
G ENE R A L
REFERENCE
I\,/) A N U A L

UP-3900

This manual is published by the UNIVAC@Division in loose leaf format as a

rapid and complete means of keeping recipients apprised of UNIVAC

Systems developments. The UNIVAC Division will issue updating packages,

utilizing primarily a page-for-page or unit replacement technique. Such

iss uance w ill provide notification of hardw are and/or software chan ges

and refinements. The UNI\' AC Di'r./ision reser'ves the right to ~a ke such

additions, corrections, and/or deletions as, in the judgment of the UNIVAC

Division,are required by the development of its respective Systems.

@ REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION © 1963 • SPERRY RAND CORPORATION

PRINTED IN U.S.A.

PREFACE

This ma.nual provides a comprehensive source of information concerning the UNIVAC 490 Real-Time
System: its basic units; its wide variety of configurations and applications; its uniquely efficient
instructions, and the programming packages which make the use of the system outstandingly practical
and economical.

The bulk of the manual is addressed to those who have a good knowledge of general computer concepts
and practices. The opening section, General Description, is intended for the use of anyone with an
interest in the subject. In addition to a discussion of the system as a whole and of its principal
components, this section deals with the relatively new concept of real time processing, of the reasons
for it, of the manner in which the UNIVAC 490 Real-Time System, through concurrency of operations,
combines the advantages of familiar batch processing methods with those of real time operations.

UP-3900 UNIVAC 490 SPURT Rev. 3 1
SECTION: PAGE:

1. CONTENTS

1. CONTENTS 1-1 to 1-4

2. INTRODUCTION 2-1 to 2-2

3. GENERAL DESCRIPTION 3-1 to 3-5

A. Communication Capabilities 3-2

B. Mass Storage Faci!ities 3-2

C. Real Time Central Processor Design 3-2

D. Input/Output Equipment 3-2

E. An Advanced, Comprehensive Programming System 3-3

F. Dependabi I ity of Operation 3-3

4. COMPONENT DESCRIPTION 4-1 to 4-18

A. Central Processor 4-1

8. Clocks 4-3

C. Subsystems 4-4

5. PROGRAMMING IN SPURT 5-A-l to 5-E-52

A. COMPUTER ELEMENTS RELATED TO PROGRAMMING 5-A-l

8.

C.

1. The Computer Word 5-A-l

2. Addressing 5-A-3

3. The Computer Instruction 5-A-3

CENTRAL PROCESSOR

1. Storage Section

2. Contra I Section

3. Arithmetic Section

4. Input/Output Section

5. Registers

TH E SPURT ASSEM8LY SYSTEM

1. The SPURT Statement

2. The SPURT Coding Form

5-8-1

5-8-1

5-8-1

5-8-1

5-8-1

5-8-1

5-C-l

5-C-l

5-C-l

1

1 2 Rev. 2 UNIVA~ q8D 5~URT
SEC TION: PA GE:

D. SPURT INSTRUCTION FORMAT

1. The General Operand

2. Comments on the Presentation of the 8asic SPURT Instructions

E. 8ASIC SPURT INSTRUCTIONS

1. Data Transfer Instructions

2. Shift Instructions

3. Comparing Instructions

4. Jump Instructions

5. Modifying Instructions

6. Subtraction

7. Addition

8. Multiplication and Division

9. Logical and Selective Instructions

10. Miscellaneous Instructions

11. Assembler Macro-Operations

12. 8 as i c In p u t/ 0 u t put Ins t r u c t ion s

6. SPURT INPUT/OUTPUT UNDER EXECUTIVE CONTROL

A. STATUS CHECKING

1. E r ro rAn a I y sis

2. Examples of CKSTAT

B. UNISERVO IIA MNEMONICS

1. UNISERVO IIA Tape Operations

2. UNISERVO IIA Status Words

C. UNISERVO IIIC MNEMONICS

1. UNISERVO IIIC Tape Operations

2. UNISERVO IIIC Status Words

D. UNISERVO IliA MNEMONICS

1. UNISERVO lilA Tape Operations

2. UNISERVO IliA Status

E. FLYING-HEAO-880 DRUM MNEMONICS

1. Flying Head-880 Drum Operations

2. Flying Head-880 Drum Status Words

F. HIGH-SPEED PRINTER MNEMONICS

1. High Speed Printer Operations

2. High-Speed Printer Status Words

G CARD MNEMONICS

1. Card Operations

2. Card Status Words

5-0-1

5-0-1

5-0-5

5-E-l

5-E-l

5-E-2

5-E-6

5-E-7

5-E-9

5-E-ll

5-E-14

5-E-16

5-E-25

5-E-33

5- E-35

5-E-40
6-A-i to 6-i-2

6-A-l

6-A-2

6-A-3

6-8-1

6-8-1

6-8-3

6-C-l

6-C-2

6-C-4

6-0-1

6-0-2

6-0-4

6-E-I

6-E-l

6-E-3

6-F -1

6-F -2

6-F -3

~- G-1

6-G-2

6-G-8

UP-3900

U P-3900 UNIVAC 490 SPURT Rev. 2 1 3
SECTION: PAGE:

H. FASTRAND MNEMONICS 6-H-l

L FAST RAN 0 Operations 6-H-2

2. FASTRAND Status Words 6-H-3

3. FASTRAND Addressing 6-H-4

I. PAPER TAPE MNEMONICS 6-1-1
L Paper Tape Operations 6-1-1
2. Paper Tape Status Words 6-1-2

7. CONSOLE PRINTER CONTROL 7-A-l to 7-8-2

A. CONSOLE OUTPUT OPERATIONS 7-A-l

8. CONSOLE INPUT OPERATIONS 7-8-1

8. PROGRAM DEFINED MACRO OPERATIONS 8-1 to 8-5

A. DEFINING A MACRO OPERATION 8-1
L The MACRO Statement 8-1
2. The ENDMAC Statement 8-2

3" Variable Parameters 8-2

4" Examples of MACRO Definition 8-2

B, CALLING A MACRO o "I
0-')

L The Call Line 8-3

2" Examples of Macro Call Line 8-3

C. NESTiNG OF MACROS 8-4

D. LABEL REFERENCE WITHIN MACROS 8-5

9, PROGRAM PREPARATION 9-1 t09-16

A, SPURT REQUIREMENTS 9-1
L The Program Header 9-1
2. Allocation 9-1

8. REX REQUIREMENTS 9-5
L The Executive Information Region 9-5
2. Declaration of Facility Requirements 9-7
3. Drum and FASTRAND Statement 9-11
4. Text Statement 9-12
5. Program Segmentation 9-13

C. COMMENTS 9-16

1 4 Rev, 3 UNIVAC 490 SPURT UP-3900
SECTION: PAGE:

10. PROGRAM TESTING AND CORRECTION

A. SPURT OUTPUTS

l. Paper Tape Output

2. High Speed Printer Output

3. High Speed Printer Output On Magnetic Ta pe

4. Magnetic Tape Output

5. Concurrent High Speed Printer and Magnetic Tape Output

8, PROGRAM TESTING ROUTINES

L Program Testing Operations

2. Utilizing Program Testing Routines

C. CORRECTION PROCEDURES

1, Card Correction Procedures

2. The Ll Corrector

3" The Card Image Corrector Routine - CIMCO

D. CODED ERROR OUTPUT DURING ASSEM8LY

11. SYSTEM PROCEDURES

12. COBOL

13. SORT

14. MISCELLANEOUS ROUTINES

A. RMOPL II

(Routine for Maintaining an Object Program Library)

1. System Requirements

2. Tape Composition

3. Operations Performed

4. Parameter Cards

B. MITAR II

(Master Instruction Tape Assembly Routine)

1. System Requirements

2. Executi ve Se~uence

3. Tape Composition

4. MITAR Card Parameters

10-A-1 to 10-0-2

10-A-1

10-A-2

10-A-3

1O-A-5

10-A-5

10-A-6

10-B~1

10- 8-1

10-8-4

10-C-1

1O-C-1

10-C-2

lO-C-3

10-0-1

14-A-l

14-A-l

14-A-l

14-A-2

14-A-2

14-8-1

14-8-1

14-8-1

14-8-1

14-8-5

UP-3900 UNIVAC 490 SPURT

C. CATUT

(Card to Magnetic Tape Utility Routine)

L System Requirements

2. Program Structure

3. Card Input Composition and Arrangement

4. Description of Routines and Subroutines in CATUT

D. PRINTAPE

(Magnetic Tape to High Speed Printer Utility Routine)

1. System Requirements

E. TRACE IV

(Instruction Monitoring Routine)

1. System Requirements

2. Output Format

3. Operations Performed

4. P aramete rs

F. RMASL

(Routine for Maintaining a Source Language Library

1. System Requi rements

2. Input Formai

3. Library Tape Format

4. Operations Performed

5. Parameter Cards

G. CIMCO

(Card Image Corrector Routine)

1. System Requ i rements

2. Operations Performed

3. Correction Deck Format

H. CONVERSION, EDITING, AND ARITHMETIC ROUTINES

1. Conversion Routines

2. Ed iti ng Routi nes

3. Floating Point Routines

4. 0 0 ubi e Pre cis ion A r i th met i c R 0 uti n e s

5. Fie Idata Arithmetic Routines

APPENDICES

A. Computer Instructions
D. Peripheral Subsystems

Rev. 2 1
SECTION: PAGE:

14-C-l

14-C-l

14-C-l

14-C-1

14-C-6

14-0-1

14-0-1

14-E-l

14-E-l

14-E-1

14-E-1

14-E-3

14-F-1

14-F-1

14-F-l

14-F-2

14-F-2

14-F-3

14-G-l

14-G-1

14-G-l

14-G-l

14-H -1

14-H -3

14-H -22

14-H -34

14-H -47

14-H-65

A-l
0-1

5

UP-3900 UNIVAC 490 SPURT 2 1
SECTION: PAGE:

2. INTRODUCTION

A. REAL TIME, BATCH PROCESSING, AND CONCURRENT OPERATIONS

1. Real Time

Real time computers were originally developed for military purposes: to aim, track, and guide
ballistic missiles; to receive, store, analyze, and provide useful results from vast radar or other
information gathering net works so as to provide the basis for timely decisions on the part of human
beings - decisions which could, when required, be acted upon almost instantly at locations
thousands of miles removed from their source.

The essential characteristics of real time computers are that they can store enormous masses of
information; that they can access, or reach, and act upon, any item or group of items of the informa
tion within thousandths of a second; that they can receive and transmit data from and to small or
large numbers of remote points in extremely short periods of time; that they can automatically assign
priorities to many different operations so that action and response take place in proportion to the
urgency of the need.

The expression real time is applied to computers of this kind because thay are capable of keeping
pace in their operations with the occurrence of events which follow one another with great rapidity
and which may even occur sim ultaneously.

The U ni vac Division of the Sperry Rand Corporation has been an outstandingly successful pioneer
in the development of real time computers and realized very early the tremendous potentials of their
application to business situations. The result of this realization and of the ensuing development
work is the UNIVAC 490 Real-Time System which makes it possible for modern management to take
the fullest advantage of modern management techniques. Because it provides proper input/output
devices for every type of business transaction, business events may be entered into the system,
stored, located, related to other events, acted upon at the time of occurrence. Management by excep
tion is made possible on a truly current basis, in ample time to correct deviations from plan, wheth
er these involve availability of working capital, sales forecasts, manning and machine scheduling,
inventory levels, receipts and shipments of materials, operating costs, or controls.

The sys tem, because of its unique mass storage and comm unications facilities, constitutes an
excellent instrument for the centralized control of decentralized operations whether these are
situated at a large central site or are dispersed over an area of hundreds or thousands of miles.
Moreover, the system in many instances eliminates the need for original documents and their slow,
expensive and frequently inaccurate conversion to a form suitable for input to a computer system.

2
SECTION:

2 UNIVAC 490 SPURT UP-3900
PAGE:

The question is: how can a data processing system be made to provide all of these advantages
in such a way as to approach the maximum utilization of the equipment employed, the highest
return from the money expended for it, and therefore a correspondingly satisfactory increase in the
profitability of the enterprise.

The answer is provided in the UNIVAC 490 Real-Time System in this manner:

2. Real Time and Batch Processing

The requirements for real time action are known frequently to occur in peaks and valleys. In many
businesses these requirements tend to increase from early morning through the middle of the day
and to taper off from then on. In other businesses the occurrence of these demands may be sporadic.
It makes no difference. The UNIV AC 490 Real-Time System is so designed that it will automatically,
as its facilities are freed from the dynamic demands of real time processing, load them up with the
ordinary day to day back log of less urgent work -of the familiar batch processing type - typically,
the sequential processing of sequentially ordered files such as accounts receivable, payable, or
payrolls.

3. Concurrency of Operations

The great point is that the UNIVAC 490 Real-Time System is at no moment necessarily committed
to real time operations or to batch processing operations exclusively. Both may proceed concurrently
and several kinds of each may proceed concurrently under the control of an internally stored execu
tive program. But the real time operations always have priority and the system will assign its
facilities as these priorities require, relinquishing them to other activities, such as engineering
calculations or normal business processing tasks, as soon as they are no longer needed to keep
pace with real time events.

In this way maximum use may be made of the components of any desired configuration of the UNIVAC
490 Real-Time System; and the ad van tages of its enormous storage capaci ty, speed, flexibility,
and communications capabilities may be obtained at a low cost per unit of work accomplished.

To sum up, it should be said that experience indicates that the UNIVAC 490 Real Time System will
quite probably outperform by a wide margin any other system of its kind in a wide range of applications.

The fact that it can actually do so in any particular situation can be established beyond doubt only
by investigation and analysis. This fact has already been established many times and is being
established with greater and greater frequency as larger numbers of organizations examine the system's
capabilities.

UP-3900 UNIVAC 490 SPURT 3
SECTION: PAGE:

3. GENERAL DESCRIPTION

For years there has been an urgent need for a business data processing system specifically designed
to meet the steadily increasing pressures of costs vs. profits, of competition, of the need for radically
improved communications, for improved service to customers, for more efficient inventory management,
for more effective controls -- for 'improved over all capability to cope with the constantly growing
complexity, diversity, wide spread nature, and sheer size of modern business.

The UNIVAC 490 Real-Time System is the first and only system specifically designed to meet these
needs and which has proved in daily use that it does meet these needs, and more, at an entirely
reasonable cost. It' is by a long way the most versatile and the most comprehensive data processing
system yet produced.

The system provides the most effecti ve in strum ent in existence for the centralized control of
decentralized operations. The same characteristics which account for this, account also for its other
advantages, which are many. These characteristics and advantages, stated very briefly, are:

• The system itself can communicate directly with central site or remote locations - points of sale
or other customer contact, production or transportation facilities, warehouses, domestic or
foreign branches or affiliates.

• The system can store large masses 0 f info nna tion and almost instantly retrieve and deli ver in
useful form any item or group of items - data required for customer service, for the most advan
tageous stocking and distribution of materials or products, or for use by central or local manage
ment.

1

3 2 UNIVAC 490 SPURT UP-3900
SECTION: PAGE:

• Under automatic executive program control the system can concurrently execute several programs
- the saving in processing time, and therefore in cost, is very large.

• The system operates in real time - that is, it responds to the' need for action in a period of time
proportional to the urgency of the need - first things are done first.

• The system can be depended upon to provide the information necessary to base this minute's or
this hour's decisions on informa tion up to date as of the minute or the hour - the value of infor
mation diminishes rapidly with the passage of time - this system, because the data it provides
reflects the present facts, makes it possible to avoid many difficulties and to seize many
opportunities which would otherwise be lost.

A. COMMUNICATION CAPABILITIES

The system is adaptable to any standard common carrier communication code, rate of transmission,
or equipment. It may be connected to a few or hundreds of low cost communication lines.

B. MASS STORAGE FACILITIES

Drum storage capacity ranging from a few million to billions of characters - average access time 17
or 92 thousandths of a second - magnetic tape units compatible with other UNIVAC systems or with
thpse of IBM - read/write speeds up to 125,000 characters per second; number of units, as in the case
of other peripheral devices, expandable according to requirements. The combination of almost unlimite~
low cost comm unications facilities plus almost unlimited random access storage (at the lowest cost
per character stored) provides service and economy never before approached in any system.

C. REAL TIME CENTRAL PROCESSOR DESIGN

Sixty two basic instructions which may be modified to provide unprecedented programming versatility;
magnetic core storage capacity of 16,000 to 32,000 computer words of 30 bits each; 10 millionths of a
seco nd average instruction execution time; the ability to accomodate any standard comm unication code or
speed; the ability to carry out several programs concurrently, to make most effective use of random
access drum storage as well as magnetic tapes; plus the ability under automatic executive program
control to perform all of its functions including control of or response to central or remote input/out
put devices in 'a time scale proportional to the need for action; and precision electronic clocks for
use in compiling statistics for analysis and improvement of computer utilization, for initiation of
action at specific times during the day, and for checking the proper execution of operations. In addi
tion to all of this, the Central Processor may be connected to a satellite computer or to another entire
490 system complex.

D. INPUT/OUTPUT EQUIPMENT

In addition to its mass storage drums and tapes, the system may employ a variety of input/output
devices including 600 card per minute reade;:s; :1.50 card per u:.inute p<lncnes; 700 to 922 Er.cs pc: :r:ir.

ute printers, punched paper tape systems (5 to 8 channel - 400 characters per second reading speed;
110 characters per second punching speed).

UP-3900 UNIVAC 490 SPURT 3 3
SEC TION: PAGE:

E. AN ADVANCED, COMPREHENSIVE PROGRAMMING SYSTEM

The UNIV AC 490 Real-Time System is provided with a rapid, efficient assembler, (SPURT), a COBOL
compiler, and an executive routine (REX) which coordinates the operations of all elements of the
system, making it entirely feasible to run several independent programs concurrently* and automati
cally to assign priority to most urgent requirements, such as those of a communications subsystem, as
they arise. The programming package also includes an unusually efficient SORT /MERGEroutine,
utility, service and program testing routines, and routines for the most effective management of all
peripheral units. Very large savings of time and money are realized by these means.

F. DEPENDABILITY OF OPERATION

This system has established an extraordinary record of operational dependability which results from
the Univac Division's years of experience in the design of solid state computers of many kinds:
military, scientific, and comm er cia!. Reliability design goals have been exceeded, in actual perfor
mance, by well over 100%.

* These programs may be written quite independently - the REX executive routine relieves the programmer of all concern
with accomplishment of concurrent operations.

3
SECTION:

I
pAGE

, 4

UNIVAC STANDARD COMMUNI·
CATIONS SUBSYSTEM

UNIVAC 490 SPURT

COMPUTER
TO

COMPUTER
CONN ECTION

COMPUTER DAY
CONSOL E CLOCK

GENERAL PURPOSE
SUBSYSTEMS

Figure 3-7. UNIVAC 490 Real-Time System - Simplified Block Diagram

UP-3900

UP-3900 UNIVAC 490 SPURT 3
SECTION: PAGE:

UNIVAC

STANDARD COMMUNICATION SUBSYSTEM CD GENERAL PURPOSE SUBSYSTEMS

SIMPLEX OUT

PRIVATE LINE

TELETYP EWR!TER

(60 TO 100 WPM) SIMPLEX IN

PRIVATE LINE

TELETYPEWRITER

(HALF-DUPLEX-

60 TO 100 WPM)

PRiVATE LINE

TELETYPEWRITER

(FULL- DUPLEX-60 TO 100 WPM)

WiDE AREA DATA SERViCE

(WADS) OR TELETYPE

WRITER EXCHANGE

SERVICE (TWX)

(HALF-DUPLEX-lOO WPM)

DIRECT DISTANCE DIALING

(DDD) OR WIDE AREA

TELEPHONE SERVICE

(WATS)

(HALF- DUPLEX-1200

BITS/SEC) CD

PRiVATE LINE TELEPHONE

(FULL-DUPLEX-2000 M\
BITS/SEC AND UP) 0

1 1 I

~ 2 INTER COMPUTER

CHANNELS

I

--

PUNCH CARD

CONTROL

UNiT

MAGNETIC TAPE

CONTROL UNIT

UNISERVO IIA

MAGNETIC TAPE

CONTROL UNIT

UNISERVO lilA

r-

~
I

10...

~

80 COLUMN

PUNCH

80 COLUMN

READER

UNISERVO

IIA

(READ OR WRITE)

UNISERVO lilA

(READ/READ

OR

READ/WRITE)

COMMUNI CA TION

MUL TIPLEXER

(UP TO 64

SIMPLEX LINES

AVAILABLE

SINGLE CHANNEL CONTROL UNITS ALSO AVAILABLE
FOR UNISERVO III A TAPE UNITS

!N

MODULAR

UNITS) CD COMPUTER

CONSOLE

NOTE:

DAY

CLOCK

CD An y one Subsy stem

is capable of handling

different types of

communi cation

facilities at the

same time.

o Where indicated,

associated common

carrier equipment is

required in addition

to the line facilities.

0ThiS chart only shows

a few of the typical

communication subsystems

that can be connected to

th e sy stem, many other

configurations are possible

-

-

-

MAGNETiC TAPE

CONTROL UNIT

UNISERVO IIIC

MAGNETIC DRUM

CONTROL

UNIT

FASTRAND

CONTROL UN IT

HIGH-SPEED

PRINTER

CONTROL UNIT

Figure 3-2. UNIVAC 490 Real-Time System

(Expanded Block Diagram)

-

-
-

UNISERVO IIIC

(IBM COMPATIBLE)

PAPER TAPE

READER

PAPER TAPE

PUNCH

F.H. 880

DRUM UNIT

(3,932,160 A/N

CHARACTERS PER

DRUM UNIT)

FASTRAND

DRUM UNIT

64.8 MI LLiON - A/N

CHARACTERS PER

DRUM UNIT

HIGH-SPEED

PRINTER

1 CARD PUNCH

PER

CONTROL UNIT

1 CARD READER

PER

CONTROL UNIT

UP TO 12 IIA

UNITS PER

CONTROL UNIT

UP TO 16 lilA

UNITS PER

CONTROL UNIT

I uP TO i2 iiiC

TAPE UNITS

PER

CONTROL UNIT

1 READER PER

CONTROL UNIT

1 PUNCH PER

CONTROL UNIT

UP TO 8

DRUM UNITS

PER

CONTROL UNIT

UP 108

FAST RAND

DRUM UNITS

PER

CONTROL UNIT

HIGH-SPEED

PRINTER

PER

CONTROL UNI T

5

UP-3900 UNIVAC 490 SPURT 4
SECTION: PAGE:

4. COMPONENT DESCRIPTION

A. CENTRAL PROCESSOR

Figure 4- 7. Central Processor

STORAGE CAPACITY

WORD LENGTH

NUMBER OF I/O CHANNELS

AVERAGE ACCESS TIME

CYCLE TIME

AVERAGE INSTRUCTION
EXECUTION TIME

16, 384 words (30 bits/word)

or

32[768 words

30 bits (may be accessed as 15 bit half word)

6 or 14

1.9 microseconds

6 microseconds

10 microseconds

The UNIVAC 490 Real-Time System Central Processor is a binary computer designed for real

time and batch processing, for concurrency of operations, for the employment of advanced

programming concepts such as those incorporated in the SPURT assembler, the REX executive

routine, the various input/output routines; and for the use of extremely extensive and rapid mass

random access storage and communications subsystems as well as magnetic tape auxiliary

storage, punche d card equipment, and a variety of special peripheral devices.

It employs 62 basic instructions which, by automatic manipulation directed by the contents of the

instruction word, can be made to perform practically any desired programming function.

1

4
SECTION:

2 UNIVAC 490 SPURT
PAGE:

A simplified diagram of the principal elements of the Central Processor is shown in Figure 4~2.

For directness of presentation, only those elements referred to in program instructions are shown.

• Control

SUBSYSTEMS

12 CHANNELS

INPUT /OUTPUT

OTHER COMPUTER

2 CHANNELS

Figure 4-2. Central Processor - Simplified Block Diagram

The control portion of the Central Processor coordinates the flow of data between the arithmetic
and storage units. It contains a program address counter which holds the 15 bit address of the

next ins truction to be executed throughout the program and seven 15 bit index registers .

• Storage

Storage consists of 16,384 or 32,768 30 bit words. Areas of storage are automatically allocated

by the executive routine (REX) according to the requirements of operating programs.

• Arithmetic

The arithmetic unit comprises a 30 bit "A" register, a 30 bit "Q" register and a 30 bit adder.
TIlt:: t~ A" CJ.lld "Q" i"~gI5tt:i5 Cire uSed togethel iii wultiplicaticrl arld div'isi~~ ~r:d, 'Cy'l,The:1 de8i!"eci,

in 60 bit capacity . .,t\!! arith:r:etic ape~8.tians are perf0!'!!:ed h bi!"!afY fO!'!11. SUb tr8CHol1 i~ per-

formed in the end arollnd borrow manner; addition is performed by complementation of the addend
and subtraction from the augend.

UP-3900

UP-3900 UNIVAC 490 SPURT 4
SECTION: PAGE:

• Input/Output

All input/output data transfers are automatically controlled by signals emanating from the
Central Processor or from the peripheral subsystems themselves. Any general purpose input/
output channel can accommodate a UNIVAC 490 Real-Time System peripheral device. All I/O channels
are buffered. Each input/output device has associated with it a Control Unit which, once
activated by the Central Processor, carries out the entire operation of the instruction given it
while the Central processor proceeds with other tasks. This is invaluable. For example, in
the case of a simple Print instruction, the Central Processor can, during the execution time -
the printing of one line - execute more than 9,000 other instructions. Equally important is the
fact that any input/output device can, through its Control Unit, instantly signal the Central
Processor if it requires a response to an inquiry or if it has completed a task and is ready to
begin another. Through REX, the execu ti ve routine, all activities, both in ternal and external to
the Central Processor, are propetly correlated, assigned the necessary areas of storag€, and
carried out in the most advantageous sequence.

B. CLOCKS

Processing timelines, an inherent characteristic of real time processing, requires the system

to be extremely time conscious. Three precision electronic clocks provide the UNIVAC 490 Real
Time System with unequalled timing sensitivity.

1. Day Clock

A feature particularly suited to real time problems is the 24 hour Day Clock. This electronic

clock interrupts the computer with the current time of day expressed in hours (0-23), minutes

(0-59) and half minutes (0-1). A visual display of the time as indicated by the Day Clock is
located on the operator's cons ole.

The Day Clock can be used to initiate a variety of subroutines at specific times during the

day. Error checking routines, trace routines, output conversions, management report pro grams,

maintenance routines and memory dumps are some of the many routines which can be initiated
by the Day Clock.

2. Real Time Clock

Of particular benefit to statistical analysis of computer utilization, the UNIV AC 490 Real-Time

System contains an incremented clock called the Real Time Clock. This clock is a 15 bit

register located in computer memory. Approximately once each millisecond the clock is incre

mented by one. Since 15 bits will allow a maximum count of 32,768, this clock will go through
a complete cycle in approximately 32 seconds.

This clock can be used for precision timing of compu ter functions such as the elapsed time

between the receipt of an inquiry and the transmission of a reply. The compilation of such

statistics are an invaluable aid in analyzing and improving computer utilization.

3. Interval Timer

Like the Real Time Clock, the Interval Timer is a 15 bit register in computer storage which
is incremented once each millisecond. The major difference between the two clocks is that
the Interval Timer provides an unconditional interrupt to the computer upon reaching a full

count of 32,768.

3

4
SECTION:

4 UNIVAC 490 S·PURT
PAGE:

Erroneous input could perhaps cause a routine to initiate a repetitive logical path. The
Interval Timer is set when a transaction is initiated. The time of interrupt is slightly in
excess of the longest normal transaction. If an interrupt occurs, the real time program is
prepared to enter a routine for analysis and possible reinitiation of the transaction which
caused the interrupt.

C. SUBSYSTEMS

A subsystem consists of one or more peripheral units of the same type connected to an available

input/ output channel. Each subsystem is controlled by a channel synchronizer/control unit that

interprets the control signals and instructions issue d by the Central Processor, effects the

transfer of data to or from the selected unit and the Central Processor, indicates to the Central

Processor the status of the available peripheral units, and informs the Central Processor when
errors or faults that affect the operation of the subsystem occur. The Central Processor and

the subsystems have capabilities which lead to great efficiency in their mutual operations.

Wh~n the main program requires that the Central Processor employ a subsystem, the Central
Processor issues con trol signals which select the proper subsystem and initiate the desired

action. Once this is d one the execution of the main program automatically continues until

the subsystem has completed the required action. At this point the subsystem signals the

Centrai Processor that the action is complete and the Central Processor now deals with the

results of the action taken: for example the processing of data transferred from the subsystem.

In similar manner a subsystem signals the Central Processor its state of readiness to require

action on the part of the Central Processor, such as response to an inquiry, and it also signals

the Central Processor when its requirements have been met. These characteristics not only

provide almost instantaneous availability of the services of the subsystems to the Central

Processor, and those of the Central Processor to the subsystems, but they also reduce to at
most a few thousandths of a second those Central Processor delays ordinarily associated with
drum latency periods, magnetic tape reading or writing, or the employment of printing, punched
card, or communications systems.

During the execution of input/output instructions the Central Processor proceeds with the
main program, taking action on results of the operation only on receipt of a signal from the
subsystem indicating that the operation is complete.

UP-3900

UP-3900 UNIVAC 490 SPURT
SECTION:

1. Flying Head~880 Magnetic Drum

Figure 4-3. Flying Head-BBO Magnetic Drum Unit

STORAGE CAPACITY

AVERAGE ACCESS TIME

RECORDING DENSITY

DRUM SPEED

NUMBER OF READ/WRITE HEADS

786,432 30 bit computer words
3. 9 mill ion a I ph a n u me ric
characters (approximately)

17 milliseconds

518 bits per inch

1,800 revolutions per minute

880 (40 blocks with 22 heads in
each block)

4

The Flying Head~880 Magnetic Drum Subsystem is a large capacity, high speed random

access storage device used for program storage, temporary data storage, or file storage.

As many as eight Flying Head~880 Magnetic Drum Units may be connected to any available
input/ output channel.

The magnetic drum units used in the Flying Head-880 Magnetic Drum Subsystem differ from

conventional drum units in that the read/write heads float on a boundary layer of air created

by the drum's rotation. Since the boundary is extremely thin, (less than 0.0005 inch) the head

to surface distance is reduced and the read/write heads follow the contours of the drum in

precise manner. This feature permits a greater recording density since it eliminates the dis~

advantages of the wider head to surface distance required in conventional drum units to
compensate for surface irregularities.

PAGE:

The read/write heads are positioned around the drum in 40 groups of 22 heads each. Each head

reads from or writes upon a recording track that revolves beneath it.

Each Flying Head-880 Magnetic Drum Unit has 128 6 bit track recording bands, each capable of

storing 6,144 30 bit computer words; that is, 786,432 computer words (3.9 million alphanumeric
characters) can be stored on a single unit.

5

4
SECTION:

6 UNIVAC 490 SPURT UP-3900
PAGE:

The read/write heads record information on the drum at a density of 518 bits per inch while it
is revolving at a speed of 1,800 revolutions per minute. Average access time is 17 milliseconds,

All read operations are parity checked. All search operations may be conducted off line; that
is, once the search instruction is received by the drum synchronizer control unit, the Central

Processor is free for other functions until the search is completed.

2. FASTRAND* Mass Storage Subsystem

~':!:!.~~ ... '",'''''

~~~ 
~ ... « "'''''~''' ""-=--

Figure 4-4. FASTRAND Mass Storage Unit 

STORAGE CAPACITY 

AVERAGE ACCESS TIME 

RECORDING DENSITY 

DRUM SPEED 

NUMB ER OF READ/WRITE HEADS 

12,976, 128 30 bit computer words 
65 million alphanumeric characters 
(approxi mate Iy) 

92 milliseconds 

1,000 bits per inch 

870 revolutions per minute 

64 

The F ASTRAND Mass Storage subsystem is an extremely large capacity random access mass 
storage device. As many as eight FASTRAND Mass Storage Units may be connected to any 

availa ble input/output channel. 

Each FASTRAND Mass Storage Unit in the subsystem contains two magnetic drums. These 

drums are similar to those used in the Flying-Head-880 Magnetic Drum Subsystem in that 
they employ flying read/write heads; however, these drums have an additional feature, the 
ability laterally to position the read/write heads. 

On each drum there are 3,072 recording tracks each of which can store 2,112 30 bit computer 
words; that is, 6,488,064 computer words can be stored on one drum. Since there are two 
drums in a F ASTRAND Mass Storage Unit the total storage capacity is 12,976,128 computer 
words per unit, or approximately 65,000,000 characters. The total words of storage per avail

able channel is approximately 104,000,000; the total characters, 520,000,000. 

* Trademark of Sperry Rand Corporation 



UP-3900 UNIVAC 490 SPURT 4 
SECTION: 

a. Data Arrangement - Access Time 

The data is recorded around the circumference of the drums in tracks. ~ach track WIll 

contain 2,112 words. These words are grouped into logical records called Sectors. A 

sector consists of 33 words.* Therefore, each track contains 64 sectors. 

The 64 read/write heads are moun ted on one head positioning bar and all move in unison. 
Each head will cover 96 tracks. The addressing logic is such that data from track 1 under 

head 1 is sequentially followed by data from track 1 under head 2 etc., through the entire 

64 heads. Thus by one positioning of the heads (which may be accomplished by separate 
instructions or as part of a read or write instruction) 4096 sectors (135,000 words) are 
available without further head positioning. This feature when coupled with good systems 

design and data layout can res ult in reduc ing access time for many references to 35 

milliseconds. 

Among the valuable features of the F ASTRAND system is a unique search function. 

The search may be initiated to search on the first word of each sector or it may be 

initiated to search all words of the sectors in volved. When a find is made, the Search 

function automatically converts into a read operation as specified by ins truction. 

In the process of searching the operation may be limited to search through only 64 

sectors or to search through 4096 sectors. This variable search length feature is 

under program control. 

All functions of the F ASTRAND are buttered trom the Central Processor so that the 

computer may continue processing while records are being accessed on the F ASTRAND 

unit. 

All read operations are parity checked. 

* Information is recorded on FASTRAND in 33 word sectors. (a word contains 30 bits, five 6 bit characters) 

7 
PAGE: 



4 8 UNIVAC 490 SPURT UP-3900 
SECTION: PAGE: 

3. UNISERVO* Magnetic Tape Subsystems 

Figure 4-5. UN/SERVO Tape Handling Unit 

r : :'.'." :, ":::~ , 

'CHARACT,E'RISTICS ' 
;, ~ .' _oj: -- ': . :.~ .::. ",; \; , . : ':. '. .' v, '-

UNISERVO IliA Tape UNISERVO IIA Tape UNISERVO IIle Tape 
Handl ing Unit Handling Unit Handling Unit 

TO A "-I~ ceo "',",''1v' L..I'- 100 1 000 Oi 125 1 000 12 1 500 and 25 1 000 22 1 500 end 62 1 500 
RATE character s/ second characters/ second characters/second 

RECORDING 1,000 or 1/250 6 bit 125 and 250 6 bit 200 and 556 6 bit 
DENSITY characters linch characters/inch character s/i n ch 

TAPE SPEED 100 inches/second 100 inches/second 112.5 inches/second 

TAPE WIDTH 0.5 inch 0.5 inch 0.5 inch 

TAPE LENGTH 3,600, 21 400 1 11 800 11 500 feet (metallic) 2,400 feet 
2AOO feet (plastic) {plastic} 

THICKNESS 1 mi I 1 mi I (metallic) 1.5 mils 
1.5 mils (plastic) 

BLOCK LENGTH Variable Variable Variable 

SPACE BETWEEN 0.75 inch 1.2 inches 0.75 inch 
BLOCK 

CHANNELS ON 100KC-7 channels 8 channels 7 channels 
TAPE 6 data 6 data 6 data. 

1 pari ty 1 parity 1 parity 

125K C-9 channe Is 
1 sprocket 

8 data 
1 parity 

READ/WRITE Reading in forward Read ing in forward Reading and writing 
and backward I and backward I operat ion s proceed 
directions; writing directions; writing in the forward 
in the forward in the forward direction only. 
direction only. direction only. 

* Trademark of Sperry Rand Corporation 



UP-3900 UNIVAC 490 SPURT 4 
SECTIO.N: 

a. UNISERVO IlIA Tape Handling Unit 

',' , .: .. t:./,ciAiiAt. \~,'iE:RISfi'cs, .'. 
,.:: ~ ~ ~ •• y "., ."h" " ,"' .;.- " , <~u«. 

" ,,~, <' > ~ " , .~ . ~" >:< '" • ~, ~." ·t· ; " 

TRANSFER RATE 100,000 or 125,000 characters/ 
second 

RECORDING DENSITY 1,000 or 1,250 6 Bit characters/inch 

TAPE SPEED 100 inches/second 

TAP E WIDTH 0.5 inch 

TAP E LENGTH 3600 I 2400, 1800 

THICKNESS 1 mil 

BLOCK LENGTH Variable 

SPACE BETWEEN BLOCKS 0.75 inch 

CHANNELS ON TAP E lOOKC m 7 channels 
6 data 
1 parity 

125KC-9 channels 
8 data 
1 parity 

READ/WRITE OPERAT ION R eadi ng in forward and backg 
ward directions; writing in the 
forward direction only. 

The UNISERVO IlIA Tape Handling Unit is a high speed magnetic tape storage device. The 
UNISERVO IlIA tape subsystem is connected to the UNIVAC 490 System through any avail~ 
able general purpose channel. Up to 16 tape units may be connected through one channel 
control unit. Several subsystems may be connected - one subsystem per channel. 

Data is written or read to or from the UNISERVO IlIA Tape Handling Unit at a rate of 100,000 
or 125,000 characters per second. The recording is done in the variable blo~k length mode. 
The UNISERVO IlIA Tape Handling Unit has an automatic read after write feature to provide 
the maximum assurance that the data has been recorded correctly on the tape. Automatic re
covery, bad spot detection and skipping are provided through a combination of hardware and 
executive program action. 

Among the outstanding functions of the UNISERVO IlIA magnetic tape systems are: 

Read Forward, Read Backward, Write Forward, Masked Search, and High Speed 
Rewind. 

As in the case of drum storage (of both types) and the other available magnetic tape 
units, the search function is conducted in the off line manner - that is, the control 
unit, once given the command by the Central Processor, takes over and the processor 
proceeds with the execution of other instructions in its program until the desired item 
is located. 

9 
PAGE: 



4 
SECTION: 

10 UNIVAC 490 SPURT 
PAGE: 

The maske d se arch function is extreme ly valuable in that it greatly simplifies pro

gramming because a search can be made upon any portion of an identifier word. The 

advantages of rapid rewind are obvious. 

There are mechanical features of the UNISERVO IlIA Tape Handling Unit which 
contribute a good deal to its generally recognized status as the most advanced, 
reliable, and efficient magnetic tape system which now exists. It uses tape only 
1 mil thick (mos t other tapes are 1. 5 mils thick). Thus, more tape can be wound on 
a reel of normal size, and there can be more data per reel. Also, the tape is vacuum 
clutched which reduces slippage and tape wear and shrinks start/stop time to three 
milliseconds. Closing of the tape unit door automatically moves a newly mounted 
tape to its load point, ready for use. 

When data is to be stored and manipulated by means of magnetic tape in large 
quantities and at high speed, UNISERVO IlIA Tape Handling Units provide the 
world's outstanding system, for the reasons cited above. 

b, UNISERVO I1A Tape Handling Unit 

TRANSFER RATE 

RECORDING DENSITY 

TAPE SPEED 

TAPE WIDTH 

TAPE LENGTH 

THICKNESS 

BLOCK LENGTH 

SPACE BETWEEN BLOCKS 

CHANNELS ON TAPE 

REA D /W R I TEO P E RA T ION 

12,500 and 25,000 
characters/ second 

125 and 250 6 bit 
characters/inch 

100 i nches/ second 

0.5 inch 

1,500 feet (metallic) 
2,400 feet (plastic) 

1 mil {metallic} 
1.5 mils {plastic 

variable 

1.2 inches 

8 channel s 
6 data 
1 parity 
1 sprocket 

Read i ng in forward 
and backward directions; 
writing in the forward 
direction only. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 4 
SECTION: 

The UNISERVO IIA Tape Handling Unit is a moderate speed, low cost magnetic 
tape subsystem which may be connected to the UNIV AC 490 system, via a control 
unit through any available general purpose channel. Data is written or read to or 
from UNISERVO IIA units at rates of 12.500 or 25,000 characters per second. The 
subsystem can also read data from a magnetic tape produced by a UNITYPER *. 

Up to 12 UNISERVO IIA units may be employed through one synchronizer control unit 

connected to one general purpose channel. As many units as the installation may require 

may be em ployed by the us e of more than one general purpose channel. 

Data may be written or read in either a fixed or variable block length. Fixed length is 
720 characters. Variable length is entirely at the discretion of the user of the system. 

The only restrictions are that one block must comprise at least one computer word, and 

that it must not be so long as to exceed the system's storage capacity. The UNISERVO 

IIA Tape Handling Unit as a unit of the UNIVAC 490 System is completely compati-
ble with the UNIVAC I, II, III computer systems, and the UNIVAC 1103A, 1105 and 
1107 systems, as well as the UNIVAC File Computer, the Solid State and STEP 
systems, without off line tape conversion. Any tape unit on a given channel may 
communicate with the computer while the other units are rewinding. 

Both read and search operations may be conducted when the tape is moving either 
forward or backward. The UNISERVO IIA subsystem can detect and signal end of 
file.Cend of logically related blocks of data) when reading or searching. As explained 
under UNISERVO IlIA Unit, search is conducted in the off line manner. 

,. Trademark of the Sperry Rand Corporation 

11 
PAGE: 



4 
SECTION: 

12 UNIVAC 490 SPURT 
PAGE: 

c. UNISERVO IIIC Tape Handling Unit 

TRANSFER RATE 22,500 and 62,500 
characters/second 

RECORDING DENSITY 200 and 556 6 bit 
characters/inch 

TAPE SPEED 112.5 inches/second 

TAP E WIDTH 0.5 inch 

TAPE LENGTH 2,400 feet 
(plastic) 

THICKNESS 1.5 mils 

BLOCK LENGTH Variable 

SPACE BETWEEN BLOCKS 0.75 inch 

CHANNELS ON TAPE 7 channeis 
6 data 
1 parity 

READ/WRITE OPERAT ION Reading and writing 
operat ion s proceed 
in the forward 
direction only. 

The outstanding virtue of the UNISERVO IIIC subsystem is that it provides compatibility 

between the magnetic tapes of the world's two greatest producers of computer systems -
The Univac Division of the Sperry Rand Corporation and IBM. There are many instances 
in which analysis shows that a UNIVAC computer such as the 490 is preferable to a 
marked degree, but the data to be processed is already on other than UNIVAC tapes. 

The UNISERVO IIIC Tape Handling Unit is the answer. When this subsystem is employed, 
offline conversion is utterly unnecessary. You simply take the old tapes, put them on the 
new machine, and go from there. The programming problems are insignificant because the 
circuitry of the UNISERVO IIIC Tape Subsystem control unit automatically deals with them.* 

Up to 12 UNISERVO IIIC units may be connected to any available general purpose channel 

and, as with the other subsystems, more than one channel may be used for this purpose. 

Data may be recorded at 200 or 556 characters per inch. The read/write speed is 22,500 

or 62,500 characters per second. A tape may contain more than 3000 blocks of 1000 words 

each in high density binary recunEng, ur 1000 u10~h.8 0f 1000 wVlds each ill Ie .. ·; dcn~ity. 
Block length, subject only to storage capacity, is completely variable. For practical pur

poses, this is to say that it is completely at the will of the systems analyst or programmer. 

UP-3900 

* UNIVAC punched card readers and punches also deal readily with 80 column punched cards, Translation from 
code to code is automatic. 



UP-3900 UNIVAC 490 SPURT 4 
SECTION: PAGE: 

The UN ISERVO I1IC has the further advantage that, unlike many earlier devices of its 

kind, it can write data on tape in what is known as the non stop mode. This means that 

block after block of data may be written wi thout re-initiating the write instruction. The 
resultant simplification of programming is significant" As explained under UNISERVO IlIA 
Unit search is conducted in the offline manner. 

4. High-Speed Printer Subsystem 

Figure 4-6. High=Speed Printer 

LINES PER MINUTE 

CHARACTERS PER liNE 

liNES PER INCH 
(VE RT ICAl) 

CHARACTERS PER INCH 
(HORIZ ONTAl) 

NUMBER OF PRINTABLE 
CHARACTERS 

PAPER STOCK 

NUMBER OF COPIES 

700 - 922 

132 

6 or 8 

10 

63 

Any sprocket fed paper 4 to 27 inches 
wid e , up to and inc Iud i n g car d s to c k 
thickness, either blank or preprinted 
form s. 

At least 5 carbons and an original when 
12 pound paper stock is used. 

A High-Speed Printer subsystem may be connected to any available general purpose channel. 
Operating under program control, the subsystem produces single or multiple copy data at a rate 
of 700 lines of alphanumeric characters per minute, up to 922 lines of numeric characters per 
minute. The printed lrne may be up to 132 characters iong. 

13 



4 
SECTION: 

14 UNIVAC 490 SPURT 
PAGE: 

Including the blank, or space, the standard character set provides 64 characters: the 26 letters 
of the alphabet, the digits 0 through 9: seven punctuation marks: comma, period, apostrophe, 
colon, semicolon, question mark, and exclamation point: and 20 special symbols [] right and left 
brackets, 0 right and left parenthesis, \ / right and left solidus, &, #, @, *, $, %, fl, tt, =, <, >, 
- (to represent either minus or dash), + and ±. 

This is the standard character set. 

Other character sets are available on special order to meet special needs. 

The printer is designed to prevent a build up of static electricity, facilitating the proper stacking 
of paper which may be fed directly from the shipping container. Numbered calibrations on the 
printer enable the operator to record the positioning of a particular form and, at a later time, to 
set the same type of form to the necessary position. Fine adjustments are provided so that the 
operator may shift the paper horizontally or vertically the space of one character or line, or less, 
in either direction. The adjustment may be made while the printer is operating or while it it in 
the standby condition. 

S. Card Subsystems 

CARDS PER MINUTE 

NUMBER OF OUTPUT 
STACKERS 

l 
I 

-.....J 
Figure 4-7. Card Reader and Punch Verifier 

CARD READER 

600 

3 

PUNCH VERIFIER 

150 

2 

UP-3900 



UP-3900 UNIVAC 490 SPURT 4 
SECTION: PAGE: 

The Card Reader reads and checks 80 column cards at the rate of 600 cards per minute. Under 
direction of the program, cards are moved from the inpu t hopper in to the card channel and pass 
through two read stations. At the first read station the card image is read and stored. At the se
cond read station the card is read again and compared to the image that was stored. If the compa
rison is equal, the data on the card is transferred to the Central Processor, and the card goes to 
the normal output stacker or the stacker by the program. 

The Punch Verifier punches and checks 80 column cards at the rate of 150 cards per minute. 
Under direction of the program, a card is sent through the unit, information generated by the pro
gram is punched into the card at the punch station, the card is moved to the wait station, a!\d 
then is moved to the third read station where it is verified. The verification is accomplished by 
reading the card and comparing the results hole by hole with the card image which is retained in 
the control unit until the checking is complete. When this has been completed the card is placed 
in the normal output stacker or the stacker selected by the program. 

Translation from card code to internal machine code and vice versa is automa tically accomplished 
within the control unit through the use of core storage and table look up techniques. By changing 

the contents of the table nonstandard translations may be performed. 

6. UNIVAC Standard Communication Subsystem 

The UNIVAC Standard Communication Subsystem enables the UNIVAC 490 Real-Time System to 
receive and transmit data via any common carrier in any of the standard codes and at any of the 
standard rates of transmission up to 4800 bits per second. It is the only communication system 
which can receive data from or transmit data to low speed, medium speed, or high speed lines in 
any com bina tion. 

The subsystem consists of two principal elements, the Communication Line Terminals (CL T's), 
which make direct connection with the communication facilities, and the Communication Multi
plexer through which the CL T's deliver data to and receive data from the Central Processor. A 
Communicaiton Multiplexer may be connected to any general purpose computer channel or two or 
more multiplexers may be connected to two or more channels. If required, a number of multiplexers 
may be connected through a Scanner Selector to the same general purpose channel. The total 
number of multiplexers which can be connected to a general purpose channel is dependent on the 
number and speed of the communication systems linked to the multiplexers by their CL T's. 

a. Communication Line Terminals (CL T's) 

There are three basic kinds of input and output CL T's: low speed (up to 300 bps*), medium 
speed (up to 1600 bps) and high speed (2000 - 4800 bps). Each is easily adjusted to the speed 
and other characteristics of the type of line with which it is to operate - see CHARACTERIS
TICS at the beginning of this section. Each CL T requires one position, either input or output, 
of the Comm unicstion Multiplexer. 

The CL T - Dialing is an output CL T which is employed to enable the Central Processor 
automatically to establish comm unications wi th remote points via the common carrier's switch
ing network. Each CL T - Dialing requires one output position of a Communication Multiplexer. 
Since CL T - Dialing does not transm it da ta, it is always used in conjunction with an output 
CL T, an input CL T, or, for two way communications, both. 

* bits per second 

15 



4 
SECTION: 

16 UNIVAC 490 SPURT 
PAGE: 

b. Comm unica tion Multiplexe r 

The Communication Multiplexer functions as the link between the processor and the 
CLT's and is available in modules to handle 4,8, 16,32, or 64 CLT's. In each of 
these modules, an equal number of input and output CL T positions are provided. For 
example a 64 position Communication Multiplexer can accommodate up to 32 input and 
up to 32 output CLT's. 

The CLT's may request access to the Central Processor via the Communication Multi
plexer in random sequence, or severa 1; or conceivably; all CLT's might request access 
Simultaneously. The Communication Multiplexer automatically assigns priorities among 
CL T's requesting access and identifies to the Central Processor the particular CLT 
granted access. 

COMMUNICATION 
MUL TiPLEX'ER 

UP TO 64 CL T·S 

COMMUNICATION 
MUL T!PLEXER 

UP TO 64 CL T·S 

Figure 4-8. One Communication Multiplexer per General Purpose Channel 

UNIVAC 490 

SCANNER SELECTOR 

COMMUNICATION 

MUL TIPLEXER 

UP TO 64 CL T'S 

COMMUNICATION 

MUL TIPLEXER 

UP TO 64 CL T'S 

Figure 4-9. Multiple Communication Multiplexers per General Purpose Channel using Scanner Selector 

UP-3900 



UP-3900 UNIVAC 490 SPURT 4 
SECTION: PAGE: 

CHARACTERISTICS 
INPUT COMMUNICATION LINE TERMINALS (CL T'5) 

LOV{ SPEED T rv'EDlurv1 SPEED I HIGH-SPEED 

NAME CL T51L CL T81L CL T81M CL T81P CL T81H 

CODE 5 LEVEL 6,1, or 8 LEVEL 5,6,1,or 8 LEVEL I 8 LEVEL 5,6,I,or8 LEVEL 

*ASYNCHRONOUS ASYNCHRONOUS ASYNCHRONOUS ***TIMING SIGNAL **SYNCHRONOUS 
MODE 

BIT SERIAL BIT SERIAL BIT SERIAL BIT PARALLEL BIT SERIAL 

I UP TO 1600 bps 
I I 

SPEED UP TO 300 bps UP TO 300 bps I UP TO 75 cps I 2000-4800 bps 

OUTPUT COMMUNICATION LINE TERMINALS (CL T'5) 

LOW SPEE 0 MEDIUM SPEED HIGH-SPEED t DIALING 

NAME CL T50L CL T80L CL TSOM CL T80P CL T80H CL T DIALING 

CODE 5 LEVEL 6,7,or8 LEVEL 5,6.7, or 8 LEVEL 8 LEVEL 5,6,7, or 8 LEVEL 4 LEVEL I 

ASYN CH RONOUS 
I I i 
I ASYNCHRONOUS ASYNCHRONOUS TIMING SIGNAL SYN CH RONOUS I TIMING SIGNAL I 

I I MODE 
BIT SERIAL BIT SERIAL BIT SERIAL BIT PARALLEL BIT SERIAL BIT PARALLEL ! 

i I I 

I SPEED UP TO 300 bps i UP TO 300 bps UP TO 1600 bps I 
I 

UP TO 75 cps I 2000-4800 bps I VARIABLE 

COMMUNICATION MUL TIPL EXER 

NAME FUN CTION 

C/M-4 Connects 2 input and 2 output CL T's to General Purpose Channel 

C/M-8 Connects 4 input and 4 output CL T's to General Purpose Channel 

C/M-16 Connects 8 input and 8 output CL T's to General Purpose Channel 

C/M-32 Connects 16 input and 16 output CL T's to General Purpose Channel 

C/M-64 Connects 32 input and 32 output CL T's to General Purpose Channel 

Types of Communication Service provided: 

PRIVATE LINE TELETYPEWRITER WIDE AREA TELEPHONE SERVICE (WATS) 
PRIVATE LINE TELEPHONE WIDE AREA DATA SERVICE (WADS) 

TELETYPEWRITER EXCHANGE SERVICE (TWX) DIRECT DISTANCE DIALING (DDD) 

t CLT-DiaIing - This is an output CLT employed when the Central Processor is automatically to establish 
communications with remote points via the common carrier's switching network. 

* ASYNCHRONOUS - Employs start and stop bit with each character to establish timing. 

* * SYNCHRONOUS - Uses timing characters at pre-determined intervals between data charac ters. 

*** TIMING SIGNAL - Indicates the presence of a character at a Data Set. 

I 
I 

I 

I 

I 

17 



4 
SECTION: 

18 UNIVAC 490 SPURT 
PAGE: 

7. Punched Paper Tape Subsystem 

a. Paper Tape Reader 
"n ,.. • ~'"i"" wo, w .;~,.';; <:;:,: , 

, ~~:,~"1fi#~'~¥'~~~:~'~i~:~.~':.! 
READING RA TE 

NUMBER OF CHANNELS 

CHARACTERS PER !NCH 

TAPE SPEED 

TAPE WIDTHS 

b. Paper Tape Punch 

PUNCH ING RATE 

NUMBE R OF CH ANNELS 

CHARACTERS PER INCH 

TAPE SPEED 

TAPE WIDTHS 

,: .. '", :~ t' "' 

;¢ffA·IA)CTS1R.'S~I;bi}. 
, ," ";, ::: .q _", ... "<; A~.,:~ :, 

400 characters/second 

5, 6, 7, or 8 

10 

40 i nche s/ second, free runn i ng 
(forward or reverse) 

11/16,7/8, or 1 inch 

110 characters/second 

5,6,7, or 8 plus in line sprocket. 

10 

11 inches/second 

11 /16, 7/8 , or 1 inc h 

The Punched Paper Tape Subsystem enables the UNIVAC 490 Real-Time System to read 
or punch paper tape in all standard codes with programmed translation. A paper tape sub
system may be connected to any available input/output channel. Parity checking may be 
preformed in either reading from tape or in punching, under control of the Central Pro
cessor Program. The subsys tern handles 5, 6, 7, or 8 channel tapes at a readin g rate of 
400 characters per second and at a punching rate of 110 characters per second. 

Tape may be read, or punched, employing spools or individual unspooled strips of tape. 
When des ired, num bers 0 f s trips can be spliced together and s pooled for reading. When 
spools of tape are used as input to the reader, a supply reel and a take up reel are 
employed. Tape is read in a forward direction and may be back spaced a specified num
ber of characters under program control. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-A 
SECT-ION: PAGE: 

5. PROGRAMMING IN SPURT 

A. COMPUTER ELEMENTS RELATED TO PROGRAMMING 

1. The Computer Word 

The most fundamental level of storage in the computer is the internal data word. A data 
word is made up of 30 binary bit positions as shown in Figure 5-1. Each of these bit 
positions may represent a value of 0 or 1. When used for arithmetic operations, a value of 1 
in bit position 29 will indicate a negative quantity; a value of 0 indicates that the value 
represented by the remaining bit positions is positive. 

MOST 
SIGNIFICANT 
BIT 

SIGN 
BIT 

Figure 5-7. Basic Internal Data Word 

LEAST 
SIGNIFICANT 

BIT 

Values may be expressed in binary notation for which the base is 2 instead of 10. The 
following equivalence exists: 

BINARY DECIMAL 

1 
10 2 

11 3 

100 4 

101 5 

110 6 

111 7 

1000 8 

1001 9 

1010 10 
1011 11 

10110101 181 

1 



5-A 
SECTION: 

2 UNIVAC 490 SPURT 
PAGE: 

The use of binary digits to represent large values is cumbersome. The use of octal 
notation for which the base is 8 is used for convenience. The followi ng equivalence 
exists: 

BINARY OCTAL 

1 

10 2 

11 3 

100 4 

101 5 

110 6 

"111 7 
1000 10 

111111 77 
1100101 145 

Binary values may be converted to octal notation by starting from the least significan t 
(rightmost) digit. Each group of three binary digits is expressed as a digit from 0 to 7. 
By this method: 

100 101 
'-.;-' '-.;-' 

145 (octa I) 

111 101 000 750 (octal) 
'-v-' --.- '-.;-' 

A computer word containing 30 binary bits could be expressed in octal notation as: 

777777777 

Negative numbers are represented as the complement of positive numbers. A value of -3 is 
represented as: 

77777 777 7 4 

The SPURT Assembly System will permit the user to express values as decimal numbers. 
These will be converted to their binary equi valen ts by the assembler. In order to 
distinguish between binary, octal, and decimal numbers, the following subscripting will be 
used in this manual: 

,. _ __ I _ r 
n

2 
= Dlnury VUIU~ OJ n 

n8 = octal value of n 

n = decimal value (no subscript) 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-A 
SECTION: 

Examples: 

11 = 9 . 8 . 

63 = 778 

When the contents of a computer word are displayed, or if reference is made to a computer 
instruction word, octal notation will be assumed. 

2. Addressing 

Each word within the computer has a unique address. The available addresses in 
memory may range from 00000 to 377778 (if memory capacity is 16,384 words), or from 00000 
to 777778 (if memory capacity is 32,768 words). 

a. Data Addressing 

Data is addressed by instructions that are themselves contained in the memory of the 
computer. When it is required to acces s data to complete an instruction, the instruction 
will contain an address portion capable of containing a maximum value of 777778, 

b. Instruction Addressing 

A basic computer instruction may be contained within one computer word. Instructions 
are accessed in memory, analyzed by the computer and then executed. 

The next instruction is then accessed at the next sequential location unless a new 
sequence is specified. 

c. Standard Locations 

PAGE: 

Memory locations 000008 through 001368 have special uses which will be fully explained in 
the a pp ropdate con text. 

3. The Computer Instruction 

A description of the basic computer instruction word and a summary of the numeric codes used 
to initiate computer functions are included in APPENDIX A. These instructions are made 
available as a reference for checking output from the SPURT Assembler. The SPURT 
Assembler provides a more convenient, easily remembered. format for program coding. However, 
a general explanation of the basic instruction word will clarify such operations as address 
modification, operand modification, and jump interpretation. Reference will be made to these 
operations in the text dealing wi th the SPU RT instructions. 

The format of the basic computer instruction word is shown in figure 5-2. 

129 
f 

24123 2J20 
k 

J7 
b 

J4 
y 

aI 
Figure 5·2. Instruction Word 

3 



5-A 4 
SECTION: PAGE: 

y 

J 

k 

b 

UNIVAC 490 SPURT 

The value contained in these six bit positions determines the basic operation to be 
performed. The value is coded as two octal digits. For example, the code 20 specifies 
an addition of values. 

This portion of the word may be a value representing the address of a 30 bit memory 
location at which the operand used in this operation may be found, or the IS-bit 
positions of this portion of the word may be the operand used by the instruction. 

UP-3900 

The most common use of the j portion of the instruction word is to specify a jump 
condition. If the condition (such as a negative sign and a value of zero in an arithmetic 
register) is present the next instruction will be skipped. This will permit the user to 
control program sequence based upon the results of an operation. For those instructions 
that do not have jump conditions, this portion of the instruction word may have other 
uses. 

The k portion of the word will determine the size and format of the operand used by the 
instruction. Changes in the k portion will specify an operand which is in the upper 15-
bit positions of a data word, the lower IS-bit positions, the entire 3D-bit positions of a 
word with or without additional modification, or the lower portion of the instruction word 
itself. 

The b portion of the instruction contains a value from 0 to ,. It refers to a B-register 
with a capacity of IS-bit positions that may be used for the non-destructive modification 
of the y portion of an instruction. For example, if the b portion of an instruction contains 
a value of 2, the contents of B-register number 2 will be used to modify the instruction. 
If the y portion of the instruction contains the value 00150, and B-register number 2 
contains the value 00055, these octal values will be added as follows: 

00150 
+ 00055 

00225 

The address from which the operand is obtained is 00225. The y portion of the instruction 
remains unchanged. 

An end-around carry will result when a carry is generated in the addition of the high order 
bits. This carry is added to the lowest order bit position of the sum. End-around carry is 
illus tra ted as follows: 

77775= 111111111111101 (y portion of instruction) 
00005 = 000000000000101 (contents of B-register) 
00002 = 000000000000010 
___________ ..:..1 (end-around carry) 
00003= 000000000000011 (resulting operand address) 

There are seven actual B-registers numbered 1, 2, 3, 4, 5,6, and 7. The 
specification of a value of 0 in the b portion of a word has the same effect as 
adding 00000 to the y portion of the instruction. 

Note: 

B-register modification cannot be used to generate a resulting operand address 
of 00000, unless both the y portion of the instruction and the contents of the B
register equal 00000. This is due to the nature of end-around carry addition. 



UP-3900 UNIVAC 490 SPURT 5-B 
SECTION: PAGE: 

B. CENTRAL PROCESSOR 

The central processor is a stored program binary computer that is designed to process large 
quantities of data in both batch processing and real-time modes. The central processor 
contains a storage Section, a control section, an arithmetic section, an input/output section, 
and registers which, under direction of the program, perform the functions that effect the input, 
processing, and output of data. 

The relationship of these sections to each other and the paths over which the data flows in 
going to and from each section is shown in Figure 5-3. 

1. Storage Section 

A t the option of the user, the central proces sor is a vail able wi th a s to rage capacity of 
16,384 or 32,768 computer words. Since information can be randomly selected, (the 
location in storage that a word is inserted into or removed from has no bearing on the time 
it takes to perform these operations) access to all locations in storage is the same; that 
is, words can be inserted into or removed from any location in storage at a rate of six 
microseconds per word. 

2. Control Section 

The control section coordinates the flow of da ta between the arithmetic and storage 
sections and governs the operations that take place during the sequential execution of 
the instructions. 

3. Arithmetic Section 

The arithmetic section performs arithmetic and logical operations, and communicates with 
the arithmetic registers, the adder or the other operational registers. 

4. Input/Output Section 

The input/output section transfers data to and from the central processor via 14 input/output 
channels. Two of these channels are designed for communication with other computers. The 
remaining 12 channels are used for communication with the various peripheral units. The 
transfer of data to and from the central processor via these channels proceeds simultaneously 
wi th processin g and is normally in the form of successi ve 1 5-bi t half words or 30- bi t compu ter 
words. 

5. Regis tefs 

The central processor con tains anum ber of registers (15 or 30-bi t areas apa rt from the storage 
section) that hold data during processing. These registers are designated by a letter or 
letter-numeral and are interconnected by parallel transmission paths. During processing,data 
flows to and from the registers via these paths. 

The registers fall into two categories: operational and transient. 

a. Operational Registers 

The operational registers are referred to by instructions in the program. Data that is placed 
in these regis ters is retained un til it is replaced by new data. 

1 



14 
INPUT /OUTPUT 

CHANNELS 

MAIN MEMORY 

16K, 32K MAGNETIC CORE 

, Co REGISTER r--

\'"------' 
< INPUT GATES Z-REGISTER 

/'1 C
1 

REGISTER 1-

PROGRAM CONTROL 

lJ-REGISTER 

P-REGISTER 

S-REGISTER 

R 

INDEXING UNIT 

A-REGISTER A R I THM E TIC CON T ROL ..... ---.----+------------' 
X-REGISTER 

D-REGISTER 

I I 

ADDER 
Q-R EGI ST E R ~~L-________ ~ 

INDEX REGISTERS 

Figure 5-3. Simplified Lc)gic Diagram of the UNIVAC 490 

Real- Time Computer 

1/1 

fTI 
() 

-I 

o 
Z 

(.J1 

I 
to 

c: 
2 -
~ 
n 
~ 
ID o 
OJ 
1] 
C 
II 
-I 

C 
""d 
I 

W 
\0 
o 
o 



UP-3900 UNIVAC 490 SPURT 5-B 
SECTION: PAGE: 

(1) A-Register 

The A-register is the principal 30-bit arithmetic register. It is used primarily for 
arithmetic and shifting operations (the moving of the contents of the register a specified 
number of positions to the right or left). In arithmetic operations, the result is usually 
retained in the A-register for use in later program steps. For example, after addition 
the sum is retained in the A-register, after subtraction the difference is retained, after 
multiplication the most significant half of the product (the upper 30-bits of the 60-bit 
product) is retained, and after di vision the rem ainder is retained. 

(2) Q-Register 

The Q-register is a 30-bit auxiliary arithmetic register that has adding, shifting, and 
logical properties. 

(3) A- and Q-Registers in Combination 

Multiply, divide, and certain shift operations utilize the A- and Q-registers as a single 
60-bit register. For example, the Q-register holds the multiplier at the beginning of a 
multiply operation and when completed the 60-bit product is in the AQ-register; that is, 
the most significant half of the product (the upper 30-bits) is in the A-register and the 
least significant half of the product (the lower 30-bits) is in the Q-register. In a 
divide operation the AQ-register holds the dividend at the beginning and at the end, 
the quotient is in the Q-register and the remainder is in the A-register. 

In shift operations, the 60-bit contents of the AQ-register may be shifted right or left in 
the same manner as either the A-register or the Q-register. 

(4) B-Registers (Index Registers) 

The B-registers, numbered B 1 th rough B7, are 1 5-bi t regis ters whose contents are 
used to increment the operand address before execution of an instruction if such 
modification is specified in the instruction word. 

(5) P-Register (Program Address Counter) 

The P-register is a IS-bit register that holds the address of the next sequential 
instruction throughout the program. As each instruction is executed, the contents 
of the P-register are usually increased by one. The contents may be changed to a 
non-sequential value by some instructions. 

b. Transient Registers 

The transient registers are used for the manipulation of instruction and data words 
during processing. They are not accessible to the user and do not retain information 
from one operation to the next. These registers are discussed in order to present a 
complete picture of the logical flow of data through the central processor. 

(1) X-Register 

The X-register, a 30-bit register, is used as an arithmetic communication register. 
The X-regis ter recei ves the operand from storage durin g all ari thmetic operations. 
All communication between the A- and Q-registers and the other operational 
registers or the adder output takes place via the X-register. 

3 



S-B 
SECTION: 

4 UNIVAC 490 SPURT 
PAGE: 

(2) S-Regis ter 

The S-register is a IS-bit register which holds the storage address during storage 
references. At the beginning of the storage access period, the address is 
transferred to the S-register. The contents of the S-register are then translated to 
activate the storage selection system. 

(3) Z-Register 

The Z-register is a 30-bit register that serves as an operand buffer for storage 
references. During the read portion of the storage access period, the Z-register 
is cleared. The digit reading amplifiers are then sampled to set the contents of 
the Z-register corresponding to the bits in storage. During the write portion of 
the storage access period, the Z-register controls inhibit circuits in order to write 
or restore the disturbed storage address. Input data from the input channels is 
gated directly to the Z-register. 

(4) K-Regis ter 

The K-register is a 6-bit register that functions as a shift counter for shift 
operations and all arithmetic operations involving shifts. The maximum shift 
count permitted is S9. Multiply and divide operations are controlled by presetting 
the K-register to 30, The K-register then counts the operational steps. 

(S) U -Regis ter 

The U-register or program control register is a 30-bit register that holds the 
instruction word during the execution of an operation. The function code and the 
various instruction designators are translated from the appropriate sections of 
this register. If an address modification is required before execution, the contents 
of the appropriate B-register are added to the low order IS-bits of the U-register. 

(6) R-Register 

The R-register is a IS-bit register that functions as a communications register for 
all internal transmissions to the B-registers. 

(7) R' -Register 

The R'register is a IS-bit register that functions as a communications register for 
all internal transmissions from the B-registers. During address modification this 
register holds the incrementing quantity. 

(8) C-Registers 

The C-registers are 30-bit communication buffer registers through which data is 
synchronized. There are two C-registers, CO andCl. The CO register is used to 
communicate output data to peripheral devices on a maximum of 12 different 
channels. The Cl-register is used to communicate output data on two different 
channels to other computers. Input data is gated directly to the Z-register. 

(9) D-Register 

The D-register is a 30-bit arithmetic register that holds the operand for presenta
tion to the adder during the execution of the arithmetic operations. 

UP-3900 



UP-3900 UNIVAC 490 SPURT S-C 
SECTION: 

C. THE SPURT ASSEMBLY SYSTEM 

The SPURT Assembly System will accept a source program via one of the available input 
media. A source program is the definition of a problem written in a convenient form resembling 
a series of verbal statements. These statements a re then translated into several intermediate 
forms. The output from the assembly process is an object program which is acceptable as 
instruction input to the UNIVAC 490 Central Processor. 

1. The SPURT Statement 

The source program is composed of statements having the following general format: 

I w v 

label OPERATOR operand (s) 

The label identifies a particular statement. Only statements that will be referred 
to by other statements require a label. A label may consist of a maximum of ten 
characters composed from the numbers (0 through 9) or the letters (A through Z). 
Alphiibetic 0 and zero are equated and spaces are discarded starting at the end 
of the label field up to the first valid character. The following restrictions must 
be observed: 

• A label cannot begin with the letters 0 or X, or any of the numbers (0 through 
9). 

!! A label cannot consist of only A, Q, BO through 87, or CO through C16. 

Examples of valid labels are: 

PRPYI2,BAC, THAN, CAT, DOG, TABLEl2 

Examples of invalid labels are: 

TABLE/12 
B6 
CII 
XYZ 
TABLE~12 

(lis not a valid alphanumeric character) 
(BO through B7 not permitted) 
(CO through CIS not permitted) 
(begins with X) 

(internal spaces not permitted) 

w The operator is a mnemonic code which identifies the operation to be performed. 
It may cause the assembler to generate one computer instruction or a group of 
computer instructions. 

v One or a series of operands which are required for the operation. They will be 
referred to as v 0' vI' V 2' ••• V n' 

A point separation symbol will be used to separate the operator from the first 
operand. If a statement requires more than one operand, this symbol will separate 
the operands. 

I 
PAGE: 



5-C 
SEC T10N: 

2 UNIVAC 490 SPURT 
PAGE: 

A s tatemen t wi th notes will appear as follows: 

STATEMENT AND NOTES ----------.~ 
17 18 20 30 40 50 

----===~~---~--------------- ~--=~~--~-~-------------notes statement 

Notes have no effect upon the assembly process. They will appear on some of the 
output listings and are used as a reference aid. A separation symbol (~) will 
separate the last operand from the notes. 

The actual codes which are the equivalents for each of the symbols are presented 
in APPENDIX B, SOURCE PROGRAM INPUT MEDIA. 

2. The SPURT Coding Form 

Figure 5-4 is a reduced representation of the 11" x 16
11 

SPURT Coding Form. A line is 
provided at the top to identify the program, programmer, date, and page number. This 
information is not part of the source program input. Card input is recommended for ease 
of insertion and correction. The form may however, be used for other input media. 

The line provided for the source program statement is arranged as follows: 

COLUMN 

1-4 

5-6 

USE 

The card number provides an external sequencing criteria. It is not directly 
used by the assembler. The assembler will make a separate assignment in 
sequential order. 

The insertion num ber is associated with the card num ber. It actually 
represents the two low order digits of the card number, which are not 
normally assigned initially. This permits sequential insertion. 

UP-3900 

7 A continuation symbol is used in this column of the additional lines, if more than 
one line is required for a statement. 

8-17 

18-72 

73-80 

or 

73-90 

If a statement is labelled. The label must appear within these columns, 
left-jus tified. 

The statement and notes are written within these columns. Separation of the 
components of the statement is accomplished by the point separation symbol. 
The statement is separated from the notes by a separation symbol. 

The remaining columns are used for additional remarks or identification. 
These entries have no effect upon the assembly process. 



o 

o 

o 

---------------, 

ASSEMBLY IN SPURT 
UNIVAC PROGRAMMING FORM UNIVAC ,490 

PROGRAM __________________________ _ PROGRAMMER _________________ ......;.... DATE _______ PAGE ___ . OF __ PAGES 

... IDENTIFICATION ---------+ 
40 ============~===============6=O==================7=2F==========8=0============:====9~0 

LABEL STATEMENT AND NOTES 
17 18 20 30 

--L--L---L __ I--'--++....l.....J......L-.l......JL......J.-J.---L-L-f-....J........J....J.L--1..,-L...J.....J. I I I I I I..L...L-L... I I I ! ! ......L.....l......L....l.......L....L..J.......l . .....l......J.......L I I ! ! ! , ! I ..l.......L....L-l-l......l..-L-.L._.L.-.L.......'--'.........J.-t-....l.......L....L.._' 1 1 1 1 ...L..L_...L..L....1....'-'--'-......... --I 

-L--L---L __ t-~--t-+--'-..L......L..........!.-.L-L..-L..--t---'--'-..r.L--'-. .....J........L.....l.......I. ... ....J_L..l.-L...l........'--.L.l........1.-L_J--..L....l......L......J.....L---L......l . ....L......l ... ...l....l.......l......L..!.........JL....!-J........JL....L....J.......l_L_l __ .L. ... ..L_.L.-~'--'.........J.-t-....L_...L . ...L...L....l.-L......l-l...-L-..l._...L-L.....L-'---' ........... -'---I 

......L-...L...._ .. t......L-+-t-~..L......L.........J.......J. ... ....L....L..-t---'--'-..r.L--L...-L...J.....J. 1 1 , 1 1 I..l. 1 1 1 1 1 1 1 I I ....L....l.......L....L...l.......L.....l......J ... ....L...l_...L......L~...!-..Ll........L...L_1......._l.......l.....l._.J........~'--'.........J.-t-....L....L......l I 1 1 1 _L.......I.._.L..JI...-I....L......J 

~........1.........1..-I-....J.....~+.J......L-L-L-L..l.....L ... ~_~........L~--.~I~.~--'---'--'-...J.-~L-_~.........J.--'-........L~~--'-1 ~..l.....L....l.......L_~--1......L......J.--1..JL....L....L.....~I-L--'--'-~L....L....~-...1....J....._,~.........J.........L~~.~~.~.L._~~-'-....J....~ 

~~~.~_....J.....~+.J.....~L-~~~~~ ,~~~_~L~~~.~~~~~~~~~~~~........L_J~I~..l.....~_~~-L,_I.........J.'~........L........L~~~_~~~~~~~~'~--I.-....J-~~T~ I , I I ~~~~~~~~ 

~ ••L..-+-+-...J.--'--.L.....L.......I'-~--+.......L......l...--.L.......IIL-~L....L-'-.J......J.....J.......L.......I'--'........1.--L......l.........l........L....J........l.......l.....L.....L......J._.l.......t.......L....L-LJ __ ..l..-L......L....J.......L....J.......!......J........L.......!........1.--L--L--'-....L....1 .l--'---'-.......... -'---'----1t-...l....L..Ll.....L.......l.......L....l....L...L_~,--'"-'--'--I

........ --'--->._-I--'--+-+-...L....L....l......L....L....LL......l_-t........L......l...--.L.......IIL-..L...L..L....L...L.....L...........L.l._.L.JIL.....1--L......L.-L....J.........l.......L.....I.......LL.....L......J._l........lLJ.._.l...1J.....1 ...L....L......J......JIJ.....L...~ IJ.......J......J......J..

