
RTOS
ASSEMBLER

U P.l 599 Rev. 1

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIV AC ® Systems developments. The infor
mation presented herein may not reflect the current status of the product.
For the current status of the product, contact your local Univac Represent
ative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware or software changes and refinements. The Univac
Division reserves the right to make such additions, corrections, and/or
deletions as, in the judgment of the Univac Division, are required by the
development of its Systems.

UNIV AC is a registered trademark of Sperry Rand Corporation.

Other trademarks of Sperry Rand Corporation appearing in the text of this
publication are:

FASTRAND

t~ 1968,1970 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

UP-7S99
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER

CONTENTS

1. THE UNIVAC 418.111 ASSEMBLER

1.1. INTRODUCTION

1.2. SYMBOLIC CODING FORMAT
1.2.1. Assembler Character Set

1. 3. DES C RIP T ION 0 F FIE L D S
1.3.1. Label Field
1.3.1.1. Simple Labels
1.3.1.2. External Labels
1.3.1.3. Dimensioned (Subscripted) Labels
1.3.1.4. Location Counter Declaration
1.3.2. Operation Field
1.3.3. Operand Field
1.3.4. Comment Field
1.3.5. Line Continuation
1.3.6. Ejection of Paper

1. 4. EXP RESSI ON S
1.4.1. Elementary Items
1.4.1.1. Symbolic Label
1.4.1.2. Location Counter
1.4.1.3. Octal Numbers
1.4.1.3.1. Double-Precision Octal Numbers
1.4.1.4. Decimal Numbers
1.4.1.4.1. Double-Precision Decimal Numbers
1.4.1.5. Alpha Constants
1.4.1.5.1. Double·Precision Alpha Constants
1.4.1.6. Floating-Point Numbers
1.4.1.7. Parameter Reference Form
1.4.1.8. Line Items (Litera~s)
1.4.2. Operato rs
1.4.2.1. Shift Exponent (* /)

1.4.2.2. Arithmetic Product (*)
1.4.2.3. Arithmetic Quotient (/)
1.4.2.4. Covered Quoti ent (/ /)
1.4.2.5. Arithmetic Sum (+)
1.4.2.6. Arithmetic Difference (-)
1.4.2.7. Logical Product (**)
1.4.2.8. Logical Sum (++)
1.4.2.9. Logical Difference (--)
1.4.2.10. Equal (=)
1.4.2.11. Greater Than (»
1.4.2.12. Less Than «)
1.4.3. Interbay Offset Operator (!)
1.4.4. Expression Modes

1.5. DATA WORD GENERATION
1.5.1. Data Word Expressions
1.5.2. Alpha Strings
1.5.3. Double-Precision Floating-Point Numbers

1.6. DOUBLE-PRECISION EXPRESSIONS

Contents
SECTION:

CONTENTS
1 to 5

1-1 to 1-27

1-1

1-1
1-2

1-2
1-2
1-3
1-3
1-3
1-8
1-9
1-10
1-11
1-11
1-11

1-12
1-12
1-12
1-13
1-13
1-13
1-14
1-14
1-14
1-15
1-16
1-16
1-17
1-17
1-19
1-19
1-20
1-20
1-20
1-21
1-21
1-21
1-21
1-22
1-22
1-22
1-23
1-24

1-25
1-26
1-26
1-27

1-27

1
PAGE:

UP·7599
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER

2. ASSEMBLER DIRECTIVES

2.1. G EN ERAL

2.2. EQU DIRECTIVE

2.3. RES DIRECTIVE

2.4. FORM DIRECTIVE

2.5. ODD DIRECTIVE

2.6. EVEN 01 RECTIVE

2.7. CHAR DIRECTIVE
2.7.1. XCHAR Directive

2.S. INSERT DIRECTIVE

2.9. U N LI ST 0 IRE C T I V E

2.10. LI ST 01 RECTIV E

2.11. SKI P 01 RECTI VE

2.12. END DIRECTIVE

2.13. GO DIRECTIVE

2.14. NAME DIRECTIVE

2.15. DO DIRECTIVE
2.15.1. Conditional DO

2.15.2. Nesting of DO Directives

2.16. LIT DIRECTIVE

2.17. INFO DIRECTIVE

2.1S. ASM 01 RECTI VE

3. PROCEDURES

3.1. GEN ERAL

3.2. PROCEDU RE MODES
3.2.1. Simple Mode
3.2.2. Generative Mode
3.2.3. Interpretive Mode

3.3. PROCEDURE SAMPLE

3.4. PROC DIRECTIVE

3.5. END DIRECTIVE

3.6. PROCEDURE REFERENCE
3.6.1. Definition of a Procedure Call Line
3.6.2. The Operand Field of a Call Line

Contents
SECTION:

2-1 to 2-15

2-1

2-1

2-3

2-4

2-5

2-6

2-6
2-7

2-7

2-7

2-7

2-7

2-S

2-S

2-S

2-9
2-10
2-10

2-11

2-13

2-15

3-1 to 3-31

3-1

3-1
3-1
3-2
3-2

3-2

3-2

3-3

3-4
3-4
3-5

2
PAGE:

UP-7S99
Rev. 1 UNIVAC 418-111 RTOS ASSEMBL~R

3.7. PARAFORMS
3.7.1. Referencing the Number of Fields
3.7.2. Referencing the Number of Subfields
3.7.3. Referencing the Procedure Call Parameters
3.7.4. Referencing the Asterisk in a Procedure Parameter
3.7.5. Referencing the NAME Directive Operand Value
3.7.6. Referencing Subfields of the Oth Field
3.7.7. Summary of Paraforms

3.8. NESTING OF PROCEDURES
3.8.1. Physi ca I N esti ng
3.8.2. Levels of Procedures

3.9. PROCEDU RE LABELS
3.9.1. Global Labels

3.10. FOR WAR 0 REF ERE N C E S

3.11. LOCATION COUNTER DEFINITION
3.11.1. Writing Labels

3.12. COMPLEX PROCEDURES
3.12.1. NAME Directive
3.12.1.l. Local Reference Point
3.12.1.2. Alternate Entry Point
3.12.1.3. Parameter Value
3.12. 2 • GO Directive
3.12.3. DO Directive
3.12.3.l. Conditional DO

3.12.3.2. Generative DO

4 .. ASSEMBLER OPERATION

4.1. GEN ERAL

4.2. CONTROL CARD FORMAT

4.3. ASSEMBLER OUTPUT LISTING
4.3.1. Mode Listing
4.3.2. Cross-Reference Listing

4.4. SYMBOLIC CORRECTIONS

4.5. DIAGNOSTICS
4.5.1. Address Warning (A)
4.5.2. Format Warning (F)
4.5.3. Truncation Warning (T)
4.5.4. Level Error (L)
4.5.5. Instruction Error (I)
4.5.6. Relocation Error(R)
4.5.7. External or Undefined Warning (U)
4.5.8. Double Definition Warning (D)
4.5.9. Expression Errors (E)

Contents
SECTION:

3-6
3-6
3-7
3-8
3-9
3-10
3-12
3-13

3-13
3-14
3-15

3-17
3-19

3-20

3-21
3-22

3-22
3-22
3-23
3-23
3-24
3-25
3-27
3-28
3-28

4-1 to 4-18

4-1

4-1

4-2
4-3
4-5

4-6

4-7
4-7
4-8
4-8
4-8
4-9
4-10
4-10
4-10
4-11

3
PAGE:

UP-7S99
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

4.6. E R RO R M ESSAG ES
4.6.1. Element Not Found
4.6.2. Procedure Not Found
4.6.3. END Card Om i ssion
4.6.4. Drum Li brary Overflow
4.6.5. Main Storage Overflow
4.6.6. Internal Error
4.6.7. Element Deletion
4.6.B. Correction Errors

4.7. GENERATION PARAMETERS

4.B. ELEMENT AND PROCEDURE INSERTION

4.9. LABEL TABLE REFERENCES
4.9.1. Operand Field Hierarchy
4.9.2. Operation Field Hierarchy

5. COMMAND/ARITHMETIC SECTION

5.1. GENERAL

5.2. HARDWARE CHARACTERISTICS

5.3. DESIGNATORS

5.4. INSTRUCTION TYPES AND FORMATS

5.5. ADDRESSING

5.6. STORAGE PROTECTION (GUARD MODE LIMITS)

5.7. PRIVILEGED INSTRUCTIONS

5.B. FLOA TI N G·POIN T N UMBERS

5.9. INTERRUPTS

6. INSTRUCTION REPERTOIRE DESCRIPTION

6.1. SYM BOL CON V EN TION S

6.2. INSTRUCTION REPERTOIRE
6.2.1. Supervisor Call Instructions

6.3. TYPES I AND II INSTRUCTIONS

6.4. TYPE III INSTRUCTIONS
6.4.1. Type III-b Instructions
6.4.2. Type III-a Instructions

Contents
SECTION:

4-13
4-13
4-13
4-13
4-13
4-13
4-14
4-14
4-14

4-15

4-15

4-15
4-16
4-16

5-1 to 5-9

5-1

5-1

5-1

5-3

5-4

5-7

5-B

5-B

5-B

6-1 to 6-59

6-1

6-2
6-2

6-2

6-37
6-37
6-42

4
PAGE:

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

APPENDIX A. INSTRUCTION REPERTOIRE SUMMARY

FIGU RES

5-1. Type I Instruction Addressing Techniques

TABLES

1-1. Assembler Character Set

1-2. Hierarchy of Operators

1-3. Rules for Determining whether Results of Binary Operations are
Rei 0 ca ta bl e

Contents
SECTION:

A-I to A-7

5-6

1-2

1-18

1-25

5
PAGE:

UP·7599
Rev. 1

1
UNIVAC 418·111 RTOS ASSEMBLER

1.1. INTRODUCTION

SECTION:

I. TH!E UNIVAC 418-111

ASSEMBLER

The UNIVAC 418-III Assembler is a symbolic coding language allowing simple,
brief expressions as well as complex expressions. The assembler provides rapid
translation from this symbolic language to machine-language relocatable object
coding for the UNIVAC 418-III System.

The assembler operates under control of the Real-Time Operating System (RTOS).
The output of the assembler is made consistent with the system by using standard
interfacing routines both for the source files and the relocatable program generated.

The assembly language includes a wide and sophisticated variety of operators which
allow the fabrication of desired fields based on inform ation provided at as sem bly
time. The instruction function codes are assigned mnemonics which describe the
hardware function of each instruction. Assembler directive commands provide the
programmer with the ability to generate data words and values based on specific
conditions at assem bly time. Multiple location counters provide a means of preparing
for program segmentation and controlling address generation during assembly of a
source code program.

The assembler produces a relocatable binary output for processing by the loading
mechanism of the system. If requested, it supplies a side-by-side listing of the
original symbolic coding and an edited octal representation of each word generated.
F lags indicate errors in the sym bolic coding detected by the assembler.

1.2. SYMBOLIC CODING FORMA T

In writing instructions using the assembler language, the programmer is primarily
concerned with three fields: a label field, an operation field, and an operand field.
It is possible to relate the symbolic coding to its associated flowchart, if desired,
by appending comments to each instruction line or program element.

All of the fields and subfields following the label field in the assembler are in free
form providing the greatest convenience possible for the programmer. Consequently,
the programmer is not hampered by the necessity to consider fixed-form boundaries
in the design of symbolic coding.

1

PAGE:

UP-7S99
Rev. 1

1
UNIVAC 418-111 RTOS ASSEMBLER

SECTION: PAGE:

1.2.1. Assembler Character Set

The assembler uses the XS-3 character set as defined in Table 1-1. If alphanumeric
data is to be generated in a different code convention, the CHAR directive, described

in 2.7, may be used.

80 COL. 80 COL.
CARD PRINTABLE XS-3 CARD PRINTABLE XS-3
CODE CHARACTERS CODE CODE CHARACTERS CODE

12-1 A 01 0100 7 7 00 1010
12-2 B 01 0101 8 8 00 1011
12-3 C 01 0110 9 9 00 1100
12-4 D 01 all 1 12 + 01 0000
12-5 E 01 1000 II -(Minus) 00 0010
12-6 F 01 1001 12-0 ? 01 0011
12-7 G 01 i010 ll-O !(Exclam.) 10 0011
12-8 H 01 lOll a-I / 11 0100
12-9 1 01 1100 2-8 & 11 0011
ll-l J 10 0100 3-8 = 01 1101
ll-2 K 10 0101 4-8 '(Apos.) 10 ll10
11-3 L 10 0110 5-8 :(Colon) 01 0001
11-4 M 10 01ll 6-8 > II 1110
11-5 N 10 1000 7 -8 @ 10 0000
11-6 0 10 1001 12-3-8 .(Period) 01 0010
11-7 P 10 1010 12 -4,,8) 11 1101
11-8 Q 10 1011 12 -5,8 [00 1111
11-9 R 10 11 00 12 -6-8 < 01 ll10
0-2 S 11 0101 12 -7-8 It 01 III 1
0-3 T 11 0110 11-3 -8 $ 10 OOLO
0-4 U 11 0111 11-4-8 * 10 0001
0-5 V 11 1000 11-5-8 1 00 0001
0-6 W 11 1001 11-6-8 ;(Sem i-co I) 00 111 a
0-7 x 11 1010 11-7 -8 ~ 10 1111
0-8 y 11 1011 0-2-8 i 11 0000
0-9 Z 11 11 00 0-3-8 ,(Comma) II 0010

0 a 00 001l 0-4-8 (II 0001
1 1 00 0100 0-5-8 % 10 1101
2 2 00 0101 0-6-8 " 00 1101
3 3 00 0110 0-7 -8):{ II 1111
4 4 00 0111
5 5 00 1000 BLANK Space N.P. 00 0000
6 6 00 1001

Table 7 -7. Assembler Character Set

1.3. DESCRIPTION OF FIELDS

The programmer is primarily concerned with the label field, operation field, and
operand field. The label field must start in column 1. The fields following the label
field are freeform and may start in column 2 if there is no label field.

1.3.1. Label Field

The label field is optional. When used, the label field must start in column 1. No
other field may start in column 1. The label field may contain a declaration of a
specific location counter, a label, or both. The label field is terminated by a blank.

2

_UR_P_;_~_~9_19 __ ..A.o-____ U_N_I_V_A_C_4_1_8_.I_I_I_R_T_O_S_A_S_S_E_M_B_L_E_R ____ ...a.-_____ ---'I...S_E_C_T_IO_N_:_l __ ~l!!,._~_

1.3.1.1. Simple Labels

LABEL

A label identifies a value or a line of symbolic coding. When a label is used,
the assembler assigns it a relative address which is the value of the current
controlling location counter. A relative address is not assigned to a label used
with assembler directives EQU, NAME, FORM, PROC, DO, LIT (see Section 2).

A ~.!l~l consists of one to s-.Lx.Hlphat:Iu.me!i_c characters starting with an alphabetic
chara~t.~!)n~(?!tl~J:Lr --. ----- .. - -.~-.-- .0

~~cial c~ara~~.~rs are nOl ~llowed. within a lab,e!. To ensure uniqueness, many
system labels use the $ as part of the label. U sing the $ as part of a label should
be avoided to assure this uniqueness of system labels.

Labels defined in the aforementioned manner are referred to as simple labels and
are allowed on any statement. If a label is the only nonblank field on a statement,
the label is defined as identifying the next location counter value to be generated.

Example:

OPERATION
10 20

OPERAND
30 40

COMMENTS
50

lu~JQJ;J~._L_..LL..L.bb~L .. L_LL.._L.L_L~L.LL_L,..LJ_L...l ,..LL._L-L".,Ll Ll L.,L . .J_L.L",.L.-l.,L .. L.1.1 .l 1 I 1 1.1

ML~$L~.·,L.L .. L.l.L_J , ... L ... 1 .. .-1 ... ,L ... L L . ..L L.1 , .. ,J_.J",L".L...L...L,.L.J.,._L."L . ..J "' .. ,.L.L .. , L_L., . .1 .. L " . .1. .. L .. L L_L,.L_-1. 1 J .. 1 L I I J I j J

Bl~L.J .. L.L . .L.l . ..LlbLbL-L . .1_LL~~J~~L-Ll_LL..L.L..L LL ... ,.L-L .. "L..l,.U.,_..L.1_L .. L.J.. J .. 1 L.L.1 1 .. j

1.3.1.2. External Labels

LABEL

An externally defined label is one which may be accessed bL_~tE~~ll1s.
The loader will correiate th·e references between the external label re~erence~
In one program and the corresponding external label de-f~itions in another. To
define an external lab~~!. an asterisk is appended .!.() the label.

Example:

OPERATION
10 20

OPERAND
30 40

COMMENTS
50

1 1

LL~1~iJLL.LL_L.Lfu~....L._LLLLLJ5'LL.LL1-L-LJ. .. Ld~~CtA~_1~~~~.L1 .LL .. 1 .. .1 1 ... J 1.1, L .. 1 '--_.I

rl~_LiMr ... L Ll . .J---.lAL~~L-.LLL.L-..LLJ~J_.J ., .. L .. J ... L L. _L L.-.L!L~~lIlg1~}f A~\..JYJ.. 1l:lt£Jf:.Ll,~.i E'i Ot lL.IAJ9 le.l~1 J
L .. .! 1 . .1 I I J 1 1 1 I

1.3.1.3. Dimensioned (Subscripted) Labels

A dimensioned or subscripted label is a label which is distinguished by its
subscripts rather than by the label itself. The label serves to identify a set of
related quantities. A subscript may be any legitimate assem bIer item, an
expression, or another subscripted label. In defining a subscripted label, all
symbols used in expressing any of its subscripts must have been previously
defined. If another dimensioned label is used as a subscript of the label being
defined, it must have been defined previously.

UP-7599
Rev. 1

1
UNIVAC 418-111 RTOS ASSEMBLER

SECTION:

The dimensioned label is identified by the format:

The number of subscripts used in defining a dimensioned label is referred to as
its dimensionality. The maximum dimensionality of a subscripted label is un
specified. The dimensionality of a subscripted label is constant, that is, once
a member of the set is defined, all other explicitly defined members must have
the same number of subscripts even though each subscript value may differ.

Example:

LABEL OPERATION OPERAND
10 20 30 40

.~(13L)I~l_l----LL __ LJ±15"L 1 ... L ... L .. l .. .l L LJ L-l L_.l . ..L--.1 .L-l L_J _L.L .. -L-.l. L.I .L ... L_LU. LJ ... L . .l J...-l

'l(l'+LILlL)L_LL.J..l±L4fL 1 L .. L I J. L l L.1 L.I 1.. . .1 .. LI L 1 1 "-_.1..1 L.-i 1 .. L L_L ... ;. __ L ..• _,.L

C.ttLAL{L3iliJ .tlu.) L.L~..l7L~--.L--.lL.L __ l L.L,LL .. L_LJ __ J -L_L._LJ. L L .--.L .. L--.1. I ~ ,L_L . ..L.L-.L.L .. .L". LJ. L-l,

'D1lle L(LM1~lLlaLL".L.t.l\ .i)l)l. tl \,J J_l~L$LL_..LL.1 .Ll L.l .L_L L_L .. ,..L,.i .. -'-... .l~,. LL-'--L_L--.l,. L_.l

I : I I I I I I I 1
I

1 I II! ! II! I 1 II! I ! I i I ! I ! ! !

Explanation:

• Line 1 defines a one-dimensional label A(3). The subscript value is 3.

• Line 2 defines a two-dimensional label B(4,1) with subscript values 4 and 1.

• Line 3 defines a two-dimensional label C(A(3),2) with subscript values A(3)
and 2.

• Line 4 defines a two-dimensional label D(C(A(3),B(4,1)),1) with subscript
values C(A(3),B(4,1)) and 1.

Dimensioned labels may not be defined to be external to the program assembly.
If used within procedures (see Section 3), the dimensioned labels may be defined
as accessible at lower levels by appending the appropriate number of asterisks
immediately following the label and before the left parenthesis.

Dimensioned labels may be defined to have a value in magnitude of 236_1 or less.
If any item used in defining the value of the expression is a double-word item
(see 1.4), the la be 1 has a double-word value (see 2.2).

The value of a dimensioned label may be redefined in the course of the assembly
without resulting in a 'D-flag'.

If reference is made to an undefined member of a defined set of dimensioned
labels, the value of the undefined item is assumed to be a defined zero. If no
member of the set is defined, the value is zero and an external reference is
made to the label.

4

PAGE:

UP-7S99
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 1

SECTION:

Example:

000001
70 000 0

000002 U 00 000000
+ 1 .. 12 00

000003 000001

00000" 00 000001 70 0000
+ 6.12 00

ooooos

/.
L.LK A (1)

ell) HlU 1

L.LK IH2)

END

••• SUMMARY •••

PROGRAM SIZE: 00 00002

EXTERNA~ OR UNOEfJNEO REFERENCES: A

Explanation:

• Line 2 references the label A(l). Since no member of the set A(i) is defined,
an external reference to A is made.

• Line 3 defines the set B(i) in general and the member B(l) in particular.

• Line 4 references an undefined mem ber of the set B(i). Its value is taken to
be zero.

PAGE:

If reference is made to a dimensioned label, some member of which was previously
defined with a smaller dimensionality, an expression error results, and the value
of the referenced label is ta ken to be zero.

Example:

