGOFF PROCEDURE.. 1-9

2 LANGUAGE ELEMENTS

2.1 GENERAL '........................ 2-1

2.2 CHARACTERS . 2-1

2.3 CONSTANTS . 2-2

2.4 VARIABLES . 2-4

2.5 EXPRESSIONS . 2-5

2.6 FUNCTION REFERENCES . 2-6

2.7 CHANNEL SETTER.. 2·11

2.8 STATEMENTS.. 2-11

v
PAGE

vi
PAGE

A BEM:BASIC - User Reference
I PAGE REV I TITLE

3 SOURCE LANGUAGE STATEMENTS

3. 1 INTRODUCTION .. .

3.2 DECLARATION STATEMENTS
3.2.1 DIM Statement•.................................
3.2.2 DEF Statement•............
3.2.3 FNEND Statement•.................•................

3.3 REMARK STATEMENT

3.4 ASSIGNMENT STATEMENT

3.5 CONTROL STATEMENTS
3.5.1 FOR and NEXT Statements
3.5.2 GOSUB and RETURN Statements
3.5.3 GOTO Statement .. .
3.5.4 IF Statement•........................
3.5.5 ON Statement
3.5.6 PAUSE Statement•...•................
3.5.7 STOP Statement _•....•.......
3.5.8 END Statement•...............
3.5.9 RANDOMIZE Statement•.....

3.5.10 TIME Statement .. .
- 3.5.11 SYSTEM Statement .. .

3.6 INPUT /OUTPUT STATEMENTS•..........•..•............
3.6.1 INPUT Statement .. .
3.6.2 LINPUT Statement
3.6.3 PRINT Statement
3.6.4 MARGIN Statement
3.6.5 READ and DATA Statements
3.6.6 RESTORE and RESET Statements
3.6.7 USING Statement .. .

3.7 MATRIX OPERATION STATEMENTS
3. 7.1 Matrix Dimensioning
3.7.2 MAT Addition, Subtraction, and Multiplication Statements
3. 7.3 MAT Vector Multiplication
3.7.4 MAT Inversion Statement
3.7.5 MAT Transpose Statement
3.7.6 MAT Constant Statement•.................
3.7.7 MAT Zeros (O's) Statement
3.7.8 MAT Identity Statement
3.7.9 MAT Scalar Multiply .. .

3.7.10 MAT INPUT Statement
3.7.11 MAT LINPUT Statement
3.7.12 MAT PRINT Statement
3.7.13 MAT READ Statement

UA-0140 Rev. 3
DOCUMENT NO.

•
3-1

3-2
3-3
3-4
3-6

3-7

3-7

3-8
3-8

3-11
3-11
3-12
3-14
3-15
3-15
3-16
3-16
3-16
3-16A • 3-17
3-17
3-18
3-18
3-22
3-23
3-24
3-24

3-31
3-32
3-33
3-35
3-35
3-36
3-36
3-37
3-37
3-38
3-38
3-39
3-40
3-40

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO.

.
TITLE I PAGEREV.1

3.8 PROGRAM SEGMENTATION..................................... 3-40
3.8.1 CHAIN Statement . 3-41
3.8.2 LIBRARY Statement . 3-42
3.8.3 CALL Statement . 3-43
3.8.4 SUB Statement • • 3-44
3.8.5 SUBEND Statement • . . • . 3-46
3.8.6 SUBEXIT Statement... 3-46

3.9 CHANGE STATEMENT... 3-47

4 FILE SUPPORT

4. 1 INTRODUCTION

4.2 FILE DESCRIPTION , ..

4.3 FILE STATEMENTS•.......
4.3.1 FILE Statement•.........•......•...........•.
4.3.2 MARGIN Statement
4.3.3 PRINT Statement .. .
4.3.4 INPUT Statement•............
4.3.5 LINPUT Statement
4.3.6 RESET Statement•..•..........
4.3.7 READ Statement .. .
4.3.8 WRITE Statement•....
4.3.9 RENAME Statement _

4.3.10 SCRATCH Statement
4.3.11 Matrix 1/0 Statements•..

5 BASIC COMMANDS

5.1 INTRODUCTION•.................

5.2 COMMANDS .. .
5.2.1 BYE ~ .. .
5.2.2 DELETE
5.2.3 HELP
5.2.4 LIST, PRINT
5.2.5 NEW
5.2.6 MODIFY .. .
5.2.7 OLD .. .
5.2.8 RUN .. .
5.2.9 SAVE•..

5.2.10 RUNOLD .. .
5.2.11 SYSTEM .. .
5.2.1 2 MERGE
5.2.13 RESEQUENCE

4-1

4-1

4-4
4-6
4-8
4-9

4-10
4-12
4-13
4-14
4-15
4-16
4-17
4-17

5-1

5-2
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-5
5-6
5-6
5-6

vii
PAGE

-

VIII A BEM:BASIC - User Reference UA-0140 Rev. 3
PAGE I PAGE REV I . TITLE DOCUMENT NO.

• 6 BASIC PROGRAM TECHNIQUES

6.1 INTRODUCTION•..........•........................... 6-1

6.2 HIERARCHY OF ARITHMETIC OPERATIONS•.•.. 6-1

6.3 USE OF LOOPS••.......••.•.•...........••............. 6-3

6.4 USE OF LISTS ANO TABLES ..•.........•.............•.......... 6-6

6.5 USE OF BUILT-IN FUNCTIONS•............•..........•.... 6-7.
6.5.1 Mathematical Functions 6-8
6.5.2 Specialized Functions•................. 6-8
6.5.3 String Functions .•.. 6-13
6.5.4 File Functions ...•......................•................... 6-15

6.6 USE OF MULTILINE FUNCTIONS•......... 6-17

6.7 USE OF SUBPROGRAMS · ...•................. 6-18

6.8 USE OF FILES••........••..........•............... 6-19

6.9 HINTS FOR MORE EFFICIENT CODE 6-21

7 ERRORS AND DEBUGGING • 7.1 INTRODUCTION .•.•...................................•........ 7-1

7.2 ERRORS PREVENTING RUNNING OF PROGRAM 7-1

7.3 LOGIC ERRORS : 7-2

8 BEM OPERATION

8.1 INTRODUCTION . 8-1

8.2 COMMAND FORMAT 8-2
8.2.1 LOGON Command . 8-2
8.2.2 HELP Command . 8-2
8.2.3 TYPE Command • . . . • . 8-3
8.2.4 PAUSE Command . 8-3
8.2.5 STATUS Commands . • • . 8-3
8.2.6 EXECUTE Command . 8-5
8.2.7 LOGOFF Command . 8-5
8.2.8 FILE STATUS Command . 8-5
8.2.9 PRINT and PUNCH Commands . 8-6

8.2.10 DELETE Command . 8-7
8.2.11 RUN Command . 8-7
8.2.12 DISPLAY Command 8-8
8.2.13 SCREEN Command . 8-9
8.2.14 VTOC Command . 8-10 •

UA-0140 Rev. 3 BEM:BASIC - User Reference A IX

• DOCUMENT NO. TITLE I PAGE REV I PAGE

+
8.2.15 Disk s·pace Management Commands 8-11
8.2.16 ENTER Command 8-12
8.2.17 COMMENT Command 8-13
8.2.18 BULLETIN Command .. . 8-14
8.2.19 RECOVER Command .. . 8-15

8.3 BATCH SUBMISSION 8-16

t
APPENDIXES

A SUMMARY OF BASIC STATEMENT AN.D COMMAND FORMATS

B SAMPLE BASIC SESSIONS

C SYSTEM ERROR MESSAGES

•

•

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGE REV I

1 SYSTEM DESCRIPTION

1.1 GENERAL

The SPERRY UNIVAC Basic Editor Monitor (BEM) system provides the remote
terminal user with the capability of generating, modifying, and executing programs
written in Beginner's All-Purpose Symbolic Instruction Code (BASIC). The BASIC
system also provides the user with the capability of saving the programs in OS/3
Library files for subsequent processing and updating.

Figure 1-1 shows an overview of the BASIC system. After logging on, the BASIC
system is invoked by typing the /EXEC BASIC command at the remote terminal. The
system then loads the BASIC compiler, responds with READY, and the user begins
to construct or modify his source program. Each BASIC statement that is entered is
immediately analyzed by a Syntax Checker for syntax errors such as invalid
constants. expressions. and construction. If an error is detected, BASIC types a
question mark(?) and the statement in error up to the first character where the error
occurred. The user may then correct the error and proceed to the next statement.

After the user has completed his program or part of a program, he may issue the
RUN command to instruct the BASIC system to compile and execute the sequence
of statements. The BASIC compiler performs a second syntax check for global
errors during object code generation. These errors are detected when the source
program is analyzed in its entirety rather than on an individual source line basis.
Examples are illegal nesting, undefined function references, and illegal line-num
ber references. (Refer to 1.6.1, "Program Execution.") If an error is detected,
BASIC returns the line number of the source statement in error and appropriate
diagnostic message to the user. (Refer to Section 7, "Errors and Debugging" and
Appendix C, System Error Messages.)

After compilation and execution of the program, the results are returned to the
user's terminal. The user may then use the SAVE command to save a copy of the
current program in a library file. The program is stored using the program name
supplied by the user.

1.2 TERMINALS SUPPORTED BY BASIC

The BASIC system supports all terminals supported by BEM.

Lines of source text and editing commands must be constructed using only the
minimum UNISCOPE character set with the following exceptions for
teletypewriters:

1. A vertical arrow (!) is accepted as a substitute for ** which denotes
exponentiation .

2. The designation TRANSMIT is used to show the UNISCOPE terminal TRANS
MIT KEY. This is equivalent to the ETX key on a OCT terminal (CTRL "C").

1 -1
PAGE

1-2
PAGE I PAGEREV.1

.....

7 C>{STATEMENT)

_..
-

STATEMENT
DIAGNOSTIC
MESSAGE

......

I
SAVED
PROGRAM
FILE

\

BEM:BASIC - User Reference

__..

OCT 500

mLE

REMOTE
TERMINALS

UNISCOPE 100
VIDEO DATA

DATA TERMINAL
TERMINAL

1 '
/LOGON
/EXEC BASIC

OS/3 BASIC READY (VER 4.01
•t>
SOURCE PROGRAM CONSTRUCTION
SOURCE PROGRAM MODIFICATION
SOURCE PROGRAM LISTING

-
ERROR SYNTAX

CHECKER

COMPILER
PROGRAM
EXECUTION

ERROR COMPILER
SYNTAX
CHECKER

I
-- ~

•
-1

LOGOFF PROCEDURE

Figure 1 -1 BASIC System Overview

UA-0140 Rev.3
DOCUMENT NO. •

I

....
-·

..

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGE Rev. I

1.3 LOGON PROCEDURE

In order to be initially connected to the operating system, the user must enter the
/LOGON command from his terminal. This command identifies the user to the
operating system and initiates the user task. The format of the LOG ON command is:

where

/LOGON userid, account, password

LOG ON

user id

account

password

specifies that the user wants to log on and
initiate a task.

specifies the user identification (one to four al
phanumeric characters).

is the optional account id for this user (one to
four alphanumeric characters).

is the optional user-id/ account-id protection
password (one to four alphanumeric characters).

For a more detailed discussion of the LOGON command, refer to the BEM - OS/3
Basic Editor Monitor User Reference UA-0139 .

1.4 SOURCE PROGRAM CONSTRUCTION

The user invokes BASIC by issuing the following Executive command:

/EXEC BASIC

Control is transferred to BASIC which immediately responds

OS/3 BASIC READY (VER 5.0) BEGIN
*

At this time, the user is at the command level in BASIC. If a command other than
NEW or OLD is entered, the Syntax Checker is called immediately to process the
user's first source statement.

After the compiler is invoked, the system responds with an asterisk which requests
source input. A line of input consists of a single BASIC source language or a BASIC
editing command, followed by the TRANSMIT function. The BASIC source lan
guage statements and editing commands are described in detail in Sections 3, 4,
and 5 respectively. Input lines may not be continued beyond one terminal line.

BASIC distinguishes program source statements from editing commands by
requiring that the source statements be prefixed by a line number. A line number
consists of one to five digits of a value between 1 and 99999. Line numbers are
used to determine the logical sequence of statements. In a BASIC progrc;::i file,
lines of source text may be entered in an arbitrary sequence.

1-3
PAGE

t

1-4
PAGE

A BEM:BASIC - User Reference UA-0140 Rev.3

I PAGE REV I TITLE DOCUMENT NO.

The lines of source text are processed by the BASIC Syntax Checker and syntactical
ly correct statements are added in source form to the user's program file. This
program file. which is built up in the user's work space. is not saved unless the user
issues a SAVE command. Statements entered at the terminal. which have a syntax
error. initiate diagnostics and are not added.to the user's program file.

BASIC editing commands are executed immediately and are not included in the
user's program file. The user's program file is compiled and executed when the RUN
command is issued.

After a line of input is processed. the sysrem responds with an asterisk on a new line
requesting another line of input from the terminal.

The maximum acceptable input line is 128 characters including any backspaces,
carriage returns, or other non-BASIC characters. However, only the first 80
columns will be scanned for source lines.

Since source statements are cataloged by line number in a user's program file, no
more than one statement can have the same specific line number. Therefore:

1 . If the line number of a syntactically correct source statement matches the line
number of a statement in the current user's program file, the new statement
replaces the old statement.

2. A null statement such as 140 TRANSMIT deletes a statement with matching
line number in the current user's program file.

Section 6 describes the techniques that a BASIC user can employ in constructing
his program. Techniques for formatting formulas, using loops, formatting lists and
tables, and using specialized functions are described with appropriate examples.

1.5 BASIC SYNTAX CHECKER

The BASIC Syntax Checker analyzes single BASIC source language statements. If a
syntax error is detected, the system responds with a question mark(?) followed by a
copy of the incorrect statement up to the first character in error. The user may then
retype the remainder of the source statement followed by TRANSMIT as the nexf
line of input.

Example:

The user types in the line.

24 IF A=B THEN GOTO 41 TRANSMIT

The system responds

?24 IF A=B THEN

since the GOTO following THEN is incorrect.

The user may then type in

41 TRANSMIT

•

• '

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO

BEM:BASIC - User Reference

TITLE I PAGEREV.1

and the complete statement

24 IF A=B THEN 41

is processed by BASIC.

The following types of errors are detected by the BASIC Syntax Checker:

• Incorrect constants, identifiers, functions names, line numbers. and state
ment verbs

• Incorrect expressions caused by unbalanced parentheses, implicit multipli
cation, and illegal operand-operator-operand sequences (e.g., two operators
together as in A*-B)

• Incorrect statement construction, such as no THEN- clause following IF

Global syntax errors (e.g., transfer to a line number not included in a program) are
detected by the BASIC compiler.

Lines of input which are not prefixed by a line number automatically bypass the
Syntax Checker and are treated as commands. The, BASIC Command Processor
responds with a question mark(?) to an invalid command, which frequently results
from typing a source statement without its line number.

If the error in a rejected BASIC statement is not obvious, the user may issue a HELP
command. This will result in a short explanation of the error being displayed at the
terminal. Corrective action is often suggested by the explanation.

When errors are detected by the Syntax Checker, only the portion of the statement
which is correct will be displayed at the terminal. The user should complete the
statement and re-transmit it to BASIC. In the case where the user does not wish to
correct the statement but wishes to enter a new statement or a command, the
following action should be taken:

• On a UNISCOPE te~minal, back up the cursor to the Start-of-Entry symbol (C>)
and erase the line. A new statement may now be entered.

• On a hardcopy terminal, transmit a· percent sign(%). BASIC will respond with
an asterisk(*) indicating a new statement may be entered.

1 .6 BASIC COMMAND PROCESSOR

The BASIC system provides a set of edit commands which are described in detail
in Section 5. The editing commands are integrated with the BASIC source
language statements so that the user does not have to manually switch between
edit and program construction modes .

1-5
PAGE

1-6
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TITLE DOCUMENT NO.

1 .6.1 Program Execution

The BASIC compiler is a one-pass. load-and-go system. The compiler generates
object code which provides for program execution following the statement. The RUN
command instructs the BASIC system ta compile and execute the sequence of
statements currently contained in the user's program file. This sequence of
statements need not constitute a logically complete BASIC program, because the
compiler automatically generates code to terminate program execution following
the last statement. The last statement in a program file must always be an END
statement, whether or not the program is logically complete.

In addition. the BASIC compiler does extensive global syntax checking. Each syntax
error results in a message to the user's terminal consisting of the line number of the
source statement which caused the error and an appropriate diagnostic.

Example:

INVALID NESTING OF FOR-NEXT STATEMENTS
LOADER AT LINE 00020
*I>

As the program is loaded, a diagnostic is displayed for each error encountered; if
errors are detected. t!ie user is returned to the Syntax Checker. If no compiler errors
are detected, the object code is automatically executed. The following types of global
syntax errors are detected by the BASIC Compiler Syntax Checker:

• Overflow and underflow resulting from conversion of numeric constants to
floating-point internal representation

• Reference to an undefined function and redefinition of a defined function

• References to nonexistent or invalid line number (e.g., GOTO, GOSUB,
IF-THEN, ON)

• NEXT before FOR. or no NEXT matching a FOR

• Illegal nesting of FORs with same index

• Illegal nesting of FORs with different indices

• Statements leading to unpredictable results

• Object code exceeding available memory

• Duplicate parameters in a function definition

• Illegal DEF-FNEND statement ordering

•

•)

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO

BEM:BASIC - User Reference
TITLE I PAGEREV.1

If an OLD program is being executed, and there are statements which were flagged
by the Syntax Checker but have not yet been corrected, the Loader will display an
error message:

UNCORRECTED ERROR IN SOURCE PROGRAM
LOADER AT LINE 00766

The user should go back and correct the line(s) in error before attempting to RUN
the program again.

The code generated by the BASIC compiler includes tests for a number of run-time
errors. Each run-time error results in a typeout to the user's terminal consisting of
the source statement which resulted in the error and an appropriate diagnostic.

Example:

ARRAY SUBSCRIPT OUT OF RANGE
STOPPED AT LINE 00230
*t>

Program execution terminates automatically when a run-time error is detected.
See Appendix C for complete list of diagnostics .

1.6.2 Program Listing

The UST or PRINT command can be used to display all or parts of a program at the
user's terminal.

Example:

LIST 150 - 175

Only those lines numbered 150 to 175, inclusive, are listed. Lines of source text are
listed as they were typed in.

1.6.3 Saving a_ Program

The SAVE command can be used to save a copy of the user's current program file in
a SAT Library file. The file-name, supplied by the user, is used to locate the file on
the disk. The program-name is used for an element-name within the library. The
program is saved in source statement form. If a BASIC program with the same
program name has been previously saved on the user's disk file, the system will
respond:

OVERWRITE PREVIOUS FILE (YES, NO)?

If the user responds with Y or YES, the current program file will replace the
previously saved program. For responses with an N or NO, the control will be
returned to the user without overwriting the previously saved program.

1-7
PAGE

1-8
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3

I PAGEREV.1 TITLE DOCUMENT NO.

The message is repeated for a response different from Y, YES, N, or NO. For an
example of saving a program, refer to the SAVE command description in Section 5.

1.6.4 File Organization of a Saved File

All files saved by BASIC, or OLD programs recalled by BASIC, are stored in standard
OS/3 Library files. The user is required to supply at least the program and file
names. BASIC will check the system catalog to see if it lists the file. If it does, the file
password, if any, will be verified and the volume name listed in the catalog will be
used. If the file is not listed in the catalog, the user will be required to supply a
volume name.

When the user invokes the OLD command, all lines of source are processed by the
Syntax Checker. If a syntax error is discovered while reading a statement from the
source file, the line is written to the terminal, preceded by a question mark, and
rejected. It will then be entered into the work file with a notation that the line must
be corrected before the program may be run. The user must wait until the entire file
is read before he can enter lines from the terminal. BASIC will respond with an ..
when it is ready.

Programs saved by BASIC may be listed or punched using the OS/3 utility LIBS.

1.6.5 Using a Saved Program

The OLD command can be used to load a program saved on the user's direct-access
file space into his work space. When the OLD command is issued, the user must also
supply the file information of one of the BASIC programs saved in a library file. The
saved program then becomes his active program file. The copy of the program on
disk is unchanged.

The OLD and NEW commands may be issued at any time during a BASIC session. In
either case. the current contents of the user's active program file are lost and the file
is renamed.

Another command, RUNOLD, allows the user to quickly execute a saved program,
without the overhead of copying the source and compiled object code to the work
space.

1.6.6 Returning Control to the Monitor

During the BASIC session, it may be necessary for the user to return control to the
monitor, so that certain monitor commands- such as STATUS. TYPE. etc., may be
issued. In order to facilitate returning control to the monitor. BASIC provides the
user with the SYSTEM command. The SYSTEM command causes BASIC to interrupt
to the monitor, and the user can subsequently return to BASIC by issuing the
/R[ESUME] command.

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITLE I PAGE AEV.1

1 .6.7 Deleting Program Lines

BASIC statements which have been stored in the work file may be removed by
typing their line number, as explained previously. A command is also available to
remove several lines with a single command.

Example:

DELETE 126- 129,500

1 .6.8 Terminating BASIC

When the user has finished with BASIC the BYE command may be used to terminate
BASIC and return any storage space occupied by the program.

1 .7 LOGOFF PROCEDURE

The monitor LOGOFF command terminates the user session. Its purpose is to end
the task and return to the BEM system the memory and any disk space used by the
task .

This command must be the last one in the task and is entered according to the
following format:

Format:

/LOGO FF

1-9
PAGE

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
OOCUMENTNO TITLE I PAGEREV.1

2 LANGUAGE ELEMENTS

2.1 GENERAL

The BASIC language is made up of elements which can be combined in various ways
to construct programs and subroutines. In BASIC, the language elements are divided
into the following categories:

• Characters
• Constants
• Variables
• Expressions
• Function references
• Statements

2.2 CHARACTERS

BASIC programs are constructed from a set of 58 distinct characters. A character is
defined as a letter. digit, delimiter, or special character .

letter

digit

delimiter

special character

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

operator or sep.arator

operator:
separator:

$@#?'%

+-*/()<>r&
•. ; t::,. ":

In addition, BASIC, programs use open-string and string characters.

open-string character

string character

NOTES:

1. blanks:

letter, digit, operator. special character. period (.)
semicolon(;), and double quote("").

letter. digit. operator. special character, comma
(.). period(.). a semicolon(;), or a blank (t::..).

The character blank. which may be used in constructing the BASIC programs.
is designated in the syntax by the symbol t::... Any spaces which appear in the
syntax equations do not denote blanks in the BASIC language. Blanks are only
significant in BASIC when they appear in a comment or in a string constant .

2-1
PAGE

2-2
PAGE I PAGE REV I

BEM:BASIC - User Reference UA-0140 Rev.3
TITl.E DOCUMENT NO

2. quote:

The character quote ('') is used to delimit the beginning and end of a
closed-string constant. If a quote is required within a closed string, two
consecutive quotes are used.

3. asterisk:

Exponentiation is specified by means of a pair of asterisks. A vertical arrow (I)
is also permitted, where applicable.

2.3 CONSTANTS

Constants are used in a BASIC program to specify data values. There are three types
of constants: decimal numbers. string constants, and line numbers.

decimal numbers

string constants

line number

A fraction which may be optionally followed by an
exponent field. A fraction is defined to be a series
of one or more digits and may contain an optional
decimal point. The decimal point may precede,
follow, or be embedded in the series of digits. The
exponent field indicates the power of ten by
which the fraction is to be multiplied and consists
of the letter E followed by an optional sign and
one or two digits. The sign may be + or - and, if
omitted, is assumed to be+.

Examples:

fraction: 9.9., .9. 9.9
exponent: E1. E+1 .'E+o1, E-1. E-01

closed string: quote followed by a series of O to
4095 string characters followed by a quote

Example: "A.6.B" or "BILL" "S"

open string: a series of 1 to 4095 open-string
characters or blanks or quotes

Example: A.6.B

series of one to five digits without any sign,
decimal point. or exponent field. It must be in the
range 1 to 99999.

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

BEM:BASIC - User Reference
TITLE I PAGE REV I

NOTES

1. decimal numbers:

All decimal numbers are converted and stored internally in floating-point
format. The exponent occupies seven bits and indicates the power to which
the number 16 must be raised. The sign occupies one bit. In Floating-point
format the mantissa occupies 24 bits, and contains a 6-digit hexadecimal
number in normalized form. In BASIC, if the value of the fraction part of a
decimal number, disregarding the decimal point, exceeds 224 -1, the number is
rounded and trailing digits are lost.

Example:

12.3456789

is acceptable, but is (effectively) rounded to

12.345679

If the mantissa is nonzero, the magnitude of the floating-point number has
the following range:

16-65~M< 7663(approximately 10- 18 ~< 1075)

Overflow and underflow conditions for numeric constants are processed as
errors.

2. string constants:

All string constants are stored in EBCDIC code. A 2-byte length field is
prefixed to each string before it is stored! the value of the length byte is not
included. If a given string constant contains more than 4095 characters, it is
truncated at the right. Note that an open-string constant, as opposed to a
closed-string constant, cannot contain a comma. Moreover, an open-string
constant is permitted only as input to the READ and INPUT statements.
Within a closed-string constant, two consecutive quotes are interpreted as a
single quote. Note that is is not possible to enter a string constant in a
program longer than 74 characters, since the maximum line length is 80
characters.

3. line numbers:

Each statement in a BASIC program must be preceeded by a line number
which is an integer between 1 and 99999. The line numbers specify the
logical sequence of statements in a program (increasing order). They are also
used as statement labels for transferring control during program execution.

Leading zeros in a line number are ignored in the sense that 000175 is
equivalent to 175 .

2-3
?AGE

i-4
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TITLE DOCUMENT NO.

2.4 VARIABLES

Variables are used .in a BASIC program to designate arbitrary data values of a fixed
type. In BASIC, the user may construct scalar variables and array variables. A scalar
variable is defined as a numeric variable ·or a string variable. An array variable is
defined as a numeric array or string array. A numeric reference may be a numeric
variable or a numeric array. A string reference may be a string variable or a string
array.

scalar variable

numeric variable

string variable

array variable

numeric array variable

string array variable

NOTES:

1. numeric variables:

numeric variable or string variable

letter optionally followed by a single digit

Examples: X, X2

letter followed by a dollar sign ($), or a letter
followed by a single digit, followed by a dollar
sign.

Examples: AS, JS, Q6S

numeric array variable or string array variable

letter followed by one or two subscript expres
sions enclosed in parentheses

Examples: X(4), X(4,20). X(A+B)

letter followed by a dollar sign($) followed by one
or two subscripts enclosed in parentheses

Examples: CS (20), CS(A+B). 0$ (A,C)

Numeric variables may on~y be assigned decimal numeric values.

· 2. numeric array variables:

Numeric array variables may only be assigned decimal numeric values.

The upper bounds for a 1-dimensional or 2-dimensional numeric array may
be explicitly specified by means of a dimension (DIM) statement. (See Section
3). An implicit upper bound of 10 for either dimension is implied if not
specified. In either case, the lower bound is always zero (0).

•

•

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO

BEM:BASIC - User Reference
TITLE I PAGE REV I

3. subscripts:

A subscript may be defined using any arithmetic expression. During execu
tion, the value used to locate the array element referenced is computed by
rounding the subscript expression to the nearest integer. If the subscript value
is not within the bounds specified (or implied) for that dimension of the
referenced array, then the user is given an error message and program
execution terminates.

Two-dimensional arrays are stored in row-major order.

4. string variables:

String variables may only be assigned character string values. All such
variables are initialized to the null string (zero length). The maximum number
of characters which may be placed in a string variable is 4095.

5. string array variables:

String array variables may only be assigned character string values. All
elements of these string array variables are initialized to the null string (zero
length) .

The rules for numeric array variables regarding bounds and subscript evalua
tion apply to string array variables as well.

2.5 EXPRESSIONS

The expression is the BASIC facility for performing operations on data values. BASIC
provides for both arithmetic numeric expressior:is and string expressions. Arithmetic
numeric expressions specify arithmetic calculations; string expressions are used
primarily to identify input/ output. Unless otherwise stated, all expressions are
assumed to designate single values.

arithmetic expression

term

factor

term optionally preceded by a minus (-) or plus
(+) sign; or an arithmetic expression plus (+) or
minus(-·) a term

Example A**2*B-3

factor or a term multiplied (*) or divided (/) by a
factor

Example A**2*B

primary or a factor raised to a power(**) designat
ed by a primary

Example: A **2

2-5
PAGE

2-6
PAGE I PAGE REV I

primary

string expression

string primary

BEM:BASIC - User Reference UA-0140 Rev.3
TITLE DOCUMENT NO.

decimal number, numeric reference, function re
ference, or an arithmetic expression which is
enclosed in parentheses

Examples: 2,A,RND(X), (C-0)

string primary or a string expression followed by
an ampersand (&) denoting concatenation, fol
lowed by another string expression.

Example: "ABC" & BS

closed string, string reference, or function
reference

Examples: AS, SEGS(DS, 6, 8), "AB"

NOTES:

1. Mixed mode expressions are treated as errors.

2. The exponentiatiOn operator(**} may be written as a vertical arrow(!}, where
applicable.

3. A **B**C is compiled as (A **BJ**C

4. Parentheses may be used to factor subexpressions.

5. Overflow and underflow conditions existing during the evaluation of arith
metic expressions are treated as errors.

6. Division by zero is treated as an error.

7. Zero to a negative power is treated as an error.

8. A negative number can only be raised to a nonzero positive integer number.
The maximum value of the positive integer is 15. Any violation of this rule is
treated as an error.

2.6 FUNCTION REFERENCES

An expression may contain references to either specific built-in functions provided
within the BASIC system, or user-defined functions. All function references consist
of a function name followed by an argument list enclosed within parentheses. All
built-in functions h~ve between zero and three arguments. In each case, the
arguments are evaluated and control is transferred to an out-of-line routine for
evaluating the referenced function. The resulting (single) value replaces the function
reference in-the containing expression.

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

BEM:BASIC - User Reference
TITLE I PAGE REV.,

built-in function a function name optionally followed by an ex
pression or list of expressions enclosed in paren
theses

function name ABS ATN CHR$ CLK$ COS
EBC EXP INT LEN LOC
MOD NUM PER POS RND
STA$ SQR TAN TIM TYP

COT OAT$ DET
LOF LOG MAR
SEG$ SGN SIN
USA$. VAL

user-defined function FN followed by a letter and optional dollar sign,
followed by an argument list enclosed in
parentheses

Example: FNCS (CS, Z)

argument list expression optionally followed by up to 15 expres
sions. A comma is used to separate one expres
sion from another

Example: A.BS, "ABC'" & "DEF" ...

NOTES:

1. SIN(x), COS (x), TAN(x), COT(x), and ATN(y) designate the functions sine,
cosine, tangent, cotangent, and arctangent, respectively; the argument x
and the result of ATN are angles measured in radians.

2. £XP(x) designates exponentiation e. Overflow occurs if x is too large (i.e ..
x >174.6).

3. LOG(x) designates the natural logarithn:i of x, In x. The LOG of zero or a
negative number is treated as an error.

4. ABS(x) designates the absolute value of x, /xi.

5. SQR(x) designates the square root of x. A negative argument is treated as an
error.

6. RND(x) designates a pseudo random number:

a. if x > O. then RND(x) is a function of x whose value is in the open
interval (0. 1).

b. If x < 0. the system supplies an arbitrary random number in open
interval (0. 1).

c. If x = O. the system supplies a pseudo random number which is a
function of the previous random number generated by RND. If x = 0,
the first time RND is called in a pragram. the system will supply a fixed
number in the open interval (0. 1) .

d. If no argument is used, x = 0 is assumed. To generate a sequence of
pseudo random numbers, the user would call ar.Jy of these options
followed by repeated calls to option c. With this option the RANDOMIZE
statement should be used to generate a unique sequence of random
numbers.

2-7
PAGE

2-8
PAGE I PAGEFIEV I

BEM:BASIC - User Reference UA-0140 Rev.3
TITLE DOCUMENT NO

7. INT (x} designates the largest integer not exceeding x.

For example: INT(2.985} = 2. INT (-2.015) = -3.

8. SGN (x) designates the sign of x.

SGN(x}= ~
+1. ifx>O ~

O. ifx =O

-1.ifx<O

9. FNA to FNZ designates one of the 26 user-defined numeric functions and
FNA$ to FNZ$, one of 26 user-defined string functions (see the DEF
statement}.

10. DET is a pseudo-function and may be used to obtain the value of the
determinant of the last matrix inverted.

11. LEN (XS} computes the length. in characters, of the string XS. This will be a
value between 0 and 4095.

12. MOD (x, y} is the modulus remainder of x divided by y: (x-y *INT (xly}}

13. POS (A$, 8$, XJ determines the location in string AS of the first character of
the first occurrence of the string BS beginning at or after position X in AS.
This will return zero if BS does not occur in AS.

14. TIM. is the elapsed running time of the program in seconds, accu.rate to the
nearest millisecond.

15. VAL (A$) returns the value of the number whose decimal representation is in
string AS.

16. EBC (string) is a special function which takes a string of from one to three
.characters in length. It returns a value of the EBCDIC code for its argument.
The argument is a character, or a 2- or 3- letter mnemonic for a character
(e.g .• EBC (ETX) = 3). See Table 2-1 for a list of mnemonics.

17. CHR${x) returns a 1- character string consisting of the EBCDIC character with
the code MOD (INT (x}, 256).
For example: CHRSf 193) =A.

18. CLKS gives the time of day as an 8- character string in the form HH:MM:SS.

19. DA TS gives the current date as an 8- character string in the form
MMIDO/YY.

20. SEGS (AS.x,y) locates the substring of AS cons1stmg of all characters
between positions X and Y. inclusive and returns that string. An empty
string is returned if X > Y. and the appropriate beginning or end of AS is
taken for X < =O or Y >LEN (AS}.

•

•

•

UA-0140 Rev.3
DOCUMENT NO. •

•

•

BEM:BASIC - User Reference
TITLE I PAGE Rev. I

21. STRS (X) converts X to its decimal representation as a string result.

22. USRS is a 4- character string giving the user's "logon identifier" from the
ILOGON command.

23. LOC (#NJ returns the current location of the file pointer for the file assigned
to channel number N.

24. LOF (#NJ returns the current end-of-file value (length of file} for the file
currently assigned to channel number N.

25. MAR (#NJ returns the current margin size for the file currently assigned to
file number N.

26. PER (#N,ASJ returns the value +1 if the operation specified by AS is valid for
channel number N, 0 if the operation is invalid, and -1 if AS does not
specify one of the operations: INPUT, LINPUT, PRINT, READ, RENAME,
RESET, SCRATCH, or WRITE. Operations may be invalid if they are applied
to an unopened file or if the user has restricted access to the file. INPUT,
LINPUT, and READ are invalid if the file is empty or the current pointer is at
end-of-file (LOC=LOF). A value of +1 returned by PER ensures that the
specified operation will be allowed if it is the next operation issued against
the file .

27. TYP (#N,A$J returns +1 if the file given by N currently has the type specified
by A$, 0 if not, and -1 if A$ does not specify one of the operations: ANY,

• LIBRARY, NUMERIC, PERM, RANDOM, STRING, TERMINAL, TTY, or WORK.
The terminal has type TTY, a scratch file has type WORK, an OS/3 Library
file ·has type LIBRARY, and an OS/3 Data Management file has type PERM.
Any open file has type ANY. NUMERIC and STRING are provided for
compatibility and will always return a value of +1. A TERMINAL file is a
sequential file for which the operations INPUT, LINPUT, and PRINT are valid.
A RANDOM file is one for which the operations, READ, WRITE, and RESET
are valid. Currently all BASIC files have both type TERMINAL and type
RANDOM.