/-....l........1........l._+.....L..~+-.J......l.....l......l.L...L....L • ...L......l_-+--L--'---.L.......IIL-..L....L...L....l.......L....l---L-..L...l.._J......J......J....-'-...L....J......J......J........L.......I_.J.....1........L...J __ .L......L.L.....l • ...LJ __ .L.....L....L....L......l.......L...l......L.......L..J .•. ...r..I........L --'--'-....L_...J.-~.L.......L.......I~_

~........1........l. ... +....J..~+-.J......l.......l.........L....J.._...L......l_+--'-...L...-'--l'-..L...L..L....L....L.....L..l.......L.l_ -'-......... ...J.--'--'---'--~c.......L_:.l.....L...J.......J __ l.......L_....LJ.......LJ __ L....L--'-...J.--'--'--J........L...L..l.~......L.......L..-'--L......L.IJc.......L........L....J.......J..-+-..L...L.:.l.....l......L....J.......J......J....

~~~.~_....J.....~+~~L-~~~~-!.~...J..~~l~~ 1 1 1 ' , I L-L-L~,~~~~~~~~ __ ~~~I~I __ ~~~~~~.~~~~~~~~~~~~~,~,~'~'~~~~.~I~' .• ~~~~~~~ 

t-...J.--L........J...-t ..J--t ...... --'-_l.......l.........L...J.._...L......l_+~....L-....JI'--'_ . ..L...1........-L-..l.......L.....L...l......l....L...L.....I ...... --'-........!.--'-.....J...-'-:.l.....L .... L...L_L.....L.l......L.....Ll.......J.......L--'-..J.......L...-'--J........L._L..L.l........J._-l-L-.l............J.--L......l.......J......J....+ 

t-...J.--'--L...-t ..J--t--+........L_l......J.........L . ..l_ ... ..l........l_ LL_J __ l_l.......L...1...........L...l.......L..l.....L....l_L..L...L...L_L.l---L--'--L.......JI....:.l.....L..-l-L_L_L..L...L.....Ll __ L....L.....L , 1 I I . .l........J._-l-L-.l............l--r.........L~--'--+-

t-...J.1--L..-L...-t--.L.......jt--t-'--L..L....L.l......L....L ... ..l.-.l._ f_L.J..._LL..L...1...........L....L.......l __ .L....L..1_l....L...L..... , 1 .l.......L..L....l_L...L.....J....-L .... I.......l.1 ....... 1 ....J.......J......J....-l......J......J.........L.J.....L....L......LL....L......l . .....J.--L--'-....J..-+-

1 J 1 .... l-+-t-... I_L....L...L....LLL ... ..l.-.l._ .......J.......L..L.....l.....L..l.. I LJ __ L..LL_L.l._LLLLl....J.......J __ L-L..l._L.L_LL I I 1 1 

/-....J~~_~.~~+~~~~~~-+~....J.....~I~.......l.~-'-.~dL~~~~-L_,I~I~I~I~~-L~~~~~-~....J.....I~I~I~I~~-L~~~~I~,~~~~....J-~~~~r~~~~~ __ _ 

t-...J.--'--'-+ -'--t--+........L_L....L....L..L..L.....L.L....L_ .....l.......L....J-L.L...l....L..l.......L-L-L....L..1 __ L..L.....l............l.--L......L......I......J.......L.L.L...J_L..L...L...l....-Ll....l.......L....J I J. . ..l._L...L...J....J...J.. -'--'-.L....~_ 

I--.t--L-L ... ...L... f-- -L.L....L...L....LL.l_.L..J.._+....J.......J......J1 ...... --..L...LL...L...L...L..L....J.......L_,1L......l1.......l1--L1 ......L......J.......J......JI......t.......L.L.J.......L...l_...L....l .. ..l........L.l....l......L....L....J_.L....l........L...L...........L....1_.l......L...l.......L..._.l......L~-'--'--f-. 

......L..L.L.... J.......L....L._ ......l.....l.._L.L...l....L..L . ..L...L..L....L....l....l....l........L........1.......L........!...1 ....J..1 ....J.......L. . .L.J........J..........l.......l_..l......l.._l....l. __ L...L....J __ .L..J.._...1.......l...........t..l_.L..l._..L...L......l.......L.J.._.o...-................... -+_ 

......L..L.L._ ... ..L....I- ---!-L..L...l......LL.l ... _.l........L I .L...l....L..l.......!........L.1 .... L_..J......l..... l.......l........J......_..l.......L..l........L....J......l..._L...L......l_.L..J.._.LL ... J_...:L.l . ..l......L_...l.......L......L . ......L.-L-'--'--f-

.L.....J-L....J..~.l-L..J....L I ! ! I I ! ! ,_J ..... l_J.....J... .. ,..LI--L.1 --,-' _1I....L1.-'---'-....J.... ...... +-
......L..L.L.. .• 1.......l.......l ..... L...L._ ......l.....l..._L..1.......!......L.l.........!........l.....L....L ... L~.....L......L....l.......L...L.....1.......l.......l_.l_L...l_.....L_ .. .L..L....J......l_..l.....l........J........L......L...!-..L.l........L.....L •. L.....L_..J......l.............L.._l..-'-.....J...-'-....L...+-

......J........ .. _...l....1- ........L.. ... l.......l--L....LL.l.. ... L...L._ .......L......L......Ll.....l ... ...L...L..L..L...l....l...l i .... L .J_l......L....L_....L..l.......l.......L_L...l_.L....l..._..L...L. .... .l......L ... LL_L..l........l_L...l.......l......l ... ....L..l_.L....l.._.l.....J......l_L....l-'-.....J.......J......+-

... .l........L...L ... ...l.... I- ......l-L..l.....L...L_L...l....L..L_t---'--'-...J.I........L_.L...l......L...L..L..L...L ...L..1 .... L_.L. ... L..l.......L...L...L....l....l....1....L...l.......L......L_.l_...L. ... .l......L-L-L.L_L..L-.l._l_.....l.......L ... l_....L..l .... L-.l. __ .l.......L-l.......t... . ...l......J........1........J........J......+-

/-....l.....J........L._+ ... .J.....+-l--I........J . .......L......L.....l....L. .. L_L...L._ .......L......L...l......LL...l.......L..L.L....l......l ... ...L..1..l_.L....l......l.......l......._...L....l....l.....l.....L...l __ l........L_...l_-L-l.......l....-L-L..L..L1 ......J...-L-'-.J.......L....l ... ....J...Jl .. L-.l. ... .L..l.......L.....L-L......J.......L...-'-+-L.....L.......I.........l 

Figure 5-4. SPURT Coding Form. 

In 
(TI 
() 

j 
0 
Z 

"0 
~ 
G) 

~ 

c:::: 
'"'d 
1 

W 
\0 
o 
o 

c: 
2 -
~ 
n 
A 
CD o 
OJ 
1J 
c: 
II 
-4 

U1 
I 
(J 

W 



UP-3900 UNIVAC 490 SPURT 5-D 
SECTION: PAGE: 

D. SPURT INSTRUCTION FORMAT 

The basic SPURT instruction is defined by an operator, such as MUL to indicate a multiply 
operation. An allied operand may be used to further define a basic operation. For example, if the 
basic operator is STR, to indicate a store type of operation, the allied operand may modify the 
basic operation as follows: 

STR A means store the contents of the A-register in an operand location. 

STR Q means store the contents of the Q-register in an operand location. 

Instructions within this section will be presented in the following format: 

OPERATION y J 

operator operand jump 
des ignation 

The operator, as described above, will appear under OPERA TION. Both the opera tor and its 
allied operand will be included. 

When an operand is required to complete an operation it will appear in the box under Y. The 
three general classes of operand will be defined below under THE GENERAL OPERAND. If 
an operand belongs to one of these classes, the class will be written in the box. Exceptions to 
the general classes will be noted and explained. 

The box under] will refer to the jump designation. The word "normal" will be placed in this 
box if a normal jump designation applies to this operation. Exceptions to the normal jump 
designation will be noted and explained. 

1. The General Operand 

Basic SPURT instructions are of three general classes: read class, store class, and replace 
class. These classes are related to the k-designator of the computer instruction. Various 
modifications to the operand are performed depending upon the class of operand and the 
modification symbol that is specified. The modification may affect the high order IS-bits of 
the word, the low order IS-bits of the word, or the entire 30-bits of the word. 

Two forms of the general operand that are used by the three classes of instructions are 
constants and operand labels. 

a. Constants 

A value may be assigned to a computer word by the specification of a constant. The 
values may be expressed as either an octal or a decimal value. Decimal values are 
followed by the character D. Posi ti ve values require no sign; nega ti ve values are 
preceeded by a minus sign (-). 

The maximum decimal value that may be expressed as a positive or negative quantity 
is 5368709IID or -S368709IID. 

The maximum octal value that may be expressed as a positive or negative quantity is 
3777777777 or -3777777777. 

1 



S-D 
SEC TION: 

2 UNIVAC 490 SPURT 
PAGE: 

A group of labelled constants would appear as follows: 

LABEL STATEMENT AND NOTES 
17 18 20 

WORD REPRESENTATION 
GENERATED 

0 0 0 o 0 0 2 0 0 4 

7 7 7 7 7 7 7 4 0 0 

o 0 0 7 7 o 0 076 

Two constan ts may be placed in the upper and lower portions of a word with right justifi
cation and zero fill as shown in the example labelled TABLE. The two values must be 
separated by a point separation symbol and the maximum values defined may be 77777 or 
32767D. 

b. Operand Labels 

The definition of a label may be found under THE SPURT STATEMENT. All restrictions 
apply to the labelling of a constant. .A .. n instruction may access a constant value by the 

label assigned to that value. The actual or relative memory address of the value will be 
assigned by the assembler. 

References to the compu ter memory address that is assigned to a label may be modified by 
an increment or decrement. The increment or decrement may be a maximum of 77777 8 or 
32767. 

The computer memory address assigned to a label may also be modified by the contents of 
a B-register. This is accomplished by following the label with +B1, +B2, +B3, +B4, +Bs, 
+B6,or+B7. 

Both an increment or decrement and a B-register modification may be used. 

Examples of modified labels are: 

TAXRTE-S 

PRX12+B6 

(the address represented by TAXRTE will be decremented by 5.) 

(the address represented by PRX12 and the value contained in B
register num ber 6 will be added. The result will be the address of 
the operand.) 

UP-3900 

LABOS+12D+B3 (the address represented by LABOS will be incremen ted by 12 
(decimal). The value contained in B-register number 3 will be added 
to the result. The final result will be the address of the operand.) 

c. The Read Class Operand 

A read class instruction involves the transfer of a value from a memory location t9 an 
arithmetic register, where an operation specified by the operator may be performed. An 
operand used in these operations may be modified when it enters the arithmetic register. 



UP-3900 UNIVAC 490 SPURT S-D 
SECTION: PAGE: 

Operand modification is specified by enclosing an operand within parentheses. The operand 
may be incremented or decremented and/or B-register modification may be specified. An 
actual machine address may also be used, if the actual address of an operand is known. Any 
of these means of addressing an operand will be represented by x in the format definitions 
which follow. 

L(x) 

U(x) 

W(x) 

the value is obtained from the lower IS-bits of the memory location. The upper 
IS-bits of the arithmetic register are filled with zeros. 

the value is obtained from the upper IS-bits of the memory location. The value 
is right justified in the register and the upper IS-bits of the arithmetic register 
are filled with zeros. 

the value is the whole word of the memory location. 

LX{x) the numeric value is obtained from the lower IS-bits of the memory location. 
The most signification bit (sign bit) of the IS-bit value is extended through the 
upper IS-bit positions of the register. 

UX{x) the numeric value is obtained from the uPRer IS-bits of the memory location. 
The value is right justified into the register and the most significant bit (sign 
bit) of the IS-bit value is extended through the upper IS-bit positions of the 
regis ter. 

Read class operands may also appear in the following forms: 

(1) A Half-Word Constant 

A constant value equal to or less than S octal digits will be stored in the address portion 
(lower IS-bits) of the computer word that is generated. When the instruction is executed, 
the value is right justified in the arithmetic register and the remainder of the register is 
zero filled. 

Sign extension of a constant value equal to five octal digits, with a most significant 
digit of 4, S, 6, or 7, may be specified by preceding the value with the symbol X. 
Examples of values of this type and the binary values that will be brought to the 
regis ter are: 

OPERAND BINARY VALUE IN REGISTER 

40000 000000000000000 100000000000000 

X40000 111111111111111 100000000000000 

77773 000000000000000 111111111111011 

X77773 111111111111111 111111111111011 

The extensions referred to above for LX(x) and UX(x) are similar. 

(2) A Register Mnemonic 

The A-register and any of the B-registers may be addressed as an operand. For this 
type of addressing, one of the following symbols is used: 

A, Bl, B2, 83, B4, B5, B6, or B7 

3 



S-D 
SECTION: 

4 
PAGE: 

UNIVAC 490 SPURT 

Only the simple unmodified form for the A-register may be used as an operand. A B
register specification may appear without a label; for example, L(B3) will access 
the lower IS-bit positions of the computer address represented by the value in B 
register number 3. 

d. The Store Class Operand 

A store class instruction involves the transfer of a value from an operational register 
to a register or a memory address. The operand, represented by x, may be in any of the 
forms described under GENERAL OPERAND, 

L(x) 

U(x) 

W(x) 

C Pl(x) 

CPU(x) 

CPW(x) 

The value is obtained from the lower IS-bit positions of the register 
and stored in the lower IS-bit positions of the memory location. The 
upper IS-bits of the memory location remain unchanged. 

The value is obtained from the lower IS-bit positions of the register 
and stored in the upper IS-bit positions of the memory location. The 
lower IS-bits of the memory location remain unchanged. 

The entire contents of the register are stored in the memory location. 

The value is complemented and storage is as described for L(x) above. 

The value is complemented and storage is as described for U(x) above. 

The value is complemented and storage is as described for W(x) above. 

The A-register and the Q-register may be specified as storage locations. For this type 
of addressing, one of the following symbols is used without further modification. 

A or Q 

e. The Replace Class Operand 

A replace class instruction involves the transfer of a value to an arithmetic register. An 
operation is performed in the register. The resulting value will then replace the initial 
contents of the memory location. 

An operand address, represented by x, may be in any of the forms described under 
GENERAL OPERAND. An operand address must always appear within parentheses in a 
replace class instruction. The operand modification fonnats are: 

L(x) 

U(x) 

The value is obtained from the lower IS-bit positions of the memory 
location. After the basic operation is performed, the value contained in 
the lower IS-bit positions of the arithmetic register will replace the 
previous contents of the lower IS-bit positions of the memory location. 
The upper IS-bit positions of the memory location remain unchanged. 

The value is ~obtained from the upper IS-'bit positions of the memory 
lucatiuu dUJ liurilid,llZE:d LV thE: iight iii the arithmetic rcgi:;tcr. l'..ftcr 
the basic operation is performed, the value contained in the lower IS-
bit positions of the arithmetic register will replace the previous contents 
of the upper IS-bit positions of the memory location. The lower IS-bit 
positions of the m emory location remain un chan ged. 

UP-3900 



UP-3900 UNIVAC 490 SPURT S-D 

W(x) 

LX(x) 

UX(x) 

SECTION: 

The value is obtained from the entire 30-bit positions of the memory 
location. After the basic operation is performed, the value contained in 
the entire 30-bit positions of the register will replace the entire 30-bit 
positions of the memory location. 

The value is obtained from the lower IS-bit positions of the memory 
location with sign extension into the upper IS-bit posi tions of the 
arithmetic register. After the basic operation is performed, replacement 
is as described for L(x) above. 

The value is obtained from the upper IS-bit positions of the memory 
location, normalized to the right of the arithmetic register, wi th sign 
extension into the upper IS-bit positions of the arithmetic register. After 
the basic operation is performed, replacement is as described for U(x) 
above. 

f. Operand Interpretation Summary 

The descriptions of the operand interpretations for normal read, store, and replace class 
operands have been summarized in a diagrammatic form designed for easy reference. They 
may be folded ou t for easy access at the beginning of Section SE. 

g. Normal Jump Designation 

The normal entries for J are as follows: 

J MNEMONIC SKIP CONDITION 

(absent) The next operation will be performed. 

SKIP Skip next operation unconditionally. 

QPOS Skip next operation if Q is positive. 

QNEG Skip next operation if Q is negative. 

AZERO Skip next operation if A is zero. 

ANOT Skip next operation if A is non-zero. 

APOS Skip next operation if A is positive. 

ANEG Skip next operation if A is negative. 

Both the normal jump designations and some of the irregular entries are presented on an 
easily referenced foldout at the beginnin g of Section SE. 

2, Comments on the Presentation of the Basic SPURT Instructions. 

PAGE: 

The basic instructions will be presented in groups related to their function. The format of the 
instruction will be followed by an example written in SPURT language. The computer instruction 
that is generated from the SPURT mnemonics will be shown on the right. 

When the label is used in the examples, it will be written as LABEL. The assembler assigned 
computer address to which this corresponds will be 01234. This will maintain a consistent point of 
reference in the examples. For actual coding any valid label could be used. 

S 



tOO UNIVAC 490 SPURT 
I 

s-E 1 1 
--.... ------------__________ ~~...b===~~-_ __=_~~-2.~: __ . __ ~__._____'_I P_A_G_E_: ___ _ 

E. BASIC SPURT INSTRUCTIONS 

1. Data Transfer Instructions 

Transfer instructions either transfer data that is contained in a storage location to a register 
or store the contents of a register in a storage location . 

• ENTER Q 

This instruction transfers an operand to the Q-register. 

OPERATION y J 

ENT . Q read class normal 

Example: 

ENT . Q • W (LABEL) 10030 01234 

• ENTER A 

This instruction transfers an operand to the A-register. 

OPERATION y J 

ENT . A read class normal 

Example: 

ENT . A • L (B2 + 2) 11012 00002 

• ENTER Bn 

This instruction transfers a 1s-bit operand to a selected B-register. 

OPERATION y J 

ENT . Bn note 1 not used 

n may .be 0, 1, 2, 3, 4, 5, 6 or 7 to specify the B-register. 

Example: 

ENT' B7 • 5 12700 00005 

NOTE 1 

A normal read class operand may be specified. If more than a 1s-bit operand is 
indicated, only the low order 1S-bits will be transferred into the B-register. 



1 
E: 

w 
0.. 
>-
I-

I a:: 
W 

I ~ I 
I I-

I-

~ 
0 
U 

0.. 
~ 

~ 

>-
II.. 

0 
0 
~ 

z 
0 
j: 
u 
< a:: 

1 

I-
£C 

1 
~ 

I 
I 

z 
0 
j: 
0 
c 
< 

..I> 
::1-
~c 

w 
> 
j: 
u 
w 
...J 
W 
VI 

0<5 

..I 
< 
~ 
C) 

0 
..I 

I I 

MNEMONIC 

CODE 

ENT.Q 

ENT.A 

_ •• ,$'0.11: 

STR.A 
STR.B 

RSH.Q 

RSH.A 

RSH.AQ 

LSH.Q 

LSH.A 

LSH.AQ 

COM.A.Q.AQ 

COM.MASK 

JP 

RJP 

RPT 

BSK.B 
n 

BJP.Bn 

SUB.A 

SUB.Q 

Etn.Y-Q 

STReA-Q 

RPL.A-Y 
RPL.Y-Q 
RPL.Y-1 

ADD.A 

ADD.Q 

ENT.Y+Q 

STR.A+Q 

RPL.A+Y 
RPL.V+Q 
RPL.Y+ 1 

MUL 

DIV 

ENTeLP 

STR.LP 

RPL.LP 

ADD.LP 
SUB.LP 

RPL.A+LP 
RPL.A-LP 

SEL.SET 

SEL.CP 

SELeCL 

SEL.SU 

RSE.SET 

RSE.CP 

RSE.CL 

RSE.SU 

INSTRUCTION 

10 Enter Q 

11 Enter Accumulator 

1121 Eo<" "-R."., •. 
!4 
lS 
16 

01 

02 

03 

I :: 1 

07 

04 

43 

60 

64 

70 

71 

72 

21 

27 

31 I 
I 

I;; I 
1

20 
1 

26 

30 

32 

24 
34 
36 

22 

23 

40 

47 

44 

41 
42 

I 

45 
46 

50 

Sl 

52 

53 

54 

5S 

i S6 
i 57 

::::-!0!"e I,.,:,,! 

St"ore Accumu lator 
Store B-Reaister 

Shift Q Right 

Shift A Right 

Shift AQ Right 

Shift Q Left 

Shift A Left 

Shift AQ Left 

Compare 

Mask Compare 

Arithmetic Jump (Normal) 

Arithmetic Return Jump 

Repeat 

Index Skip 

Index Jump 

Subtract 

Q Subtract 

Subtract Q and Load A 

Subtract Q and Store 

Replace Subtract 
Rep!ace Subtract Q 
Replace Subtract 1 

Add 

Q Add 

Add Q and Load A 

Add Q and Store 

Replace Add 
Replace Add Q 
Replace Add 1 

Multiply 

Divide 

Enter Logical Product 

Store Logical Product 

Repl ace Log ical Product 

Add Logical Product 
Subtract Logical Product 

Replace Add Logical Prod. 
Replace Subtract Log. Prod. 

Seiective Set 

Selective Complement 

Selective Clear 

Substitute 

Replace Selective 

Replace Selective Compl. 

Replace Selective Clear 

Replace Substitute 

NI: NEXT INSTRUCTION 

OPERATION 

Y-Q 

IY-A 

I 
Y-B ; B : No Op 

n 0 

fn' ............ v 
I \~I - , 

(A)_Y 
(B)-Y 

Shift Q right by Y OS-OO' Sign Fill 

Shift A right by Y05-00 ' Sign Fill 

Shift AQ right by Y OS-OO' Sign Fi II 

1 

Shift Q left by Y OS-OO' Circularly 

Shift A left by Y 05 00' Circularly 

Shift AQ left by Y OS-OO' Circularly 

A:Y or Q:Y or AQ:Y; and Sense j 

(Al - L C Y (Q):); sense j 
A and Q Unchanged 

Y-P, per j; Y: lS bits maximum 
P+1 .... Y14_00iY+1 .... Pifj is met 

NI (Y) times per j; B7=NEn 

If (Bn)=(Y), skip NI, and CL (Bn) 

If (Bn)l(Y), take NI, Bn =(B+ 1) 
If (Bn)=O, take NI 
If (Bn)/O, jump to Y; Bn =(B-1) 

(A) - V-A 

(Q) - Y-Q 

Y _(Q) .... A 

I 

1 

(A) - (Q) -Y and A 

(Al - Y-Y and A 
I Y - (Q)_.y and A 

Y - 1-Y and A 

(A) + V-A 

(Q) + Y-Q 

(Q) + Y-Y 

(A) + (Q)-Y and A 

Y + (A)-Y and A 
Y + (Q)_Y and A 
Y r 1_Y and A 

(Q).Y-AQ 

(AQ) .;. Y; Quot--Q, Rem .... A 

LCY.(Q)=:J-A 

LC(A)e(Q)=:J_Y 

LC Y (Q)=:J--Y and A 

LCY (Q)=:J+ (A)_A 
(A) - LC Y (Q):) __ A 

LCY (Q)=:J+ (A)_Y and A 
(A) - LCY (Q)=:J-Y and A 

Set (An) for (V n) = 1 

Complement (An) for (V n) = 1 

Clear (An) for (Y n) = 1 

(Y n)-(An) for (Qn) = 1 

Set (An) for (Y n) = 1-Y and A 

Complement (An) for (Y n) = l_Y and A 

Clear (An) fodY n) = l-Y and A 

I (Y n)-(An) for (Qn) = l_Y and A 

Rd 

I Rd 

EXECUTION TIMES * 

k:O,4 I k:7 

8.4/ I 
~7.21 

Ik: 1,2,3,5,6 

I 
12/ 

7.2 

I"'· 
"/4.8 / 

I 

St 
St 

Rd 8.4/ 
Rd 

Rd 8.4/ 

Rd 1
8

.
4

/ 
Rd 

Rd 12/ 

Rd 9.6/ 
7.2 

Rd 8.4/ 
6.0 

Rd 6.0 
Rd 13.2 

Rd 
Rd 7.2/ 

I 

Rd 6.0/ 

Rd 8.4/ 
6.0 

Rd 9.6/ 
7.2 

Rd 8.4/ 
6.0 

St 8.4/ 
4.8 

Rp 

~~ i 

9.6/ 13.2/ 

9.6/ 13.~/ 

113
_
2

/ 

13.2/ 16.8/ 

8.4/ 
6.0 

12/ 
8.4 

7.21 12/ 
14.8 7.2 

7.2 12 

14.4 18 

7.2 

8.4/ 

7.2/ 

7.2/ 
4.8 

12/ 
7.2 

8.4/ 
6.0 

12/ 
8.4 

I 7.2/ 
4.8 

12/
9

•
6 

12/ 12/ 
7.2 

I I 18/ i ' 
I Rd! 8.4/ ! 7.2/ ! 121 

1 6.0 1 4.81 17.2 

Rd 9.6/ 8.4/ 12/ 
7.2 6.0 8.4 

Rd 8.4/ 7.2/ 
6.0 4.8 

12/ 

8.4/
4

•
8 

12/ 
7.2 

St 

Rp 
Rp 18/ 
Rp 

Rd (37.2 85.2) VARIABLE 

Rd 86.4 

Rd 8.4/ 7.2/ 
6.0 4.8 12/

7
•
2 

St 8.4/ 12/ 
4.8 

Rp / / 18/
12 

Ra 8.4/ 7.2/ 12/ 
Rd 6.0 4.8 7.2 

Rp 18/
12 Rp 

Rd 

Rd 9.6/ 8.4/ 12/ 
Rd 7.2 6.0 8.4 

Rd 

Rp 

Rp 18/
12 

Rp 

Rpl I 
*NOTE: LOWER TIME IN 

CLASS: Rd= READ, St" STORE, Rp= REPLACE EACH BRACKET IS FOR 
REPEAT MODE TIMES 

1 

PAGE 

SE-T 

5E-l 

5E-1 

5E-2 
5E-2 
SE-2 

5E-3 

5E-3 

SE-3 

SE-4 

SE-5 

SE-S 

5E-6 

5E-7 

5E-8 

SE-8 

" 5E-9 

5E-1O 

SE-11 

5E-12 

SE-12 

5E-13 

SE-
13

1 
5E-13 
5E-13 J 
5E-14 

SE-14! 

SE-15 

5E-15 

5E-1S 
5E-15 

SE-1S 
SE-16 
5E-16 

SE-16 

5E-18 

SE-27 

SE-28 

5E-28 

5E-28 
SE-28 

5E-29 
5E-29 

5E-29 

5E-30 

5E-30 

SE-30 

5E-30 

SE-31 

SE-31 

5E-31 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

• RIGHT SHIFT Q 

This instruction shifts the contents of the Q-register to the right. The bits that are shifted 
off the right end are lost. The sign value (bit position 29) will be extended through the bit 
positions that are vacated at the left. If the shift count, contained in the low order six bits 
of the shift operand specified under Y, is greater than 59

10
, an incorrect shift will result. 

If the shift count is equal to 29 0' or ranges between 29
1 

and 59 ,all bit positions of 
1010 

the Q-register will be filled with the original value of the sign position. 

OPERATiON y J 

RSH . Q read class normal 

Examples: 

RSH . Q . U (LABEL) 01020 01234 

100100101111111011100001110101 (initial contents of Q) 001000 (shift count = 8
10

) 

111111111001001011111110111000 (final contents of Q) 

RSH . Q . 29D 01000 00035 

011111111111111111111111111111 (initial contents of Q) 011101 (shift count = 29
10

) 

000000000000000000000000000000 (final contents of Q) 

• RIGHT SHIFT A 

Shifting takes place in the A-register; otherwise the functional description is the same 
as RIGHT SHIFT Q. 

OPERATION y J 

RSH . A read class normal 

Example: 

RSH . A . L (LABEL) 02010 01234 

• RIGHT SHIFT AQ 

This instruction shifts the contents of the A and Q-registers. Both A and Q may be 
considered as a single combined register, AQ, containing 60 bit positions. The shift 
count is specified in the lower six bits of the shift operand. 

Bits that are shifted off the right end of the Q-register are lost; bits that are shifted 
off the right end of the A-register replace the shifted high order positions of the Q
register. The sign value (bit position 29 of the A-register) will be extended through 
the shifted high order positions of the A-register and into the Q-register. 

3 



5-E 
SECTION: 

UNIVAC 490 SPURT 

• STORE Q 

This instruction stores the contents of the Q-register in a storage location. 

OPERATiON y J 
STR • Q store class normal 

Example: 

STR . Q . W (LABEL) 14030 01234 

• STORE A 

This instruction stores the contents of the A-register in a storage location. 

OPERATION y J 

STR • A store class normal 

Example: 

STR . A . U (LABEL) 15020 01234 

• STORE Bn 

This instruction stores the contents of a selected B-regis~er in a storage location. 
The j-designator is used to specify the selected register; consequently, there can 
be no skip designation. 

OPERATION y J 

STR • Bn store c I ass not used 

n may be 0, 1, 2, 3, 4, 5, 6 or 7 to specify the B-register. 

Example: 

STR . B7 • L (LABEL) 16710 01234 

STR . BO . L (LABEL) 16010 01234 
(L(LABEL) is set to zero by the preceding instruction.) 

STR . BO . CPL (LABEL) 16050 01234 
(L(LABEL) is set to all ones by the preceding instruction.) 

2. Shift Instructions 

Shift instructions shift the contents of a selected register to the right or left a specified 
number of bit positions. The shift count is contained in the six low order bit positions of 
a shift operand specified under Y. The maximum shift that may be specified is 73 or 59 . 

8 10 



NORMAL Y OPERAND MODIFICATIONS 

ux (x) 

H ccccc 1M 
'~' 

stant (b" CtCCC) 

ccccc) I ZF~~~ titii:~; I R 

Hccccc 1M 
----~' stant (b t CtCCC) 

xtended I SIGN I I 
xccccc) FILL R 

Q 

A 

LEGEND: 

, ARITHMETIC 

REGISTER 

M ~ MEMORY LOCATION 

x "OPERAND 

SPECI FICATION 

W WHOLE WORD 

A ~...,."..",.' CPW(.} ::t;: 
, LOWER HALF 

UPPER HALF 

SIGN EXTENSION 

CP , COMPLEMENT 

A = A REGISTER 

Q = Q REGISTER 

COMPLEMENT 

SPECIAL i-DESIGNATOR INTERPRETATION 
COM eAeQ.AQe ADDeQ/SUBeQ ENTeLP,RPLeLP 

No skip 

1 SKIP Always skip I SKIP 

2 YLESS Y:5 Q APOS 

3 YMORE Y > Q ANEG 

No skip 

Always SKIP 
skip 

Skip (A) EVEN 
Pos. 

Skip (A) ODD 
Neg 

No skip 

Skip (A) NOOF 

Skip (A) OF 
odd 

DIV. 

No skip 

Always 
skip 

Skip, no 
overflow 

Skip, 
overflow 

4 YIN Q ~Y>A QZERO Skip (Q) -'ZERO Skip (A) AZ ERO Skip (A) 
=0 

5 YOUT Q<Yo,Y:5A QNOT Skip (Q) 
;'() 

6 YlESS Y :5 A QPOS Skip (Q) 
Pos 

7 YMORE Y > A i QNEG Skip (Q) 

I Neg. 

NORMAL i-OESIGNATOR 

QPOS 

QNEG 

AZERO 

ANOT 

= 0 ~,EX:"INSTRUCTION I 
- , O"'P '" I 
= 2 Skip NI if (Q) Pos 

= 3 Skip NI if (Q) Neg 

= 4 Skip NI if (A) = 0 

=5 Skip NI if (A);t 0 

APOS = 6 Skip NI if (A) Pos. 

ANEG = 7 Skip NI if (A) Neg. 

=0 =0 

ANOT Skip (A) ANOT Skip (A) 
;to ;to 

APOS Skip (A) APOS Skip (A) 
Pos. Pos. 

ANEG Skip (A) ANEG Skip (A) 

Neg Neg, 

RPT JP/RJP JP(60)/RJP(64) 

NE: y=y Always jump RIL/SIL Release/Set 
Interlock 

I ADV NE: y=y+l KEY 1 Jump RILJP/SILRJP Release/Set 
Key 1 interiock Jump 

BACK NE: y=y-l KEY 2 Jump QPOS Jump (Q) Pos. 
Key 2 

ADDB NE: y=y+Bb KEY 3 Jump QNEG Jump (Q) Neg. 
Key 3 

NE: y=y+(B6)* STOP Always AlERO Jump (A)=O 
stop 

ADVR NE: y=y+1+(B6)* STOP 5 ~t:; 5 I ANOT Jump (A);'() 

BACKRNE: y=y-l+(%)* STOP 6 ~~: 6 ! APOS Jump (A) Pos. 

ADDBR NE:y=y+BIt(B6)' STOP 7 Stop ANEG Jump (A) Neg. 

Key 7 

*(66) Ineeement if RPL CLASS I JUMP ADDR ESS 

I k = 0,4 Y =y 

I 
k=1,3,5 Y=(YL ) 

k=2,6 Y=(Y U) 

L k = 7 Y = (A L) 

5 
SECTION: 

I 



5-E 4 UNIVAC 490 SPURT 
SECTION: PAGE: 

If the shift count exceeds 59
10

, an incorrect shift will result. If the shift count is 29
10

, 

all bit positions of the A-register will contain the initial sign value. If the shift count 
is 59

10
, all bit positions of both the A and Q-registers will contain the initial sign value 

of the A-register. 

OPERATION 

RSH • AQ 

Examples: 

RSH . AQ . 12D 

Initial contents of AQ: 

(A) 

11101001111111111011010001100 

Final contents of AQ: 

(A) 

y 

read class 

111111111111111010011111111111 

RSH . AQ . U (00035 + B2) 

J 

normal 

03000 00014 

(Q) 

001110101101010010100011001001 

(Q) 

011010001100001110101101010010 

03012 00035 

The shift count will be the sum of 00035 and the contents of the B-register. The shift count 
will then be 59

10
, 

Initial contents of AQ: 

(A) 

101111000011101010000000000001 

Final contents of AQ: 

(A) 

111111111111111111111111111111 

• LEFT SHIFT Q 

(Q) 

111111111100000101010101010101 

(Q) 

111111111111111111111111111111 

This instruction shifts the contents of the Q-register to the left. The bit positions 
shifted off the left end replace the shifted positions of the right end. If the shift count, 
contained in the low order six bits of the shift operand specified under Y, is greater 
than 59

10
, an incorrect shift will result. If the shift count is 30

10
, the Q-register will be 

restored to its initial condition. 

OPERATION y J 

LSH • Q read class normal 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

Examples: 

L SH . Q . L (L ABE L + 1) 05010 01235 

001110101101010010100011001001 (initial contents of Q) 001111 (shift count = 15
10

) 

010100011001001001110101101010 (final contents of Q) 

LSH' Q . 30D 05000 00036 

010111111100000110000010011100 (initial contents of Q) 011110 (shift count = 30
10

) 

010111111100000110000010011100 (final contents of Q) 

• LEFT SHIFT A 

Shifting takes place in the A-register; otherwise the functional description is the same as 
LEFT SHIFT Q. 

OPERATION y J 

LSH . A read class normal 

Example: 

LSH . A . A 06070 00000 

II L EFT SHIFT AQ 

For this instruction, the A and Q-registers function as a single 60 bit register, AQ, in which 
high order bit positions are contained in the A-register. The bit positions shifted off the left 
end of the A-register replace the bit positions vacated from the right end of the Q-register. 
Bit positions shifted off the left end of the Q-register replace the bit positions vacated from 
the right end of the A-register. If the shift count exceeds 59

10
, an incorrect shift will result. 

If the shift count is 30 ,the contents of the A-register and the Q-register will be interchanged. 
10 

OPERATION y 

LSH . AQ read class 

Examples: 

LSH' AQ . 6D 

Initial contents of AQ: 

(A) 

111010011111111111011010001100 

Final contents of AQ: 

J 

normal 

07000 00006 

(Q) 

001110101101010010100011001001 

5 



S-E 
ECTION: 

6 UNIVAC 490 SPURT 
PAGE: 

(A) 

011111111111011010001100001110 

(Q) 

101101010010100011001001111010 

LSH' AQ . 30D 07000 00036 

Initial contents of AQ: 

(A) (Q) 

101111101010001100010011101101 000000011111111010101010011001 

Final contents of AQ: 

(A) 

0000000111111110101010100110001 

(Q) 

101111101010001100010011101101 

3. Comparing Instructions 

• COMPARE 

This instruction compares the signed value of an operand with the signed value contained 
in the A-register and/or the signed value contained in the Q-register. One of several skip 
conditions may be tested, based upon the result of the comparison. 

If n represents any integer value, the comparison scale may be summarized as follows: 

+n>+O>-O>-n 

OPERATION y J 

COM' A read class note 1 

COM' Q 

COM' AQ 

NOTE 1 

One of the following must be present: 

] MNEMONIC 

YLESS 

YMORE 

YIN 

(COM' AQ only) 

SKIP CONDITION 

Skip the next instruction if the operand value is equal to or 
less than the value in the specified register. 

Skip the next instruction if the operand value is greater than 
the value in the specified register. 

Skip the next instruction if the operand value is less than or 
equal to the value in the Q-register and greater than the value 
in the A register. The Q and A-registers establish an upper 
and lower range respectively. The Y operand is within that 
range if a skip occurs. 

UP-3900 



UP-3900 UNIVAC 490 SPURT S-E 
SECTION: PAGE: 

YOUT 

(COM' AQ only) 

Skip the next instruction if the operand value is greater than 
the value in the Q-register or less than or equal to the value 
in the A register. The Q and A-registers establish an upper 
and lower range respectively. The Y operand is out of that 
range if a skip occurs. 

Example: 

COM' A . W (LABEL) . YMORE 04730 01234 

• COMP AR E MASKED 

This instruction compares the contents of the A-register to a masked operand. The comparison 
is made by forming the logical product of the Q-register and the operand specified as Y. (See 
"Logical Product" under LOGICAL INSTRUCTIONS.) The result of the logical operation is 
substracted from the contents of the A-register to form a difference. A skip condition may be 
specified by the J operand depending on the results of the above operations. The result of the 
logical operation is then added to the A-register. There is no change in the contents of any of 
the operational registers as a result of this instruction. 

OP ERATION y J 

COM' MASK read c I as s normal 

Example: 

COM' MASK' W (LABEL) . AZERO 43430 01234 

100100001100111000101101110111 (Operand contents) 

000000000000000000000000111111 (Contents of Q) 

000000000000000000000000110111 (Result of logical operation) 

000000000000000000000000111111 (Contents of A) 

000000000000000000000000001000 (A - logical product) 

The jump condition would not b~ present, i.e., A is not zero. The result of the logical opera
tion is added to A to return the register to the initial condition. 

4. Jump Instructions 

Instructions are normally executed in sequential order. Jump instructions are used to depart 
from this sequential order and to specify a point in the program at which the sequential 
order will again be resumed. The jump may be unconditional or it may be based on various 
conditions. 

7 



5-E 
SECTION: 

8 UNIVAC 490 SPURT 
PAGE: 

• JUMP 

A jump instruction may be unconditional or arithmetic (depending upon the contents of 
an arithmetic register). If the jump condition is not satisfied, control proceeds to the next 
sequential ins truction. 

[ _O_P_E_RJ_Ap_T_I_O_N __ .L...-__ n_o_t:_l ____ l--___ n_O_~e_2 __ ____' 

NOTE 1 

A read class operand may be specified with the following restrictions: 

(1) only the forms x, L(x), U(x), W(x) are meaningful. W(x) has same result as L(x). 

(2) if the A-register is specified, only the 15 low order positions will be meaningful. 

(3) if a B-register is specified, no sign extension is permitted. 

(4) If an actual computer address is used it cannot exceed 77777 or the decimal equivalent. 

NOTE 2 

The absence of a J entry indicates an unconditional jump; the remaining jump conditions 
are normal. 

Examples: 

JP . U (LABEL) 

JP . L (LABEL) . QPOS 

JP . LABEL' ANOT 

• RETURN JUMP 

60020 01234 

60210 01234 
60500 01234 

The return jump may be unconditional or arithmetic (depending upon the contents of an 
arithmetic register). If an unconditional jump is specified, or if the jump condition exists, 
a jump is made to the address specified in Y incremented by 1, e.i., Y + 1. The address of 
the instruction immediately following the return jump is stored in the lower portion of the 
storage location at the address specified in Y. If the jump condition is not satisfied, the 
instruction immediately following the return jump instruction is executed. 

OPERATION y J 

RJP note note 2 

NOTE 1 

See restriction under NOTE 1 of Jump Instruction. 

NOTE 2 

The absence of a J entry indicates an unconditional jump; the remaining jump conditions 
are normal. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

Example: 

RJP . LABEL 64000 01234 

If the RJP instruction shown above is located at address 23344, location 01234 will appear 
as follows: 

LABEL 00000 23345 (Y) 

CY + 1) 

A jump instruction could terminate the sequence of instructions and bring the program back 
to the instruction following the RJP ins truction as follows: 

JP . L (LABEL) 

5. Modifying Instructions 

The sequential execution of instructions may be varied by the instructions which follow. 
This program modification is controlled by counters contained in a B-register or in memory . 

• REPEAT 

This instruction causes the instruction immediately following it to be repeated the number 
of times specified by a 15 bit value in the Y operand. The value may be equal to or greater 
than zero but cannot be greater than 32767

10
, The 15 bit value determined by the form of 

the Y operand is placed in B-register number 7. If the value is zero the instruction immedi
ately following the Repeat instruction is skipped. If the value is not zero, the repeat mode 
which is determined by the J portion of the instruction is initiated. Any modifications to 
the initial instruction are performed in transient registers; the instruction as it is stored in 
the computer is nO,t altered. 

OPERATION y J 

RPT note note 2 

NOTE 1 

A read class operand. The form W(x) will refer to the low order 15 bits of the operand loca
tion. 

NOTE 2 

J MNEMONIC 

(absent) 

ADV 

BACK 

REPEAT MODE 

An unmodified repeat of the next operation. 

Advance the operand address of the repeated operation by an ad
dition of 1 after each individual execution. 

Decreas.e the operand address of the repeated operation by a sub
traction of 1 after each individual execution. 

9 



S-E 
SEC TION: PAGE: 

10 

ADDB 

R 

ADVR 

BACKR 

ADDBR 

Example: 

UNIVAC 490 SPURT 

Add cum ulatively the B-register indicated in the repeated operation 
to its operand during each execution. 

Increase the operand of the repeated replace type operation by the 
content of B-register 6 for the store portion of the replace only. 

Increase the operand address of the repeated replace type operation 
by the content of B-register 6 for the store portion of the replace 
only; then incremen t the operand address of the repea ted operation 
by one after each execu tion. 

Increase the operand address of the repeated replace type operation 
by the content of B-register 6 for the store portion of the replace 
only; then decrement the operand address of the repeated operation 
by one after each execution. 

Add cumulatively the B-register indicated in the repeated replace 
type operation to the operand address during each execution; in 
addition, increase the operand of the repeated operation by the 
content of B6 for the store portion of the replace only. 

In order to present a complete and satisfactory example, a small block of coding is 
presen ted. This codin g is designed to find the square root of anum ber which is 

UP-3900 

assumed to be in the A-register. A base value of 2 is entered into B2. The repeat mode is 
initiated with a value of 77777, the complement of which is 00000. The accumulative 
addition of the value in B2 will finally reach the value contained in the A-register +1 which 
will cause an ANEG skip. With each accumulative addition and execution of the instruction, 
1 is subtracted from the repeat value in B7 (77777). The complement of this value is the 
square root of the number which is stored in the lower portion of the word labeled ANS. 

ENT B2' 2 

RPT 77777' ADDB 

SUB A' B2 + 1 . ANEG 

JP ERROR 

STR B7' CPL (ANS) 

• B SKIP 

This operation tests the content of a specified B-register. If the value in the B-register is 
equal to the value in a memory location specified by Y the next operation is skipped and 
the B-register is cleared to zero. If the value in the B-register is not equal to the operand 
location, the normal sequence of operations continues and 1 is added to the value in the 
B-register. 

OPERATION y J 

not 
BSK • Bn note 1 perm itted 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

n may be 0, 1, 2, 3, 4, 5, 6, or 7 to specify the B-register. 

NOTE 1 

A read class operand. The form W(x) will refer to the low order 15 bits of the operand location. 

Example: 

BSK . B2 . L(LABEL+ 3) 71213 21237 

BSK . B2 . B2 71202 00000 
(The previous instruction will clear B2 and skip.) 

BSK . BO . L (LABEL + 3) 71010 01237 
(A skip will be performed if L (LABEL + 3) in the previous instruction equals zero.) 

• B JUMP 

This instruction tests the content of a specified B-register. If the value in the register is zero, 
the normal sequence of operations continues. If the value in the register is not zero, the register 
is decremented by 1 and a new sequence of operations begins at the address specified by the Y 
operand. 

OPERATION y 

BJP . Bn note 

J 

not 
permitted 

n may be 0, 1, 2, 3, 4, 5, 6, or 7 to specify the B-register. 

NOTE 1 

A read class operand. The form W(x) will refer to the low order 15 bits of the operand location. 

Example: 

BJP . B4 . W(LABEL + B2) 72432 01234 

6. Subtraction 

Subtraction is covered before addition, since addition actually makes use of subtraction. 
Subtraction in the UNIVAC 490 Central Processor is a binary subtract with an end around 
borrow. An end around carry means that a borrow generated in stage 29 results in a one being 
subtracted from stage zero of the difference. This end around borrow subtraction allows 
subtracting a negative number from a positive number without complementing. The following 
"4 bit register" example shows the end around borrow employed in subtracting negati ve 1 
from positive 3, resulting in a +4: 

+3=0011 
-1 = 1110 

0101 
1 ~ bit from end around borrow 

+ 4 = 0100 

11 



5-E 
SECTION: 

12 UNIVAC 490 SPURT 
PAGE: 

This octal example subtracts -5 from + 24 leaving + 31: 

+ 24 = 00024 
5 = 77772 

00032 
1~end around borrow 

00031 

The rules of algebraic subtraction will apply. Thus, if n represents any number: 

+- n - n +- n - n 

- (- n) - (+ n) - (+ n) - (- n) 

T n - n ± n ± n 

The rules for zero subtraction may be summa rized as follows: 

+ 0 - 0 - 0 

- (- 0) - (t 0) - (- 0) 
~ 

{"\ - {"\ 
+ 

{"\ 
v v v 

If a number is subtracted from itself the result will be T O. 

When the difference exceeds a value that may be contained in 29 bits, these rules will not 
apply because of possible overflow into the sign position. 

• SUBTRACT A 

This instruction subtracts an operand from the contents of the A-register and retains the 

difference in the A-register. 

OPERATION y J 

SUB' A read class normal 

Example: 

SUB' A . W (LA BEL) . ANOT 21530 01234 

• SUBTRACT Q 

This instruction subtracts an operand from the contents of the Q-register and retains the 
difference in the Q-register. 

OPERATION y J 

SUB' Q read class note 

NOTE 1 

QZERO and QNOT are substituted for AZERO and ANOT. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

Example: 

SUB' Q . 12D . QNOT 27500 00014 

• ENTER Y-Q 

This instruction subtracts the contents of the Q-register from the operand and retains the 
difference that is formed in the A-register. The contents of the Q-register are not disturbed 
by th is instruction. 

OPERATION Y J 

ENT . Y-Q read class normal 

Example: 

ENT . Y-Q . L (LABEL) 31010 01234 

• STORE A-Q 

This instruction subtracts the contents of the Q-register from the A-register, retains the dif
ference in the A-register, and stores this difference in a storage location. 

OPERATION Y J 

STR A-Q store class nOimal 

Example: 

STR . A-Q . CPU (LABEL) 33060 01234 

• REPLACE A-Y 

This ins truction subtracts an operand from the contents of the A-register, retains the 
difference that is formed in the A-register, and stores this sum in the storage location 
from which the operand was obtained. 

OP E RA T ION Y J 

RPL . A-Y replace class normal 

Example: 

RPL . A-Y . L (LABEL) 25010 01234 

• REPLACE Y-Q 

This instruction subtracts the contents of the Q-register from an operand, retains the 
difference that is formed in the A-register, and stores this difference in the storage 
location from which the operand was obtained. 

OPERATION I Y J 

normal I 
I 

replace c las s RPL . Y-Q 

13 



5-E 
SECTION: 

14 UNIVAC 490 SPURT 
PAGE: 

Example: 

RPL . Y-Q . L (LABEL) 35010 01234 

• REPLACE Y-1 

This instruction subtracts a binary 1 from the operand, retains the difference that is 
formed in the A-register, and stores this difference in the storage location from which 
the operand was obtained. 

OPERATION y J 

RPL'Y-l replace class normal 

Example: 

RPL . Y-1 . UX (LABEL) 37060 01234 

7. Addition 

The instructions involving addi tion are acc omplished by the same process described under 
SUBTRACTION. The addend is complemented and a subtraction is performed to obtain the sum. 

The rules of algebraic addition will apply. Thus, if n represents any number: 

- n 

+ (- n) 
- n 

+ n 

+ (+ n) 
+ n 

+ n 
+ (""- n) 

± n 

- n 

+ (+ n) 
± n 

The rules for zero add ition may be summarized as follows: 

+ 0 
+ (+ 0) 

+ 0 

-0 
+ (- 0) 

- 0 

+ 0 
+ (- 0) 

+ 0 

If a number is added to its complement the sum will be + O. 

When the sum exceeds a value that may be contained in 29 bits, these rules will not apply 
because of possible overflow into the sign position . 

• ADD A 

This instruction adds an operand to the contents of the A-register, and retains the sum that 
results in the A-register. 

'--__ o_:_:_R_D_A._T_~_O_N _ ___'_ ___ r_e_a_d_:_I_a_s _s __ -L ___ " or~ a In J 
Example: 

ADD' A . 773 20000 00773 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

• ADD Q 

This instruction adds an operand to the contents of the Q-register and retains the sum that 
is formed in the Q-register. 

OPERATION y J 

ADD· Q read class note 

NOTE 1 

QZERO and QNOT are substituted for AZERO and ANOT. 

Example: 

ADD . Q . U (LABEL) . QNOT 26520 01234 

• ENTER Y + Q 

This instruction adds an operand to the contents of the Q-register and retains the sum that 
is formed in the A-register. The contents of the Q-register are undisturbed by this instruc
tion. 

OPERATION y J 

ENT . Y + Q read class normal 

Example: 

ENT . Y + Q . W (LABEL) 30030 01234 

• STORE A + Q 

This instruction adds the contents of the A and Q-registers, retains the sum in the A-register 
and stores the sum in a storage location. 

OPERATION y J 

STR . A + Q store clas.s normal 

Example: 

STR . A + Q . U (LABEL + B3) 32023 01234 

• REPLACE A + Y 

This instruction adds an operand to the contents of the A-register, retains the sum in the A
register, and stores this sum in the storage location from which the operand was obtained. 

OPERATION y J 
RPL . A + Y replace class normar 

Example: 

RPL . A + Y . UX (LABEL + 3) 34060 01237 

15 



S-E 
SECTION: 

16 UNIVAC 490 SPURT 
PAGE: 

• REPLACE Y + Q 

This instruction adds an operand to the contents of the Q-register, retains the sum in the A
register, and stores this sum in the storage location from which the operand was obtained. 

OPERATION y J 

RPL . Y + Q replace class normal 

Example: 

RPL . Y + Q . W (B7) 34037 00000 

• REPLACE Y + 1 

This instruction adds a binary 1 to an operand, retains the sum in the A-register, and stores 
this sum in the storage location from which the operand was obtained. 

OPERATION Y J 

RPL . Y + 1 replace class normal 

F1(~mnlp· --- ·----r - - . 

RPL . Y + 1 . UX (LABEL + B3) 36063 01234 

8. Multiplication and Division 

• MUL TIPLY 

This instruction multiplies the contents of the Q-register by the operand specified in the 
instruction. The product is formed in the 60 bit positions of the combined AQ-register. 

Multiplication is performed with positive numbers. If a multiplication involves any negative 
numbers, they are made positive by complementing them prior to performing the multiplica
tion. After the positive product is formed in the AQ-register, the sign of this product is 
co rrected by complemen tin g the con tents of the AQ-regis ter, if one, but no t both, of the 
original num bers was negati ve. 

The following rules apply for multiplication: 

• If a positive number is multiplied by a positive number or a negative number by a negative 
number, the product will be positive. 

• If a positive number is multiplied by a negative number or a negative number by a positive 
number, the product will be negative. 

• If posi ti ve 0 is mul tip lied by posi ti ve 0 or negati ve 0 by n egati ve 0, the product will be 

• If positive 0 is multiplied by negative 0 or negative 0 by positive 0, the product will be 

negative O. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

No product can be generated which will overflow AQ. The maximum positive product is: 

17777 77777 
~ 

A 

00000 00001 

Q 

The maximum negative product is: 

60000 00000 
~v--........ . ../ 

A 

OPERATION 

MUL 

NOTE 1 

y 

read cI ass 

77777 77776 
~~ 

Q 

J 

note 

The skip condition is tested prior to any final sign conversion. The significance of the 
normal skip condition for a multiply operation may be outlined as follows: 

J MNEMONIC 

(absent) 

SKIP 

QPOS 

QNEG 

AZERO 

ANOT 

SKIP CONDITION 

No skip. 

Skip next instruction. 

Skip next ins truction if Q is + or + a prior to final sign cor
rection. If a skip does not occur, a double length product is 
indicated since there is a significant bit in bit position 29 of 
the Q-register. 

Skip next instruction if Q is - or - a prior to final sign cor
rection. If a skip occurs, a double length product is indicated 
since there is a significant bit in bit position 29 of the Q-reg
ister. 

Skip next instruction if A is + a prior to final sign correction. 
If a skip occurs, it indicates that the product has 30 or less 
significant bits, and that the A-register contains only sign bits. 
This does not mean the Q-register contains the correct product, 
since bit position 29 of the Q-register may contain a significant 
bit of the product, thus making bit position a of the A-register 
the first sign bit. If a skip does not occur, it indicates that 
significant bits of the product are in the A-register. 

Skip next ins truction if A is not + a prior to final sign correction. 
If a skip occurs, it indicates that significant bits of the product 
are in the A-register. If a skip does not occur, it indicates the 
same condition that exists when a skip occurs with AZERO. 

17 



5-E 
SECTION: 

18 UNIVAC 490 SPURT UP-3900 
PAGE: 

APOS Skip next instruction if A is + or + 0 prior to final sign correction. 
A skip should always occur since A should always be a positive 
number prior to final sign correction. 

ANEG 

Examples: 

MUL . W (LABEL) 

Skip next instruction if A is - or - 0 prior to final sign correction. 
A skip should never occur since A should never be a negative 
num ber prior to final sign correction. 

22070 01234 

The result of operations for various values contained in the Q-register and the A-register 
(initially the location defined by LABEL) follows: 

A Q AQ 

00000 00012 X 00000 00010 = 00000 00000 00000 00120 

77777 77767 X 00000 00012 = 77777 77777 77777 77657 

77777 77765 X 77777 77767 = 00000 00000 00000 00120 

• DIVIDE 

This instruction divides the contents of the combined AQ-register by the operand specified in 
the instruction and retains the quotient and remainder that are formed in the Q and A-registers 
respectively. 

Division is performed with positive numbers. If a division involves any negative numbers, they 
are made positive by complementing them prior to performing the division. After the positive 
quotient a nd remainder are formed in the Q and A- regis ter res pectively, the signs of the quotient 
and remainder are corrected by complementing the contents of the Q and A-registers if one, but 
not both, of the original numbers was negative. 

The follow ing rules apply for di vision: 

• If a positive number is divided by a positive number or a negative number by a negative number, 
the quotient and remainder will be positive numbers . 

• If a positive number is divided by a negative number or a negative number by a positive number: 
the quotient and remainder will be negative numbers. 

Negative Zero Quotients and Remainders 

Division, if handled improperly, may generate a negative 0 quotient or remainder that can 
have an adverse affect on further calculations. Th is situation can oc cur in the following 
cases: 

(1) Even Division Where the Dividend and Divisor have Unlike Signs and are Non-Zero 

The result of such-a division is that the correct quotient will be in the Q-register and 
the remainder in the A-register will be a negative O. 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

When the interpretation of the j-designator is made, the Q-register will contain the 
absolute value of the quotient and the A-register will contain a positive O. For example: 

000000000000000000000000000000 000000000000000001010011100101 (dividend) 

At j interpretation 

Final Result 

111111111111111110101100011010 (divisor) 

000000000000000000000000000010 (quotient in the 
Q-register) 

000000000000000000000000000000 (remainder in the 
A- registet;') 

111111111111111111111111111101 (quotient in the 
Q-register) 

111111111111111111111111111111 (remainder in the 
A-register) 

(2) Division where the Absolute Value of the Divisor is Greater than the Absolute Value of 
Dividend, the Signs are Unlike, and Both are Non-Zero 

When division is performed in this case, the quotient in the Q-register will be a negative 
o and the remainder in the A-register will be the complement of the absolute value of the 
dividend. At the time the interpretation of the j-designator is made, the Q-register will 
contain a positive 0 and the A-register w ill contain the absolute value of the di vidend. 
For example: 

00000000000000000000000000000 000000000000000000000000000011 (dividend) 

At j interpretation 

Final Result I 

111111111111111111111111111010 (divisor) 

000000000000000000000000000000 (quotient in the 
Q-re gister) 

000000000000000000000000000011 (remainder in the 
A-regis ter) 

111111111111111111111111111111 (quotient in the 
Q-regis ter) 

111111111111111111111111111100 (remainder in the 
A~regis ter) 

(3) Division by Positive or Negative Zero 

The following rules apply in these cases: 

• If a positive number is divided by positive 0, the quotient in the Q-register will be a 
negative 0 and the remainder in the A-register will be the initial contents of the Q-reg
ister. At the time interpretation of the j-designator is made, the contents of the Q and A
regis ters w ill be the same as the final contents. 

19 



S-E 
SEC TION: PAGE: 

20 UNIVAC 490 SPURT UP-3900 

• If a negative number is divided by positive 0, the quotient in the Q-register will be a 
positive 0 and the remainder in the A-register will be the initial contents of the Q-reg
register. At the time interpretation of the j-designator is made, the Q-register will 
contain a negative 0 and the A-register will contain the complement of the initial 
contents of the Q-register . 

• If a positive number is divided by negative 0, the quotient in the Q-register will be a 
positive 0 and the remainder in the A-register will be the complement of the initial 
contents of the Q-register. At the time the j-designator is interpreted, the Q-register 
wi 11 con ta in a nega ti ve 0 and the A-regis ter will contain the initial contents of the 
Q-register . 

• If a negative number is divided by negative 0, the quotient in the Q-register will be a 
negative 0 and the remainder in the A-register will be the complement of the initial 
contents of the Q-register. At the time the j-designator is interpreted, the contents of 
the Q and A-registers will be the same as the final contents. 

The following examples illustrate these rules: 

A positi ve number divided by positive O. 

00000000000000000000000000001 

At j interpretation 

Final Result 

000000000000000000000000000001 (dividend) 

000000000000000000000000000000 (divisor) 

111111111111111111111111111111 (quotient in the 
Q-re gis te r) 

000000000000000000000000000001 (remainder in the 
A-regis ter) 

111111111111111111111111111111 (quotient in the 
Q-register) 

000000000000000000000000000001 (remainder in the 
A-register) 

A negative n urn ber divided by posi tive O. 

111111111111111111111111111111 111111111111111111111111111110 (dividend) 

At j interpretation 

( 
Final Res ult t 

000000000000000000000000000000 (divisor) 

111111111111111111111111111111 (quotient in the 
Q-register) 

000000000000000000000000000001 (remainder in the 
A-register) 

000000000000000000000000000000 (quotient in the 
Q-register) 

111111111111111111111111111111 (remainder in the 
A-register) 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

A positive number divided by negative O. 

010111111111111111111111111111 110111111111111111111111111111 (dividend) 

At j interpretation 

Fina 1 Result 

111111111111111111111111111111 (divisor) 

111111111111111111111111111111 (quotient in the 
Q-register) 

110111111111111111111111111111 (remainder in the 
A-regis ter) 

000000000000000000000000000000 (quotient in the 
Q-register) 

001000000000000000000000000000 (remainder in the 
A-register) 

A negative number divided by negative O. 

100111111111111111111111111111 110111111111111111111111111111 (dividend) 

111111111111111111111111111111 (divisor) 

At j in terpreta tion 

Final Result 

111111111111111111111111111111 (quotient in the 
Q-register) 

001000000000000.000000000000000 (remainder in the 
A register) 

111111111111111111111111111111 (quotient in the 
Q-regis ter) 

001000000000000000000000000000 (remainder in the 
A-register) 

(4) Division of Positive or Negative Zero by a Non-Zero Divisor with an Unlike Sign 

When division is performed in this case, the quotient in the Q-register and the remainder 
in the A-register will be a negative O. At the time interpretation of the j-designator is made 
both the Q and A-register will contain a positive O. The following examples will illustrate 
this: 

00000000000000000000000000000 000000000000000000000000000000 (dividend) 

At j interpretation 

Final Result 

111111111111111111111111111110 (divisor) 

000000000000000000000000000000 (quotient in the 
Q-registe.r) 

000000000000000000000000000000 (remainder in the 
A-register) 

111111111111111111111111111111 (quotient in the 
Q-register) 

111111111111111111111111111111 (remainder in the 
A-regis ter) 

21 



S-E 22 UNIVAC 490 S'PURT UP-3900 
SEC TION: PA GE: 

111111111111111111111111111111 111111111111111111111111111111 (dividend) 

At j interpretation 

Final Result 

I 

000000000000000000000000000001 (di vis or) 

000000000000000000000000000000 (quotient in the 
Q-regis ter) 

000000000000000000000000000000 (remainder in the 
A-regis ter) 

111111111111111111111111111111 (quotient in the 
Q-register) 

111111111111111111111111111111 (remainder in the 
A-regis ter) 

Divide Overflow with Non-Zero Divi sor and Dividend 

In division, the dividend in the AQ-register may have up to S9 significant bits while the 
divisor may have as few as 1. In these cases, a quotient may be generated that has as 
many as S9 significant bits., Since the Q-register has a 30-bit capacity, an overflow situa
tion will result when a quotient is generated that has more than 29 significant bits. If over
flow does occur, the quotient in the Q-register will be positive 0 if the divisor and dividend 
have unlike signs, or it will be a negative 0 if the signs were the same. At the time the j
designator is interpreted the Q-register will always contain a negative O. 

The following rules govern the occurrence of a divide overflow: 

• If the most significant bit of the divisor is in bit position n, a divide overflow will not 
occur if the dividend has no significant bits beyond bit position n + 28. 

• If the most significant bit of the divisor is in bit position n, a divide overflow will occur 
if the dividend has a significant bit in bit position n + 30 or beyond. 

• If the most significant bit of the divisor is in bit position n, a divide overflow may occur 
if the most significant bit of the dividend is in bit position n + 29. 

The following examples illustrate these rules: 

• No overflow. 

000000000000000000000000000000 000000000000000010110001011100 (dividend) 

000000000000000000001010011100 (divisor) 

At j interpretation I 
Final Result 

000000000000000000000000010001 (quotient in the 
Q-register) 

000000000000000000000000000000 (remainder in the 
A-register) 

000000000000000000000000010001 (quotient in the 
Q-register) 

000000000000000000000000000000 (remainder in the 
A-re gis ter) 



UP-3900 UNIVAC 490 SPURT S-E 
SECTION: PAGE: 

• Overflow occurs. 

000000000000000100011001100011 010011110111100111100110101011 (dividend) 

000000000000000010000001000000 (divisor) 

At j interpretation 

I 

Final Result 

I 
• Overflow may occur. 

111111111111111111111111111111 (quotient in the 
Q-register) 

010011110111100001100111101011 (remainder in the 
A- regis ter) 

111111111111111111111111111111 (quotient in the 
Q-regis ter 

010011110111100001100111101011 (remainder in the 
A-re gis ter) 

111111111111111011100101011100 101100001000011010001100111111 (dividend) 

At j interpretation 

Final Result 

I 
In this example, overflow occurs. 

000000000000000010000001000000 (diviso~ 

111111111111111111111111111111 ( quo tie n t in th e 
Q-re gister) 

010011110111100.111110011000000 (remainder in the 
A- register) 

000000000000000000000000000000 (quotient in the 
Q-re gis ter) 

101100001000011000001100111111 (remainder in the 
A-register) 

000000000000000000000000000001 000000000000000000000000000000 (dividend) 

At j interpretation 

Final Result 

I 

000000000000000000000000000011 (divisor) 

000010001000100010000111101101 (quotient in the 
Q-register) 

000000000000000000000000000001 (remainder in the 
A-register) 

000010001000100010000111101101 (quotient in the 
Q-register) 

000000000000000000000000000001 (remainder in the 
A-register) 

In this example, overflow does not occur. 

23 



S-E 
SECTION: 

24 UNIVAC 490 SPURT 
PAGE: 

The remainder in overflow division is difficult to determine and the value of such in
forma tion, when obtained, is questionable. The rules th at are stated below are valid 
at least in the above examples. They should not, however, be considered universal 
rules. 

(1) If the dividend and divisor are positive numbers, add the dividend and divisor. The 
remainder in the A-register will be the low-order 30 bits of the sum that is formed. 
At the time the j-designator is interpreted, the contents of the A-register will be 
the same as the final contents. 

(2) If the dividend and divisor are negative numbers, complement the dividend and 
divisor, and then add them. The remainder in the A-register will be the low-order 
30 bits of the sum that is formed. At the time interpretation of the j-designator is 
made, the contents of the A-register will be the same as the final contents. 

(3) If the dividend is a positive number and the divisor is a negative number, the 
divisor should be complemented and then added to the dividend. The final remain
der in the A-register will be the complement of the low-order 30 bits of the sum 
that is formed. At the time interpretation of the j-designator is made, the contents 
of the A-register will be the low-order 30 bits of the sum that is formed. 

(4) If the dividend is a negative number and the divisor is a positive number the divi
dend should be complemented and then added to the divisor. The final remainder 
in the A-register will be the complement of the low-order 30 bits of the sum that is 
formed. At the time the j-designator is interpreted, the contents of the A-register 
will be the low-order 30 bits of the s urn that is formed. 

OPERATION y J 

DIV read class note 

NOTE 1 

The interpretation of the skip condition for a divide operation is as follows: 

J MNEMONIC 

(absent) 

SKIP 

OF 

NOOF 

AZERO 

SKIP CONDITION 

No skip. 

Skip next instruction. 

Skip if there is an overflow condition. The instruction 
to which the skip is made should be a jump instruction 
which will direct the program to a routine which pro
vides remedial means of noting and/or correcting the 
error. 

Skip if there is no overflow condition. In this case J a cor
rect answer is indicated when a skip occurs. 

Skip if A is zero. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

ANOT Skip if A is not zero. 

APOS Skip if A is positive. 

ANEG Skip if A is negative. 

Examples: 

Examples are for normal division, where all results are shown following final sign correct
ion, if correction is required. 

(1) 00000 00000 00000 26134 -;- 00000 01234 

quotient in Q = 00000 00021 

remainder in A = 00000 00000 

no final sign correction on A or Q 

(2) 00000 00000 00000 26152 -;- 00000 01234 

quotient in Q = 00000 00021 

remainder in A =00000 00016 

no final sign correction on A or Q 

(3) 7777777 7777777 7777777 51625 -;- 77777 76543 

quotient in Q = 00000 00021 

remainder in A = 00000 00016 

no final s igncorrection on A or Q 

(4) 02400 21166 21233 52654 = 54000 16354 

quotient in Q = 67777 03046 

remainder in A ::: 54733 20156 

A and Q were the complements at j interpretation 

(5) 75377 56611 56544 25123 -;- 23777 61423 

quotient in Q ::: 67777 03046 

remainder in A = 54733 20156 

(6) 00000 00000 00000 12345 -;- 77777 65432 

quotient in Q = 77777 77776 

remainder in A = 77777 77777 (even division) 

A and Q were the complements at j interpretation 

9. Logical and Selective Ins tructions 

The instructions contained in this group are based upon five operations: logical product, 
selecti ve set, selective clear, selective complement and selecti ve subs titu teo The 
indi vidual bit positions of the operands are involved in these opera tions. The condition of 
a specific bit position in the result is determined by the condition of the corresponding bit 
positions in the operands. 

25 



5-E 
SECTION: 

26 UNIVAC 490 SPURT 
PAGE: 

• LOGICAL PRODUCT 

Logical product operations are generally used for masking, which causes selected 
portions of the operand to be reproduced in the result. The remaining portions of the 
operand are assumed to be zero. This is accomplished by placing a mask in the Q
register consisting of 1 bits in the desired bit positions and 0 in the remaining bit 
positions. A simple example of all the possible combinations is: 

1010 (Y) 
()11() {("\\ 
V.J..J.V \.y'J 

0010 (logical product) 

• SELECTIVE SET 

Selective set operations are used to force 1 bits into selected bit positions of the 
A-register. The bit positions selected to be filled with 1 bits are determined by the 
condition of the bit positions of the operand. If either or both the corresponding bit 
positions of the A-register and the operand contain a 1 bit, the result will be a 1 
bit. A simple example of all the possible combinations is: 

• SELECTIVE CLEAR 

1010 (A) 

0110 (Y) 

1110 (selective set of A) 

Selective clear operations are used to clear selective bit positions of the A-register 
to O. The bit positions selected to be cleared to 0 are determined by the condition 
of the bit positions of the operand. If a bit posi tion of the operand contains a 1 bit, 
the result will be O. A simple example of all the possible combinations is: 

1010 (A) 

0110 (Y) 

1000 (selective clear of A) 

• SELECTIVE COMPLEMENT 

Selective complement operations are used to complement the bits in selected bit 
positions of the A-register. The bit positions to be complemented are determined by 
the condi tion of the bit posi tions of the operand. If a bit posi tion of the operand 
contains a 1 bit, the corresponding bit position of the A-register will be complemented. 
A simple example of all the possible com binations is: 

1010 

0110 

1100 

(A) 

{v\ 
\ ... / 

(selective complement of A) 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

• SELECTIVE SUBSTITUTE 

Selective substitute operations are used for replacing bits in selected bit positions of 
the A-register with bits from the corresponding bit positions of an operand. The bits of 
the operand that will replace those in the A-register are determined by placing 1 bits 
in the Q-register. 

The first twelve bit positions of the various registers involved in this operation will be 
used to show how this is accomplished: 

(1) The individual bits of the A~register are cleared corresponding to 1 bits in the Q-register. 

010101010101 (initial contents of A) 

000000111111 (Q) 

010101000000 (result in A) 

(2) The logical product of the Y operand and Q are formed in the X-regis ter. 

111000000111 (Y) 

000000111111 (Q) 

000000000111 (result in X) 

(3) The indi vidual bit posi tions of A are then set to 1 corresponding to one bits in the X
regis ter. 

010101000000 (A) 

000000000111 eX) 

010101000111 (final result) 

• ENTER LOGICAL PRODUCT 

This instruction forms the logical product of the contents of the Q-register and an 
operand and retains it in the A-register. 

OPERATION y J 

ENT . L P read c las s note 1 

NOTE 1 

QPOS and QNEG are replaced with EVEN or ODD, which causes a skip if the parity 
(num ber of 1 bits) of A is respectively even or odd. 

Example: 

ENT· LP . W(LABEL) . EVEN 40230 01234 

27 



5-E 
SECTION: 

28 UNIVAC 490 SPURT 
PAGE: 

• STORE LOGICAL PRODUCT 

This instruction forms the logical product of the contents of the Q-register and the A .. 
register and stores this product in a storage location. 

OPERATION y J 

STR . LP store clas s normal 

Example: 

STR . LP . L(LABEL + B5) 47015 01234 

• REPLACE LOGICAL PRODUCT 

This instruction forms the logical product of the contents of the Q-register and an 
operand, retains the logical product in the A-register, and stores this logical product 
in the storage location from which the operand was obtained. 

OPERATION y J 

RPL . LP rep lace c las s note 1 

NOTE 1 

QPOS and QNEG are replaced with EVEN or ODD which causes a skip if the parity 
(number of 1 bits) of A is respectively even or odd. 

Example: 

RPL . LP . W(LABEL) . ODD 44330 01234 

• ADD LOGICAL PRODUCT 

This instruction adds the contents of the A-register to the logical product of the contents 
of the Q-register and an operand. The sum is retained in the A-register. 

OPERATION y J 

ADD· LP read c las s normal 

Example: 

ADD· LP . X77773 41040 77773 

• SUBTRACT LOGICAL PRODUCT 

This instruction subtracts the logical product of the contents of the Q-register and an 
operand from the contents of the A-register. The difference is retained in the A-register. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

OPERATION y J 

SU B • L P read clas s normal 

Example: 

SUB· LP . W(LABEL) . QPOS 42230 01234 

• REPLACE A + LOGICAL PRODUCT 

This instruction forms the logical product of the contents of the Q-register and an t>perand, 
then adds this product to the contents of the A-register. The sum is retained in the A
register and is stored in the location from which the operand was obtained. 

OPERATION y J 

RPL . A+LP replace class normal 

Example: 

RPL . A + LP . LX(LABEL + B4) 45054 01234 

• REPLACE A - LOGICAL PRODUCT 

This instruction forms the logical product of the contents of the Q-register and an 
operand, then subtracts this product from the contents of the A-register. The difference 
is retained in the A-register and is stored in the location from which the operand was 
obtained. 

OPERATION y J 

RPL . A-LP replace class normal 

Example: 

RPL . A - LP . UX (LABEL + B3) 46063 01234 

• SELECTIVE SET 

This instruction forces 1 bits into selected bit positions of the A-register. The bit 
positions that 1 bits are forced into are determined by the corresponding bit positions in 
the operand. If either or both bit positions contain a 1 bit, the result will be a 1 bit. If 
both positions contain a zero, the result will be zero. 

OPERATION Y J 

SEL • SET read class normal 

Example: 

SEL . SET· W(LABEL) 50030 01234 

29 



5-E 
SECTION: 

30 UNIVAC 490 SPURT 
PAGE: 

• SELECTIVE COMPLEMENT 

This instruction complements the contents of selected bit positions of the A-register. 
The bit posi tions that are to be complemented are determined by the presence of 1 bits 
in the corresponding bit positions of the operand. If a bit position of the operand contains 
a 1 bit, the corresponding bit position of the A-register will be complemented. 

OPERATION y I J 

SEL . CP read c las s I normal 
I 

Example: 

SEL . CP . 77777 51000 77777 

• SELECTIVE CLEAR 

This instruction will clear selected bit positions of the A-register to zero. A 1 bit in the 
operand bit position clears the corresponding bit position in the A-register. 

OPERAT!ON y J 

SEL . CL read c las s norma I 

Example: 

SEL . CL . W(LABEL + B6) 52036 01234 

• SELECTIVE SUBSTITUTE 

This instruction replaces the contents of selected bit positions of the A-register with the 
content of corresponding bit positions in an operand. The bit positions selected for 
replacement are determined by the presence of 1 bits in the corresponding bit positions 
of the Q-register. 

OPERATION Y J 

SEL . SU read class normal 

Example: 

SEL . SU . X11000 53040 11000 

• REPLACE SELECTIVE SET 

This instruction forces 1 bits into selected bit positions of the A-register. The bit 
positions that 1 bits are forced into are determined by placing 1 bits into the correspond
in g bit posi tions of the operand. After the selective set operation is performed, the 
result is retained in the A-register, and is also stored in the location from which the 
operand was obtained. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: 

OPERATION y J 

RSE . SET replace class normal 

Example: 

RSE . SET· UX(LABEL + Bl) 54061 01234 

• REPLACE SELECTIVE COMPLEMENT 

This instruction complements the contents of selected bit positions of the A-register. 
The bit positions selected to be complemented are determined by the presence of 1 bits 
in the corresponding bit positions of the operand. After the selective complement 
operation is performed, the result is retained in the A-register and is also stored in the 
location from which the operand was obtained. 

OPERATION y J 

RSE . CP replace class normal 

Example: 

RSE . CP . U(LABEL) 55020 01234 

• REPLACE SELECTIVE CLEAR 

This instruction clears selected bit positions of the A-register to zero. The bit positions 
that are cleared to zero are determined by the presence of 1 bits in the corresponding 
bit positions of the operand. After the selective clear operation is performed, the result 
is retained in the A-register and is also storecfin the storage location from which the 
operand was obtained. 

OPERATION y J 

RSE . CL replace c las s normal 

Example: 

RSE . CL . L(LABEL) . SKIP 56110 01234 

• REPLACE SELECTIVE SUBSTITUTE 

This instruction replaces the contents of selected bit positions of the A-register with the 
contents of selected bit positions of the operand. The bit positions that will be replaced 
are determined by placing 1 bits in the corresponding bit positions of the Q-register. 
After the selective substitute operation is performed, the result is retained in the A
register, and is also stored in the location from which the operand was obtained. 

31 
PAGE: 



5-E 32 UNIVAC 490 SPURT UP-3900 
SECTION: PAGE: 

OPERATION y J 

RSE • SU replace class normal 

Example: 

RSE . SU . LX(LABEL) 57050 01234 

Example: 

The uses of the logical and selective instructions are varied. Individual examples become 
meaningless unless seen in a context. The portion of coding presen ted below is designed 
to add two numbers in Fieldata code to produce a sum in Fieldata code. 

MASK 6060606060 
AD] 5252525252 

ENT Q W(FD1) (1) 

SUB Q W(AD]) (2) 
ADD Q W(FD2) (3) 
ENT LP W(MASK) / A '\ 

\."t) 

LSH AQ 30D (5) 
LSH Q 27D (6) 
SEL SET W(MASK) (7) 
STR A-Q W(FDSUM) (8) 

Let us assume that the two Fieldata numbers to be added are 12345 and 12345 (FD1 and FD2). 
The result will be 24690 (FDSUM). The following operations are performed: 

(1) The first number is entered in the Q-register. 

(2) An adjusting value (AD]) is subtracted from this number and 

(3) The second number is added to the first number as follows: 

6162636465 (FDl, in Fieldata) 
5252525252 (AD]) 

0710111213 
6162636465 (FD2, in Fieldata) 

7072747700 (Contents of Q-register) 

(4) The logical product of the contents of the Q-register and the operand MASK is formed 
and entered in the A-register as follows: 

111000 111010 111100 111111 000000 (Q) 
11UOUU 11UUUU i10000 i10000 iiOOOO (MASK) 

110000 110000 110000 110000 000000 (A) 

(5) The contents of A and Q are interchanged by a 30 bit left shift of AQ, 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

(6) and the resulting contents of Q are shifted to account for a carry from one Fieldata digit 
to the next. The result of these operations appears in Q as follows: 

000110 000110 000110 000110 000000 

(7) A selective set operation and 

(8) a storage of A-Q results in the sum of the two Fieldata numbers as follows: 

111000 111010 111100 111111 000000 (A) 
110000 110000 110000 110000 110000 (MASK) 

111000 111010 111100 111111 110000 (A) 
000110 000110 000110 000110 000000 (Q) 

110010 110100 110110 111001 110000 (FDSUM) 
'--.~ ~ '--.~ '--.~ '--.~ 

62 64 66 71 60 (24690 in Fieldata) 

10. Miscellaneous Instructions 

The following instructions are variations of a basic computer instruction. They are used 
frequently for such operations as clearing portions of memory and complementing values. 
For this reason, a separate mnemonic operation code is assigned to each of these opera
tions. 

• COMPLEMENT A 

This is a variation of the STORE A instruction. The conten ts of the A- regis ter w ill be 
complemented as a result of this operation. 

OPERATION y J 

CP . A none norma I 

Example: 

CP' A 15070 00000 

• COMPLEMENT Q 

This is a variation of the STORE Q instruction. The contents of the Q-register w ill be 
complemented as a result of this operation. 

OPERATION y J 

CP . Q none normal 

Example: 

CP'Q 14000 00000 

33 



5-E 34 UNIVAC 490 SPURT 
SEC TION: PAGE: 

• CLEAR A 

This is a variation of the ENTER A instruction. The contents of the A-register will be 
cleared to zero by this operation. 

OPERATION y J 

CL . A none norma I 

Example: 

CL' A 11000 00000 

• CLEAR Q 

This is a variation of the ENTER Q instruction. The con tents of the Q-register w ill be 
cleared to zero by this operation. 

OPERATION y J 
CL . Q none normal 

Example: 

CL' Q 10000 00000 

• CLEAR Bn 

This is a variation of the ENTER Bj instruction. The contents of the specified B-register 
is cleared to zero, One of the B-registers is specified by a value of 0, 1, 2, 3, 4, 5, or 7 
for n. 

OPERATION y J 

CL 'Bn none none 

Example: 

CL' B6 12600 00000 

• CLEAR Y 

This is a variation of the STORE Bn instruction. The content of the storage location speci
fied by Y is cleared to zero. 

OPERATION 

CL 

Example: 

CL • L (LABEL + B5) 

CL ' CPL (LABEL) 

y 

store class 

J 

none 

16015 01234 

16050 01234 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SEC TION: PAGE: 

• NO OPERATION 

This instruction is a variation of the ENTER Bn instruction. No operation is performed and 
the program advances to the next instruction. 

OPERATION y J 

NO-OP none none 

Example: 

NO-OP 12000 00000 

11. Assembler Macro-Operations 

A group of instructions are often used to perform some common operation. The SPURT 
assembler provides a convenient format in which one line of SPURT coding will generate 
ali the instructions required to complete the operation. Operations of this type will be 
called macro-operations. The line of coding will consist of a standard label, the appro
priate macro-operation mnemonic, and a variable number of operands to complete and 
modify the individual computer instructions that are generated. 

If reference to a macro-operation is required, the label will refer to the first computer 
instruction that is generated. 

If a macro-operation is preceded by an instruction with a skip condition, a next instruc
tion skip will skip only the first computer instruction that has been generated. 

• ENTRY and EXIT 

The ENTRY and EXIT mnemonics provide a standard means of starting and exiting 
from all subroutines. The ENTRY mnemonic is the first line of the subroutine and 
should therefore have a label which gives the subroutine a name. The entrance to 
the subroutine will be by a return jump instruction. The return address will be placed 
in the lower portion of the computer instruction generated by the ENTRY mnemonic. 

An EXIT mnemonic should appear at any point where an exit from the subroutine is 
desired. More than one EXIT may be used if there are alternate paths in the sub
routine. The computer instruction generated will refer back to the return address that 
was placed in the computer instruction associated with the ENTRY mnemonic. 

Example: 

1 w 

CHKINPUT ENTRY 

(subroutine instructions) 

EXIT 

Computer 
Address 

02244 

02277 

Computer 
Instruction 

61000 00000 

61010 02244 

35 



5-E 
SEC TION: 

36 UNIVAC 490 SPURT 
PAGE: 

The subroutine may be entered by a return jump instruction which will appear as 
follows: 

RJP • CHKINPUT 04322 65000 02244 

(return address) 04323 

After the return jump is executed coding for the ENTRY line will appear as follows: 

02244 61000 04323 

• CLEAR 

This operation clears a specified number of words in computer memory. 

w Vo v
1 

CLEAR number of starting address 
words (store class) 

(read class) 

v 0 Specifies the number of words to be cleared. This is a read class operand. If a 
value of zero is specified, the operation will accomplish nothing except a time 
delay. 

v 1 specifies the first address to be cleared. This may be a label with either or both 
an increment and B-register modification. 

Example: 

CLEAR' 36 . LABEL 70100 00036 
16030 01234 

Timing considerations are involved in the coding for this operation . 

• RESERVE 

This operation reserves a block of memory word locations in the final object program. 
The uses for such an area include: 

• setting aside a specific area for the storage of parameters 

• the provision of an area for working storage 

• the reservation of sp'ace for program expansion. 

w 

RESERVE number of 

words 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: 

v 0 specifies the number of memory words to be reserved. Only a constant may be used 
in this operand location. 

Example: 

I w vo 

I 
TABLE 

I 
RESERVE 

I 
25D 

The reservation of space begins at the location following that of the last previously 
generated instruction. If the reserved space is 26 words or less, all words will be zero 
filled; if greater than 26 words, only the first word may be assumed to be zero. 

The label assigned to the RESERVE mnemonic will reference the first word of the area. 
Other words in the area may be referred to by an increment, such as TABLE + 5, which 
refers to the sixth word of the area . 

• PUT 

The PUT operation places a single word in a designated storage address through the Q 
register. 

w 

I 
PUT 

v 0 A read class operand. 

v t A store class operand. 

Example, 

PUT' 1 . L(LABEL) 

• MOVE 

vo 

word 

v, 

destination 
I aadress 

10000 00001 
14010 01234 

The MOVE operation moves a block of data from one area to another. The contents of the 
Q-register and B7 will be affected by the instruction. 

w vo v, v
2 

MOVE number of from address to address 
words 

I I I 

37 
PAGE: 



5-E 
SECTION: 

38 UNIVAC 490 SPURT 
PAGE: 

• 

v 0 a read class operand wh ich specifies the number of words to be moved. 

a read class operand which specifies the initial address of the area from which data 
will be moved. The form W(x) will refer to the lower portion of the word. 

v 2 a read class 0 perand wh ich specifies the initial address of the area to which data will 
be moved. The form W (x) will refer to the lower portion of the word. 

Example: 

SPURT COMPUTER COMPUTER 
INSTRUCTION ADDRESS INSTRUCTION 

MOVE· L(B4 + 12) • B1 . B5 05300 10001 00000 

05301 14010 05306 

05302 10005 00000 

05303 14010 05307 

05304 12714 00012 

05305 61000 05310 

05306 10037 00000 

05307 14037 00000 

05310 72700 05306 

U-TAG 

The U-TAG operation provides the programmer with a means by wh ich the value repre
sented by a label may be placed in the upper portion of a word. A label may also be 
placed in the lower portion of the word. This operation is useful for such purposes as 
the preparation of jump tables and the specification of upper and lower buffering limits. 

w Vo vI 

U-TAG upper label lower label 

v 0 may be any valid label. A constant is not permitted. 

v 1 may be any valid label. If no label is desired, this must be 0 or some other constant 
not exceeding 77777. 

Example: 

Assume that the label ENDFILE has been assigned the computer address 00227. The label 
LABEL will have its usual assignment of 01234. 

U-TAG· ENDFILE . LABEL 00227 01234 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: 

• FD (Fieldata) 

The FD operation will enter an alphanumeric literal into a program in F ieldata code. This 
operation is particularly useful in forming lists or tables of alphanume ric information. 

w 

FD literal 

v 0 specifies the num ber of computer words that the literal should occupy. The literal will 
be justified left in all cases. An octal or decimal value may be used. If the stated 
value is zero, the literal will automatically occupy computer words at the rate of five 
characters per word. 1£ the stated number of words is greater than the number the 
li teral would normally occupy, the remainder of the character positions will be packed 
with Master space codes (OOs). This permits variable size literals to each occupy the 
same amount of space to facilitate the searching of lists or tables. 

PAGE: 

v 1 contains the literal which may consist of alphanumeric Fieldata characters. The literal 
will be placed in the program following the last word generated by the previous operation. 
Each character will occupy six binary bits with a maximum of five characters per word. 
A numeric zero and the letter "0" will both produce the letter "0" (24s). Spaces 
between words will generate Fieldata spaces (aSs). See APPENDIX B, Table 1 for 
clarification of the use of special characters. An end of statement symbol is critical 
followin g the last character to avoid extraneous space fill. 

Examples: 

(1) FD· 3 . ENDi10Fi1FILE 

(2) FD· 3 . N:EWi1 YORK 

12231 10524 
13051 31621 
16000 00000 

23123 40536 
24272 00000 
00000 00000 

• The following operations w ill generate m ore than one instruction word. They are ass ociated 
with a particular context and will be fully described in that context: 

FORM-TEXT 

CKSTAT 

TYPEC 

TYPET 

39 



5-E 
SECTION: 

40 UNIVAL.; q~O ::iPURT 
PAGE: 

12. Basic Input/Output Instructions 

When standard peripheral channels are shared between programs in an environment controlled 
by the Real-Time Executive Routine (REX), input/output operations must be requested by use 
of the mnemonic statements described in Section 6. 

N on-standard peripheral input/output operations, and standard peripheral input/output operations 
for programs not controlled by REX, must be requested by using the basic input/output instruc
tions that are here described. 

a. Input/Output Instruction Word 

The format for the input/output instruction word is shown in Figure 5-5. 

f 

24 123 

y 

o 

Figure 5-5. Input/Output Instruction Word 

The function code designator, f, is a 6-bit code that specifies the operation to be 
performed. 

y The operand designator,y, is a IS-bit code that represents either the operand or 
the operand address. 

J The channel designator, j, is a 4-bit code that specifies the input or output channel 
that the instruction refers to. 

k The operand-interpretation designator, k, is a 2-bit code that controls where the 
operand is procured from or where it is stored, or both. 

b The operand address modification designator, b, a 3-bit code, specifies the B
register containing a quantity that is added to y. 

J k COMBINA TIONS 

As shown in Figure 5-5, j and k together occupy the same bit positions as j and k 
in all other instructions; however, j and k are 4 bits and 2 bits as opposed to 3 bits 
and 3 bits for j and k in other operations. When input/output instructions are written, 
the 6-bits that represent the j k combination appear as two octal digits as do the 
6-bits representing j k in all other instructions, these octal digits are considered 
as a unit that represents a specific j k combination rather than having one digit 
represent j and one represent k. The octal digits that represent the j k combination 
are shown at the intersections of the j value rows and k value columns in Figure 
5-6. 

For example, assume that an input/output instruction is to be written with the 
~ ." J. ,. 1 f 'l A. .. J" r ., ". I" r J 1. .. ,... 