LABEL OPERATION OPERAND
10 20 30 40

~~~jlJL _ -1 L~ L_LLEJ~lIL_L __ J __ LL-LL __ L5LJ Li .. Ll L 1 1 i l I 1 

__ .L .... L.-1 1.... __ L i 1 .. 1 1. Ll..ll..tKt ... L .. t.. __ .-.J ...... .L_L L .. L{\ltJU .. J1J.l 1 L j~ 1 l I 

1 L J I 1 I 

As stated previously, the dimensionality of a subscripted label is constant. As 
a result, all members of a set of dimensioned labels must have the same number 
of subscripts. An expression error results if a subscripted label is defined 
at a different dimensionality than another member of the same set, that is, with 
different subscript values but using the same label. 

While the user defines the values of a p articular dimensioned label, the assembler 
internally defines values for the label with lower dimensionalities. These may be 
referenced (but not defined) in the course of the assembly. For example, if the 
label A(1,2,3,4) is defined, the labels A, A(l), A(1,2), and A(1,2,3) are internally 
defined by the assembler. (Note that the name of a dimensioned label must be 
unique and may not duplicate a simple label.) If a dimensioned label is defined, 
all labels of lower dimensionality having the sam e nam e are therefore im plici tly 
defined by the assembler. The values associated with these assembler-defined 
labels is described in the following paragraphs. 

5 



UP-7S99 
Rev. 1 

1 
UNIVAC 418·111 RTOS ASSEMB LER 

SEC TION: PAGE: 

An n-dimensional set of labels, A(sl' s2' s3"" ,sn) is defined. Many different 
values of. each of the subscripts si may have been used in defining the set of 
labels. Each subscript si has been used ni times; there are ni different subscript 

values si' 

The set of labels defined is: 

A(1,2,3) 

A(5,7,3) 

A(5,8,3) 

A(7,2,2) 

A(8,9,O) 

A(1,2,4) 

Then': n1 = 4 because there are four different subscript values defined in the 
first dimension; 

for sl = 1, n2 = 1 

because only one subscript value (s2 2) has been defined; 

for s1 = 5, n2 = 2 

because two values (s2 = 7 and 8) have been defined with the 
same subscript s1 = 5; 

for s1 = 7 and 8, n2 = 1 

because one value (s2 = 2, s2 = 9), has been defined with each 
of the subscripts sl = 7 and s1 = 8; 

for sl = 1 and s2 = 2, n2 = 2 

because there are two values (s 3 3, s3 = 4) with the same 
subscripts s1 = 1 and s2 = 2. 

The dimensioned labels of the form label(sl,s2, ... ,Sj)' where j < n, are defined 
by the ass em bIer to have values equal to the number of different subscripts used 
in the next higher dimension specification. 

Example: 

000001 
000002 
000003 
00000'1 
000005 
000006 
000007 
000008 
000009 00 OUOOOO 
000010 00 000001 
OOUOSI 00 000002 
000012 00 OUOO03 
0000 II 00 00000'1 
00001'1 00 000005 
000015 00 0000U6 
000016 

0001"'1 
000310 
000'15'1 
000620 
00076'+ 
001130 

0001'1'1 
00000'1 
000001 
000002 
000001 
000002 
000000 

/. 
~ll,2,3J EQU 100 
AIS,7,3J EQU 200 
AIS,8,3J EQU 300 
AI7,2,2J EQV "00 
A(8,9,0. EQU SOD 
AII,2,,,. EQU 600 

+AII,2,3) 
+A 
+A ( 1 ) 
+A IS) 
+.171 
+A (1,2) 
+A(5,9) 
ENO 

6 



UP-7599 
Rev. 1 

1 
UNIVAC 418·111 RTOS ASSEMBLER 

SECTION: 

Explanation: 

• Lines 2 through 7 define a set of dimensioned labels A. 

• Line 9 generates the value of the label A(1,2,3). 

• Line 10 generates a number equal to the number of different subscript values 
s1 defined in the set. A = 4 because n1 = 4 (sl = 1,5,7,8). 

• Line 11 generates a number equal to the number of different subscript values 
s2 defined in the set A with sl = 1. A(l) = 1 because only s2 = 2 has been 
defined with sl = 1. 

• Line 12 generates the value n2 for s1 = 5. 

n2 = 2 because s2 = 7 and 8 for sl = 5. 

• Line 13 generates the value n2 for sl = 7. 

n2 = 1 because only s2 = 2 for s1 = 7. 

• Line 14 generates the value n3 for sl = 1 and s2 = 2. 

n3 = 2 because s3 = 3 and 4 fors1 = 1, s2 = 2. 

• Line 15 generates the value n3 for sl = 5 and s2 = 9. 

n3 = 0 because no value with s2 = 9 has been defined. 

Label Value Definition 

A(1,2,3) 100 explicit* 

A(S,7,3) 200 explici t* 

A(S,8,3) 300 explicit* 

A(7,2,2) 400 explici t* 

A(8,9,0) 500 explicit* 

A(1,2,4) 600 explicit* 

A 4 implicit 

A(l) 1 implicit 

A(S) 2 implicit 

A(7) 1 implici t 

A(8) 1 implici t 

A(1,2) 2 implicit 

A(S,7) 1 implicit 

A(S,8) 1 implicit 

A(7,2) 1 implicit 

A(8,9) 1 implicit 

A(9) and all 
others 0 implici t 

*See foregoing example. 

7 

PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER SECTION: 

1 

The purpose of using dimensioned labels as opposed to simple labels may vary. 
The DO directive and procedures are capable of generating more than one word 
of data or series of instructions. Combined with these tools, dimensioned labels 
provide an extremely convenient method for manipulating arrays of any desired 
dimension. 

1.3.1.4. Location Counter Declaration 

When a program element is assembled, relocatable object code is produced as a 
result of the assembly. When the assembled program is loaded by the loader, the 
actual address values are assigned. The relocatable code produced by the assem
bler is therefore relative to a base address assigned by the loader when the 

PAGE: 

program is executed. A location counter specifies under which base address a 
particular word is to be generated. There are 16 location counters (0-15) within 
anyone assem bly. Any location counter may be used or referenced in any sequence. 
The loader regroups the data generated under the various location counters so that 
each appears in memory as though the code within the location counter was gener
ated contiguously. 

A program remains under control of location counter 0 if no location counter is 
explicitly specified. When a specific location counter is specified, all subsequent 
coding is generated under its control until another location counter is specified. 

-> A specific location counter may be activated by $(n) as the first entry in the 
label field, where n represents an expression whose value is within the range 
of 0 through 15 and denotes the location counter to be activated. 

Coding may be present in the same statement which defines a new location 
counter. If this is done, the code generated will be under control of the new 
location counter. If a label is desired on a line of code which also defines a 
new location counter, the format is: 

$(n),label operation operand 

If a symbol is used in defining the location counter, it must have been previously 
defined. 

Example: 

000001 /. 
000002 00 OOoouo 70 00050 LL.K S 
000003 00 000001 SS 0003 Jl (LABEL.) 
00000'+ 05 000000 71 0003 S(S),L.ABEL. _L.t( 3 
000005 L.IT 
000006 as OUOO01 50S 0002 JI (5(0) I 

000007 Sll-ll, 
000008 00 000002 770301 ERRORs 
000009 END 

00 OUOO03 000000 
05 0 0 0002 000002 

8 



UP-7S99 
Rev. 1 

1 
UNIVAC 418·111 RTOS ASSEMBLER 

SECTION: 

Explanation: 

• Line 2 generates an LLK 5 instruction under location counter O. 

• Line 3 transfers control to the address denoted by LABEL, which is not 
necessarily the next address because it is defined under a different location 
counter. 

• Line 4 defines LABEL under location counter 5 and generates an ALK 3 in
struction under location counter 5. 

• Line 6 transfers control back to the next address under location counter O. 

• Line 7 reactivates location counter O. 

• Line 8 generates a procedure call ERROR$. The transfer made in line 6 will 
be to this addr€ss. 

1.3.2. Operation Field 

The operation field defines the purpose of the symbolic statement. The operation 
field starts with the first nonblank character following the label field. If no label 
field value is present, at least one blank character must be coded before defining 
the operation field. The operation field may contain anyone of the following: 

• a mnemonic operation code identifying which instruction is to be generated; 

• an assembler directive specifying some special function to be performed by the 
assem bIer (see Section 2); 

• a FORM reference specifying that a data word is to be constructed according to 
the format defined by the FORM directive (see Section 2); 

• a procedure reference specifying that some procedure is to be assembled (see 
Section 3); or 

• a data word generating code specifying that one or more words of data constants 
are to be generated. 

The operation field must be terminated by at least one blank character unless: 

• a procedure reference is made, 

• a data generating code is defined, or 

• a period is used to terminate the entire statement. 

If a procedure reference is made, the operation field may be terminated by a comma 
followed by procedure parameters. If a data generation code is defined, the data 
word may immediately follow the identifier. 

The content of the operation field determines the value of the active location 
counter. If an instruction is generated, the location counter is incremented by 
1 or 2 depending on whether an 18- or 36-bi t instruction is to be generated, If an 
assembler directive is referenced, the location counter value mayor may not be 
advanced depending on the specific directive, A FORM reference may cause the 
location counter to be advanced by one or two depending on the specified FORM 
directive. A procedure reference may cause the location counter to be advanced 
by an indefinite value, depending entirely on the definition of the procedure sample. 

9 

PAGE: 



UP-7599 
Rev. 1 UNIVAC 418~11I RTOS ASSEMBLER SECTION: 

1 10 

PAGE: 

----~------------------------------------------------~------------~------------------------..... 

A data word generating code will cause the location counter to be advanced depending 
on the number of words generated. 

Example: 

000001 /. 
000002 00 000000 36 0003 LBK 3 
00000) F'R FORM 6,U 
00000" 00 000001 00 0002 F'R o,LABEL 
000005 U flRCAL.,PARI 
000006 00 OOOOU2 20'4511 LABEL +10.3 

00 0 0 0003 '1631'46 
000007 END 

Explanation: 

• Line 2 specifies generation of an LBK instruction. 

• Line 3 is an assembler directive defining the format FR. 

• Line 4 is a FORM reference. 

• Line 5 is a procedure reference on the procedure PRCALL. 

• Line 6 is a data constant. 

1.3.3. Operand Field 

The operand field starts with the first nonblank character following the operation 
field. The components of the operand field are called expressions or subfields and 
define the information necessary to complete the type of statement specified by 
the operation field. 

The operand of a mnemonic instruction or data constant requires only one expression 
which is terminated by a blank character. 

Several of the assembler directi ves do not require an operand. Others require several 
expressions. When groups of expressions are used, they are separated by commas. A 
group of such expressions is referred to as a list of expressions. Procedures may 
permit multiple lists of expressions. When omitting a subfield other than the first or 
last subfield, the construction comma-zero-comma (,0,) or two contiguous commas 
(,,) is necessary. Ending subfields may be om itted entirely if unnecessary. 

Example: 

LABEL OPERATION OPERAND 
10 20 30 40 

i.1 . .1. .... 1.. . ..1 L.1. ..L_..L j ... ~~.1KJ .L lL.L ... LLJS 1 . I ILL L .LI .1 L L.L ..... L 1 L I .1 ..... L .... LL ... L .L.t .... L._L ... .L..J 

L .... ' 1. .. l .. L L.J L .LJS1~..L I .L I . .l. 11 J ITl~&l I J .. 1 .J .. J . .1. 1._1 .... L.L ..... 1..J L.L .... L .. I.L.L. .... LL_L . .L....!i . 

. i ... J. j .L L J L.L.L..~~E.L..L L_L .... L.l. .1110.1 1 .L.JfA('I~ .. l'il&.J~L~JLO'LJ.TliL~~~.Li .L.1 ..... 

_L.J ... L ... 1 ...... .1. . I . .1 .. 

J I I Iii I ii' I I I I I 

j I I I 1 LL_1 .. Ll. .L . ..L .. .1. . ..J. .L.1 L.1. 1._1 L ... 1...1. ... L_L ... .L.....l .. L...l L. J .. 1.. 1....L .. -'--. .1. . .1... . .1. L.J .L..L .. ....l. __ L .. ....l._.L ... .1... .. 



UP-7S99 
Rev. 1 SECTION: 

1 UNIVAC 418-111 RTOS ASSEMBLER 

Explanation: 

• Line 1 is a mnemonic instruction. The operand field contains an expression 
whose value is 5. 

• Line 2 is a mnemonic instruction. The operand field contains an expression 
whose value is the relocatable address TAG. 

• Line 3 is a procedure call containing five lists of expressions. 

• Line 4 is a mnemonic instruction not requiring an operand. 

• Line 5 is a FORM directive. The operand field contains one list of three 
expressions or subfields. 

PAGE: 

1.3.4. Comment Field 

The construction space-period-space (15.15) terminates a line of coding. Any addi
tional subfields implied by the operation field are taken to be zero. Any characters 
following the space-period-space are printed on the assembly listing and may be 
used as comments to clarify the purpose of the line of code. If the operand field 
has been totally specified, comments may immediately follow the blank character 
which terminates- the operand field. 

1.3.5. Line Continuation 

000001 
000002 
000001 
00000" 
000005 
000006 
000007 
000008 
000009 
000010 
000011 

1.3.6. 

A sym bolic line may be continued to the next card image. When a semicolon is 
encountered during the processing of the label field, the operation field, or the 
operand field, the next card image is read and processing continues starting with 
the next nonblank character. If a new list is to be defined on a continuation card, 
at least one space should occur before the semicolon. 

If a semicolon occurs in the comment field, whether defined or implied, it is not 
treated as a continuation character, and the next card image is processed separately. 
Continuation to the next card may be specified in any of the three basic fields. In 
some situations, such as the first reference to a library procedure, the label and 
operation field must be specified on the same card image. In general, it is recom
mended that semicolons only be used in the operand field. 

Example: 

00 0 0 0000 000000 
00 0 0 0001 

000002 
000003 

D 777776 

D 000000 

Ejection of Paper 

/. 
LABEL 
LABELT 
A 
e 
TAG 
TAG 

.5 
RES 
EQU 
E!ilU 
EQU 
EQU 

END 

10 
2 
3 
LABEL+l-CA>0)-CS<5J 
LABI COMMENTS MAY 
ELT. FOLLOW THE I 
+l .. U>O,-; 
CB<iJ 

A slash (/) appearing in column 1 advances paper in the printer to the top of the 
next page. This line may not contain any coding but may contain comments. The 
slash prints on the new page (see 2.11). 

11 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER I SECTION, 1 

1.4. EXPRESSIONS 

An expression is an elementary item or a series of elementary items connected by 
operators. Blanks are not permitted within expressions. The values of elementary 
items can be combined through operators (see 1.4 .2). The res ulting value becomes 
the value of the expression. In addition to having an arithmetic value, each elemen
tary item has associated with it a mode value which indicates whether the numeric 
value of the item is constant, that is, cannot be changed, or is relocatable, that is, 
relative to some base constant to be determined at some later time. This base con
stant is generally a storage address or drum address determined by the job loader 
prior to execution of the program. In combining elementary items to form an expression, 
the mode values of the items are also operated upon to form the mode value of the 
expression. When combining elementary items to form an expression, some care must 
be exercised to ensure that the resulting mode value of the expression is also correct 
(see 1.4.4). 

In combining elementary items to form an expression, the symbolic statement is 
scanned and interpreted from left to right. Parentheses may be used to force items 
to be combined in a different order. All expressions within parentheses are evaluated 
before their results are available to be operated upon. Up to six nested levels of 
parentheses may be used. 

1.4.1. Elementary Items 

An elementary item is the smallest element of assembler code that can stand 
alone; an elementary item does not contain an operator. 

The magnitude of the value of an elementary item may not exceed 236_1, that is, 
0777777777777. If an elem entary item is not defined, it is assigned a value of 
zero. Expressions containing undefined (externally referenced) elementary items 
may not exceed a magnitude of 218_1, that is, 0777777. 

There are eight ways in which elementary item s may be represented. They are 
discussed in the following paragraphs. 

1.4.1.1. Symbolic Label 

Any label may be used as an elementary item. The value of the item is the 
relocatable location counter value of the statement associated with the label. 
If the label was defined with an EQU directive, the item value is that of the 
operand expression of the EQU statement. Undefined labels have a constant 
zero value. 

Example: 

000001 
000002 
000003 
00000" 

Explanation: 

00 oUoooo 
DO 000001 

12 000 I 
12 0000 

/. 
TAG2 
TAG 

LI. 
I.\, 
ENo 

TAG 
TAG2 

PAGE: 

• Line 2 defines TAG2 to have a value equal to the relocatable location counter 
value of the word containing the instruction LL TAG. The operand field contains 
an expression formed by a single elementary item TAG. The value of TAG is 
defined in line 3 as the relocatable location counter value of the word contain
ing the instruction LL TAG2. 

12 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 1 

SECTION: 

1.4.1.2. Location Counter 

The relocatable value of any of the location counters may be used as an elemen
tary item. The symbolic representation of a location counter value reference has 
the form: 

$(expression) 

or 

$ 

If a dollar sign alone is used, the value of the elementary item is the current 
value of the active location counter. If a dollar sign followed by a left paren
thesis is used, the expression value contained within the parenthesis defines 
which location counter is referenced. The value of the expression must be 
between 0 and 15. It should be remembered in using the $+n that some instruc
tions increment the location counter value by 2. 

Example: 

000001 
000002 
000003 
00000'1 
000005 
000006 

000007 

1.4.1.3. Octal Numbers 

00 000000 
02 DUO 000 
00 0 00010 
00 0 0 0011 
00 000012 
00 000013 

000010 
S5 0001 
3'1 001'1 
S02000 
000001 

/. 

s (21 
s (0) 

RES 
+ 
JI 
J 
LSD 

END 

8 
$(0) 

5(2. 
'+3 
SUI 

An octal number is an elementary item. An octal number consists of a group of 
octal integers (0-7) preceded by a O. The value of the number is the value of 
the elementary item. 

Example: 

000001 
000002 
000003 

00000'1 
000005 

00 000000 
00 000001 
00 000002 
00 000003 

000077 
000301 
013013 
36 001 7 

1.4.1.3.1. Double-Precision Octal Num bers 

/. 
+077 
+0301013013 

LBK 017 
END 

A double-precision octal value is produced by writing an octal constant larger 
than 18 bits or placing a letter D immediately after the last octal digit. 

Example: 

00000& /. 

000002 00 0 0 0000 000000 +0770 
00 000001 000077 

OooOOl 00 000002 000001 +01000000 

00 000003 000000 
00000'1 00 oOooo"! 000000 +10+ 0 17 

00 OOooos 000020 
ooooos END 

13 
PAGE: 



UP-7599 
Rev. 1 

1 
UN I V A C 418 ·111 R TO S AS S E MB L E R 

SEC TION: 

1.4.1.4. Decimal Numbers 

A decimal number is an elementary item. A decimal number consists of a group 
of decimal integers (0-9) the first of which is not a zero., The value of the 
elementary item is the value of the num ber. 

Example: 

000001 
000002 
000003 
00000'1 
oooa05 

00 oUoooo 
00 OUOOUI 
00 OOOOOl 

00011 S 
000100 
36 0017 

I. 
+77 
+6~ 

LBK 
END 

15 

1.4.1.4.1. Double-Precision Decimal Numbers 

1.4.1. 5. 

A double-precision decimal value is produced by writing a decimal constant 
whose value is larger than 0777777 or by placing a letter D immediately after 
the last decimal digit. 

Example: 

000001 I. 
000002 00 OUOOOO 000000 +770 

00 OUOOUI 00011S 
oOOOOl 00 000002 000000 +6'1D 

00 0 0 0003 000100 
00000'1 00 00000'1 000000 +10+17 

00 OOooos 000022 
000005 END 

Alpha Constants 

Alphabetic, num eric, and special characters may be represented in 6-bit XS-3 
code. When such characters are enclosed within apostrophes, the enclosed 
characters together form an alpha constant. The value associated with each 
character of the alpha constant is the 6-bit XS-3 code as defined in Table 1-1. 
The value of the elementary item is formed by stringing together the values 
associated with each character. 

NO TE: A semicolon is a special character which is generated when enclosed 

PAGE: 

by apostrophes. Therefore, it may not be used as a continuation character 
in an alpha constant or alpha string. 

Example: 

000001 
000002 
000003 
00000'1 
000005 
000006 
000001 

00 000000 
00 000001 
00 OOOOOl 
00 000003 
00 DUO 00 'I 

00002'1 
002'125 
2'12526 
70 002 1f 

71 0001 

I, 
+'11' 
+'",6' 
+'1I6C' 
LLI< 
IILK 
[No. 

14 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

1 
5 EC TION: 

The 6-bit value associated with a character in an alpha constant may be re
defined through the use of the CHAR assembler directive (see 2.7). 

An apostrophe may be present as a character within the alpha constant by 
coding two contiguous apostrophes for each apostrophe in the constant. 

Example: 

000001 
000002 
000003 
00000" 

00 OUOOOD 
00 OUOOOl 

000056 
56562 .. 

/. 
+' , , , 

.' " "II' 
END 

If the alpha constant consists of one, two, or three characters, the value of the 
elem entary item is right-j ustified, zerofilled. If the alpha cons tant consists of 
four, five, or six characters, the value of the elementary item is left-justified, 
spacefilled, and generates two words. 

An alpha constant may not consist of more than six characters (see 1.5.2). 

Example: 

000001 I. 
000002 00 OUoooo 00002 .. +'A' 
000003 00 000001 002 .. 25 +'118' 
00000" 00 000002 2 .. 2526 +'ABC' 
000005 00 000003 2 .. 2526 +'IIBCO' 

00 00000'1 270000 
000006 00 oOooos 2 .. 2526 +'IIBC , 

00 000006 000000 
000U07 END 

1.4.1.5.1. Double-Precision Alpha Constants 

A double-precision alpha constant is one which consists of four, five, or six 
characters, or one which is immediately followed by the letter D. 

Example: 

000001 /. 

000002 00 000000 000000 .'II'D 
00 0 0 0001 00002 .. 

000003 00 000002 2142526 +'1I8C DE' 
00 OUOO03 002730 

00000" END 

15 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 1 

SECTION: 

1.4.1.6. Floating-Point Numbers 

1.4.1.7. 

A floating-point number is an elementary item. The value of the elementary item 
is the 36-bit binary number formatted according to the hardware representation of 
floating-point numbers. Note that in manipulating floating-point elementary items, 
the assem bIer uses double-precision in teg er arithm etic so that expressions of the 
type 

1.0 + 1 

result in a binary number which is the result of an integer arithmetic addition of 
the two elementary items. 

A floating-point number is recognized by the presence of a decimal point immedi
ately following a decimal number. The format of a floating point number is one of 
the following: 

d. 

d.d 

d.dEse 

d.Ese 

d.Ee 

where: d represents one or more decimal digits. 

s represents the sign of the characteristic and may be either + or -. 

e represents one or more decimal digits which define the power of 10 
by which the number is to be multiplied. 

Example: 

00000& I. 
000002 00 000000 20&'100 +1. 

00 000001 000000 
OOOOOl 00 0000U2 201'103 +, .015 

00 000003 656050 
00000'1 00 00000'1 200'100 +0.5 

00 000005 000000 
0000 as 00 000006 203S00 +0.5E+l 

00 000007 000000 
000006 00 000010 17'1631 +0.5E"'& 

00 OUOOll '1631'16 
000007 00 000012 216'171 +100.32'1E2 

00 000013 '10631'1 
000008 END 

Parameter Reference Form 

The parameter reference form (PARAFORM) is an elementary item as long as the 
procedure sample is being processed. The definition, explanation, and use of 

paraform s are given in Section 3. 

16 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 1 

SECTION: PAGE: 

1.4.1.8. Line Item s (Literals) 

1.4.2. 

A line item is any symbolic line, less label, enclosed in parentheses. Line items 
may be elementary items. 

A literal is represented as an expression enclosed within parentheses and without 
connecting operators. The assembler then generates a word containing the expres
sion value, and this word appears in a literal table at the end of the program. The 
value of the line item is the address of the generated constant. 

Duplicate literals do not appear in the literal list. When location counters are 
used, the literals appear at the end of the coding associated with a particular 
counter with only duplicated literals for that particular counter eliminated (see 
2.16). 

Literals may be double-precision if the symbolic line is a single subfield data 
of the double-precision form. The value of this expression is the address of the 
first word of the literal. 

Line items within line items are permitted up to five levels. If an operator im
mediately precedes an item enclosed within parentheses, the item is not a literal. 

Example: 

000001 /-
000002 00 000000 12 0007 LL (fENDt) 
000003 00 OOOOUI 32 DOlO LB (0101) 
00000'1 00 OOOOU2 10 00 II LU (J 5+5) 
000005 00 000003 10 001 3 LU (L.U (01711 
000006 00 OUOOO'l 70 '+600 L.LI( +(SLL 0) 
000007 00 00000& 10 001'+ LA (1. a I 

00 OOOOOh 12 0015 
000008 END 

00 000007 305027 
00 0 0 0010 000101 
00 0 0 0011 311 0007 
00 000012 000017 
00 OUOO13 10 001 2 
00 OllOOI11 2011100 
00 000015 000000 

Operators 

There are 12 operators in the assembler which designate the method, and implicitly 
the sequence, to be employed in combining elementary items within a subfield. Blanks 
are not permitted within an expression. Evaluation of an expression begins with the 
substitution of values for each elementary item. The operations are then performed 
from left to right in hierarchical order as listed in Table 1-2. All the operators listed 
are assembly-tim e operators. 

The operation with the highest hierarchy number is performed first; operations with 
the same hierarchy number are performed from left to right. To alter this order, 
parentheses may be employed but care should be taken to avoid redundant paren
theses which may result in the generation of a literal. 

17 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 1 

SECTION: 

If an elementary item or an expression is enclosed in parentheses and an operator 
appears adjacent to the parentheses, the function of the parentheses is that of 
algebraic grouping. The value of this quantity is the algebraic solution of the items 
or expression enclosed in parentheses. This value should not be confused with the 
value produced by a literal and, therefore, is not an address. 

HI ERARCHY OPERATOR DESCRIPTION 

H ighest6 *1 a*/b is equivalent to a*2 b 

5 * arithmetic product 
I arithmetic quotient 
/1 covered quotient (allb is equivalent 

to 
a+:-l) 

4 + arithmetic sum 
- arithmetic difference 

3 ** logical product (AND) ; 1 10 

o 00 

2 ++ I ogi cal sum (0 R) 

~ 1 11 

o 10 

2 -- logical difference 
(EXCLUSIVE OR) 

~ 1 01 

o 10 

Lowest 1 = a = b has the value of 1 if true, 
o if otherwise 

> a> b has the value of 1 if true, 
o if otherwi se 

« a < b has the value of 1 if true, 
o if otherw ise 

T obI e 7 - 2. Hierarchy 0 f Operato rs 

PAGE: 

In the absence of parentheses, the rules of priority determine the sequence in which 
operations are performed within an expression. When two or more operators of the 
same priority are used, the sequence of interpretation is from left to right. The 
following two sample problems illustrate this point: 

PROBLEM 1: 9-2*3++12**6 The result is 7. 

after step 1 9-6++12**6 

after step 2 3++12**6 

after step 3 3++4 

after step 4 7 

18 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

PROBLEM 2: 

after step 1 

after step 2 

after step 3 

after step 4 

1.4.2.1. Shift Exponent (*/) 

((9-(2*3/4»++12)**6 

((9-1)++12)**6 

(8++12)**6 

12**6 

4 

1 
SECTION: 

The result is 4. 

The shift exponent allows the programmer to enter a number and specify its 
binary positioning to the assembler. The shift may be left or right according to 
the sign of the exponent (-b produces a right shift). x* Ib is equivalent to 
x*2 b . 

If the sign of the exponent is positive, a left-circular shift of the number is 
performed. If the sign of the exponent is negative, a right-arithmetic shift of 
the number is performed. 

Example: 

00000& 
000002 
000003 
00000" 
000005 
000006 

00 0 0 0000 
00 000001 
00 0000lJ2 
00 0 0 0003 

1.4.2.2. Arithmetic Product (*) 

000060 
000003 
777770 
700000 

+6./3 ,_6.8 
+6./-1 ._6/2 
-073./-3 ,-.073/8 
+10777777./18)./-3 
ENo 

The integer value of the first item, the multiplicand, is multiplied by the integer 
value of the second item, the multiplier, to produce a product which becomes the 
value of the expression or next item. 

Example: 

000001 
/, 

000002 00 0(,)0000 000020 +'1." 

00 000001 0000'+0 .".1·/3 ..... a 
000003 .1 .. ·.£)·/3 ._a.a 
00000" 00 0(,)0002 000100 

5 
000005 OOOOOS 1 L EQU 

~F EQu 2 
000006 000002 

000007 000012 BL EQU JL·SF 

000008 
END 

19 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 1 

SECTION: 

1.4.2.3. Arithmetic Quotient (/) 

The integer value of the first item, the dividend, is divided by the integer value 
of the second element, the divisor, and the resultant quotient becomes the value 
of the expression or next item. 

Example: 

000001 
000002 
000003 
00000" 
000005 
000006 

00 0 0 0000 
00 000001 
00 000002 
00 000003 

000002 
000002 
000000 
000000 

/. 
+ .. /2 
+ .. _2/3 
+,,,(2/3) 
+ .. _2/3-/3 
END 

Note that the remainder of the division is discarded and that the quotient resulting 
from a divide must be less than 218_1. 

1.4.2.4. Covered Quotient (/ /) 

The covered quotient operates the same way as the arithmetic quotient with the 
following exception. If the remainder of the division is greater than zero, one is 
added to the integer value of the quotient. The resulting integer is substituted 
in the expression. The covered quotient may be expressed in the following form
ula: 

a//b 

Example: 

000001 
000002 
000003 
00000 .. 
ooooos 

a + b - 1 
b 

1.4.2.5. Arithmetic Sum (+) 

00 ouoooo 
00 OOOOUI 
00 0000(12 

000002 
00000'+ 
00000'+ 

/. 
+5//3 
+2-5//3 
+2-(5/13) 
END 

The arithmetic sum operator produces the algebraic integer sum of the values of 
two items. 

Example: 

000001 
000002 
000003 
00000" 
OOOOOS 
000006 
000007 

00 0 0 0000 
00 000001 
00 000002 
00 000003 
00 00000'1 

000007 
12 000 3 
000065 
000250 
000250 

/. 
+5+2 
LL 1+2 
+5+2- 3 -/3 
+(5+21-3_/3 
+((5+21-31_/3 
END 

20 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

SECTION: 

1.4.2.6. Arithmetic Difference (-) 

The arithmetic difference operator produces the algebraic integer difference 
between the values of two items. 

Example: 

COUOOl 
000002 
000003 
00000'1 
OOOOO!) 
000006 

00 aOoooo 
00 OUOOU1 
00 OU0002 
00 OU0003 

1.4.2.7. Logical Product (**) 

12 000 2 
000003 
777776 
0000 II 

/. 
LL 5+'1-2 
+5"2 
+5"2-3 
+(5 .. 21-3 
ENO 

1 

The logical product operator (AND) produces the logical product of the values 
of two items. 

Example: 

03**05 The result is Ol. 

000011 
** 000101 

000001 

1.4.2.8. Logical Sum (++) 

The logical sum operator (OR) produces the logical sum of two items. 

Example: 

03++05 The result is 07. 

000011 
++ 000101 

000111 

1.4.2.9. Logical Difference (--) 

The logical difference operator (XOR) produces the logical difference between 
the values of two items. 

Example: 

03--05 

000011 
000101 

000110 

The result is 06. 

21 
PAGE: 



UP-7S99 
Rev. 1 ~ ________ U_N_I_V_A_C __ 4_18_ .. II __ I_R_T_O_S_.A __ SS_E_M_B_._L_E_R ______ ~ ___________ ~I~s_E_c_T(_O_N: __ l __ ~~PA_G_E_:_2_2 __ ___ 

1.4.2.10. Equal (=) 

The integer value of the first item is compared with the integer value of the 
second item. If the two values are equal, the result of the operation is a binary 
1. If they are not equal, the result of the operation is a binary O. 

Example: 

OOUOOI 
000002 
00U003 
0000041 

00 000 DUD 

1.4.2.11. Greater Than (» 

ooooos 
70 0003 

I. 
A EQu 

LLK 
END 

S 
(1.-5)_3+1,,-6)_2 

The integer value of the first item is compared with the integer value of the 
second item. If the value of the first item is greater than the value of the second, 
the result of the operation is a binary 1. If the integer value of the first item is 
less than or equal to the second, the result of the operation is a binary O. 

Example: 

000001 
000002 
00U003 
0000041 
000005 
000006 

1.4.2.12. Less Than «) 

00 DUO 00 a 
00 OUOOU\ 
00 OU0002 

0000 Os 
36 UOO O 
70 000 0 
7\ 000 3 

I. 
A EQu 

LBI( 
I.LK 
ALK 
END 

S 
1,,>S'_3+IA<5)_2 
(1.>151).3 
(1.>2).3 

The integer value of the first item is compared with the integer value of the 
second item. If the value of the first item is less than the value of the second 
item, the result of the operation is a binary 1. If the first value is greater than 
or equal to the value of the second, the result of the operation is a binary O. 

Example: 

000001 
000002 
000003 
0000041 
000005 
000006 

00 0 0 0000 
00 OUoOU\ 
00 OU0002 

0000 os 
36 0000 
70 0003 
71 0000 

I. 
A EQlJ 

LBI( 
LLI< 
ALI( 
END 

5 
3-(A<SI 
3-(1.<15) 
3-,1.<2) 



UP-7S99 
Rev. 1 UN I V A C 418 -III R TO 5 A 55 E MB L E R 1 

SEC TION: 

1.4.3. Interbay Offset Operator (!) 

The interbay offset operator (lBOO) is a special operator recognized by the assem
bler which operates only on the mode of an expression. When the IBOO operator is 
present in an expression, a flag is set in the relocation output which causes the 
loader to relocate the data word in a special manner. If used, the IBOO operator 
must follow an elementary item, and may be followed by an operator. 

Example: 

000001 I. 
000002 00 000000 32 W00 3 LB CLA~ELf) 

00U003 00 OUOOU! 32 000" LEI (LABE.Lf+l) 
OOUOU" 00 OUOOU2 000000 LABEL +0 
oouoos END 

00 OUOO03 000002 
00 oUoou,+ 000003 

The purpose of the IBOO operator IS to facilitate the accessing of storage in 
different bays. 

Consider the following ways of accessing the contents of location FROM, which 
may be located anywhere in storage. 

Examples: 

OOOUOI 
000uu2 00 OUOO!.lU 12 OUI2 
000003 00 QUoau! 52 001 3 

OOUOO'l 00 OUOOU2 " .. 001 0 

/. 
1.1. (S, 

AND (077UUOO) 
SI. SAY 

000005 
00U006 U 00 OOOQU3 12 DOl'! 

000007 00 ouoau'! 16 001 0 

DouDna 00 OUOOU5 .... 00 II 

I.L (FROM) 
ANI. BAY 
51. FROMR 

00U009 
I.B FROMR 

PAGE: 

OOUOIO 00 OUOO06 32 00 II 

OOUOll 00 OUOOtJ7 13 OOOD LL eO .CAI,.I-CFROMI 

000012 00 OUOOIQ 
000U13 00 oUoo 11 
00001'1 

OC OUOOl2 
00 OUOO13 

U 00 OUOOI'! 

OUUOOI 
OUU002 U 00 OUOOUU 
000003 00 OUOOUI 
00000" 00 000002 
000005 00 OUOOU.) 
00u006 

U 00 QUOOO4f 

000001 
000002 u 00 QOoau() 
000003 U 00 OUOOU1 
00000" 00 OUOUU2 
000005 

000000 
000000 

000000 
770000 
000000 

32 000" 
5073 20 
13 0000 
sn73 00 

000000 

S073 20 
12 0000 
5073 00 

BAY +0 
FROMR +0 

END 

/. 
Lt.i 
LSR 
LL 
LSR 
ENO 

/. 

LSR 
LL 
LSR 
END 

(FROM) 
020 
eO 
a .(AL,-(FROHI 

020+FROM 
fROM 
o .CAL'-(FROM) 

23 



UP-7599 
Rev. 1 

1.4.4. 

UNIVAC 418·111 RTOS ASSEMBLER 1 
5 EC TION: 

Each of the three foregoing methods has particular advantages. The first example 
uses six instructions to set up a bay-relative address. Subsequent references use 
two instructions. The disadvantage comes about if many different locations are to 
be accessed in this manner. 

The second example is disadvantageous if frequent accesses have to be made 
because four instructions are used each time. 

The third example still uses three instructions each time and is valid only if 
FROM is an external reference. If FROM is defined within the assembled program, 
the LSR operand specification should be coded as: 

LSR 020 + FROM - (FROM**0777777). 

The IBOO operator causes the loader to relocate the specified value as follows: 

(VALUE)+(REL. BASE)-(BA Y IN WHICH VALUE IS STORED) . 

As a result, the above access may be performed as follows: 

OOUOOl /. 
00UG02 U 00 OUOOOO 32 0002 LB (FROM; 
000003 00 OUOOOI 13 0000 LL -0 
001.100'1 END 

U 00 OUOO02 0000[1" 

Expression Modes 

As stated previously, each elementary item has both an arithmetic and a mode 
value. When operators are used to combine elementary items to form an expression, 
the mode values of the elementary items are combined also to form the mode of 
the expression. 

Table 1-3 gives the rules for determining whether the result of a binary operation 
is relocatable. 

24 
PAGE: 



UP·7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 1 

SECTION: 

LEVEL 1 st ITEM OP ERATOR 2nd ITEM RESUL T NOTE 

1 

2 

3 

4 

5 

6 

Any <,==,> Any Not relocatable 

Any tt,-- Any Not relocatable 2 

Any ** Any Not relocatable 2 

Not relocatable t,- Not relocatabl e Not relocatable 
Relocatable t,- Not relocatable Relocatable 
Not relocatable t,- R elocatabl e Rei ocatabl e 
Relocatable t,- Rei ocatabl e Relo c a ta b I e 1 

Any *,/,/ / Any Not relocatable 2,3 

Any */ Any Not relocatable 2 

NOTES: 

1. The difference between two relocatable quantities under the same location counter is not 
relocatable. 

2. Except as noted for level 4, the relocation error flag (R) is set for these operations. 

3. Multiplication of a relocatable quantity by an absolute 1, or absolute 1 by a relocatable 
quantity is relocatable. Multiplication by absolute 0 is absolute O. In either case, no error 
flag is set. 

Table 7 -3. Rules for Determining whether Results of Binary Operations are 
Relocatable 

The mode values associated with a line of code may be examined by using the M 
option on the ASM control card (see Section 4). 

1.5. DATA WORD GENERA TION 

A t or - in the operation field followed by a single subfield generates one or more 
data words. The t or - sign may be separated from the subfield by any num ber of 
blanks. If the first item in the expression is anum ber or an alpha constant, the + 
or - may be omitted. If the mode value of the operand expression signifies that the 
data word is double-precision, two I8-bit words are generated. In the absence of a 
+ sign, the value of a number is taken to be positive. 

The operand field of a data generation statement may contain: 

• an expression or elementary item 

• an alpha string 

• a double-precis ion floating-point num ber 

25 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 1 

SECTION: PAGE: 

1.5.1. Data Word Expressions 

1.5.2. 

The operand field or operation field may contain an expression. A data word con
sisting of the value of the expression is generated. 

Example: 

000001 /. 
000002 00 000000 000005 +5 
00U003 00 OOOOUI 000002 TAG +1+1 
00000'1 00 OUOO02 00000'1 +TAG+3 
000005 00 000003 201'100 .1.0 

00 OOOOU'I 000000 
000006 00 00000:' 000000 +50 

00 0000U6 OOOOOS 
000007 00 0000U7 000001 + (TAG) 
000008 00 000010 000012 (T AG I 
000009 00 0000 II 001137 +20-(27+2,++037 
000010 END 

00 000012 OOOOUI 

Alpha Strings 

An alpha string consists of a series of alphabetic, numeric, and special characters 
enclosed within apostrophes. Two successive apostrophes within the string are 
equivalent to a single apostrophe which does not signify the end of the string. For 
each three characters in the string, one 18-bit data word is generated which consis ts 
of an alpha constant equal to the binary equivalent of the three characters. 

Characters are left-justified, spacefilled unless the string consists of less than 
three characters. In this case, an alpha constant (right-justified, zerofilled) is 

generated. 

Example: 

000001 

00U002 
000003 

00 
00 
00 
00 
00 
00 
00 
00 
00 

0 0 0000 
OUOOUI 
0 0 0002 
OOOOU3 
OUOOO'l 
OUOO05 
0000U6 
000007 
OUOO10 

6633J'1 
65003'1 
65002'1 
50002'1 
'165233 
2'100'5 
665'13'1 
£103200 
00002'1 

+'THIS IS AN ALPHA STRING' 

·'A' 
END 

26 



UP-7599 
Rev. 1 

1 UNIVAC 418·111 RTOS ASSEMBLER 
PAGE: SECTION: 

1.5.3. Double-Precision Floating-Point Numbers 

1.6. 

Double-precision floating-point numbers may be generated which conform in format to 
the conventions established in the FORTRAN compiler. A double-precision floating
point number consists of three 18-bit words. The first word contains the character
istic; the second and third contain the mantissa. If a floating-point elementary item 
occurs which specifies more than 27 bits of significance, or which contains the 
letter D in the exponent instead of the letter E, a double-precision floating-point 
format is generated. 

Example: 

000001 
+1.02 00uD02 00 oUOOOO 0'10007 

00 OUOOOI 310000 
00 OUOO02 000000 

000003 00 000003 0'10001 +1.23'1 •• 789 

00 ouooo .. 23601'1 
00 000005 S10210 

00000'1 00 0000U6 037755 -0.120-5 

00 000007 5367'10 
00 0 0 0010 501 .. 37 

000005 END 

DOUBLE-PRECISION EXPRESSIONS 

As previously stated, several elementary items may be specified to be double-precision. 
If an expression contains a double-precision item, the expression is said to be a double
precision expression. When a double-precision expression is used to generate data, two 
words are generated, If the line item specified in a literal is a double-precision item, the 
literal value is the address of the first of the two words generated in the literal table. 

The following restrictions exist when generating double-precision data words. 

• An expression which contains an external reference may not be defined as a 
double-precision expression. 

• Simple labels may be defined to have a value which exceeds 218 _1, but if such 
labels are used to generate a data constant, only one word is gene'rated which 
consists of the least significant 18 bits of the value of the label. 