28. NUM returns the number of values inputted for the last vector MAT INPUT
statement .

2-9
PAGE

2-10 A
PAGE I PAGE Rev.I

Mnemonic

ACK

BEL

BS

CAN

CR

DCl

DC2

DC3

DC4

DEL

OLE

OS

EM

ENQ

EOT

ESC

t
ETB

ETX

FF

FS

GS
HT

LCA

LCB

LCC

LCD

LCE

LCF

LCG

LCH

t
LCI

BEM:BASIC - User Reference
TITLE

Table 2-1 List of Mnemonics

Value Mnemonic

46 LCJ

47 LCK

22 LCL

24 LCM

13 LCN

17 LCO

18 LCP

19 LCQ

60 LCR

7 LCS

16 LCT

32 LCU

25 LCV

45 LCW

55 LCX

39 LCY

38 LCZ

3 LF

12 NAK

28 NUL

29 RS

5 SI

129 so
130 SCH

131 sos
132 SP

133 STX .
134 SUB

135 SYN

136 us
137 VT

Value

145

146

147

148

149

150

151

152

153

162

163

164

165

166

167

168

169

37

61

0

30
15

14

1

33

64

2

63

50

31

11

UA-0140 Rev.3
DOCUMENT NO.

•

• ' .'

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGE REV I

2.7 CHANNEL SETTER

The channel setter is used in file-related statements to specify which data file is to
be selected. It has the form:

expression

where

expression

Examples: #3, #I, #3-J

Programming Notes

identifies the channel setter.

is a numeric expression which is evaluated at
execution time.

1. The expression is truncated to an integer. The resultant value must be in the
range 0 to 4095.

2. A channel setter of zero, or an omitted channel setter, selects the terminal.

2.8 STATEMENTS

The statement is the smallest complete unit of information in the BASIC system.
Statements may be entered into a program, reordered, and executed.

There are two general classes of statements in BASIC: executable and nonexecuta
ble. Executable statements designate particular actions to be performed; nonexecu
table statements specify supplementary information.

statement

executable statement

non executable
statement

line number followed by an executable statement
or a nonexecutable statement

assign. control, input-output, matrix, or data file,
statements

declaration or remark statement

Each BASIC statement entered into a program must be prefixed with a line _number.
These line numbers determine the logical order of statements within a program.
They are also used in several of the control statements to effect transfers of control.

Comments may be appended to any BASIC statement by prefixing the comment
with an apostrophe ('). When the Syntax Checker scans a source statement any
characters after the apostrophe are ignored (except when the apostrophe is part of
a string constant) .

Each BASIC statement is described in detail in Section 3.

2-11
PAGE

•

• / ~'

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO TIT~E I PAGE REV l

3 SOURCE LANGUAGE STATEMENTS

3.1 INTRODUCTION

This section describes the BASIC source language statements that are used in
constructing a BASIC program. Each statement is described in detail with examples
showing the use of each statement.

The BASIC source language statements are either classified as executable or
nonexecutable. The executable statements are categorized as assignment, change
of control, input/output, matrix operations. and data files. The nonexecutable
statements are categorized as declarative and remark. Table 3-1 shows the list of
all the BASIC source language statements.

A BASIC program consists of any sequence of BASIC statements; each statement
must be preceded by a line number and must be written on a single line of terminal
input. The maximum number of statements in a program depends on the complexity
of individual statements in a particular program. This limit is usually a function of the
amount of memory available to load the program, and is not a limit imposed by the
compiler .

In describing the statements. the following conventions are used:

• Keywords that may be used in the statement are shown in capital letters.

• Names constructed using lower case letters and embedded hyphens desig·
nate syntactic variables.

• Brackets. [], are used to enclose optional parameters.

• Braces. { } , are used to enclose alternatives.

• Ellipsis, ... ,following an operand parameter indicates that the user may
specify more than one parameter of that type. For example, the syntax

READ variable-1 [, variable-2 ...]

allows the statements

READA
READA. B
READ A. B,C

to contain many input variables in the READ list .

3-1
PAGE

3-2
PAGE

-

A BEM:BASIC - User Reference UA-0140 Rev.3

I PAGE REV I TITLE DOCUMENT NO.

Table 3-1 List of BASIC Statements

Statement Statements
Category Executable Nonexecutable

Declaration DIM
DEF
FNEND

Remark REM

Assignment LET

Control FOR and NEXT TIME
GOSUB and RETURN
GOTO
IF
ON
STOP, PAUSE. and END - SYSTEM -

Matrix Operations MAT-add, subtract, multiply
MAT -invert, transpose
MAT -scalar multiply
MAT-identity, constant, zero
MAT-null
MAT INPUT
MATUNPUT
MAT READ
MAT PRINT
MAT WRITE

Data File READ DATA
RESTORE. RESET

Program Subdivision CHAIN SUB
CALL
SUB EXIT
SUBEND

Conversion CHANGE

Input/Output and FILE
Files INPUT .

UNPUT
MARGIN
PRINT and USING
READ
RENAME
RESET
SCRATCH
WRITE

3.2 DECLARATION STATEMENTS

The Declaration statements (DIM, DEF, and FNEND) explicitly specify the dimen
sions of arrays, and define any defined functions which are referenced in a program,
respectively. -

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITLE I PAGE Rev. I

3.2.1 DIM Statement

The DIM statement explicitly specifies the upper bound(s) of numeric and string
arrays so that sufficient space can be reserved in memory for the array. Either 1- or
2- dimensional numeric or string arrays can be dimensioned. The lower bound for
each dimension is always 0.

Format

where

DIM {nu~eric~dime~sion} [· {nu~eric-.dime~sion} .. ·]

str1ng-d1mens1on stnng-d1mens1on

numeric-dimension

string-dimension

a letter followed by one to five digits in paren
theses or a letter followed by two numbers (each
consisting of one to five digits) separated by a
comma in parentheses

a letter followed by a dollar sign ($)followed by
one to five digits in parentheses, or a letter
followed by a dollar sign, followed by two num
bers (each consisting of one to five digits) separat
ed by a comma in parentheses.

Programming Notes

1. The duplication of an array name in a DIM statement is treated as an error.

2. The appearance of the same array name in more than one DIM statement is
treated as an error.

3. If the value of a subscript of an array exceeds 10, the array name must appear
in a DIM statement. otherwise an error occurs.

4. A DIM statement can appear anywhere in the program, and may appear after
the related. variable is used, as long as the number of subscripts remains
consistent.

5. The upper limit on the subscripts of an array will be referred to as the array
dimensions or dimensions of the array.

6. Numeric array elements are initialized to zero, and string elements to null
strings.

Example 1:
20 DIM A(25)

In this example, A is a 1-dimensional numeric array consisting of 26 numeric
variables: A(O), A(1), A(2), ... ,A(25).

3-3
PAGE

3-4
PAGE I PAGE REV I

BEM:BASIC - User Reference UA-0140 Rev.3
TITLE DOCUMENT NO.

Example 2:
21 DIM 0(20,30), RS(35)

In this example, B is a 2-dimensional numeric array consisting of 651
numeric variables:

B(O. 0), 0(1, 0) •... , 0(20. 0)

B(O, 30), 0(1, 30), 8(20. 30)

and RS is a 1-dimensional string array consisting of 36 string varia
bles: RS(O), RS(1), RS(2), RS(35)

7. The DIM statement defines the maximum bounds for the array. Certain
other statements may be used to change the array bounds dynamically
during execution. Changing the array bounds will limit the set of elements
which can be referenced by subscripts or matrix operations.

3.2.2 DEF Statement

In addition to the built-in functions. the BASIC user can define other functions via
the DEF statement.

Format

DEF FN letter [$] [rparam-l1stJ J [,local-list J [= expression J
where

FNletter

param-list

local-list

Programming Notes

The name of the defined function must consist of
FN followed by a letter from A to z. An optional
dollar.sign denotes a function with a string result.

variable [, variable ... 1

variable [, variable ... 1

1. Any reference to a defined function for which the user has not supplied a
corresponding DEF statement is treated as an error.

2. The redefinition of a defined function is treated as an error.

3-. A defined function may reference any other function except itself. Recursive
definitions are not allowed.

4. A function may be invoked only from an expression.

•

•

•

UA-0140 Rev.3
DOCUMENT NO. •

• i

•

BEM:BASIC - User Reference
TITl.E IPAGEREV I

5. The param-list is used to pass values in one direction only and that is to the
function. Variables in the param-list are local. Variables in the param-list
may be string or numeric in type. When called, the passed parameters in the
call and in the definition must have matching types.

6. If the function definition requires several statements (multiline function), the
DEF statement defines the entry into the function and requires a unique,
corresponding FNEND statement which defines the exit from the function.
Branching into and out of a multi line function definition is illegal.

7. A local-list can be provided for a multiline function to indicate that the
variables named in the list are to be local only throughout the function
definition. Such variables may be used for any other purpose outside the
function definition; upon entry into the function. the variables are initialized to
zero.

8. In order to give a multiline function a value. the function name must appear to
the left of an equal sign in an assignment statement.

9. A DEF statement within a function definition is illegal.

10. The param-list and local-list variables are restored to their original values
upon exiting from the function definition .

11. All function definitions containing local parameters must appear before they
are referenced by the main program. If a DEF statement is encountered
during normal program flow, the statement(s) defining the function are
bypassed and control passes to the first statement within the main program.

12. If no param·eters are to be passed to the function, the· param-list may be
omitted.

13. The function may reference variables external to it by using the same variable
name as was used in the main program.

14. Functions which are passed in subprogram CALLs must be defined prior to
the CALL statement.

Example: 30 DEF FNE(X) = EXP(-X**2)

During execution, this statement would be invoked for various values of the
function e·•2 by referencing FNE(.1). FNE(3.45), FNE(A + 2). etc. Such a definition
can simplify the program when values of some function are needed for a number
of different values of the variable .

3-5
PAGE

3-6
PAGE I PAGE REV I

Example:

BEM:BASIC - User Reference
TITl.E

100 DEF FNA$, 6$
110 PRINT "ENTER YES OR NO";
120 INPUT BS
130 IF BS="NO" THEN 150
140 IF BS<> "YES' THEN 110
150FNA$=6S
160FNEND

1650 IF FNA$ = "YES" GOTO 2000

UA-0140 Rev.3

DOCUMENT NO.

This multilined string function allows the user to request and accept and
answer by referencing the user function FNA$.

3.2.3 FNENO Statement

The FNEND statement terminates a multiline function and is the only way of exiting
from a multiline function. All variables in the local-list and param-list in the DEF
statement are restored to their values before the function call.

Format

FNEND

Programming Notes

1. Each multiline function must terminate with exactly one FNEND statement.

2. Multiple FNEND statements for a given DEF statement are illegal.

Example:

25 DEF FNE (A,B,C),0
30 D=A*5
35 FNE=A + B + C + D
40 FNEND

This example illustrates a multiline function. A, B, and C are the param-list
variables, while 0 is the local-list variable of the multiline function FNE. As shown,
the multiline function must begin with a DEF statement and terminate with an
FNEND statement.

•

•

•

•

• (

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITLE jPAGEREV.1

->

3.3 REMARK STATEMENT

The REM statement provides a means for inserting explanatory remarks in a
program. Although what follows REM is ignored, its line number may be used in a
control statement. Comments may also be appended to BASIC statements by
prefixing the comment with an apostrophe.

Format

REM [character ...]

.Example:

100 REM INSERT DATA IN LINES 900-998. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY

200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS
279 LET A7 = B +4 'THIS IS A COMMENT
280 LET P =4*ATN(1) 'COMPUTE THE VALUE OF "Pl"
290 'THE FOLLOWING CODE USES P FOR Pl.

3.4 ASSIGNMENT STATEMENT

The LET statement is used to assign a value to a variable. ..-.
Format

where

[LET]
{

numeric-let}
string-let
function-let

numeric-let

string-let

function-let

Programming Notes

numeric-reference = [numeric-reference = ...]
arithmetic-expression

string-reference = . [string-reference = ...]
string-expression

FNletter ($]=expression

1 . The statement verb LET need not be written.

2. Mixed mode assignment will not be accepted by the Syntax Checker .

3-7
PAGE

3-8
PAGE I PAGE REV I

BEM:BASIC - User Reference UA-0140 Rev.3
TITLE DOCUMENT NO

3. Multiple assignments are allowed. The right-hand_ expression is evaluated
and then assigned to each of the references, from right to left, in turn.
Subscripts are evaluated just prior to assignment.

4. The function-let is used to assign a value to a multi line user-defined function.
(See DEF statement.)

·Example 1:

lO LET 1•2
20 A(l)•l•3.5

when statement 20 is executed, I is assigned the value 3.5 and then A(3) is
assigned the value 3.5.

Example2:

56 LET G$•H$•11THIS STRING"

This is a string-let statement used to assign the· closed string constant "THIS
STRING" to string variable HS, which in turn is assigned to string variable GS.

Example3:

JO DEF FNA(A,B,C,O)
20 LET fNA•(A-B)*(C+D)
30 FNEND

Statement 20 is a function-let statement used in the multi line function FNA.

3.5 CONTROL STATEMENTS

These statements give the programmer the ability tb alter and control the normal
sequence of statement execution. Included in this group of statements are: FOR and
NEXT. GOSUB and RETURN. GOTO, IF. ON. STOP. and END statements.

3.5.1 pa...and N~tatements

The FOR statement initiates a loop and the NEXT statem·ent. whose variable
matches the one specified in the FOR statement. terminates the loop.

Format

FOR numeric-variable = arithmetic-expression TO arithmetic-expression
[STEP arithmetic-expression]

NEXT numeric-variable

•

•

•

•

• (

•

UA-0140 Rev.3
DOCUMENT NO.

BEM:BASIC - User Reference
TITLE IPAGEREV.j

Programming Notes

1. A FOR-NEXT loop specifies the iteration of a sequence of statements for given
values of the numeric-variable (loop index). The initial, final, and step values
are given by the three arithmetic expressions specified in the FOR statement.
A step value of +1 is assumed if the STEP is omitted. These values are
calculated on each entry into the loop.

The loop index may be used in calculations within a FOR-NEXT loop. In
particular, its value may be changed by assignment and this will affect the
sequence of values for which the loop is iterated.

Let i, f, s, c designate the initial, final, step, and current values, respectively, of
a loop index.

Then initially, we must have (f-i)*s :;;;? 0. That is, the step value, which may be
negative, must move the loop index value in the direction of the final value.

lff > i ands= 0, then program execution will continue indefinitely within the
FOR-NEXT loop. The calculations to determine loop termination are done at
the top of the loop, thus the statements in the FOR-NEXT loop may be skipped
entirely .

If control is transferred into a FOR-NEXT loop, the results are unpredictable.

2. In the NEXT statement. the numeric-variable must be the same as that
following the verb FOR in the FOR statement. If a different numeric-variable
is detected (indicating an overlapping nested loop), an error results. An error
will also result because of any one of the following conditions:

a. The occurrence of a NEXT statement prior to its corresponding FOR
statement.

b. A FOR statement without its corresponding NEXT statement.

c. More than one FOR statement with the same index (variable) prior to the
occurrence of the NEXT statement corresponding to the first such FOR
statement (that is, loops may be nested. but not if they use the same
index).

3. The TO and STEP operand order is not checked.

Example:

10 FOR I= 1TO10 STEP 2

is the same as

10 FOR I= 1STEP2 TO 10

. 3-9.
PAGE

3-10
PAGE I PAGE REV I

BEM:BASIC - User Reference
TITLE

4. Nesting is allowed to 10 levels.

Example:

30 FOR X • 0 TO 3 STEP 0
80 NEXT X

120 FOR X4=(17+COS(Z))/3 TO 3*SQR{910) STEP 1/4
Q35 NEXT x11
240 FOR X • 8 TO 3 STEP -1

300 NEXT X
456 FOR J s -3 TO 12 STEP 2

500 NEXT J

UA-0140 Rev.3
DOCUMENT NO.

Note that the step size may be a fraction (1..4), a negative number (-1), or a
positive number (2). In the example with lines 120 and 235, the successive
values of X4 will be .25 apart. in increasing order. In the next example (lines
240 through 300), the successive values of X will be 8, 7, 6, 5, 4, 3. In the
last example (lines 456 through 500), J will take on values -3, -1. 1, 3, 5,
7, 9, and 11.

-5. The action of the FOR statement and the NEXT statement is defined in terms
of other statements as follows:

FOR v :;==initial-value TO limit STEP increment

(block}

NEXTv

is interpreted as

line 1

line 2

LET ownl =limit
LET own2 = increment
LET v = initial-value
IF (v-own1)*SGN(own2)>0 THEN line 2

(block)

LET v = v + own2
GOTO line 1
(continue in sequence)

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITLE I PAGEREV.1

3.5.2 GOSUB and RETURN Statements

- '

The GOSUB statement provides a subroutine call facility.

Format

GOSUB line"number

RETURN

Programming Notes

1. The GOSUB statement transfers control to the statement whose line number
is referenced. Control is subsequently returned to the statement following the
GOSUB by executing a RETURN statement.

2. A GOSUB statement inside a subroutine may be used to call another routine.
This is referred to as "nested GOSUBs." It is necessary that the RETURN
statement be used to exit from the subroutine. The execution of a RETURN
statement before a GOSUB statement is treated as an error.

3. GOSUB and RETURN statements need not be paired; that is, the same
RETURN statement may be used to return from several different GOSUBs .

Example:

90 GOSUB 210
91 A=3. I

100 STOP
210 •

350 RETURN

The GOSUB statement (line number 90) directs the system to line number 210
which is the first statement of a subroutine. The last statement of the subroutine is
line number 350 (a RETURN statement) which causes the system to return to line
number 91 of the program.

3.5.3 GOTO Statement

The..GQIQ statement causes an unconditional transfer of control to the statement
whose line number is referenced.

Format

GO TO line-number

3-11
PAGE

3-12
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGEREV.1 TITLE DOCUMENT NO.

Programming Note

The nonexistence of the statement whose line number is referenced will be treated
as an error.

Example:

19 LET J$ •"THIS STRING"
20 GOTO 25
21 READ AS,BS,CS

25 KS • 11\IHAT STRING"

In this example, the GOTO statement (line-number 20) transfers control to the
assignment statement at line number 25 and thereby bypasses the READ state
ment (line-number 21).

3.5.4 IF Statement
The IF statement provides a conditional transfer of control. If the condition specified
is true. then control is transferred to the line number referenced.

Format

where

IF condition {~~~~ } line-number
GOSUB

condition

relation

Symbol

=
<

<=or"-<
>

>=or=>
< -'Or#

{

ari~hmetic-exp.ression '.elatio~ arithmeti~-expression~
string-expression relation string-expression
END channel-setter
MORE channel-setter

any of the symbols listed in Table 3-2.

Table 3·2 Relation Symbols

Meaning Example

Is equal to A=-· B
Is less than A<B
Is less than or equal to A<~B

Is greater than A,.,B
Is greater than or equal to A>= B
Is not equal to A<>B

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

BEM:BASIC - User Reference
TITLE I PAGEREV. j

Programming Notes

1. Mixed mode expression across a relation will not be accepted by the Syntax
Checker.

2. When two strings of different lengths are compared, the shorter string will be
padded on the right with blanks until it is of equal length to the longer string.
Thus. string comparison is always performed on equal length strings. This
results in correct collating sequence. Note that this logic of string compari
sons does not affect the actual stored lengths or values of strings. Also. null
strings are considered to be a string of all blanks in all string comparisons.

3. The condition may test two arithmetic or two string expressions against
each other using the tests listed in Table 3-2. If the condition is met, the
transfer is completed.

4. The condition may also be a file test. in which case the specified file is
tested to see if there are Mo;:;:: records left to be read. or if the file is at
END. The channel-setter specif,;2c must refer to an open file. If the file has
not been opened by a file statement. execution will be terminated.

5. If the last record of a file has been read, but not entirely processed, the IF
END statement will test true. That is, the file is considered to b·e at end of
file if no additional READ is permitted. However, there may still be data in
the buffer which an INPUT would accept.

Example 1:

10 A$=''A.>HLEY"
20 BS,.."BOS"
30 IF A$<BS THEN 50

50 PRINT AS;BS
END

In this example, string AS is smaller in value than string 8S. although string AS is
greater in length than string 8S. Thus, control will transfer to line number 50 after
executing the IF sta~ement on line number 30.

Example 2:

40 IF SIN (X)=H THEN 80

In this example, if the sine of X is equal to M. control will be transferred to the
statement with line number 80 .

3-13
PAGE

3-14
PAGE

BEM:BASIC - User Reference
I PAGE REV I TITLE

Example 3:

175 IF MORE #7 THEN 190
180 PRINT "PROGRAM FINISHED"
185 STOP
190 READ #7:V$

UA-0140 Rev.3
DOCUMENT NO.

This example uses the MORE condition to control the reading of a file .. When the
last record has been processed, the program stops.

3.5.5 ON Statement

The ON statement provides a multibranched switch.

Format

{
GOTO }

ON arithmetic-expression GOSUB
THEN

line-number [,line-number ...]

Programming Notes

1. The arithmetic-expression is rounded to the nearest integer and used as an
index to select one of the sequence of line numbers to branch to.

2. If the value of the arithmetic-expression is less than one or greater than the
number of line numbers specified, a run-time error will result.

3. Once the selection has been determined, either a GOTO or a GOSUB is
performed, depending on the instruction. In the case of a GOSUB, a RETURN
will return to the next statement.

Example:

150 ON X + Y GO TO 575, 490, 650
2170 ON FNA(G) GOSUB 2200, 2400

The first statement will transfer control to line number 575, 490. or 650 depending
upon whether the value of the expression X -r Y yields l.2. or 3, respectively.

The second statement will execute either a GOSUB 2200 or a GOSUB 2400,
depending on whether FNA (G) has a value 1 or 2.

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITLE I PAGEAEV. j

,,.-- 3.5.6 PAUSE Statement

-

The PAUSE statement interrupts program execution and causes the following
message to be typed out of the terminal:

PAUSED AT line-number CONTINUE (YORN)?

If the user responds with N or NO then execution is terminated. If the user responds
with Y or YES, then execution is to be continued at the next sequential line number.

Example:

*10 PRINT "THIS IS A TEST PROGRAM"
*20 PAUSE
*30 PRINT "THIS IS ANOTHER LINE"
*40 PAUSE
*50 END
* RUN

*

THIS IS A TEST PROGRAM
PAUSED AT 00020 CONTINUE (YORN)? t> YES
THIS IS ANOTHER LINE
PAUSED AT 00040 CONTINUE (Y OR N)? t> NO

3.5.7 STOP Statement

The STOP statement is used to halt program execution. and causes the following
message to be typed out at the terminal:

STOPPED AT line-number

Programming Note

1. A STOP statement may appear anywhere in the program.

Example:

*10 INPUT A
*20 IF A= 1-0 THEN 40
*30 STOP·
*40 PRINT "KEEP GOING"
*50 ENO
* RUN

?12
STOPPED AT 00030

*

3-15
PAGE

3-16
PAGE

--

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGEREV.1 TITLE DOCUMENT NO.

3.5.8 END Statement -The END statement is the last statement in a BASIC program.

Format

END

Programming Notes

1. When the user issues the RUN command all statements up to and including
the END statement, and any subprograms which may follow, are compiled.

2. Only one END statement may be present in a program. Any statements after
the END are treated as an error.

3.5.9 RANDOMIZE Statement

. This statement will generate a random seed for use by the random number
generator. Its function is equivalent to the function call RND(-1). If not used, then a
given sequence of calls to RND will generate the same sequence of numbers for
repeated executions.

Example:

10 RANDOMIZE

3.5.10 TIMEStatement

This is a nonexecutable statement specifying the maximum CPU seconds allowed
for this program. If multiple TIME statements occur, the minimum value specified is
used. When the specified time limit is reached, the following message is displayed:

TIME UP - PROGRAM LOOPING

Format

TIME integer

The operand of the TIME statement specifies an integer number of CPU seconds.

Example:

5 TIME 150

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGE REV.,

3.5.11 SYSTEM Statement

This is an executable statement that allows a BASIC program to issue any BEM
system command.

Example:

50 SYSTEM A$
193 SYSTEM "ALLOCATE DA.NEWFILE.PACK02"

Programming Notes

1. The contents of the string should not start with a slash and should end with
at least one space.

2. Issuing any of the following commands will terminate the BASIC program:
EXEC, LOGOFF, INTR.

3. Errors which occur will be displayed on the user's terminal, but will not be
reported to the BASIC program.

3-16A
PAGE

t

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITLE I PAGE REV I

3.6 INPUT/OUTPUT STATEMENTS

The input/output statements permit the user to transfer data between internal
storage and the terminal, print data at the terminal (and format the data), and use
the same data in a program as many times as are required. Included in the group of
input/output statements are the INPUT, LINPUT, PRINT, USING, READ, DATA. and
RESTORE statements

This section presents these statements in their simple form for use with terminal
input/output and program supplied data. A more general (and complete) form of
these and several additional statements is presented in Section 4, which describes
the use of files.

3.6.1 INPUT Statement

Data may be entered dynamically during the running of a BASIC program using the
INPUT statement.

Format

where

INPUT variable [,variable . ..]

variable is either a numeric or string variable reference.
This may be either a scalar variable, or a refer
ence to an array element.

Programming Notes

1. The INPUT statement is similar to the READ statement, except that its data is
input (dynamically) from the user's terminal. The user is prompted for input
data by means of a question mark(?). Insufficient data results in additional
prompting. Data must be entered according to the type of variable in the
INPUT statement. Data items entered must be separated by commas. The
inputting of invalid data causes an error message to be printed at the user's
terminal; the complete input line must be reentered.

2. If the first four characters of input are STOP,· then program execution is
terminated.

Example

20 PRINT "TYPE IN VALUES FOR X, Y, AND Z";
30 INPUT X, Y, Z

The execution of the above statements would cause the system to type out

TYPE IN VALUES FOR X, Y. AND Z?

and the terminal device would be positioned after the question mark waiting for
input values for X. Y, and Z. Note that without the semicolon at the end of
statement 20, the question mark would have been posted on the next line.

3-17
PAGE

3-18
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TITLE DOCUMENT NO.

3.6.2 LINPUT Statement

The LINPUT statement allows an entire input line to be read into a single string
variable. No input checking or conversion .is performed.

Format

LINPUT string-variable [,string-variable ...]

where:

string-variable

Example:

is a reference to a simple string variable or a
string array element.

10 LINPUT C$,H$(6,5)

This statement will cause the user to be prompted twice for input. The first input
response will be stored in its entirety in variable CS. The second response will be
stored in array element HS(6,5).

3.6.3 PRINT Statement

The PRINT statement results in data items being printed at the user's terminal.

Format

PRINT, item[t} item •••][{:.}]

where

item expression or TAB (expression)

Programming Notes

1. The width of a printed line on a user"s terminal defaults to 80 characters, but
may be reset by a MARGIN statement. ·

2. Using the comma(.) or the semicolon (;), it is possible to control horizontal
positioning on a printed line. Initially, the print line is divided into fields of
15-character positions each.

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

BEM:BASIC - User Reference
TITLE . I PAGE REV. j

I

a. If a comma is used after an item, the next item will be printed in the next
available field. A data item is placed at the beginning of a field. If an item
cannot be placed in a field because it will cause the line to exceed the
maximum print positions for a device, then that item will be placed in the
first field on the next line. If the lastitem in the current PRINT statement
is followed by a comma or semicolon, and there is sufficient space
remaining on the line, then the items in the next PRINT statement will
be printed on the same line. If the last item is not followed by a comma
or semicolon. then the next PRINT statement begins printing on a new
line.

b. If a semicolon is used after an item, the next item will be printed in the
next print position on the line (i.e., the item following the string is
printed directly connected to it).

c. For numeric items, the size of a zone depends upon the number of digits
needed to represent the data item. The zone width is always one
character more than is needed for the data item. In each case, the
number is printed starting at the first position of the zone. Numbers that
cannot be represented as six or fewer digits are represented in E-nota
tion (refer to Programming Note 5) and occupy either 11 or 12 print
positions within a 13-position zone.

3. Whenever the TAB function is used in the PRINT statement, it will c~use the
print head to move over to the position indicated by the integer value of the
TAB expression. The use of the comma and the semicolon remains un
changed in this type of statement When a comma follows a variable, a fixed
field width is reserved before the next entry in the statement is recognized.
The semicolon causes this field width to be minimized. Thus, when the
ter.minal device is being tabbed, the semicolon should be used. The TAB
expression is evaluated modulo the current margin size; a value less than or
equal to zero results in an error. If the value of the TAB expression is less
than the current print position, the current line is printed and a new line is
begun.

4. When a string reference is encountered which has not been assigned (a nuil
string), the PRINT statement will produce no printout.

5. The conventions for printing numeric data are as follows:

a. An integer number is printed as an integer.

b. In all cases, no more than six significant digits will be printed.

c. If the number is positive, the sign is not printed but a print position is left
blank .

3-19
PAGE

3-20
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TITLE DOCUMENT NO

d. Decimal numbers will be printed without an exponent part whenever
possible. Decimal numbers requiring an exponent field will be printed:

-.mantissa E ± dd

where the mantissa may be up to six digits. Trailing zeros in the
mantissa are not printed.

e. A space follows every number printed.

6. If no items are present on the PRINT statement, a lfne advance occurs.

Example 1

10 FOR I • I TO 15
20 PRINT I
30 NEXT I
JtO ENO

This example prints the numbers 1 to 15 on 15 lines as follows:

Col 1

l

61
62
63
64
~
66
67
68
69
610
611
612
613
~14

~15

Example2:

JO FOR I • I TO 15
20 PRINT I,
30 NEXT I
ltO ENO

This example prints the numbers 1 to 15 in 3 lines as follows:

Col 1 Col16 Col31 Col46 Col61

1 1 l 1
61 62 63 64 65
66 67 68 69 610
611 612 613 614 615

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

BEM:BASIC - User Reference
TITLE I PAGEREv. j

Example3:

10 FOR I • I TO 15
20 PRINT I;
30 NEXT I
ltO END

This.example produces a single line of printout of the numbers 1 to 1 5 as follows:

If statement 20 were modified, the following would be printed:

20PRtNT- I;

-1 A-2A-3A-4A-5A-6A-7 A-8A-9A-1 OA-11 A-12A-13A-14A-15

Example4:

20 LET A •I
30 CS • "SALESMAN"
ltO J\$ • "JO£"
50 8$ • ''~DOKES"
60 N • 4
70 rRINT A,-16,AS;8S,C$;N
80 ENO

The execution of statement number 70 would produce the following output line:

Cot. Col. Col. Col. Col. Col.
2 16 31 35 46 55
I I I I I I

1 -16 JO~OOKES SALESMAN.C.4

Example 5:

10
20

PRINT "OOOOOOOOOl l 11111111222.7.2222223333333333"
PR I NT II 12345678901234 56 7890 I 2 3456789012 l 1+56 789"

30 A$="'~11

ltO A • l
50 PRINT
60 PRINT
70 PRINT
80
90

PRINT
RUN

TAB (IO} ;A
TAB(20};A
TAB(JO);fl.
TAB(IO); A$; TAB(20); A$; TAB(30}; A$

3-21
PAGE

3-22
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TITLE DOCUMENT NO.

This example illustrates the use of the TAB function in the PRINT statement. The
output of this program is as follows:

Col 1 Col 10 Col 20 Col 30
I I I I
000000000111111111122222222223333333333
123456789012345678901234567890123456789

Example 6:

10
20
30
Lio

FOR I
PRINT
NEXT
END

• l TO 2S
2""~';
I

1

This is an example of how large numbers are printed and how they are spaced when
a semicolon is used in the PRINT statement. The printout produced is as follows:

62ru:i4 668b.b.16 6b. 32M64b.b. 128b.~25666512b.6 1024t..6.20486b. 4096M8192M16384M 32768
6655366b.131072b.b.262144b.b..5242886b.1 .04858E+06 C.b.2.09715E+o6 6b.4.1943E..,.Q6
68.38861E+066b.1.67772E+076b.3.35544E+o7

3.6.4 MARGIN Statement

The MARGIN statement is used to set the current margin for the terminal.

Format

MARGIN numeric-expression

Programming Notes

1. The value of the numeric expression in the MARGIN statement is truncated,
and the resulting integer is used for the output margin length for the terminal.

2. The MARGIN statement takes effect immediately, even if a line of output is
partially filled.

3. The MARGIN statement specifies the largest possible record which can be
written to the file.

4. A margin value less than zero, or greater than 4095 is treated as an error.

Example:

MARGIN 64

This statement sets the current margin to 64 characters. This may be useful for
UNISCOPE terminals with 64 character lines.

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC;. User Reference
DOCUMENT NO. TITLE I PAGE REV I

3.6.5 READ and DATA Statements

The READ statement is used to assign to the listed variables values obtained from a
DAT A statement.

Format

·where

READ variable L variable ...]
DAT A datum [. datum ...]

{

decimal number}
datum

• string constant

Programming Notes

1. Before the program is run, BASIC takes all of the DATA statements in the
order in which they appear and creates two blocks of data. Each time a READ
statement is encountered anywhere in the program, the appropriate data
block supplies the next available datum (or data). The string data block used to
supply values for string variables. and the numeric data block is used for
numeric variables .

2. Insufficient data results in program termination with a diagnostic message.

Example:

I 0 READ X, Y., Z, X l ,.Y2, Q9
20 DATA 4,2, 1.7
30 DATA 6!734E-3,-17~.321 ,].14t59265
3 5 PR I IH X, Y , Z , X l , Y 2 , Q9
40 FOR K= 1 TO 5
50 READ B
55 PRINT B
60 NEXT K
71 DATA 1
72 DATA 2
73 DATA 4
74 DATA 5
75 DATA 1.234E16
80 END

The execution of the above example would produce the following output.

Col Col Col Col Col

2 16 31 46 61
i I I I I

4 6.2 ~1.7 ~.006734 -174.321
3.14159
1
2
4
5
.1234E+17

3-23
PAGE

3-24
?AGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TITLE OOCUMENTNO

3.6.6 RESTORE and RESET Statements

The RESTORE and RESET statements permit the user to read data from the
beginning of data block.

Format

RESTORE
RESET

Example:

10 READ N
20 FOR l=l TO N
30 READ X

100 NEXT I
110 RESTORE
120 READ M
130 FOR J = l TO M
lltO READ Y

200 NEXT J
300 DATA 5
310 DATA 1.0
315 DATA -01
320 DATA 3.2E + 01
325 DATA 4
330 DATA -3.
'400 ENO

In this example, the READ statements on line numbers 10 and 120 will read the
same datum (i.e., the number 5 contained in the DATA statement on line number
300. Similarly, the READ statements on line numbers 30 and 140 will read the
same data from the DATA statements on line numbers 310 to 330.

3.6.7 USING Statement

The PRINT USING format of the PRINT statement gives the BASIC user the ability
to define the format of his program's output. The USING clause consists of three
parts: the USING keyword. the using string which contains the format fields, and
the expression-list that is used to fill in the format fields of the using string.

Format

USING using-string, expr-1, expr-2, ... ,expr-n

•

•

•

UA-0140 Rev.3
DOCUMENT NO. •

•

•

BEM:BASIC - User Reference A
TITLE l PAGE REV I

Example:

PRINT USING."<####= STRING FIELD,+##= NUMERIC FIELD", S1 $,N

As shown above, both string and numeric output can be formatted by a using
string. Numeric fields begin with a $,+.or-. and can only contain numeric output.
String fields begin with< or>. and only string data can be formatted into a string
field. Each starting character has a defined function and will be explained later.
The # is a place holder and by varying the number of place holders, the user can
change the size of the format field and thus the format of the output.