requ1reIllelll l1lCH J == J i:UIU K == J. t1.11 eXi:l1ll111i:lllUll U1 LIle llller::seCllUU U1 lue J = J ruw 

and the k = 3 column in the diagram will show that 27 is the 2-digit octal 
com bination that meets this requirement. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SEC TION: PAGE: 

k = 1 

00 01 02 03 
j - 1 - 04 05 O£ 07 
j = 2 10 11 12 13 

j = 3 14 15 16 17 

j = 4 20 21 22 23 

j = 5 24 25 26 27 
j = 6 'In '11 32 33 ..)U Jl 

j = 7 34 35 36 37 
8 = 10 D 8 40 41 42 43 
9D = 118 44 45 I 46 47 

10D = 128 50 51 52 53 
llD = 138 54 I 55 56 57 
12D = 148 60 I 61 62 63 
13D = 15

8 64 I 65 66 67 

Figure 5-6. Combination for Input/Output Instructions 

b. Input/Output Buffers 

An input buffer is a block of consecutive storage locations into which a peripheral subsystem, 
connected to an input channel, places data. Con versely, an output buffer is a block of 
consecutive storage locations from which a peripheral subsystem, connected to an output 
channel, receives data. The assignment of the buffers is made by the buffer instructions 
(73, 74, 75, and 76). These instructions activate a buffer and place a control word in the 
appropriate buffer-control register. The control word contains two addresses that define the 
size and location of the buffer. Figure 5-7 shows the format of the control word. 

29 

LAST AD DR E SS 
OF BUFFER 

15 14 

Figure 5-7. Control Word 

FIRST ADDRESS 
OF BUFFER 

o 

As shown in the diagram, the high order IS-bits of the control word contain the address of the 
last word in the buffer and the low order IS-bits contain the address of the first word. 

There are 14 input channels numbered 0 through 15 (octal) and 14 output channels numbered 
o through 15 (octal). Channels 0 and 1 are reserved for computer to computer communication. 
For each of these channels a fixed storage location is designated as a buffer control 
register. The input buffer control registers are located at octal addresses 00100 through 
00115 and the output buffer control registers at octal addresses 00120 through 00135. The 
buffer control register for a particular channel is determined by the j designator in the 
buffer instruction word and, since it may range from 0 to 158 , the input buffer control regis
ter for channel j is at address 00100 + j and the output buffer control register is at address 
00120 + j. 

41 



5-E 
SECTION: 

42 UNIVAC 490 SPURT 
PAGE: 

At the time a buffer is activated, the lower half of the appropriate buffer control register 
contains the first address of the buffer and the upper half contains the last address. For 
example, if data is transferred on input channel 12 to a five word input buffer located at 
addresses 01000, 01001, 01002, 01003, and 01004, the input buffer control register, for this 
channel, located at address 00112, contains 0100401000. 

As the operation is performed, 30-bit data words are transferred to or from the consecutive 
addresses in the buffer. The first transfer is made to or from the storage location whose 
address is contained in the lower half of the buffer control register. When the first transfer 
is completed, the lOWer half of the buffer control register is incremented by 1 to contain the 
address to which or from which the next data word will be transferred. These operations 
continue to transfer and increment until the buffer is filled or emptied. At this point the 
operation is terminated and the lower half of the buffer control register contains the address 
of the first storage location beyond the buffer; that is, the last address of the buffer + 1. 

UP-3900 

For example, data is being transferred from a peripheral subsystem on input channel 12 to a 
5-word input buffer located at addresses 01000, 01001, 01002, 01003, and 01004. In this case, 
the buffer operation would be as follows: 

(1) The initial contents of the input buffer control register at address 00112 will be 
0100401000. 

(2) Thirty-bit data words will be transferred to addresses 01000 through 01004 and the buffer 
control register will be incremented following each transfer. 

(3) When the buffer mode is terminated, the input buffer control register will contain 
0100401005. 

c. Bufferin g Operations 

• ACTIVATE INPUT BUFFER 

This instruction activates an input buffer on a specified input channel and sets up the 
appropriate input buffer control register by placing a control word that defines the size 
and location of the buffer at address 00100+n. 

w v v 1 0 

IN Cn 
Bu Her 

I Control Word Absent 

MONITOR 

!! spe'::ifies the b'..!.ffe!" '::C'!!t!"C'! !"egiste!" the.t '.J!!!! be e.,::tive.ted e.!'.d !!!0dified. Th"" ::.rtll::.1 

location of the buffer control word is 100+n. The value of n must be in the range from 0 
to ISs. 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: 

v 0 may be specified in any of the following forms: 

L(x) The low order portion of the operand (x) replaces the low order portion of 
• the buffer control word thus establishing the first address of the buffer. 

The upper half of the buffer control word remains unchanged. If the 
upper address is zero, no data is transferred. 

PAGE: 

W(x) I The entire contents of the buffer control word are replaced by the operand I 
(x). 

A Constant If the constant is equal to or less than five octal digits (77777) the value 
will replace the low order portion of the buffer control word; if more than 
five octal digits the entire buffer control word will be replaced by the 
value of the cons tan t. 

v 1 If this operand is absent, the buffer control word is not monitored. 

Monitoring is specified by placing MONITOR in this operand position. 

If a buffer operation is monitored, the main program is interrupted and 
control is transferred to 00040 + n when the buffer operation is terminated 
by an equal upper and lower address in location 00100 + n. The upper 
address is incremented following this comparison, 

Examples: 

IN C5 52367 

IN C13 . W(LABEL) . MONITOR 

• ACTIV ATE OUTPUT BUFFER 

73240 52367 

75570 12345 

This instruction activates an output buffer on a specified output channel and sets up the 
appropriate output buffer control register by placing a control word that defines the size 
and location of the buffer at address 00120+n. 

w v v 1 0 

OUT Cn Bu Her Absent 
Control Word 

I 

MONITOR 

n specifies the buffer control register that will be activated and modified. The actual 
location of the buffer control word is 120+n. The value of n must be in the range from 
o to ISs. 

43 



S-E 
SECT10"l: PAGE: 

44 UNIVAC 4510 SPURT 

Vo may be specified in any of the following forms: 

L(x) The low order portion of the operand (x) replaces the low order portion of 
the buffer control word thus establishing the first address of the buffer. 
The upper half of the buffer control word remains unchanged. 

W(x) The entire contents of the buffer control word is replaced by the operand 
(x). 

,\ r'1 ___ L ___ .A 

Ii "VII::> lalIl If the constant is equal to or less than five octal digits (77777), the value 

v 
1 

will replace the low order portion of the buffer control word; if more than 
five octal digits the entire buffer control word will be replaced by the 
value of the constant. 

If this operand is absent, the buffer control word is not monitored. 

Monitoring is specified by placing MONITOR in this operand position. 

A buffer operation is monitored if the main program is interrupted and control is 
transferred to 00060+n when the buffer operation is terminated by an equal upper and 

lower address in location 00120 + n. The upper address is incremented 
following this comparison. 

Examples: 

OUT 

OUT 

C12 

C4 

33377 

W(LABEL) . MONITOR 

74500 33377 

76230 12345 

II JUMP IF BUFFER ACTIVE 

This instruction tests to determine whether or not an input or output buffer is active. 
If the buffer is active, control will be transferred to a specified address; if the buffer 
is not active, the instruction immediately following the jump instruction is executed. 

w v v 1 0 

JP Jump Operand Cn ACTIVEIN 

en ACTIVEOUT 

v The jump operand, a Read Class operand, may be specified in any of the 
o 

following forms: 

U(x) Jump to the address contained in the upper portion of the word 
represented by x. 

L(x) or Jump to the address contained in the lower portion of the word 
W(x) represented by x. 

x Jump directly to an address represented by x. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

ACTIVEIN, the input buffer is tested. 

If Cn ACTIVEOUT, the output buffer is tested. 

The input or output buffer to be tested is specified by n, which may be a value from 0 
to 158 . 

Examples: 

JP 

JP 

L(LABEL) 

U(LABEL) 

• TERMINATE BUFFER 

C13 

C5 

ACTIVEIN 

ACTIVEOUT 

62550 12345 

63260 12345 

This instruction terminates the input or ou tpu t buffer on a specified channel. The 
transfer currently in process is completed and no further transfers are made to the 
buffer. If the buffer was activated with monitor, the internal interrupt that would 
normally follow after the buffer was filled will not occur. The last buffer address to or 
from which a transfer was made can be determined by examining the lower half of the 
buffer control word at address 00100+n for input, or address 00120+n for output. 

w v v 1 0 

TERM I en I INPUT I 

I OUTPUT I 

v 0 Specifies the channel to be terminated. The value of n must be in the range from 0 to 
158 . 

v 1 INPUT terminates input buffer. 

OUTPUT termi nates output buffer. 

Examples: 

TERM C5 . INPUT 

TERM C15 OUTPUT 

d. External Control 

6624000000 

6764000000 

Peripheral equipment is controlled by the use of function words. Function words are sent 
from the computer to the controlling elements of the peripheral equipment through the output 
data lines. A function word is preceded in the program definition by an External Function 
Instruction which distinguishes the function word from data. The function word is analyzed 
and a unique operation is performed. The peripheral equipment communicates with the 
central processor by an interrupt (See f. External Interrupt). An interrupt may result from 
the normal termination of an operation or from other causes, such as an error condition, or 
upon reaching the end of a tape or a drum. In addition, status words are sent to the compu
ter by the peripheral equipment on the input data lines. Status words are the means by which 
the external equipment informs the central processor of the reason for the interrupt. 

45 



5-E 
SEC TION: 

46 UNIVAC 490 SPURT 
PAGE.: 

When the external interrupt control lines are acti vated, computer program control will be 
transferred to an address associated with the channel. An instruction placed in this address 
may begin a subroutine which will analyze the status word and take appropriate action. 

The mode of operation described briefly in the above paragraphs permits the external 
equipment to perform operations without reference to the central processor logic. Central 
processor action is required only at the initiation and termination of an operation. 

• EXTERNAL FUNCTION 

This instruction will cause a function word to be sent to the control elements of a 
peripheral subsystem on a specified channel. 

w v v 1 0 

EX-FCT Cn fun ction word 

v 0 Specifies the channel (2 through 15 8) through which the function word is transferred. 
This may be defined by a channel label that was previously defined in a MEANS 
statement (see PROGRAM PREPARATION). 

UP-3900 

v 1 May be an operand address in the form W(x). The function word may also be written as 
a ten octal digit constant. The format of the actual function words related to the type 
of subsystem may be found in APPENDIX D. 

Examples: 

EX-FCT C2 

EX-FCT . C4 

W(LABEL) 

6243052437 

13130 12345 

13230 70333 

In the last example, it is assumed that the ten digit function word was allocated to 
address 70333. 

• TEST CHANNEL 

This instruction will test to determine if the input buffer for the other computer to 
computer channel (0 or 1) is active. If the buffer is active, the instruction immediately 
following the test instruction is skipped; if the buffer is inactive, the instruction is 
executed. 

w v 
0 

TEST CO 

C1 



UP-3900 UNIVAC 490 SPURT 5-E 
SECTION: PAGE: 

v Specifies the channel to be tested. CO specifies channel 0; Cl specifies channel 1. 
o 

Examples: 

TEST 13000 00000 

TEST . Cl 13040 00000 

~ STORE CHANNEL 

This instruction will store into a specified memory location the status word that is 
generated following an external in terrupt. 

w v 
0 

STR en storage location 

n may be a value from 2 to 15 8 to specify the channel from which the word will be stored. 
stored. 

v 0 Specifies the storage location into which the status word will be stored. Only the form 
W(x) may be used. 

e. Internal Interrupt 

An internal interrupt occurs when a buffer that was activated by an IN or OUT instruction 
with MONITOR is filled or emptied. At this point, the program is interrupted, further 
interrupts are prevented from occurring (locked out), and instead of executing the next in
struction in the program, control is transferred to an instruction contained in the appropriate 
internal interrupt entrance register. The input internal interrupt entrance registers are loca
ted at addresses 00040 through 00055, and the output internal interrupt entrance registers 
are located at addresses 00060 through 00075. 

If n is a value equal to the channel number then the appropriate internal interrupt entrance 
register is determined as follows: 

INPUT 40+n 

OUTPUT 60+n 

These registers should contain an instruction that will: 

(1) Transfer program control to a routine that will process the interrupt. 

(2) Capture the present contents of the program address register (P register) which con tains 
the address of the next instruction at the time the interrupt occurred. 

These functions will be performed by a Set Interrupt Lockout Return Jump statement. The 
captured value of the program address register incremented by 1 (P + 1) will be stored in 
the lower portion of the word specified by the va operand. Control will be transferred to the 
address immediately following the address specified by the v 0 operand (v 0 operand + 1). 

47 



5-E 
SECTION: 

48 UNIVAI;; q!:lD 5~URT 
PAGE: 

w V 
0 

SILRJP note 1 

After the interrupt has been processed, the interrupt lockout may be released and control 
may be returned to the interrupted program by a Remove Interrupt Lockout and Jump 
statement in the following format: 

w 

RILJP 

NOTE 1 

V 
o 

note 

This operand may be written in any of the forms specified for the Jump Instruction (JP). 

f. External In terrupt 

AA .. n external irrterrupt is a program interrupt initiated by an external device . .loA. peripheral 
subsystem 'connected to anyone of the input channels (0 through 158) may interrupt the 
current program by sending an external interrupt to the central computer. When this occurs, 
the current program is interrupted and instead of executing the next instruction in the 
current program an instruction contained in the appropriate external interrupt en trance 
register is executed. The external interrupt registers are located at addresses 00020 
through 00035. 

If n is a value equal to the channel number (0 through 158), then the appropriate external 
interrupt entrance register is at address 20+n. 

The procedures for processing external interrupts are the same as those outlined for 
internal interrupts with the exception that a status word is generated by the peripheral 
subsystem. The status word may be removed from the input data lines and stored in a 
memory location for analysis with a STORE CHANNEL instruction (See paragraph d. of 
this section). This status word must be removed from the input data line if further input 
activity on the interrupted channel is expected. 

A listing of the status words related to the type of subsystem may be found in APPENDIX D. 

g. Interrupt Control 

When it is desirable to prevent interrupts from occurring, this may be accomplished by a 
Set Interrupt Lockout statement in the following format: 

w 

SIL 

UP-3900 



UP-3900 UNIVAC 490 SPURT Rev. 1 5-E 
SECTION: 

Program control will proceed to the next instruction followi ng the SIL statement. The 
lockout may be released to permit interrupts by a Release Interrupt Lockout statement in 
the following format: 

Program control will proceed to the next instruction following the RIL statement. 

Examples: 

SIL 

RIL 

h. Examples of Basic Input/Output Sequence 

64000 000000 

60000 000000 

PAGE: 

The following examples pertain to the UNISERVO IIlC Subsystem to illustrate the sequencing 
of input/output instructions. Instructions for other subsystems are sequenced in a similar 
manner .. 

(1) A simple function such as the positioning of tape requires only an External Function in
struction, which activates the subsystem to accept the appropriate Function Word. The 
following instruction and function word will rewind unit 7 on channel 12 with interrupt: 

EX-FCT • C14 • W(LABEL) 13630 12345 

Note that the underlined portion of the instruction would appear in binary format and be 
interpreted as follows: 

k 

6 3 

------~ 
1 1 0 0 1 1 
~ 

channel 

12 (14
8

) 

A val ue of 3 for k is required when the function code is 13. 

A function word at address 12345 (LABEL) would appear as follows: 

30100 00200 

49 



5-E 
SECTION: PAGE: 

50 UNIVAC 490 SPURT 

301 designates the subsystem function (rewind with interlock). The underlined portion 
specifies unit 7 as follows: 

OCTAL: 0 2 0 0 

~ ~ ~ ~ 
BINARY: 0 0 0 0 n 0 0 0 0 0 0 0 

LOGiCAL 
UNIT: 11 10 9 8 LJ 6 5 4 3 2 1 0 

UP-3900 

(2) Writing requires a total of five words, three instruction words addressed in sequence, a 
function word, and a buffer control word. In this example, 7778 words are written in 
binary at high density, on logical unit 11, on channelS, with interrupt. The coding would 
appear as follows: 

EXT-FCT • C5 • W(FC T3) 

NO-OP 

OUT • C5 • W(BUF5) 

13270 01010 

12000 00000 

74270 01020 

The Function Word located at 01010 (FCT3) would appear as follows: 

20776 20000 

A NO-OP instruction must be placed between consecutive input/output instructions to 
provide the necessary spacing in all sequences. 

(3) Reading from tape requires a total of five instructions, three instructions addressed in 
sequence, a buffer control word and a function word. Reading is similar to writing, but 
the order is reversed; the function is initiated after the buffer limi ts have been estab
lished. In this example, 3778 words are read in binary high density from logical unit 6 
on channel 6, with interrupt (assuming the end of file is not reached before the 3778 
words are read). In this exam pIe, as in the write example, the buffer area begins at 
IO'cation 20000. 

IN • C6 • W(BUF6) 

NO-OP 

EX-FCT • C6 • W(FCT6) 

73330 01022 

12000 00000 

13330 01016 

The Buffer Control Word located at 01022 (BUF6) would appear as follows: 

20376 20000 

The Function Word located at 01016 (FCT6) would appear as follows: 

52000 00100 



UP-3900 UNIVAC 490 SPURT 5-E 51 
SECTION: PAGE 

(4) Searching for a specific block of data (and the subsequent automatic reading) requires 
a total of eight instruction words, five instruction words addressed in sequence, one 
buffer control word, one function word, and one identifier word. Search is similar to the 
read function, but in addition an identifier word must be supplied to which the first worn 
of each block is compared. In this example, the file on logical unit 2 of channel 2 is 
searched until a "find" occurs. At this time, 3778 words are read in binary coded decimal 
at low density (if that many words remain before end of file). The transfer to memory 
starts at address 10000. The coding would appear as follows: 

IN • C2 • W(BUF2) 

NO-OP 

EX-FCT • C2 • W(FCT2) 

NO-OP 

EX-FCT • C2 • W(IDENT2) 

73130 01044 

12000 00000 

13130 01045 

12000 00000 

13130 01046 

The first instruction establishes the buffer with a Buffer Control Word that appears at 
location 01044 (BUF2) as follows: 

10376 10000 

The next instruction is a NO-OP for spacing. 

The third instruction sends a function word to the subsystem which appears at location 
01045 (FCT2) as follows: 

57200 0004 

Another N O-OP instruction is required between consecu ti ve input/output instructions. 

The fifth instruction provides a word for the search comparison. It may be in any format 
and would be contained in location 01046 (lDENT2). 

Figure 5~8 show s the sequence of consecutive instructions that are required for each type of 
operation for the various subsystems. 



TYPE OF OPERATION 

WRITE 

(Punch or Pr int) 

READ 

SEARCH READ 

MASKED SEARCH 

SEARCH 

The operations that ale listed 

under the respective subsystems 

in the co lumns to the right are 

not invo Ived with the movement 

of data to or fr om the centr a I 

processor; consequen':ly, on Iy 

one bas ic input/outPlit instruc

tion (EX- FCT) is nee-jed to 

cause the subsystem to execute 

them. In these cases the EX-FCT 

instruction supplies t1e parti-

cu lar subsystem with a function 

word which defines the operation. 

NOT APPLICABLE 

UNISERVO IIA UNISERVO IIIC 

REWIND 

PERIPHERAL SUBSYSTEM 

UNISERVO lilA FLYING HEAD 880 

MAGNETIC DRUM 

(1 ) 

(2) 

(3) 

(1 ) IN 

(2) NO-OP 

IN 

(1) EX-FCT 

(2) NO-OP 

(3) OUT 

NO-OP 

EX-FCT 

(3) EX-FCT 

NO-OP 

CONTINGENCY 

WRITE 

WRITE FILE 

SEPARATOR 

(1) EX-FCT 

(2) NO-OP 

(3) EX-FCT 

FASTRAND 

POSITION 

Figure 5-8 Basic Input/ QutPIJ' Instructions Seauence Requirements 

CARD 

SET INPUT 

MODE 
(Translation 

Binary, or 

Binary coded 

Decimal) 

SELECT 

STACKER 1 

SELECT 

STACKER 2 

1/1 
1'1 
n ... 
0 
Z 

PRINTER 
"D 
» 
til 
~ 

VI 
I 
trl 

VI 
IV 

t: 
2 -
~ 
n 
~ 
CD 
o 
OJ 
1J 
t: 
II 
-I 

Co 
"'0 
I 

W 
\0 
o 
o 



UP-3900 UNIVAC 490 SPURT 6-A 
SECTION: PAGE: 

6. SPURT INPUT/OUTPUT 

UNDER EXECUTIVE CONTROL 

A major consideration in the design of the UNIVAC 490 Real~Time System is the supervision 
required for the orderly and efficient processing of input/output requests. The overall supervision 
is provided by the Real-Time Executive Routine (REX), which gives priority to the input-output 
requests of the real-time program. A request for the use of input/output facilities is presented to 
REX by coding in the object program. The object program coding is generated from SPURT 

instructions within the source program. 

The use of the appropriate SPURT mnemonics will assure the proper linkage to REX. REX will 
then execute the request if the required facilities are not in use. If the required facilities are in 
use, the request will be listed by REX for later initiation. Batch program requests will be 
listed in the order in which they are received. Indicators that are contained within areas associ
ated with each program will record the present status of each input/output request. These areas 
are created when a program is loaded. 

A. STATUS CHECKING 

When it becomes necessary to determine the status of an input/output request, a CKSTA T 
line is written in the source program coding. The CKSTAT line is a SPURT mnemonic which 

is linked to a particular input/output request through the label assigned to the input/output 
request. The main purpose of the CKST AT line is to provide an orderly method of declaring 
return points for completed inpu t/ou t pu t requests. 

The CKSTAT line may be written with the follow ing options: 

• Control will be returned to the program following the CKSTAT line upon satisfactory 
completion of the input/output request. Should an error occur the program will be 
suspended. 

• Control will be returned as in the first case, but in addition an error address will 
be provided to which control will proceed if an error condition occurs. 

• An address may be specified to which program control will immediately pass. When the 
input/output request is completed the appropriate return point will be eligible for control. 
This return point for successful completion or error may be any of the three conditions 
outlined previousiy. 

1 



6-A 
iECTION: 

2 UNIVAC 490 SPURT 
PAGE: 

The text which follows will describe the required source program coding to initiate input/ 

output requests for each of the standard pheripheral input/output subsystems. The CKSTAT 
line is written in a similar format to determine the status of any input/output request, 

except Console Typewriter input-output requests, for which a CKSTAT line is not used. 

The general format for a CKST AT line is: 

i w Vo v, v 2 

CKSTAT request label error address 
alternate 

address speci fier 

v the label of the input/output request that is being interrogated. 
o 

v the error address to which control will pass if an error condition exists. The omission , 
of this operand or the insertion of STOPRUN as an operand will cause the program to 

be suspended (see STOPRUN under VOLUNTARY RELEASE OF CONTROL). 

v an address to which control will immediately pass. This may be the label of another 
2 

input/output request. 

1. Error Analysis 

As explained previously, the status of an input/output request is determined by execu
tion of object code generated by a CKSTAT operator. 

When an interlock error occurs, REX records the error, analyzes it, and relays an appro
priate message via the Console Printer. Non .. interlock errors may be referred to the input/ 
output routine for attempted recovery. If recovery is made, no indication is given to the 
user program. 

If the error is a non-recoverable error, it may cause either program suspension or a transfer 
to an error routine that was written by the REX user. The following chart shows the in
formation that is available in the various registers at the time a non-recoverable error is 
detected. 

UP-3900 



UP-3900 

" C 
~ S 

7 

( 

IL-

,C 
S 

UNIVAC 490 SPURT 6-A 
SECTION: 

REGISTER CONTENTS 

i A A status word that indicates the type of error. ! 

Upper Lower 

I 
Q 

I 

Address of input/output laddress of SPURT instructionl 
request I following CKSTAT I 

B7 An address, aaaaa, which is the first address 
of a three-word area that contains the contents 
of the Bl through B6 registers at the time the 
CKSTAT was performed. The contents of these 

I 
registers are stored as follows: 

I I I 
Upper Lower 

aaaaa Bl B2 

aaaaa + 1 B3 B4 

aaaaa + 2 BS 

2. Examples of CKST AT 

8 

Let us assume for the following examples that an input/output request has been sub
mitted to REX which has been labelled as follows: 

LABEL STATEMENT AND NOTES ~ 
17 18 20 30 40 

T ,A I PIE I RID I I I 
a~y in~u~/o,utp'ut, i~st~uc,ti<ln 1 I I I I I I I I I I I I I I -.- - - .-- - -

If the user does not desire to receive control of the program until the input/output 

request is completed, and if a STOPRUN halt is desired in the event of an error condi

tion, the CKSTA T line must simply refer to the input-output request label as follows: 

LABEL STATEMENT AND NOTES 
7 8 17 18 20 30 40 

~ 

PAGE: 3 

I 

I 
I 
I 

I 
I 
I 

I I II 

- -

( 
1 

I I • I I I I elK SIT,A, Tlo ,T.A,P.E,R 01 • I •• I •• • I I ••• I I • I) 

l~~-- - - - - - -- - - - - - - -
(control transferred to next SPURT instruction upon completion of request) 



SECTION: 6-A 

Yi 
7 8 

I PAGE< 4 
UNIVAC 490 SPURT 

The user may wish to enter his own routine in the event of an error condition. If the error 
routine is labelled ERRTE, the CKSTAT line will appear as: 

~ LABEL STATEMENT AND NOTES 

17 18 20 30 40 

• • I •• • •• C.K.SIT,A.T ••• TIA,P.E,R.D, .• E.R.R. T.E. 
• • • I • • • • J • 

I I:,..... '--_____ ---=--= 
~ ------- - -~------------ --- --------.,. 

~ 
t7 8 

(control transferred fo next SPURT instruction upon completion of request) 

The time required to process the input/output request may be overlapped by further pro

cessing or by another'input/output request. Once an input/output request is initiated, the 

transfer into or out of the computer is accomplished as an independent operation. REX 
makes note of the completion of the request and control will be returned following the 

CKSTAT. If the user wishes to perform some other task while waiting for the completion 
of the input/ou tpu t request, and if this alternate processing has an entrance label of 

DRUMOUT, the CKSTA T line will appear as follows: 

LABEL STATEMENT AND NOTES ~ 
17 18 20 30 40 

••• • I • • • I C K SI T,A, T,., TIAI PI E, R 01. I E,R. R. TIE •• ,D. R.UI M.O. U. T • 
• • • 

L--_ - - - - ------ -

~C 
S 
7 8 

(control transferred to next SPURT instruction upon completion of request) 

If a STOPRUN halt is desired, instead of a transfer to ERRTE, STOPRUN must be inserted 
as an error address to maintain the relative positions of the operands. The CKSTA T line 
would then appear as follows: 

LABEL STATEMENT AND NOTES ~ 
17 18 20 30 40 

• • I •••• • • 
C.K.SIT,A. T ••• T,A,P,E, R.DI .•• S.T.O,P,R. U.N, •• DIR.U.M.O.U. T •• 

, 

1 

') 

~ 

t 

- - - ~ - '-- -j - --
(control transferred to next SPURT instruction upon completion of request) 

Control must be returned to REX by a TAKEOVER release at the end of the input/output 

completion path as explained under VOLUNTARY RELEASE OF CONTROL. 

The text which follows will describe the SPURT programming that is required to initiate 

input/output operations for each of the peripheral units. The description of the CKSTAT 

line and its use applies to all the following input/output instructions. Following the 

description of the programming is a list 6f the status indicators that are placed in the A 
register when control is returned to a program. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 6-B 
SECTION: PAGE: 

B. UNISERVO IIA MNEMONICS 

UNISERVO IIA input/output and positioning operations are requested by the submission of the 
MTAPE operator. The general format for this operator is as follows: 

I w Vo v, v
2 Vg 

MTAPE operation unit name buffer controi word identifier word 

or block count 

Vo names the individual tape operation to be performed. See section 6.B.l, UNISERVO IIA Tape 
Operations. 

V 1 defines the name of the unit upon which the tape action will occur. See PROGRAM PREPARATION. 

v defines the address of the buffer control word. The lower portion of the buffer control word 
2 

specifies the first address used to hold input or output data. For the Move Forward or Move 
Backward operations, this operand indicates either the number of blocks tape is to be moved 
or is a label of the location in memory where such a value may be found. In this case only the 
least significant 15 bits are used as a block count. 

V g is the search identifier used for search operations. This may be an operand which defines a 
location where the identifier can be found. 

1. UNISERVO IIA Tape Operations 

TYPE OF V·OPERANDS 
OPERATION OP ERATION MNEMONIC USED 

Rewind Positioning REWIND 0, 1 

Rewind with Interlock Positioning RWI 0, 1 

Locate Backward Positioning LOCATES I 0, 1, 2, 3 

Locate Forward Positioning LOCATEF 0, 1,2, 3 

Search Read Backward Input/Output SEARCHB 0, 1,2,3 

Search Read Forward I Input/Output SEARCHF I 0, 1,2, 3 

Write at 125 characters Input/Output PWRITE 0, 1, 2 
per inch 

I I 

Write at 250 characters Input/Output WRITE 

I 
0, 1, 2 

per inch 

Read Forward Input/Output READF 

I 
0, 1, 2 

Read Backward Input/Output READB 0, 1,2 

Move Forward Positioning MOVEF 0, 1, 2 

Move Backward 
I 

Positioning MOVEB 
I 

0, 1, 2 

1 



6-B 
SECTION: 

2 UNIVAC 490 SPURT 
PAGE: 

• Rewind and Rewind with Interlock 

Rewind and rewind with interlock will cause the tape to be rewound. Another opera-
tion cannot be given a unit that is rewound with interlock until the interlock is manually 
released. 

• Locate Backward 

Same as Search Read Backward operation except that data are not read into memory. 

• Locate Forward 

Same as Search Read Forward operation except that data are not read into memory. 

• Search Read Backward 

The tape will be searched backward toward the beginning of tape. A comparison will 
be made between the first encountered word of each block and the identifier word. A 
block upon which an equal comparison is made will be read into the area of memory 
specified by the buffer control word. The order of placement in the input buffer is re
versed. 

If the contents of the buffer control word are equal to zero, this will indicate a search to 
position only (Locate Backward). 

If the identifier word is not discovered, indication will be given via the end of file status 
word that the block could not be found. 

• Search Read Forward 

This operation will search forward, toward the end of the tape. A comparison will be 
made between the first encountered word of each block and the identifier word. A 
block upon which an equal comparison is made will be read into the area of memory 
specified by the buffer control word. 

If the contents of the buffer word are equal to zero, this will indicate a search to position 
only (Locate Forward). 

If the identifier word is not discovered, indication will be given via the end of file in the 
status word that the block could not be found. 

• Write (125 characters per inch) 

This operation will write one block on magnetic tape at a density of 125 characters 
per inch. 

• Write (250 characters per inch) 

This operation will write one block on magnetic tape at a density of 250 characters 
per inch. 

• Read Forward 

This operation will read one block in a forward direction. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 6-8 
SECTION: 

• Read Backward 

This operation will read one block in a backward direction. The order of placement in 
the input buffer is reversed. 

• Move Forward 

PAGE: 

This operation will move the tape forward the number of blocks specified in the block 
count operand. If the number of blocks specified is greater than the number of blocks that 
can be traversed from the point of initiation, the number of blocks actually passed will 
be indicated in the high order 15 bit positions of the status word. 

• Move Backward 

This operation will move the tape backward the number of blocks specified in the block 
count operand. If the number of blocks specified is greater than the number of blocks that 
can be traversed from the point of initiation, the number of blocks actually passed will 
be indicated in the high order 15 bit positions of the status word. 

2. UNISERVO IIA Status Words 

The status of every operation that is initiated will be indicated by means of a status code placed 
in bit positions 0-5 of the A-Register when program control is returned to the user program. 

If the requested operation cannot be completed successfully because of an error condition; the 
applicable status code will be placed in the A-Register and an error message will be relayed via 
the Console Printer. 

3 

In some instances supplementary information will be contained in the upper 15 bit positions of the 
A-Register along with the status code; that is, for all successful Read and Search-Read operations, 
the number of words (w) read from the block to the buffer will be expressed; and for Move opera
tions, the number of blocks (b) actually traversed will be indicated. 

a. Status Indications 

CODE MEANS 

wwwww 00001 Operation completed 

bbbbb 00004 End of fi Ie 

bbbbb 00005 End of tape 

00000 00006 Un i t interlocked 

00000 00007 Illegal Procedure 

00000 00010 Read or Write Error 

00000 00011 Sequen ce Error 

00000 00012 Incorrect Parameter 

P = Program identification number 

xx = Unit number 

ERROR MESSAGE 

MSG 200 Pxx y 

MSG 201 Pxx y 

MSG 201 Pxx y 

MSG 201 Pxx y 

MSG 202 Pxx 

y = Last computer generated interrupt word. For operator and service use. 



SEC TION: 6-B PAGE: 
4 UNIVAC 490 SPURT UP-3900 

b. Explanation of Status Indications 

01 Operation successfully completed. 

04 This indication will result when an end of file gap is detected. 

05 The end of tape warning marker was detected during a Write operation. 

06 The unit for which the operation is intended is non-operable because of an 
interlock condition. 

07 An error indication resulting from: 

• An invalid computer function. 

• A meaningless interrupt code. 

• An invalid unit number. 

10 This status indication is returned when parity errors, character coun terrors, or 
the like are deemed non-recoverable by REX following standard recovery 

• A Read operation, or the read portion of a Search-Read operation. The tape will 
be positioned under the read-write head at the point at which the operation started. 

• A Write operation. The tape will be restored so it is positioned under the read
write head directly in front of the badly written block. 

11 Indicates a discrepancy in the number of characters that should have been read from 
a block of data. Because this particular error can result in a 2-block read, the posi
tion of the tape is unknown. 

12 Indicates an incorrect parameter such as: 

• An invalid operation code. 

II A unit number greater than 12. 

II A block count of zero. 

• Lower half of buffer control word greater in value than upper half. 



UP-3900 UNIVAC 490 SPURT 6-C 
SECTION: PAGE: 

C. UNISERVO HIC MNEMONICS 

~NISERVO IIIC initializing, positioning, and input/output operations are requested by the 
submission of the CTAPE operator, 

The initializing operations do not cause any tape action. They are used to specify the tape 
density and mode for the input/output operations that will follow on a given unit. If an 
initializing operation is not performed, the results of ensuing input/output operations such 
as Read or Write will be unpredictable. The tape density and mode for a given unit remains 
in effect until redefined by another initializing operation. 

The general format of the CTAPE operator when an initializing operation is requested is as 
follows: 

I w Vo v
1 

V 
n 

CTAPE operation unit name unit name 

I 

Vo names the initializing operation to be performed. See section 6.C.1., UNISERVO IIIC Tape 
Operations. 

V 1 defines the names of the units that are initialized as indicated by v o' See PROGRAM 
PREPARATION. 

V 
n 

The input/output operations effect the transfer of data between the Central Processor and a given 
unit and the positioning operations control the positioning of HIe tape on that unit. The general 
format of a CTAPE operator when an input/output or positioning operation is requested is as 
follows: 

I w Vo v
1 

v
2 V3 

CTAPE operation unit name buffer control word identifier word 

or block count 

Vo names the operation to be performed. See section 6.C.1., UNISERVO IIIC Tape Operations 

V 1 defines the name of the unit upon which the input/output or positioning operation will be 
performed. See PROGRAM PREPARATION. 

1 



SEC TION: 
6-C 

PAGE: 
2 UNIVAC 490 SPURT 

V 2 defines the address of the buffer control word. The lower portion of the buffer control word 
specifies the first address used to hold input or output data and the upper portion specifies 
the last address. 

For Move Forward or Move Backward operations, this operand indicates the number of blocks 
the tape is to be moved or it is the label of the location in memory that contains such a value. 

V 3 is the search identifier used for search operations. This may be the label of a location in 
memory where the identifier may be found. 

1. UNISERVO IIIC Tape Operations. 

TYPE OF V-OPERANDS 
OPERATION OPERATION MNEMONIC USED 

Select Binary Coded Initializing HIBCD 0, 1, through n 
Decimal at high density 
(556 characters per inch) 

Select Binary Coded Initializing LOBCD 0, 1, through n 
Decimal at low density 
(200 characters per inch) 

Select Binary at high Initializing HIBIN 0, 1, through n 
density (556 characters 
per inch) 

Select Binary at low Initializing LOBIN 0, 1, through n 
density (200 characters 
per inch) 

Rewind Positioning REWIND 0, 1 

Rewind with interlock Positioning RWI 0, 1 

Search Read Input/Output SEARCH 0, 1,2,3 

Write Input/Output WRITE 0, 1, 2 

Write end of file block Input/Output ENDFILE 0, 1 

Read Input/Output READ 0, 1, 2 

Move Forward Positioning MOVEF 0, 1,2 

Movp. Rar.kward Po~itionine MOVEB 0; 1 i ? 

Move Backward to End Positioning BACKFILE 0, 1 
Of File or Load Point 

UP-3900 



UP-3900 UNIVAC 490 SPURT 
SECTION: 6-C 

• Select Binary Coded Decimal At High Density 

Indicates that the tape density for a given unit or units will be 556 characters per 
inch and that the mode will be Binary Coded Decimal. 

• Select Binary Coded Decimal At Low Density 

Indicates that the tape density for a given unit or uni ts will be 200 characters per 
inch and that the mode wili be Binary Coded Decimal. 

= Select Binary A t High Density 

Indicates that the tape density for a given unit or units will be 556 characters per 
inch and that the mode will be binary. 

• Select Binary At Low Density 

Indicates that the tape density for a given unit or units will be 200 characters per 
inch and that the mode will be binary. 

• Rewind 

Causes the tape to be rewound. 

• Rewind With Interlock 

Same as the Rewind operation with the exception that subsequent operations cannot 
be initiated on the specified unit until the interlock is manually released. 

• Search Read 

This operation will search forward, toward the end of tape. A comparison wiil be 
made between the first encountered word of each block and the identifier word. A 
block upon which an equal comparison is made will read into the area of memory 
specified by the buffer control word. 

If the identifier word is not discovered, indication will be given via an end of file 
status word that the block could not be found. 

• Write 

This operation will write one block on tape. 

• Write End Of File 

This operation will cause a special two-character end of file block to be recorded 
on the tape specified. When this block is sensed during a Read, Search Read, or Move 
operation an end of file condition will be reported to the program. 

• Read 

This operation will read one block in the forward direction. 

PAGE: 3 



SECTION: 6-C PAGE: 4 
UNIVAC 490 SPURT 

• Move Forward 

This operation will move the tape forward the number of blocks specified by the 
block count operand. If the number of blocks specified is greater than the number 
of blocks that are contained forward of the point of initiation, the number of blocks 
actually passed will be indicated in the upper 15 bit positions of the status word. 

• Move Backward 

This operation will move the tape backward the number of blocks specified by the 
block count operand. If the number of blocks specified is greater than the number of 
blocks recorded to this point the number of blocks actually passed will be indicated 
in the upper 15 bit positions of the status word. 

• Backspace File 

This operation moves the tape backward until either an end of file block or the load 
point is encountered. 

2. UNISERVO IIIC Status Words 

The status of every operation that is initiated will be indicated by means of a status code 
placed in bit positions 0-5 of the A-Register when program control is returned to the user 
progr.am. 

If the requested operation cannot be completed successfully because of an error condition, 
the applicable status code will be placed in the A-Register and an error message will be 
relayed via the Console Printer. 

In some instances supplementary information will be contained in the upper 15 bit positions 
of the A-Register along with the status code; that is, for all successful Read and Search
Read operations, the number of words (w) read from the block to the buffer will be expressed; 
and for Move operations the num ber of blocks (b) actually traversed will be indicated. 

a. Status Indications 

CODE MEANS 

wwwww 00001 Operation complete 

bbbbb 00004 End of fi Ie 

bbbbb 00005 Tope limit detected 

00000 00006 Unit interlocked 

wwwww 00007 Subsystem error 

00000 00010 I n correct parameter 

P = Program identification number 

xx = Unit number 

y = Lost computer generated interrupt word. 
For 0 p era to ran d s e rv ice use. 

ERROR MESSAGE 

MSG 220 Pxx y 

MSG 221 Pxx y 

MSG 222 Pxx 

UP-3900 



UP-3900 UNIVAC 490 SPURT 6-C 
SEC TION: 

b. Explanation of Status Indications 

01 The operation has been completed. An abnormal character condition incurred 
during a Read operation will be considered normal. In this case, bit position 
29 of the status word will be set to binary one to indicate this particular 

status. 

04 This indication will result when: 

PAGE: 

• The special two-character end of file is detected during a Read, Search-Read, or 
Move Forward operation. 

• A block of four characters or less is detected during Backspace File or Move 
Backward operation. 

05 This indication will result when: 

• A Write operation has been successfully completed beyond the tape limit mark. 

• The load point has been encountered during a Move Backward or Backspace File 
operation. 

06 The unit for which the operation is intended is nonoperable because of an 
interlock condition. 

07 A subsystem error such as: 

• An invalid computer function 

• A meaningless interrupt code 

• An invalid unit number 

• Non-recoverable equipmen terrors. If a non-recoverable si tuation occurs the 
number of words read will be indicated in the status word. 

10 An incorrect parameter such as: 

• An in valid operation code. 

• A unit number greater than 12. 

• A block count of zero. 

• The lower half of the buffer con trol word is greater in value than the upper 
half. 

5 



UP-3900 UNIVAC 490 SPURT 6-D 
SECTION: PAGE: 

D. UNISERVO IlIA MNEMONICS 

UNISERVO IlIA input/output and positioning operations are requested by the submission of 
the MTAPE operator. The general format for this operator is as follows: 

I I 
w v, V3 

MTAPE operation unit name buffer control word i denti fi er word search mask 

or block count 

Va names the operation to be performed. See section 6.D.1., UNISERVO IlIA Tape Operations. 

V, defines name of the unit upon which the operation will be performed. See PROGRAM 
PREPARATION. 

V 2 defines the address of the buffer control word. The lower portion of the buffer control word 
specifies the first address to hold input or output data and the upper portion specifies the 
last address. 

For the Move Forward or Move Backward operations, this operand indicates the number of 
blocks tape is to be moved or it is the label of the location in memory whose lower portion 
contains such a value. 

This operand is not required for the Locate Forward or Locate Backward operations. 

V 3 is the search identifier used for search operations. This may be the label of a location in 
memory where the iden tifier can be found. 

V 4 is the search mask associated with Search operations. This may be the label of a location 
in memory where the search mask can be found. 

The effect of the search mask is to select the portion of the first word of each block upon 
which a comparison will be made. The portion of the first word of each block that is selected 
is determined by the presence of binary ones in specific positions in the search mask; that 
is, only those bit positions in the first word of each block that correspond to the bit positions 
in the mask will be carried down and be used as basis for comparison. For example if the 
bit configuration of the identifier word specified in the V3 operand is 

000000000000000000000000001100 

and the user desires that the comparison between the first word of each block and the 
identifier word to be based upon the contents of the last four bit positions, the following 
mask would be specified: 

000000000000000000000000001111 

1 



SECTION: 6-D 2 UNIVAC 490 SPURT 
PAGE: 

If the bit configuration of the first word of a particular block was 

000000000000000011001110001100 

the following operation would be performed prior to the comparison: 

000000000000000011001110001100 (first word of block) 

000000000000000000000000001111 (mas~ 

000000000000000000000000001100 (masked operand) 

The resulting masked operand is then compared with the identifier word. In this case equality 
would result and the search would be terminated. 

1. UNISERVO IlIA Tape Operations 

TYPE OF V-OPERANDS 
OPERATION OPERATION MNEMONIC USED 

Rewind Positioning REWIND 0, 1 

Rewind with interlock Positioning RWI 0, 1 

Locate Backward Positioning LOCATEB 0, 1, 3, 4 

Locate Forward Positioning LOCATEF 0, I, 3, 4 

Search Read Backward Input/Output SEARCHB I 0,1,2,3,4 
I 

Search Read Forward Input/Output SEARCHF 
I 

0,1,2,3,4 I 
Write Input/Output WRITE I 0, 1, 2 

I 

Overwrite Input/Output WRITEO 0, 1 

Write End of File Input/Output ENDFILE 0, 1 

Read Backward Input/Output READB 0, 1, 2 

Read Forward Input/Output READF 0, 1, 2 

Move Backward Pas ition ing MOVEB 0, 1, 2 

Move Forward Positioning MOVEF 0, 1, 2 

UP-3900 



UP-3900 UNIVAC 490 SPURT 
SEC TI ON: 

• Rewind 

Causes the tape to be rewound. 

iii Rewind With In tedock 

Same as the Rewind operation with the exception that subsequent operations 
cannot be initiated on the specified unit until the interlock is manually released. 

• Locate Backward 

This operation is the same as the Search Read Backward operation except 
that data are not read into memory. A buffer control word is not required with this 
operation. For this operation the search identifier will be in the v

2 
operand 

posi tion and, if required, the search mask will be in the v 3 operand position. 

• Locate Forward 

This operation is the same as the Search Read Forward operation except 
data are not read in to memory. A buffer control word is not required with this 
operation. For this operation the search iden tifier will be in the v 2 operand 
posi tion and, if required, the search mask will be in the v 3 operand posi tion. 

• Search Read Backward 

The tape will be searched backward toward the beginning of tape. A comparison 
will be made between the first encountered word of each block and the identifier 

6-D 

word. A block upon which an equal comparison is made will be read into the area 
of memory specified by the buffer con trol word. The order of placemen t in the inpu t 
buffer is reversed. 

If the contents of the buffer word are equal to zero, this will indicate a search to position 
only (Locate Backward). 

If the identifier word is not discovered, indication will be given via an end of file status 
word that the block could not be found. 

• Search Read Forward 

This operation will search forward toward the end of tape. A comparison will be made 
between the first encountered word of each block and the identifier word. A block 
upon which an equal comparison is made will be read into the area of memory specified 
by the buffer control word. The tape will be positioned beyond the block that was read in. 

If the contents of the buffer word are equal to zero, this will indicate a search to position 
only (Locate Forward). 

If the identifier word is not discovered, indication will be given via an end of file status 
word that the block could not be found. 

• Write 

This operation writes one block on tape. 

PAGE: 
3 



6-D 
SECTION: 

4 UNIVAC 490 SPURT 
PAGE: 

• Overwrite 

This operation is used in those instances when it is necessary or desirable to write 
over previously recorded data. When this operation is requested it causes a particular 
pattern to be written until erased tape is detected by the read-write head. This pattern 
is ignored during a Read or Search-Read operation. 

• Write End of File 

This operation will cause the specified unit to create an end of file gap on tape; that is, 
to erase approximately 2-Yz inches of tape while moving forward. When this gap is sensed 
during any operation other than Rewind, an end of file condition will be reported to the 
program. 

• Read Backward 

This operation will read one block in a backward direction. The order of placement in the 
input buffer is reversed. 

• Read Forward 

This operation will read one block in a forward direction. 

• Move Backward 

This operation will move the tape backward the number of blocks specified by the block 
count word. If the number of blocks specified is greater than the number of blocks recorded 
to this point, the number of blocks actually passed will be indicated in the upper 15 bit 
posi tions of the status word. 

• Move Forward 

This operation will move the tape forward the num ber of blocks specified by the block 
count word. If the number of blocks specified is greater than the number of blocks that 
are contained forward of the point of initiation, an "end of file" will result. The number 
of blocks actually passed will be indicated in the upper 15 bit positions of the status word. 

2. UNISERVO lIlA Status Words 

The status of every operation that is initiated will be indicated by means of a status code 
placed in bit positions 0-5 of the A-Regis ter when program control is returned to the user 
program. 

If the requested operation cannot be completed successfully because of an error condition, 
the applicable status code will be placed in the A-Register and an error message will be 
relayed via the Console Printer. 

In some instances supplementary information will be contained in the upper 15 bit positions 
of the A-Register along with the status code; that is, for all successful Read and Search-
Rp~iI nnp1"~t;nnc thp n11.,.,1...p1" nf 'I7n1"ilc {Ull "0"'...:1 f,.t"\"' th.o hlnr-lr tn tho h"ff.o,. ,.,;11 h.o .ovn .. .oC"C" 0...:1· ----- -r---------, _ ... -- .... _ ........ _- .. -- .. _ ... -- , ... / .. _-- ...... _ ................. - _ .. __ .. -. ... - ....... - -_ ...... _ .... " ........ -- - .... .t'a._-~--, 
and for Move operations the number of blocks (b) actually traversed will be indicated. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 

a. Status Indications 

CODE 

wwwww 00001 

bbbbb 00004 

bbbbb 00005 

00000 00006 

00000 00007 

00000 00010 

MEANS 

Operation completed 

End of fi Ie 

Tape limit detected 

Unit interlocked 

Subsystem error 

Incorrect parameter 

P = Program i dentifi cation number 

xx = Unit number 

SECTION: 
6-D 

ERROR MESSAGE 

MSG 210 Pxx y 

MSG 211 Pxx y 

MSG 212 Pxx 

y= Last computer generated interrupt word. 

For operator and service use. 

b. Explanation of Status Indications 

01 Operation successfully completed. 

04 This indication will result when the end of file gap is detected. 

05 This indication will result when: 

PAGE: 5 

• A Write operation has been successfully completed beyond the tape limit mark. 

• The beginning of the tape is encountered during a Read,Search Read, or Move 
Backward operation. 

06 The unit for which the operation is intended is non-operable because of an 
interlock condition. 

07 A subsystem error such as: 

• An invalid computer function. 

• A meaningless interrupt code. 

II An invalid unit num ber. 

lOAn incorrect parameter such as: 

• An invalid operation code. 

• A uni.t number greater than 16. 

• The lower half of the buffer control word is greater in value than the upper half. 



UP-3900 UNIVAC 490 SPURT 6-E 
SECTION: 

E. FLYING HEAD-880 DRUM MNEMONICS 

Flying Head-880 Drum input/output and positioning operations are requested by the submission 
of the DRUM operator. The general format of this operator is as follows: 

v, 

drum system name operation bu Her contro I word drum address identifier word 

v 0 defines the name of the drum system upon which the operation will be performed. If an 
installation has all its drums on one channel, this operand is unnecessary. See PROGRAM 
PREPARATION. 

V 1 names the operation to be performed. See section 6.E.1., Flying Head-880 Drum 
Operations. 

V 2 defines the address of the buffer control word. The lower portion of the buffer control 
word specifies the first address used to hold input or output data and the upper portion 
specifies the last address. 

This operand is not required for the Block Locate or Locate operations. 

V3 defines the first drum address that is associated with the input/output operation. This may 
be the label of a location in memory that contains a drum address. 

V 4 is the search identifier used for search operations. This may be the label of a location in 
memory where the identifier may be found. 

1. Flying Head-880 Drum Operations 

TYP E OF V-OPERANDS 
OPERATION OPERATION MNEMONIC USED 

Continuous Write Input/Output WRITE 0, 1, 2, 3 

Continuous Read Input/Output READ 0, I, 2, 3 

Locate Position ing LOCATE 0, 1,3,4 

I 
Search Read Input/Output . SEARCH READ 0,1,2,3,4 

Block Locaie Positioning BLOCATE 0, 1,3, 4 

Block Search Read Input/Output BSEARCH 0,1,2,3,4 

Block Read Input/Output BREAD 0, 1,2,3 
I I I 

I I I 

1 
PAGE: 



SECTION: 6-E PAGE: 
2 UNIVAC 490 SPURT 

• Continuous Write 

Starting with the drum address specified, data is written on the drum in consecutive 
locations until the output buffer is exhausted or the end of file (the last address in the 
drum system) is reached. 

• Continuous Read 

Starting with the drum address specified, data is read from the drum into the input 
buffer un til the buffer is filled or the end of file is reached. 

• Locate 

Starting with the drum address specified, a search is made through consecutive locations 
for a word identical to the identifier word until discovery is made or end of file is 
reached. The address of the identical word will be placed in the status word. 

For this operation the drum address and the identifier word will be in the v 2 and v 3 

operand positions respectively. 

• Search Read 

Starting with the drum address specified, a search is made through consecutive locations 
for a word identical to the identifier word until discovery is made or end of file is reached. 
A Continuous Read operation commences with the iden tical word. 

• Block Locate 

This operation is the same as the Locate operation except that the search ceases when 
an end of block word is detected. If discovery is made, the address of the find word 
will be placed in the status word. 

If an end of block (a word of all one's) is detected before discovery is made, the overflow 
address (the contents of the word immediately following the end of block) will be placed 
in the status word. 

For this operation the drum address and the identifier word will be in the v 2 and v 3 

operand positions respectively. 

• Block Search Read 

This operation is the same as the Search Read operation except that search ceases 
when an end of block word is detected. If discovery is made, a Block Read operation 
commences with the identical word. 

When an end of block word is detected the overflow address will be placed in the status 
word. 

• Block Read 

St~!ting '.XJith thp (hum ~ililrpss spprifipd; d~t~ is read from the drum into thp inr~~t bu.ffer 
until the end of block word is detected. At that time the input/output routine will replace 
the original buffer control word with the current buffer control word. The overflow address 
will be placed in the status word. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 
SECTION: 6-E 

2. Flying Head-SSO Drum Status Words 

The status of every operation that is initiated will be indicated by means of a status code 
placed in bit positions 0-5 of the A-Register when program control is returned to the user 
program. 

If the requested operation cannot be successfully completed because of an error condition, 
the applicable status code will be placed in the A-Register and an error message will be 
relayed via the Console Printer. 

In some instances supplementary information will be contained in the upper 15 or upper 23 
bit positions of the A-Register along with the status code. This information will be the 
number of words (w) read or written (placed in the upper 15 bit positions), or an address (a) 
that represents either the overflow address or the address of a find word (placed in the 
upper 23 bit positions). 

a. Status Indications 

CODE MEANS ERROR MESSAGE 

00000 00001 Operation completed 

00000 00002 End of fi Ie without find 

00000 00003 End of block without find 

00000 00004 Buffer fiiied before end of biock 

wwwww 00005 End of fi Ie before complete transfer 

00000 00007 Illegal error MSG 251 Pxx y 

00000 00010 IIlega I fun cti on MSG 251 Pxx y 

00000 000 1 1 Illegal address MSG 251 Pxx y 

wwwww 00012 Read error MSG 251 Pxx y 

wwwww 00013 Write error MSG 251 Pxx y 

00000 00014 Overflow error after read MSG 251 Pxx y 

00000 00015 Overflow error before read MSG 251 Pxx y 

00000 00016 Illegal parameter MSG 252 Pxx 

00000 00017 Drum down MSG 251 Pxx y 

P = Program identification number 

xx = Unit number 

y = Last computer generated interrupt word. 
For operator and service use: 

b. Explanation of Status Indications 

01 Operation successfully completed. 

02 This indication will result during Locate, Block Locate, Search Read, or 
Block Search Read operations when end of file is detected before a find is 
made. 

PAGE: 3 



6-E 
SECTION: 

4 UNIVAC 490 SPURT 
PAGE: 

03 This indication will result during Block Locate or Block Search Read 
operations when the end of block is reached without a find. The address of the 
overflow word will be placed in the upper 23 bits of the status word. 

04 This indication will result during Block Read or Block Search Read 
operations if the input buffer is filled before end of block is reached. 

05 This indication will result if end of file is detected during: 

ii A Continuous Write, Continous Read, or Search Read oPeration before the 
specified buffer filled or exhausted. The number of words read or written up 
to this point will be placed in the upper 15 bit positions of the status 
word. 

• A Block Read or Block Search Read operation after reading has begun. The 
num ber of words read up to this point will be placed in the upper 15 hi t 
positions of the status word. 

06 There is a mechanical fault on the drum. 

07 Illegal error. 

10 The input/output routine has determined that the operation is not legal. 

11 The input/output routine has determined that the drum address is invalid. 

12 This indication will result if any equipment errors occur, including Channel 
Synchronizer-Control Unit or parity errors, durin g non-write operations. If a 
data transfer has occurred, the number of words read to this point will be 
placed in the upper 15 bit positions of the status word. 

13 This indication will result if any equipment error occurs, including Channel 
Synchronizer-Control Unit or parity errors, during a Continuous Write operation. 

14 This indication will result if an overflow word error occurs during a Block 
Search Read operation after reading has begun. The address of the overflow word 
that was in error will be placed in the upper 23 bits of the status word. 

15 This indication will result if an overflow word error occurs during a Block 
Search Read operation where the iden tHier word was not in the block. The 
address of the overflow word that was in error will be placed in the upper 23 
bits of the status word. 

16 This indication will result if either an invalid operation code is detected or the 
beginning drum address in the buffer control word is greater than the ending 
address. 

17 The drum unit requested by an operation is inoperative. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 
SECTION: 6-F PAGE: 1 

F. HIGH-SPEED PRINTER MNEMONICS 

The user program can request two types of High-Speed Printer operations - initializing opera
tions and output operations. An initializing operation is requested by the submission of the PIN 
operator and an output operation is requested by the submission of the PRINT operator. 

An initializing operation does not cause any Printer action. It is used to specify the page format 
for the output operations that will follow on a given unit; that is, the total number of lines per 
page, the number of lines to be left blank at the top of the page (the top margin), and the number 
of lines to be left blank at the bottom of the page (the bottom margin). A page format will remain 
in effect untii it is redefined by another initializing operator. The general format of the PIN opera
tor is as follows: 

I w Vo v
t 

v 2 v3 

PIN Printer name number of lines num ber of lines number of lines 

per page of top margin of bottom margin 

va defines the name of the Printer for which initialization is desired. This operand is required 
if there is more than one Printer at an installation; that is, where there is a Printer on more 
than one input/output channel. See PROGRAM PREPARATION. 

v 1 specifies the total number of lines per page. This number may be expressed in decimal or 
octaL The total number of lines per page may not exceed 511 decimal or 777 octal. 

v2 specifies the number of lines to be left blank at the top of each page. This number may be 
expressed in decimal or octal. The number may not exceed 63 decimal or 77 octal. 

v 3 specifies the num ber of lines to be left blank at the bottom of each page. Th is nllmber may be 
expressed in decimal or octal. The number may not exceed 63 decimal or 77 octal. 

An output operation effects the transfer of data from the Central Processor to a given Printer, 
spaces the paper the num ber of lines specified, and causes one line to be printed. The general 
format of the PRINT operator is as follows: 

I w Vo v
1 

v 2 

PRINT Printer name base address of number of lines 

print buffer to advance 

va defines the name of the Printer on which print action is desired. This operand is required if 
there is more than one Printer at an. installation; that is, where there is a Printer on more than 
one input/output channel. See PROGRAM PREPARATION. 

v 1 specifies the base address of the print buffer. 

v 2 specifies the number of lines to be advanced before printing occurs. This operand may be ex
pressed in either decimal or octal. The acceptable values are 0 through 63 decimal or 0 through 
77 octal. If 0 is specified, the paper will not be advanced and the printing w ill overlay the pre
vious line. If NP is specified, the paper will be advanced to the first line of the next page before 
printing. 



SECTION: 
6-F 2 UNIVAC 490 SPURT 

PAGE: 

1. High-Speed Printer Operations 

TYP E OF V-OPERANDS 
OPERATION OPERATION MNEMONIC USED 

Initialize Printer Initializing PIN 0, 1, 2, 3 

Print One Line Output PRINT 0, 1,2 

I I 

• Initialize Printer 

Before th is operation can be requested, the paper mus t be positioned so that the top line of the 
page is in printing position; that is, aligned with the scribe mark on the Printer carriage. 

UP-3900 

This operation establishes the page format for the PRINT operations that follow on a given unit. 
It specifies the number of lines per page (physical page length), the number of lines to be left 
blank at the top of the page (top margin), and the number of lines to be left blank at the bottom of 
the page (bottom margin). 

TOP 
MARGIN 

PRINTING 
AREA 

BOTTOM 
MARGIN 

(1 TOP LINE OF PAGE I \ t 1----------1 

FIRST LINE OF PRINTING AREA 

PHYSICAL PAGE LENGTH 

LAST LINE OF PRINTING AREA 

If no special page format is desired, an initializing operation should be requested in 
which the physical page length, the top margin, and the bottom margin each have a 
value of zero. If this is done, all subsequent data will be printed without top or bottom 
margins. 

It should be noted that if an initializing operation is requested, it will remain in effect 
until it is redefined by another initializing operation. 

• Print 

This operation spaces the paper the number of lines specified and then prints one, 128 
character line. The data to be printed must be in Fieldata code. If the amount of data to 
be printed on one line is less than 128 characters, the user program shouid piace a stop 
character (a character of all ones) in the character position in the print buffer immediately 
following the last valid character. This will cause all of the remaining data in the buffer 
to be ignored when the line is printed. 



UP-3900 UNIVAC 490 SPURT 
SE'CTION: 6-F PAGE: 3 

If an initializing operation has been requested, the Print operation is affected as follows: 

• In the case of the first Print operation following initialization, the line is printed on 
the first line of the printing area regardless of the s pacing that is specified in the 
Print operation. 

• If the Print operation specifies that the base address of the print buffer is zero, no 
printing will occur, spacing will be ignored, and the paper will be moved to the top 
line of the next page. The next operation may be either Print or Initialize Printer. If 
the next operation is a Print operation, the previously defined top margin will be 
honored and the line will be printed on the first line of the printing area. The primary 
purpose of this option is to permit a program to position the paper without operator 
intervention so that a new initializing operation may be requested. 

• As lines are printed the input/output routine remains cognizant of the paper position 
relative to initialization. When it is determined that the line a bout to be printed will 
fall into the area reserved for the bottom margin, spacing will be ignored, the paper 
will be moved to the next page, and the line will be printed on the first line of the 
printing area. 

• If "next page" (NP) is specified in the Print operation, the paper is moved to the 
next page and the line is printed on the first line of the printing area. 

If an initializing operation has been requested in which the physical page length, the 
top margin, and the bottom margin each have a value of zero; the only spacing performed 
is that specified in the Print operation. 

2. High-Speed Printer Status Words 

The status of every operation that is initiated will be indicated by means of a status code placed 
in bit positions 0-5 of the A-Register when program control is returned to the user program. 

If the requested operation cannot be completed successfully because of an error condition, the 
applicable status code will be placed in the A-Register and an error message will be relayed via 
the Console Printer. 

a. Status Indications 

CODE MEANS ERROR MESSAGE 

00000 00001 Operation completed 

00000 00006 Interlock fault MSG 230 P 

00000 00007 Illegal error MSG 231 P 

00000 00010 Illegal fun ction MSG 231 P 

00000 00011 Illegal unit select MSG 231 P 

00000 00012 Print error MSG 231 P 

P Program identification number 



SECTION: 
6-F 4 UNIVAC 490S'PURT 

PAGE: 

b. Explanation of Status Indications 

01 Operation successfully completed. 

06 A mechanical fault in the Printer. 

07 A meaningless interrupt code was received following an operation. 

10 The control unit has received an invalid function code. 

11 An operation has been requested on a unit th at is not available. 

12 This indication will result if any equipment errors occur, including a Channel 
Synchronizer sequence or character count error, during a Print operation. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 6-G 
SECTION: PAGE: 

G. CARD MNEMONICS 

Card initializing and input/output operations are requested by the submission of the CARD opera
tor. 

The initializing operations do not cause any Card Reader or Card Punch action. They are used to 
specify the mode for the input operations that will follow on the Card Reader and the output opera
tions that will follow on the Card Punch. The mode for the Card Reader or the Card Punch will 
remain in effect u.ntil it is redefined by another initializing operation. The general format of the 
CARD operator when an initializing operation is requested is as follows: 

I w vo v, 

CARD initialized unit input or output 

mode 

Va indicates the unit to be initialized. See section 6.G.l, Card Operations. 

V 1 specifies the input or output mode. 

The input/output operations activate the Card Reader or Card Punch and effect the transfer of data 
between these units and the Central Processor. The general format of the CARD operator when an 
input/output operation is requested is as follows: 

I w vo v, v
2 

CARD operation buffer control word buffer control word 

or number of cards 

Va names the input/output operation to be performed. See section 6.G.1., Card Operations. 

V 1 defines the address of the buffer control word or is a constant value equal to the buffer control 
word. The lower portion of the buffer control word specifies the first address used to hold input 
or output data and the upper specifies the last address. 

For the Multiple Read operation, this operand indicates the number of cards to be read. The 
maximum number of cards that may be specified is 63 decimal or 77 octal. 

V 2 this operand is used only with Multiple Read operation. It defines the address of the buffer 
control word in the same manner as the v, operand does for other operations. 

1 



SECTION: 6-G PAGE: 
2 

UNIVAC 490 SPURT UP-3900 

1. Card Operations 

TYP E OF V-OP ERANDS 
OPERATION OPERATION MN EMON I C(S) USED 

Set Input Mode Transla- In itial izing, RMODE • FD 0, 1 
+;"n 
llVIl 

1 Card Reader 

Set Input Mode Col umn Initializing, RMODE • CBIN 0, 1 
Binary Card Reader 

Set Input Mode Row Initializing, RMODE • RBIN 0, 1 
Binary Card Reader 

Set Output Mode Transla- Initializing, PMODE. FD 0, 1 
tion Card Punch 

Set Output Mode Col umn In iti ali zing, PMODE • CBIN 0, 1 
Binary Card Punch 

I I I Set Output Mode Row Initializing PMODE • RBIN 0, 1 
Binary Card Punch I 

I 

Select Stacker 1 Input STACK 1 a 

Select Stacker 2 Input STACK 2 a 

Read Without Transfer I Input READNT a 
1 

Read With Transfer Input READ 01 1 

Transfer Input TRANS 0, 1 

Multiple Read Input MREAD 0, 1, 2 

Punch Output PUNCH 0, 1 

I 

I 

Punch Select Output PUNCHS 
I 

0, 1 



UP-3900 UNIVAC 4E1D SPURT 
SECTION: 

6-G 

• Set Input Mode Translation 

This operation establishes a mode which translates card data, during input transfer, 
into Fieldata code. Each card column will be translated into a 6-bit code; consequently, 
five columns will be packed into one computer word. This concept is illustrated in the 
following diagram. 

u v A 

011010010011001 10011011000110 WORD 1 

C SPACE S T 

PAGE: 3 

rr=lo ° I ° ° ° I O ... I __ I_O_O_O_O--!.lp_O_1 _0_1 _I_O __ OA~O_O_I_I _0---:0u~I ___ W_O...::~:..D_2--.. 
------.11 I 1010 I 01010001100 11010 01000 I WORD 3 

~-----------------------------------~ 

I 
II I 

I I II I: 
I 0 0 1010 I 0 1110 0 0 I 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 2345167.9~~n~«~~"nw~~nn~~~V~~~~~DM~~n~~~~~~~~~G~~~~~~M~~~~9m~U~M~~~~~~nnnU~MnMN~ 
1 1 1 1111 1 1 1 '1' 1 11 '1' 1 1 1 11 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 111 1 1 1 11 1 1 1 1 1 1 1 1 1 

~ 2 2 2 2 212 2 2 I 212 2 2 2 2 ~2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

: 3 3 3 3 31113 31113 3 3113 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

14444:444441444141444444444444444444444 Columns 1 through 15 are 44444444444444444444444 

515151555551555551555555555555555555555 Punched UNI VAC, ST. PAUL 55555555555555555555555 

6666 &16 6 & 6 616 666 &16 6 & 6 6 6 6 6 6 6 6 6 66666666666666666666666666666666666666666666666666666 
I 

7777717 7 7 7 71717 7 717 7 7777777777777777777777777777777777777777777777777777 7 7 7 7 7 7 7 7 7 7 7 
I I I 

8888818188811888818888888888888888888888888888888888 8 8 8 8 888888888888888888888888888 
I I I 

9 9 19 919 9 9 9 919 9 9 9 919 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
1 2 3 4 5,6 7 8 9 10 ~1 12 13 1415,J6 " 18 19 ~ 21 22 n 24 ~ ~ v ~ ~ JO 31 ~ 33 M 35 36 37 38 ~ ~ 41 ~ 43 ~ 45 ~ 47 ~ ~ ~ 51 52 ~ M ~ ~ ~ 58 9 ~ 61 U 63 64 ~ ~ 67 ~ ~ ~ 71 72 n 74 75 78 n M 78 II 

The data transfer to the Central Process or in this mode requires a minimum buffer area 
of 16 words for each card. 



SECTION: 6-G PAGE: 
4 UNIVAC 490 SPURT 

• Set Input Mode Column Binary 

This operation establishes a mode that will enable card data to be read in column binary 
image for all subsequent input transfers. As shown in the diagram that follows, data from 
2-1/2 columns a re packed into one computer word. 

I 
o 0 I 0 0 0 0 0 0 0 0 0 I 0 0 00 0 0 0 0 0 I 0 0 I 0 0 0 WORD 1 

~I OOOOOIOOIOOOOOOOOOloooooooood WORD 2 

-
l- I 

co 
co 
co 
('f') 

N 

0.. 

I I 

001 ~O 
1 2 3 4 5 

11 1 • 1 

222 22 

333 ~3 
r-

44 144 

55 555 

66 666 

77 777 

1
88 888 

1

91 991 
12 3 4 5 

000000000000000000000000000000000000000000000000000000000000000000000000000 
&7'9q"~~U"~nqq~nnn~~~n~~~~~~~~~~~~~~~Q~~~~q.~~~~M~5~~~.~uaMe~~yeMnnnu~nnnn • 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

222222222222222222222222222222222222222222222222222222222222222222222222222 

333333333333333333333333333333333333333333333333333333333333333333333333333 

444444444444444444444444444444444444444444444444444444444444444444444444444 

555555555555555555555555555555555555555555555555555555555555555555555555555 

666666666666666666666666666666666666666666666666666666666666666666666666666 

7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 77 7 7 7 77 7 77 7 7 7 77 7 7 7 77 7 7 7 77 7 77 7 7 7 11 77 11 7 77 7 11 7 11 

888888888888888888888888888888888888888888888888888888888888888888888888888 

999999999999999999999999999999999999999999999999999999999999999999999999999 
&7.9q"n~U~~nqq~n~n~~~n~~~~~~~~~~~~~~~Q~e~~q.~~~~M~~~~9 .~uaMe~~y.Mnnnu~nnnn. 

When data are transferred to the Central Processor in this mode, a minimum buffer area of 
32 words is required for each card. 

• Set Input Mode Row Binary 

This operation establishes a mode that will enable card data to be read in row binary image 
for all subsequent input transfers. As shown in the diagram that follows, each row of a card 
(80 bits) will be contained in three computer words. Columns 1 through 30 will be contained 
in one word, columns 31 through 60 will be contained in one word, and columns 61 through 
80 will be contained in the 20 most significant bit positions of the third word (the 10 least 
significant bit positions of this word are hash filled). 

UP-3900 



UP-3900 UNIVAC 490 SPURT 6-G 
SECTION: PAGE: 

01 0 I I 00 i WORD 7 

o 0 0 0 0 I I I I 0 I 0 0 0 0 0 0 0 I I I I 0 0 I WORD 8 

o I I 0 0 0 0 0 0 0 0 I WORD 9 

-------~ 

/ 
I I 
I : 

101100101111001001000101011001101000100000111101000000011110011000000101100000000' 
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30.31 32 33 34 3S 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5& 57 58 59 ,11 12 83 84 65 66 67 68 69 70 71 72 73 74 75 76 n 78 79 80 

CO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

~ 2 2 2 2 2 2 2 2 2222222 2 2 2 2 2 2 2 2 22 2 2 22 212 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 212 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
g] I I . 
c.. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 313 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 313 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

I i 
4 4 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 414 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 414 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 + 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 515 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

6 6 6 & & 6 6 6 6 & 6 6 6 6 & & 6 6 6 6 6 6 6 6 6 6 6 6 6 616 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 & &16 & 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
I I 

777777777777777777777777777777177777777777 777 7 7 7 777 7 7 7 7 7 7 7 7 7 717 7 7 7 7 7 7 7 7 7 7777777777 

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 S\8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8\8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9;9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 919 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30rl 32 33 34 3S 36 37 38 39 .141 42 43 44 45 46 47 48 48 50 51 52 53 54 55 58 57 58 59 ~1 12 83 64 lIS B6 67 68 .. 70 71 n 73 74 75 78 n 78 78 80 

• Set Output Mode Translation 

This operation establishes a mode whereby Fieldata is translated to card coding during 
output transfer. When this mode is used during card punching operations, a buffer area of 
16 words is required for each card. The output data will be punched on the card as shown 
in the diagram that is included in the Set Input Mode Translation operation description. 

• Set Output Mode Column Binary 

This operation establishes a mode which enables cards to be punched in column binary 
image for all subsequent punch operations. When this mode is used during card punching 
operations, a buffer area of 32 words is required for each card. The output data contained 
in one computer word will be punched on 2-1/2 columns as shown in the diagram that is 
included in the Set Input Mode Column Binary operation description. 

• Set Output Mode Row Binary 

This operation establishes a mode which enables cards to be punched in row binary image 
for all subsequent punch operations. When this mode is used during card punching opera
tions, a buffer area of 36 words is required for each card. The output data that is contained 
in three computer words, with the exception of the data in the 10 least significant bit posi
tions of the third word, will be punched on the card in one row as shown in the diagram that 
is included in the Set Input Mode Row Binary operation description. 

5 



6-G 
SECTION: 

6 UNIVAC 490 SPURT 
PAGE: 

• Select Stacker 1 

This operation causes the card, that has just passed the second read station in the Card 
Reader and from which data has been transferred to the Central Processor, to be routed 
to stacker 1. 

• Select Stacker 2 

This operation is the same as the Select Stacker 1 operation except that the card is 
routed to stacker 2. 

• Read Without Transfer 

This operation causes a card to feed and the data from the card to be placed in card 
memory. Data are not transferred to the Central Processor as in the case where a 
Read With Transfer, Multiple Read, or Transfer operation is requested. If a Read With
out Transfer operation is requested when the card memory is full, the card feed will be 
inhibited and an Inappropriate Operation indication will be placed in the status word. 
See section 6.G.1.a., Card Reader Action. 

• Read With Transfer 

This operation will transfer, from card memory to the specified buffer area in the 
Central Processor, the data from one card and then will read as many cards as the 
card memory can store. See section 6.G.1.a., Card Reader Action. 

• Multiple Read 

This operation will read a specified number of cards and transfer the data from these 
cards to the specified buffer area in the Central Processor. 

• Transfer 

This operation will transfer, from card memory to the specified buffer area in the 
Central Processor, the data from one card. During this operation the card feed is 
inacti ve; consequently, no additional cards are read into card memory. 

If this operation is requested when card memory is clear, an Inappropriate Operation 
indication will be placed in the status word. See section 6.G.1.a., Card Reader 
Action. 

• Punch 

This operation causes a card to be punched with data from the specified buffer area 
in the Central Processor. The card will be routed to stacker O. 

• Punch Select 

This operation is the same as the Punch operation except that the card is routed 
to stacker 1. 

a. Card Reader Action 

The following chart indicates the Card Reader action that will result from request
ing a card operation when the various initial conditions exist in the card memory. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 
SECTION: 6-G PAGE: 7 

INITIAL CARD MEMORY CONDITION 

I i With Data Store With Data Store I With Data Store 

OPERATION Clear From Card 1 From Card 1 From Card 1 
and Card 2 Card 2, and 

Card 3 

1. Feed one 1 Feed one card. It Feed one card. Inappropriate operation • READ .1. 

WITHOUT card. 

TRANSFER 
2. Store data 2. Advance card 1 data 2. Advance card 1 and 

from the in sequence. card 2 data in 
card in card' sequence. 
memory. 

3. Store data from 3. Store data from card 
card 2 in card 3 in card memory. 
memory. 

READ l. Feed four 1. Transfer data from I 1. Transfer data from I 1. Transfer data from 
cards. card 1 to the Central I card 1 to the Central I card 1 to the Central WITH 

I 
1 I 

TRANSFER Processor. Processor. Prbcessor. 

I I 

2. Transfer 
1
2. Feed three cards. 

1
2. Advance card 2 I 2. Advance card 2 and 

data from data in sequence. I card 3 daia in 
card 1 to sequence. 
the Central 
Processor. 

3. Store data I 3. Store data from cards 3. Feed two cards. 3. Feed one card. 
from cards 2, 3, and 4 in card 
2,3, and 4 memory. 
in the card 
memory. 

4. Store data from 4. Store data from 
cards 3 and 4 in card 4 in card 
card memory. memory. 

TRANSFER Inappropriate Transfer data from 1. Transfer data from l. Transfer data from 
operation card 1 to the Central card 1 to the card 1 to the 

Processor and clear Central PrOcessor. Central Processor. 
card memory. 

I I 2. Advance card 2 I 2. Advance card 2 
data in sequence. and card 3 data in 

sequence. 



6-G 
SECTION: 

8 UNIVAC 4BD SPURT 
PAGE: 

2. Card Status Words 

The status of every operation that is initiated will be indicated by means of a status code 
placed in bit positions 0-5 of th e A-Register. 

If the requested operation cannot be completed successfully because of an error condition, 
the applicable status code will be placed in the A-Register and an error message will be 
relayed via the Console Printer. 

In some instances supplementary information is placed in bit positions 15-20 of the .. A .. ~Register 

along with the status code; that is, when an interruption occurs during a Multiple Read opera
tion, the number of cards (c) from which data has been transferred to the Central Processor 
will be indicated. 

a. Status Indications 

CODE MEANS 

00000 00001 Operation completed 

00000 00006 Interlock fau It 

00000 00007 Veri fy error 

OOOcc 00010 Illegal character 

OOOcc 00011 Illegal function 

00000 00012 I nappropri ate operati on 

00000 00013 I n correct pa ram eter 

P = Program i denti fi cation num ber 
1 Only on Late Stacker Selection. 55 is Stacker Number. 

b. Explanation of Status Indications 

01 Operation completed. 

ERROR MESSAGE 

MSG 260/270 P 

MSG 263/273 P 

MSG 261/271 P 

MSG 264 PSS 1 

MSG 262/272 P 

06 This indication will result when any of the following conditions occur: 

• Full card stackers 

• Card jam. 

• Empty hopper 

• Card misfeed. 

• Abnormal switch action. 

• Parity error. 

• Reader drive motor off. 

• An attempt is made to punch more than 240 holes in a card. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 
SECTION: 

6-G 

07 This indication will result when: 

• The card data most recently transferred to the Central Processor did not 
read properly. 

• A card is not punched correctly; that is, the data punched into the card 
does not agree with the data presented to be punched. If the automatic 
recovery switch is on and a card is punched in error, that card, when it 
is detected at the verification station will be routed to stacker 1 along 
with the two following cards. At this point, the operation is reinitiated 
and an attempt is made to punch the data correctly on a new card. If 
successful, this card is routed to the proper stacker. In the event that 
the data cannot be punched correctly on this second try, the Card Punch 
unit will stop. 

10 This indication will result when: 

• An illegal character code has been detected within the translated data 
most recently transferred to the Central Processor. If this indication 
occurs during a Multiple Read operation, the operation will be terminated 
at the completion of the current transfer. 

• An illegal character code was detected during the translation of the output 
data most recently punched. 

11 This indication will result when the control unit attempts to perform an invalid 
function. 

12 This indication will result if: 

• A Select Stacker 1 or Select Stacker 2 operation is initiated too late; that is, 
the operation is presented more than 80 milliseconds after the card, to which 
the operation applies, has passed the second read station. In this case the 
card will be routed to Stacker O. 

• A Read Without Transfer operation is initiated when card memory is full. 

• A Transfer operation is initiated when card memory is clear. 

13 An incorrect parameter such as: 

• An invalid operation code. 

• The buffer area is not sufficient. 

PAGE: 
9 



UP-3900 UNIVAC 490 SPURT 6-H 
SECTION: PAGE: 

H. FASTRAND MNEMONICS 

FASTRAND input/output and positioning operations are requested by the submission of the 
FAST operator. The general format of this operator is as follows: 

w v, V
4 

FAST subsystem operati on buffer control sector search length identifier 
name word address indicator word 

Vo defines the name of the F ASTRAND subsystem upon which the operation will be perform
ed. If an installation has a FASTRAND subsystem on one channel only, this operand is 