Example: 

000001 I. 
00UOU2 000000 A EQu 01000000 
00U003 00 DUO 00 a 000000 +A 

00000'1 
ooooos 000000 O( 1) EIiIU A 
00U006 00 OUOOU1 000000 +0 (11 
00U007 00 OUOO02 10 0010 LA ('ABCOE") 

00 000003 12 0011 
000008 00 OUOOO'l 10 0012 TAG L.A 11.0) 

00 OOOOOS 12 001 3 
000009 00 0 0 0006 10 001'1 LA (RS TAeal 

00 0000U7 12 001 5 
00U010 END 

00 OUOO10 2'12S20 
00 0 0 0011 273031 
00 000012 201'100 
00 000013 000000 
00 00001'1 5010 00 
00 000015 00 000'1 

27 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 2 

SECTION: PAGE: 

2. ASSEMBLER DIRECTIVES 

2.1. GENERAL 

The assembler provides a series of special directives which provide the means to 
control or direct the generation of obj ect code. The symbolic assembler directives 
control or direct the assem bly processor just as the hardware operation codes control 
or direct the central processor. The assembler directives are represented by mnemonics 
written in the operation field of a symbolic line of code. The directives are used to 
equate the expressions, control the location counter, format the object code, and 
control the generation of object code. The general format for the directives is: 

label directi ve specification 

The manner in which the assembler interprets each directive varies and is described 
in detail in this section. 

2.2. EQU DIRECTIVE 

Ip_~ EQlJd_irective is used to equate the symbolic label in the label field to the 
value of the eXp'.~~ssi~~ __ ifl_th..~._~pe!!":lnd fielp. Thereafter, this label may be used or 
referenced in operand expressions. The operand consists of one list of one ex
pression. The format is: 

label EQU e 

Except in the case of dimensioned labels, redefinition of a label causes the state
ment to be flagged as duplicate; however, the value of the latest expression is used 
when a reference to the symbolic label is made. All statements referencing such a 
label are also flagged. When a directive is written which affects the value of the 
location counter and which uses a label defined in an EQU directive to do this, the 
EQU directive which defines the value of the label must occur first. 

}Vh~.n the_~J2"~E~nd~xpression of_~he E:Qy.~_~r~ctive is anoth~!.JClbeJ, tJ:1is_l9:.belmust 
~~.~~~~_n pr~viously defined in the program assembly or not defined at all. If the 
label referenced is defined after it is referenced, the statement is flagged as doubly 
defined. If the label referenced is not defined, it becomes an external reference. Sub
sequent references to the label defined through an EQU directive as equal to an ex
ternal label reference the external label. The label defined in this manner may not 
itself be externally defined. 

1 



UP-7599 
Rev. 1 2 UNIVAC 418·111 RTOS ASSEMB LER 

SECTION: PAGE: 

Example: 

00:10:51 QASM,M T2-1 

UNIVAC " 18-111 ASSEMBLY MAR 11 1970 OO:IOHd 
OOOUOI /. 
000002 000001 CODE EQU 
000003 000100 XCDE EGu .".'COOE-II 
00000" 770101 zeDE EQU 0770001+XCOE 
000005 00 000000 70 000 5 LAB~L LLK S 

+ 6,12 uo 
00U006 000000 LABf! EQu LABEL 
000007 
000008 0 OOOOOS OLB EGu 5 
000009 0 000006 OLB EGu 6 
000010 0 00 0 0 0001 000006 +OL8 

+ 18 00 
000011 
000012 U 00 0 0 0002 000000 +OLB2 

+ 18 00 CODE 
000013 0 000001 0l.B2 EGu OLBJ 
00001'1 0 00 000003 000001 +OLB2 

18 00 
000015 000001 DLB3 EQU 
000016 0 00 oUooo'! 000001 +OLB2 

+ 18 00 
000017 
000018 U 000000 ULB EQu EXOEF 
00001' U 00 OoOOO!) 70 0001 LLK ULB+I 

+ 6,12 00 EXoEr 
000020 
000021 U 000000 ELB· EQU EXOEf IL.LEGAL. 
000022 END .. - SUMMARY ••• 

PROGRAM SIZE: 00 UOO06 

EXTERNAL OR UNDEFINED REfERENCES: EXOEF 

EXTERNAL DEFINITIONS: ELB 

DOUBLY DEFINED LABELS: OLB2 OLB 

Explanation: 

• Line 2 defines CODE to have a value of 1. 

• Line 3 defines XCDE to have a value of 64. 

• Line 4 defines ZCDE to have a value of 0770101. 

• Line 6 defines LAB2 to have a value which is relocatable and equal to the 
location counter value assigned to line 5. 

• Lines 8 through 10 illustrate that D flags are generated if a label is redefined. 

• Lines 12 through 15 illustrate forward referencing of a label and the associated 
dangers in that a reference to the label is different depending on where the 
reference is made. 

2 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 2 

SECTION: 

• Lines 17 and 18 illustrate indirect external referencing. 

• Line 20 illustrates an illegal use of external referencing and external definition. 

The magnitude of the value of the operand field may be 36 bits. However, double
word data generation may only be used through EQU directives using dimensioned 
labels. 

Example' 

000001 I. 
A EQU 01000000 

000002 000000 

000003 00 000000 000000 +A 
000000 Be II EQu 01000000 

00000'4 
000005 00 0 0 0001 000001 +8(11 

00 000002 000000 
000006 

ENo 

Explanation: 

• Line 2 defines the label A to have a value of 01000000. 

• Line 3 generates only one data word equal to the least significant 18 bits of the 
value of A (sign extended). A zero is therefore generated. 

• Line 4 defines the value of B(l) to be 01000000. 

• Line 5 generates two data words, 1 and O. 

2.3. RES DIRECTIVE 

The RES directive is used to redefine the value of the active location counter. If 
the sign of the expression in the operand field is positive, an area of main storage 
is reserved (buffer). The label, if used, is assigned to the location counter value 
prior to changing it; that is, it refers to the first word of the reserved area if the 
operand field is positive. The format is: 

label RES e 

Sym boIs appearing in the operand field must be defined prior to the use of the RES 
directive. 

PAGE: 

In redefining the value of the location counter, no code is generated; that is, zeros 
are not generated for the reserved area. Because the loading of a program is preceded 
by clearing its main storage area, the RES directive, when used to define work area 
buffers, effectively defines their value as zero. 

Example: 

000001 I, 
000002 000002 I EIiIu 2 
000003 00 000000 WORK REs U 
00000'4 00 0 0 0070 70 0005 LLK i 
000005 00 000071 00 1>1 • RES -I 
000006 00 0 00070 70 0003 LLK 3 
000007 END 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 2 

SECTION: 

Explanation: 

• Line 3 reserves a 56-word work area. 

• Line 4 generates an instruction LLK 5. 

• Line 5 generates an LLK 3 at the location following the LLK 5; or, if I> 1, the 
LLK 3 in line 6 is generated at the same location counter value resulting in 
eras ing the L LK 5. 

NOTE: The relocatable object code produced by the assembler is such that the 
generated code is read in a single drum a~cess by the loader as long as the 
code is continuous, that is, as long as the location counter value increases 
continuously. The RES directive may cause a break in the sequence of code 
generated. In the same way, a change in the location counter under which 
code is generated causes a break in the sequence. As a result, the program 
load time is increased because multiple drum accesses have to be made. 
Judicious use of the RES directive results in faster loading of the relocatable 
code. 

Example: 

LABEL OPERATION OPERAND 
10 20 30 40 

1 1 __ L L~L_LL'" rc:t J j .l _ L 1.J 1 _ 1 J 1 j l I I ; j _1 L j 1 l __ ~ __ L_.L 

1 1 LL L~LJ:t~QL~ L--L~ __ L_LJ __ L_i J __ L_L~ ___ J __ L-l __ L L_~ __ Ll 

Explanation: 

PAGE: 

• Line 1 changes the location counter value by 2. As a result, a different drum access 
is made by the loader. 

2.4. FORM DIRECTIVE 

The FORM directive describes a special word format designed by the user. The word 
format may include fields of variable length. The length in bits of each field is defined 
in the operand field of the FORM directive. The value entered in the operand field 
specifies the number of bits desired in each field. The format is: 

label FORM 

The number of bits specified by the sum of the values of the operand expressions 
~ust-~equal 18 or 36 depending on whether a single or double form word is desired. 
If the sum of the values of the operand expressions does not equal 18 or 36, an 
expression error results. 

By writing the label of the FORM directive in the operation field, the form defined in 
that line of coding may be referenced from another part of the program. The label of 
the FORM line is written in the operation field and is followed by a series of expressions 
in the operand field. The expressions in the operand field specify the value to be in
serted in each field of the generated word or words. 

4 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 2 

SECTION: PAGE: 

A reference to a specific FORM label always creates one or two words composed in 
the format specified. Truncation occurs and an error flag is set if a given value exceeds 
the space indicated in the associated field in the FORM directive. 

Unless the field size of the last expression is 12 or 17 bits, the data word generated 
is a constant. If the last expression has a field size of 12 or 17 bits, the data word 
genera ted may be 12- or 17 -bit relocatable, depending on the m ode of the last para
meter supplied on the FORM call line. 

Example: 

000001 I. (-It ;,' " 

000002 PUF ,.OAM 12,2, .. 
000003 007706 ....t.:..t" ~"~,tQU '; ":;:~ 

00000'1 00 0 0 0000 770662 PTG" ~3,~~ "-
000005 IS FORM 6,12 
000006 00 0 00001 32 0015 I.,B (15 0.8UF'ADt 
000007 00 OOOOU2 13 0000 LL .0 
000008 00 000003 BUF'AD REs 10 
000009 ENo 

00 OOOOlS 00 0003 

l' I I i I 

Explanation: 

• Line 2 defines a form PTGF. Three fields are defined consisting of 12, 2, and 4 
bits, respectively. 

• Line 3 defines a constant P. = 07706. 

• Line 4 references the PTGF form and generates a data word 0770662. The first 
12 bits are built from P, the next 2 bits contain a 3, and the last 4 bits contain a 
2. (N ote that this is an example of a PTG$ call line). 

• Line 5 defines a form IS. Two fields are defined consisting of 6 and 12 bits, 
respecti vely. 

• Line 6 generates an LB instruction. The literal is defined to consist of a FORM 
reference. The first 6 bits are zero; the last 12 bits contain the address BUF AD. 
Since BUF AD is relocatable, the literal becomes 12-bit relocatable. 

• Line 7 generates the code to load AL with the contents of BUF AD. 

2.5. ODD DIRECTIVE 

The ODD directive sets the currently active location counter so that the next symbolic 
line is assembled at the next odd address. If the location counter is already positioned 
at an odd address, no action is taken. The format is: 

ODD 

5 



UP·7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 2 

SECTION: 

2.6. EVEN DIRECTIVE 

The EVEN directive sets the currently active location counter so that the next 
symbolic line of code is assembled at the next even address. If the location counter 
is already positioned at an even address, no action is taken. The format is: 

EVEN 

2.7. CHAR DIRECTIVE 

PAGE: 

The CHAR directive permits selective redefinition of the values associated with alpha 
constants or strings (see 1.4.1.5). Unless a CHAR directive is used, the assembler 
uses the XS-3 code values defined in Table 1-1. -~ ~ r- J ?r 'l..-

101 L; ::; 

The alphabetic character A, for example, has an XS-3 value of 024. By using the 
CHAR directive, A may be redefined to have the value 6 (Fieldata). Unless redefined 
by another CHAR directive, all subsequent alpha constants and strings use the value 
of 6 for an A. The format of the CHAR directive is: 

The specification field consists of a list of paired expressions ei and fi ; ei specifies 
which character is to be changed, and fi specifies the value to which the character 
ei is to be changed. In order to identify which character is to be changed, its XS-3 
value is specified in ei' 

Example: 

000001 
000002 
000003 
00000" 
000005 
000006 

Explanation: 

00 OUoooo 060710 

00 000001 2"2526 

/. 
CHAR 
'ABC' 
CHAR 
'ABC' 
END 

• Line 2 redefines an 'A' (value 024) to 6, 'B' (value 025) to 7, and 'C' (value 026) 
to 8. 

• Line 3 generates the alpha constant 'ABC '. As a result of the CHA R directive in 
line 1, the value 060710 is generated. 

• Line 4 resets the values associated with 'A', 'B', and 'C' to 024, 025, and 026. 
Note that the characters to be changed must be referenced through their octal 
values because the alpha constants 'A', 'B', and 'C' have been redefined in line 
2. 

• Line 5 generates the alpha constant 'ABC '. Line 4 results in a value of 0242526. 

6 



UP-7S99 
Rev. 1 

2 UNIVAC 418·111 RTOS ASSEMBLER 
SECTION: 

2.7.1. XCHAR Directive /' 

The XCHAR directive resets the values associated with alpha constants or strings 
to the XS-3 code values defined in Table 1-1. The format of the XCHAR directive 
is: 

XCHAR 

No label or operand field is present. 

In the example in 2.7, the alpha constant value associated with 'A', 'B', and 'C' 
could have been redefined to their XS-3 value by using the XCHAR directive. 

2.8. INSERT DIRECTIVE 

The INSERT directive provides a method to insert symbolic code from either the 
user or the system library into the program which is currently being assembled. The 
operand consists of one list of one expression specifying the symbolic name of the 
program element to be inserted. The format is: 

INSERT e 

Insertion of symbolic code is terminated when the end-of-file sentinel following the 
symbolic code in the library is detected. The symbolic element to be inserted may 
consist of common subroutines, translating routines, translation tables, and so on, 
The symbolic element to be inserted may itself have an INSERT directive. 

2.9. UNLIST DIRECTIVE 

The UNLIST directive provides a means of selectively preventing the printing of 
output of sections of a program, The format is: 

UNLIST 

2.10. LIST DIRECTIVE 

The LIST directive provides a means of conditionally resuming printing of a program 
after using the UNLIST directive. The format is: 

LIST e 

The LIST directive may have an operand. If the value of the operand expression is 
nonzero, printing resum es. If the value of the operand expression is zero, printing 
is discontinued. 

2.11. SKIP DIRECTIVE 

The SKIP directive provides a means of controlling page formatting of the assem bly. 
The format is: 

SKIP e 

PAGE: 

The SKIP directive may have an operand expression e. If present, e lines are skipped 
before resuming the assembly print. If no operand field is specified, the paper is 
advanced to the next page before printing is resumed. 

7 



U P-I~YY 

Rev. 1 

. __ L .J. 

.L.....J 

UNIVAC 418-111 RTOS ASSEMBLER 2 
SECTION: 

A page eject may also be accomplished by specifying a slash (/) in column 1 of 
any comment card. 

Example: 

LABEL OPERATION 
10 20 

L.I 1 L __ L L .. .-l. Ll. L 1 .... L l._L_ . .1.--L. _ .1 . .i. 

.. ..L.L . ...L . . L_..l L..l lS1K1I1Pl t'+.J I j J 

L_.L .L. ... L L I J 

1. .... 1 L .. l 1 .1 

1 1 

I 

OPERAND 
30 

J L.l L 

IlL J 

I 1 

1 ...i .L 

40 

PAGE: 

2.12. END DIRECTIVE 

The END directive is used to indicate that the last line of sym bolic code in a 
procedure or in a program has been reached. The END directive may have an 
operand consisting of one list of two expressions. The operand is used to indicate 
the starting address and operating priority, respectively, of the assem bled main 
program. A blank operand field indicates the end of a subroutine or procedure. The 
form at is: 

END 

When the END directive term inates a program assem bly, a 11 literals accum ula ted 
during the course of the assembly are listed and generated. 

2.13. GO DIRECTIVE 

The GO directive, when not used within a procedure, directs the assembler to ignore 
all statements until the associated NAME directive, not defined within a procedure, 
is encountered. The NAME directive must be defined subsequent to the GO directive 
(forward reference). If an END directive, not signifying the end of a procedure sample, 
is encountered before the NAME directive, the assembly is terminated as though the 
NAME directive immediately preceded the END directive. The format of the GO di
rective is: 

GO label 

where label represents the label of a NAME directive (see 3.12.2), 

Example: See 2.14. 

2.14. NAME DIRECTIVE 

The NAME directive, when not defined within a procedure sample, is used to 
signify a point in the assembly at which assembly of symbolic statements is to 
be resumed after a GO directive. The format is: 

label NAME 

The label field contains a six-character label which may be referenced in the operand 
field of the GO directive (see 3.12.1), 

8 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

Example: 

OOUOOl 
000002 
000003 
00000'1 
ooooos 
000006 
000007 

Explanation: 

00 OOOOUO 
000005 
70 000 3 

• Line 2 assigns a value of 5 to the label A. 

I. 
A 

NEXT 

2 
SECTION: 

EQU 5 
UK 3 
00 Aas. GO NEXT 
LLK 5 
NAME 
END 

• Line 4 uses a DO directive (see 2.15) which causes the statement GO NEXT to 
be performed. 

• Line 5 is ignored during the assembly because of the GO statement in line 4. 

• Line 6 defines the label NEXT. Assembly of source code resumes starting 
at the next statement. 

2.15. DO DIRECTIVE 

The DO directive is used to process a statement conditionally or to generate data 
tables by processing a single statement more than once. The format of a DO line 
is: 

labell DO expression ,labe12 operation operand 

The comma divides the DO line into two parts: 

the determinant: labell DO expression 

the DO-item: labe12 operation operand 

The expression following the DO directive determines how many times the DO-item 
is performed. Labell is optional; if used, labell serves as a counter reference 
reflecting the current num ber of times the DO-item has been executed. 

The DO-item may be any symbolic line of coding. The DO .. item may contain another 
DO directive. 

Example of a simple DO: 

000001 
000u02 00 000000 

00 OUOOO! 
00 OUOO02 
00 0000U3 
00 00001.1'1 

000003 

000001 
000002 
000003 
00000'1 
000005 

I. 
A DO 5 •• ,. 

END 

9 
PAGE: 



UP-7599 
Rev. 1. UN I VA C 418 -III R TO S ASS E MB L E R I SECTION< 2 

Explanation: 

• The DO-item generates a data word +A. 

• The DO-item is performed 5 times. 

• Each time the value of A is incremented by 1. The first time that the DO-item is 
performed, the value of A is 1. 

All symbols appearing in the determinant expression must be defined prior to the 
DO statement. If undefined symbols appear, their value will be taken as O. If the 
determinant expression has a negative value, it is reset to 0 and the DO-item is 
not performed. 

2.15.1. Conditional DO 

The operators <, =, and> are relational operators and generate expressions with 
a value of 0 (false) or 1 (true). Whenever the determinant expression of a DO state 
ment has a value of 0 or 1, the DO is said to be conditional. If the determinant 
expression value is 0, the DO-item is not performed. If the determinant expression 
value is 1, the DO-item is performed. 

Example: 

LABEL OPERATION OPERAND 
10 20 30 40 

I .1 1 1 l 1 J . j L L ~J .L._.1. .... LL 1 J 

I L L . .1. I j J l 1 j L .... L 1 ... 1 1 ... .1 i I .. 1 1 L .. 1 .L.1 . ..L .. . 1._.L 

Explanation: 

• If the current location counter value is greater than 07777, the determinant 
expression has a value of 1. As a result, the LSR 020 instruction is generated. 

2.15.2. Nesting of DO Directives 

As stated previously, the DO-item may itself be the determinant of a second 

PAGE: 

DO directive. DO statements may therefore be nested to as many levels as desired. 

As the final DO-item is performed, the repeat count of the innermost determinant 
is satisfied before processing of the next determinant resumes. 

Example: 

000001 
000002 

00U003 

00 OUOOOO 
00 0 0 0001 
Oll OU0002 
00 0000U3 
00 OUOOo'l 
00 OUOOU!) 

000011 
000012 
000021 
000022 
000U31 
000032 

/. 
I 00 3 .J 00 2. +S.I+J 

10 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 2 

SECTION: 

Explanation: 

• The DO-item +8 *I+J is generated a total of 6 times. The value I is varied from 
1 to 3. For each value of I, the DO-item is performed twice. The resultant data 
words generated are +011, +012, +021, +022, +031, +032. 

2.16. LIT DIRECTIVE 

PAGE: 

The LIT directive is used to define a literal table under control of the active location 
counter. The format of a LIT statement is: 

label LIT e 

The label is optional and identifies the name of the literal table. The operand expres
sion e is optional and determines the relative starting address of the literal table. 

Through the use of the LIT directive, a number of separate literal tables can be 
created. Duplicate literals are eliminated within each unique literal table; however, 
duplicate literals may exist in separate literal tables. In the absence of a LIT 
directive, all literals are placed in the literal table under location counter zero. The 
entries in the label field of a LIT directive comply with the labeling rules as applied 
with the location counter declaration and label structure. However, the label may not 
be subscripted or suffixed by an asterisk nor may it be referenced (addresses or para
form s). 

A LIT directive may have a label. If a label is present, the literal table is identified 
by this label. Literals generated under a labeled literal table have the form: 

label(literal) 

The label refers to the literal-table name, and literal represents the literal expression. 

Example: 

LABEL OPERATION OPERAND 
10 20 30 40 

~~JT1AIB-LtL_-L .. L_...L~1 .. ~-LTL .. l......L_L_L.J.......l _L ... L .. -L.. L.L .... L 1 ....... L.l 1 .. 1.. I L ... I 

L.1 ... _L ... LL.l .. ..1 L_1LLJ~ ..... L._L ... 1 .L .. 1. J ...... l L~lejTl~l~l t'(J ,L..JL.JKi Lilt 

If the label field of the LIT directive is left blank, literals to be placed in the defined 
table have the form: 

(literal) 

Example: 

LABEL OPERATION OPERAND 
10 20 30 40 

i.J..IJJL 1 i_I .Li ll...lllTL ... LLLJ.LL..J ... .L._L .. L ..... L .... L .. J ....... L .. .1 .. .1 I .. L'[ 

_ .LL...l ... L..L 1 .. ..1 1 . .J ]I..,.J\...' L. ... _L .. L ... _.L ... .L.....lL.l (Lj~l.~L~..li' 1)1 l _L .. 1 I _1... .. 1 _L ; .... 1 ... ~ ... ~ I. 

11 



UP-7599 L 
___ R_e_v_, _1. _____ "__ ____ U_N_1 V_A_C_4_1_8_-_II_I_R_T_O_S_A_S_S_E_M_B_L_E_R ____ --o..... ______ SEC T ION: 2 

Unless an operand field is present in the LIT statement, the literal table is generated 
under the location counter active at the time that the LIT directive occurred. 

PAGE: 

If an operand expression is present in the LIT statement, the literal table is generated 
starting at the address specified in the operand field of the LIT statement. The location 
counter of the specified starting address is used. 

Literals are generated only in the second assembly pass. As a result, some care 
must be taken in defining the LIT directive. If the operand field specifies the 
literal table start address, only those literals subsequently defined for that literal 
table are assigned in the specified area. 

Example: 

000001 /. 
000002 00 OUOOUO 12 002 2 LL (1) 

000003 TABI LIT 
00000'1 00 000UU1 12 0023 Ll. TASI (11 
000005 $(2),TA82 LIT AREA2 
00u006 00 OUOOU2 12 001 0 5 (0 I LL TAa2(21 
000007 00 OUOO03 10 002'1 LA ( 1.0) 

00 OUOOU'I 12 0025 
000008 5 ( 1 ) LIT 
000009 00 OUOO05 12 0012 Ii (0) LL (7) 
000010 LIT AREAl 
000011 00 OUOO:J6 12 001 2 LL (7) 
000012 00 OUOOO7 12 0000 LL ( 101 
00U013 01 oUoooo s(II,AREAI RES 10 
0000111 00 OU0010 5(0) ,AREA2 RF.S 10 
000015 ENn 

00 OU0022 000001 
00 OU0023 000001 
00 000010 000002 
00 OU002'1 201'100 
00 000025 000000 
01 OUOOl2 000007 
01 000000 000012 

Explanation: 

• Line 2 generates a literal constant 1 under location counter O. 

• Line 3 defines a literal table TAB1 under location counter O. 

• Line 4 generates another literal constant 1, but different from that generated by 
line 2 because different literal tables are used. 

• Line 5 defines a literal table TAB2 starting at address AREA2 under location 
counter 0 (see line 14), The location counter specification is not used and is 
superfluous. 

• Line 6 generates a literal constant 2 at AREA2. 

• Line 7 generates a literal constant 1.0 (2 words) under location counter O. 

• Line 8 uses a lit directive to generate further literals of the type (LITERAL) 
under location counter 1. 

12 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 2 

SECTION: 

• Line 9 generates a literal constant 7 under location counter 1. 

• Line 10 defines literal table AREAl under location counter 1 (see line 13). 

• Line 11 refers to the same literal as line 7. Because the literal was defined 
previous to the LIT in line 10, it is generated at the end of location counter 1. 

• Line 12 generates a literal constant 10 at AREAL 

• Line 13 and 14 reserve 10 words each for the literal tables AREAl and AREA2. 

2.17. INFO DIRECTIVE 

The IN FO directive provides a means of organizing coding assembled under various 
location counters into certain system-defined groups. There are six possible groups 
into which part or all of a program may be divided: 

o - bay~dependent 

1 - bay-independent 

2 drum 

3 F ASTRAND mass storage 

4 common, bay-independent 

5 common, bay-dependent 

• Group 0 bay=dependent 

Group 0 consists of relocatable object code (instructions and/or constants) 
written in such a way that it can be relocated anywhere within a bay starting 
at an even address. If a program of this category exceeds 4096 words (one bay), 
loading and/ or relocation of that program starts autom atically at the beginning 
of a bay. If the size of the location counter is less than 4096 words, all words 
are allocated within one bay. Since group 0 is the most commonly used re
location mode, it is the assumed group in the absence of an INFO directive for 
any location counter. 

• Group 1 - bay-independent 

Group 1 consists of relocatable object code (mostly constants and some instruc
tions) written in such a way that it can be allocated any available storage location 
regardless of bay boundaries. 

• Group 2 - drum 

This group is used to reserve drum area in 512 18-bit word increments at assembly 
time and to convey this information to the job loader. It eliminates the need for 
writing supervisor calls for drum buffer requests and has the added advantage of 
being processed by the job loader prior to loading the program. If for any reason 
sufficient drum area is not available, the program is not loaded until sufficient 
drum space becomes available. Drum space is allocated in such a way that the 
requested area under each location counter is contiguous unless part of the space 
is already allocated through an @ASG control card. Location counters of this type 
may not be used to generate relocatable object code. 

In referencing the drum space allocated through the INFO directive, the location 
counter is used by the loader as the logical file number. If multiple elements 
within a single program reserve drum space in this manner, the space is allocated 
only once for the largest requested area for each location counter (file number). 

13 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER I SECTION, 2 

• Group 3 - F ASTRAND mass storage 

Logically, the purpose of this group is the same as that of group 2. Hardware 
characteristics, however, dictate that F ASTRAND allocation is kept separate 
from drum allocation. A F ASTRAND increment is 3584 18-bit words or 1 track . 

• Group 4 - common, bay-independent 

This group is simply an extension of group 1, the bay-independent group. It 
allows separately assembled routines to share storage areas by using the same 
label in the INFO directives for this group. This capability is provided by the 
job loader which allocates storage only once for all the references of this label 
in the routines to be loaded for a program. The length of the storage area is 

PAGE: 

chosen by the job loader to be equal to the longest of the location counter lengths . 

• Group 5 - common, bay-dependent 

This is an extension of group 0, the bay-dependent group. It allows separately 
assem bled routines to share storage area by using the same label in the INFO 
directive for this group. This capability is provided by the job loader which 
allocates storage only once for all the references of this label in the routines 
to be loaded for a program. The length of the storage area is chosen by the job 
loader to be equal to the longest of the location counter lengths. 

The sym bolic form at of the INFO directive is: 

label INFO g 

where label is an optional symbolic label which is only meaningful to the job 
loader. In the case of groups 4 and 5, the label is the common block name. Labels 
are allowed for groups 0, 1, 2, and 3. The operand field consists of two lists of 
expressions. The first list represents one of the six group numbers and may consist 
of one expression only. The second list may consist of one or more expressions, 
each defining one of the specific location counters assigned to ~hat group. 

The assembler allows a maximum of 16 INFO statements which are collected and 
passed to the job loader. 

Example: 

000001 /. 

000002 COMMON INFO 'I 1,8 
000003 s (11 
00000'1 01 oUoooo I NTABL RES SOD 
OOOOOS 08 0 00000 S(8I,TAPEI RES SlZ 
000006 DB oUl0UO TAPE2 RES S12 
OOOU07 08 OU20uo TAPE3 RES 102'1 
000008 08 OU'IOUO aKBUF· RES 2S. 
OUOO09 08 OU""uo ARRAY. RES 1000 
000010 INFO 2 • 
000011 06 oUoooo S(6) ,DeUF RES 10001lS12 
000012 06 0 00002 DBUF2 RES 2000l/SU 
000013 S' 0 I 
00001" END 

••• SUMMAt-ly • •• 
PROGRAM SIZE: 01 0076'1 06 00 00. 

EXTERNAL DEFINITIONS; ARRAY 

14 



UP-7599 
Rev. 1 2 UNIVAC 418-111 RTOS ASSEMBLER 

SECTION: 

Explanation: 

• Line 2 specifies that the code generated under location counters 1 and 8 is to 
be considered as bay-independent common storage (group 4). The common area 
is identified by the name COMMON. 

• Lines 3 through 9 define various buffers in the common area. 

• Lines 10, 11, and 12 specify that six blocks of drum sp ace are to be allocated. 

PAGE: 

The label DBUF refers to the drum address of the first block of this drum area. 
The label DBUF2 refers to the drum address of the third block of this drum area. 

2.18. ASM DIRECTIVE 

The ASM directive is not an assembler directive; it is a library procedure. The 
procedure may be used to generate a series of data words (or instructions) in one 
statement. The format is: 

label ASM 

The label, if present, refers to the first data word generated, e1' The operand consists 
of a series of expressions ei each of which is generated as one or more data words. 

Example: 

000001 
000002 

OOOOOl 

U 

00 000000 
00 0 0 0001 
00 OU0002 
00 0000U3 
00 OUOOU'I 
00 OUOOUS 

OOOUOl 
000002 
70 0001 
000000 
2'12526 
270000 

EXT~RNAL OR UNQEFINEo ~EFERENCES: LAtiEL 

Explanation: 

/. 
ASH 

END 

••• SUMMARY ••• 

The code generated by the ASM procedure call is equivalent to the series of state
ments: 

+1 

+2 

LLK 1 

+LABEL 

'ABCD' 

The ASM procedure is illustrated in 3.7.2. 

15 



UP·7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3 

SECTION: 

3. PROCEDURES 

3.1. GENERAL 

Often a program requires repetitive sequences of coding. These sequences are not 
necessarily identical but there is enough similarity to make the writing of these 
sequences mechanical. The procedure is a method employed by the assem bIer which 
permits the automatic generation and modification of repetitive coding sequences. A 
procedure may be generated any number of times with different parameters supplied 
each time it is referenced. Procedures are implemented by the PROC directive. The 
source code between the PROC and END directives is commonly referred to as the 
procedure sample. The PROC directive uses procedure samples to generate the 

PAGE: 

required coding. As the assembler encounters each procedure sample, it stores the 
procedure and the procedure's entry points. When a call to the procedure is encountered, 
the assembler references the procedure entry point table, locates the procedure, and 
then generates the required coding. The procedure sample must physically precede 
any call to it in the main program unless it is defined in the library as a PROC element. 

3.2. PROCEDURE MODES 

Procedures can be developed in any of three modes: simple, generative, or interpretive. 
The differences between simple, generative, and interpretive procedures are functional 
differences only, not intrinsic in the manner in which the assembler analyzes them. 
Many procedures are actually combinations of all of them. 

3.2.1. Simple Mode 

The simple mode occurs when the object procedure developed is equivalent to the 
object procedure declared. In this mode, the procedure is used essentially to provide 
program legibility and avoid repetition of code. An example of a simple mode pro
cedure is given in 3.7.3. 

1 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER I SECTION, 3 PAGE: 

3.2.2. Generative Mode 

The generative mode occurs if the object procedure developed is a multiple of the 
object procedure defined. By combining the DO directive and a simple mode pro
cedure, the same code may be generated a number of times. An example of a genera
tive procedure is given in 3.7.2. 

3.2.3. Interpretive Mode 

The interpretive mode occurs when the object procedure determines which code is 
to be generated, based on the parameters supplied when the procedure is called. 
In this mode, the PROC body provides the algorithms to be used for the generation 
of code. Examples of interpretive procedures are given in 3.7.4,3.7.5, and 3.7.6. 

3.3. PROCEDURE SAMPLE 

A procedure sample consists of a group of statements having a PROC and an END 
directive as delimiters. The procedure sample is stored by the assembler so that it 
may be scanned when the procedure is called upon as a result of the occurrence of 
one of its entry points in the function field. The procedure sample is scanned at 
least once for each time it is called upon. 

3.4. PROC DIRECTIVE 

The format of the PROC directive is as follows: 

label PROC operand 

The label field contains any label not exceeding six characters. The label identifies 
the specific PROC and is one of the means by which the procedure may be referenced. 

The operation field contains the PROC directive. This directive signals the assembler 
that sample cod ing of the procedure is to follow. 

The operand field may contain zero, one, or two subfields (separated by commas). 
Subfield 1 contains a value specifying the maximum number of fields appearing on 
that procedure's call line. 

Subfield 2 of the operand field cannot be written unless a value appears in subfield 
1. The value entered in subfield 2 indicates the number of words of code to be 
generated when the sample is referenced. Subfield 2 must be omitted in the following 
situations: 

• if the procedure can generate a variable number of words; 

• if forward references are made in the procedure; 

• if external definitions are made in the procedure; 

• when a label on a procedure reference line is to be assigned to a line other than 
the first line of the procedure; 

• when a procedure call is present in the procedure which causes the assembler to 
bring the second procedure from the library into the procedure storage area. 

Except for the foregoing conditions, subfield 2 should be used because it eliminates 
two subassembly passes of the procedure sample, thereby shortening assembly time. 

2 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 3 

SECTION: 

A line terminator (15.15) must precede any comments on the PROC directive line. 

Example: 

LABEL OPERATION OPERAND 
10 20 30 40 

·~~IA~L_l L.J. Jfl~C1Je..L.L---L.LLL.Llu.JJ.10LLl ... .L...1 ... J.--1 .. L.l ... 1 .. L ..... 1-.1 .LL ..... LL--L.. .. LJ ... L .. J ....... L J 

~«~L ...... Ll ... L .... L . .1 JP JR..Lflj~ ... 1 ... L .... I .. J ......... L.l .•... L. iL ..... L .... L .. t ...... L ... L ... J ...... L .. L .... L.l 1.. ...... L ... L .. L ...... LL.J.. ..... L . ..L. L .L .. .1 .• , i 

.J ... ..l....... .. L .L ..... L ..... L L.L .... L ...... l ...... L.L.....J.....L--L..l...........LL ..... LLL.J.........J.........L.L.........L .. .L·.....L......JJ......L......L .... .L ....... L .... l ....... L.J........J .... J......J ....... L.L ...... L .. L.....l ..... l ...... .1 ... 

Explanation: 

• Line 1 contains the label COMPAR. Subfield 1 of the operand specifies that one 
field may appear on the reference line. Subfield 2 indicates that ten words are 
generated by the procedure • 

• Line 2 has no operand field. 

3.5. END DIRECTIVE 

The END directive must appear at the end of each procedure. END is coded in the 
operation field. The label and operand fields are left blank. 

Example: 

LABEL OPERATION OPERAND 
10 20 30 40 

~~AJ)1~ 1_.i. L.L.~&.C>i~..L.L.J ........ LJ .. L.....LQLl1JL ..... J..... LI . .L... ..... 1. 1 L .. L.......L ... L i .. j . 1 .1. 1.. J .L.....l .i. ...... I L I 

.. L.J .. ..J...... .... L ....... L LJL ..... Ll.L.IL.LL_L.L.J.....L . .J Lrrl~i~L.Ll .1. J 1 ... L .. L .. l .. L .. L ... i.1 LL .1.1 • 

....... L...L .. L .. ..L ..... LJ..... ...... L......l .. L.....l~N.lQ.L.l.......J....J...........LJ.....-LL.J.J......j.......L..J . .....LL .. L.J ..... L.L ...... ..L .. 1..... . ..1 .. L. . .....L L.i .L. J .. ...Ll Ll 

. .!. I 

Explanation: 

• Lines 1, 2, and 3 define the procedure sample. 

• Line 1 specifies that no parameters are supplied on the call line, that one word 
is to be generated whenever the procedure is called, and that the entry point to 
the procedure is LOAD. 

• Line 2 contains the instruction LL TAG which is to be generated each time the 
PROC is called. 

• Line 3 specifies the end of the procedure sample. 

3 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 3 

SECTION: PAGE: 

3.6. PROCEDURE REFERENCE 

When a procedure reference is encountered at assembly time, the specified procedure 
sample is analyzed. If the procedure sample is contained within the assembled program, 
it must be defined prior to the first reference. If the procedure sample is defined in a 
procedure element in the user or system library, the entire PROC element will be 
included in the assembler PROC storage area when a call on anyone of its procedures 
is made. In searching the libraries for a procedure entry point, the user library is 
searched first. Since the entire procedure element is inserted by a reference on one 
of its PROCs, care must be taken that no duplication of procedure entry points occurs 
when multiple PR 0 C elem en ts are inserted. To reference a procedure, a c all line is 
used. 

3.6.1. Definition of a Procedure Call Line 

A procedure call line informs the assembler that generation and modification of a 
code sequence are to begin at this point. The operation field contains the external 
label of the procedure desired. The operand field contains the expressions (para
meters) needed for modification. The format of a call line is: 

label procedure label operand 

The label field of a call line is optional. 

The operation field. contains the entry point of the desired procedure. 

The operand field contains the parameters needed to modify the procedure. 

A period should be used to terminate the call line. 

Example: 

LABEL OPERATION 
10 

1 I ~l I i j 1 1 I I j LLJ~~iDI I j 

~lAILjlJ \ L j.~ j 1 LS1P1E Cj J. I I 1 

~il)lDIPl 1 L LJ lJ~1t>:\~~.1.121 j 

I 
J.1 I Ll J.l 1 .. 1., 1 1 I 1 1 

Explanation: 

OPERAND 
20 30 

j I ; 1 .J ; J I j 

! l J 1 1 .. 1 1 i L j 

1.11 .i.L.L . .1 L 1 L I 1 , 

40 

i 1 

• Line 1 has no label and the procedure LOAD will be generated. 

L j 

• Line 2 contains the label, CALL!. The procedure referenced is SPEC. 

• Line 3 contains the label ADDP. The procedure ADD22 is referenced. The 
operand field contains four parameters. The parameters supplied are grouped 
into two fields with two subfields each. 

4 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3 

SECTION: 

3.6.2. The-Operand Field of a Call Line 

The operand held of a call line may contain parameters used to modify values 
appearing within a procedure. The parameters appear in fields and subfields of 
the operand. There may be any number of fields, and any number of subfields may 
appear within the fields. Fields are separated by blanks; subfields are separated 
by commas. 

RAND OF A OPE 
CA LL LINE 

Example: 

FIELD1 

FIELD2 

FIELD3 

FIELD. 
J 

(1) 

(2) 

(3) 

(j) 

Subfield1 (1,1) 

Subfield2 (1,2) 

Su bfieldn (1, n) 

Subfield1 (2,1) 

Subfield2 (2,2) 

Su bfie·ldn (2, n) 

Subfield1 (3,1) 

Su bfield2 (3,2) 

Su bfieldn (3,n) 

Subfield1 (j, 1) 

Su bfie ld2 (j, 2) 

Subfieldn (j ,n) 

~-------------------------------------------------------------------------------

11 
LABEL OPERATION OPERAND 

10 20 30 40 

1... ~i . 1 1 ...... 1_ ... 1 

_.1.. ; .. _.1 .. 1 ..... .1. L ... _1. L_LLJ ..... J. __ .. .1 .L .. l ........ L_l L_ . ..l .L.L..lL_LLIJ_i LJ J 1..1 L ~ .L .... ~ L I l i 1. ~ 1 

Spaces separate fields; commas separate subfields. 

Explanation: 

• Field 1 contains s ubfields 6, 4, SL T. 

• Field 2 contains subfields JIM, INST. 

• Field 3 contains subfields W, R, S, T. 

5 
PAGE: 



UP-7S99 

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

3.7. PARAFORMS 

The parameter reference form, commonly called the paraform, provides a means for 
selectively referring to the operand parameters of a procedure call line. Paraforms 
are implicitly defined by the operand field parameters of the procedure call line. 