A format field begins with one of the characters $, +, -. <. or> and contains all
characters up to but not including the next $, +, -. <. or> (or to the end of the
using string). The complete using string may be made up of numerous format
fields. A format field can appear anywhere within a using string and the place
holders do not have to be contiguous. If more format fields are given in the using
string than variables in the variable-list, the excess fields are ignored . If there are
extra variables in the list, then the using string will be reused until the variable-list
is exhausted.

Any characters which do not have special meanings as described in this section
may be embedded within format fields. As the BASIC system edits data into the
place holders. any embedded characters are copied too .

Example 1:

If variable S$ contains the string:

"A=+##, B=-##, AND C$ CAN=<### OR###"

the statement

PRINT USING SS,20,-20,"ABCDXVZ"

would produce the following output:

A=+20,B =-20, AND C$ CAN= ABCD OR XYZ

Example 2:

If only one variable is printed, the result would be:

PRINT USING 5$,20

A=+20,B=

Example 3:

PRINT USING S$, -20, 20, "ABCDXVZ", 30, -30

will output:

3-25
PAGE

-

A=-20,B= 20. AND CS CAN = ABCD OR XYZA= 30,B=-30, AND CS CAN= --

3-26
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3

I PAGE REV I TITLE DOCUMENT NO.

3.6.7:1 FORMATIING STRING OUTPUT

The BASIC user has two options for formatting the string output of his BASIC
program. He can left-justify or right-justify the output in the format field defined in
the using string.

To left-justify the output. the format field must start with a <.When a format field
starts with this character, the field will be filled from left to right starting with the
leftmost character, in this case the <. until the format field or the string is
exhausted. If the string is not long enough to fill all of the place holders, then the
remaining place holders will be space-filled. If there are more characters in the
string than there are place holders, the string will be truncated. ·

If the format field starts with a >. then the string will be right-justified in the
format field. The last place holder in the field will be replaced with the last
character of the string being printed. The next to the last place holder will be filled
with the next to the last character and so on from right to left until the format field
is completely replaced by the string. If the format field is longer than the string
being printed, the remaining place holders, including the > will be replaced by
spaces.· If the string is longer than the format field, the leftmost characters of the
string will be omitted.

Example 1:

PRINT USING '1<######1 ". "ABCO"

will output:

tABCO

Example 2:

PRINT USING '1>######j", "ABCD"

will output:

ABCOl

3.6.7.2 FORMAITING NUMERIC OUTPUT

Through using strings, the BASIC user is given a wide variety of ways to format
numeric output. The user can dictate the number of decimal places that are
printed. thus defining the accuracy of the number being outputted. An exponent
field can be defined in order to neatly print large numbers. The numeric field can
be preceded by three different field descriptors. A dollar sign will cause the dollar
sign to be right-justified against the outputted number. The plus sign will
right-justify a plus sign against the number if the number is positive. or a minus
sign if the number is negative. A minus sign will cause a minus sign to be
right-justified if the number is negative; if the number is positive. no sign will be
printed. To further identify the output. the user can combine the dollar sign with a
plus or minus sign, giving s+ or S-. Examples will be given later to explicitly show
each format that can be used.

•

•

•

UA-0140 Rev.3

• DOCUMENT NO.

•

•

BEM:BASIC - User Reference A
TITLE I PAGE REV.,

Many different situations can occur when printing numbers with format fields due
to the flexibility in describing the format fields and the varying magnitude of the
numbers being printed. The following paragraphs present some of these situations
and explain how each will be handled.

When a numeric field is defined, the user should be aware of the expected
magnitude of the number to be printed in the field. The magnitude of a number
cannot be greater than the size of the format field (number of place holders) in
which the number is to be printed. An example would be printing the number 100
in the format field +##. In this field there are only two numeric positions. and the
100 will take three. To inform the user that this error has occurred, the entire
format field is replaced by asterisks. In this case, the output would be ****.

There are two ways to avoid this problem. First. the format field can be made very
large in order to accommodate large numbers. This is an adequate solution. but
can lead to another problem. BASIC will only print six significant figures; if the
user attempts to print more than six significant figures (an example would be
10000000) then the number is truncated to six figures and the remaining portion
of the format field is replaced with question marks. Output printed in this manner
may not always be in good readable form. In the example given above, if the
format field used was+#########, the output would be +100000???.

A second method for printing numbers of varying magnitudes avoids using large
format fields by defining an exponent field in the format string. An exponent field
is defined by five consecutive up-arrows rrtrr. When an exponent field is used, the
number is adjusted to fit into the defined field, and the exponent is then calculated
to give th!!! user the magnitude of the number. If an exponent field is defined in the
format string, such as +####ttTTt, then the magnitude of the number will be
known. The +1000000 will be formatted as +1000 E+o3 and the +100000000
will be printed as +1000 E+o5 which tells the user exactly what was printed. As
can be seen in the examples, the exponent field' in the format field is formatted as
follows:

space E sign digit digit

If an exponent is used with a numeric format field, then any number can be printed
in the field. The number will be adjusted to the field size, and the exponent will
hold the magnitude of the adjusted number. If this statement is executed:

157 PRINT USING" +##ttttt", 25, 290, -300, .00001

the results will be:

+25 E+OO +29 E+o1 -:-30 E+o1 +10 E-06

To print numbers that contain a decimal component. the user can define decimal
fields in the format field. The format field will begin with a +. -, $, s+. or s-.
optionally followed by any number of place holders. A decimal point may be
embedded anywhere within the place holders. The following field will contain a
decimal field of three places. "+##.###". When the decimal is printed, it is
rounded to the number of positions given and then printed. When no decimal
places are given, the number is rounded to the next integer value.

3-27
PAGE

-

3-28
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3

I PAGE Rev.I TITLE DOCUMENT NO.

There are a few other rules that must also be remembered when printing decimal
fields:

• Replace any unused place holders to the right of the decimal point with
zeros.

• The maximum number of decimal places that can be printed without an
exponent field is six.

• If there are any place holders to the left of the decimal point and the value is
less than 1 .0. a single zero is printed to the left of the decimal. The sign is
justified to this character.

Example:.

Number

1.455
0.50

0.1234567

Format

+##.##
$##.##

+.########

Result

+1.46
$0.50

+.123457??

When an exponent file is included with a decimal field, the number is rounded to
the proper number of significant digits. It is moved into the format field. and then
the proper exponent is calaJlated and formatted into the exponent field.

Example:

10 LET A$ ="+#.#####Ttttt"
11 PRINT USING A$, 1.04
12 PRINT USING A$, 1 2.345

The results will be +1.04000 E+oO and +1.23450 E+o1

Another option available with format fields is the choice of+ and - signs. These
two signs are not equivalent and will produce different output. The plus sign will
always cause a sign to be printed in the output field. If the number that is printed is
positive. then the printed sign is the plus sign. But, if the printed number is
negative. the sign position is replaced with a minus sign. When a minus sign is
chosen. it is printed for a negative number. but no sign is printed for a positive
number. Also. if the format field that has been defined contains one less place
holder than is necessary to print a positive number. then the minus sign will be
replaced by the one- remaining digit. Thus, the number 100 can be printed in the
field -## as 100, but -100 will produce "'**' as output since the minus sign must
also be printed. This allows one-digit positive numbers to be printed in the format
field-. and can inhibit the printing of signs in the format field.

The following group of examples is intended to show the user how to use a using
string, the errors that can occur, and some practical uses for the PRINT USING
format of the PRINT instruction.

•

• ,i

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

BEM:BASIC - User Reference

Examples:

Format Field

+#####
+#####
-#####
-#####
$###.##

$+###.##
$+###.##
$-###.##

$###AND ## CENTS
DICE-AND

$#,###.##
$#,###.##

-#:00 HOURS ##
MINUTES

TODAY IS THE -#TH OF
SEPT, 19##

TITLE

Number Printed

+100
-100
+100
-100

+20.99
-20.99
+20.99
+20.99
+45.50

1,1
1234.56

8.94
1234

2677

I PAGE REV.,

Resulting Output

+100
-100
100

-100
$20.99

$-20.99
$+20.99
$20.99

$45 AND 50 CENTS
DICE 1AND1

$1,234.56
$8.94

12:00 HOURS 34
MINUTES

TODAY IS THE 26TH OF
SEPT,1977

3.6.7.3 USE WITH THE PRINT STATEMENT

The USING clause may only be used in combination with a PRINT or MAT PRlNT
statement. As previously stated, a USING clause begins with the word "USING",
followed by a string and a list of expressions to be formatted:

USING string-expression, expression, expression, ...

Examples:

106 PRINT USING A$, B, C, 10, E(5)
107 PRINT USING "FlLES-#DlSKS-#TAPES-#", F, D, T
108 PRINT USING "USER RESPONSE OF>#### IS INVALID", U$
109 PRINT USING FNB$(6), T, U, SIN(3.14159)

The USING clause need not be the only thing on a PRINT statement; unformatted
expressions may be combined with formatted data. When combining formats in
this manner, it is important for the user to realize exactly where a USING clause
begins and ends. It always begins with the word USING. The end of the USING
clause occurs either at the end of the PRINT statement which contains no trailing
comma. or at a semicolon.

When a USING clause is encountered, BASIC formats the entire using string and
the PRINT statement prints it to the output device. Thus when used with files, the
using string, after editing, must not be longer than the margin for the file .

3-29
PAGE

3-30 A BEM:BASIC - User Reference UA-0140 Rev.3
PAGE I PAGE REV I TITLE DOCUMENT NO.

-

Examples of combined formats are shown; the shaded areas indicate the USING
clauses.

242 PRINT A, B; C; OS; (i~~NGAS, BjC

243 PRINT #I: y§J~§~~~~i¢; 0, E$

245 PRINT~SJt.(a.·A~i~~c:. 0, E$
.·=:=··::;::::?{:: ::;{:?i=::::::;: ·;r{(:~:::::::::::=::

246 PRINT TAN (X), p~t~~·;}§JBl:T:ANGENT OF-###.#ttttt"){

247 LET FS ="IS THE<######## OF-###.# ttttt ..

248 PRINT T AN(X); ~§tN(:i.f:$., ~'fANGENT~'.)(; SIN(X); USING FS, "SINE'',)(

The list of expressions to be used with a single USING clause can be extended over
several PRINT statements by ending the statements with a comma. This indicates
that more expressions are to follow, and BASIC will delay printing the output until
a semicolon is found in a subsequent PRINT, or until a PRINT is executed which
does not end with a comma.

Examples:

341 PRINT USING AS, B, C, 0,
342 PRINT E. F; G, H

343 PRINT USING IS, JS, K, U3),
344 PRINT SIN(3.14159).
345 PRINTM
346 PRINT N, 0

347 PRINT P, USING as. R;
348 PRINTS

Variables B, C, 0, E, and F are printed under the format in AS, variables G and H
are unformatted. Variables JS, K, array element L(3), the sine of 3.14159 and
variable M are under the format in IS, while N and 0 are unformatted. Variables P
and Sare unformatted, while R is printed under the format in as.

The final example of the USING clause shows how the format fields are reused
when insufficient format fields exist for all of the variables to be printed.

Examples:

179 PRINT USING --.###ITT!! IS THE<.###### OF-.###llllt"·. TAN(X). "'TANGENT"",
180 PRINT X. SIN(X) ... SINE''. X. COS (X). '"COSINE". X
181 PRINT COS{X); "IS THE COSINE OF '";X

•

•

•

••

•

•

UA-0140 Rev.3
DOCUMENT NO

BEM:BASIC - User Reference A
TITLE I PAGE REV.,

4.855E+05 IS THE TANGENT OF 1.571 E+OO 1.000E+oo IS THE SINE OF 1.571 E+OO
2.060E-06 IS THE COSINE OF 1.571 E+OO
2.05959E-06 IS THE COSINE OF 1.57079

This example shows several unique properties of USING clauses. The format string
contains three format fields:

-.###tlttt IS THE
<######OF
-.###ttttt

Since statement 179 ends with a comma, the USING clause is still active. Any
variables printed on a succeeding PRINT statement will still be under format
control. Statement 180 does not end with a comma so it terminates the format. A
total of nine expressio·ns are formatted. Statement 181 is a normal PRINT
statement.

3.7 MATRIX OPERATION STATEMENTS

For ·ease in handling matrix operations on numeric arrays, the following MAT
statements are provided in BASIC .

MATC=A+ B

MATC=A-B

MATC=A * 8

MAT variable = V * W

MAT C =INV (A)

MAT C = TRN(A)

MATC=CON

MATC=ZER

MATC=IDN

Add the two matrices A and B store the result in
matrix C.

Subtract the matrix B from the matrix A and store
the result in matrix C.

Multiply the matrix A by the matrix B; store the
result in matrix·C.

Multiply vectors V and Wand assign the result to
a variable.

Invert the matrix A and store the resulting matrix
in C.

Transpose the matrix A and store the resulting
matrix in C.

Set each element of matrix C to a value of one.

Set each element of matrix C to zero.

Set the diagonal elements of matrix C to 1 's, and
all other elements to zero, yielding an identity
matrix .

3-31
PAGE

-

3-32
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3

I PAGE REV.,

MAT CS= NULS

MAT C =(exp)* A

MAT INPUT A.AS

MAT LINPUT AS.BS

MAT PRINT A.AS

MAT READ A.AS

3.7.1 Matrix Dimensioning

TITLE DOCUMENT NO.

Set each element in matrix CS to a null string.

Multiply each element of the matrix A by the value
of the expression and place the result in matrix C.

Input elements of a matrix.

Input lines of data into elements of matrices
using the LINPUT statement.

Print elements of matrix A.

Read elements of matrix A from Data statements.

An array variable used in a MAT statement should have its upper bounds (maximum)
defined in a DIM statement.

For matrix operations, the lower bounds for each dimension of a matrix are assumed
to be 1; elements in row and column zero are unchanged.

Example:

100 DIM P(3.4)

defines 20 elements P(0,0), ... , P(3.~) but only 12 elements P(1, 1), ... ,P{3.4) takA
part in any MAT operation.

The mathematical definition of matrix addition. subtraction, multiplication, inversion
and transposition operations require the obvious conformities of matrix dimensions;
otherwise, errors will result. Details concerning matrix dimensioning are discussed
in the programming notes for each matrix operation statement.

Certain statements allow the user to implicitly or explicitly redimension a matrix.
When a matrix is explicitly redimensioned, a trimmer is used which has a form
similar to the array bounds listed in a DIM statement. Trimmers cannot change the
number of subscripts of an array, but they can change the number of elements in
the array (i.e., you can't change a matrix to a vector or viol versa).

When changing the number of elements in an array, the new array dimensions
cannot cause it to have more elements than the original DIM statement reserved
for it. If the original DIM statement reserved (n,m) elements, and the trimmer
changes it to (a,b). the following condition must hold:

(a+1-) *'(b+1)~ (n+1 J • (m+t)

For example, if array A was dimensioned as 3, 4 it cou48 not be trimmed to GX2,
since· the original matrix contained 20 elements and the new matrix would require
2a· elements (remember row and column zero}.

•

• -~

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference ---- __ ,
DOCUMENT NO. TITLE I PAGE Rev. I

3.7.2 MAT Addition, Subtraction, and Multiplication Statements

These statements permit addition, subtraction, and multiplication of matrices.

Format

MAT letter= letter+ letter
MAT letter = letter - letter
MAT letter= letter-• letter

Programming Notes

1. The operator (+) denotes a matrix addition statement; the operator (-)
denotes a matrix subtraction statement; and the operation (*) denotes a
matrix multiplication statement.

2. Only one operation may be performed per statement.

3. Matrix dimensions must be conformable for each operation. If dimensions
are not conformable, execution is terminated and a dimension error mes
sage is typed out at the terminal. The output matrix will be redimensioned, if
possible, to be consistent with the input matrices .

4. The following are treated as errors:

MATA=A*B
MATA=B*A

5. The mathematical definition of matrix multiplication is used. Thus. each of the
following conditions must hold for MAT A= B •c:

a. current row bound (A)= current row bound (8)
b. current bound (A)= current column bound (C)
c. current bound (8) =current row bound (C)

-
Matrix A will be redimensioned to meet these conditions.

If either 8 or C is a vector it will be transposed, if necessary, so that A will
be a vector. If both Band Care vectors an error will result. (See 3.7.3.)

6. The mathematical definition of matrix addition and subtraction is used. Thus,
each of the following conditions must hold for MAT A = B + C or MAT A = B
-C.

a. current row bound (A)= current row bound (8)
current row bound (A)= current row bound (C)

b. current column bound (A)= current column bound (8)
current column bound (A)= current column bound (C)

Matrix A will be redimensioned to meet these conditions.

3-33
PAGE

3-34
PAGE

BEM:BASIC - User Reference
I PAGE REV I TITLE

Example:

10 DIM
20 FOR
30 FOR
40 READ
50 NEXT
60 NEXT
70 DATA
71 DATA
72 DATA
73 DATA
80 PRINT

A(2, 2), 8(2, 2), C(2. 2)
I= 1 T02
J= 1 T02
A(I, J), B(I, J).
J
I
1, 5
2,6
3, 7
4,8

81 PRINT "MATC=A+ B"
82 PRINT
85 MAT C=A+B
86 GOSUB 200
90 PRINT
91 PRINT "MATC=B-A"
92 PRINT
95 MAT C=B-A
96 GOSUB 200

100 PRINT
101 PRINT "MATC=A * 8"
102 PRINT
105 MAT C =A " B
106 GOSU8 200
110 STOP
200 PRINT
210 PRINT
220 PRINT
230 PRINT
240 PRINT
250 PRINT
260 RETURN
300 END

A(1, 1); A(1,2)
A(2. 1); A(2, 2)
8(1, 1);8(1.2)
8(2. 1); 8(2. 2)
C(1, 1); C(1, 2)
C(2. 1); C(2, 2)

The execution of the above program would produce the following output:

MATC=A+B

1 2
3 4
5 6
7 8
6 8

10 12

MATC=B-A

1 2
3 4
5 6
7 8
4 4
4 4

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

1 2
3 4
5 6
7 8

19 22
43 50

BEM:BASIC - User Reference
TITLE

By using the MAT PRINT statement (3.7.12) statements 200 through 250 could be
replaced by

200 MAT PRINT A; B; C;

3.7.3 MAT Vector Multiplication

This statement permits the multiplication of two vectors, yielding a scalar result.

Format

MAT variable = letter • letter

Programming Notes

1 . Both arrays used in the statement must be defined to be vectors of equal size.

2. The result must be assigned to a numeric variable.

Example:

MAT A6=V*W

3.7.4 MAT Inversion Statement

Matrices are inverted using the MAT Inversion statement.

Format

MAT letter = INV (letter)

Programming Notes

1. Matrix inversion in place MAT A= INV (A) is treated as an error. If a matrix is
singular, the value of the pseudo-function DET will be set to zero; otherwise,
DET will contain the value of the determinant for matrix just inverted.

2. The mathematical definition of matrix inversion is used. Thus, each of the
following conditions must hold for MAT A= INV (B):

a. current row bound (B) =current bound (8)
b. current row bound (A)= current row bound (B)
c. current column bound (A)= current column bound (8)

3-35
PAGE

3-36
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGEREV.j TITLE DOCUMENT NO.

3. The matrix being inverted will be destroyed during the inversion process.

Example:

550 MAT K =INV (L)

Matrix K is made to represent an inverted row-column arrangement of matrix
L.

3.7.5 MATTransposeStatement

Matrice.s are transposed using the MAT Transpose statement.

Format

MAT letter= TRN (letter)

Programming Notes

1. Matrix transposition in place MAT A= TRN (A) is treated as an error.

2. The mathematical definition of matrix transposition is used. Thus, each of the
following conditions must hold for MAT A= TRN (B):

a. current row bound (A)= current column bound (B).
b. current column bound (A)= current row bound (B).

Example:

300 MAT G = TRN (H)

The matrix G will be the transpose of matrix H.

3.7.6 MAT Constant Statement

This statement results in all elements of the subject matrix being set to one.

Format

MAT letter = CON [!trimmerij

where

trimmer

Programming Notes

is a new array dimension which is to be applied to
the matrix.

1. A trimmer may optionally be used with this statement to dynamically
redimension the matrix. This trimmer may not change the number of
subscripts for the matrix. The new dimensions may not cause the new matrix
to have more elements than did the original definition, or an error will result.

•

•

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

BEM:BASIC - User Reference
TITLE I PAGEREV.1

2. A trimmer has the same format as the dimensions on a DIM statement.

Example:

175 MATC=CON

The elements of matrix C will be set to one. The dimensions of matrix C are used in
the operation.

3.7.7 MAT Zeros (O's) Statement

This statement results in all elements of the subject matrix being set to zero.

Format

· MAT letter = ZEA [(trimmer)]

where

trimmer

Programming Notes

is a new array dimension which is to be applied to
the matrix .

1. A trimmer may optionally be used with this statement to dynamically
redimension the matrix. This trimmer may not change the number of
subscripts for the matrix. The new dimensions may not cause the new matrix
to have more elements than did the original definition, or an error will result.

2. A trimmer has the same format as the dimensions on a DIM statement.

Example:

150 MATC =ZER(3)

The elements of matrix C will be set to zero. The dimension of matrix C is changed to
3 then the operation is performed.

3.7.8 MAT Identity Statement

The MAT Identity statement is used to set the subject matrix to an identity matrix.

Format

MAT letter= ION [(trimmer)]

where

trimmer is a new array dimension which is to be applied to
the matrix.

3-37
PAGE

3-38
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
TITLE DOCUMENT NO.

Programming Notes

1. A trimmer may optionally be used with this statement to dynamically
redimension the matrix. This trimmer may not change the number of
subscripts for the matrix. The new dimensions may not cause the new matrix
to have more elements than did the original definition, or an error will result.

2. A trimmer has the same format as the dimensions on a DIM statement.

3. The current row and column dimensions of the subject matrix must be equal
when this statement is executed; otherwise, an error occurs.

Example:

20 MAT B =ION (3.3)

In the statement with line number 20, matrix B is changed to a 3 x 3 matrix and then
set to an identity matrix. If B is not defined to be square, a dimension error message
will result.

3.7.9. MAT Scalar Multiply

The expression is evaluated and this result is used to multiply each element in the
matrix on the right of the equal sign. The resultant values are assigned to the matrix
on the left of the equal sign.

Format

MAT letter= (exp)* letter

Example:

190 MATC =(5) *A

Each element in A is multiplied by 5 and the result placed in matrix C. The
dimensions of both matrices must be identical.

3.7.10 MAT INPUT Statement

The MAT INPUT statement causes elements of the arrays in the array list to be
assigned values during execution of the program. The terminal user will be
prompted by means of a question mark to enter a list of values. If the array name is
specified with a trimmer, or if the array name is not the last one in the list, the
user must supply the same number of values as the current array dimension
requires to fill the array. If the last array in the list is specified without a trimmer, a
variable number of user-supplied values are permitted. The number of values
inputted is stored in the function NUM.

••

•

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

BEM:BASIC - User Reference
TITLE I PAGE REV I

Format

MAT INPUT mat-name [(trimmer)] [,mat-name{ (trimmer)], ...]

Example:

100 MAT INPUT A(3.4), V$

Programming Notes

1. When the terminal user must enter an array in response to a MAT INPUT
statement it is quite likely that he will not be able to fit the entire array on a
single line. The user may specify that a line is to be continued by entering a
comma and an ampersand (&) following the last data item. The last line
which is not terminated by an ampersand will terminate the input:

Line 1: 1, 2, 3, &
Line 2: 4, 5

2. If the BASIC program is not doing vector input, then the number of data
items typed by the terminar user must match the number of entries in the
array .

3. When doing vector input, the vector is redimensioned to the number of
values inputted, in addition to the value being stored in NUM.

4. When inputting 2-dimensional arrays, elements in row 1 are filled first, then
row 2, and so on. ·

3.7.11 MAT LINPUT Statement

This statement causes entire lines to be read into the elements of a string array
during execution of the program. Matrices are filled row-by-row until the entire
matrix (except row and column zero) is filled.

Format

MAT LINPUT string-array [(trimmer)] [,string-array [(trimmer)], ...]

Example:

325 MAT LINPUT A$(5),C$

3-39
PAGE

3-40
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3

I PAGEREV.1 TITl.E DOCUMENT NO.

3.7.12 MAT PRINT Statement

The MAT PRINT statement causes an entire array (except for row and column zero)
to be printed row-by-row. If an array is followed by a semicolon separator, the
elements of each row are printed closely packed; otherwise, the .elements of each
row are printed in columns 15 spaces wide. Each row begins on a new line. If a
row does not fit on one line, it is continued on succeeding lines. If no print
separator follows a vector, it is printed as a column vector; i.e., one element per
line; otherwise it is printed as a row vector.

"format

MAT PRINT mat-name letter [{} mat-name letter . .. JC]
where

mat-name is the name of a string or numeric matrix.

3.7.13 MAT READ Statement

The MAT READ statement causes elements of the matrices in the array list to be
assigned values during execution of the program. These values are obtained from
the appropriate block data formed by the OAT A statements. Matrices are filled
row-by-row until the entire matrix (except for row and column zero) is filled.

Format

MAT READ mat-name [(trimmer)] ~at-name [(trimmer)]]

where

mat-name

trimmer

is the name of a string or numeric matrix.

is a new array dimension which is to be applied to
the matrix.

3.8 PROGRAM SEGMENTATION

The statements described in this section allow BASIC programs to be logically and
physically segmented. The CHAIN statement allows a large program to be divided
into several smaller ones which may be serially executed occupying the same
memory region. The CALL and SUB statements allow the development of parame
terized, independent routines. The LIBRARY statement provides the mechanism for
calling previously coded and debugged routines which have been stored in OS/3
library files.

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITl.E I PAGEREV.1

3.8.1 CHAIN Statement

This statement terminates the ·execution of the current program and initiates
execution of a specified program. The chained program can reside in either an
OS/3 library file or in a BASIC workspace file created by the chaining program.
The CHAIN statement allows a large BASIC program to be segmented and new
phases to be loaded without the terminal user being involved.

Format

where

CHAIN

#N

string
expression

#/,· #J, ...

Example:

900 CHAIN #3

{ string-e~:ression} {WITH#/ [,#J, ...] }

is a channel expression for a BASIC file contain
ing a BASIC program.

is a program identifier of a BASIC program in an
OS/3 library file. Its format is similar to that
used on an OLD or RUNOLD statement.

is a list of channel expressions specifying those
files to be passed to the chained program. The
passed files will be assigned sequential channel
numbers, beginning at 1. That is, in the chained
program, the first file in the list will be assigned

• to channel 1, the second to channel 2, etc.

950 CHAIN "PHASE2, PROGLIB, PACK43" WITH #10, #1

Programming Notes

1. If the chained program is specified by a channel expression the file must be
a temporary or library file; a data management file is not permitted.

2. If the file containing the chained program is an OS/3 library file, the file will
be closed after the chained program is loaded.

3. Any files not included in the file list will be closed before the chained
program is loaded.

4. The chained program source is not copied into the BASIC workspace. When
execution of a chained program completes, the original contents of the
workspace when the RUN or RUNOLD statement was issued will still be
intact .

3-41
PAGE

3-42
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3

I PAGEREV.1 TITLE DOCUMENT NO.

3.8.2 LIBRARY Statement

This statement is used to inform BASIC of the names of OS/3 library files which
are to be searched to find subroutines referenced by the program.

Format

where

LIBRARY file [toassword)] [,volume]

file

password

volume

is the name of an OS/3 library file.

is the READ password for the file. It must be
included in the statement if the file has been
cataloged with a password.

is the name of the disk pack on which the file
resides. If the file has been cataloged with a
volume name, this parameter may be omitted ..

Pro_gramming Notes

1. At load time all subroutines in the program file will be loaded first. Then if
there are unresolved subroutine names, the files specified in the LIBRARY
statements are searched. If any subroutines are not resolved in this manner,
execution is terminated.

2. A maximum of four LIBRARY statements are permitted in a BASIC program.

3. If more than one library is specified, the order in which they are searched is
unpredictable.

4. In order for a subroutine to be found in a library, the SUB name must match
the element name with which it was written to the library file.

5. Although multiple subroutines may be stored in the same library element.
BASIC will only locate subroutines by the element name. Consequently, the
element name must be the name of the first subroutine referenced in the
program.

Example:

100 LIBRARY "SUBROUTINES (RDPASS). PACK33"

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO TITLE I PAGERev. j

3.8.3 CALL Statement

The CALL statement is used to invoke a BASIC subroutine.

Format

where

CALL string-constant [:param-list]

string
constant

param-list

is a subroutine name consisting of at most eight
alphanumeric characters.

~
expression }
variable
chan'!el setter
function name
array

Five types of parameters may be specified in the param-list.

1. Expression (call-by-value) - Any numeric or string expression. The value is
only passed to the subroutine, no value may be returned. A simple variable
may be made an expression by enclosing it in parentheses .

Example:

A+3, 5, (X), AS&BS, "ABC"

2. Variable (call-by-reference) - Any numeric or string variable. The value of
the variable may be changed by the subroutine.

Example:

(X, R3, A$, XS(l,3)

3. Channel setter - A file is passed to the subroutine. Any processing may be
performed on the file by the subroutine, including reopening the file with a
different name.

Example:

#1 ,#X+Y

3-43
PAGE

3-44
PAGE I PAGE REV I

BEM:BASIC - User Reference UA-0140 Rev.3
mu DOCUMENT NO.

4. Function name - A function is passed to the subroutine. The function may
be used in any valid context in the subroutine. The number and type of
parameters for the passed function must agree with its use in the
subprogram.

Example:

FNXS,SIN

5. Array - An entire array may be passed to a subroutine. Any valid operation,
including redimensioning may be performed by the subroutine. Note that the
CALL statement only specifies the number of dimensions, not the actual
dimensions.

Example:

A(,) ,BS()

Programming Notes

1. Subprograms may not be called recursively.

2. Only open files may be passed.

3. Arrays may be redimensioned in a subroutine by using them with trimmers.

4. Functions which are passed on CALL statements must be defined before the
CALL statement.

Example:

100 CALL "SUB1 ": 5+1, AS, #B, SIN B(,), "YES"

3.8.4 SUB Statement

This statement is the first statement of a BASIC subroutine. It must follow an END
or SUBEND statement or be the first statement in a BASIC program file.

Format

SUB string-constant [:param-list]

where

string-constant

'

is the subroutine name, consisting of no more
than eight alphanumeric characters. If this sub
routine is to be loaded implicitly by BASIC
through the use of LIBRARY statements, this
name must be the same as its element name in
the OS/3 library file.

•

•

•

UA-0140 Rev.3
DOCUMENT NO

•

•

•

param-list

BEM:BASIC - User Reference
mLE I PAGE REV I

is the list of local variables passed to the subrou
tine. Each must have the same type (string or
numeric) and dimension (matrix, vector, scalar,
function, or file) as the corresponding parameter
in the CALL statement.These parafl!eters may
be:

{

variable l
channel setter
function name
array

Four types of parameters may be specified in the pa ram-list:

1. Variable - Any numeric or string variable. The corresponding CALL state
ment may contain a variable or an expression. When the caller passes a
variable, subroutine references will alter the value of that variable; when the
caller passes an expression, the parameter will be a local value. The
subroutine is not aware of the different parameter modes. However, a
returned value would be lost if the subroutine is called with an expression.

2. Channel setter - Any channel constant (#1, #30, etc.). References to this
channel will act upon the file passed by the caller. The file must be opened
by the caller prior to calling the ~broutine. Any files opened in the
subroutine which are not ini::luded in the param-list will be local to the
subroutine and will be closed upon exit.

3. FN letter [$] - Any user function may be defined in the SUB parameter list.
Function result type and the types of each function parameter must be
consistent with the function passed to the subroutine by the caller.

4. Array reference - Any array name may be defined here. The variable type
and number of dimensions must be consistent with the passed arrays. No
dimension statement for these arrays may appear in the subroutine. Note
that no dimensions are included on the SUB line, only the number of
dimensions.

Example:

A(,), XS()

Programming Note

1 . Each SUB statement must define a unique subprogram name. Two or more
subprograms with the same name in the user's program will result in an
error.

2. Any variables, arrays, functions, or files not declared in the SUB line are
local to the subprogram. Local arrays, functions, or files must be defined by
the appropriate DIM, DEF. or FILE statement .

3-45
PAGE

3-46
PAGE jPAGEREV.1

BEM:BASIC - User Reference UA-0140 Rev.3

TITl.E DOCUMENT NO.

3. A SUB statement is only valid as the first statement in a library subprogram,
or after an END or SUBEND statement.

4. Local variables contain unpredictable values when the subroutine is entered.

5. DATA statements are local to the subroutine. The DATA pointers are reset to
the beginning of the data block on entry to the subroutine, and any READ
statements issued within a subprogram will not interfere with READS or
DATA in the calling program.

Example:

10000 SUB "SUB1" :X.YS,#3,FNS,X(,)

3.8.5 SUBEND Statement

This statement is the last statement in a BASIC subroutine. If this statement is
executed, control is returned to the caller.

Format

SU BEND

Programming Notes

1. The SUB and SUBEND statements delimit the subroutine. No statement
within the subroutine may refer to a statement before the SUB or after the
SUB END.

2. If the subroutine is loaded from a LIBRARY statement, the line numbers
within the subroutine are local to the subroutine and, in fact. may be
duplicates of lines existing in the main program.

3.8.6 SUBEXIT Statement

- The SUBEXIT statement is used to terminate a subroutine and to return control to
the caller. Unlike the SUBEND statement, the SUBEXIT may occur anywhere
within the subroutine, except that it may not occur within a user-defined function.

Format

SUB EXIT

Example:

983 SUBEXIT

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO TITLE I PAGEREV. j

3.9 CHANGE Statement

The CHANGE statement is used to convert arithmetic and alphanumeric formats. It
can be used to change a character string into an array of numeric values and vice
versa.

Format

where

CHANGE string-expr TO array [BIT expr]
CHANGE array TO string £,,BIT expr]

string expr

array

ex pr

is any string expression which is to be changed..

is any numeric array ..

is a numeric expression specifying the number of
bits per character.

Programming Note

1. In changing from a string to a numeric vector, the BIT expression specifies
the number of bits, n, which will be used to form pseudo characters. The
first n bits of the string are used to form a decimal number. This value is
converted to floating point and stored in the first entry of the array. Then
processing continues with the next n bits. If extra bits rem~in which would
not complete a full character, they will be ignored. The· total number of
entries converted is stored in the zero element of the vector.

2 When changing from a string to a vector .. the vector must be large enough to
accommodate all the character values or an error will result.

3. In changing from a vector to a string, the user must set element zero of the
vector to the number of vector elements to be converted. Each element in
the vector from the first to the last one selected by the user will be
converted to a bit string of length n. These bit strings will then form the new
string. If element zero contains a zero, a null string is produced.

4. When changing from a vector to a string, if a converted element value
cannot be represented in n bits or is negative, a runtime error will result. An
error can also be caused by attempting to create a string greater than 4095
characters.

5. If omitted, the BIT parameter defaults to eight. The maximum permissable
value for the BIT expression is 24.

Examples:

100 CHANGE AS TO X(1 5)
200 CHANGE Z to BS BIT 7

3-47
PAGE

•

•

•

•

•

•

UA·0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO TITLE I PAGE REV I

4 FILE SUPPORT

4.1 INTRODUCTION

The file capability in BASIC gives the user a method of saving and retrieving
program information permanently. Data in files may be referenced by a program,
updated, or new data may be written to the end of a file. The type and format of
these files are flexible. to enable the user to access files from BASIC and from
batch programs. The following sections present the function and format of the
statements used to access files, and any special considerations for the use of each
file type.