unnecessary. See Section 9, PROGRAM PREPARATION. 

v
1 

names the operation to be perfo rmed. See Section 6.H.1., F ASTRAND Operations. 

v
2 

defines the address of the buffer control word. The lower portion of the buffer control word 
specifies the first address to hold inpu t or output data and the upper portion specifies the 
last address. 

This operand is not required for Position operations. 

V3 defines the first address of the sector (an area that can hold 33 computer words) that is asso
ciated with the operation. This may be the label of a location in memory that contains a 
sector address. 

v
4 

is the search length indicator used for Search operations. This may be the label of a location 
in memory that contains the search length indicator. 

If the search indicator is zero, the search will commence at a specified sector within a posi
tion range (an area that contains 4096 sectors) and continue from this point through each 
succeeding sector until discovery is made or the end of the position range is reached. 

If the search indicator is unequal to zero, the search will commence at a specified sector 
within a track range (an area that contains 64 sectors) and continue through each succeeding 
sector until discovery is made or the end of the track range is reached. 

This operand is not required for Read, Write, or Position operations. 

Vs is the search identifier used for Sea rch operations. This may be the label of a location in 
memory where the identifier may be found. 

This operand is not required for Read, Write, or Position operations. 

1 



6-H 
SECTION: 

2 UNIVAC 490 5F1URT 
PAGE: 

1. F ASTRAND Operations 

TYPE OF V-OPERANDS 
OPERATION OPERATION MNEMONICS USED 

Continuous Write Input/Output WRITE j 0, 1, 2, 3 

Continuous Read Input/Output READ 0, 1, 2, 3 

Search Read Sector Input/Output SEARCH 0, 1, 2, 3, 4, 5 
I 

Search Read Words Input/Output WSEARCH 0, 1, 2, 3, 4, 5 

Position Positioning POSITION 0, 1, 3 

• Continuous Write 

Starting with a specified sector, data is written on a F ASTRAND unit in consecutive 
locations until the output buffer is exhausted. 

• Continuous Read 

Starting with a specified secto!", data is read from a F ASTR AND unit until the input 
buffer is filled. 

• Search Read Sector 

Starting with a specified sector, this ope ration causes the first word of each sector to be 
searched for a word that is identical to the identifier word until discovery is made or the 
search is terminated. 

If discovery is made, a Continuous Read operation commences with the find word. 

If discovery is not made, the search will be terminated at the point determined by the 
setting of the search length indica tor; that is, when the end of the position range or the 
end of the track range is reached. 

• Search Read Words 

Starting with a specified sector, this operation causes each word within a sector to be 
searched for a word that is identica 1 to the identifier word until discovery is made or 
the search is terminated. 

If discovery is made, a Continuous Read operation commences with the find word. 

If discovery is not made, the search will be terminated at the point determined by the 
setting of the search length indicator; that is, when the end of the position range or the 
en d of the track ran ge is reached. 

• Position 

This operation causes the read-write head on a FASTRAND unit to be moved to a speci
fied position. For this operation the sector address will be in the v 2 operand position. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 6-H 
SECTION: 

2. FASTRAND Status Words 

The status of every operation that is initiated will be indicated by means of a status code 
that is placed in bit pos itions 0-5 of the A-Regis ter when program control is returned to the 
user program. 

If the requested operation cannot be successfully completed because of an error condition, 
the applicable status code will be placed in the A-Register and an error message will be 
relayed via the Console Printer. 

In some instances supplementary information will be contained in the upper 23 bit positions 
of the A-Register along with the status code. This information w ill be the address (a) of the 
sector from which data was last transferred or at which the last comparison was made. 

a. Status Indicators 

CODE 

aaaaa aaaOl 

aaaaa aaa02 

00000 00006 

00000 00007 

00000 00010 

MEANS 

Operati on comp I eted 

Unsuccessful search 

Unit interlocked 

Subsystem error 

Incorrect pa rameter 

P = Program identification number 

xx = Unit number 

ERROR MESSAGE 

MSG 320 Pxx y 

MSG 321 Pxx y 

MSG 322 Pxx y 

y = Last computer generated interrupt word. For 
operator and service use. 

b. Explanation of Status Indications 

01 Operation successfully completed. 

PAGE: 

02 This indication will follow a Search Read Sector or Search Read Words operation 
when the identifier word cannot be found. The sector address at which the last 
comparison was made will be placed in the upper 23 bit positions of the status 
word. 

06 The unit for which the operation is intended is nonoperab1e because of an inter
lock condition. 

07 A subsys tern error such as: 

• A malfunction of the control unit. 

• The recurrence of data transfer errors. 

10 An incorrect parameter such as: 

• An invalid operation code. 

• The lower half of the buffer control word is greater in value than the upper 
half. 

3 



6-H 
SE C TION: 

4 UNIVAC q.SC SPURT UP-3900 
PAGE: 

3. F ASTRAND Addressing 

The actual sector addresses (see Appendix D) are continuous only within the individual F ASTRAND 
units; however, these addresses have been modified so that when the F ASTRAND mnemonics are 
used, the sector addresses are continuous throughout the subsystem. A listing of these modified 
addresses is provided in the table that follows: 

UNIT BEGINNING ADDRESS ENDING ADDRESS 

I 

0 0000 0000 0137 7777 

0140 0000 0277 7777 

2 0300 0000 0437 7777 

3 0440 0000 0577 7777 

4 0600 0000 0737 7777 

5 0740 0000 1077 7777 

6 1100 0000 1237 7777 

7 1240 0000 1377 7777 



UP-3900 UNIVAC 490 SPURT 6-1 
SECTION: PAGE: 

I. PAPER TAPE MNEMONICS 

Input/output operations for 5)6,7, or 8 channel paper tape are requested by the submission of 
the PTAPE operator. 

The general format of the PT APE operator is as follows: 

w 

PTAPE subsystem name operation buffer control word 

Vo defines the name of the Paper Tape subsystem upon which the operation will be performed. 
If an installation has a Paper Tape subsystem on one channel only, this operand is unneces
sary. See Section 9, PROGRAM PREPARATION. 

v, names the operation to be performed. See Section 6.1.1., Paper Tape Operations. 

V
2 

defines the address of the buffer control word. The lower portion of the buffer control word 
specifies the first address used to hold input or output data and the upper portion specifies 
the last address. 

1. Paper Tape Operations 

TYPE OF I V-OPERANDS 
OPERATiON OPERAT ION MNEMONiCS I USED 

Punch Tape InpuVOutput PUNCH 0, 1, 2 

Read Tape Fo rward Input/Output READF 0, 1, 2 

Read Tape Backward Input/Output READB 0, 1, 2 

• Punch Tape 

This operation causes the paper tape to be punched with data from the specified area in 
the Central Processor. The transfer of data is made on the basis of one character per 
output buffer word; that is, the bit configuration that is contained in the low order bit 
positions of one output buffer word will be punched into the channels of one frame of 
paper tape. 

• Read Tape Forward 

This operation will transfer the data contained on paper tape to be transferred to the spe
cified buffer area in the Central Processor. The transfer of data is made on the basis of 
one character per input buffer word; that is, the bit configuration that represents the com
bination of holes in the channels of one frame of paper tape will be placed in the low order 
bit positions of one input buffer word. 

1 



6-1 
SECTION: 

2 UNIVAC 490 SPURT 
PAGE: 

• Read Tape Backward 

This operation is the same as the Read Tape Forward operation with the exception that 
the order of the placement of data in the input buffer is reversed. 

2. Paper Tape Status Words 

The status of every operation that is initiated will be indicated by means of a status code that 
is placed in bit positions 0-5 of the A-Register when program control is returned to the user 
program. 

If the requested operation cannot be successfully completed because of an error condition, the 
applicable status code will be placed in the A-Register and an error message will be relayed 
via the Console Printer. 

a. Status Indications 

CODE MEANS 

00000 00001 Operation completed 

00000 00006 Unit interlocked 

00000 00007 Subsystem error 

00000 00010 Incorrect parameter 

P = Program identification number 

b. Explanation of Status Indications 

01 Operation successfully completed. 

ERROR MESSAGE * 

MSG 300/310 P 

MSG 301/311 P 

MSG 302/312 P 

06 This indication will result when the Paper Tape Reader or Punch is out of 
tape. 

07 A subsystem error such as: 

• A punch compare error. 

• Excessive tape skew. 

lOAn incorrect parameter such as: 

• The lower half of the buffer control word is greater in value than the upper 
half. 

• The buffer control word contains all zeros. 

* MSG 307 P will appeal' if an interrupt that was not anticipated occurs on the paper tape input/output channel 
durinl2 the execution of an operation. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 7-A 
SECTION: PAGE: 

7. CONSOLE PRINTER CONTROL 

During program execution or upon termination, it may be necessary for a program to print short 
informative messages or the contents of specified registers and locations on the Console Printer. 
In addition, it may also be necessary to communicate with the running program via the Console 
Keyboard. The sections that follow describe the means by which console input and output is 
effected. 

A. CONSOLE OUTPUT OPERATIONS 

Output operations are used at various points in the program to relay information such as 
notification that an error has occurred or instructions for the operator, or they are used to 
print the contents of specified registers and locations. In many cases the program will require 
that several messages be printed contiguously. To effect this in a complex environment where 
several programs are competing for the use of the Console Printer, it is necessary to utilize 
operations that will reserve the Console Printer for the exclusive use of the requesting 
program and then release it for other use when the message sequence is completed. 

• CONSOLE HOLD 

This operation reserves the Console Printer for the exclusive use of the requesting program. 
If the requesting program desires to submit several messages and have them contiguous, it 
is necessary that a Console Hold operation be initiated before the message sequence is 
requested. 

The Console Hold operation is initiated as follows: 

w 

CONSOLE HOLD 

• TYPE TEXT 

This operation causes a specified message to be printed by the Console Printer. In 
addition to printing the message, the Printer will also execute any printer commands that 
have been included with the message. The Type Text operation is requested as follows: 

w 

TYPET message and printer commands 

1 



7-A 
SECTION: 

2 UNIVAC 490 SPURT 
PAGE: 

Va specifies the message to be printed and the printer commands that are to be executed. A 
message may contain a maximum of 70 characters. Each printer command that is included 
in a message is counted as one character. These commands and their symbols are as 
follows: 

Carriage Return and Line Feed 

Line Feed 

Space 

leRI 

ILFI 

ISPI or A 

When these commands are used with the Type Text operation they are separated from the 
text by means of a vertical bar, I, that is placed before and after each command. The 
exception to this rule is when the symbol A is used to indicate that a space is desired. 
For example: 

TYPET . text A text ICRI ILFI ILFI text ISPI text 

It should also be noted that a tab symbol should be used to indicate the end of the message 
to be printed. This symbol should be placed after the last valid character in the message. 

TYPE 

This operation is the same as the Type Text operation with the exception that the message 
to be printed is not included in the operation request. Instead, the user specifies the num
ber of characters in the message and the initial address of an area where the message (in 
Fieldata code) has been stored. 

The Type operation is requested as follows: 

w Vo vI 

TYPE number of characters initial address of message area 

v 0 specifies the number of characters that are contained in the message. A message may 
contain a maximum of 70 characters. Each printer command that is included in a 
message is counted as one character. Since the number of characters contained in the 
message is specified, a tab symbol does not have to be used to indicate the end of 
the message. 

VI specifies the initial address of the area where the message is stored. 

• TYPE CONTENTS 

This operation causes the octal coded contents of specified registers and/or storage 
locations to be printed by the Console Printer. In addition to printing the requested 
information, the printer will also execute any printer commands that have been included 
in the request. The Type Contents operation is requested as follows: 

UP-3900 



UP-3900 UNIVAC 490 SPURT 7-A 
SECTION: PAGE: 

w 

TYPEC information to be printed and printer commands 

Vo specifies the information to be printed and the printer commands that are to be executed. 
The information to be printed may be the contents of the upper half, the lower half, or the 
whole word in the specified storage location. It may also be the contents of the A, Q, or 
B registers. Each operand that specifies information to be printed and each printer 
command must be preceded by a point separator. For example: 

TYPEC . W(ALPHA) . ISPI . U(BETA + B3 - 6) . ICRI 

. A . ISP\ . Q . \SP\ . L(GAMMA) . \CR\ . ILFI 

. W(B2) 

• CONSOLE RELEASE 

This operation is used to terminate an existing hold mode when it is no longer needed. The 
Console Release operation is requested as follows: 

w 

CONSOLE RELEASE 

Examples of Console Output Operations: 

For each independent console output request REX attaches a double line feed, a program 
identification num ber (Pxx), and one space to precede the supplied data. If the following 
independent output requests were submitted, where COUNTER is the label of a location 
whose upper half contains the number of cards processed and the lower half contains the 
actual number of cards, 

TYPET . START~OF~JOB ICRI NR.I0576~ 

TYPET.PROGRAM~CARD~COUNT 

TYP EC . U(COUNTER) 

TYPET.CARD~COUNT 

TYPEC . L(COUNTER) 

TYPET . JOB~10575~COMPLETE 

the console output would appear as 

Pxx START OF JOB 
HR. 10576 

Pxx PROGRAM CARD COUNT 

3 



7-A 4 UNIVAC 490 SPURT 
SECTION: PAGE: 

Pxx nnnnn 

Pxx CARD COUNT 

Pxx nnnnn 

Pxx JOB 10575 COMPLETE 

Since the line feed and program number are automatically supplied for each independent 
request, a I CRI as the first character is ignored. All other I CRI are honored (as shown) 
with a carriage return, iine feed, and a four space indentation. 

If a hold mode is established for the purpose of printing several contiguous messages, 
all of the console output requests in the message string will be considered as one 
independent request. If the output requests used in the previous example were submitted 
as follows: 

CONSOLE. HOLD 

TYPET. STARTi!OFi!JOB ICRI NR.I0576i! 

TYPET.PROGRAMi!CARDi!COUNT 

TYPEC . U(COUNTER) 

TYPET . CARDL\COUNT 

TYPEC . L(COUNTER). Ispi 
TYPET . JOB~10575~COMPLETE 

the console output would appear as 

Pxx START OF JOB 

NR.10576 PROGRAM CARD COUNTnnnnnCARD COUNTnnnnn JOB 10575 COMPLETE 

UP-3900 



UP-3900 UNIVAC 490 SPURT 7-B I 
I 

SECTION: PAGE: 

B. CONSOLE INPUT OPERATIONS 

Console input operations are used to condition REX to expect Console Keyboard input. 
This input is usually a response to a message that has been printed on the Console Printer. 

• ACCEPT CONSOLE KEYBOARD INPUT 

The Accept Console Keyboard Input operation is requested as follows: 

w Vo V , v 2 

ACCEPT num ber of characters fi rst address al tern ate address 

of buffer specifier 

I 

Vo specifies the maximum number of characters that will be accepted. A count of the number 
of characters that are typed is maintained. If this count becomes greater than the number 
of characters specified, the entry will be rejected with an explanatory message. If this 
occurs, the operator may attempt entry again. All characters that are typed, with the 
exception of the carriage return and backspace characters, are entered into the input 
buffer. Each character will be checked to see if it is either a stop or backspace character. 
If a stop character is detected, it will be counted and stored in the buffer and the accept 
mode will be terminated. If a backspace character is detected, the previous character 
that was typed will be erased from the buffer. If three consecutive backspace characters 
are typed, the entire entry will be erased. 

V 1 specifies the first address of the input buffer. 

V 2 an address to which control will immediately pass. Since some period of time may elapse 
while a response is being composed, this option provides a means whereby REX can 
retain control after an Accept mode is established. 

If an alternate address is not specified, the program will be suspended until the entry is 
completed. At that point control will be transferred to the address of the next SPURT instruction. 

If an alternate address is specified, REX will immediately transfer control to this address. 
When the response to the Accept operation has been completed, control will be transferred to 
the address of the next SPURT instruction. 

As can be readily seen, the acceptance of input via the Console Keyboard operates in the same 
manner as a request for other standard peripheral input/output with the exception that in this 
case the functions of the i npu t/ ou tpu t reques t and the CKST A T are combined. 

It should also be noted that the establishment of the Accept mode will terminate a previously 
imposed hold mode. 

Examples Of Console Input Operations: 

1 



7-B 2 UNIVAC 4BC SPURT UP-3900 
SECTION: PAGE: 

Normally, a console input request is preceded by one or more output requests that describe the 
entry to be made. REX assigns a delay number (Dxx) to each input request. At the time a request 
is made, this number will be printed on the Console Printer. When the operator responds to the 
request, this number will be included in the response. Whether or not an input request is an 
independent request or part of a hold mode determines how it will appear on the Console Printer. 

If an input request is an independent request the delay number will have a program identification 
number assigned to it. For example, if the following independent requests were submitted. 

TYPET . MOUNT~ THE~REEL6.LABELED6.1A JeRI ON~UNIT~2~CHANNEL~13;\ 
TYPET . TYPE~ YES~ WHEN ~REEL~IS~ MOUNTED 

ACCEPT. 4 . REELCHANGE . WAITl 

the console output would appear as 

Pxx MOUNT THE REEL LABELED IA 
ON UNIT 2 CHANNEL 13 

Pxx TYPE YES WHEN REEL IS MOUNTED 

Pxx Dxx 

If an input request is included within a hoid mode, the delay number wili not have a program 
identification number assigned to it. For example, if the same requests used in the previous 
example were submitted as follows 

CONSOLE. HOLD 

TYPET .MOUNT~THE~REEL~LABELED~lA\CR\ ON~UNIT~2~CHANNEL~l3~ 

TYPET . TYPE~YES~WHEN~REEL~IS~MOUNTED 

ACCEPT. 4 . REELCHANGE . WAITl 

the console output would appear as 

Pxx MOUNT THE REEL LABELED IA 
ON UN I T 2 CHANNEL 13 TYPE YES W HEN REEL I S MOUNTED Dxx 

For both examples the operator response would be 

Dxx 0 YES ID 



UP-3900 UNIVAC 490 SPURT 8 
SECTION: PAGE: 

8. PROGRAM DEFINED 

MACRO OPERATIONS 

SPURT provides the user with the means whereby a single line of SPURT coding can be utilized to 
incorporate a previously defined operation within a program. Operations of this type are called macro 
operations and will usually contain several basic instructions that perform a common task. 

Each macro operation consists of a unique label and the basic instructions necessary to define the 
operation. Any portion of the instructions of which the macro operation is composed may be made 
variable in order that the operation may be modified or linked to other instructions in the program. 

The line of SPURT coding that will incorporate a macro operation in the program is called a macro 
call line. This line consists of a standard label, the label of the macro operation in the operator 
position, and a series of operands that will replace the variable portions of the associated macro op
eration when it is called for by the program. 

During assembly, drum storage is utilized to hold the macro operations until such time as they are 
called for by the program. Prior to this time the macro operations will not produce any object coding. 
When a macro operation is called for by the program, the instructions that are contained therein will 
be incorporated into the program at the point of call. 

A. DEFINING A MACRO OPERATION 

Except for the ability to insert variable operands, a macro operation is defined in the same manner 
as any other operation that is contained within a program. The coding defining a macro operation 
is preceded by a MACRO statement and terminated by an ENDMAC statement. These statements 
cause the enclosed coding to be set aside as a macro operation. 

1. The MACRO Statement 

w v a 

macro name MACRO notation 

the label that is assigned to the MACRO statement will become the name of the macro 
operation. This label will be placed in the operator position of a call statement which 
brings the macro coding into the program. 

va. the operand position of this statement is ignored. Notation may be included at this point 
describing the variable parameters that will be defined in the call line. 

1 



8 
SEC TION: 

2 UNIVAC 490 SPURT 
PAGE: 

2. The ENDMAC Statement 

w 

ENDMAC 

The ENDMAC statement follows the last line of coding in the macro operation. 

3. Variable Parameters 

Those portions of the coding in a macro definition that are to be substituted when the defined 
macro operation is called are represented by a number (n) enclosed in commas (,n,). The 
enclosed number specifies which parameter listed on the macro call line is to be substituted 
when the macro coding is placed in the program. The parameters on the macro call line are 
numbered from left to right starting with the number 1. 

4. Examples of MACRO Definition 

Presented below are examples of two macros which could be used to move a memory area. The 
notation in the macro line indicates the order in which the parameters should appear on the 
macro call line. 

a. 

MOVEl 

ALPHA 

h. 

MOVE2 

,6, 

w NOTES 

MACRO. (number of words, pick up address, deposit address) 

ENT . B7 . , l, 

BJP . B7 . ALPHA 

ENT . Q .. W (,2, + B7) 

STR . Q . W (,3, + B7) 

BJP . B7 . ALPHA 

ENDMAC 

w 

MACRO. (register, index, number words, from address, to address, label) 

ENT ,2, . ,3, 

BJP 

ENT 

STR 

BJP 

ENDMAC 

,2,. BETA 

,l,.W(,4,+,2,) 

, l, . W (, 5, + ,2,) 

,2, . ,6, 

UP-3900 



UP-3900 UNIVAC 490 SPURT 8 
SECTION: PAGE: 

B. CALLING A MACRO 

1. The Call Line 

A previously defined macro operation may be incorporated into a program by using the maciO 
name in the operator position, This statement is referred to as a call line and is written as 
follows: 

w 
v n 

macro name parameter 1, parameter 2, ... parameter n 

w is the macro name that was used in the label position of the MACRO statement. The use 
of the macro name in this position causes the coding that was previously defined to be 
called into the program. 

Vo the variable parameters that were previously provided for in the coding are here defined. 
Parameter 1 corresponds to ,I" parameter 2 corresponds to ,2,; parameter n corresponds 
to ,n,. The parameters are separated from the macro name by a standard point separation 
symbol. Parameters are separated from each other by a comma. 

The absolute maximum number of parameters that may be defined is 24. However, if the 
size of a number of the operands is exceptionally large, the area provided for the storage 
of parameters could be exha usted be low this limit. A reasonably safe maximum would be 
20. 

When a macro operation is inserted in the coding of a program, each instruction is examined 
for a number enclosed in commas in any of the positions of the statement. If such a number 
is encountered, the parameter in the corresponding position of the call line is inserted by 
character substitution. The resulting coding must not violate any of the rules for standard 
SPURT coding, and if the operator field is replaced it must be a legitimate operator consisting 
of a maximum of ten characters which cannot be a macro name. The call line must be termi
nated by a standard end statement character. 

If a label is used on a macro call line it will be assigned to the first insttuction of the inserted 
coding. 

2. Examples of Macro Call Line 

The examples of call lines presented below refer to the examples of macro definitions presented 
previously. The call line on the left and the resultan t coding that will be inserted in the program 
is shown on the right. This is not a representation of a High Speed Printer listing. Only the ob
ject coding that results from the insertion of the macro coding and the call line itself will appear 
on a printed listing. 

3 



8 4 UNIVAC 490 SPURT 
SECTION: PAGE: 

MACRO CALL 

w 

PHI MOVE1.10,CAT,DOG 

RESULTANT CODING 

PHI ENT . B7 . 10 

BJP . B7 . ALPHA 

ALPHA ENT. Q . W (CAT + B7) 

STR . Q . W (DOG + B7) 

BJP . B7 . ALPHA 

MOVE2 .. Q, B1, 4, THETA, DOG, BETA ENT . B1 .4 

C. NESTING OF MACROS 

BJP . B1 . BETA 

BETA ENT. Q . W (THETA + B1) 

STR . Q . W (DOG + B1) 

BJP . B1 . BETA 

A macro may be defined that uses one or more macros that have been previously defined. This 
is called nesting. The nesting procedure is handled similar to that of a simple macro definition. 
A simple nest may be represented as follows: 

w 

MAC! MACRO 

~ 
ENDMAC 

w 

MAC2 MACRO 

~ 
ENDMAC 

w 

MAC3 MACRO 

~ 
MAC2 . OPA, OPB, OPC 

~ 
MAC1 . OPD, /4, OPE, /S 

ENDMAC 

UP-3900 



UP-3900 UNIVAC 490 SPURT 8 
SECTION: PAGE: 

When MAC3 is called, MAC2 and MACl will also be called and incorporated into the coding. The 
parameters OPA, OPB, OPC, OPD, and OPE are simple parameters as previously described for a 
call line . The slash U) followed by a number (n), will cause the n th parameter in the call line 
which calls the macro being defined to be included in the coding of the nested macro. For example, 
let us ass ume MAC3 is called by the follow ing statement: 

w 

MAC3 . OPF, OPG, OPH, OPI, OP] 

The parameter /4 in turn refers to the fourth parameter of the MAC3 call line (OPI), and /5 will 
refer to the fifth parameter (OP)). 

D. LABEL REFERENCE WITHIN MACROS 

Consideration should be given to the following rules when using labels and referencing labels 
within macros. 

• A macro may refer to any label tha t exists in the main line of coding. 

• A macro may refer to any label within the macro itself. 

• The main line of coding can reference a label within a macro only if that label is unique 
throughout the program. If a macro definition is used more than once, a label within a macro 
cannot be unique unless it is replaced by a parameter label from the referencing call line Un 
option). 

• A nested macro may refer to a label within the same macro, or a label within a macro within the 
same nest of macros, or a label in the main line of coding. Where a label is duplicated within 
a nest of macros, a reference to that label will result in a reference to the label within that 
macro that is closest to the macro currently being processed. 

5 



UP-3900 UNIVAC 490 SPURT 9 
SECTION: PAGE: 

9. PROGRAM PREPARATION 

The individual operations that were described in the previous sections are organized into a logi
cal statement or a series of logical statements which is called a program. In addition to the 
individual operations, various statements are included in the program definition to control and 
direct the assembly process, or to communicate with the Real-Time Executive Routine. 

This section provides the necessary information to prepare a program for submission to the 
SPURT Assembly System. The required statements for operation of a program under control of the 
Rea1-Time Executive Routine are also described. 

A. SPURT REQUIREMENTS 

1. The Program Header 

A SPURT Program must be preceded by a PROGRAM header in the following format: 

I I 
I w Vo v

1 

I program name PROGRAM programmer name date 

The first line of coding following the header line must be labelled. Program headers other 
than the first may be used as a convenience to mark points within the program. These addi
tional program headers wili appear in printed listings of the source program but wHl have 
no effect in the assembly process. 

2. Allocation 

Allocation is a process which assigns numeric values to labels. Labels that appear within a 
program will be automatically assigned by the assembler as instructions are generated and 
storage areas are reserved. This assignment is relative to a base value that is assigned by 
allocation. 

a. Automatic Allocation 

The first instruction of a program will automatically be allocated to a base of 00000, if no 
allocation is made by the user. 

1 



9 
SECTION: 

2 UNIVAC 490 SPURT UP-3900 
PAGE: 

b. Required Allocation 

Allocation by the user is required: 

• if a program in absolute format is desired. An absolute program is loaded at a particu
lar address in computer memory. Therefore, the first instruction of the program must be 
allocated to the base address desired. 

• if a program refers to another program or subroutine that has been or is to be loaded into 
a particular portion of memory. 

• when referencing storage areas that are not defined within the program. 

c. Types of Allocation 

• Direct Allocation 

Direct allocation assigns a given numeric value to a label. Direct allocation input 
consists of a header statement to initiate the allocation process and to identify the type 
of allocation. The header statement is written as follows: 

w 

program ALLOCATION 
name 

v 
o 

programmer 

name 

date 

Following the header are allocation statements which are written as follows: 

Example: 

DRUMRTE 

RDINPUT 

CONSTLIST 

ERRORRTE 

• Relative Allocation 

1 

allocated 

label value 

ALLOCATION . JONES . 15 DEC 63 

22600 

23546 

24677 

Relative allocation provides a technique for changing program allocation by entry of a 
base value when requested on the console printer. Allocation is made as described 
above for direct allocation except that the mnemonic REL-ALLOC is substituted for 
ALLOCATION in the header statement. The values allocated may be considered 
increments to the base value that is entered. 



UP-3900 UNIVAC 490 SPURT 

Example: 

TAPERTE 

LABELRTE 

READERR 

WRITERR 

REL-ALLOC . JONES . 15 DEC 63 

33000 

37200 

37300 

9 
SECTION: 

If a value of 20000 were entered when requested, the actual value allocated to 
LABELRTE would be 53000. 

• Indirect Allocation 

PAGE: 

Indirect allocation is used in conjunction with direct allocation and the U -TAG operation 
to create a general table of entrances to subroutines. This allows several different 
programs to access the same subroutine, or another program, if programs are to be 
combined when executed. The address of the subroutine may be changed without 
requirin g changes in the programs that refer to it. 

As an example, let us assume that we have two subroutines for which we intend to make 
an indirect allocation. The subroutines are ENDFILE located at 32500, and ENDREEL 
located at 56455. The necessary operations are: 

(1) The following entries are made as allocation input: 

TBLADR 

ENDFILE 

ENDREEL 

04556 

32560 

56455 

(2) A U-TAG operation is incorporated in the program as follows: 

I w v v 1 0 

TBLADR U-TAG ENDFILE ENDRELL 

This establishes table entries which would appear in computer code as follows: 

LOCATION 

04556 

(2) 

32560 

(1) 

56455 

3 



9 
SECTION: 

4 
PAGE: 

UNIVAC 490 SPURT 

(3) An indirect allocation reference is established as follows: 

TAPRTNE 

ENDFILE 

ENDREEL 

w 

INDR-ALLOC 

204556 

104556 

SMITH 15 JAN 64 

UP-3900 

Indirect allocation is made under a header containing INDR-ALLOC in the w position. 
The hi gher order digi t of the allocation value may be 1 or 2, referrin g respecti vely 
to the lower or upper portion of the word in the jump table. 

Assume that a return jump instruction appears in the program as follows: 

w 

RJP ENDFILE 

This refers the program to the upper portion of word 04556, which contains the 
entrance address to the subroutine (32560). This entrance address may be changed 
by a reassembly of the original ALLOCATION tape with a different value for 
ENDFILE. No change is required in the program definition, 

Only a jump (JP) or return jump (RJP) instruction may refer to an address defined 
by indirect allocation. 

d. The EQUALS Statement 

Allocation may be made within a program by the use of the EQUALS statement. By this 
means a label may be equated with previously defined labels and/or an increment or 
decrement. The format of the EQUALS statement is as follows: 

I w Yo 

label to be EQUALS I label ± label ± con sta nt val ue 
equated I 

I I 

1 specifies the label to be equated. 

v 0 the equating operand may consist of: 

• a previously defined label 

• a label ± a constant 

• a label + another label 

• a label ± another la bel ± constant 

• a constant alone 



UP-3900 UNIVAC 490 SPURT 9 
SECTION: PAGE: 

Labels referring to values which represent locations within a complex relative program will 
be modified reiative to the base address at which the program is loaded. Labels referring to 
constant values will not be modified. 

Any label set equal to a constant or to a label that has previously been set equal to a 
constant with an EQUALS statement will be taken as an absolute value and will not be 
modified when the program is loaded. If two labels are used, the equated label will 
assume the characteristics of the last label in the equating expression. 

Example: 

CONSTANT 

PLABEL 

COMB 

ROMB 

w 

EQUALS. 40000 

ENT. A. 0 

EQUALS. PLABEL + CONSTANT + 1 

EQUALS. CONSTANT + PLABEL + 1 

(1) The label represents a constant value of 40000. 

(2) A standard pro gram label. 

(3) COMB will be treated as a constant. 

(1) 

(2) 

(3) 

(4) 

(4) ROMB will be referenced as a program label and will be modified relative to the base 
address. 

Note: The EQUALS statement may not be used to allocate a program label in a complex 
relative format. This would conflict with the assignment of labels that are made re
lative to a base address of 00000. 

Example of allocation of program label: 

SETA 

I 
EQUALS. 20000 

SETA ENT . A . X77777 

B. REX REQUIREMENTS 

1. The Executive Information Region 

In order to facilitate exchange of information between worker programs and REX, the first five 
locations relative to the initial address of a worker program are assigned specific uses. These 
locations will be referred to as the Executive Information Region. Special information is re
quired of the real-time program. This information is made available to REX via an Initialization 
Table which will be explained under REAL-TIME PROGRAMMING CONSIDERATIONS. 

5 



9 
SECTION: 

6 UNIVAC 490 SPURT 
PAGE: 

EXECUTIVE INFORMATION REGION 

WORD UPPER HALF LOWER HALF 

Label of program starting address Entrance address of fault recovery 
routine. (note 1) 

o 

Address of relocatable area No. of Addendum Storage Elements 
bounding address. (note 2) to be provided. (note 4) 

2 (note 5) 

Address of unsolicited operator entry indicator Entrance address of addendum over-
word. For use during operation of the program. flow recovery routine. (note 1) 

3 

4 Starting Address of parameter P-register value at time 
storage area. (note 3) of fault/number of parameter words 

entered. For R EX use. 

NOTES: 1. Optional. If zero, REX will automatically suspend the program pending opera
tor intervention. 

2. Inserted by REX. Bounding core and bounding relocatable drum area addresses 
are preserved within a program's addendum (a storage area that is provided 
when a program is loaded). They will remain there until the program performs 
a console typeout of more than SO characters. 

3. Optional. It is required only if optional parameters are to be conveyed to the 
program at load time. The number of words loaded will be stored in the lower 
half of word 4. 

4. An Addendum Storage Element is a 10-word temporary storage within a program's 
executive addendum (a storage area provided when a program is loaded). One 
element is placed into use each time a program performs one of the following 
operations: 

• Submits an input/output request 

• Uses ACCEPT 

• Requests a subroutine load 

• Requests a Batch Load 

• Calls a segment 

• Requests a core or drum memory dump 

• Has a time table routine started. 

An element is released for reuse each time the resuit of the UpeIC:1LiuIJ. which 
originally caused its use is reported to the program. That is, whenever control 
appears at the completion or error address associated with the operation. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 9 
SECTION: 

Consider, for example, a typical input/output sequence. When the request is 
subm.itted a vacant storage element is located, B-iegister values and bookkeep
ing information are saved therein. When the request is processed the status word 
generated by the routine is saved within the same element. When the status of 
the request is interrogated, the status word is reported to the program and the 
element is freed. (Note, however, that if CKST AT is used to mark a return point, 
the element is not freed but will remain in use until request status is subsequen
tially reported in response to program use of TAKEOVER). 

It can readily be seen that if each time a program requested an operation it chose 
to wait until that operation was complete before requesting another, only one 
storage element would be required. If the program was more complex, addition-
al elements would be required. 

S. If the high order bit of this word is 0, there is normal treatment of tape errors; 
if 1, a logical lockout is imposed on tape errors. This option is described in 
more detail under CONTINGENCY CONTROL. 

6. Unused fields should be set to zero. 

2. Declaration of Facility Requirements 

An operating program makes use of various facilities such as computer memory, drum area, 
and input/output channels with their associated peripheral units. When several programs are 
operating concurrently, under control of the Real-Time Executive Routine, the routine allo
cates facilities to assure their availability when a program is loaded. 

Declarative statements, which generate no computer instructions, must be included in the 
SPURT coding to inform the executive routine of the facility requirements of the program. 
Facilities may be requested as fixed or relocatable. If fixed, specific assignments of areas, 
channels and units are made; if relocatable, the executive routine makes assignments from 
the available facilities. 

Facility Statements must appear after the Executive Information Region and before any 
instructions that generate coding. 

• ASSIGN 

The ASSIGN statement provides a method of assigning several similar units to a channel. 
An example is magnetic tape units of which a maximum of twelve units may be connected 
to the same channel. The individual units may be defined as either fixed or relocatable. 
These mnemonic unit names may be referred to in the input/output mnemonic operations 
such as MTAPE. By declaring channel grouping in one statement, the user need 
not repeat the channel name in subsequent input/output mnemonic operations. The 
mnemonic names used must begin with an alphabetic character excluding 0, and they may 
consist of a maximum of ten alphanumeric characters. The ASSIGN statement has the 
following format: 

7 
PAGE: 



9 
SECTION: 

8 
PAGE: 

UNIVAC 490 SPURT 

I w Vo 

channel name ASSIGN unit name{s} 

specifies the mnemonic channel name to which all similar units are assigned. This must 
be the same channel name used in other declaratives, such as MEANS and F ACIL, which 
give other information about the peripheral equipment connected to a given channel. 

Vo specifies the mnemonic name given to each unit or the names given to several units. A 
maximum of twelve unit names may be given for a single channel. 

Relocatable Units 

If the units are relocatable they will be given logical unit numbers by position. 
The first unit specified will be designated 0, the second unit will be designated 
1, etc ... This assignment mayor may not exist when the object program is loaded 
depending upon the availability and utilization of existing facilities. 

Fixed Units 

If a fixed assignment of unit numbers is desired, the assignment is made by plac
ing the fixed unit number within parentheses following the mnemonic unit desig
nation. For example, if the mnemonic name SERVOA is specified for a unit, and 
if a fixed assignment to unit 5 is desired, the assignment will be written as 
follows: 

SERVOA (5) 

For a given channel, the units must be specified as either fixed or relocatable. It 
is not permissible to mix both fixed and relocatable units for a single ASSIGN 
statement. 

• MEANS 

The MEANS statement provides for the assignment of a mnemonic name to either a fixed 
or relocatable channel. This mnemonic channel name is used in the ASSIGN and FACIL 
statements. 

This operation generates no instructions in the final object program. An actual channel 
number is substituted for the mnemonic channel name. 

UP-3900 

If !!!0!e th~!'! 0!'!e MEANS st~tt:'!!'!t:'!'!t is P!t:'st:'ot wHh thp !O:~mp l~hpli thp flr!O:t !O:t~tpmpnt t~kp!':. 

precedence. 



UP-3900 UNIVAC 490 SPURT 9 
SECTION: PAGE: 

The format for this statement is as follows: 

channel name MEANS c. channel nbr 

F. channel nbr 

a mnemonic name which will be replaced by the actual channel number. This is a stan
dard label. 

Vo specifies the actual channel number that should be substituted wherever a mnemonic 
channel name is used. The channel number must in all cases be an octal number from 
the set 0-7, 10-15. 

Relocatable Channels 

If the operand consists of a channel num ber preceded by the letter C, the channel 
number may be reassigned when the program is loaded. 

Fixed Channels 

If the operand consists of a channel number preceded by the letter F, the channel 
number is fixed. 

• FACIL 

The facility statement provides necessary information to the Real-Time Executive Rou
tine concerning the channels, peripheral units, and the number of units required for each 
program. In addition, provision is also made for the declaration of additional units, core 
storage, or drum storage, if a program is designed so that it can make use of additional 
facilities. There must be one facility statement for each channel required by a program. 
These declarative statements are mandatory for programs that will be controlled by the 
Real-Time Executive Routine. A complex relative program format is required when a pro
gram operates under control of the Real-Time Executive Routine. A facility record, which 
is part of the complex relative format, is created from the information contained in the 
facility statement. The format of the facility statement is as follows: 

I
Channell' FACIL I facility 

name 

I I 
type of number of units 

ass i gnment or area defin ition 
maximum number 

of un its or area 

channel name is the mnemonic name given to the channel. It is the same name used 
with the ASSIGN and MEANS operation. It is required for all statements except 
where the hardware name is CORE. 

9 



9 10 
SEC TION: PAGE: 

UNIVAC 490 SPURT 

Vo the facility name is a fixed name describing the type of peripheral equipment connec
ted to the channel. The possible facility names are listed below: 

NAME TYPE 
CORE Core area 

DRUM Drum area 

~Tr'-' 
r.., _______ 

1..I1';)~ 1..I1::H; i::trt:i::t 

FAST Fastrand area 

MTAPE UNISERVO IIA units 

UTAPE UNISERVO IlIA units 

CTAPE UNISERVO IIIC units 

CARDR Card Reader 

CARDP Card Punch 

PRINT Printer 

PTAPER Paper Tape Reader 

PTAPEP Paper Tape Punch 

COMM Comm unications 

v, this operand specifies whether the units are fixed or relocatable when the program is 
loaded. 

F indicates fixed assignment at load time. 

R indicates relocatable assignment at load time. 

V
2 

this operand specifies the number of units required on a channel for all facility types 
except CORE and DRUM. 

For the facility name CORE, this operand specifies the number of relocatable core 
memory locations that could be used in addition to the total assigned to the program 
by the assembler. 

For the facility name DRUM, the total relocatable storage area required is specified 
by this operand. This would be the sum of the relocatable area declared for a drum 
system by the DRUM-AREA statement. The use of the DRUM-AREA statement is ex
plained in this section. 

UP-3900 

V3 this operand specifies the maximum number of units for all facility names except DRUM. 
The Maximum relocatable area is specified if the facility name is DRUM. 

This operand is not used for the facility name CORE. Additional core memory require
ments are requested as described for the v

2 
operand. 



UP-3900 UNIVAC 490 SPURT 

• Example of facility declaration for a tape system. 

(1) Relocatable 

TAPESYS1 

TAPESYSI 

TAPESYSl 

(2) Fixed 

TAPESYS1 

TAPESYSI 

TAPESYS1 

w 

MEANS. C. 12 

ASSIGN . SI . S2 . S3 . S4 

FAC!L . MTAPE . R . 4 

w 

MEANS. F. 12 

ASSIGN. Sl (0) . S2 (1) . S3 (2) . S4 (3) 

FACIL . MTAPE . F . 4 

3. Drum and Fastrand Statement 

• DRUM-AREA 

9 
SECTION: PAGE: 

The DRUM-AREA statement reserves a relative drum area for the use of the program with
in which it is defined. There may be many drum areas reserved with each drum system. The 
actual location of the drum area will be assigned at load time and will depend upon what 
area is available. The Real-Time Executive Routine will recognize from the label that 
the program requires a relocatable drum area. All areas defined for a drum system will be 
assigned according to the drum base address. The format for the DRUM-AREA statement 
is as follows: 

w 

DRUM-AREA drum 

system name 

area name area length 

for DRUM 

number of 

sectors for 

FAST 

Vo specifies the name of the drum system as used in the ASSIGN statement. This ope
rand may be omitted if an installation has all its drums on one channel. It is always 
required for Fastrand. 

v t a standard alphanumeric label used as a reference for this particular drum area. Drum 
area names should never be used as an operand in the DRUM input/output operation. 
The actual input/output drum labels to be used in the DRUM operation are defined 
in the D-TAG statement. 

v2 specifies the number of locations to be reserved in the area. 

11 



9 
SECTION: 

12 UNIVAC 490 SPURT 
PAGE: 

• D-TAG 

The D-TAG statement labels a point within a drum area or Fastrand area that has been 
defined by a DRUM-AREA statement. Drum area is assigned when the program is loaded. 
The D-TAG assignmentis made relative to the assignment of the drum area. The following 
format is used for this statement: 

w 

drum D-TAG drum area name + increment 

area label 

defines a location within the area defined by a DRUM-AREA statement. 

v names a drum area defined by a DRUM-AREA statement. The increment locates the 
o 

position relative to the first location of the drum area or Fastrand area to which the 
label of this statement refers. The increment may be any number not exceeding the length 
of the previously defined DRUM-AREA. 

Example of facility declaration for a drum system with DRUM-AREA and D-TAG state-
ments. 

w 

DS1 MEANS C.5 

DS1 FACIL DRUM . R . 2000 

BLKONE D-TAG . INPTAREA + 100 

BLKTWO D-TAG INPTAREA + 199 

BLKTHREE D-TAG INPTAREA + 299 

4. Text Statement 

• FORM-TEXT 

The FORM-TEXT statement will convert an alphanumeric text into Fieldata code. The 
text is placed into a specified position within a previously defined print area. This pre
pares a line of printing for a subsequent PRINT operation which will cause the line to 
be printed on the High-Speed Printer. 

w 

FORM-TEXT print area name 

v, 

in itial 

character pos ition 

text to be 

pri nted 

UP-3900 



UP-3900 UNIVAC 490 SPURT 9 
SECTION: PAGE: 

Vo specifies the area in which the text is to be stored. This is a 26 word area that must 
have been previously defined. A RESERVE statement may be used to define this area. 

v, specifies the initial character expressed as octal or decimal (1-200 or 1D-128D) at 
which the text is to be positioned in the print area. Allowing 128 characters to one 
line of a High Speed Printer page, this specifies where the first character of the text 
will be placed. This statement will not destroy any data which may precede or follow 
the present text. 

v
2 

contains the alphanumeric text to be stored for printing. Words may be separated by 
normal spacing. If a partial line is desired the symbol I STOP I (vertical bar, STOP, 
vertical bar) will generate a Fieldata code of 77. This code when encountered by the 
print command will cause spaces to appear in the rem aining positions of the printed 
line. 

5. Program Segmentation 

During the execution of programs of exceptional length, the memory requirements of the pro
gram may be reduced through segmentation. A segmented program consists of a controlling~ 
segment which calls secondary segments into memory to be executed as required. In addi
tion, tables which modify addresses within the secondary segment relative to the base 
address of the segment are created to permit communication between the controlling segment 
and the secondary segment. The loading and modification of segments are performed under 
control of the Real-Time Executive Routine. A complex relative program format is assumed. 
The declarative statements which are here described will produce no instructions in the 
final object program. A segment description record which precedes the object program coding 
will be created from information supplied by these declarative sta temen ts. 

II SEGMENT LABEL 

The first operation of a segment must be labelled. A segment is defined by its label. If 
a segmented program is on one source tape or card deck, the only PROGRAM header re
quired is that which occurs at the first line of coding. All other PROGRAM headers are 
superfluous but may be used as a convenience in marking segment points. 

• DEFINING SEGMENTS 

Segments are defined within a program by the SEGMENT statement. The format of this 
statement is as follows: 

v v 
o n 

I SEGMENT 5 eg m ent I a be Is 

Vo the label of the first operation of each segment is specified. This operation must 
generate instructions in the final object program. All instructions up to the specifi
cation of the next segment label are included in the defined segment. 

13 



9 
SECTION: 

14 UNIVAC 490 SPURT 
PAGE: 

• JUMP MODIFICA TION 

Secondary segments are loaded relative to the controlling segment. The controlling seg
ment is itself loaded in a relative position by the Real-Time Executive Routine. When it 
is necessary for the controlling segment to access portions of a loaded secondary seg
ment by a jump instruction, the address to which the jump is made must be modified to 
account for this relative placement. The points in the secondary segment to which a jump 
is to be made are specified in a series of S-TAG statements. A jump table will be cre
ated as a result of these statements, which will be placed at the end of the controlling 
segment. 

The S-TAG statements follow the SEGMENT statement. The format for the S-TAG list is 
as follows: 

w Vo v
1 

SEG1 S-TAG jump address · jump address 

S-TAG jump address · jump address 

~ 
SEG2 S-TAG jump address · jump address 

~ 
SEGn S-TAG jump address 0 

ENDSEG 

1 A fixed label is assigned to each segment for which jump addresses are specified. 
The S-TAG label number corresponds to the position of the first label specified in 
the SEGMENT statement. 

Vo the label of the jump address or addresses in the appropriate segment is specified 
& as Vo and v,. If more than two addresses are specified, the required num ber of S- T AG 
v1 statements are used. If an odd number of jump addresses are specified, the last v 

operand should contain a zero. The jump address entries may not be incremented. 

The list is terminated by an entry of ENDSEG in the operation position following the 
last S-TAG entry. 

• LOADING SEGMENTS 

A segment is loaded into memory in response to the LOAD statement. The format of the 
LOAD statement is as follows: 

w 

LOAD segment labe I 

Vo specifies the first label of the segme n t to be loaded. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 9 
SECTION: PAGE: 

The area reserved for secondary segments will be equal to the area required for the larg
est segment. After a segment is loaded by the controlling segment, control may be trans
ferred to the segment by a jump or return jump instruction. 

• Example of Segmentation: 

The program may be represented as follows: 

LABEL 

SEGSAt-PLE 

SEGI 
SEG2 

SEG3 

STATEMENT 

PROGRAM . J JONES . I5OCT63 

SEGMEHT • lOADSEG . ERRORSEG • DUMPSEG 
S-TAG . LOADSEG . 0 
S-TAG . ERRORSEG • ERRORONE 
S-TAG . ERRORlWO . 0 
S-TAG • DUMPSEG . 0 
EHDSEG 

CELOAD ~~LOADSEG == 
JP . LOADSEG ---
~OAD .~~~SE6= 
~ RJP . E~~ROHE _ ----c-= LOAD . DUMPSEG. 

EHT . A . W (COHSTONE) 

~ 
ERRORSEG ENT . Q • W (WORDOHE) 

ERRORONE 

ERRORlWO 

ENT . Q . W (STAT) 

~ 

CONTROLLING 
SEGMENT 

SEGI 

SEG2 

SEG3 

15 



9 
SECTION: 

16 UNIVAC 490 SPURT 
PAGE: 

C. COMMENTS 

The COMMENT statement provides for the inclusion of notes or comments at convenient 
points within a program. These notes will appear on some of the printed listings of the source 
program. This statement has no effect upon the final object program. The length of the nota
tion entered in the operand position must be within the maximum for a statement for the input 
fonnat. (See SPURT INPUT FORMATS, APPENDIX B.) Comments are written in the following 
format: 

w 

COMMENT notation 

Example: 

w 

COMMENT. ERROR PATH FOR WRONG TAPE 

UP-3900 



UP-3900 UNIVAC 490 SPURT 10-A 
SECTION: PAGE: 

10. PROGRAM TESTING AND CORRECTION 

Before a program can be utilized it must be tested to see if it contains any errors. To aid in this 
process, SPURT provides the user with the ability to request outputs in various forms, the ability 
to include program testing routines in the program, and the ability to make corrections. 

A. SPURT OUTPUTS 

Figure 10-1 shows the outputs that are available from an assembly on Paper Tape, Magnetic 
Tape, and the High Speed Printer. 

HIGH SPEED HIGH SPEED MAGNETIC PAPER TAPE PRINTER BLOCKS TYPE PRINTER ON MAGNETIC TAPE TAPE 
OF 

OUTPUT NUMBER USE NUMBER USE NUMBER USE NUMBER USE 

INPUT SPURT SPURT 1 INPUT OR 101' EDIT 201 EDIT 301' 
LANGUAGE EDIT INPUT 

SELECTIVE SPURT 
DUMP OF 2 INPUT 302 SPURT 

INPUT I OR INPUT 
LANGUAGE I EDIT I I I 

LABELS 

I 

SPURT 

I I AND 3 INPUT 103 EDIT 203 EDIT 303 SPURT 

ADDRESSES OR INPUT 
EDIT i I 

RELATIVE I SPURT I I I I I 
LABELS 4 INPUT 304 SPURT 

AND OR INPUT 
ADDRESSES EDIT 

EDITED 
INPUT LOAD 

LANGUAGE 10 OR 11 02
,- EDIT 210 EDIT 

AND EDIT 
COMPUTER 

B!NARY I 

ALPHABETIC 
SPURT 

SORT OF 11 INPUT III EDIT 211 EDIT 

LABELS 
OR 

EDIT 

SPURT 

I 
NUMERIC 

12 INPUT 112 SORT OF OR 
EDIT 212 EDIT 

LABELS EDIT 

ABSOLUTE 20 LOAD 320 2 LOAD 

SIMPLE 21 LOAD I 321" LOAD 
RELATIVE 

COMPLEX 322 LOAD 
RELATIVE 

1 If Output Number 501 is requested, concurrent Output Numbers 101 and 301 will be produced. 

2 II Output Number 520 is requested, concurrent Output Numbets 110 and 320 will be produced. 

3 II Output Number 521 is requested, concurrent Output Numbers 110 and 321 will be produced. 

Figure 10-;' SPURT OUTPUTS 

1 



10-A 
SECTION: 

2 UNIVAC 490 SPURT 
PAGE: 

Each of the outputs that are listed in Figure 10-1 can be requested by including the following 
statement in the source program coding: 

V 
n 

w vo V 
n 

OUTPUTS output number output number 

specifies the number of the output that is desired. A maximum of seven outputs may be 
requested. It should be noted that if SPURT Output Number 320, 321, 322, 520 or 521 
(magnetic tape outputs) is requested, SPURT will assign a provisional call number (a 
five-digit number that identifies a program on tape) to this output. The provisional call 
num bers that will be assigned are 00320, 00321, and 00322 respectively (00320 or 00321 
will be assigned to the magnetic tape ou tpu t that results from a request for SPURT 
Output Num ber 520 or 521). If the user desires he can assi gn a unique call number to the 
outputs mentioned by prefixing the requested output number with an octal number that 
ranges from 1 through 77. If this is done, SPURT will assign a combination of the octal 
number and the number of the desired output as the call number. For example, assume 
that SPURT Ou tput Num ber 322 is prefixed by the octal num ber 10; that is, the output 
num her is 10322. In this case} SPURT would assign 10322 as the call num ber for this 
particular output. 

SPURT outputs can also be requested by entering the numbers of the desired outputs when they 
are requested during assembly. A maximum of seven outputs can be requested. In the sections 
that follow the individual outputs are discussed within the category that applies. 

1. Paper Tape Output 

The following outputs are available on paper tape: 

• Output Number 1, Input Language 

This output consists of a complete dump of all the program operations, including notes, 
on paper tape. If the Ll Corrector (See Section 10.C., Correction Procedures) is used to 
correct the original program, this output provides a corrected program tape that is 
acceptable as input to the assembler. 

• Output Number 2, Selective Dump of Input Language 

This output is used to obtain a dump on paper tape of the program operations, including 
notes, that are contained within a particular area (s) of an assembled program. The 
programmer can request this output during a correction run. The program area (s) to be 
dumped is selected by means of the Ll identifiers (sequence numbers that are assigned 
to the program operations by SPURT during assembly). When this output is requested, 
the programmer specifies to the operator the initial and final L 1 identifiers of the area (s) 
to be dumped. This tape is acceptable as input to the assembler. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 10-A 
SECTION: 

• Output Number 3, Labels and Addresses 

This output consists of a listing on paper tape of all program labels {labels within Macro 
operations are not listed) including labels introduced on allocation input to the assembler 
and their corresponding addresses as they appear in the assembled program. This tape is 
acceptable as allocation input. 

• Output Number 4, Relative Labels and Addresses 

This output consists of a listing on paper tape of all program labels {labels within Macro 
operations are not listed) and their corresponding addresses made relative to zero (See 
Section 9. PROGRAM PREP ARA TION). A base address assigned by the operator at load 
time will be used to modify the label addresses. This tape is acceptable as allocation 
input. 

• Output Number 11, Alphabetic Sort of Labels 

PAGE: 

This output consists of a listi ng on paper tape, of all program labels {labels within Macro 
operations are not listed) and their corresponding addresses, in alphabetical order of the 
labels, as they appear in the assembled program. This tape is acceptable as allocation input. 

• Output Number 12, Numeric Sort of Labels 

This output consists of a listing on paper tape of all program labels {labels within Macro 
operations are not listed) and their corresponding addresses, in numerical order of the 
addresses, as they appear in the assembled program. This tape is acceptable as allocation 
input. 

• Output Number 10, Edited Input Language and Computer Binary 

This output consists of the L1 identifiers, the program operations including notes, coded 
error output if any errors are present, and the machine code instructions and their addresses. 
This tape is acceptable as program input to the computer. 

• Output Number 20, Absolute 

This output consists of absolute-addressed machine code instructions. This tape is 
acceptable as program input to the computer. 

• Output Number 21, Simple Relative 

This output consists of relatively-addressed machine code instructions. This tape is 
acceptable as program input to the computer. It is loaded relati ve to the starting 
address specified by the operator. 

2. High Speed Printer Output 

The following outputs are available on the High Speed Printer: 

• Output Number 101, Input Language 

This output consists of a complete dump of all program operations, their associated 
card numbers (if punched cards were used as input to the assembler), the L1 identifiers, 
and notes. It provides a listing of the program that is useful for editing and making 
corrections. 

3 



10-A 
SECTION: 

4 UNIVAC 490 SPURT 
PAGE: 

Example of SPURT Output Number 101: 

SPURT OUTPUT NO. 101 

CARDS L 1 10 LABEL STATEMENT NOTES 

0000.00 00000 FORMB PROGRAM KLEINHAUS*26JUL Y62 

0000.20 00001 FORMB JP 0 

0000.30 00002 STR B3*L (FORMB4) SAVE B-REGISTERS 

0000.40 00003 STR B4*L (FORMB4+1) 

0000.50 00004 STR B5*L (FORMB4+2) 

0000.60 00005 ENT A*B7 BUFFER BASE ADDRESS 

• Output Number 103, Labels and Addresses 

This output consists of a complete listing of all the program labels (labels within Macro 
operations are not listed) and their corresponding addresses as they appear in the assembled 
program. 

Example of SPURT Output Number 103: 

LABEL 

FORMB 

FORMB3 

FORMB 

LOC 

00000 

00035 

SPURT OUTPUT NO. 103 

KLEINHAUS*26JUL Y62 

LABEL 

FORMB1 

FORMB4 

LOC 

00032 

00042 

LABEL 

FORMB2 

• Output Number 111, Alphabetic Sort of Labels 

LOC 

00034 

This output is same as Output Number 103 with the exception that the labels will 
appear in alphabetic order. 

• Output Number 112, Numeric Sort of Labels 

This output is the same as Output Number 103 with the exception that the labels 
will appear in numerical order; that is, in order of their respective addresses. 

• Output Number 110, Edited Input Language and Computer Binary 

This output consists of a complete listing of card numbers (if punched cards were used 
as input to the assembler), the L1 identifiers, coded error output if any errors are 
present, the program operations, the machine code instructions and their addresses, and 
notes. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 10-A 5 
SECTION: PAGE: 

Example of Output Number 110: 

SPURT OUTPUT NO. 110 

CARDS L 1 10 LABEL STATEMENT Loe F JKB Y NOTES 

0000.00 00000 FORMB PROGRAM KLEINHAUS*26JUL Y62 

0000.20 00001 FORMB JP 0 00000 61000 00000 

0000.30 00002 STR B3*L (FORMB4) 00001 16310 00042 SAVE B-REGISTERS 

0000.40 00003 STR B4*L (FORMB4+ 1) 00002 16410 00043 

0000.50 00004 STR B4*L (FORMB4+2) 00003 16510 00044 

0000.60 00005 ENT A*B7 00004 11007 00000 BU FFER BASE ADDRESS 

It should be noted that when SPURT Output Number 110 is requested for a segmented 
program, each segment is identified by its own header on the printed copy in the form 

xxxxxxxxxx -SEGMENT SPURT OUTPUT NO. 110 

where xxxxxxxxxx is the segment label. In addition, when the % symbol or the: symbol 
appear on the printed copy in the first column to the right of the Y portion of a machine 
coded instruction, this means that the upper half of the instruction will be modified at 
load time. Ii either of these symbols appear in the second column to the right, this means 
that the lower half of the instruction will be modified at load time. The % symbol indicates 
modification relative to the current segment base and the: symbol indicates modification 
relati ve to the control segment base. 

3. High Speed Printer Output on Magnetic Tape 

SPURT Outputs Number 201,203,210,211, and 212 are the same as outputs number 101, 
103, 110, 111, and 112 with the exception that the information is stored on magnetic tape 
instead of being prin ted. 

4. Magnetic Tape Output 

The following outputs are available on magnetic tape: 

• Output Number 301, Input Language 

This output consists of a complete dump of all the program operations, including notes, 
on magnetic tape. This tape is acceptable as input to the assembler. 

• Output Number 302, Selective Dump of Input Language 

This output consists of a dump on magnetic tape of the program operations, including 
notes, toot are contained within a particular area (s) of an assembled program. The 
programmer can request this output during a correction run. The program area (s) to be 
dumped is selected by means of the L1 identifiers. When this output is requested, the 
programmer specifies to the operator the initial and final L 1 identifiers of the area (s) 
to be dumped. This tape is acceptable as input to the assem bIer. 



10-A 
SECTION: 

6 UNIVAC 490 SPURT 
PAGE: 

• Output Number 303, Labels and Addresses 

This output consists of a listing on magnetic tape of all program labels (labels within Macro 
operations are not listed) including those labels introduced on allocation input to the 
assembler and their corresponding addresses as they appear in the assembled program. 
This tape is acceptable as allocation input. 

• Output Number 304, Relative Labels and Addresses 

This output consists of a listing on magnetic tape of all program labels (labels within Macro 
operations are not listed) and their corresponding addresses made relative to zero. A base 
address assigned by the operator at load time will be used to modify the label addresses. 
This tape is acceptable as allocation input. 

• Output Number 320, Absolute 

This output consists of absolute-addressed machine code instructions. It is acceptable 
as program input to the computer. 

• Output Number 321, Simple Relative 

This output consists of relatively-addressed machine code instructions. This tape is 
acceptable as program input to the computer. It is loade'd relative to the starting 
address specified by the operator. 

• Output Number 322, Complex Relative 

This output consists of machine-coded instructions that are preceded by blocks that 
describe the facility requirements of the program. At load time REX will analyze 
these requirements. It will then place the program in an available core storage area 
and assign the required peripheral units on the basis of the information that is supplied. 
If the program is segmented, this is the only SPURT output that is acceptable as 
program in put to the computer. 

It should be noted that Output Numbers 101, 103, 110, 201, 203, 210, and 301 are the 
only outputs that may be requested in conjunction with Output Number 322. 

5. Concurrent High Speed Printer and Magnetic Tape Output 

The following concurrent outputs are available: 

• Output Number 501, Concurrent Output Numbers 101 and 301. 

• Output Number 520, Concurrent Output Numbers 110 and 320. 

• Output Number 521, Concurrent Output Numbers 110 and 321. 

UP-3900 



UP-3900 UNIVAC 490 SPURT lO-B 
SECTION: 

B. PROGRAM TESTING ROUTINES 

SPURT provides routines that can be utilized by the programmer to aid in testing a program. 
The operations that can be requested and the various methods of utilizing these routines 
are discussed in the sections that follow. 

1. Program Testing Operations 

Program testing operations may be used to provide output on the High Speed Printer at 
various points during the running of the program. This output consists of the contents 
of the various registers, the contents of a specified core storage area, or a listing of 
changes that have occurred in a specified core storage area. 

• Define Area 

This operation is used to define the area to which program testing operations will 
apply. The format of this operation is as follows: 

w vo v, v2 

I DEF-AREA area name initial area number of 

I 
addres s words 

I I 

Vo defines the name of the area to which program testing operations will apply. 

v, specifies the initial address of the area. 

v
2 

specifies the number of words in the area. 

• Establish Core Image 

This operation will establish an area in core storage that will initially duplicate a 
program area that was previously defined by a Define Area operation. The format for 
this operation is as follows: 

w Vo v, v2 

CORE-IMAGE area name initial image key setting 
address 

Vo specifies the area, previously defined by a Define Area operation, that is to be 
imaged. 

v, specifies the initial core address for the image. The length of the image is 
determined by the length specified in the Define Area operation that is 
associated with the program area to be imaged. 

1 
PAGE: 



lO-B 
SECTION: 

2 UNIVAC 490 SPURT 
PAGE: 

v2 is optional. The allowable entries in this position are KEY 1, KEY 2, or KEY 3. 
These entries are associated with Console Switches 1, 2, and 3 respectively. If 
an entry is made, the operation will not be performed unless the associated 
console switch is set. It should also be noted that if programs are to be run 
concurrently, care must be taken to insure that a key setting for one program will 
not affect any of the other programs during processing. 

• Establish Drum Image 

This operation establishes an area in drum storage that will initially duplicate a program 
area that was previously defined by a Define Area operation. The format for this 
operation is as follows: 

w Vo v
1 v 2 

DRUM-IMAGE area name initial image key setting 
address 

Vo specifies the area~ previously defined by a Define Area operation, that is to be 
imaged. 

v 1 specifies the address of the core storage location that contains the in itial drum 
address for the image. The length of the image is determined by the length 
specified in the Define Area operation that is associated with the program area 
to be imaged. 

v 2 is optional. The allowable entries in this position are KEY 1, KEY 2, or KEY 3. 
These entries are associated with Console Switches 1, 2, and 3 respectively. 
If an entry is made, the operation will not be performed unless the associated 
console switch is set. It should also be noted that if programs are to be run 
concurrently, care must be taken to insure that a key setting for one program 
will not affect any of the other programs during processing. 

• Test Image 

This operation compares a program area, previously defined by a Define Area operation, 
against the corresponding core or drum image established for that area. The image and 
the program area are compared word by word and any non-comparing words will be 
printed on the High Speed Printer. When the operation is completed, the contents of the 
area that was tested will become the new image. It should also be noted that a listing 
of the contents of the A, Q, and Bl through B7 registers will always precede the 
listing of the non-comparing words when this operation is executed. The format of the 
Test Image operation is as follows: 

w 

TEST-IMAGE area name area name 

V 
n 

key setting 

UP-3900 



UP-3900 UNIVAC 490 SPURT lO-B 
SECTION: 

Vo specifies the area, previously defined by a Define Area operation, that is to be 
tested. 

v .. is optional. The allowable entries in this position are KEY 1, KEY 2, or KEY 3. 
These entries are associated with Console Switches 1, 2, and 3 respecti vely. 
If an entry is made, the operation will not be performed unless the associated 
switch is set. It should also be noted that if programs are to be run concurrently, 
care must be taken to insure that a key setting for one program will not affect 
any of the other programs during processing. 

Example of Test Image Operation Listing: 

ENTRANCE ADDRESS 30036 

A 12345 67012 Q 76543 21076 

B 1 00001 B2 00022 B3 00333 B4 04444 B5 055555 B6 60606 B7 07070 

ENTRANCE ADDRESS 300037 TESTiO 30066 THRU 30105 

LOC IMAGE AREA LOC IMAGE AREA 

30066 00010 20304 00001 20304 30070 12131 41516 12130 41516 

30073 31323 33435 31323 45565 30076 50515 25354 02024 66642 

• Dump Registers 

This operation causes the contents of the A, Q, and Bl through B7 registers to be 
listed on the High Speed Printer. The format of the Dump Registers operation is as 
follows: 

w 

DUMP-REG key setting 

Vo is optional. The allowable entries in this position are KEY 1, KEY 2, or KEY 3. 
These entries are associated with Console Switches 1, 2, and 3 respectively. 
If an entry is made, the operation will not be performed unless the associated 
switch is set. It should also be noted that if programs are to be run concurrently, 
care must be taken to insure that a key setting for one program will not affect 
any of the other programs during processing. 

3 
PAGE: 



lO-B 
SECTION: 

2. 

4 UNIVAC 490 SPURT 
PAGE: 

Example of Dump Registers Operation Listing 

ENTRANCE ADDRESS 25076 

A 02530 33330 Q 00000 22746 

B 1 00010 B2 07774 B3 00022 B4 00040 B5 02040 B6 00000 B7 00012 

• Dump Area 

This operation causes all non=zero \'Ilords in an area, previously defined by a Define Area 
operation, to be listed on the High Speed Printer. The format of a Dump Area operation 
is as follows: 

w vo V 
n -1 

v 
n 

DUMP-AREA area name area name key setti ng 

v 0 specifies the area, previously defined by a Define Area operation, that is to be 
dumped. 

V n is optional. The allowable entries in this position are KEY 1, KEY 2, and KEY 3. 

LOC 

30066 
30072 
30076 
30102 

These entries are associated with Console Switches 1, 2, and 3 respectively. If 
an entry is made, the operation will not be performed unless the associated 
switch is set. It should also be noted that if programs are to be run concurrently, 
care must be taken to insure that a key setting for one program will not affect 
any of the other programs during processing. 

Example of Dump Area Operation Listing: 

F JKB Y LOC F JKB Y LOC F JKB Y LOC F JKB Y 

00002 20304 30067 05060 71011 30070 12127 41516 30071 17202 12223 
24252 62730 30073 31323 57714 30074 36374 04142 30075 43444 54647 
33323 77756 30077 55565 76061 30100 62636 46566 30101 67707 17273 
74757 67710 30103 01011 02103 30104 10410 51061 30105 07110 00000 

Utilizing Program Testing Routines 

The Program Testing Routines, when utilized, may be considered as a subroutine of the program 
that is being tested. The Program Testing Routines have facility requirements that must be 
added to the facility requirements of the program being tested. Specifically, if Drum Image 
operations are to be used, declarative operations associated with Drum input/output must be 
present in the program coding. A Printer will be required in all cases to print out the pertinent 
information that is requested by, or which results from the testing operations. Since a Printer 
is required, declarative operations associated with Printer input/output must also be included 
in the program coding. 

UP-3900 



UP-3900 UNIVAC 490 SPURT lO-B 
SECTION: PAGE: 

Input/output operations within the Program Testing Routines refer to the Printer channel by the 
mnemonic name DEBUG790 and to the Drum channel by the mnemonic name DEBUG780. This 
implies that the user must at least provide a MEANS statement to define the specific channel 
for the Printer, and optionally, the Drum if it is used. These statements would appear in the 
program coding as follows: 

w NOTES 

Cxx (Printer) DEBUG790 MEANS 

DEBUG780 MEANS Cxx (Drum, if used.) 

xx is the octal channel number that is assigned 

Other declaritive statements (ASSIGN, FACIL) may be required in the program coding depending 
upon the environment in which the program being tested and the Program Testing Routines will 
operate. Furthermore, it is possible that the program being tested may require the use of a 
Printer subsystem and/or Drum. In this case some modification to either the program being 
tested or the Program Testing Routines may be required to assure a uniform channel assignment 
to the Printer subsystem and the Drum if used. 

If Core Image operations are used, the core area utilized for the image must be provided by the 
program being tested. The core area can be provided by the use of allocation or by reserving 
an area within the program. 

The four methods by which the user can utilize the Program Testing Routines are discussed in 
the text that follows: 

• Method 1 

This method requires that the Program Testing Routines header, DEBUG-AIDS, be placed 
in the source program coding as follows: 

w NOT ES 

DEBUG-AIDS PROGRAM TESTING ROUTINES HEADER 

TEST PROGRAM. JONES. 8 JULY 63 PROGRAM HEADER 

~ 
Program Coding 

~ 
During assembly the Program Testing Routines package will be called from the SPURT 
library and will be placed at the end of the program coding. Linkage to the package will 
be generated by the program testing operations that have been included in the program. 

If the program is segmented or if it is to be assembled in complex relative format, 
this is the only method by which the program Testing Routines can be utilized. 

The linkage can be eliminated by removing the Program Testing Routines header 
from the original source program coding and reassembling. 

5 



10-B 
SECTION: 

6 UNIVAC 490 SPURT 
PAGE: 

If Input Language output is requested, the Program Testing Routines header will not be 
included in this output; however, the Program Testing Routines package will be placed at 
the end of the program coding. If this output is used as input to a future assembly the 
Program Testing Routines header will have to be loaded at assembly time. This can be 
accomplished via punched cards, paper tape, or by using Method 4. 

• Method 2 

This method differs from Method 1 in that it allows linkage to the Program Testing 
Routines package to be generated without actually calling the package from the SPURT 
library. To accomplish this, it is necessary to change the coding shown for Method 1 
as follows: 

w NOTES 

DEBUG-AIDS PROGRAM TESTING ROUTINES HEADER 

TEST PROGRAM. JONES. 8 JULY 63 PROGRAM HEADER 

IGNORE . DEBUG-AIDS 

~ 
Program Coding 

~ 

During assembly the Program Testing Routines package will not be called from the 
SPURT library. Instead, the program testing operations that have been included in ihe 
program coding will generate linkage to the package at address 36~00. 

When Method 2 is used, the Program Testing Routines package will have to be loaded 
in absolute format at address 36000 at the time the program is run. The linkage can 
be eliminated by removing the Program Testing Routines header from the source 
program coding and reassembling. 

• Method 3 

This method is the same as Method 2 with the exception that it allows the user to 
specify the address where the Program Testing Routines package will be loaded when 
the program is run. To provide this option, it is necessary to change the coding shown 
for Method 2 as follows: 

UP-3900 



UP-3900 UNIVAC 490 SPURT 10-B 
SECTION: PAGE: 

w NOT ES 

DEBUG-AIDS PROGRAM TESTING ROUTINES HEADER 

TEST ALLOCATION. JONES. 8 JULY 63 ALLOCATION HEADER 

DEBUG aaaaa ALLOCATION OF PROGRAM TESTING 
ROUTINES PACKAGE 

TEST PROGRAM. JONES. 8 JUL Y 63 PROGRAM HEADER 

IGNORE .. DEBUG-AIDS 

~ 
Program Coding 

This result is the same with this method as with Method 2 with the exception that the 
program testing operations will generate linkage to the Program Testing Routines 
package at address aaaaa instead of address 36000. When Method 3 is used, the 
Program Testing Routines package will have to be loaded in absolute form at address 
aaaaa at the time the program is run. 

The linkage can be eliminated by removing the Program Testing Routines header and 
reassem bling. 

It should also be noted that an Equals statement could be used to allocate DEBUG. 

• Method 4 

This method produces the same results as Method 2. It differs from Method 2 in that it 
is not implemented by the inclusion of the Program Testing Routines header, 
DEBUG-AIDS, and the IGNORE. DEBUG-AIDS operation in the source program coding. 
Instead, it is implemented by entering 10000 when outputs are requested during 
assembly. 

As with Method 2 the Program Testing Routines package is not called from the SPURT 
library during assem bly. Instead, the program tes tin g operations that are in the program 
coding will generate linkage at address 36000. When Method 4 is used, the Program 
Testing Routines package will have to be loaded in absolute form at address 36000 at 
the time the program is run. 

If the Program Testing Routines package has already been incorporated as part of the 
program coding, Method 4 will cause the Program Testing Routines header to be loaded 
and linkage to the package will be generated as described for Method 1. 

7 



UP-3900 UNIVAC 490 SPURT 10-C 
SECTION: 

C. CORRECTION PROCEDURES 

Following an assem bly run it is often necessary to delete or replace existing program 
operations, or to add new operations to the source program. The procedures for effecting 
deletions, replacements, and additions are described in the text that follows. 

1. Card Correction Procedures 

If the source program is on punched cards, deletions are made by removing cards from the 
program deck, replacements are made by removing the original cards and inserting new 
ones, and new operations are added by inserting cards. The operations that are to be 
deleted or replaced and the points where new operations are to be added are located by 
mesns of the card numbers. These numbers can be determined by examining a High Speed 
Printer Output Number 101 or 110 of the source program. 

For example, ,assume that a High Speed Printer Output Number 101 shows that a portion 
of the source program is 

SPURT OUTPUT NO. 10 1 

CARDS L1 10 LABEL STATEMENT NOTES 

0000.00 00000 FORMB PROGRAM KL EINHAUS*26JUL Y62 

0000.20 00001 FORMB JP 0 

0000.30 00002 STR B3* L (FORMB4) SAVE B-REGISTERS 

0000.40 00003 STR B4* L (FORMB4+ 1) 

0000.50 00004 STR B5*L (FORMB4+2) 

0000.60 00005 ENT A*B7 BUFFER BASE ADDRESS 

and that the following changes are to be made: 

• The statement JP. 0 is to be deleted. 

• The statement STR.B6 . L (FORMBS) is to be added to the program between the state
ments STR . BS . L (FORMB4+2) and ENT . A . B7 . 

• The statement STR . B4.L (FORMB+l) is to be replaced with the statement STR . 
B2.U (FORMB+1). 

These changes are effected as follows: 

• The statement JP . 0 is deleted by removing card number 0000.20 from the program deck. 

• The statement STR . B6 . L (FORMBS) is added to the program by preparing a card that 
has a card number that is greater than the card number assigned to the statement STR . 
B5 . L (E" ORMB4+2) but less than the card number assigned to the statement ENT . A . 
B7. When such a card has been prepared, it is then inserted into the program deck 
between card number 0000.50 and card number 0000.60. 

• The statement STR . B4 . L (FORMB+1) is replaced by the statement STR . B2 . 
U (FORMB+1) by preparing a card that contains the latter statement and has the same 
card number as the former statement. The card containing the original statement (card 
number 0000.40) is then removed from the program deck and the new card is inserted in 
its place. 

1 
PAGE: 



SECTION: 

10-C 2 UNIVAC 490 SPURT 
PAGE: 

2. The L 1 Corrector 

The L1 Corrector is a routine within the assembler that enables the user to make corrections 
to a source program which is on paper tape (SPURT Output Number 1) or magnetic tape 
(SPURT Output Number 301). A maximum of 92 (decimal) changes (deletions, replacements, 
and additions) are made by preparing a paper correction tape or card deck that begins with a 
header that has the following format: 

I w Vo v
1 

program name CORRECT -L 1 • date programmer s name 

This header is followed by coding that will effect the required changes to the source 
program. The operations that are to be deleted or replaced and the points where new 
operations are to be added are located by means of the L1 identifiers that were assigned 
during the initial assembly. The identifiers can be determined by examining a High Speed 
Printer Output Number 101 or 110 of the source program. 

To illustrate, assume that a High Speed Printer Output Number 101 shows that a portion of 
the source program is 

SPURT OUTPUT NO. 101 

CARDS L 1 10 LABEL STATEMENT NOTES 

00000 TESTGA PROGRAM JONES*30JUL Y63 

00001 TEST1 RSH Q*l*AZERO 

00002 RSH A*2 

00003 RSH AQ*3 

00004 COM A*W(CAT)*YLESS 

00005 COM Q*L (CAT)*YMORE 

and that the following changes are to be made: 

• The statement RSH . Q.1 . AZERO is to be deleted. 

• The statement STR . B3 . L (DOG) is to be added to the program between the statements 
RSH . AQ . 3 and COM . A. W (CA T) . YLESS. 

• The statement COM. Q . L(CAT). YMORE is to be replaced by the statement 
COM. Q . U (CAT+2) . YMORE.. 

These changes are effected by preparing a paper correction tape or card deck that has the 
following format: 

UP-3900 



UP-3900 UNIVAC 490 SPURT 10-C 
SECTION: 

w 

TESTGA CORRECT-Ll . JONES. 31 JULY 63 

00001.000 

DELETE 

00003.001 

STR . B3 . L. (DOG) 

00005.000 

COM. Q . U (CA T + 2) . YMORE 

As shown above each change is located by an L1 identifier and a three-digit octal insertion 
number. (The sequence of the insertion numbers is .000 through .007, .010 through .017, and 
so on.) Since the first change is a deletion the insertion number is .000. In the case of the 
second change the insertion number is .001 because this statement is to be inserted between 
two existing statements; that is, the L1 identifier and the insertion number of the statement 
to be inserted has to be greater than that of the preceding statement but less than that of 
the following statement. In the case of the third change the insertion number is .000 because 
this statement is replacing an existing statement. 

PAGE: 

Two cards will be needed for each correction if card input is used. This card pair will consist 
of one card that contains the L1 identifier and insertion number and one card that contains 
the word DELETE (for a deletion), a statement that is to be added, or a statement that is to 
replace an existing statement. These cards will be punched in the standard SPURT card input 
format with one exception. This exception is that the Ll identifier and insertion number must 
be placed in columns 8 through 16. 

It should also be noted that it is possible to delete a series of consecutive statements from 
the source program by including on the correction tape or card deck coding in the following 
format: 

w 

iiiii. 000 

DELETE IT 

iiiii = L1 identifier of the first statement in the series to be deleted. 

n = the number (octal or decimal) of statements to be deleted. 

3. The Card Image Corrector Routine - CIMCO 

CIMCO is a utility routine that operates under the control of REX. It utilizes punched cards 
to make corrections to a source program that is on magnetic tape in input language format 
(SPURT Output Number 301). Since CIMCO is not a part of the assembler, the user can 
save considerable time by utilizing it instead of the L1 Corrector whenever corrections 
have to be made to a source program on magnetic tape. 

3 



10-C 
SECTION: 

4 UNIVAC 490 SPURT 
PAGE: 

Changes to a source program (deletions, replacements, and additions) are made by 
preparing a card deck that begins with a header card that has the following format: 

PROGRAM COpy PROGRAM NEW PROGRAM 
CALL INDICATOR NAME NAME 

NUMBER (OPTIONAL) (LEFT (LEFT JUSTIFIED, 
(RIGHT JUSTIFIED) OPTIONAL) 

JUSTIFI ED) - ----I--- .... ____ .......----.... 
11 20121 30131 

The header card is followed by one or more correction cards that contain the word DELETE 
(for a deletion), a statement that is to be added, or a statement that is to replace an 
existing statement. The operations that are involved and the points where new operations 
are to be added are located by means of the L1 identifiers that were assigned during the 
initial assembly. The identifiers can be determined by examining a High Speed Printer 
Output Number 101 or 110 of the source program. The correction cards are punched in the 
standard SPURT input card format with the exception that the L1 identifier of the statement 
that is involved is placed in columns 73-77 (leading zeros need not be punched) andnd 