They are used in the operand field of a line of symbolic coding within the procedure 
sample. P araform s are only defined during the process ing of the procedure call line 
and the referenced procedure sample. 

A paraform is identified by the name of the procedure reference. There are six syn
tactical paraform structures which denote different values associated with the operand 
field parameters of the procedure call line. 

3.7.1. Referencing the N urn ber of Fields 

When the procedure name is used in the operand field of a symbolic line withi'n the 
procedure sample, it is equated to a constant equal to the number of fields in the 
call line. 

Example: 

000001 
000002 
000003 
00000" 
000005 
000006 
000007 
000008 

000009 
000010 
000011 
000012 

Explanation: 

00 0 0 0000 
00 0 0 0001 
00 000002 
00 000003 
00 0000011 
00 OOooos 

000001 
000002 
000003 

• Lines 2 and 4 define the procedure CALLI. 

• Line 3 reserves one word CALLI times. 

/. 
CALLI. 
1 

•••• 

FIRST 
SEeNO 
THRO 

PROC • 
DO CALLI • RES 
END 

CALL NAME 

CALLI FIRST SEeNO THRL 

+1 
+2 
+3 
END 

• Line 8 calls procedure CALLI with three fields, FIRST, SECND, and THRD. 
As a result the paraform reference CALLI in line 2 is assigned the value 3 

and three words are reserved. 

6 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 3 

PAGE: SECTION: 

Example: 

000001 
000002 
000003 
00000'+ 
000005 
000006 
000007 
000008 
000009 
000010 

PROC 
LL. 
AL 
DO 
END 

ADDII,II 
ADDCl,21 
ADD-2 , SL ADDIZ,I) 

000011 
000012 
000013 
00001'+ 

Explanation: 

00 DUO 000 
00 OUOOOI 
00 0 0 0002 
00 000003 
00 00000'1 
00 OOOOOS 

12 000 3 
114 00014 
14'1 ODDS 
000001 
000002 
000003 

• Lines 2 through 6 define the procedure ADD. 

• Lines 3 and 4 define a simple addition. 

• • •• 

~ 

B 
C 

CAL.L. NAME 

ADD 

+1 
+2 
+3 
END 

A,B C 

• Line 5 contains a conditional DO statement. The condition is dependent on the 
number of fields in the call line, in this case two. 

• Line 10 is the call line consisting of two fields. 

3.7.2. Referencing the NUlTl ber of Subfields 

The paraform pn (a), where pn denotes the procedure name and (a) is an expression 
which represents the a th field on the procedure call line, refers to the number of 

subfields present in the a th field. 

Example: 

000001 
000002 
000003 
0000014 
ooooos 
000006 
000007 
000008 

000009 

00 000000 
00 0 0 0001 
00 0 0 0002 

000001 
000002 
0000014 

PROC • 
DO ~SMll), +ASM(I,I) 
ENO 

• • •• CALI. NAME 

END 

7 



UP-7599 
Rev. 1 UN I V A C 418 -III R TO S ASS E MB L E R 3 

SEC TION: 

Explanation: 

• Lines 2 and 4 define the procedure ASM. 

• Line 3 performs the operation +ASM(1,I), ASM(1) times. 

• Line 8 calls the procedure ASM and specifies one field with three subfields 
1, 2, and 4. As a result the paraform ASM(I) is assigned the value 3, and the 
operation +ASM(I,I) is performed three times. The code generated as a result 
of the ASM call will therefore be three data words: 

+1 

+2 

+4 

3.7.3. Referencing the Procedure Call Parameters 

In order to reference any of the supplied procedure parameters, the specific para
meter is identified by specifying the procedure name immediately followed by a 
pair of parentheses. Enclosed within the parentheses are two values separated by 
a comma. The first value denotes the specific field in the call line; the second 
value denotes the specific subfield within the specified field in the call line. 

Example: 

000001 
000002 
000003 
00000" 
000005 
00U006 
000007 
000008 
000009 
00U010 

000011 
000012 
000013 
00001" 

Explanation: 

00 OUOOOO 
00 000001 
00 000002 
00 0(000) 
00 00000 .. 
00 OOOOOS 

12 U00 3 
I .. 000" 
"" OOOS 
000001 
000002 
00000) 

• Lines 2 and 6 define the procedure ADD. 

I. 
ADO· 

. ••• 

ONE 
TWO 
THREE 

PROC 1,3 
LL ADD(l,11 
AL. AOO( I ,21 
SL. ADD (1,31 
ENO 

CAL.L NAME 

AOD ONE, TWo, THREE 

+1 
+2 
+) 
END 

iii Lines 3, 4, and 5 generate a load, add, store set of instructions to perform the 
operation C = A +B. The addresses of A, B, and C are specified as subfields 
1, 2, and 3 of field 1. 

• Line 10 calls upon the procedure ADD to generate the code which performs the 
operation (ONE)+(TWO) -> THREE. 

8 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 3 

5 EC TION: PAGE: 

3.7.4. Referencing the Asterisk in a Procedure Parameter 

Because of the use of the asterisk to indicate the index mode in normal instructions, 

the presence or absence of an asterisk in the procedure call parameter may be checked 
by using the paraform structure pn(a,*b), where pn denotes the procedure name, and 
a and b are expressions representing the field and subfield numbers respectively. 
If the specified parameter, pn(a,b), is preceded by an asterisk, the paraform pn(a, *b) 
is assigned a value 1; otherwise, O. 

Example: 

000001 /. 
000002 L PROC 
00UD03 MOVE_ NAME 
0000011 00 I. Cl • - I) • LV Lea .. ) ooooos 00 L Cl • -2) , 1.1. I.' 1,2) 
OOUOOo BT LCl ,3) 
000007 END 
000008 
000009 ••• CALL EXAMPLE 
OOUOIO 
OOUOll 00 0 00000 10 0036 MOVE .'fROH).-(TO) ,&2 

00 0 0 0001 12 003 7 
00 0 0 0002 S07U I'" 

000012 00 0 0 0003 10 003 6 LU (FROM) 
000013 00 00000 ... 12 0037 LL (TO) 
0000111 00 OOOOO!) S070 I'" MOvE 0,0.12 
OOOOlS 00 000006 FROM RES 12 
000016 00 000022 TO RE:S 12 
000017 e:NO 

00 OU0036 000006 
00 0 0 0037 000022 

Explanation: 

• Lines 2 and 7 define the pro ced ure L. 

• Line 3 defines MOVE as an entry point to t~e procedure. 

• Lines 4 and 5 generate the instructions LU L(I, 1) and LL L(I,2) if the first 
and second sub fields of the first field of the parameters on the call line are 

preceded by an asterisk. 

• Line 11 calls on procedure L by way of the entry point MOVE. Since asterisks 
occur in the first two subfields, an LU (FROM) and LL (TO) are generated. 

• Line 14 calls on the MOVE procedure. Since no asterisk occurs on the first 
two parameters, the LU and LL are not generated. 

9 



UP-7S99 
Rev. 1 UN I VA C 418 -III R TO S ASS E MB L E R 3 

SECTION: PAGE: 

Example: 

L. PROC 1,2 . 
LA- NAME 
I FORM '.12 

000001 
000002 
000003 
OOUCO" 
ooooos 
000006 
000007 

I 01 O+L ( 1 ,-1) ,L. ( 1,11 

00U008 

000009 

U 
U 
U 
U 

Explanation: 

00 oUoOOl) 
00 000001 
00 OUOOu2 
00 OUOOU3 

10 0000 
12 0001 
11 0000 
13 QOOI 

• Lines 1 and 6 define procedure L. 

• Line 2 defines an entry point LA. (See 3.6.2). 

• Lines 4 and 5 generate: 

(1) lower 12 bits equal to the supplied first parameter 

I a 12+L. ( 1 ,-1) ,L.' 1,1) + I 
END 
LA TAG 

LA -TAG 

END 

(2) upper 6 bits 010 (LU) and 012 (LL) if no asterisk precedes the first para
meter 

(3) upper 6 hits 011 (LU*) and 013 (LL*) if an asterisk precedes the parameter 

• Line 7 causes the following instructions to be generated: 

LU TAG 

LL TAG +1 

• Line 8 causes the following instructions to be generated: 

LU *TAG 

LL *TAG+1 

10 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 3 

SECTION: 

307.5. Referencing the NAME Directive Operand Value 

The NAME directive may define a procedure entry point (see 2.14). The paraform 
pn(O,O), where pn denotes the procedure name, refers to the value in the operand 
field of the NAME directive by which the procedure was called upon. If the pro
cedure call is to the procedure name itself, pn(O,O) has a value of O. 

Example: 

/. 

11 
PAGE: 

000001 
00U(l02 
000003 
OOOUO" 
OOOOOS 
00U006 
000007 
000008 
000009 
OOUOIO 
000011 
000012 
000013 

L 
ADD
SUB· 
I 

PROC 
NAME 

1,3 
01" 
016 

• 'AL' fCN. COE 

NAME • 'ANL.' FCN. CUE 

FORM 6012 
I 
I 
I 

a 12+L I I, .11 ,L. I I ,I I 
LIO,UI+L(I,.~I'L(I,21 
O'l'l+LII,.31,LI1,3) 

00001" 

000015 
000016 
000017 
000018 
000019 
000020 
00C021 

Explanation: 

00 OUoooo 
00 OUOOOI 
00 OU0002 
00 OOOoOl 
00 0000011 
00 000005 
00 OU0006 
00 OU0007 
00 OUOOlo 
00 0 0 0011 
00 000012 
00 OUOOl3 

12 000 6 

IS U007 
'1'1 001 0 
12 001 1 

16 001 2 

"" 001
3 

000001 
000002 
000003 
00000" 
ooooos 
000006 

• Lines 2 and 9 define the procedure L . 

•••• 

ONE 
TI'IO 
THREE 
A 
B 
C 

END 

CALL. NAME 

ADD ONE,·TI'IO,THREE 

SUs A,B,C 

+ I 
+2 
+l 
+11 
+5 
+6 
END 

• Lines 3 and 4 provide the entry points ADD and SUB. (Note that L is not an 
entry point to the procedure since no asterisk is appended to the label.) If the 
procedure is called upon through the entry point ADD, the value of L(O,O) is 
014; if called upon by way of the entry point SUB, L(O,O) is 016. 

II Lines 6, 7, and 8 generate the instructions: 

LL or LL* 

AL,ANL or AL*,ANL*, and 

SL or SL*, respectively. 

The indexed function codes a:e used if an asterisk precedes the appropriate 
paraform expression. Depending on whether the ADD or SUB entry point is used, 
the AL or ANL function code is used. 



UP·7599 
Rev. 1 UNIVAC 418~1I1 RTOS ASSEMBLER 

• Line 13 calls on procedure L through the entry point ADD. As a result, the code 
generated is: 

LL ONE 
AL *TWO 

SL THREE 

• Line 14 calls on procedure L through the entry point SUB. As a result, the 
generated code is: 

LL A 

ANL B 

SL C 

3.7.6. Referencing Subfields of the Oth Field 

The paraform pn(O,b), where pn represents the procedure name, may be used to 
denote the b th subfield of the Oth field. The Oth field is defined on the procedure 
call immediately following the procedure call name and separated by a comma. 

Example: 

I. 

L flROC 1 
NAME 01 .. 
NAME 016 
fORM 6.12 

PAGE: 

000001 
OOU002 
000003 
00000" 
ooooos 
000006 
000007 
OOU008 
000009 
000010 
000011 
000012 
000013 
00U01" 

00 LIO,l»O, I 012+LIl,.II,I.Cldl 

00001S 

000016 
000017 
000018 
00U019 

Explanation: 

00 OUOOOO 
00 OUOOOI 
00 OOOOOZ 
00 000003 
00 OOOOO~ 
00 oOooos 
00 oOoou, 
00 000007 

1'+ 0006 
IZ OOOS 
16 0006 
1'+ 0006 
'+5 0007 
000001 
OOOOOZ 
000003 

• Lines 2 and 9 define the procedure L. 

.... 

A 
B 
C 

• Lines 3 and 4 provide the entry points ADD and SUB. 

I LCO,O)+LC1,.Z),LC1,Z) 
DO LIO)-Z. I U~~+L(1,.l),LClt31 
ENn 

CALI. NAME 

ADD 
SUstl 

+1 
+Z 
+3 
END 

• Line 6 generates an LL or LL* instruction if the first subfield of the Oth field 
is present and greater than zero. 

• Line 7 generates the instruction AL or ANL, depending on the entry point used. 

• Line 8 generates an SL or SL* instruction if the second subfield of the Oth field 
is present. 

• Line 13 generates the code: 

AL B 

(Note that subfields L(l,l) and L(1,3) are present but superfluous), 

12 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

SECTION: 

3 13 
PAGE: 

------------~----------------------------------------------------~--------------~--------------~-------------

• Line 14 generates the code: 

LL A 
ANL B 

(Note that the subfield L(1,3) is superfluous.) 

• Line 15 generates the code: 

AL B 

SL *C 

(N ote that even though subfield L(I, 1) must be present, no actual express ion IS 

needed. A zero would suffice to define the subfield). 

3.7.7. Summary of Paraforms 

Paraform constructions are summarized as follows (pn denotes procedure name): 

pn When the procedure name is written with no specified field or subfield, 

the value of the paraform is a constant equal to the number of fields in 
the call line. (The operation field is not included as part of the count.) 

pn(a) The value of pn(a) is a constant equal to the number of subfields in the 
specified (a) field. 

pn(a,b) The value of pn(a,b) is the parameter appearing in the subfield of field a. 

pn(a,*b) The value of pn(a,*b) is a constant equal to 1 or 0, depending on whether 
the parameter in the b th sub field of the a th field is preceded by an asterisk. 

pn(O,O) 

pn(O,b) 

The paraform pn(O,O) has a value equal to that specified in the operand 
field of the NAME directive used for the procedure call entry point. If the 
entry point is the procedure name itself, pn(O,O) has a constant value 
equal to O. 

The paraform pn(O,b) has a value equal to the parameter in the b th subfield 
of the Oth field. The Oth field is considered to be the operation field. 

3.8. NESTING OF PROCEDURES 

When encountering a procedure call, the assembler temporarily discontinues the 
current assembly and begins a subassembly of the procedure sample. Upon encounter
ing the END directive, the original assembly is resumed. While processing the pro
cedure sample, another procedure call may be encountered, resulting in the temporary 
suspension of the first procedure and the processing of the second. This process 
may continue up to 15 levels of procedures and is referred to as the nesting of 
procedures. Each time a subassembly of a procedure is entered, all labels within 
the procedure are defined for that procedure only. All labels and paraforms defined 
in all preceding assemblies are also available to the subassembly. When the main 
assembly is resumed, all labels defined within the subassembly are erased. 

The nesting of procedures, therefore, enables the programmer to use the same label 
in different procedures. Nesting allows simpler block-building techniques but requires 
longer assembly time. 



UP-7S99 
Rev. 1 

SECTION: 
3 UNIVAC 418·111 RTOS ASSEMBLER 

PAGE: 

When practical, the depth of nesting should be limited. Use of the distributed NAME 
and GO directives may be helpful in restricting levels of nesting (see 2.13 and 2.14). 

3.8.1. Physical Nesting 

Physical nesting occurs when a procedure is physically located within the bounds 
of another procedure. If a procedure is physically contained within another procedure, 
the internal procedure is considered to be defined at one level higher than the 
external procedure. Procedures may be nested to 15 levels. Therefore, the physical 
location of the procedure sample determines at which level the procedure can be 
accessed. 

Physical nesting of procedures may be used to prevent certain procedures from 
being referenced unconditionally. 

Example: 

START MAIN PROGRAM Level 0 

Start AB Procedure Level 1 

Start XY Procedure Level 2 

Start CD Procedure Level 3 

Start WZ Procedure Level 3 

END 

END 

END 

Explana tion: 

Procedures CD and WZ are nested within the XY procedure and the XY procedure 
is nested within the AB procedure. 

14 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

SECTION: 

3 
PAGE: 

3.8.2. Levels of Procedures 

When procedures are nested, they are considered to have various levels of hierarchy. 
The main program is considered level O. A procedure called upon at level 0 is 
assembled at level 1. Its entry point must therefore be defined to be accessible to 
level O. A procedure called upon within a level 1 procedure is assembled at level 
2. In other words, each time a new subassembly is started the level is increased 
by 1, and decreased as the procedure subassembly is completed. 

The level of a procedure entry point determines where the procedure may be refer
enced. If the level of the procedure entry point is equal to or less than the level 
of the subassembly, it is accessible to that subassembly, and the procedure may 
be referenced. If the level of the procedure entry point is greater than the level of 
the subassembly, the procedure may not be referenced from within the subassembly. 

The level of a procedure entry point is determined by combining the level at which 
the procedure sample is defined and the number of asterisks appended to the label 
of the entry point. Each asterisk appended to the label of the procedure entry point 
makes the label accessible for reference at a level one lower than the level at 
which the procedure sample is defined. 

Example: 

PI * PROC Entry point at level 0 

Levell procedure 

P2 PROC Entry point at level 2 

Level 2 procedure 

C*** PROC Entry point at level 0 

Level 3 procedure 

END 

PROC Entry point at level 1 

Level 3 procedure 

END 

END 

END 

Level 0 code 

15 



UP-7S99 
Rev. 1 UN I VA C 41 8 ·111 R TO S ASS E MB L E R 3 

SECTION: 

Explanation: 

• Entry point PI is accessible to level O. Procedure PI may be called from any
where in the program. 

• Entry point P2 is accessible to level 2. Procedure P2 may be called only from 
within a second or higher level procedure. 

• Entry point P3 is accessible to level O. Procedure P3 may be called from any
where in the program. 

• Entry point P4 is accessible to level 1. Procedure P4 may be called from within 
a first or higher level procedure only. 

Example: 

1 

2 

3 

4 

5 

6 

7 

8 

r---Pl* 

P2 

P3*** 

P4** 

PROC 

P3 

PROC 

P4 

PROC 

P2 

END 

PROC 

END 

END 

9 

10 

11 

12 

---------- END 

PI 

Explanation: 

Entry point at level 0 

Level 1 procedure 

Call at level 1 

Entry point at level 2 

Level 2 procedure 

Call at level 3 

Entry point at level 0 

Level 3 procedure 

C all at level 2 

Entry point at level 1 

Level 3 procedure 

performed as level 4 procedure 

Procedure call at level 0 

• Lines 1 and 11 define a level 1 procedure Pl. 

• Lines 3 and 10 define a level 2 procedure P2. 

• Lines 5 and 7 define a level 3 procedure P3. 

• Lines 8 and 9 define a level 3 procedure P4. 

16 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

SECTION: 

3 

• Line 1 defines a procedure entry point PI at level O. 

• Line 3 defines a procedure entry point P2 at level 2. 

• Line 5 defines a procedure entry point P3 at level O. 

• Line 8 defines a procedure entry point P4 at level 1. 

• Line 12 is a procedure call on procedure PI which is accessible at all levels. 
The procedure PI is processed at level 1. 

• Line 2 is a procedure call on procedure P3 which is accessible at all levels. 
The procedure P3 is processed at level 2. 

• Line 6 is a procedure call on procedure P2 which is accessible at level 2 and 
higher. The procedure P2 is processed at level 3. 

• Line 4 is a procedure call on procedure P4 which is accessible at level 1 and 
higher. The procedure P4 is processed at level 4. 

3.9. PROCEDURE LABELS 

As stated previously, the labels on the PROC and NAME directives are procedure 
entry points. They may be referenced as procedure entry points only at those levels 
or higher levels of subassem bly at which the entry point is defined. They are in
accessible below the level at which the entry point is defined. The accessible level 
of the entry point is determined by the physical nesting depth of the procedure together 
with the number of asterisks appended to the entry point label. 

Other labels may be used within procedures. A label is a symbolic representation of 
some value. It may be local or global. A local label may be referenced only at the 
level at which it is defined or at higher levels. A global label is one which is defined 
to be accessible beyond the range of the assembly in which it is defined. When a 
label is defined to be accessible beyond the entire assembly, it is said to be externally 

defined. 

Labels defined in the main program may therefore be referenced within any procedure. 
Labels defined within a particular procedure may normally be only referenced within 
that procedure or by any procedure called upon by the first procedure. 

Example: 

000001 
000002 
000003 
00000'4 
ooooos 
000006 
000007 
000008 
000009 
00U010 
000011 
000012 
000013 
00001'4 
000015 
000016 
000017 
000018 

000019 
000020 

00 
00 
00 
00 
00 
00 

000000 
OOOOUI 
0 0 0002 
000003 
00000'1 
000005 

000003 

70 0001 
70 0001 
70 0002 
70 000 3 
70 000 3 
70 0003 

/. 
A
ONE 
e-

Ttl 0 

THREE 

. -.. 

PRoe 
EQU 
PRoe 
LLI< 
EQU 
LLK 
LLK 
END 
LLI< 
B 
LLI< 
END 
EQU 

eALL 

A 

LLI< 
END 

ONE 
2 
TWO 
THREE 

ONE 

THREE 

3 

NAME 

THREE 

17 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3 

SECTION: 

Explanation: 

• Lines 2 and 13 define a first level procedure, A. 

• Lines 4 and 9 define a second level procedure, B. 

• Line 3 defines ONE at level 1. 

• Line 6 defines TWO at level 2. 

• Line 14 defines THREE at level O. 

• Lines 5, 7, and 8 illustrate that all three labels may be referenced within the 
second level procedure B. 

PAGE: 

• Lines 10 and 12 illustrate that only the labels ONE and THREE may be referenced 
in the first level procedure A. 

• Line 19 illustrates that only the label THREE may be referenced in the main 
program. The labels ONE and TWO are not defined to be accessible to level O. 

Labels defined within a procedure are unique to the level at which they are defined. 
If the same label is defined at more than one level, any reference to that label will 
be to the definition in existence at the highest accessible level. 

Example: 

000001 
00U002 
000003 
00000" 
000005 
000006 
000007 
000008 
000009 
000010 
0000 11 
000012 
000013 
00001" 
000015 

000016 
000017 

Explanation: 

00 000000 
00 OOOOUI 
00 000002 

000003 

70 0002 
70 0001 
70 0003 

/. 
A' 
ONE 
B' 
ONE 

ONE 

•••• 

PRoC 
EQU 
PROC 
EQU 2 
LLK ONE 
END 
8 
LLK ONE 
END 
EQU 3 

CALL NAME 

LLK ONE 
END 

• Lines 2, 4, 7, and 10 define the firs t and second level procedures A and B. 

• ONE • 2 

• ONE • 

• ONE • 3 

• Lines 3, 5, and 11 define ONE as 1, 2, and 3, respectively, at levels 1, 2, and 0, 

• Lines 6, 9, and 16 illustrate that even though the same label ONE is used, the 
values associated in each case are different. 

NO T E: If line 5 were omitted, the reference to ONE in line 6 would result in a 
reference to the value of ONE defined at the next lower level, namely 1. 

18 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3 

SECTION: 

3.9.1. Global Labels 

In order to define labels to be accessible at levels lower than the one at which 
they are defined, asterisks are appended to the label definition. For each asterisk 
appended to the label, the level of the label is decremented by 1. If the number of 
asterisks appended to the label definition exceeds the subassembly level at which 
it is defined, the label becomes an external definition and may be referenced by 
other programs. 

Global labels are defined only after the procedure in which they are defined has 
been called. 

Care must be taken that global labels are not multiply defined as a result of 
repeated calls on the procedure in which they are defined. 

Example: 

000001 
aOOlJ02 
000003 
00000'1 
ooooos 
000006 
000007 
000008 
000009 
000010 
000011 
000012 

PROGRAM SIZE: 

00 0 0 0000 

00 00001 

EXTERNAL DEFINITIONS: 

Explanation: 

32 0001 

62 

• Lines 2 and 6 define the procedure BREGS, 

I. 
BREGS. 
!II •• 
82 •• 
83. 

. ••• 

••• 

81 

PROC 
EQU 1 
EQU 2 
EQU 3 
END 

CALL NAME 

BRECiS 
LB 81 
END 

SUMMARY • •• 

L!I Line 10 calls on the procedure BREGS and causes the labels Bl, B2, and B3 
to be defined, 

• Lines 3 and 4 define the external labels Bl and B2 as external definitions, 

II Line 5 defines 83 = 3 at level 0, 

II Line 11 illustrates that after the procedure BREGS is called, the label Bl may 
be referenced at level 0, 

19 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

SEC TION: 

3 

3.10. FORWARD REFERENCES 

Forward references occur when a label is referenced prior to its definition. Forward 
references also occur if a label whose value is dependent upon values not yet 
defined has been referenced. Forward references are prohibited if the fact that 
different values associated with the label in pass 1 and pass 2 of the assembly 
causes different amounts of code to be generated in pass 1 and pass 2 of the 
assembly. 

Example: 

LABEL OPERATION OPERAND 
10 20 30 40 

.1 

1\_.< --L L~ ... l. J .LJ J.~l~yj .. L.L .. _.l_.I __ l j 151J L.l j ~ 

_.L._L .. L _L ... L.l L_J._.L......u:!~L.-L.~A_jJl L~lk~l. LI1_....Ll .. LL.LL..--L. L--.l. ,_1._ L_ .. ~ _L .... [_.1. 

Explanation: 

• A is not defined in pass 1. 

• B is not defined in pass 1. 

The user is cautioned against basing the generation of code within a procedure 
sample on a condition involving a forward reference. Consider a hypothetical 
MOVE procedure, The programmer may check if the move from and move to 
addresses are the same. On the first pass through the source data, the labels of 
the from and to areas mayor may not have been defined, On the second pass of 
the assembler, the labels will have been defined. The values reached on each 
pass of the assem bIer can be different. 

If the procedure sample chooses an error exit on pass 1 (that is, no generation of 
code) and produces code on pass 2, the labels following the call on the sample 
are assigned a location counter value on pass 1 that is different in pass 2. The 
result is a multiple definition of those labels. 

When the assembler gets a different line count on the first or second pass, multiple 
definitions of succeeding labels occur and the D error flag is set. 

The user is reminded to take great care when using forward references. 

20 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3 21 

SECTION: PAGE: ________ ........ ________________________ --I. ______ .....I. _____ ~___Ii......._~~o_o-_o"~ 

3.11. LOCATION COUNTER DEFINITION 

A procedure may be made to generate code under one or more location counters by 
defining the location counter in the label field of a line item within the procedure 
sample. When the procedure is completed, the location counter active at the time 
that the procedure was called is reactivated. 

Example: 

000001 /. 

000002 A· PROC 
00U003 SLJI S (1) 

00000'1 S(l) +A ( 1 ,11 

0000 aS END 
000U06 
00U007 . ••• CAU . NAME 
000008 
000C.l09 00 oOoouo 30 0000 A SUBI 

+ 6.12 Cd 
U 01 0 0 0000 000000 

+ Ie 00 SUal 
000010 00 000001 30 000 1 SUBZ 

+ 6. 12 a I 
U 01 000001 000000 

+ 18 00 SUe2 
000011 END 

••• SUMMARY ••• 

PROGRAM 5IZE: 00 00002 01 00002 

EXTERNAL OR UNDEfINED REFERENCES: suez SUSI 

Explanation: 

• Lines 2 and 5 define the proced ure A. 

• Line 3 generates an S LJ I instruction to the next word under location counter 1. 

• Line 4 defines the subroutine entry address under location counter 1. 

• Lines 9 and 10 generate two calls on subroutines SUBI and SUB2 respectively. 

The SLJI instructions are generated under location counter 0; the entry point 
addresses, SUB1 and SUB2, are generated under location counter 1. 

NO T E: Unless a map is s ubm itted to force location counters 0 and 1 to be in the 
same bay, the foregoing example is not executable. 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3 

SECTION: PAGE: 

3.11.1. Writing Labels 

A label may be affixed to the line of reference to a procedure. Under normal conditions, 
this label is defined as equal to the value of the current location counter at the time 
of the procedure call. It is possible to associate this label with a line within the 
procedure. This is done by coding an asterisk (*) alone in the label field of that 
particular line in the procedure. The label of the calling line is processed exactly as 
though it has appeared in place of the asterisk except that it is defined at the level 
of the reference line on which it appeared. 

Example: 

000001 /. 
000002 A- PROC I. Z 
OOOOOl TZ ACId' 
00000'+ - J A'I .2, 
OOOOO~ END 
0011006 
00uQ07 . --- CALL NAME 
000008 
00v009 00 000000 51 000 3 JP A ONE,TWQ 

00 OOOOul 3'1 000'+ 
OO[JU10 00 000002 S!) 0001 JI JP 
00G011 00 OOOOu3 000001 ONE + I 

000012 00 OUooo,+ 000002 TIIO +2 
001.1013 END 

Expla nation: 

• Lines 2 and 5 define the proced ure A, which generates the instructions TZ and J. 

• Line 4 generates the instruction J and has a single asterisk in the label field. 

• Line 9 calls on procedure A. The label JP is defined as equal to the location 
counter value of the J instruction instead of the usual TZ instruction which is 
the first line generated. 

3.12. Complex Procedures 

The following paragraphs of this section contain a discussion of those assembler 
features which enable the construction and use of complex procedures. When the DO, 
NAME, and GO directives are used in conjunction with procedures, a powerful tool 
exis ts for the ge nera tion of code wh ich is cond itioned by the supplied parameters. 
Procedures may be used to conditionally generate code. The PROC structure enables 
coding of generation alogrithms in the procedure sample, such that the code generated 
applies the alogrithms a nd rna y gene rate entire ly d ifferen t tables or instructions, 
depending on the supplied parameters. 

3.12.1. NAME Directive 

The NAME directive has three functions: 

• It provides a local reference point within a given procedure sample. 

• It provides alternate entry points to the procedure. 

• It may supply a value to the procedure which is unique for the associated 
entry point. 

22 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3 

SEC T ION: PAGE: 

The NAME directive has the structure: 

label NAME operand 

The label field contains a symbolic label no longer than six alphanumeric characters, 
which is used to identify the NAME directive. The operand field may contain a 
value which can be referenced in the procedure sample by the paraform pn(O,O), 
where pn denotes the procedure name. 

The label of the NAME directive is defined in the same way as the label of a PROC 
directive; that is, it is defined at the same level as the procedure, and asterisks 
are used to make the label accessible at lower levels. 

3.12.1.1. Local Reference Point 

The NAME directive provides a local reference point within the procedure sample 
in which it is defined. Associated with the label of the NAME directive is the 
start of the s ym bolic code within the procedure immediately follow ing the NA ME 
directive. By using the GO directive (see 3.12.2) or by using the NAME directive 
as a procedure entry point (see 3.12.1.2), different paths through the procedure 
sample may be chosen. 

3.12.1.2. Alternate Entry Point 

The NAME directive may be used as an alternate entry point to the procedure. 
In this form the same rules applying to the PROC directive entry point apply 
to the NAME labels. Regardless of the procedure entry point used for any partic
ular procedure call, the paraform name is the procedure name. 

Example: 

OOUOOI 
OOuuO:l 
000003 
00000'1 
OOliUU~ 

000006 
DOuGal 
00uU08 
00u(';09 
OOO(.ilO 

OOUOll 
OOQOl2 
000(.113 
00001'1 
OOtiOIS 

Explanation: 

00 oUoouo 
00 OUOOOI 
00 000002 

00 0000U3 
00 00000'1 

12 0003 
'44 000"1 
1"1 000"1 

OOOUOI 
000002 

• Lines 2 and 6 define the procedure LADD. 

/. 
LADD. 

ADD-

. ••• 

A 
e 

PRot 
LL LADDII,I) 
NAME 
AL L.ADDII,'O 
END 

CALL NAME 

LAoD A.B 

AOO 0.8 

+1 
+2 
END 

• Line 4 defines the alternate entry point ADD. The entry point ADD, because 
of its position, does not point to the same procedure sample. If the procedure 
is called upon through the entry point ADD, the subassembly of the procedure 
starts with line S. 

• Line 10 calls on the procedure LADD and would generate the instructions: 

LL A 

AL B 

23 



UP-7S99 
Rev. 1 UN I V A C 418 ·111 R TO 5 A 55 E MB L E R 3 

SEC TION: PAGE: 

• Line 11 calls on the procedure LADD but through entry point ADD. As a result, 
the generated code would be: 

AL B 

24 

3.12.1.3. Parameter Value 

000001 
000002 
000003 
00000'1 
0000051 
000006 
000007 
000008 
000009 
000010 
000011 
000012 

000013 

00001'1 
OOOOIS 

000016 
000011 

The paraform pn(O,O) has a value depending on the procedure entry point used in the 
the function fie ld of the proced ure ca 11 line. If the proced ure na me is used as 
the entry point, the paraform pn(O,O) has a value of O. If an entry point defined 
on a NAME directive is used, the paraform pn(O,O) has a value equal to the operand 

I value of the NAME directive. 

Example: 

• • •• 
00 000000 10 000" 
00 000001 12 000& 
DO 000002 '16 000 6 
00 000003 'I" 0007 

00 00000" 201'100 A 
00 OOOOu& 000000 
00 CUOOu6 B 

Explanation: 

iIII Lines 2 and 8 define the procedure L. 

PROC 
NAME 
NAME 
rORM 
I 
I 
END 

CALL 

LA 

SA 

+1.0 

REs 
END 

NAME 

1 .2 
DID 
0'16 
6t12 

• LU reN. COE. 
• SU F'CN. COE. 

L(O,OliL(1,I) 
012+03Z.(L(0.0)aO"6),L(I.IJ+l 

A 

B 

2 

II Lines 3 and 4 provide the entry points LA and SA. If the procedure is called 
through the entry point LA, the paraform L(O,O) has a value aLa; if called 
through the entry point SA, the paraform L(O,O) has a value 046. 

III Line 6 ge nera tes a n ins truct ion with function codes of either 010 or 046, that 

is, an LV or an SU. 

!l Line 7 generates an instruction with function codes of either 012 or 044, that 
is, an LL or an SL. 

iii Line 12 calls on proced ure L through the entry point LA. The code generated 
is: 

LV A 

LL A+1 

!!II Line 13 calls on procedure L through the entry point SA. The code generated 
is: 

SV 13 

SL 13+1 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3 

5 EC TION: 

3.12.2. GO Directive 

The GO directive provides a means of transferring control to the line whose label 
is in the operand fie ld. The format of the GO directive is as follows: 

GO label 

The label specified in the operand field must refer to the label of a NAME or PROC 
directive and must be accessible at the level at which the GO is performed. 

When the GO directive is encountered within a procedure, the next symb olic line 
scanned in the procedure sample is the one to which the NAME directive referenced 
points. The NAME directive referenced need not be defined in the procedure. As a 
result, lateral transfer between procedures is possible through the use of the GO 
directive. 

In determining the label of the NAME directive referred to, the assembler uses the 
follow ing alogrithms: 

• If the first character of the operand field of the GO directive is alphabetic, the 
label is directly specified • 

• If the first character of the operand field of the GO directive is not alphabetic, 
the field is assumed to contain an expression. The resultant 36-bit value of the 
expression is then used as representing the left-justified label. 

Example 1: 

/. 
X PROC 
MOVE. NAME 

00 X (l ,.11 t L.V X, I ,ll 
00 XI1,-2) , LL. X 11 t 2) 
00 x (1, -J) t flO Xl 
6T X ( 1,3) 
00 1 t END 

XI NAME 

PAGE: 

000001 
00Ll002 
000003 
00000'+ 
00000& 
000006 
00u007 
00U008 
00U009 
000010 
DOOull 
000012 
000013 
00001'+ 
OOOOlS 
00U016 
000017 

00 X(l,3)<0'l000 t L.BK X (1,3) 

000018 

00001' 
00002U 
000021 

u 

PROGRAM SIZe.: 

00 0 0 0000 
00 OOOOul 
00 0000Ll2 
00 0 0 0003 
00 00000'+ 
00 OOODu& 
00 OUOO(')6 
00 000007 
00 000177 

00 0 0 0367 
00 000370 
00 0 0 0371 

00 00372 

10 0367 
12 0370 
5070 1'+ 
10 036 7 
12 Ol70 
36 017 0 
lO 0371 

000007 
000177 
000000 

E.XTERNAL OR UNOEflNlO REfERENCES: MOVSU6 

•••• 

FROM 
TO 

00 X(1,3»03717 , 
SL.Jl 
END 

CALL. NAME 

RES 
RES 
END 

••• SUMMARY •• -

(MOVSUBI 

12U 
120 

L8 I X 11.31 ) 

25 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 3 

SECTION: PAGE: 

Expla nation: 

• Lines 2 and 13 define the procedure X. 

• Line 3 provides the entry point MOVE. 

• Lines 4 and 5 generate LV and LL if the first two parameters are preceded by an 
asteris k. 

• The GO directive on line 6 w ill be performed if the third parameter is preceded by 
an asterisk. If so, lines 7 and 8 are ignored and the procedure subassembly resumes 
at line 9. 

• If no asterisk appears in the third parameter, line 7 generates a BT instruction. 

• Line 8 terminates the subassembly of the procedure. Note that the DO statement 
is used to avoid the termination of the procedure sample which would result if just 
an END statement were coded. 

II Lines 10 and 11 generate either LBK or LB, depending on the number of words 
to be transferred. 

• Line 12 generates an SLJI call on the subroutine MOVSUB. 

• Line 17 calls on the procedure X through the MOVE entry. Since no asterisk 
precedes the third parameter, a BT 12 instruction is generated in addition to 
the LV and LL instructions. 

• Line 18 calls on the sam e proced ure but because the third parameter is preceded 
by an asteris k, the code generated is: 

LU (FROM) 

LL (TO) 

LBK 120 

SLJI (MOVSVB) 

26 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER· 

Example 2: 

I. 
X 
MOVE-

xl 

SECTION: 

PROC 
NAME 
00 1t11 •• 11 • ioU 
DO X (l ,-21 , 1.1. 
00 XIl,-3) , bO 
8T X ( 1 .3) 
END 
PROC 0,2 

3 

x 11 ,1 ) 
x 11 ,2) 
Xl 

PAGE: 

000001 
OOuGG2 
000003 
OOOGO'l 
OOuGOS 
000006 
OOuuG7 
OOuGOS 
OOlJU09 
OOtiiJIO 
ODUUll 
000012 
OOOCl13 
OOOCil'1 
OOui.d ~ 
000016 
000017 

DO Xll,3)<01l0UO, loBI< Xll,3) 

000018 

00U019 
ODU02(J 
00uG21 

u 

U 

PRO('RAf'l 5 I ZE: 

00 
00 
00 
00 
00 
00 
00 
00 
00 

00 
00 
00 

00 

000000 
000001 
000002 
OOOOiJJ 
oUODOII 
OOOOuS 
OiJOU06 
OGOOu7 
000177 

0003b7 
OU0310 
0 0 0371 

U0372 

10 036 7 
12 037 0 
S070 I" 
10 036 7 
12 037 0 
36 017 0 
3U 0371 

000007 
000177 
OOOUOO 

tXT~~NAI. OR UNliEfIN£O REFERENCES: 

Explanation: 

MOVSUEl 

.. _-

ff~ O~I 

TO 

DO Xll.J»03777 , L~ IXll,311 
SLJI IMOVSUBI 
END 

CALL. NAME 

RES 120 
RES 120 
END 

•• - SUMMARY ••• 

E xa mple 1 is functionally iden tica I to exa mple 2. Instead of a single proced ure, 

two separate procedures, X and Xl, are defined, and the GO directive is used to 
transfer into the second procedure • 

• If the NAME directive referred to in the GO statement is not defined or is not 
accessible at the level of subassembly of the GO directive, an expression 
error results (E flag) and scanning of the procedure resumes at the next line of 
the proced ure sa mple • 

• The GO directive may direct the assembler to resume processing of the subassembly 
at the occurrence of the specified NAME directive. The NAME directive may appear 
anyw here; that is, it may be a forward or back reference, or it may be a transfer 
into another procedure. As a result, great care m us t be taken to avoid infinite loops, 
caused by using the GO directive inappropriately. 

3.12.3. DO Directive 

The DO directive, as previously explained, is used to conditionally generate one 
or more words of data. The DO directive in the assembler is a powerful tool which, 
when used within procedures, provides great flexibility and power. When combined 
with the GO directive, the DO directive can be used to generate series of instructions 
iterative ly as we 11 as c ond itionally. The follow ing paragraphs detail the rules which 
apply when these two directives are used together. 

27 



UP·7599 
Rev. 1 

3 UNIVAC 418·111 RTOS ASSEMBLER 
SEC TION: 

3.12.3.1. Conditional DO 

If one of the conditional operators, < = or > , govern the determinant expression 
in the DO, or if the determinate expression has a value of 1, the GO directive is 
performed exactly as though the DO directive were absent. Therefore, the ex
pres sions: 

DO 1 ,GO A 

and 

GO A 

are functionally identical. 

3.12.3.2. Ge nerative DO 

If the determinant expression of the DO directive is greater than 1, the DO 
is said to be of the generative type. When the GO directive appears as the 00-
item of a generative DO, the GO is performed iteratively as rna ny times as the 
repeat count specifies. When an END directive is encountered, the next GO is 
perform ed. When the DOc oun t is ex ha usted, processing continues at the state
ment follow ing the 0 O. 

Example: 

OOUU(JI 
OOiJwul 
OOUUOJ 
00(,;00" 
OOOUu~ 

OO(';u06 
00uuu7 
OOUOQ8 
OOu(JQ9 
OUUUIO 
OOiJOil 
00uul2 
OOUU1J 

OUUUI" 
DOuGI!:. 

00UOl6 
UUUUI7 

OOUUIS 
00001'1 

00Uu20 
DOu021 

Explanation: 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
DC 
00 

UO 
00 
00 
00 
00 
00 
00 
00 
00 

ouoouo 10 UOI" 
OUOOUI IZ UOI~ 
OUOOl.iZ "6 001 6 

000OU3 "" 001 7 
DUD au" 10 OOZo 
OUoou~ IZ 0021 
OUOO u6 "16 00Z2 
OUOOlJ7 "" U02 J 

000U10 lu 002" 
DUO a II 12 002~ 
000UI2 "6 0026 
0 0 0013 "" 002 7 

OUOOI" 201"00 
OGOOI~ OOOUOO 
OUOO16 
OU0020 202600 
OU0021 OOOUOO 
OUOO22 
0 0 0041'1 203500 
OUOOl!:. OOOUOO 
OUOO416 

• Lines 2 and 9 define the proced ure X. 

• Line 3 provides the entry point LDSTOR. 

/' 
X 
LUST OR. 
I 

x I 

, ... 

A 

B 
C 

0 
E 

PROC 
NAME 
DO X I GO XI 
Ow I I LNO 
NAME. 
lA X(!,I) 
SA X(I,2) 
END 

CAlL NAME 

lDsTOR ~,B C,o E,F 

+1,0 

RES Z 
+3,0 

RES 
+S,O 

RES 2 
END 

28 
PAGE: 



UNIVAC 418-111 RTOS ASSEMBLER 3 

• Line 4 cOHlbines a DO and GO directive. Since the paraform X may have a 
value between 0 and infinity (actually the maximum number of fields allowed 
is 1768), it may be either a conditional or generative DO. Assuming X>l, the 
DO is of the generative type. As a result the GO Xl is performed X times. 
Each time, transfer is made to line 6, and the procedures LA and SA are 
performed. After the DO count is exhausted, line 5, which terminates the 
subassembly, is performed. If X=l, transfer to line 6 is made, and subassembly 
is terminated upon encountering the END directive in line 9. 

• Line 7 calls the procedure LA, which generates the instructions LU and LL. 

• Line 8 calls the procedure SA, which generates an SU and SL. 

• Line 13 calls on the procedure X and generates the instructions: 

LU A 

LL A+l 

SU B 

SL B+l 

LU C 

LL C+l 

SU D 

and so on through F. 

29 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

Example: 

000001 
000002 
OOOOOl 
000001t 
ooooos 
000006 
000007 
000008 
000009 
00001U 
OOOUll 
000"12 
00001l 
000011t 
00001S U 00 OUoouo lO 001 1t 

+ 6.12 00 
00 OUOOU1 70 Ouol 

+ 6.12 uo 

U 00 OUOOU2 lO OU1S 
+ 6. 12 uo 

00 OUOOOl 70 Oool 
+ 6.12 uo 

U 00 DUO 00 'I 30 OU1S 
+ 6.12 00 

00 OUOOO~ 70 OOOS 
+ 6. 12 uo 

U 00 OUOOU6 30 U01S 
+ 6.12 uo 

U 00 OUOOU7 30 OU16 
+ 6. 12 UO 

00U016 U 00 OUOOIO 30 0011t 
+ 6. 12 00 

00 OUOOll 70 0002 
+ 6. 12 00 

U 00 000012 30 OU1S 
+ 6. 12 UO 

U 00 OOOOll lO 001 6 
+ 6. 12 UO 

000017 
U 00 00001'1 000000 

+ 18 00 OPEN 
U 00 OOOOlS 000000 

+ 18 UO GET 
U 00 OUOO16 000000 

+ 18 UO CLOSE 

/. 