4.2 FILE DESCRIPTION

Three file types are supported by BASIC: Temporary files, Library files, and Data
Management files. Although the file types may vary, the actual format of a data

. record processed by a given statement will not change. This will allow a correctly
written program to use the same statement to process a Temporary, Library, or
Data Management file interchangeably as long as the record content is the same .

• Temporary files

These files are maintained entirely by BASIC and permit the user to create
and read local files without the overhead of allocating space on the disk.
When a FILE statement declares a temporary file, BASIC allocates one in its
workspaces. When the program or subprogram terminates. these files are
erased.

• Library files

Library files. or library elements, may be used for permanent storage of
BASIC files. These files are stored as single librarian format elements within
a SAT file, and may be accessed by the Librarian, batch programs, and other
BEM subsystems.

Since library elements are sequential by nature and may not be extended or
updated in place, they are copied to the BEM workspace and accessed there.
After the BASIC program has finished with the file (either at program or
subprogram termination or when the file's channel number is reused by
another FILE statement) the data is copied from the workspace back to the
file and placed at the end, automatically deleting the old element if one
exists. If no WRITE operations have taken place on the file, it will not be
written back .

PAGE

4-2
PAGE I PAGE REV I

BEM:BASIC - User Reference UA-0140 Rev.3
TITLE DOCUMENT NO.

• Data Management files

BASIC permits access to two types of Data Management files: Sequential
and Direct Access. Unlike library files. Data Management files do not make
use of the workspace, but process the data in place on the disk. Indexed
sequential, indexed random, tape, variable blocked, and keyed files are not
accessible under BASIC.

Under most conditions BASIC adapts itself to the file specifications such as
record size, block size. and record format, but certain files do riot logically
permit some operations. The fact that a file is designated sequential or
direct access in the Volume Table of Contents (VTOC) does not. itself,
determine which BASIC statements will be permitted. This is determined by
the block format. For example, fixed length records permit BASIC to locate
any record at random given its record number using a simple internal
computation, and does not necessitate a search through the entire file. On
the other hand, variable length, blocked records do not permit such a
computation since the number of records per block varies from one block to
the next. Thus a sequential search would be required.

Any number of data management files may be open simultaneously;
however, no more than 29 library and workspace files may be open at the
same time.

All BASIC files are controlled by several parameters defining which operations will
be permissible for the file, and how the BASIC statements will operate. These
parameters are the file type (library; temporary or data management). margin size.
current location pointer and end-of-file pointer. The file type is determined when
the file is opened by the F~LE statement. At the same time, a margin setting is
determined which will limit the maximum record size which can be written to the
file. The current location pointer and end-of-file pointer are dynamic and change
during execution. The current location pointer is initialized to zero and points to the
next record to be read or written to the file at any given time. After a record is read
or written, the pointer is advanced by one to point to the next record. At any time
during execution the user may change the current location pointer via a RESET
statement; this will take effect on the next READ or WRITE. PRINT statements do
not use the current location pointer, but always output records using the end-of-file
pointer. This pointer is set to write records immediately following the last record in
the file and is incremented once for each record written. The end-of-file pointer
can only explicitly be reset by a SCRATCH statement, which erases the entire file
contents and repositions both pointers to the start of the file.

Records in BASIC are numbered beginning with zero; the first record is. at location
O. the second at location 1 and so on. The end-of-file pointer is always set to the
last record in the file plus one, so if the file contains 105 records the last record
will be at location 104 and the end-of-file pointer will contain a value of 105.

•

•• .. /

•

UA-0140 Rev.3
DOCUMENT NO

•

•

•

BEM:BASIC - User Reference
TIT~E I PAGEREV. j

BASIC files are composed of one or more records, with each record containing
data in some user defined format. Certain BASIC statements (such as INPUT) make
assumptions as to the format of the data, and will scan off data from the records
field by field. Other statements make no assumption as to the format, and allow
the user to retrieve entire records and perform the field separation and conversion
himself. When outputting records to the file the user can format the entire record
in a string variable and write it to the file (WRITE) or he can allow BASIC to
perform the formatting and editing for him via the PRINT USING capability.

In general, field separation for file records follows the same rules as for data input
from the terminal. On output, however, the user program must supply the
separators that will be expected by BASIC when the file is read. When BASIC
performs the field separation functions for the user, certain restrictions apply to
the format of the data in the records. Numeric fields are composed of an optional
sign, a series of digits with an optional decimal point. and an optional exponent
field. The field must either terminate the record, or end with a comma. String fields
may be either open or closed, and must either terminate the record or end with a
comma. Closed string must begin and end with a quote ("} and must be the only
data in the field. Quotes required within closed strings may be entered as two
successive quote characters.

When numeric variables are read via the INPUT statement, the field used to supply
the next value must be a numeric field or a fatal error will result. With string
variables this is not a problem because the string contents may in fact be numeric
digits.

The user must be aware of these restrictions if a file is to be created by BASIC and
then read via INPUT statements; commas for field separators must be written
explicitly to the file. For example, if a. BASIC program would read data with the
statement:

10 INPUT #3: A. B, C

the record would have to look similar to:

45.2. 45.6. 54.2

One statement to create this record could be:

23 PRINT #3: A 1 ; ","; B1 ; ","; C1

Note that since BASIC is performing field separation, and fields may either
terminate the record or end with a comma. records to supply data for this INPUT
could be any of the following examples:

45.2
45.6
54.2

45.2. 45.6
54.2

45.2 . 45.6. 54.2. 64.7

4-3
PAGE

4-4
PAGE

.BEM:BASIC - User Reference UA-0140 Rev.3
I PAGEREV.j TITLE DOCUMENT NO.

In the last example, the value 64.7 would not have been read by the INPUT
statement. but would be retained for the next INPUT (assuming the user does not
reposition the file).

To uniquely identify each file, a channel number is required. The channel number
to be used for a file is defined by the user in the FILE statement and must be in the
range 0 to 4095. Once a file has been defined in the FILE statement, any future
references to that channel number will initiate an access to that file. One special
case of the channel number is channel zero, which is always defined to be the
terminal. Statements such as PRINT, INPUT, and LINPUT may explicitly reference
channel zero to access the terminal. but normally no channel setter is specified
since the statements default to the terminal.

4.3 FILE STATEMENTS

·There are ten BASIC statements used for files. A brief description of each file is
shown in Table 4-1 . These statements apply to all file types and perform the same
function regardless of the file. This means that a program could be written with a
sequential file in mind, but may also be used with a Library file without program
changes. The program, however, must be carefully written so that it is not
restricted _to a single file type (e.g., if the program writes 200 character records
then it may not be used with Library files since the margin limit of these files is
128 characters).

Table 4-1 BASIC File Statements

File Statement Use

FILE

MARGIN

PRINT

(continued)

The FILE statement is used to declare a file and assign it to a
channel number. This statement causes the file to be located on
disk and opened for use. Once a file has been assigned to a
channel number, any future references to that channel will refer
to that file.

· All files in BASIC have a margin size which corresponds to the
size of the largest record which may be written to that file. The
default margin size for all files is 128 characters. The margin
size will be set to the record size when a Data Management file
is opened. Most other files will receive the default margin
setting. The MARGIN statement may be used to change the
margin value during program execution.

The PRINT statement may be used with files to write string or
numeric data. Records written as a result of the PRINT statement
are always appended to the file at the end. and the end-of-file
pointer changed to show a longer file. Thus PRINT corresponds
to a sequential· extension of the file.

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

BEM:BASIC - User Reference
TITLE I PAGE Rev. I

Table 4-1 BASIC File Statements (contd)

File Statement Use

INPUT

LINPUT

RESET

READ

WRITE

(continued)

One of the statements used to read data from a file is INPUT.
Variables listed in the INPUT statement are filled by scanning
values from the record. More than one value may be present in a
record; each will be scanned off and assigned as needed to
supply values for INPUT requests. Multiple data values on a
single record must be separated by commas.

Normally, records are read sequentially beginning with the first
in order to obtain values for INPUT requests. The user, however,
may change this by resetting the value contained in the current
location pointer. This would cause a new record at the specified
location in the file to be read to supply values for the next INPUT
requests.

Entire r~cords can be read into a single-string variable using the
LINPUT statement. This enables the user to make use of the
string and conversion functions in BASIC to strip off fields in the
record when the format of the data values is not standard.

As with the INPUT statement, LINPUT reads the file sequentially
to fill the variables in the LINPUT list, but may be forced to begin
reading records at a new location within the file by resetting the
current location pointer .

The RESET statement is used to reset the current location
pointer in order to change the position in the file where INPUT,
LINPUT, READ, and WRITE statements will operate. Certain
restrictions apply to the use of RESET depending on the file type.

The READ statement is similar to the LINPUT statement, but may
be used with string or numeric variables. When used with string
variables, the statement functions identically to the LINPUT
statement. When used with numeric variables a record is read
which is expected to contain a single numeric data item. This
value will be converted to floating point and assigned to the
numeric variable.

As with the LINPUT statement, READ will access records se
quentially unless the current location pointer is altered, in which
case it will begin reading records at the new location.

The WRITE statement is used to output variables, one per record,
to the file. Either numeric or string variables may be used with
the WRITE statement. When numeric values are written they are
converted to display format, padded with spaces if necessary to
fill the record, and written at the current file pointer. The pointer
is advanced once· for each record written. String values are
written in a similar manner to numeric values, except that no
conversion is required.

4-5
PAGE

4-6
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3

j PAGEREv.j TITLE DOCUMENT NO.

Table 4-1 BASIC File Statements(contd)

File Statement Use

RENAME

SCRATCH

4.3.1 FILE Statement

The RENAME statement provides the capability to change the
name of an cipen file. When used with library files. BASIC
discards the original name and notes the new name for use
when the file is closed. Data management files may not be
renamed.

The RENAME statement may also be used with temporary files
to change a temporary file to a library file (instead of scratching
the file when it is closed. it will be written to a library), or a
library file may be renamed to a temporary file (it will not be
written back when closed. leaving the original copy intact). This

· facility may be used to create a new library element. by opening
the file as a temporary file (*), and renaming it to a library
element.

The SCRATCH statement will erase the contents of a file. The
file is not closed by this statement. so PRINT or WRITE state
ments may be used to write new data to the file. Note that when
the file is scratched, the end-of-file pointer and current position
pointer are both set to the beginning of the file.

The FILE statement is used to assign a file to a channel number. The channel
number must specify an integer value between 1 and 4095. The file name must be
in a format compatible with the type of file being Qpened. If a previous file had
been assigned to the same channel number, that file is closed before the new one
is opened.

Format

FILE channel-setter: string-expression

where

channel-setter

string_-expression

identifies the channel number assigned to the
file. All future references to the file use this
number.

is a string expression identifying the file which is
being opened. Its exact format varies with the
different types of files available.

•

•

•

UA-0140 Rev.3
DOCUMENT NO

•

•

•

BEM:BASIC - User Reference c
I TITLE I PAGEREV.1

Programming Notes

1. The FILE statement opens a BASIC file. Files are closed when a second FILE
statement is issued for the same channel number, or when the program
terminates. Local files opened by subprograms are closed when the subpro
gram terminates (SUBEXIT or SUBEND).

2. If the file name specifies an asterisk (*), then the file is a temporary file
maintained by BASIC in its work space. The file is scratched when it is
closed.

3. If the file name specifies an OS/3 Library file, the file is copied to the BASIC
work space when it is opened. Once in the work space, the file is identical to
a temporary file except that it will be copied back to the library when it is
closed. The Library file must be copied because the format of an OS/3
Library file does not permit updating records in place or extending an
element. The format of the file name for Library files is:

element,file[(readpasslwritepass)][,vo/ume)6

The file parameter (full file definition) must be terminated by at least one
space.

4. If the file name specifies an OS/3 Data Management file, the file will not be
copied; BASIC processes these files in place. When the file is opened, its
characteristics will be obtained from the VTOC. These will determine the
record size (MARGIN) and types of access permitted. The format of the file
name for Data Management files is:

{::} .file [freadpass/writepassn LvoAJme]ll

The file parameter (full file definition) must be terminated by at least one
space.

The user can specify the file parameter by using a variable entry (T$). In this
way, the user can type in the file VTOC identifier and choose one of several
files on a specified disk pack.

5. Not all Data Management files may be processed. BASIC will process only
sequential (SAM) and direct (DAM) access files; it cannot process indexed
sequential (ISAM) files.

6. Data Management files which have variable length, blocked records
(VARBLK) may not be read. All other record formats (VARUNB, FIXBLK,
FIXUNB) may be used.

7. BASIC will process files with record sizes up to 16K bytes and block sizes up
to 65K bytes. Within these limits, any record sizes and block sizes are
permitted .

8. Data Management files must exist before they can be opened by a FILE
statement. If upon opening a file it is found to be empty, the default margin
size is taken (128), the record and block sizes are set to the margin size, and
the file is assumed to have fixed, unblocked records. This is the BASIC
default file specification.

4-7
PAGE

t

t

4-8
PAGE

--

c BEM:BASIC - User Reference UA-0140 Rev.3
I PAGEREv.j TITLE DOCUMENT NO

9. A library element must exist before it can be accessed by a FILE statement.
If a new element is to be created as a BASIC file, it should be built as a
temporary file with a margin not greater than 128 characters, and changed
to a library element prior to being closed with the RENAME statement. (See
5.10).

10. If the file has been password protected, the correct passwords must be
entered in the FILE statement. Failure to enter the READ password (if
required by the catalog) will inhibit any READ operations. Failure to correctly
enter the WRITE password (if required) will inhibit any WRITE operations. If
a file has both the READ and WRITE passwords cataloged and neither is
specified by the user, access to the file will be denied (the program couldn't
do anything anyway since both READ and WRITE would be inhibited).

Examples:

100 FILE #F9:F9$
200 FILE #1 :"DATA,BASICUB,DISK03 "
300 FILE #4000:"*"
400 FILE #D: "SQ,SAMFILE,DISK01
500 FILE #10 : N1 $ & ",UBRARY,PACK02 "
600 FILE #47: "DA,PAYROLL(A234/ A432) "
INPUT T$
700 FILE #11 :"SQ,"&T$&", DSPOOL "

4.3.2 MARGIN Statement

The MARGIN statement permits the user to change the current margin setting for
a file. The initial margin setting is determined when the file is opened. For
temporary and Library files the default margin is used (128 characters). Existing
Data Management files acquire a margin setting from the maximum record size
specification stored in the VTOC entry for the file.

Format

MARGIN channel-setter: expression

where

channel-setter

expression

Programming Notes

identifies the channel number of the file to be
altered.

this value will be truncated to an integer value
and used as the new margin setting.

1. The current margin setting limits the maximum record size which may be
written to the file. Any attempt to exceed this limit will cause an error.

2. If the margin is changed while there is a record waiting to be completed (as
a result of a PRINT statement ending with a comma, for example), the record
being formatted will be written out prior to changing the margin.

•

•

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

BEM:BASIC - User Reference
TITl.E I PAGE REV. I

3. The margin expression must result in a number between 1 and the following
limits:

Temporary files
Library files
Data Management files

496 characters
128 characters
16K characters

4. A temporary file or Library file receives a default margin specification of 128
characters which may be changed at any time after the FILE statement has
been issued.

5. The margin size for a Data Management file may only be changed when the
file is empty and no data records have been formatted. This condition occurs
if an empty file is opened, or immediately after a file has been scratched.

Examples:

10 MARGIN #3: 80
20 MARGIN #I: 20*W

4.3.3 PRINT Statement

The PRINT statement may be used with any file accessible under BASIC to format
all or portions of a record. The list of variables specified on the statement are
written one after the other according to the print separators used between each
item in the print list. ·

Any records written with a PRINT statement are always appended to the end of the
file (the file will get longer). As each record is written, the end-of-file pointer is
incremented by one to allow reading of all records up to and including the newly
printed one. Resetting the current location p·ointer has no effect on the PRINT
statement.

The PRINT statement is also affected by the MARGIN setting. If the user attempts
to print more data in a single record than the margin will allow, BASIC then prints
as many fields as it can on the first record and continues on a second record. No
single data item longer than the margin setting can be printed.

Format

PRINT channel-setter : [item [separator [item]]. . .]

where

channel-setter is the file to which this record will be written.

item is an expression or a TAB reference.

separator a comma (.)or a semicolon (;)

4-9
PAGE

4-10
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TITLE DOCUMENT NO.

Programming Notes

1. Print separators may be used to control horizontal positioning within a
record. If a semicolon is used after an item. the next item will be printed
beginning at the next position in the record. If a comma is used, the next
item will be printed beginning at the next 15-character field in the record
(the record is broken into fields of 15 characters each and the next free field
is used). If there is insufficient space in the current record, it is written out
and a new record begun.

2. The TAB function may be used to advance to a specific position in the
record. If the direction of the TAB is backwards, the current record is written
out and a new record begun. The function of the comma and semicolon
remain unchanged.

3. Null strings cause no data to be written to the record.

4. Numeric data is formatted either as an integer or decimal number. An
integer number will be printed as an integer. A decimal number will be
printed without the exponent field whenever possible. In either case no
more than six significant digits will be printed and a space will follow every
number printed. If the number is positive the sign is not printed but its print
position is left blank; otherwise, a minus sign is printed.

5. If the statement ends with a separator the record will not be written
immediately, but will be held until another PRINT statement completes the
record, or any other statement references the file.

6. If there are no items included in the list. the PRINT command will serve to
write a previously unprinted record, or to print a blank record if the buffer is
empty.

4.3.4 INPUT Statement

The INPUT statement allows the user to read a list of values from a record in the
file. These values must be formatted in the record just as they would have to be
formatted if entered at the terminal as an INPUT response. If there are insufficient
values on a given record BASIC continues reading records until it has filled all of
the variables in the program's "input list". Unlike input from the terminal, there is
no relationship between the structure of the INPUT statements and the records in
the file. Thus Example 1 and Example 2 are functionally identical.

Data items read by INPUT statements are taken from fields within the records and
may be numbers, open strings, or closed strings. If the wrong type of data is
supplied for a variable in the input list, a fatal error will result. When strings are
read in, leading and trailing spaces are deleted unless th& string in the field is
enclosed in quotes. When quotes are used the characters within the quotes are
assigned without any editing. Note that to output quotes to a record they must be
explicitly printed as in Example 3.

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

BEM:BASIC - User Reference
TITLE j PAGEREv. j

Format

INPUT channel-setter variable [, variable]

where

channel-setter selects the file to be read.

variable a numeric or string variable or array element.

Programming Notes .

1. Records required by INPUT requests are retrieved sequentially beginning
with the first record in the file. The current location pointer is incremented
immediately when a record is read, not when all fields in the record have
been processed. The RESET statement may be used to change the location
where the next record will be read.

2. More than one data field is permitted on a single record. If an INPUT
statement does not exhaust all fields in a record the remaining fields are
retained for subsequent INPUT statements. The remaining fields will be lost
if output is written to the file or the current location pointer is changed;
subsequent INPUT statements will force a new record to be read .

3. Numeric data fields may contain leading or trailing spaces, must contain a
valid number, and must end with a comma or be the last field in the record.
It is not an error to supply a numeric data field to a string variable on INPUT;
the character string consisting 'of the numeric digits will be used.

4. String data fields may be open or closed strings. Open-string fields may
contain any valid characters and termin,ate with a comma or at the end of
the record. Closed strings must begin and end with quotes ("). Leading
spaces before the first quote are permitted, as are trailing spaces between
the last quote and the comma or end of record. A fatal error will result if a
string data fiel~ is supplied for a numeric variable.

Example 1:

100 INPUT #1: A,8(5), C$

Example 2:

100 INPUT #1: A
101 INPUT #1: 8(5)
102 INPUT #1: Cs

4-11
PAGE

4-12
PAGE

BEM:BASIC - User Reference
j PAGEREv.j TITLE

Example 3:

100 LET A$=" " " " (or CHR$(EBC(")))
110 PRINT #124: A$ & "ABC" & A$
120 RESET #124: LOF (#124)-1
130 INPUT #124: R3$

This example writes a record containing

"ABC"

UA-0140 Rev.3
DOCUMENT NO.

to the file. Statement 120 repositions the current location pointer to the end-of-file
record minus one, which is the new record. This value can then be read into
variable R3 without losing any spaces which may be significant. It is important to
note that statement 110 was not coded as

110 PRINT #124: ;A$; "ABC" ;A$

since it is possible (although unlikely) that one of the three fields in the second
format could fill the record and thus two records could be printed:

"ABC

Concatenating all three fields ensures that they will be printed as one string.

4.3.5 LINPUT Statement

The LINPUT statement allows the user to read in entire records; each record is
read into a single string variable. Since the record contents are ignored when this
assignment is made, any data may be read into a string from the file. This permits
the user to read a record and strip off fields via the string functions in cases where
an INPUT statement would not find the data in the correct format. Completely
blank records are permitted and are stored in the string variable as null strings.

Format

UN PUT channel-setter. string-variable [. string-variable ...]

where

channel-setter

string-variable

selects the file to be read.

is a string variable or string array element where
the record contents are to be stored.

•

•

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

BEM:BASIC - User Reference
TITLE I ?AGE Rev.)

Programming Notes

1. If the last statement issued to the file was an INPUT and there is still data in
the record which has not been read. LINPUT will use the remaining
characters in the record instead of requesting a new record. The next
variable to use LINPUT will then force a record to be read.

2. If the last statement issued to the file was other than an INPUT, or if it was
an INPUT and there is no data remaining in the record a new record will be
read for the string variable.

3. Records required for LINPUT requests are retrieved sequentially beginning
with the record at the current location pointer and the pointer is increment
ed for each record read. In other words. the record is incremented once for
each variable in the LINPUT list. The RESET statement may be used to alter
the location where the next LINPUT will begin retrieving records.

4. Leading spaces in records are not removed. Trailing spaces are eliminated.

Examples:

940 LINPUT #I: A$
950 LINPUT #I: 81 $ • CS(3.4)
960 LINPUT #4: DS(E+1)

4.3.6 RESET Statement

The RESET statement is used to reposition the current locati.on pointer to any
location within the file. The statement may be used with or without a record
number. When the record number is omitted, RESET goes to the beginning of the
file - record zero.

Format

RESET channel-setter [:numeric-expression

where

channel-setter selects the file to be repositioned.

numeric-expression is the new location of the file.

Programming Notes

1. The numeric expression, if present, must result in a nonnegative number
and the new location must not be greater than the current value of the
end-of-file pointer .

4-13
?AGE

4-14
PAGE I PAGE Rev.I

BEM:BASIC - User Reference UA-0140 Rev.3

TITLE OOCVMENTNO

2. A RESET statement without a record number is permitte.d to position any file
type to the start of the file.

3. A RESET statement with a record number can be used with temporary or
library files, or with data management files.

Examples:

34 RESET #3:
35 RESET #4

4.3. 7 READ Statement

The READ statement is somewhat similar in function to the LINPUT, in that there
is a one-for-one correspondence between variables in the statement and records
in the file, except that both string and numeric variables are permitted. When used
with string variables, READ will retrieve a record and assign its contents without
editing to the variable. When a numeric variable is specified, a record is read
which must contain a .single numeric value. This value is converted to floating
point and stored in the variable. ·

Format

READ channel-setter

where

channel-setter

variable-name

Programming Notes

variable-name [, variable-name ...]

specifies the channel number of an open file to
be read. Channel zero, the terminal, may not be
referenced by this statement.

string or numeric variable or array element into
which the data is to be read.

1. One record is read beginning at the current location pointer for each
. variable in the list. For each record read the current location pointer is
incremented by one. Changing the current location pointer via a RESET will
select the location of the next record to be read by the READ statement.

2. READ does not check if the last operation on the file was an INPUT (as
LINPUT would). but always reads new records.

3. When reading string variables, the entire record including any leading
sp'aces is assigned without editing to the variable. Trailing spaces in the
record will be eliminated.

•

•

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO

BEM:BASIC - User Reference
TITLE I PAGE REV I

4. When reading numeric variables. the entire record may contain only a single
number; it will be converted and assigned to the variable. If the record
contains any data other than a single number an error occurs.

Examples:

43 READ #43: AS, 84$, CS(H)
44 READ #44: A, 87, C(l,J)
45 READ #37: D, EBS

4.3.8 WRITE Statement

The WRITE statement writes a list of variables to the file, one value per record.
String text is written without any editing other than space filling if necessary.
Numeric values are converted to display format and padded with spaces to fill the
record. Depending on the position of t!ie current location pointer, records are
either updated or appended to the end of the file.

Format

WRITE _channel-setter: expression [, expression . . .]

where

channel-setter

expression

Programming Notes

specifies the channel number of the open file to
which records are to be written. Channel zero,
the terminal, may not be referenced by this
statement.

is either a string or numeric expression to be
written to a record in the file.

1. Each variable occupies one record, which is written at the position in the file
specified by the current location pointer. After each record is written, the
pointer is incremented. The RESET statement may be used to set the
location where records will be written.

2. If the current location pointer is set to the end-of-file value a new record will
be added to the file and the end-of-file pointer advanced. If the current
location pointer is set less than the end-of-file value, the record which was
there will be overlaid by the new record, creating an update. The current
location pointer may not be set past the end-of-file pointer.

3. Data to ~e written to the file may not be greater in length than the current
margin setting for the file.

4. The WRITE statement may be used with temporary files, library files and
data management files .

4-15
PAGE

4-16
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3

I PAGE Rev I TITLE DOCUMENT NO.

Examples:

8710 WRITE #10: "RECORD ONE" . "RECORD TWO"
8720 WRITE #10: 3.4,05
8730 WRITE #10: A+6,BS,C4$(8),SEGS(DS, 1,9)

4.3.9 RENAME Statement

The RENAME statement will change the name of a BASIC file while· is it contained
in the workspace. In particular, it permits a Library file element to be copied or
created.

Format

RENAME channel setter : file-name

where

channel-setter

file name

Programming Notes

is a channel expression identifying an open file
which is to be renamed.

is a string expression specifying an 05/3 library
file or a work file. Its format is similar to the file
name used with a FILE statement.

1. Permanent data management files may not be renamed. An attempt to do so
will terminate execution of the program.

2. A temporary file may be renamed to a library file in order to create a new
element in a library file.

3. A library file may be renamed to a temporary file in order to prevent the
original copy of the file from being updated when the file is closed.

4. If the programmer wishes to ensure that a file is not updated unless a
specific condition occurs first, he should open the library file and immedi
ately rename it as a temporary file. Then if an error should occur during
processing or if the terminal user should terminate the program the library
file will not be updated. Once the program has determined that the file is
complete, the file can be renamed to a library file so that when it is closed,
the library file will be updated.

5. If a program opens a library file with name A. processes the file, renames it
B, and then terminates, the original copy of A will not be modified and a
new modified version will exist with the name B.

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITLE I PAGEREV.1

Examples:

1045 RENAME #1 :"*"
2074 RENAME #N:"NEW.LIBRARY,PACK09"

4.3.10 SCRATCH Statement

The SCRATCH statement is used to erase the entire contents of a file. If the file is
a temporary or library file, the scratch will only operate upon the workspace; the
library file itself will not be affected. l.f the file is a data management file, the
scratch will erase the contents of the file. If there is no subsequent operation to
the file, the file will be scratched from the disk.

Format

SCRATCH channel-setter

Programming Notes

1 . If a data management file is to be physically scratched from the disk, the
SCRATCH operation should be the last operation issued against the file by
the BASIC program .

2. If a data management file is to be rewritten from the beginning, then the
SCRATCH operation should be issued prior to writing to the file.

3. After a SCRATCH command, both the LOC and LOF of the file will be zero.

4. SCRATCH currently has no effect for library files.

Example:

104 SCRATCH #6

4.3.11 Matrix 1/0 Statements

To simplify the handling of matrices when they are used with files. five matrix 1/0
statements are provided in BASIC. These statements perform the selected opera
tion on all elements of the matrix except those in row and column zero. Processing
for vectors begins with element 1 and continues to the last element in the vector.
Arrays are processed beginning with element 1, 1, then 1,2, continuing to 1,n, then
row 2. row 3, and so on .

4-17
PAGE

4-18
PAGE

\

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TITLE DOCUMENT NO.

Supported statements include matrix PRINT, INPUT, LINPUT, READ, and WRITE. In
general. the statements work just as if each matrix element were coded in the
statement. For example:

MAT PRINT #3: A;

is interpreted as:

PRINT #3: A(1, 1);A(1,2);A(1,3);
PRINT #3: A(2, 1);A(2.~);A(2,3);

;A(1,n);
;A(2.n);

PRINT #3: A(m, 1);A(m,2);A(m,3); . . . ;A(m,n)

Trimmers, when used, dynamically change the array dimensions during execution.
This change is made just prior to performing the indicated file operation.

Formats

where

MAT PRINT channel-setter: matrix [separator [matrixU
MAT INPUT channel-setter: matrix [(trimmer)], ...
MAT LINPUT channel-setter: string-matrix [(trimmer)], ...
MAT READ channel-setter: matrix [(trimmer)], ...
MAT WRITE channel-setter: matrix, ...

channel-setter

matrix

string-matrix

separator

trimmer

selects the previously opened file for the indicat
ed file operation. Channel zero, the terminal,
may not be specifie"d for MAT READ or MAT
WRITE.

is a string or numeric matrix name.

is the name of a string matrix. Numeric matrices
are not permitted with this statement .

.
is a PRINT item separator such as a comma or
semicolon and determines the spacing of the
printed elements in the record.

is an optional matrix trimmer expression. This
specifies the new matrix dimensions to be ap
plied before the indicated operation is performed.

•

•

•

UA-0140 Rev.3
DOCUMENT NO

•

•

•

BEM:BASIC - User Reference
TITLE I PAGE REV I

Programming Notes

1. A trimmer may be used with the MAT INPUT, LINPUT. or READ statements
to dynamically redimension the matrix. This trimmer may not change the
number of subscripts for the matrix. The new dimension may not cause the
new matrix to have more elements than did the original definition, or an
error will result.

2. The MAT PRINT statement for files uses commas and semicolons to control
spacing of elements in the records. If the matrix name is followed by a
semicolon, the elements are printed closely packed. A comma following the
matrix name causes the elements to be printed in 15-character columns.
Each row begins a new line. If no print separator follows a vector, it is
written as a column vector, one element per record; otherwise, it is printed
as a row vector. The rules used in printing records to files are defined in 4.4.

3. The MAT INPUT. LINPUT, READ, and WRITE statements for files perform the
indicated operation once for each element in the matrix. The rules covering
the file INPUT, LINPUT, READ, and WRITE statements are defined in 4.3.4.
4.3.5, 4.3.7, and 4.3.8, respectively.

Examples:

120 DIM A(7),C$(3,5),D(2,8).E$(5),K(9),J$(4),K$(2.4),R(20)
122 MAT PRINT #3: A.ES;CS
123 MAT PRINT #3: D;
124 MAT READ #3: A.ES
125 MAT INPUT #4: K,ES(J)
f26 MAT LINPUT #78: K$,J$
127 MAT WRITE #I: KS,R.A
128 MAT READ #1+1: K$(3),A(3)
129 MAT LINPUT #41: 0(2,1)

4-19
PAGE

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
OOCUMENTNO TITLE I PAGE-REV. ,

5 BASIC COMMANDS

5.1 INTRODUCTION

This section contains a detailed description of the operation and editing commands
provided by the BASIC system. These commands enable the programmer to assign
a name to a program, execute a program, and return control to the BEM monitor.
Editing commands are distinguished from source statements by the absence of
prefixed line numbers. Once entered into the BASIC system, the editing command
operates immediately on the current contents of the user's work space, which can
contain either a new program (being constructed) or a saved program.

The editing commands provided by BASIC provide the ability to enter, delete, list,
and modify text on a single or multiple line basis. When extensive modifications
must be made, the user should consider using the EDT subsystem.

• DEFINITIONS

The following syntactic units occur several times in the specification of the
editing commands:

1. Line-number

2. List-items

a series of digits in the range of 1 to 99999

line-number
line-number - line-number
line-number, list-items
line-number - line-number, list-items

3. File-parameters program-name. file-name
program-name, file-name (password)
program-name. file-name. volume
program-name. file-name (password), volume

4. Search-string "characters"

Programming Notes

1. Letter and digit are defined in Section 2.

2. A program-name may contain from one to eight letters or digits, the first of
which is a letter. Embedded characters such ass.?,#,@,%, and hyphen may
be included in this program-name.

3. A file-name may be up to 44 characters long. The same character construc
tion rules which apply to program-names also apply to file-names .

5-1
PAGE

5-2
PAGE I PAGEREv.j

BEM:BASIC - User Reference UA-0140 Rev.3
TITLE DOCUMENT NO

4. A password may be up to eight characters long. The same character
construction rules which apply to program-names also apply to passwords. A
password may be required if the file specified by file-name has been
cataloged with a password. When reading from a file (OLD). the read
password may be required. When writing to a file (SAVE). the write password
may be required. If the file is not cataloged, or no password is listed in the
catalog, then the user's password specification, if any, is ignored.

5. A volume must be six characters and is made up of letters and digits. This
name is used to locate the disk on which the referenced file exists. If the file is
cataloged and a volume name has been listed, then the user may omit the
volume entry. In any case, if a volume is listed, this overrides the catalog
volume name.

6. All library file references refer to source elements, which may have been
created by the OS/3 librarian LIBS, OS/3 EDT, OS/3 ASP, or OS/3 BASIC.

7. All references to "the system" apply to the OS/3 BASIC System.

8. A search string is constructe<;I in the same way as a closed string, and allows
the user to selectively process source statements based on their content.

5.2 COMMANDS

The editing commands available to the user are given as follows:

BYE OLD
DELETE PRINT
HELP RUN
LIST SAVE
NEW SYSTEM
modify

5.2.1 BYE

The BYE command is used to terminate BASIC. Control is returned to the monitor
and monitor commands may be entered. All work space information is lost.

Format

BYE

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. I PAGEREV. j

5.2.2 DELETE

This command may be used to delete one or more lines of source from the user's
work space. If no line numbers are specified, the entire program is cleared.

Format

DELETE [list-items] [search-string]

Note that single lines may be deleted by typing the line number of the line to be
deleted. If a search string is specified, then the selected lines will be searched and
those containing the string will be deleted.

5.2.3 HELP

Additional information about a status or error condition may be obtained by using
the HELP command. Several lines of explanation will be displayed at the terminal.
This command should be entered immediately following the message which the
user wishes clarified, as the HELP command will always refer back to the last error
message.

Format

HELP

5.2.4 LIST.PRINT

The UST or PRINT command directs the system to display on the user's terminal the
lines or sequence of lines referenced in the user's work space. If no line numbers
are specified, all statements in the program will be printed. If a search string is
specified, then the selected lines will be searched and those containing the string
will be printed.

Format

{
LIST }
PRINT

[list-items] [search-string]

5.2.5 NEW

The NEW command erases the current contents of the user's work space. The
system will then respond with an asterisk. BASIC is now in the same condition it
would be in if the user had just executed it from the monitor.

Format

NEW

5-3
PAGE

5-4
PAGE

-

A BEM:BASIC - User Reference UA-0140 Rev.3
l.PAGEREV.1 TITLE DOCUMENT NO.

5.2.6 MODIFY

This command is used to correct or reenter a source statement from the terminal.
The statement is entered as if a new statement is being input. Any statement with
the same line number is deleted and the new statement is substituted in its place.

Format

line-number statement

5.2.7 OLD

The OLD command erases the current contents of the user's work space, then
locates and loads the specified program into the user's work space.

Format

OLD file-parameters

Programming Notes

1. Errors may occur when BASIC is trying to locate the program if the disk
volume. disk file. or element cannot be found. Errors may also occur if a
password is required but not specified in the command.