the insertion num ber is placed in columns 78-80. Since columns 73-80 are never used in 
processing, this format allows the correction cards to be used for updating a source 
program deck. When a correction deck is prepared, the correction cards must be placed in 
the deck in ascendin g L 1 identifier order; that is, the correction card with the lowest L 1 
identifier must be the first card after the header card, the card with next highest L1 
identifier must be the second card, and so on. The use of card numbers on correction cards 
is optional; however, if card num bers are placed on correction cards it is the user's 
responsibility to see that these numbers are in the proper sequence. 

The final correction card for a given program is followed by an end of corrections cards 
that contains slashes in columns 1-5. 

If there is only one program to be corrected, the end of corrections card is followed by a 
card that has the word END in columns 1-3. 

If another program on the same tape is to be corrected, the end of corrections card is 
followed by a new header card. 

If more than one program on the same tape is to be corrected, the card with the word END 
will follow the end of corrections card in the last group of corrections. 

To illustrate the use of CIMCO, assume that a High Speed Printer Output Number 101 shows 
that a portion of the source program TESTGA is 

SPURT OUTPUT NO. 101 

CARDS L 1 10 LABEL STATEMENT NOTES 

00032 SUB A*LX (CAT+l) 

00033 SUB Q*UX (CAT+2)*QNEG 

00034 SUB LP*W (CAT)* ANOT 

00035 MUL W(CAT) 

00036 MUL 123456 

00037 DIV W(CAT) 

sOl 

UP-3900 



UP-3900 UNIVAC 490 SPURT lO-C 
SECTION: PA.GE: 

and that the following changes are to be made: 

• The statement SUB, Q ' UX (CAT+2) , QNEG is to be deleted, 

• The statement SUB, Q ' W (DOG) is to be added to the program between the statement 
SUB, LP , W (CAT+2) , ANOT and MUL , W (CAT), 

II The statement DIV , W (CAT) is to be r~placed by the statement DIV , U (DOG), 

These changes are effected by preparing a card deck that has the following format: 

HEADER CARD 

301 TESTGA - 20 - 30131 - -1 56 89 ~1 21 -
CORRECTION CARDS 

DELETE 00033 

/ I 
SUS'Q'W'(DOG) 00034 

/ I 

DIV'U'(DOG) 00037 - -- -- - -1 1718 72 73 77 

END OF CORRECTION CARD 

IIIII 
i..o-. -- -5 6 

END CARD 

END 

80 

001 
I 

78 80 

-
80 

------------------------------------------.--------------------------~ - --- ~ 1314 - 80 

5 



lO-C 
SEC TION: 

6 UNIVAC 490 SPURT 
PAGE: 

It is also possible to delete a series of consecutive statements from the source program by 
inc1udi ng a card that has the following format in the correction deck: 

UP-3900 

( I III 
I IOELETE.n_ Ii iii il I 
~-----17~1~8~~~~--------------------------------~72~7~3~77±7~&8~~ 

iiiii = Ll identifier of the first statement in the series to be deleted. 

n = the number of statements to be deleted. This number cannot exceed 777 octal. 

It should be noted that the following options are also available: 

II Copy 

If the letter C is placed in column 9 of the first header card in the correction deck, the 
input tape will be copied onto an output tape until the first program to be corrected is 
found. The specified program is then corrected and copying continues until the end of 
file or the next program to be corrected is reached. 

• Multiple Reel Magnetic Tape Input 

If an end of file is encountered before the END card in the correction deck is read, the 
current input tape will be rewound. When this occurs, the user can terminate the 
correction run or mount a new input tape and continue. 

• Selective Copy 

A particular program (s) can be extracted from a tape containing several programs and 
be copied onto an output tape. This is accomplished by preparing a card deck that 
contains a header card and an end of corrections card for each program that is to be 
copied. 



UP-3900 UNIVAC 4BC·-SPU'RT 
SECTION: PAGE: 

D. CODED ERROR OUTPUT DURING ASSEMBLY 

SPURT provides an automatic High Speed Printer listing (SPURT Output Number 777) of any 
translation or allocation errors that occur during assem bly. This output consists of the program 
operations that were in error and associated error codes, their card numbers (if punched cards 
were used as input to the assembler), their Ll identifiers, and notes. 

1£ a High Speed Pri nter is not available, the error output will be written on magnetic tape in High 
Speed Printer edited format. 

Example: 

SPURT OUTPUT NO. 777 

CARDS L 1 ID LABEL TA STATEMENT NOTES 

00017 0 CTAPE LOBCD*T7*Tl1*T13*T10*T22*T12 

00024 0 CTAPE LlBIN*T1 

00025 S CTAPE SEARCH*T 12* BCW 

00026 SID 0 CTAPE READ*T22*B4 

00030 0 CTAPE MOVEF*3400D 

00034 0 CTAPE HIBCE*T17 

00037 0 CTAPE HVBCT*T7 

00040 

00045 R COM A*W (CA T)*YLESS 

00355 CON D CONSOLE HOLD 

As shown in the above example, two columns labeled T and A appear to the left of the 
STATEMENT column. These columns serve to indicate the type of error. If the error code 
appears in column T, it is a translation error; if it appears in column A, it is an allocation 
error. The table that follows shows the various error codes that can appear during assembly: 

CODE 

C 

N 

o 

S 

D 

E 

F 

R 

U 

TYPE OF ERROR 

Translation 

Translation 

Translation 

Translation 

T ran S lati on 

Ai location 

Allocation 

Allocation 

Allocation 

Allocation 

MEANING 

Underfined channel. 

III egal operator. 

A decimal number not followed 
by a D or a non-numeri c 
character within a probable
number. 

Illegal format or an illegal 
B I J ,or K des i g n a to r. 

Statement too long or incomplete. 

Duplicate label. 

EQUALS used incorrectly. 

First instruction does not 
have a label. (Instruction will 
be allocated to zero.) 

Reference to a duplicate label. 

Unallocated label. (Label will 
allocated to zero.) 

1 



lO-D 
SECTION: 

2 UNIVAC 490 SPURT 
PAGE: 

If errors occur durin g assem bly, the message 

Pxx program name ERRORS FOUND n 

xx Program identification number. 

n The number (octal) of errors that were found 

will be relayed via the Console Printer prior to the error output. 

It shouid aiso be noted that if a SPURT Output Number, number 10 or 110 has been requested and 
errors occur during assembly, the error codes that appear on the error listing will also appear on 
the SPURT output listing. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14 
SECTION: PAGE: 

14. MISCELLANEOUS ROUTINES 

This section contains reference information for routines that will perform various subsidiary functions 
in a UNIVAC 490 Real-Time System. Most of these routines are designed to operate under control of 
the REX (Real-Time) Executive Routine which permits their use in a multiprogram environment. Some 
include an option which provides for independent operation. 

1 



UP-3900 UNIVAC 490 SPURT 14-A 1 
SECTION: PAGE: 

A. RMOPL II 

RMOPL II (Routine for Maintaining an Obj ect Program Library) is used to create and maintain 
magnetic tape files of final object programs produced by the SPURT assembler. These files may 
serve as a final object code source for MITAR (Master Instruction Tape Assembly Routine), which 
creates a program file containing scheduling and operational information for operation of programs 
under control of REX (Real-Time Executive Routine). The library may also be the source for direct 
program input to the system. 

1. System Requirements 

Minimum equipment requirements consist of: 

• 2,3008 words of core storage 

• 3 UNISERVO units 

• a paper tape or card reader 

• a High Speed Printer and/or a Card Punch. 

REX is utilized for program loading, input/output requests, and the entry of parameters which define 
variables in the program. A maximum of SO parameter cards may be entered 

2. Tape Composition 

.!J.1 library tape is composed of: 

• A label record in the following format: 

o 

2 

3 

4 

5 

NOT 
USED 

22 

23 

7 3 7 

7 3 7 

y y 

7 3 7 

7 3 7 

yyddd is year and day 

3 7 3 

3 7 3 

Libra ry 

Name 

d 

3 7 3 

3 7 3 

7 3 7 3 

7 3 7 3 

d d 

7 3 7 3 

7 3 7 3 



14-A 
SEC TION: 

2 
PAGE: 

• Any number of SPURT object programs as defined in APPENDIX E. The words in the 
iden tification record containing the library number will be modified to reflect the number 
assigned by RMOPL II. 

• Two standard end of file sentinels. 

• A tape mark if the UNISERVO IIIC was used for output. 

3. Operations Performed 

RMOPL II will perform the following operations: 

• create a new library 

• update an existing library 

• coincident with either of the above functions, or as a separate pass, print and/or punch 
a library directory. 

Any SPURT object code output may be included in a library. As part of the placement process, 
a 5 octal digit number is assigned each program as a library number. Programs within a library 
are arranged in ascending sequence by library number. 

4. Parameter Cards 

• Function Card 

A function card is used to specify the function to be performed. There are two functions: 

BLD Form the input programs into a new library. 

UPD Operate upon an input library to add and/or delete programs producing an updated 
library. 

COLUMNS CONTENTS 

1 C 

2, 3 05 

III - 13 BLD or UPD 

16 - 30 (The name of the library being built or updated) 

• Program Card 

BLD Function 

One or more program cards may follow the BLD card to identify specific programs from the 
input tape which are to be placed in the library. 

Absence of program cards implicitly specifies that all object code from the input tape is to 
be placed in the library. In this case RMOPL II will automatically assign library numbers 
commencing with lOs' Successive assignments will be made by adding lOs to the preceding 
number. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-A 
SECTION: PAGE: 

UP D Function 

One or more program cards may follow the UPD card to identify specific programs from the 
input tape which are to be added to the library and/or programs which are to be deleted 
from the library being updated. 

Absence of program cards implies that all object code from the input tape is to be added to 
the library. In this case, RMOPL II will automatically assign library numbers commencing 
with the highest number on the old Ii brary plus lOs. Successive assignments will be made 
by adding lOs to the preceding number. 

COLUMNS CONTENTS 

1 C 

2, 3 OS 

11 D if delete, otherwise blank 

16 - 25 (P ro gram name) 

26 - 30 (SPURT output number or old library number - 5 digit octal value. 
Library number is required if the program is being deleted. If there is 
more than one SPURT object code output of this program on the input 

I 
tape, the desired output must be specified. Otherwise, the field may 
be left blank.) 

/31 - 35 (Ass-igned library number - 5 digit octal value. If the field is left blank, 
I - --RMOPL 11 WIll assIgn a lIbrary number.) 

• Directory Cards 

A directory card or cards may be included with or may constitute the inpu t deck. 

COLUMNS CONTENT 

1 C 

2, 3 OS 

11 - 13 PRT (Print a library directory) 

PCH (Punch a library directory) 

• New Input Tape Card 

If more than one input tape is to be processed, the second and subsequent tapes must be 
identified so that RMOPL II may direct tape mounting. 

I 

I 
I 
I 
I 
i 

1 

3 



14-A 
ECTION: 

4 
PAGE: 

COLUMNS CONTENT 

1 C 

2, 3 05 

11 - 13 NIT 

16 - 30 (The name to be used in directing tape mounting) 

• Order of the Parameter Deck 

(1) Directory card (s) 

(2) Function card 

(3) Program card (s) for program on initial inpu t tape 

(4) New Input Tape Card 

(5) Program Card (s) for programs on last-named input tape 

(6) Four or more blank cards which signify the end of the parameter deck 

A maximum of SO parameter cards is allowed. Only one function card is permitted for any 
given run. 

UP-.:SYUU 

I 



UP-3900 UNIVAC 490 SPURT 14-B 
SECTION: PAGE: 

B. MITAR II 

UNIVAC 490 Real-Time System procedures provide for the concurrent operation of two or more batch 
programs. Programs may be submitted for selection within sets on a Master Instruction Tape (MIT) 
which contains scheduling information, facility statements, object code, and optionally, para
meters for programs. A directory of the programs contained on the library is also provided. 

From the information contained on the MIT, the Real Time Executive Routine, through its selection 
and loading operations, may select programs to achieve the optimum utilization of core memory and 
peripherals. An MIT is created by the use of MITAR II (Master Instruction Tape Assembly Routine). 

1. System Requirements 

Minimum sys tern requirements consist of: 

• 32378 wo rds of core storage 

• three UNISERVO units 

• a paper tape or a card reader 

• if a directory is to be printed, High Speed Printer 

REX is utilized for program loading, input/output requests, and parameter entry. 

2. Execution Sequence 

Constraints governing the execution sequence of programs comprising an MIT may be imposed 
when the MIT is created. The following controls are provided: 

• PRIORITY 

Programs within a low number priority group will be initiated before those of a higher num
bered group. 

• STRING 

A string is a set of programs within a priority classification which must be executed serially. 

• LOCK 

A program or string may be placed in a lock condition. Program s so designated will not be 
executed unless the lock is removed by the compu ter operator during the run of an MIT. 

3. Tape Composition 

An MIT may contain a maximum of 64 indi vidual programs. It contains contiguous groups of 
records in the order listed below. 

(1) A label record. 

(2) One to eight index records. 

(3) One to eight program facility summary records. 

(4) One to 64 programs in complex relative format together wi th operational parameters. 

1 



14-B 2 UNIVAI:: 4aC SPURT UP-3900 
;ECTION: PAGE: 

(5) Two standard end of file sentinels. 

(6) Tape mark if UNISE RVO IIIC revision was usedo 

• LABEL RECORD 

o 

2 

3 

4 

5 

NOT 
USED 

21 

22 

23 

7 

7 

y 

7 

7 

2 7 2 

2 7 2 

M 

y 

Number of programs 

2 7 2 

2 7 2 

7 

7 

7 

7 

2 7 2 7 2 

2 7 2 7 2 

T 

n n 

y d d 

Number of Priority Groups 

2 7 2 7 2 

2 7 2 7 2 

nn is an octal identifier assigned at time of creation. yy ddd is year and day. 

• INDEX RECORD 

There is one index record for each priority group. A maximum of eight priority groups may be 
contained on the MIT, and a priority group may contain any number of programs. The MIT, 
however, can contain a maximum of 64 programs. 

o 7 7 

c 
2 

7 7 7 Priority Group 

MIT number String Run Time 

One-word index of each string leader 
within priority group 

STRING INDEX 

OF LEADER 



UP-3900 UNIVAC 490 SPURT 

C is lock condition indicator in bit positions 27-29 

1 string lock 

2 program lock 

6 no lock 

MIT number is thatof string leader. 

66 (MAX) 7 7 7 7 7 

• PROGRAM FACILITY SUMMARY RECORD 

o Library Number 

Priority Group 

MIT Number 

Successors Library Number I Successors MIT Number 

2 C I Com pute estimate Program run time 

3 Minimum core Maximum core 

14-B 
SECTION: PAGE: 

4 Min S3 I Min S2 I Min Sl Max S3 I Max S2 I Max S, 

5 Minimum card reader Minimum card punch 

6 Minimum paper tape reader Minimum paper tape punch 

7 Minimum high speed printer 

8 Minimum drum or FAST RAND 

9 Maximum drum or FAST RAN 0 

iO y I Drum or FASTRAN 0 base of program or zero 

Additiona I summaries, maxim urn of eight 
per block 

88 (MAX) 

C is lock condition indicator in bit positions 27-29 as in index record 

S3 indicates UNIVAC IIlC servos used by program 

S2 indicates UNIVAC IlA servos used by program 

S 1 indicates UNIVAC IlIA servos used by program 

Y indicates the presence of operational parameters if bit 29 is set. 

I 

SUMMARY 

Drum base used for drum stored programs includes drum channel normalized right in bit 
posi tion 28-24. 

3 



14-B 4 UNIVAI...; q=::lU t:I ... UH I 
SECTION: PAGE: 

• PROGRAM FORMAT 

Program format is complex relative. Block descriptors are modified to include MIT number 
as the most significant part of the descriptor word during MIT creation. 

Identifica tion record 

o MIT Number o o o o o 

Program Name 

2 (10 characters) 

3 Programmer 

4 (10 characters) 

5 

6 yl drum base of program or zero 

7 I 3 

8 MIT Number a 0 0 0 a 

Y parameter indicator as in Program Facility summary record 

MIT Number 0 0 0 0 

(Faci lity record) 

MIT Number I 0 0 0 0 2 

(Segment description record) 

MIT Number 0 0 0 0 3 

(File description record) 

MIT Number a a 0 a 4 

(Control Segment record) 

MIT Number Segment Number 

(Secondary Segment record) 

Only the first block of each record bears descriptors as shown. Subsequent blocks bear 
descriptors of binary zeros. This also applies to parameter records. 

When programs are drum stored, only the identification record, parameter records, and end of 
program sentinel appear on MIT. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-B 
SECTION: PAGE: 

• OP ERA TION AL P ARAME TERS 

Operational parameters may be inserted within a program at the time an MIT is created. The 
parameter record generated immediately precedes the end of program sentinel of the program. 
Parameters are loaded automatically when the program is selected and loaded. 

o MIT Number a a a 0 6 

Noo of parameter words 

2 Parameter Word 1 

3 Parameter Word 2 

4 Parameter Word 3 

- -- -

48 Parameter Word 48 

49 Check Sum 

50 MIT Number 00006 

(51 word block) 

4. MITAR card parameters 

MITAR II accepts parameters through the REX parameter entry mechanism. 

• MIT CARD 

A MIT Card is used to assign a number to the Master Instruction Tape that is being created. 

COLUMNS CONTENTS 

1 C 

2, 3 02 

11 - 13 MIT 

16 - 17 (Octal number to be assigned) 

5 



14-B 
SECTION: 

6 UNIVAC 49DSPURT 
PAGE: 

• CONTROL CARDS 

Control cards define priority classifications, strings, and lock conditions. 

COLUMNS CONTENTS 

1 C 

2 3 02 -, 

11 - 20 PRIORITYx (All programs grouped under this header will be scheduled 
in the specified priority classification and x must be 0-7.) 

STRING (Program cards which follow this header define a string. 
Order of execution will correspond to card sequence.) 

LOCK (If this card precedes a program card, the program will be 
placed in a lock condition. If it precedes a string card, 
the string will be placed in a lock condition.) 

• PROGRAM CARDS 

Program cards specify programs to be placed on the MIT. In addition to specifying programs 
from the object code library, program cards may be used to schedule programs which will be 
on the drum at execution time. 

COLUMMS CONTENTS 

1 B 

2, 3 03 

21 - 25 (Library number right justified) 

26 28 
(an octal estimate of progr'arn run time relative to those of other pro-

- grams - optional) 

29 - 30 (An estimate of the ratio of computer time to basic processing cycle 
time expressed in tenths - 0 to 128 - optional.) 

31 - 40 (A ten octal digit drum or F ASTRAND address of the program. Two 
high order digits indicate channel. If program is not to be loaded from 

I . - ~- .. ,.. ...... 
the arum, thIS nela must De len tHanK.) 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-B 
SECTION: PAGE: 

• OPERATIONAL PARAMETER CARDS 

Parameter cards are prepared in standard REX format and are grouped by program. Each 
group is prefixed with a BEGIN PRAM card, suffixed with an END PRAM Card, and 
incorporated into the input deck immediately following the program card to which it relates. 

COLUMNS CONTENTS 

1 C 

2, 3 02 

11 - 20 BEGIN PRAM 
END PRAM 

7 



U P-3900 UNIVAC 490 SPURT 14-C 
SECTION: PAGE: 

C. CATUT 

CATUT (Card to Magnetic Tape Utility Routine) is a generalized program designed to read punched 
cards and form the resultant images into a tape file for which block length and item size are 
specified by variable parameters. The routine is designed for operation in a multi-program environ
ment. The need for off-line card to tape equipment may be eliminated by the use of this routine. 

1. System Requirements 

Minimum system requirements consist of: 

• 2,045 8 words of core storage (includes buffers) 

• a card reader 

• a tape unit 

REX is used to control input/output requests. 

2. Program Structure 

CATUT consists of an Initialization Routine, an End File Routine, and several major sub
routines, all joined by a relatively simple control thread. This structure facilitates modification 
of the program, if desired. A brief description of the major routines and subroutines with entry 
and exit labels and other pertinent information is presented at the end of this section. These 
descriptions will further facilitate program modification. Provision is made for optional 
inclusion of own code. The structure of CA TUT allows own code to as·sume any degree of 
responsibility desired. Any of the routines of which the package consists mayor may not be 
used by the own code and mayor may not exit to END FILE. 

The presence of own code is indicated by placing the first address in the lower half of location 
NCODE. Entry is by indirect jump. 

3. Card Input Composition and Arrangement 

a. Types of Cards 

• CONTROL CARD 

The control card is a Hollerith card that will be translated to Fieldata code when read. 
Columns 30 and 34-35 are pertinent only if input m.ode is translation. The format of the 
card is as follows: 

1 



14-C 
ECTION: 

2 
PAGE: 

COLUMNS 

1 - 5 

10 

14 - 15 

18 - 20 

25 

34 - 35 

UI~IVA.L..i ..... ::..., ::::I .... U .... I 

CONTENTS 

CCCCC 

Defines input mode as follows: 

(blank) 
1 
2 

Translation 
Column Binary 
Row Binary 

The number of computer words comprising an input item - a right 
justified octal number. 

The number of items per tape block - a right justified octal number. 

Type of run: 

(blank) -
1 -
2 -

Normal Run 
Restart - type 1 <D 
Restart - type 2 <D 

Action to take in event of illegal character error: 

(blank) 
1 
2 
3 

Stop to allow operator correction card. 
Leave image as read. Set B2 non-zero to indicate error. 
Overlay image with that of next card. 
Terminate run. 

Illegal character error diagnostic option: 

(blank) - Perform no typeout I 
nn - The num ber of card columns to be typed starting wi th 

column 1. A maximum of 70 is permitted. The number is 
octal and right justified. 

<D See description of INITIALIZA TION ROUTINE for more detailed discussion. 

• LABEL CARD 

One or more label cards must follow the control card. A label card is a Hollerith card 
that is translated to Fieldata code when read. A standard tape label will be constructed 
on the output tape based on this information. The format of the label card is as follows: 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-C 
SECTION: 

COLUMNS CONTENTS 

I 1 - 10 Ten semicolons (a label identifier). 

\11 - 25 Alphanumeric file identifier 
I 

26 - 30 Alphanumeric date. 

34 - 35 Governs use of data from columns 40-80. 

(blank) - ignore columns 40-80. 
nn - place the con ten ts of columns 40-80 into supplementory 

label words starting wi th the word specified by nn(a 
right justified octal number). 

39 (blank) - last label card. 
I 1 - another label card follows. 

140 

I 

- 80 Column 40 must be A if the field is alphanumeric, blank if octal. 

Alphanumeric 

I 

I 

I 

I 
I 
I 

Each card column (including blanks) represents one Fieldata character. 
Characters from columns 41-80 are stored into eight consecutive words 
(five characters per word) starting with the label word specified by 
columns 34-35. 

Octal 

Each card column represents an octal digit. Ten digits comprise an 
octal word, which is the smallest unit of data that will be stored. 
Storage is as specified by columns 34-35 (columns 41-50 go to nn, 
51-60 go to nn + 1, etc.). A non-octal character within a word causes 
that word and any remaining words to be ignored. 

11-30 are moved to the proper label words without alteration. 

For second and subsequent label cards, only 34~80 will be considered. 

• DATA CARD 

A data card may be in any format which will not result in its being mistakenly 
identified as a sentinel. 

• SENTINEL CARD 

A sentinel card must follow the last data card, and in turn must be followed by a 
minimum of three blank cards to allow for a possible change in input modes between 
files. Conventions for end of file sentinel blocks for the three input modes follow. 

3 
PAGE: 

1 

I 

I 
I 



14-C 4 UNIVAL.; q=:lU ::i ... UfiiiilT 
SECTION: PAGE: 

(1) Input Mode Translation 

Each card read is tested to see if it is the end of file sentinel described below: 

COLUMNS CONTENTS 

1 - 10 (Ten Fieldata "special characters" (76 code) 

(blank) Terminate CATUT 
1 Another file, new reel 
2 Another file, same reel 

(2) Input Mode Column Binary 

Each card read is tested to see if it is the end of file sentinel shown: 

(( II I III 

000000110000000 
83 64 65 66 67 68 69 70 71 72 73 74 75 71 77 

111111111111111 

222222112222222 

CARD 333333331113333 

ROW 4 4 4 4 4 III 4 4fCi4 4 4 4 
I I 

5 5 5 5 5 5 5 5 II:cl5 5 5 5 
' .. _.8 

666661116666666 

777777771177777 

888881118888888 

999999991199999 
63 64 65 66 87 68 88 70 71 n 73 74 75 71 77 

Rows 4-9 of column 68 and all rows of columns 69 and 70 appear in input buffer 
word 27. All rows of column 71, 72 and rows 12-3 of column 73 appear in input 
buffer word 28. The two bits indicated by CC in rows 4-5 of column 73 appear in 
the high order bits of input buffer word 29. CC is interpreted as follows: 

o 
o 

o 
1 

1 
o 

Terminate CATUT 

A __ L L _.. £! 1 _ _ _ ___ _ __ 1 
I"1.IlV LIlC 1 1.1.1.C, IlC VY lCC1. 

Another File, same reel 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-C 
SECTION: PAGE: 

(3) Input Mode Row Binary 

Each card read is tested to see if it is an end of file sentinel. An end of input 
sentinel in the row binary mode of input consists of alternate punches and blanks 
in card columns 1-60 of row 7, as shown in the figure below. Columns 61 and 62 of 
row 7 contain CC, which is interpreted as follows: 

00 Terminate CA TUT 

01 Another file, new reel 

10 Another file, same reel 

CARD COLUMN 

2 3 29 30 

Row 7 ~~ _____ 0 _________ 0 _________ 0 _________ O ____ 1 ____ 0 _____ 1_0~1~ ~_1 __ 0 ___ 1 __ 0 _____ 0 ____ 0~~ 
(wi II appear in input buffer word 27) 

31 32 33 . • 60 

Row 7 i ° ° ° o 1 0 1 0 1 { c;..}_O _________ O _________ O _________ O ____ ----=:JI,l 

(wi II appear in input buffer word 28) 

61 62 

Row 8 { c c {(appears in input buffer word 29) 

where 1 = punch 

0= blank 

..... t---------- Front of Deck 

---r-

To 
End 

__ ...... .uDeck 

File 2, data cards 

File 2, label card 

File 2, control card 

Three blank cards 

File I, sentinel card 

File 1, data cards 

File I, label card 

File I, control card 

5 



14-C 
SECTION: PAGE: 

6 UNIVAC 490 SPURT 

• OUTPUT TAPE COMPOSITION 

Each input deck processed results in creation of a magnetic tape file comprised of a 
label block, one or more data blocks and two end of file sentinels, in that order. 

(1) Label Block 

UP-3900 

The label written is a conventinal data file label unless modified by Supplementary 
Label Data. 

(2) Data Blocks 

Data is recorded in conventional nonsearchable data block format. 

(3) Sentinel Blocks 

End of reel and end of file sentinels are of conventional format. Words 3 through 
21 of the sentinel card image will be copied into words 3 through 21 of the end of 
file sen tine!. 

Appropriate own code can, of course, create any output tape format desired. 

4. Description of Routines and Subroutines in CA TUT 

The following description of the routines and subroutines of which CATUT is composed are 
presented to clarify the operations of CA TUT and as an aid to determine possibilities for 
program modification to make CA TUT conform more closely to the requirements of indi vidual 
installations. Actual program modification would require the use of Technical Documentation 
including flow charts and program coding. 

• INITIALIZATION ROUTINE 

This routine clears card memory and commences moving one card at a time through card 
memory into core until a control card is sensed. Input mode choice, input item length, 
number of items per block, illegal character error option, the associated diagnostic option, 
and the restart field will be recorded for future reference. 

Label card is read and a label is assem bled in consecutive words starting at LABEL. Reel 
number is set to one. 

The restart field is tested to see if this is a restart. If it is, a search is initiated for the 
specified file. When the file has been located, the reel number is used to replace that in 
the LABEL assembly area, and the output tape is positioned so that writing may commence. 
Restart type controls tape positioning. If type 1, tape is positioned so that writing commences 
immediately following the last recorded block. If type 2, tape is positioned so that the last 
recorded block is overwritten. 

Once the output tape has been positioned, control reverts to the normal flow exactly as if 
restart had not been specified. The next action is to set the proper card input mode and test 
for presence of own code. If own code is present, control is transferred thereto. At this point 
the output tape label has been assembled and the restart field has been set to show the 
nature of the run. If own code is not prpc:;ent, the label is written and processing started. If 
this is a restart, label write is ~ypassed. 



UP-3900 UNIVAC 490 SPURT 14-C 
SECTION: 

• READ SUBROUTINE 

This subroutine controls the card reader, acquiring card images on demand. 

READ tests each card read to see if it is an end-of~input sentinel. When an end of input 
sentinel is detected, the end of input flag is set and the continuation indicator stored. 

Subsystem errors will be corrected if possible. Detection of an illegal character invokes 
action as specified by the control card. In event of non correctable error, the subroutine 
exits to L(ERROR) with the U(ERROR) set to one. 

Entry: 

Entry 
Parameters: 

Exit 
Parameters: 

READ 

None (This routine does not disturb Bl.) 

U(NPUTEND) 77777 if sentinel detected, otherwise zero. Continuation 
indicator in L(NPUTEND) 

PAGE:-

B2 Set non-zero to signal illegal character (option 1), otherwise 
zero. 

Output: Card image in consecutive words starting with location NPUTB 

EXIT: L(READ) 

• ITEM ASSEMBLY SUBROUTINE 

This subroutine builds an input item in consecutive words starting at the location 
specified by Bl. An item is built word by word using card.image words in order starting 
with the first. If item size is not an integra! multiple of card image length, excess 
image words will be ignored. The READ subroutine is used to obtain card images. 

The Item Assembly Subroutine will recognize the end of input flag set by READ and 
exit. As on normal exit, the count of words assembled will be right-justified in Q. The 
end of input flag remains set. 

Entry: ASTEM 

Entry B1 Starting location fo r item ass em bly 
Parameters: 

Exit B1 Same as a t entry 
Parameters: 

Q Count of words assembled 

EXIT: L(ASTEM) 

• WRITE SUBROUTINE 

This subroutine writes the area of core memory specified by the entry parameters onto 
the output servo. A count of words written since the tape was first mounted is maintained 
and used to calculate end of tape. When end of tape is reached, two conventional end of 
tape sentinels are written, the tape rewound, and operator intervention solicited. When 
a new reel has been mounted, the subroutine duplicates the label last written, updating 
reel num ber. 

7 



14-C 
,ECTION: 

8 UNIVA~ q.I:JD SPURT 
PAGE: 

In event of tape error, the subroutine exits to L(ERROR) with the U(ERROR) set to 2. 

Entry: WRTE 

Entry Bl Starting address of outpu t buffer 
Parameters: 

Q Number of words to output 

Exit None 
n _____ L _ .... _ • 

r i:tli:tlUC LC1>:>. 

Exit: L(WRTE) 

• ERROR ROUTINE 

The primary function of the error routine is to make available to the operator information 
necessary to restart after the condition precipitating error has been rectified. 

In order to make restart as simple as possible, any partially assembled items or blocks 
will be disregarded. The last block successfully written on tape represents the last 
successfully processed card or cards. Before diagnostic typeout, the error routine reads 
this block into the output buffer so that it may be dumped using the REX core dump 
feature. Termination of the run is left to operator discretion. 

In order to resume processing, the operator must ascertain the first unprocessed card, 
and place the control card (modified to contain the appropriate restart punch) and the 
label card or cards in front of the unprocessed deck. CATUT may then be started at its 
beginning address. These same procedures apply even though the run is terminated at 
time of error and resumed another day. 

Entry: 

Entry 
Parameters: 

Exit 
Parameters: 

Output: 

Exit: 

L(ERROR) 

U(ERROR) 

None 

Diagnostic 

00001 (A type 1 restart will be required.) 

00002 (A type 2 restart will be required.) 

REX.STOPRUN 

• ENDFILE ROUTINE 

This routine writes two end of file sentinels on the output tape and performs the action 
appropriate for the continuation indicator contained in L(NPUTEND). 

The contents of BLKCT are used as the count of tape blocks (including labels and 
sentinels) already written. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 

Entry: 

Entry 
Parameters: 

Exit 
Parameters: 

Exit: 

ENDFILE 

L(NPUTEND) 00000 (terminate run) 

20000 (another file, new reel) 

40000 (another file, same reel) 

None 

CATUTO or REX. TERMRUN 

14-C 
SECTION: PAGE: 

SUMMARY OF CATUT LABELS, VARIABLES, AND INDICATORS IMPORTANT TO OWN CODE 

• LABELS 

READ 

ASTEM 

ASBLK 

WRTE 

ENDFILE 

NPUTB 

LABEL 

TPUTB 

ERROR 

NCODE 

Card Read Subroutine 

Item Assembly Subrou tine 

Block Assembly Subroutine 

Write Tape Subroutine 

End of File Procedure 

36-word card input buffer 

24-word label assembly area starting address 

256-wo rd output buffer 

Error Routine 

Own Code Entry 

• VARIABLES 

W(BLKCT) 

L(MANDT) 

U(MANDT) 

L(TEMBLK) 

U(TEMBLK) 

L(COPT) 

U(COPT) 

Output Block Count 

Type of run 

Input mode 

Items/block 

Input item length 

Illegal character error option 

Illegal character error diagnostic option 

• INDICATORS 

U(NPUT END) End of input flag 

L(NPUTEN D) Continuation Indicator 

U(CATUTICT) Block Assembly Status 

For symbolic addresses other then those listed above, CATUT uses only the CATUTXX 
form. 

9 



UP-3900 UNIVAC 490 SPURT 14-D 
SEC TION: PAGE: 

D. PRINTAPE 

PRINTAPE (Magnetic Tape to High Speed Printer Utility Routine) is designed to read a magnetic 
tape that has been edited for printing and to print the records contained on the tape on a High Speed 
Printer. The tape to be printed must contain a label block which contains the necessary parameters 
to set up spacing, margin, page numbering, and other controls, on the printer. Some of the more 
important features of the PRINTAPE Routine are: 

• printing of a test pattern to allow the operator to adjust the paper position as desired. 

• determination of both vertical and horizontal margins. 

• page numbering 

• provision for spacing defined by parameters and the print function word. 

• extensive error recovery capability 

1. System Requirements 

Minimum equipment requirements consist of: 

• 15608 words of core storage 

• a UNISERVO tape unit 

• a High Speed Printer 

REX is utilized for program loading and for input/output requests. 

• LABEL BLOCK 

The label block identifies the file to be processed and supplies the parameters 
necessary for determining spacing, vertical and horizontal margin control, page 
numbering, and tape error options. The format is: 

1 



14-D 2 
;ECTION: PAGE: 

WORD 

o 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

:U. 

23 

73 

73 

y 

h 

Spacing 

-

UNIVA~ q~U ::iPURT 

73 73 73 

73 73 73 

File 

Identifier 

y d d 

Real Number 

h m m 

Block Size 

Item Size 

I Repeat Function 

Vertical Margin Control 

Horizontal Margin Control 

Page Number Function 

Page Number Position 

Tape Error Options 

Label Print Option 

- -- -

73 

73 

d 

him 

-

J 

r 

Standard Label 
Data File Entries 

) PRINTAPE Parameters 

,I 

~ ------------------------------_ ............ _---"..-.., 

Unused 

73 73 73 

73 73 73 

.., ... 
I;) 

73 

.., ... 
I;) 

73 

UP-3900 



UP-3900 

WORD 

0,1,22,23 

2-4 

5 

6 

7 

8 

10 

11 

12 

13 

UNIVAC 490 SPURT 14-D 
SECTION: PAGE: 

DESCRIPTION 

Each contains five Fieldata ";" characters (738 ) used for block identification. 

1

29 

I 

Fifteen Fieldata characters used to identify the data file to be processed. 

Year and day of the year. 

Reel number, expressed as a right-justified octal number. 

Day Clock reading in hours and minutes, in Fieldata code. Half-minutes are 
indicated by 0 and 30 seconds, + denotes the half-minute between 30 and 60 
seconds. 

Block size expressed as a right-justified octal number showing the maximum 
number of computer words contained in a data word, including descriptors. 

Repeat Function (0-14). 

If equal to 0, no test pattern is to be printed. 

If not equal to 0, a test pattern of (123456789012 ..... ) is to be printed until 
terminated by the operator. 

Spacing (15-29). 

A right-justified octal value giving the number of lines to be spaced between 
each two printed items. 1£ 0, own-spacing is indicated, and number of lines 
of spacing will be obtained from the last word of each item. 

Vertical margin control format is: 

Zero T.M. 
15

1

14 
N.L.P. t B.M. 

T.M. - Number of lines in top margin. 

B.M. - Number of lines in bottom margin. 

N .L.P. - Num ber of lines to be printed per page. 

The sum of T .M., B.M. and N .L.P. equals the physical length of the page. If 
physical page length is zero, PRINTAPE cannot perform page numbering and 
skipping functions. 

In right-justified octal, the number of spaces required for the left horizontal 
margin of the page. 

Page number function, in the following format: 

K 
15/14 

Base Number 
I 
I 

a I 
I 
I 

o I 
I 

'I 

3 



14-D 
SECTION: 

4 
PAGE: 

WORD 

14 

15 

UP-3900 

DESCRIPTION 

If K is not equal to 0, K expresses in octal the increment to be added to the base 
number the second and each subsequent time a page number is printed. 

If K = 0, no page numbering is required. The base number is the right-justified 
octal equivalent of the decimal number to be printed on the first page 
following the test pattern. Page numbers are always printed in decimal. 

If page numbering was requested (Word 13), then this word gives the position 
in which the right-most digit of the page number is to appear. Its format is as 
follows: 

Line of Page 
15

1

14 
Type Wheel 

Line A right-justified octal expression for the number of lines down 
from the top line of the page, to the line on which page number 
is to be printed. 

Type Wheel A right-justified octal expression for the number of type wheels, 
counting from left to right, from which the right-most digit of the 
page number is to be prin ted. 

A right-justified octal value specifying the action to be taken if a tape error 
has occurred: 

o Terminate processing 

1 Move forward one block and continue processing 

°1 

16 If this word is zero, the file label will be printed preceding the test pattern. 
If this word is not zero, label printing will be bypassed. 

• DATA BLOCK 

Each data block is made up of one or more items to be printed. Maximum length of 
anyone data block is 272 computer words, the first and last of which are 
descriptors. Any item within a datablock may have a maximum length of 26 computer 
words (27 words if the own space option is used). Words within an item must be in 
Fieldata code, except for own space function word entries. 



UP-3900 

WORD 0 

WORD (m.n) + 1 

UNIVAC 490 SPURT 14-D 

29 128 
o I 

! 

-
r-

- -

o I 

SECTION: PAGE: 

A data block is composed of one or more items to be printed, as follows: 

Number of Items 
15114 

Word 1 

Word 2 

------ ............. -...."".---- -- - -
Wo rd n-! 

Print Function (Optional) 

- - ~ - -
Word 1 

Word 2 

~ -- -
- -

Word n-! 

Print Function (Optional) 

Number of Items 
I 

Number of Words 

-

- ---- -
-

---
Numbei of WOids 

0 

I \ 
-

-

Item 
1 

(n words) 

Item 
M 

(n words) 

Each item represents one line of data to be printed. The number of words within 
each item is indicated by item length (see Label Block, Word 9). 

(1) Block Descriptors 
Words 0 and (m.n)+1 contain: 

Number of Items (15-28) 

Number of Words (0-14) 

A right-justified octal expression for the 
number of items within the data block. 

A right-justified octal expression for the 
number of computer words within the data 
block. 

5 



UP-3900 UNIVA~ q!:ltl 5~URT 14-D 
SECTION: PAGE: 

(2) Print Function Word 

The last word of an item if own-spacing is required. It specifies the number of 
line-spaces between items. 

o o o o c Space 

Space A right-justified octal value for the number of lines to space before begin
ning to print. 

C A three-bit value specifying the spacing option to be taken: 

o Normal. Use spacing indicated, and print. If overflow occurs, print on 
first printline of next page. 

1 Supress overflow. Use spacing indicated, and print. Disregard any 
overflow which may result until the next normal or skip item is printed. 

2 Skip to next page and print first printline. Ignore indicated spacing. 

• SENTINELS 

(1) Bypass Sentinel (74 74 74 74 74) 

When a Bypass sentinel is sensed, printing is stopped and the routine initiates 
a search for the next Bypass sentinel. Printing resumes with the record 
immediately following this second Bypass sentinel. 

(2) End of Reel Sentinel (75 75 75 75 75) 

When an end of reel sentinel occurs, the routine initiates a rewind of the tape 
just processed, and in form s the operator: 

END OF REEL xxxxx 

MOUNT NEXT REEL Css Sxx 

WHEN MOUNT ED ENTER S <:D 

Processing resumes when an ill answer is received. 

(3) End of File Sentinel (76 76 76 76 76) 

Detection of an End of File sentinel causes the routine to type out: 

END OF FILE 

INSTRUCT 

Response is as described under program initiation. See OPERATING 
PROCEDURES, Utility Routines. 

6 



UP-3900 UNIVAC 490 SPURT 14-E 
SECTION: PAGE: 

E. TRACE IV 

TRACE IV monitors and records on the High Speed Printer the results of instructions that are 
executed by the program that is placed under its control. TRACE IV can be run under the control 
of REX (Real-Time Executive Routine) or it can be run as an independent program. 

1. System Requirements 

Minimum requirements consist of: 

• 26708 words of core storage 

• a High Speed Printer 

2. Output Format 

As an instruction is executed, TRACE IV produces a High Speed Printer listing of the contents 
of the following registers: 

REGISTER EXPLANATION 

P Core storage address of the executed instruction 

A Contents of the A register 

Q Contents of the Q register 

U Contents of the U register (the executed instruction as 
modified by the specified B register) 

OP The operand as determined by the specified k designator 

81 through 87 Contents of the individual B registers 

3. Operations Perform ed 

TRACE IV will perform the following operations: 

• monitor all the instructions within a program. 

• monitor all instructions within a specified area of a program. 

• monitor all instructions that modify the contents of a specified address. 

In addition to the instructions in the program, the instructions in the input/output routines, in 
REX, and in the interrupt routines will be monitored when control is transferred to them. 

1 



P 01705 A 0(00000002 Q 2050000000 U 1501001675 OP 0000000002 B1 50000 82 

P 01706 A 0(100000000 Q 2050000000 U 1100000000 OP 0000000000 81 50000 82 

p 01707 A 0(00000004 Q 1200000000 U 0700000004 OP 0000000004 81 50000 82 

p 01710 A 0(00000004 Q 1200000000 U 1502001755 OP 0000000004 81 50000 82 

p 01711 A 0(00000004 Q 1200000000 U 1277000000 OP 0000000004 81 50000 82 

P 01712 A 0(00000004 Q 1200000000 U 0000701160 OP FAULT 81 50000 82 

------------

50031 83 00000 84 00000 85 00000 
86 00000 87 03205 

50031 83 00000 84 00000 85 00000 
86 00000 87 03205 

50031 83 00000 84 00000 85 00000 
86 00000 87 03205 

50031 83 00000 84 00000 85 00000 
86 00000 87 03205 

50031 83 00000 84 00000 85 00000 
86 00000 87 00004 

50031 83 00000 84 00000 85 00000 
86 00000 87 00004 

tz1 
x 
!l) 

3 
'0 ..-
ro 
0 ....., 
~ 
:;0 

> 
(') 

tz1 
I-t 

-< 
::c ...... 

C1Q 
::r 
(/) 

'0 
ro 
ro 
0... 

'"0 
~ ...... 
::l 
r-t-
ro 
~ 

..-...... 
Ul 
p; 
::l 

~ 

IJI 
rr1 
n 
-1 

0 
Z 

1) 

l> 
G"l 
rr1 

...... 
~ 

I 
tz1 

N 

C 
2 -
~ 
[1 

~ 
U 
C 
II. 
1 
C 
J .. 

C 
'"0 
I 

W 
\.0 
o 
o 



UP-3900 UNIVAC 490 SPURT 14-E 
SECTION: PAGE: 

4. Parameters 

If TRACE IV is to be run under the control of REX, it must be loaded as errata of the program 
that is to be monitored. In this case, the parameters will be entered via the Console Keyboard 
by use of the register entry option associated with Program Start (PS). 

If TRACE IV is to be run independently, the parameters will be entered via the maintenance 
panel. 

• Control Parameters 

The following parameters must be placed in the indicated registers before initiating TRACE 
IV: 

PARAMETER REGISTER 

I I 

I 
Base address of TRACE IV P I 

First address of the area in the program that is to be monitored. 81 

Last address of the area in the program that is to be monitored. 82 

I Executive control specification. If set to 0, I 
I I 

83 I 
I TRACE IV is to be run independently. If set to 1, I I TRACE IV is to be run under the control of RE X. I I 

Specified address (optional, see listing option) 84 

I 
Listing option. If set to 0, a High Speed Printer listing will follow 
the execution of each instruction within the area specified. If set 
to 1, a listing will follow the execution of all instructions within 
the area specified with the exception of those that are in 
subroutines. 85 
If set to 2, a listing will follow the execution of Jump and Return , 

Jump instructions only. 

If set to 3, a listing will follow the execution of each instruction 
that modifies the contents of the specified address. 

Starting address of the program that is to be monitored. 86 

3 



14-E 
.ECTION: PAGE.: 

4 

It should be noted that if the B1 and B2 registers are set to 0, every instruction in the 
program (depending upon the listing option that is selected) will be followed by a High 
Speed Printer listing. 

• Monitored Program Parameters 

After TRACE IV has stored the control parameters, it will relay a message via the Console 
Printer requesting the parameters for the program that is to be monitored. When this occurs, 
the program parameters may be entered into the index and operational registers via the 
Console Keyboard or via the maintenance panel. 

UP-j~UU 



UP-3900 UNIVAC 490 SPURT 14-F 
SECTION: PAGE: 

F. RMASL 

RMASL (Routine for Maintaining a Source Language Library) is used to create and maintain 
magnetic tape files of source language that may be used as input to the SPURT assembler. 

1. System Requirements 

Minimum requirements consist of: 

• 2,3008 words of core storage 

• 3 UNISERVO Units 

• a Paper Tape or Card Reader 

• a High Speed Printer and/or a Card Punch 

REX (Real-Time Executive Routine) is utilized for program loading, input/output requests, and 
the entry of parameters which define variables in the program. A maximum of SO parameter cards 
may be entered. 

'2. Input Format 

RMASL will accept source language as formed by SPURT (Output Number 301) or as formed by 
the card to magnetic tape routine, paper tape to magnetic tape routine, or any routine producing 
magnetic tape output in standard format. 

• a label block 

o 

2 

3 

4 

5 

6 

7 

8 

Not 

Used 

22 

23 

~ 

7 3 7 

7 3 7 

a a a 

-

7 3 7 

7 3 7 

3 7 3 7 3 7 

3 7 I Li brary Number 

Program 

Name 

a 6 3 6 a 6 

Date 

Reel Number 

Block Size 

Item Size (restri cted to 168 words) 

3 7 

7 3 7 

-

Library Number 

'l 
oJ 

7 
I 

3 

1 

3 

1 



14-F 
;ECTION: 

2 UNIVAt;; 4eC SPURT 
PAGE: 

• one or more data blocks. The data blocks are restricted to 178 items per block with the 
exception of the last data block in the program. This block may contain less than 178 items. 
Each item consists of one line of SPURT coding in Fieldata code which utilizes 168 

computer words. Each data block contains standard block descriptor words that give the 
number of items within the block and the length of the block. 

• an end of file sentinel block. 

3. Library Tape Forma t 

A library tape is composed of; 

• a label record 

o 7 2 7 2 7 2 7 2 7 2 

7 2 7 2 7 2 7 2 7 2 

2 
Library 

3 
Name 

:b===i= ~ 
Not 

Used 

22 7 2 7 2 7 2 7 2 7 2 

23 7 2 7 2 7 2 7 2 7 2 

• any number of SPURT source language programs and/or data files. 

• two standard end of file sentinel blocks. 

• a tape mark if UNISERVO IIIC tape units were used for output. 

4. Operations Performed 

RMASL will perform the following operations: 

• create a library. 

• update an existing library. 

CGir:.cider:.t ... ·:ith either af the ebaye fu!!ctio!!S, O! gS g c;::PP8!::Itp p::l~~; to print ::md/or punch a 

library directory. 

UP-3900 



UP-3900 UNIVAC 490 SPURT l4-F 
SECTION: PAGE: 

Any source language program in the prescribed format or any data file that is in standard data 
file forma t may be in eluded in a library. As part of the placement process, a five-digit octal 
number is assigned to each program or data file. The source language programs and data files 
within a library will be arranged in ascending sequence by library number. RMASL also modifies 
the label blocks of these programs and files so that they may be printed by using the PRINTAPE 
routine (see PRINTAP E Routine, this section). 

5. Parameter Cards 

• Function Card 

I 

A function card is used to specify the function to be performed. There are two functions: 

BLD Form the Source Language programs into a new library. 

UPD Operate upon an existing library to add and/or delete programs and produce an 
up dated library. 

COLUMNS CONTENTS 

1 C 

2, 3 OS 

11 - 13 BLD or UPD 

16 - 30 (The name of the library being built or updated.) . 

I 

J 
I 

• Program Cards 

BLD Function 

One or more program cards may follow the BLD card to identify specific programs from the 
input tape which are to be placed in the library. 

Absence of program cards implicitly specifies all programs from the input tape are to be 
placed in the library. In this case, RMASL will automatically assign 1i brary numbers 
commencing with lOs. Successive assignments will be made by adding lOs to the preceding 
number. 

UP D Function 

One or more program cards may follow the UPD card to identify specific programs from the 
input tape which are to be added to the library and/or programs which are to be deleted 
from the library being updated. Absence of program cards implies that all programs from the 
input tape are to be added to the library. In this case, RMASL will automatically assign 
library numbers commencing with the highest number on the old library plus lOs. Successive 
assignments will be made by adding lOs to the preceding number. 

3 



1Q-1' 

ECTION: I PAG., 
UNIVAC q,SC SPURT 

COLUMN CONTENTS 

1 C 

2, 3 OS 

11 D if delete, otherwise blank. 
- - - ,"-

16 - 25 (Program Name) 

26 - 30 (Old library number - fiveDdigit octal value. Library number is required 
if the program is being deleted. Otherwise field must be left blank.) 

31 - 35 (Assigned library number - five-digit octal value. If the field is left 
blank, RMASL will assign a library number.) 

• Directory Cards 

A directory card or cards may be included with or may cons titu te the input deck. 

COLUMN CONTENTS 

1 C 

2, 3 OS 

11 - 13 PRT (Print a library directory) or PCH (Punch a library directory). 

• New Input Tape Card 

If more than one input tape is to be processed, the second and subsequent tape must be 
identified so that RMASL may direct tape mounting. 

COLUMN CONTENTS 

1 C 

2, 3 OS 

1 1 - 1'> NIT I I Iv 

16 - 30 (The name to be used in directing tape mounting.) 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-F 
SECTION: 

• Order of the Parameter Deck 

(1) Directory Card (s) 

(2) Function Card 

(3) Program card (s) for program on initial input tape 

(4) New Input Tape Card 

(5) Program card (s) for program on last-named input tape 

(6) Four or more blank cards to signify the end of the parameter deck 

A maximum of 50 parameter cards is allowed. Only one function card is permitted for any 
given run. 

5 
PAGE: 



UP-3900 UNIVAC 490 SPURT 14-G 
SECTION: PAGE: 

G. CIMCO 

CIMCO (Card Image Corrector Routine) is used to make corrections to a source program that is on 
magnetic tape in input language format (SPURT Output Number 301). Changes to a source program 
(deletions, replacements, and additions) are effected by preparing a card deck. 

1. System Requirements 

Minimum requirements consist of: 

• 1750
8 

words of core storage. 

• 2 UNISERVO units. 

• a Card Reader. 

REX (Real-Time Executive Routine) is utilized for program loading and input/output requests. 

2. Operations Performed 

CIMCO will perform the following operations: 

• delete a statement from the program. 

• add a statement to the program. 

• replace one statement in the program with another. 

• copy an input tape onto an output tape until the program to be corrected is found, make the 
required changes to that program, and continue copying until end of file or the next program 
to be corrected is reached. 

• selectively copy a program or programs from a tape containing several programs onto an 
output tape. 

It should also be noted that if an end of file is encountered before the card that indicates the 
end of the correction run is read, the current input tape will be rewound. When this occurs, the 
user can terminate the correction run or mount a new tape and continue. 

3. Correction Deck Format 

The correction deck consists of a header card followed by one or more correction cards that 
contain the word DELETE (for a deletion), the statement DELETE.n (for a series of deletions
n is the number of deletions), a statement that is to be added, or a statement that is to replace 
an existing statement. The operations that are involved and the points where new operations 
are to be added, are located by means of the L1 identifiers that were assigned during the initial 
assembly. The identifiers can be determined by examining a High Speed Printer Output Number 
101 or 110 of the source program. The Correction cards are punched in the standard SPURT 
input card format with the exception that the L1 identifier of the statement that is involved is 
placed in columns 73-77 and the insertion number (if needed) is placed in columns 78-80. Since 
columns 73-80 are never used in processing, this forma t allows the correction cards to be used 
for updating a source program deck. When a correction deck is prepared, the correction cards 
must be placed in the correction deck in ascending L 1 identifier order; tha t is, the correction 
card with the lowest L1 identifier must be the first card after the header card, the card with the 
next highest L1 identifier must be the second card, and so on. The use of card numbers on 
correction is optional; however, if card numbers are placed on correction cards it is the user's 
responsibility to see that these num bers are in the proper sequence. The final correction card 
for a given program is followed by an end of corrections card. 

1 



14-G 
SECTION: 

2 UNIVAI;; q,J::IU ::i ... U'H I 
PAGE: 

If there is only one program to be corrected, the end of corrections card is followed by an end 
card. 

If another program on the same tape is to be corrected, the end of corrections card is followed 
by a new header card. 

If there is more than one program to be corrected on the same tape, the end card will follow the 
end of corrections card in the last group of corrections. 

The formats of the header, correction, end of corrections; ;:lnd end cards are as follows: 

• Header Card 

The header card is used to specify the program that is to be corrected. 

COLUMNS CONTENTS 

1 - 5 301 (right jus tified) 

I 
9 (Copy Indicator - optional. If the letter C is placed in this column, the 

input tape will be copied onto an output tape until the program to be 
I 

I corrected is found. The specified program is then corrected and copying 
continues until the end of file or the next program to be corrected is 
reached.) 

11 - 20 (Program Name - left justified) 

121 - 30 (New Program Name - left justified, optional) 
I 

It is also possible to selectively copy one or more programs from a tape containing several 
programs onto an output tape. This is accomplished by preparing a card deck that contains 
a header card and an end of corrections card for each program that is to be copied. 

• Correction Card 

A correction may consist of up to three cards. The continuation symbol (col. 7) is used if 
the statement exceeds one card. DELETE and DELETE • n entries must be left justified 
beginning in column 27. Unused columns must be blank. 

UP-3900 

I 

I 
I 

I 
I 



UP-3900 UNIVAC 490 SPURT 14-G 

COLUMNS 

18 - 72 
i 

\73 - 77 

SECTION: 

CONTENTS 

(1) DELETE (to delete a single statement.) 

. (2) DELETE' n (to delete a continuous group of statements) where n -
maximum 7778 - specifies the number of statements.) 

(3) (A statement to be added.) 
(4) (A statement to replace an existing statement.) 

(The L1 identifier of the statement that is to be added, deleted, or 
replaced. Leading zeros need not be punched. In the case where a 
series of statements are to be deleted, the L1 identifier of the first 
statement in the series is placed here.) 

• End Of Corrections Card 

PAGE: 

The end of corrections card is used to indicate that there are no further changes to be made 
to a given program. 

I COLUMNS CONTENTS 

I 1 - 5 IIIII 

• End Card 

The end card is used to indicate the termination of the correction run. 

COLUMNS CONTENTS 

1 - 3 END 

3 



UP-3900 UNIVAC 490 SPURT 14-H 
SEC TION: PAGE: 

H. CONVERSION, EDITING, AND ARITHMETIC ROUTINES 

The routines here presented are part of a SPURT hbrary of routines. They will perform the following 

functions: 

• CONVERSION ROUTINES 

- Convert Fieldata code to binary. 

- Convert binary to Fieldata code. 

- Code conversion 

- Convert double-precision binary to Fieldata code. 

- Convert Fieldata code to double-precision binary. 

• EDITING ROUTINES 

- Suppress leading zeros of a value contained in a storage location. 

- Place a dollar sign in front of the most significantdigit of a value contained in a storage 

location. 

- Place a Fieldata asterisk code in blank spaces of a numeric field for check protection. 

- Place + or - sign in front of the most significant digit of a value contained in a storage 

location. 

- Merge characters contained in the upper half words of a storage location with characters in 
the lower half. 

• FLOATING POINT ARITHMETIC ROUTINES 

Perform floating point addition or subtraction. 

Perform floating point multiplication or division. 

Convert fixed point to floating point or floating point to fixed point format. 

Evaluate floating point sine or cosine. 

Evaluate floating point arctangent. 

Calculate floating point square root. 

Ca 1cula te the exponent to the base e of anum ber in £loa ting point forma t. 

Calculate the logarithm to the base e of a number in floating point format. 

Load numbers in decimal format and store after conversion to floating point format. 

-Punch num bers in decimal forma t tha t have been converted from floating point forma t. 

Type numbers in decimal format that have been converted from floating point format. 

Set the number of digi ts after the decimal point for succeeding ou tpu ts. 

• DOUBLE PRECISION ARITHMETIC ROUTINES 

- Perform double-precision addition and subtraction with and without sign check. 

- Perform double-precision multiplication and division with sign check. 

• FIELDATA ARITHMETIC ROUTINES 

- Perform Fieldata addition. 

- Perform Fieldata subtraction. 

1 



14-H 
SECTION: 

2 UNIVAC 490 SPURT UP-3900 
PAGE: 

Two options are provided for entry and execution of these routi nes, a MACRO call option and 
an own code option. Using the Floating Point to Fixed Point Routine (FL TOFX$) as an example, 
the general formats are shown in the samples which follow. 

• MACRO Call Option 

J 

For a general description of macros and the macro call line, see Section 8, PROGRAM 
DEFINED MACRO OPERATIONS. 

STATEMENT AND NOTES ---------~~. 
17 18 20 30 40 50 

I 

, 

, 

I 

I 

I 

I 

-

,- " , , , , , , , , , , I , , I , , I , I , , I I I I , , 
((program coding), 

, - > , , , , , , I , I , I , I I I I I , I I , , , 1 L ~L 1 , 
,-;' , " I' I , I I , , , , , , , , , I , , , , I , , I , I I 

I I I I I I I I I , I , I I , ,(~) I I I I (b? , L , ,(c ~ , , , , ,(~A), , ,( 

1-' , I I , I I I , I I I , I , I , I I I I I I , I I I I I , I I 

~ (program cod ing) 
I- { I , I , , I ", 

, 
I , I I , , I I I, I 'I' I I I I I , I ,\ 

,-~ , , , , I I I 

, 1,1 , , , I , , , I I I I I I , , , I I I I I I I , I I I I I I I -- -

FPFXFL$ will cause the entire routine package to be incorporated in the coding. 

FL TOFX$ specifies the particular function to be performed. Where a routine performs only 
one function, such specification ~ill be unnecessary. 

a, b, c are the variable operands to be specified by the user. These will be defined for each 
MACRO call. The number of operands required will vary depending upon the routine that is 
called. 

EA is an error address specified by the user, if an error address is appropriate. 

• OWN C ODE OPTION 

The own code option implements the library CALL or EXECUTE function. The same 
operations as are defined tor the MACRO call shown above would appear as follows: 



UP-3900 UNIVAC 490 SPURT 14-H 
SEC TION: PAGE: 

, I - '-I -! \_I~_I_~ ____ --I~_I----~--_~----------~----------~ 
In this example, the en tire package of routines a re called into the program. The specific 
floating-point to fixed-point routine is entered by a return jump to FL TOFX$, This form of 
entry is required only where more than one function is performed by the inserted coding, The 
error address, EA, is entered by a similar return jump entry, where it is required. 

The operands a re entered in to B re gis ters where they function as parame ters to the routine. 

The formats for both options, and for all the various routines, are lis ted for quick reference 
at the end of this subsection. 

1. Conversion Routines 

The UNIVAC 490 conversion routines are designed to provide a method for conversion from one 
data format to another. These routines are coded in the SPURT mnemonic language and may be 

called from the Ii brary durin'g SPURT ass emb ly operation, The Conversion fam ily consists 
of two bas ic types; namely, code can vers ion and nume ric can version routines. 

The code conversion routine provides the means for translation between code types which 
are in a six bit format, for example Binary Coded Decimal to Fieldata. Provision is also 
made for adding user-defined translation capabilities, 

The numeric conversion routines provide a means for conversion between a machine oriented 
binary format and a given data code format for example, binary to BCD, or Fieldata to double
precision binary, 

3 



SECTION: 

14-H 4 
PAGE: 

UNIVAC 490 SPURT 

Parameters 

The conversion routines are directed by a series of parameters provided by the worker 
program. In general, these parameters specify the size and location of operand fie Ids 
and are provided to the routines in various index regis ters. 

Parameter settings w ill des troy the contents of re gis ters used for this purpose; 
consequently, the worker program must save its own settings if required. Unless other
wise noted, the contents of the A and Q registers will always be destroyed by the 
routine to be implemented. 

Two options are available to the worker program for specifying parameters, namely the 
macro call and own code options. The macro call option allows the programmer to 
utilize the macro definition statement contained in the routine for presetting parameters. 
In this case parameters are specified in the form of a series of macro operands (See 
Section 4 for a di scussion of the macro call line). The own code option allows the 
programmer to code his own parameter setting instructions. 

Character Position 

An explanation of normal character positions is necessary for the proper application of 
the routines contained within the conversion family, since these routines accept and/or 
provide data in a standard character position format. 

Five six bit characters may be contained wholly within one computer word. Normal 
character positions are illustrated below. 

o 
24123 

1 2 3 4 

Legend: 

Character Position 

o 
1 
2 
3 
4 

Bit Positions 

29 - 24 
23 - 18 
17 - 12 
11 - 6 

5 - 0 

• FIELDATA TO BINARY (FDTOBIN$) 

Thi:::> routine converts up to eight character:::> of a two-woru FieluaLa :::>Lorage LO a one-woru olllary 
storage. The Fieldata storage may be signed although this is optional. If a Fieldata sign is 
present, the binary result will be given the same sign. If a sign character is not present, the 
value is assumed positive. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SEC TION: PAGE: 

Provision is made in FDTOBIN$ for testing to pickup field size error conditions. When an error 
is detected, control is returned to the worker program at a preset error address. An error 
indication is put in the Q register for possible testing by the worker program. If no error is 
detected, the exit address is incremented by one and control is returned to the vlcrker program 

upon completion of the conversion. 

a. Parameters 

Four parameters are required for the proper execution of a conversion. These parameters 
must be specified in various index registers as shown below. 

Entrance Registers: 

85 First word address of the two-word Fieldata storage. 

86 Address of the one-word binary storage. 

B7 Number of characters to be converted. This parameter may not be greater than eight. 

[y] Error subroutine address. This parameter specifies the entrance of a closed 
subroutine provided by the worker program for handling an error condition. The error 
address is not specified by register, but will become the y-address of a return jump 
instruction. 

Exit Registers: 

85 First word address of the two-word Fieldata storage. 

86 Address of the one-word binary storage. 

87 Zero. 

b. Error Indication 

Upon detecting an error condition, FDTOBIN$ returns control to the main program at the 
next ins truction address. This address should provide a return jump instruction to a closed 
subroutine for handling the error conditions which may exist. An indicator is provided in 
bit positions 0-2 of the Q register for error analysis. Bit positi ons 3-29 are set to binary 
zeros. Error indications are as follows: 

Indicator (binary value) 

1 

2 

Meaning 

The parameter specifying the number of characters to be 
converted is zero. The conversion process has not begun. 
The depos it field is cle ared to binary zeros. 

The parameter specifying the number of characters to be 
converted is greater than eight. The conversion process has 
not begun. The deposit field is cleared to binary zeros. Index 
register B7 contains the number of characters specified. 

5 



14-H 
SECTION: 

6 UNIVAC 490 SPURT 
PAGE: 

The error subroutine to be provided by the worker program is entered by a return jump 
instruction and should, therefore, be a closed subroutine containing ENTRY and EXIT 
operators. For example: 

[error address] --) ENTRY 

:} worker program coding 

--) EXIT 

c. Data Format 

Input 

FDTOBIN$ accepts as input a two-word storage containing up to eight Fieldata 
characters plus sign. The characters may occupy character positions 2-4 of word zero 
and positions 0-4 of word one (see sample below). Characters must be right justified. 
The sign character must be a Fieldata plus (42) or minus (41) sign and will appear in 
character position zero of the first word of the storage. The sign character is optional 
and if it is not present the value in the storage is assumed positive. Non-significant 
leading characters must be either Fieldata zeros (60) or binary zeros (00). Characters 
in the storage, but not included in the operand as defined by the number-of-characters 
parameter, will be ignored; consequently the ir value is immate rial. 

The following is an example of a Fieldata storage containing the value - 69172378. 

word o 2 3 4 

o u 

I : I : I : I 2 

Legend: 

u Character position one of word zero is unused and will be ignored by the 
routine. 

Output 

FDTOBIN$ provides as output a one-word binary storage in the standard UNIVAC 490 
binary arithmetic format. A negative number will appear as the ones complement of a 
positive number of the same magnitude. For example, the number 1234

8 
will appear in 

positive and negative format as shown below. 

ne ...... +i" ...... ,ft. ..... ,. .. 
.• -::J- •• "'" .......... w, 

171,.,17171 ... 17161 ... 14131 I . I I I I I I I I I ~ I I I 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

d. Routine Requirements 

FDTOBIN$ requires approximately 6S locations in memory plus S memory locations each time 
the macro is used. 

Execution Time 

FDTOBIN$ requires approxi mately 120l1s per character plus 36611S each time the routine is 
entered from the worker pro·gram. The macro requires 3111s for each use. 

• BINARY TO FIELDATA (BINTOFD$) 

BINTOFD$ accepts as input a one-word binary storage having either positive or negative value. 
It produces as output a signed, two-word Fieldata storage. Fieldata characters will be right
justified within the storage. Non-significant leading characters will be set to Fieldata zeros 
(60). 

a. Parameters 

Two parameters must be provided by the worker program for the proper execution of a 
conversion. These parameters are specified in the registers shown below. 

Entrance Registers: 

B4 Word address of the one-word binary storage. 

85 First word address of the two-word Fieldata storage. 

87 No parameter but used internally by the routine. 

Exit Regis ters: 

84 Word address of the one-word binary storage 

B5 First word address of the two-word Fieldata storage. 

87 Sign character indicator for deposit field 

o sign is plus 

1 sign is minus. 

h. Data Format 

Input 

BINTOFD$ accepts as input a one-word (30 bit) binary value in UNIVAC 490 arithmetic 
format. Values may be either positive or negative numbers. The input format for positive 
and ne gative numbers is illustrated below. 

Example 1: The value+321761Ss would appear as follows: 

7 



14-H 
SEC TION: 

8 
PAGE: 

UNIVAC 490 SPURT 

Example 2: The value-3217615s would appear in the following manner: 

Output 

BINTOFD$ provides as output a two-word storage containing eight, right-justified 
Fieldata characters, plus a Fieldata sign character in the six most significant bit 
..... "C'iti"nC' "f tho fi .. C't tTr ........ ,.:; (C'oo ova .......... l£>\ N"n_C'innifir-a..,t loarli..,n ,..h",,.,,,,..to .. C' luil1 
t'VU.L\..LV..l. ... u v.&. \. ... .L\o.o .L.L .... lJL VY v .......... \......:r,-,-, '-"'~ ......... .I. ... t'.L"-"J. ""'11....,.&.1. ~.Lb ... & ............ '-L4. ...... L ..&. ....... """- ................ f) \".... ...... u ... u'-'-'-.L..,;J YV.L.L..L 

be set to Fieldata zeros. A 11 characters w ill occupy normal character positions. The 
following is an example of a Fieldata storage containing the converted value from 
Example 2 above. 

word 

o 

Legend: 

u Character position one of word zero is unused and will be set to six binary 
zeros. 

c. Routine Requirements 

BINTOFD$ requires approximately 35 memory locations plus three locations for each use of 
the macro. 

Timing requirements are 19511s for en try to the routine (220l1s if macro option is used) plus 
approximately 14111s for each character converted to Fieldata. 

• CODE CONVERSION (CODECON$) 

Structure 

CODECON$ is divided into two sections, the control subroutine and the translation table. 
The control subroutine directs the translation process using parameters supplied by the 
worker program. The design of the control subroutine makes it possible to operate with any 
appropriately designed translation table. The translation table is a 64-word constant area 
which contains the trans lated characters a t the a ppropria te entries. This table may be 
provided by the user. See USER PROVIDED TRANSLATION TABLES. 

Method of Operation 

In any code system having six bits, there are 64 different combinations. Each combination 
has a unique binary value regardless of the coding system that character represents. This 
property may be used to determine any entry within a table where the translated equivalent 
of the original character is located. For example, suppose the conversion routine is given 
a six bit BCD (Binary Coded Decimal) character tor translation to its equivalent in Fieldata 
code. If, for illustrative purposes, the character is the BCD letter P, then its bit configura
tion is 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SEC TlON: PAGE: 

100111 

and its octal value is 47. The Fieldata equivalent would thus be located at entry 47 in the 
, ... ,_ • of... ......... of 

tianSlation table as 111ustrateo. 

TABLE ENTRY 

0 05 

61 

2 62 

At: 
't;) 

46 

47 

50 26 

51 27 

75 ~ 76 43 

77 I 77 ! 
L....:....:.... 

The Fieldata letter P, whose octal value is 25, may then be retrieved directly from table 

entry 47 and be substituted for the BCD letter P. This technique is called "table look up" 
and it is utilized in this case because it holds translation time to a minimum. 

The trans la tion table, FBXT AB$, provides the bas ic mechanism for con vers ion between the 
several code systems. Tables H-1 and H-2 show the equivalent codes. 

Translation Table Design 

Translation Table Entries 

A trans lation ta ble cons ists of 64 (100 octal) computer words. Each trans la tion table may 
contain up to five character tables. A character table consists of the translated characters 
for a given type or mode of translation, for example, BCD to Fieldata. Character tables are 
numbered a through 4. The relationship between translation table and character table is 
illustrated. 

9 



14-H 10 UNIVAC 490 SPURT 
SECTION: PAGE: 

OCTAL 
FIELDATA REPRESENTATION BCD 

CHARACTER CHARACTER 
FD 

NP 00 
NP 01 
NP 02 
# 03 

NP 04 
Space 05 

A 06 
B 07 
C 10 
0 11 
E 12 
F 13 
G 14 
H 15 
I 16 
J 17 
K 20 
L I 21 
M 

I 
22 

N 23 
0 24 
P 25 
Q 26 
R 27 
S 30 
T I ,31 
u I 32 I 

V 33 
W 34 
X 35 
y 36 
Z 37 

NP Non-printing character 

~ Record Mark 

BCD 

14 
20 
20 
13 
57 

I 20 
61 
62 
63 
64 
65 
66 
67 
70 
71 
41 
42 
43 
44 
45 
46 
47 
50 
51 
22 

I 23 I 
24 I 

I 

25 
26 
27 
30 
31 

¢ Blank Position or Tape with Even Parity 

~ Group Mark 

NP 
NP 
NP 
# 
~ 

¢ 
A 
B 
C 
0 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 

OCTAL 
FIELDATA REPRESENTATION 

CHARACTER 
FD BCD 

) 40 55 
- 41 40 
+ 42 60 
NP 43 76 
NP 44 35 
NP 45 16 
& 46 72 
$ 47 53 
* 50 54 
( 51 75 
% 52 34 

53 15 
NP 54 37 
NP 55 52 

Comma 56 33 
NP 57 32 
0 60 12 

I 

I 
I 
I 

1 I 61 I 01 
2 I 62 I 02 

I 
I 

3 63 I 03 I I 

4 64 04 
5 65 05 
6 66 06 
7 67 07 
8 70 10 

I 
I 

I 

9 71 11 
Apost. 72 36 

73 56 
I 
I / 74 21 

I 

I 

75 73 
NP 76 74 

Stop 77 77 

TobIe H-7. FOI BCD Code Equ;volerts 

BCD 
CHARACTER 

) 
-
+ 
< 
= I 

I > 
& 
$ 
* 
( 
% 

" 
! 

Comma 
.i-
T 

00 
I 01 
I 02 
I 03 
i 04 
I 05 
I 06 

I 
07 
08 
09 

Apost. 

/ 

D 

ok 

UP-3900 

I 

I 

I 



UP-3900 UNIVAC 490 SPURT 14-H 11 
SECTION: PAGE: 

I II OCTAL I I FIELDATA XS-3 F!ELDATA XS-3 

I CHARACTER CHARACTER II CHARACTER I CHARACTER 

NP 00 56 @ , I 40 77 

I 
NP 01 17 [ 41 02 
NP 02 01 ] + 42 63 + 
# 03 35 # 

II 
NP 43 36 < 

I NP 04 57 ~ NP 44 37 
Space 05 00 Space NP 45 76 > 

A 06 24 A & 46 20 & 

B 07 25 B $ 47 42 $ 
C 10 26 C * 50 41 * 
0 11 27 0 51 75 
E 12 30 E % 52 61 % 

F 13 31 F 53 21 
G 14 32 G 

II 
NP 54 23 ? 

H 15 32 H NP 55 43 
I 16 34 I Comma 56 62 Comma 
J 17 44 J NP 57 15 \ 
K 20 45 K 0 60 03 0 
L 21 46 L 1 61 04 1 
M 22 47 M 2 62 05 2 
N 23 50 N I 3 63 06 3 
0 24 51 0 

II 
4 64 07 4 

P 25 52 P 5 65 10 5 
Q 26 53 Q I I 

6 66 Ii 6 
R 27 54 R 7 67 12 7 

I I 
S 30 65 S I I 8 70 13 8 

T 31 66 T 9 71 14 9 

U 32 67 U Apost. 72 40 Apost. 
V 33 70 V 73 16 , 
W 34 71 W / 74 64 I 

I 
/ 

X 35 72 X 75 22 
Y 36 73 Y I I NP 76 75 0 

Z 37 74 Z I I Stop 77 60 -J 
I I 

NP Non-printing character 

Table H-2. FDf XS-3 Code Equivalents 



14-H 
SECTION: 

12 UNIVAC 490 S·PURT 
PAGE: 

An entry in the translation table may contain entries of up to five different character tables. 
For example, the following is an entry taken from the translation table now in the SPURT 

LIBRARY. 

Table Entry 

34 

Legend: 

Character Table 

0 

1 

2 

3 

4 

Character Tab 1 e En tr i e s 

o 

52 

2 3 4 

16 26 71 00 

Referenced during BCD to Fie Ida ta Translation 

Referenced during XS-3 to Fieldata Translation 

Referenced during Fieldata to BCD Translation 

Referenced during Fieldata to XS-3 Translation 

Character Ta ble 4 is not currently used. 

A character table consists of 64 six bit characters. Each character within a table occupies 
a preassigned character position in a computer word. Only one character position in a 

translation table entry may be utilized by a given character table. For example, the 

characters in the table used for Fieldata (FD) to BCD translation are always located in 
character pos ition 2 of each computer word in the trans la tion table. 

TABLE ENTRY 

o 2 3 4 

o I 
° :c 

-n~ 
0;:::0 
;.o~ 2 
-nO 
0-1 

-I~ 
0-1 i 

3 
ro~ 
Oro 
Or 4 

rn 

5 ! 
....... 
-~ ----'---6 

Character table entries for a given code type are assigned in the following manner. First, 

the octal value of each character in the code type is determined. The octal value then 
becomes the table entry where the translated equ1valent 1S entered. There is no ciuplication 
of table entries since each character has a '.lni:;::rc octal value. The translated character 
must be positioned in the computer word so that it is contained wholly within one character 
position. Character positions are defined as follows: 

UP-3900 



UP-3900 

8 

UNIVAC 490 SPURT 

I o 
129 

Legend: 

I 
241 23 

1 
1 

Character Pos ition 

o 
1 
2 
3 
4 

I 
I 

18 117 

- User Provided Translation Tables 

2 

Bit Positions 

29-24 
23-18 
17-12 
11-6 

5-0 

14-H 
SECTION: 

3 4 

PAGE: 

I 
I 

o I 

Translation tables provided by the user for operation with CODECON$ must be designed in 
the format prescribed in the preceding section (Translation Table Design). 

When a table has been prepared it must receive a unique mnemonic label, and it is 

recommended that a library call for CODECON$ be added (See programming example 
below). The table must be assembled, using the SPURT assembly system, and then placed 
in the Library as an independent program. T.he following coding shows an acceptable 
format for the program containing a translation table. 

LABEL STATEMENT AND NOTES -----------~ .. 
17 18 20 30 40 

a. Parameters 

Five parameters direct the execution of the translation routine. These parameters are supplied 
to the control routine in various registers. The worker program must assume the responsi
bility for savi ng the contents of these registers if it is necessary to do so. 

Entrance Registers: 

84 First word address of the pickup field. 

13 



14-H 
SECTION: 

14 UNIVAC 490 SPURT 
PAGE: 

B5 First word address of the deposit field. Although it is not necessary, the FWA 
(first word address) of the deposit field may be the same as the FWA of the pickup 
field. In this event the original field will be destroyed. 

B6 Number of words to be translated. This refers to the number of computer words in 
the pickup and deposit fields. The worker program must allocate areas of equal 
size for these two fields. Only whole words are translated. 

B7 Translation mode. This parameter specifies the character table to be used during 
the translation process. Character table should not be confused with translation 

table. See TRANSLATION TABLE DESIGN. The "mode" parameter must be numeric 
in the range 0 to 4 and is defined as follows: 

Mode 

o 
1 

2 

3 

4 

Action 

Translate BCD to Fieldata 

Translate XS-3 to Fieldata 

Translate Fieldata to BCD 

Translate Fieldata to XS-3 

Not currently used. If specified a 11 characters 
w ill be trans lated to binary zeros. 

Translation mode is determined by the number of the character table to be referenced 
during a given translation. For example, the parameter for a Fieldata to XS-3 
translation table would be 3, since character table 3 contains the translated 
characters for this mode of conversion. 

A Firs t word address of the translation ta ble. This parameter provides the FWA of the 
table to the control routine. 

Exit Regis ters: 

B4 Des troyed 

B5 Destroyed 

B6 Zero 

B7 Translation mode 

A Destroyed 

b. Data Format 

positions as defined under GENE RAL I NFORMA TION. The trans lated characters in a 
deposit field will occupy the same character positions that the original characters do in the 
pickup field. For example: 

UP-3900 



UP-3900 UNIVAC 490 SPURT 

Word Pickup Field 

P IR I Ic E 

2 $ 2 5 

3 

4 

5 

Binary Coded Decimal 

c. Routine Requirements 

Control Routine 

Translation Table 

Total 

Word 

o 

2 

3 

4 

5 

22 words 

64 words 

86 words 

P 

5 

R 

$ 

In addition the macro requires 6 words for each use. 

Execution Time 

14-H 

SECTION: PAGE: 

Deposit Field 

I C E 

2 5 

T 
1

0 

! 

Fie Idata 

Approximately 28811s per word plus 8511S each time the routine is entered from the worker 
program. The macro requires an additional 32 f.1S. 

do Minor Modifications 

If it should .become necessary to change the translation value of a given character, this may 
be accomplished in the following manner. For example, suppose it becomes desirable to 
translate the XS-3 asterisk sign, whose octal value is 41, to a Fieldata dollar sign, whose 
octal value is 47. The Fieldata asterisk sign has an octal value of 50. It is therefore, 
necessary to change entry 41 in the XS-3 to Fie ldata character ta bIe from an octal 50 to an 
octal 47; i.e., 

Now Reads change to 

Table Entry Table Entry 

00041 00041 

For a discussion of character table formats, See TRANSLATION TABLE DESIGN. 

Minor modifications may be made in one of the following four ways: 

1. If the modification is to be a permanent one, the necessary corrections should be made 

to the Library card deck. The program should then be reassembled and replaced in the 
Library. 

15 



SEC TION: 
14-H 16 UNIVAC 490 SPURT UP-3900 

PAGE: 

2. 1£ the modification is to be a permanent one, but applicable only to a given program, then 
the modification might be made by main program coding. 

3. 1£ the modification is to be a temporary one, the two following methods are possible at 
load time: 

• Use of the Change Core function of REX. 

• Use of the errata card load function of REX. 

• DOUBLE PRECISION BIN ARY TO FIELDATA (DPBINTOFD$) 

This routine accepts as input a signed, two-word binary working storage and provides as output 
a Fieldata field of up to 16 contiguous characters plus sign (See DATA FORMAT). The sign \s 
optional and may be selected or inhibited by parameter. 

DPBINTOFD$ tests for various errors during routine operation. Upon detecting an error 
condition, it returns control to the main program at a. preset error address. An error indicator 
is made available in the Q register for possible testing by the error subroutine. If no error is 
found, the exit address is incremented by one and control is returned to the main program 
upon completion of the conversion. 

a. Parameters 

Six parameters must be provided by the worker program for the proper execution of a conversion. 
These parameters are specified in various registers as shown below. 

Entrance Registers: 

84 First word address of the pickup field. This parameter specifies the address of the 
most significant word of the two-word binary storage. 

65 First word address of the deposit field. This parameter specifies the address of the 
word in which the most significant character of the field appears. If the sign option 
is selected it is the address of the word containing the sign. 

86 First character position of the deposit field. This parameter specifies the character 
position of the most significant character in the deposit field (See GENERAL 
INFORMATION for a discussion of character position). 

87 Number of characters. This parameter sPecifies the number of characters in the 
deposit field including sign, if the sign option is selected. 

[y] Error subroutine address. This parameter specifies the entrance of a closed sub

routine provided by a worker program for handling the various error conditions 
detected by DPBINTOFD$. The error address is not specified by register, but will 
become the y address of a return jump instruction. 

A Sign option indicator. This parameter directs the conversion routine to inhibit or to 

allow sign insertion in the most significant character position of the deposit field. 
It !nay be one of the following: 

o Inhibit sign character insertion 

1 Allow sign character insertion 



UP-3900 UNIVAC 490 SPURT 14-H 
SEC TI ON: PAGE: 

Exit Registers: 

B4 First word address of pickup fie ld. 

65 First word address of deposit field. 

B6 Character pos it ion of next character to be inserted. 

B7 Zero. 

[y] Error subroutine address. 

A Destroyed. 

b. Error Indications 

Upon detecting an error condition, DPBINTOFD$ returns control to the main program at a 
preset error address. An error indicator is provided by DPBINTOFD$ in bit positions 0-2 of 
Q register. Bit positions 3-29 are set to binary zeros. Error indicators are defined as follows: 

Indicator (binary value) 

1 

2 

3 

Meaning 

The parameter specifying the number of characters to be 
converted is greater than 16, exclusive of sign. The 
conversion process has not begun and the deposit field 
is unchanged. 

The parameter specifying the number of characters to be 
converted is zero after sign option adjustment. The 
conversion process has not begun and the deposit field 
is unchanged. 

The va lue in the two word bina ry storage exceeds the 
specified size of the deposit field. The most significant 
characters in the result have been truncated. 

The error subroutine to be provided by the main program is entered via a return jump 
instruction and should, therefore, be a closed subroutine containing ENTRY and EXIT 
operators. For example: 

[eriOr addressl --> E~~TRY --> error subroutine 

x:} error subroutine coding 

--> EXIT 

17 



14-H 
SECTION: 

18 UNIVAC 490 SPURT 
PAGE: 

c. Da ta Format 

The double-precision arithmetic number is a signed, absolute, binary value represented in 
two consecutive computer words. Each computer word can represent a decimal number not 
grea ter than 108 -1. The maxim urn total value of the two-w ord fie ld is 10

16 -1. The format 
for the binary number is shown below. 

W~RD I s I u I MS 

2 129 U 126 
LS 

o 

Legend: 

MS Mos t s ignifican t part of the binary number. Occu pies bit positions 0-26 of word O. 

LS Least significant part of the binary number. Occupies bit positions 0-26 of word 1. 

S Sign indicator. Occupies bit position 29 of word O. The sign indicator may be one 
of the followi ng: 

o The binary number is positive. 

1 The binary number is negative. 

U Unused. Bit posi tions 27-28 of word 0 and bi t positions 27-29 of word 1 w ill be 
ignored. 

Input 

DPBINTOFD$ accepts as input a two-word binary number in the format described above. 

Output 

DPBINTOFD$ provides as output a field of up to 16 contiguous Fieldata characters plus 
sign. The Fieldata characters will occupy normal character positions as defined under 
GENERAL INFORMATION. Two sample fields are shown below. 

o 

1 

9 

2 3 

+ 1 S 

7 2 1 

1 2 8 

16-Character, Signed 
Deposit Field 

4 

5 

6 

7 

o 2 3 

1 

1 2 4 6 

3 9 8 2 

12-Character, Unsigned 
De~8sit Fie!d 

4 

7 

1 

3 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

When the sign option is selected, a Fieldata plus (42) or minus (41) sign will appear as 
the most s,ignificant character of the deposit field. The sign is determined by testing 
bit position 29 of word 0 in the two-word binary storage. 

d. Routine Requirements 

Approximately 90 memory locations plus 7 memory locations each time the macro is used. 

Execution Time 

Approximately 195 I1S per character plus 300 I1S each time the routine is entered from the 