X 
CALL.IO. 

Xl 

. ••• 

PROC 
NAME 
SL.Jl 
DO X+2 
SLJl 
NAME 
DO I>X 
LLI< 
SLJI 
END 

(OPEN) 
• GO Xl 

(CLOSE) 

• END 
XCltll 
(GET) 

CALL NAME 

OLLIO 3 5 

CALLIO 2 

END 

••• SUMMARY ••• 

3 
SEC T ION: PAGE: 

PROGRAM SIZE: 00 U0017 

EXTlRNAL OR UNOEflNtO ~EfERENCES: C.LOSE GET OPEN 

Explanation: 

• Lines 2 and 11 define the procedure X. 

• Line 3 provides the entry point CALLIO. 

• Line 4 generates a call to subroutine OPEN. 

11 Line 5 is a generative DO directive which transfers to line 7. The determinant 
value is forced to be greater than 1 so that line 6 must always be generated 
upon completion of the DO. For each parameter supplied, an LLK parameter 
value and an SLJI (GET) are generated at lines 9 and 10 . 

., Line 6 generates a call to subroutine CLOSE. 

II Line 8 terminates both the DO count when I>X and the subassembly after the 
generation of line 6. 

30 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

SECTION: 

3 31 
PAGE: ccc~=_~rc .-L.. ______________________ ............. _____ ....... ______ --'-____ m ___ c_ 

• Line 15 calls on the procedure through entry point CALLIO to generate the 
ins tructions: 

SLJI (OPEN) 

LLK 1 

SLJI (GET) 

LLK 3 

SLJI (GET) 

LLK 5 

SLJI (GET) 

SLJI (CLOSE) 

• Line 16 calls on the procedure through entry point CALLIO to generate the 
instructions: 

SLJI (OPEN) 

LLK 2 

SLJI (GET) 

SLJI (CLOSE) 



UP-7S99 
Rev. 1 UN I VA C 418 -III R TO S ASS E MB L E R 4 

SEC TION: PAGE: 

4. ASSEMBLER OPERATION 

4.1. GENERAL 

This section discusses the ways in which the assembler is to be used, what results 
are produced, and the meaning of the error diagnostics and messages which may result 
during the operation of the assembler. 

4.2. CONTROL CARD FORMAT 

The assembler is an element of the Real Time Operating System (RTOS) and operates 
under its control. The assembler may be called upon to assemble a symbolic program 
through the use of the @ASM control card. 

The @ASM control card has the form: 
@ASM,options pronam 

The program name, designated by the parameter pronam, is the name of the symbolic 
element to be assembled, and will be the name given to the produced relocatable 
object code element. 

If no options are to be exercised, the comma following the ASM function may be 
omitted. At least one blank character must follow the option field. If no options are 
specified, the symbolic statements to be assembled must immediately follow the 
control card. Upon the occurrence of either another control card or an END directive 
which does not Signify the end of a procedure sample, the assembler is terminated. 

The following options may be present on the @ASM control card: 

T Results in listing all inserted elements. 

M Results in listing the mode value of all data words generated. 

N Results in the omission of all listings except those statements containing 
an error flag. 

A 

R 

P 

* 

Results in the omission of all listings. 

Results in the listing of a cross-reference of all labels referenced in the 
assembly after the assembly is complete. 

Results in the punching of a relocatable object-code card element. 

Specifies that the source to be assembled is to be found in the user run 
library as a symbolic element. Correction cards may follow the @ASM 
control card. 

NOTE: An A option overrides the presence of the N, T, and R options. 

1 



UP-7599 
Rev. 1 UNIVAC 418 .. 111 RTOS ASSEMBLER 4 

SECTION: 

4.3. ASSEMBLER OUTPUT LISTING 

Unless an A or N option is present on the @ASM control card, the assembler produces 
a printed listing of the symbolic statements processed together with the code pro
duced. 

Example: 

00;01 ;3'+ (alASM, .T T'+-l 

uNIVAC '+IS-111 ASSEMBLY 
000001 
000002 U 00 000000 30 001S 
00UU03 
000001 01 I) 00 000001 12 0057 
000002 01 00 000002 10 0001 
000003 01 00 0 0 0003 32 0002 
00000" 01 
000001 02 00 00000 .. 76 0007 
000002 02 00 OUOOO!; 32 0001 
000003 02 00 000006 3 .. 0000 
oouoo" 02 
000001 03 00 0000U7 000000 
000002 03 E DO 0 0 0010 00100" 

00 0 00011 00001 .. 
00 0 00012 000003 
00 0 0 0013 OOo .. S" 

000003 03 00 0 0 001'+ S5 UU07 
OoUOO" ol 
000001 0 .. 
000002 0 .. D 10 000000 000000 
00uo03 0 .. 10 OOOOUI 000000 
00000" 0 .. 10 000002 000000 
00000& 0 .. 10 0 0 0003 
00000" D 10 0 0 00&7 000000 
000005 000000 

U 00 0 0 0015 000000 

PROGRA,.. SIZE: 00 00016 10 00060 

EXTERNAL OR UNDEf'IN~O REFERENCES: fRMBUF 

EXTERNAL DEFINITIONS: PRINTI 

DOUBLY DEFINED LA8ELs: 

EXPRESSION ERRORSZ QUI 

LEVEll BY 
LEVEL2 BY 
LEVELl BY 
LEVEL" BY 

TIt-, 
LEVELl 
LEVELl 
LEVELl 

Explanation: 

MAR 17 1970 
START, 

PRI 

SCI Q) • 
XX2 
XXl 
xx .. 
BUF 
XXl 

••• 

00:01:3,+ 

SLJI 
INSERT 
1.1. 
LU 
1.8 
INSERT 
SLJ 
LB 
J 
INSERT 
+ 
PR I NTS 

JI 
INSERT 

+ 
+ 

• 
REs 
+ 
END 

SUM,..ARY 

• Field 1 contains the line number of the symbolic statement. 

• •• 

(f'RMBU,.) 
LEVEL 1 
U2 
XXl 
XX .. 
LEVEL2 
PRINTI 
XXl 
START 
LEVELl 
a 
PRI BUf" ..... 1 

PRINTI 
LEVEL" 

0 
0 
0 .. .. 
U 

START.2 

• Field 2 is present only when the symbolic code being assembled comes from an 
inserted element, and identifies the level of inserted elements. 

• Field 3 is present only if diagnostic warnings are produced, and identifies the 
type of error detected. 

• Field 4 identifies the active location counter. 

• Field 5 contains the relative value of the active location counter. 

• Fields 6 and 7 contain the binary value of the code generated. 

2 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

SECTION: 

• The remainder of the line reflects the supplied symbolic image. 

• Following the END directive, all literals are printed. 

The summary printed at the conclus ion of the assembly specifies: 

• the size of each location counter used; 

• the names of external or undefined labels; 

• the names of any externally defined labels; 

• the names of any doubly defined labels; 

• the number of diagnostics that occurred during the assembly; 

• the names of any inserted elements and the elements which caused their 
insertion. 

4.3.1 Mode Listing 

4 

If the M option is present on the @ASM control card, each line of generated code 
is followed by the mode value of the data word produced. The mode value 
indicates: 

• the size of the relocation field; 

• the location counter of the operand field; 

• the label of an external reference; 

• the presence of the IBOO operator; 

• whether the data word is to be relocated; 

• whether positive or negative relocation is specified; 

• whether the external reference is to be added or subtracted. 

The format of the mode value line listed is: 

where: 

fs Ie s label 

is present if the IBOO operator is present in the expression. 

is + if positive relocation is specified; 
is - if negative relocation is specified; 
is blank if no relocation is to be performed. 

fs is 18 if the entire da ta word may be re located or modified by the value of 
the external reference; 

is 6,12 if the lower 12 bits may be relocated or modified by the value of 
the external reference. 

3 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 4 

SECTION: 

lc is the location counter under wh ich the operand expression is to be relocated, 
and is 0 if the operand field in nonrelocatable. 

s is blank if the value of the external reference is to be added; 

is - if the value of the externa 1 reference is to be subtracted. 

label is the name of the externa I reference. 

NOTE: The M option should be used only if there is a need to examine the mode 
values genera ted. Even though the assembly is not significantly slowed 
down, an extra line of print is generated for each word and may cause an 
early overflow of the symbiont drum space. 

Example: 

00:01:3S falA5M, M T'i-2 

UNIIiAC '11 8-111 
000001 00 OUOOUO 
000G02 00 OU0010 

000003 00 oUoo 11 

OOUOO'l as OUOOUO 

000005 00 OUOO12 

00U006 00 OUOO13 

000007 00 00001'1 

000U08 00 OUOOIS 

000009 U 00 0 0 0016 

000010 U 00 OUOO17 

000011 U 00 OU0020 

000012 
00 OU0021 

PROGRAM SIZE: 00 U0022 

ASSEMBLY --

70 0001 
+ 6,12 

12 OU1 U 
+ to, 12 

000000 
+ 18 

12 7777 
- b ,12 

OU0010 
+ 18 

777777 
18 

12 0021 
+ b ,12 

12 OOOl 
+ 6,12 

12 0006 
+ 6,12 

000000 
1+ 18 

000000 

00 

00 

UO 

05 

00 

05 

00 

00 

05 

00 

1+ 18 05 

os OoUOI 

EXTlRNA~ OR UNuEFIN~D REFERENCES: UREF 

Explanation: 

• Line 2 is a constant. 

-
-

MAR 17 1970 

TAG 

5(S),TAGS 

$(0) 

UREF 

URe:F 

UREF 

00:01:35 
RES 

~~" 

LL 

+0 

LL 

+TAG 

-TAGS 

LL 

LL 

LL 

-UREF l 

END 

a 
1 

TAG 

-TAGS 

UREF+3 

••• SUMMAI'lY ••• 

• Line 3 is 12-bit relocatable. The operand value is to be relocated under location 
counter O. 

• Line 4 is a constant. 

• Line 5 is 12-bit relocatable. The I2-bit operand value is to be relocated under 
location counter 5. Relocation is negative; that is, the relocation base is to be 
subtracted. 

• Lines 6 and 7 are I8-bit relocatable. 

• Line 8 itself is I2-bit relocatable. The referenced literal is I8-bit relocatable 
and IBOOed. 

4 
PAGE: 



UP-7599 
Rev. 1 

4 UNIVAC 418·111 RTOS ASSEMBLER 
SECTION: 

• Line 9 is 12-bit modified by the value UREF. 

• Line 10 is 12-bit relocatable by location counter 5, and 12-bit modified by the 
value - UREF . 

• Line 11 is 18-bit modified by the value - UREF and IBOOed. 

4.3.2. Cross-Reference Listing 

If an R option is present on the @ASM control card, a cross-reference listing of 
all referenced labels will be produced at the end of the assembly. Although the 
cross-reference itself does not significantly slow down the assembly, six words 
of storage are used for each label reference when the R option is present. As a 
result the assembler label table space requirements may be significantly larger 
during the assembly with an R option. 

At the conclusion of the assembly, all referenced labels are printed in alphabetic 
order together with the location counter value at which they were assigned, the 
location under which they are defined, and the subassembly level at which they 
were defined. The location counter and location counter value of each reference 
to the label are also printed. 

If a reference is made to a labeled constant, the decimal value of the constant is 
printed. The octal value is printed between brackets. 

Example: 

00:01 :36 IUlASM.R T'+-3 

UNIVAC '+ I S .. J II ASSEMBLY ... - MAR 17 1970 00;01:36 
000001 X· PHOC 
000002 I EQU 10 
000003 • LLK 
OOUOO'l END 
OOOOO~ 00 0 0 0000 12 0005 STAI<T LL LBI 
000006 U 00 000001 70 000 0 LLK UNO 
000007 U 00 000002 5070 00 BT I 
000008 00 000003 12 000 6 LL LB2 
000009 00 00000,+ 12 oooE» LL LBI 
00001U 00 OOooo~ 70 001 2 LBI X 
000011 00 000006 70 001 2 L82 X 
000012 00 0 0 0007 3'1 000 0 J START 
000013 END 

••• SUMMARY ••• 
PROGRAM SIZE: 00 00010 

EXTERNAL OR UNDEFINio REFERENCES: UNO 

••• CRoSS REFERENCE LISTING ••• 

I • UNDEFINED LEVEL Dol REFERENCEo AT LINE(S" ... 00002 00 

I • 000010 (000012) LEVEL 01 ; KEFERENCED AT LI~E(S); .. oooos 00 .. 00006 00 

LBl DEFINED AT 0000 0 5 00 LEVEL Dol RHERENCED AT LINE(S): .. 00000 00 - 0000 .. 00 

LB2 DEFINED AT 0000 0 6 00 LEVEL 001 REFERENCED AT LINE(S); ... 00003 uo 
START DEFINED AT 0000 0 0 00 LEVEL 001 REFERENCEo AT LINE(S); .. 00007 00 
UNO • UNDEFINED LEVEL 001 REFERENCED AT LINE(S): ... 00001 00 

5 
PAGE: 



UP-7S99 
Rev. 1 

4 UNIVAC 418-111 RTOS ASSEMBLER 
SECTION: 

4.4. SYMBOLIC CORRECTIONS 

If the * option is present, the symbolic code is assembled from the user run library. 
Corrections may be made to the symbolic code. Correction cards immediately follow 
the @ASM control card and are terminated by the occurrence of another control card. 

The line numbers listed in the first column of the assembly are used to indicate whicl 
images are to be removed or altered. Correction cards are not added to the symbolic 
element in the library. Correction cards do not cause the line numbers on the listing 
to be changed, so that no matter how many corrections are made, the line numbers 
still reflect those associated with the original symbolic element. 

Symbolic lines which are deleted as a result of the supplied corrections are marked 
and listed with --- following the line number. They are not assembled. 

New symbolic images supplied in the correction deck are marked with +++ following 
the line number. The line number associated with new symbolic images is that of the 
last statement in the original element. 

Example: 

000001---
000001+++ 
000002 
000003 
00000"---
0000011+++ 

000005 
000006 
000006+++ 

000006+++ 

filASMo-

UNIYAC 

00 
00 
00 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

00 
00 

Til-II 

1118-111 

000000 
000001 
000002 

000003 
0000011 
000005 
000006 
000007 
0000110 
0 0 00'+1 
OUOO'l2 
0000 .. 3 
0000"11 
0000"5 

0000 .. 6 
0 0 00"7 

ASSEMBLY 

12 00116 
10 00 .. 7 
5070 07 

10 00 .. 7 
12 00 .. 6 
5070 07 
770300 

66333 .. 
6S00311 
650027 
3U6566 
SII5173 
302700 
uooooo 
0000110 
000007 

MAFt 17 1970 
--... START 

START 

-... 

FROM 
TO 

00:01:360 
LLK 
LL 
LU 
8T 
MOyE 
MovE 

EOJS 

1 
(TOl 
IFROM) 
7 
f'ROM.ITO) 
FROM,TO,7 

RES 2S 
'THIS IS DESTROYED' 

END START.3 

Correction cards having the following PUR-compatible format. Lines are deleted by 
specifying: 

-n,m 

where n is the first and m is the last line to be deleted. Following the correction 
card, symbolic statements may be supplied. These are inserted in place of the 
deleted images. 

In order to add new symbolic images, the card: 

-n 

where n is the line following which corrections are to be inserted, is supplied. 
The symbolic statements to be added after line n follow the correction card. 

Correction cards must be supplied in ascending line number sequence. The - must 
occur in column 1 of the correction card. 

6 
PAGE: 



UP·7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 4 

SECTION: 

Example: 

LABEL OPERATION OPERAND 
10 20 30 40 

.:ilL~...L-.-iL-1.-.l._..L.L .. l .-.1.. ... L...L .. ..L-1 .. ..L.....L.~L.-L-.L...L.Li_~ .. L-L~_..L-1 .. LJ . ...L._.J..-.l...--l-L.L.L .. .1--1~~l._.1 ~_L .... .l ... J L 

Sl'L.~Jt1':Ll .. L_L .. .Ll~L_LL . ..L.~L~L.L..lJLT~.lLJ----L_L_..L .. L.L . ..L_L ... J----1_.~...L.J .... _.L .. j_l.U L.1 1_~.1 
:l~~.L_L.....LJ._Ll--.-L' I I I . ..LJ~ .. _.l_._i.Ll_L_L_.L.L_L .. L_L_...L..lJ_L_L_LJ_.LL .. ~_LLl .. L_l L . .1 

-.l. ___ .Li ..... L~L _L . .l-LJ_Ml~tE.t-..LL--L __ .L-LlE&~T~J...l1.L .... L_L.L J .... ~ . .L_l ... ~-L-.L_L .. L_L..L..J.~ . .L ... 1. .L ~ I 1. 

• 

"'L~ __ L_L.l_L.Ll!JTJil.SL_tLS...L...JOlirSJ.l8#'~t~~_LJ .. __ L .. J _LL_L.L.L...t--.-.l_LL..L .. .L 1 I .. I 

~ .. .L-.-i_ .. ....l......1_.L...iJ __ L_L1E ,W,D, ....L....L~l..--..L. .. .L lSI IT , ~T~..l_...L.L_L.L.1 .. _.L._L .. ~L.L.L ... l_L_.L .L .. .1 1. .. _1. I 1 .. 

L . .1 I I 

4.5. DIAGNOSTICS 

Errors detected by the assembler in processing a symbolic statement are flagged. 
Depending on the particular error, the code mayor may not be generated correctly. 
Some diagnostic flags are not indicative of errors but are warnings. 

4.5.1. Address Warning (A) 

The address warning diagnostic A is generated if the 12-bit operand address of a 
type I or II instruction has a location counter value such that the instruction and 
the referenced address are in different bays. If the operand address is relocated 
under a different location counter from the instruction, no A-flag will be generated. 

Example: 

000001 I. 

000002 A 00 oUoooo 12 001 0 LL A 
000003 00 000001 RES 010007 

00000'1 00 010010 000000 A +0 

ooooo~ 00 010011 12 0007 LL B 

000006 01 000000 5(1) RES 010007 

000007 01 010007 000000 8 +0 

000008 END 
••• SUMMARY • •• 

PROGRAM SIZE: 00 10012 01 10010 

ADDRESS i\AWNINGS: OUI 

7 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 4 

SEC T ION: 

4.5.2. Format Warning (F) 

The format warning is generated if a 2,16 FORM directive has a relocatable address 
reference in the second expression. 

Example: 

000001 
000002 
000003 
00000" 
000005 

F 00 000 DUO 
00 OUOOOI 

4.5.3. Truncation Warning (T) 

000001 
70 0001 

A field truncation warning is generated if: 

I. 
IF' 

LABEL. 

FORM 
IF 
LLI( 
END 

• the value of an expression in a FORM reference exceeds the size of the field; 
or 

• the value of the operand field in a type I or II instruction is a constant exceeding 
07777. If the constant is negative and the instruction is an LBK, LLK, or ALK, 
the T flag is not generated. 

Example: 

000001 I. 
000002 
000003 T 
00000" 
000005 T 

IF FORM 5, .. ,5," 
00 0 00000 16006'1 IF' 7,ZOOO,l,lO 
00 OUOOOI 70 7772 UK .. 5 
00 000002 70 0000 LLK 010000 

000Ci06 00 0000v3 12 3720 LL 2000 
000007 T 00 00000'1 12 1610 LL sooo 
000008 T 00 O(jOOu~ 6'1 776 5 JUp ... IQ 
000009 END 

••• SUMMARY • •• 
PROGRAM SIZE: 00 00006 

TRU~CATI~N ~ARNINGSI OU'I 

4.5.4. Level Error (EL) 

A level error indicates that the number of nested expressions exceeded the maximum 
of six. The resulting expression value is O. 

Example: 

000001 I. 

8 
PAGE: 

000002 EL 00 000000 
000003 
00000" 000001 

12 0003 
000002 A ( 1 I 

A(ACA(ACA(A(A(I))))))) 

L.L 
EQU 
EQU 
+A (11 
ENI) 

(l+e 1+( l+e 1+( 1+( I+e 1.21) I 
2 

EL 00 000000 
OOODOS 00 000002 000001 

~ 

000006 
00 000003 000007 

••• SUMMARY ••• 

PROGRAM SIZEZ 00 0000'1 

EXPRESSION EHRORSI 002 

LEVEL ERRoRS: 002 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMB LER 4 

SECTION: 

4.5.5. Instruction Error (I) 

An instruction error indicates that the assembler detected an illegal operation field 
or label field specification. An I flag is generated if: 

• a symbolic label is detected in the operation field which is not a defined label, 
procedure entry point, assembler directive, FORM name, or mnemonic instruction; 

• a location counter is defined in the label field and the terminating character is 
not a space, comma, or period; 

• the label field is not terminated by a space, asterisk, or period; 

• the type number on an INFO directive exceeds 7; 

• the type field on an INFO directive is not terminated by a space; 

PAGE: 

• the location counter specified on an INFO directive exceeds 15 or is not terminated 
by a space or comma; 

• an EQU directive does not have a label in the label field; or 

• a procedure call line references a procedure entry point in the parameter expressions. 

Example: 

liM S M 

00:01:'10 UNIVAC ~18-111 ASSEMBLY -- MAR 17 1970 
•• PROCEDU~E JZL NOT IN LIBRARY - CALLED AT LINE DOOUOI 8Y ElEMENT TIt-IO 

OUOOOI UEI 00 OUOOoO OOOOUO 
000002 I 10 OUoooo 3~ 0001 
000003 
OOOOO~ 

OOOOO~ 

000006 
00Ci007 
00U008 
000009 
000010 
000011 
00U012 

PROGRAM 5 I It: 

000005 

01 OUOOOO OOOOOS 

00 uOOUI 01 00001 

EXTERNAL OR UNOEFINlO REFERENCES: JZL 

EXPR~S~ION ERRORS: OUI 

INSTRUCTION ER~ORS: DuO 

Itl 00001 

S'(IO)LABEL 
LABI::L+O 

S(1) 
X. 

X 

JZL S+l 
J $+1 

INfO 8 
INfo 7,0 
INfo 1 
lQU S 
PROC ',1 
+S 
END 

ex 
END 

••• SUMMAf<Y • •• 

a 

17 

) 

9 



UP-7599 
Rev. 1. UNIVAC 418·111 RTOS ASSEMBLER 4 

SECTION: 

4.5.6. Relocation Error CR) 

Relocation warnings or errors are generated if elementary items are combined in 
such a way as to cast doubt on the validity of the expression. 

Relocation errors are generated if a relocatable item is combined with a constant. 
See Table 1-3 for details of allowed mode combinations. 

Example: 

OOUOOI I. 
000002 00 OUoooo RES 
000003 R 00 000005 DDDOOS A +" •• 5 
OOutlO'l 00 OUOO06 0002'10 +&_1" 
000(j0~ R 00 000007 OOOOU3 +Alli. 
000000 00 0 0 0010 ooooos +A.I 
000007 R 00 Ouoo 11 000012 +A.2 
000008 END 

••• SUMMARY • •• 
PROGRAM SIZE: 00 U0012 

RE~OCATI0N WARNINGS: OU3 

4.5.7. External or Undefined Warning CU) 

PAGE: 

The U flag is set when a label is referenced which is not defined in the assembly. If 
the label is externally defined in some other element, the loader collects the elements. 

Example: 

000001 I. 
000002 U 00 0 0 0000 70 0000 
000003 u 00 OOOOUI 12 0002 
00000'1 

U 00 000002 000000 

LLK ABC 
LL (LABEL) 
END 

••• SUMMARY ••• 

PROc;RAM SIZE: 00 U0003 

EXTl~NAL OR UNUEFINtO ~~FERENCES: LABEL ABC 

4.5.8. Double Definition Warning CD) 

A double definition warning is generated when the value assigned to a label changes. 
The assembler processes the symbolic code twice. As a result, a D flag may indicate 
that a label is defined at different relative locations because of a pass conflict; that 
is, different amounts of code were generated in pass 1 and pass 2 of the assembly. 
The D flag is set if: 

• a label defined previously is redefined to have a different value. If the label is 
a dimensioned label, the D flag is suppressed; 

• a label defined in pass 1 of the assembly does not have the same value when 
redefined in pass 2; 

• a paraform contains a reference to a doubly defined label; 

10 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

4 
SECTION: 

• a PROC or NAME entry point is defined or multiply defined, regardless of the 
level of the entry point; 

• a literal contains a reference to a doubly defined line item; or 

• an expression references a doubly defined label. 

Example: 

000001 
000002 0 
000003 0 
00000" 0 
OOODO!) 0 
00v006 0 
000007 
000001:1 
00u009 
000010 
000011 
000012 
000013 
00001'1 
0000 HI D 
000016 

PROGRAM SIZE: 

00 oUoooo 
00 OOOOul 
00 000002 

00 OUOO03 

00 OUOOO .. 
00 ooooo!:. 

00 000006 

DO UOOU7 

DOVu~Y DEFINED LABELS: 

4.5.9. Expession Errors (E) 

/. 
12 0002 TA 
12 0000 11:1 
000000 T6 
000001 A 
000002 A 

p. 

000000 
p 

000000 
12 000 6 

000002 

A P 

LL 
LI. 
+0 
EQU 
EQU 
PROC 
+0 
END 
P 
PROC 
+1 
END 
P 
LL 
END 

••• SUMMARY • •• 

P T6 

TB 
s-I 

1 
2 

(Ta) 

Expression errors indicate that the syntax rules for defining an expression were 
not obeyed. Expression errors are generated if: 

• an elementary item is not followed by an operator or terminator; 

• an operator is not followed by an elementary item; 

• la floating-point number is written so as to have an octal integer part; 

• a floating-point number exceeds the maximum value; 

• an item is multiplied by, divided by, or compared with an item which is undefined; 

• a paraform with subscript is not terminated by a comma or bracket; 

• two items are compared which do not have the same mode value; 

• two items are compared and one is undefined; 

• two relocatable items are combined and are relocated under different location 

counters; 

• an alphastring or double floating-point number occurs in a literal; 

• a dimensioned la.bel is defined or referenced which has previously been defined 
with smaller dimensionality; 

• an LSD or SSD instruction is indexed; 

11 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 4 

SECTION: 

• a type II instruction is indexed; 

• a FORM reference has more than the allowed number of operand expressions; 

• a GO directive is used and no operand expression is present; 

• a FORM directive is defined for more than the allowed field sizes; 

• an INSERT directive is specified without operand field; 

• a labe I has more than six characters; or 

• a location counter larger than 15 is referenced or defined. 

Example: 

000001 I, 
000002 E 00 OliODUO 000005 +Sx 
000003 t: 00 OOOOill 000000 +~+ 

000004+ E 00 000'002 20'1'106 +010.2 
00 OUOO03 31'1631 

000005 E 00 00000'1 oouooo +10,E50 
00 oOooos uooooo 

000006 E 00 OUQOO6 000000 +3.ULBL 
000007 X· PRoC 
000008 +2 
000009 +X (I, 
OOuOIO GO 
000011 +) 
00U012 END 
OOCiOll 00 OUOO07 000002 X 

E 00 OUOD1O 000000 
\,IE 00 0 0 0011 000003 

00001'1 E DO A>2 , +3 
OOOOIS E 00 000012 000000 +ULBL>2 
000016 E 00 0 0 0013 000001 +A+6 
000017 05 0 0 0000 S (5 I. B RES 5 

000018 E 00 0 0 001" 12 0033 5(0) LL "ABCOEFGH' ) 
000019 E 00 0 0 0015 12 003 5 U Cl .oll 
00G020 00 01.10016 70 ooo!!! 0(1,1 ) LLI( 5 
000021 E 00 000017 000000 0(1,1 .. ) UK 3 

000022 E 00 0 0 0020 12 0000 LL oOtid) 
000023 E 00 0 0 0021 502000 LSD •• 

00 000022 000001 
00002'1 E 00 000023 6'1 0001 JUp •• 
000025 IFA FORM 3dS 
000026 E 00 00002'1 100002 IFA 1.2,3 
000027 E IF F'O~M 2,,5,3 
000028 E INSERT 
000029 EI LABEL7C LLK 3 
000030 E 00 OU0025 12 002 6 LL 5(171+1 
0000)1 E 00 OOOOl6 S C 17, RES E» 

000032 ENa 
00 0 0 0033 2'12S26 
00 OUOOl" 27303& 
00 00003!:. 000000 
00 OOOCH 000000 

••• SUMMARY • •• 
PROGRAM SIZE: 00 U0037 05 00005 

EXTERNAL OR UNDEFINED t-lEFERENCES: ULBL 

EXPRES::;!ON ERRORS~ 022 

INSTRUCTION ERRORS: DOl 

12 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 4 

SECTION: 

4.6. ERROR MESSAGES 

When abnormal situations arise in the course of an assembly, the assembler prints 
a message which specifies what happened and continues or terminates depending on 
the nature of the problem. 

4.6.1. Element Not Found 

If a symbolic element is to be inserted and cannot be found in either the user or 
system library, the message: 

*** ELEMENT xxx xxx NOT IN LIBRARY, CALLED AT LINE 111111 BY ELEMENT 
cccccc 

is printed and the INSERT directive is ignored. 

4.6.2. Procedure Not Found 

If a procedure is referenced which is not defined in the program and is not present 
in the user or system library, the message: 

*** PROCEDURE xxxxxx NOT IN LIBRARY , CALLED AT LINE 111111 BY 
ELEMENT cccccc 

is printed and the procedure call is assumed to be a labe 1 reference. Note that 
a possible procedure call is Signified by the occurrence of a symbolic label in the 
operation field which is not a previously defined FORM reference or mnemonic 
ins truction. 

4.6.3. END Card Omission 

If the symbolic statements are not terminated by an END directive, the assembler 
inserts the image: 

END *** ART GENERATED *** 

4.6.4. Drum Library Overflow 

If the code generated in the course of the assembly causes the library to overflow, 
the message: 

***ASSEMBLY ABORTED - DRUM LIBRARY OVERFLOW*** 

is printed. The element is not placed in the library. 

4.6.5. Main Storage Overflow 

If the assembler attempts to obtain additional main storage space because the 
procedure sample storage or label table is filled, and no space is obtained, the 
assembly is terminated with the message: 

***ASSEMBLY ABORTED - PROCEDURE TABLE OVERFLOW*** 

or 

***ASSEMBLY ABORTED - LABEL TABLE OVERFLOW*** 

Prior to terminating, the assembler tries to obtain as little as 512 words of memory 
to expand its tables. 

13 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 4 

SECTION: 

4.6.6. Internal Error 

If an error condition occurs within the assembler, the message: 

***ASSEMBL Y ABORTED - INTERNAL ERROR*** 

is pripted and the assembler terminates automatically. The programmer should try 
the run again. If the problem continues to occur, a report should be filed. 

4.6.7. Element Deletion 

PAGE: 

At the conclusion of the assembly, the code produced is registered in the user library 
as a relocatable element. If a relocatable element by the same name already exists 
in the library, it is deleted and the message: 

*** THE RELOCATABLE ELEMENT xxxxxx , (CREATED mm:dd:yy) , 
HAS BEEN DELETED *** 

is printed. The month (mm), day (dd), and year (yy) refer to the date that the deleted 
element was created. 

4.6.8. Correction Errors 

When correction cards are submitted, several errors may be detected. 

If a correction card references a line number beyond the range of the element, the 
message: 

*** LAST CORRECTION EXTENDS BEYOND ELEMENT *** 

is printed, and the correction cards are ignored. 

If a correction card references a line number smaller than one previously referenced, 
the message: 

*** SEQUENCE ERROR *** 

is printed and the correction card is listed and ignored. 

If a correction card of the type -n,m is such that m<n, the message: 

*** LINE NO. DESCENDING *** 

is printed and the correction card is listed and ignored. 

14 



Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 4 15 
SECTION: PAGE: _____ --L ___ --.,;.. _______________ -'--__________________ ' __ 

4.7. GENERATION PARAMETERS 

When the RTOS system is generated, parameters may be supplied for the assembler. 
The assembler parameters are specified in the element CONFIG on a procedure call 
of the type: 

ART,m mlc prs Its 

where: 

mlc is the maximum allowed value for anyone location counter; 

prs is the reserved procedure table size; 

lts is the number of modules (6 words) reserved for the label table. 

m is the size of procedure or label table expansion in 256-word blocks. If left 
blank, m is assumed to be 16 (4096 words). 

The assumed (supplied) parameters are: 

ART 030000 300 100 

Procedure or label table space is expanded as needed in modules of 256*m maximum 
words until no space is available. The maximum location counter value is used to 
detect program..,directed assembly loops (GO directive which does not terminate). 

In order to change the assembler generation parameters the symbolic element ARTGEN 
must be assembled with the appropriate CONFIG element. 

4.8. ELEMENT AND PROCEDURE INSERTION 

The INSERT directive causes a symbolic element in the library to be included as 
part of the assembly. A procedure reference to a procedure entry point not defined 
in the program may cause the procedure sample to be inserted from the library. 

First, the user RUN library is searched for the element or entry point. If not found, 
the system library is searched. 

If a procedure entry point is referenced, the entire procedure element, which may 
include other procedure samples, is brought into procedure storage. As a result, care 

should be taken to ensure that a procedure reference does not cause another procedure 
in the same element to be read into storage which has entry points which duplicate 
already defined procedure entry points. 

4.9. LABEL TABLE REFERENCES 

Symbolic items are stored in the label table. Whe n a reference is made to a symbolic 
item, the label table is searched. If the same symbolic label is used for different 
types of symbolic items, the first acceptable definition for the label is used. The 
first acceptable reference is determined by the sequence in which the assem bIer 
searches the label table. The sequence is defined in the following paragraphs. 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER \SECTIO"' 4 

4.9.1. Operand Field Hierarchy 

A symbolic item referenced in the operand field may be a label item, a paraform 
reference, a dimensioned label item, or a labeled literal reference. The sequence 
in which the assembler searches the label table is: 

1. label item 

2. paraform item 

3. dimensioned label item 

4. labeled literal 

Example: 

000001 /. 
000002 00 oUoooo RES 10 
OOOOOl LIT 
00000" 00 000012 000013 +A(LLK 10 ) 
OOOOO~ S II) ,B LIT 
000006 01 OUOODO 8(1) RES 10 
000007 01 000012 000000 +6(1) 
00i)OO8 S 1 2) ,e LIT 
000009 c· PRoe 
000010 +c (11 
000011 +CCltll 
000012 +CCl.21 
00(')013 +c 
00001" END 
DOO01S 0001"" ell) EGo 100 
000016 02 OUoooo 000001 C CU) C 

02 OUOOOI 0001"" 
02 OUOO02 000000 
02 000003 000002 

000017 5(3) ,0 LIT 
000018 03 000000 RES 10 
000019 03 0 0 0012 70 001 2 D loLl<: D 
00(.)020 0001"" on) EQU 100 
000021 UE 03 0 0 0013 12 0000 loL D H.L.K 0), 
000022 END 

00 000013 70 001 2 .. - SUMMARY ••• 
PROGfUM SIZE: 00 U001'l 01 00013 02 1;.1000" OJ 0001" 

EXTERNAL OR UNDEfIN~D REFERENCES: I.LK 

EXPRES~ION ERRvRSI 001 

4.9.2. Operation Field Hierarchy 

A symbolic label occurring in the operation field may be a procedure entry point, 
a directive reference, an ins truction reference, or a label reference. The assembler 
determines the nature of the label as follows: 

1. If the field is terminated by a space (blank character), a check is made for an 
INFO, LIT, NAME, PROC, FORM, EQU, DO, XCHAR, UNLIST, EVEN, ODD, GO, 
GO, RES, END, LIST, INSERT, SKIP, or CHAR directive. 

2. If the label is not a directive or if the field terminator is a comma, a check is 
made for a procedure entry point. 

3. If the field terminator is not a space or commas, the field is assumed to be the 
operand field, and one or more data words are generated. 

16 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMB LER 4 

SECTION: 

4. A check is made for a FORM reference. 

S. A check is made for a mnemonic instruction reference. 

6. A check is made for a library procedure entry point; and, if found, the procedure 
sample is brought into procedure storage. 

7. If none of the forgoing references are satisfied, the field is scanned as an operand 
field expression. 

The sequence described shows that: 

1. A label with a name that is identical to an assembler directive may be used as 
a procedure entry point if and only if a comma is used to terminate the operation 
field. 

2. A procedure entry point or form reference which has the same label as a mnemonic 
instruction will supercede the instruction reference unless the procedure entry 
point is only defined in the library and not yet brought into procedure storage. 

3. A label reference not preceded by a + w ill cause the procedure library to be 
searched prior to assuming a data word generation format. 

Example: 

OOIOI;'+S iiilASM 

UNIVAC '+18-111 ASSEMBLY -- MAR 17 1970 
•• PROCEDURE XCHAR NOT IN LIBRARY - CA~LEO AT LINE 000010 
•• PROCEDURE A NOT IN LIBRARY - CA~LEO AT LINE 000012 
000001 I. 
000002 LB 
000003 
00000'+ 
000005 
000006 
000007 
000008 
000009 
000010 UI 
0000,1 
000012 
000013 

PROGRAM 5 tzE: 

00 OOOOOD 

00 000001 

00 000002 
00 0 0 0003 
00 0 0 000'+ 
00 0 0 0011 

00 00012 

'10002'+ 

70 002'+ 

70 0006 
000000 

00000'+ 

~XTE~NAL OR UNuEFINEO REFERENCES: 

INSTRUCTION ER~ORS: 001 

CHAR. 

XCHAR 

••• 

00:0" .. 5 
BY ELEMENT T .... 16 
BY ELEMENT T'I-16 

FORM 
La 
PRoC 
UK 
END 
CHAR,O 
CHAR 
CrlAR,O 
XCHAfoI,O 
RES 
A 
END 

SUMMARY ••• 

CHAR' 1.' ) 

17 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 4 

SECTION: 

Note that a literal contains a line item wh ich begins with the operation field. As a 
result, there is a difference between the way that the references in the following 
example of 

LL (A) 

and 

LL (A) 

are treated because in the first literal, the operation field terminator precludes a 
reference to a procedure entry point. 

Example: 

fdASM 

UNIVAC ~18.111 ASSEMBLY -- MAR 17 1970 
•• PROCEDUKE A NOT IN LIBRARY - CALLED AT LINE OOOOO~ 

000001 
000002 
000003 
00000'4 
DODO os 

U 
UI 

u 

PRO~RAM SIZE: 

00 000000 
00 OUOOl2 12 001'+ 
00 000013 12 001'+ 

00 OUOO1~ UOOOOO 

00 OOOIS 

EXTERNAL OR UNuEflNEO REFERENCES: A 

INSTRUCTION ERRORS: 001 

/. 

••• 

00:01 ='16 
BY ELE.'IENT T'I-17 

RES 10 
LL. CA. 
LL CA • END 

SUMMARY • •• 

18 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 5 

5 EC TION: 

5. COMMAND/ARITHMETIC 
SECTION 

5.1. GENERAL 

In this section, the command/arithmetic section of the UNIVAC 418-111 System is 
discussed. Since all input/output is normally done through executive requests, these 
hardware characteristics are not discussed in this document. 

5.2. HARDWARE CHARACTERISTICS 

PAGE: 

The UNIVAC 418-111 System may contain up to 131,072 addressable words. Each word 
consists of 18 bits. Main storage can be thought of as divided into 4096-word segments 
called bays. 

The address of the instruction being executed is kept in a register called the instruction 
address register (IAR). 

Eight index registers (B registers) can be used for address modification. The index 
registers are memory locations 1 through 108' 

A 6-bit special register (SR) is used to access different bays. Four instructions are 
available to load and store the special register. 

A 4-bit register called the index register pointer (IRP) contains the address of the 
active index register. 

When abnormal conditions, such as illegal instructions, arithmetic overflow, or guard 
mode violation occur, the operating program is interrupted, and the instruction at a 
fixed (preas signed) address is executed. 

5.3. DESIGNATORS 

• Compare Designator 

The compare designator is a bi-stable, three-stage register whose state is determined 
by the execution of any of the COMPARE instructions (f = 02,03,06,07). The results 
of the COMPARE instructions are recorded by the compare designator as follows: 

The COMPARE stage is set upon the execution of any of the COMPARE instruc
tions. 

- The LESS THAN stage is set if a COMPARE instruction finds (AL) less than 
the contents of the addressed memory location (f = 02,03), or [(AU) mrn (AL)Jless 
than the logical product of (AU) and the contents of the addressed memory location 
(f = 06,07). 

The EQUALS stage is set if a COMPARE instruction finds (AL) equal to the 
contents of the addressed memory location (f = 02,03) or [(AU) rJIDl (AL)Jequal 
to the logical product of (AU) and the contents of the addressed memory location 
(f = 06,07). 

1 



Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 
UP-7599 J 

- ----~ 
•. _ .. _,, ___ ~CT,_IO_N:_5 __ ...II~p_A_G_E:_2 __ _ 

The COMPARE stage is cleared by the execution of any instruction other than the 
arithmetic JUMP instructions (f = 6067). Thus, if the results of a COMPARE instruc
tion are to be successfully tested, it must be immediately followed by one or more of 
the JUMP instructions. 

When the COMPARE stage of the compare designator is set, all interrupts are locked 
out to avoid the possibility of inadvertently clearing the COMPARE state. It should be 
noted that the arithmetic JUMP instructions have significantly different operations if 
executed when the COMPARE stage is not set. 

• Borrow Designator 

The borrow designator is a bi-stable, single-stage element whose state is determined 
by the execution of either a double-length ADD instruction (f = 20,21) or a double
length SUBTRACT instruction (f = 22,23). 

If an end;.around borrow is required during the execution of ei ther of these instructions, 
the end-around borrow is inhibited and the borrow designator is set. The borrow desig
nator remains set until the subsequent execution of another double-length ADD or 
double-length SUBTRACT instruction. 

The condition of the borrow designator may be tested by the TEST NO BORROW 
instruction (f = 5051). When the borrow designator is set, interrupts are not locked 
out. 

• Overflow Designator 

The overflow designator is a bi-stable, single-stage element set when an overflow 
occurs during the execution of any of the follow ing instructions: 

ADD AL (f = 14,15) 
SUBTRACT AL (f = 16,17) 
ADD A (f = 20,21) 
SUBTRACT A (f = 22,23) 
DIVIDE A (f = 26,27) 
ROUND A (f = 5060) 
ADD AL PLUS CONSTANT (f= 71) 
FLOATING POINT DIVIDE (f = 5005) 

The stage of the overflow designator is tested by either the SKIP ON OVERFLOW 
instruction (f = 5053). The execution of either instruction automatically clears the 
overflow designator. When the overflow designator is set, interrupts are not locked 
out. 

• Guard Mode Designator 

The guard mode designator is a bi-s table, single-stage element set as a result of 
the LGM (f = 5065) instruction. It is cleared by the occurrence of any interrupt. 
While the guard mode designator is set, each instruction store cycle is checked. 
If the referenced address does not fall within the upper and lower storage limits, 
a guard mode interrupt is generated ~ 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER I SECTION. 5 PAGE: 

5.4. INSTRUCTION TYPES AND FORMATS 

Instructions are binary numbers formatted in such a manner that when they are trans
ferred to and interpreted by the command/arithmetic section of the computer, they 
result in the execution of a predefined operation. Instructions for the UNIVAC 41S-III 
System are comprised of two entities, the function field and the operand field. The 
contents of the function field informs the c/ a section which operation is to be per
formed; the contents of the operand field supplies the cia section with the necessary 
information to enable it to perform the function. The set of all recognized functions is 
referred to as the instruction repertoire. 

The UNIVAC 41S-III instructions are divided into three distinct categories, referred to 
as type I, type II, and type III instructions. Type I instructions are identified by function 
codes 02 through 027, 032, 033, and 040 through 047. Type II instructions are identified 
by function codes 030, 031, 034 through 037, and 051 through 076. Type III instructions 
are identified by function codes 5000 through 5077. 

• Type I instructions 

The type I instruction format is: 

F u 

where: F is the 6-bit function code. 
U is the 12 low-order bits of the operand address. 

• Type II instructions 

The type II instruction format is: 

F u 0 r Z 

where: F is the 6-bit function code. 
U is the 12 low-order bits of the operand address. 
Z is the 12 low-order bits of an IS-bit sign extended operand. 

When F indicates that the 12 low-order bits are to be interpreted as the actual operand, 
an IS-bit operand is formed by using Z and propagating the contents of bit 11 to the high
order 6 bits. This is commonly referred to as sign extension. 

• Type III instructions 

Type III instructions may be divided into two distinct categories, each with a 
slightly 'different format. They are all categorized by a major function code of 050, 
and a minor function code between 0 and 077. 

3 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

Type III-a 

F M K 

where: F is 508 , 
M is the minor function code. 
K is 0 or a constant less than 64. 

Type III-b 

F M UNUSED 

17 12 11 6 5 0 

UNUSED I U 

17 12 11 0 

where: F is 508 , 
M is the minor function code. 
I is 0 or 1 depending on whether indexing is to be used. 
U is the 12 low-order bits of the operand address. 

I SECTION. 5 