2. As statements are read from the library file. each is verified by the Syntax
Checker. Any statements in error are displayed on the user's terminal, and
are entered into the program file, with a notation that the line is not valid.
This permits the UST command to show these lines so the user may later
correct them. ·

3. Once all statements have been processed. control is returned to the terminal
where new statements may be added, corrections made, or editing com
mands entered.

4. If a RUN is issued while there are still uncorrected lines from a previous OLD
command, the lines which are in error will be rejected.

5.2.8 RUN

The run command directs the system to compile and execute the program contained
in the user's work space.

Format

RUN

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TlTlE I PAGEREV.1

5.2.9 SAVE

The SAVE command directs the system to save, on a SAT Library File, a copy of the
source program currently contained in its work space. The program-name is entered
in the file directory and the body of text is stored as a source element. This element
may later be retrieved using the OS/3 librarian LIBS, the OS/3 EDT program or
05/3 BASIC.

Format

SAVE file-parameters

Programming Notes

1. Errors may occur if the disk volume or disk file cannot be located, or if a
password is required but not specified in the command.

2. If a program with the same name already exists in the file, BASIC will ask:

OVERWRITE? (Yor N)

A response of Y will delete the old copy and overwrite it with the new
program .

A response of N will terminate the command immediately and will leave the
old copy of the program intact.

5.2.10 RUNOLD

The RUNOLD command combines the functions 'of the OLD command and the RUN
command. It eliminates the time-consuming step of writing the program into the
work space. Consequently, the source code is not available for editing. Statements
are read from the library file, compiled, and written directly into memory. Because
this command is intended to be used to execute debugged programs, statemer:it
numbers are discarded to conserve memory.

Format

RUNOLD file-parameters

Programming Notes

1. Errors may occur when BASIC is trying to locate the program if the file
parameters are not correct.

2. If there are any syntax errors detected, the command will be terminated.
The program will not be in the work space and an OLD c~mmand will have
to be issued before the program can be corrected.

3. If execution errors occur, line number zero will be displayed as the error
location, because line numbers are not saved during RUNOLD processing.

5-5
PAGE

5-6
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev.3
TITLE DOCUMENT NO.

5.2.11 SYSTEM

This command serves the dual purpose of breaking into BEM system mode without
destroying the contents of the work space (compare with BYE) and of providing the
ability to execute a BEM command without leaving BASIC. If an operand is
provided, that command is executed immediately. If there is no operand, the
terminal user is returned to system mode. The user may resume BASIC by issuing
the /RESUME command.

Format

SYSTEM [BEM-command]

Examples:

SYSTEM
SYSTEM STATUS RES

5.2.12 MERGE

The MERGE command allows the contents of a library file to be added to the
current contents of the work space. Its function is identical to that of the OLD
command, except that the work space is not erased first.

Format

MERGE file-parameters

Programming Note

1. If lines are read which duplicate the line numbers of lines already in the
work space, the new lines replace the old.

5.2.13 RESEQUENCE

This command will resequence a BASIC program. Because resequence is a
complex operation requiring two passes over the source file. it is combined with a
SAVE operation and may only be used with a syntactically correct program.

Format

RESEQUENCE [start] [:increment] [:file parameters]

Example:

RESEQUENCE l 00:50: MYPROG,MYFILE,MYPACK

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. mLE I PAGE REV I

Programming Notes.

1. If omitted, the starting value and increment default to 100.

2. The resequence operation will not be completed if the new highest line
number would be greater than 99999 or if any line contains a syntax error.

3. An error will occur if any line of text must be expanded beyond 80
characters in order to insert the new line numbers.

4. The contents of the work space are not modified.

5-7
PAGE

t

•

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITLE I PAGEREV. j

6 BASIC PROGRAM TECHNIQUES

6.1 INTRODUCTION

.Constructing a BASIC program requires translation of the problem into a set of
statements which the BASIC system can use in solving the problem. To aid in
selecting the proper statements needed to solve a specific problem, a summary of
statement and command formats is provided in Appendix A. Once the required
statements and commands are selected, refer to the detailed descriptions of those
statements and commands in Sections 3 through 5 to review their characteris
tics and restrictions.

In translating a problem into a series of statements, the user should be familiar
with the hierarchy of arithmetic operations, the use of loops, tables, lists, built-in
and multiline functions, subprograms, and files in BASIC. These subjects are
covered in detail in this section.

6.2 HIERARCHY OF ARITHMETIC OPERATIONS

BASIC can perform simple operations such as addition, subtraction, multiplication,
division, and exponentiation. BASIC can also evaluate numerous built-in functions
and user-defined functions. The order in which the simple operations, built-in
functions, and user-defined functions are evaluated are similar to those used in
standard mathematical calculation, with the exception that all BASIC operations
must be written on a single line.

The five simple operators that can be used in BASIC are given as follows:

Operator Definition

Exponentiation
Multiplication

I Division
+ Addition

Subtraction

Example

A 0 B
A•s
A/B

A+B
A-B

The hierarchy of arithmetic operations is summarized in the following rules:

1. The arithmetic expression enclosed in parentheses is evaluated first, and its
value may then be used in further computations.

Example: X*(A + B)

In this example, the expression A+ B is evaluated first and its value is then
multiplied by X .

6-1
PAGE

6-2
PAGE I PAGE REV I

BEM:BASIC - User Reference UA-0140 Rev.3
TITL-E DOCUMENT NO.

2. Where parentheses are omitted, or where the entire arithmetic expression is
enclosed within a single pair of parentheses, the order in which the
operations are performed is as follows:

Operation Hierarchy

Evaluation of functions (built-in or user-defined) 1st (highest)

Exponentiation(**) 2nd

Multiplication and division(" and/) 3rd

Addition and subtraction(+ and -l 4th

Example: A *B/ C** SOR(0) + E

This arithmetic expression is evaluated in the following order:

SQR(O) Call the result T1 (function)

C**T1 Call the result T2 (exponentiation)

A*B Call the result T3 (multiplication)

T3/T2 Call the result T4 (division)

T4+ E Final operation (addition)

In addition, for operators of the same hierarchy the component operations of
the expressions are performed from left to right.

Example: A*B/C

This arithmetic expression is evaluated in the following order:

A*B Call the result T1

T1/C Final operation

Example: A**B**C

This arithmetic expression is evaluated in the following order:

A**B Call the result T1

T1**C Final operation

•

•

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

BEM:BASIC - User Reference
TITLE I PAGEREV.1

3. Where nested pairs of parentheses are used, the arithmetic expression
within the parentheses is evaluated before the outer operations are
performed.

Example:

T1
((B+(Wai *C))+A **2) -----~T4

T3

This arithmetic expression is evaluated in the following order:

(A+ B) Call the result T1

(T1*C) Call the result T2

B + T2 Call the result T3

A**2 Call the resultT4

(T3 + T4) Final operation

6.3 USE OF LOOPS

It is sometimes necessary to construct BASIC programs in such a way that certain
portions are performed more than once, with perhaps only slight changes each
time. This repeated execution of the same portion of a program is referred to as a
loop.

The use of loops can best be illustrated and explained by the following two
examples. Both perform the simple task of printing out a table of the first 100
positive integers together with the square root of each.

Example 1:

10 PRINT I, SQR(I)
20 PRINT 2, SQR(2)
30 PRINT 3, SQR(3)

1000 PRINT 100, SQR(lOO)
1010 ENO

6-3
PAGE

6-4
PAGE

BEM:BASIC - User Reference
I PAGE REV I TITLE

Without a loop, the above program requires 101 statements.

Example 2:

10 LET X=J
20 PRINT X, SQR(X)
30 LET X=X+J
40 IF X<= JOO THEN 20
50 END

UA-0140 Rev.3
DOCUMENT NO.

· With a loop, this second P.xample obtains the same table values but with only five
statements instead of 101. Note that statement number 10 is executed only once;
whereas the sequence of statements 20, 30, and 40 are repeated 100 times.

In general, all loops contain four characteristics: initialization (e.g., statement 10),
the body (e.g., statement 20), modification (e.g., statement 30), and the exit test
{e.g., statement 40).

Because loops are so important and because loops of the type just illustrated arise so
often, BASIC provides two statements to specify a loop even more simply. They are
the FQR and NEXT statements and their use is illustrated below:

Example 3:

10 FOR X=l TO JOO
20 PRINT X, SQR(X)
30 NEXT X
40 END

In this example, the FOR statement initializes the loop index X to 1, the final value to
100, and the step value to 1. Thus, the loop (statements 10 to 30) is performed 100
times and the resulting table is the same as that produced by examples 1 and 2.

Note that the step value can be adjusted by writing

10 FOR X =TO 100 STEP 5

and in this case the resulting table would contain the integer numbers 1, 6,
11, ... 96 with their corresponding square roots. Observe that another step of 5
would cause the loop index X to exceed 100.

The STEP value may be positive or negative and may be a decimal number. If
statement number 10 in example 3 was changed to

10 FOR X = 100TO 1 STEP-.1

then the resulting table would be printed in reverse order and contain the numbers
100, 99.9, 99.8, , 1.1, 1.0 along with their corresponding square roots.

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

BEM:BASIC - User Reference
TITLE I PAGEREV.1

More complicated FOR statements may be written which permit the user to specify
the initial, final, and step values as arithmetic expressions. For example, if N and Z
have been defined earlier in the program, then the user could write the following
FOR statement:

Example4:

100 FOR X = Z TO N STEP (N - Z)I 10

The user should refer to the programming notes of the FOR and NEXT statements in
Section 3 for further details about the loop parameters.

Loops within loops may be used and these are referred to as "nested loops." The
FOR and NEXT statements may be used for this purpose and these are illustrated in
Table 5-1. As can be seen in the table, loops may be nested several levels (maximum
of 10), but are never permitted to overlap.

Table5-1 Nested Loops

Allowed Allowed· Not Allowed

FOR X FOR X FOR X

[FOR Y FOR Y FOR Y

NEXT Y [FOR Z NEXT X

NEXT X NEXT Z NEXT Y

[FOR W.

NEXT W

NEXT Y

[FOR Z

NEXT Z

NEXT X

6-5
PAGE

6-6
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3

I PAGEAEV I TITLE. DOCUMENT NO.

6.4 USE OF LISTS AND TABLES

In addition to the ordinary variables used in BASIC, there are variables which can be
used to designate the elements of a list or a table. These are used where we might
ordinarily use a subscript or a double subscript; for example, the coefficients of a
polynomial (a0, a1, a2, •••) or the elements of a matrix b ii . The variables which we
use in BASIC consist of a single letter, which is called the name of the list, followed
by the subscripts in parentheses. Thus, the user might write A(O), A(1), A(2), etc., for
the coefficients of the polynomial and 8(1, 1), 8(1, 2), etc., for the elements of the
matrix.

The user can enter the list A(O), A(1), : .. A(10) into a program very simply by the
statements:

Example 1:

10 FOR I = 0 TO 10
20 READ A (I)
30 NEXT I
40 DATA 2, 3, -5, 7, 2.2, 4, -9, 123, 4, -4, 3

Lists and tables whose subscripts exceed 10 require that the user supply a DIM
statement to indicate to the system that extra memory space is needed. For
example, a list of 15 numbers may be entered as:

Example 2:

10 DIM A (25)
20 READ N
30 FOR 1=1 TO N
40 READ A (I)
50 NEXT I
60 DATA 15
70 DATA 2,3,5,7, 11, 13, 17, 19,23,29,31,37,41,43,47
80 END

In this example, statements -20 and 60 could have been eliminated and statement
30 replaced by 30 FOR I = 1 TO 15. However, this program as typed allows for the
lengthening of the list simply by changing statement 60, so long as the value read in
for N does not exceed 25.

•

•

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO

8EM:8ASIC - User Reference
TITLE I PAGEREV.1

A simpler way of performing the same function as lines 30 to 50 is to use a MAT
statement:

30 MAT READ A (N)

Matrix A will be redimensioned to the current value of N; a value will then be
assigned to each element of A from 1 to N.

A table consisting of 3 rows and 5 columns could be entered into a program by
writing:

Example3:

10 FOR 1=1 TO 3
20 FOR J=l TO 5
30 READ B (I , J)
40 NEXT J
50 NEXT
60 DATA 2,3,-5,-9,2
70 DATA 4,-7,3,4,-2
80 DATA 3,-3,5,7,8

Here again, the user may enter a table with no dimension statement. and it will
handle all the entries from 8(0, 0) to 8(10, 10). If a table with a subscript greater
than 10 is entered without a DIM statement, an error message specifying a
subscript error will be generated. This is easily rectified by entering the line:

5 DIM 8(20, 30)

if, for instance, a 20 by 30 table is required. Here, again, a single statement can
replace lines 10 to 50:

10 MAT READ 8(3.5)

The single letter denoting a list or a table name may also be used to denote a simple
variable without confusion. However, the same letter may not be used to denote
both a list and a table in the same program. The form of the subscript is flexible. The
user might have the list item 8(1 + K), or the table items B(L,K), or Q((A(S. 7), 8 C)).

6.5 USE OF BUILT-IN FUNCTIONS

The built-in functions provided in BASIC consist of mathematical functions (SIN,
COS, TAN, COT, ATN, EXP, LOG, ABS. and SOR), specialized functions (INT, RND.
SGN, DET. LEN. MOD, POS. TIM, VAL, EBC). string functions (CHRS, CLKS, OATS,
SEGS, STRS, USA$), and file-related functions (LOC, LOF, MAR. PER, TYP. NUM).
Examples of each function are provided .

6-7
PAGE

6-8
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TITLE DOCUMENT NO.

6.5.1 Mathematical Functions

• SIN(X), COS(X), TAN(X), COT(X). and ATN(X) designate the functions sine,
cosine, tangent. and arctangent, respectively, and the argument X is an
angle measured in radians.

Example:

10 X=3. 14159/2
20 Yl=SIN(X)
30 Y2=COS(X/2)
40 Y3=TAN(X/3)
50 Y4=COT(X/6)
60 PRINT X,Yl ,Y2,Y3,Y4,ATN! Y4
70 ENO

In this example, X is r./2 (90°), Y1 is the sine of 90°, Y2 is the cosine of 45°, Y3 is
the tangent of 30°, and Y4 is the arctangent of 15°.

• EXP(X) designates exponentiation e x .

Example: 10 0 = EXP(X**2)
In this example, O is ex2

.

• LOG(X) designates the natural logarithm of X, ln(X).

Example: 10 A = LOG(Y**10)
In this example, A is 10 ln(Y).

• ABS(X) design'ates the absolute value of X, IXL

Example: 10 B = ABS (-X*Y)
In this example, B isl-X*YI

• SQR(X) designates the square root of X, v'5f.

Example: 10 C = SQR(A**2 + B**2)
·In this example, C is v'A2 + 02.

6.5.2 Specialized Functions

• INT(X) designates the largest integer not exceeding X.

By definition. the following relationships hold:

a. If X > 0, then INT(X) ~ X
b. If X = O. then INT(X) = 0
c. If X < 0, then INT(X) ~ X

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

. BEM:BASIC - User Reference

Example:

10 X=INT(2.985)
io Y=INT(-2.015)
30 Z=INT(X-Y}

TITLE

In this example Xis 2. Y is -3, and Z is 5 (i.e .• Z::::: INT(2 -('-3))).

j PAGEREv. j

The INT function can be used to round to any specific number of decimal
places. For example. INT(X*10 + .5)/10 will round X correct to one decimal
place. INT (X*100 + .5)/100 will round X correct to two decimal places. and
INT (X*1 O**D + .5)/ 1 O**D will round X to 0 decimal places.

• ANO(X) designates a pseudo random number as follows:

a. If X > O. then RNO(X) is a function of X whose value is in the open
interval (0. 1).

b. If X < O. the system supplies an arbitrary random number on the open
interval [O. 1).

c. If X = 0. the system supplies a pseudo random number which is a
function of the previous random number generated by AND. If X = 0, the
first time ANO is called in a program, the system will supply a fixed
number in the open interval (0. 1) .

d. If Xis not specified (i.e .. AND) then AND(O) is assumed.

To generate a sequence of pseudo random numbers. the.user would call any
of these options followed by repeated calls to option c.

Example:

5 X-0
10 FOR L•l TO 20
20 PRINT RND(X},
30 NEXT L
ltO END

6-9
PAGE

6-10
PAGE I PAGE REV I

BEM:BASIC - User Reference UA-0140 Rev.3
TITLE DOCUMENT NO.

• RANDOMIZE may be used to cause RND to supply arbitrary random numbers.
It is equivalent to call RND (-1). The execution of the above program would
cause the following 20 random numbers to be outputted:

Example:

10 RANDOMIZE

Col.1 Col 16 Col31 Col46 Col 61
l

763242E-05 .250198 .753869 567054 .589602
747568 .440211E-01 .554667E·01 .252568 442911
.816485E-01 .52082 99271 .041932 572162
.397055E·01 .58698 801253· 882914 793956

If the user wants 20 random one-digit integers. statement 20 could be
changed to read:

20 PRINT INT(10*RND(X});

This would result in the following output:

Col 1 Col78

0 2 7 5 5 70 0 2 4 0 5 90 5 0 5 8 8 7

The user can vary the type of random numbers desired. For example, if the
user wants 20 random numbers ranging from 5 to 24 inclusive, statement 20
could be changed to:

20 PRINT INT(20"RND(X) + 5);

In general. if random numbers are to be chosen within the range A::;;; RND(X)
<A+ B. then the random function could be used as follows:

INT (B*RND(X} +A).

• SGN(X) designates the sign of X.

{

+1. ifX>O
SGN(X)= 0, ifX=O

Example:

-1, ifX<O

10 X=SGN(O)
20 Xl=SGN(-1.82)
30 X2=SGN(XI)
40 X3=SGN(-X1)

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

BEM:BASIC - User Reference
I PAGE REV I

The execution of this example assigns 0 to X, -1 to X1, -1 to X2, and +1 to
X3.

• DET designates the value of the determinant of the last matrix to be inverted,
or a value of zero if it could not be inverted.

Example:

10 DIM A(3,3), 8(3,3)
20. MATREADA
30 MAT B =INV (A)
40 MAT PRINT B
50 ''THE VALUE OF ITS DETERMINANT IS"; DET

• LEN (X$) returns the length of the string argument.

Example:

10 LET A$="ABC"
20 LET B$=A$&A$
30 PRINT LEN (A$), LEN (8$), A$, 8$
40 ENO

would print out

3 6 ABC ABCABC

• MOD (X,Y) computes the modulus remainder

MOD (X,Y) = X - Y (INT (X/Y))

Example:

600 FOR 1=1 to 5
610 PRINT I; "MODULO 2 EQUALS"; MOO(l,2)
620 NEXTI
999 END

This program would print

1 MODULO
2 MODULO
3 MODULO
4 MODULO
5 MODULO

2
2
2
2
2

EQUALS
EQUALS
EQUALS
EQUALS
EQUALS

1
O·
1
0
1

6-11
PAGE

6-12
PAGE l PAGE REV I

,

BEM:BASIC - User Reference UA-0140 Rev.3
TITLE DOCUMENT NO

• POS (A$, B$, X) begins searching A$ at X for the string B$ and returns the
position of B$ in A$.

Example:

10 LET X$= "THIS STRING IS A TEST"
20 PRINT "ENTER BEGIN, STRING:";
30 INPUT Q,Q$
40 PRINT POS(X$,Q$,Q)
50 GOTO 20
60 END

If run, this would result in:

ENTER BEGIN, STRING:? 1,IS
3
ENTER BEGIN STRING:? 5,IS
13
ENTER BEGIN, STRING:? 4,DUMMY
0
ENTER BEGIN, STRING"? STOP

• TIM returns the elapsed running time in seconds, accurate to milliseconds.

Example:

LETA=TIM 10
20
30
40
50

FOR 1=1to1000
NEXTI
PRINT "ELAPSED TIME IS", TIM-A
END

Would print

ELAPSED TIME IS 6.325

• VAL(Q$) returns the value of the number whose decimal representation is in
Q$.

Example:

10 LET F9$="4334.57"
20 PRINT VAL (F9$}, VAL(SEG$(F9$,3,5))
99 END

This program would print

4334.67 34

In this example, the SEG$ function creates a substring of characters 3, 4, and
5 (which are 34.), and performs the VAL function on this substring.

•

•

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

BEM:BASIC - User Reference
TITLE I PAGeRev. j

• EBC (string) may be used to obtain the EBCDIC value for a single EBCDIC
symbol. Certain symbols cannot be typed, and must be entered as 2- or
3-character mnemonics. Lower case lettering may be entered by using the
prefix "LC", then the letter to be interpreted as lower case: LCE will be
interpreted as an e. Table 2-1 lists these mnemonics, along with the
decimal value which the EBC function will return. EBC is a compile-time,
rather than a run-time, function. Examples of using the function follow:

EBC (1)=241
EBC (B)= 194

EBC(CR)= 13
EBC(NUL)=O

6.5.3 String Functions

• CHRS(x) returns a 1-character string consisting of the EBCDIC character
with the code MOD(INT(x),256). This function may be used to embed special
characters or control sequences in printed output:

10 PRINT "THIS SENTENCE IS UNDERLINED";
20 PRINT CHRS (13);
30 PRINT"-----------
99 END

THIS SENTENCE IS UNDERLINED

Line 20 uses the decimal value of a carriage return, 13, to move the teletype print
head back to the start of the output line without skipping down one line (no
line-feed is used). This could have also been done by:

20 PRINT CHRS (EBC(CR));

• CLKS gives the time of day in string format.

An 8-character string in the form "HH: MM: SS" is returned.

Example:

10 PRINT "THIS PROGRAM WAS RUN AT:"; CLKS
20 PRINT

99 END

If executed, this program would begin by printing

THIS PROGRAM WAS RUN AT: 14:05:30

6-13
PAGE

6-14
PAGE

BEM:BASIC - User Reference UA-0140 Rev.3
I PAGEREV.1 TITLE DOCUMENT NO.

• DAT$ may be used to obtain the current date as an 8-character string in the
form MM/DD/YY.

Example:

10 PRINT "THIS PROGRAM WAS RUN AT"; CLK$; "ON"; DAT$
20 PRINT ...

99 ENO

This program would begin by printing

THIS PROGRAM WAS RUN AT 14:06:10 ON 06/24177

• SEGS(AS,X.Y) allows the user to obtain substrings of a larger string. All
characters between positions X and Y inclusive of A$ will be returned as a
new string. If X>Y then a null string is returned. The appropriate beginning or
end of AS is returned in the case where X <=O or Y >LEN (AS).

Examples:

1. If CLKS is 14:10:05 then SEGS (CLK$,1,5)would be 14:10.

2. The function call SEGS(81 $, 2.4095) would always return a string
consisting of all but the first character of 81 $.

3. The function call SEGS (C$, 1,LEN(C$)-1) would always return a
string consisting of all but the last character of CS.

• STRS (x) may be used to convert a floating point number to its decimal
representation. This function returns a string.

Example:

10 LET N2 = 6.35
20 PRIN.T STR$ (N2). SEG$(STR$(N2). 1.1)

This would print

6.35 6

Notice that STR$(VAL(A$))=A$ and VAL(STR$(X)) = X. STR$ and VAL are
inverse functions.

• USA$ designates the logon-id of the user who is currently executing the
program. This a 4-character string derived from the user-id stated on the
/LOGON command.

•

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITLE I PAGEREV.1

6.5.4 File Functions

• LOC (#n) returns the current location of the file pointer for the file assigned
to channel n. This function is useful if a program must remember the
location in the file to be referenced later.

Example:

10 FILE #3: "PROG,OISKFILE,PACK3T'

. processing

20 READ #3: A6$
21 LET R=LOC(#3)-1

. process record in A6$

30 RESET #3: R
31 WRITE #3: A6$

In this example, the current location pointer is in some unknown position when
statement 20 is executed, but the record at that position must be read, changed,
and written back. Statement 21 obtains the current position and decrements it
since the READ statement automatically increments the location pointer. The
record can then be processed. To overwrite a record, the file is reset back to the
record by statement 30 and written by statement 31.

• LOF (#n) returns the current value of the end-of-file pointer for the file
assigned to channel n. This value is equivalent to the number of records in
the file.

Example:

170 FILE #2: "SQ,ERRORS,SYSRES"
180 FOR I = 1 TO LOF(#2)
190 WRITE #2: A$(1)
200 NEXT I

In this example the value of LOF is used to control a FOR loop. Each record in the
file is written from the corresponding array element in A. This same function can
be accomplished with the file IF statement:

170 FILE #2: "SQ,ERRORS.SYSRES"
180 A=1
190 IF END #2 THEN 230
200 WRITE #2: A(I)
210 A=A+1
220 GOTO 190
230

6-15
PAGE

6-16
PAGE

-

-

-

A BEM:BASIC - User Reference UA-0140 Rev.3
I PAGE REV I TIT\.E OOCUMENTNO.

• PER (#n,A$) allows the user to determine if a file operation will be permitted
if executed against the specified file. The function specified by string
expression A$ is tested against the file assigned to channel n and a +1
returned if the function will be permitted, 0 if not, and -1 if an invalid
function statement is used.

Example:

210 PRINT ''ENTER NAME OF FILE TO PROCESS:";
220 INPUT Nl S
230 FILE #3: NlS
240 IF PER (#3. "INPUT") = 1 GOTO 300
250 PRINT "FILE CAN"T BE READ. ENTER CORRECT FILE WITH PASSWORD"
260 GOTO 210
300 PRINT "FILE NAME ACCEPTED"

. continue processing

This would result in:

ENTER NAME OF FILE TO PROCESS:? sq,myfile,mypack
FILE CAN'T BE READ, ENTER CORRECT FILE WITH PASSWORD
ENTER NAME OF FILE TO PROCESS:? sq,myfile(pass),mypack
FILE NAME ACCEPTED

In this example, the user must enter a file for the program to process. The program
will later read the file using INPUT statements. In order to avoid program
termination should BASIC not permit this, the PER function is used to test if INPUT
will be accepted for the file. The most likely reason for it not being accepted is the
failure to enter the correct READ password.

• TYP {#n,A$) allows the user to test the file· type of a file. The string
expression A$ specifies one of the possible file types to test against the file
at channel n; a +1 is returned if the file has that type, 0 if not, and -1 if an
illegal file was specified by A$.

Example:

300 IF TYP (#3,LIBRARY) = 1 GOTO 330
310 PRINT "SPECIFY ONLY LIBRARY FILES WITH THIS PROGRAM''
320 GOTO 210
330 PRINT "FILE ACCEPTED"

This example is a continuation of the last example and shows how a program
which is designed to. run using only library files can test user-supplied files.

•

• /

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

BEM:BASIC - User Reference
TITLE I PAGE Rev. I

• NUM can be used with MAT INPUT of vectors to determine how many
elements of the vector were entered.

Example:

* 710 DIM V(100)
• 720 PRINT "ENTER LIST OF NUMBERS"
• 730 MAT INPUT V
• 740 S=O
• 750 FOR I= 1 TO NUM
• 760 S=S+V(I)
• 770 NEXT I
• 780 PRINT "SUM OF NUMBERS IS:";S; "AVERAGE IS:";S/NUM
• 790 END
*RUN
ENTER LIST OF NUMBERS
?1 .9.8.2.3,4,8,&
?45 .20. 16
SUM OF NUMBERS IS: 116, AVERAGE IS 11.6
•

In this example a vector is used to accept a variable number of input values from
the terminal. The NUM function is then used to determine how many elements of
the vector are to be processed. An ampersand (&) was used on the first line of
input from the terminal since the entire list ".'Vould not fit on one line.

6.6 USE OF MULTILINE FUNCTIONS

Multiline functions are defined using a combination of DEF and FNEND state
ments. The user should refer to the programm"ing notes on the DEF and FNEND
statements in Section 3 for further details concerning the construction of multiline
functions.

Example:

110 DEF FNA(N),T, I
120 REM THIS MULTILINE FUNCTION COMPUTES
130 REM THE FACTORIAL OF N
140 T=l
150 IF N<=I GO TO 190
160 FOR 1=2 TO N
170 T=T": I
180 NEXT I
190 FNA=T
200 FNEND

6-17
PAGE

6-18 A BEM:BASIC - User Reference UA-0140 Rev.3
PAGE I PAGE REV I TITLE DOCUMENT NO.

-

If the above multiline function is called within the sequence of statements:

510FORJ=OT09
520 PRINT J; "!~="; FNA(J)
530NEXT J
540END

The printed output would appear as follows:

Col 1
I
OIA=61
11A=61
21A=.:U
31A=66
41A=.:U4
51A=6120
61A=6720
71A=65040
81A=640320
91A=~62880

6.7 USE OF SUBPROGRAMS

Subprograms provide a mechanism by which independent. parameterized routines
can be developed and called with minimal program overhead.

The following example shows a simple subprogram which translates strings,
which may contain lowercase characters, to all uppercase. The calling program
need only issue a CALL statement selecting the subprogram and stating which
string is to be converted. Upon return from the routine the string will contain only
uppercase characters. Although this main program converts a file from upper/low
er case text to all uppercase, other programs could use the subprogram for other
purposes if it were saved in a common library.

Example:

100 FILE #4: 'IEXT.LJBFILE(RDPASS)"
110 FOR 1=1 TO LOF (#4)
120 LINPUT #4 : L$
130 CALL "UPPER": L$
140 RESET #4: LOC (#4) -1
150 WRITE #4 : L$
160 NEXT I
170 ENO
500 SUB "UPPER" : S$
510 DIM C(128)
520 CHANGE 5$ TO C
530 FOR I= 1 TO C{O)
540 IF C(I) > EBC(Z)-64 GOTO 600
550 IF C(I) < EBC(A)-64 GOTO 600
560 C(l)=C(l)+64
600 NEXT I
610 CHANGE C TO SS
620 SUBEND

•

• i _/

•

•

•

•

UA-0140 Rev.3
OOCUMENT NO.

BEM:BASIC - User Reference
TITLE I PAGEREV. j

This example also makes use of the CHANGE statement to separate each
character of the string and convert each to its EBCDIC value. Each character value
can then be tested for lowercase and, if true. changed to uppercase by adding
decimal 64, which is the decimal difference between the EBCDIC characters A and
a. After the individual characters have been processed they are combined into a
string via the CHANGE function.

6.8 USE OF FILES

Several examples of programs which use files are ·presented in this section.

The following BASIC program uses several files to operate on library elements. The.
purpose of this program is to read a COBOL program, locate any references to the
COBOL 'COPY' verb and insert the copied modules in-line.

Example 1:

100 PRINT "ENTER COBOL PROGRAM NAME AND COPYLIB FILE NAME";
200 INPUT PS.CS
300 FILE #1 : PS
400 RENAME #1: "*"

500 LINPUT #1: R1 $
600 IF POS {R1 $,"IDENTIFICATION DIVISION'', 1) = 0 THEN 8000
700 RESET #1
800 FILE #2: "*"

This portion of the program queries the terminal user for the COBOL program
name and the name of the file where the copy elements can be found. T_he file is
opened and immediately renamed to temporary file to prevent overwriting the
original module on errors. The first record is then read and tested to see if it is a
valid COBOL program. If not the user is notified. Otherwise, the file is reset so it
can be reread from the beginning.

Example 2:

1000 FOR I= 1 TO LOF (#1)
1100 LINPUT #1: R1 $
1200 LET C = POS {R1 $,"COPY", 7) + 1
1300 IF C-1 > 0 THEN 3000
1400 WRITE #2: R1 $
1500 NEXT I
1600 RENAME #2: PS
1700 GOTO 9999

The program file is now read, one line at a time and tested for the COPY verb. If
the record is other than a COPY it is written to the output file. Otherwise, a
separate section of code is used to process the copy. Finally the output file is
renamed to the original file name so when closed it will be written in place of the
original.

6-19
PAGE

6-20
PAGE

.
BEM:BASIC - User Reference

I PAGE REV I TITl.E

Example 3:

3000 CALL "FINDNOSP": R1 $, C+4, C2
3100 LET C3 = POS (R1 $&" "," ",C2)
3200 IF SEGS (R1 $, C3-1, C3-1) 0 "."THEN 3400
3300 LET C3=C3-1
3400 LET NS= SEGS (R1 S, C2. C3-1)
3500 FILE #3: NS& "," &CS
3600 RENAME #3: "*"
3700 FOR J = 1 TO LOF (#3)
3800 UNPUT #3: R2S
3900 WRITE #2: R2$
4000 NEXT J
4100 GOTO 1500

UA-0140 Rev.3
DOCUMENT NO.

Once a COPY statement has been found, the copied module name must be
isolated. This is concatenated onto the file name and the library element is
opened. It too is renamed to a temporary file so it is not overwritten. Each
statement of the element is then added to the output file.

Example 4:

8000 PRINT "THIS IS NOT A COBOL PROGRAM, TRY AGAIN"
8100 GOTO 100
9999 END

These statements complete the main program.

·The subprogram FINDNOSP must also be written. Its purpose is to find the first
nonblank character in a string. It is called with three parameters, a string to
search, the column to begin the search at, and a variable into which the result is
placed. The subprogram scans the string and returns the column of the first
nonblank character in the string after the column specified by parameter two; the
result is returned in parameter three. If nonblanks are not found, zero is returned.

Example 5:

10000 SUB "FINDNOSP": SS. B, E
10100 FORE= B TO LEN (SS)
10200 IF SEGS (SS, E. E) <:>" " GOTO 19999
10300 NEXT E
10400E=O
19999 SUBEND

•

• . ./

•

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO. TITLE I PAGEREv. j

6.9 HINTS FOR MORE EFFICIENT CODE

The following suggestions for writing BASIC programs will improve the execution
time and reduce memory requirements:

• Use intrinsic system functions instead of BASIC code whenever possible.

• Use FOR-LOOPs rather than maintaining counters in BASIC.

• Use string functions, such as POS and SEGS, rather than maintaining an
array of characters stored one character per word.

• Use MAT statements to process matrices rather than indexing with FOR
loops.

• Rather than using several LET statements to compute a result, combine
them into a single LET statement. This avoids saving temporary values and
is especially helpful for string manipulation.

• When using DATA statements, combining several values onto one state
ment rather than one per statement will result in faster RUN compilation .

6-21
PAGE

•

•

••

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGE REV I

7 ERRORS AND DEBUGGING

7.1 INTRODUCTION

There are two basic categories of errors: (1) those which prevent the running of the
program and (2) those which permit the program to run but cause wrong answers or
no answers at all to be printed (these latter errors are referred to as logical errors).

7.2 ERRORS PREVENTING RUNNING OF PROGRAM

It may occasionally happen that the first run of a new program will be free of
errors and give the correct answers. But it is much more common that errors will
be present and will have to be corrected. The errors in category (1) are detected by
the Syntax Checker, the Editing Command Processor. the System Monitor Proces
sor, the System Monitor, the Run-time Error routines, and the Post Compilation
routines. {The errors reported by all of the BASIC system components previously
mentioned, except the Syntax Checker, are listed in Appendix C. This appendix
also contains. for each error, the procedure to correct the error condition.)

The Syntax Checker detects improper syntax in each statement and reports the error
by printing on the terminal a question mark (?) followed by a copy of the incorrect
statement, up to but not including the first character in error. For example, consider
the following statement:

10FOR N=1,

Since the comma is not permitted in a FOR statement. the BASIC system responds
with

? 10 FOR N=l

and waits for the user to complete the statement. If the user types in

T07

then the complete statement

10 FOR N=l TO 7

is successfully processed by the BASIC system .

7-1
PAGE

7-2 BEM:BASIC - User Reference UA-0140 Rev.3

P.O.GE ' I P.O.GE REV I DOCUMENT NO .