main program. If the sign option is selected, an addition 110 fls are required. The macro 
requires 46 flS for each use. 

• FIELDA TA TO DOUBLE-PRECISION BIN ARY (DPFDTOBIN$) 

This routine accepts as input a Fieldata field of up to 16 contiguous characters and converts it 
to a signed, two-word, binary working storage suited for use with the double-precision arithmetic 
routines. The Fieldata field may be signed or unsigned (See DATA FORMAT). If it is unsigned 
it is assumed positive and the sign position of the two-word binary storage is set accordingly. 

DPFDTOBIN$ tests for various errors during routine operation. Upon detecting an error 
condition, it returns control to the worker program at a preset error address. An error indicator 
is made available in the Q register for possible testing by the error subroutine. If no error is 
found the exit address is incremented by one and control is returned to the main program upon 
completion of the conversion. 

a. Parameters 

Five parameters must be provided by the worker program for the proper execution of a 
conversion. These parameters are specified in various registers as shown below. 

Entrance Re gis ters: 

84 First word address of the pickup field. This parameter specifies the address of the 
most significant word in the Fieldata field. If the most significant character of the 
field js a sign character, then it is the address of the word containing the sign. 

85 First word address of the pickup field. This parameter specifies the address of the 
most significant word of the two-word binary storage. 

86 First character position of the pickup field. This parameter specifies the character 
position of the most significant character in the pickup field. 

87 Number of characters. This parameter specifies the number of characters in the 
pickup field including sign, if the sign option is selected. 

[y] Error subroutine address. This parameter specifies the entrance to a closed sub
routine provided by the worker program for handling the various error conditions 
detected by DPFDTOBIN$. The error address is not specified by register, but will 
become the y address of a return jump instruction. 

19 



SECTION: 

14-H 20 UNIVAC 490 SPURT 
PAGE: 

WORD 
1 

2 

Exit Registers: 

B4 First word address of pickup field. 

B5 First word address of deposit field. 

B6 Character position of next character to be extracted. 

B7 Zero. 

[y] Error subroutine address. 

c. Data Format 

The double-precision arithmetic number is a signed, absolute, binary value represented in 
two consecutive computer words. Each computer word can represent a decimal number not 
grea ter than lOB -1. The maxi mum total value of the two-word fie ld is 10 16 -1. The format 
for the binary num ber is shown below. 

S U MS 

U LS 
29 26 0 

Legend: 

MS Most significant part of the binary number. Occupies bit positions 0-26 of word O. 

LS Leas t significant part of the bina ry num be r. Occupies bit positions 0-26 of word 1. 

S Sign indicator. Occupies bit position 29 of word O. The sign indicator may be one of 
the following: 

o The binary number is positive. 

1 The binary number is negative. 

U Unused. Bit positions 27-28 of word 0 and bit positions 27-29 of word 1 will be 
ignored. 

b. Error Indications 

Upon detecting an error condition, DPFDTOBIN$ returns control to the main program at a 

preset error address. An error indicator is provided by DPFDTOBIN$ in bit positions 0-2 
uf th.c Q icgi:;tCi. nit pusiti0ii5 3-29 Cirt Se;L tv binary· ZelOS. ErLuL i~dicatcr3 Circ dcfi!1cd as 
follows: 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 

Indicator (binary value) 

1 

2 

SECTION: PAGE: 

Meaning 

The parameter specifying number of characters to be 
converted is greater than 16 exclusive of sign. The 
conversion process has not begun and the deposit field has 
been cleared to binary zeros. 

The parameter specifying number of characters to convert 
is zero after sign adjustment. The conversion process has 
not begun and the deposit field has been cleared to binary 
zeros. 

The error subroutine to be provided by the worker program is entered by a return jump 
instruction and should, therefore, be a closed subroutine containing ENTRY and EXIT 
operators. For example: 

[error address] ~ ENTRY ~ error subroutine 

x: } error subroutine coding 

~ EXIT 

Input 

DPFDTOBIN$ accepts as input a field of up to 16 contiguous Fieldata characters plus 
sign. If the field is signed, the sign must be a Fieldata plus (42) or minus (41) sign 
and must appear as the most significant character of the field. All characters in the field 
must occupy normal character positions as defined under GENERAL INFORMATION. 
Two sample fields are shown below. 

o 2 3 4 o 2 3 4 

+ 7 9 1 2 3 

3 1 4 9 6 8 7 3 2 1 

2 8 1 1 2 2 3 8 1 2 

ll-Character Signed Field 9 4 

16-Character Unsigned Field 

Output 

DPFDTOBIN$ provides as output a two-word binary number in double-precision format. 

d. Routine Requirements 

Approximately 75 memory locations plus 6 locations for each macro use. 

21 



14-H 
,ECTION: 

22 UNIVAC 4SC SPURT 
PAGE: 

Execution Time 

Approximately 132 flS per character plus 328 flS each time the routine is entered from the 
worker program. An additional 64 flS are required if the Fieldata field is signed. The macro 
execution time is 37 flS. 

2. Editing Routines 

The UNIVAC 490 editing routines are part of the SPURT library and provide a simple method 
of inserting symbols, numbers and letters into the body of a data field. These routines are 
coded in the SPURT mnemonic language and may be called from the SPURT library at the time 
of program assembly. The routines are designed to work with many of the service routines in
corpora ted in the SPURT library. Typical editing operations are zero suppress ion, check 
protection and dollar sign floatation. 

n 

n+ 

n+ 2 

n+ 3 

n+ 4 

n+ 5 

n+ 6 

n+ 7 

n+ 8 

n+ 9 

n+lO 

n+ll 

n+12 

n+13 

n+14 

n+15 

n+16 

n+17 

n+18 

n+19 

Internal Working Storage Layout 

UPPER 
SIX BITS 

± 

LOWER 
SIX BITS 

1'T"'1._ 1.1 .. 1- J ~ _ .11-. _.1":1- .. ____ .1":.___ _ ___ .L.":. ___ 1 ~._ f"\f'\ 1 1-
.illt:: Ui::ili::i Uli::il 1~ plUl,;t::~::.t::U uy lllt:: t::Ull111~ lUUllllt::::. 1::. l,;Ullli::illlt::U 111 i::i £..U WUIU WUl1\111~ 

storage as shown under Internal Working Storage Layout. Six bit Fieldata characters 
occupy the six least significant bit positions of the lower and upper portions of each 
word. This storage is utilized by the editing routines with the following assumptions: 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

(1) the lower six bits of the lower half of each word contain the data pertinent to the 
storage. The sign position is located in word n and the least significant character 
is located in word n + 19. 

(2) the lower six bits of the upper half of each word will contain insertion symbols 
for those operations in which they are required. 

(3) Spaces precede the first significant character in an alphanumeri c field. 

(4) Zeros precede the first ~ignificant character in a numeric field. 

The address of the first word, n, is the key parameter necessary for the operation of 
editing routines. Each routine restores the parameter upon exit for continuous working 
efficiency. Other parameters required for entrance to the editing routines include such 
information as character count and sign type. 

The size of the working storage can be increased or decreased as illustrated in each 
routine. If the size is altered, the same modifications should be made uniform in the 
family of editing routines, as well as the family of associated service routines. This 
will be illustrated when applicable. 

• ZERO SUPPRESSION (ZSEDIT$) 

ZSEDIT$ suppresses (clears to blanks) the leading words containing Fieldata zero codes in 
the lowest six bits of the working storage. The routine initially checks the entrance parameter 
containing the number of characters to zero suppress. Starting at word n + 1 the routine tests 
each character, the lowest six bits of each word, in the working storage for a zero code. If all 
characters are zero and the zero suppression parameter is zero, the entire working storage is 
cleared to blanks. Otherwise, the routine will zero suppress the number of characters, starting 
at word n + 1, as indicated by the zero suppression parameter. As soon as a non-zero code is 
found, zero suppression is terminated. 

a. Parameters 

Entrance: 

B6 Number of characters (words) to zero suppress. 

B7 Address of the first word, n, in the 20 word working storage. 

Exit: 

Same as entrance 

b. Error Indications 

No error exit is provided in this routine. The routine will test until a non-zero code is found. 
Once this has occured, action indicated by the B6 parameter setting will take place. 

c. Examples 

In order to use this method of zero suppression the numeric field must be in the 20 word 
working storage. For purposes of illustration it is assumed that a numeric field has been 
moved into the 20 word working storage with a sign character placed in word n and zero 
codes placed in the lowest six bits of all words preceding the most significant character. 
The following examples illustrate the before and after condition of the working storage 
when ZSEDIT$ is used. 

23 



14-H 
SEC TION: 

I 

I 

24 UNIVAC 490 SPURT UP-3900 
PAGE.: 

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 I 
LABEL Word Word B6 = 11 B7=ZEROWORK B6 = 0 86 = 8 

Before After Before After Before After 

ZEROWORK + B n + + n + + 
0 L n+ I 0 B n+ I 0 B 

0 A n+ 2 0 L n+ 2 0 L 

0 I N n+ 3 0 A n+ 3 0 I A 

0 K n+ 4 .0 N n+ 4 0 N 

0 S n+ 5 0 K n+ 5 0 K 

0 n+ 6 0 S n+ 6 0 S 

0 n+ 7 0 1 n+ 7 0 

0 n+ 8 0 1 n+ 8 0 

0 n+ 9 0 0 n+ 9 0 I 

0 n+IO 0 0 n+IO 0 

0 n+ll 7 7 n+ll 7 7 
0 n+12 4 4 n+12 4 4 

0 n+13 6 6 n+13 6 6 
0 B n+14 9 9 n+14 9 9 

0 L n+15 8 8 I n+15 8 8 
0 A n+16 1 I 1-~16 I I I 

0 N n+17 5 5 n+17 5 5 
0 K n+18 3 3 n+18 3 3 

0 S n+19 2 2 n+19 2 2 

Example 1: 

The entire field will be blanked to spaces when 86 = 0 and the working storage field contains 
all zero codes. 

Example 2: 

The number of leading zeros in the working storage is greater than the number of zeros to 
suppress in 86. In this case the total number suppressed will equal the parameter in B6. 

Example 3: 

The number of leading zeros in the working storage is less than the number of zeros to 
suppress in 86. In this case only the leading zeros found in the field are suppressed. 

d. Routine Requirements 

26 words of storage. The macro section of coding, when used, generates 3 computer words. 

This routine will be executed in approximately 32211S if ten zero codes are suppressed. The 
entrance timing to set parameters cons urnes 2S I1s. 

e. Moditication 

The amount of word storage may be increased or decreased by inserting in the coding a 
different constant at the following mnemonic memory locations. 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: 

ZCHECK$ + 2 contains RPT. 19D. ADV 

ZCHECK$ + 6 contains ENT. A. 19D 

ZSEND$ + 2 contains ENT. B7. 19D 

For example, if the working storage was beingexpanded to 30 words, the three locations 
would appear as follows: 

RPT . 29D . ADV 

ENT. A. 29D 

ENT. B7. 29D 

• FLOAT DOLLAR SIGN (FLEDIT$) 

PAGE: 

FLDEDIT$ places a Fieldata dollar sign ($) code into the lower six bits of the least significant 
blank word of a working storage. The routine performs two checks before placing a dollar sign 
character into the storage. Starting with word n + 1, the routine examines each word for a blank 
and/or checks word 1 for a non-zero character. If all words are blank, or if word n + 1 contains 
a non-zero character, the routine exits. If the most significant character is located other than 
in word n + 1, a Fieldata dollar sign ($) code is inserted into the lower six bits of the preceding 
blank word. 

a. Parameters 

Entrance: 

B7 Address of the first word, n, in the 20 word working storage. 

Exit: 

Same as entrance. 

b. Error Indications 

No error exit is piOvided in this routine. The routine will test until the least significant 
blank word is located. However, if all words tested are blank, the dollar sign is not floated, 
but and error indication is provided. 

c. Exampies 

In order to take full advantage of this routine the numeric field in the 20-word storage should 
first be zero-suppressed (ZSEDIT$), if leading zeros are present. Leading zeros are consider
ed significant characters. After leading zeros have been blanked, routine FLDEDIT$ floats 
the dollar sign into the least significant blank word. The following examples illustrate the 
before and after structure of the working storage when FLDEDIT$ is used: 

25 



14-H 
SECTION: 

26 UNIVAC 490 SPURT 
PAGE: 

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 
LABEL Word Word 

B7=ZEROWORK 
Before After Before After Before After 

ZEROWORK + + n + + n + + 
B B n+ 1 0 0 n+ 1 0 0 

L L n+ 2 0 0 n+ 2 0 0 
A I A n+ 3 0 

I 
0 n+ 3 0 0 

---,-,",,- --------

N N n+ 4 0 0 n+ 4 0 0 

K K n+55 0 0 n+ 5 0 0 

S S n+ 6 0 0 n+ 6 0 0 

n+ 7 0 0 n+ 7 0 0 

n+ 8 0 0 n+ 8 0 0 

n+ 9 0 0 n+ 9 0 0 

$ n+10 0 0 n+10 0 0 
7 7 n+ll 0 0 n+ll 7 7 

4 4 n+12 0 0 n+12 4 4 

6 6 n+13 0 0 n+13 6 6 

9 9 n+14 0 0 n+14 9 9 

8 8 n+15 0 0 n+15 8 8 

1 1 n+16 0 0 n+16 1 1 

5 5 n+17 0 0 n+17 5 5 

3 3 n+18 3 3 n+18 3 3 
2 2 n+19 0 0 n+19 2 2 

Example 1: 

The dollar code is floated into the lowest six hi ts of the least significant blank word, in 
this case word 10. 

Example:2: 

The entire field is packed with zero codes. Thus the dollar sign is not floated, 

Example 3: 

The leading zeros, preceding the firsts ignifican t non-zero code in word n + 11, have not 
been blanked. Thus the dollar 'sign is not floated·. 

d. Routine Requirements 

16 words of storage. When the macro call is employed, or if own entrance coding is applied, 
two additional computer words are used. 

This routine will be executed in approximately 182 (lS, if the dollar sign is floated in word 
n + 10 of the 20 word storage. An add itional 19 (ls is consumed by the macro call. 

e. Modification 

The size of the 20 word working storage may be increased or decreased by inserting in the 
coding a different constant at the following mnemonic memory locations: 

UP-3900 

I 

I 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: 

FLDEDIT$ + 4 contains RPT. 19D . ADV 

FLDEDIT$ + 7 contains ENT. A. 180 

For example, if the working storage was being expanded to 30 words, the two memory 
locations above would read as follows: 

RPT.29D.ADV 

ENT.A.28D 

PAGE: 

When the size of the storage is changed and other editing routines in the editing family are 
being used, these routines must be changed in a similar manner. 

If a character other than a dollar sign, for example a Fieldata number sign (#), is required to 
precede the most significant number in the 20 word storage, the instruction located at 
FLDEXIT$-2 may be modified as follows: 

ENT.Q.03 

03 is the Fieldata code for the number sign. Some other Fieldatacode may be inserted if 
desired. 

• CHECK PROTECTION (CHKEDIT$) 

CHKEDIT$ places a Fieldata asterisk code (*) into the lowest six bits of each blank word 
preceding the first word containing a significant character in a 20 word working storage. Starting 
at word n + 1, the routine checks the lowest six bits of each word for a blank. As each blank is 
found, a Fieldata asterisk code is inserted into the lower six bits of the word. This procedure 
is continued until a non-blank code is located, at which time the routine examines the lower 
six bits of the next word. If the proceeding word is blank an asterisk is inserted and the routine 
continues. If, however, the proceeding word is another non-blank code, the routine terminates. 
Once two non-blank words are found in succession, the routine exits. 

a. Parameters 

Entrance: 

87 Address of the first word, n, in the 20 word working storage. 

Exit: 

Same as entrance. 

b. Error Indications 

No error exit is provided for this routine. The routine inserts asterisks over leading blank 
words. If no blank words precede the most significant character, no asterisk is inserted. If 
the entire working storage is blank, an asterisk code will be placed into the lowest six bits 
of all words in the storage. 

27 



14-H 
SECTION: 

28 UNIVAC 490 SPURT UP-3900 
PAGE: 

c. Examples 

In order to use this method of check protection, the numeric field must be placed in a 20 word 
working storage. The Fieldata asterisk code will be inserted into the lowest six bits of each 
blank word preceding the word containing the most significant character. Leading zeros are 
considered as significant characters. These must be replaced with blanks if as terisks are 
to be inserted. The following examples illustrate the before and after status of a 20 word 
storage when routine FLDEDIT$ is executed. 

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 
LABEL Word Word 

B7=ZEROWORK 

Before After Before After Before After 

ZEROWORK + + n + + n + + 
B * n+ I B * n+ I $ $ 

L * n+ 2 L * n+ 2 B * 
A * n+ 3 A * n+ 3 L * 
N * nt 4 N * nt 4 A * 
K * nt 5 K * nt 5 N * 
S * n+ 6 S ... n+ 6 K * 

* nt 7 * nt 7 S * 
* nt 8 $ $ nt 8 * 
* nt 9 * n+ 9 * 
* ntlO * ntlO * 

7 7 ntll 7 7 ntll 7 7 

4 4 ntl2 4 4 ntl2 4 4 

6 6 ntl3 6 6 ntl3 6 6 
9 9 nt14 9 9 ntl4 9 9 

8 8 ntl5 8 I 8 ntl5 8 8 
I I ntl6 I I ntl6 I I 

5 5 nt17 5 5 ntl7 5 5 
3 3 ntl8 3 3 ntl8 3 3 
2 2 ntl9 2 2 ntl9 2 2 

Example 1: 

The asterisks will be inseited into the lower six bits of each blank word preceding the most 
significant non-blank word in the working storage. 

Example 2: 

The as terisks w ill be inserted into the lower six bits of each word in the working stora ge 
preceding the dollar sign, and then into each blank word before the first significant character. 

Example 3: 

The asterisk code will be inserted into the lower six bits ot each biank word even though 

asterisks are inserted until the next significant non-blank word is found, in this case word 
nt11. 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: 

d. Routine Requirements 

17 words of storage. Two additional words are necessary for parameter settings. 

If ten asterisk codes are inserted by the routine, the execution time will be approximately 
633 f.Ls. This· includes the parameter settings preceding the routine. 

e. Modification 

PAGE: 

The size of the working storage may be increased or decreased by inserting into the coding 
a different constant at the follo\lling mnemonic memory locations: 

CHKEXIT$-2 contains BSK .B7. 19D 

For example, if the working storage was being expanded to a 30 word storage, the instruction 
above would appear as follows: 

BSK.B7.290 

The decimal entry is one less than the total word storage. If the size of the field is changed, 
and other routines utilize the 20 word storage, these routines must be changed in a similar 
manner. If a character other than an asterisk is desired, the designated Fieldata code can 
be inserted into the location CHKEDIT$+6 as follows: 

ENT . Q. xx 

xx = desi red code 

• FLOAT PLUS OR MINUS SIGN (FLPMEDIT$) 

FLPMEDIT$ checks the sign character in the first word of a 20 word working storage and places 
a Fieldata plus or minus code into the lower six bits of the least significant blank word. The 
routine starts by examining the lower six bits of word n, the sign position, to determine if a 
sign code is present. If the word is blank, a Fieldata plus code is placed into the lower six bits 
of word n. If the word is not blank, a test is made to find out if a plus or minus Fieldata code 
is present. After the sign determination, the routine searches the lower six bits of each word 
until the first non-blank character is located. The sign code is then inserted into the lower six 
bits of the preceding blank word. After the insertion, the routine exits. The sign code will not 
be floated when the entire storage is blank or when the sign code of the working storage is plus 
and a minus sign is being floated. 

a. Parameters 

Entrance: 

B6 Code to indicate floating plus or mi nus code. Where 0 equals plus and 1 equals 
minus code. 

B7 Address of the first word, word n, in the 20 word working storage. 

Exit: 

Same as entrance. 

29 



14-H 
SEC TION: 

I 

I 
I 

I 

30 UNIVAC 490 SPURT 
PAGE: 

b. Error Indications 

No error exit is provided in this routine. However, under certain circumstances no sign 
character is floated and the routine exits. Such cases are the following: 

(1) The entire working storage is blank; 

(2) The entire working storage is filled with non-blank characters 

(3) A minus sign is being floated in a working storage signed by a plus code. 

c. Examples 

In order to utilize this type of sign insertion, the numeric field must be in the 20 word 
working stora,ge. The field must also be zero suppressed, as described in routine ZSEDIT$, 
in order to replace the lower six bits of the least significant blank word with the sign code 
being floated. The following examples illustrate the before and after condition of the 
working storage when FLPMEDIT$ is used. 

EXAMPLE 1 I EXAMPLE 2 I EXAMPLE 3 
LABEL 

I Word I Word 
B7=ZEROWORK B6 = 0 B6 = 1 B6 = 0 

J 
Before After I Before ! After Before After 

ZEROWORK + + n + + n + 
B B I n+ 1 B B n+ 1 0 ! 

L L n+ 2 L L n+ 2 0 
A A I n+ 3 A A n+ 3 0 

N N I n+ 4 N N n+ 4 0 

K K ! n+ 5 K K I n+ 5 0 I i 
I I i I I 

S S I n+ 6 S S I n+ 6 0 

I n+ 7 n+ 7 0 

i n+ 8 
I I 

n+ 8 0 

I n+ 9 n+ 9 0 

+ i n+I0 n+I0 0 
7 7 n+ll 7 7 n+ll 7 
4 4 n+12 4 4 n+12 4 

6 I 3 I n+13 6 I 6 I n+13 6 I I I I 

9 9 n+14 9 9 n+14 9 

8 8 n+15 8 8 n+15 8 

1 1 n+16 1 1 n+16 1 

5 5 nt17 5 5 n+17 5 

3 3 n+18 3 3 n+18 3 
2 2 n+19 2 2 n+19 2 

t:xample 1: 

The plus sign code is floated into the lower six bits of the least significant blank word 
preceding the most significant non-blank word. 

I 
I 
I 
I 

+ 
0 

0 i 

0 

0 

0 I 
I 

0 I 

0 I 
0 i 

I 

0 ! 

0 
7 
4 

6 I 
9 

8 

1 

5 

3 
2 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

Example 2: 

The working storage is identical to that as shown in example 1. However, the parameter 
setting containing the type of code to float indicates a minus sign. No sign is floated since 
word n, which contains the sign code for the working storage, holds a plus signQ 

Example 3: 

The leading zeros preceding the most significant non-blank "'lord prevent the sign from being 
floated. In this case the sign position in word n remains unaltered. 

d. Routine Requirements 

22 words of storage. The entrance to the routine uses three computer words. 

This routine will be executed in approximately 230l1s if a plus sign is floated into word 
n + 10 as illustrated in example 1. The entrance time using the macro call or own code 
techniques takes approximately 2511s. 

e. Modification 

The amount of word storage may be increased or decreased by replacing in the coding a 
different constant at the following mnemonic locations. 

FLPMEOIT$ + 110 contains RPT. 190 AOV 

FLPMEXIT$ - 5 contains ADD. A .19D 

For example, if the working storage was being expanded to 30 words, the two locations above 
would appear as follows: 

RPT 290. AOV 

ADD A. 290 

The decimai entry is always one less then the total number of words in the storage. If the 
size of the work area is changed, other routines using this same working storage 
configuration must also be changed in a similar manner. 

• MERGE CHARACTERS (MERGEOIT$) 

MERGEOIT$ utilizes the upper and lower portions of the 20 word working storage. A skeletal 
format composed of commas, a dollar sign, DB, CR, or any Fieldata characters is placed in the 
lowest six bits of the upper portion of the storage location. The Fieldata characters located in 
the lowest six bits of the lower portion of the storage location are merged and distributed into 
the blank positions contained in the upper word portion. The merged characters are then moved 
to the lower portion of the word and the upper portion is cleared to blanks. 

31 



14-H 
SEC TION: 

32 UNIVAC 490 SPURT 
PAGE: 

The routine initially checks the lower portion of the last word in a 20 word storage, word n + 19, 
for a blank character. The entire storage is clea.red to blanks, if this character is blank. If the 
character in the lower half of word n + 19 is not blank, the character in the upper half word of 
word n + 19 is tested. If blank, the non-blank character from the lower ha lf word in word n + 19 

UP-3900 

is replaced over the blank six bits of the uppe r half word in word n + 19. If, however, the upper 
half word contains a significant character, the preceding half word, n + 18, in the upper half of 
storage is checked. When the next blank half word is found in the upper section, the character 
from the lower half word is inserted. This process of character insertion is continued sequentially 
until all the significant characters from the lower half have been merged into the blank half words 
in the upper half of the storage. When this insertion sequence is completed the remainder of thc 
upper half words are cleared of any zero or comma codes that may have been s tared previously. 
Other characters such as dollar signs or dashes are not cleared to blank. After this check, the 
entire upper half of the storage is moved into the lower half of the storage. The upper half of 
the storage is then cleared to blanks and the routine terminates. 

a. Parameters 

Entrance: 

B7 Address of the first word, n, in the 20 word working storage. 

Exit: 

Same as entrance. 

b. Error Indications 

N a error exi t is provided in this routine. Since character insertion can be determined by the 
worker program, the only check that can be made is on the lowest six bits of the last word, 
n + 19, in the working storage. If this character is blank, the routine clears the entire 20 
word working storage and exits. 

The total number of editing characters in the upper half words plus the total number of stored 
characters in the lower half word should not normally exceed 20 characters. When all 20 words 
in the upper half of the storage have been filled, any remaining characters in the lower half 
of the storage that may have been inserted will be destroyed when the routine replaces the 
original lower half words with the newly merged upper half words. 

c. Examples 

Any type of character can be positioned into the lower six bits of any upper half word or 
words in the 20 word storage. Depending on the nature of the data in the lower six bits of 
all lower half words in the storage, the format design required by the main program can be 
inserted into proper upper half word locations in the Fieldata storage. The following examples 
illustrate some of the various editing symbols that can be merged when routine MERGEDIT$ 
is used. 



UP-3900 

I 

I 

I 
I 

I 

UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

EXAMPLE EXAMPLE 2 EXAMPLE 3 
LABEL 

B7-Z E ROWOR K - ---- _ .... 

Before After Before After Before After 

ZEROWORK + + n + + n + + 

B n+ 1 n+ 1 

B L n+ 2 I n+ 2 I B 

, L A n+ 3 $ B $ n+ 3 B L 

A N n+ 4 L n+ 4 L A 

N K n+ 5 A n+ 5 A N 

K B 7 n+ 6 N B n+ 6 N B K 

n+ 7 K I n+ 7 K , , , 
L 4 n+ 8 L n+ 8 It L It 

6 n+ 9 6 n+ 9 7 

i A 9 n+IO i A 9 i n+IO i A 4 
7 I i n+l1 I I ntl1 7 i 6 1 , , I , , 
4 N 8 n+12 N 8 n+12 - 4 N -

I I i I 6 I n+I3 6 1 n+I3 6 ! 9 

9 K 5 ntl4 9 K 5 n+I4 9 I K 8 

8 I n+I5 8 I ntI5 8 i 1 ! 
I ! 

1 3 n+16 1 I 3 n+16 - I - ! 

5 I 2 \ n+17 5 I 2 I n+17 5 5 
i 

I 

c 3 ! c ! n+18 D 3 ! D ! ntIS 3 3 : 

R 2 R n+I9 B 2 B ntI9 2 2 

Example 1: 

This illustrates a method whereby certain symbols such as commas, the abbreviated symbols 
for credit and a decimal point are merged with the continuous numeric field to make the format 
suitable for a specific type of program usage; for example, printing. The extra comma in the 
upper half of word 3 is not merged with the numeric field, as the size of the number is not 
large enough to merit the insertion. This extra comma has been cleared. 

Example 2: 

This illustration is similar to example 1 except that the dollar sign is merged with the 
numeric field. The comma has been cleared but the dollar sign is considered an essential 
editing character. The only characters that are erased from the upper half storage are commas 
and zeros. 

Example 3: 

This illustration demonstrates another type of character insertion dependent upon the type 
of data being edited. Any type of symbol can be positioned in the upper half storage to 
prepare the lower half storage for a particular type of format. 

d. Routine Requirements 

44 words of storage. The macro or own code entrance requires 2 instructions. 

33 



SECTION: 

14-H 34 UNIVAC 490 SPURT 
PAGE: 

This routine will be executed in approximately 1843 flS when nine significant characters 
from the lower half-words of the storage are merged with five editing characters from the 
upper half-words of the storage as illustrated in example 1. The entrance parameter settings 
require approximately 19 f.LS. 

e. Modification 

The amount of word storage may be increased or decreased depending upon program format 
requirements. The coding at the mnemonic locations listed below must be modified. 

MERGEOIT$ + 90 contains ENT A. L (B7 + 180 ) . AZERO 

MERGEOIT$ + 110 contains RPT 200 AOV 

MERGEOIT$ + 160 contains ENT B7. 180 

MERGEOIT$ + 170 contains ENT B6 190 

MERGEOIT$ + 300 contains ENT A . B7 + 190 

UP-3900 

The values contained within the brackets must be modified to reflect the change. For example, 
if the working storage was being expanded to 30 words, memory at the above locations would 
appear as follows: 

ENT . A . L (B7 + 280) . AZERO 

RPT .300 . AOV 

ENT B7 280 

ENT B6 290 

ENT . A . B7 + 290 

The decimal entries must be similarly changed in other routines utilizing the working storage. 

The two instructions that cause zeros or commas to be erased from the remaining area, after 
all significant characters from the lower half words of the storage have been inserted into 
the blank upper half words, are shown below. 

(1) MERGEOIT$ + 390 contains ENT . Y -Q . 60 . AZERO 

(2) MERGEOIT$ + 400 contains ENT. Y -9 . 56 . ANOT 

Instruction (1) checks for a Fieldata zero code, while instruction (2) tests for a Fieldata 
comma code. In normal operation, if either code is present, the code is blanked. If neither 
code is present, the word remains unchanged and the next upper half word is checked. 
However, if codes other than a zero or comma are to be erased, or if no code tests are to be 
made, the above instructions would have to be modified by coding in the main program. 

3. Floating Point Routines 

The UNIVAC 490 t<'loatIng POInt LIbrary contaInS routines that perform some special operation, 

routine such as a conversion routine. The subordinate routine is placed in the library so that it 
may be utilized as an individual routine. 



UP-3900 UNIVAC 490 SPURT 14-H 
SEC TION: PAGE: 

These routines may be divided into classes as listed below. The library is designed to permit 
the addition of other routines with minimum difficulty. 

Arithmetic Routines 

Add 

Subtract 

Multiply 

Divide 

Conversion Routines 

Fixed-Point to Floating Point 

Floating-Point to Fixed Point 

Special Function Evaluations 

Sine 

Cosine 

Arctangent 

Square Root 

Exponent (Base e) 

Logarithm (Base e) 

Input-Output Routines 

Start (Load) and Convert 

Con vert and Punch 

Convert and Type 

Set Output Length 

Auxiliary Routines 

Scale (Normalize) 

Convert to Decimal 

Floating Point Format 

The UNIVAC 490 floating point routines require as standard format a pair of ordered 
numbers eC, M) in two consecutive 490 computer words. 

The floating-poin t binary number is based on a two word format consisting of a 15 bit 
exponen t part wi th a shift bias of 40000 octal, one sign bit, one overflow bit and a 
28 bit fixed-po in t part illustrated as follows: 

35 



14-H 
SECTION: PAGE: 

WORD 

o 

S 

36 UNIVAC 490 SPURT 

C 
14 0 

a M 
27 0 

C exponen t part - 15 bits 

S sign bit - 1 bit 

o overflow bit - 1 bit 

M fixed point part - 28 bits 

In any floating point operation, the binary floating-point operand is assumed to be in a 
"normalized" condition. This is to infer that the fixed-point part has, at some time, been 
shifted to the left until bit position 27 is set to "1 ", with the exponent part modified 
accordingly whenever this adjustment occurs. Hence, the radix point has been adjusted 
with the final value of the fixed-point part within the range 1/2.:s M < 1 with the radix 
point between bit positions 27 and 28. 

Num ber-Representation 

The floating-point number representation may be expressed by the equation 

where: 

N number represented. 

M fixed point part (mantissa). 

E exponent part (characteristic). 

b base of the number system (floating-point radix) which must be a positive integer. 

A floating point number is said to be in standard form (normalized) if M lies within some 
prescribed range, so chosen that any given number N can be represented by only a pair 
of numbers, M and C, 

UNIVAC 490 hardware considerations dictate that the base number b shall be 2, subject 
to a common standard range for the fixed point part 1/2'::; M < 1. Thus, the modified 
equation for one 490 floating-point number is 

N = M • 2 (C-40000s ) 

where: 

M a normalized 28-bit binary value with the radix point left of the 28th bit. 

:2 15 :-:~ ~i~:'~y ":'!'.~'? ~;.?<:'?d:-y M:'H)f:'H)s 'T'l,'?"",fr:-"<::'. 

and subject to the following restrictions: 

rr-4nnnn 'I ,'- - -- .- - 8' 

UP-3900 



UP-3900 UNIVAC 490 SPURT 

(1) If N = 0 then C = 0, M = O. 

(2) 1/2'::; 1M! < 1. 

(3) If E >77777
8

, an overflow condition is indicated. 

(4) If M 2 0, N is set to zero. 

SECTION: 

(5) lVI is always rounded to 28 bits after any floating-point operation. 

14-H 
PAGE: 

Although the floating point package contains routines that perform computations in the 
above form, conversion and inpu t-outpu t routines are provided for dealing wi th num bers 
in decimal form or numbers with fixed binary points. 

Decimal numbers can be loaded or read out in the form: 

40 40 
10- < D < 10 

1'::; Xo < 10 

2 < n < 7 

The format required for loading numbers into the computer via paper tape is: 

-tN, N2 N3 N4 Ns {-} ± Xo . X, ... ,Xn 1i ± X. xgl -

and the format for punching or typing out results is: 

± Xo . X, ... Xn 1i ± X. Xg {=} 
where: 

Hi Refers to the octal digits of the address of the number. 

Xi Refers to the decimal digits of the number and the exponent. 

n Specifies the number of decimal places. 

- Flexcode for a carriage return. 

- Flexcode for a tab. 

D Flexco de fo r a space. 

t Flexcode for upshift. 

~ Flexcode for downshift. 

The use of the carriage return, tab or space codes are optional as indicated by use of 
{ } within the aforementioned input-output formats. Where applicable the + option of the 
± notation in the enter format is customarily omitted. 

37 



14-H 
SECTION: PAGE: 

38 UNIVAC IIQ.SC SPURT 

The index "n" may vary as indicated according to requirements of the number desired. 
In the load (FPST ART$) operation, anything over seven decimal places is ignored. 

When a string of numbers is loaded via paper tape only the address of the first storage 
location is' required; however, the num bers are separated by carriage returns ( ) with 
the last carriage return in the string followed by the end of information code of two 
periods ( .. ). 

There are two floating point conversion routines for dealing with numbers with fixed 
binary points in the form 

where s specifies the location of a fixed point. One routine performs fixed-point to 
floating-point conversion; the other, floating-point to fixed-point. Both conversions are 
normally made between storage locations. 

Routine Library Organization 

Since the Floating Point Routines were organized to provide maximum efficiency and 
utilization of memory area, it was necessary to group together related routines as 
"composite" groups or classes wherever possible. The "composite" routines were thus 
included under one program name indicated as follows: 

Composite 
Floating Program 

Point Routine or 
Function s Name MACRO Name Class 

ADD FPADD$ 

} 
ARITHMETIC 

FPAS$ 

SUBTRACT FPSUB$ ARITHMETIC 

MULTIPLY FPMUL$ 

} 
ARITHMETIC 

FPMD$ 

DIVIDE FPDIV$ ARITHMETIC 

FIXED TO FLO A T FXTOFL$ 

} 
CONVERSION 

FPFXFL$ 

FLOA T TO FIXED FLTOFX$ CONVERSION 

SINE FPSIN$ 

} 
SPECIAL FUNCTION 

FPSNCS$ 

COSINE FPCOS$ SPECIAL FUNCTION 

Therefore, in order to perform anyone of the above functions, the entry must be made 
through the composite name. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 

SECTION: PAGE: 

All other floating point routines are considered simple (single) and may be entered via 
the assigned mnemonic name as indicated below: 

Floating Program 
Point or 

Function MACRO Name Class 

Arctangent FPATAN$ SP ECIAL FUN CTION 

Square Root FPSQR$ SP ECIAL FUNCTION 

Exponent FPEXP$ SPECIAL FUNCTION 

Logarithm FPLOGE$ SPECIAL FUNCTION 

Start & Con vert FPSTART$ INPUT-OUTPUT 

Convert & Punch FPPUNCH$ INPUT-OUTPUT 

Convert & Type FPTYPE$ INPUT-OUTPUT 

Set Output Length FPSET$ 

Scale (Normalize) FPSCL$ AUXILIARY 

Convert to Decimal FPCONV$ AUXILIARY 

• FLOATING POINT ADDITION OR SUBTRACTION (FP AS$) 

FPAS$ is designed to perform either floating point addition (FPADD$) or floating point sub
traction (FPSUB$). The desired operation is specified by the coding which calls this routine. 
This routine is thereby directed to select either the FPADD$ or FPSUB$ subroutine. 

a. Parameters 

84 Address of the first word of a two-word floating point operand (augend or minuend). 

85 Address of the first word of a two-word floating point operand (addend or subtrahend). 

86 Address of the first word of a two-word floating point result (sum or difference). 

b. Error Indications 

Overflow (Exponent> 77777
8

) indicated by setting Q positive. 

c. Routine Requirements 

Both operations require 76 words of storage. Ti:ne requirements are: 

Addition IllJLs minimum to 340.8 fLs maximum. 

Subtraction 19SJLs minimum to 424.8 fLs maximum. 

39 



14-H 40 UNIVAC 490 SPURT 
SECTION: PAGE: 

• FLOATING POINT MULTIPLICATION AND DIVISION (FPMD$) 

FPMD$ is designed to perform either floating point multiplication (FPMUL$) or floating point 
division (FPDIV$). The desired operation is specified by the coding which calls this routine. 
This routine is thereby directed to select either the FPMUL$ or FPDIV$ subroutine. 

a. Parameters 

84 Address of the first wo rd of a two-word floating point operand, the multiplicand or 
dividend. 

85 Address of the first word of a two~word floatin g point operand, the multiplier or 
divisor. 

86 Address of the first word of a two~word floating point result, the product or quotient. 

b. Error Indications 

Overflow (Exponent> 77777
8

) indicated by setting Q positive. 

c. Routine Requirements 

Both operations require 65 words of storage. 

Time Requirements are: 

Addition 217.611s minimum to 450l1s maximum. 

Divide 328.811s minimum to 561.811s maximum. 

• FLOATING POINT CONVERSION (FPFXFL$) 

FPFXFL$ is designed to perform either fixed point to floating point (FXTOFL$) or floating 
point to fixed point (FL TOFX$) conversions. 

The desired conversion is specified by the coding which calls this routine. 

a. Parameters 

84 Position of the fixed point. 

85 Address of the first word of the operand. 

86 Address of the first word of the result. 

b. Error Indications 

Fixed to Floating 

Both result words are cleared if exponent> 77777
8

, 

Also if overflow occurs in scaling routine (FPSCL$) 

.rIodling LO .r ixeo 

Q is set positive if exponent> 77777
8

, 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

c. Routine Requirements 

Both operations require 77 words of storage. 

Time requirem en ts are: 

Fixed to floating 158fls minim urn to 380.4fls maximum. 

Floating to fixed approxim ately 110fls. 

• FLOATING POINT SINE OR COSINE EVALUATION (FPSNCS$) 

FPSNCS$ is designed to calculate the value of the sine (FPSIN$) or (FPCOS$) where the angle 
is represented in proper floating point notation. The desired operation is specified by the cod
ing which calls this routine. The accuracy attained is six digits. 

a. Parameters 

B4 Address of the first word of a two word floating point operand. 

B6 Address of the first word of a two word floating point result, the sine or cosine. 

b. Error Indication 

Q set positive if the exponent of the floating point operand> 400348 , 

c. Routine Requirements 

Both evaluations require 103 words of storage. 

Time requirements are: 

Sine 85.2fJ..s minimum to 932flS maximum. 

Cosine 121.2fls minimum to 949 flS maximum. 

• FLOATING POINT ARCTANGENT EVALUATION (FPATAN$) 

FP A T AN $ is designed to calculate the arctangen t (in radians) 0 fan umber in floating point 
notation. The method of computin g is based on Hasting's Approximation. The accuracy attained 
is six digits. 

a. Parame ters 

B4 Address of the first word of a two word floating point operand. 

B6 Address of the first word of the two word result, the arctangent (in radians). 

b. Error Indication 

Value of the argument> 1. 

c. Routine Requirements 

132 words of storage. 

Time requirement is 9.2 flS minimum to 794 fls maximum. 

41 



14-H 42 UNIVAC 490 SPURT 
SEC TION: PA GE: 

• FLOATING POINT SQUARE ROOT (FPSQR$) 

FPSQR$ is designed to calculate the positive square root of a positive number in floating point 
notation. The routine uses the Newton Raphson iteration technique of successive approximations. 

a. Parameters 

84 Address of the first word of a two word floating point radicand. 

86 Address of the first word of a two word floating point square root. 

b. Error Indication 

A register is set negative, if the fixed point part is negative. 

c. Routine Requirements 

43 words of storage. 

Time requirements are: 

30fLs when error exists. 

350.4fLs when one iteration yields the result. 

212.4fLs for each additional iteration. 

• FLOATING POINT EXPONENT (FPEXP$) 

FPEXP$ is designed to calculate the exponent to the base e of a number in floating point for
mat. The resulting exponent is also in floating point format. 

a. Parameters 

84 Address of the first word of a two word floating point operand. 

86 Address of the first word of a two word floating point result. 

b. Error Indication 

Q register set positive, if the exponent part of the floating point operand exceeds 40034
8

, 

c. Routine Requirements 

63 words of storage. 

Time requirement is 695.2fLs maximum. 

• FLOATING POINT NATURAL LOGARITHM (FPLOGE$) 

FPLOGE$ is designed to calculate the logarithm to the base e of a number which is in floating 
point notation. The resultant logarithm is also in floating point notation. 

a. Paramt:!l.t:!ns 

84 Address of the first word of a two word tloatlng pOInt operana. 

86 Address of the first word of the two word floating point logarithm. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

b. Error Indication 

A register set non-zero if 

(1) fixed point part of operand is > 1 or <:: 1 it') 
..J../ L... 

(2) fixed point part of logarithm is zero. 

c. Routine Requirements 

121 words of storage. 

Time requirement is 208.8p.s minimum to 1130.2 maximum. 

• FLOATING POINT LOAD AND CONVERT (FPSTART$) 

FPSTART$ is a routine designed to load paper tape containing decimal numbers in the specified 
inpu t format (see NUMBER REPRESENTATION, this section), convert them to the two word 
floating point format, and store the floating point numbers in the preset locations given on the 
paper tape at input time. 

a. Parameters 

86 Contains the address for storing the converted floating point number. 

The original contents of index registers B4, B5, B6, B7 are restored prior to the exit from 
FPSTART$. 

b. Error Indications 

FP ST ART$ recognizes certain types of errors. Detection of an error results in a console 
typewriter printout giving pertinent information about the error. The different error printouts 
and descriptions are as follows: 

PRINTOUT 

NOT OCT 

NO TAB 

NOT DEC 

NO DEC PT 

RANGE ERR 

END CODE 

SCALE ERR 

MULT ERROR 

DIV ERROR 

DESCRIPTION 

Address on the input tape is not octal. 

No tab code following the address on the input tape. 

A non-decimal code is present in the power or fixed part of the 
num ber on the input tape. 

The decimal point is missing or out of place in the input number. 

The power of the number is out of range, i.e., Power> 40. 

Ending code error. The tape does not end with a double period. 

Normalizing or scaling error from scale routine, FPSCL$. 

Overflow error from multiply routine, FPMUL$. 

Overflow or zero division error from divide routine, FPDIV$. 

43 



SECTION: 

14-H 44 UNIVAC 490 S'PURT UP-3900 
PAGE: 

After a console error printout, FPSTART$ is temporarily suspended by a REX STOPRUN in
struction. The program may be resumed by initiating the appropriate program start (PS) request 
via the console. 

c. Routine Requirem ents 

354 words of storage. 

Timing requirements vary with the value of the input number and the speed of the input 
equipment. 

• FLOATING POINT CONVERT AND PUNCH OUTPUT (FPPUNCH$) 

FPPUNCH$ is an output routine designed to convert a number, in floating point notation, to its 
decimal equivalent and punch it out on paper tape. It also punches out the specified flexcode 
(as indicated by input parameter B5) following the number. 

a. Parameters 

B4 Address of the first word of a two word floating point number to be converted and 
punched out. 

B5 Flexcode for the desired end-of-line action. 

B6 Contains the num ber of decimal equivalents to convert and punch. 

b. Error Indications 

FPPUNCH$ recognizes certain types of errors through the conversion routine, FPCONV$. 
Detection of an error results in a console typewriter printout giving pertinent information 
about the error. The different error prin touts an d descriptions are as follows: 

PRINTOUT 

DIVIDE ROUTINE 
ERROR FPCONV$ 

MUL TIPL Y ROUTINE 
ERROR FPCONV$ 

OVERFLOW ERROR 

c. Routine requirements 

314 words of storage. 

DESCRIPTION 

Overflow or zero divisor error from the divide routine, FPDIV$. 

Overflow error from the multiply routine, FPMUL$. 

Converted decimal value> 1040. 

Timing requirements vary with the value of the numbers to be converted and the speed of the 
output equipment. 

• FLOATING POINT CONVERT AND TYPE (FPTYPE$) 

FPTYPE$ is an output routine designed to convert a number, in GUi::ii.ill~ l1UiUl liuldti0il, 

a. Parameters 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: 

84 Address of the first word of a two word floating point number to be converted and 
typed out. 

86 Contains the number of decimal equivalents to convert and type. 

b. Error Indications 

FPTYPE$ recognizes certain types of errors through the conversion routine, FPCONV$. 
Detection of an error results in a console typewriter printout giving pertinent information 
about the error. The different error printouts and descriptions are as follows: 

PRINTOUT 

DIVIDE ROUTINE 

MUL TIPL Y ROUTINE 
ERROR FPCONV$ 

OVERFLOW ERROR 

c. Routine Requirements 

301 words of storage. 

DESCRIPTION 

Overflow or zero divisor error from the divide routine, FPDIV$. 

Overflow error from the multiply routine, FPMUL$. 

Converted decimal value> 1040. 

PAGE: 

Timing requirements vary with the value of the numbers to be converted and the speed of the 
output equipment. 

• FLOATING POINT SET OUTPUT LENGTH (FPSET$) 

45 

FPSET$ is an output routine designed to set the number of digits (n) after the decimal point 
such that 2::;. n ::;.7. All following outputs, either punched on paper tape or printed on the console 
typewriter, will have the number of digits specified by the previous instruction providing linkage 
to FPSET$. 

a. Parameters 

B4 Contains the value which sets the number of digits in the output number. 

b. Error Indications 

If the number of digits specified is less than 2 or greater than 7 the following message is 
printed: 

NUMBER SIZE ERROR 

c. Routine Requirements 

236 words of storage. 

Timing requirement is 75fls. 

SUBROUTINES 

These routines are used internally in other floating point routines. 



14-H 46 UNIVAC 49D SPURT 
SECTION: PAGE: 

• FLOATING POINT SCALE ROUTINE (FPSCL$) 

FPSCL$ is used to maintain the floating point operands in the correct format with a 15 bit ex
ponent biased at 40000

8
, and a 28 bit normalized fixed point part. 

a. Parameters 

A Signed value of the fixed point part. 

86 Address of the first word of the two word floating point operand before normalizing. 

b. Error Indications 

Overflow (exponent >77777
8

) indicated by setting Q positive. 

c. Routine Requirements 

39 words of storage. 

Timing requirement 156{Ls minimum to 496.8 maximum. 

d. Routine Entrance 

This routine may be incorporated into a program and entered by the following coding: 

ENT.B6.a 

ENT.A. W(B6+1) 

[EXECUTE.FPSCL$] 

or 

[CALL. FP SCL $] 

[RJP.FPSCL$] 

RJP.EA.QPOS 

a 

EA 

Address of the first word of the two word float
ing point operand 

Error Address 

• FLOATING POINT DECIMAL CONVERSION (FPCONV$) 

FPCONV$ is used to convert notation to its decimal equivalent as required for a subsequent 
operation, such as punching or typing a converted number. 

a, Parameters 

84 Address of the first wo rd of the two word floating point num ber (used internally in 
the conversion process). 

The three der.-1m ~ 1 p.'llliv~ len t after the conversion process wi 11 be contained in a three word 
output storage (FPTY PE 1$, FPTYPE2$, FPTYPE3$). 

The original contents of index registers B4, B5, B6 are restored prior to the exit from 
FPCONV$. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 47 
SECTION: PAGE: 

b. Error Indications 

FPCONV$ recognizes certain types of errors. Detection of an error results in a console type
writer printout giving pertinent information about the error. The different error printouts are 
as follows: 

PRINTOUT DESCRIPTION 

DIVIDE ROUTINE Overflow or zero divisor error from the divide routine, FPDIV$. 

MUL TIPL Y ROUTINE Overflow error from the mul tiply routine, FP~,~UL $. 
ERROR FPCONV$ 

OVERFLOW ERROR Con verted decimal value> 1040 . 

c. Routine Requirements 

214 words of storage. 

The execution time varies with the value of the numbers to be converted. 

d. Routine Entrance 

This routine may be incorporated into a program and entered by the following coding: 

ENT.B4.a 
[EXECUTE. FPCON V$] 

or 

CALL.FPCONV$ 
R]P.FPCONV$ 

a Address of the first word of the two word floating 

point operand. 

4. Double Precision Arithmetic Routines 

The UNIVAC 490 Double Precision Arithmetic Routines are part of the SPURT library and pro~ 
vide the basic arithmetic routines, add, subtract, multiply and divide. 

The double precision system is designed to permit inclusion of other routines with minimum 
difficulty. 

The practical limit of numbers in single precision representation is eight decimal digits in one 
word. The double precision system extends the range of numbers to ± 10 16 - 1. The double 
precision routines operate in the binary mode. Double precision calculations are more efficiently 
performed in this mode than in a character oriented mode. 



14-H 
SECTION: 

48 UNIVAC 490 SPURT 
PAGE: 

Double Precision Format 

WORD 1 I 

SIUIU M 
I 1 
1 1 

UIUIU L 
0 29128127 26 

2 

Legend 

M Most significant part of the binary number. 

L Least significant part of the binary number. 

S Sign indicator having the following meaning: 

o The two word number is positive. 

1 The two word number is negative. 

U Unused. Bits 27 and 28 of word 1 and bits 27, 28 and 29 of word 2 are ignored. 

The UNIVAC 490 double precision routines require as standard format a binary number repre
sented in two consecutive computer words consisting of a sign-bit part and a fixed-point part. 
The largest number which can be represented in a computer word is 2 30 -I, which is inadequate 
to accommodate the largest double precision number of sixteen decimal digits equivalent to 
10 16 _1. 

The double precision arithmetic number is a signed, absolute binary value represented in two 
consecutive computer words. Each computer word can represent a decimal number whose abso
lute value is not greater than 10 8 -1 (note that the upper three bits are not magnitude bits in 
either word). Therefore, the maximum total absolute value of the two word field is 10 16_1. 

The operand number will be considered an integer since the radix point is assumed at the right 
of L. The radix point is, in fact, disregarded in any arithmetic operation; therefore, the worker 
program must supply techniques for radix point manipulation, if necessary. For example, in the 
Add and Subtract operations, point alignment is assumed. 

UP-3900 

It is importan t to note that no complementing of operand s occurs duri ng any arithmetic operation. 
The operands are considered positive integers and the sign bit settings provide the data neces
sary for algebraic manipulation of the operands. For example, if unlike signed operands were 
involved in an initial add request, the operation actually performed would be a subtract. 

Num ber Representation 

The maxim urn size operand is 10 16 _1 and may be produced directly from a six-bit Field
data character numeric field by either performing the conversion routine DPFDTOBIN$ 
(~ee Cunver~ion Routine), or by the application of any other technique within the worker 

precision binary format must always be maintained. 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

On input, the maximum fiel d size of the numeric operands is equi valen t to 16 decimal 
digits. For example, if a 16-digit decimal number is to be converted into the proper 
binary format, the procedure must involve a separation of the number into segments, such 
that each s egmen t s hall no t exceed e igh t decimal digits. 

The following example illustrates a 16=digit number represented in segments of eight 
digits, such that each segment is less than or equal to 108 -1 which occupies 27 bits 
when represented as a binary number. The representation is 

S X 15 X 14 X 13 X 12 X 11 X,o Xg X8 X7 X6 Xs X4 X3 X2 X, Xo ---- "-../ --~ 
M L 

where S is the sign bit and M and L represent the fixed point part of the binary operand 
as follows: 

S M 

L 

In the conversion process, the eight least significant digits are converted into a binary 
equivalent and placed in L; the eight most significant digits are converted into a binary 
equivalent and placed in the word M. If a sign character is present, the appropriate bit 
setting is represented in the sign bit position of the most significant word M. 

Thus the value of the binary arithmetic number is given by 

N =.± eM . 108 
-t L . 10°) where N is 

now considered to be some number to the base 108 with the following restrictions: 

1. a < M < 10 8 

2. 0 < L < 108 

3. If N > 10 16, an overflow condition is indicated for all arithmetic results except 
in th-; multiply operation where the product .s (10 16 _1)2. 

4. Decimal point alignment is assumed in Add and Subtract operations. 

5. Housekeeping activities relative to the decimal point must be maintained within 
the main program. 

6. A sign indicator code must be present in bit 29 of M. 

• DOUBL E PRECISION AD DITION SIGN CHE CK (DP ADD$) 

DPADD$ is a composite routine designed to perform algebraic double precision addition of 
binary operands which are in the specified double precision notation. 

The signs of the two operands (augend and addend) are inspected to determine if an add (DP AD$) 
or subtract (DPSB$) routine is to be actually executed. A numeric indicator with a value of 0, 
1, 2, or 3 is set by the sign check routine prior to executing the Add or Subtract routine. This 
numeric indicator corresponds to a specific combination of operand sign values. It is subse
quently used in DPAD$ or DPSB$ to determine the sign value of the final arithmetic result. 

49 



14-H 
SECTION: 

50 UNIVAC 490 SPURT 
PAGE: 

The operand sign combinations, numeric indicators, and related arithmetic routines are indicated 
in the following table: 

Augend Addend Numeric Arithmetic 
Sign Sign Indicator Routine 

+ + 0 DPAD$ 

+ 1 DPSB$ 

2 DPAD$ 

+ 3 DPSB$ 

Since DPADD$ automatically executes DPAD$ or DPSB$ on the basis of sign comparisons, the 
macro call line used to initiate action consists only of the augend address, addend address, 
receiving field address and error address, as the first, second, third and fourth operands, re
spectively. There is no routine name operand. 

Error conditions exist in the double-precision routines. Therefore an error indication operand is 
provided in the macro call line; however, the coding for this error procedure must be included 
within the worker program as a closed subroutine. 

In summary, the main functions of DPADD$ are to perform a sign comoarison and execute either 
an add (DPAD$) or subtract (DPSB$) operation to obtain the algebraic sum. If the sign values of 
the binary arithmetic operands are known, the implementation of this routine is unnecessary. In 
this case, DPAD$ or DPSB$ may be used directly, provided that the required parameter and in
dicator presettings are made. 

More complete explanations of the individual routines, DPAD$ and DPSB$, are given in separate 
sections. 

a. Parameters 

Entrance: 

84 Address of the first word of the two word double precision operand, the augend. 

85 Address of the first word of the two word double precision operand, the addend. 

86 Address of the first word of the two word double precision algebraic sum. 

Exit: 

Same as entrance. 

b. Error Indications 

An error indicator is provided in DPADD$ when the value of the binary result exceeds 
10 16_1. The A register is set negative in DP ADD $ when this error condition exists. Appro~ 
priate action is initiated by the macro call line error address operand or by the own code 
operand via a return jump to a closed subroutine which must be included within the main 
program. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

c. Data Format 

The double precision binary numbers must conform to the format described in the introduction 
to this subsection. Any deviation from this specified format will produce unpredictable and 
erroneous results. 

A Fieldata field may be converted to a two word, double precision binary operand by using 
the appropriate routine (DPFDTOBIN $) described under CONVERSION ROUTINES, 

d. Routine Requirements 

46 words of storage. 

The execution time for DPADD$ may vary from 172.8 fls in the case where both operands are 
positive to 253,2 fls where operand signs differ. The total execution time for an addition or 
subtraction of two operands may be determined by adding the individual execution times of 
either DPAD$ or DPSB$ to the execution time of DPADD$, The execution time for DPAD$ and 
DPSB$ are gi ven with the description of the individual routines in this subsection. 

• DOUBLE PRECISION SUBTRACTION SIGN CHECK (DPSUB$) 

DPSUB$ is a composite routine designed to perform algebraic double precision subtraction of 
binary operands which are in the specified double precision notation. 

The signs of the two operands (minuend and subtrahend) are inspected to determine if a subtract 
or an add routine is to be actually executed. A numeric indicator with a value of 0,1,2, or 3 is 
set by the sign check routine prior to executing the Subtract or Add routine. This numeric indi= 
cator corresponds to a specific combination of operand sign values. It is subsequently used in 
DPSB$ or DPAD$ to determine the sign value of the final arithmetic result. 

The operand sign combinations, numeric indicators, and related arithmetic routines are indicated 
in the following table: 

Minuend 
Sign 

+ 

+ 

Subtrahend 
Sign 

+ 

+ 

Numeric Arithmetic 
Indicator Routine 

0 DPAD$ 

1 DPSB$ 

2 DPAD$ 

3 DPSB$ 

Since DPSUB$ automatically executes DPSB$ or DPAD$ on the basis of sign comparisons, the 
macro call line used to initiate action consists only of the minuend address, subtrahend address, 
receiving field address and error address, as the first, second, third and fourth operands, respec
tively. There is no routine name operand. 

Error conditions exist in the double-precision routines. Therefore an error indication operand is 
provided in the macro call line; however, the coding for this error procedure must be included 
within the main program as a closed subroutine. 

51 



SECTION: 

14-H 52 UNIVAC 490 SPURT UP-3900 
PAGE: 

In summary, the main functions of DPSUB$ are to perform a sign comparison and execute either 
a Subtract (DPSB$) or an Add (DPAD$) operation to obtain the algebraic difference. If the sign 
values of the binary arithmetic operands are known, the implementation of this routine is un
necessary. In this case, DPSB$ or DPAD$ may be used directly, provided that the required 
parameter and indicator presettings are made. 

More complete explanations of the individual routines, DPSB$ and DPAD$, are given in separate 
sections. 

o. Parameters 

En trance: 

64 Address of the first word of the two word double precision operand, the minuend. 

65 Address of the first word of the two word double precision operand, the subtrahend. 

66 Address of the first word of the two word double precision algebraic sum. 

Exit: 

Same as entrance. 

lb. Error Indications 

An error indicator is provided in DPSUB$ when the value of the binary result exceeds 10 16_l. 
The A register is set negative in DPAD$ when this error condition exists. Appropriate action 
is initiated by the macro call line error address operand or by the own code error address 
operand via a return jump to a closed subroutine which must be included wi thin the main 
program. 

c. Data Format 

The double precision binary numbers must conform to the format as described in the introduce 
tion to this subsection. Any deviation from this specified format will produce unpredictable 
and erroneous results. A Fieldata field may be converted to a two word, double precision 
binary operand by using the appropriate routine (DPFDTOBIN$) described under CONVERSION 
ROUTINES, 

d. Routine Requirements 

46 words of storage 

The execution time for DPSUB$ may vary from 172.8 f-ls in the case where both operands are 
positive to 253.2 f-lS where operand signs differ. The total execution time for an addition or 
subtraction of two operands may be determined by adding the individual execution times of 
either DPSB$ or DPAD$ to the execution time of DPADD$. The execution times for DPAD$ 
and DPSB$ are given with the description of the individual routines in this subsection. 

• DOUBLE PRECISION ADDITION (DPAD$) 

DPAD$ is a routine designed to calculate the sum of numbers in double precision notation. 



UP-3900 UNIVAC 490 SPURT 14-H 
SE C TION: PAGE: 

This routine performs the add operation using operands in the binary two word, double precision 
format. These operands, the augend and addend, may be produced directly from a numeric field 
by either performing the conversion routine DPFDTOBIN $ (see CONVERSION ROUTIN ES) or by 
the application of some othe r technique within the main program prior to the execution of DP AD $. 

Double precision addition as herein described is a fixed=point operation involving numbers with 
values not exceeding 10 16 - 1, where decimal point alignment of the numbers at the time of the 
add operation does exist. The technique used in double precision addition is shown as follows: 

Suppose A+B=C, where double precision configurations are A 1 A 2 + B 1 B2 = C 1 C 2 with assumed 
decimal point alignment; then by using consecutive memory locations, the add operation is rep= 
resented by: 

Augend Addend Initial Sum 

AI Bl C1 =A,+B, 
+ 

A2 B2 C2 = A2 + B2 

where A l' Bland Clare the most significant words of the operands and A 2' B 2 and C 2 are the 
least significant words. 

The addition process in DPAD$ proceeds in the following sequential steps. 

1. The corresponding words, Ai and Bi , are added to form the initial sums, Ci , which are 
placed in consecutive memory locations as shown above (i = 1, 2). The least significant 
words (i = 2) are added first. 

2. Word size adjustment to a maximum value of 10 8 - 1 (decimal) per word, thus establish
ing the basis for the carry process in addition; e.g., 

if (A
2 

+ B
2

) > 108 

then (A 2 + B 2)-:- 108 
= Q2 + R2 

where R2 is the least significant word of the final sum, and Q2 is the carry factor added 
to the sum of the most significant word which subsequently undergoes word size adjust
ment, i.e., 

8 
SI -;- 10 == Q1 + Rl 

where Q 1 = 0 and R 1 is the most significant word of the final sum. If Q,IO, a size 
error condition is present, indicating that the sum exceeds the accepted operand size of 
10 16_1 decim a1. 

S3 



14-H 
SECTION: 

54 UNIVAC 490 SPURT 
PAGE: 

This may be illustrated as follows: 

A1+B,=C 1 Final sum 

if Q, > 0 

Note: Subtraction of 10 8 -1 rather than division by 108 is actually used within DP AD $ 
to obtain maximum efficiency; howcYJer, this does not effect the basic theory 
involved. 

3. Setting an error indicator prior to exiting from DP AD$ if a size error condition is 
detected. 

DP AD$ may function as a second level routine wi thin DPADD$ or DPSUB$. It may also function 
as an independent routine provided the operand parameters are preset along with a special 
numeric indicator set in the A register. This indicator specifies the sign values of the operands. 
If both operational signs are positive, the A register is set equal to O. If both operational signs 
are negative, then the sign bit positions of the most significant words of each operand must be 
set to zero and the A register set equal to 2 before executing DPAD$. 

a. Parameters 

Entrance: 

84 Address of the first word of the two word, double precision operand, the augend. 

85 Address of the first word of the two word, double precision operand, the addend. 

86 Address of the first word of the two word, double precision resultant binary sum. 

A register is set as follows to determine sign value of the resultant binary sum 

Exit: 

o 80th operands are positive; therefore, the result is positi ve. 

2 80th operands are negative; therefore, the result is negative. (The sign 
bits of the most ~ignificant operand words must be cleared.) 

84, B5, B6 same as entrance. 

A register contains an error indicator: 

A<O Size error condition. 

A>O No error condition. 

b. Error Indications 

An error indicator is set in DP AD$ when the sum of the binary operand exceeds 10 16 - l. 
The A register is set negative in DP AD$ when this size error condition is detected. Ap
propriate action is initiated by the macro call line error address operand or by the own code 
error address via a return jump to a closed subroutine which must be included within the 
main program. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

c. Data Format 

The double precision binary numbers must conform to the format described in the introduction 
to this subsection. Any deviation from this specified format will produce unpredictable and 
erroneou s results. 

A Fieldata field may be converted to a two word double precision binary operand by using 
the appropriate routine (DPFDTOBIN $) described under CONVERSION ROUTINES, 

d. Routine Requirements 

33 wo rds of storage. 

The execution time for DPAD$ may vary from 248 fls, in the case where a size error condition 
exists, to 280 fls for the addition of two binary operands of maximum size. 

• DOUBLE PRECISION SUBTRACTION (DPSB$) 

DPSB$ is a routine designed to calculate the difference of numbers in double precision notation. 
This routine performs the subtract operation using operands in the binary two word, double 
precision format. These operands, the minuend and subtrahend, may be produced directly from a 
numeric field by either performing the conversion routine DPFDTOBIN$ (see CONVERSION 
ROUTINES), or by the application of some other technique within the main program prior to the 
execution of DP SB$. 

Doubl e precisio n su btraction as herein des cribed in a fixedapoint opera Lion involving num bers 
with values not exceeding 10 16 _ 1 where decimal point alignment of the numbers at the time of 
the subtract operation does exist. The technique used in double precision subtraction is shown 

as follows: Suppose A-B -=C, where the double precision configurations are A, A2 - B, B2 = 

C 1 C
2 

with assumed decimal point alignment; then by using consecutive memory locations, the 
subtract operation is represented by 

Minuend Subtrahend Initia I Difference 

word 1 B B C,=A,-8, 

word 2 A2 8 2 C2 = A, - 8 2 

where A" 3 1 and C, are the most significant words of the operands, and A 2, B2 and C
2 

are the 
least significant words. 

The subtraction process in DPSB$ proceeds in the following sequential steps: 

1. The minuend and subtrahend words are initially compared to determine whether or not 
the absolute value of the minuend is greater than the absolute value of the subtrahend. 
If the minuend is smaller, the operands are reversed and the subtraction process is 
carried out in the normal manner. Therefore, if the subtraction process was initially 

stated as A,A2 - B, B2 = C, C 2 and it was determined that IA, A21 < IB, B21 

then the operands would be reversed and the problem restated as B, B2 - A, A2 = C, C 2 

55 



14-H 
SECTION: PAGE: 

S6 UNIVAC 490 SPURT 

2. The corresponding words, Ai and Bi , are subtracted to form an initial difference Ci 
which is placed in consecutive memory locations as shown above (i = 1, 2). The least 
significant words are subtracted first, i.e., A2 - B2 = C 2 before A,-B, = C,. 

UP-3900 

3. Each wo rd, C 1 and C 2' of the initial difference is inspected for negati vity, thus 
establishin g the basis for the borrow process in subtraction. The following ill us tration 
clarifies this technique. Beginning with the subtraction of the least significant operand 
words, we have 

If C2~ 0, no borrow is necessary; therefore, set R2 = C 2 as the least significant dif
ference word, and R, = C, as the most significant word. 

The subtraction process may be illustrated as follows: 

R1 = C1 

A1 - B1 = C 1 
or 

2 

R,=C,-l 

DPSB$ may function as a second-level routine wi thin DPADD$ and DPSUB$. It may also function 
as an independent routine, provided that the operand parameters are preset along with a special 
num eric indicator. This indicator must be set in the A register to specify the sign values of the 
operands. The value of th e num eric indic ator used in DPSB $ depends on the operand si gn com
bina tion in dicated below. 

Minuend Subtrahend 

+ 

+ 

a. Parameters 

Entrance: 

Numeric 
Indicator 

1 

3 

Result 
Sign 

+ 

84 Address of the first word of the two word, double precision operand, the minuend. 

B5 Aciciress of the first word of the two word, double preCISIon operand, the subtrahend. 

86 Address of the first word of the two word, double precision resultant binary difference. 

A register is set as follows to determine sign value of the resultant binary sum: 



UP-3900 UNIVAC 490 SPURT 14-H 

Exit: 

SECTION: 

1 Minuend is positive and subtrahend is negative; therefore, the result is 
positive. The sign bit of the most significant vlord of the subtrahend must 
be cleared. 

3 Minuend is negative and subtrahend is positive; therefore, the result is 
negative. The sign bit of the most significant word of the minuend must 
be cleared. 

B4, B5, B6 same as entrance. 

b. Error Indications 

PAGE: 

No error indicator is set in DPSB$ since the difference of the binary operands cannot exceed 
10 16 _1. 

c. Data Format 

The double precision binary numbers must conform to the format described in the introduction 
to this subsection. Any deviation from this specified format 'Ni11 produce unpredictable and 
erroneous results. 

A Fieldata field may be converted to a two word double precision binary operand by using the 
appropriate routine (DPFDTOBIN$) described under CONVERSION ROUTINES. 

d. Routine Req uireme n ts 

51 wo rds of storage. 

The execution time for DPSB$ may vary from 157 ,us, in the mInlmUm case, to 392 11S for the 
subtraction of a negative operand from a positive operand where reversal of operands is 
necessary. 

• DOUBLE PRECISION MUL TIPLICATION (DPMUL $) 

DPMUL$ is a routine designed to perform algebraic, double precision multiplication of binary 
operands which are in the specified double precision notation, 

This routine inspects the signs of the two input operands, multiplier and multiplicand, and sets 
the sign of the resultant product before performing the actual multiplication of the operands. The 
two input operands are the first and second operands in the macro call line and, when multiplied, 
the product is placed in the memory locations referenced by the third operand of the macro call 
line. 

The input operands may be produced directly from a numeric field by either performing the conver
sion routine DPFDTOBIN $ (see CONVERSION ROUTINES) or ,by application of some other tech
nique within the main program prior to the execution of DPMUL$. 

A size error operand is provided as the fourth operand in the macro call line; however, the coding 
for this error procedure must be included within the main program as a closed subroutine. 

Double precision m ul tiplication as herein described is a fixed-point operation concerned with 
multiplication of numbers not exceeding 10 16 _1 (decimal). Decimal point alignment is n~t neces
sary when performing DPMUL$. The maximum size product which may result in a multiply opera
tion is the square of 10 16 -1 which is contained in four words. The technique used in double 
precision multiplication is shown using the following description and illustrations. 

57 



14-H 
5E C TION: 

S8 UNIVAC 490 SPURT 
PA GE: 

Suppose A x B := P, where the double precision configurations are A1 A2 x B, B2 = (A, X B,) + 
(A, x B2) + (A z x B,) + A2B2 = PoP, P 2P 2 where the Ai an d Bi (i == I, 2) represen t the double 
precision, two word multiplier and multiplicand and Pi (i==O, 1,2,3) represents the maximum 
four word product. 

By using consecutive memory locations, the double precision multiply calculation is given by 
the following sequential steps with accompanying illustrations based on the simplified operand 
format. 

x 

Final Product 

word 1 rgj
Ultilier 

S A, 

A2 

S1 Po 

P, 2 

S Sign b it of operand P2 

0= + 
1 = = 

Step 1. 

Step 2. 

2 

P3 

Determine and set the final product sign v81ue. If either of the input operands is 
negative the sign bit position is cleared before multiplication takes place. 

Determine by means of a jump table the number of words in the input operands. Four 
distinct cases result. 

Case 1. 

R I A21- 0 I 

Case 2. 

1 by 1 case 

One-word multiplier and 

one-word m ultipli cand. 

Final Product 

I :::: I 
2 

x 

3 

Sl Po = 
0 

P,= 
0 

P \ OR Il~ 
2/- flU 

4 P 3:1 0 

(A2 x B2) 10
8 

= P 3 + P 2 is the least significant product word and P 2 is 
the most significant product word. In this case PI"'" Po '-.c O. 

1 by 2 case 

One-wo rd m ul tiplier and 

two-word multiplicand 

UP-3900 



UP-3900 

2 

2 

UNIVAC 490 SPURT 14-H 

~ A:! 0 
x 

Case 3. 

~ x 

A2 f 0 

SECTION: PAGE: 

Intermediate 
Partial 
Products Final Product 

I S I Po =,d 

A2x B,= 12 

~ 
2 PI {= ORflo 

8 2 f 0 3 P2f 0 

A2 X 8 2 = i3 
P3fo 4 

S is sign bit 

The procedure for determining the final product is as follows: 

13 -;- 108 = P 3 + Q3 where P 2 is the least significant word and Q3 is the carry factor 
added to the product of the next high partial product factor which then 
undergoes word size adj us tm ent; e. g., (Q3 + I

2
) -;- 10 8 

'--' P 2 -j Q
2 

where 
P2 is the next higher order product word and Q

2 
is used to determine the 

most significant product word as follows: 

If Q
2 

--f 0 then Q
2 

-= P, which is the most significant product word with 

Po = O. 

If Q
2 

= 0 then P, = 0 with Po '--- O. 

2 by 1 case 

Two-word multiplier and 

one-word m ul tiplicand. 

EBB 
2 

8, f 0 3 

4 

Intermed iate 
Partial 
Products 

A, X 8 2 = 12 

A2 X 8 2 = '3 

Final Product 

s I Po = 0 

2 P, != ORflo 

3 P 2 f 0 

4 P 3 f 0 

S is sign bit 

The procedure for determining the final product is as follows: 

I3 -;- 10 8 
= P3 -+- Q

3 
where P 3 is the least significant word and Q

3 
is the 

carry factor added to the product of the next high partial product factor 
which then undergoes word size adjustment; e. g., (Q3 + I2 ) -;- 10 8 

= P 2 

+ Q
2 

where P
2 

is the next higher order product word and Q
2 

is used to 
determine the most significant product word as follows: 

S9 



14-H 60 
SECTION: PAGE: 

Step 3. 

Case 4. 

UNIVAC 4510 SPURT 

If Q
2 

of 0 the Q
2 

= P, which is the most significant product word with 

Po = O. 

If Q2= 0 then P, = 0 with Po = O. 

2 by 2 case 

Two~wo rd multiplier an d 

two=word multiplicand. 

2 

Intermediate 
Partial 
Products 

A, X 8, = 

3 (A 1 X 8 2 )+ 

I, 

4 (A, X 8,)= 12 

Final Product 

s I po!=ORflo 

P, f a 

P2 f a 

The procedure for de!ermining the final product is as follows: 

A,A2 X B,B2 = (A, x B,) + [A,xB2)+(A2 x B,)] 

+ (A2B2 ) c-= 1,+12+13 

13 -7- 10 8 = P + Q where P is the next higher order product word and 
3 3 2 

Q
2 

is the carry factor added to the sum of the high order partial product 
which then undergoes word size adjustment; e. g., (Q2 +1,)-0- 108 = P, + Q 1 
where PI is the next higher order product word and Q, is used to deter
mine the most significan t product word as follows: 

If Q1 = 0 then Q
1 

= Po = O. 

If Q
1 

< 10 8 then Q, = Po where Po is the most significant product word. 

Setting an error indicator prior to exiting from DPMUL$ if the product exceeds the 
square 10 16 

- 1. If Q 1 ..2: 10 8 
, then the size error condition indicator is set. 

Q, 7 10
8 = Po + Qo where Po is the most significant product word as illustrated in 

Case IV. 

In summary, DPMULS performs three main functions: it performs ~n ()pt:' r 8!1.d sig!1. 

check thereby determining the sign of the final product; it calcul.ates a four-word 
product to a maximum value equal to the square of 10 i 6 - 1; and it performs a size 
error check. 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

a. Parameters: 

Entrance: 

84 Address of the first word of two word double precision operand, the multiplier. 

85 Address of the first word of the two word, double precision operand, the multiplicand. 

86 Address of the first word of the four word double precision binary product. 

Exit: 

Same as en trance. 

b. Error Indications 

An error indicator is provided in DPMUL$ when the value of the binary result exceeds the 
square of 10 16 

- 1. The Q register is set negative when an error condition exists. Appropri
ate action is initiated by the macro call line error address operand or by the own code error 
address operand via a return jump to a closed subroutine which must be included within the 

main program. 

c. Data Format 

The double precision binary numbers must conform to the format described in the introduction 
to this subsection. Any deviation from this sp ecified form at will produce unpredictable and 
erroneous results. A Fieldata field may be converted to a two word double precision binary 
operand by using the appropriate routine (DPFDTOBIN$) described under CONVERSION 
ROUTINES. 

d. Routine Requirements 

166 words of storage. 

The execution time for DPMUL$ may vary from approximately 778.4 I1.S in the case where 
operands contain only one word and are positive to 1430 f1.S where two word negative oper
ands are used. 

• DOUBLE PRECISION DIVISION 

DPDIV$ is a routine designed to perform algebraic double precision division of binary operands 
which are in the specified double precision notation. This routine inspects the signs of the two 
input operands, divisor and dividend, and sets the sign of the resultant quotient before perform
ing the actual division of the operands. The two input operands are the first and second operands 
in the macro call line, and when division occurs, the quotient is placed in the memory locations 
referenced by the third operand of the macro call line. 

The input operands may be produced directly from a numeric field by either performing the con
version routine DPFDTOBIN$ (see CONVERSION ROUTINES) or by the application of some 
other technique within the main program prior to the execution of DPDIV$. 

An error indication operand is provided as the fourth operand in the macro call line; however, the 
coding for this error procedure must be included within the main program as a closed subroutine. 

61 



14-H 
SECTION: 

62 UNIVAC 4SC SPURT 
PAGE: 

Double pre cision di vision as herein described is a fixed point operation concerned with division 
of numbers not exceeding 10 '6 _1. Decimal point alignment is not necessary when performing 
DPDIV $. The technique used in dou ble precision di vision is shown usin g the follow ing descri p
tions and illustrations based on the general Euclidean division algorithm, N = b q + r, where N 
is the number, b represents a base of 10 8 in double precision division, and q and r are quotient 
an d rem ainder, respectively. 

Suppose A .;- B=Q+R where the general double precision configuration is A, Az7 B, Bz = Q,Qz + 

UP-3900 

R ,Rz where Ai' Bi , Qi and Ri represent the double p recision two word di vidend, divisor, quotient 
and remainder, respectively (i ~ 1,2). 

The remainder is available to the worker program for rounding purposes by directly referencing the 
two word working storage area, "DPDIVREM$" which is included within the divide routine coding. 

By using consecutive memory locations, the double precision divide calculation is given by the 
following sequential steps with accompanying illustrations based on the simplified operand 
format: 

Step 1. 

Step 2. 

+ 

S Sign bit of operand 

0=+ 
1 = -

Determine and set the final quotient sign value. If either of the input operands is 
negative, the sign bit position is cleared before division takes place. 

Determine by means of a jump table the number of words in the input operands. Four 
distinct cases result. 

Case 1. 1 by 1 case 

One word dividend and one word divisor where the operand range is 
between 0 and 10 8 -1. 

+ 

A, = 3, = 0 and IA21 > IB21 (Dividend> Divisor) then A2 7 B2 = Q2 + Rz 
where Qz is the one word quotient, and Rz is the one word remainder, 
and Q = R = o. 

1 1 

Ai = Bl = 0 and IA) < !Bz! (Dividend <: Divisor) then Q, "CO Q
2 

- 0, R, -
o and Rz = A2.' i. e., the quotient is zero and the remainder is set equal 
to the original dividend. 



UP-3900 UNIVAC 490 SPURT 14-H 

Case 2. 

Case 3. 

Case 4. 

A, = 0 

A21= or:ilo 

SECTION: 

1 by 2 case 

One word dividend and two word divisor. 

Therefore Q, = Q
2 

= 0 and the remainder is set equal to the original 
dividend, i.e., R2 = A

2
, 

2 by 1 case 

PAGE: 

Two word dividend and one word divisor where the range of the dividend 
is between 0 and 10 16 and the range of the divisor is between 0 and 10 8

• 

R, = 0 
+ 

iA, A2i>IB, i (Dividend> Divisor) 

A, -;- B, = Q, + R, where Q, is the most significant quotient word and Rl 
is used to calculate the new dividend, D', 

where D '-R 10B-l-A - ~ , • ~ "-2 

then 0' -;- B, = Q
2 

+ R2 where Q
2 

is the least significant quotient 
word and R2 is the remainder which may be used for rounding. 

2 by 2 case 

Two word dividend and two word divisor where the operand range is 
between 0 and 10 16 _1. 

B, = 0 

~ 
R, = 0 

+ 

B2 {= or:ilo Q2 :i 0 R2 {= or:ilo 

iA, A2i>\B, B21 (Dividend> Divisor) 

The calculation of the true quotient, Q2' and true remainder, R2, is given 
in the following sequential steps: 

Scale the divisor, B B , S places such that its value lies between 
'5 '6 1 2 10 and 10 ,e.g., 

(1) 

10'6 > [rR 10 8 
-l- B )s] > 10 i5 ... \...." . ~ , 2/ - -

63 



14-H 64 
SECTION: PAGE: 

Step 3. 

UNIVAC 490 SPURT UP-3900 

(2) Determine a trial divisor, D
T

, from the scaled divisor (indicated 
above) equivalent in value to the upper eight decimal digits of the 
divisor incremented by 1, e.g., 

(3) Determine a trial quotient, Q T' using the original dividend and 
trial divisor D

T
, e.g., 

(AI' 10 8
+A2) -;- DT = Q T + R T; RT is the trial remainder and 

is ignored. 

(4) Using a preset scale factor, S', (derived from original scale factor) 
(S), scale down the trial quotient, Q T' to obtain a near approxim ation 
of the true quotient, 

Q T (scaled) --? Q A 1 + R A where Q A 1 is the first approxim ated 
quotient and R A is the ignored remainder. 

(5) Determine a new dividend, ON' using the approximated quotient Q AI' 
This procedure involves the use of double precision multiply and 
double precision subtract. 

(AIAz) - (QA1 . B,B2) = ON 1 where A, A2 and B, B2 are in double 
precision format. 

(6) Determine by an iterative subtract method the number of adjustments 

to the trial quotient, QAt' to obtain the true quotient Q2' 

If 0NI > B 1B2, then QA' + 1 =: QA2 is the new approximated 
quotient and 0N2 is the new dividend, e.g., ON 1 - (QA2 . B IB2) 

=: °N2 

These iterations occur until there is a point at which ° .< B, B . 
Nl 2 

Therefore the true quotient, Q2' is represented by: 

lim Q2 = QAI + l iterations, 

and the remainder R, =: 0Ni - (QAi + ,. B IB2) = 0Ni + , 

1 AI A21 < 1 B, B21 (Dividend < Oi visor) 

In this 2 by 2 case, the quotient is set equal to zero and the 
remainder is set equal to the di vidend, i. e., 

Q, = Q
2 

=: 0, 

Set an error iorlir::ltnr prio!" to the exit frem DPDIV$ if u~y' <:: •• 0. C0ii.ditl0ii 18 Jei.eci.eu 
during the di vide process. 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

a. Parameters 

Entrance: 

B4 Address of the first word of the two word double precision operand, the divisor. 

85 Address of the first word of the two word double precision operand, the dividend. 

86 Address of the first word of the four word double precision binary quotient. 

Exit: 

Same as entrance. 

b. Error Indications 

An error indicator is provided in DPDIV$ when: 

(1) The divisor is zero. 

(2) The di vidend is zero. 

(3) The divisor is larger than the dividend. 

When the error conditions occur, the quotient is set equal to zero and the remainder assumes 
the value of the dividend or zero (when the dividend is zero). 

The Q register is set negative when an error condition exists. Appropriate action is initiated 
by the macro call line error address operand or by the own code error address operand via a 
return jump to a closed subroutine which must be included within the main program. 

'-. Data Format 

The double precision binary numbers must conform to the format described in the introduction 
to this subsection. Any deviation from this specified forma twill produ ce unp redictable and 
erroneous results. A Fieldata field may be converted to a two word, double precision, binary 
operand by using the appropriate routine (DPFDTOBIN$) described under CONVERSION 
ROUTINES. 

d. Rou tine Requiremen ts 

216 words of storage. 

The execu tion tim e for DP DIV $ may va ry from approximately 590 fls in the case of a positive, 
one word divisor and dividend, to approximately 3150 flS when both operands (divisor and 
di vidend) are n egati ve with n urn eric values between 10 8 and 10 16 

_ 1. The execution time 0 f 
3150 fls includes the average execution times of the multiply routine and subtract routine 
(described in this section). However, the iteration time of 242 fls required for each successive 
adjustment to the trial quotient to obtain the true quotient is not included. As a result, the 
maximum execution time may vary considerable depending upon the number of iterations. 

5. Fieldata Arithmetic Routines 

The UNIVAC 490 Fieldata Arithmetic Routines are part of the SPURT library and provide two 
bas ic ari thmetic routines, add (FDADD$) and subtract (FDSUB$) in a sin gle precision forma t. 
They are useful where a value is incremented or decremented by a small value and then printed, 
as in a page count tally for a printed form. Complex arithmetic operations are performed more 
efficiently by other routines in this subsection. 

65 



SECTION: 

14-H 66 UNIVAC 490 SPURT 
PAGE: 

The standard format for these routines consists of a computer word containing Fieldata numeric 
characters. The largest number which can be represented in a computer word is 10 5 -1 which 
must be represented as six bit Fieldata character codes. For example, the number 9876 in the 
proper operand format would be represented in Fieldata codes in one computer word as 

Character Pos it ion } o 1 2 3 4 

60 71 70 67 66 

The Fieldata number is always normalized right in a computer word with a Fieldata zero filled 
in at the left if the number does not occupy a full word. 

The operand number will be considered an integer since the decimal point is assumed at the 