Note that the type III-b instructions are two-word (36-bit) instructions. In addition 
to the above formats there are several type III-a ins tructions which use the contents 
of one or more memory locations following their occurrence for specific data. These 
are principally the I/O instructions. They transfer control to the memory location 
following the data words used by them. 

5.5. ADDRESSING 

The operand fields of type I, type II, and type III-b instructions contain 12 bits. The 
UNIVAC 418-111 main storage is logically divided into bays, each containing 4096 
18-bit words, and may be expanded to a maximum of 32 bays; therefore, each type I, 
type II, or type III-b instruction provides sufficient space to specify any address 
within a bay. The bay which contains the desired address is determined by certain 
rules outlined in the following discussion. 

When an instruction is executed which is in the las t storage location of a bay, program 
control passes to the first location of the next bay unless it is a skip or jump type 
instruction. If it is a skip type instruction, control passes to the first or second 
location of the next bay depending on whether or not the skip condition is met. If 
it is a jump type instruction, control passes to the storage location specified in the 
next bay. This is tantamount to saying that as long as forward jumps are made, it 
does not matter where the instruction is located in storage. 

In order to enable special-register-sensitive instructions to access any address in 
storage, the SR (special register) may be used to specify which bay is to be used. 
The special register is active or inactive depending on whether bit 4 is set to 1 or 
to 0; bit 4 is not a part of the bay identification. Bits 5 and 3 through 0 of SR are the 
bay bits. 

4 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 5 

SECTION: 

Example: 
5 4 3 2 1 0 

To set the SR active to bay 25 (31 8 ), the binary numberllJl1 1 1 0 1011 1(718 ) must 

be stored in SR because bit 4 (SR active bit) must be set to 1. The desired address 
is derived by ignoring bit 4 and treating bit 5 as though it were in bit position 4. By 
doing this, 718 becomes 318 (111001 2 ~ 110012 ), 

543 2 1 0 
To set the SR active to bay 5 (58)' the binary numberl 01 11 01 11 0111 (258 ) must be 
stored in SR. 

In order to set the special register active to bay 3, the instruction: 

LABEL OPERATION OPERAND 
10 20 30 40 

1 ~ 

is executed. To set it active to bay 31 (32nd bay), the instruction: 

is executed. To inactivate the special register, the instruction: 

~L :L...l~~:J_~~~~ ~=:~~~~_~~~~~~~::-~~~:~~~~~~~ _::~: ~ : ' , · 
~_ . ~ ~ -'-_L.LLL.LL...l.....L.J... L.L.LL -'-.J--LL..Ll._L..L .LL . .L.l_ L· L . .L J ..1 -,-_L LLL.L iLL 

may be executed. 

• Type "I Instructions 

Type I instructions are SR-sensitive and indexable, meaning that if SR is active, 
the bay specified by its contents is accessed, and that the contents of the active 
index register are used to modify the operand address if the function code is odd. 

If SR is not active (bit 4 is 0), the bay to be accessed is that in which the instruc
tion itself resides; the bay bits are taken from the five high-order bits of the 
instruction address register. 

5 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 5 

SECTION: 

If the function code (f) is odd, indexing is specified. This means that the full 18-bit 
contents of the active index register are arithmetically added to the (positive) 17-bit 
operand address. Figure 5-1 illustrates the various addressing techniques for type I 
instructions. 

LABEL OPERATIOH OPERAHD 
10 20 30 40 

-Ll-L_L_.l_L-L~~~1. .. .L.L.LLL.L.J01.._.Lj. L .... L .L ... .1_L .. L.J.· .. ~.Llll~L.l \....LL_L.LLL-l ...... L_L ... ..L.l 

---1_L~_L.L .. L . .L .. L_L~I~i __ j .. ...l._ .. I_L.L .. .1 .. 1. 1011JOLOI 1. 1 J._L_i._L·J\.j.JN£LL'LLL_I_.L...L.L.L.L.J~j .. 

---1--....LL...l. .. ll .. ..LL_L.1L IS1RL.L.L .. .l...l._L.L~2.J31 __ L .. L-.-L..l_..L.J ... l.~ ... IL.J,~E.L.-L3Ll. .. .L_L_L .. l.....L-.L-l .. .L.l .. 

~ J 1. l_LL.L..L-Lllu.L..L1.._L .. l .. 1. ... .L . ..L.....l_~LQ&J_L. L .L .... L.l~~l~l~l~LL.L..L...L....L . .J.-L . ...L...L .. 

J J J J J J I I I lL151.Rl I I I I I J 101 I 11 I' L I t N E, S I I I 'I I L 

_...l._.L.L.L..J. .. i_L.l.J....l~tB...L.1_L ... L_.l ... L . .L_L_ltl.O.t3~~Q~l.L.L ~iU.JN,E I...J?L . .L .. L_l..L.L-L_L.l--1.-L 

_l.....l ...... L.L...LL..LL _Ll~J,.LLL_L . ..L.L .l-.-l. ~~~L _L . .1 ... LL~.l-...l.I~g...LJ1L.L_L ... L.t.....L.L_LL_LL 

_.J.--Ll-L_ . .LL_L.L_L1L..tS~._L_LL.J._Ll.QI210L...J...L-L .. .i_L I I' ILI.lNL~L~..LL._L_l....-l.....L.L_L L ... L_ 

---1_.L...L_l._L.L_L.Ll.J~lL..LL..l ... _J._...L.J .. 1_L~.hQI0L .L.L .. L_Lbk~~,EI ~.LL . .l_L.LL..L....L.. . ..L..L.L 

1 I 1 I 1 I I I I IL,SIRI I I I I I I 1012.1!1 I I I I I I /. ILIIINEI I LO I I I J I I I I 

_L..L.J.-.-l __ L.L..LL..LtL.L~L-LL..L.l. .. L.l_.AQJ.1 0 101 I l-L-.-l-.l~L~~~lL_LL.J.--LJ I I I L 

~J.--1 I I I I I ILlgl~_LL.LL L1QLJ_..L.J...-L.L . ..L_.L-'-1~~,IJN,E' .. _~~.LL..LL_L_L.L __ LL 

_...L....L...L .. .J._L_L..L.L...LJb.l~_L1._.L_l. L.I. L. JL::l.a..1~~QJ.1 . ..l"JU.~~.LLL~...l. .. LL1.--1 .. ....L.._L._J._L 

---1...J... J I 

i 11 11 II L 1 1 1 I I I I J I I J I J J J I I I I I J I I I I I I I I I I I I J I I I ! I 

Figure 5-7. Type I Instruction Addressing Techniques 

If line 1 were to be located at address 020000, the following storage references would 
be made: 

LINE NUMBER EFFECTIVE U 

2 0100 + 020000 

4 0100 + 030000 

7 0100 + 020000 + 030000 

9 0100 + 000000 + 030000 

11 0100 + 030000 + 030000 

14 0100 + 020000 - 010000 

• Type II Instructions 

ADQRESSREFERENCED 

020100 

030100 

050100 

030100 

060100 

010100 

Type II instructions are never SR-sensitive, differing in this respect from type I 
instructions. Regardless of the contents of SR, the bay referenced is the one in 
which the instruction resides. 

Some type II instructicns are index-sensitive; this allows them to access other 
bays by using the active index register to modify the address obtained by combining 
U11 -0 and IAR 17_12 . 

PAGE: 

Three instructions (LBK, LLK, and ALK) do not make a second storage access. The 
sign-extended value of the operand field is used as the operand. 

6 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 5 

SECTION: 

• Type III Instructions 

The type III-a instructions do not require an operand. The type III-b instructions 
resemble the type I instructions; they are SR- and index-sensitive. When I is set 
to 1, indexing is used; when it is set to 0, no indexing is used. 

5.6. STORAGE PROTECTION (GUARD MODE LIMITS) 

To ensure program protection, a selected area of storage may be placed under guard 
mode limits through the use of the LGM (f = 5065) instruction. When the guard mode 
is active, any attempt to store into a storage address outside the range set by the 
LGM instruction causes a guard mode interrupt at address 308 , Two nine-bit registers, 
storage limits upper and storage limits lower, may be loaded with the upper and lower 
bounds of an area of storage to be placed under guard mode. For this purpose, storage 
is divided into 256-word blocks. The LGM is a privileged instruction and may not be 
used by the programmer. 

When the nine high-order bits of a 17-bit storage address are placed in storage limits 
lower, the first address of that block is the lower bound of the guard mode limits. 
When the nine high-order bits of a 17-bit storage address are placed in storage limits 
upper, the last addres s of that b lock is the upper bound of the guard mode limits. For 
example, the instruction: 

LABEL OPERA TlON OPERAND 
10 20 30 40 

__ 1. . j .L ... L ._LJ--.l .. L_LJ~..Lq,...LJ!\ . .l_L.-L_L_LU .. L.L ..... L...L ..... L..J ......... 1-I ... LJ .L L .. _L_.L ... 1-.1 ._LL_L ... L-L . ...L_.l L.L . ...L _I 

._L_.L._L_L..L . ..L __ L. L L. L+LQL~11JLL7LZ_ ..... L.l .1...._1 .... L.J ... L .... L .. ..L_ ... L .. ..J ..... L_LL.L ... L_L ... L_L. ..... .LL . .l_L . .L .. L _.L L -' ..L 

L.L.L.1 ..... L. .. .1.. .... _L.L .. L..L..L .. L_L ... .L.lL._L_l_LLl .... _L_J_._~L_~ . .L......l._L.J __ .L .L._L ... L_L .. .L __ L_.L_L_..L_L.L.L_L .... .L._L 

prevents storage outside the range of addresses 0774008 to 01377778 ; any attempted 
violation of this restriction causes a guard mode interrupt instead. 

I 
I 
1 

000 1.!...1 ~1 )00 000 000 address 077400 ... - 1 -I 
17 8 :7 0 

0177 = Storage-Limits -Lower Contents 

I 
I 
I 

'address 0137777 001 011 1 11 1111 111 111 
I --,-- I 

17 8 : 7 0 

0277 = Storage-Lim its-Upper Contents 

Upon the occurrence of any interrupt, the guard mode designator is cleared (disabled), 
so that all of main storage becomes accessible to subroutines gaining control through 
the interrupt locations. 

Because locations 0 through 178 are never under guard mode protection, it is always 
possible to use them for storage. The index registers are part of that category and are 
actually located at addresses 1 through 108 , 

7 
PAGE: 



UP-7599 
Rev. 1 

SEC TION: 

5 UNIVAC 418·111 RTOS ASSEMB LER 
PAGE: 

5.7. PRIVILEGED INSTRUCTIONS 

Privileged instructions are those which are needed by an operating (controlling) system 
in order to perform its job; they are considered inappropriate for use in normal (user) 
programs. The appearance of any of these instructions in any user program would have 
an unpredictable and probably disastrous effect. 

When the guard mode designator is set, through the use of an LGM instruction, any 
attempt to execute a privileged instruction causes a guard mode interrupt instead. The 
privileged instruction is not executed or initiated. 

The privileged instructions are: 

5011 load input channel (LIC) 
5012 load output channel (LaC) 
5013 load external function channel (LFC) 
5015 stop input on channel (STIC) 
5016 stop output on channel (STOC) 
5021 test input channel (TIC) 
5022 test output channel (TOC) 
5023 test function channel (TFC) 
5024 wait for interrupt (WFI) 
5025 wait for interrupt (WFI) 
5056 stop on key setting (SK) (ignored when in guard mode) 
5065 load guard mode (LG M) 
5066 set audible alarm (SSA) 
5067 enable ESI interrupts (EEl) 

5.8. FLOATING-POINT NUMBERS 

Floating-point numbers are two-word, 36-bit constants; they consist of a fixed-point 
part (mantissa) and an exponent (characteristic). The format of a floating point number 
is: 

c 

where: 

s is the sign bit. 
c is the eight characteristic bits. 
m is the 27 mantissa bits. 

The mantissa (m) contains the 27 significant bits of the floating-point number. The 
magnitude of the mantissa is either 0 or between .48 and. 7777777778 , normalized so 
that the most significant bit is a 1. The characteristic is the value of c in the expression 
2c -2008 *m. The high-order bit of c (bit 34) is the sign bit of the characteristic. When 
c34 = 1, the characteristic is posi ti ve; when c34= 0, the characteristic is negative. The 
sign bit (s) is 0 when the floating-point number is greater than 0 (positive); it is 1 
when the number is less than 0 (negative). The magnitude (positive equivalent) of a 
negative number is its one's complement. 

8 



UP·7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

SEC TION,: 

For example, the number 2.0 can be rewritten in floating-point form as: 

2.0 
20. 

. 20 

* 100 , or 
* 10-1, or 
* 101 , and many others . 

5 
PAGEl 

In these examples, 0, -1, and 1 are the characteristics; 2.0, 20., and .20 are the 
mantissas. The three expressions represent the same quantities, illustrating that the 
mantissa and characteristic may be manipulated so that the value of the number remains 
unchanged. The octal representation of this number is: 

2.0 * 100 = .28 * 23 

To normalize, the mantissa is multiplied by 2, and the characteristic is decreased 
by 1. 

The floating-point format is. 

0024000000008 

Finally, to indicate that the power of the characteristic is positive, the characteristic 
is biased to obtain 2024000000008 . In the same manner, -2.0 is represented as 
5753777777778. 

5.9. INTERRUPTS 

Interrupts are internally generated signals which cause the cia section to interrupt 
its normal sequence of instructions (governed by instruction address register contents), 
and to take the next instruction from a predetermined address in main storage. The 
contents of the IAR are not changed until the interrupt instruction is executed. An 
SLJ or SLJI instruction is placed in the interrupt locations, which captures the value 
of IAR in order to allow normal processing to continue when the interrupt processing 
coding is completed. 

9 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 6 

SECTION: 

s. INSTRUCTION 
DESCRIPTION 

REPERTOIRE 

6.1. SYMBOL CONVENTIONS 

The following is a list of the" shorthand" symbols used in the repertoire description. 
The meaning each symbol conveys appears to the right of the symbol. 

AU Upper accumulator, l8-bit arithmetic register 
AL Lower accumulator, l8-bit arithmetic register 
A AU and AL linked together to form one 36-bit arithmetic register 
B Eight index registers with seven residing in main storage and the currently active index 

register in a flip-flop register 
Function code, six high-order bits of all instruction words 

F Function register; seven bits 
k Designator contained in type III instruction words; six bits 
m Minor function code contained in type III instruction words; six bits 
M (y), [y + (B )], [(y) !!ml (A U)], or [(y + (B)) fJIDl (AU)] of compare instructions 
N I N ex t instruction 
P or 
IAR 
SR 
IRP 
U 

y 

Program address register; 17 bits (or instruction address register) 
Special register; five bits, plus one active bit 
Index register pointer; 3 bits 
12 low-order bits contained in type I and type II instructions 
U prefaced with the core storage segment designator bits of P (P1 6-l2) 
U prefaced with the core storage segment designator bits of SR (SR 5,3-0) 

Either an address formed by Up or USR plus Ull _O or a constant formed by Uwith sign 
extension. 

() Contents of an address or register 
()i Initial contents of an address or register 
()f Final contents of an address or register 
(n) Contents of the nth bit of a register 
(y-l,y) Contents of two consecutive memory locations Ii nked together to form a 36-bit word. Address 

y - 1 contains the most significant half of the word; y contains the least significant half of 
the word. 
Indicates COMPARISON when used in logical expressions. 

() fJIDl () Bit-by-bit or logical product (logical AND) defined by the following table: 

t
l 

o 0 0 

1 0 1 

() l!l3 () Logical sum (inclusive OR) defined by the following table: 

( )' 
(). () 

f
l 

o 0 1 

1 1 1 

One's complement of the contents of an address or register 
Algebraic product of the contents of two locations 
Transfer 0 f the quantity stated at the left of the symbol to the address or register stated at 
the right of the symbol 
Used to group terms. The brackets do not ind icate "the contents of". 

1 
PAGEl 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 6 

SECTION: 

6.2. INSTRUCTION REPERTOIRE 

The instruction repertoire for the UNIVAC 418-111 Assembler is described in this 
section. The instructions are listed and defined in the following format: 

Octal Code Instruction Name 

Operation performed (Symbolic summary) 
Definition of the y address or constant 
Test defining the instruction 
Examples or notes, where necessary 

Mnemonic 

Common usage and example cases are included where necessary to supplement the 
description; however, no attempt is made in these descriptions to indicate more 
sophisticated uses for any of the instructions. 

6.2.1. Supervisor Call Instructions 

Several function codes are not assigned a specific function. These are called 
supervisor call instructions because when executed they cause a supervisor call 
interrupt at location 208' Depending on software conventions, the RTOS may 
perform certain software functions when encountering these illegal function codes. 

The supervisor call functions are: 

00,01,077 

Execution Time: 0.75 usec, and 

5000,5001,5077 

Execution Time: 1.00 usec. 

6.3. TYPES I AND II INSTRUCTIONS 

02 COMPARE LOWER (CL) 

Operation: (A L): (y) 

Execution Time: 1.50 usec. 

y :::: Up or Us R + U 11-0 

The C OMPAR E stage of the compare designator is set. 

This instruction compares the contents of AL algebraically with the contents of 
y and the compare designator is set as follows: 

1. The LESS THAN stage is set if (AL) < (y). 

2. The EQUAL stage is set if (AL) = (y). 

The contents of AL remain unchanged and in AL. (AL)f = (AL\. 

2 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 6 

SECTION: 

NOTES: 

• -0 < +0 

• The COMPARE stage is cleared by the execution of any instruction other than 
the arithmetic jump instructions (f = 6067). Thus, if the result of a COMPARE 
instruction is to be successfully tested, it must be immediately followed by 
one or more of the conditional jump instructions. 

• Arithmetic jump instructions have Significantly different operations if executed 
when the COMPARE stage is not set. 

• When the COMPARE stage of the compare designator is set, all interrupts are 
locked out to avoid the possibility of inadvertently clearing the COMPARE 
stage. 

03 COMPARE LOWER (CL*) 

Operation: (AL): (y + (B» 

Execution Time: 1.50 usec. 

y = Up or USR + U11 -0 

The COMPARE stage of the compare designator is set. 

This instruction compares the contents of AL algebraically with the contents of 
y + (B) and the compare designator is set as follows: 

1. The LESS THAN stage is set if (AL) < (y + (B». 

2. The EQUAL stage is set if (AL) = (y + (B». 

The contents of AL remains unchanged and in AL. (AL)f = (AL)i' 

NOTES: 

• -0 < +0 

• The COMPARE stage is cleared by the execution of any instruction other than 
the arithmetic jump instructions (f = 6067). Thus, if the result of a COMPARE 
instruction is to be successfully tested, it must be immediately followed by one 
or more of the conditional jump ins tructions. 

• Arithmetic jump instructions have significantly different operation if executed 
when the COMPARE stage is not set. 

• When the COMPARE stage of the compare designator is set, all interrupts are 
locked out to avoid the possibility of inadvertently clearing the COMPARE 
stage. 

3 
PAGE: 



UP-7599 
Rev. 1 

6 UNIVAC 418·111 RTOS ASSEMBLER SECTION: 

04 MASKED SELECTIVE LOAD (MSL) 

Operation: [(AU) mE (AL)] [illJ [(AU) r..1IDJ (y)] ~ AL 

Execution Time: 1.50 usec. 

y = Up or Us R + U 11-0 

This instruction replaces the individual bits of AL with bits of the contents of 
y corresponding to 1 's in AU, leaving the remaining bits of AL unaltered. If 
(AU)n = 1, then (Y)n ~ ALn · 

The contents of AU remain unchanged and in AU. (AU)f = (AUh. 

Example: (AU)i = 007777 - Mask 

(y) = 123451 

(AL)i = 666666 

(AL)f = 663451 

NOTES: 

• A mask of positive zero does not change AL. (AL)f = (AL)i 

• A mask of negative zero results in the transfer of the contents of y to AL. 
(AL)f = (y) 

05 MASKED SELECTIVE LOAD (MSL*) 

Operation: [(AU) rmrn (AL)] (illJ [(AU) mm (y + (B))] ~ AL 

Execution Time: 1.50 usec. 

y = Up or USR + U11 -0 

This instruction replaces the individual bits of AL with bits of the contents of 
y + (B) corresponding to l's in AU, leaving the remaining bits of AL unaltered. 
If (AU)n = 1, then (y + (B))n ~ AL n . 

The contents of A U remain unchanged and in AU. (AU)f = (AU)i 

NOTES: 

• A mask of positive zero does not change AL. (AL)f = (AL)i 

• A mask of negative zero results in the transfer of the contents of y + (B) to AL. 
(AL)f = (y + (B)) 

4 
PAGE: 



Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

06 COMPARE lOWER MASKED BY UPPER (elM) 

Operation: [(AU) BID) (AL)] : [(AU) flmJ (y)] 

Execution Time: 2.00 usec. 

y = Up or U SR + U 11-0 

The COMPARE stage of the compare designator is set. 

6 
SECTION: 

This instruction compares selected bits of AL with corresponding bits of the 
contents of y by logically multiplying AU by AL and by the contents of y and 
algebraically comparing the two resultants. The compare designator is set as 
follows: 

1. The LESS THAN stage is set if [(AL) mm (AU)] < [(y) Bml (AU)] 

2. The EQUAL stage is set if [(AL) rJm (AU)] = [(y) mE (AU)] 

The contents of AL remain unchanged and in AL. The contents of AU remain 
unchanged and in AU. (AL)f =: (AL)i and (AU)f =: (AU)i 

Example: 

(A U)i = 007777 - Mask 

(y) = 123451 

(AL)i = 222351 
COMPARE 2351 with 3451 

(A U)f =: 007777 

(AL)f= 222351 

NOTES: 

• -0 < +0 

• The COMPARE stage is cleared by the execution of any instruction other 
than the arithmetic jump instructions (f = 6067). Thus, if the result of a 
COMPARE instruction is to be successfully tested, it must be immediately 
followed by one or more of the conditional jump instructions. 

• Arithmetic jump instructions have significantly different operations if executed 
when the COMPARE stage is not set. 

• When the COMPARE stage of the compare designator is set, all interrupts are 
locked out to avoid the possibility of inadvertently clearing the COMPARE 
stage. 

5 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

07 COMPARE LOWER MASKED BY UPPER (CLM*) 

Operation: [(AU) am (AL)] : [(AU) BIDJ (y + (8))] 

Execution Time: 2.00 usec. 

y = Up or USR + U11 -0 

The COMPARE stage of the compare designator is set. 

6 
SECTION: 

This instruction compares selected bits of AL with corresponding bits of the 
contents of y + (B) by logically multiplying A U by AL and by the contents 
of y + (B) and algebraically comparing the two resultants. The compare designator 
is set as follows: 

1. The LESS THAN stage is set if [(AL) rJIDJ (AU)] ,< [(y + (B)) BID] (AU)] 

2. The EQUAL stage is set if [(AL) BIDl (AU)] = [(y + (B)) WE (AU)] 

The contents of AL remain unchanged and in AL. The contents of AU remain 
unchanged and in AU. (AL)f = (AL)i and (AU)f = (AU)i' 

NOTES: 

• -0 < +0 

• The COMPARE stage is cleared by the execution of any instruction other than 
the arithmetic jump instructions (f = 6067). Thus, if the result of a COMPARE 
instruction is to be successfully tested, it must be immediately followed by 
one or more of the conditional jump ins tructions. 

• Arithmetic jump instructions have significantly different operations if executed 
when the COMPARE stage is not set. 

• When the COMPARE stage of the compare designator is set, all interrupts are 
locked out to avoid the possibility of inadvertently clearing the COMPARE 
stage. 

10 LOAD AU (LU) 

Operation: (y) ~ AU 

Execution Time: 1.50 usec. 

y = Up or Us R + U 11-0 

Clear AU, 

This instruction transfers the contents of y to AU. 

The contents of y remain unchanged and in y. (Y)f = (y)i 

6 
PAGE: 



U 1:'-"1 !)~~ 

Rev. 1 UNIVAC 418·111 RTOS ASSEMB LER 

11 LOAD AU (LU*) 

Operation: (y + (B) ) -) AU 

Execution Time: 1.50 usec. 

y == Up or USR + U11-0 

Clear AU. 

This instruction transfers the contents of y + (8) to AU. 

6 
SECTION: 

The contents of y + (B) remain unchanged and in y + (B). (y + (B) )f == (y + (B) )i 

12 LOAD AL (LL) 

Operation: (y) -) AL 

Execution Time: 1.50 usec. 

y == Up or U SR + U 11 -0 

Clear AL. 

This instruction transfers the contents of y to AL. 

The contents of y remain unchanged and in y. (Y)f == (y)i 

13 LOAD AL (LL *) 

Operation: (y + (B) ) -) AL 

Execu tion Time: 1.50 usec. 

y == Up or USR + U 1 I-0 

Clear AL. 

This instruction transfers the contents of y + (B) to AL. 

The contents of y + (B) remain unchanged and in y + (B). (y + (B) )f == (y + (8) )i 

14 ADD TO LOWER (AL) 

Operation: [(y) + (AL)] ,-) AL 

Execution Time: 1.50 usec. 

y == Up or USR + U 11 -0 

This instruction adds the contents of y to the contents of AL and places the 
resultant, SUM, in AL. 

The contents of y remain unchanged and in y. (Y)f == (y)i 

7 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

SECTION: 

6 

NOTES: 

• If the contents of AL is negative 0 and the contents of y is negative 0, the 
result of the addition is negative O. 

(AL)f = 1 's if (AL)i = 1 's and (y) = 1 's 

• The results of addition involving all other possible combinations of positive 
and negative 0 are positive O. 

PAGE: 

• If the magnitude of the resultant is too large for AL to hold, that is, the sum 
exceeds the range -3777778 to +3777778 , the result is incorrect and the overflow 
designator is set. The state of the overflow designator is tested by either the 
SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO OVERFLOW 
instruction (f = 5053). The execution of either of these two instructions clears 
the overflow des igna tor. 

15 ADD TO LOWER (AL*) 

Operation: [(y -+- (B)) -I (AL)] 4 AL 

Execution Time: 1.50 usec. 

y = Up or USR + U 11 -0 

This instruction adds the contents of y + (B) to the contents of AL and stores the 
SUM in AL. 

The contents of y + (B) remain unchanged and in y + (B). (y + (B))f = (y + (B))i 

NOTES: 

• If the contents of AL is negative 0 and the contents of y + (B) is negative 0, 
the res ult of the addition is negative O. 

• The results of addition involving all other possible combinations of positive 
and negative 0 are positive O. 

• If the magnitude of the resultant is too large for AL to hold, that is, the sum 
exceeds the range -3777778 to +3777778 , the result is incorrect and the 
overflow designator is set. The state of the overflow designator is tested by 
either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO 
OVERFLOW instruction (f = 5053). The execution of either of these two 
instructions clears the overflow designator. 

16 ADD NEGATIVELY TO LOWER (ANL) 

Operation: [(AL) - (y)] -~ AL 

Execution Time: 1.50 usec. 

y = Up or Us R + U 11-0 

This instruction subtracts the contents of y from the contents of AL and places 
the resultant, DIFFERENCE, in AL. 

The contents of y remain unchanged and in y. (Y)f = (y)i 

8 



UP-7599 
Rev. 1 6 UNIVAC 418·111 RTOS ASSEMBLER SECTION: 

NOTES: 

• If the contents of AL is negative 0 and the contents of y is positive 0, the 
result of the subtraction is negative O. (AL)f = l's if (AL)i = l's and (y) = O's. 

• The results of subtraction involving all other possible combinations of positive 
and negative 0 are positive O. 

PAGE: 

• If the magnitude of the resultant is too large for AL to hold, that is, the difference 
exceeds the range -3777778 to +3777778 , the result is incorrect and the overflow 
designator is set. The state of the overflow designator is tested by either the 
SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO OVERFLOW 
instruction (f = 5053). The execution of either of these two instructions clears 
the overflow designator. 

17 ADD NEGATIVELY TO LOWER (ANL*) 

Operation: [(AL) - (y + (B))] -) AL 

Execution Time: 1.50 usec. 

y = Up or U SR + U11 -0 

This instruction subtracts the contents· of y + (B) from the contents of AL and 
places the resultant, DIFFERENCE, in AL. 

The contents of y + (B) remain unchanged and in y + (B). (y + (B))f = (y + (B))i 

NOTES: 

• If the contents of AL is negative 0, and the contents of y + (B) is positive 
0, the result of the subtraction is negative O. (AL)f = l's if (AL)i = 1 's and 
(y + (B)) = 0' s . 

• The results of subtraction involving all other possible combinations of positive 
and negative 0 are positive O . 

• If the magnitude of the resultant is too large for AL to hold, that is, the difference 
exceeds the range -3777778 to +3777778, the result is incorrect and the over
flow designator is set. The state of the overflow designator is tested by either 
the SKIP ON OVERFLOW instruction (f = 5052) or SKIP ON NO OVERFLOW 
instruction (f = 5053). The execution of either of these two instructions clears 
the overflow designator. 

9 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER I SECTION, 6 

20 ADD TO A (AA) 

Operation: [(A)+ (y-1,y)]~A 

Execution Time: 3.00 usec. 

y = Up or USR + U11 -0 

The borrow designator is cleared to zero. 

This instruction is executed by combining the AU and AL registers into a 36-bit 
accumulator, the A register. The contents of y-1 and yare treated as one 36-bit 
word, a double-length signed binary number. The contents of y-1, yare added to 
the contents of A and the resultant, SUM, is placed in A. 

The contents of y-1, y remain unchanged and in y-1, y. (y-1,Y)f = (y-1,yh 

Example: 

y = 07507 

(A)i = 201007430145 

(07507) 351123 (least significant half) 

(07506) = 077430 (most significant half) 

(A)f = 300440001270 

NOTES: 

• The least significant half of the 36-bit number is in y; the most significant 
half of the 36-bit number is in y-l. The sign of the 36-bit double-length 
number is indicated by the most significant bit of (y-1). 

• The operating characteristics of double-length arithmetic operations are the 
same as those for single-length arithmetic operations, except that any borrow 
for AL comes from AU. 

• If an end-around borrow for AU is required, it is inhibited and the borrow 
designator is set, indicating that the result left in A is too large by 1 and 

PAGE: 

must be corrected. This condition is tested by the TEST NO BORROW instruction 
(f = 5051). The borrow designator is cleared only by the execution of another 
ADD TO A (f = 20,21) or ADD NEGATIVE TO A (f = 22,23) instruction. 

• If the contents of A is negative 0 and the contents of y-1,y is negative 0, 
the result of the addition is negative O. (A)f = l's if (A)i = l's and (y-1,y) = l's 

• The results of addition involving all other possible combinations of positive 
and negative 0 are positive O . 

• If the magnitude of the resultant is too large for A to hold, that is, the sum 
exceeds the range -3777777777778 to +3777777777778 , the result is incorrect 
and the overflow designator is set. The state of the overflow designator is 
tested by either the SKIP NO OVERFLOW instruction (f = 5052) or the SKIP 
ON NO OVERFLOW instruction (f = 5053). The execution of either of these two 
instructions clears the overflow designator. 

10 



UP·7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 6 

SECTION: PAGE: 

21 ADD TO A (AA *) 

Operation: [(A) + (y + (B) -1, y + (B»] ~ A 

Execution Time: 3.00 usec. 

y == Up or USR + UI1-0 

The borrow designator is cleared to zero. 

This instruction is executed by combining the AU and AL registers into a 36-bit 
accumulator, the A register. The contents of y + (B) and y + (B)-1 are treated as 
one 36-bit word, a double-length signed binary number. The contents of y + (B)-I, 
y + (B) are added to the contents of A and the resultant, SUM, is placed in A. 

The contents of y + (B)-I, y + (B) remain unchanged and in y + (B)-I, y + (B). 
(y + (B)-I, y + (B»f "" (y + (B)-I, y + (B»i 

NO TES: 

m The least significant half of the 36-bit number is in y + (B); the most signifi
cant half of the 36-bit number is y + (B)-1. The sign of the 36-bit double
length numb er is indicated by the most significan t bit of (y + (B)-1). 

• The operating characteristics of double-length arithmetic operations are the 
same as those for single-length arithmetic operations, except that any borrow for 
AL comes from AU. 

• If an end-around borrow for AU is required, it is inhibited, and the borrow 
designator is set indicating that the result left in A is too large by 1 and mus t 
be corrected. This condition is tested by the TEST NO BORROW instruction 
(f =5051). The borrow designator is cleared only by the execution of another 
ADD TO A (f ::: 20,21) or ADD NEGATIVELY TO A (f::: 22,23) instr~ction. 

• If the contents of A is negative 0 and the contents of y-l,y is negative 0, the 
result of the addition is negative O. (A)f = 1 's if (A)i = 1 's and (y + (B)-I, y 
+ (B» = 1 's 

• The results of addition involving all other possible combinations of positive 
and negative 0 are positive O. 

• If the magnitude of the resultant is too large for A to hold, that is, the sum 
exceeds the range :-3777778 to +3777778 , the result is incorrect and the 
overflow designator is set. The state of the overflow designator is tested by 
either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO 
OVERFLOW .instruction (f = 5053). The execution of either of these two 
instructions clears the overflow designator. 

11 



UP-7599 
Rev. 1 

6 UNIVAC 418·111 RTOS ASSEMBLER 
SECTION: 

22 ADD NEGATIVELY TO A (ANA) 

Operation: [(A) - (y-1,y)] --,>A 

Execution Time: 3.00 usec. 

y = Up or USR + U1 1-O 

The borrow designator is cleared. to zero. 

This instruction is executed by combining the AU and AL registers into a 36-bit 
accumulator, the A register. The contents of y-1 and yare treated as one 36-bit 
word, a double-length signed binary number. The contents of y-1,y are subtracted 
from the contents of A and the resultant, DIFFERENCE, is placed in A. 

The contents of y-1,y remain unchanged and in y-1,y. (y-1,Y)f = (y~l'Y)i 

Example: 

201007430145 

y = 07507 

(A\ = 

(07507) 

(07506) 

(A)f = 

351123 (least significant half) 

077430 (most significant half) 

101357057022 

NOTES: 

• The least significant half of the 36-bit number is in y; the most significant 
half of the 36-bit number is in y-l. The sign of the 36-bit double-length 
number is indicated by the most significant bit of (y-1). 

• The operating characteristics of double-length arithmetic operations are the 
sam e as those for single-length arithmetic operations, except that any borrow 
for AL comes from AU. 

• If an end-around borrow for AU is required, it is inhibited and the borrow 
designator is set, indicating that the result left in A is too large by 1 and must 
be corrected. This condition is tested by the TEST NO BORROW instruction 
(f = 5051). The borrow designator is cleared only by the execution of another 
ADD TO A (f = 20,21) or ADD NEGATIVELY TO A (f = 22,23) instruction. 

• If the contents of A is negative 0 and the contents of y-1,y is positive 0, 
the result of the subtraction is negative O. (A)f = 1 's if (A)i = 1 's and 
(y -1 , y) = 0' s 

• The results of subtraction involving all other possible combinations of positive 
and negative 0 are positive O. 

12 
PAGE: ' 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

SECTION: 

6 13 
PAGE: 

------------------~-------------------------------------------------------------~~-------------~~-------------~----------

• If the magnitude of the resultant is too large for A to hold, that is, the difference 
exceeds the range -3777777777778 to +3777777777778 , the result is incorrect 
and the overflow designator is set. The state of the overflow designator is 
tested by either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP 
ON NO OVERFLOW instruction (f = 5053). The execution of either of these 
two instructions clears the overflow designator. 

23 ADD N EGA TIVE L Y TO A (ANA *) 

Operation: [(A) - (y + (B) -1, y + (B)] ~ A 

Execution Time: 3.00 usec. 

y = Up or USR + U11-0 

The borrow designator is cleared to zero. 

This instruction is executed by combining the AU and AL registers into a 36-bit 
accumulator, the A register. The contents of y + (B) - 1 and y + (B) are treated 
as one 36-bit word, a double-length signed binary number. The contents of 
y + (B)-I, y + (B) are subtracted from the contents of A and the resultant, 
DIFFERENCE, is placed in A. 

The contents of y + (B)-I, y == (B) remain unchanged and in y + (B)-I, y + (B). 
(y + (B)-I, y + (B»f = (y + (B)-I, y + (B) \ 

NOTES: 

• The least significant half of the 36-bit number is in y + (B); the most signi
ficant half of the 36-bit number is in y + (B)-I. The sign of the 36-bit double
length number is indicated by the most significant bit of (y + (B)-I). 

• The operating characteristics of double-length arithmetic operations are the 
same as those for single-length arithmetic operations, except that any borrow 
for AL comes from AU. 

• If an end-around borrow for AU is required, it is inhibited, and the borrow 
designator is set indicating that the result left in A is too large by 1 and must 
be corrected. This condition is tested by the TEST NO BORROW instruction 
(f = 5051). The borrow designator is cleared only by the execution of another 
ADD TO A or ADD NEGATIVELY TO A instruction. 

/I If the contents of A is negative 0 and the contents of y + (B)-I, y + (B) is 
positive 0, the result of the subtraction is ne8ative O. (A)f = 1 's if (A)i :.1 's 
and (y-l,y) = O's . 

• The results of subtraction involving all other possible combinations of positive 
and negative 0 are positive O. 

ill If the magnitude of the resultant is too large for A to hold, th a t is, the difference 
exceeds the range -3777777777778 to +377777777777~; the result is incorrect 
and the overflow designator is tested by either the SKIP ON OVERFLOW instruc
tion (f = 5052) or the SKIP ON NO OVERFLOW instruction (f = 5053). The 
execution of either of these two ins tructions clears the overflow designator. 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

24 MULTIPLY(M) 

Operation: [(AL) x (y)] ~ A 

Execution Time: 6.50 usec. - Numbers of like signs 
7.375 usec. - Numbers of unlike signs 

y = Up or USR + U 11 -0 

6 
SECTION: PAGE: 

This instruction multiplies the contents of AL by the contents of y and the resultant, 
PRODUCT, is placed in the 36-bit accumulator, the A register, consisting of AU 
and AL. 

The contents of y remain unchanged and in y. (Y)f = (y)i 

NOTES: 

• The results of multiplication involving all possible combinations of positive 
and negative 0 are positive O. 

• If the most Significant half of the product is 17 bits or smaller, it is contained 
in AL with leading O's in cases of positive products and leading 1 's in cases 
of negative products. AL17 contains the proper sign. 

Examples: 

Positive Product 

(AL) 000003 8 = +3 

(y) 0000048 = +4 

(A) (AU) + (AL) = 0000008 + 0000148 

Negative Product 

(AL) = 7777748 = -3 

(y) 0000048 = + 4 

(A) (AU) + (AL) = 7777778 + 7777638 

• If the most significant half of the product is exactly 18 bits long, it fills AL 
and the sign is carried by AU. For positive products, AU contains all O's; for 
negative products, A U contains all 1 'so AL17 does not contain the proper sign 
but, rather, the most significant bit of the product. 

Examples: 

Positive Product 

(AL) 0007258 
(y) 0007418 

(A) (AU) + (AL) = 0000008 + 670465
8 

Negative Product 

(AL) = 7770528 = -7258 
(y) 0007418 

(A) (AU) + (AL) = 7777778 + 1073128 

• No overflow is possible with this instruction because the number of bits in 
the product cannot exceed the number of bits in the multiplicand plus the 
number of bits in the multiplier. 

14 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMB LER 

25 MUL TIPLY (M*) 

Operation: [(AL) x (y + (8»] ~ A 

Execution Time: 6.50 usec. - Numbers of like signs 
7.375 usec. - Numbers of unlike signs 

y = Up or USR + UI1-0 

6 
SEC TION: PAGE: 

This instruction multiplies the contents of AL by the contents of y + (8) and the 
resultant, PR ODUCT, is placed in the 36-bit accumulator, the A register, consisting 
of AU and AL. 

The contents of y + (8) remain unchanged and in y + (8). (y + (8»f ='= (y + (B)\ 

NOTES: 

• The res ults of multiplication involving all possible combinations of positive 
and nega tive 0 are positive O. 

• If the most significant half of the product is 17 bits or smaller, it is contained 
in AL with leadin gO's in cases of pos itive products and leading l' s in cases 
of negative products. AL17 contains the proper sign. 

• If the most significant half of the product is exactly 18 bits long, it fills AL 
and the sign is carried by AU. For positive products, AU contains all O's; for 
negative products, AU contains all 1 'So AL17 does not contain the proper sign 
but, rather, the most significant bit of the product. 

• No overflow is possible with this instruction because the number of bits in the 
product cannot exceed the number of bits in the multiplicand plus the number of 
bits in the multiplier. 

26 DIVIDE (D) 

Operation: [(A) -;- (y)] ~ AL; Remainder -> AU 

Execution Time: 6.50 usec. - Numbers of like signs 
7.375 usec. - Numbers of unlike signs 

y = Up or USR + U11 -0 

This instruction divides the contents of A by the contents of y. The QUOTIENT 
is placed in AL and the REMAINDER is placed in AU. 

The con ten ts of y remain unchanged and in y. (Y)f :. (Y)i 

15 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 6 

SECTION: 

NOTES: 

• The results of division involving all possible combinations of positive and 
negative 0 are positive O. 

• The remainder always bears the sign of the dividend with the results satisfying 
the relationship: DIVIDEND = QUOTIENT x DIVISOR + REMAINDER 

• If the dividend and the divisor have like signs, the quotient is positive. If 
they have unlike signs, the quotient is negative. 

Examples: 

Divisor Dividend Quotient Remainder 

+4 +5 +1 +1 
-4 +5 -1 +1 
+4 -5 -1 -1 
-4 -5 +1 -1 

II If the magnitude of the quotient is too large for AL to hold, that is, the quotient 
exceeds the range -3777778 to +3777778 , the result is incorrect and the overflow 
designator is set. The state of the overflow designator is tested by either the 
SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO OVERFLOW 
instruction (f = 5053). The execution of either of these two instructions clears 
the overflow des ignator. 

27 0 I V .0 E (D * ) 

Operation: [(A) -:- (y + (B ))] -? AL; Remainder -? AU 

Execution Time: 6.50 usec. - Numbers of like signs 