7.3.LOGIC ERRORS

Logic errors are those which permit the program to run but cause wrong or no
answers at all to be printed. In either case, after the errors are discovered, they can
be corrected by changing, inserting, or deleting statements from the program. A
statement is changed by typing it correctly with the same line number. A statement
is inserted by typing it with the new line number. A statement is deleted by typing
the line number and pressing the TRANSMIT key or by using the DELETE command.

Corrections to a BASIC program can be made at any time either before or after a run.
In addition, line numbers may be typed in out of sequence, since BASIC arranges
them in ascending order once they are read. · · ·

As ari example, consider the following program which reads in a series of numbers
and finds the largest and smallest numbers in the series. The program also
computes the average of the series.

Example:

10
20
30
Ito
50
60
70
80
90
100
110
120
130
140

lNPUT N,A
L•S•A
FOR 1•2 TO N
INPUT X
A•A+X
IF X>•L THEN 90
L•X
GO TO. 110 ·
IF X>-S THEN 110
S=X
NEXT I
A=A/N
PRINT "SMALL="; S, 11 LARGE=11

; L, 11 AVERAGE=11
; A

END

Assume that when the above program is executed, the user types in 'the following
data values:

5,1
2
3
4
5

The resulting output would appear as

SMALL=~1 LARGE=~l AVERAGE=63

•

•

•

•

UA-0140 Rev.3
DOCUMENT NO.

•

•

•

BEM:BASIC - User Reference
TITLE I PAGEREV.1

The value for LARGE is obviously incorrect. After examining the program, it
becomes evident that the IF statement on line number 60 should be changed to

60 IF X <=L THEN 90

Once this correction is made and the program is reexecuted with the same input
data, the resulting output would appear as

SMALL=61 LARGE=65 AVERAGE=63

7-3
PAGE

•

• j

•

•

•

•

UA-01 40 Rev. 3 BEM:BASIC - User Reference A
DOCIJMENT NO. I PAGEREV.1

8 BEM OPERATION

8.1 INTRODUCTION

This section instructs the novice user how to use BEM and how to execute BASIC
in particular. The purpose of this section is to explain commands available to the
terminal user; how to initiate a session, execute and monitor application programs,
and terminate the session. For details on how to configure BEM, console
operation, etc., the user should consult the BEM - OS/3 Basic Editor Monitor
User Reference, UA-0139.

To use BEM, the user must locate a free terminal and log on. Logging on consists +
of entering the LOGON command, together with a user-id, account-number, and
password. This user-id is used for identification by the console operator, the
account number is used for billing purposes, and the password for security; each is
one to four characters long, and either of the last two may be omitted depending
on conditions at your site. When the LOGON command is accepted, BEM will
display the log-on bulletin and inform the user it is ready to process requests. The
log-on bulletin is built by the administrator and may contain messages to inform
the users of resource availability or system status .

The administrator may also assign a default file to each user's account, and place
certain restrictions on command and file usage. If the user wishes to use the
default file, the file and volume names should be omitted from the command which
references the file. If a user is informed that he cannot access a certain file, or is
not permitted to write to a certain file. the system administrator will need to be
contacted to remove the restrictions.

Once logged on, the user is placed in monitor mode and may enter any monitor
command. To identify monitor mode, BEM presents the UNISCOPE start of entry
(SOE) character, followed by a slash (/). All monitor commands begin with the
slash, but if the user does not erase the screen, the slash is supplied by BEM.

Several commands may be entered while in command mode. The HELP command
functions identically to the BASIC HELP command. TYPE allows the user to send a
message or question to the computer console. Three STATUS commands are
provided, one to list users of BEM, another to list OS/3 resources available and
those in use, and the last gives information about the user's own terminal.

The EXECUTE command is used to load and run BEM application programs such as
BASIC and EDT. The program is located and loaded, and any additional storage
(memory or disk) requests for that program are processed. Once loaded, the
program is in control of the user's terminal and all key-ins and responses are
controlled by it.

While a program is processing, BEM provides a method to interrupt it and return
control to the monitor. To interrupt a program, the user hits the MESSAGE-WAIT
ING key or transmits anything. A program may only be interrupted when it is
active. If it is awaiting input. the program provides its own way to exit to the
monitor; for example, the SYSTEM command may be used to interrupt BASIC.

t

8-1
PAGE

8-2
PAGE

-

A BEM:BASIC - User Reference UA-0140 Rev. 3
jPAGERev.j TITLE DOCUMENT NO.

One advantage of this capability is that during execution a program may be
interrupted to enter a monitor command, then the program may be resumed using
the RESUME command. The RESUME command will not function if the EXECUTE
or LOGOFF commands are entered since the user's work areas are destroyed.

As an example of the interrupt capability in BASIC, the user attempts to RUN a
program but is informed that there is insufficient room to load the program. The
interrupt capability may be used here to allow the user to enter STATUS
commands and wait until sufficient memory is available to load the BASIC
program. When it is available, the user may RESUME BASIC, and rerun the
program.

At the end of a session, the LOGOFF command is used to release all storage that
has been acquired during the session. To begin a session after LOGOFF has been

· processed, the next user must LOGON again.

8.2 COMMAND FORMAT

All BEM commands begin with a slash (/), and are immediately followed by the
command keyword. The slash is normally provided by BEM, but it must be entered
if the user has altered the screen, or is operating a non-video terminal. Commands
may be abbreviated by typing at least those characters which are underlined.

8.2.1 LOGON Command

The LOGON command is used to begin a BEM session. The .. id" used may be one
to four characters, and is determined at the user site, and has no actual meaning
to BEM.

Format

/LOG ON user-id. [account-number],[password]

8.2.2 HELP Command

The HELP command allows the user to obtain additional information or explanation
about an error or status message which has just been displayed. The HELP
command should be entered immediately after the message requiring explanation,
since the command always relates to the message immediately preceding the
HELP query.

Format

/HELP

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. I PAGE REV I

8.2.3 TYPE Command

The TYPE command is used to send a message or question to the console operator.
All characters following the command keyword are sent to the computer console.
Up to 52 characters may be sent.

Format

/TYPE comment.

8.2.4 PAUSE Command

The PAUSE command is used to send a message or question to the console
operator. It is different from the TYPE command in that the user's task is
suspended until the operator replies to the message.

Format

/PAUSE comment or questions

8.2.5 STATUS Commands

Three formats of this command are available. The first will display information
concerning terminals on the system. The second format will display information
about OS/3 resources in use by BEM. Lastly, information about the user's own
terminal may be obtained.

Format 1

/STATUS TERM

Output Format 1 :

TERMINAL COMMAND

nnnn cccccc

where

nnnn

cccccc

PPPPPP

PROGRAM SCRATCH SPACE ID

PPP PPP SSS uuuu

Terminal name in the form T/tO where I is
the line number and T is the terminal num
ber.

Last system command issued at this termi

nal.

Last program executed at this terminal.

8-3
PAGE

-
-

t

8-4
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev. 3
I PAGEREV.1

SSS

uuuu

Format 2

ITTLE DOCUMENT NO.

Number of disk scratch space cylinders ac
quired by this terminal.

User's identification code.

/STATUS RESOURCE

Output Format 2:

TASKS
nnn

where

nnn

m

mmmmm

aaaaa

fffff

SSS

ddd

TERMS

ttt

- --------------MEMORY··---------·--- ·····SCRATCH····-

MAX
mmmmm

AVAIL

aaaaa
FREE

fffff

MAX

SSS

FREE

ddd

Total number of tasks which may be active
at one time; the maximum number of termi
nals which may be logged on the system.

Number of terminals currently logged on.

Amount of storage, in bytes, allocated to the
entire BEM system as obtained from the job
card.

Total amount of storage, in bytes, available
for allocation to users and program areas.

Current amount of storage, in bytes, which
is free to be allocated.

Total number of disk cylinders available for
allocation to users and programs.

Current number of disk cylinders which is
free to be allocated.

The third STATUS option will display the user's id, terminal number, logon time,
current date, and wall-clock time.

Format 3

/STATUS

Output Format 3:

TERMINAL

E001

USER

PROC

LOGON

09:07

DATE

78/02/17
CUR-TIME

09:08:20

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGEREV. j

8.2.6 EXECUTE Command

This command is used to invoke application programs. Sufficient memory and disk
space must be available, if required by the program, for loading to complete
successfully.

Format

/EXECUTE program

Programming Note

1. Programs which may be executed are EDT, ASP, and BASIC.

8.2.7 LOGOFF Command

The LOGOFF command is used to terminate a session. All work areas assigned to
the user are released.

Format

/LOG OFF

8.2.8 FILE STATUS Command

To obtain a directory listing of an OS/3 Library file at the terminal, the FSTA TUS I
command may be used. This command will display the name of each source proc, t
object, or load module, together with the type of each module. An alternate form of
this command (LONG), displays the additional information about each module.

Format

/FSTATUS

where

library

password

volume

LONG

library [(password)] [,volume] [!:,ONG]

Name of the file which is to be listed.

Read password for the file. It must be sup
plied with the command if the file was
cataloged with a password.

Name of the disk pack on which the file
resides. If the file has been cataloged with a
volume name, the parameter may be omit
ted.

The alternate format of the command is to
be used to display the comment, creation
date, and time for each module.

t

t

8-5
PAGE

8-6
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev. 3
I PAGE REV I DOCUMENT NO.

This command will produce output similar to the example shown:

P-SUPEQU P-EOJ
S·COBOLPRG P-CLOSE

S·SRCMOO
0-0BJMOO

S·COPYMOO
L-LOOMOOOO

To obtain a directory. listing of the default file for an account (if one exists), enter
the command without any operands.

The LONG format of the FSTATUS command produces output similar to:

P·SUPEQU SUPERVISOR EQUATES 02/05/78 12:15
P-EOJ ENO OF JOB PROC 01/31/77 02:59
S·SRCMOO COBOL PROGRAM 07/14/77 14:20
S-COPYMOO COBOL COPY MODULE 07/14/77 14:35
S-COBOLPRG 07/14/77 15:05
P-CLOSE CLOSE THE FILE 01/28/77 22:06
0-LOAO PROGRAM TO SAVE FILE 09/15/78 08:15
L·LOADMOD PROGRAM TO SAVE FILE 09/15/78 08:17

If the LONG format is used with the default file, a single comma must precede
LONG:

/FSTAT, LONG

8.2.9 PRINT and PUNCH Commands

These two commands may be used to produce a printed listing of a module, or a
punched card deck. The PRINT command will list a module on the system printer. A
heading identifying the user and line numbers are also produced. The PUNCH
command will punch the named module on the system punch. Identifier cards are
punched preceding and following each deck to give the user's task information.

Format

where

/PRINT element.file [(password)], [volume] [,type)
/PUNCH element.file [(password)1 [volume] ~type]

element

file

password

volume

Name of the module to be printed or
punched.

Name of the OS/3 Library file which con
tains the element.

Read password for the file. It must be in
cluded in the command if the file has been
cataloged with a password.

Name of the disk pack on which the file
resides. If the file has been cataloged with a
volume name, this parameter may be
omitted.

•

• .. j'

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO.

type

TITl..E I PAGERev. j

Element-type of the module. An "S" de
notes source, a "P" denotes proc. If this is
omitted, source is assumed.

8.2.10 DELETE Command

This command may be used to delete an element from a library file. Any macro
proc, source, object, or load element or group header may be deleted.

Format

/DELETE element.file [(password)], [volume], [type]

where

element

file

password

volume

type

Name of the module to be deleted.

Name of the OS/3 Library file which con
tains the element.

Write password for the file. It must be
included in the command if the file has
been cataloged with a password.

Name of the disk pack on which the file
resides. If the file has been cataloged with a
volume name, this parameter may be
omitted.

Element type of the module:

S Source
P Proc
M Macro
0 Object
L Load
G .Group header

If this is omitted, source is assumed.

NOTE: Type G specifies that only group headers (BOG and EOG
markers) be deleted. not the entire group.

8.2.11 RUN Command

This command will schedule a batch OS/3 job. If a job name is specified, the job
control is assumed to be stored in the system Job Control file ($YSJCS). If the
name is omitted, the job control is assumed to be in the JCS queue of the system
Spool file.

8-7
PAGE

8-8
PAGE

A BEM:BASIC - User Reference UA-0140 Rev. 3
I PAGE REV I

Format

/RUN program

Example:

/RUN LISTLIB
/RU

TITLE DOCUMENT NO.

When a job is scheduled via BEM, the user will not be notified of its actual
initiation or termination. The DISPLAY JOBS command may be used at the
terminal to monitor the execution of a batch job.

NOTE: The RUN command is an optional feature of BEM and may
not be available at your site due to operating procedures.

8.2.12 DISPLAY Command

The DISPLAY command gives information about OS/3 system usage. This com
mand takes two forms:

• Information about batch jobs
• List of DISK volumes currently mounted

Information about batch jobs may be obtained using the JOBS display option.

Format

DISPLAY JOBS

Example:

where

JOB NAME
BEM
ASMTEST
FREE MEMORY

JOB NAME

SIZE

·TIME

STEP

SIZE
044986
131072
004096

TIME
13.2
25.8

STEP
01
02

EXEC
BEMOOO
ASMOOO

JOB NO.
0002
0015

The name of each batch job currently
executing.

Amount of memory allocated to that job,
including program load area and job pro
logue in decimal.

Current elapsed CPU time for all steps of
job, in seconds.

Step number currently executing.

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGEREV.1

EXEC. Name of current load module.

JOB NO. Unique job number assigned by Spooling.

The unused memory entry shows total free memory at the time of the DISPLAY.
Memory allocated to the supervisory, symbionts, and ICAM is not explicitly shown
by the display.

A list of disk volumes on the 05/3 system may be obtained with the VOLUMES
option:

/DISPLAY VOLUMES

Example:

*OS3REL USER01 *BEMPAK

This example shows three disk packs mounted. The two of these that are
accessible to the BEM user are marked with an asterisk(*).

8.2.13 SCREEN Command

The SCREEN command is used to inform the BEM system of certain UNISCOPE
characteristics or options which the user wishes to utilize.

Format

/SCREEN

where

dimension

COP

NO COP

ROLL

Size of the UNISCOPE screen: height X
width, e.g., 16 X 64. 24 X 80.

For a hard copy device, the width is ignored,
but the height will control the number of
lines printed at a time.

Indicates that all messages output by BEM
are to be logged on the COP printer.

Messages are no longer to be logged.

All messages displayed by BEM will be
displayed at the bottom of the UNISCOPE"
and the screen will be scrolled up. ·

8-9
PAGE

t

-

8-10
PAGE

t

t

A BEM:BASIC - User Reference UA-0140 Rev. 3
I PAGE Rev.I

NO ROLL

UTS400

TITLE DOCUMENT NO.

UNISCOPE screen will no longer be
scrolled.

Indicates to BEM that this is a UTS400
terminal and sets the UTS control page for
correct RSP operation.

The COP option should not be used unless the device is actually present and
configured, or control will not be returned to the terminal. If such a problem occurs,
the user should clear the terminal, and issue a /SCREEN NOCOP command to
restore operation.

The COP option provides the ability to obtain selected hard copy listings at the
terminal. It is not intended to produce a hard copy log of all terminal transactions.
Consequently, not all BEM commands will produce meaningful COP listings. To get
a hard copy of an FSTATUS or DISPLAY, for instance, the user should format the
screen and use the UNISCOPE terminal PRINT button.

The ROLL option truncates all output to a single line on the UNISCOPE screen and
thus should not be used when longer lines need to be displayed. Two lines are
always left at the bottom of the screen, however, for data entry.

8.2. 14 VTOC Command

The VTOC command may be used to display the names of the files on a disk
volume. The name of each file on the disk will be shown, along with the number of
cylinders allocated to the file, the file type, and extent count. If the file is a library
file (file type = SAn. additional information is displayed showing the remaining -
free space in each partition of the file. This command may be issued to any disk
allocated to the BEM system.

Format

/VTOC volume-name

Example:

/VTOC PACK22

would produce output similar to:

FILE NAME CYL. EXTENTS TYPE DIRECTORY/ DATA/ B-LOAD

SAM FILE 010
RAND FILE 002
LIB FILE 050
VERYLONGFILENAME

010

01
01
05

02

SAM
D.A.
SAT

SAT

124/ 4021/ 4

01 01 0

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. mLE j PAGERev. j

8.2.15 Disk Space Management Commands

These commands allow the user to create and erase files dynamically under BEM.
As with most other BEM commands, their use may be restricted by the system
administrator for certain accounts.

8.2.15.1 ALLOCATE COMMAND

This command will allocate a new disk file on a specified volume. The file may be
any OS/3 file type. If it is a SAT file, it may be initialized as an OS/3 library file.

Format

/ALLOCATE type, file-parameters [INIT,;,,, {YN~}] [.~IZE = n] [,INC= n].

where

type

file-parameters

INIT

SIZE

INC

Indicates the type of file to be allocated:
ST - SAT (possibly a library file)
IR-IRAM
IS-ISAM
D,c(- Direct access
SQ - Sequential
NI - Non-indexed

Valid OS/3 file description of a file which
does not exist on the volume. The volume
stated in the parameter list specifies where
the file wiU be placed.

YES - causes the SAT file to be initialized
as an OS/3 library file. This is the default
value for a SAT file.

NO - the file is not initialized. This is the
default value for non-SAT files.

Initial allocation SIZE in cylinders. Default
value is ten cylinders.

SIZE in cylinders of any extents added
when the file is extended. Default is one
cylinder.

Any DA. SQ, or NI files allocated may be processed by BASIC. Any initialized SAT
file may be processed as a library file by any BEM module.

8-11
PAGE

t

8-12
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev. 3
IPAGERev.I TITl.E DOCUMENT NO.

8.2.15.2 SCRATCH COMMAND

This command will scratch any file except system files. If the file is catalogued, its
catalog entry will not be rem.oved. The user should be careful when using this
command, as once a file has been scratched, its contents are inaccessible.

Format

~RATCH file-parameters

where

file-parameters

8.2.16 ENTER Command

Is a description of the file to be scratched.
This may not be a SYS file.

This command enters an OS/3 library file element to be executed in BEM
background mode. This function is only available if it is configured by the system
administrator. Tasks entered in background are executed by BEM exactly as from
interactive terminals except that output is produced on the high speed printer.

Format

~TER element.file-parameters [,type]

where

element

file-parameters

type·

Is the name of the module to be entered.

Is a description of the 05/3 library file
which contains the element.

Is the element-type for the module - S
denotes source, P denotes proc. If this is
omitted, source is assumed.

The ENTER facility allows users to submit an 05/3 library element containing
commands and data just as they would be entered at the terminal. This element
may contain one or more LOGON-LOGOFF sequences, and each task (LOGON
LOGOFF pair) may perform any functions which would be valid at the terminal. The
first statement of an entered deck must be a LOGON command, and there should
not be any cards between the LOGOFF and LOGON commands when several tasks
are stacked in a single ENTER deck.

Decks submitted via the ENTER function are queued in the 05/3 spool file, along
with background decks submitted through the card reader. These decks are then
processed in a first-come first-served manner concurrently with interactive pro
cessing. The number of tasks available to process these decks is defined by the
system administrator; more than one background task may be active at a time.

•

•

•

•

•

••

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE j PAGERev. j

Output from entered tasks is routed to the main site printers and each task's output
is identified with the user-id from the LOGON statement. Invalid LOGON state
ments in a deck cause BEM to begin rejecting cards until a valid LOGON is found,
or the end of the deck is reached. Rejected cards are printed on a separate listing.

Each time an input is expected during a background session, BEM attempts to read
the next card. This card could be either a command or a line of data. It is processed
just as if it had been entered from a terminal. If an error is encountered during the
processing of a command, the error message is printed and processing continues
with the next card; the session is not aborted. The only condition which will cause
a background session to be aborted is the exhaustion of all input. This is usually
due to a missing or misinterpreted LOGOFF statement, and results in the task
being logged off.

Certain conditions which normally arise at a terminal have been modified for
background tasks:

• CONTINUE queries are eliminated for background tasks and all output is
displayed in its entirety. Normally, BEM outputs one screen of lines and
suspends output until the user answers the CONTINUE query.

• OVERWRITE queries are eliminated for background tasks. If a module to be
written already exists, it is deleted and a new one written automatically .

• OUT OF MEMORY conditions for background tasks are considered errors
and a NO response is assumed.

• Batch tasks are treated as hard copy terminals, thus RSP is not available.

8.2.17 COMMENT Command

This command permits the user to enter comments in the comment field associat
ed with an OS/3 library element. The element is located, and then the 30-charac
'ter comment specified in the command is applied.

Format

/COMMENT element.file-parameters [.type] comment

where

element

file-parameters

type

Is the name of the OS/3 librarian format
element to be commented.

Specifies the location of the file containing
the element.

Specifies the element type. A P denotes
proc or macro; an S or blank. source; an 0 .
object; an L, load.

8-13
PAGE

t

8-14
F'AGE

t

A BEM:BASIC - User Reference UA-0140 Rev. 3

IPAGEREV.1 TITLE DOCUMENT NO.

comment

8.2.18 BULLETIN Command

Is a 30-character string to be used as a
comment. It must be separated from the
file-parameters by exactly one space. Any
additional spaces are considered part of the
coi:nment.

This special purpose command allows the system administrator to read, display,
and change (using the WRITE keyword) the LOGON bulletin. The READ and WRITE
options are restricted to privileged users only, while DISPLAY can be used by any
user.

Format

/BULLETIN
{

READ }
.QISPLAY
WRITE

where

/BULLETIN READ

/BULLETIN DISPLAY

/BULLETIN WRITE

Deletes the entire contents of the user's
workspace and then reads the current
LOGON bulletin into the workspace. This
command should be issued while in EDT or
RSP as a SYSTEM command to avoid losing
the workspace again on entry into EDT or
RSP.

NOTE: This option is equivalent to
@DROP; all procs are lost.

Displays the current LOGON bulletin to the
terminal. This option can be invoked by any
user.

Overwrites the existing LOGON bulletin
with the contents of the user's workspace.

If the entire new bulletin will not fit in the
maximum space reserved for LOGON bul
letins, only as much as will fit is written and
an error will be displayed. The user can find
out how much was accepted via the BULLE
TIN DISPLAY function. It is allowable to
write a new bulletin which is larger than
the existing one. provided the maximum
bulletin space limit is not exceeded. This
command should be issued from EDT or
RSP via a SYSTEM command.

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGEREV.1

8.2.19 RECOVER Command

This command allows the terminal user to recover OS/3 librarian elements which
were unintentionally deleted. It is .only effective for elements which have been
deleted recently and have not been entirely removed from the file via a PAC
librarian statement. It must be used carefully to ensure that the correct element is
"undeleted" (there may be several to choose from).

Format

/RECOVER

where

element

file-parameters

type

element,file-parameter(,type]

Is the name of the deleted modules to be
recovered.

Is the location of the file containing the
elements to be recovered.

Is the element type which is to be used to
rebuild directory entries for the deleted ele
ment .

Once invoked, this command will begin by listing each deleted element which
could possibly have the same element type specified in the command. For
example, if the user attempts to recover a source module named TEST, and the file
contains both source and load deleted modules, only the source modules will be
shown:

/RECOVER

1. TEST
2. TEST
3.•TEST

OS/3
OS/3
OS/3

TEST,MYFILE,MYPACK,S .

TEST PROGRAM
. TEST PROGRAM

TEST PROGRAM

01/30/78
01/30178
01/30178

SELECT NUMBER AND NEW NAMEC>

12:48
14:02
15:25

Each element with the name and type indicated will be displayed, with a sequence
number for identification purposes. The comment field, date, and time of creation
will also be shown. If an undeleted element currently exists; it too will be shown
and flagged with an asterisk.

After displaying the list, the user will be asked to select an element (by number),
and the name under which the recovered element is to be written. The name
selected by the user must not be a name which already exists. As long as this rule
is followed, the user may rename any of the modules listed including the active
one; thus RECOVER may be used to rename modules too.

8-15
PAGE

t

8-16
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev. 3
jPAGEREV.j TITLE DOCUMENT NO .

Continuing with this example, if the user wished to retain the active TEST element,
but also recover deleted element 2. the response

t>2.TEST2

could be entered to recover copy 2 of TEST and rename it to TEST2. BEM will
insure that another module of the same name does not already exist and generate
appropriate error messages.

If, on the other hand, the user did not want the active copy of TEST (#3), but
wished to restore copy 2, he could rename the active copy and restore copy 2 via:

t>3,0UMMY
t>2,TEST

and later go back and delete element DUMMY from the file.

Each time the user renames a module, BEM will list the elements again with new
numbers to avoid confusion. To end the RECOVER command, type STOP.

8.3 BATCH SUBMISSION

An optional feature available at some sites is the capability for entering card decks
of BEM sessions for background execution. This feature permits access to the
system when a terminal is not available.

To use the batch capability, the user need only keypunch the session from LOGON
to LOGOFF, and submit it to BEM via the computer operator. The deck will be
queued and executed on a first-come first-served basis.

Output from batch tasks is routed to the main site printers, and each task's output
is identified with the user-id from the LOGON statement.

Batch decks are processed in a manner similar to the decks submitted via the
ENTER facility. For additional details on how these decks are processed, and how
errors are handled, see the description of the ENTER command (8.2.16).

•

•

•

• • •
c

0 ~
g 0.
c

Basic Statement and Command Formats
s: .j::>
~ 0
.... :0
tj CD

Operation Operand Format Type and Use Examples < w
I I

BYE Command- BYE J>
Terminates BASIC and returns to

.,,
BEM.

.,,
CALL string-constant [: param-list) Subprogram Statement- 17 CALL "SUBR" : 3+4, A, B ()

Initiates a call to a subprogram. 18 CALL "FIND" : #3, SIN, (A)
19 CALL "SEND" : C(,), K(3,4), B$

m z
c -

CHAIN {string-expression} Subprogram Statement- 23 CHAIN "PROGRAM2, CHAINLIB, PACK34"
channel-setter 24 CHAIN A$ WITH #3

l WITH channel-setter, . l ln1t1ates compilation and execution of 25 CHAIN #4 WITH #1, #4, #J8

another program segment.

CHANGE {~tring-name TO numeric-vectoJ General Statement- 34 CHANGE A$ TO V
numeric-vector TO string-name 35 CHANGE M TO B3$

l BIT expression] Converts a string to a vector or vice 36 CHANGE G TO K1$BIT12

versa

DATA {~Iring-constant }· ... Input/Output Statement- 45 DATA 1, 3, 6, 1 E3, -.34, 17.3E34
numenc-constant 47 DATA "STRING ONE", STRING TWO, OTHER STR

Supplies values for subsequent READ 49 DATA FOURTH STRING, 33, "FIFTH STRING"

statements.

DEF FN/etter($] [(param-list)) Declaration- 54 DEF FND (X,Y) = SQR(X12+Y12)

[, local-list] Defines the entry point into a user 55 DEF FNS$ (X,Y$) = SEG$ (Y$,X,X) & ""

function. 56 DEF FNQ

[=, expression] 57 DEF FNG$, I, J, K
58 DEF FNE (A,B,C),W,Z

DELETE [line number-list] ["search-string"] Command- DELETE 10

Deletes lines from the BASIC program DELETE 100-132

in the workspace.
DELETE "INSTRUCTIONS"
DELETE 1-100 "REM"

><
J> I I CD

m
s: tn i:iJ
)> c:
Ul s () s I

=i c J> J> r
m en

CD z :a ..,
:0 c<
CD -CD n~ ..,
CD
:I om (")
CD ~J> stn

J> -Zn
c~
.,, J>
0-t
:a m

DIM letter[$] (integer[, integer]), ... Declaration- 67 DIM A(3), B(4,5)

Defines arrays or vectors and specifies 68 DIM G$ (45)

subscript bounds. 69 DIM C(100), H$(2,40)

(continued)

ss

~
J> m
-I z
tn -I

-,,)>
l'; '
m

Basic Statement and Command Formats (contd)

Operation Operand Format Type and Use Examples

END Control Statement- 78 END

Defines the last statement in the main
program and terminates execution.

FILE channel-setter : string-expression· lnput/Outp_ut Statement- 82 FILE #3: "*"

Defines and opens a data file. 83 FILE #I: "SQ, ERRORS, SPOOL3 "
84 FILE #7: "COBOLPGM, LIBFILE(IWRPASS) "
85 FILE #J: A$

FNEND Declaration- 88 FNEND

Defines the end of a multiline user
function and returns control.

FOR numeric-variable= numeric-expression Control Statement- 93 FOR I = 3 TO 10

TO numeric-expression 94 FOR J2 =I TO POS(A$,8$,I)

[STEP numeric-expression) Initiates a loop and specifies values for 95 FOR K = J2 TO L3 STEP 4

loop index.

GOSUB line-number Control Statement- 102 GOSUB 943

Transfers control to a subroutine and
saves return address.

GOTO line-number Control Statement- 111 GOTO 130

Transfers control to another statement
in the program.

IF Format 1: Control Statement- 120 IF A$ = "YES" THEN 340

expression test expression Compares two expressions according 122 IF SIN(X) = 0.5 GOTO 43

rOTO ! to the "test" specified and if true, 1 23 IF END #3 GOSUB 230

GOSUB line-number performs the GOTO or GOSUB. A file
THEN condition may also be tested.

Format 2:

iEND ~ MORE channel-setter

tOTO ! GOSUB line-number
THEN

(continued)

• •

--

•

~I)>
Gl ' m N

("")

CD
m
s:
CD
)>
U>
()

=' 11 ;::! c
m (Jl

ct> ..,
:::0
ct>
ct> ..,
ct>
::I
(')
ct>

c
0)>
Q I

n 0 c _.
s: .p.
~ 0
z :::0
0 ct> . <

w

• •
Basic Statement and Command formats (contd)

Operation Operand format Type and Use Examples

INPUT (c/Jannel-setter : I variable-name •... Input/Output Statement- 130 INPUT A,8$

Solicits input from the terminal or 140 INPUT #I: 0(3.41.J

reads a file and assigns values to the
variables listed.

LET Format 1: Assignment- 143 LET AS = SEGS (AS.3.41
numeric-variable 145 B(3.41 = SIN(YI

[=numeric-variable ... I 147 FND = B(3.41 • A(41 +I
= numeric-expression Assigns values to numeric or string

Format 2:
variables, or to a function.

string-variable
I = string-variable . . . I
=string-expression

Format 3: I
FN/etter($) =expression

--
LIBRARY string-constant •... Subprogram Statement- 155 LIBRARY "SUBLIBRARY. PACK 11"

Specifies names of subprogram librar-
157 LIBRARY "CATALOGEDSUBLIBRARY(ALLOWDI"

ies to be searched.

LIST [line-number-list) ["search-string" I Command- LIST 3-4. 10, 100-200

Displays lines of a BASIC program to UST "PRINT"

the terminal. UST 1-100 "REM"

MARGIN [channel-setter :) numeric-expression Input/Output Statement- 160 MARGIN 120

Changes the current margin setting for 164 MARGIN #3: 64

the terminal or a file.

MAT letter = letter + letter Matrix Operations- 174 MAT A= B I C

Adds two matrices and places the re- 175MATV=W+Z

suit in a third matrix.

MAT letter = CON [(trimmer) I Matrix Operations- 17B MAT A= CON

Sets all elements of the matrix to the 179 MAT V =-CON (I)

value 1 . The matrix may optionally be
redimensioned.

.(continued)

•
c

0)> go
c: _.
s: .p.
~o
~ ::D
o CD

< w

OJ
m
s::
i:D
)>
~
(")

:j 1 ' ? c
m UI

~
m
:JJ

~

CD ...
:n
CD -CD ...
CD
:J
()
CD

~I)> Cl •
mW

Operation Operand Format

MAT letter = ION I (trimmer))

MAT letter = INV (letter)

MAT letter = letter • letter

MAT letter$ = NUL$ I (trimmer l I

MAT letter = (numeric-expression) • letter

MAT letter = letter - letter

MAT letlf!r = TRN (letter I

MAT feller = ZER I (trimmer))

MAT INPUT I c/Jannel-setter :)

letter($)1 (trimmer)), ...

(continued)

• ,

Basic Statement and Command Formats (contd)

Type and Use Examples

Matrix Operations- 185 MATH = ION (3,3)

Sets the matrix to an identity matrix. 188 MAT J =ION

The matrix may optionally be redimen-
sioned.

Matrix Operations- 190 MAT 0 = INV (R l

Performs the matrix inversion function
on square matrices.

Matrix Operations- 198MATU=v·w

Multiplies two matrices and places the 199 MAT A= V • 8

result in a third.

Matrix Operations· 201MAT0$ = NUL$

Sets all elements of a string matrix to 205 MAT f$ = NUL$ (I.JI

null strings. The matrix may optionally 206 MAT G$ = NUL$ (3)

be redimensioned.

Matrix Operations- 212 MAT D = (J+4) • E

Multiplies all elements of a matrix by a
213 MAT V =(SIN (U 11 • W

scalar value.

Matrix Operations- 221 MATD=F-E

Subtracts two matrices and places the
result in a third matrix.

Matrix Operations- 234 MAT D = TRN IF I

Transposes rows for columns in a ma-
tr ix.

Matrix Operations- 244 MAT S = ZER

Sets all elements of the matrix to the 247 MATE= ZER (3.41

value 0. The matrix may optionally be
redimensioned.

Matrix Operations- 253 MAT READ A. 8$

Solicits input from the terminal or a
file and assigns values to each ele·
ment of the matrix.

•••

·----

•

-: I}> Cl •
m .f:>.

,,
)>
Cl
m
:II

~

CD
m s::
CD
}>
~
(')

=J 1 ' ;:! c
m UI

<II

"' ::0
~
<II

"' <II
::>
n
<II

c
0 }>
0 •
0 0 c ~

~ t) ...
z :::0
0 <II
. :<:.

w

•
Operation Operand format

MATLINPUT I channel-setter :)

letter$ I (trimmerl J •...

MAT PRINT I channel-setter : I
letterf $JI separator) , ...

MATREAD I channel-setter :)

letter($1(frrimmerl) • ...

MAT WRITE channel-setter: letterf$), ...

i
MERGE element. library 11password11

(.volume)

t NEXT numeric-variable

NEW

OLD element.library((passwordl JI, volume)

ON numeric-expression

rOTO ~ GOSUB line-number, ..
THEN

(continued)

•
Basic Statement and Command formats {contd)

Type and Use Examples

Matrix Operations- 255 MAT LINPUT #3: A$, 8$

Solicits input from the terminal or a 256 MAT LINPUT D$

file and assigns complete lines of data
to each element of the string matrix.

Matrix Operations- 262 MAT PRINT A, B; C;

Displays a matrix to the terminal or e 265 MAT PRINT #8: 6$,

file. Spacing is determined by the
separator.

Matrix Operations- 272 MAT READ A

Reads values in for each element of 277 MAT READ B$f31

the matrix from DATA statements or 279 MAT READ #J+3: C, Df3.41

from a file.

Matrix Operations- 281 MAT WRITE #3: A,B

Writes each element of the matrix to a 283 MAT WRITE #1: K$, Y

record in the file.

Command- MERGE SUBR. SUBLIB, SUBPAK

Reads in an existing program on disk
without deleting the original contacts
of the workspace.

Control Statement- 292 NEXTI

Terminates a loop initiated by a FOR 293 NEXT J5

statement.

Command- NEW

Deletes the contents of the BASIC
workspace so a new program may be
written.

Command- OLD PRINTSIN, PROGRAMLIB.DISKPK

Deletes the contents of the BASIC OLD COMPUTE,CATALOGUEDFILE

workspace when located and reads in
an old program from disk.

Control Statement- 320 ON J*(4+1) GOTO 120,300, 120.430
111 ON K GOSUB 10,20,30,50.10,40

The value of the numeric expression
selects which line number in the list
will be used with the GOTO or GOSUB
statement.