right of the least significant character. The decimal point is, in fact, disregarded in either 
arithmetic operation; therefore, it is necessary for the worker program to supply techniques for 
decimal point manipulation, if necessary. For example, in the Add and Subtract operations, 
point alignment is assumed. 

It is important to note that no complementing of operands occurs during any arithmetic oper::ltion. 
The operands are considered positive, therefore the programmer must decide which operation, 
FDADD$ or FDSUB$ is to be performed with specific operands. 

UP-3900 

• FIELDATA ADDITION (FDADD$) 

FDADD$ is a routine designed to calculate the sum of numbers in a one word, six bit Fieldata 
character representation. 

This routine adds two positive, five character Fieldata words, augend and addend, and stores 
the sum as a five character Fieldata word. This is accomplished by performing a series of 
masking operations in the operands with subsequent addition and overflow check, thus simulating 
a Fieldata adder. 

The two input operands may be set within the main pr.9gram or may be the result of some 
operation within the main program. 

The augend and addend are the first and second operands in the macro call line. The sum is 
placed in the memory locations referenced by the third operand of the macro call line. 

A size error operand is provided as the fourth operand in the macro call line; however, the coding 
for this error procedure mus t be included within the main progra m as a closed s u brou tine. 

a. Parameters 

Entrance: 

84 Address of the one word Fieldata numeric operand, the addend. 

85 Address of the one word Fieldata numeric operand, the augend. 

86 Address of the one word Fieldata resultant sum. 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

Exit: 

Same as en trance. 

b. Error Indications 

An error indicator is provided in FDADD$ when the value of the Fieldata result exceeds 
10 5 -1. The Q register is set negative when an error condition exists. Appropriate action is 
initiated by the macro call line error address operand or by the own code error address 
operand via a return jump to a closed subroutine which must be included within the main program. 

c. Data Format 

The Fieldata operands must conform to the format as described at the beginning of this 
subsection. Any deviation from this specified format w ill produce unpredictable and erroneous 
res ults. 

d. Routine Requirements 

32 words of storage. 

The execution time for FDADD$ varies from 232.8 f1s in the case of no overflow (size error) 
to 244.8 f.1S when an overflow condition exists. 

• FIELDATA SUBTRACT (FDSUB$) 

FDSUB$ is a routine designed to calculate the difference of numbers in a one word, six bit 
Fielda ta character represen ta tion. 

This routine initially performs an operand size check. If the minuend is greater than the 
subtrahend, normal subtraction is implemented; however, if the minuend is less than the 
subtrahend, the operands are reversed, an error indication is set and the normal subtraction is 
carried out. This routine subtracts two five-character Fieldata words, minuend and subtrahend 
and stores the difference as a five=character Fieldata word. This is accomplished by performing 
a series of masking operations in the operands with subsequent addition and check, thus 
simulating a Fieldata subtracter. 

The two input operands may be set within the main program or may be the result of some 
operation within the main program. 

The minuend and subtrahend are the first and second operands in the macro call line. The 
difference is placed in the memory locations referenced by the third operand of the macro call 
line. 

An error indication for operand reversal is provided as the fourth operand in the macro call line; 
however, the coding for this error procedure must be included within the main program as a 
closed subroutine. 

a. Parameters 

Entrance: 

B4 Address of the one word, Fieldata numeric operand, the minuend. 

67 



14-H 
SECTION: 

68 UNIVAC 490 SPURT 
PAGE: 

B5 Address of the one word, Fieldata numeric operand, the subtrahend. 

B6 Address of the one word, Fieldata resultant difference. 

Exit: 

Same as entrance. 

b. Error Indication 

An error indicator is provided in FDSUB$ when the initial minuend and subtrahend are 
reversed. The Q register is set negative when the operands are reversed. Appropriate action 
is initiated by the macro call line error address operand or by the own code error address 
operand via a return jump to a closed subroutine which must be included within the main 
program. 

c. Data Format 

The Fieldata operands must conform to the format as described at the beginning of this 
subsection. Any deviation from this spec ified format will produce unpredictable and 
erroneous results. 

d. Routine Requirements 

47 words of storage. 

The execution time for FDSUB$ varies from 296.4 f-Ls in the case of no reversal of operands 
to 320.4 fLS with operand reversal. 

6 Routine Implementation 

The routines that have been described in subsection 1 through 5 may be included in the coding 
of a program and initiated by either a macro call line or an own code opt'ion. This subsection 
describes the coding required for each option and specifies the variable operands that must be 
inserted by the user. The page reference in the heading refers to the description of the routine 
in the texL 

CONVERSION ROUTINES 

FIELDATA TO BINARY (FDTOBIN$) 

MACRO: 

OWN 
CODE: 

FDTOBIN$ . a, b, c, EA 

ENT B5 a 

ENT B6 b 

ENT .. B7 c 

EXECUTE. FDTOBIN$ 

RJP . EA 

Page 14-H=4 

UP-3900 



UP-3900 UNIVAC 490 SPURT 

First word address of the two word Fieldata storage. 

b Address of binary storage. 

c Number of characters to be converted. 

EA Entrance to user coded error address. 

BINARY TO F I ELDATA (BINTOFD$) 

MACRO: BINTOFD$. a, b 

OWN 
CODE: 

. 
a 

b 

ENT . B4 . a 

ENT . B5 . b 

EXECUTE. BINTOFD$ 

-----

Address of binary storage. 

First word address of two word Fieldata storage. 

CODE CONVERSION (CODECON$) 

MACRO: 

OWN 
CODE: 

CODECON$ . a, b, C, d, e 

ENT . B4 . a 

ENT . B5 . b 

ENT . B6 . c 

ENT . B7 . d 

ENT . A . e 

RJP . CODECON$ 

14-H 69 
SECTION: PAGE: 

Page 14-H-7 

---_. 

Page 14-H-8 



14-H 
SECTION: 

I 

70 UNIVAC 490 SPURT 
PAGE: 

a The first word address of the pickup field. 

b The first word address of the deposit field. 

c The number of words to be translated. 

d Translation mode. 

e The first word :3ooress of the translation table. 

DOUBLE PRECISION BINARY TO FIELDATA (DPBINTOFD$) Page 14-H-16 

MACRO: 

OWN 
CODE: 

a 

b 

c 

d 

e 

EA 

DPBINTOFD$ . a, b, c, d, e, f 

ENT . B4 . a 

ENT BS b 

ENT . B6 . c 

ENT . B7 . d 

ENT . A . e 

EXECUTE. DPFDTOBIN$ 

RJP . EA 

First word address of pickup field, 

Fust word address of deposit field. 

First character position in the deposit field. 

Number of characters in the deposit fieldo 

Sign option indicatoL If this operand is omitted in the macro call line, 
the operand is automatically made zero by the SPURT assembly system, 
thus causing sign insertion to be inhibited. 

Address nf ~ t: 1:"sed errnt" snbrnnt!!le 

FIELDATA TO DOUBLE PRECISION BINARY (DPFDTOBIN$) Page 14-H-19 

UP-3900 



UP-3900 

l 

UNIVAC 490 SPURT 

MACRO: 

OWN 
CODE: 

a 

b 

c 

d 

EA 

DPFDTOBIN$ , a, b, c, d, EA 

ENT , B4 , a 

ENT , B5 , b 

ENT. B6 . a 

ENT . B7 , d 

EXECUTE. DPFDTOBIN$ 

RJP, EA 

First word address of pickup field, 

First word address of deposit field, 

First character position in the pickup field, 

Number of characters in the pickup field, 

Address of a closed error subroutine, 

EDITING ROUTINES 

ZERO SUPPRESSION (ZSEDIT$) 

MACRO: 

OWN 
CODE: 

ZSEDIT$ , a, b 

ENT. B6 , a 

ENT , B7 , b 

EXECUTE. ZSEDIT$ 

a Number of characters (words) to zero suppress, 

b Address of first word (n) in the 20 word working storage, 

FLOAT DOLLAR SIGN (FLDEDIT$) 

14-H 
SECTION: PAGE: 

Page 14-H-23 

Page 14-H-25 

I 
I 

! 

I 

71 



14-H 72 UNIVAC 4BC SPURT 
SECTION: PAGE: 

I 

MACRO: 

OWN 
CODE: 

FLDEDIT$ 0 a 

ENT . B7 0 a 

EXECUTE. FLEDIT$ 

Address of first word (n) in 20 word working storage, 

CHECK PROTECTION (CHKEDIT$) 

MACRO: 

OWN 
CODE: 

CHECKEDIT$ 0 a 

ENT . B7 . a 

EXECUTE . CHKEDIT$ 

Address of first word (n) in 20 word working storage. 

FLOAT PLUS OR MINUS SIGN (FLPMEDIT$) 

MACRO: 

OWN 
CODE: 

FLPMEDIT$ . a, b 

ENT . B6 . a 

ENT . B7 . b 

EXECUTE. FLPMEDIT$ 

Page 14-H-27 

Page 14-H-29 

a Code to indicate floating plus or minus (0 = plus; 1 = minus). 

b Address of the first word (n) in the 20 word working storage. 

MERGE CHARACTERS (MERGEDIT$) 

MACRO: 

OWN 
CODE: 

MERGEDIT$ 0 a 

ENT . B7 . a 

EXECUTE. MERGEDIT$ 

Page 14-H-34 

I 
J 
I 

UP-3900 



UP-3900 

I 

UNIVAC 490 SPURT 

Address of the first word (n) in the 20 word working storage. 

FLOATING PO!NT ROUTINES 

FLOATING POINT ADD OR SUBTRACT (FPAS$) 

MACRO: 

OWN 
CODE: 

a 

b 

c 

EA 

(f.<DAnDIi:) 

FPAS$ .~ - .. ~ "'J' a, b, c, EA 
lFDSUB$ 

CALL. FPAS$ 

ENT . 84 . a 

ENT . B5 . b 

ENT . B6 . c 

f
FPADD$ ) 

RJP f 
\FPSUB$ } 

RJP . EA . QPOS 

Address of the first word of the augend or minuend. 

Address of the first word of the addend or subtrahend. 

Address of the first word of the result. 

Error address. 

FLOATING POINT MULTIPLY OR DIVID E (F PMD$) 

MACRO: 

OWN 
CODE: 

{

FPMUL$} 
FPMD$ 

FPDIV$ 
, a, b, c, EA 

CALL. FPMD$ 

ENT . B4 . a 

ENT. B5 . b 

14-H 73 
SECTION: PAGE: 

Page 14-H-39 

i 

I 
I 
I 

I 
I 
I 

Page 14-H-40 



14-H 
SECTION: iPAGE?4 

UNIVAt:; q.SD S~URT 

a 

b 

c 

EA 

ENT . B6 . c 

{

FPMUL.$} 
RJP 

FPDIV$ 

RJP . EA . QPOS 

Address of the first word of the multiplicand or dividend. 

Address of the first word of the multiplier or divisor. 

Address of the first word of the product or quotient. 

Error address. 

FLOATING POINT CONVERSION (FPFXFL$) 

MACRO: 

OWN 
CODE: 

a 

b 

c 

EA 

{FXTOFL$} 

FPFXFL$~ J 
lFLTOFX$ 

CALL. FPFXFL$ 

ENT . B4 . a 

ENT . B5 . b 

ENT . B6 . c 

{

FXTOFL$} 
RJP 

FLTOFX$ 

RJP . EA . QPOS 

Position of the scaling point. 

, a, b, c, EA 

Address of the first word of the operand. 

A.ddress of the first word of the result. 

Error address for FL TOFX$. 

FLOATING POINT SINE OR COSINE (FPSNCS$) 

Page 14-H-40 

Page 14-H-41 

UP-3900 



UP-3900 

I 
r 
i 
I 

UNIVAC 490 SPURT 

MACRO: 

OWN 
CODE: 

(FPSIN$ ) 
FPSNCS$ .< > ,a, b, EA 

lFPCOS$) 

CALL. FPSNCS$ 

ENT . B4 . a 

ENT . B6. b 

{

FPSIN$ } 
RJP. 

FPCOS$/ 

RJP . EA . QPOS 

a Address of the first word of the operand 

b Address of the first word of the result. 

EA Error address. 

FLOATING POINT ARCTANGENT (FPATAN$) 

MACRO: FPATAN$. a, h, EA 

OWN 
CODE: 

a 

b 

EA 
• 

ENT . B4 . a 

ENT . B6 . b 

[EXECUTE. FPATAN$] 

or 

[

CALL. FPATAN$] 

RJP . FPATAN$ 

RJP . EA . QPOS 

Address of the first word of the tangent function value. 

Address of the first word of the result (in radians). 

Error address. 

14-H 7S 
SEC TION: PA GE: 

I 

Page 14-H-41 

I 
I 



14-H 76 UNIVAC 490 SPURT 
SECTION: PAGE: 

FLOATING POINT SQUARE ROOT (FPSQR$) 

MACRO: 

OWN 
CODE: 

a 

b 

c 

FPSQR$ . a, b, EA 

ENT . B4 . a 

ENT . B6 . b 

[EX ECUTE . FPSQR$] 

or 

[

CALL. FPSQR$ ] 

RJP . FPSQR$ 

RJP . EA . ANEG 

Address of the first word of the radicand. 

Address of the first word of the root. 

Error address. 

FLOATING POINT EXPONENT (FPEXP$) 

MACRO: FPEXP$. a, b, EA 

OWN 
CODE: ENT . B4 . a 

ENT . B6 . b 

[EXECUTE. FPEXP$j 

or 

[

CALL. FPEXP. $] 

RJP . FPEXP$ 

RJP . EA . QPOS 

Page 14-H-42 

Page 14-H-42 

UP-3900 



UP-3900 UNIVAC 490 SPURT 14-H 
SECTION: PAGE: 

a Address of the first word of the operand. 

Address of the first word of the result. 

EA Error address. 

FLOATING POINT NATURAL LOGARITH (FPLOGE$) 

MACRO: 

OWN 
CODE: 

a 

b 

EA 

FPLOGE$ . a, b, EA 

ENT . B4 . a 

ENT . B6 . b 

[EXECUTE. FPLOGE$] 

or 

[

CALL. FPLOGE$l 

RJP . FPLOGE$ _ 

RJP . EA . ANOT 

Add ress 01 t e lHst war C h c· a t e operana. d f h 

Address of the first word of the result. 

Error address. 

FLOATING POINT LOAD AND CONVERT (FPSTART$) 

MACRO: 

OWN 
CODE: 

(not applicable) 

[EXECUTE. FPST ART$] 

or 

[

CALL. FPSTART$] 

RJP . FPST ART$ 

Page 14-H-42 

Page 14-H-43 

Prior to executing FPSTART$, the paper tape containing the input 
data must be properly set in the reader. 

77 



14-H 78 UNIVAC 490 SPURT 
SECTION: PAGE: 

FLOATING POINT CONVERT AND PUNCH (FPPUNCH$) Page 14-H-44 

MACRO: 

OWN 
CODE: 

a 

b 

c 

FPPUNCH$ . a, b, c 

ENT . 84 . a 

T':"" l't.T I""f"'\ T') r:' _ 
Cl'l J. • OJ . I,.; 

ENT . B6 . b 

[EXECUTE. FPPUNCH$] 

or 

[

CALL. FPPUNCH$l 

RJP . FPPUNCH$ 

Address of the first of a two word, floating point number to be converted 
and punched. 

Number of decimal equivalents to convert and punch. 

Flexcode for the desired end of file action. 

FLOATING POINT CONVERT AND TYPE (FPTYPE$) Page 14-H-44 

MACRO: 

OWN .. 

CODE: 

a 

b 

FPTYPE$. a,b 

ENT . 84 . a 

ENT . 86 . b 

[EXECUTE. FPTYPE$] 
or 

[

CALL. FPTYPE$l 

RJP . FPTYPE$ 

Address of the first word of a two word, floating point number to be converted 
and typed. 

Number of decimal equivalents to convert and type. 

UP-3900 

i 



UP-3900 UNIVAC 490 SPURT 

FLOATiNG POINT SET OUTPUT LENGTH (FPSET$) 

MACRO~ 

OWN 
CODE: 

FPSET$ . a 

ENT . B4 . a 

[EXECUTE. FPSET$] 

or 

[

CALL. FPSET$] 

RJP . FPSET$ 

14-H 
SECTION: PAGE: 

Page 14-H-45 

Contains the value which sets the number of digits in the output number. 

FLOATING POINT SCALE (FPSCL$) 

MACRO: 

OWN 
CODE: 

(not applicable) 

ENT . 86 . a 

ENT . A . W (B6 + 1) 

[EXECUTE. FPSCL$] 

or 

I :~~L . ~~:.C~$l 
L t<JP . Fp~LL:t> ..J 

RJP . EA . QPOS 

Page 14-H-46 

Address of the first word of the two word floating point operand. 

EA Error address. 

FLOATING POINT DECIMAL CONVERSION (FPCONV$) Page 14-H-46 

79 



14-H 80 UNIVAC 490 SPURT 
SECTION: PAGE: 

I 

MACRO: 

OWN 
CODE: 

(not applicable) 

ENT . B4 . a 

[EXECUTE. FPCONV$] 

or 

CALL. FPCONV$ 

RJP . FPCONV$ 

Address of the first word of the two word, floating point operand. 

DOUBLE PRECISION ROUTINES 

DOUBLE PRECISION ADD SIGN CHECK (DPADD$) 

MACRO: 

OWN 
CODE: 

a 

b 

c 

EA 

DPADD$ . a, b, c, EA 

ENT . B4 . a 

ENT . BS . b 

ENT . 86 . c 

EXECUTE. DPADD$ 

RJP . EA . ANEG 

Address of augend. 

Address of addend. 

Address of result. 

Error address. 

DOUBLE PRECISION SUBTRACT SIGN CHECK (DPSUB$) 

Page 14-H-49 

Page 14-H-Sl 

UP-3900 

I 
I 



UP-3900 UNIVAC 490 SPURT 14-H 

MACRO; 

OWN 
CODE: 

a 

b 

c 

EA 

SECTION: PAGE: 

DPSUB$ . a, b, c, EA 

ENT. B4 . a 

ENT . BS . b 

ENT . B6 . c 

EXECUTE . DPSUB$ 

RJP . EA . ANEG 

Address of minuend. I 
Address of subtrahend. 

I 
Address of result. 

Error address. 

DOUBLE PRECISION ADD (DPAD$) Page 14-H-S2 

MACRO: 

OWN 
CODE; 

(1) DPADD$ . a, b, c, EA 

(2) DPSUB$. a, b, c, EA 

DPAD$ is entered through the DPADD$ when signs are like (1) or, through DPSUB$ 
when signs are unlike (2) 

ENT . A . NI 

ENT . B4 . a 

ENT . BS . b 

ENT . B6 . c 

EXECUTE. DPAD$ 

RJP . EA . ANEG 

81 



14-H 
SECTlor.J: 

I 

82 UNIVAC 490 SPURT 
PA GE: 

a Address of augend. 

b Address of addend. 

c Address of result. 

EA Error Address. 

NI Numeric indicator vlhich must be set \vhen using the O',Iln code option~ 

0, if both operands are positive; 

2, if both operands are negative. 

The sign bits of the most significant operand words must be cleared before 
executing DPAD$. 

DOUBLE PRECISION SUBTRACT (DPSB$) Page 14-H-55 

MACRO: (1) DPADD$ . a, b, c, EA 

(2) DPSUB$. a, b, c, EA 

UP-3900 

DPSB$ is entered through the DPADD$ when signs are unlike (1) or, through DPSUB$ 
when signs are like (2). 

OWN 
CODE: 

a 

b 

c 

EA 

NI 

ENT A. NI 

ENT B4. a 

ENT B5. b 

ENT . B6 . c 

EXECUTE. DPSB$ 

I 
I 

Address of augend. I 

I Address of addend. 

Address of result. 

Error address (when using DPADD$ or DPSUB$). 

Numeric indicator which must be set when using the own code option: 

1, if minuend positive, subtrahend negative; I 
3, if minuend negative, subtrahend positive. I -



UP-3900 

I 
! 

a 

b 

c 

UNIVAC 490 SPURT 

DOUBLE PRECISION MULTIPLY (DPMUL$) 

MACRO: DPMUL$. 3, b, c, EA 

OWN 
CODE: ENT . B4 . 3 

ENT . BS . b 

ENT . B6 . c 

EXECUTE. DPMUL$ 

RJP . EA , QNEG 

a Address of multiplier. 

b Address of multiplicand. 

c Address of product. 

EA Error address. 
I 

DOUBLE PRECISION DIVIDE (DPDIV$) 

MACRO: DPDIV$ . a, b, c, EA 

OWN 
CODE: ENT . B4 . a 

ENT. BS . b 

ENT . B6 . c 

RJP . EA . QNEG 

Address ot divisor. 

Address of dividend. 

Address of quotient. 

EA Error addre-ss. 
I 

14-H 83 
SEC TION: PA GE: 

Page 14-H-S7 

I 
! 
i 

Page 14-H-61 

I 
I 



14-H 84 
SECTION: PAGE: 

FIELDATA ROUTINES 

FIELDATA ADD (FFADD$) 

MACRO: FDADD$ . a, b, c, EA 

OWN 
CODE: ENT . B4 . a 

ENT . BS . b 

ENT . B6 . c 

EXECUTE. FDADD$ 

RJP . EA . QNEG 

a Address of augend. 

b Address or addend. 

c Address of sum. 

EA Error aqdress. 

FIELDATA SUBTRACT 

MACRO: FDSUB$. a, b, c, fA 

OWN 
CODE: 

a 

b 

c 

EA 

ENT . B4 . a 

ENT . BS . b 

ENT . B6 . c 

EXECUTE. FDSUB$ 

RJP . EA . QNEG 

Address of minuend. 

Address of subtrahend. 
- ... -_ .. _ .. _-

Address of difference. 

Error address. 

UNIVAI;; q::lU ::a"-UH I UP-3900 

Page 14-H-66 

Page 14-H-67 



UP-3900 UNIVAC 490 SPURT Appendix A 
SECTION: PAGE: 

APPENDIX A. COMPUTER INSTRUCTIONS 
Figure A-I provides a summary of the Computer instructions for the UNIVAC 490 Real-Time System. 

I 

I 

I 

I 
I 

I 

FUNCT!ON 
CODE I INSTRUCTION 

DESIGNATO R I 

01 Shift Q Right 
02 Shift A Right 
03 S!lift AQ Right 
04 

I 
Compare I 

! 05 I Shift Q Left 
06 Shift A Left 
07 Shift AQ Left 
10 Enter Q 
11 Enter A 
12 Enter B J 
13 Enter External Function 

14 Store Q 
15 Store A 
16 Store B J 
17 I Store Input Channel 
20 Add 
21 Subtract 
22 Multiply 
23 Divide 

24 Replace Add 
25 Replace Subtract 
26 

I Q Add 
27 Q Subtract 
30 I Add Q and Load A 
31 I Subtract 0 and Load A 

32 I Add Q and Store 
33 Subtract Q and Store 

34 I Replace Add Q 
35 Replace Subtract Q 
36 Replace Add One 
37 Replace Subtract One 
40 Enter Logical Product 
41 Add Logical Product 
42 Subtract Lo gi ca I Product 
43 Masked Com pari son 

44 Replace Logical Product 
45 Replace Add Logical Product 
46 Replace Subtract Logical Product 
47 Store Logica I Product 
50 Selective Set 
51 Selective Complement 

52 I Selective Clear 
53 Selective Substitute 
54

1 

Replace Selective Set 
55 Replace Selective Complement, 
56 Replace Selective Clear 
57 Replace Selective Substitute 
60 Arithmetic Jump (normal) 
61 Manual Jump (normal) 
62 Input Active Buffer Jump 
63 Output Active Buffer Jump 
64 

I 
Arithmetic Return Jump 

65 Manual Return Jump 
66 Terminate Input 
67 Terminate Output 
70 Repeat 
71 Index Skip 

72 Index Jump 

73 Initiate Input 
74 Initiate Output 
75 Initiate Input, Monitor 
76 Initiate Output, Mon itor 

LE G END: 

** 

Special j designator 

Input/Output Instructi ons 

OP ER AT ION 

Shift (Q) Right by Y 
Shift (A) Right by Y 
Shift (AQ) Right by Y 

*Compare (A) with Y or (Q) with 
Y or (AQ) with Y; and sense j 
Shift (Q) Left by Y 
Shi ft (A) Left by Y 
Shift (AQ) Left by Y 
Y-Q 
V-A 
Y_BJ 

**Y-CJ if j ;t 0 or 1. Test CO IC! 
active skip NI when j - 0 or 1. 
(Q)-Y 
(A)-Y 
(BJ)-Y 

1**(cJ)-Y 
(A) + V-A 
(A) - Y-"A 
(Q). Y--AQ I *(AQ) + Y; Quotient-Q, 

I Remai nder-A 
I (A) + Y-Y and A 

(A) - Y-Y and A 

I *(Q) + Y-Q 
*(Q) - Y-Q 
(Q) + V-A 

I Y - (Q)--A 
I (A) + (Q)-Y and A 

(A) - (Q)--Y and A 

I 
(Q) + Y-Y and A 

I Y - (Qr-Y and A 
! Y + 1-..Y an d A 

Y - l-Y and A 
*L (Y e (Q))_A 

I L (Y. (Q») + IA)_A 

I 
' " 

(A) - L (Y • (Q)_A 

I 
(A) - L (Y • (Q»); sense j 
(A) and (Q) unchanged 

*L (Y. (Q» __ Y and A 

L (Y • (Q)) + (A)-Y and A 
(A) - L (Y.(Q))-"Y and A 
L (A)(Q)-"Y 
Set (A)nfor (Y)n= 1 

I Complement (A)n for (Y)n = 1 

I 
Clear (A)1for (Y)n = 1 
(Y)n_(A)n for (Q)n = 1 
Set (A)n for (Y)n - I--Y and A 

; if 

i 
Complement (A)n for (Y)n = I-"Yand A 
Clear (A)1 for (Y)n = 1--Y and A 

I (Y)n-.(A)n for (Q)n = l_Y and A 
*y __ P per j 

*Y-P per j 
**If CJ active, jump to Y 
**If CJ active, jump to Y 

*j = 0, no jump; j = 1 jump to Y + 1, 
(P)--Y 

*Return Jump, stop if STOP key up 
~*Terminate input buffer on channe I j 

*Ter m inate output buffer on channe I j 
I *NI Y times per j 
I If (BJ) = Y, skip NI and clear BJ; 

If (BJ) 1- Y, Advance BJ and execute N I 
If (BJ) ="0, execute NI; If (BJ) f. 0, 
jump to Y; subtract 1 from (BJ) 

~*Activate input buffer on channel j 
fi<*Activate output buffer on channel j 
*"'Activate input buffer on channel j 
*"'Activate output buffer on channel j 

R = Read Class Instructions 

RP = Replace Class Instructions 

S = Store Class Instructions 

CLASS 

I 

I 
I 
I 
I 

R 

S 

i 

R 
I 

I 
I 

RP 

I R 
I 
i 

I 
S I 

I I I 
RP 

I 
R 

RP 

S 

- i 
I t( 

RP 

I 

I I 

I 
I 

1 
I 

R 

I 

I 

I 

1 



Appendix A 2 UNIVAI:; q.!:JlJ 5PURT 
SECTION: PAGE: 

In Figure A-I, the following conventions are used to describe the operations that are performed by 
the ins tructions: 

( ) 

A 

y 

AQ 

the contents of the storage location or register enclosed within the parentheses. 

the quantity on the left is transferred to the storage location or register on the right. 

the accumulator, a 30-bit shift register. 

the operand. 

the 60-bit shift register formed by using A and Q together as a single register. 

UP-3900 

j 

(A)i 
(A)f 

the 3-bi t branch condition designator or the particular input/output channel desi gna ted by j. 

Q 

Bj 

L 

( )n 

p 

HI 

the initial and final contents of register A, respectively. 

the 30-bit quotient register. 

the particular B regis ter designated by j. 

the logical product or bit-by-bit product of binary digits. 

the nth hit position of the specified register or address enclosed within the parentheses. 

the IS-bit program address counter register. 

the next instruction to be executed. 



UP-3900 UNIVAC 490 SPURT Appendix A 
SECTION: 

A. INSTRUCTION WORD 

As shown in Figure A-2, each 30-bit instruction word is composed of five designators. 

f Des ig!'!ator 

The function code designator, f, is a six-bit code that specifies the principal operation - shift, 
store; add, and so on - to be performed by a program step. Sixty-two function code values 
constitute the UNIVAC Real-Time System repertorie of instructions. 

y Des i gnator 

The y designator is a IS-bit code from which is derived either the address of the operand or the 
operand itself. 

b Des i gnator 

PAGE: 

The operand address modification designator, b, is a 3-bit code that governs the first modification 
of y. This modication involves adding to y the contents of a B register designated by h. 

k Des ignator 

The operand-interpretation designator, k, is usually a 3-bit code that controls the procedure by 
which the operand is obtained and/or stored. The effect of k is different for each of three 
instruction categories: read, store, and replace. 

The operand interpretation designator also controls data transmissions during store operations. 

j Designator 

The branch-condition designator, j, is usually a 3-bit code that may be interpreted as a skip or 
jump-condition designator~ a register designator, or a repeat modification designator. 

f y 

Figure A-2. Instruction Word 

3 



Appendix A 4 UP-3900 
SECTION: PAGE: 

B. INSTRUCTION CYCLE 

The instruction execution cycle begins with a storage access period that transfers the address 
of the next instruction from register P to register S. Next the IS-bit contents of the storage 
address register, (register S) are translated, activating the storage selection system, which 
transmits a 30-bit instruction from memory into register U. 

As soon as it enters register U, the instruction word controls the execution of the remaining phases 
of the program step. 

The instruction word function code and various designators are then translated. If address 
modification is specified, the contents of the designated index register are added to the address 
portion (15 low order bits) of the instruction in register U before execution. Now the control 
mechanism performs the operations designated by the instruction word; that is, it executes the 
program step - add, subtract, compare, and so on. 

The instruction word remains in register U until it is replaced by the succeeding instruction 
word at the beginning of the next program step. 

C. j and k DESIGN ATOR INTERPRETA T10N 

The normal j and k designator interpretations, special j designator interpretations, and j and k 
designator combinations for input/output instructions are shown in the text that follows: 

• Normal j and k Designator Interpretation 

Figure A-3 shows the normal j and k designator interpretations. The k designator interpretations 
that are shown apply to all instructions within a given class. The j designator interpretations 
apply to all ins tructions except input/ ou tpu t instructions and those that are involved with the 
transfer of data to and from the B-registers. In the former case the j designator functions as an 
input/output channel designator and in the latter case as a B-register designator. 



UP-3900 UNIVAC 490 SPURT 

j INTERPRETATION 

SKIP NI 

SKIP NI 
IF (Q) 
POS. 

SKIP NI 

IF (Al I 0 

SKIP NI 
IF (A) 
POS. 

SKIP 

IF (Q) NEG. 

NI 

SKIP IF 
(A) ~ a 

SKIP NI 
IF (A) 
NEG. 

k INTERPRETATION 

Ibl ccccc 1M 

'~ 

(b"T' 
I ~II~ ~ 1'111Ir~:III!:1 R 

Appendix A 
SECTION: 

11:1~IIJllf:1 M IzER_ 
I FILL R L_ 

LEGEND: 

M = MEMORY LOCATION 
A = A REGISTER 
Q = Q REGISTER 
R = AR!THMETIC REGISTER 

NI = NEXT INSTRUCTION 
ccccc = FIVE -DIGIT CONSTANT 

Figure A-3. Normal J and k Designator Interpretation 

5 
PAGE: 



Appendix A 6 UNIVAC 490 SPURT 
SEC TION: PA GE: 

j 

t\ 
U 

1 

2 

3 

4 

5 

6 

7 

• Speci al j Designator Interpretation 

The special j desi gnator in terpretations that are shown in Figure A-4 apply only to the 
instructions that are indicated. 

FUNCTION CODE DESIGNATOR 

04 23 26/27 40/44 60/64 61/65 70 

1111 ." Oil Ni RELEASE JUMP N E: Y = Y 111 111 111 

SET /INTERLOCK 

SKIP SKIP SKIP SKIP RELEASE JUMP IF NE:Y=Y+l 
NI NI NI NI SET /INTERLOCK KEY 1 SET 

JUMP 

SKIP NI SKIP NI SKIP NI SKIP NI JUMP IF JUMP IF NE:Y=Y-l 
IF IF NO IF (A) POS. I F (A) EVEN (Q) POS. KEY 2 SET 

Y ~ (Q) OVERFLOW PARITY 

SKIP NI SKIP NI SKIP NI I SKIP NI 
I 

JUMP IF 
I 

JUMP IF 
I 

NE: 
I 

I I 
IF IF OVERFLOW IF (A) NEG. IF (A) ODD (Q) NEG. KEY 3 SET Y = Y + Bn* 

Y> (Q) I PARITY 

SKIP NI SKIP NI SKIP NI SKIP NI JUMP IF JUMP 

IF(Q)2 Y>(A) IF (A) = 0 IF (Q)= 0 IF(A}=O (A) = 0 STOP 
NE: Y = Y +(B6) 

SKIP NI SKIP NI I SKIP NI SKIP NI I JUMP IF 
JUMP 

NE: STOP 
I 

I I I 

IF (Q)< Y IF(A)*O IF(Q)*O IF(A)*O I F (A) * 0 IF STO P Y = Y + 1 + (B6) 

or Y ~ (A) I KE Y 5 IS 
SET 

SKIP NI SKIP NI SKIP NI SKIP NI JUMP IF JUMP 
NE: 

STOP 
IFY~(A) IF (A) POS. IF (Q) POS. I F (A) POS. (A) POS. IF STOP Y = Y -1+(B6) 

I 
, I .KEY 6 is I I I 

SET 

SKIP NI SKIP NI SKIP NI SKIP NI JUMP IF JUMP NE: 
IF (Q) NEG. 

STOP 
IF Y > (A) IF (A) NEG. IF (A) NEG. (A) NEG. IF STOP Y = Y+Bn*+(B6) 

KEY 7 IS 
SET 

Add cumulatively the B-register indicated in the repeated operation to its operand during each execotion. 

Figore A-4. Special j Designator Interpretation 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix A 
SECTION: PAGE: 

• j and k Designator Combinations For Input/Output Instructions 

The j and k designators for the input/output instructions occupy the same six bit positions in 
the instruction word as those for non input/output instructions; however, the input/output j 
designator utilizes four of these six positions and the k designator the remainder. When input/ 
output instructions are written, the six bits that represent the j and k combination appear as 
two octal digits as do the six bits that represent these designators in all other instructions. In 
the case of input/output instructions, these octal digits are considered as a unit that represents 
a specific j and k combination rather than havi ng one digit represent the j designator and one 
the k designator. The octal digits that represent the j and k combinations for input/output 
instructions are shown in Figure A-S. For example, assume that an input/output instmction is 
to be written with the requirement that j = 5 and k = 3. An examination of the j = 5 row and k 
3 in the diagram will show that 27 is the two-digit octal num ber that meets this requirement. 

k=O k = i k= 2 K=3 

1 = 0 00 01 02 03 
j = 1 04 05 06 07 
j = 2 10 11 12 13 
j = 3 14 15 16 17 

j = 4 20 21 22 23 

I i = 5 24 I 25 26 27 
I j = 6 "n "v I 31 i 32 i 33 j 

j = 7 34 I 35 36 37 
8 =10 40 I 41 I 42 I 43 I D 8 I 

9D= 118 44 45 46 47 

110D = 128 50 I 51 52 53 
11D = 138 54 55 56 57 
12D - 148 60 61 62 63 
13D= 158 64 65 66 67 

Figure A·5. j and k Combinations for Input/ 

Output Instructions 

7 



UP-3900 UNIVAC 490 SPURT Appendix D 
SECTION: PAGE: 

APPENDIX D. PERIPHERAL SUBSYSTEMS 

This appendix provides a detailed description of the functional characteristics of each of the peripher
al subsystems that are designed to operate in a UNIVAC 490 Real-Time System. 

The function codes and status indications for each subsystem are listed to complete the information 
necessary for coding basic input/output instructions. 

Input/output operations that are controlled by the Real-Time Executive Routine (REX) must be coded 
with the mnemonic instructions described in Section 6, SPURT INPUT/OUTPUT UNDER EXECUTIVE 
CONTROL. The brief description of the input/output operations contained in Section 6 should be 
s ufficienL However, if a more detailed description of a peripheral subsystem is desired, it may be 
found in this appendix, 

A. FLYING HEAD - 880 MAGNETIC DRUM SUBS YSTEM 

The Flying Head - 880 Magnetic Drum Subsystem is used as a mass-memory storage device in the 
UNIVAC 490 Real-Time System. Differing from conventional magnetic drums, the storage employed 
in th~s system makes use of a unique approach developed by UNIVAC engineers - the "flying" 
read/write head. 

Unlike the fixed heads of conventional drums, the flying head of the Flying Head - 880 Magnetic 
Drum Subsystem floats on a boundary layer of air alon g the drum's surface, following its contours 
in a precise manner. This technique eliminates the recording disadvantages of the wider gap that 
separated recording heads and drum surfaces that was once necessary to compensate for the 
surface eccentricities common to all drums. Instead, because the boundary layer is quite thin, 
the head-to-surface spacing is greatly reduced and a greater recording density is therefore possible. 
Because rotation is required to create the boundary layer and "fly" the head, a special mechanism 
lowers the heads after the drum reaches speed, and retracts them for shutdown or in the event of a 
power failure. 

Forty head blocks are positioned around the drum. Mounted in each of these head blocks are 22 
"flying" read/write heads, one for each recording track which revolves beneath the block. There 
are 128 6-track data recording bands across the drum. Each band can store 6,144 computer words, 
allowing a total of 786,432 computer words or 3,932,160 alpha-numeric characters to be recorded 
on the drum. The remaining tracks are used for error checking procedures and timing functions. In 
addition, four tracks function as address tracks to provide an address reference around the circum
ference of the drum. The read/write heads record information on the drum's surface at a density 
of 518 bits per inch while it revolves at 1,800 revolutions per minute. Recording frequency is 
is approximately 1 megacycle. Average access time is one-half drum revolution or 17 milliseconds. 

1 



Appendix D 
SECTION: 

2 UNIVAC 490 SPURT UP-3900 
PAGE: 

All drums in the system are available to the central processor at any time. However, only one drum 
may be read or written on at anyone time on a single input/output channel. If an operation requires 
reading from one drum and simultaneously writing on a second drum, two subsystems, each on a 
separate input/output channel must be employed. Up to eight drums may be connected to each 
available input! output channel. A Channel Synchronizer/Control Unit is required to control all the 
drums on a channel. 

1. Addressing 

To facilitate reading and writing of information on the magnetic drums, a simplified scheme of 
addressing has been devised. Each of the 786,432 storage locations on each drum has a unique 
address composed of three parts: Angular Section (S-bits), Channel (7-bits) and Angular Ad
dress (ll-bits). 

• Angular Sections 

The. angular sections are intermixed around the drum to provide maximum storage with con
tinuous addressability. For each angular address, angular section 1 will be found between 
angular section 0 and an gular section 2. 

• Channels 

There are 128 6-track bands or channels across the surface of the drum. Each channel can 
store 6,144 computer words. 

• Angular Address 

Around the periphery of each drum are 2,048 angular addresses per section or a total of 
6,144 unique addresses. 

• Address Format 

Reading or writing in consecutive addresses will begin at the address (23 bits) specified in 
the Function Word, and then proceed to the next angular address. 

When angular address 2,048 is reached, the next word will be read or written in angular 
address 0000 of the next channel. When channel 128 is reached, the next word will be written 
or read in channel 00 of the next section. 

A particular address is specified by 23 bit positions in a function word. 

The uppermost angular address of any channel is: 

2047
10 

= 37778 = 11 111 111 11 (binary) 

The uppermost channel number on any drum is: 

127
10 

= 1778 = 1111111 (binary) 

The highest angular section number in an eight drum subsystem is: 

23 1 0 = 278 = 1 0 111 (b ina ry ) 



UP-3900 UNIVAC 490 SPURT Appendix D 
SEC TION: PAGE: 

Combining these three individual bit patterns and grouping in sets of three for octal interpreta

tion gives: 

BIT POSITION 22 18 17 11 JO 0 

ADDRESS ANGULAR 
ANGULAR ADDRESS 

PORTION SECTION NUMBER CHANNEL NUMBER 

BINARY 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OCTAL 2 7 7 7 7 7 7 7 

This pattern represents, in octal notation, the uppermost storage address on drum number 7 of 
the subsystem. 

Figure A-I is a simplified diagrammatic representation of the address structure. Each section 
is shown occupying a distinct portion of the drum. The sections are in reality intermixed 
around the drum. 

/ I 
/ I 

/ i 
/ / 

/ I 
/ I / 

/ I 

AS I! 
11 

SELECT DRUM AND ANGULAR SECTION ON DRUM 

CHANNEL 65 

/ I 
/ I 

// / 
~// ___ I 

I 
I 
i 
I 
I 

1214 , 
"-

A 

'\. , 
'\. 

SELECT CHANNEL SELECT ANGULAR ADDRESS 

Figure A- 1. Address Structure of Flying Head - 880 Magnetic Drum Subsystem 

"-
'\. 

\. 
'\. 

"-
'\. 

3 



Appendix 0 
SECTION: 

4 UNIVAC 490 SPURT 
PAGE: 

As a practical matter, however, the user is not concerned with the bit patterns of the addressing 
system because he need specify drum addresses in octal notation only. The range of addresses 
(in octal) for each drum on an eight drum subsystem is presented in the following table. 

UNIT BEGINNING ADDRESS ENDING ADDRESS 

a 00 000 000 02 777 777 

1 03 000 000 05 777 777 

2 06 000 000 10 777 777 

3 11 000 000 13777 777 

4 14 000 000 16777 777 

5 17 000 000 21 777 777 

6 22 000 000 24 777 777 

7 25 000 000 27 777 777 

Reading from or writing in consecutive addresses begins at the address specified in the 
Function Word and proceeds to consecutive angular addresses, channels, angular sections and 
drum units. For instance, starting with the first address in a subsystem, angular section 0 on 
drum unit 0 is written or read starting with angular address 0, channel 0 and continuing through 
angular address 2047, channel 127. Then angular sections 1 and 2 on the drum unit are written 
or read in the same sequence. When angular section 2, angular address 2047, channel 127 has 
been read, the same procedure is repeated for angular sections 3, 4 and 5 on drum unit 1, and 
so on. 

2. The Channel Synchronizer/Control Unit 

The Channel Synchronizer/Control Unit for the subsystem controls the operation of the magnetic 
drum units during their write and read functions, transfers the data to be written from the 
central processor to the drums, and transfers the data which has been read from the drums to 
the central processor. 

• Write Function 

During the write function, the Channel Synchronizer/Control Unit receives the Function Word 
from the central processor and translates it into a write command to the selected drum. Then 
it receives data words from the central processor and transfers them to the drum for writing. 

• Read Function 

During the read function, the Channel Synchronizer/Control Unit receives the Function Word 
from the central processor-and translates it into a read command to the selected drum. Then 
it receives data words from the drum and transfers them to the central processor. 

• Address Selection 

The Channel Synchronizer/Control Unit decodes' addresses contained in the Function Word 
and selects the requested address. 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 
SECTION: PAGE: 

• Error Detection 

The Channel Synchronizer/Control Unit generates a parity bit for each word transferred from 
the central processor during a write operation. It also checks for the parity bit in a read 
opeiation. Data words are checked for the proper number of characters. 

3. OPERATOR CONTROLS 

Primary control of the Flying Head - 880 Magnetic Drum Subsystem is accomplished by the 
program. However, the Control Cabinet has an Operator control panel that shows operating 
conditions in the subsystem and allows some manual operation. 
The control panel indicators and their functions are as follows: 

-

I 
-

DRUM FAULT 

FAULT 

TEST 

- ~ - - -
DRUM 

I B I DRUMS I I INTLK I FAULT FAULT NOT DISABLE RUNNING 

- '- ..... - -

- r-- ~ ~ 

DRUMS DRUMS OFF 
ON OFF SWITCH 

- '-- ..... ..... 

LEGEND: 

~I I~ = LIGHT I)::{] = BUTTON/LIGHT 

Lights under any of the following conditions: 

• High or low temperature exists in a drum unit. 

• A voltage fault occurs in a drum unit. 

• One of the drums becomes inoperative after all drums in the subsystem 
have attained operating speed. 

Lights whenever the DRUM FAULT light is on or when one of the following 
is detected: 

• Low voltage in Control Unit. 

• High current in Control Unit. 

• High temperature in Control Unit. 

• Loss of air in Control Unit. 

Pressing this button after the fault condition is cleared, resets the sensing 
circuitry. 

Lights when any test toggle switch in the subsystem is in its test position. 

5 



Appendix D 
SECTION: 

6 UNIVAC 490 SPURT 
PAGE: 

DRUMS NOT RUNNING: Lights when any of the following conditions exist: 

INTLK DISABLE 

• All drums are not in the automatic mode of operation. 

• Power in a drum unit is off. 

• One or more of the drums is not up to full speed. 

• Write voltage in a drum unit is off. 

Lights when the Bootstrap-Write switch is in the ON position or when the 
Synchronizer Interlock switch is bypassed. 

UP-3900 

DRUMS ON Pressing this button starts sequential operation of the drums. Logical drum 
unit 0 starts first and, once it is up to speed, the sequence continues until 
all drums are running. This indicator lights immediately; however, the 
DRUMS NOT RUNNING indicator remains on until an drums in the subsystem 
are up to speed. 

DRUMS 0 FF 

OFF SWITCH 

4. Operations 

Pressing this button removes power from the drums and lights the indicator. 
This button must be held until the DRUMS ON indicator goes out. Power 
to the Magnetic Drum Control Cabinet is not affected. 

Pressing this button removes power from the Magnetic Drum Control Cabinet 
unit. Power on is indicated by green light; power off by red light. 

Any part of the central processor's internal core storage can be used as an input/output data 
buffer storage area, with the exception of the few special core storage locations that are re
reserved for the Incremental Clock and the Interrupt Words. Information is transferred between 
the central processor and the subsystem in the form of 30-bit data words. These words 
are formed into blocks in core storage. A block may contain any number of words. Words in a 
block must occupy consecutive core storage addresses, starting with a program determined first 
word address, and ending with a program determined last word address. 

a. Buffer Mode 

A buffer mode transfer, which occurs independent of main program control, is used to transfer 
data between core storage and the drum units. Before execution of a buffer mode transfer of 
data, the program must perform the following steps: 

(1) Activate the channel to be used for the information transfer. 

(2) Load the channel index register with the buffer control word. (The lower and upper 
halves of the buffer control word contain the beginning and ending addresses of the 
section of core storage involved in the transfer.) 

(3) Send the proper Function Word to the Control Units. 

Steps 1 and 2 above are accomplished with one of the Initiate Buffer Instructions; step 3 is 
performed by the Enter External Function instruction. See BASIC INPUT/OUTPUT INSTRUC
TIONS (Section 5) for a more detailed discussion of these operations. 

Data is then transferred between the central processor core storage and the selected drum 
without main program intervention. When a word is transferred to or from storage, 1 is added 
automatically to the lower half of the control word. The data transfer is terminated when: 



UP-3900 UNIVAC 490 SPURT Appendix D 
SECTION: PAGE: 

(1) The central processor senses that the upper and lower halves of the buffer control word 
are equal. 

(2) A Terminate function is executed by the central processor. 

(3). An error is detected. 

b. Word Arrangement 

The Flying Head - 880 Magnetic Drum Subsystem accommodates four types of computer 
input/output words. They are the Function Word, Data Word, Identifier Word, Status Word, 
and End of Block Word. 

(1) Function Word 

FC 

The Function Word designates the operation to be performed by the Drum Unit and the 
address where the function is to begin. It is arranged as follows: 

AS C AA 
o 

The six most significant bits of the Function Word are the function code (Fe), bit posi
tions 24 through 29. The function code specifies the actual operation to be performed 
by the Flying Head - 880 Drum Subsystem. 

CODE 

02 

42 

52 

Bit positions 0 through 22 (bit position 23 is ignored) contain the drum address with AS 
as the angular section, C as the channel num ber, and AA as the an gular address. 

The function codes are as follows: 

FUNCTION 

Write 

Continuous 

Read 

B lock Read 

DESCRIPTION 

Write data in consecutive drum addresses starting at the 

address specified by the Function Word. Stop when no 

more data is ava i lab Ie from the centra I proces sor or when 

term i nated by a Term i nate In structi on or by an error. 

Read data from consecutive drum addresses starting at 

the address specified by the Function Word and transfer 

this data to the central processor. Stop when no more 

data is requested by the central processor, or when 

terminated by a Terminate Instruction or by an error. 

Read one block of data from consecutive drum addresses 

starting at the address specified by the Function Word 

and transfer this data to the central processor. The 

transfer i,s completed after the End of Block Word and 

one more word (cverflow word), containing the End of 

Block status code and the five least significant char-

a cters of the ovedlow word, is tro n sferred. Stop when 
transfer is completed or when terminated by a Terminate 

Instruction or by an error. 

7 



Appendix D 
SEC TION: PAGE: 

CODE 

45 

46 

55 

56 

40 

8 

FUNCTION 

Search 

Search Read 

Block Search I 

Block Search 
Read 

Bootstrap 

UNIVAC 490 SPURT 

DESCRIPTION 

After receiving the Identifier Word, read data from con
secutive drum addresses starting at the address speci
fied by the Function Word and compare each word read 
to the I denti fi er Word. When i denti ca I com pari son is 
achieved, transfer the Search Find status code and the 
address of the "find" to the central processor. Stop 

I • I .* I •• I. I I • • 
when 1 dentl ca I com pari son 1 s acn 1 evea or wnen Term 1-

nated by a Terminate Instruction or by an error. 

After receiving the Identifier Word, read data from con
secutive drum addresses starting at the address speci
fied by the Function Word and compare each word read 
to the I denti fier Word. When i denti ca I compa n ison is 
achieved, continue reading and transfer the data to the 
central processor starting with the Identifier Word. Stop 
when terminated by a Terminate Instruction or by an 
error. 

After receiving the Identifier Word read data from con

secutive drum addresses starting at the address speci
fied by the Function Word and compare each word read 
to the Identifier Word. If identical comparison is achieved 
before an End of Block is read, tran s fer the Search Find 
status code along with the address of the 6'find", if the 
End of Block Word is read before the Gafind" is made, 
transfer one more word (overflow word) containing the End 
of Block status code and the five least significant char
acters of the overflow word. Stop after the Search Find or 
End of Block status code has been transferred to the 
central processor or when terminated by a Terminate In
struction or by an error. 

After receiving the Identifier Word, read data from con
secutive drum addresses starting at the address ,speci-
fied by the Function Word and compare each word read 
to the Identifier Word. If an End of Block Word is read 
before the "find" is made, transfer one more word con
taining the End of Block status code and the five least 
significant characters of the word to the central proc
essor; if identical comparison is achieved before the End 
of Block Word is read, continue reading and starting with 
the Identifier Word transfer the data remaining in the 
block to the central processor. Stop when the End of 
Block status code has been transferred to the central proc
essor or when terminated by a Terminate Instruction or by 

Perform a Continuous Read from octa I address O. 

UP-3900 



UP-3900 

I~ 

UNIVAC 490 SPURT Appendix D 
SECTION: PAGE: 

CODE FUNCT!ON DESCRIPTION 

50 

23 

33 

Bootstrap 
.•• :~L 
'tV lin 

Interrupt 

Term i nate 

Term inate 

With 

Interrupt 

(2) Data Word 

Perform a B lock Read from octa I address O. 

Terminate an input operation immediately. Terminate 

an outp ut operation after the last Data Word has been 

recorded. 

Same as Terminate except the normal completion status 

code is sent to the central processor. 

The data word (input or output) may be composed of 30 bits of binary information or it 
may be composed of five six-bit alphanumeric characters as shown below. 

(3) Identifier Word 

The Identifier Word is a computer output word that immediately follows a Search or 
Search-Read Function Word. It can be in any bit configuration, as shown below. It is 
transmitted to the subsystem accompanied by an External Function Signal. The char
acters of the Identifier Word are sequentially compared with the drum characters until 
the appropriate find is accomplished. 

(4) Status Word 

The Status Word is transmitted by the subsystem into the central processor whenever 
there is data error information or a function with interrupt has been completed. A Status 
Word is arranged as follows: 

sc 

The status code, SC, for the Magnetic Drum Subsystem is contained in the most signifi

cant 6 bits of the Status Word. In some cases bit positions 0 through 22 contain a drum 
address. (See Function Word.) In other cases these bit positions are not used and are 
transmitted to the Computer as binary zeros. In some special cases, the status code 
may occupy the four most significant bits of the Status Word. 

9 



Appendix D 10 
SEC TION: PAGE: 

CODE 

14 

30 

34 

40 

50 

54 

60 

64 

04 

05 

UNIVAC 490 SPURT 

The status codes are as follows: 

I 

I 
I 

INDICATION 

Write Fault 

Channel 

Synchron i zer 

Character 

Count Error 

End of File 

Normal 

Completion 

Illegal 

Function 

Illega I 

Address 

Control Unit 

Sequence 

Error 

Continuous 

Read Parity 

Error 

End of Block 

Search rind 

I 

DESCRIPTION 

This indication occurs if more than one read/write head 

is selected, if high or low temperature occurs in the unit, 

or if D.C. power to the unit is dropped. 

This indication occurs whenever the character counter 

in the Channel SynchfOnizer reflects a character count 

I es s than that wh i ch is requ i red to make up a com puter 

word. 

This indication occurs when the next sequential address 

is an illegal address or an address on an inoperable unit. 

This indication occurs when any function with interrupt 

has been completed. 

This indication occurs if the function word contains a 

function code that is not valid for the subsystem. 

This indication occurs if the function word contained 

an address that does not exist in the particular sub

system, an address on an inoperable unit, or a bootstrap 

address for a Write function when the bootstrap area is 

locked out. 

This indication occurs when the character timing pulses 

are not in synchronism with the word mark timing. 

Thi s indication appears when a parity error has occurred 

during a Continuous Read function. The word containing 

the error is held in the Channel Synchronizer/Control 

Unit and an Input Data Request signal will be sent to 

the centra I proces sor fo Ilowi ng the acknow I edgem ent of 

the interrupt and the transfer of data then stops. A Termi

nate function must be sent to the Channel Synchronizer 

Control Unit to restore it to a ready condition. 

This indication occurs when an End of Block word 

(a word that contains binary one's) has been read during 

a block function. The status word contains this code 

and the four least significant characters of the overflow 

word (the word immediately following the End of Block 
word). 

This indicaTion occurs when The worci specifieci In a 

Search function has been found. The low order 22, bits 

of the status word contain the address of the find word. 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 
SECTION: PAGE: 

(S) End of Block Word 

The End of Block Word is all binary ones and may be stored at any location on the drum 
except the last (highest) address in the system. In octal code, the End of Block Word 
contains 7777777777. 

S. Subsystem Characteristics 

a. Summary of General Characteristics 

DAT A BITS (per track) 

DATA BIT CAPACITY (per drum) 

DRUM LENGTH (inches) 

DRUM DIAMETER (inches) 

TRACKS PER INCH 

DA TA TRACKS PER DRUM 

HEAD BLOCKS PER DRUM 

HEADS PER BLOCK 

DRUM S PEED (revolutions per minute) 

WORDS PER DRUM 

A VERAGE ACCESS TIME (milliseconds) 

MAXIMUM ACCESS TIME (milliseconds) 

30,720 

23,S92,960 

30 

24 

33 

768 

40 

22 

1,800 

786,432 

17 

34 

11 



Appendix D 12 UNIVAC 490 SPURT UP-3900 
SECTION: PAGE: 

b. Physical Characteristics 

FL YING HEAD - 880 FL YING HEAD - 880 

DRUM CABINET CONTROL CABINET 

HEIGHT (inches) 96 96 
WIDTH (inches) 55 20 
DEPTH (inches) 34 34 
WEIGHT 1,700 550 
(approximate Ibs.) 

TEMPERATURE RANGE 60 0 
- 800 F. 

HUMIDITY RANGE 40% - 70% 

HEAT DISSIPATION 3,600 850 
(B TU/ht.) 

I AIR FLOW 300 390 
I (cu. ft./min.) 

POWER 208/220 VAC 208/220 VAC 
REQUIREMENTS 60 cps 60 cps 

3 phase + neutral 3 phase 
11.5 KVA (start) 1.5 KVA 

1.3 KVA (run) 

MAXIMUM CABLE LENGTH RES TRICTIONS 

1. Central processor to Drum Control Cabinet: 300 feet 
2. Drum Control Cabinet to Drum: 60 feet 



UP-3900 UNIVAC 490 SPURT Appendix D 
SECTION: PAGE: 

B. F ASTRAND SUBSYSTEM 

The FASTRAl'"~D Subsystem is used as a large capacity random access storage dev~ice in the 

UNIVAC 490 Real-Time System. Each FASTRAND unit contains two magnetic drums that are 
similar to those used in the Flying Head-880 Magnetic Drum Subsystem. These drums are similar 
in that they employ flying read/write heads; however, they have an additional feature, the ability 
to laterally position the read/write heads. In each FASTRAND unit, 64 read/write heads (32 per 
drum) are connected to a common positioning mechanism that moves these heads in unison. These 
read/write heads record information on the surface of a drum at a density of 1,000 bits per inch 
while it revolves at 880 revolutions per minute. A verage access time is 92 milliseconds. There 
are 6,144' recording tracks in each unit (3,072 across each drum). Each track can store 2,112 
(30-bit) computer words, allowing a total of 12,976,128 computer words or 64,880,640 alphanumeric 
characters to be recorded on each unit. 

On each unit the recording tracks are divided into 96 positions with 64 tracks per position. Each 
track in a given position is under a separate read/write head and is divided into 64 sectors (areas 
that can hold 33 computer words). Since there are 64 tracks in a position, a position contains 
4096 sectorSe "A1 given position begins vlith sector 0 of its first track, runs through sector 63 of 
that track, and continues through the sectors of each succeeding track to the end of the position 
(secto r 63 of the last track). 

All units in the subsystem are available to the central processor at any time. However, only one 
unit may be read from or written on at anyone time on a single input/output channel. If an opera
tion requires simultaneous reading from one unit and writing on a second unit, two subsystems 
each on a separate input/output channel must be employed. Up to eight F ASTRAND units may be 
connected to each available input/output channel. A Channel Synchronizer/Control Unit is re
quired to control all the units on a channel. 

1. Addressing 

Each of the 393,216 sectors in each F AS TRAND unit has a unique address that is composed of 
four parts: Unit (3 bits), Position (8 bits), Track (6 bits), and Sector (6 bits). 

• Unit 

Specifies the particular unit in the subsystem that is involved. 

• Position 

Each unit in the subsystem is divided into 96 positions, each of which contains 64 recording 
tracks. These recording tracks are accessed by 64 read/write heads that .are moved laterally 
from position to position. 

• Track 

There are 6,144 recording tracks in each unit. Each track can store 2,112 computer words. 

• Sector 

In each recording track there are 64 sectors. Each sector can store 33 computer words. 
Since there are 64 tracks in a position, a position contains 4,096 sectors. 

13 



Appendix D 14 UNIVAI:; q.ac SFJURT UP-3900 
SECTION: PAGE: 

• Address Format 

The basic storage element in a F ASTRAND Subsystem is the sector. Sector addresses are 
continuous octal numbers within each unit. 

A particular sector address is specified by 23 bit positions in a function word. For example: 

The uppermost sector in a track is 
63 10 = 778= 111 111 (binary) 

The uppermost track in a position is 
63 10 = 778 = 111111 (binary) 

95 10 = 137 8 = 01 011 111 (binary) 

The highest numbered unit in a subsystem is 
7 10 :: 78 = 111 (binary) 

Com bining these four individual bit pa tterns in sets of three for octal interpreta tion gives: 

BIT POSITION 22 20 19 12 11 6 -t 5 

POSITION RANGE ADDRESS 
PORTION 

UNIT POSITION TRACK I SECTOR 

I 
BINARY 1 1 1 a 1 a 1 1 1 1 1 1 1 1 1 1 1 : 1 1 1 1 1 

OCTAL 3 5 3 7 7 7 I 7 7 

a I 
! 

1 : 

-, 

This pattern represents the address of the uppermost storage element on unit 7 of the subsystem. 

Figure B-1 is a simplified diagrammatic representation of the address structure of the FASTRAND 
subsystem. Although a position is shown as occupying a distinct portion of a unit, the tracks 
that comprise a position in reality are not adjacent to each other but are intermixed throughout 
the uni t. 

As a practical matter, however, the user is not concerned with the bit patterns in the addressing 
system because he need specify sector addresses in octal notation only. The range of addresses 

(in octal) for each unit in an eight unit subsystem is presented in the following table, 

I UNIT BEGINNING ADDRESS ENDING ADDRESS ! I ! 

a 0000 0000 0137 7777 I 
~ 
~ 

1 0400 0000 0537 7777 

2 1000 0000 11377777 

3 1400 0000 1537 7777 

4 2000 0000 2137 7777 

5 2400 0000 2537 7777 

6 

I 
3000 0000 3137 7777 

7 3400 0000 3537 7777 



UP-3900 

UNIT 0 

UNIVAC49D SPURT 

UNIT 1 UNIT 2 

/ 
/ 

/ 
/ 

I 

UNIT 3 
PO~IT\ON 

I 
I 
! 
I 

UNIT 4 

SELECT UNIT AND POSITION 

SELECY TRACK 

SELECT SECTOR 

UNIT 5 

Figure B-7. Address Structure of FASTRAND Subsystem 

Appendix D 15 
SECTION: PAGE: 

UNIT 6 UNIT 7 



rtl-'l-'t!IlUIX 1.) 

SEC TION: 

.LU 

PAGE: 

It should be noted that a movement of the read/write heads is required each time the starting 
sector address is not accessible within the current position. In these cases, the head move
ment will add to the amount of time that is normally required for an operation. 

UP-3900 

Reading or writing in consecutive sectors begins at the sector address specified by the function 
word and proceeds to consecutive sectors, tracks, and positions. For instance, starting with 
the first sector address in a subsystem, sector 0 in track 0 of position 0, data is read or written, 
and continues through sector 63. Then sectors 0-63, in track 1 of this position are read or 
written in the same sequence. This process continues until sector 63 in track 63 of position 95 
has been read or written. 

2. Channel Synchronizer/Control Unit 

The Channel Synchronizer Control Unit for the F ASTRAND Subsystem controls the operation of 
the storage units during their write and read functions, transfers the data to be written from the 
central processor to the storage units, and transfers data that has been read to the central 
processor. 

• Write Function 

During the write function, the Channel Synchronizer/Control Unit receives a function word 
from the central processor and translates it into a write command to the selected unit. Then 
it receives data words from the central processor and transfers them to the storage unit for 
writing. 

• Read Function 

During the read function, the Channel Synchronizer/Control Unit receives a fUI1.ction word and 
translates it into a read command to the selected storage unit. Then it receives data words 
from the sto rage unit and transfers them to the central processor. 

• Address Selection 

The Channel Synchronizer/Control Unit decodes addresses contained in the function word and 
selects the requested address. 

• Error Detection 

Various internal checks, such as parity and phase checks, are performed on all data that is 
transferred to or from the FA STRAN D Subsystem. 

3. Operator Controls 

Primary control of the F ASTRAND Subsystem is accomplished by the program. However, the 
Control Cabinet and the individual FASTRAND units have operator panels that show operating 
conditions in the subsystems and which allow some manual operations. 



UP-3900 

r--

l...-

UNIVAC 490 SPURT Appendix D 
SEC TION: PAGE: 

The Control Cabinet panel indicators and their functions are as follows: 

III FAULT IL._S.~.'~.~.H .. J~U 
~I I~~ LIGHT ~ ~ BUTTON/LIGHT 

DRUM FAULT Lights when there is a fault in one of the F ASTRAND units. 

DRUMS ON Pressing this button starts the F ASTRAND units. Logical unit 0 starts 
first and, once it is up to speed, the sequence continues until all units 
are running. This indicator lights immediately; however, the DRUMS NOT 
READY indicator remains on until all units in the subsystem are up to 
speed. This button is also used to clear the DRUM F AUL T indicator. 

DRUMS OFF Pressing this button removes power from all the F ASTRAND units, and 
lights the indicator. Power to the Control Unit is not affected. 

DRUMS NOT READY Lights when one or more of the FASTRAND units in the subsystem is not 
ready for operation. 

FAULT Lights when there is a fault in one of the FASTRAND units or in the 
Control Unit. 

OFF SWITCH Depressing this button removes power from the Control Unit. Power on is 
indicated by green light; power off by red light. 

TEST Lights when a F ASTRAND unit or the Control Unit is under test. 

The F ASTRAND Unit panel indicators and their functions are as follows: 

r-- r-- r-- r-- .-- r-- r-- r--

[;[] LINE lOVER I TRAVEL 0 I CIRCUIT I 
BREAKER B READY 

POWER 
ON 

I...- '-- l..- I-- I-- I...- '-- '-

~I 1~~LlGHT ~ = BUTTON/LIGHT 

17 



Appendix U 

SECTION: 

HS 
PAGE: 

OFF-LINE 

OVER TRAVEL 

HIT 

CIRCUIT BREAKER 

FAULT 

UNIVAC 4SC SPURT 

Lights when one or more switches on the maintenance panel is in the non
normal position. 

This indicator is lit when read/write head over travel (either right or left) 
has occurred. 

This indicator is lit when one or more read/write heads hit the drum 
surface. 

Th i~ indic~tor is lit when one or more circuit breakers in the unit are open 
due to overload. 

This indicator .is lit when any of the following conditions occur: 

UP-3900 

• Loss of cooling air supply due to failure of a blower or cooling compressor. 

READY 

POWER ON-OFF 

• DC power supply failure. 

This indicator is lit during normal operation. If the unit is not ready because 
a fault condition exists, the indicator is not lit. After the fault condition 
has been corrected, this button must be pressed to reset the fault sensing 
circuits. 

Lights when power is on in the unit. Pressing this button applies power to 
the unit, provided that power is on in the Control Cabinet or the OFF-LINE 
indicator is lit. 

The Control Cabinet also has an auxiliary operator7s panel that is located behind its front 
door. An illustration of this panel and descriptions of the indicators and switches it contains 
are provided in the text that follows: 

NOT READY 

00000000 

BK 2 BK I 
UNIT UNIT UNIT UNIT UNIT UNIT UNIT UNIT 

@@~~@@~~ 
DISABLE 

WRITE 
LOCKOUT 

tri\ 
\J:V 



UP-3900 UNIVAC 490 SPURT Appendix D 
SEC TION: PAGE: 

As shown in the illustration, this panel contains a toggle switch for each unit in the subsystem. 
If any of these switches are placed in the up position, the unit that is associated with it will 
be disconnected from the fault circuits, the Control Unit logic, and the indicators that appear 
on the other operator panels. In addition, this panel contains indicators that light when a 
particular unit is not ready and a key lock switch that can be used to preven t write functions 
from being executed. 

4. Operations 

Any part of the internal core storage of the central processor can be used as an input/output 
data buffer storage area, with the exception of the few special core storage locations that are 
reserved for the Incremental Clock and the Interrupt Words. 

Information is transferred between the central processor and the FASTRAND Subsystem in the 
form of 30 - bit data words. These words are formed into blocks in core storage. A block may 
contain any number of words. Words in a block must occupy consecutive core storage addresses, 
starting with a program determined first word address, and ending with a program determined 
last word address. 

a. Buffer Mode 

A buffer mode transfer, which occurs independent of program control, is used to transfer 
data to and from core storage and the FASTRAND units. Before execution of a buffer mode 
transfer of data, the program must perform the following steps: 

(1) Activate the channel to be used for the data transfer. 

(2) Load the channel index register with the buffer control word. (The lower and upper 
halves of which contain the beginning and ending addresses of the section of core 
storage involved in the transfer.) 

(3) Send the proper function word to the F ASTRAND Control Unit. 

Steps 1 and 2 are accomplished with one of the Initiate Buffer instructions; step 3 is per
formed by the Enter External Function instruction. See BASIC INPUT/OUTPUT INSTRUC
TIONS (Section 5) for a more detailed discussion of these operations. 

Data is then transferred between the central processor core storage and the selected 
F ASTRAND unit withou t main program intervention. When a word is transferred to or from 
core storage, 1 is added to the lower half of the buffer control word. The data transfer is 
terminated when: 

(1) The central processor senses that the upper and lower halves of the buffer control 
word are equal. 

(2) A terminate function is executed by the central processor. 

(3) An error is detected. 

b. Word Arrangement 

The F ASTRAND Subsystem accorr, ~lodates four types of computer input/output words. They 
are the Function Word, Data Word, Identifier Word, and Status Word. 

19 



Appendix D 
SECTION: 

I~ 

20 UNIVAC 490 SPURT 
PAGE: 

(1) Function Word 

Fe 

CODE 

1"'1 
IL 

52 

20 

30 

56 

The function word designates the operation to be performed by the F ASTRAND unit and 
the address where the operation is to begin. It is arranged as follows': 

p T s 
6 5 

The six most significant bits of the function word specify the function code, Fe, bit 
positions 24 through 29. Bit positions 0 through 22 (bit position 23 is ignored) contain 
the sector address with U as the unit, P as the position, T as the track, and S as the 
sector. 

The function c odes are as follows: 

FUNCTION 

Write 

Continuous 

Read 

Position 

Position 

With 

Interrupt 

Search All 

Words 

(long search) 

DESCRIPTION 

\Viite datu in consecuti-v"e sectois stoiting at the sectci 

address specified in the function word. Data is trans

ferred until the function is ended by a Terminate func

tion, an error, a Time Out, or an End of Position. 

Read data from consecutive sectors starting with the 

sector address specified in the function word and trans

fer this data to the central processor. Data is trans

ferred unti I the function is ended by a Term inate func

tion, an error, a Time Out, or an End of Position. 

Move the read/write heads in the specified FASTRAND 

unit to the position address specified in the function 

word. 

Same a s the Position function except that when the func

tion is completed, a status word and an external interrupt 

signal are transmitted to the central processor. 

Read each word of a sector, starting at the sector address 

specified in the function word, and compare it for equality 

with an identifier word that has been placed in the Chan

nel Synchronizer by the program. 

If a find is made within a sector, the subsystem goes 

immediately to the Continuous Read mode, The find word J 
.L L _ L _ I _ __ _ _ _ I .L L _ _ __ .L _ __ _ ___ J .L L _ _. _____ I _ = __ _ _______ I = ___ _ 

I I I t:: u U I U.I I ... t:: U I I II t:: ::. t:: ... I U I, U II U I II t:: VV U I U::. I II ::. u ...... t:: t:: U I II H 

sectors are transferred to the central processor. This 

continues until the function is ended by a Terminate 

function, an error, a Time Out, or an End of Position. 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 

CODE 

57 

54 

55 

53 

23 

33 

FUNCTiON 

Search All 
Words (short 
search) 

Search First 
Word (long 
search) 

Search First 
Word (short 
search) 

Data 
Recovery 
Read 

Terminate 

Term inate 
With 
Interrupt 

SECTION: 

DESCRIPTiON 

If a find is not made within a sector, the search continues 
, through each succeeding sector (untii the end of the 

position is reached) until a find is made or the function 
is ended by a Terminate function, an error, a Time Out, or 
an End of Position. 

Same as Search All Words (long search) function except 
that a maximum of 64 sectors wi II be searched; that is, 

the search will be confined to one track within a posi
tion rather than the entire position. 

Read the first word of a sector, starting at the sector 
address specified in the function word, and compare it 
for equality with an ident.ifier word that has been placed 
in the Channei Synchronizer by the program. 

if a find is made within a sector, the subsystem goes 
immediately to the Continuous Read mode. The find 
word, the balance of the sector, and the words in suc
ceeding sectors are transferred to the central processor. 
This continues until the function is ended by a Termi
nate function, an error, a Time Out, or an End of File. 

Same as Search First Word (long search) function except 
that a maximum of 64 sectors will be searched; that is, 
the search will be confined to one track within a position 
rather than the entire position. 

Read data from a sector, whose address is specified in 
the function word, and transfer thi s data to the central 
proces sor. When the end of the sector is reached, the 
tran s fel is stopped and a statu sword conta in i ng the Data 
Recovery Status Code wi II be sent to the central proces
sor provided that a Phase Check error, a non-recoverable 
error, or a Time Out has not occurred. 

If the subsystem is in the input mode, the operation is 
stopped immediately, regi sters are cleared, and an Out
put Data Request signal is sent to the central processor. 

If the subsystem is in the output mode, the operation is 
stopped after the current sector has been written. 

Same as Terminate Without Interrupt function except that 
a status word and an external interrupt signal are trans
mitted to the central processor immediately following 
the term i nati on. 

21 
PAGE: 



Appendix D 
SECTION: 

22 UNIVAC 4BD SPURT UP-3900 
PAGE: 

(2) Data Word 

The data word (input or output) may be composed of 30 bits of binary information or it 
may be composed of five six-bit alphanumeric characters as shown below. 

24123 18117 6 5 o 

(3) Identifier Word 

The identifier word is a computer output word that immediately follows a search function 
word. It can be in any bit configuration, as shown below. When the identifier is trans
ferred to the FASTRAND Subsystem it is accompanied by an external function signal. 

The characters of the identifier word are compared sequentially with the characters in 
words that are read from consecutive addresses, starting with the address specified in 
the function word. When identical comparison is made, further operation is determined 
by the type of search that was ordered. 

(4) Status Word 

sc 

CODE 

04 

The status word is transmitted by the F ASTRAND Subsystem to the central processor 
whenever there is data error information or a function with interrupt has been completed. 
A status word is arranged as follows: 

The status code. SC. for the FASTRAND Subsystem is contained in the most significant 
six bit positions of the status word, bit positions 24 through 29. In Some cases bit posi
tions 0 through 22 (bit position 23 is ignored) contain an error address. In other cases 
these bit positions are not used. 

The status codes are as follows: 

INDICATION 

Time Out 
(Input) 

DESCRIPTION 

This indication occurs if the central processor does not 
accept data at the rate required by the subsystem. 



UP-3900 

CODE 

05 

06 

07 

10 

14 

20 

24 

34 

40 

50 

54 

60 

74 

UNIVAC 490 SPURT Appendix D 

INDICATION 

End Of 
Position 
(Input) 

Pha se Error 

Non-Recover
able Error 

SECTION: 

DESCRIPTION 

This indication occurs whenever a change in the pos;~ 
tion of the read/write heads is required to continue the 
transfer of data. It wi II also occur if a find is not made 
during a search operation; it indi cates the end of the 
track has been reached. 

Th is i nd i cation occurs when the pha se mon itor i ng c i r
cu"its detect an incorrect phase condition. 

Th i s i ndi cation will a ppea r duri ng a read function when 

two or more phase errors have occurred in a sector or, 
an error in the longitudinal parity is detected but no 
phase errors were detected in the sector. 

Normal Ending I This indication will appear after a Data Recovery func-
(data recovery) tion has been performed provided that a Time Out, a 

Phase Error, or a Non-Recoverable error has not 

Address Error 

Channel 
S ynchron izer 
Sequence 
Error 

End Of 
Position 
(Output) 

Sector Length 
Error 

Normal End
ing (Write) 

Invalid 
Function Code 

Inval id 
Address 

Write Error 

Non-Operable 
Condition 

occurred. 

Indicates that the required sector address cannot be 
found. 

I 

This ind ication occurs during a write function when the 
central processor has not kept up with the transfer rate. 

I 

This indication occurs whenever a change in the posi
tion of the read/write heads is required to continue the 
transfer of data. 

This indication will occur whenever the control unit 
attempts to read from or write into a sector more than 33 
computer words. 

This indication appears when a Write or 
Position function has been completed. 

This indication occurs if the function word contains a 
function code that is not valid for the subsystem. 

This indication occurs if the Control Unit receives an 
address that does not exist in the particular subsystem. 

This i.ndication appears when a malfunction occurs dur
ing the writing of data. 

This indication occurs if the subsystem is not ready for 
operati on. 

23 
PAGE: 



Appendix D 24 UNIVAC 490 SPURT 
SECTION: PAGE: 

S. Subsystem Characteristics 

a. Summary of General Characteristics 

DATA BITS (per track) 

DA T A BIT CAPA CITY (per unit) 

DRUM LENGTH (inches) 

DRUM DIAMETER (inches) 

TRACKS PER INCH 

DA T A TRACKS PER UNIT 

NUMBER OF READ/WRITE HEADS PER UNIT (moveable) 

DRUM SPEED (revolutions per minute) 

WORDS PER UNIT 

AVERAGE ACCESS TIME (milliseconds) 

MAXIMUM ACCESS TIME (milliseconds) 

63,360 

389,283,840 

61.2 

24 

S3 

6,144 

64 

880 

12,976,128 

92 

lS6 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 25 
SECTION: PAGE: 

b. Physical Characteristics 

FASTRAND UNIT FASTRAND CONTROL CABINET 

HEIGHT (INCHES) 63.38 96 

WIDTH (INCHES) 121.5 20 I 
DE PTH (INCHES) 32.5 34.5 

WEIGHT 

(APPROX. LBS.) 5,450 700 

TEMPERATURE 
I - ~ . -- cno Q 0 C' 

KANuE uu - uO I. 

HUMIDiTY 

RANGE 40% - 70% 

HEAT 

I 
DISSIPATION 

(BTU/HR.) 1Q 111:;11 2,600 J...J ,T\J"'T 

I 
AIR FLOW 

I 
! 

(CU. FT./MIN.) 1,000 I 400 
! 

POWER 208/220 VAC 208/220 VAC i 
REQUIREMENTS 60 cps 60 cps 

3 phase 3 phase 
12.6 KVA (start), 35amps per phase 1.5 KVA 
7.0 KVA(run),20amps per phase 

Maximum Cable Length Restrictions 

1. Control Cabinet to first F ASTRAND Unit: 50 ft. 

2. Control Cabinet to all other FASTRAND Units: 75 ft. 

3. FASTRAND unit to FASTRAND unit: 30 ft. 





UP-3900 UNIVAC 490 SPURT Appendix D 
SECTION: PAGE: 

C. UNISERVO IIA MAGNETIC TAPE SUBSYSTEM 

The UNISERVO Ill'.. Magnetic Tape Subsystem is an integral part of the UNIVAC 490 Real-Time 

System. It consists of a Channel Synchronizer/Control Unit and from two to twelve UNISERVO IIA 
Tape Units that are connected to the central processor via an input/output channel. 

A subsystem that is on a particular input/output channel is capable of reading or writing data in 
the form of 30=bit binary words (five six-bit characters per word) on anyone of the tape units at any 
one time. If simultaneous reading and writing is required, two subsystems on separate input/output 
channels will be required. Data can be read or written at densities of 125 or 250 characters per 
inch. In addition, a subsystem can also read data that has been written by a UNITYPER* at a 
density of SO characters per inch. 

The UNISERVO IIA Tape Unit utilizes 0.5 inch wide 1500 foot reels of metallic tape or 2400 foot 
reels of plastic tape. 

SUPPLY REEL 

TAPE CLAMP 

TAPE WIPER v 
END-Of-TAPE 
PHOTOCELLS 

CENTER-DRIVE 
CAPSTAN 

0 0 

0 '-..V 
0 0 

0 0 
0 0 
0 0 

8 0 

0 

0 

0 0 

0 0 

0 0 

0, /0 

VACUUM PORTS 

Figure e-7. UN IS E R V 0 II A Tap e 

Trademark of Sperry Rand Corporation 

TAKEoUP REEL 

Unit Schematic 

RUBBER BUMPERS 

BACKWARD 

LIMIT SWITCH 

27 



AppendIX U 

SECTION: 
UNIVAt:: 4SC SPURT 

PAGE: 

As shown in Figure C-1, the reel of tape that contains data to be processed or the blank reel upon 
which data is to be written is mounted on the left, The right hand reel is used to store the tape as 
it is read or written on. The tape is threaded around and through guide rollers which control its 
path between the supply reel and take~up reel. A pre~threaded leader is permanently attached to the 
take=up reel. When it becomes necessary to mount a new supply reel, the end of the tape on the 
supply reel is attached to this leader, thus eliminating the need for manual threading. 

The read/write head performs t he actual reading or writing of data as the tape passes beneath it at 
the rate of 100 inches per second. Since the tape density may be 50, 125, or 250 characters per 
inch; inform::'ltion will be transferred at tlle rate of 5!000 (reading only), 12,500, or 25,000 characters 

per second. 

The erase head is used only during a write operation. It erases information on the tape before new 
information is written. Accidental erasure of a previously recorded tape can be prevented by the 
insertion of a metal ring into the reel. 

The vacuum columns, located below the tape reels are used to store the tape before it passes be~ 
neath the read/write head or is wound on the takeoup reel. These columns also insure that the tape 
tension is even and that there is the proper amount of slack to permit rapid acceleration and 
deceleration. 

The subsystem can detect premarked bad spots on tape where data cannot be written. Tapes are 
pretested by maintenance personnel, and any bad spots are marked so that they are recognizable. 
During processing the two bad spot photocells on the tape unit continuously monitor the tape for 
bad spots. When a bad spot is detected, the read or write operation that is in progress is suspended 
until the bad spot has passed the read/write head. 

1. Tape Format 

Data appears on tape in the form of frames that are written across its width in eight channels or 
bit positions (6 data, 1 parity, and 1 sprocket). Five frames represent one 30gbit computer word. 
These words are written in groups called blocks (one or more words). Figure C-2 provides an 
example of how data appears on tape. 

0 0 0 0 1 
0 0 1 0 0 0 1 0 0 

PARITY 1 1 0 1 0 1 0 0 0 
SPROCKET 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 ): forv\'ard t2pe 

0 1 0 1 0 0 1 0 1 0 motion 

0 1 0 0 1 0 1 1 0 1 
1 1 1 1 0 0 0 0 0 0 

Figure C-2. UN/SERVO IIA Tape Format 

As shown in the diagram. a sprocket and a parity channel are provided on the tape. 

The sprocket channel is used to generate interval timing signals during reading. 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 

SEC TION: PAGE: 

The parity channel helps assure that every character that is written will be read accurately. 
This is accomplished by having the subsystem generate a 1 bit in the parity channel of every 
frame that is written which does not contain an odd number of 1 bits. Therefore, every correctly 
written frame will contain an odd number of 1 bits. When data is read, the parity status of each 
frame is checked before the information is transferred to the central processor. If an improper 
parity condition is found, this fact is stored by the subsystem until all of the current block of 
data has been read. When entire block has been read, the subsystem will notify the central 
processor that an improper parity condition exists. 

In addition to being able to read or write data at high or low densities, the UNISERVO IIA 
Magnetic Tape Subsystem can also read or write variable or fixed length blocks of data. 

In the case of variable length blocks, the only requirement is that a block must be at least one 
computer word.* The spacing between adjacent blocks is LOS inches and the end of file space 
is at least 4.5 inches. Fixed block length can be used to insure tape compatibility with other 
UNIVAC systems. 

If data is written in fixed len gth blocks at high density, the data blocks must be 720 characters 
(144 computer words) in length. The spacing between adjacent blocks is the same as in the 
variable block length situation. 

If data is written in fixed length blocks at low density, the data blocks must be 720 characters 
(144 computer words) in length. When a block is written on tape, it is subdivided into six 120 
character (24 computer words) blockettes that are spaced 1.05 inches apart. The spacing 
between adjacent blocks is 2 A inches. 

The tape spacing for variable and fixed length blocks is shown In Figure C-3, 

2. Channel Synchronizer/Control Unit 

The Channel Synchronizer/Control Unit for the UNISERVO IIA Magnetic Tape Subsystem controls 
the operation of the tape units during their write and read functions, transfers the data to be 
written from the central processor to the tape units, and transfers the data which has been read 
from the tape uni ts to the central processor, 

• \llrite Function 

During the write function, the Channel Synchronizer/Control Unit receives a function word 
from the central processor and translates it into a write command to the selected tape units. 
Then it receives data words from the central processor and transfers them to the tape unit 
for writing. 

• Read Function 

During the read function, the Channel Synchronizer/Control Unit receives a· function word 
from the central processor and translates it into a read command to the selected tape unit. 
Then it receives data words from the tape unit and transfers them to the central processor. 

• Unit Selection 

The Channel Synchronizer/Control Unit decodes the function word and selects the specified 
tape unit. 

It should be noted that if the space occupied by a data block is less tnan the space beiween blocks, it may be 
difficult to recover from tape errors. 

29 



Appendix D 30 UNIVAC 49C SPURT 
SECTION: PAGE: 

TAPE MOVEMENT 
(FORWARD) 

t ! 
VARIABLE-BLOCK MODE 

HIGH AND LOW 
DENSITY 

FIXED-BLOCK MODE 
HIGH DENSITY 

~-

REMAINDER OF 
PREVIOUS FILE 

END OF 
FILE GAP:: 

1.05" L 
TVT 

I 
SPACE BETWEEN 

BLOCKS 

~~1k-
1.05" t ,-
L ~ 

* MINIMUM BLOCK LENGTH (5 FRAMES) 

.02" AT 250 CHARACTERS PER INCH (HIGH DENSITY) 

.04" AT i25 CHARACTERS PER iNCH (LOW DENSiTY) 

ONE 
BLOCK 

'_L 
2.88" 

720 
FRAMES 

t 

FIXED-BLOCK MODE 
LOW DENSITY 

2.4" 
SPACE BETWEEN 

BLOCKS .
~ 

j-Y
5" 

1.05" .-
BLOCKETTE~ 
SPACING 1.05" 

~ \05" 
1.05" .
~ 

2.4" 
SPACE BETWEEN i BLOCKS 

.96" • 
120 FRAMES t 
t 1.05" 

1.05" r-

Figure e-3. UN/SERVO flA Tape Spacing 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 

SECTION: 

• Error Detection 

Detection circuits in the Ch annel Synchronizer Control U ni t check the data charae-ters as 
they are transferred to or from the central proceSSOL These circuits also check the data 
words to see if they contain the prope r n urn ber of ch aracters 

3 Operator Con troIs 

Primary control of the UNISERVO IIA Magnetic Tape Subsystem is accomplished by the pro~ 
gram. However, the Control Cabinet and the individual tape units have operator panels that 
show operating condi tions in the subsystem and which allow some manual operations, 

The Control Cabinet panel indicators and their functions are as follows 

n 

I I 
SERVO 
FAULT 

n 

---1 L 

FAULT 18 G 
n n 

"-- ---1 

r-- r--... -... 
OFF 

SWITCH 

LEGEND: 

n 
I 

INTLK 
DISABLE 

I 
-

~I I~ = liGHT [):::l] = BUTTON/liGHT 

n 

iJ 

PAGE: 

SERVO FAULT Lights when there is an open fuse or open circuit breaker in one of the tape 
units in the subsystem. 

FAULT 

TEST 

ERROR 

Lights when any of the following conditions occur: 

• Under voltage in the Control Unit. 

• Overcurrent in the Con trol Unit. 

• An interlock fault in the Control Unit. 

If the fault has been corrected, the indicator light may be extinguished by 
pressing this button. 

Lights when the subsystem is isolated for test purposes. 

Lights when two or more tape units have the same logical number. 

31 



Appendix D 
SECTION: 

32 
PAGE: 

IN T L K 
DISABLE 

OFF SWITCH 

UNIVAC 490 SPURT 

Lights when the Interlock Disable Switch on the maintenance panel is in 
the up position. 

When all power is on in the Control Cabinet this button is green. When 
power is off, this. button is red. Power in the Control Cabinet can be turned 
off by pressing this button; however, once the power has been turned off, 
this button cannot be used to turn the power on again. Power can be turned 
on only by resetting a circuit breaker in the rear of the cabinet. 

The Control Cabinet also has an auxiliary operator panel that is located behind its front dOOL 
This panel is used to assign logical numbers to the tape units in the subsystem. An illustra~ 
tion of this panel and descriptions of the switches and indicators that it contains are provided 
in the text that follows: 

As shown in the illustration, this panel contains 13 rotary switches. Each of these switches 
has 12 positions that represent the logical numbers that can be assigned to the tape units and 
an OFF position. The switches labeled A through L are used to assign logical numbers to the 
respective physical tape units. The switch labeled BSTP is used to designate the logical 
number of the tape unit that will be used for Bootstrap* operation. A disconnect switch, IClbeled 
DISC, is provided for each of the rotary switches. These disconnect switches, located below 
and to the left of the rotary switches, enable (down position) or disconnect (up position) the' 
tape units and the Bootstrap operation. When a rotary switch is disconnected (the disconnect 
switch for that particular rotary switch is in the up position), an indicator (located above and 
to the left of the rotary s witch) will be lit. 

In addition to the rotary switches, this panel also contains visual displays of the Character 
Register, the Function Code Register, and the Unit Select Register. 

UP-3900 

* To.facilitate the initial loading of a program into core storage, a Bootstrap operation is provided in the central 
processor. This is a smaII program which, when activated, wil1 bring some other program on magnetic tape into 
core storage" Once the program to be executed is loaded, the Bootstrap program is no longer required and may be 
removed from core storage. The Bootstrap program is activated or deactivated by a manual switch that is connect;;d 
to the Central processor. 



UP-3900 UNIVAC 490 SPURT Appendix D 

SECTION: PAGE: 

The Tape Unit panel indicators and their functions are 8.S follows: 

11111 
I I 

UNIT 
NUMBER 

WRIT E 

READ 

INHIBIT 
WRIT E 

FORWARD 

BACKWARD 

REWIND 

CHANGE 
TAPE 

METAL 

PLASTIC 

AIR FLOW 

OVERHEAT 

ON 

OFF 

LEGEND, 

[pfl ~ LIGHT [)::(] ~ BUTTON/LIGHT 

Displays the physical number of the individual unit. 

Lights when a Write function is initiated. 

Lights when a Read function is initiated, 

Lights if a reel of tape that contains an inhibit write ring has been mounted 
on the uniL 

Lights when the tape unit is conditioned for forward motion, or when the 
tape is moving in a forward direction. Pressing this button conditions the 
unit for forward motion. 

Lights when the, tape unit is conditioned for backward motion, or when the 
tape is moving in a backward direction. Pressing this button conditions 
the unit for backward motion, 

Lights when the tape is being rewound. Pressing this button initiates the 
rewind operation if the unit has been conditioned for backward tape motion. 

Lights when a tape is rewinding with interlock, or has been rewound with 
interlock, Pressing this button stops tape movem ent during any rewind. 

L igh ts wh en the m etalcplastic switch (located below the tape transport 
mechanism) is set for metallic tape, 

Ligh ts wh en the metalcplastic switch is set for plastic tape. 

Lights when the unit has shut off due to an insufficient air flow in the 
cabineL 

Lights when power has been turned off because the cabinet temperature 
has exceeded allowa ble limi ts. 

Lights when the unit is on, Pressing this button turns the unit on. 

Lights when the unit is off. Pressing this button turns the unit off. 

33 



Appendix D 
SECTION: 

34 UNIVAC 490 SPURT 
PAGE: 

4, Operations 

Any part of the central processor's internal core storage can be used as an input/output data 
buffer storage area with the exception of the few special core storage locations that are 
reserved for the Incremental Clock and Interrupt Words. Information is trans ferred between the 
central processor and the UNISERVO IIA Magnetic Tape Subsystem in the form of 30-bit data 
data words. These words are formed into blocks in core storage. A block may contain any 
number of words. Words in a block must occupy consecutive core storage addresses, starting 
with a program determined first word address and ending with a program determined last word 
address-

a. Buffer Mode 

A buffer mode transfer, which occurs .independent of main program control, is used to trans~ 
fer data between core storage and the UNISERVO IIA Tape Units. Before execution -of a 