7.375 usec. - Numbers of unlike signs 

y == Up or U SR + U 11-0 

This instruction divides the contents of A by the contents of y + (B). The 
QUOTIE NT is placed in AL and the REMAINDER is placed in AU. 

The contents of y remain unchanged and in y. (y + (B))f == (y + (B))i 

NOTES: 

• The results of division involving all possible combinations of positive and 
negative 0 are positive O. 

• The remainder always bears the sign of the dividend with the results satisfying 
the relationship: DIVIDEND = QUOTIENT x DIVISOR + REMAINDER 

• If the dividend and the divisor have like signs, the quotient is positive. If they 
have unlike signs, the quotient is negative. 

16 
PAGE: 



UP-7599 
l~ev. 1 UNIVAC 418-111 RTOS ASSEMBLER 6 

SECTION: PAGE: 

Examples: 

Divisor Dividend Quotient Remainder 

+4 +5 +1 +1 
-4 +5 -1 +1 
+4 -5 -1 -1 
-4 -5 +1 -1 

• If the magnitude of the quotient is too large for AL to hold, that is, the quotient 
exceeds the range -3777778 to +3777778, the result is incorrect and the overflow 
designator is set. The state of the overflow designator is tested by either the 
SKIP ON OVERFLOW instruction (f = 5052) or SKIP ON NO OVERFLOW instruc
tion (f = 5053). The execution of either of these two instructions clears the 

ove rflow des igna tor. 

30 STORE LOCATION AND JUMP INDIRECT (SLJI) 

Operation: [(P) + 1] ~ (y); [(y) + 1] ~ P 

Execution Time: 2.25 usec. 

y = Up + U11 -0 

This in struction s to res the current program address + 1 at the address defined by 
the contents of y. The contents of yare increased by 1, and the new address is 
transferred to the P register. 

Example of an indirect return jump executed from address 0020008 : 

INITIAL FINAL 
ADDRESS CONTENTS CONTENTS EXPLANATION 

0020008 30 65008 30 65008 Execute subroutine from main program 

0065008 71 74208 71 74208 Constant defining location of desired 
subrou tine 

3174208 37 21648 00 2001 8 Subroutine exit address 

3174218 ------- 00 20018 Subiou tine en trance address (control 
is transferred here from indirect return 
jump) 

The effect of the above sequence upon execution of the indirect return jump at 
address 0020008 is to transfer control to the subroutine starting at 174218, while 
at the same time letting the subroutine know where to return control. 

NOTE: 

This instruction together with the jump indirect instruction provides the means 
needed for jumping to and from subroutines. 

17 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

31 STORE LOCATION AND JUMP INDIRECT (SLJI*) 

Operation: [(P) + 1] 4 (y + (B»; [(y + (B» + 1] 4 P 

Execution Time: 2.25 usec. 

y =Up + U11 -0 

6 
SECTION: 

This instruction stores the current program address + 1 at the address defined by 
the contents of y + (B). Then the contents 0 f yare increased by 1 and the new 
address is transferred to P. 

NOTE: 

This instruction together with the jump indirect instruction provides the means 
needed for jumping to and from subroutines. 

32 LOAD B REGISTER (LB) 

Operation: (y) 4 B 

Execution Time: 1.50 usec. 

y = Up or USI~ + U11 -0 

This instruction transfers the contents of y to B specified by IRP. The full 
18 bits 0 f yare transferred to B. 

The contents of y remain unchanged and in y. (Y)f = (y)i 

33 LOAD B REGISTER (LB*) 

Operation: (y + (B» 4 B 

Execution Time: 1.50 usec. 

y = Up or USR + UI1-0 

This instruction transfers the contents of y + (B) to B specified by IRP. The full 
18 bits of y + (B) are transferred to B. 

The contents of y remain unchanged and in y. (y + (B »f = (y + (B»i 

34 JUMP (J) 

Operation: y -~ P 11 -0 

Execution Time: 0.75 usec. 

y = Up + UI1-0 

This instruction passes program control unconditionally to the location specified 
by y. 

Since only the word address is specified by y and the storage segment address is 
specified by P 16-12 , program control remains within the current storage segment. 

18 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 6 

SECTION: 

Example: 

P16-12 = 03 8 and y = 67128 

When the instruction is executed, P =:: 0367128 , and control passes to location 
036712. 

35 JUMP (J*) 

Operation: y + (B) ~ PI1-0 

Execution Time: 0.75 usec. 

y = Up + UII-0 

This instruction passes program control unconditionally to the location specified 
by y + (B). 

Since the word address is specified by y + (B), the storage segment address 
specified by P 16-12 could be modified causing program control to pass to a new 
location in another storage segment. 

36 LOAD B REGISTER WITH "·KONSTANT" (LBK) 

Operation: y ~ B 

Execution Time: 0.75 usec. 

y = U (sign extended to 18 bits) 

This ins truction transfers the contents of y to B specified by the index register 
pointer (IRP). The contents of y is the low-order 12 bits of this instruction U 11-0 
extended to 18 bits by the repetition of bit 11 in bit positions 17 through 12. 

Example: 

U11 -0 :::: 7701 8 
(B)i :::: any value 

(B)f = 7777018 

NOTE: 

U11 -0 is the 12-bit number contained within the instruction; it does not refer to 
an address. 

37 LOAD B REGISTER WITH "KONSTANT" (LBK*) 

Operation: y + (B) ~ B 

Execution Time: 0.75 usec. 

y = U (sign extended to 18 bits) 

This instruction transfers the contents of y ± (B) to B specified by IRP. The 
contents of yare the low-order 12 bits of this instruction, UII-0' extended to 
18 bits by the repetition of bit 11 in bit positions 17 through 12. 

19 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 6 

SECTION: 

The effect of this instruction is to change the contents of B by incrementally 
increas in g or decreas ing B. 

NOTE: 

U11 -0 is the 12-bit number contained within the instruction; it does not refer 
to an address. 

40 CLEAR Y (CY) 

Operation: 0 -c' y 

Execution Time: 1.50 usec. 

y = Up or USR + U 11 -0 

This instruction stores an 18-bit word of O's at storage address y. 

41 CLEAR Y (CY*) 

Operation: 0 --) y + (B) 

Execution Time: 1.50 usec. 

y = Up or U SR + U 11 -0 

This instruction stores an 18-bit word of O's at storage address y + (B). 

42 STORE B REGISTER (S8) 

Operation: (B) --) Y 

Execution Time: 1.50 usec. 

y = Up or USR + UII-0 

This instruction transfers the contents of B, specified by IRP, to the storage 
address y. 

The contents of B, specified by IRP, remain unchanged and in B. (B)f = (B)i 

43 STORE B REGISTER (S8*) 

Operation: (B) --) y + (B) 

Execution Time: 1.50 usec. 

y = Up or U SR + UI1-0 

This instruction transfers the contents of B, specified by IRP, to the storage 
address y + (B). 

The contents of B, specified by IRP, remain unchanged and in B. (B)f = (B)i 

20 
PAGE: 



UP-7599 
Rev. 1 

6 UNIVAC 418·111 RTOS ASSEMBLER 
PAGE: SECTION: 

44 STORE AL (SL) 

Operation: (AL) ~ y 

Execution Time: 1.50 usec. 

y = Up or USR + U11 -0 

This instruction transfers the contents of AL to the storage address y. The contents 
of AL remain unchanged and in AL. (AL)f = (AL)i 

45 STORE AL (SL*) 

Operation: (AL) ~ y + (B) 

Execution Time: 1.50 usec. 

y = Up or USR + UII-0 

This instruction transfers the contents of AL to the storage address y + (B). The 
contents of AL remain unchanged and in AL. (AL)f = (AL)i 

46 STORE AU (SU) 

Operation: (A U) ~ y 

Execution Time: 1. 50 usec. 

This instruction transfers the contents of AU to the storage address y. The contents 
of AU remain unchanged and in AU. (AU)f = (AU)i 

47 STORE AU (SU*) 

Operation: (A U) ~ y + (B) 

Exec ution Tim e: 1.50 usec. 

y = Up or USR + UII-0 

This instruction transfers the contents of AU to the storage address y + (B). 

The contents of AU remain unchanged and in AU. (AU)f = (AU)i 

51 INCLUSIVE OR (OR) 

Operation: [(AL) [$1 (y)] ~ AL 

Execution Time: 1.50 usec. 

y = Up + U 11 -0 

Each bit in y is logically added to corresponding bits in AL and the 18 independent 
logical sums are placed in AL. This is a bit-by-bit INCLUSIVE OR. For each bit 
in y that equals 1, set the corresponding bit in AL to 1. For each bit that equals 0, 
the corresponding bit in AL is left as it is. 

21 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

The contents of y remain unchanged and in y. (Y)f = (Y)i 

Example: 

(AL)i = 1234568 
(y) = 0000778 

(AL)f = 1234778 

NOTES: 

I SECTION, 6 

• The INCLUSIVE OR function is defined in the following table: 

(y) 

(AL) 

LOGICAL SUM 

• This instruction is sometimes called selective set. 

52 AND (AND) 

Operation: [(AL) rJml (y)] ~ AL 

Execution Time: 1.50 usec. 

y = Up + UII-0 

Each bit in y is logically multiplied by corresponding bits in AL and the 18 
independent logical products are placed in AL. This is a bit-by-bit AND. For 
each bit in y that equals 0, clear the corresponding bit in AL to O. For each 
bit in y that equals 1, the corresponding bit in AL is left as it is. 

The contents of y remain unchanged and in y. (Y)f = (Y\ 

Example: 

(AL)i = 123456 

(y) = 707070 

(AL)f = 103050 

NO TES: 

• The AND function is defined in the following table: 

(y) 0 0 1 1 

(AL) 0 1 0 1 

LOGICAL PRODUCT 0 0 0 1 

• This instruction is sometimes called selective clear. 

22 
PAGE: 



UP-7S99 
Rev. 1 UN I V A C 418 ·111 R TO SASS E MB L E R 

6 
SECTION: PAGE: 

53 EXCLUSIVE OR (XOR) 

Operation: (A L) OOE (y) ~ AL 

Execution Time: 1.50 usec. 

Each bit in y is logically subtracted from corresponding bits in AL and the 18 
independent logical differences are placed in AL. This is a bit-by-bit EXCLUSIVE 
OR. For each bit in y that equals 1, complement the corresponding bit in AL. For 
each bit in y that equals 0, the corresponding bit in AL is left as it is. 

The contents of y remain unchanged and in y. (Y)f = (y)i 

Example: 

(AL)i = 123456 

(y) = 070007 

(AL)f = 153451 

NOTES: 

• The EXCLUSIVE OR function is defined in the following table: 

(y) 0 0 1 1 

(AL) 0 1 0 1 

LOGICAL DIFFERENCE 0 1 1 0 

• The instruction is sometimes called selective complement. 

54 ENABLE INTERRUPTS AND JUMP INDIRECT (EJI) 

Operation: (y) ~ the P register, and remove interrupt lockout 

Execution Time: 1.50 usec. 

y = Up + U11-0 

This instruction removes interrupt lockout, enables interrupts and passes program 
control to the address which is specified by the contents of y. 

NO TES: 

• Interrupt lockout is set by all interrupts received from the 10M. 

• An applica tion of this instruction is the termination of a subroutine activated 
by an in terrupt. 

• This ins truction gives the same result as executing the two instructions, clear 
interrupt lockout (f = 5030) and jump indirect (f = 55), in succession. 

• Interrupts are inhibited for one instruction time following the execution of this 
instruction. 

23 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 6 

SECTION: PAGE: 

55 JUMP INDIR EeT (JI) 

Operation: (y) ~ P 

Execution Time: 1.50 usec. 

y = Up + U11-0 

This instruction passes program control unconditionally to the location specified 
by the contents of y. 

56 TEST B REGISTER FOR EQUALITY (TB) 

Operation: IF (B) = (y); SKIP NI, [(P) + 2 ~ p] 
IF (B) ::J (y); ADVANCE B BY ONE [(B) + 1 ~ B] 

EXECUTE NI [(P) + 1 ~ p] 

Execution Time: 2.50 usec. 

This instruction compares the contents of B, specified by IRP, with the contents 
of y. If they are equal, the next instruction is skipped. If (B) = (y), then (P) + 2 ~ P. 
If they are not equal, the contents of B are incremented by 1 and the computer 
executes the next instruction. If (B) =I (y), then (B) + 1 ~ Band (P) + 1 ~ P. 

57 TEST ANY LOCATION FOR ZERO (TZ) 

Operation: IF (y) = 0, SKIP NI, [(P) + 2 ~ p] 
IF (y) f 0, DECREMENT (y) BY ONE [(y) - 1 ~ y] 

EXECUTE NI, [(P) + 1 ~ p] 

Execution Time: 2.25 usec. 

y = Up + U 11-0 

If the contents of yare 0, the next instruction is skipped. If (y) = 0, then (P) + 2 ~ P. 
If they are not 0, they are decremented by 1 and the processor executes the next 
instruction. If (y) ::J 0, then (y) - 1 ~ y and (P) + 1 -7 P. 

24 



UP-7599 
Rev. 1 SECTION: 

6 UNIVAC 418·111 RTOS ASSEMBLER 

60 JUMP ON AU ZERO (JUZ) (Compare designator not set) 

Operation: IF (AU) = +0, y --) P 

IF (AU) f- +0, (P) + 1 --) P 

Execution Time: 0.75 usec. 

y = Up + U11-0 

The COMPARE stage of the compare designator is not set. 

If the contents of AU equals positive 0, program control passes to the location 
specified by y.1f (AU) = +0, then y --) P. 

If the contents of AU does not equal positive 0, the processor executes the next 
instruction. If (A U) f- +0, then (P) + 1 --) P. 

NOTE: 

Negative 0 acts as not O. 

60 JUMP ON EQUAL (JE) (Compare designator set) 

Operation: IF (AL) = M, y --) P 

IF (AL) =I M, (P) + 1 ~ P 

IF [(AL) rJn!l (AU)] = M, y --) P 

IF [(AL) mm (AU)] f- M, (P) + 1 --) P 

Execution Time: 0.75 usec. 

y = Up + U1 1 -O 

The COMPARE stage of the compare designator is set. 

If the EQUAL stage of the compare designator is set, program control passes to 
the location specified by y. 

IF (AL) = M, then y --) P 
IF (AL) fJllil (AU)] = M, then y ~ P 

If the EQUAL stage of the compare designator is not set, the next instruction is 
executed. 

IF (AL) f- M, then (P) + 1 --) P 
IF [(AL) mm (AU) f- M, then (P) + 1 ~ P 

NOTES: 

• Negative 0 acts as not O. 

• Execution of this instruction does not clear the compare designator. 

25 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 6 

SECTION: 

61 JUMP ON AL ZERO (JLZ) (Compare designator not set) 

Operation: (AL) = +0, y ~ P 
(AL) i +0, (P) + 1 ~ P 

Execution Time: 0.75 usec. 

y = Up + U11 -0 

The C OMP AR E stage of the compare designator is not set. 

If the contents of AL equal positive 0, program control passes to the location 
spec ified by y. IF (AL) = +0, then y ~ P 

PAGE: 

If the contents of AL does not equal positive 0 (contains any 1 bits) the processor 
executes the next instruction. IF (AL) i 0, then (P) + 1 ~ P 

NOTE: 

Negative 0 acts as not O. 

61 JUMP ON EQUAL (JE) (Compare designator set) 

Operation: IF (AL) = M, y ~ P 
IF (AL) i M, (P) + 1 -) P 
IF [(AL) flml (AU)] = M, y -) P 
IF [(AL) l.JIDl (AU)] i M, (P) + 1 -) P 

Execution Time: 0.75 usec. 

The COMP ARE stage of the compare designator is set. 

If the EQUAL stage of the compare designator is set, program control passes to 
the location specified by y. 

IF (AL) = M, THEN y -> P 
IF [(AL) mI!J (AU)] = M, then y ~ P 

If the EQUAL stage of the compare designator is not set, the processor executes 
the next instruction. 

IF (AL) i M, then (P) + 1 ~ P 
IF [(AL) mE (AU)] f M, then (P) + 1 ~ P 

NOTE: 

Execu tion of this instruction does not clear the compare designator. 

26 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

62 JUMP ON AU NONZERO (JUNZ) (Compare designator not set) 

Operation: IF (AU) .f +0, y ~ P 
IF (AU) == +0, (P) + 1 ~ P 

Execution Time: 0.7S usec. 

y == Up + U 11-0 

The COMPARE stage of the compare designator is not set. 

6 
SECTION: 

If the contents of AU does not equal positive 0 (contains any 1 bits) program 
control passes to the location specified by y. IF (AU) .f +0, then y ~ P. 

PAGE: 

If the contents of AU equals positive 0, the processor executes the next instruction. 
IF (AU) == +0, then (P) + 1 ~ P 

NOTE: 

Negative 0 acts as not O. 

62 J UM P ON NOT EQUAL (IN E) (Compa re des ignator set) 

Operation: IF (AL).f M, y ~ P 
IF (A L) == M, (P) + 1 -) P 
IF [(AL) mm (AU)] ~ M, y ~ P 
IF [(AL) tm!l (AU)] = M, (P)+ 1 ~ P 

Execution Time: 0.7S usec. 

y = Up + U 11 -0 

The COMPARE stage of the compare designator is set. 

If the EQUAL stage of the compare designator is not set, the processor passes 
control to the location specified by y. 

IF (AL) ~ M, then y ~ P 
IF [(AL) mrn (AU)] .f M, then y ~ P 

If the EQUAL stage of the compare designator is set, the processor executes the 
next ins truction. 

IF (AL) == M, then (P) + 1 ~ P 
IF [CAL) mID (AU)] == M, then (P) + 1 ~ P 

NOTE: 

Execution of this instruction does not clear the compare designator. 

27 



UP-7599 
Rev. 1 UNIVAC 418-III·RTOS ASSEMBLER 

63 JUMP ON AL NONZERO (JLNZ) (Compare designator not set) 

Operation: IF (AL) f +0, y --> P 
IF (AL) = +0, (P) + 1 --> P 

Execution Time: 0.75 usec. 

y = Up + U11 -0 

The COMPARE stage of the compare designator is not set. 

6 
SECTION: 

If the contents of AL does not equal positive 0, program control passes to the 
location specified by y. IF (AL) f +0, then y -~ P 

PAGE: 

If the contents of AL equals positive 0, the processor executes the next instruction. 
IF (AL) = +0, then (P) + 1 --> P 

NOTE: 

Negative 0 acts as not O. 

63 JUMP ON NOT EQUAL (JNE) (Compare designator set) 

Operation: IF (AL) f. M, y --> P 
IF (AL) = M, (P) + 1 --> P 
IF [(AL) fJlli) (AU),J M, y --> P 
IF [(AL) DID) (AU)] = M, (P) + 1 -~ P 

Execution Time: 0.75 usec. 

y = Up + U11 -0 

The COMPARE stage of the compar~ designator is set. 

If the EQUAL stage of the compare designator is not set, the processor passes 
control to the location specified by y. 

IF (AL) f M, then y --> P 
IF [(AL) mE (AU)] f. M, then y --> P 

If the EQUAL stage of the compare designator is set, the processor executes the 
next instruction. 

IF (AL) = M, then (P) + 1 --> P 
IF [(AL) rJ.mJ (AU)] = M, then (P) + 1 --> P 

NOTE: 

Execution of this instruction does not clear the compare designator. 

28 



UP-7S99 
Rev. 1 , UNIVAC 418·111 RTOS ASSEMBLER 

64 JUMP ON AU POSITIVE (JUP) (Compare designator not set) 

Operation: IF (AU) POSITIVE, y ~ P 
IF (A U) NOT POSITIVE, (P) + 1 ~ P 

Execution Time: 0.75 usec. 

y :=- Up + U11 -0 

The COMPARE stage of the compare designator is not set. 

6 
SECTION: 

If the sign of AU is positive, program control passes to the location specified 
by y. IF (AU17) = 0, then y ~ P 

If the sign of AU is negative, the processor executes the next instruction. IF 
(AU 17) = 1, then (P) + 1 --) P 

64 JUMP ON NOT LESS (JNLS) (Compare designator set) 

Operation: IF (AL) ~ M, y ~ P 
IF (AL) < M, (P) + 1 ~ P 
IF [CAL) mID (AU)] ::::. M, y ~ P 
IF [(AL) r.l'lliJ (AU)] < M, (P) + 1 -~ P 

Execution Time: 0.75 usec. 

y = Up + U11 -0 

The COMPARE stage of the compare designator is set. 

If the LESS THAN stage of the compare designator is not set, program control 
passes to the location specified by y. 

IF (AL) ::::. M, then y .~ P 
IF [(AL) rJlliJ (AU)] ~ M, then y-) P 

If the LESS THAN stage of the compare designator is set, the processor executes 
the next instruction. 

IF (AL) < M, (P) + 1 --) P 
IF [(AL) mJ!J (AU)] < M, (P) + 1 ~ P 

NOTE: 

Execution of this instruction does not clear the compare designator. 

29 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER I SECTION, 6 

65 JUMP ON AL POSITIVE (JLP) (Compare designator not set) 

Operation: IF (A L) POSITIVE, y -) P 
IF (AL) NEGATIVE, (P) + 1 -) P 

Execution Time: 0.75 usec. 

y = Up + U11 -0 

The COMPARE stage of the compare designator is not set. 

If the sign of AL is positive, program control passes to the location specified 
by y. IF (AL17)= 0, then y -) P 

If the sign of AL is negative, the processor executes the next instruction. IF 
(ALI7)= 1, then (P)+ 1-) P 

65 JUMP ON NOT LESS (JNLS) (Compare designator set) 

Operation: IF (AL) ~ M, y 4 P 
IF (AL) < M, (P) + 1 -) P 
IF [(AL) r..ru!l (AU)] ~ M, y -) P 
IF [(AU) rJ:lli] (AU)] < M, (P) + 1 -) P 

Execution Time: 0.75 usec. 

y :oc Up + UII-0 

The COMPARE stage of the compare designator is set. 

If the LESS THAN stage of the compare designator is not set, program control 
passes to the location specified by y. 

IF (AL) ~ M, then y7 P 
IF [(AL) mr!.l (AU)J?: M, then y 4 P 

PAGE: 

If the LESS THAN stage of the compare designator is set, the processor executes 
the next ins truction. 

IF (AL) < M, (P) + 1 -) P 
IF [(AL) fJlliJ (AU)] > M, (P) + 1 -) P 

NOTE: 

Execution of this instruction does not clear the compare designator. 

30 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

66 JUMP ON AU NEGATIVE (JUN) (Compare designator not set) 

Operation: IF (AU) NEGATIVE, J --) P 
IF (AU) POSITIVE, (P) + 1 --) P 

Execution Time: 0.75 usec. 

y = Up + U11 -0 

The COMPARE stage of the compare designator is not set. 

6 
SEC TION: 

If the sign of AU is negative, program control passes to the location specified 
by y. 

IF (A U 1 7) = 1, then y --) P 

If the sign of AU is positive, the processor executes the next ins truction. 
IF (AU 17) = 0, then (P) + 1--) P 

66 JUMP ON LESS (JLS) (Compare designator set) 

Operation: IF (AL) < M, y --) P 
IF (AL) ~ M, (P) + 1 --) P 
IF [(AL) fJTh) (A U)] < M, y --) P 
IF [(A L) rJ:llil (A U») ~ M, (P) + 1 --) P 

Execution Time: 0.75 usec. 

y = Up + U11 -0 

The COMPARE stage of the compare designator is set. 

If the LESS THAN stage of the compare designator is set, program control passes 
to the location specified in y. 

IF (AL) < M, then y --) P 
IF [(AL) rJll!J (AU)] < M, then y --) P 

If the LESS THAN stage of the compare designator is not set, the processor 
executes the next instruction. 

IF (AL) ~ M, then (P) + 1 --) P 
IF [(AL) ~ (AU)] ~ M, then (P) + 1 --) P 

NOTE: 

Execution of this instruction does not clear the compare designator. 

31 
PAGE: 



UP·7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

67 JUMP ON AL NEGATIVE (JLN) (Compare designator not set) 

Operation: IF (AL) NEGATIVE, y ~ P 
IF (AL) POSITIVE, (P) + 1 ~ P 

Execution Time: 0.75 usec. 

y = Up + U 11-0 

The COMPARE stage of the compare designator is not set. 

6 
SECTION: 

If the sign of AL is negative, program control passes to the location specified 
by y. 

If (AL17) = 1, then y -> P 

If the sign of AL is positive, the processor executes the next instruction. IF (AL) 
= 0, then (P) + 1 --) P 

67 JUMP ON LESS (.JLS) (Compare designator set) 

Operation: IF (AL) < M, y --) P 
IF (AL) ~ M, (P) + 1 ~ P 
IF [(AL) mE (AU)] < M, y ~ P 
IF [(AL) mrn (AU)] ~ M, (P) + 1 --) P 

Execution Time: 0.75 usec. 

y = Up + U 11-0 

The COMPARE stage of the compare designator is set. 

If the LESS THAN stage of the compare designator is set, program control 
passes to the location specified by y. 

IF (AL) < M, then y ~ P 
IF [(AL) mE (AU)] ,< M, then y --) P 

If the LESS THAN stage of the compare designator is not set, the processor 
executes the next instruction. 

IF (AL) ~ M, then (P) + 1 ~ P 
IF [CAL) mE (AU)] ~ M, then (P) + 1 ~ P 

NOTE: 

Execution of this instruction does not clear the compare designator. 

32 
PAGE: 



UP-7S99 
Rev. 1 

6 UNIVAC 418-111 RTOS ASSEMBLER SECTION: 

70 LOAD AL WITH "KONSTANT" (LLK) 

Operation: y ~ A L 

Execution Tim e: 1.00 usec. 

y = U (sign extended to 18 bits) 

The contents of yare the lower-order 12 bits of this instruction extended to 18 
bits by the repetition of bit 11 in bit positions 17 through 12. This expanded 
18-bit num b er is placed in AL. 

Examples: 

70 0001 8 , Y = 0001 8 , LOAD AL WITH "KONSTANT" + 1 

(AL)i = any value 

(AL)f = 0000018 

70 77758, y = 77758' LOAD AL WITH "KONSTANT" - 1 

(AL)i = any value 

(AL)f = 7777758 

NOTES: 

• The LOAD AL WITH "KONSTANT" instruction itself remains unchanged by 
the operation. 

• U is the 12-bit number contained within the instruction; it does not refer to 
an address. 

• The c onstan t, U, may range in value from -37778 to +37778 , 

33 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

71 ADD "KONSTANT" TO AL (ALK) 

Operation: (A L) + y ~ AL 

Execution Time: 1.00 usec. 

y == U (sign extended to 18 bits) 

The contents of yare the lower-order 12 bits of this instruction, extended to 
18 bits by the repetition of bit 11 in bit positions 17 through 12. This 18-bit 
number is then added to the contents of AL and the resultant, SUM, is placed 
in AL. 

Examples: 

71 00028 , y = 00028 , ADD "KONSTANT" + 2 TO AL 

(AL)i == 0577778 

(AL)f == 0600018 

71 77758 , y == 77758 , ADD "KONSTANT" - 2 TO AL 

(AL)i == 0670558 
(AL)f = 067053 8 

NOTES: 

• The ADD "KONSTANT" TO AL instruction itself remains unchanged by the 
operation. 

• U is the 12-bit number contained within the instruction; it does not refer to an 
address. 

• The constant, U, may range in value from -37778 to +37778 , 

• If the contents of AL is negative 0 and y is negative 0, the result of the 
addition is negative O. 

(AL)f = l's if (AL)i = l's and y = l's 

• The results of addition involving all other possible combinations of positive 
and negative 0 are positive O . 

• If the magnitude of the resultant is too large for AL to hold, the result is 
incorrect and the overflow designator is set. The state of the overflow 
designator is tested by either the SKIP ON OVERFLOW instruction (f = 5052) 
or the SKIP ON NO OVERFLOW instruction (f = 5053). The execution of 
either of these two instructions clears the overflow designator. 

34 
PAGE: 



UP·7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

72 STORE INDEX REGISTER (SIR) 

Operation: IRP3 _0 ~ Y3-0 

O'S ~ Y5-4 

Execution Time: 3.00 usec. 

Y = Up + U 11 -0 

I SECTION, 6 

This instruction replaces the six low-order bits of the contents of y with a six-
bit value in wh ich the contents of IRP3 _0 replaces the contents of Y3-0 and zeros 
replace the contents of Y5-4' Bits 17 through 6 of the contents of Y remain unchanged. 
T.he resultant is stored at storage location y. 

NOTES: 

• If the contents of IRP equals 0, bit 3 of the contents of y is set. If the contents 
of IRP does not equal 0, bit 3 of the contents of y is cleared. That is, IRP 
points to storage address 108 when loaded with 008 , 

IF (IRP) = 0 (Y3) = 1 

IF (IRP) f. 0 (Y3) = 0 

• Since this instruction effects a partial transfer, the 12 high-order bits of Y 
remain unchanged. 

73 JUMP IF B REGISTER NONZERO (JBNZ) 

Operation: IF (8) +0, (8) - 1 ~ Band y ~ P 

IF (B) +0, (P) + 1 ~ P 

Execution Time: 1.75 usec. 

y = Up + U 11-0 

If the contents of B, specified by IRP, are not positive 0, the con ten ts of Bare 
decremented by 1 and program control passes to the location specified by y. If 
the contents of B, specified by IRP, are positive 0, the processor executes the 
next instruction. 

IF (B) +0, then (B) - 1 ~ Band y ~ P 
IF (B) +0, then (P) + 1 ~ P 

NOTES: 

• Negative 0 acts as not O. 

• Since B is a one's complement number and can take values less than zero, the 
B JUMP is effective for program loops only when the contents of 8 is initially 
positive. 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

6 
SEC TION: 

74 STORE ADDRESS OF AL (SAD) 

Operation: (ALll_O) ~ Yll-O 

Execution Time: 3.00 usec. 

Y = Up + Ull-O 

The low-order 12 bits of the contents of AL, (ALll _O)' replace the corresponding 
low-order 12 bits of the contents of Y, (Yll-0)' The high-order six bits of the 
contents of Y (Y17-l2) remain unchanged. 

The contents of AL remain unchanged and in AL. 

Example: 

(AL)i = 7625048 
(y\ = S677778 
(Y)f = S62S048 

NOTE: 

Since this instruction effects a partial transfer, the six high-order bits of Y 
remain unchanged. 

75 STORE SPECIAL REGISTER (SSR) 

Operation: (SRS_O) 4 YS-O 

Execution Time: 3.00 usec. 

Y = Up + Ul1 -0 

The contents of the special register replace the 6 low-order bits of the contents 
of Y (YS-O). Bit 4 of the special register, SR4 , is cleared to O. The contents of 
SR3_0,S bits 0 through 3 and bit S, and the contents of Y17-6 bits 17 through 6, 
remain unch anged by the operation. 

NO TES: 

PAGE: 

• Since the instruction effects a partial transfer, bits 17 through 6 of the con tents 
of Y (Y17 -6) remain unchanged . 

• This instruction deactivates the special register as the control bit, bit 4, is 
cleared. 

36 



UP·7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 6 

SECTION: 

76 STORE LOCA TION AND JUMP (SLJ) 

Operation: (P) + 1 ~ y and y + 1 ~ P 

Execution Time: 2.00 usec. 

y = Up + U11 -0 

The address of the next instruction in st~rage replaces the contents of the 
location specified by y; that is, the current program address plus 1 is stored in 
y. Program control passes to the location following the location specified by y; 
that is, jump to y plus 1. 

NOTES: 

• This ins truction transfers a full IS-bit word to y. 

• The lower 17 bits are (P) + 1; the upper bit is set to O. 

6.4. TYPE III INSTRUCTIONS 

The following are type III instructions. Each requires a function code of 50 and a 
minor function code in the range of OOS through 77 S. The 50 function code identifies 
the instruction as type III; the minor function code determines the operation to be 
performed. 

6.4.1. Type III-b Ins tructions 

Most of the type III-b instructions are the optional floa ting-point instructions. In 
processors not equipped with this feature, floating-point commands are considered 
as faults and generate a supervisor call interrupt. 

5002 FLOATING-POINT ADD (FA) and (FA*) 

Operation: (FA) 
[(A)+ (y-1,y)] ~ A 
(FA*) 
[(A) + (y-1 + (B), y + (B»] ~ A 

Execution Time: (4.35 + number of shifts/S) usec. 

y =~ Up or USR + U11 -0 

This instruction causes the signed floating-point number contained in the main 
storage addresses specified by y-I (most significant half) and y (least signi
ficant half) to be added to the signed floating-point number contained in the 
A register. The sign is indicated by the most significant bit of y-1. The 
characteristics are compared and the fixed-point part and exponent in the 
floating-point number with the smallest exponent are adjusted until the two 
exponents are the same. The fixed-point parts are added, the sum is normalized, 
and the result is placed in the A register in the floating-point format. AUI7 
con tains the resultant sign. AU 16-9 contains the resultant exponen t and AU S-O 
and AL17 -0 contain the resultant fixed-point part. 

37 
PAGE: 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

38 
PAGE: I SECTION, 6 

-------------~----------------.------------------------~-------------~------------~----------

NOTES: 

• If the resultant exponent is less than zero and the resultant fixed-point part 
is nonzero, the operation is completed by normalizing the fixed-point part 
and decrementing the exponent past.zero, packing the result in A, and causing 
an underflow interrupt to location 348 , 

• If the resultant exponent is greater than 3778 and the resultant fixed-point 
part is nonzero, the operation is completed by normalizing the fixed-point 
part (shift right one place), incrementing and truncating the exponent (which 
results in a zero exponent), packing the result in A, and causing an overflow 
interrupt to location 358 , 

• If the resultant fixed-point part is a plus or minus 0, a plus 0 is placed in the 
A register and no interrupt is generated. 

5003 FLOATING-POINT SUBTRACT (FS) AND (FS*) 

Operation: (FS) 
[(A) - (y-1,y)J ~ A 
(FS*) 
[(A) - (y-1 + (B), y + (B))] -> A 

Execution Time: (4.35 t number of shifts/8) usec. 

y = Up or U SR + U 11 -0 

This instruction causes the signed floating-point number contained in the main 
storage addresses specified by y-1 (most significant half) and y (least significant 
half) to be subtracted from the signed floating-point number contained in the A 
regis ter. The sign is indicated by the most significant bit of y-1. The exponents 
are compared and the fixed-point part and exponent in the floating-point number 
with the smallest exponent are adjusted until the two exponents are the same. 
After subtraction, the difference is normalized and the result is contained in 
the A register in the floating-point format. 

AU 17 contains the resultant sign. AU 16_9 contains the resultant exponent and 
AUS_O and AL17-0 contain the resultant fixed-point part. 

NOTES: 

• If the resultant exponent is less than zero and the resultant fixed-point part 
is nonzero, the operation is completed by normalizing the exponent and 
decrementing the fixed-point part past zero, packing the result in A, and 
causing an underflow interrupt to location 348 , 

• If the res ultant exponent is greater than 377 S and the resultant fixed-point 
part is nonzero, the operation is completed by normalizing the fixed-point 
part (sh ift right one place), incrementing and truncating the exponent (which 
res ults in a zero exponent), packing the result in A, and causing an overflow 
interrupt to location 358 , 

• If the resultant fixed-point part is a plus or minus 0, a plus 0 is placed in the 
A register and no interrupt is generated. 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMB LER 

5004 FLOATING-POINT MUL TIPLY (FM) and (FM*) 

Operation: (FM) 
[(A) x (y-l ,y)] ~ A 

(FM*) 
[(A) >< (y-1 +- (B), y + (B»] ---) A 

Execution Time: 12.00 usec. 

y == Up or USR +- U11 -O 

6 
SECTION: 

This instruction causes the signed floating-poin t number contained in the 

PAGE: 

A register to be multiplied by the contents of the signed floating-point number 
contained in the main storage address specified by y - 1 (most significant 
half) and y (least significant half), with the product contained in the A 

register in the floating-point format. AU 17 contains the resultant sign. AU 16-9 
contains the resultant exponent and AU 8-0 and A L17 -0 contain the resultant 
fixed-point part. 

NOTES: 

• If the resultant exponent is less than zero, the operation is completed by 
placing the resulting exponent (which is truncated to 8 bits) and the 
normalized fixed-point part (shifted zero or one place left, since operands 
are assumed to be normalized) in A, then causing an interrupt to location 
348 , 

• If the resultant exponent is greater than 3778 , the operation is completed 
by placing the resulting exponent (truncated to 8 bits) and the normalized 
fixed-poin t part in A, then causing an interrupt to location 358 , 

5005 FLOATING-POINT DIVIDE (FD) AND (FD*) 

Opera tion: (FD) 
[(A) + (y-l,y)] ~ A 

(FD*) 
[(A) + (y-l + (B), y + (B»] -~ A 

Exec ution Time: 12.00 usec. 

y == Up or USR + UI 1-O 

This instruction causes the signed floating-point number contained in the A 
register to be divided by the contents of the signed floating-point number 
contained in the main storage addresses specified by y-l (most significant 
half) and y (least significant half), with the quotient contained in the A register 
in the floating-point format. The remainder is not saved. AU17 contains the 
resultant sign. AU16-9 contains the resultant exponent and AU8 _0 and AL17_0 
contain the resultant fixed-pO-jnt part. 

39 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 6 

SECTION: 

NOTES: 

• If division is attempted with an unnormalized divisor or a divisor of plus 
or minus 0, the operation is suppressed (contents of A is unchanged), the 
overflow designator is set, and an exponent overflow interrupt occurs to 
location 358' 

PAGE: 

• If the resultant exponent is less than 0, the operation is completed by 
placing the resulting exponent (truncated to 8 bits) and the normalized fixed
point part in A, then causing an interrupt to location 348 , 

• If the resultant exponent is greater than 3778 , the operation is completed by 
placing the resulting exponent (truncated to eight bits) and the normalized 
fixed-point part (right shift of zero or one place) in A, then causing an 
interrupt to location 358 , 

5006 FLOATING-POINT PACK (FP) AND (FP*) 

Operation: (FP) 

(A35) -) A35 -27 
Normalized (A35-0) -) A26-0 

[(Y 7 -0) ± 'actual shift count] OOID A34 -27 -) A34 -27 
(FP*) when bit position 12 of the second word = 1, 

([ y+(B)7 -0] ± actual shift coun tI OOID A34-27 -) A34 -27 

Execution Time: (3.5 + number of shifts/8) usec. 

y = Up or USR + U 11 -0 

The contents of the A register (the fixed-point part) is normalized by shifting 
the contents of A left or right until the most significant bit of the number is 
in bit position 26. The sign bit, A35, is extended through bit positions 35-27. 
The contents of bit positions 7 through 0 of the main storage address specified 
by Y (the exponent part) plus the number of right shifts or minus the number of 
left shifts necessary for the normalization is exclusively ORed into bit positions 
34-27. 

Examples: 

(1) (AU) i = 000000 (AL)i = 000001 (y)i = 000233 
(AU) f = 201400 (AL)f = 000000 (y)f = 000233 

(2) (AU) i = 777777 (AL)i == 777773 (y)i = 000233 
(AU) f = 575377 (AL)f = 777777 (y)f = 000233 

(3) (AU)i = 123456 (AL)i = 712345 (y)i = 000233 
(AU)£ =~ 242516 (AL)f = 273451 (y)£ = 000233 

(4) (AU)i = 100000 (A L)i = 000000 (y)i = 000000 
(AU)f = a07400 (AL)£ = 000000 (y)£ = 000000 

NOTES: 

• If the contents of the A register are initially plus or minus 0, the result 
is plus O. 

40 



UP-7599 
Rev. 1 

35 34 

s 
35 34 

UNIVAC 418-111 RTOS ASSEMBLER 6 
SECTION: PAGE: 

• Overflow and underflow are handled the same as in F A and FS (see notes 
given with FA and FS instructions), except that a right shift of eight places 
may cause the exponent to overflow past O. 

• The contents of the operand address are norma lly 02338 (bias + 271 0) for a 
float operation. For example, to tloat an integer value given in (AL): 

SLA 18 Put sign into (AU) 
SRA 18 Restore (AL) 
FP (0200+27) Float 

5007 FLOATING·POINT UNPACK (FU) and (FU*) 

C 

Operation: (FU) 

If (A35) = 0, (A34-27) ~ Y7-0 
If (A35) = 1, (A34 -27)- ~ Y7 -0 and 0 's ~ Y17 -8(A35) ~ A34-27 
(FU *) If bit position 12 of the second word = 1, 

(A34 -27) or (A34 -27 ) ~ [y + (B)]7-0 

Execu tion Time: 3.50 usec. 

y = Up or USR + U11 -0 

The contents of the absolute value of the exponent (that is, if S = 1, complement 
the exponent) in the A register bit positions 34 through 27 are transferred into 
bit positions 7 through 0 of the main storage address specified by y. If A35 is 
a 1 the exponent is complemented before storing. Zeros are put into Y17-8' The 
content of bit position 35 of the A register is put into bit positions 34 through 
27 of the A register. Bit positions 26 through 0 of the A register are unchanged. 

27 26 o 

M 

27 26 0 
'-,..... 

L "-- ~ s 

I 
~ 

y h --------------- ~ 17 C 

01 

- - --~ ~ -- - ---
M 

41 



UP·7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER I SECTION, 6 

5010 READ AND SET (RS) and (RS*) 

Operation: (y) ~ AL or [y + (B)] d AL 

(Y16-0) -) Y16-0 and 1 ~ Y17 or [y + (B)]16-0 ~ [y + (B)]16-0 and 
1 ~ [y + (B)1 17 

Execution Time: 2.50 usec. 

y == Up or Us R + U 11-0 

This instruction transfers the contents of y, bits 17 through 0, into AL. Then 
bits 16 through 0 are restored to y, and bit 17 of y is set to 1. 

If bit 12 of (P + 1) is set, then the address is B modified. 

6.4.2. Type III-a Instructions 

5011 LOAD INPUT CHANNEL (LIC) - Privileged 

Operation: Load I/O channel K from (P) + 1 and (P) + 2. 
Initiate input, ( P) +- 3 ~ P. 

Execution Time: 5.30 usec minimum. 

Execu tion of this instruction activates the input channel specified by the K 
portion of the instruction and causes the two succeeding addresses to be 
stored in the input buffer control word addresses for the designated channel, 

PAGE: 

(P) + 1 == terminal buffer control word and (P) + 2 == present buffer control word. 
The processor then resumes normal operation by passing program control to the 
location immediately following the buffer control words, (P) + 3 ~ P. The contents 
of the two storage registers following the instruction remain unchanged by the 
operation. 

NOTES: 

• On ESI channels, the two words following a load input channel instruction 
are ignored since buffer control addresses are obtained from the communications 
line terminal (eL T) . 

• K must be odd for paired channel, 36-bit operation. 

42 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

5012 LOAD OUTPUT CHANNEL (LOC) - Privileged 

Opera tion: Load I/O channel K from (P) -I- 1 and (P) + 2. 
Initiate output, (P)+ 3 .. ~ P. 

Execution Time; 5.30 usec minimum. 

6 
SECTION: PAGE: 

Execution of this instruction activates the output channel specified by the K 
portion of the instruction and causes the two succeeding addresses to be stored 
in the ou tput buffer control word addresses for the designated channel, (P) 
+ 1 = terminal buffer control word and (P) + 2 = present buffer control word. 
The processor then resumes normal operation by passing program control to 
the location immediately following the buffer control word, (P) + 3 ~ P. The 
contents of the two storage registers following the instruction remain unchanged 
by the operation. 

NOTES: 

• On ESI channels, the two words following a load output channel instruction 
are ignored since buffer control addresses are obtained from the communica
tions line terminal (eL T). 

• K must be odd for paired channel, 36-bit operation. 

5013 LOAD EXT E RNAL FUNCTION CHANN E L (L FC) - Privi leged 

Operation; Load I/O channel K from (P) + 1 and (P) + 2. 
Initiate external function, (P) + 3 ~ P. 

Execution Time: 5.60 usec minimum. 

Execution of this instruction activates the input channel specified by the K 
portion of the instruction and causes the two succeeding addresses to be 
stored in the input buffer control word addresses for the designated channel, 
(P) -I 1 == terminal buffer control word and (P) + 2 occ present buffer control 
word. The processor then resumes normal operation by passing program con
trol to the location immediately following the buffer control words, (P) + 3 ~ P. 
The contents of the 2 storage registers following the instruction remain un
changed by the operation. 

NOTES: 

• K must be odd for paired channel, 36-bit operation. 

• K must be even for channels in ESI mode. 

43 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMB LER 6 

SEC TION: 

5015 STOP INPUT ON CHANNEL (STIC) - Privileged 

Operation: Stop input on channel K. 

Execution Time: 2.15 usec minimum. 

Execution of this instruction stops all input activity on the channel specified 
by the K portion of the instruction. 