•
c

0)>

§ ~
~ ~
~ 0
z :D
0 Cl> . :c:

w

OJ m
S'. m
)>
CJ)

n
~11
~ c

Ill
Cl> ..,
:D
Cl>
Cl> ..,
Cl>
:J
0
Cl>

)>

-: I)> Gl I
m <J1

Basic Statement and Command Formats (fontd)

Operation Operand Format Type and Use Examples
ii~

PAUSE Control Statement- 332 PAUSE

Suspends execution of the program
and queries the terminal user to deter-

,,
~I)>
:JJ

~
mine whether to continue or not.

PRINT (line-number-list)['search-string") Command- PRINT 3-4.10.100-200

Displays lines of a BASIC program to PRINT "'LINPUT"

the terminal. PRINT "END" 9000-99999

PRINT (channel-setter :) Input/Output Statement· 345 PRINT "THE ANSWER IS";A3

expression separator ... Displays the value of each expression 354 PRINT l,J,K

listed according to the format specified 356 PRINT T AB(l);I;

by the separators. Display is to a file or
a terminal. OJ

m
RANDOMIZE General Statement· 362 RANDOMIZE s::

Obtains a random seed for the random
number generator.

iii
~

l

READ I channel-setter :) variable, ... Input/Output Statement- 371 READ A.B.C

Assigns values to each of tho variables
373 READ #4: A$(45)

listed from DATA statements or by 377 READ NI: A3, 87$, C(2,3)

reading records from a file.

RESEQUENCE start I :incr) I :file-par ams I Command- RESEO 100:50:RESPROG. PROGUB, PACK57

Resequences the program as it is
saved to a library file using the starting
line number and increment.

n

~1' r;; ~
CD ..,
::n
CD
CD'
~
:l

£
RESET (channel-setter: (numeric-expression) I Input/Output Statement- 382 RESET

Repositions the file or the DATA state· 384 RESET #3

ment pointer. 388 RESET Nl:V3

t
REM any characters for a comment General Statement- 391 REM THIS PROGRAM COMPUTES THE EIGENVALUES

Used for an in-line comment. 392 REM FOR AN ARRAY.
393 REM
394 REMARK

RETURN Control Statement- 395 RETURN

Returns from a subroutine which was
called via GOSUB.

RUN !Command· RUN

Initiates compilation of a program in
the workspace.

{continued)

•· •• ,.

• •
Basic Statement and Command Formats (contd}

Operation Operand Format Type and Use E1tample1

RU NOLD element. filename[I.password II (.volume) Command- RUNOLD COMPUTE,CATALOGUEDFILE

Initiates compilation of an old program
stored on disk.

SAVE element.filename[I.password)) [,volume) Command- SAVE COMPUTE, CAT ALOGUEDFILEIPSWORD)

Saves the BASIC program contained in
the workspace on disk.

SCRATCH channel-setter Input/Output Statement- 403 SCRATCH #3

Deletes the contents of the BASIC file. 404 SCRATCH #1-2

STOP Control Statement- 412 STOP

Terminates execution in the program.
May be placed anywhere within the
program as opposed to END which
must be last.

SUB string-constant: params Subprogram Statement- 421 SUB "FINDSPAC"

Defines the entry into a subprogram 425 SUB ''INTEGRAL" A. FNC, J

and specifies any passed parameters. 429 SUB "FILEFIND" #13, G$

SUBEND Subprogram Statement- 437 SUBEND

Indicates the last statement in the
subprogram and returns control to the
CALL statement when executed.

SUBEXIT Subprogram Statement- 449 SUBEXIT

Returns control to the CALL statement
from anywhere within the subpro-
gram.

SYSTEM [BEM command) Command- SYSTEM

Returns control to BEM. or executes a SYSTEM FSTATUS PROGRAMLIB.PACK33

l single BEM command without leaving
BASIC.

SYSTEM string Control Statement- 4 75 SYSTEM A$

Issue a BEM command from a running 476 SYSTEM "RUN" &P1 $

BASIC program.

t (continued}

•
c

~~
~~
i ::0
0 <D . <

w

OJ
m
s: m
)>
Cf)

c=;

~'~ <D ..,
::0
~
<D

~
::J

£

-:
~ll>
~

~1~
"' -...J

Basic Statement and Command Formata (contd)

Operation Operand Format Type and Uae E11ample1

TIME integer General Statement- TIME 120

Changes the CPU time limit placed on
an executing program.

USING using-string. expression(, expression) Input/Output Statement· 127 PRINT USING A$.B,C

Defines format string and edited ex: 145 MAT PRINT USING "11.111111111",B

pressions. 167 PRINT 117: USING Ct$, f$;G

WRITE cl1anne/.setter: expression • ... Input/Output Statement- 523 WRITE 113: A, SIN(X).8$

Writes records to a file. one per ex-
pression listed.

• "·· •

~,~
"' 00

-:
~

~

OJ m s:
iii
~
(')

~I~
~ ...
:n
;.
~
:.l

Q

c

§ ~
! !)
_, :n
~ ID . :"-

w

•

•

•

UA-0140 Rev.3 BEM:BASIC - User Reference
DOCUMENT NO

2
:;
4
5
6
7
5
9

10
11 ,,
13
14
15
1c
17
1e
19
zo
21
"'"' .. ,
23
24
25
26
27
2E
2c;
3:

• 31
32
33
34
35
36
37
38
39
40
41
42
43
4.:.
45
46
47
4a
49

TITLE I PAGE REV.1

APPENDIX B SAMPLE BASIC SESSIONS

An example of a complete session is provided in this Appendix to aid the new user
in learning BASIC. The designation IN: denotes text, which is supplied by the user,
and OUT: designates reponses from the system.

lN: /LOG ON USR1
OUT: USER LOGGE!) ON, SYSTEM READY
OUT: I
IN: EXEC BASIC
OUT: OS/3 8 ASIC READY c v E: Q 1. 1) BEGIN:
OUT: •
IN: 10 PR INT "PROGRAM TO COMPUTE ARO OF A CIRCLE GIVEN RADIUS"
OUT: *
Il't: 20 PRINT "ENTER CIRCLE RADIUS:";
OUT: *
I~: 30 INPUT R
OUT: •
IN: 40 A : 3.1.:.159 R ** 2
OUT: ?40 A = 3.1-.159
IN: .. a A = 3.14159 • R *"* 2
OUT: *
IN: SC PR I i't T "A RE A OF CIRCLE IS ";A,"CONTINUE?";
OUT: •
IN: oo INPUT c .i
OJT: *
IN: 70 IF cs = "YES" THEl't 200
OUT: •
IN: oO END
OUT: •
I;~: RUN
OUT: i'tO sue H LINE NUMBE~ FOR GOTO 0 R. GOSU9
OUT: LOAuER AT Ll NE 0070
OUT: EXECUTION C/.LCELLED DUE TO ABOVE ERRORS
'JUT: •
I l't: LIST 7Q
OUT: 70 IF c,; = "YES" THEN 2 00
OUT: *
IN: 7C IF cs = "YES" THEN 2 Cl
OUT: *
! N: RUN
OUT: PROGRAM TO COl'IPUTE AREA OF A CIRCLE GIVEN RADIUS
OUT: E:NTER CIRCLE RADIUS:!>
IN: 1
OUT: AREA OF CI~CLE IS '3.14159 CONTINUE ?I>
IN: YES
0 :JT: El'tTER CIRCLE RADIUS:I>
I\: ' OUT: AREA OF CIQCLE IS 12.5664 CONTINUE?·!>
IN: i'tO
OUT: ..
I !Ii: oH
Oi.JT: I
IN: LOGOF"
OUT: USER L%GEO 0 FF , TER"1INAL IS NOw FRH

8-1
PAGE

8-2
PAGE I PAGEREV.j

BEM:BASIC - User Reference
TITLE

Key for sample BASIC session:

1-3

4-6

13-14

15-16

17-24

25

26-29

30-35

36-37

38

39-40

41-42

43-45

46

47-49

Description

These lines constitute the iog-on procedure. A user has logged on
with a user-id of USR1.

The BASIC compiler is invoked.

Program lines 1 O. 20. and 30 are entered and verified by the
Syntax Checker.

Line 40 is entered, but is incorrect, so it is rejected by the Syntax
Checker. The statement up to and including the constant 3.14159
is correct. but there is an error after the constant.

The user corrects the error by inserting a multiplication operator
between the constant and the variable R. The line is accepted and
verified.

The rest of the program is entered.

A RUN command is entered to execute the program.

An error is detected by the compiler at line 70. Execution is
inhibited and the user's terminal is returned to compilation mode.

Line 70 is displayed and the reference to line 200 is corrected to
use line 20. Execution is again attempted.

The program begins execution by displaying a heading line and a
request for input.

Data is supplied for the INPUT statement at line 30.

The answer is computed and displayed, along with the question.
as to whether to continue or not. The user requests continuation.

The program again requests input and is supplied a value of 2.

A second answer is comp0ted and displayed. This time the user
selects not to continue the program. and so it terminates.

To terminate the BASIC compiler. the BYE command is used.

A LOGOFF command is issued to end the session.

UA-0140 Rev.3
DOCUMENT NO

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO . I PAGE REV I

APPENDIX C SYSTEM ERROR MESSAGES

Error messages appropriate for an interactive environment are short and self
explanatory. For additional information about an error message, the user is
directed to the HELP command. The messages are categorized on a functional
basis and are listed in the following table. Possible causes of each error and
suggested procedures to follow in response to the error are also included. The
designation to the right of the message identifies the BEM component which
identified the error.

A SUBSTATEMENT OCCURRED BEFORE AN END BASIC

Subprograms must occur after the main program. This means that they must be
placed immediately after the END statement, or after another subprogram's
SUBEND statement.

ACCESS TO PROGRAM NOT PERMITTED FOR USER ID BEM

The account currently in use does not permit its users to execute the selected
function or program. Use another account, or contact the system administrator to
change the account's restriction .

ACCESS TO QUEUE TYPE NOT PERMITTED RSP

Access to the queue type (PRINT, PUNCH, READER, LOG. JCS, RBPPU, RBPPR) is
not permitted for one of two reasons. The 05/3 Supervisor has not been
generated to include the appropriate level of support for the queue, or the BEM job
control includes parameters to restrict access to that queue. Consult the system
administrator to have the access type changed.

ACCESS TO SYS RES FILES NOT PERMITTED UBRARY

The account currently in use does not permit its users to access files on the OS/3
system pack. Use another account or contact the system administrator to change
the account's restriction.

ACTIVE SUBROUTINES EXCEED 16 LEVELS BASIC

A maximum of 16 levels of subprogram calls may be issued. Investigate for a
possible program loop, or a recursive subprogram call.

ALLOCATE FORMAT ERROR BEM

The ALLOCATE command has been entered incorrectly. The format of this
command is:

/ALLOCATE type.file.vol,(SIZE=n] (,INC=n] [1N1T={y~~} J

C-1
PAGE

*

t

C-2
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev. 3
JPAGEREV.1 TITlE DOC\JMENT NO.

•

ARGUMENT TOO LARGE FOR EXP(X) FUNCTION BASIC

A value has !:Jeen used with the exponential function which will produce a result
greater than the largest number that the 90/30 is capable of handling. The
maximum permissible value for the EXP argument is approximately 174.6.

ARRAY SUBSCRIPT OUT OF RANGE BASIC

An array subscript, which is out of the range specified by the dimension statement
has- been detected. The subscript is either less than zero, or greater than the upper
limit in the dimsnsion statement. If no dimension statement has been used, the
upper limit is 10.

ATTEMPTED TO RESET FILE BEYOND EOF OR NEGATIVE BASIC

The RESET statement may not reposition the file past the end of the file pointer.
The record number specified must be positive.

ATTEMPT TO TEST END OR MORE ON RANDOM FILE BASIC

The IF-END or IF-MORE formats may only be used against TERMINAL format files.
Check the file type referenced by this statement.

BAD FORMAT - TRY AGAIN RSP

The user has transmitted something other than the preformatted parameter table.
This may also be the result of using RSP with a UNISCOPE without the protected
fields hardware option.

BASIC EDITING COMMAND UNRECOGNIZABLE BASIC

Either an invalid command has been entered, or a BASIC statement has been
entered without a valid line number. Valid commands are:

OLD
RUN
BYE
SYSTEM

NEW
PRINT
DELETE
RU NOLD

SAVE
HELP
UST

BASIC FILE NOT OPEN OR NO DATA STATEMENTS BASIC

The channel number referenced by the flagged statement has not been opened by
a FILE statement. Check the channel-setter for a valid file. or issue a FILE
statement for the channel to be used. This error can also result when READ
statements are issued and no DATA statements are present .

BASIC SOURCE LINES OUT OF ORDER BASIC

The lines of source in a BASIC program read in by a RUNOLD or CHAIN statement
are not in order by line number. This is mandatory. Do an OLD against the program
and then SAVE it.

•

• '

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGE REV I

BEM POINTERS DO NOT AGREE WITH WORKSPACE WORKSPACE

The workspace access routines have detected a problem with the in-core and disk
pointers. This could have been caused by a previous 1/0 error, or a modification of
the disk by an external source. If the error persists, the user may be forced to halt
the current program and reexecute it.

BULLETIN LOCKED - RETRY LATER BEM

The bulletin cannot be updated because another user is currently accessing it. Wait
until the other user finishes and retry the command. The system administrator
shoul_d discourage the updating of the bulletin by multiple users.

CHAIN ERROR - INVALID NAME OR PASSING BAD FILE BASIC

There are two possible causes for this error. The Library element specified in the
CHAIN statement does not exist. or one of the channel numbers of files to be
passed to the next program segment is invalid.

CHANGE ERROR BASIC

The CHANGE operation specified by the flagged statement is not valid. Possible
causes of this error are an invalid vector or vector size, invalid BIT expression, or
invalid string result, or invalid value encountered during conversion .

CHANNEL NUMBER INVALID IN FILE STATEMENT BASIC

The channel-setter used in the FILE statement results in a channel number which
is not in the range 1 to 4095. Channel zero cannot be defined by a FILE statement.

COMMAND CANNOT BE USED AT THIS TIME BEM

A PRINT, PUNCH, DELETE. or FSTATUS command was issued while an active
program had been interrupted. The active program was accessing a file at the time
of interruption. Allow the interrupted command to complete (RESUME) and then
retry the command.

COMMAND KEYWORD OMITTED EDT

An operand has been entered for which there is no command function. For
example, the file parameters have been used without the specification READ or
WRIT~ .

COMMAND TERMINATED EDT

The EDT command which was active when the user issued a /INTR or'DISCON
TINUE command has been terminated. Informational message only.

CONTINUE? (Y OR NI ALL

BEM has displayed a full screen or page and has additional output for the terminal.
When ready, the user m(iy respond with a Y to see additional displays, or an N to
terminate the display and the command. A response other than Y or N will result in
the CONTINUE message being displayed again.

C-3
PAGE

t

C-4
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev. 3
DOCUMENT NO.

COPY WITH NUMBER OPTION INVALID EDT

The COPY command may not be used with the NUMBER command.

Def MUST PRECEDE REFERENCE IF LOCALS ARE USED BASIC

When local variables are used in a multiline user function, the definition must
occur at a tower numbered line than the first reference to that function. Move the
function definition and rerun.

DESEQ OPTION ONLY ALLOWED WITH READ EDT

The DESEQUENCE option is only meaningful when used with the EDT READ
command; in all other cases its use is treated as an error.

DEVICE UNAVAILABLE AT THIS TIME BEM

The printer or punch is not configured and may not be used. Contact the system
administrator to have the printer or punch configured.

DIMENSIONS INCONSISTENT IN SUB CALL BASIC

The type of variables used in the SUB and CALL lines differ. Either a scalar
variable was used where an array was expected, or the number of subscripts on
the SUB and CALL lines differ.

DISPLAY COMMAND PARAMETER ERROR BEM

The DISPLAY command has been entered incorrectly. Valid options are:

{
JOBS }

/OISPLA y VOLUMES

DIVISION BY ZERO, EXECUTION CONTINUES BASIC

The program has attempted a division by zero. The algebraic result of division by
zero is undefined; however, execution continues using a high value.

EDT VARIABLE AREA NOT AVAILABLE EDT

There is currently insufficient storage available to use EDT variables.

ELEMENT /GROUP NOT FOUND BEM

The element or group specified in the DELETE command could not be found. Check
the spelling of the name and check the names in the file via FSTATUS.

ELEMENT IS NOT IN THE LIBRARY FILE USRARY

The program requested by the command is not in the file specified. Check the
spelling of the program name and verify that the program is on the file. Also, be
sure the correct module type has been used (P for PROCs).

•

•

•

•

•

•

UA-0140Rev. 3 BEM:BASIC - User Reference A C-5
DOCUMENT NO . mLE I PAGEREV.1 . PAGE

ELEMENT NUMBER DOES NOT EXIST. RE-ENTER C> BEM

The user did not select one of the numbers listed by the RECOVER command. Only
those elements identified with a number in the left margin may be recovered.
Reenter the correct number and the new module name.

ENO OF FILE ON INPUT OR LINPUT BASIC

The program has issued an INPUT or UNPUT statement which attempted to read
more records than were in the file. Investigate the program logic to determine why
too many records are being read. ·

ENO STATEMENT IS MISSING OR MISPLACED BASIC

All BASIC programs must have an END statement as the last line. Insert an END
statement and rerun.

ENTER ELEMENT NUMBER. NEWNAME OR "STOP"C> BEM

The RECOVER command has presented a list of elements which could be
recovered. Select one by specifying its number. and a new name for it. Other
possible responses at this point are STOP to terminate the command, or HELP to
obtain additional information .

ENTER FILE NAME BASIC

The user has entered a SAVE. OLD. or RUNOLD statement without specifying a file
name. Supply the name in response to this message.

ENTER FUNCTION NOT CONFIGURED BEM

The system administrator has not elected to make the ENTER command available
at your site. Contact the administrator to have' the function installed. This error
may also be the result of not having OS/3 Spooling configured, or not having any
spooled Input Readers.

ERROR IN READING CARDS/ENTER STREAM, USER CANCELLED BEM

A fatal 1/0 error has occurred while reading cards from a batch stream or enter
file. The batch is discarded and the user is cancelled.

ERROR IN READING SCRATCH SPACE WORKSPACE

An 1/0 error has occurred while reading from the work area. Retry input or
investigate for possible hardware problem.

ERROR IN READING SCRATCH SPACE INDEX WORKSPACE

An 1/0 error has occurred while reading the work area index. Retry input or
investigate for possible hardware problem.

t

C-6
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev. 3

I P.o.GE REV I TITl.E DOC\JMENT NO.

ERROR IN SOURCE - RESEQUENCE TERMINATED BASIC

One or more of the source statements read in by an OLD command with errors
have not been corrected. Only valid programs in the workspace may be rese
quenced. This error indicates that- there is at least one statement which is not
syntactically correct.

ERROR ON READ FROM FILE (INVALID NUMBER) BASIC

A READ statement attempted to read a numeric variable. The record which was
read did not contain numeric data.

ERROR PROCESSING USER FILE LABELS FILES

The file being accessed contains user file labels. These cannot be processed by
BEM.

ERROR WHILE WRITING INTO SCRATCH SPACE WORKSPACE

An 110 error has occurred while writing to the work area. Retry input or
investigate for possible hardware problem.

EXPONENT OVERFLOW. EXECUTION CONTINUES BASIC

The result (or intermediate result) of a computation has exceeded the largest
number the 90/30 is capable of handling. This number is approximately 101s.
Machine infinity is supplied and execution continued.

EXPONENT UNDERFLOW, EXECUTION CONTINUES BASIC

The result (or intermediate result) of a computation is less than the smallest
number the 90/30 is capable of handling. The number is approximately 10-1s. Zero
is supplied and execution continued.

EXPONENTIATION ERROR BASIC

Invalid operands were used with the A**B or AIB function. This error can occur if
"A" is negative and "B" is not an integer between 1 and 1 5 or - 1 and - 15.

EXPRESSION OUT OF COMPUTED GOTO RANGE BASIC

The calculated expression is not a valid number for this computed GOTO. It is
either too large or nonpositive. The count of line numbers in the statement
determines the largest value the expression may have.

FILE ACCESS HAS BEEN TERMINATED BY USER USRARY

This indicates that a file access has been terminated when the user did not wish to
wait on a FILE IS IN USE message.

FILE ALREADY EXISTS ON VOLUME BEM

The user is attempting to allocate a file which already exists on the specified
volume.

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGE REV I

FILE DOES NOT HAVE VALID "ENDUB" LIBRARY

While searching the directory of the file, BEM could not find the ENDLIB marker.
The file's integrity is in question. A possible solution would be to copy all elements
to another file, then scratch and rebuild the original file.

FILE IS EMPTY - ENDLIB MISSING UBRARY

The user has attempted to access an empty library file. Initialize the file with the
Librarian in order to use it with BEM.

FILE IS IN USE. PLEASE WAIT LIBRARY /FILES

Another user is accessing the file. After his command completes, yours will begin.
If you don't wish to wait, interrupt the system.

FILE IS NOT AN OS/3 LIBRARY FILE UBRARY

The file specified by the command is not a library file, or has not been initialized by
the librarian. Have the system administrator prepare the file, and be sure you are
using the correct file.

FILE PARAMETERS DO NOT FOLLOW "FSTATUS" BEM

The FSTATUS command requires file parameters in the format:

filename (password), volume

FILE PARAMETER FORMAT ERROR UBRARY/FILES

The file parameters given for a file-access function are not valid. The maximum
length for each parameter is: name, 8; filename, 44; password, 6; volume, 6. If a
module type has been supplied, it must be S, P, or M.

FILE REQUESTED IS NOT ON DISC VOLUME LIBRARY/FILES

The filename requested is not on the volume specified. Check the spelling of the
filename or verify that the file is on the volume.

FILE STATEMENT INVALID FOR# 0 BASIC

The channel-setter specified with the FILE statement results in a value of zero.
Channel zero, the terminal, cannot be defined by a FILE statement.

"FNEND" FOUND WITHOUT FUNCTION DEFINITION BASIC

The FNENO statement was detected, but it was not at the end of a function.
Remove the sta,ement or place it in the correct location and rerun.

"FNEND" STATEMENT MISSING BASIC

A user-defined multiline function exists in the program without a closing FNENO
statement. Locate the function and insert the FNEND statement.

C-7
PAGE

t

C-8

t

A BEM:BASIC - User Reference UA-0140 Rev. 3
IPAGEREV.1 mu OOC\JMENT NO.

FUNCTION ASSIGN DOES .NOT MATCH FUNCTION NAME BASIC

The name of the function being assigned differs from the name of the function in
which it appears. Only the function being defined may be assigned a value.

FUNCTION ASSIGNMENT MUST APPEAR WITHIN FUNCTION BASIC

A value must be assigned to a multiline function before the FNEND statement. The
function value may not be assigned outside the body of the function.

FUNCTION QEF MUST PRECEDE USE IN "CALL" BASIC

In order for a user function to be passed to a subprogram. it must be defined. Move
the definition into lower-numbered lines before the CALL

FUNCTION DEFINITION WITHIN A FUNCTION BASIC

BASIC has detected a function within the body of another function definition.
Check for a missing FNEND statement or restructure the function.

FUNCTION EXPECTED IN CALL OR SUB LINE BASIC

A previous CALL statement passed a function reference. This CALL did not pass a
function. The parameter types must be the same. Resolve the conflict and rerun
the program.

. FUNCTION HAS NOT BEEN DEFINED BASIC

The function referenced on the line in error has not been defined. Define the
function or remove the reference to it and rerun.

GIVEN LINE EXCEEDS 80 CHARACTERS WHEN RESEQUENCED BASIC

The line shown. when resequenced, is larger than SO characters. This is an
informational message, in that the complete resequenced line is written out, and
can be modified by EDT, but if the program is later read in by BASIC, it will be
flagged with an error for being over 80 characters in length.

GOTO INTO OR OUT OF FUNCTION DEFINITION BASIC

A function may not reference program lines which do _not occur within the body of
the function, nor may statements outside the function reference lines within the
function body. This applies to GOTO, GOSUB. ON, and IF statements.

ICAM ERROR (INPUT TOO LONG) RETRY BEM

The last message sent from the terminal to BEM did not arrive correctly;
retransmit it. Any input to BEM is limited to 128 characters in length. If this error
is displayed while transmitting the RSP Spool file descriptor screen. it indicates
the UNISCOPE being used does not.have the required protected format feature.

ILLEGAL COMBINATION - "NOT" INVALID EDT

If the NOT option is specified. then a search-string must also be specified and a
change-string must not be specified.

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. ITTl.E I PAGE Rev I

ILLEGAL COMBINATION OF COMMANDS EDT

Several command keywords have been entered which conflict. See Table 3-1 in
UA-0141 for allowable combinations.

ILLEGAL "VAL'" ARGUMENT BASIC

The string passed to the VAL function did not contain a valid number. The contents
of the string must be either an integer or a decimal number in scientific notation.
No extra characters may be prefixed or suffixed to the number.

INCORRECT NESTING OF FOR-NEXT STATEMENTS BASIC

A FOR or NEXT statement, which was not nested correctly, was detected. Possible
causes are:

1. A FOR statement that has the same in.dex as a previous FOR statement in
the nest.

2. A NEXT statement that does not have the same index as the FOR statement
immediately preceding it.

3. A NEXT statement that does not follow any open FOR statement.

INCONSISTENT FORMAT IN "USING" STRING BASIC

The format field type does not match the type of variable being printed. Either a
string was printed into a field beginning with $, + or -, or a number was printed
into a field beginning with <or >.

INPUT DATA INCORRECT, RE-ENTER BASIC

The data entered for an input statement does not match the variable types required
by the program. The entire line must be reentered. This error message could also
be caused by too much or too little data in the input response.

INSERT ERROR (DUPLICATE OR INVALID CHANGE STRING) EDT

Either the keyword INSERT is preceded by a string, or it is not followed by one. The
change string may also be invalid. See Section 3.1.2.4 or 3.1.1.6 of UA-0141.

INSUFFICIENT DATA TO READ BASIC

All DATA statements in the program have been used, yet the program attempted to
request additional data.

INSUFFICIENT INFORMATION TO CREATE SPOOL FILE RSP

The minimum information required to create a Spool file was not specified on the
spool descriptor screen. An input file requires either an LBL or both a JOB NAME
and an LFO.

C-9
PAGE

t

C-10
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev. 3
DOCUMENT NO.

INSUFFICIENT RESOURCES TO l.OGON BEM

There is not enough memory or user tasks to allow another user to log on to the
system. The user should wait until another user has released storage or logged off.

INTERNAL ERROR IN LIBRARY ACCESS ROUTINE LIBRARY

The library access routine within BEM has detected a logic error. Take a dump as
soon as possible, save all relevant data, and consult your Sperry Univac repre
sentative.

INTERNAL ERROR IN RESEQUENCE ROUTINE BASIC

A condition which should not normally exist has been detected by the resequence
routines. Collect all relevant data, obtain a memory dump, and contact your local
Sperry Univac customer representative.

INTERNAL ERROR IN WORKSPACE WORKSPACE

An internal error has been detected by the workspace access routines in BEM. If
the error persists the user may be forced to halt the current program and reexecute
it.

INTERRUPTED: (CJONT,(D)ISCONT.(S)VSTEM C> BEM

This message indicates that the user has interrupted BEM by means of the
MESSAGE-WAITING key on a UNISCOPE terminal, or the BREAK key on a
hardcopy terminal. The user has three options: C- will continue the interrupted
operation; D- will discontinue the current operation and return to command mode;
S- will temporarily suspend the current operation and allow the user to enter BEM
commands; when the user wishes to resume the current operation, the /RESUME
command is used.

INVALID @(LABEL) -- MISSING PAREN EDT

An open parenthesis was found to start a label, but there is no closing parenthesis.

INVALID @SET COMMAND EDT

An @SET command has been used with an invalid keyword parameter. The only
valid keywords for use with SET command are PAGE. LINE, TABS. and CHAR. See
Section 3.2.3 of UA-0141.

INVALID ASSIGN STATEMENT EDT

An ASSIGN statement must be of the form:

@ASSIGN Gn =expression

INVALID BLOCKSIZE OR RECORD SIZE FILES

BEl'vf cannot process the file due to a conflict with the block or record size for this
file. If the file already exists. check that the block size or record size is not zero, or
greater than 65K.

•

•

•

•
UA-0140 Rev. 3 BEM:BASIC - User Reference A

DOC\JMENT NO. mu I PAGEREV.1

INVALID BULLETIN OPTION - NOT READ/WRITE/DISPLAY BEM

There are only three valid bulletin functions which may be used with the BULLETIN
command. These are READ, WRITE. and DISPLAY. Correct the command and retry
it.

INVALID BY PARAMETER USAGE ... EDT

The BY specification has been used without the SEQUENCE command, or the form
of the parameter is not valid. See Section 3 .1 .1 .2 of UA-0141 .

INVALID CHANNEL SET EXPRESSION BASIC

The channel_-setter in the flagged statement resulted in a number less than zero, or
greater than 4095. Channel numbers must be between 0 and 4095.

INVALID COLUMN IN TAB COMMAND ED~

One of the column numbers used in a TAB command is not between 1 and 128.
See Section 3.2.3 of UA-0141.

INVALID COLUMN RANGE EDT

The column range specified in a replacement expression is invalid. It must be of
the form:

• n:i-j

•

wnere 1~i~j~128

INVALID DO OPTION EDT

The DO statement has the format:

@DO n [P)

where n is an integer (1-9) and the optional P specifies that each command is
to be printed.

INVALID EDT VARIABLE (#Gnl EDT

A single number sign (#) is assumed to designate an EDT general variable. This
must be followed by the letter G and a digit in the range 0-9. If a number sign is
needed in the command, enter two number signs(##).

INVALID ELEMENT TYPE BEM

The element type used with the /DELETE command must be one of the following:

S-source
0-object

P-proc
L-load

M-macro
G-group

C-11

PAGE

i

t

C-12
PAGE

A BEM:BASIC - User Reference UA-0140 Rev. 3

IPAGEREV.1 DOCUMENT NO .

INVALID EXPONENT FIELD IN USING STRING BASIC

An exponent field must consist of exactly five up-arrows (f) and cannot be followed
by a place holder#. Correct program and rerun.

INVALID FIELD DESCRIPTOR. EXPECTING<,> BASIC

The user program attempted to print a string variable with a numeric format.
Correct the program and rerun.

INVALID FIELD DESCRIPTOR. EXPECTING $,+.- BASIC

The user program attempted to print a numeric variable with a string format.
Correct the program and rerun.

INVALID FORMAT FOR LOGON COMMAND BEM

The LOGON command has been entered incorrectly. It must begin with the word
LOGON. and is followed by one to three fields of up to four characters each. Check
that none of the fields are too long, and that there is nothing entered after the
third field.

INVALID ID. ACCOUNT. PASSWORD FOR LOGON BEM

An unlisted id, account, and password combination has been entered; thus the
user has been denied access to the system. If the fields have been entered
correctly, then the account may have been removed from the system. Contact the
system administrator to have the account created.

INVALID IF STATEMENT

An IF statement has the following format:

@IF expression op expression COMMAND

@IF {i.} COMMAND

INVALID KEY LENGTH

Files containing keys cannot be processed by BASIC.

INVALID LINE RANGE

EDT

FILES

BASIC

Valid line ranges consist of single line numbers.(a,b) or ranges of lines (a-b). A line
number consists of a decimal number in the range 1-99,999. ·

INVALID LINE SET COMMAND EDT

An at sign (@) alone has been entered, or the line number with the line set
command is not valid. See Section 3.2.4 of UA-0141.

INVALID OR ZERO LINE NUMBER EDT

A line number in an EDT variable expression must be in the form nnnn.nnnn, and
must not be zero.

•

• ./

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO. TITLE I PAGEREV.1

INVALID MAJOR FRAME COMMAND RSP

The user has entered a command other than one of those shown on the screen. A
new screen will be presented. Valid commands are:

BREAK
RELEASE
CLEAR
lYPE

INVALID MARGIN SIZE

END
BUILD
READ
UPPER

DISPLAY
DELETE
WRITE
LOWER

RETRIEVE
HELP
SCREEN
SYSTEM

BASIC

The margin expression specified on the flagged statement resulted in a number
less than zero, or greater than 4095. This error could also have. resulted from
attempting to set the size of the margin greater than the limit for the file type.

INVALID NUMBER PARAMETER EDT

The number parameter must follow the NUMBER command. must be a valid
change string, and must terminate with at least 1 but not more than 15 numeric
characters. The parameter must be enclosed in apostrophes and any "or"
characters in the string must be entered twice.

INVALID OR DUPLICATE CHANGE STRING EDT

The change-string used is not valid or two change-strings have been entered .
Change-strings must begin and end with apostrophes. See Section 3.1 .1 .6 of
UA-0141.

INVALID OR DUPLICATE COLUMN RANGE EDT

The column range entered is not valid, due to incorrect format, or two column
ranges have been entered. See Section 3. 1. 1.3 of UA-0141.

INVALID OR DUPLICATE COPY-TO LOCATION EDT

Either two copy-to locations have been used (i.e .. @ COPY 1-10 TO 11 TO 22) or
the one given is not valid. The number following the word TO must be a valid line
number. See Section 3.1 .1 . 7 of UA-0141 .

INVALID OR DUPLICATE LINE RANGE EDT

The line range entered is not valid due to incorrect format or two line ranges have
been entered. See Section 3.1.1.9 of UA-0141.

INVALID OR DUPLICATE SEARCH STRING EDT

The search-string used is not valid or two search-strings have been entered.
Strings must begin and end with quotes or apostrophes. See Section 3 .1 .1 .8 of
UA-0141.

C-13

PAGE

t

C-14
PAGE

t

A BEM:BASIC - User Reference UA-0140 Rev. 3
j PAGERev.j TITLE DOCUMENT NO.

INVALID PROC GROUP NUMBER EDT

The PROC group number must be a single digit integer in the range 1-9.

INVALID RESPONSE. ENTER NUMBER. NEWNAME I> BEM

The user's response to the last query was incorrect. A non-zero number must be
entered first, followed immediately by a comma and then the module name. No
intervening spaces are permitted.

INVALID SCREEN ROLL COMMAND RSP

The user has entered a command other than one of those shown on the top of the
screen. A new screen will be presented. Valid commands are:

CMO
RIGHT
INSERT

UP
LEFT
UPDATE

INVALID SEARCH COMMAND

DOWN
DELETE
REFRESH

RSP

The search command issued to ASP is not correct. It consists of a search-string
and an optional column range. The search-string must begin and end with an
apostrophe. A column range is a single number, or two numbers separated by a
hyphen. The number must be between 1 and 256.

INVALID SEARCH STRING BASIC

A search-string consists of any character string· enclosed in quotation marks. If a
quote appears in the string. it must be typed as " ••.

INVALID SUBSTRING EXPRESSION EDT

A substring of an EDT variable is written as a starting position (s) and a length {I)
enclosed in parentheses--(s,I).

where 1 ~ s ~ 50 and s + I ~ 51

INVALID TAB EXPRESSION FOR PRINTING BASIC

The argument of the TAB function was less than one.

INVALID TRIMMER IN MATRIX STATEMENT BASIC

Either the trimmer specified did not result in a positive number, or the resultant
array would require more storage than the original array.

I

•

•

•

•

•

••

UA-0140 Rev. 3 BEM:BASIC - User Reference A
DOCUMENT NO . TITLE

INVALID VARIABLE EXPRESSION

An EDT variable expression must be one of:

STRING - 'ABC'
VARIABLE - Gn
NUMERIC EXPRESSION - n + m, n - m. n
LINE/COLUMN RANGE - n:i-j

110 AREA COULD NOT BE LOCATED. RETRY

I ?AGE REV I

EDT

UBRARY

An 1/0 area for the library function could not be acquired by BEM. Wait a few
minutes and r.etry. If the problem persists, contact the system administrator to
have the system memory partition enlarged.