buffer mode transfer of data, the program must perform the following steps: 

(1) Activate the channel to be used for the information transfer. 

(2) Load the channel index register with the buffer control word. (The lower and upper 
halves of the buffer control word contain the beginning and ending addresses of the 
section of core storage involved in the transfer.) 

(3) Send the proper Function Word to the UNISERVO IIA Magnetic Tape Control Unit. 

Steps 1 and 2 above are accomplished with one of the Initiate Buffer instructions; step 3 
is performed by the Enter External Function instruction. See BASIC INPUT/OUTPUT 
INSTRUCTIONS (Section 5) for a more detailed discussion of these operations. 

Data is then transferred between the cen tral processor core storage and the selected 
UNISERVO IIA Tape Unit without main program intervention. When a word is transferred 
to or from storage, 1 is added automatically to the lower half of the buffer control word. The 
data transfer is terminated when: 

(1) The central processor senses that the upper and lower halves of the buffer control word 
are equal. 

(2) A Terminate instruction is executed by the central processor. 

(3) An error is detected. 

b. Word Arrangement 

The UNISERVO IIA Magnetic Tape Subsystem accommodates four types of computer input/ 
output words. They are the Function Word, Data Word, Identifier Word, and Status Word. 
These words are explained and illustrated in the following paragraphs: 

(1) Function Word 

Tht:; Fuiictioii WoLd dcsiguates the cpc::8.tic~ to be pedo!."!!!ed by the UN!SERVO HA 
Magnetic Tape Subsystem. It is arranged as follows: 

UP-3900 



UP-3900 

Fe 

CODE 

01 

11 

02 

12 

41 

51 

42 

52 

43 

UNIVAC 490 SPURT Appendix D 

SECTION: 

I 
24

1
23 

1 I 
I I 

15114113 

u 

The six most significant bits of the Function Word are the function code, Fe, bit posi~ 
tians 24 through 29, The function code specifies the actual operation to be performed 
by the subsystem, 

Bit position 14 designates variable or fixed block length; tha t is, a 1 des ignates fixed 
block length, and a 0 designates variable block length. 

Bit positions 0 through 11 specify the tape unit, U, that wi 11 be selected, 

The function codes are as follows: 

FUNCTION 

Write Low 

Density 

Write Low 

Density With 

I nterru pt 

Write High 

Den s ity 

Write High 

Density With 

I nterru pt 

Read Forward 

Low Gain 

Read Forward 

Low Gain With 

Interrupt 

Read Forward 

Normal Gain 

Read Forward 

Normal Gain 

With Interrupt 

Read Forward 

High Gain 

DESCRIPTION 

Write one block on tape at a density of 125 characters 

per inch, 

Same as Write Low Density except that when the func~ 
tion is completed, a status word and an external inter~ 

rupt signal are sent to the central processor. 

Write one b! ock on tape at a density of 250 characters 

per inch, 

Same as Write High Density except that when the func~, 

tion is completed, a status word and an externa I inter Q 

rupt signal are sent to the central processor, 

Read one block from tape in a forward direction at low 

gain, 

Same as Read Forward Low Gain except that when the 

function is completed, a status word and an external 

interrupt signal are sent to the central processor, 

Read one block from tape in a forward direction at 

normal gain, 

Same as Read Forward Norma I Ga i n exce pt that when 

the function is completed, a status word and an eX Q 

ternal interrupt signal are sent to the central processor. 

Read one block from tape in a forward direction at 

high gain. 

PAGE: 

I 
01 

3S 



Appendix D 36 
SECTION: PAGE: 

CODE 

53 

61 

71 

62 

72 

I 

I 
I 
I 

63 

I 

73 

I 
I I 

I 
45 

55 

46 

56 

FUNCTION 

Read Forward 

High Gain 

With Interrupt 

Read Backe 

ward Low 
~~; ... 
VUIII 

Read Backo 

ward Low 

Gain With 
Interrupt 

Read Backe 

ward Normal 

Gain 

Read Backe 

word Normal 

Gain With 

Interrupt 

Read Backe 

ward High 

Gain 

Read Backe 

ward High 

Gain With 
Interrupt 

Search Read 

Forward Low 

Gain 

Search Read 

Forward Low 

Gain With 

Interrupt 

Search Read 

Forward Normal 

Gain 

Search Read 

Forward Normal 
Gain With 
Interrupt 

UNIVAC 490 SPURT 

DESCRIPTION 

Same as Read Forward High Gain except that when the 

function is completed, a status word and an external 

interrupt signal are sent to the central processoro 

Read one block from tape in a backward direction at 

low gaino 

Same as Read Backward Low Gain except that when the 

function is completed, a status word and an external 

interrupt signal are sent to the central processor. 

Read one block from tape in a backward direction at 

normal gain. 

Same as Read Backward Normal Gain except that when 

the function is completed: a status word and an ex o 

ternal interrupt signal are sent to the central processor. 

Read one block from tape In a backward direction at 

high gain. 

Same as Read Backward High Gain except-that when 

the function is completed, a status word and an external 

interrupt signal are sent to the central processor. 

Read the tape in a forward direction at low gain; com· 

pare the first word of each block with the identifier 

word; when eq ua I com pari so n is made, read that block. 

Same as Search Read Fonvcrd Low Gain except that 

when the function is completed, a status word and an 

external interrupt signal are sent to the central 
processor. 

Read the tape in a forward direction at normal gain; 

compare the first word of each block with the identifier 

word; when equal comparison is made, read that block. 

Same as Search Read Forward Normal Gain except that 

when the function is compieted, a status word and an 

ext ern a lin t err up t s i g n a I are sen t tot h e c e n t r a I 

processor. 

UP-3900 



UP-3900 

CODE 

47 

57 

65 

75 

66 

76 

67 

77 

20 • 

30 

21 

UNIVAC 490 SPURT Appendix D 

FUNCTION 

Search Read 

Forward High 

Gain 

Search Read 

Forward High 

Gain With 

Interrupt 

Search Read 

Backward Low 

Gain 

Search Read 

Backward Lo'w 

Gain With 

Interrupt 

Search Read 

Backward 

Normal Gain 

Search Read 

Backward 

Normal Gain 

With Interrupt 

Search Read 

Backward 

High Gain 

Search Read 

Backward High 

Gain With 

Interrupt 

Rewind 

Rewind With 

I nterru pt 

Rewind With 

Interlock 

SECTION: 

DESCRIPTION 

Read the tape in a forward direction at high gain; com~ 

pare the first word of each block with the identifier 

word; when an equal comparison is made, read that 

b!ocko 

Same as Search Read Forward High Gain except that 

when the function is completed g a status word and an 

external interrupt signal are sent to the central 

pro ces sore, 

Read the tape in a backward direction at low gain; com~ 

pare the last word in ea~h block with the identifier 

word; when an equa I compaii son is made e iead that 

blocko 

Same as Search Read Backward Low Gain except that 

wh en the fun cti on is com pi eted p a statu s word and an 

external interrupt signal are sent to the central 

processoro 

Read the tape in a backward direction at normai gain; 

compare the last word of each block with the identifier 

word; when an equa I compari son is made g read that 

block. 

Same as Search Read Backward Normal Gain except that 

w hen the fun cti on is com p leted o a statu s word and an 

external interrupt signal are sent to the central 

proces sor v 

Read the tape !n a backward direction at high gain; como 

pare the last word of each block with the identifier word; 

when an equal comparison is made'i read that blocko 

Same as Seaich Read Backward High Gain except that 

when the function is completed p a status word and an 

external interrupt signal are sent to the central 

proces sor, 

Rewind the tape on the specified uniL 

Same as Rewind except that when the function is com = 

pleted o a status word and an external interrupt signal 

are sent to the central processor. 

Rewind the tape on the specified unit with interlock. 

37 
PAGE: 



Appendix D 
SECTION: 

38 
PAGE: 

CODE 

31 

23 

33 

40 

50 

FUNCTION 

Rewind With 

Interlock and 

Interrupt 

Terminate 

Terminate With 

Interrupt 

Bootstrap 

Bootstrap 

With Interrupt 

UNIVAC 490 S'PURT 

DESCRIPTION 

Same as Rewind With Interlock except that when the 

function is completed o a status word and an external 

interrupt signal are. sent to the central processor, 

Terminate after completion of the present function (at 

the end of the current block during a search function)o 

Same as Terminate ,except that when the function is 

completed o a status' word and an external interrupt signal 

are sent to the central processoro 

Rewind the tape on the tape unit specified for Bootstrap 

operation; read one block from tape in a forward directiono 

Sam e as B ootstra p exce pt that when the function is 

completed, a status word and an external interrupt signal. 

are sent to the central processoro 

(2) Data Word 

The data word (input or output) may be composed of 30 bits of binary information or it 
may be composed of five six bit alphanumeric characters as shown below: 

(3) Identifier Word 

The Identifier Word is a computer output word that immediately follows a Search Read 
Function word. It can be in any bit configuration, as shown below. It is transmitted to 
the subsystem accompanied by an External Function signal. The characters of the 
Iden ti fie r are sequentially compared with characters read from the first word of each 
block on tape until the appropriate find is accomplished. When this occurs, the block 
containing the identical word is read from tape. 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 

SECTION: PAGE: 

(4) Status Word 

CODE 

10 

20 

24 

30 

34 

40 

50 

The status word is transmitted by subsystem to the central processor whenever an ab= 
normal condition occurs, or an operation with interrupt has been completed, A status 
word is arranged as follows: 

J 
The status code, SC, is contained in bit positions 24 through 29. All other bit positions 
are not used. The status word is accompanied by an external interrupt signal when it is 
transmitted to the central processor. 

The status codes are as follows: 

INDICATION 

Tape Unit Re~ 

w indi ng (w itho 

out Interlock) 

Channel Syn~ 

chronizer Se~ 

q uen ce Error 

Control Unit 

Seq uence Error 

Channel Syn- I 
chron i zer Count~ 

er Error 

End of File 

Normal Comple~ 

tion 

Illegal Function 

DESCRIPTION 

This indication occurs when the central processor re~ 

quests a tape unit that is in the process of rewinding 

without interlock 

This indication occurs if the Channel Synchronizer/Con~ 
trol Unit receives a Normal Completion signal from the 

Control Unit and the Channel Synchronizer/Control Unit 

frame counter is not at the proper count. 

This indication occurs if the following conditions exist 

during variable block operation: end of block i frame 

count of 2,3, or 4; and more data detected within 15 

milliseconds after the end of block. 

During fixed block operation, this indication occurs 

when the block just read or searched contains 727 or 

more frames. 

This indication occurs when the Channel Synchronizer/ 

Control Unit character counter does not contain the 

proper count. 

This indication occurs when no data is detected within 

the allowable distance after a data block. 

This indication occurs when a function with interrupt 

has been successfully completed. 

This indication occurs if the function word contains a 

function code that is not valid for the subsystem. 

, 

39 



Appendix D 
SECTION: 

I 

~ 

PAGE: 

CODE 

54 

60 

70 

44 

74 

40 

INDICATION 

Illegal Unit 

Addres s 

Parity Error 

Frame Count 

Error 

End of Tape 

Interlock 

UNIVAC 490 SPURT 

DESCRIPTION 

This indication occurs when a tape unit was not speci~ 

fied in the function word, or when more than one unit 

was specified in the function word. 

This indication appears at the completion of a read 

function when a parity error has occurred in one or more 

frames in the block that has been read" This indication 

also appears during search read functions after a biock 

that contains a parity error has been searched. 

This indication occurs at the end of the block during 

variable block operation, if the number of frames trans~ 

ferred to or from tape is not a multiple of five (five 

frames constitute one computer word) and the character 

counter does not conta in the proper count. 

This indication also occurs during fixed block opera c 

tion when an erased tape gap after 709 to 719 or 721 to 

726 frames have been counted. 

This indication occurs at the end of the block when the 

clear leader at the end of the tape is detected during a 

write function. 

This indication occurs when: 

(1) the central processor requests a nonr·existent tape unit 

(2) a write function is requested on a tape unit in which 

writing has been inhibited by an inhibit write ring (3) an 

interlocked tape unit is requested (a door is open on the 

unit, the unit is rewinding with interlock, and so on.) 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 

5, Subsystem Characteristics 

a. Summary of General Characteristics 

TRANSFER RATE 

RECORDING DENSITY 

TAPE SPEED 

TAPE WIDTH 

TAPE LENGTH 

TAPE THICKNESS 

BLOCK LENGTH 

SPACE BETWEEN BLOCKS 

CH ANNELS ON TAPE 

READ/WRITE OPERATION 

12,500 and 25,000 characters per 
second. 

SECTION: 

125 and 250 6 bit characters per inch, 

100 inches per second 

0,5 inch 

1,500 feet (metallic) 

2,400 feet (plastic) 

1 mil (metallic) 

1.5 mil (plastic) 

Variable 

1,05 inches 

8 channels 

6 data 

1 parity 

1 sprocket 

Reading in forward and backward direc~ 
tionso Writing in the forward direction 
only. 

41 

PAGE: 



Appendix D 42 UNIVAC 490 SPURT UP-3900 
SEC T ION: P AGE: 

b. Physical Characters 

UNISERVO IIA UN ISE RVO IIA 

TAPE UNIT 
POWER SUPPL Y 

CONTROL CABINET 

HEIGHT (inches) 69 96 96 

WIDTH (inches) 30.875 66 20 I 

DEPTH (inches) 30.5 32.75 34.5 

WEIGHT 
908 

(approximate Ibso) 
2800 625 

TEMPERATURE 
60 0 

- 80 0 F. RANGE 

I 
HUMIDITY 40% - 70% 
RANGE 

I 

I HEAT I DISSIPATION 7,200 10,200 2,060 
(BTU/hr.) 

AIR FLOW 
300 2,300 390 

(cu. ft./min.) 

I POWER Suppl ied by 208 VAC 208 VAC 
I 

REQUIREMENTS power supply 60 cps 400 cps 
3 phase 3 phase 
47.3 kw 0.6 kw 

I 

60 cps 
.35 KVA 

I unreg. 

Maximum Cable Length Restrictions 

1. Control Cabinet to Central Processor: 300 ft. 

2. Control Cabinet to Power Supply: 75ft. 

3. Control Cabinet to first UNISERVO IIA Tape Unit: 150 ft. 

4. First UNISERVO IIA Tape Unit to Power Supply: 25 ft. 



UP-3900 UNIVAC 490 SPURT Appendix D 
SECTION: PAGE: 

D, UNISERVO IIlC MAGNETIC TAPE SUBS YSTEM 

The UNISERVO IlIC Magnetic Tape Subsystem differs from the UNISERVO IlA Magnetic Tape Sub~ 
system and the UNISERVO IlIA Magnetic Tape Subsystem in that it can read magnetic tapes that 
were written by unrelated data processing equipment. 

A UNISERVO IIIC Magnetic Tape Subsystem consists of a Channel Synchronizer/Control Unit, a 
Tape Adapter, and from two to twelve UNISERVO IIlC Tape Units that are connected to the central 
processor via an input/output channel. 

A subsystem that is on a particular input/output channel is capable of reading or writing data in 
the form of 30=bit binary words, on anyone of the tape units at anyone time, Data can be read or 
written at densities of 200 or 556 characters per inch in either binary or binary coded decimal 
format. If simultaneous reading and writing is required, two subsystems on separate input/output 
channels will be required. 

The UNISERVO IIlC Tape Unit utilizes 005 inch wide 2400 foot reels of plastic tapeo 

TAKE~UP REEL 

VACUUM 

CAPSTAN 

"VACUUM I 
,LOOP / 
_/ 

\ , , 

READ/WRITE HEAD 

ERASE HEAD 

PHOTOCELL 
DETECTOR 

VACUUM 
LOOP 

'- ..,." 

I 
/ 

/ 

SUPPLY REEL 

Figure 0-7. UNISERVO III C Tape Un it Schematic 

As shown in Figure D-l, the reel of tape that contains data to be processed or the blank reel upon 
which data is to be written is mounted on the right. The left hand reel is used to store the tape as 
it is read or written on. The tape is threaded around and through guide rollers which control its 
path between the supply reel and take-up reel. 

43 



Appendix D 
SECTION: 

44 UNIVAC 490 SPURT 
PAGE: 

The read/write head performs the actual reading or writing of data as the tape passes beneath it at 
the rate of 112.S inches per second. Since the tape density may be 200 or SS6 characters per inch, 
information can be transferred at the rate of 22,SOO or 62,SOO characters per second. 

The erase head is used only during a write operation. It erases information on the tape before new 
information is written. Accidental erasure of a previously recorded tape can be prevented by remov~ 
ing the plastic ring from the tape before it is mounted on a tape unit. 

Vacuum columns that are located below the tape reels are used to store the tape before it passes 
beneath the read~write head, or is wound on the take-up reel. These columns also insure that the 
tape tension is even and that there is a proper amount of slack to permit rapid acceleration and 
deceleration. 

A photocell located below the erase head is used to detect reflective spots on the tape. These 
spots (See Figure D-2) indicate the load point (the initial point on the tape where reading or writing 
begins) and the end of tape warning point (the point that indicates that the physical end of tape is 
near). 

BACKWARD 
LIMIT 

LEADER POINT 

END OFTAPE 
END ~OINT ~RNING POINT 

IIIIIIIIIIIIIIII~IIIIII CLEAR ~J ~5,,----_C::J __ ~ 
T:~~H~;~~~~;s/lt--I·t----l0' -i \REFLE~:::/~~~MINUM/ ~ 14' ~ 

Figure 002. UN/SERVO II/e Tape Diagram 

Bad spots on tape are detected by reading the data back immediately after it has been written. The 
data read is then transferred to high and low gain registers in the Tape Adapter where a comparison 
is made. If the con tents of these registers do not compare exactly, or there is a parity error, a 
status word is sent to the central processor. At this point it is the responsibility of the program to 
handle any rewriting attempts. The method that is chosen will depend upon block length, recording 
density, and other factors. 

1. Tape Format 

Data appears on tape in the form of frames that are written across its width in seven channels or 
bit positions (6 data and 1 parity). Five frames represent one 30 bit computer word. Figure D-3 
provides an example of how data appears on tap~. 

As shown in Figure D-3, a parity channel is provided on tape. The parity channel helps assure 
that every character that is written will be read accurately. 

UP-3900 

If data is written in binary coded decimal format, the subsystem will assure that the lateral parity 
is even by generating a 1 bit in the parity channel position of every frame that does not contain 
an even number of 1 bits. 



UP-3900 UNIVAC 490 SPURT 

I 
t 

LONGITUDINAL 
PARITY CHECK FRAME I 

t 
TAPE 
MARK -, 

l 

Appendix D 
SEC TION: 

TAPE MARK 
r-- PARITY FRAME 

t 
I ( I I 

PAGE: 

::::::-~::;;r4~lc-r~~--0~1-~~~: ---------------rr----------- 1 I -;---:--:---:----1 f--;---!---:---: y-y:~-::-: ~-: 
TAPE 

MOTION 

\ 10 0 : : ° I) 10 10 0 0 ° I 
~L---"----o -----l0 ) ,------} ---.-----.--_~ 

t f + 

- BLOCK 

0.75" 
BETWEEN 
BLOCKS 

BLOCK "100" 

3.7" BETWEEN 
LAST BLOCK 
AND END OF 

FILE 

0.75" 
BETWEEN 
BLOCKS 

I 
'--- BLOCK 1 -

_ ---------------FILE"A"~-------------l L-FILE"B" _ 

Figure Dc3. UN/SERVO II/e Tape Format 

If data is written in binary format, the subsystem will assure that the lateral parity is odd by 
generating a 1 bit in the parity channel position of every frame that does not contain an odd 
number of 1 bits. 

In addition, the subsystem also assures that the longitudinal parity of data that is written is 
even. This is accomplished by having the subsystem count the number of 1 bits in each channel 
on tape when the writing of a block has been completed. If a channel does not contain an even 
number of 1 bits, the subsystem will generate a 1 bit in that channel position in the longitudinal 
parity check frame that is written after the end of the block. 

When data is read from tape, it is checked for lateral and longitudinal parity before it is trans
ferred to the central processor. If an improper parity condition is found; this fact will be stored 
by the subsystem until all of the current block of data has been read. When the entire block has 
been read, the subsystem will notify the central processor by means of a status word that an 
improper parity condition exists. 

Data can be read or written in binary or binary coded decimal format. The binary format is nor
mally used when data is exclusively numeric. When this format is used, it is possible to repre
sent a positive or ne gative value up to 2 29 -1 in each computer word. The binary coded decimal 
format allows the use of alpha betic characters and punctuation marks. 

The UNISERVO lIIC Magnetic Tape Subsystem can read orwrite data blocks of any length.* 
The spacing between adjacent blocks is 0.75 inches and the end of file gap is 3.7 inches (See 
Figure D-3). 

* It should be noted that if the space occupied by a data block is less than the space between blocks, it may be 
difficult to recover from tape errors. 

45 



Appendix D 
SECTION: 

46 UNIVAC 490S·PURT 
PAGE: 

2. Variable by Character Binary Coded Decimal Format 

In general, the minimum block length is one computer word. It is possible, however, to write 
blocks in bi nary coded decimal format in which the number of character's per block is not an 
integral multiple of 5. This is accomplished by using the Variable by Character Binary Coded 
Decimal Mode .In this mode the end of a block is marked by placing a stop code (000000) after 
the last valid character in the block. When a block is written in this mode, writing ceases when 
the stop code is detected. The stop code is not written on tape. For example, assume that a one 
character block (the letter A) is to be written on tape in this mode. This would be accomplished 
by having the program place the letter A in the first character position of the output buffer and 
the stop code in the second character as shown below 

A 00 
6 5 

When a tape that has been recorded in this mode is read, the first character in a block is placed 
in the first character position of the input buffer, the second character is placed in the second 
character position, and so on, until all of the characters have been transferred to the input 
buffer. When this has been completed, the remaining character positions in the last word of the 
input buffer are then filled with the binary equivalent of the number of valid characters that 
are present in this word. To illustrate, assume that a block that contains the characters A, B, 
C, D, E, F, G, and H is read. This block would appear in the input buffer as follows 

A B c o E 
6 5 o 

F G 02 
12111 

02 02 

If a tape that has been recorded in this mode is to be searched and the identifier word is less 
than five characters in length, the unused character positions of the identifier word must be 
filled with the binary equivalent of the number of valid characters. For example, if a search 
identifier consists of the letters D, G, T, and B, the identifier word that is sent to the sub
system is in the following form: 

o G T B 04 

o 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 
SECTION: PAGE: 

3. Trans la tion 

If the user wishes to avoid including translation routines in programs that require the reading 
and writi ng of tapes in binary coded decimal forma t, a trans la tor is available. The trans la tor 

is an optional device which can be incorporated into the UNISERVO IIIC Channel Synchronizer/ 
Control Unit. The translator will translate Fieldata characters to binary coded decimal char= 
acters on output and on input will translate binary coded decimal characters to Fieldata 
characters. Translation will be performed in accordance with the input and output translation 
tables that are supplied by the user. 

4. Channel Synchronizer/Control Unit 

The Channel Synchronizer/Control Unit for the UNISERVO IIIC Magnetic Tape Subsystem controls 
the operation of the tape units during their write and read functions, transfers the data to be 
written from the central processor to the tape units, and transfers the data that has been read from 
the tape units to the central processor. 

• Write Function 

During the write function, the Channel Synchronizer/Control Unit receives a function word 
from the central processor and translates it into a write command to the selected tape unit. 
Then it receives data words from the central processor and transfers them to the tape unit 
for writing. 

• Read Function 

During the read function, the Channel Synchronizer/Control Unit receives a function word 
from the central processor and translates it into a read command to the selected tape unit. 
Then it receives data words from the tape unit and transfers them to the central processor. 

• Unit Selection 

The Channel Synchronizer/Contre Unit decodes the function word and selects the specified 
tape unit. 

• Error Detection 

Detection circuits in the Channel Synchronizer/Control Unit check the data characters for 
lateral parity as they are transferred to or from the central processor. These circuits also 
check the data words to see if they contain the proper number of characters. 

S. Tape Adapter Unit 

The Tape Adapter Unit is located logically between the Channel Synchronizer/Control Unit and 
the tape units. It contains circuits that check data that is read from or written on tape for 
lateral and longitudinal parity. 

6. Operator Controls 

Primary control of the UNISERVO IIIC Magnetic Tape Subsystem is accomplished by the program. 
However, the Control Cabinet, the Tape Adapter Cabinet, and the individual tape units have 
operator panels that show operating conditions in the subsystem and allow some manual operation. 

47 



Appendix D 
SECTION: 

48 UNIVAC 490 SPURT 
PAGE: 

The Control Cabinet panel indicators and their functions are as follows: 

SERVO 
FAULT 

FAULT 

TEST 

OFF 
SW IT C H 

~ 

I -

- ........ -

B SERVO 

I FAULT FAULT 

J--.. ___ .. ~ 

-

OFF 
SWITCH 

LEGEND: 

OJ 10 = LIGHT 

-

[):::::(] = BUTTON/LIGHT 

Lights when there is a fault in one of the tape units, in the Tape Adapter 
Cabinet, or in the power supply. 

Lights when there is a power fault in the subsystem. If the fault has been 
corrected, the indicator light may be extinguished by pressing this button. 

Lights when the subsystem is isolated for test purposes. 

When all power is on in the subsystem, this button is green. When power is 
off, this button is red. Power can be turned off by pressing this button; 
however, once the power has been turned off, this button cannot be used to 
turn the power on again. Power is turned on by other means. 

The Control Cabinet also has an auxiliary operator panel that is located behind its front door. 
This panel is used to assign a specific tape unit for Bootstrap* operation and to monitor certain 
signals from the tape units. 

To facilitate the initial loading of a program into core storage, a Bootstrap operation is provided in the central 
processor. This is a small program which, when activated, will bring some other program on magnetic tape into 
core storage. Once the program to be executed is loaded, the Bootstrap program is no longer required and may 
be removed from core storage. The Bootstrap program is activated or deactivated by a manual switch that is 
connected to the central processor. 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 

SECTION: 

The Tape Adapter Cabinet panel indicators and their functions are as follows: 

- r-

~ FLOW .. 

L...I L...I 

AIR FLOW 
FLOW 

- ,... .... 

[][] HEAT I INTER LOCKI I VOLTAGE I 

L...I I... I... 

LEGEND: 

n 10 = LIGHT [t:(] = BUTTON/LIGHT 

Lights when power has been turned off because of insufficient air flow. 

PAGE: 

OVERHEAT Lights when power has been turned off because the cabinet temperature has 
exceeded allowable limits. 

INTERLOCK 

VOLTAGE 

A CON 

DC 0 N 

READY 

Lights when a door on the cabinet is open. 

Lights when cabinet voltage supply has failed due to power supply or in
terlock failures. 

Lights when AC power is applied to circuitry. 

Lights when DC power is applied to circuitry. 

Lights when all power is applied within tolerances to all circuitry. 

As shown in the illustration, the Tape Adapter Cabinet also contains a plugboard. This plug~ 
board is located behind the front door. It is used to assign logical numbers to the respective 
physical tape units. The numbers that are shown at the top of the plugboard represent the 
physical num bers of the tape units and those at the bottom represent the logical numbers. 

49 



Appendix D 
SECTION: 

7. 

50 UNIVAC 490 SPURT 
PAGE: 

The Tape Unit panel indicators and their functions are as follows: 

UNIT 
NUMBER 

AIR FLOW 

OVERHEAT 

VOLTAGE 

FORWARD 

BACKWARD 

REWIND 

CHANGE 
TAPE 

LOAD 
PO IN T 

IN H 18 IT 
WRIT E 

ON 

OFF 

Operations 

LEGEND: 

[JQ] = LIGHT [t:jJ = BUTTON 'LIGHT 

Displays the physical number of the individual unit. 

Lights when power has been turned off because of insufficient air flow. 

Lights when power has been turned off because the cabinet temperature has 
exceeded allowable limits. 

Lights when a circuit breaker wi thin the unit is open. 

Lights when the tape is moving in the forward direction, or the unit is ready 
to do so. Pressing this button conditions the unit for forward motion in
dependent of program control. 

Lights when the tape is moving in the backward direction, or the unit is 
ready to do so. Pressing this button conditions the unit for backward motion 
independent of program control. 

Lights when the tape is being rewound. Pressing this button initiates the 
rewind operation if the unit has been conditioned for backward tape motion. 

Lights when a tape is rewinding with interlock or has been rewound with 
interlock. Pressing this button will move the tape to the load point. 

Lights when the tape is positioned at its load point (beginning point), ready 
for reading or writing. 

Lights if a reel of tape that does not contain a write enable ring has been 
mounted on the unit. 

Lights when all power is on in the unit. Pressing this button applies power. 

Lights when all power is off in the unit. 'Pressing this button removes 
power. 

UP-3900 

Any part of the Central Processor's internal core storage can be used as an input/ ou tput data 
buffer storage area with the exception of the few special core storage locations that are reserved 
for the Incremental Clock and Interrupt Words. Information is transferred between the central 
processor and the UNISERVO IIlC Magnetic Tape Subsystem in the form of 30-bit data words. 
These words are formed into blocks in core storage. A block may contain any number of words. 
Words in a block must occupy consecutive core storage addresses, starting with a program 
determined first word address and ending with a program determined last word address. 



UP-3900 UNIVAC 490 SPURT Appendix D 

SECTION: PAGE: 

a. Buffer Mode 

A buffer mode transfer, which occurs independent of main program control, is used to transfer 
data between core storage and the UNISERVO IIIC Tape Units. Before execution of a buffer 
mode transfer of data, the program must perform the following steps: 

(1) Activate the channel to be used for the information transfer. 

(2) Load the channel index register with the buffer control word. (The lower and upper 
hal ves of the buffer control word contain the beginning and ending addresses of the 
section of core storage that is involved in the transfer). 

(3) Send the proper function word to the UNISERVO IIIC Control Unit. 

Steps 1 and 2 above are accomplished with one of the Initiate Buffer Instructions; step 3 is 
performed by the Enter External Function instruction. See BASIC INPUT jOUTPUT IN
sTRucTIoNs (Section 5) for a more detailed discussion of these operations. Data is then 
transferred between the centra-l processor core storage and the selected UNISERVO IIIC Tape 
Unit without main program intervention. When a word is transferred to or from core storage, 
a 1 is added to the lower half of the buffer con trol word. The data transfer is terminated when: 

(1) Thecentral processor senses that the upper and lower halves of the buffer control word 
are equal. 

(2) A Terminate instruction is executed by the central processor. 

(3) An error is detected. 

b. Word Arrangement 

The UNISERVO IIIC Magnetic Tape Subsystem accommodates four types of computer input; 
output words. They are the function word, data word, identifier word, and status word. These 
words are explained and illustrated in the following paragraphs. 

(1) Function Word 

The function word designates the operation to be performed by the UNISERVO IIIC 
Magnetic Tape Subsystem. It is arranged as follows: 

Fe u 

The function code, FC, occupies bit positions 18 through 29 of the function word. The 
function code specifies the actual operation to be performed by the subsystem. Bit 
positions 0 through 11, U, specify the tape unit that will be selected. This is accom
plished by placing a 1 bit in the bit position that corresponds to the desired unit. 

SI 



t\ppenOlX U 

SECTION: 
UNIVAC 490 SPURT 

PAGE: 

The function codes a re as follows: 

CODE FUNCTION 

0200 Write Binary 

High Density 

1200 Write Binary 

High Density 

Wi th Interrupt 

0300 W rite Bin a ry 

Low Density 

1300 Write Binary 

Low Density 

With Interrupt 

0220 Write Binary 

Coded Dec ima I 

H i g h Den s i ty 

1220 Write Binary 

Coded Dec i rna I 

High Density 

With Interrupt 

0320 Write Binary 

Coded Dec imal 

Low Density 

1320 Write Binary 

Coded Dec ima I 

Low Density 

With Interrupt 

0240 Write Multi-

block Binary 

High Density 

1240 Write Multi-

block Binary 

High Density 

With Interrupt 

0340 Write Multi-

block Binary 

Low Density 

I 
I 
I 

DESCRIPTION 

Write one block on tape in binary format at a density of 

556 characters per inch. 

Same as Write Binary High Density except that when the 

function is completed, a status word and an external in

terrupt signal are sent to the central processor. 

Write one block on tape in binary format at a density of 

200 characters per inch. 

Same as Write Binary Low Density except that when the 

function is completed, a status word and an external In

terrupt signal are sent to the central processor. 

Write one block on tape in binary coded decimal format 

at a density of 556 characters per inch. 

Same as Write Binary Coded Decimal High Density ex

cept that when the function is completed, a status word 

and an external interrupt signal are sent to the central 

processor. 

Write one block on tape in binary coded decimal format 

at a density of 200 characters per inch. 

Same as Write Binary Coded Decimal Low Density ex

cept that when the function is completed, a status word 

and an external interrupt signal are sent to the central 

processor. 

Write one block on tape in binary format at a density of 

556 cha ra cters per inch; s top on Iy if new da ta is not 

made available within 4.0 milliseconds after the block 

has been written. 

Same as Write Multiblock Binary High Density except 

that after each block is written, a status word and an ex

ternal interrupt signal are sent to the central processor. 

Write one block on tape in bi nary format at a density of 

200 characters per inch; stop only if new data is not 

made available within 4.0 milliseconds after the block 

has been written. 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 

CODE FUNCTION 

1340 W rite fvI u It i-

block Binary 

Low Dens ity 

With Interrupt 

0260 Write Multi-

block Binary 

Coded Decimal 

High Density 

1260 Write Multi-

block Binary 

Coded Decimal 

High Density 

With Interrupt 

0230 Write End Of 

File High 

Density 

1230 Write End Of 

File High 

Density With 

I nterru pt 

0330 Write End Of 

File Low 

Density 

1330 Write End Of 

File Low 

Density With 

Interrupt 

4200 Read Binary 

High Density 

5200 Read Binary 

High Density 

With Interrupt 

4300 Read Binary 

Low Dens ity 

5300 Read Binary 

Low Density 

With Interrupt 

SECTION: 

DESCRIPTION 

Same as Write Multiblock Binary Low Density except that 

after each block is written, a status word and an external 

interrupt signal are sent to the central processor. 

Write one block on tape in binary coded decimal format at 

a density of 556 characters per inch; stop only if new data 

is not mad.e available within 4.0 milliseconds after the 

block has been written. 

Same as Write Multiblock Binary Coded Decimal High 

Density except that after each block is written, a status 

word and an external interrupt signal are sent to the 

centra I proces sor. 

Write one special block on tape, consisting of the Tape 

Mark frame (0001111) and its logitudinal parity check 

frame, at a density of 556 characters per inch. 

Same as Write End Of File High Density except that when 

the function is completed, a status wOid and an external 

interrupt signal are sent to the central processor. 

Write one special block on tapeu consisting of the Tape 

Mark frame (OOOi iii) and its longitudinal parity check 

frame, at a density of 200 characters per inch. 

Same as Write End Of File Low Density except that when 

the function is completed, a status word and an external 

interrupt signal are sent to the central processor. 

Read one block from tape in binary format at a density of 

556 characters per inch. 

Same as Read Binary High Density except that when the 

function is completed, a status word and an external 

interrupt signal are sent to the central processor. 

Read one block from tape in binary format at a density 

of 200 characters per inch. 

Same as Read Binary Low Dens ity except that when the 

function is completed, a status word and an external Inc 

terrupt signal are sent to the central processor. 

53 
PAGE: 



Appendix D 
SECTION: 

54 
PAGE: 

CODE 

4220 

5220 

4320 

5320 

4600 

5600 

FUNCTION 

Read Binary 

Coded Decimal 

High Density 

Read Binary 

Coded Dec ima I 

High Density 

With Interrupt 

Read Binary 

Coded Decimal 

Low Density 

Read Binary 

Coded Decima I 

Low Density 

With Interrupt 

Search Binary 

High Density 

Search Binary 

High Density 

With I nterru pt 

4700 Search Binary 

I Low Density 

5700 

4620 I 

5620 

Search Binary 

Low Dens ity 

With Interrupt 

Search Binary 

Coded Decima I 

High Density 

Search Binary 

Coded Decimal 

High Density 

With Interrupt 

UNIVAC 490 S'PURT 

DE SC RIPT ION 

Read one block from tape in binary coded decimal format 

at a density of 556 characters per inch. 

Same as Read Binary Coded Decimal High Density ex~ 

cept that w hen the fun ction is com p I eted, a statu sword 

and an external interrupt signal are sent to the central 

processor. 

Read one block from tape in binary coded decimal format 

at a density of 200 characters per inch. 

Same as Read Binary Coded Decimal Low Density eX e 

cept that w hen the fun cti on is com p I eted, a statu sword 

and an external interrupt signal are sent to the central 

processor. 

Read the tape in binary format at a density of 556 chare 

acters per inch and compare the first word of each block 

with the identifier word, When an identical comparison 

is made, read that block from tape. 

Same as Search Binary High Density except that when 

the function is completed, a status word and an external 

interrupt signal are sent to the central processor. 

Read the tape in binary format at a density of 200 chare 

acters per inch and compare the first word of each block 

with the identifier word When an identical comparison 

is made, read that block from tape. 

Same as Search Binary Low Density except that when 

the function is completed, a status word and an external 

interrupt signal are sent to the central processor. 

Read the binary coded decima I format at a dens ity of 

556 characters per inch and compare the first word of 

each block with the identifier word. When an identical 

comparison is made, read that block from tape. 

Same as Search Binary Coded Decimal High Density ex= 

cept that when the function is completed, a status word 

and an external interrupt signal are sent to the central 

processor. 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 

CODE 

4720 

5720 

2010 

3010 

2110 

3110 

4000 

5000 

2030 

3030 

2130 

3130 

FUNCTION 

Search Binary 

Coded Decimal 

Low Density 

Search Binary 

Coded Dec i rna I 

Low Dens ity 

With Interrupt 

Rew ind 

Rewind With 

Interrupt 

Rewind With 

Interlock 

Rewind With 

Interlock And 

Interrupt 

Bootstrap 

Bootstrap With 

Interrupt 

Backspace 
Block 

Backspace 

Block With 

Interrupt 

Backspace 

File 

Backspace 

File With 

Interrupt 

SECTION: 

DESCRIPTION 

Read the tape in binary coded decimal format at a den: 

sity or 200 characters per inch and compare the first 

word 0 f e a c h b I 0 c k wit h the ide n t i fie r w 0 rd. W hen a n 

identical comparison is made, read that block from tape. 

Same as Search Binary Coded Decimal Low Density exo 

cept that when the function is completed, a status word 

and an external interrupt signal are sent to the central 

processor_ 

R e win d the ta p eon the s p e c i fie d tap e un itt 0 the loa d 

point. 

Same as Rewind except that when the function is com~ 

pleted/ a status word and an external interrupt signal 

are sent to the central processor. 

Rewind the tape on the specified tape unit to the load 

point with interlock. 

Same as Rewind With Interlock except that when the func~ 

tion is completed! a status word and an external interrupt 

signal are sent to the central processor. 

Rewind the tape on the tape unit specjfied for Bootstrap 

operation; read one block from tape at a density of 556 

character per inch. 

Same as Bootstrap except that when the function is com

pleted, a status word and an external interrupt signal are 

sent to the central processor. 

Move the tape backward on the specified tape unit, until 

the load point, tape mark frame, or a space between 

blocks is encountered. 

Same as Backspace Biock except that when the function 

is completed, a status word and an external interrupt 

signal are sent to the central processor" 

Move the tape backward on the specified tape unit until 

the load point or a block that contains four frames or 

less is encountered. 

Same as Backspace File except that when the function 

is completed, a status word and an external interrupt 

signal are sent to the central processor. 

ss 
PAGE: 



Appendix 0 56 
SECTION: PAGE: 

r 
I CODE 

0030 

1030 

2300 

3300 

*0221 

*1221 

*0321 

*1321 

*0261 

. I 

I 

FlJNCTION 

Erase 

Erase With 

Interrupt 

Terminate 

Terminate With 
Interrupt 

Write Binary 

Coded Decimal 

H i g h Den s i ty 

Translation 

Mode 

Write Binary 

Coded Dec ima I 

H i g h Den s i ty 

Trans lation 

Mode With 

Interrupt 

Write Binary 

Coded Decimal 

Low Density 

Trans lation 

Mode 

Write Binary 

Coded Decimal 

Low Density 

Translation 
Mode With 

Interrupt 

Write Multi-

block Binary 

Coded Dec i rna I 

H i g h Den s i ty 

Trans lation 

Mode 

UNIVAC 490 SPURT 

DESCRI PTION 

Move the tape on the specified tape unit forward and 

erase approximately four inches of tape. 

Same as Erase except that when the function is com

pleted/ a status word and an external interrupt signal 

are sent to the central processor. 

Terminate the present function at the end of the current 

block. 

Same as Terminate except that when the function is com

pleted/ a status word and an external interrupt signal are 

sent to the central processor. 

Translate the data to be written into binary coded decimal 

format an d wri te one b lock on ta pe a t a dens i ty of 556 
characters per inch. 

Same as Write Binary Coded Decimal High Density Translation 

Mode except that when the function is completed/ a status 

wOid and an external interrupt signal are sent to the central 
proces sor. 

Translate the data to be written into binary coded decimal 

format and write one block on tape at a density of 200 

characters per inch. 

Same as Write Binary Coded Decimal Low Density Translation 

Mode except that when the function is completed, a status 

word and an external interrupt signa! are sent to the central 
proces sor. 

Translate the data to be written into binary coded decimal 

format and write one block on tape at a density of 556 

characters per inch; stop only if new data is not made 

available within 4.0 milliseconds after the block is written. 

Used only wh en a Translator has been ins talled in the Channel Synchronizer/ Con trol Unit. 

UP-3900 



UP-3900 

CODE 

*1261 

*0361 

*1361 

*4221 

*5221 

*4321 

*5321 

UNIVAC 490 SPURT Appendix D 

FUNCTION 

Write Multi· 

block Binary 

Coded Decimal 

H i g h Den s i ty 

Trans lation 

Mode With 

Interrupt 

W rite M u I t i ~ 
Block Binary 
Coded Dec i rna I 
Low Density 

Translation 

Mode 

Write Multi

block Binary 

Coded Decimal 

Low Density 

Trans lation 

Mode With 

Interrupt 

Read Binary 

Coded Decima I 

H i 9 h Den s i ty 

T ran s lation 

Mode 

Read Binary 

Coded Decimal 

H i g h Den s i ty 

Translation 

Mode With 

Interrupt 

Read Binary 

Coded Decimal 

Low Density 

Translation 

Mode 

Read Binary 

Coded Decimal 

Low Density 

Translation 

Mode With 

Interrupt 

SECTION: 

DESCRIPTION 

Same as Write Multiblock Binary Coded Decimal High Density 

T ran s lation Mode except that when the function is com pieted, 

a status word and an extemal interrupt signal are sent to 

the centra I processor. 

Translate the data to be written into binary coded decimal 

format and write one block on tape at a density of 200 

characters per inch; stop only if new data is not made 

available within 4.0 milliseconds after the block is written. 

Same as Write Multiblock Binary Coded Decimal Low Density 

T ra n s la ti on Mode except tha t when the fu n cti on j scorn p leted, 

a status word and an external interrupt signal are sent to 

the centra I proces sor. 

Read one block from tape in binary coded decimal format at 

a density of 556 characters per inch and translate the data 

that has been read into Fieldata format. 

Same as Read Binary Coded Decimal High Density Translation 

Modeexcept that when the function is completed, a status 

word and an external interrupt signal are sent to the central 

processor. 

Read one block from tape in binary coded decimal format at a 

density of 200 characters per inch and translate the data that 

has been read into Fieldata format. 

Same as Read Binary Coded Decimal Low Density Translation 

Mode except that when the function is completed, a status 

word and an external interrupt signal are sent to the central 

proces sor. 

Used only when a Translator has been instaIIed in the Channel Synchronizer/Control Unit. 

57 
PAGE: 



Appendix D 
SEC TION: 

I 

I 

58 UNIVAC 490 SPURT 
PAGE: 

CODE FUNCTION DESCRIPTION 

*4621 Search Binary Read the tape in binary coded decimal format at a density of 

Coded Decimal 556 characters per inch and compare the first word of each 

H i g h Den s i ty block with the identifier word. When an identical comparison 

Translation is made, read that block and translate the data that has been 

Mode read into Fie!data format. 

* 5621 Search Binary Same as Search Biliary Coded Decimal High Density Translation 

Coded Decimal Mode except that when the function is completed, a status word 

High Density and an external interrupt signal are sent to the central 

Translation proces sor. 

Mode With 

Interrupt 

*4721 Search Binary Read the tape in binary coded decimal format at a density of 

Coded Decimal 200 characters per inch and compare the first word of each 

Low Dens ity block with the identifier word. When an identical comparison 

Translation is made, iead that block and translate the data that has been 

Mode read into Fieldata format. 

*5721 Search Binary Same as Search Binary Coded Decimal Low Density Translation 

Coded Decimal Mode except that when the function is completed, a status word 

Low Density and an external interrupt signal are sent to the central 

Trans lation proces sor. 

Mode With 

Interrupt 

Used only when a Translator has been installed in the Channel Synchronizer/Control Unit. 

(2) Data Word 

The data word (input or output) is arranged in five groups of 6-bit characters if the data 
is in binary coded decimal format. A data word in binary coded decimal format is ar
ranged as follows: 

If a data word is in binary format, it is arranged as follows: 

UP-3900 

I 
I 



UP-3900 UNIVAC 490 SPURT Appendix D 
SECTION: PAGE: 

(3) Identifier Word 

The identifier word is a computer output word that immediately follows a search function 
word. It can contain any bit configuration as shown below. It is transmitted to the sub= 
system accompanied by an External Function signal 1 ne lGentIIler WOrd IS compared 
with first word of each block on tape until the appropriate find is accomplished. When 
this occurs, the block containing the identical word is read from tape, 

(4) Status Word 

sc 

CODE 

34 

24 

54 

A status word is transmitted by the subsystem to the central processor whenever an 
abnormal condition or an operation with interrupt has been completed. A status word 
is arran ged as follows: 

The status code, SC, occupies bit positions 24 through 29 of the status word. All other 
bit positions are not used. The status word is accompanied by an external interrupt 
signal when it is transmitted to the central processor. 

The s ta tus codes are as follows: 

INDICATION 

Function Word 

Error 

Tape Unit Re
winding (with

out interlock) 

End Of File 

DES CRIPTION 

This indication occurs when the function word contains 

a function code that is not valid for the subsystem, 

there is a unit select error (more than one unit has been 

spec ified, or none ha s been specified), or if the first 

character encountered during a binary coded decimal 

write function is 00. 

This indication occurs when the centra! processor re

quests a tape unit that is in the process of rewinding 

without interlock. 

This indication occurs when the Tape Mark frame and its 

longitudinal parity check frame are detected or if an 

echo error is detected after the first character during 

a binary coded decimal write function. 

59 



AppendIX U 

SECTION: PAGE: 

CODE 

50 

74 

44 

70 

60 

30 

20 

40 

aU 

INDICATION 

Control Unit 

Sequence Error 

Interlock Fault 

Repeat 

Operation 

Abnorma I 

Frame Count 

Tape Limit 

Reached 

Channel 

Synchron i zer 

Character 

Count Error 

Channel 

Synchron i zer 

Sequence Error 

Normal 

Completion 

UNIVAC 490 SPURT 

DESCRIPTION 

This indication occurs when the central processor has 

not issued an input acknowledge signal in time to re~ 

move a word from the subsystem register before the subo 

sy stem beg ins to put a new word into the reg i ster; or 

the central processor delays in issuing an output ac

knowledge signal and data with the result that the subo 

system begins to wiite and veiify the longitudinal panity 

check frame. 

This indication occurs when the central processor re

quests a non-existent tape unit, when a write function IS 

requested on a tape unit that has a tape mounted that 

does not contain a write enable ring, or when an inter~ 

locked tape unit is requested (the unit is rewinding with 

i n t e rio c k, a d 00 r i sop e non the un it, and soon). 

This indication occurs when a lateral or longitudinal 

parity error is detected during a read or search function, 

or a comparison error is detected during the write-

check portion of a write function. 

This indication occurs when the totol number of signif

icant frames in a block on tape is not a multiple of five. 

This indication occurs when the load point or the end 

of tape warning mark is detected during a read, search, 

write, erase, backspace block, or backspace file function. 

This indication occurs when the channel synchronizer 

character counter does not contain the proper count. 

This indication occurs when the channel synchronizer 

has received an end of block signal and the character 

counter does not contain the proper count. 

This indication occurs when a function with interrupt 

has been successfully completed. 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 

8. Subsystem Characteristics . 

a. Summary of General Characteris tics 

TRANSFER RA TE 

RECORDING DENSITY 

TAPE SPEED 

TAPE WIDTH 

TAPE LENGTH 

TAPE THICKNESS 

BLOCK LENGTH 

SPACE BETWEEN BLOCKS 

CHANNELS ON TAPE 

READ/WRITE OPERATION 

SECTION: PAGE: 

22,500 and 62,500 characters per second 

200 and 556 6 bit characters per inch 

112.5 inches per second 

0.5 inch 

2,400 feet 

1.5 mils 

variable 

0.75 inch 

7 channels 
6 data 
1 parity 

Reading and writing operations proceed 
in the forward direction only. 

61 



Appendix D 62 UNIVAC 490 SPURT 
SECTION: PAGE: 

b. Physical Characteristics 

UNISERVO IIIC UNISERVO IIiC 
TAPE UNIT POWER SUPPL Y CONTROL CABINET 

HEIGHT (inches) 96 96 96 

WIDTH (inches) 31 66 20 
J 

DEPTH (inches) 30 33 34 

WEIGHT 350 2,200 310 
(approximate Ibs.) 

TEMPERATURE 
60° -82° F. 68° - 82° F. 

RANGE· 

HUMIDITY 40%-70% 40%-60% 40%-70% 
RANGE 

I I HEAT 

7,500 10,200 598 I DISSIPATION 
(BTU!hr.) 

AIR FLOW 
350 2,300 390 

(cu. ft./min.) 

POWER Supplied by 208 VAC 208 VAC 
REQUIREMENTS power supply 60 cps - 0.1% 

via Tape I 33phase 60 cps I 

Adapter 43.7 kw 3 ph ase 
Cabinet 0.6 kw 

MAXIMUM CABLE LENGTH RESTRICTIONS 

1. Tape Adapter Cabinet must be adjacent to the left side 
of the first UNISERVO IIIC Tape Unit. 

2. Power Supply to Tape Adapter Cabinet: 60 ft. 

3. UNISERVO IIIC Control Cabinet to Tape Adapter 
Ca binet: 80 ft. 

4. Central Processor to UNISERVO IIIC Control 
Ca binet: 75ft. 

TAPE ADAPTER 
CABINET 

96 

36 

30 

800 

40%-60% 

1,360 

600 

Suppl ied 
by power 
supply. 

UP-3900 

I 

I 
I 



UP-3900 UNIVAC 490 SPURT Appendix D 63 

* 

SECTION: PAGE: 

E. UNISERVO lIlA Magnetic Tape Subsystem 

The UNISERVO IlIA Magnetic Tape Subsystem differs from the UNISERVO IIA Magnetic Tape Sub= 
system and the UNISERVO IIIC Magnetic Tape Subsystem in that its storage capacity per reel of 
tape is substantially greater. This is accomplished by recording data at a higher density. 

A UNISERVO lIlA Magnetic Tape Subsystem consists of a Channel Synchronizer/Control Unit, and 
from two to sixteen UNISERVO IlIA Tape Units that are connected to the central processor via an 
input/output channeL 

A subsystem that is on a particular input/output channel is capable of reading or writing data in the 
form of 30~bit binary words on anyone of the tape units at anyone time. Data can be read or written 
at a density of 1,250 characters per inch. If simultaneous reading and writing is required, options 
are available which permit this. * 

The UNISERVO IlIA Tape Unit utilizes 600 foot, 1,500 foot, 1,800 foot, and 3,600 foot reels of 
plastic tape that are 0.5 inch wide and 1 mil in thickness; or 2,400 foot reels of plastic tape that 
are 0,5 inches wide and L 5 mils in thickness, 

SUPPLY REEL 

o 

FORWARD LIMIT 

PHOTOCELL 

VACUUM 

CAPSTAN 

RECORDING\ 
HEAD (READ 

GAP ABOVE 

WRITE GAP) 

TAKE=UP REEL 

o 

WIPER /1 / BUFFER I'-" 
LOOP 

AC ERASE 
HEAD 

I ~ ~ 
\ 

BACKWARD liMiT 

PHOTOCELL 

I ! 
I I 
\ } I 
,_/ I 

I 
\ J 
"- .-' 

Figure EQ7. UN/SERVO filA Tape Unit Schematic 

See Subsection 5, Control Options. 



Appendix D 
SECTION: 

64 UNIVAC 45JC SPURT 
PAGE: 

As shown in Figure E=l, the reel of tape tha t contains data to be processed, or the blank reel upon 
which data is to be written is mounted on the left. The right hand reel is used to store the tape as 
it is read or written on. The tape is threaded around and through guide rollers which control its 

UP-3900 

path between the supply reel and take= up reel. A pre=threaded leader is permanently attached to the 
take=up reel. When it becomes necessary to mount a new supply reel, the end of the tape on the 
supply reel is attached to this leader. 

The read/write head performs the actual reading or writing of data as the tape moves beneath it at 
the rate of 100 inches per second. Since the tape density is 1,250 characters per inch, information 
is transferred at the rate of 125,000 characters per second. 

The erase head is used only during a write operation. It erases information on the tape before new 
information is written. Accidental erasure of a previously recorded tape can be prevented by re
moving the write enable ring from the tape before it is mounted on a tape unit. 

Vacuum columns, that are located below the tape reels, are used to store the tape before it passes 
beneath the read/write head or is wound on the take=up reel. These columns also insure that the 
tape tension is even and that there is a proper amount of slack to permit rapid acceleration and 
deceleration. 

The tape unit contains four photocells. Two of these, located above the read/write head, are used 
to detect windows on the tape, These windows (see Figure E 0 2) indicate the load point (the initial 
point on the tape where reading or writing begins) and the end of tape warning point (the point that 
indicates that the physical end of tape is near). The other two photocells, one of which is located 
below the supply reel; and the other beneath the takeoup reeC are used to detect the forward and 
backward limits of the tape. 

END OF TAPE 

WINDOW 

LOAD POINT 

WINDOW 

I'ia" x 'la" 

~20'+25'~ 1- 10' 
20' or 

or 20' 
CLEAR 

40' 

Figure E-2. UNISERVO lilA Tape Diagram 

BLACK 
OPAQUE 

Bad spots on tape are detected by reading the data back immediately after it has been written, and 
checking it for parity. If there is a parity error, the writing of data stops and the subsystem writes 
a specific pattern on the tape that will indicate that this portion of the tape is defective. 

1. Tape Format 

** 

Data appears on tape In the form ot trames that are written across its width in nine channels ur 
bit positions (8 data and 1 parity). The 30 bits of a computer word are placed in four frames ** on 
tape; that is, 30 data bits and two 0 bits for fill. These words are written in groups called 
blocks (one or more words). Figure E 0 3 provides an example of how data appears on tape. 

See subsection 5, Control Options. 



UP-3900 UNIVAC 490 SPURT Appendix D 

SECTION: 

( 0 0 7 
J 0 ') 

0 

0 0 
r ----- --- --- ------------, 

PARITY BITS ; 1 0 0 1 : ZERO FILL L _____________ ___________ ..l 

0 

( 
0 0 } 0 

0 

Figure E ~3. UNISERVO IliA Tape Format 

As shown in Figure E=3, a parity channel is provided on tape, The parity channel helps assure 
that every character that is written will be read accurately, 

When data is written, the subsystem will assure that the parity is even by generating a 1 bit in 
the parity channel position of each frame that does not contain an even number of 1 bits. 

When data is read from tape; it is checked for parity before it is transferred to the central 
processor, If an improper parity condition is found, the subsystem will store this fact until all 
of the current block of data has been read. When the entire block has been read, the subsystem 
will notify the central processor by means of a status word that an improper parity condition 
exists, 

The UNISERVO IlIA Magnetic Tape Subsystem can read or write data blocks of any length. * The 
only requirement is that a block must be at least one computer word. The spacing between 
adjacen t blocks is 0.75 inches and the end of file gap is 2.5 inches. 

As each data block is written, the subsystem places a start pattern and a start sentinel before 
the data, and a stop sentinel, a stop pattern, and an ending pattern after the data, The start 
pattern and the stop pattern each consist of 27 frames of 1 bits. The start sentinel consists of 
one frame of 0 bits followed by two frames of 1 bits. The stop sentinel consists of two frames 
of 1 bits followed by one frame of 0 bits. The ending pattern consists of 225 frames that con= 
tain 0 bi ts in odd channels only, When the tape is subsequen tly read, these patterns and 
sentinels will indicate the beginning and end of data to the reading circuitry, Figure E=4 illus= 
trates how these sentinels and patterns appear on tape. 

START 
SENTINEL 

START 
PATTERN DATA 

STOP 
SENTINEL 

STOP 
PATTERN 

Figure E-4. Data Block Sentinel s and Patterns 

ENDING 
PATTERN 

*-------------------------------------------------------------------------------------It should be noted that if the space occupied by a data block is less than tile space between blocks, it may be 
difficult to recover from tape errors, 

65 
PAGE: 



Appendix D 
SEC TION: 

66 UNIVAC 490 SPURT UP-3900 
PAGE: 

In addition, if an error (frame count error, parity error, or bad spot) is detected during the writing 
of a data block, the subsystem will place a special pattern on tape after the data. This pattern 
consists of 225 frames that contain 0 bits in odd channels only (an ending pattern), 250 frames 
that contain 0 bits in all channels, and 250 frames that contain 0 bits in even channels only. 
When the tape is subsequently read, the presence of this special pattern will indicate to the 
reading circuitry that this block is improperly wri tten. Figure E=5 illus trates how this special 
pattern appears on tape. (The stop sentinel and stop pattern will not be written if a bad spot 
or parity error is detected.) 

START 
SENTINEL 

DATA 

STOP 
SENTINEL 

SPECIAL PATTERN 

----.... ----~----.... ----~ 
ENDING 

PATTERN 

250 FRAMES OF ~ 
BITS IN ALL 
CHANNELS 

250 FRAMES OF ~ 
BITS IN EVEN 

CHANNELS ONLY 

Figure E-5. Special pattern for Improperly Written Block 

2. Channel Synchronizer/Control Unit 

The Channel Synchronizer/Control Unit for the UNISERVO IlIA Magnetic Tape Subsystem con~ 
troIs the operation of the tape units during their write and read functions, transfers the data to 
be written from the central processor to the tape units, and transfers the data that has been read 
from the tape units to the central processor. 

• Write Function 

During the write function, the Channel Synchronizer/Control Unit receives a function word 
from the central processor and translates it into a write command to the selected tape unit. 
Then it receives data words from the central processor and transfers them to the tape unit 
for writing. 

• Read Function 

During the read function, the Channel Synchronizer/Control Unit receives a function word 
from the central processor and translates it into a read command to the selected tape unit. 
Then it receives data words from the tape unit and transfers them to the central processor. 

• Unit Selection 

The Channel Synchronizer/Control Unit decodes the function word and selects the specified 
tape unit. 

• Error Detection 

Detection circuits in the Channel Synchronizer/Control Unit check the characters for parity 
as they are transferred to and from the central processor. These circuits also check the data 
words to see if they contain the proper number of characters. 

3. Operator Controls 

Primary control of the UNISERVO IlIA Magnetic Tape Subsystem is accomplished by the pro~ 
gram. However, the Control Cabinet and the individual tape units have operator panels that show 
operating conditions in the subsystem and allow some manual operation. 



UP-3900 UNIVAC 490 SPURT Appendix D 

SECTION: 

The Control Cabinet panel indicators and their functions are as follows: 

SERVO 
FAULT 

FAULT 

TEST 

ON 
OFF 

LEGEND: 

~I 10 = LIGHT [)::::::(] = BUTTON/LIGHT 

Lights when there is a voltage supply fault in any of the tape units. 

Lights when any of the following conditions occur: 

• Undervoltage in the Control Cabinet. 

• Overcurrent in the Control Cabinet. 

• Insufficient air flow in the Control Cabinet. 

• Mechanical interlock failure in the Control Cabinet. 

Lights when the subsystem is isolated for test purposes. 

Pressing this button applies power to or removes power from the Control 
Cabinet. This button does not affect the blowers or the fault indicators. 

The Control Cabinet also contains an assignment panel and an auxiliary panel. These panels 
and their functions are described in the text that follows. 

PAGE: 

The assignment panel, which is used to assign logical numbers to the tape units, is illustrated 
below. 

As shown in the illustration, the assignment panel consists of a plugboard that contains red IN 
jacks and green OUT jacks that are numbered 1 through 16. The IN jacks represent the numbers 
of the physical units and the OUT jacks represent the logical numbers. 

67 



AppendIX U 

SE C TION: 

I 

UNIVAC 490 SPURT 
PAGE: 

The auxiliary panel, which is used to designate the logical number of the tape unit that will be 
used for Bootstrap* operation, is ill ustrated below. 

As shown in the illustration, the auxiliary panel contains a rotary switch labeled BOOTSTRAP, 

UP-3900 

a disconnect switch labeled DISC BSTP, and a button labeled START. The BOOTSTRAP switch 
has 16 positions which represent the logical numbers of the tape units. The DISC BSTP switch 
enables (down position) or disconnects (up position) the BOOTSTRAP switch. The START 
button is used only for maintenance purposes. 

The Tape Unit panel indicators and their functions are as follows: 

III 
UNIT 
NUMBER 

AIR 
FLOW 

OVERHEAT 

VOLTAGE 

FORWARD 

BACKWARD 

REWIND 

LEGEND: 

~ = LIGHT [)::(] = BUTTON 'LIGHT 

Displays the physicai number of the individual unit. 

Li gh ts when there is an ins ufficien t air flow in the tape uni t cabinet. 

Lights when the temperature in the tape unit cabinet exceeds 130°F. 

Lights when the tape unit voltage fails. 

Lights when the tape is moving in a forward direction or the unit is ready 
to do so. Pressing this button conditions the unit for forward motion inde
pendent of program control. 

Lights when the tape is moving in a backward direction or the unit is 
ready to do so. Pressing this button conditions the unit for"backward 
motion independent of program control. 

Lights when the tape is being rewound. Pressing this button initiates the 
rewind operation if the unit has been conditioned for backward tape motion. 

* To facilitate the initial loading of a program into core storage, a Bootstrap operation is provided in the central 
processor. This is a small program which, when activated, will bring some other program on magnetic tape into 
core storage. Once the program to be executed is loaded, the Bootstrap program is no longer required and may be 
removed from core storage. The Bootstrap program is activated and deactivated by a manual switch that is 
connected to the central processor. 



UP-3900 

4. 

UNIVAC 490 SPURT Appendix D 

SECTION: PAGE: 

CHANGE Ligh ts when a tape is rewin ding wi th interlock or has been rewound with 
interlock. Pressing this button will move the tape to the load point. TAPE 

LOAD Lights when the tape is positioned at its load point (beginning point), 
ready for reading or writing. PO INT 

IN H IB IT Lights when a tape that does not contain a write enable ring has been 
mounted on the unit. WRIT E 

ON Lights when all power is on in the unit. Pressing this button applies 
power. 

OFF Lights when all power is not on in the unit. Pressing this button removes 
power. 

Operations 

Any part of the central processor's internal core storage can be used as an input/output data 
buffer storage area, with the exception of the few special core storage locations that are re= 
served for the Incremental Clock and the Interrupt Words. Information is transferred between the 
central processor and the UNISERVO IlIA Magnetic Tape Subsystem in the form of 30=bit data 
words. These words are formed into blocks in core storage, A block may contain any number of 
words. Words in a block must occupy consecutive core storage addresses, starting with a program 
determined first word address, and ending with a program determined last word address. 

a. Buffer Mode 

A buffer mode of transfer, which occurs independent of program control, is used to transfer 
data between core storage and the UNISERVO IlIA Tape Units, Before execution of a buffer 
mode transfer of data, the program must perform the following steps: 

(1) Activate the channel to be used for the information transfer. 

(2) Load the channel index register with the buffer control word. (The lower and upper halves 
of the buffer control word contain the beginning and ending addresses of the section of 
the section of core storage that is involved in the transfer). 

(3) Send the proper function word to the UNISERVO IlIA Control Unit. 

Steps 1 and 2 above are accomplished with one of the Initiate Buffer instructions; step 3 is 
performed by the Enter External Function instruction. See BAS IC INPUT/OUTPUT INS TRUC= 
TIONS (Section 5) for a more detailed discussion of these operations. 

Data is then transferred between the central processor core storage and the selected 
UNISERVO IlIA Tape Unit without main program intervention. When a word is transferred to 
or from core storage, a 1 is added to the lower half of the buffer control word, The data trans= 
fer is terminated when: 

(1) The central processor senses that the upper and lower halves of the buffer control word 
are equal. 

(2) A Terminate instruction is executed by the central processor. 

(3) An error is detected. 

69 



Appendix D 
SECTION: 

70 UNIVAC 490 SPURT 
PAGE: 

b. Word Arrangement 

The UNISERVO IlIA Magnetic Tape Subsystem accommodates five types of computer input/ 
output words. They are the Function Word, Data Word, Identifier Word, Mask Word, and Status 
Word. These words are explained and illustrated in the following paragraphs. 

(1) Function Word 

The function word designates the operation to be perform ed by the UNISERVO IlIA Mag~ 
netic Tape Subsystem. It is arran ged as follows: 

Fe u 

The function code, Fe, occupies bit positions 24 through 29 of the function word. The 
function code specifies the actual operation to be performed by the subsystem. 

Bit positions 0 through 3, U, specify the tape unit that will be selected. 

The function codes are as foiiows: 

CODE FUNCTION DESCRIPTION 

01 

11 

02 

12 

03 

13 

41 

51 

Write 

Write With 

Interrupt 

Cont i ngency 

Write 

Contingency 

Write With 

Interrupt 

Write File 

Separator 

Write File 

Sepa rator 

With I nterru pt 

Read Forward 

Read Forward 

With Interrupt 

Write one block on tape. 

Same as Write except that when the function is complet a 

ed, a status word and an external interrupt signal are 

sent to the central processor. 

Write 0 bits in even channels only on tape for 3 inches. 

Same as Contingency Write except that when the func

tion is completed, a status word and an external inter

rupt signal are sent to the central processor. 

Erase 2.5 inches of tape. 

Same a s Write File Separator except that when the func c 

t ion is comp leted, a status word and an externa I i nter g 

rupt signal are sent to the central processor. 

Read one block from tape in a forward direction. 

Same as Read Forward except that when the function is 

com pie ted I a s tat u s w 0 r dan dan ex t ern a lin t err u p t s i g c 

na I are sent to the central processor. 

UP-3900 



UP-3900 

CODE 

6i 

71 

42 

52 

62 

72 

45 

55 

65 

;5 

UNIVAC 490 SPURT Appendix D 

I 
I FUNCTION 

Read 
_, ,I 

Read Backward 

With Interrupt 

Reposition 

Read Forward 

Repos ition 

Read Forward 

With Interrupt 

Repos ition 

Read Backward 

I 

; 

i 
I 

Reposition I 

Read Backward 

With Interrupt I 

Sea rc h F orwa rd i 

I 

, 

,.. I r- I I 
;)earcn rorwaral 

With Interrupt I 

I 

Search Backward I 

I 
i 

I 
Search Backward I 
With Interrupt I 

I 

..... I 

l"{ead one 
I I I 

blOCK 
r 
IIVIII 

SEC TlON: 

DESCRIPTION 

tape III a backward 
I- ,. 

CJreCTIOno 

Same as Read Backward except that when the function 

is completed, a status word and an external interrupt 

signai are sent to the centrai processor, 

Skip the block of data that is at the read head and read 

the next block from tape. This function is used to re~ 

cover from an error cau sed by a block wh i ch wa sap pa r o 

ently written and checked without error. It permits skip~ 
ping this block and reading the next block. 

Same as Reposition Read Forward except that when the 

function is compieted, a status word and an externai Inc 

terrupt signal are sent to the central processor. 

Read one block from tape in a backward direction. This 

is used in the case where an error is detected in a block 

with a normal ending pattern and the erased tape gap 

that follows is smaller than normal. When this occurs, 

the tape will stop with the read head positioned over the 

next block. The Reposition Read Backward function 

takes care of this situation by ignoring the information 

in the next block and reading the troublesome b!ock in 

a backward direction. 

Same as Reposition Read Backward except that when the 

function is completed, a status word a"nd an external In o 

terrupt signal are sent to the central processor. 

Read the tape in a forward direction and compare the 

first word of each block with the identifier word. When 

an identical comparison is made, read that block from 

tape. 

r r I,.... I •• 1. I .1 r .. 
;)ame as ;)earcn rorwara excepT TnaT wnen Tne TunCTlon 

is completed, a status word and an external interrupt 

signal are sent to the central processor. 

Read the tape in a backward direction and compare the 

last word of each block with the identifier word. When 

an identical comparison is made, read that block from 

tape. 

Same as Search Backward except that when the function 

is com p leted, a status word a nd an externa I interrupt 

signal are sent to the central processor. 

71 
PAGE: 



Appendix D 72 
SECTION: PAGE: 

CODE 

46 

56 

66 

76 

I I 

I 
I 20 

30 

I 21 I 
I I 

31 

40 

50 

23 

33 

*24 

FUNCTION 

Masked Search 
Forward 

Masked Search 
Forward With 
Interrupt 

Masked Search 
Backward 

Masked Search 
Backward With 
interrupt 

Rewind 

Rewind With 
Interrupt 

Rewind With 
Interlock 

Rewind With 
Interlock and 
Interrupt 

Bootstrap 

Bootstrap 

With Interrupt 

Terminate 

Term i nate With 
Interrupt 

Release 
Contro I 

UNIVAC 490 SPURT 

DESCRIPTION 

Read the tape ina forward d irecti on a nd co mpa re those 
portions of the first word of each block that are selected 
by the mask word with those portions of the identifier 
word that are selected by the mask word. When an 
identical comparison is made, read that block from tape. 

Same as Masked Search Forward except that when the 
function is completed, a status word and an external In
terrupt signa I are sent to the central processor. 

Read the tape in a backward direction and compare those 
portions of the last word of each block that are selected 
by the mask word with those portions of the identifier word 
that are selected by the mask word. When an identical 
comparison is made, read that block from tape. 

Same as Masked Search Backward except that when the 
function is completed, a status word and an external 
interrupt signel are sent to the centra' processor. 

Rewind the tape on the specified tape unit to the load 
point. 

Same as Rewind except that when the function is como 
pleted, a status word and an external interrupt signal 
are sent to the central processor. 

Rewind the tape on the specified tape unit to the unload 
point with interlock. 

Same as Rewind With Interlock except that when the 
function is completed, a status word and an external Ino 

terrupt signal are sent to the central processor. 

Rewind the tape on the tape unit specified for Bootstrap 
operation, read one block from tape In a forward dlrec, 
tion. 

Same as Bootstrap except that when the function is 
completed, a status word and an external interrupt sig o 

nal are sent to the central processor. 

Term inate the current function. 

Same as Terminate except that when the function is 
compieted, a status word and an externai Interrupt S ig
nal are sent to the central processor. 

Central processor that has control of the subsystem 
re I i nqu i shes control. 

* Used only with dual UNIVAC 490 Real-Time Systems. 

UP-3900 



UP-3900 

I~ 

UNIVAC 490 SPURT Appendix D 

SECTION: PAGE: 

CODE FUNCTION DESCRIPTION 

*34 

*26 

*27 

*25 

*35 

Reiease 

Control With 

Interrupt 

Request 

Contro I 

Reque s t 

Control With 

Interrupt 

Demand 

Control 

Demand 

Control With 

In te rru pt 

Same as ~elease Controi except that when the function IS 

completed, a status word and an external interrupt signal are 

sent to the particular central processor that is involved. 

Non~controlling central processor requests control of the 

subsy stem. 

Same as Request Control except that when the function is 

completed, a status word and an external interrupt signal are 

sent to the particular central processor that is involved. 

Nonccontrolling central processor demands control of the 
subsystem. If this function IS used, contro! of the subsystem 

is given immediately to the central processor that demands it. 

Same as Demand Control except that when the function is 

completed, a status word and an external interrupt signal are 

~ent to the particular central processor that is involved. 

Used only with dual UNIVAC 490 RealcTime Systems. 

(2) Da ta Word 

The data word (input or output) may be composed of 30 bits of binary information or it 
may be composed of five six bit alphanumeric characters as shown below: 

(3) Identifier Word 

The identifier word is a computer output word that follows a search function wordo It can 
contain any bit configuration as shown belowo The identifier word is compared with the 
first word of each block on tape until the appropriate find is accomplished, When this 
occurs, the block containing the identical word is read from tape. 

73 



Appendix U 

SEC TION: 

I~ 

'14 UNIVAC 490 SPURT UP-3900 
PAGE: 

(4) Mask Word 

The mask word is a computer output word that is used in a masked search operation to 
select the portion of the first word of each block that is to be compared with the identifier 
word. It can contain any bit configuration as shown below. The portion of the first word 
of each block tha t is selected is determined by the presence of 1 bits in specific bi t posi~ 
tions in the mask word; that is, only those bit positions in the first word of each block 
that correspond to the 1 bits in the mask word will be compared with the identifier word. 

When a masked search operation is reques ted, the masked search function word is followed 
by the mask word and the mask word is followed by the identifier word. 

(5) Status Word 

sc 

A status word is transmitted by the subsystem to the central processor whenever an ab~ 
normal condition or a function with interrupt has been completed. A status word is ar
ranged as follows: 

EI 

The status code, SC, occupies bit positions 24 through 29 of the status word. Bit 
positions 0 through 5, EI, are used to indicate the type of error that has occurred. A 

1 bit in bit position 0 indicates a skew error, a 1 bit in bit position 1 indicates a parity 
error, a 1 bit in bit position 2 indicates a frame count error, a 1 bit in bit position 3 
indicates an interlock error, a 1 bit in bit position 4 indicates a data pilccup, and a 1 
bit in bit position 5 indicates an illegal function. The status word is accompanied by 
an external interrupt signal when it is trans mitted to the cen tral processor. 

The status codes are as follows: 



UP-3900 

CODe 

64 

50 

74 

10 

30 

34 

60 

54 

70 

44 

40 

14 

UNIVAC 490 SPURT Appendix D 

INDICATION 

Term inated 

Illegal Function 

Code 

Manual !ntero 

vention Required 

Tape Unit 

Rewinding 

Maintenance 

I nterventi on 

Requ ired 

End of File 

Repeat 

Operation 

Improperly 

Written Block 

F rome Count 

Error 

Tape Marker 

Detected 

Norma I 

Completion 

Tape Un it 

Contro lied By 

Oth er Contro I 

Unit 

SEC TION: 

DESCRIPTION 

This indication occurs when a function :s terminated 

before it has been completed. 

This indication occurs when the function word contains 

a function code that is not valid for the subsystem. 

This indication occurs if the requested tape unit has an 

i n te rio c k set. 

This indication occurs when the central processor reo 

quests a tape unit that is in the process of rewinding 

without interlock. 

This indication occurs when there is a tape unit signai 

malfunction, the load point is detected when reading or 

searching backwards, or there is a loss of power in the 

tape un it. 

This indication occurs when the file separator IS en

co un teredo 

This indication occurs when a parity error IS detected 

when reading a previously determined valid data block
t 

the central processor resumes accepting data after a 

pile up has happened during a read function t or the 

central processor resumes sending data after the tape 

unit stops writing during a write function. 

This indication occurs when a parity or frame count error IS 

detected during a write function t or when the special 

pattern that indicates an improperly written block is 

detected during a read function. 

This indication occurs when the total number of frames 

in a block or tape is not a multiple of four. 

This indication occurs when the end of tape warning 

point is detected during a write t contingency write
t 

or 

write file separator function; or when the load point is 

detected during an attempt to execute a function that 

calls for backward tape movement. 

This indication occurs when a function with interrupt 

has been successfully completed. 

This indication occurs when the subsystem has the dual 

control option and the tape unit that is requested by one 

control unit is under the control of the other control unit. 

7S 
PAGE: 



nppc:uuJ.l\. 

SECTION: 
UNIVA~ q!:JO ::iPURT 

PAGE: 

5. Control Options 

The following control options are availa ble: 

a. Single UNIVAC 490 Real= Time System, Dual Control 

This option permits simultaneous reading from one tape unit and writing on another or 
simultaneous reading from two tape units. It consists of an additional Channel Synchronizer/ 
Control Unit, connected to a second input/output channel, that controls the same tape units 
as the first. The second Channel Synchronizer/Control Unit cannot perform a write function; 
consequently, simultaneous reading and writing is performed by using the first Channel 
Synchronizer/Control Unit to write on one tape unit and the second to read from another tape 
unit. Simultaneous re"ading is performed by using both Channel Synchronizer/Control units 
to read from separa te tape units. 

d. Dual UNIVAC 490 Real~Time Systems, Dual Control 

This option allows the user to have two UNIVAC 490 Real~ Time Systems utilize the same 
UNISERVO IlIA Magnetic Tape Subsystem. In this case, either system can perform 
simultaneous reading from one tape unit and writing on another or simultaneous reading 
from two tape units; or, either system can read from one tape unit and the other write on a 
tape simultaneously. 

c. Dual UNIVAC 490 Real-Time Systems, Single Control 

This option permits the user to have two UNIVAC 490 Real-Time Systems utilize the same 
UNISERVO IlIA Magnetic Tape Subsystem via a single common Channel Synchronizer/ 
Control Unit. In this case, only one UNIVAC 490 Real-Time System may utilize the sub
system at a time. 

d. Five Frame Tape Format 

The normal tape format, as described in subsection 1, utilizes four frames (8 bits per frame) 
to represent one 30 bit computer word. If desired, the Channel Synchronizer/Control Unit. 
can be modified internally so that a computer word is represented by five frames (6 bits per 
frame). If this modification is made, data will appear on tape as shown in Figure E-6. 

o 0 

o 

o 

o o 
r -----------------------1 
10 00 0 OJ I. _______________________ J 

r -----------------------1 
PARI TY BITS-t--... , 1 0 0 1 l' L _______________________ .1 ZERO FILL 

r- ---- -- --- -- - - - - - - - - - --1 

L _0 _____ ~ ____ 0 _____ ~ ____ ~ _ j 

o o 

{ o o J 

Figure Eg6. UN/SERVO II/A Five Frame Tape Format 

UP-3900 



UP-3900 UNIVAC 490 SPURT Appendix D 

6. Subsystem Characteristics 

a. Summary of General Characteristics 

TRANSFER RA TE 

RECORDING DENSITY 

TAPE SPEED 

TAPE WIDTH 

TAPE LENGTH 

TAPE THICKNESS 

BLOCK LENGTH 

SPACE BETWEEN BLOCKS 

CHANNELS ON TAPE 

READ/WRITE OPERATION 

SEC TION: 

125,000 characters per second. 

1,250 6 bit characters per inch. 

100 inches per second. 

0.5 inch 

600,1,500,1,800,2,400 or 3,600 feet 

1 mil (1.5 mils for 2,400 foot tapes) 

variable 

0.75 inch 

9 channels 

8 data 

1 parity 

Reading in forward and backward direc
tions; writing in the forward direction 
only. 

77 
PAGE: 



Appendix D 78 UNIVAC 4!:1D 5PUR--. 
SECTION: PAGE: 

b. Physical Characteristics 

UNISERVO IliA I UNISERVO IIiC 
POWER SUPPLY 

TAPE UNIT CONTROL CABINET 

HEIGHT (inches) 96 96 96 

"' .......... /- I __ \ 
"IV I n \lncnt::::./ 31 66 20 

DEPTH (inches) 30 32.75 34.5 

WEIGHT 

(approximate Ibs.) 750 2,800 625 

TEMPERATURE 60° - 80° F. 
RANGE 

HUMIDITY 40% - 70% 
RANGE 

I 
I HEAT I DISSIPATION 7,500 I 10,200 
I 

3,000 
(BTU/hr.) 

AIR FLOW 

(cu. ft./min.) 350 2,300 350 

208 VAC 208 VAC 
60 cps 3 phase 

POWER Suppl ied by 3 ph ase 400 cp s 
REQUIREMENTS power supply. 3.8 KVA regul ated 

600 W 
60 cps 
unregulated 
200 W 

Maximum Cable Length Res trictions 

1. Central Processor to UNISERVO ilIA Control Cabinet: 380 ft. 

2. UNISERVO IlIA Control Cabinet to UNISERVO IlIA Tape Unit: 
50 ft. 

3. Power Supply to UNISERVO IlIA Tape Unit: 50 ft. 

UP-3900 

I 

I 

I 



UNIVAC 
OIVISION OF SPERRY RANO CORPORATION 

UP-3900 

U 
R 
T 


	001
	002
	003
	004
	01-01_Contents
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01_Introduction
	02-02
	03-01_GenDescr
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01_ComponentDescr
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05A-01
	05A-02
	05A-03
	05A-04
	05B-01
	05B-02
	05B-03
	05B-04
	05C-01
	05C-02
	05C-03
	05D-01
	05D-02
	05D-03
	05D-04
	05D-05
	05E-01a
	05E-01b
	05E-02
	05E-02a
	05E-02b
	05E-04
	05E-05
	05E-06
	05E-07
	05E-08
	05E-09
	05E-10
	05E-11
	05E-12
	05E-13
	05E-14
	05E-15
	05E-16
	05E-17
	05E-18
	05E-19
	05E-20
	05E-21
	05E-22
	05E-23
	05E-24
	05E-25
	05E-26
	05E-27
	05E-28
	05E-29
	05E-30
	05E-31
	05E-32
	05E-33
	05E-34
	05E-35
	05E-36
	05E-37
	05E-38
	05E-39
	05E-40
	05E-41
	05E-42
	05E-43
	05E-44
	05E-45
	05E-46
	05E-47
	05E-48
	05E-49
	05E-50
	05E-51
	05E-52
	06A-01
	06A-02
	06A-03
	06A-04
	06B-01
	06B-02
	06B-03
	06B-04
	06C-01
	06C-02
	06C-03
	06C-04
	06C-05
	06D-01
	06D-02
	06D-03
	06D-04
	06D-05
	06E-01
	06E-02
	06E-03
	06E-04
	06F-01
	06F-02
	06F-03
	06F-04
	06G-01
	06G-02
	06G-03
	06G-04
	06G-05
	06G-06
	06G-07
	06G-08
	06G-09
	06H-01
	06H-02
	06H-03
	06H-04
	06I-01
	06I-02
	07A-01
	07A-02
	07A-03
	07A-04
	07B-01
	07B-02
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10A-01
	10A-02
	10A-03
	10A-04
	10A-05
	10A-06
	10B-01
	10B-02
	10B-03
	10B-04
	10B-05
	10B-06
	10B-07
	10C-01
	10C-02
	10C-03
	10C-04
	10C-05
	10C-06
	10D-01
	10D-02
	14-01
	14A-01
	14A-02
	14A-03
	14A-04
	14B-01
	14B-02
	14B-03
	14B-04
	14B-05
	14B-06
	14B-07
	14C-01
	14C-02
	14C-03
	14C-04
	14C-05
	14C-06
	14C-07
	14C-08
	14C-09
	14D-01
	14D-02
	14D-03
	14D-04
	14D-05
	14D-06
	14E-01
	14E-02
	14E-03
	14E-04
	14F-01
	14F-02
	14F-03
	14F-04
	14F-05
	14G-01
	14G-02
	14G-03
	14H-01
	14H-02
	14H-03
	14H-04
	14H-05
	14H-06
	14H-07
	14H-08
	14H-09
	14H-10
	14H-11
	14H-12
	14H-13
	14H-14
	14H-15
	14H-16
	14H-17
	14H-18
	14H-19
	14H-20
	14H-21
	14H-22
	14H-23
	14H-24
	14H-25
	14H-26
	14H-27
	14H-28
	14H-29
	14H-30
	14H-31
	14H-32
	14H-33
	14H-34
	14H-35
	14H-36
	14H-37
	14H-38
	14H-39
	14H-40
	14H-41
	14H-42
	14H-43
	14H-44
	14H-45
	14H-46
	14H-47
	14H-48
	14H-49
	14H-50
	14H-51
	14H-52
	14H-53
	14H-54
	14H-55
	14H-56
	14H-57
	14H-58
	14H-59
	14H-60
	14H-61
	14H-62
	14H-63
	14H-64
	14H-65
	14H-66
	14H-67
	14H-68
	14H-69
	14H-70
	14H-71
	14H-72
	14H-73
	14H-74
	14H-75
	14H-76
	14H-77
	14H-78
	14H-79
	14H-80
	14H-81
	14H-82
	14H-83
	14H-84
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	D-41
	D-42
	D-43
	D-44
	D-45
	D-46
	D-47
	D-48
	D-49
	D-50
	D-51
	D-52
	D-53
	D-54
	D-55
	D-56
	D-57
	D-58
	D-59
	D-60
	D-61
	D-62
	D-63
	D-64
	D-65
	D-66
	D-67
	D-68
	D-69
	D-70
	D-71
	D-72
	D-73
	D-74
	D-75
	D-76
	D-77
	D-78
	xBack