NOTE: 

K should be odd for paired, 36-bit channel operation. 

5016 STOP OUTPUT ON CHANNEL (STOC) - Privileged 

Operation: Stop output or external function on channel K. 

Execution Time: 2.15 usec minimum. 

Execution of this instruction stops all output or external function activity on 
the channel specified by the K portion of the instruction. 

NOTE: 

K should be odd for paired, 36-bit channel operation. 

5017 STORE SPECIAL DESIGNATORS (SSD) 

Operation: Store the contents of SR and of the borrow and overflow designators 
in to the address specified by (P)+ 1; (P)+2 -) P. 

Execution Time: 2.50 usec. 

The designator settings and the SR contents will be stored in the following 
format: 

o o SR 

B is set to 1 if the borrow designator is set; 0 if it is not. 
OV is set to 1 if the overflow designator is set; 0 if it is not. 

5020 LOAD SPECIAL DESIGNATORS (LSD) 

Operation: Load the SR register and set the borrow and overflow designators 
with the contents of the address specified by (P)+ 1; (P)+2 -) P. 

Execution Time: 2.50 usec. 

The SR is loaded with bits 5-0 of the word specified at (P)+1. The borrow and 
overflow designators are set with the values of bit positions 11 and 10 of the 
word specified by (P)+ 1. 

44 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER. 6 

SECTION: 

5021 TEST INPUT CHANNEL (TIC) - Privileged 

Operation: If input channel K is idle (P) -I 2 -) P 
If input channel K is active (P) + 1 -) P 

Execution Time: 1.00 usec. 

This instruction tests for input activity on the channel specified by the K 
portion of the instruction. If there is no input activity on channel K, the next 
instruction is skipped. If there is activity on channel K, the next instruction 
is executed; (P) + 1 -) P. 

NOTE: 

K should be the same as in the load input channel instruction, 5011. 

5022 TEST OUTPUT CHANNEL (TOC) - Privileged 

Operation: If output channel K is idle (P) + 2 -) P 
If output channel K is active (P) + 1 -) P 

Execution Time: 1.00 usec. 

This instruction tests for output activity or external function activity on the 
channel specified by the K portion of the instruction. If there is no output 
activity or external function activity on channel K, the next instruction is 
skipped; (P) + 2 -) P. If there is output activity on channel K, the next instruc
tion is executed; (P) + 1 -) P. 

NOTE: 

K should be the same as in the load output channel instruction, 5012. 

5023 TEST FUNCTION CHANNEL (TFC) - Privileged 

Operation: If external function channel K is idle (P) + 2 -) P 
If external function channel K is active (P) -\- 1 -) P 

Execution Time: 1.00 usec. 

This instruction tests for external function activity on the channel specified 
by the K portion of the instruction. If there is no external function activity on 
channel K, the next instruction is skipped; (P) + 2-) P. If there is external 
function activity on channel K, the next instruction is executed; (P) 1- 1 -~ P. 

NOTE: 

K should be the same as in the load external function channel instruction, 
5013. 

45 
PAGE: 



UP-75Y9 

Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER I SECTWN, 6 PAGE: 

5024 WAIT FOR INTERRUPT (WFI) - Privileged 
or 

5025 

Operation: Stop cia section, but not I/O transmission until the occurrence of 
an interrupt. 

Execution Time: 1.00 usec. 

This instruction stops the main program operation, but lets I/O activity con
tinue normally. When an interrupt of any type occurs, the interrupt is processed, 
and main program operation is resumed. K is ignored. 

5026 NO OPERATION (NOP) 

Operation: (P) -j 1. P 

Execution Time: 1.00 usec. 

The execution of this instruction increments the contents of P by 1, (P) + 1 ~ P. 
No other operation occurs as a result of this instruction. 

5030 ALLOW ALL INTERRUPTS (AAI) 
or 

5031 

Operation: I~emove I/O interrupt lockout. 

Execution Time: 1.00 usec, 

This instruction perm its all I/O interrupts to be honored after having been 
locked out by the prevent all interrupts instruction, 5034 or 5035, or by the 
occurrence of an interrupt. K is ignored. Interrupts are inhibited for one instruc
tion tim e fo llow in g the execution of this instruction. 

5034 PREVENT ALL INTERRUPTS (PAl) 
or 

5035 

Operation: Locks out I/O interrupts, 

Execution Time: 1.00 usec. 

This instruction prevents all I/O interrupts from being honored. K is ignored. 

NOTES: 

• This instruction stops interrupts from the delta clock and day clock but 
allows updating of them while preventing all I/O interrupts . 

• This instruction has the same effect as the occurrence of an interrupt. 

46 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 6 

SEC T ION: 

5041 RIGHT SHIFT AU (SRU) 

Operation: Shift (AU) right K bit positions. 

Execution Time: (1.00 -+ number of shifts/8) usec. 

The contents of A U are shifted to the right by the num ber of bit positions 
specified by the K portion of the instruction. The original sign bit of AU, 
the con tent of AU 17' at the time the shift begins is filled in at the left end 
of AU. In all cases, this is an end-off shift; the lower-order bits of AU, 
specified by K, are lost off the right end of AU. 

Example: 

K c-c 2 and the contents of A U are positive 
(A U\ =-c 3700008 

First Shift 
(AU) = 1740008 

Second Shift 
(AU)f cc· 0760008 

K 2 and the contents of AU are negative 
(AU)i ~ 4000008 

First Shift 
(AU) c. 6000008 

Second Shift 
(A U)f = 7000008 

5042 RIGHT SHIFT AL (SRL) 

Operation: Shift (AL) right K bit positions. 

Execution Time: (1.00 + number of shifts/8) usec. 

The contents of AL are shifted to the right by the number of bit positions 
specified by the K portion of the instruction. The original sign bit of AL, the 
contents of AL17 , at the time the shift begins is filled in at the left end of 
AL. In all cases, this is an end-off shift; the low~order bits of AL, specified 
by K, are lost off the right end of AL. 

5043 RIGHT SHIFT A (SRA) 

Operation: Shift (A) right K bit positions. 

Execution Time: (1.00 + number of shifts/8) usec. 

The contents of A are shifted to the right by the number of bit positions 
specified by the K portion of the instruction. The low-order bit of AU, the 
contents of AU O' becomes the high-order bit or sign bit of AL, the contents 
of AL17 . The original sign bit of A, the contents of A35 , at the time the shift 
begins is filled in at the left end of A. In all cases, this is an end-off shift; 
the low-order bits of A, specified by K, are lost off the right end of A. 

47 
PAGE: 



UP-7599 
Rev. 1 UN I VA e 418-111 R TO S ASS E MB L E R 

Example: 

K = 2 and the contents of A is positive 
(A)i = 370000 OOOOOOS 

First Shift 
(A) = 174000 OOOOOOS 

Second Shift 
(A)f = 076000 OOOOOOS 

K =, 2 and the contents of A is negative 
(A)i = 400000 OOOOOOS 

First Shift 
(A) = 600000 OOOOOOS 

Second Shift 
(A)f = 700000 OOOOOOS 

5044 SeAL E A (SeA) 

6 
SEC TION: 

Operation: Shift (A) left circularly by K bit positions or until (A) is normal
ized; K less the actual shift count (location 000017 S). 

Execution Time: (2.00 t number of shifts/S) usec. 

PAGE: 

If the K portion of the instruction is less than or equal to the shift count needed 
to normalize the contents of A, the contents of A are shifted left by the number 
of bit positions specified by K and positive 0 is stored at storage location 
000017 S' 

If the K portion of the instruction is greater than the shift count needed to 
normalize the contents of A, the contents of A become normalized and the 
number of bit positions that the contents of A are actually shifted is sub
tracted from K and the difference is stored in storage location 000017 S. The 
contents of A become normalized by shifting the contents of A left until the 
most significant bit of the number is in bit position 34, A34' In the case of a 
positive number, the content of A34 equals 1, and in the case of a negative 
number, the content of A34 equals O. The content of A35 cannot equal the 
content of A34 for a normalized num ber. 

Example: 

A 

4S 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 6 

SECTION: 

K= 7 
(A)i = 170000 0000008 (positive and not normalized) 

First Shift 
(A)f c-c 360000 0000008 (positive and normalized) 

The processor senses that the contents of A are normalized and stores the 
quantity K minus the shift count, (0000078-000001 8) = (0000068), at storage 
add res s 0000178 , 

K=3 
(A)i '-' 600000 0000008 (negative and not normalized) 

First Shift 
(A)f =-= 400000 0000018 (negative and normalized) 

When the contents of A is normalized, the quantity K minus the shift count is 
stored; (0000038) - (000001 8 ) ccc (0000028), at storage address 0000178 , 

K : .. 1 
(A\ = 070000 0000008 (positive and not normalized) 

First Shift 
(A)f = 160000 0000008 (positive and not normalized) 

When the number of bit positions specified by K have been shifted, the quantity 
0000008 is stored at storage address 0000178' The contents of A are only par
tially normalized. 

NOTE: 

This instruction is useful in the conversion of numbers to a floating-point 
format. 

5045 LEFT SHIFT AU (SLU) 

Operation: Shift (A U) left K bit positions. 

Execution Time: (1.00 + number of shifts/8) usec. 

The contents of A U are shifted to the left by the number of bit positions speci
fied by the K portion of the instruction. The high-order bits that are shifted out 
through the left end of AU fill in the low-order bit positions of AU. No bits are 
lost as a result of the operation. 

Example: 

K=2 
(A U\ = 3000008 

First Shift 
(A U) = 6000008 

Second Shift 
(AU)f = 400001 8 

49 
PAGE: 



UP·7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER I SECTION, 6 I PAGE, 50 

5046 LEFT SH I FT AL (SLL) 

Operation: Shift (AL) left K bit positions. 

Execution Tim e: (1. 00 -+ num ber of shifts/8) usee. 

The contents of AL are shifted to the left by the number of bit positions speci
fied by the K portion of the instruction. The high-order bits that are shifted out 
through the left end of A L fill in the low-order bit positions of AL. No bits are 
lost as a result of the operation. 

5047 LEFT SHIFT A (SLA) 

Operation: Shift (A) left K bit positions. 

Execution Time: (1.25 -t number of shifts/8) usee. 

The contents of A are shifted to the left by the number of bit positions speci
fied by the K portion of the instruction. The high-order bits that are shifted 
out through the left end of A fill in the low-order bit positions of A. No bits 
are lost as a result of the operation. 

Example: 

K=2 
(A)i 300000 0000008 

First Shift 
(A) = 600000 0000008 

Second Shift 
(A)f == 400000 0000018 

5050 TEST KEYS (TK) 

Operation: If keys designated by K are set, (P) -+ 2·~ P 

Execution Time: 1.00 usee. 

There are five skip keys on the UNIVAC 418-111 maintenance panel and console 
which, together with this instruction, permit external control of program branch
ing. Bits 4 through 0 of the K portion of this instruction correspond to skip keys 
4 through 0 on the maintenance panel and console. For every bit in K4_0 that is 
set to 1, the corresponding skip key is examined. If any of the examined keys are 
set, the next ins tructions are skipped; (P) +- 2 ~ P. If K equals 0 or if all the 
examined keys are not set, the next instruction is executed; (P) + 1 ~ P. If 
K5 equals 1, the state of K4_0 is ignored, and the next instruction is skipped; 
(P) +- 2 ~ P. 

Example: 

K = 01 (bit 0) skip if skip key 0 is set. 
K = 02 (bit 1) skip if skip key 1 is set. 
K = 04 (bit 2) skip if skip key 2 is set. 
K c-: 10 (bit 3) skip if skip key 3 is set. 
K = 20 (bit 4) skip if skip key 4 is set. 
K = 40 (bit 5) skip unconditionally. 
K = 03 (bits 1,0) skip if skip key 1 or 0 is set. 



UP-7S99 
Rev. 1 UNIVAC 418·IIIRTOS ASSEMBLER I SECTION, 6 

NOTE: 

All combinations of octal codes 00 through 77 are valid codes for K. 

5051 TEST NO BOR ROW (TN B) 

Operation: If borrow designator is not set (P) + 2 -'J> P 
If borrow designator is set (P) + 1 -".> P 

Execution Time: 1.00 usec. 

This instruction tests the condition of the borrow designator and passes 
program control accordingly. If a double-length add or subtract required a 
borrow, the next instruction is skipped; (P) + 2 -) P. K is ignored. If a skip 
does not occur, a correction of the contents of A is needed. The contents of 
A will be too large by a factor of 1. The correcting instruction is ADD NEGA
TIVEL Y TO A. This allows a correcting instruction to be inserted to save 
program steps. 

5052 TEST OVERFLOW (TOF) 

Operation': If overflow designator is set (P) + 2 -".> P 
If overflow designator is not set (P) + 1 -".> P 

Execution Time: 1.00 usec. 

PAGE: 

This instruction tests the condition of the overflow designator and passes 
program control accordingly. If an overflow condition occurred on an arithmetic 
instruction with the overflow designator set, the next instruction is skipped; 
(P) + 2 -".> P and the overflow designator is cleared. If an overflow condition 
did not occur on an arithm etic instruction with the overflow designator not 
set, the next instruction is executed. K is ignored. 

5053 TEST NO OVE RF LOW (TNO) 

Operation: If overflow designator is not set (P) + 2 -".> P 
If overflow designator is set (P) + 1 -".> P 

Execution Time: 1.00 usec. 

This instruction tests the condition of the overflow designator and passes 
program control accordingly. If an overflow condition did not occur on an arith
metic instruction with the overflow designator not set, the next instruction is 
skipped; (P) + 2 -".> P. If a~ overflow condition did occur on an arithmetic in
struction with the overflow designator set, the next instruction is executed; 
(P) + 1 -".> P, and clears the overflow designator. 

Sl 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

5054 T EST ODD PARI TY (TOP) 

Operation: 1£ sum of ones in [(AU) rJID] (AL)] 
is odd, (P) I- 2 ~ P 
If sum of ones in [(A U) mrn (AL)] 
is even, (P) + 1 --) P 

Execution Time: 2.40 usec minimum (see NOTE) 

6 
SEC TION: 

The contents of AU are logically multiplied with the contents of AL and the 
number of binary l's in the result is checked for parity. 1£ the number of l's 
is odd, the next instruction is skipped; (P) + 2 ~ P. 1£ the num ber of l' s is 
even, the next instruction is executed; (P) + 1 ~ P. K is ignored. 

The contents of AL and A U remain unchanged and in AL and AU. 
(AU)f = (AU)i and (AL)f =-: (AL)i 

Example: 

(AU) = 0000778 - Mask 

(AL) = 1277238 
[(AU) mrn CAL)] = 0000238 
Bit Sum = 3 

Since the bit sum is odd, the next instruction is skipped. 

NOTE: 

IOM-ItO is used in the execution of this instruction; therefore, the execution 
time of this instruction is dependent upon queuing within the 10M. 

5055 T EST EVE N PAR I T Y (T E P) 

Operation: If sum of ones in [(AU) fJ3!l (AL)] 
is even, (P) + 2 --') P 
If sum of ones in [(AU) r.m!l (AL)] 
is odd, (P) -+ 1 -> P 

Execution Time: 2.40 usee minimum. 

The contents of AU are logically multiplied with the contents of AL and the 
num ber of binary l' s in the result is checked for parity. If the num ber of l' s 
is even, the next instruction is skipped; (P) + 2 --') P. If the number of l' s is 
odd, the next instruction is executed; (P) + 1 --) P. K is ignored. 

The contents of AL and AU remain unchanged and in AL and AU. 
(A U)f =- (A U)i and (AL)f = (A L)i 

NOTE: 

IOM-ItO is used in the execution of this instruction; therefore, the execution 
time of this instruction is dependent upon queuing within the 10M. 

52 
PAGE: 



UP-7599 
Rev. 1 SECTION: 

6 
UNIVAC 418-111 RTOS ASSEMBLER 

5056 STOP ON KEY SETTING (SK) - Privileged 

Operation: Stop if keys designated by K are set. 

Execution Time: 1.00 usee. 

There are five stop keys on the UNIVAC 418-111 maintenance panel and console 
which, together with this instruction, permit external control of program stops. 
Bits 4 through 0 of the K portion of this instruction correspond to stop keys 
4 through 0 on the maintenance panel and console. For every bit in K4_0 that 
is set to 1, the corresponding stop key is examined. If any of the examined 
keys are set, the c/ a section stops. If K equals 0 or if all the examined keys 
are not set, the next instruction is executed; (P) + 1 -7 P. If K5 equals 1, the 
state of K4_0 is ignored and processing stops. 

Example: 

K = 01 (bit 0) stop if stop key 0 is set. 
K = 02 (bit 1) stop if stop key 1 is set. 
K = 04 (bit 2) stop if stop key 2 is set. 
K = 10 (bit 3) stop if stop key 3 is set. 
K = 20 (bit 4) stop if stop key 4 is set. 
K = 40 (bit 5) stop unconditionally. 
K == 03 (bits 1,0) stop if stop key 1 or 0 is set. 

NOTES: 

• All combinations of octal codes 00 through 77 are valid codes for K. 

• This instruction is treated as a no operation while in guard mode. 

53 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

5060 ROUND A (RNO) 

Operation: If (A) is positive and (AL I7) = 1, (AU) + 1 ~ AL 
If (A) is negative and (AL I7 )= 0, (AU) - I ~ AL 
If otherwise, (AU) ~ (AL) 

Execution Time: 1.625 usec. 

6 
SECTION: 

The purpose of this instruction is to round off double-length arithmetic results 
to single-length. If AL contains a significant bit, the significant bit being 1 
for positive numbers and 0 for negative numbers, the magnitude of the AU 
portion of the double-length result is increased by 1 and the AL portion is 
discarded. In all cases, whether rounding takes place or not, the contents of 
AU replace the contents of AL. K is ignored. 

The contents of AU remain unchanged and in AU. 
The contents of AL are destroyed. 

Example: 

(A) = 120201 6533758 
(A U) = 1202018 
(AL)i -_"C 6533758 
(AL)f = 1202028 

NOTE: 

If the contents of AU equal positive 3777778 and the contents of AL17 equal 
1, or if the contents of AU equal negative 3777778 and the contents of ALl7 
equal 0 and the ROUND A instruction is executed, overflow occurs and the 
overflow designator is set. The state of the overflow designator is tested by 
either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO 
OVERFLOW instruction (f = 5053). The execution of either of these two in-
structions clears the overflow designator. 

5061 COMPLEMENT AL (CPL) 

Operation: (AL) ~ AL 

Execution Time: 1.00 usec. 

The contents of AL are complemented and the result is placed in AL. K is 
ignored. 

NOTES: 

• This instruction effects a bit-by-bit complement of the contents of AL. 

• If the contents of A L are all 0' s, the result of the complement is all 0' s. 

54 
PAGE: 



UP-7S99 
Rev. 1 

6 UNIVAC 418·111 RTOS ASSEMBLER 
SECTION: 

5062 COMPL EM EN T AU (CPU) 

Operation: (AU) -~ AU 

Execution Time: 1.00 usec. 

The contents of AU are complemented and the result is placed in AU. K is 
ignored. 

NOTES: 

• This instruction effects a bit-by-bit complement of the contents of AU. 

• If the contents of AU are all zeros, the result of the complement is all 
zeros. 

5063 COM P L EM EN T A (C P A) 

Operation: (A) ~ A 

Execution Time: 1.875 usec. 

The contents of A are complemented and the result is placed in A. K is 
ignored. 

NOTES: 

• This instruction effects a bit-by-bit complement of the contents of A. 

• If the contents of A are all D's, the result of the complement is all D's. 

5065 LOAD GUA RD MODE (LGM) - Privi leged 

Operation: Load the lower and upper storage registers with ((P) + 1)8_0 
and ((P) + 1)17-9 and set guard mode designator active; (P) + 2 
~ P. 

Execution Time: 1.75 usec. 

5066 SET AUDIBLE ALARM (SAA) - Privileged 

Execution Time: 1.00 usee. 

This instruction initiates the console audible alarm. This alarm must be 
manually reset with the audio reset switch on the console. K is ignored. 

55 
PAGE: 



UP-7599 
Rev. 1 UN I V A C 418 ·111 R TO S ASS E MB L E R I SECT<ON, 6 

5067 ENABLE ESIINTERRUPTS (EEl) - Privileged 

Operation: Remove ESl interrupt lockout. 

Execution Time: 1.00 usec. 

This instruction clears the ESl interrupt lockout designator which is set by 
the generation of an ESl "hard" interrupt. If the K portion of the instruction 
is any octal code 00 through 17, lOMita is selected; and if the K portion is 
any octal code 20 through 37, 10M Ttl is selected. 

(P) [ JI sis ~I 
\Or 

f 17-12 
m
ll

_
6 KS-O 

NOTES: 

• The 10M does not notify the arithmetic section of interrupts tabled while 
the ESl interrupt lockout designator is set. 

• After the execution of this instruction, the next ESl interrupt which is 
received by the specified 10M generates a "hard" interrupt in addition to 
being tabled. 

• This instruction does not clear the interrupt lockout in the command/arith
metic section but clears only the ESl interrupt lockout in the 10M specified 
by the K portion of the instruction. 

• ESl interrupts are inhibited for one instruction time following the execution 
of this instruction. 

5070 BLOCK TRANSFER (BT) 

Operation: If K I- 0, (AU) 7 (AL); (AU) + 1 7 AU; (AL) + 1 ~ AL. 
The sequence is repeated K times. 

Execution Time: (1.750 + 1.5 x number of words in block) usec. 

This instruction transfers the number of words specified by the K portion of 
the instruction from an initial address specified by the contents of A U to an 
initial address specified by the contents of AL. The contents of AU equal 
the source address and the contents of AL equal the destination address. The 
contents of AU and AL are incremented by 1 with each word transferred. 

NOTES: 

• The maximum number of words that can be transferred with a single instruc
tion is limited by the K portion of the instruction, 77 octal words. 

• If an interrupt is generated during the block transfer, it is not honored until 
the completion of the BLOCK TRANSFER instruction. 

• If K equals 0, no data is transferred, and the contents of AU and AL remain 
unchanged. 
(A U)f = (A U)i and (A L)f = (AL)i 

56 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 6 

SECTION: 

5072 LOAD INDEX REGISTER POINTER (LIR) 

Operation: K2_0 ~ IRP 

Execution Time: 2.50 usec. 

The execution of this instruction causes the present contents of the B "hard" 
register to be stored at the address specified by the present contents of IRP. 
IRP is then loaded with the low-order three bits, bits 2 through 0, specified 
by the K portion of the instruction. The contents of storage, specified by the 
new contents of IRP, are loaded into B. 

NOTES: 

• The constant K is contained within the instruction and does not refer to an 
address. 

• IRP points to storage address 109 when it is loaded with OOg. 

• The index registers, storage addresses 01 g through 109, may be loaded 
during an initial load operation. 

5073 LOAD SPECIAL REGISTER (LSR) 

Operation: y ~ SR5_0 

Execution Time: 1.00 usec. 

PAGE: 

The execution of this instruction causes the low-order six bits of the instruction, 
specified by K, to replace the contents of the special register. The special register 
is activated only if bit 4 is set. Bit 5 and hits 3 through 0 define the storage seg
ment to be addressed. 

57 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER ISECT,oN, 6 I PAGE, 58 

5074 DECIMAL TO BINARY CONVERSION (DB) 

Operation: [CAUO-3,6-9,12-1S)]lO ~ [AL 9 _O]2 

Execution Time: 7.735 usec. 

01 

This instruction causes a three-character BCD number, packed in a six-bit 
field in AU, to be converted into a binary number. The resultant binary number 
is the content of AL. The maximum decimal number to be converted must not 
exceed [9991 10. 

02 03 

[ X X N N N N X X N N N N X X N N N NI AU; 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 AUf 

1 X X X X X X X X X X X X X X X X X xl AL; I 0 0 0 0 0 0 0 01 N N N N N N N N N N 1 ALf 

17 10 9 

Dl, D2, D3 are assumed to be unbiased, positive BCD digits. XX bits are 
ignored CDI = MSC). 

NOTES: 

• No test is made for invalid BCD characters; that is, greater than 9. 

• This instruction should be useful in program conversion of longer fields 
by a convert, multiply by ION, add, process. 

o 

• In processors not equipped with this feature, convert commands are considered 
a fault and generate a supervisor call interrupt. 



UP-7S99 
Rev. 1 

I 0 

I 0 

UNIVAC 418-111 RTOS ASSEMBLER 6 
SECTION: PAGE: 

5075 BINARY TO DECIMAL CONVERSION (BD) 

Operation: [(AL9_0)12 ~ [AUO-3 ,6-9,12-15]10 

Execution Time: 8.250 usec. 

This instruction causes a binary number which mus t not exceed 99910 to be 
converted to BCD. The binary number contained in AL is converted to BCD 
and is placed in AU in three six-bit characters. The first two bits of each 
packed character are to be ignored and the next 4 bits contain the BCD code. 
The most significant character appears at bits AU17 through AU12' 

o 0 0 0 0 0 

°IN 
NNNNNNNN NI ALi Ix XXXXXXXXXXXXXXXX 

01 02 03 

00000 0 0 000 000 000 01 ALf Ix X N N N N X X N N N N X X N N N 

AU17 AU12 

NOTES: 

• Larger binary numbers should be converted by a divide by 103 , convert, 
store sequence • 

• In systems not equipped with this feature, the convert commands are con
sidered a fault and generate a supervisor call interrupt. 

xl 

NI 

59 

AU, 

AUf 



UP-7S99 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER Appendix A 

SECTION: 

APPENDIX A. INSTRUCTION 
REPERTOIRE 
SUMMARY 

OPERATION TIMING 

CODE 
MNEMONIC INSTRUCTION DESCRIPTION IN /-1 

SECONDS 

ARITHMETIC COMMANDS 

5060 RND Round A If (A) is positive and 1.625 
(ALl7 ) = 1, AU+-l-)AL; If 

(A) is negative and (ALl7 )= 

0, (AU) -14AL; otherwise 
(AU)--)AL. 

14 AL Add to Lower (AL)I (Y) >AL 1.50 

15 AL* Add to Lower 1.50 

16 ANL Add Negative Iy to Lower (AL)-(Y) >AL 1.50 

17 ANL* Add Negative Iy to Lower 1.50 

20 AA Add to A (A)+ (Y -1, Y) ) A 3.0 

21 AA* Add to A 3.0 

22 ANA Add Negatively to A (A)-(Y-l, Y) >A 3.0 

23 ANA* Add Negative Iy to A 3.0 

24 M Multiply (AL). (Y) >A 6.5 CD 
7.37 r;fJ) 

25 M* Multiply 6.5CD 

26 0 Divide (AL)-;-(Y) >AL; Remainder>AU 
®7.375@ 

6.5 3 
®7.37S@) 27 0* Divide 6.5 3 

71 Add to Lower A "Konstant" (AL)-I Z->AL 1.0 
7.3750 

ALK 

FLOATING-POINT ARITHMETIC COMMANDS 

5002 ** FA Floating Point Add (A)+ (Y -1, Y»A 4 .35+x 

5003 ** FS Floating Point Subtract (A)-(Y-l,Y)->A 4.35+x 

5004 ** FM Floating Point Multiply (A).(Y-1,Y»A 12.0 

5005 ** FD Floating Point Divide (A)-'- (Y -1, Y»A 12.0 

5006 ** FP Floating Point Pack Normalize (A),pack with 3.5+x 
biased character istic from (Y), 
and store in A. 

5007** FU Floating Point Unpack Unpack A, leave mantissa 3.5 
in A. Store character istic in Y. 

BINARY /DECIMAL CONVERSION COMMANDS 

5074 DB Dec ima I-to-Binary Conversi on (AU15_ 12 9-6 3-O)~ AL (Binary) 7.375 
f , 

5075 BD Binary-to-Decimal Conversion AL --') (AU15_ 12, 9-6, 3-0) (Decimal) 8.250 

1 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

OPERATION 
CODE 

MNEMONIC INSTRUCTION 

LOGICAL COMMANDS 

51 OR Inclusive OR 

52 AND Logical AND 

53 XOR Exclusive OR 

5061 CPL Complement A Lower 

5~2 CPU Complement A Upper 

5063 CPA Complement A 

TRANSFER COMMANDS 

10 LU Load A Upper 

11 LU* Load A Upper 

12 LL Load A Lower 

13 LL* Load A Lower 

44 SL Store A Lower 

45 SL* Store A Lower 

46 SU Store A Upper 

47 SU* Store A Upper 

70 LLK Load A Lower with" Konstant" 

04 MSL Masked Selective Load 

05 MSL* Masked Selective Load 

32 LB Load Index Register 

33 LB* Load Index Register 

42 SB Store Index Register 

43 SB* Store Index Register 

36 LBK Load Index Register with 
" Konstant" 

37 LBK* Load Index Register with 
•• Konstant" 

74 SAD Store Address of A Lower 

5072 LlR Load Index Register Pointer 

5073 LSR Load Spec ia I Regis ter 

72 SIR Store Index Register Pointer 

75 SSR Store Special Register and 

Inactivate 

40 CY Clear Y 

41 Cy* Clear Y 

5070 BT Block Transfer 

5017 SSD Store Special Designators 

5020 LSD Load Spec ia I Des ignators 

Appendix A 2 
SECTION: PAGE: 

TIMING 
DESCRIPTION IN 11 

SECONDS 

(ALl l!l3 (Y)--'>AL 1.50 

(AL) tim] (Y)--'>AL 1.50 

(AL) IBI(Y)--'>AL 1.50 

The complement of (AL)--'>AL 1.0 

The complement of (AU)--'> AU 1.0 

The complement of (A)--'> A 1.875 

(y)--,> AU 1.50 

1.50 

(Y)--'>AL 1.50 

1.50 

(AL)--'>Y 1.50 

1.50 

(AU)--'>Y 1.50 

1.50 

Z--'>AL 1.0 

(YN)--,>AL for (AUN)=l 1.50 

1.50 

(Y)--'>IR 1.5 

1.5 

(IR)~Y 1.50 

1.50 

Z--'>IR 0.75 

0.75 

(AL11-0)--'>Y11-0 3.0 

K2 -0--'> IRP 2.5 

K5 - O--'>SR 1.0 

(IRP)~ Y {If (IRP)~O. } 3.0 2 -0 OOl--'>Y 
5-3 

If (IRP)*O, 

000--'>Y5_ 3 
(SR)--,>Y5_

0
,0--,>SR

4 3.0 

O--'>Y 1.50 

1.50 

Transfer K words from 1.750+1.5n 

ADRAU--'>ADRAL 

(SO) -t IAR+1 2.5 

(IAR+1)-tSD 2.5 



UP-7S99 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

OPERATION 
CODE MNEMONIC 

SHIFT COMMANDS 

5041 SRU 

5042 SRL 

5043 SRA 

5044 SCA 

5045 SLU 

5046 SLL 

5047 SLA 

LOOP CONTROL COMMANDS 

73 JBNZ 

56 TB 

57 TZ 

COMPARE COMMANDS 

INSTRUCTION 

Shift Right A Upper 

Shift Right A Lower 

Shift Right A 

Sca Ie A 

Sh ift Left A Upper 

Shift Left A Lower 

Shift Left A 

Jump and Mod ify if Index 
Register Non-Zero 

Test B-Register for Equa I ity 

Test Any Location for Zero 

Appendix A 
SECTION: 

DESCRIPTION 

Shift AU right (END-OFF) 

K bit pOSitions 

Shift AL right (END-'OFF) 
K bit pOSitions 

Shift A right (END-OFF) 

K bit pos itions 

Shift A left (END AROUND) 
K places or until normalized 
K less shift~000178 

Shift AU left (END AROUND) 

K bit pOSitions 

Shift AL left (END AROUND) 

K bit pOSitions 

Shift A left (END AROUND) 
K bit pos it ions 

If (I R) :t 0, (I R) - 1 -~ I Rand 

Y->IAR 

If (IR)=O, (IAR) + l-~IAR 

If(IR)=Y, (IAR)+2-) IAR 

If( IRJ.iY,( IR) \ 1 )IR 

If(Y)o{),(IAR)12-) IAR 
If(Y)lO,(Y)-l-)Y 

TIMING 
IN 11 

SECONDS 

1+x 

1 \ X 

1 + x 

2+x 

1 +x 

1 +-x 

1.75 

2.5 

2.25 

~--------~-----------~----------------------~--------------.--------~------~ 
02 

03 

06 

07 

CL 

CL* 

CLM 

CLM* 

Compare A Lower 

Compare A Lower 

Compare A Lowel Masked by 

A Upper 

Compare A Lower Masked by 
A Upper 

COMPARISON JUMP COMMANDS (COMPARE DESIGNATOR SET) 

(AL): (Y) set CD accordingly 

[(AU) r..nrn (AL)] : [(AU) 

rJllil (Y)]; set CD accordingly 

1.50 

1.50 

2.0 

2.0 

r----------.------------~----------------------._----------------------~---------
0.75 60,61 JE 

62,63 JNE 

64,65 JNLS 

66,67 JLS 

Jump on Equa I 

Jump on Not Equa I 

Jump on Not Less 

Jump on Less 

If CD equal condition set, 
Y>IAR 

If CD equal condition clear, 

Y>IAR 

If CD not less than condition, 
Y,IAR 

If CD less tllan condItion, 
Y->IAR 

0.75 

0.75 

0.75 

3 
PAGE: 



UP-7S99 
Rev. 1 UN I V A C 418 ·111 R TO SASS E MB L E R Appendix A 

SECTION: 

OPERATION 
CODE 

MNEMONIC INSTRUCTION DESCRIPTION 

ARITHMETIC JUMP COMMANDS (COMPARE DESIGNATOR NOT SET) 

60 JUZ Jump on A Upper Zero If (AU)=O, Y ~IAR 

61 JLZ Jump on A Lower Zero If (AL)=O, V--?IAR 

62 

63 

64 

65 

66 

67 

JUNZ 

JLNZ 

JUP 

JLP 

JUN 

JLN 

Jump on A Upper Non-Zero 

Jump on A Lower Non-Zero 

Jump on A Upper Pas itive 

Jump on A Lower Pas itive 

Jump on A Upper Negative 

Jump on A Lower Negative 

UNCONDITIONAL JUMP COMMANDS 

34 

35 

55 

30 

31 

76 

SKIP COMMANDS 

5050 

5051 

5052 

5053 

5054 

5055 

J 

J* 

JI 

SLJI 

SLJI* 

SLJ 

TK 

TNB 

TOF 

TNO 

TOP 

TEP 

Jump 

Jump 

Jump Indirect 

Store Location and Jump 

Ind irect 

Store Lecation and Jump 
Ind irect 

Store Location and Jump 

Test Keys 

Test No Borrow 

Test Overflow 

Test No Overflow 

Test Odd Parity 

Test Even Parity 

EXECUTIVE COMMANDS (INTERRUPT CONTROL) 

5024 } 
5025 

5030 
5031 

5034 
5035 

54 

5067 

} 
} 

WFI 

AAI 

PAl 

EJI 

EEl 

Wa it for Interrupt 

A Ilow A II Interrupts 

Prevent A II Interrupts 

Enable Interrupts and 
Jump Ind irect 

Enable ESI Interrupt 

If (AU)fO, V~IAR 

If (AL) +-0, V -7IAR 

If (AU) is positive, V -> IAR 

If (AL) is positive, V->IAR 

If \AU) is negative, V -> IAR 

If (AL) is negative, V-> IAR 

V>IAR 

(V16 _ O)->IAR 

(IARH 1. Location in (V); 
(V)+ 1 > IAR 

Skip if keys designated by K 
are set. (IA R) 1- 2 ->JAR 

If borrow indicator off, 
(iAR)+ 2-.IAR 

If overflow indicator on, 

(IAR)+ 2-> IAR 

If overflow indicator off, 
(IAR)+2-.IAR 

If sum of l's in (AU) tuI!l 
(AL) is ODD, (IAR)+2->IAR 

If sum of l's in (AU) rJml 
(AL) is EVEN, (IAR)+2 ~ IAR 

Stop CIA Unit (not I/O) 
unti I Interrupt 

Allow all Interrupts 

Prevent a II Interrupts 

(V1S-o)--JIAR; enables 

Interrupts 

If K=O lows ESI Interrupts, 

10M 11:0; If K =20
8

, allow ESI 

Interrupts 10M #1 

TIMING 
IN j1 

SECONDS 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

0.75 

1.50 

2.25 

2.25 

2.0 

1.0 

1.0 

1.0 

1.0 

2.4 

minimum 

2.4 

minimum 

1.0 

1.0 

1.0 

1.50 

1.0 

4 
PAGE: 



UP-7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER 

OPERATION 
CODE 

MNEMONIC INSTRUCTION 

EXECUTIVE COMMANDS 0/0) 

5011 LlC Load Input. Channe I 

5012 LOC Load Output Channe I 

5013 LFC Load External Function 
Channel 

5015 STIC Stop Input on Channel 

5016 STOC Stop Output on Channel 

5021 TIC Test Input on Channel 

5022 TOe Test Output on Channel 

5023 TFC Test Externa I Funct ion 

on Channel 

EXECUTIVE COMMANDS (STORAGE PROTECTION) 

5065 LGM Load Guard Mode 

EXECUTIVE COMMANDS (STOP) 

5056 SK Stop on Key Settings 

(if not in Guard 
Mode) 

EXECUTIVE COMMAND (SPECIAL) 

5010** RS Read and Set 

5026 NOP No Operation 

5066 SAA Set Audible Alarm 

SUPERVISOR CALL COMMANDS 

00 Superv isor Ca II 

01 Supervisor Call 

n Supervisor Call 

5000 Supervisor Call 

5001 Supervisor Call 

50n Supervisor Call 

Appendix A 5 
SECTION: PAGE: 

TIMING 
DESCRIPTION IN /1 

SECONDS 

Load I/O Channel K from 5.3 
(IAR)+ 1 and (IAR)+2, initiate minimum 
input; then (IAR)+3.IAR 

Same as LlC except that 5.3 
output is initiated minimum 

Same as LlC except that 5.6 
Externa I Function is initiated minimum 

Stop Input on Channel K 2.15 
minimum 

Stop Output on Channe I K 2.15 
minimum 

If Input Channel K idle, 1.0 
(IAR)+2--,IAR 

If Output Channel K idle, 1.0 
(IAR) +- 2 ) IAR 

If Externa I Function Channe I 1.0 

K idle, (IAR)+- 2· IAR 

((IAR)+1)17_9 ---. Upper Limit 1. 75 

((lAR)-tl)8_0 --'> Lower Limit, 

G u a r d Mod e iss eta n d 
(IAR)+2 --+ IAR 

Stop, if keys designated 1.0 

by K are set; if in Guard 

Mode, (IAR)+l>IAR 

(Y)->AL,l ) Y17 2.5 

1.0 

1.0 

0.75 

0.75 

0.75 

1.0 

1.0 

1.0 



UP·7599 
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 

LEGEND FOR INSTRUCTION REPERTOIRE 

Subscripts specify bit positions in the register or quantity subscripted. 
N represents each bit position. 

Appendix A 
SECTION: 

* = To index an assembler instruction, prefix operand with *(asterisk). The assembler adds 1 to 
octal operation code, or set 212 = 1 of IAR + 1. 

x "- number of shifts /1 seconds 
8 

n = number of words in the block 

** = IR-sensitive if 212 of IAR + 1 is set to 1; indexing is indicated by prefixing the operand with an 
asterisk (*). 

AL = Lower accumulator 

AU = Upper accumulator 

A = Upper and lower accumulators acting as one register 

IR = The active index register 

IAR :;.; Instruction address register 

CD =- Compare designator 

Y = On the left of the ~ symbol, the storage address in the low~order 12 bits of the instruction (bits 
11-0); on the right of the ~ symbol, the storage location specified by that address. 

K = The unsigned integer or bit configuration in the low-order 6 bits of the instruction (bits 5-0). 

Z = The low-order 12 bits of the instruction p extended to 18 bits by repetition of bit 11 in bit positions 
17-12, and treated as a constant in the range -3777 to +3777 octal. 

( ) = Contents of the register named in the parentheses; that is p (Y) = contents of Y. 

=.: Rep laces the contents of 

= Compare algebraically the quantities on either side of this symbol. 

EIilil = Exclusive OR 

rJIDl = Logical AND 

[i]J C" .• Logical OR 

CD Multiplying numbers of like signs. 

o Multiplying numbers of unlike signs. 

® Dividing positive numbers. 

® Dividing numbers of unlike signs or negative signs. 

6 
PAGE: 



UP·7599 
Rev. 1 UNIVAC 418·111 RTOS ASSEMBLER Appendix A 

SECTION: 

A sample of each operand type follows. To index an instruction in the assembly language, 
prefix the operand with an asterisk. The assembler adds a 1 bit to the octal op-code of 
single word instructions, or sets bit 12 of the second word of two-word instructions (op
codes 5002 through 5010 and 5064). 

-------------------------------------_ .• _ .• 
LABEL OPERATION OPERAND COMMENTS 

F=========-~-=_=_=_=1~O=============~20~=============3~O===============40~=============5=0==_===== .====-~6~O=====_=_=_=_=_=_=_=_~7~ 
n."'I~ I 
W'~~II<.J 
f1E.IMIP I 

I l!;lQ,uJ ._"-- [ I 

j JL 1+,0, J.I 
'.1. 1 L 1 1 j I 1 

rL 

1 J I _ ~ _ LJILEJ!L 1 .LJ. J L L llt91-'l._LLJ-1 .. L..LL LJ , j _ '.L LJ ~ .. 1 .L_1-.i 

J LL I J 1 j 

[ I. J 1 ! I 1 L I 

1 __ 1 _L.1 L . ..1 L. [ I 1 _J _ i L III 1 iii 

,.-'---Ll:t-,QL.L.L_LLLJ.lJ-'-L£U~_'___J?tlLI_J'.lTL[I?J~lR,rLLJ_~ ,_I.Ll [L [ II 

~~l~,Xu,~' ~~-L~I_I~+~,O~I ~1~,~~I~,~I~,~I_·~'~'lF~,r~'Dx~le~,~O~,~'LP~,~~I~I~,N~,T~I~,LP~,A~!nR~,TWI~!JI_L~~'_L' J.'-L.L-LJ.I_'LJ.I~'~~_~~~_L-'---l_ 

eL)(p, I I 1 Ll±t~, . .l j 

'ILALLJUtE'L L J laE~l 

ILL I J 1 L '-., 

[ 1 1 

1..LJ-'LJ.e1~e~J'hE[~Ti_'L~. .-,--L.1 i_ 

L4LPJ L . .L 1 1 .L.L [_1..L.1...1 L I L~ 

,1 [ 1 

J 1.~ j 11 I L 

L I l __ ~ I __ J 1 

J 1 I I LL_L.L ! LL_J_ 1 J 

L L J l I i 

L I J I L ,l I I J I I i J ! I 1 I 

11, ( J i 

'--1 I I I I 

~~-L~LJ.-L..i-~~~~LJ.-L~LJ~~~LJ.-L~~-L~L-~~O~~,P~IEillnR~IA~1uN~IP~I-LI_ILJ.I-L1 ~1-L~~~_L~~-L..J.I-LI~~i_ILJ._L' ~I-LL~ 
L 1 , L I L 

, 1.1 

~,I£M[PL 

ITLW,O': 1 

I- LJl:~J)L~~dYL_Le'I2LUh~Njh I 

1 kl j~[ 1~P.£.£~~lt!JD1.1 L [.1 L.l j 1 1.1 

is,\"j , [ 1 I\.I,~H~,KJ , J 1 - [ _.LV L ,o:P,e:.S.L~J"1P [ , , I 

lS,L[L[ 1 L I LllLL LL'_.L~~P_IEl.R,AtN10Ll.L-'-1 

111 

1,1 , i 

, I I I 

1 I 

I--'_-'--'--L_L..L_L~.LI ~1S!S~IL"jI--L-'ILJ.' _LI -L1-LJI~I$!JI..!:+.l!1 2.!oJIL-J.-L~L.J.I_J..1 -11-=.,-",-, ..JIL!Y-'-I _1L!f!JClCIP~,EclIR~Ip..lIIN!.!!l!IO~ILJ.1 -LI ~1-L-L..L.l-L1 ~1-1-1 _LI -L-l-L-LI .JI--,-~,---,-I -L-'--L-"I_LL..L.L...L.L 

, I l J 1 1 I IJ'I J L1..1 leJ'1IJJT L1 1 [ 'L.L1-'-1 81 [~lPJe.IRIA[N10l_L I [ 11 1 I 1 1 I , I I L ,1.1 [ I 

l1 j l [ I_I I J , 1 111.1 I L 

11 J J L .LJ J L I I 1 1_11 1 L[ 

, LLJ 1 

_1...L.L1.. 

_ L 1 L L.' 1 L..1. L_,. 1. L L.1. 1 L I I I 

.1..1._[ ._1 L L_1._1..L.L..L-L.'L.1_~ _ L L 

I I , L_I_I 111 

ILl I j 1 1 I I I [ 

I' I , I 1 h IF[~,~ ~EL~,CH l"-IF, I'LtllE.'l lFjL.L~~,TLI[\lttG!, IPJ~JIlI\l1T, LrJ~SJT ,R,1U,CIT1'tle,NLS, 
I I I , , I i_LL.LL...Ll.LLLI !oJ ,TIHE, ,A,SSIEIMIBIL,E,R I ,<ilIENIE IBIA,T IE IS, ITIW10', ILt,N,ES, IO'IF I ICI~OIE"1 I , 

J III 

j I 

1 l L i 1 1 

1..1 -1 I 

1 [ 1 1 I 

1'_1 

J lL:U, 1 

L1.L l t.L.J _1 

lE&\. 

l~lI')(i-d.LL' .1 I 1 1 1.1._1.. J. j 1 

[.!F,:,XLXt ~ .. L 1.1 .J [ .C. L. 1 : I I ! 1 ; 

! I ! 

I I i 

1 L: 

, j 

, I 

I I 

I I I! ! I I I I , I I I IFIAI , I , I 

J.E~J)l i _1 .1 .1 

I*NIA,LIUltl 1'1 ICI~N,T,EINITISI IO'IF I NIAILIUIE'I II'1IU,SIT~LLLJ.. 

L L 1 1 1 -'-_1 [ 1 l LL1 I J'_.1 .j_::J;l.NL,fJ,.,~fuTI tF_[O'lR1J't\A,T'L I Ii, I 1 I ! I 

l I [ , 1 l L I , 111 , I , 111 , i 

I I 1.J' J 1 , ,1 

7 
PAGE: 



Library 3 3 1004 
Univac Marketing Education Center 
Div Sperry Rand Corp 52;56;58;61 
Valley View Dunhill Bldg 
251 West DeKalb Pike 
K~:gS Qt P:ru~~i.a: p~ ~ 9409 

41B-111 

ASSEMBLER 
UP-7599 REV. 1 

UNIVAC 418-111 Real-Time System Library Memo 18 announces the release and availability of "UNIVAC 418-111 Real-Time System RTDS 
Assembler Programmers Reference," UP-7599 Rev. 1, covers and 171 pages. This is a Standard Library Item (SLI). 

This version of the UNIVAC 418-111 Assembler manual describes the language and its uses in more detail than 
the original. Included are descriptions of the coding format, expressions, directives, PROC's, and paraforms. 

Certain directives have been removed and some new more powerful ones have been added. For example the UNlIST 
directive hqs been added to the assembler, it provides a means of selectively preventing the printing of out
put of sections of a program. 

Dimensioned Labels, a new feature, are also described in detail. These are labels which are distinguished by 
their subscripts rather than by the label itself. 

Sample assembled printouts are included wherever possible to support explanations and show examples of the 
features discussed. Coding examples are also given throughout the manual to assist in a logical presentation 
and flow. 

A detailed explanation of the instruction repertoire is included as well as an instruction repertoire summary. 

Destruction Notice: UP-7599 Rev. 1 supersedes and replaces "UNIVAC 418-III Real-Time System Assembler Programmers 
Reference," UP-7599, released on Library Memo 1 dated June 24, 1968. Please destroy all copies of UP-7599 alld/¢r 
Library Memo 1. 

Distribution of UP-7599 Rev. 1 has been made as indicated below. Additional copies may be requisitioned frrnn 
Holyoke, Massachusetts via a Sales Help Requisition through your local Univac Manager. 

~ ~ ~ automatically. Please do not reorder. ~~ 
NOTE: Back Orders for this item are being filled 

'-' ~~ _____ -e 

Documentation and Library Services 

LiSTS: 
lOU, 217, 630, 

and 692 Library Memo 18 
only. 

"" ~ iAChMt:NT s: UP-7599 Rev. 1 plus Library Memo 
18 to S.P.L.S. Lists 57 and 58. 

\:!SI0N OF SPERRY RAND CORP"'->l>,TION, S.p.L.S •• P.O. BOX 500. BLUE BELL. PA. 1942<' 

System Library 

July 23, 1970 



UP.7599 Rev. 1 


	0001
	0002
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	_1
	xBack