110 ERROR ACCESSING MESSAGE INDEX BEM

An 1/0 error has occurred while writing to the bulletin file. Only part of the bulletin
is now valid. The DISPLAY option should be used to determine that status of the
bulletin. and the WRITE option may then be retried.

110 ERROR ON WRITE TO FILE FILES

An 1/0 error has occurred while writing the data management file. Investigate for
possible hardware prqblem or retry the program .

1/0 ERROR WHILE ACCESSING V.T.O.C. UBRARYIFILES

An 1/0 error has occurred while accessing the VTOC for the disk volume specified.
Retry or investigate for possible hardware problem.

1/0 ERROR WHILE READING CATALOG 'LIBRARY/FILES

An 1/0 error has occurred while reading the catalog. Retry or investigate for
possible hardware problem.

110 ERROR WHILE READING LIBRARY FILE UBRARY

An 1/0 error has occurred while reading the library file. Part of the program may
be missing. Retry or investigate for possible hardware problem.

1/0 ERROR WHILE WRITING LIBRARY FILE LIBRARY

An 1/0 error has occurred while writing the library file. The program has not been
saved. Retry the command or investigate for possible hardware problem.

LIBRARY FILE FULL, ELEMENT NOT ADDED LIBRARY

The library file has been filled and there is not enough room to write out the
program. The old version, if any, is left intact. Have the file expanded or its
contents compressed.

C-15
?AGE

t

C-16
PAGE

f

A BEM:BASIC - User Reference UA-0140 Rev. 3

IPAGEREV.1 TITLE DOCUMENT NO .

LIMIT OF 4 .. LIBRARY .. STATEMENTS EXCEEDED BASIC

BASIC will search at most four libraries for subprograms, the program has
attempted to use more than four.

LOADER AT LINE xxxxx BASIC

When the error was detected, the BASIC compiler was at the line number given by
xxxxx. This message is displayed in conjunction with another error message.

LOG OF A NON-POSITIVE NUMBER UNDEFINED BASIC

The LOG function has encountered a nonposttive argument. The logarithm of a
nonpositive number is undefined, thus execution is cancelled.

MATRIX DIMENSIONS ARE INCORRECT FOR FUNCTION BASIC

The row or column dimension of the matrices in the matrix statement is incorrect.
Check DIM statement for the matrices in question.

MISSING FILE PARAMETER EDT

A READ or WRITE command has been entered, but the file parameters do not
immediately follow the command keyword. Correct and retry.

MISSING FILE PARAMETER BEM

File parameters must immediately follow the DELETE, PRINT, or PUNCH keyword
and be in the format:

element, filename (password}, volume, type

MODULE NOT OVERWRITTEN. COMMAND TERMINATED UBRARY

This is a confirmation message informing the user that the WRITE command was
not executed. It results from a NO answer to the OVERWRITE question.

MORE THAN 29 FILES OPEN BASIC

BASIC does not support the concurrent use of more than 29 temporary and library
files per user. This program has exceeded the limit.

MORE THAN 4 CHARACTERS IN LABEL EDT

EDT statement labels may contain no more than four characters. Correct the proc
by using shorter labels.

MUST BE PRIVILEGED FOR BULL READ/WRITE BEM

Only privileged users may read or write the BEM bulletin. Normally, only the
system administrator will have a privileged status in the accounting file.

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
• OOCl:IMENHIO.

JC$; " .. ™·
TITLE I PAGE REV I

NEW NAME ALREADY EXISTS. RE-ENTERC> BEM

An element with the specified name already exists in the file. Select another name
and retry the response.

NO DISK SCRATCH SPACE AVAILABLE WORKSPACE

All the disk cylinders available to BEM have been assigned, wait and retry or
contact the system administrator.

NO FORMAT STRING DEFINED IN USING STRING BASIC

The user program attempted to print a variable using a format string that does not
contain any valid format strings.

NO MEMORY AVAILABLE FOR FILE 1/0 BUFFERS FILE

A memory area to store a block buffer and DTF could not be allocated for your file.
Retry later and contact the system administrator if the problem persists.

NO MEMORY AVAILABLE FOR WORKSPACE BUFFERS WORKSPACE

An area of memory could not be acquired for 1/0 buffers. Retry command when
memory becomes available. If problem persists, contact system administrator to
have the memory partition size increased.

NO PROC TO ENO EDT

The @END statement was issued while no proc was active.

NO SUCH LINE NUMBER FOR A GOTO OR GOSUB OR IF-THEN BASIC

The line number referenced in a GOTO, GOSUB, ON, or IF-THEN statement is not
present in the program or function. Insert the ·required statement or remove the
reference to it.

NOT A DATA MANAGEMENT FILE FILES

The file being accessed is not a valid sequential or direct access file. To be valid, it
must have type SQ or DA and contain a single partition.

NOT ENOUGH MEMORY IS AVAILABLE TO LOAD BEM

Insufficient storage is available to load the function you are calling for. Wait and
retry. If the problem persists, contact the system administrator to have the memory
partition size increased.

NOTHING HAS BEEN FOUND TO RECOVER BEM

The RECOV~R command has searched the library for deleted modules with the
same name and type as specified in your command, but could not find any. This
response may indicate that the library has been packed, or that you have recovered
all deleted elements and there aren't any left to display.

C-17

PAGE

t

C-18
PAGE

t

A BEM:BASIC - User Reference UA-0.14-0 Rev. 3

I PAGEREv.j DOCUMENT NO .

NULL USING STRING NOT ALLOWED BASIC

The using string specified in the print statement is a null string. Define the variable
and rerun.

NUMBER OF ARGUMENTS INCONSISTENT BASIC

The number and type of arguments passed in the CALL statement(s) do not agree
with the number and type on the SUB line.

NUMBER OF PARAMS IN FUNCTION CALL INVALID BASIC

A maximum of 16 passed parameters and local variables may be spec1tied on a
function declaration line. Reduce the number of labels and rerun.

NUMBER OF SUBSCRIPTS FOR ARRAY INCORRECT BASIC

The variable that caused the error has been dimensioned with a different number
of subscripts than were found in the reference to it.

OPERATION NOT PERMITTED TO FILE BASIC

The operation to be performed against the file conflicts with the file type.

OS/3 ALLOCA"rE ERROR BEM

This message is returned when the ALLOCATE command receives an error status
from the supervisor when trying to allocate the file. It may indicate that there is
insufficient space on the disk volume.

OUT OF MEMORY - RETRY (Y OR NI ALL

One of the internal routines within BEM has attempted to acquire additional
storage on a temporary basis. No storage was available. The user may wait for
storage to become available and reply Y, or may terminate the current pro~ram by
replying N. If the problem persists. contact the system administrator to have the
memory partition size increased.

OVERFLOW ON VARIABLE SUBSTITUTIONS -TRUNCATED EDT

When variables in a command line were replaced, the new line exceeded 80.
characters. The truncated command was processed.

OVERWRITE? (YES OR NO) LIBRARY

The program to be written out by the command already exists on the file. A reply of
YES will overwrite the previous version with the new one. A reply of NO will
terminate the command.

PAGE/LINE SIZE INVALID EDT

The page or line sizes are not within the correct range. PAGE must be between 1
and 255, LINE must be between 1 and 128.

• -...

• /

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
O()Cl:IMENT NO . I PAGE REV I

PARAMETER. TYPE MIS-MATCH BASIC

The type of a parameter passed to a function/subprogram conflicts with the type
defined for the function subprogram. For example, a string was passed when a
numeric value was expected or a ryumeric value was passed when a string was
expected. Compare the line in error and the definition; correct the discrepancy.

PASSWORD IS INVALID FOR FILE LIBRARY I FILE

The password used does not match the one cataloged for the file. Another cause of
this error could be failure to specify a password with the file-access command. The
user is denied access to the file in either case.

PAUSED AT xxxxx CONTINUE (Y or N} BASIC

;,-:;;:._.t

A PAUSE statement has been encountered at the line number given by xxxxx.
Answer YES to continue execution; answer NO to terminate the program.

'f' '"' PLEAS.E LOGON. BEM

'' ·~ .. -

'::::

The user's terminal has not been joined to the BEM system. Follow log-on
procedures given in Section 2 of UA-0139.

PRINT TO FILE> MARGIN SIZE BASIC
...

The program attempted to print a string, number or USING string with a length
greater than the current margin setting. Change the .margin -size, or reduce the
length of the expression printed.

PRINT /PUNCH 1/0 ERROR · BEM

A hardware 1/0 ·error has been encountered on the printer or ·punch. Retry the
command. If the problem persists, investigate a P,OSsible hardware error.

PRINTER/PUNCH IS IN USE, PLEASE WAIT BEM

~Another user is using the printer or the punch. Your command will be completed
after the other command completes. If you do not wish to wait, interrupt the
system.

PROGRAM CANNOT BE RESUMED BEM

The user tried to resume a program when no program had been loaded. A
RESUME command is only effective . when the user has interrupted an active
program and wishes to return to it.

PROGRAM COULD NOT BE FOUND BEM

The program to be executed via an EXECUTE command could not be found. Only
EDT. ASP. and BASIC may be loaded under level 4.0.

PROGRAM NOT INCLUDED IN CONFIGURATION BEM

The system administrator has not elected to provide the program you have
requested.

C-19
PAGE

i

t

C-20
PAGE

f

A BEM:BASIC - User Reference UA~0140 Rev. 3
jPAGERevl TITLE J DOCUMENT NO .

REFERENCE TO ACTIVE PROC EDT

The user has attempted the DO option on a currently active proc, or has _attempted
to enter the current proc with an @PROC command. ·

REFERENCED SUBROUTINE NOT FOUND IN LIBRARIES BASIC

All use: ·specified libraries have been searched, .but the subprogram listed in the
error massage could not be found. Execution is inhibited.

RENAME ERROR BASIC

The string-expression used to supply the new file name does not contain a valid
file parameter or temporary file name. This error may also be the result of
attempting to RENAME a data managemant file.

REQUESTED RECORD NOT FOUND IN DATA FILE Fil.ES

BASIC was attempting to read a record which does not exist in the data
management file. Probably due to a hardware error. If the problem persists, consult
your Sperry Univac representative.

RETURN WITHOUT MATCHING GOSUB CALL BASIC

The program has attempted to return from a subroutine that was not called by a
GOSUB statement.

ROLL OPTION VALID ONLY AT UNISCOPE TERMINALS BEM

The /SCREEN ROLL or /SCREEN COP optio11s can~1ot be used wt~h 0.1 hardcopy
terminal. The command is ignored.

RSP AVAILABLE ONLY AT UNISCOPE TERMINALS RSP

ASP canncit be used at a hardcopy terminal. Move to a UNISCOPE terminal and
reexecute ASP.

RSP/EDT MUST BE LOADED TO USE/BULLETIN BEM

The BULLETIN READ or WRITE comrnands can only be issued while EDT er RSP is
loaded (use @SY BULLETIN ...) since there is no workspace unless one of these is
active.

SAME MATRIX APPEARS ON BOTH SIDES OF EQUAL SIGN BASIC

The same matrix may be referenced on both sides of the equal sign in a MAT
statement. a new matrix must be generated.

SAT ERROR INITIALIZING FILE LIBRARY

The INIT=YES option has been selected in the command, and the file could not be
initialized. This could be due to a hardware error, or an attempt to initialize a
non-SAT file.

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A
TITLE I PAGE Rev. I

~" . '

~·--... - ~---_~ ..

SCRATCH AREA IS FULL. TEXT NOT ADDEO WORKSPACE

The program you are using has tried to acquire an additional unit of disk space and
t.;;:::· .. ~ ·could not do so. The last image entered has been lost. Wait and retry or contact the

system operator.

• ·. ·~ SCRATCH ERROR BEM

.:rtie fite Sl'Jtn:ified in· the command could not be scratched. This may be a result of
an error status being returned from the supervisor,. or could have been caused by
an attempt to scratch a file which should not be scratched (a system file for
example I.

sc'ReEN COMMAND FORMAT ERROR
;; .. :: ·~ -~~·. BEM

The SCREEN command has been entered incorrectly. Va.lid options are:

/SCREEN [~g~~LL] · [~~COP] .. . ·· ~ .fi~eight X width]

The default is /SCREEN NOROLL,NOCOP,24X80.

SCREeN DIMENSIONS ARE INVALID FOR RSP
" ' ;-,J,;

RSP

ASP may only be used with UNISCOPE terminals; the only valid sizes for these
terminals are 12 X 80, 16 X 64, 24 X 80, ~nd ?4,~· 64. These .a.~e the only sizes
which will be accepted. ;·•, · •t':c:::

SEARCH STRING NOT FOUND RSP

·',"' ~:. - ASP has 'searched the workspace from the:cu.rrent loc;:~tton tQ' ·.~he endt but could
not find the string requested. lnformationaLm~ssage only . ., . . ' ~ . ..

'~::"
SEARCH STRING NOT FOUND IN LINE-RANGE EDT

('·

The Editor has scanned all lines that the user's command has instructed it to, but
did not find the string for which it was searching. This is caused by looking for a
word or string which is not in the text. Informational message only.

SECOND DEFINITION OF AN ARRAY NOT ALLOWED BASIC

Two-dimension statements have been used to define the same variable. Remove
one of the statements and rerun.

SECOND DEFINITION OF THE SAME FUNCTION BASIC

The same function has been defined twice within the program. Remove one
definition and correct the program. Rerun.

SECOND DEFINITION OF SUB - DEFINITION IGNORED BASIC

Two subprograms with the same name have been encountered during the
compilation process. The second subprogram will be ignored. The second subpro
gram may have been found in a library element as a result of a library search. This
is a nonfatal error .

C-21
PAGE

t

BEM:BASIC - User Reference UA-0140 Rev. 3

PAGE I PAGEREV.j mLE DOCUMENT NO.

SEQUENCE PARAMETE.R ERROR EDT

The name or numb~r used to sequence a module is not correct. This may be caused
by using more than 1 6 numeric characters in the name or increment number. See
Section 3.1 .2.8 of UA-0141 .

SET MARGIN FOR OMS FILE NOT AT RECORD 0 BASIC

A MARGlhl statement was issued against a data management file while it still has
data in it. The MARGIN statement may only be used when tiie fil~ is empty.

SIMPLE VARIABLE INCONSISTENT WITH CALL BASIC

The CALL and SUB lines differ in the sµecification of a simple variable to be
passed to the subprogram. Resolve the inconsistency and rerun.

SOFTWARE CHECK AT ee LLLLLL BEM

A software check has been detected by the Monitor. Please take a dump as soon
as possible; save all relevant data, and consult your Sperry Univac representative.

SPECIFIED LINE NOT IN FILE EDT

The line specifi~d in (! replacement expression does not exist in the EDT work
space.

SPOOL FILE NOT FOUND - COMMAND IGNORED RSP

The file described is not present in the Spool file. Check the spelling of the entries,
and checlcthat the: correctqueue name was specified. The snoot elemer.t may not
iiave bxn cr:eatad yet.

SPOOL 1/0 ERROR R•u• RSP

An 1/0 error occurred while accessing the system Spool file. Respond R to retry; U
to terminate the t;Ommand. If invalid data has been retrieved, clear the workspace
(CLEAR) and retrieve.the file again.

SPOOL 1/0 ERROR WHILE ENTERING TASK BEM

The ENTER function has encountered a Spool file access error while writing the
command element to the Spool file. If the error persists, contact the system
administrator.

SQUARE ROOT OF A NEGATIVE NUMBER UNDEFINED BASIC

The SOR function has encountared a negative argument. The square root of a
negative number is undefined, thus execution is cancelled.

START ANO INCREMENT WILL EXCEED 99999 BASIC

The starting number and increment used with the RESEQUENCE command cannot
be used as they are. because they would cause one of the new line numbers to
exceed the maximum line number (99999) for 05/3 BASIC. Use a different start or
increment and reissue the command.

•

•

•

•

•

•

UA-0140 Rev. 3 BEM:BASIC - User Reference A

I I PAGEREV. j

STATEMENT FOLLOWING ENO/SUBENO NOT SUB/REM BASIC
~c:

The only permissible statements following an ENO statement are a REM statement
:::;~. ~;-:·or a SUB statement. Correct the program and rerun.

STATEMENT LABEL NOT IN FILE EDT

The label specified on the @GOTO statement could not be found in the EDT proc
space.

STATUS COMMAND PARAMETEFJ. ERROR BEM

-
.,,. •. The operand of a STATUS command is incorrect. Allowable status commands are: .. , _........ . . '

·/STATUS
/STATUS
/STATUS

STOPPED AT xxxxx
r~r:--r : . , ~ · ·t . .., . ''--'

I :-•

~M
. RESOURCE

BASIC

."'·,-.A STOP statement has been encountered or an er.ror~qetected at the line number
given by xxxxx. · · · · · ·

:i !r'
STRING EXCEEDS 4095 CHARACTERS BASIC

A string operation has produced a string 'with a ien:;gth i-n . excess of 4095
characters. The maximum number of characters permitted in a string is 4095 .

C!FM''"'-~µB: FNX PRECEDES "CALL" . BASIC
• ' < .. '1 ,. ~ . .,. ::: ; \.1 • =:. ;"' ~~: ~ :·. ~ ~~~ ~ ~· * -

mri "'-'rA 'Sos statement declaring a passed functioo car.mot~:ocsur before.·Jhe $tatement
that calls it (and defines the function parameters). Relt>eate <the subpi'Qgfam so it
occurs after at least one statement that calls it.

j s·J, .. S':J8-NAME 1$ GREATER TJiAN 8 CHARACTE~S BASIC
::

::::sc.2 "The name used· on a CALL or SUB statement· for a subprogranu:nu~t be a ~tring
constant which is not longer than 8 characters-. Correct the spelling of the name or
shorten its length.

~./·'~~, .· '

9 ,-;. :.- ''.SUBENO" OR "SUBE~IT" NOT IN A SUB BASIC

('.' .;.J;.·, ·,,:.· SUBEND or SUBEXIT was encountered which was not in a subprogram. The
SUBENO must be the last statement in a subprogram. • ·

~ .;c \ "SuBEXIT" NOT ALLOWED IN FUNC110N O~INITION BASIC

8 +,- ':-A ·SUBEXIT statement was encountered within a multiline user function definition.
It can only be issued from the subprogram level.

SUSROUTINE CALLING ITSELF BASIC

lV:N.;. A-C.is:LL statement has been found which references the subprogram in which it
c,' ""'"'0 fesiCies. 'Recursive calls in any form are prohibited.
1C .~"i£~2 :t~'- ~~:~·;:

C-23

PAGE

t

'C-24
PAGE

t

A BEM:SA.StCc~ User: Reference --UA-01.4QBev, 3

. ,P~GEfl~r .. :.: ______ ---~-'nru .. · · ... ·,,_..,,..,..,,...,,....,,...--:::=-...,..._..,..,,,-=--.'"':'."'""'..~-·=·..,.·----t.._·_ .. ~-. . -~~..;.;;·":~....;; ~ ·: ... 2~..:..·'-:'~:-. _

SUBROUTINEUMITOF30EXCEEDED. :;:.. :;-. ·~ _·,-~ .·' "·:--:._;p~···. :.ti'f'.J:,?"BASIC

BASIC will not accept more than-3Q·~bJ)rogr:a.m.!5: Com!Jine_,s,~ve,~~l .. ~~~pgrams
or change program logic to eliminate a few. ·

-·· . .. ~·. . ": ... ;; .~ ,,: ':~ •... ·:-; -:~ ·;:"'~V·•ii..".i~-~·;·
. SYSTEM CLOSED TO NEW USERS. TRY LATER BEM

~, '~~-:-· ~:·: :~·rf .:~. · 1 -:- :.: .. ;.: • ~- ~- ": - ·.·;· ... ·::::i:: .-:-.:.. · ~- :?.:~:- !(_·:i.,.,.,.,:;: c!ri7
· . The ccmputer:operator 'has closed the-svslll01: l!iQ)hat 110 new .us~r~ ;wi!J ~, ~l~wed

.. . ..on. Wait U1ltil.later to LOGON. . . •·: , :;,c ;; " . ,~::ii

SYSTEM COMMAND NOT RECOGNIZED BEM

-e~ ~:: (_.: / ,· •:'<, :~~tj;Y-_;:.- :: f-... ~- 1~'!

A command was entered in monitor mode which was not recognized. All
,,,, .Jct:>mmands" ·must beg1n with one slash: and· ~only' commands'· listede::ibek)\v are
~:~)lowable~ · ... · ··. ' · ····· :· .· . ..: .. ,c..w::

/DELETE file-info
/DISPLAY JOBS
/DISPLAY VOLUMES
/EXEC program."' . .
I FST ATOS. file-info
/HELP. : .·

/INTR
/LOGOFF
/PAUSE-contmem ·
/PRINT file-info
/PUNCH file-info
/RUN program
/RESUME
/SCREEN:- . ; .,

- '/S1'AT(fS:RESOURCE ·
;_ "/ST:ATUS'TERM

/TYPE comment
/VTOC volume

"TAB" CANN~T. BE- us_eo Vl(l:TH "PRINT USING"

The TAB fuhcdon·cannot be used ·while PRINT USING is active. The·TAB·should be
removed, or a semicolon placed before the function call to terminate the USING
clause. < _,: 'J

TANGENT>COTANGENT OUT OF RANGE "···BASIC
l ' ' :> ·,. :~ ., . ~

The result of a TAN or COT function evaluation caused an overflow condition.
Machine infinity is supplied and execution continues. · :,; '":'

. TAaK ENTERED IN BPiGi<G~R.QUND MOOE BEM

This is a confirmational message indicad11g that the Enter; file was successfully
queued for execution. The task may already have begun, or may be delayed until a
batch processor becomes available.

•

•

•

•

•

•

·--~~i. __ _ BEM:BASIO~ User:R'ef•rence
'im..E,,.

A ~G;-~5

~w:'J'!'Q. .• _ J .. ~·-· ... - ,., ___ :mos· ~ I P~q&.Rev.J 4
• - P,AqE

:UC:-· . a: ·~ '

:··r·.:..i:TERMINALALREADY LOGGED ON. PROCEED ·-: - :i-

TERMINAL IDLE TOO LONG. REPLY OR BE CANCELLED BEM
· ··-~ ~·~; : ::;5~~ J~.J ~'.:>·re) e

This terminal has had no activity for a long period of.time. and is assumed to have
'""'~eh'1~·i~f~~·1t thls terl'l'ttnal'ciS"StiH m-use,creply within30·secen~;-,oc SEM will

log the terminal off. The time limit before this message is displayed .iS.1set by the
system administrator.

~~.

THE SUBROUTINE DEFINED IS NOT REFERENCED BASIC
BA tt-:.~·-·y;.:, ... ·:-:i· -;():-~ . .:ss !•.; ~·.:: ."h' :H.,(\ l t ,. ~ ·~~'.:.. £.,

t•ls ·fbisoisDancinf11.rmatio®I messa_ge;.only, !t notifies the µ,~r t~at. he~J:l~s),01~.ll!;ded a
subprogram (either implicitly via LIBRARY or explicitly in the worksp,ce) which is
never called. It should be eliminated as it only takes up memory.' Compilation
continues. u''" ·. ·~·

~.E.,

TIME UP - PROGRAM LOOPING BASIC

The time limit specified in the TIME statement has b~en ex'ee~l;f~qby the program.
It may be looping, or it may require that the time limit Se increas~d.:·

' ',

TOO MANY TAB STOPS EDT

More than eight tab stops have been used with tha1 :r~nimand: See Section
3.2.3 in UA-0141. 0v1' ~2X''' -~.r:.~~~

TYPE OF FUNCTION PARAMS INCONSISTENT IN CAU BASIC
.:.:.~ r .. \, -~ ;;\:";

The functions passed to a subprogram do not agree in;l't'.~::,:..!r number of
parameters expected. Check the CALL statements tQ'.'Sf!e:tb~t;anyJuQctions passed
contain the same number and type of parameter's·: thern;~C:~ .th~subprogram to
be sure it references the function correctly. 1 ~ .. ,.;,~:.- ~ ~,,: ·

UNABLE TO CREATE SPOOL FILE RSP

·.'r.-2 ~.t- ,:; ~ r , ~., ·- - ;;: .•. · ,. .
RSP could not successfully build the 'd'esired Spool filE!'.· C1'1ec1f ~ararrieters and

;c _:.ratry. If fhe p·robJem persists, consult y_our Sp~,rry Uniyac.repr:~sen~ativ.~. , .
:.;.·11 ~:.; ~ ·;: ~;,1:: 'l'i··-: -;.;·'· '.:., ·. ~ ~ :: -· ~ .,~ "

UNCORRECTED ERROR IN SOURCE BASIC
. ,:,~:

/·c..i:..:>. One of the statements flagged during the. pr~iQ,u~ OL9~c-~m,m.and has not. been
eliminated or corrected. The number of that line is's'tiown. ·' ·· · · · ·

UNKNOWN ERROR ON SAT FILE

, : :i BEM has received an error code from the. $A,T,.p.r,o~~s~sQr whicl'!. ~tdoes not expect.
If the command ~ssued does not violate any'6t the'cciM~tral'i'its placed on rt::by ~Eiyt.

·' '-'1 ·'C'ontactyour:toca:ISperry Univac r.e,resental-ive.,,.: . -:.: , ~",,

' ~ ! • -••. ; .. :

:
t

:: sc:is ; A

: PAGE -1p~~Rev[0 "~ :: ••

'• .. __ .,..__ - .~...,.-,_ - ·-• -·' -· -~-· ---~PoA~
·~·-· -- , _ _._ -.-----....... __ _

· UN.Rl;COGNIZABLE COMMAND EDT·

~· ·: ~; · A coruroal'\d ~eyword has b~efl usec:twtiich, th~ Edi~or does not .r~coarize6 pieck all
keywords used against Appendix A of UA-0141: · ., · · _ -~-- .. ~...- ~ _ ~· . _

':. ,. ; .. ,·i: :

· -;,.:•
0 ,·-o.!J~;:~ CID NOT SUPPLY FILE NAME 8i NO PEAA.,Vl_'{.CiJV!=~:: '.:';:· c .. ~''· E:t" 3~:fJ~/LIBRARY

""·' v ~The :user. !!as issued a cQmm1t:1d w.i'.!iela, :r~ql,Ji res. tl)at,~ .f}~J'.na~~e. sp~cified; no
filename was stated in the command. If the user expepte~,- to .µ5i;l !a. d!i!,f~ult file
specification, he should contact the system administrator, as the administrator did

.. . rf'lol -'declare a default file for this account.:: i:o~"&r!'ct ·t_~ ~m~~nq..,~nter a
, filename explicitly. ·

f·, :1:1; ~:1 ·-:~"':,;' :~· :"1 .: ~:" .. ; ;·)· ,,.,

' l!"tJsi:R'toGGEbif"Fl:.-<:?A'NCELLE.D BY OPBRATOR! ~ · .. : ,, • . .:-.:::.:::s BEM
·":"' :-~:_-;~:~ •. ,':. -.,---:::~.: '· . · ..• -~-f :/~ J. ·; , J -·· :.. .• ~),.' • ;..~ .. c~~-~
'· ;;;.:::-v:The.o.perator haSi~enc:eHed your task:f<lf s.o.me.re~S}~~::.fo~tac:;qh~;~t:~~gc to find

out why. ~-":--.::.. , . ., :. ;;,·::· ' :i~ :-•·e; '.·· 1c::,·2 . ..,.~,.·.:~

USER LOGGED OFF. ENO OF FILE ON CO.NTROL lffR.F.\~,, ::·; .· -~~ ~ ;f'..:,,1 ,_ ·; -.: . BEM

. : This ,message ,is i>.nly,i9$14ed by a 1);3tch:processor.Jt ii:idi.cates..tbat the.Pf..ocessor
attemptettto 'f'ead·mor«~r:-ds from t~ enter .str.eam and f0un~~n9n~:te.ft.: toe enter
task is automatically logged off. Th.is is us~ally caused bY. a mis.i~~~f~r.eted or

' .. +. "
mistyped LOGOFF command.

; -~ <.• Yi(• -::ji:.' ();-
USER LOGGED OFF. NQ RESPONSE IS ALLOTTED TIME . BEM

' · ·, ~ S "''.: ~ ··' ~ :-' :~ · (' v.; "n .:: 1~ :~ . • i r·,; _,z E ".'""... " • , ~ ,_ ·~ .. -::_, ·. '"-· . , . '. ~ ~:: : ? ~ ... , !. -:, .::

t .

· = ~, "3Rlis0fftessa9lf ~$:issued :30:-:sei:ond5 dter the "JERMINAL.JDJ,.~.tq9..,~qNG
message if no response is made. To use this terminal, the next user need only log
on again.

USER LOGGED OFF. TERMINAL IS NOW FREE BEM

This indicates successful completion of a LOGOFF command.

USER'S ACCOUNT DOES NOT PERMIT WRITING TO FILES FILE/LIBRARY

The user has attempted to write or update a file and is not permitted to by his
account description. To remove this restriction, contact the system administrator to
change the access permission.

USER'S ACCOUNT PROHIBITS ACCESS TO THIS FILE FILE/LIBRARY

The account description for this user doe.s not permit the specified file to be
accessed. This usually is a result of accessing a file other than the default file if
only·that file is permitted. To remove this restriction, contact the system adminis
trator.

VOLUME IS NOT AVAILABLE TO THE BEM SYSTEM LIBRARY I FILE

The disk volume you have requested is mounted, but has not been made available
to the BEM system by the system administrator. Contact the system administrator
to have the pack included.

•

•

•

•

•

•

.. 1~~1·"··

---.~-YA..~~~-- __________:.·:a.eM"~s1c=::.... U~r~Jrerfe ·A ~ .c:21
~-----1- -··- ·-···-------· - --·~-~~ .. mi:;·~==.~.-:~--~: ... --- ·- ... _ .. fr~~e-ReyJ'· : .,.;G!

-·==s~ - "G Z'C M

VOLUME NAME IS NOT SPECIFIED ~ .!ilii.· •·'ifiJlf.ARYIFILE

q:, '.J:~·n,e,;i~;s~} has not'sJ~pliecf~tnfhame of"~t!! aisk vo!Urne:to'scan: S"tld tt\e-volume
name is not in the catalog. · ' :•. •• :."x '': t:,J, ::":· , c:· !'-""-'"'! ·

\;: '..>v C;C fi/l/IJARYIFILE

>t UB6'4RY !FILE
>-:. "" -, e:: ·.1<"-4f t

An "Open File Table Entry" in the preamble could not be secured for this file
access. BEM will wait until another fHe_,1c;cessJ;erl'T)t'l.a.t~$ a.n9 t:'"';JMS i!~ entry. If
the user does not wish to wait, the interrupt facllity of BEM may be used to

~: i&rffimite""thJi:· tf1e0 aceesiert'l'lit5": problem ·occurs :tte~nttv. tontaa.·thtf'system
administrator to have more entries placed in the preamble. v"'" : .;r.

OF FUNCTION PARAMS 11v'coNs'1sTENT l'N·CAtL

':<':<~flO\t\jef.rttJtn6er~ ori>~~meters' '1:)as5ed tb'· a subproftamn:ioes fllO& agree with the
'i.Jl· i:

9hunibl!r~stafecrbn;the Sus 'tit$, ·or does not agc!e~Wittt '8rtot~eo'OAU. to th.e same
.,i..~ JS!l'fdgtarit! :i ,.-, ~j ~.~-..-:-,.~~ !-..·" ·~ h£ ;J~~··.. -· ·~~:1 ;:r 8 1 ':' S,..._~ f':-:('Y1"..JiSJ ; ~::~~

.::: ':•·< :i-:-."'.I i=!c.;~ .:- _ !:.st·. H.;···

#0 INVALID ON CHAIN BASIC

M~e. Channel zero. the termin~~'." ,;,a~ not be ~s~~111i~rif~; R1~~ · fr~~c~f,~dH tn'W~hained
· ·)•li(dgi11fui ist~be-read·; A data?tnanagement,:temPdraP.f!~·• librarytf.#."'Uft·be used.
[!c-' ·,in~,;~«··~ :1:-. ·E~~ ':-sr :~ .'f ·· ... ~..-:.:· - _.·:>Cl z: t7~;:)c<.:-=:~ r. 1 ~;~lf-~~;~!:1'iT'

c,.J·--~ ~) Ct\ "it"~:! _-.~:.:.~ ~

·i1 ~~·t~ ji_iJ[~'t~~ .jd~ ,-~··

i'.·i<~ri1r::. 1 r~ Bt.:t. · . .'(~--~·~" .1-·-:~~ ~;".·
'tC<t .. :;.: ,'"-1tnb: <>-'~:.r."t .. ·~~ •. , .. ,

:·c.

''·"· C.E''..

. __ ,.r

.9-t"', ~q i:,. , .1'¥

i':.,~: 7G - :'b ,.. , -, ~

t

---·--. •.•

·-·--·-- ... , __ _ ... ;._ -:~~,·.

--·- ,, -- - ·---- -··- . -

----.. -~-~--·---~-- .. -·."':" ··--.. - ~ ____ .,.

·--

.......... __ _ . -· .. ·------.. ·-:- ,._~

--:- ... ":'"'--·"\<~~ -.-. -.. ·:~· ~·-..... "':'"

~~ ______ _ __ _
----·---................. ___ ~-- ~

·! •

. .
' • .

•

:.

•

...

••

•

• • • I • • • • • • •
! • •
i .. : ! •

::: :
ft
a

USER COMMINt SHEET

Your commemt concerning this document will be welcomed by Application Services for use in

imPiOving subsequent editions •

Comments:

From:

Plasse rroia: This form is not imended to ba used as an order blanll.

(~Titl9J

(Rnision No.)

(N.,,,.olUs•I

f8uflinessAddra:1)

Fold on dotted lines, staple, and mail. (No postage stamp necessary if mailed in U. S. A.)

Thank you.for your cooperation.

-- Staple

"' •.

;
•
~ . .
~

• >

•
" '

..

• •
---~-•••••• ~i\;~-.. ~ ~·····--········ .. ·························--······-···················~-·~··t~~--···:

.. ,a .. :;.~~--\ .. v' • .J/~.L. ~~ ": ... -. "-'0!•·•$">.Jl'!' ~-

: -t . -':, i.

Attn: Manager, Applicatiott Services

Blue Bell, PA 19422
' '~

=Fllf~t~~ss
~No.'.21 •

, Bl;;.:!iiil1. j1a.

.,. __ .,,,...,, =,·
=-··nm'""··

... , r':t'"Trttf' .• _..

..... _, m---z.-::-~,-
. v· .. =-rcr .. ···.-.u-
t=: . :_::-·-·· ... ---

x•::a· ,_. --~ -- ··-·· ·- -- . ·--· "· ·::.:.... .. ,..._:·_:: .. · .:sz.
""?COt'k_"_.,.., . .,.. __ --··---.... ---· _............ ·--·--
~ ,... ---~~-·-··-.... -

, ·-er:· ----~· ..
. _,,, ... •··-•n.._, -· •"'-· •--- '"'·--· -- . .;.. ______ ., ... _ .. , _,...

, . . • • • • • ' •n :s
•m . -•O
• ::I :ci ·= • ::I

=~ • • • • • • •

••••••••tt•ffe•••••·h••••••••••••tt•'J•••••••••••••il"aaila98•a8ti·•ira••••••li9'1ie•••••••••••••••••••••••••••••••••••H••••••••••••·••••·••••••• . Fold . . . , .. ,. .

•

••

